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Abstract 

There are two popular approaches in the communication between multiple receivers 

and a base station with multiple antennas: dirty paper coding and multiuser diversity. 

Dirty paper coding can be rather difficult to realize, which motivates people to find 

some practical schemes. When there are a lot of users, multiuser diversity requires a 

lot of feedback which decrease the uplink spectrum efficiency. 

In this paper, we aim to minimize the probability of error subject to the total 

transmit power constraint and decrease the amount of feedback required by the mul­

tiuser diversity instead of trying to achieve the dirty paper coding. There are two 

main results in this thesis: First, we formulate the minimization of the average prob­

ability of error of all the users as a convex optimization problem, subject to the peak 

or the average power constraints. The proposed transmitter represents a nonlinear 

one-to-one mapping between the transmitted data vector and the symbol vector. The 

transmitted data vector going through the base station antennas is obtained as a solu­

tion to the proposed convex error probability optimization problem that can be solved 

using computationally efficient interior point algorithms. Furthermore, we propose a 

random unitary beamforming technique to reduce the feedback by selecting a thresh­

old for the users. To improve fairness, an equal ratio scheduling algorithm which 

could serve the users with different rate requirements is developed. We also give an 

upper and lower bound on the sum rate achievable in our approach. Monte Carlo 

simulation results is provided to verify the performance of the proposed algorithms. 
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Chapter 1 

Introduction 

In the past twenty years, wireless communication has become a hot field both in the 

business and in the technology. While the objective of the first and second generation 

wireless communication focuses on the voice service, the third and fourth generation 

wireless communication is supposed to provide multimedia and high-rate data service, 

which require up to a few Mbps. A distinctive characteristic of the high-rate service, 

such as web-browsing, file transfer protocol, is the hi-direction asymmetric traffic 

between the uplink and the downlink. Consequently, it is very natural to increase the 

throughput of the downlink channel in the cellular communication system. 

In the conventional single-input-single-output (SISO) wireless channel, to improve 

the throughput, we need more frequency spectrum or higher SNR. However, frequency 

spectrum is limited and expensive. On the other hand, SNR is also limited within 

some range because of the interference among the users and the cells. Therefore, 

more efficient modulation and demodulation methods is in practical demand. 
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1.1 Multiple Antennas 

One of the exciting breakthrough of wireless communication in the past decade is the 

introduction of multiple antennas, which contribute both diversity gain and multi­

plexing gain to the fading channel. Multiple antennas have long been used in radar, 

sonar, and signal processing to extract the desired signal. It is well known that mul­

tiple antennas could improve the signal-to-noise ratio (SNR) of the received signal by 

carefully combining the received signal copies sampled from each antenna. Not until 

the sparkling work by Telatar [28] and Foschini [9], did it become apparent that the 

ergodic capacity of the multi-antenna channel increases linearly with the minimum of 

the number of transmit and receive antennas even if the transmitter does not know 

the channel. 

The behavior of the multiple antenna channel is different from that of the single 

antenna channel. Traditionally, fading is distasteful as it reduces the signal amplitude. 

While in the multiple antenna channel, fading is beneficial since the variation of the 

channel result in the uncorrelated of the different channel coefficients, which give 

rise to a matrix channel whose rank is greater than one with high probability. This 

matrix channel is often called multiple-input-multiple-output (MIMO) channel. The 

rank of this matrix channel account for the multiplexing gain coming from the multiple 

antennas [39]. 

1.2 Transmitter Design in the Downlink Channel 

In the traditional multi-access methods, such as frequency division multiple access 

(FDMA), time division multiple access (TDMA), and code division multiple access 

(CDMA), each user is assigned a unique frequency slot, time slot or pseudorandom 

sequence to be identified by the base station (BS). When there are multiple antennas, 

2 
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space division multiple access (SDMA), can be used where the users are identified by 

their channel vector. 

One of the most intensively studied MIMO channels is the MIMO broadcast chan­

nel [4, 38, 31, 30]. It is shown that the capacity of the MIMO broadcast channel is 

equivalent to that of the reverse multi-access channel, which is a generalization of the 

Costa's work [6]. 

There are three established approaches to MIMO broadcast channel transmitter 

design. The first is to minimize the total transmitted power subject to individual 

signal-to-interference-plus-noise ratio (SINR) constraints [19, 1, 24, 2]. The second 

is to optimize the system performance subject to the total transmitted power con­

straint1 [23, 14,26]. The last approach to MIMO broadcast channel transmitter design 

is to diagonalize (or block-diagonalize) the channel to enable efficient interference sup­

pression [27,37,5]. 

From a capacity viewpoint, receiver and/ or transmitter cooperation is necessary 

for multi-access and broadcast channels to achieve it [38]. Furthermore, recent capac­

ity results on MIMO broadcast channel [4] suggest that instead of trying to suppress 

the interference and encoding each user independently, the BS should utilize the in­

terference and jointly encode all the users. Obviously, linear BS transmitters do not 

fully utilize transmitter cooperation as they regard the signals destined for other users 

as interference and try to suppress this interference as much as possible. Since the 

optimal multiuser detector for CDMA multi-access channels decodes all the users 

jointly and in a non-linear way [29], we can expect that in order to achieve the op­

timal probability of error, a nonlinear transmitter (rather than a linear one) and a 

joint encoder (rather than an independent one) should be used. 

1 Note that the work in [14] originally considers a MIMO multi-access (MAC) channel and that it 
can be generalized to the MIMO broadcast channel case using the uplink-downlink duality property 
[31]. 

3 
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1.3 Multiuser Diversity 

One of the basic properties of wireless channel is fading, which comes from the sum­

mation of multiple channel coefficient. To combat fading, diversity is widely used in 

coding and modulation. If there are many users in a wireless communication system, 

the natural variations of the wireless channel of different users introduce another kind 

of multiuser diversity. 

Transmitting to the best user has been shown to greatly improve the capacity 

of time-division-multiple-access (TDMA) uplink fading channel when there is only 

one antenna at the BS [15]. This benefit, termed as multiuser diversity in [32], is 

due to the independent time-varying channels across the different users. When there 

are multiple antennas at the BS [32], an opportunistic beamforming technique to 

increase the throughput of the slowly time-varying channel by inducing faster and 

larger fluctuations was proposed. 

Assuming that there are K single-antenna users and M antennas at the BS, for 

full channel state information at the BS, the users are required to feed back 2K M 

real numbers after each training, which would be a substantially large number if K 

is large. This large amount of feedback prohibits practical applications of multiuser 

diversity if there are a lot of users. In this thesis, we follow the work of [25] and 

propose an algorithm aimed at reducing the necessary amount of feedback by finding 

M or less than M quasi-orthogonal users. In our approach, the feedback process is 

realized in two stages. The first stage determines which beams will be used. In the 

second stage, the total power is uniformly allocated to the selected beams and the 

quasi-orthogonal users feed back their SINR to the BS. A user feeds back only if the 

maximum of the normalized cross-correlations of its channel with the beams is greater 

than a given threshold. The threshold is deliberately devised so that there are on 

average d users feeding back at a time, where d is a fixed number. It turns out that 
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the channels of those users who feed back approach orthogonality as K increases. 

Simulation results demonstrate that the proposed random beamforming has roughly 

the same performance as the previous techniques. However, the average amount of 

feedback required in the proposed random beamforming is only d real numbers and 

d integers, which does not vary with K. 

1.4 Dissertation Outline 

The thesis is organized as follows. In chapter 2, we formulate the problem of minimiz­

ing the probability of error as a convex optimization problem that can be efficiently 

solved using interior point methods. In chapter 3, we propose a random unitary 

beamforming to decrease the amount of feedback. The conclusions and future work 

are reported in chapter 4. 

5 



Chapter 2 

Convex optimization of error 

probability 

In this chapter, we will introduce the popular approaches to the BS transmitter design 

subject to total power constraint. We also propose an nonlinear transmitter design 

method which minimizes the probability of error using convex optimization. 

2.1 BS Transmitter design 

Previous work on the BS transmitter design under the total transmitted power con­

straint includes [23], where two iterative algorithms are presented to solve SINR 

balancing and power minimization using downlink beamforming, and [14], where a 

minimum mean-square-error (MMSE) based transmitter design approach with differ­

ent power constraints has been studied. In [26], a duality between the normalized 

MSE region of the uplink and that of the downlink is given. Furthermore, a closed­

form solution to maximize a lower bound of the product of SINRs under the total 

power constraint is provided in [36], and a non-linear vector perturbation-based tech­

nique that approaches the capacity of MIMO broadcast channel is proposed in [11]. 

6 
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Another popular non-linear technique is the Tomlinson-Harashima precoding [35]. 

