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Abstract 

One of the important objectives of a Radar Warning Receiver (RWR) aboard a 

tactical aircraft is to evaluate the level of threat posed by hostile radars in an ex­

tremely complex Electronic Warfare (EW) environment in reliable, robust and 

timely manner. For the RWR objective to be achieved, it passively collects elec­

tromagnetic signals emitted from potentially hostile radars. One class of such 

radar systems is the Multi-Function Radar (MFR) which presents a serious threat 

from the stand point of a RWR. MFRs perform multiple functions simultaneously 

employing complex hierarchical signal architecture. The purpose of this paper is 

to uncover the evolution of the operational mode (radar function) from the view 

point of a target carrying the RWR when provided with noisy observations and 

some prior knowledge about how the observed radar functions. The RWR esti­

mates the radar's threat which is directly dependant on its current mode of op­

eration. This paper presents a grid filter approach to estimate operational mode 

probabilities accurately with the aid of pre-trained Observable Operator Models 

(OOMs) and Hidden Markov Models (HMMs). Subsequently, the current mode 

of operation of a radar is estimated in the maximum a posteriori (MAP) sense. 

Practicality of this novel approach is tested for an EW scenario in this paper by 

means of a hypothetical MFR example. Finally, we conclude that the OOM-based 

grid filter tracks the mode of operation of a MFR more accurately than the corre­

sponding HMM-based grid filter. 
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Chapter 1 

Introduction 

1.1 Electronic Warfare 

Electronic Warfare (EW) [16] is a military action involving the enemy's elec­

tromagnetic emissions in all parts of the electro magnetic spectrum in order to 

provide intelligence on enemy's order of battle intention, capabilities and to use 

counter measures to deny the effective use of communication and weapon system 

while protecting one's own effective use of same spectrum. The EW is one of the 

dynamically changing fields due to continually changing threats in the battlefield. 

The proliferation of sophisticated radars in military applications is one reason for 

such threats. In order to operate against the hostile radars' action, aircraft and 

ships need to carry Radar Warning Receivers (RWRs) coupled with a defensive 

capability in the form of a self-protection jammer and decoys. 

EW can be organized into four major categories: 

1. Signals Intelligence (SIGINT) 

2. Electronic Warfare Support Measures (ESMs) 

1 
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3. Electronic Counter Measures (ECMs) 

4. Electronic Counter Counter Measures (ECCMs) 

Signals intelligence (SIGINT) basically refers to the data gleaned after the 

analysis of electro magnetic data radiated by sources such as radars weapon sys­

tems etc. Signals intelligence can be either communication data (COMmunica­

tion INTelligence or COMINT in short) or non-communication data (ELectronic 

INTelligence or ELINT in short). COMINT includes the intelligence obtained 

by interception, processing and analysis of the communication of foreign gover­

ments or groups excluding radio and television broadcasts. ELINT contains radar 

characteristics such as its Pulse Repetition Frequency (PRF), pulse width, carrier 

frequency, modulation etc. SIGINT is collected during peace time and may be 

used during war time. 

All the intelligence data are kept in an EUNT library in various formats. With 

the help of the ELINT library, the ESM system performs tasks such as inter­

ception, identification, analysis threat assessment and location of the unknown 

sources of radiation. One example of such an ESM system is the Radar Warn­

ing Receiver (RWR) which passively collects potentially hostile radar signals and 

analyzes their relative threat with the aid of the ELINT library. The ECM data 

processing presents one of the most complex and time-domain critical problems 

for current technology. The output of the ESM system in the form warnings and 

commands is used to initiate the ECM. The ECM system takes actions to prevent 

or reduce the enemy's effective use of electro magnetic spectrum (e.g., Jamming 

using spot noise or barrage noise). On the radar side, the radar takes actions col­

lectively known as Electronic Counter Counter Measures (ECCMs) to dilute the 
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effect of ECM. 