The last two nonlinear techniques require that the average power of the transmitted 

signal vector satisfy the total transmit power constraint. Unfortunately, this condi­

tion is hard to satisfy because it is difficult to compute this average power. This is 

especially true if there is a time-varying near-far effect or if the channel distribution 

is unknown. 

From a capacity viewpoint, receiver and/ or transmitter cooperation is necessary 

for multi-access and broadcast channels to achieve it [38]. Furthermore, recent capac­

ity results on MIMO broadcast channel [4] suggest that instead of trying to suppress 

the interference and encoding each user independently, the BS should utilize the in­

terference and jointly encode all the users. Obviously, linear1 BS transmitters do 

not fully utilize transmitter cooperation as they regard the signals destined for other 

users as interference and try to suppress this interference as much as possible. Since 

the optimal multiuser detector for CDMA multi-access channels decodes all the users 

jointly and in a non-linear way [29], we can expect that in order to achieve the optimal 

probability of error, a nonlinear transmitter (rather than a linear one) and a joint 

encoder (rather than an independent one) should be used. 

In this chapter, we consider the problem of transmitter design in the multi-input­

multi-output broadcast channel where the average probability of error is minimized 

subject to the peak or the average power constraints. We assume a simple receiver 

structure in each mobile user that does not need any channel state information ( CSI). 

For each symbol vector in the BS, we select a particular data vector transmitted 

through the BS antennas to minimize the probability of error. We formulate the 

problem of minimizing the probability of error as a convex optimization problem 

that can be efficiently solved using interior point methods. As a by-product, the 

1 Here "linear" means those transmitters that assign a precoding (beamforming) vector to each 
user. 
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exact probability of error is obtained after solving this optimization problem. It 

is proved that the proposed transmitter is optimal unless the signal-to-noise ratio 

(SNR) is very low or the channel is nearly singular. Simulation results demonstrate 

that the proposed transmission scheme significantly improves the probability of error 

as compared to several earlier approaches. 

2.2 Convex Optimization 

In this section, we will briefly introduce the convex sets and convex optimization 

problems. 

Suppose that C is a set in Rn. x1 , x2 are any two points in C and x1 =I= x2 . 

V 0 ::; () ::; 1, let 

if y is also inC, then Cis a convex set. 

A function f : Rn -+ R is convex if domf is a convex set and if for any x, y E 

domf, and () with 0 ::; () ::; 1, we have 

f(()x + (1- ())y) ::; () f(x) + (1- ())f(y) 

Let 

min fo(x) 

fi(x) ::; 0, i = 1, 2, · · · , m (2.1) 

h · (x) = 0 i = 1 2 · · · n 
z ' ' ' ' 

describe the problem of find x that minimizes the function f 0 (x) under the conditions 

that fi(x) ::; 0, i = 1, 2, · · · , m and hi(x) = 0, i = 1, 2, · · · , n. We call x the 

optimization variable and the function fo : Rn -+ R the objective function or cost 

8 
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function. The equations hi(x) = 0 are called equality constraints. If there is no 

constraint, we say that (2.1) is unconstrained. 

The set of all points for which the objective and all constraint function are defined, 

i.e. 
m n 

D = n domfi n n domhi 
i=O i=l 

is called the domain of the optimization problem (2.1). A point x is feasible if it 

satisfies all the constraint fi(x) ::::; 0 and hi(x) = 0. The problem in (2.1) is said to be 

feasible if there exists at least one feasible point, and infeasible otherwise. The set of 

all feasible points is called the feasible set or the constraint set. 

The optimal value f* of the problem (2.1) is defined as 

j* = inf{f0 (x) : fi(x) ::::; 0, i = 1, 2, · · · , m, hi(x) = 0, i = 1, 2, · · · , n} 

We say that x* is the optimal point, or solves the problem (2.1), if x* is feasible 

and f 0 (x*) = f*. 

A convex optimization problem is one of the form 

min f 0 (x) 

fi(x) ::::; 0, i = 1, 2, .. · , m (2.2) 

af x = bi, i = 1, 2, · · · , n 

where f 0 , JI, :, fm are convex functions. An efficient method to solve a convex opti­

mization problem is interior point algorithm. For details about convex optimization 

and interior point algorithm, please refer to [3]. 

2.3 System Model 

We consider a single-cell MIMO broadcast channel with M antennas at the BS and 

K mobile users having one antenna per user. Assuming flat block-fading, the channel 

9 
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is given by a K X M matrix H = [hij] E cKxM' where hij is the path gain from the 

jth antenna at the BS to the ith user. We assume that H a is full row-rank matrix 

and K is less than or equal toM. Perfect channel state information (CSI) is assumed 

at the transmitter. 

Let the vector y = [YI Y2 YK]T combine the signals received by all K users 

where ( · f denotes the transpose. Then, 

y = Hx+n (2.3) 

where x = [x1 x2 · · · xM]T is the vector of signals transmitted from the BS, n = 

[n1 n2 · · · nKJT rv CN(O, I) is the vector of zero-mean i.i.d. unit-variance complex 

Gaussian noise, I is the identity matrix, and CN(·, ·) denotes the complex Gaussian 

distribution. It should be stressed here that x is not the vector of original information 

symbols that have to be sent to the users, but the vector obtained from the above­

mentioned vector of information symbols by means of a certain linear or non-linear 

mapping. We assume the total transmit power at the BS to be P. Hence, the peak 

and average power constraints can be written as 

(2.4) 

(2.5) 

respectively, where E{ ·} is the statistical expectation operator. Let s = [ s1 s2 · · · s K ]T, 

where sk denotes the i.i.d information symbol of the kth user. These symbols are as­

sumed to be uncorrelated with the noise. In this chapter, we assume that each user 

exploits 4-QAM signals )2 ( ± 1 ± j) and that the conventional sgn( ·) detector 

(2.6) 

is used at the receiver, where sk is the estimate of the symbols of the kth user and 

j = .J=I. ~( ·) and 8'( ·) stand for the real and imaginary parts, respectively. 

10 
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2.4 Transmitter Design under Total MMSE Crite-
. 

r1on 

One popular approach to optimize system performance in a multi-access channel 

subject to the average power constraint is to minimize the total MMSE of all users [14). 

In this section, we extend this approach to the MIMO broadcast channel case. Let 

Pk denote the power allocated to the kth user and A = diag{ y'p1 yfii2 · · · JPK}. 

Assuming that linear beamforming (precoding) is used at the BS, x can be written 

as 

x=UAs 

where U = [u1 u2 · · · uK] is the beamforming matrix and uk is the normalized 

beamforming vector for the kth user, i.e., llukll = 1. II · II denotes £2-norm. The 

received signal of the kth user can be written as 

where hi is the kth row of H. Then, the received SINR of the kth user is given by 

hT Hh* SINR = Pk k UkUk k 
k l:i# Pihkuiuflhk + 1 

(2.7) 

where ( · )* denotes complex conjugate. The mean square error (MSE) of the kth user 

can be expressed as 

MSEk = E{lckYk- ski
2
} 

ic•l' ( ~p,hf U;U;Hh; + 1) - 2!J1(c,ff>hf u,) + 1 

2 

(2.8) 

11 
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where ck is the scaling factor at the receiver. Note that the previous MMSE-based 

transmitter designs in [33, 13, 20, 21, 12] regard this scaling factor as a fixed number, 

which inevitably results in performance loss. The MSE in (2.8) achieves its minimum 

when 

Ck = ~ hT Hh* 1 
wi Pi k ui ui k + 

(2.9) 

Using ( 2. 9), the total MMSE can be expressed as 

K K hT Hh* 
""' ""' Pk k UkUk k MMSEtotai = LMMSEk = K- L ~ ·hTu·uHh* 1 k=l k=l wi P~ k ~ i k + 

Now, our objective is to minimize the total MMSE over uk and Pk subject to the 

average power constraint. This problem can be written as 

K 

s. t. llukll = 1, k = 1, 2, · · · , K, LPk ~ P (2.10) 
k=l 

or, equivalently, as 

K 

s. t. llukll = 1, k = 1, 2, · · · , K, LPk ~ P (2.11) 
k=l 

Note that the objective functions in (2.10) and (2.11) are not convex. Although 

iterative algorithms may be designed to solve these problems, their convergence to 

the global optimum is not guaranteed. Fortunately, according to the uplink-downlink 

duality property [31], the achievable SINR region in the MIMO broadcast channel is 

the same as the one in the reciprocal MIMO multi-access channel case, provided that 

the same average power constraint is used in both cases. Furthermore, the normalized 

receive beamforming vector of each user in the MIMO multi-access channel is equal to 

the corresponding normalized transmit beamforming vector in the MIMO broadcast 

channel. From (2.7) and (2.9), we see that the MMSE of the kth user is related to its 

12 
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SINR in the broadcast channel (for the multi-access channel case, see [29]). Therefore, 

if we solve the similar minimization of the total MMSE in the multi-access channel, 

we will get the normalized transmit beamforming vector uk and SINRk in the MIMO 

broadcast channel. Then we only need to find the power of each user Pk, which is 

straightforward using the following linear equations 

P hTu uHh* 
SINR -- k k k k k k 1 2 K 

k "" hT Hh* 1 ' = ' ' .. . ' ~i=# Pi k uiui k + 

because SINRk, hk and uk are known. Consider the reciprocal multi-access channel 

with K users each with one antenna and M antennas at the BS 

Ymac = HHXmac + W 

where Ymac, Xmac and ware the received signal vector, transmit signal vector and the 

noise vector, respectively. Let qk denote the power of the kth user. The total MMSE 

of all the users is given by [14) 

MMSEtotai-mac = K- M + tr((I + HHQH)-1
) 

where Q = diag{ q1 q2 · · · qK }. In order to minimize the total MMSE, we need to 

solve 

min tr((I+HHQH)-1
) s.t. tr(Q) ~ P,Q t 0 

Q 
(2.12) 

This problem is proposed in [14) and can be readily shown to be convex. Therefore, 

(2.10) can be transformed into a convex optimization problem in the reciprocal multi­

access channel and solved efficiently using interior point methods. A similar result is 

given in [26, 16). 