1.2 Multi-Function Radars 

Multi-Function Radar (MFR), as its name suggests, is capable of performing mul­

tiple tasks related to several targets simultaneously. These tasks extend from 

generalized ones such as search, acquisition, tracking and target-illumination to 

counter attacks such as initiation of ECCM, missile launching etc. The advances 

in software-controlled military equipment, cognitive radio, MIMO antenna tech­

nology and solid state electronics have made MFR even more sophisticated. To 

carry out multiple tasks, the MFR uses a highly sophisticated pulse-to-pulse (PPI) 

scheduling algorithm resulting in complex signal architecture. Another aspect of 

a MFR is its agility as it has the ability to perform entire functions from a single 

aperture. 

Based on the current function a MFR performs, it controls its beam position 

and shape using an electronically controlled phased array antenna. The antenna 

system allows it to point the radiation beam accurately and steer it rapidly. The 

antenna system may typically contain 4-6 array faces in order to provide hemi­

spherical coverage. The array face consists of a number of antenna elements dis­

tributed in a planner surface. Each element at least consists of a phase shifter and 

a radiating element. The resultant radiation beam is formed by superposition of 

electromagnetic waves with different phases. The antenna elements are grouped 

into so called subarray sets. The subarray steering is generally used to minimize 

the number of ports in mono-pulse network. It also allows large arrays to support 
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wide-bandwidth wave forms [16]. The current EW system therefore needs to be 

developed in a way that it could react faster with greater accuracy to an extremely 

complex electromagnetic environment. 

1.3 ELINT Library 

As mentioned Section 1.1, EUNT refers to information or knowledge gleaned 

from analysis of the electromagnetic signals transmitted by a radar system or any 

other non-communication transmitter. ELINT plays a key role in maintaining de­

fensive capabilities and preventing surprises and thus has a great value in EW. 

The information gathered by the interceptors are compiled by the intelligence ser­

vice and the radar characteristics, capabilities and applications are preserved in 

the form of recordings and photographs in a place called EUNT library [23]. 

The data available in the ELINT library may have inherent uncertainties. The 

radar signal received at a single ELINT station at any one time provides a glimpse 

of radar's characteristics. It may therefore require thousands of isolated encoun­

ters to provide a reasonable portrait of the radar. In addition to the collection 

strategies, the optimal design of an ELINT database is also important in EW. The 

process of designing an optimal structure for the ELINT database is a highly so­

phisticated task. In the literature, there are several modelling techniques available 

(e.g., Syntactic modelling [21], Relational Database modelling [13], etc.). Each 

approach has its own merits. On the receipt of a new information, the ELINT 

library is also updated by the ESM system. In short, the success on the modern 

battlefield is heavily dependant on an EUNT library. 
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1.4 Data Processing in ESM System 

As shown in Figure 1.1, three major subsystems have been identified in an au­

tomated ESM system. Since the ESM sytem is automated, rapidity in response 

to radar emitter threats, is enhanced. One of the challenging signal processing 

jobs in the subsystem 1 of Figure 1.1 is the pulse train deinterleaving. Due to 

signal density and parametric overlap, the pulse train of more than one emitters 

transmitted over the same channel needs to be separated for source identification 

and operational mode/threat estimation and this operation is known as pulse train 

deinterleaving. Figure 1.2 illustrates how a pulse deinterleaver deinterleaves the 

pooled pulse trains belonging to different radars. A Modem deinterleaver exploits 

the complete ELINT data (e.g., signal characteristics such as pulse width, radio 

frequency, etc.) in pulse deinterleaving which yields more efficient results than 

exploiting the Pulse Time of Arrival (ToA) solely. 

In subsystem 2 of Figure 1.1, features of interleaved pulses such as pulse am­

plitude, carrier frequency, pulse width, Pulse Repetition Interval (PRI), angle of 

arrival etc. are extracted and compared against the parameters of radars recorded 

in the ELINT library. The gap between the reality and the available ELINT is one 

of the major challenges that the EW community has to overcome at this stage. 