From (2.7) and (2.9), it follows that the MMSE of the kth user is related to its 

SINR as (also see [29]) 
1 

SINRk = MMSEk - 1 (2.13) 

13 
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2.5 Nonlinear Transmitter for MIMO Broadcast 

Channel 

The optimum multiuser detector for MIMO multi-access channel is a nonlinear detec­

tor which selects the symbol vector with the minimum Euclidean distance. Also there 

exists an uplink-downlink duality between the linear transmitter and the receiver. 

Hence, we conjecture that in order to achieve the optimum performance a nonlinear 

transmitter should be used instead of a linear one for MIMO broadcast channel. In 

this section we propose a nonlinear transmitter and formulate the probability of error 

minimization as a convex optimization problem. 

For the sake of convenience of our subsequent derivations, let us convert the com­

plex channel model (2.3) into an equivalent real-valued model. Combining the real 

and imaginary parts of yin one vector, we obtain 

y = H~+n (2.14) 

where 

Note that n is zero-mean i.i.d. real Gaussian noise with the variance 0.5 per entry. 

From (2.6), it follows that the model in (2.14) is equivalent to that in (2.3) provided 

that we demodulate R(yk) and r;s(yk) independently using the same sign detector and 

combine the estimates so obtained to compute our estimate of the 4-QAM symbol. 

Let us define the 2K x 1 bit vector as b = J2 [R(s)T r;s(sff and introduce the 

matrix 

(2.15) 

14 
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which captures all possible 22K realizations hi (i = 1, 2, ... , 22K) of vector b. We 

assume that the vectors hi in (2.15) are ordered so that the left half of B is symmetric 

to the right half of this matrix multiplied by -1.2 This specific structure of B will 

be used in what follows to simplify the proposed transmitter designs. 

For any b E S 6 {b1 , ... , b 22K}, we obtain the vector ~ to be transmitted from 

the BS as 

~=f(b) (2.16) 

where f( ·) is the encoding function that provides a one-to-one (generally nonlin­

ear) mapping from S to 22K discrete points in the 2M-dimensional Euclidean space. 

Hence, the transmitter design problem amounts to obtaining this function, i.e., finding 

~for any given b. 

2.5.1 Peak Power Constraint 

It can be readily obtained from (2.4) that the peak power is limited in each symbol 

period as ~T ~::::; P. According to (2.14), the real and imaginary parts of the received 

signal of the kth user are given by 

respectively. Here, ]!_k, .hr and 'fl.k are the kth element of ~' the kth row of H and the 

kth element of!!, respectively. Each user decodes its bits by means of the conventional 

sign detector as 

(2.17) 

2It can be easily proved that it is always possible to satisfy this property provided that the 
columns of B are properly ordered. 

15 
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where bk is the estimate of the kth element of b. The probability of erroneously 

detecting bk conditioned on that b being the true bit vector can be computed as 

Pe: = P(bk =J bk) = P(bkJLk :S 0) 

P(bk(hf~ + '!lk)::::; 0) = { Q( J2bkhf~), T 
1- Q( -J2bkhk~), 

bkhr~?. o 
bkhr~ < o 

(2.18) 

2 

where Q(t) = vk JtXl e-If dry, t ?_ 0. The second-order derivative of Q(t) is Q" (t) = 
2 

kte-T. Therefore, Q(t) is convex provided that t ?. 0. The probability of error 

conditioned on b being the true bit vector and averaged over all the users can be 

computed as 

2K 

pb = _1 "'pb 
e 2K ~ ek 

k=l 
(2.19) 

where Pe~ is defined in (2.18). Using (2.19) as the objective function, the transmitter 

design problem can be formulated as 

1 
2K 

m~n2K LPe~ 
k=l 

s.t. (2.20) 

Obviously, it is very difficult to solve (2.20) directly. Therefore, let us try to simplify 

this problem using some properties of Pe~· As Q(t) is convex fort ?. 0, from (2.18) 

we see that Pe~ is convex if bkhf ~ ?. 0, and concave otherwise. It is important to 

stress that if bkhf ~ < 0, then P~ > ~ and peb > 4k, which is obviously undesirable. 

Therefore, we add to the problem (2.20) the additional constraint bkhf~ ?. 0 and 

obtain the following convex optimization problem: 

1 
2K 

mJn 2K L Q( J2bkhf~) 
- k=l 

s.t. ~T ~ :S P, bkhf~ ?_ 0, k = 1, ... , 2K (2.21) 

Now, we can interpret f(·) in (2.16) as a mapping of b to the optimal point of (2.21). 

As the left half of B is symmetric to its right half, we only need to find the optimal 

16 
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~for the vectors hi contained in the left half of B. A convex approach to multiuser 

detection in DS-CDMA using the convexity of Q(t) is also proposed in [34). 

The optimal point of (2.21) is not necessarily globally optimal as we impose the 

constraint bkhf~ ~ 0. However, the following theorem which shows that the optimal 

solution of (2.21) also solves (2.20) in most practically important cases (unless the 

optimal probability of error is very high, which means that the SNR/transmit power 

is very low or the channel H is nearly singular) can be used. 

Theorem 2.1 The optimal point of (2.21) solves (2.20) if (P:)opt ::; 4~u where 

(Pi)opt is the optimal value of (2.20). Furthermore, if the optimal value of {2.21) 

is less than or equal to 
4
k-, it is equal to (Pi)opt. 

Proof. If (P~)opt ::; 
4
k-, then (Pe~)opt must be less than or equal to~ and bkhf~opt 

must be greater than or equal to zero for all k, where ~opt is the optimal point of 

(2.20). (P~)opt is computed from ~opt using (2.18). Therefore, ~opt lies in the feasible 

set of (2.21). As the feasible set of (2.20) includes that of (2.21), ~opt also solves 

(2.21), i.e., the optimal point of (2.21) solves (2.20). 

Next, the optimal value of (2.21) is an upper bound of (Pi)opt since it has a smaller 

feasible set. Therefore if the optimal value of (2.21) is less than or equal to 4k-, ( P:)opt 

is also less than or equal to 4k- . Combining this with the first statement of Theorem 

1, we conclude that the optimal value of (2.21) is equal to that of (2.20) if it is less 

than or equal to 4k-. 
The probability of error peb is conditioned on that b being the true bit vector. 

The unconditioned probability of error can be expressed as 

p = _1_ ~(Pb)opt 
e 22K ~ e 

(2.22) 
bES 

where (P~)opt is averaged over all possible realizations of the vector b. 
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2.5.2 Average Power Constraint 

Now, let us consider the average power constraint that can be expressed as 

22K 

E{xT x} = -
1
- """'x'!' x. < P - - 22K ~ -t -t -

(2.23) 
i=1 

where ~i is the selected BS transmit signal vector corresponding to bit vector bi. 

Similar to the peak power case, we use the nonlinear transmitter given by (2.16). 

As mentioned in the previous section, we only need to find the optimal ~i for the 

vectors bi contained in the left half of matrix B. It should be noted here that for any 

b, the error probability only depends on bkhr ~- Let us use the following notations: 

b [ bf bT 2 bi2K-1 ]T 

X [ XT -1 XT -2 ~r2K-1 ] T 

n [ nr -1 nT -2 0 0 0 ni2K-1 ] T 

H 122K-1 0 H 

y [ Ii YT 0 0 0 I;2K-1 ]T -2 

y Hx+n 

y. H~i + !!i, · 1 22K-1 
- '/,= , ..• , 

-t 

where 0 denotes the Kronecker product, while Ii and ni are the received signal and 

the noise vectors corresponding to bi, respectively. When using the average power 

constraint, we have to further modify the objective function with respect to (2.20) by 

averaging it over all possible vectors bi that are contained in the left half of matrix 

B. Hence, the following minimization problem has to be solved: 

s.t. (2.24) 

where P~ is defined similar to (2.18). Similar to the peak power constraint case, we 
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can approximate this problem by 

mm 
x 

s.t. (2.25) 

where Q(.J2bkh.~x) is defined similar to (2.18), and bk and h.~ are the kth element of 

b and the kth row of H, respectively. 