Subsystem 3 is dedicated specially for radars which exhibit a hierarchical sig­

nal architecture. The output of subsystem 3 is finally displayed to the operator in 

various formats and (s)he takes the final decision over the next tactic. 
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1.5 Problem Statement 

The EW problem may, in general, be viewed in two ways: 

• From a radar's view point, the main focus is to detect the target, track and 

identify its critical parameters. For the radar's objective to be achieved, it 

needs to perform satisfactorily even in the presence of ECM while exhibit­

ing a low probability of intercept A low probability of intercept is achieved 

by employing the techniques such as random frequency hopping, chirped 

and direct sequence spread spectrum transmission, dynamic transmit power 

control, infrequent scanning and antennas with suppressed side-lobes. 

• From the point of view of a Radar Warning Receiver (RWR) aboard a tac­

tical aircraft, it needs to generate the warnings to the aircraft due to threats 

posed by potentially hostile radars in a reliable, robust and timely manner. 

The warnings generated by a RWR facilitate the aircraft or ship to control its 

behavior based on what is going on within the hostile Radar. The design of 

the RWR is therefore heavily influenced by the design of the radar systems. 

For the objective of a RWR to be achieved, it has to perform the following 

two tasks: 

1. Classification of observed radars 

2. Estimation of the mode of operation of the observed radar. 

In this investigation, we assume that we have classified the radars responsible 

for the emission successfully (e.g., based on the radar signal characteristics). We 

therefore focus our attention on the operational mode estimation problem from the 

point of view of a RWR aborad a tactical airborne platform. 
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1.6 Motivation 

The level of threat posed by a hostile radar directly depends on its current mode 

of operation. For example, the level of threat posed by the radar becomes higher 

and higher as the radar mode evolves from search to target acquisition and then to 

track mode which may be the precursor to the missile engagement. Estimation of 

the current operational mode therefore gives clues about the level of instantaneous 

threat posed by potentially hostile radar so that the aircraft under scrutiny can pre­

pare for the next tactic in advance. For example, a target can deploy counter 

measures or perform evasive maneuvers if it becomes engaged. 

In this investigation, a grid filter which exploits likelihood estimates of the 

pre-trained Observable Operator Models (OOMs), is applied to track the current 

mode of operation of a MFR, hopefully, accurately. 

1. 7 Summary 

This chapter presents a brief account of various elements of electronic warfare 

that are basic building blocks of an automated ESM system. One example of such 

ESM system is the Radar Warning Receiver (RWR) which tracks the operational 

mode of hostile radars and generates warnings. An aircraft or ship carrying the 

RWR in tum takes counter-actions against the hostile radar. Also, this chapter 

describes the research question of how a RWR can track the mode of operation of 

MFRs and the motivation behind this research. 
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Figure 1.2: Illustration of the output of the deinterleaver after receiving a pooled 
pulse train in a multi-radar environment 



Chapter 2 

Signal Architecture of MFRs 

MFRs exhibit a highly sophisticated pulse structure. Therefore the signals of 

modem radars, especially MFRs can no longer be viewed as a stable sequence 

of pulses. Pulse Repetition Intervals (PRis) are typically scheduled by intricate 

radar control software. In addition, multiple independent operations performed 

by MFRs are often multiplexed in time domain. Since signal processing at pulse 

level seems complicated and tedious, we exploit the signal arrangement by creat­

ing a layered signal architecture and the mode estimation of MFRs is performed 

at a higher level of the signal hierarchy. Throughout the thesis, we will consider 

the sanitized version of the signal structure of the MFR called Mercury t. 

2.1 Layered Signal Architecture 

Since the focus of this investigation is on word level processing which follows the 

pulse level processing, the term word is fundamental to much of what follows in 

otThe Mercury data structure is a sanitized version of an actual MFR system, which is de­
scribed in detail in the PhD thesis ofN. Visnevski [21]. 