Note that the power constraint in (2.25) is obtained by averaging the power con­

straint in (2.23). The optimal XOPt of (2.25) is an M22K x 1 vector, i.e., it combines 

optimal transmit signal vectors for all hi contained in the left half of B. Let us use 

the MATLAB notation to define the vector 

- =Pt(2M(. 1) + 1 · 2M.) - ['-Opt '-Opt ] Zi -X 'l- · 'l - X2M(i-1)+1' ... 'X2Mi 

Then the optimal nonlinear mapping function can be expressed as 

1 ::::; i ::::; 22K-1 

22K -1 + 1 ::::; i ::::; 22K 
(2.26) 

From Theorem 1, we have that if the optimal value of (2.25) is less than or equal to 

K22~+1 , then it is also the optimal value of (2.24). 

One of the attractive properties of our convex formulation-based transmitter de­

sign approach is that we can easily add other convex constraints to the corresponding 

optimization problem. To illustrate this, we will show how to combine both the av­

erage and peak power constraints together or introduce individual error probability 

constraints. 

Let Ppeak denote the maximum peak power that the BS can support. Then, the 
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peak power constraint can be added to (2.25) as follows: 

mm 
x 

s.t. 

K22K 
1 '"" 1n7: -T K 22K ~ Q( v 2bkhk x) 

k=l 

-T- < P22K-1 -b -hT- > 0 X X_ , k kX _ , k = 1, ... ,K22K 

T < P, · 1 22K-1 
~i ~i - peak, Z = '· · ·' 

(2.27) 

Let Pei denote the maximum acceptable error probability of the jth user. Then 

we introduce individual error probability constraints to (2.25) given by 

min 
x 

s.t. 

K22K 

K~2K L Q( v'2likiifx) 
k=1 

XTX:::; P22K-1 

- -r- 2K 
bkhkx ~ 0, k = 1, 2, · · · , K2 

22K-1 1 

(2.28) 

2-2K L L Q(v'2b(m-1)2K+nK+jiifm-l)2K+nK+jx) :S Pej,j = 1, 2, · · · , K 
m=l n=O 

-2K '\""22K-1 '\""1 Q( ml.b h-T -) . h b b'l where 2 L..Jm=1 L..Jn=O y 2u(m-1)2K+nK+j (m- 1)2K+nK+jx IS t e error pro a 1-

ity of the jth user using the nonlinear transmitter design. 

2.5.3 Optimality of Conventional Detector With Zero Thresh­

old 

While the above error probability minimization is formulated based on the assumption 

that a sign detector with zero threshold is used for each user, one may wonder whether 

we can obtain any performance gain if we assume that a sign detector with nonzero 

threshold is used at each user. In order to analyze the performance of this approach, 

we next assume that a sign detector with nonzero threshold is used at each user. 

From (2.17), the sign detector with nonzero threshold is given by 

(2.29) 
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where "/k is the decision threshold of ]!_k, which means that there are two different 

thresholds for the real and imaginary parts of Yk in (2.6). It should be emphasized that 

this approach cannot be applied to the peak power constraint case as "/k is regarded 

as a variable in the optimization problem. Because there are 22K-1 optimization 

problems for the peak power constraint case, we will obtain different "/k from each 

optimization problem. However, it is impractical for each user to have different "/k for 

each bit vector as they do not know the true bit vector sent by the BS. Therefore, in 

the following, the error probability minimization under the average power constraint 

is to be studied alone. Before that, we introduce the following notations to develop 

the error probability minimization problem. Note that in this case the optimal ~ 

corresponding to b may not be equal to the optimal -~corresponding to -b. 

Let 

b [ bf bT 2 br2K 
]T 

X [ XT -1 
XT -2 ~r2K ]T 

n [ nT -1 
nT -2 !!~K ] T 

H 122K ® H 

y [ ~i yT ... ~~K ]T -2 

y Hx+fi (2.30) 

r - [ "/1 "/2 ... "/2K ] T 

It can be readily seen that the average power constraint in (2.23) is equivalent to 

:XT :X :::; P22K. Similar to (2.25), the simplified probability of error minimization 
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problem under the average power constraint is given by 

min 
x,r 

s.t. 

K22K+l 

K 2;K+1 L Q(hbk(hfx- 'Ymod(k,2K))) 
k=l 

XTX::; P22K 

bk(hfx- 'Ymod(k,2K)) ;::: 0, k = 1, 2, · · · , K22K+l 

(2.31) 

where mod(k, 2K) denotes the remainder of k divided by 2K. Since bk(hfx -

'Ymod(k,2K)) is a linear mapping, (2.31) is also a convex optimization problem. The 

Lagrangian Karush-Kuhn-Tucker (KKT) conditions of (2.31) are 

bk(hfx- 'Ymod(k,2K)) ;:=: 0, k = 1, 2, · · · , K22K+l 

XTX::; P22K 

Ak;::: O,k = 1,2,··· ,K22K+1 ,v;::: 0 

v(xTx- P22K) = 0 

>..kbk(hfx- 'Ymod(k,2K)) = 0, k = 1, 2, · · · , K22K+l 

K~+l ( 
1 

e-(hfx-lmod(k,2K))
2 + Ak) bk [ hk ] 

L...J K22K+l.j1r 
k=l -emod(k,2K) 

+2v [:] = 0 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

where ek denotes the 2K x 1 vector whose kth element is 1 and all other elements 

are zero, 0 denotes 2K x 1 zero vector. v and Ak are dual variables. Because (2.31) 

is convex, any :X, r, v and Ak that satisfy the above KKT conditions are primal and 

dual optimal [3]. 

Now we assume that a zero-threshold sign detector is used for (2.30). Then (2.31) 

22 



M.A.Sc. Thesis - Haibo Wang 

becomes 

min 
x 

s.t. 

McMaster - Electrical & Computer Engineering 

(2.38) 

It has been shown in the previous section that (2.38) is equivalent to (2.25) because 

the left half of B is equivalent to its right half. The Lagrangian KKT conditions of 

(2.38) are 

- -r- 2K+l bkhkx ~ 0, k = 1, 2, · · · , K2 

x_Tx_::::; P22K 

A.k ~ 0, k = 1, 2, · · · , K22K+I, v ~ 0 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

Assuming that x_opt, vopt and { A.~pt, A.~pt, · · · , A. ';'~2K +l} are a set of primal and dual 

optimal points of (2.38), from (2.37), we can see that x_opt, r = 0 and voPt, {>..~P\ A.~pt 

' ... 'x:~2K+l} are also the primal and dual optimal points of (2.32)-(2.37). Therefore 

r = 0 is optimal even if we regard r as an optimization variable. Based on the above 

discussion, the following proposition is given as a summary. 

Proposition 2.1 The sign detector with zero threshold is optimal even if we jointly 

design the transmit vector x and the decision threshold rk. 

23 



M.A.Sc. Thesis - Haibo Wang McMaster - Electrical & Computer Engineering 

2. 6 Simulation Results 

In our simulations, we assume that the channel coefficients are independently zero­

mean complex circular Gaussian random variables. Both theoretical and numerical 

results are compared for the proposed methods. The theoretical plots are obtained 

from the exact probability of error which comes as a by-product of solving optimiza­

tion problems. The numerical results 'correspond to experimental computation of the 

error probability. For comparison reasons, we also plot the numerical probability 

of error of the linear transmitters based on the SINR balancing [23) and the total 

MMSE [14). In each example, 300 independent channel realizations are used. 

In practical scenarios, some users are far from the BS and other are near BS. As a 

result, different users are subject to different channel gains. To gain an insight into this 

phenomenon, both symmetrical and asymmetrical channel statistics are considered 

for performance analysis. 

2.6.1 Symmetrical Channel Statistics 

In this case, we assume the Gaussian distributed channels of all users have unit 

variance, i.e., hii ,..._, CN(O, 1). Figures 2.1 and 2.2 show the probability of bit error 

of the methods tested versus the total transmit power. In Figure 2.1, K = 2 users 

and M = 2 BS antennas are assumed, while in Figure 2.2, K = 2 users and M = 3 

BS antennas are considered. From Figure 2.1, we can see that at high transmit 

powers, the performance gain of the proposed technique under the average power 

constraint is about 2 dB over the linear methods of [23] and [14], which also use 

the average power constraint. The performance of the proposed technique under the 

peak power constraint is nearly identical to that of the linear methods of [14] and [23). 

From Figure 2.2, we observe that when the number of BS antennas is increased to 

M = 3, the proposed technique with the average power constraint has about 0. 7 dB of 
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improvement over the linear methods. Note that in this case the proposed technique 

with the peak power constraint performs worse than the linear techniques tested. The 

explanation for this is that the linear techniques use the average rather than the peak 

power constraint. Therefore more power can be allocated to the transmit vectors 

corresponding to those bit vectors with high error probability while less power can 

be allocated to the transmit vectors corresponding to those bit vectors with low error 

probability. 

Recall that the objective function we are aiming to minimize in our optimization 

problems is the average probability of error of all the users. To illustrate the individual 

performance, we plot the probability of error of each user in Figure 2.3 when there 

are two BS antennas and two users. It can be seen that each user in the proposed 

methods has almost the same error probability under both the peak and average 

power constraints. 

2.6.2 Asymmetrical Channel Statistics 

In this example, we assume the Gaussian distributed channels of different users have 

different variances, i.e., hij "' CN(O, f3i)· In Figure 2.4, two BS antennas and two 

users are assumed. The variances of the channel of the users are /31 = 0.1,/32 = 1, 

which means that the channel of the first user is lOdB weaker than that of the second 

one. Surprisingly, even the proposed method under the peak power constraint beats 

the linear methods. One reasonable explanation is that SINR and MMSE are not 

directly associated with the probability of error. Therefore balancing the SINR or 

minimizing the total MMSE may not minimize the probability of error. In Figure 2.5, 

the average probability of error of each user is plotted. Although the proposed method 

is designed to minimize the average probability of error of all the users, significant 

fairness between the users is achieved. 

25 



M.A.Sc. Thesis - Haibo Wang McMaster - Electrical & Computer Engineering 

o Average power constraint (Simulations) 
* Peak power constraint (Simulations) 
" Total MMSE (Simulations) 
o SINR balancing (Simulations) 

- Average power constraint (Theory) 
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Total transmit power (dB) 

Figure 2.1: Comparison of the bit error probabilities of different methods for MIMO 
broadcast channel with two BS transmit antennas and two users under symmetrical 
channel statistics. 
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Figure 2.2: Comparison of the bit error probabilities of different methods for MIMO 
broadcast channel with three BS transmit antennas and two users under symmetrical 
channel statistics. 
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Figure 2.3: Comparison of the bit error probabilities of different methods of each user 
for MIMO broadcast channel with two BS transmit antennas and two users under 
symmetrical channel statistics. 
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Figure 2.4: Comparison of the bit error probabilities of different methods for MIMO 
broadcast channel with two BS transmit antennas and two users under asymmetrical 
channel statistics. 
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Figure 2.5: Comparison of the bit error probabilities of different methods of each user 
for MIMO broadcast channel with two BS transmit antennas and two users under 
asymmetrical channel statistics. 
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Chapter 3 

Random Unitary Beamforming 

with Partial Feedback Using 

Multiuser Diversity 

In the previous chapter, we assumed that K was less than M and minimized the 

probability of error. If there are a lot of users in the system, we could use the 

concept of multiuser diversity to improve the capacity. A fundamental characteristic 

of the multiuser diversity schemes is that the necessary amount of feedback linearly 

increases with the number of users. This large amount of feedback prohibits practical 

applications of multiuser diversity if there are a lot of users. In this chapter, we 

follow the work of [25] and propose an random unitary beamforming algorithm aimed 

at reducing the necessary amount of feedback by finding M or less than M quasi­

orthogonal users. 
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3.1 System Model 

We consider a single-cell down-link MIMO channel with M antennas at the BS and 

K mobile users each with one antenna. We assume a frequency flat Rayleigh fading 

channel where hij is the path gain from the jth BS antenna to the ith user and it 

is independent complex circular symmetric Gaussian with unit variance. The input­

output relationship of this MIMO system model is given by 

y - Hx+n (3.1) 

where 

y [Yl Y2 · · · YKf 

X [xl X2 · · · XM]T 

n [n1 n2 · · · nK]T 

are the received signal vector, transmitted signal vector and the zero-mean unit­

variance complex white Gaussian noise vector, respectively, (·f denotes the trans­

pose, and H = [hij] E c_KxM is the channel matrix. We assume that each user knows 

its channel hf, which is the kth row of H. We also assume that the BS only knows 

partial information about H, which depends on how much channel information the 

users will feed back to the BS. 

The input is constrained to satisfy 

where P, E{-} and (·)H denote the maximum allowed transmit power at the BS, 

statistical expectation and Hermitian transpose operator, respectively. 

We define the normalized cross-correlation between hi and hj as 

{ 1 'l=J 
C·· - hHh; (3.2) t) 

llh;llllhjll i#j 
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where II · II denotes the .€2-norm. 

We cite the following lemma from multivariate statistical theory, [18) and [10) 

Lemma 3.1 Suppose xis an M x 1 vector with i.i.d CN(O, 1)1 entries. Let 

(3.3) 

where ai( ·) and~(·) stand for the real and imaginary parts, respectively, then x/ llxll is 

uniformly distributed on the surface of a 2M -dimensional unit ball. This distribution 

is said to be isotropic. 

Lemma 3.1 is a straightforward extension of the result in [18). Because the .€2-norm 

of x/llxll is one, it always lies on the surface of the 2M-dimensional unit ball. 

3.2 Proposed random beamforming 

To improve the uplink spectrum efficiency, our question is: can we propose an algo­

rithm in which the total amount of feedback does not change with K? 

In [25), BS generates a unitary beamforming matrix and transmits it to all the 

users, assuming there is no channel state information available at the BS. Each user 

computes its SINRs corresponding to each beam and feed back its maximum SINR and 

its corresponding beam index to the BS. Then BS selects a user with the maximum 

SINR for each beam. It is proved in [25) that the asymptotic capacity of this scheme 

is the same as that with perfect channel information at the BS. 

In this chapter, following the work of [25), we consider a linear transmission and 

reception strategy using random unitary beamforming to decrease the amount of feed­

back required. We assume that TDMA combined with the space-division-multiple­

access (SDMA) is used by the BS to perform its communication. We also assume 

1CN(O, 1) means zero-mean complex Gaussian random variable with independent, equal-variance 
real and imaginary parts. 
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K 2:: M to gain multiuser diversity. In each time slot, a random unitary beamform­

ing matrix is generated at the BS and M or less than M nearly orthogonal users are 

found. Therefore, in each time slot at most M users are served simultaneously. 

3.2.1 Formulation 

We first introduce the following definition. 

Definition 3.1 Given a small real number c, 0 < c < 1, the ith and jth users 

are called quasi-orthogonal if lciil :::; c, where Cij is defined in {3.2). For a subset 

A C {1, 2, · · · , K}, if V i, j E A, lcijl :::; c, we say that users in A are quasi­

orthogonal. 

Let V denote an M x M pseudo-random complex unitary beamforming matrix 

(we assume V is known at each user and varies in each time slot). If we allocate the 

power uniformly among the beams, then the received signal of the kth user is given 

by 

Yk (3.4) 

where 

is theM x 1 transmit symbol vector. nk is the additive noise at the kth user. Without 

loss of generality, we assume that E{lsil2} = 1. 

Assume that the ith beam is allocated to the kth user, then the SINR of the kth 

user is given by 

P lhrv 12 
SINR · = M k i 

kt ~M pI T 12 
L.Jj=l,#i M hk Vj + 1 

where vi is the ith column of V. 
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As pointed out in [25], it is reasonable to set a threshold for the SINR because 

not all the users need to feed back. Only if the maximum (Here 'maximum' means 

the maximum SINR over theM SINRs of a user.) SINR of a user is larger than this 

threshold, it feeds back. To select this threshold, we need to know the maximum 

SINR distribution of a user. However, theM SINRs {SINRkb SINRk2 , • • · , SINRkM} 

(corresponding to each beam) of a user is not independent each other. There­

fore, it's pretty hard (or impossible) to find the probability distribution function 

of maxi=l,2,. .. ,M SINRki· Moreover, the work of [25] assumes that all the user have the 

same SNR. In practice, some user may be near the BS, and some user may be from 

from the BS. As a result, different user will have different SNR and different SINR 

distribution. Therefore, it's impossible to set a threshold for the SINR and analyze 

the performance of the system. 