10 
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the report. Basically a single word is made up of pulse sequences which are 

arranged into groups according to specific pattern. Figure 2.1 shows an example 

of a syntactic hierarchical signal architecture. As illustrated in Figure 2.1, a single 

word is made up of 5 sections (A-E). Sections A, C and E are dead time zones. No 

pulse is emitted in the duration of the so-called dead time. Section B is known as 

Pulse Doppler Sequence. Pulse Doppler Sequence consists of a certain number of 

pulses with a constant pulse-to-pulse interval (PPI). Each word has its own num­

ber of pulses and a characteristic PPI. Section D, known as Synchronization burst 

sequence has a fixed number of pulses for all words in the alphabet. The radar has 

an alphabet of 9 words (W 1-W9), all of which have similar pulse envelope. 

A group of words make up a phrase. In fact the phrase structure is specific 

to the radar of interest. For the Mercury type MFRs, a phrase is composed of 

4 words. Though each phrase is in general, associated with single task such as 

search, locate, track etc., it is not always the case. The mapping between a task 

and some phrases is many-to-many. For example, as shown in Table 2.1, [W1 W2 

W4 W5] is encountered only in search mode where as [W6 W6 W6 W6] appears 

in acquisition, non-adaptive track and track maintenance. This relationship makes 

the mode estimation job even more complicated. 

A clause is composed of a certain number of phrases. The number of phrases 

in a clause, determines the number of tasks a radar can engage in simultaneously. 

As shown in Figure 2.1, the radar can simultaneously engage in 5 different tasks. 

A clause is the product of time-division multiplexing in MFR operation. 
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In this investigation, the mode estimation is performed at word level. Signal 

processing at word level has the following advantages over pulse level: 

1. Since the a priori knowledge about a radar signal structure is incorporated 

in the word extraction process, word level processing is less prone to errors 

than the signal processing at pulse level. This can also be associated with the 

well known fact in machine learning that it is always preferable to encode 

an input sequence with less number of bits for learning a hidden process. 

2. Word level processing is less complex than pulse level. 

3. It is also possible to analyze the task performed by the MFR for each target 

under its scrutiny independently. 

The third beneficial factor can be further explained with the aid of Figure 2.2. In 

reality, word sequence is arranged so that the clauses follow each other sequen­

tially. For instance, right after the last word symbol of the last phrase in the first 

clause, the first symbol of the first phrase of the second clause follows. For the 

simplicity of analysis, the arrangement of the clauses can be viewed in a way that 

they are stacked one after the other in a 2-D table format. Now the task performed 

on each target can be separated out by considering only the vertical alignment of 

phrases. In Figure 2.2, separation is shown by dotted lines. 

2.2 Mode Evolution of a 1)rpical MFR 

Figure 2.3 illustrates how a typical radar jumps from one mode to another in an 

ordered manner. Mode-transition follows the first-order Markov chain which tells 
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that the state at time step n is dependant only on the state at time step n- 1. 

2.3 Summary 

This chapter presents the hierarchical structure of the MFR signals. This structure 

includes three basic blocks namely word, phrase and clause. We take the advan­

tage of this layered structure in estimating the operational mode of a MFR. Also, 

this chapter gives a brief account of how the modes of a typical MFR evolves from 

one to another. 

P5 

Figure 2.1: Hierarchical Radar Signal Architecture 
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Functional State Phrase Content Functional State Phrase Content 
Four-Word search [W1W2W4Ws] TM [w.w,w,w,] 

[W2W4WsW1] (Track- [W2w,w,w,J 
[W4WsW1W2] Maintenance) [W3w,w,w,] 

[Wsw,w,w,] 
Three-word Search [WtW3WsWt1 [W6w,w,w,] 

[W3WsW1 W3] [WtWsWsWs] 
[WsWtW3Ws] [W2WsWsWs] 

[W3WsWsWs] 
Acquisition [WtWtWtWt] [W4WsWsWs] 

[W2W2W2W2] [WsWsWsWs] 
[W4W9W9W9] 

NAT [WtW6W6W6] [WsW9W9W9] 
(Non-Adaptive [W2W6W6W6] [W6W9W9W9] 
Track)fi'M [W3W6W6W6] [W7W9W9W9] 

[W9W9W9W9] 
Range Resolution [W1W6W6W6] 