Let 

hiV 
llhkll 

[ Zkl Zk2 . . . ZkM ] 

With the definition of zk, we can also compute the SINR as 

(3.6) 

(3.7) 

(3.8) 

From (3.8), we can see that SINRki monotonically increases with Zki· In the following 

analysis, we will consider maxi izkii as the decision variable to feed back rather than 

maxi IISINRkill· 

From Lemma 3.1, the combined real and imaginary parts of hdlihill are uniformly 

distributed on the surface of the 2M-dimensional unit ball B2M = { x : xT x:::; 1, x E 

J?}M}. In this case, the K users are uniformly placed on the surface of B2M. Given 

V, each beam vi can also be regarded as a point on the surface of B2M (combine the 

real and imaginary parts of vi to a 2M x 1 real vector). If K goes to infinity, we will 
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find M users whose normalized channels coincide with the M beams, respectively. In 

that case, we obtain M orthogonal users. If K is limited, we will find M or less than 

M quasi-orthogonal users whose normalized cross-correlation is bounded. 

To reduce the amount of feedback, in the proposed random beamforming, not 

all the users feed back. Only if the llzklloo is larger than a given threshold, i.e., 

{maJCi jzkil ;::: J77}, does the kth user feed back. Here II · lloo and 'fl denote the £00 -

norm and the threshold, respectively. 

In the following we give a geometric interpretation to this feedback process. Con­

struct M cones si = {x : ~~~~~ ::::: J77, X E eM}, i = 1, 2, ... 'M. Note that 

0 < 'r/ < 1. If K is sufficiently large, Si can be made small enough under the con­

straint that each cone has, on average, one user. Those users who fall within these 

cones will have low normalized cross-correlation. If V is isotropically distributed, it 

scans the surface of B2M uniformly. Therefore, fairness is ensured in the sense that 

each user has the same probability to be served by the BS (i.e., fall into Si)· 

Fig. 3.1 gives an example when the k1th and k2th user fall into S1 and S2 , 

respectively. We assume that there are two BS antennas. To simplify the figure, we 

also assume H and V are real matrices. The small triangles denote the normalized 

channels of the users. From Fig. 3.1 we can see that the k1th and k2th users have 

low normalized cross-correlation. 

Suppose we want on averaged users2 to feed back in each time slot. Because hk 

is independent among different users, to satisfy this condition we need 

(3.9) 

where Prob(maxi lzkil 2 
;::: ry) is the probability that the kth user feeds back. Note that 

(3.9) only ensures that the average number of users who feed back in each time slot 

is d. Sometime there maybe less or more than d users feeding back. 

2In section 3.2.2 we will discuss in detail how to select d. 
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User kz 

Figure 3.1: The k1th and k2th users fall into S1 and S2 , respectively, when there are 
two BS antennas. 

Since {!zkil 2 , i = 1, 2, · · · , M} are not independent to one another, it is hard to 

find the distribution of maxi !zkil 2
. 

Recall 

hfV hfV 
Zk = llhkll = llhfVII (3.10) 

where 

has the same distribution as hk. Fortunately, because !hkil 2 has a common exponential 

distribution (hki is the ith element of hk), according to order statistics [7], {!zkil 2 , i = 

1, 2, · · · , M} have the same joint distribution as the spacings of random division of 

an unit interval. Therefore, from [7], we have 

Prob(mF !zkil 2 2:: ry) = M(1- ry)M-1 - ( ~) (1- 2ry)M-1 

+ ... + ( -1)j-1 ( ~) (1 _ jry)M-1 
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where the series in (3.11) continues as long as 1-jrJ > 0 and Cf) denotes the binomial 

coefficient. 

Because Prob(maJCi lzkil2 ~ TJ) is a non-increasing function of TJ, TJ increases with 

K according to (3.9). If K is sufficiently large, TJ ~ ~· Then (3.11) reduces to 

Prob(m~ izkil2 ~ TJ) = M(1- TJ)M-1 
~ 

Combine (3.9) and (3.12), we obtain 

KM(1- TJ)M-1 

TJ 

d 
d 1 

1- (-)M-1 
KM 

(3.12) 

(3.13) 

(3.14) 

From (3.14), as K --+ oo, TJ--+ 1. The users in different cones approach orthogo­

nality, which coincides with the previous analysis. To satisfy TJ ~ ~' from (3.13), the 

minimum K required for a given TJ is 

d 
Kmin = f M(1 _ TJ)M-11 (3.15) 

where 1·1 is the ceiling operator. We can see that Kmin increases exponentially with 

M. 

The proposed random beamforming is described in detail in Table 3.1. We stress 

that in Table 3.1 the feedback process is divided into two steps. If no user feeds back 

for some beams at a time slot, less than M beams will be used. In the fourth step 

of the proposed random beamforming, if each user knows the total transmit power, 

the BS only needs to transmit the number of beams to be used which is an integer 

between one and M. This is an easier task compared to transmitting the allocated 

power which is a real number. 

In contrast to the opportunistic beamforming [32), the proposed random beam­

forming provides performance improvement in both slow and fast fading environment 

because the performance of the proposed random beamforming depends not on the 
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Table 3.1: Proposed random beamforming 

Aim: Given K and d, find M or less than M quasi-orthogonal users. 

Init: According to (3.9) and (3.11), the BS computes TJ and transmits TJ to 
each user. 

Step 1 In the beginning of each time slot, the BS generates an isotropically 
distributed V and transmits V to each user. 

Step 2 If mCIJCi lzkil 2 2: TJ, the kth user feeds back the beam index i'k = 

argm~lzkil 2 . 

Step 3 The BS determines how many beams will be used and then uniformly 
allocates the power to those beams. 

Step 4 The BS transmits the allocated power to the users who fed back in step 
2. And these users compute their SINRs. 

Step 5 If mCIJCi lzkil 2 2: ry, the kth user feeds back its SINR corresponding to the 
i'kth beam. 

Step 6 THE BS selects a user with the maximum SINR for each beam to perform 
communication. 

rate and dynamic range of the channel variations, but on the independence of the 

users' channels. The amount of multiuser diversity depends on the number of users. 

From Table 3.1 and (3.9), we see that the average amount of feedback of the proposed 

random beamforming per time slot is d real numbers and d integers, which does not 

vary with K. 

3.2.2 Selection of d 

Let the random variable A denote the number of users who feed back at a particular 

time slot. To simplify the notation, we set 11 = Prob(maxi lzkil 2 2: ry). In the 

proposed random beamforming, the event that the kth user feeds back at a time 

slot is equivalent to a Bernoulli trial. Accordingly, A has a binomial distribution 
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with mean d. Then we have 

Prob(A =a) = ( ~) p,a(l- p,)K-a, a= 0, 1, · · · , K (3.16) 

Now we assume that there are a users feeding back at a particular time slot. 

Because hk are independent from one another and Vis unitary, i* (i* = argmaxi izkii2) 
is uniformly distributed among {1, 2, · · · , M}. In the second step of Table 3.1, each 

of these a users who feeds back has the same probability to be associated with any 

of the M beams. The process that the a users are associated with the M beams 

is equivalent to a distribution problem: Distribute a distinguishable balls into M 

distinguishable boxes. The event that the kth user is associated with the ith beam is 

equivalent to that the kth ball is placed into the ith box. It is easily shown that there 

are totally Ma ways to place a distinguishable balls into M distinguishable boxes. If 

no user feeds back for the ith beam, the ith beam will not be used. 

Let Mav denote the average number of the used beams per time slot, and Ej 

denote the event "j beams are used in a time slot" . Assuming that N ( m, n) is the 

number of ways that m distinguishable balls are to be placed into n distinguishable 

boxes and that none of the boxes are empty, from [22], we have 

(3.17) 

When there are a users feeding back at a time slot, the probability that j beams 

are used is 

(M) N(a,j) . . 
j Ma , J ::; mm(M, a) (3.18) 
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The average number of used beams per time slot is 

K min(M,a) 

Mav LProb(A =a) L Prob(EjiA = a)j 
a=l j=l 

K min(M,a) . 

~ ~ (~) N:~J) (~)IL"(l- JL)K-aj 

K min(M,a) j .. ( .) (M) (K) (djK)a(l _ djK)K-a L L L( -l)J-~ ~ ia j j a Ma (3.19) 
a=l j=l i=l 

Fig. 3.2 plots the theoretical and simulation-based average number of used beams 

per time slot with respect to K. We assume that there are four antennas at the BS. 

The simulation results are obtained by averaging over 10,000 independent channel 

realizations. We can see that Mav does not change with K. 

We admit that it is more reasonable to select d based on the sum rate. However, 

given K, M and P, it's pretty hard to get a closed-form solution of the sum rate 

with respect to d. A straightforward method is to plot the curve of the sum rate 

with respect to d and select d which maximizes the sum rate. For simplicity, we use a 

suboptimal way to choose d according to the average number of used beams per time 

slot plotted in Fig. 3.2. There is a tradeoff when choosing d. Large d cause large 

Mav and bad cross-correlation among the selected users. Small d cause small Mav 

and good cross-correlation among the selected users. From Fig. 3.2, when d = 2M, 

Mav ~ 3.5. We take d = 2M as an acceptable choice between these tradeoffs. 