[WsW6W6W6] Acq.,NAT or TM [W6W6W6W6] 
[W9W6W6W6] 

Table 2.1: List of a typical MFR phrase combinations according to the functional 
state of the radar which has an alphabet of size 9 (W 1-W9) 
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Clause 

Phrase 1 Phrase 2 Phrase 3 Phrase 4 Phrase 5 

Figure 2.2: Output sequence for the MFR of signal structure of Figure 2.1 
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Figure 2.3: Operational Mode Transition of a typical MFR: 1-Search (Sea), 2-
Acquisition (Acq), 3-Non Adaptive Track (NAT), 4-Range Resolution (RR), S­
Track Maintenance (TM). 



Chapter 3 

Syntactic Model-Based Mode 

Estimation 

3.1 Introduction 

In this approach, tracking the mode of operation of the MFR is rooted in the theory 

of formal stochastic language and discrete event system theory. In the develop­

ment of this approach, the MFR is viewed as an abstract discrete event system 

that broadcasts messages using an alphabet of fixed size [21]. This is indeed the 

very approach taken in the theory of formal languages and computational linguis­

tics. A widely known and powerful model for formal language is grammar (or 

syntax) [4]. Grammar is the set of rules of a language and represents the infinite 

number of strings in a more efficient way. The radar language can therefore be 

modelled by the stochastic grammar and processed based on the theory of syntax 

analysis. This approach is known as syntactic modelling. Syntactic modelling has 

widely been used in: 

17 
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1. Pattern recognition applications 

2. Natural language and speech processing 

3. Compilers for the computer languages 

4. Bio informatics and genomic sequencing 

3.2 Grammar 

There are two broad classes of grammar. Deterministic and Stochastic Grammar. 

Since grammar is fundamental to explain the syntactic modelling, let us see its 

definition. 

Definition A deterministic grammar G is a quadruple 

G - (~, V,P,So) 

where: 

~ is the alphabet( the set of terminal symbols of the grammar) 

V is the set of non-terminal symbols (variables) of the grammer 

P is the finite set of production rules 

So is the starting non-terminal symbol. 

In general, P is defined as 

P : ~· x v* ---+ r x v* 

(3.1) 

(3.2) 

where~· operation is called Kleene (reflexive or transitive) closure which is 

used to construct the infinite number of strings by concatenating them together. 
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For example, if I:= {a,b,c} then I*= {e,a,b,c,aa,ab,ac, .. . }, where E refers to 

the empty string. 

By imposing certain restrictions on the definition of the grammar, Chomsky 

has defined four types of grammars: Regular Grammar (RG), Context-Free Gram­

mar (CFG), Context-Sensitive Grammar (CSG) and Unrestricted Grammar (UG). 

The syntactic model for the MFR is based on CFG [21]. CFG has the production 

rule of the form of S -+ (3, where the left hand side of the production rule must 

contain only the non-terminals whereas the the right hand side can be any strings. 

Any interested reader may refer [4] for detailed description of grammar. 

A number of practical applications contain uncertainties that are often rep­

resented by probability distributions. For instance, radar signals are typically ob­

served in the noisy environment where the signal inference may cause observation 

sparseness. These factors require the extension of the concept described above 

into the domain of stochastic grammar which is defined as follows: 

Definition A stochastic grammar Gs is a five-tuple 

Gs - (I, V,P,Ps,So) (3.3) 

where Ps is the probability distributions over the set of production rules P and 

the rest of the notations have the meaning as defined earlier. 
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3.3 Finite State Automata (FSA) 

Definition A Finite State Automata(FSA) is a five-tuple 

A = (Q,~,a,so,F) 

where: 

Q is the set of states of the FSA 

~ is the set of input symbols of the FSA 

a is the transition function of the FSA 

So is the initial state of FSA 

F is the set of final (accepting) states of the FSA (F c Q) 

(3.4) 

Note 1: FSA can be shown to be equivalent to regular languages, regular gram­

mars and regular expressions. 