3.2.3 Scheduling 

We see that the proposed random beamforming always picks the user inside the 

cone Si with the maximum SINR for the ith beam. As a result, this will introduce 

unfairness among the users, especially in slow fading environment where the channel 

is fixed for a long time. Those users with high SINR will have larger probability to 
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Figure 3.2: Average number of used beams per time slot with four BS antennas. 

be served than those users with low SINR. In this subsection, we propose an equal 

ratio scheduling that is able to serve the users with different rate requirements. 

Recall that Vis isotropically distributed. From Lemma 3.1, if Si scans the surface 

of B2M uniformly, all of the users will have the same probability to lie in Si. Therefore, 

all of the users will be fairly treated. The probability that the kth user falls into any 

of si is 

(3.20) 

We assume that the latency time is tc time slots. Let r~ denote the desired rate 

of the kth user. We use rJ:;(t) to denote the average rate of the kth user from the 

(t- tc + 1)th time slot to the tth time slot. We stress that rJ:;(t) means the average 

rate in the past tc time slots. The proposed equal ratio scheduling (ERS) selects the 

user with the minimum average-to-desired rate ratio at the tth time slot 

ra(t) 
k*- arg min _k_ - d 

kEIC;(t) rk 
(3.21) 

for the ith beam, where JCi(t) denotes the set of users who feed back for the ith 

beam at the tth time slot. The proposed random beamforming withERS is described 
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Table 3.2: Proposed random beamforming withERS 

Aim: Given K and d, find M or less than M quasi-orthogonal users. 

Init: According to (3.9) and (3.11), the BS computes TJ and transmits TJ to each user. 

1 In the beginning of each time slot, the BS generates an isotropically distributed V 
and transmits V to each user. 

2 If maxi I Zki 1
2 2: TJ, the kth user feeds back the beam index i'k = argmaxi I Zki 1

2
• 

3 The BS selects a user for each beam with the minimal average-to-desired rate ratio. 

4 The BS transmits the allocated power so that the selected users can compute their 
SINR. 

5 The selected users feed back their SINRs corresponding to the preferred beams. 

in detail in Table 3.2. The average amount of feedback in the proposed random 

beamforming with ERS per time slot is Mav real numbers and d integers. 

A fundamental issue in ERS is how to update rf(t) in each time slot. A straight­

forward method is to store the rate of each user in the past tc time slots for updating 

rf(t). Although this approach provides the exact average rate, it requires a lot of 

memory if tc and K are large. In [32], proportional fair scheduling uses an exponen­

tially weighted low-pass filter to update r'k ( t) given by 

{ 
(1- -t

1 )r'k(t) + -t1 log2 (1 + SINRk) 
r~(t + 1) = c c 

(1- t )rf(t) 

k = k* 
(3.22) 

k =J k* 

In the following we point out that this low-pass filter may not accurately track 

the average rate if tc is small relative to i!,.v. 
Assume the kth user is not served in the past tc time slots, rf.(t) should be zero. 

From (3.22), 

(3.23) 

Let 

(3.24) 
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We have g(2) = 0.25 and limx-.oo g(x) = e-1
. Next, we show that g(x) is increasing 

with x. Let h(x) = lng(x), then 

h(x) 

h'(x) 

h"(x) 

1 
x ln(1--) 

X 

1 
- ln(x- 1) -ln(x) + x _ 

1 
-1 

x(x- 1)2 

Since h"(x) < 0 for x 2: 2, h'(x) is decreasing with x for this domain. Because 

limx-.oo h'(x) = 0, h'(x) is always greater than zero. Therefore g(x) is increasing with 

x. From the definition of rk(t), it should be zero at the (t + tc)th time slot if the kth 

user is not served in the past tc time slots. However, from (3.23), 

(3.25) 

which shows that the exponentially updated average rate maybe a poor approximation 

of the exact average rate. 

In this section we propose a linear method to update rk(t) as follows 

• If k = k* 

• If k -1- k* 

( (tc- nk(t))r~(t) + log2(1 + SINRk)) ftc 

1 

rk(t + 1) 

nk(t + 1) 

r~(t + 1) 

(tc- nk(t))r~(t)Jtc 

min(tc, nk(t) + 1) 

r~(t) (3.26) 

where nk(t) denotes the number of time slots between the tth time slot and the last 

transmission of the kth user, and r~ ( t) denotes the average rate of the kth user in 
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Figure 3.3: Performance of different approaches to approximate the average rate of 
the 1st user over 2000 time slots. 

the last tc time slot. If the kth user is not served in the past tc time slots, rk(t) will 

definitely be zero. 

One can get an intuitive feeling about the performance of the aforementioned 

methods by inspecting Fig. 3.3. We assume there are four BS antennas, one hundred 

users and the latency time is one hundred time slots. The total transmitted power 

is 20dB. We plot the sample average rate of the first user over 2000 consecutive time 

slots to see if it is accurately tracked. In Fig. 3.3 we can see that in some time slots, 

the exact average rate obtained by averaging over the past tc time slots is zero and 

the low-pass filter method cannot track it as the range of g(x) is [0.25, e-1]. Note 

that tc is small relative to ~v, the first user may not be served in consecutive tc time 

slots causing the average rate to go to zero. 

In order to satisfy the rate requirements of all the users, the sum of the desired 

rate should be less than what the channel can support. Based on the fact that all 

users have the same probability to lie in Si, the ERS can allocate time slots to users 

proportional to their average vs. desired rate ratio. 
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Table 3.3: Amount of Feedback 

Random beamforming scheduling K real numbers + K integers 
Proposed random beamforming (average) d real numbers + d integers 

Proposed random beamforming with ERS (average) Mav real numbers+ d integers 

Table 3.3 gives the amount of feedback of the aforementioned algorithms. Gener­

ally, K is much larger than M. We can see that the proposed random beamforming 

with or without ERS requires far less feedback than the random beamforming schedul­

ing. 

3.2.4 Performance Analysis 

In this section we give a lower and upper bound for the sum rate of the proposed 

random beamforming. 

Assume powerful coding and decoding are used at the BS and the users, respec­

tively, we employ the Shannon-limit rate to evaluate the performance of the proposed 

random beamforming. The rate of the kth user and the sum rate of all the users are 

given by 

log2 ( 1 + SINRk) (3.27) 
K K 

rsum L rk = L log2 (1 + SINRk) (3.28) 
k=l k=l 

respectively. 

Assume that there are m selected beams and the ith beam is allocated to the kth 

user, let Pm = ~' from (3.5), the SINR of the kth user is 
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Since llhiii 2 is chi-square distributed with 2M degrees of freedom, an upper bound 

of the sum rate is given by 

M 

rsum = L Prob(Em)mE{log2 (1 + SINRk)} 
m=l 

M K 

= L L Prob(Em, A= a)mE{log2 (1 + SINRk)} 
m=la=m 

M K 

= L L Prob(EmiA = a)Prob(A = a)mE{log2 (1 + SINRk)} 
m=la=m 

:S ~ t.. Prob( Em lA ~ a )Prob( A ~ a )m 1= ~: -~ e;)~ log2 ( 1 + PmX )dx (3.29) 

where Prob(A = a) and Prob(EmiA = a) are defined in (3.16) and (3.18), respec­

tively. If the kth user falls in Si, then ~~~~ir 2: TJ and L~I,#i 1~[:11~
2 

~ 1 - TJ, and 

we have 

Pm LT=l,#i I hi Vj 1
2 + 1 

> Pmllhkii
2

TJ 
Pmllhkll 2 (1- TJ) + 1 

(3.30) 

L X PmJihkii
2

1J th l t' d' t 'b t' f t' ( df) f X • et m = PmJihkJI2(l-1J)+l, e CUffiU a lYe lS fl U lOll UllC lOll C 0 m lS 

(3.31) 

Note that Xm ::; -2:ry. As llhkll 2 has x2 (2M) distribution, the probability distribution 

function (pdf) of Xm is 

( ) 1 ( X )M-1 - X TJ (3.32) 
PXm X = (M- 1)! PmTJ- XPm(1- TJ) e Pm'l-XPm(l-ry) Pm(TJ- x(1- TJ))2 
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Combine (3.30) and (3.32), we can get a lower bound of the sum rate as given by 

M 

rsum = L Prob(Em)mE{log2 (1 + SINRk)} 
m=l 

M K _!!_ 

2: L L Prob(EmiA = a)Prob(A = a)m 11

-

71 

Pxm(x) log2 (1 + x)dx 
m=la=m 0 

(3.33) 

3.3 Simulation Results 

In order to compare the performance of the proposed random beamforming with that 

of the random beamforming scheduling [25), computer simulations have been carried 

out. In the random beamforming scheduling, at each time slot, the BS transmits the 

beamforming matrix to all the users. Each user computes its SINRs corresponding 

to each beam and feeds back the maximum SINR to the BS. The BS then selects a 

user with the maximum SINR for each beam. 

Both symmetric and asymmetric fading channel statistics are studied because a 

near-far effect is inevitable in the practical cellular communication system. We adopt 

the total transmitted power P at the BS instead of the SNR since less than M beams 

may be used in some time slots and P will be assigned only to those used beams. In 

that case we will distribute the transmitted power uniformly into the selected beams. 

We assume d = 2M in the following examples. 

3.3.1 Symmetric Fading Channel Statistics 

In the symmetric fading channel, we assume the channels of all the users have the 

same fading statistics, i.e., hk rv CN(O, IM ). This models the scenario in which all the 

users have nearly the same distance from the BS. Fig.s 3.4 and 3.5 plot the sum rate 

of the proposed random beamforming with respect to K when there are four and eight 

BS antennas, respectively. The total transmitted power at the BS is fixed at 20dB. 
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The sum rate is obtained by averaging over 1000 independent channel realizations. 

In the proposed random beamforming with ERS, we assume that all of the users have 

the same desired rate. 

In Fig. 3.4, with four BS antennas, the sum rate of the proposed random beam­

forming is slightly higher than that of the random beamforming scheduling when 

K :S 300. We also plot the upper and lower bound of the proposed random beam­

forming. We can see that the upper bound is loose and the lower bound is about 2.5 

bits/channel user less than the sum rate of the proposed random beamforming with 

ERS. In Fig. 3.5, the sum rate of the proposed random beamforming is always larger 

than that of the random beamforming scheduling with eight BS antennas. A rational 

explanation to this is that when K is small, selecting less than M quasi-orthogonal 

users (proposed random beamforming) may yield better performance than always se­

lecting M users (random beamforming scheduling) because the latter may have larger 

normalized cross-correlation. Notice that, when there are 500 users, the sum rate with 

four BS antennas is larger than that with eight BS antennas, which contradicts with 

the full channel state information case where the sum rate linearly increases with the 

number of BS antennas. This property is also observed in [25] where the sum rate 

achieves its maximum with four BS antennas when the total transmitted power is 

lOdB. 

The sum rate of the proposed random beamforming with ERS is less than those 

of the proposed random beamforming and random beamforming scheduling because 

it is aimed to serve the users whose average rates are much smaller compared to their 

desired rates. In both figures the maximum gap between the sum rate of the proposed 

random beamforming with ERS and those of the remaining two algorithms is about 1 

bit/channel use, which is the price we pay for fairness. We remark that the sum rates 

of the aforementioned three algorithms in a slow fading channel is the same as those 

in fast fading channel because their performances do not depend on the rate of the 
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Figure 3.4: Sum rate vs. number of users for the symmetric channel with four BS 
antennas, P = 20dB. 
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Figure 3.5: Sum rate vs. number of users for the symmetric channel with eight BS 
antennas, P = 20dB. 
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channel fluctuations. Their performances depend on the normalized cross-correlation 

between the channel and V. 

To illustrate the performance of the ERS, we perform two separate experiments 

in which each user is assumed to have the same or different rate requirement, respec­

tively. We assume that there are four BS antennas and the latency time is 300 time 

slots. 

Fig. 3.6 compares the average rate of the aforementioned methods at the 600th 

time slot in slow fading channel with 20 users which have the same desired rate. 

Clearly, the fluctuation of the rate curve of the proposed random beamforming with 

ERS is far smaller than that of the remaining two algorithms. The difference between 

the maximum and the minimum rate is about 0.04 bits/channel use for the proposed 

random beamforming withERS while it is about 0.42 bits/channel use for the random 

beamforming scheduling. 

Fig. 3. 7 and 3.8 plots the average rate of each user at the 600th time slot with 

different rate requirements in slow and fast fading channel, respectively, when the 

proposed random beamforming with ERS is used. We can see that in both figures 

the average rate roughly approaches or exceeds the desired rate. Compared to the 

slow fading, fast fading improves the fairness among the users because in fast fading 

the channel varies rapidly so that each user will experience a good channel condition 

within limited time slots. 

3.3.2 Asymmetric Channel Statistics 

In this subsection, we study the performance of the proposed techniques when the 

channel of different users have different variances. We assume hk ,......, CN(O, akiM) and 

10 log10 ak is uniformly distributed in [-10, 0] dB. 

Fig. 3.9 and 3.10 show the sum rate of the proposed random beamforming with 

four and eight BS antennas, respectively. We can see that similar to the symmetric 
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Figure 3.6: Average rate of each user with the same desired rate at the 600th time 
slot in slow fading and symmetric channel, P = 20dB. 
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slot in slow fading and symmetric channel, P = 20dB. 
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Figure 3.8: Average rate of each user with different desired rate at the 600th time 
slot in fast fading and symmetric channel, P = 20dB. 

channel, in spite of a little rate loss due to smaller channel gain, Fig. 3.9 and 3.10 

demonstrate that the sum rate of the proposed random beamforming is comparable 

to that of the random beamforming scheduling. And the sum rate of the proposed 

random beamforming with ERS is roughly 1 bit/channel use less than that of the 

other two algorithms. 

Fig. 3.11 and 3.12 plot the average rate of each user in the 600th time slot over 

slow and fast fading channels, respectively. We assume there are 20 users and the 

latency time is 300 time slots. We can see that in fast fading ERS exactly satisfies 

the rate requirement of each user. In slow fading, the exact rate of some users is a 

little less than the desired rates, however, the rate gap is negligible. 
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Figure 3.9: Sum rate vs. number of users for the asymmetric channel with four BS 
antennas, P = 20dB. 
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Figure 3.10: Sum rate vs. number of users for the asymmetric channel with eight BS 
antennas, P = 20dB. 
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Figure 3.11: Average rate of each user with different desired rate at the 600th time 
slot in slow fading and asymmetric channel, P = 20dB. 

0 '5 1~,-~.---~---,-~---,-~~;=_,_::,:==;P~ror:po=sed=;==ra::r:nd;=om:::Cb=ea::::Jm::;::fo=rm:::in=g w:C.il;=;h E~RCOilS 
-x- Desired rate 

0.45 

0.4 

I 
~ 0.35 

i 03 

f 0.25 

0.2 

0.15 

I 1 
I I 

' ' 

~, 

' 
I' 
/ 

0.1L_~-'-~-'-~~~~~~~~~---'---~--L-~ 

0 10 12 14 16 18 20 
User index 

Figure 3.12: Average rate of each user with different desired rate at the 600th time 
slot in fast fading and asymmetric channel, P = 20dB. 
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Chapter 4 

Conclusions and Future Work 

4.1 Conclusions 

In this thesis, BS transmitter design and downlink transmission schemes are consid­

ered. The problems of bit error probability minimization in the MIMO broadcast 

channel under the peak and average power constraints are formulated as convex opti­

mization problems, which can be efficiently solved using an interior point algorithm. 

It has been shown that the solutions of these convex optimization problems are glob­

ally optimal unless the SNR is very low or the channel is nearly singular. Simulation 

results show that the proposed approaches significantly improve the performance com­

pared to the existing methods of [23] and [14]. As a by-product, the exact probability 

of bit error can be obtained after solving the optimization problems. 

Another contribution in this thesis is that we propose an algorithm to decrease 

the amount of feedback required to exploit multiuser diversity in MISO downlink 

transmission. Compared to the previous approaches, the necessary average feedback 

rate of the proposed random beamforming is fixed and does not increase with the 

number of users. A lower and upper bound of the sum rate of the proposed random 

beamforming are derived to evaluate its performance. Simulation results show that 
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the sum rate of the proposed random beamforming is better than that of random 

beamforming scheduling when the number of users is small. 

An equal rate scheduling is also proposed to serve users with different rate re­

quirements. This scheduling algorithm can be regarded as allocating the time slots 

proportional to the users' rate requirements. Simulation results demonstrate that 

despite a little sum rate loss, the proposed random beamforming with equal rate 

scheduling roughly satisfies the rate requirements of each user both in slow and fast 

fading channels. 

4.2 Future Work 

Since the work of [4], there has been a lot of research on the broadcast channel. 

However, none of the approaches achieve its capacity. A recent work [8] combine 

turbo coding and vector quantization to present a realization of multidimensional 

dirty paper coding scheme. The gap to capacity of such systems at low SNR is large. 

The bottleneck lies in the quantization code. To further improve the performance, 

better multidimensional quantization code which achieve the ultimate shaping gain 

(1.53dB) needs to be found. 

Another interesting topic is the application of semidominant programming in the 

approach of maximum-likelihood detection. There has been a lot of work in this area. 

It is shown in a recent result [17] that the performance of two semi-definite relaxation 

model is pretty close to that of the maximum-likelihood detection. 
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