Note 2: Chomsky has proved that the CFG needs to satisfy the non-self embed­

ding property in order to generate finite state language [2]. 

Having defined the CFG for the radar language, the finite state automata (FSA) 

based on this grammar is subsequently developed. In fact, FSA is equivalent 

to Hidden Markov Model (HMM) with some structural constraints [18, 20]. In 

essence, the relationship between the formal stochastic language and the HMM 

therefore provides a technique for MFR signal processing. 
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:t-Alphabet/Set of terminal symbols :I:= {a,b} 
V-Variables/Set of non-terminal symbols V = {So,St} 

P-Production rules So---+ aS1 
S1---+ bSo/a 

So-Starting non terminal symbol So 

Table 3.2: Example for a Grammar 

3.4 Toy Example 

The following example clearly illustrates the essence of syntactic modelling. The 

Syntactic model is a quadruple grammar defined as in eq (3.1). Consider the ex­

ample for a grammar as shown in Table 3.2. Based on this grammar, the following 

sequence can be generated: 

So=> aS1 => aa 

So => aS 1 => abSo => abaS 1 => abaa 

So => aS 1 => abSo => abaS1 => ababSo => ababaS 1 => ababaa 

So=> ......... => abab ... aa 

This example shows how a simple grammar can generate strings with each 

string viewed as a sequence of observations emitted from some radar. It is note­

worthy that the syntactic model is stochastic by virtue of the fact that grammatical 

production rules may themselves be probabilistic. Let us define the probability of 

the production rule as shown below: 

So---+ aS1 with probability, 1 
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St -+ bSo with probability, (p) 

St -+a with probability, (1- p) 

Now we are in a position to define the HMM, A for this grammar as follows: 

A = {M,O,roo} 

where 

M - Markov matrix or state transition matrix 

0 - Observation probability matrix or Emission probability matrix 

roo - Initial state probability vector. 

For the above mentioned example, 

M = (: l~p) 
0 = c~p:) 

ro'{; = ( 1 0) 

(3.5) 

In this context, Expectation Maximization (EM) algorithm may be subse­

quently used to tune stochastic parameters of the HMM. Availability of the HMM, 

in turn facilitates the final step known as HMM filtering for mode estimation. 

HMM filtering algorithm strives to produce the most accurate instantaneous state 

estimate by minimizing the symbol error probability. 

The model although provides a procedure for compact representation ofELINT 
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data while facilitating to estimate the state of the radar, in our opinion, following 

are the limitations associated with the syntactic approach. 

• The modelling of MFR is based on the context free grammar, which needs 

to satisfy the non-self embedding property in order to generate Finite State 

Automata (FSA). Therefore, there is no guarantee that all the radar gram­

mars would pass this test. 

• If a realistic radar is considered, the number of states in the word level 

HMM is quite large. Consequently, it becomes more expensive in terms of 

computational time and memory resource. 

• Many of the intermediate states in HMM seem dummy. They do not actually 

refer to operational modes of a radar. As a result, clustering of these dummy 

HMM states need to be performed to estimate the state of the radar at any 

given time. 

• HMM filtering algorithm is valid for a stationary process. However, an 

input for the HMM filter is collected from the radar environment which is 

non-stationary. 

In brief, all these issues related to syntactic model-based radar mode estima­

tion lead to the necessity for a more sensible design approach which is concep­

tually transparent simple albeit reliable and robust. The next chapter describes a 

novel approach that solves the above-mentioned issues in an efficient manner. 
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3.5 Summary 

MFRs can be considered as a stochastic discrete event system that are commu­

nicating information using some stochastic formal languages. These languages 

can be modelled by grammars that can be derived based on available electronic 

intelligence about the radar of interest. This MFR modelling approach is refereed 

to as syntactic modelling. The applicability of this approach is explained using a 

toy example. Finally, this chapter presents some limitations associated with this 

approach. 



Chapter 4 

Introduction to OOMs 

The Observable Operator Model (OOM) is a mathematical tool for modelling 

a stationary time series or symbolic process [10]. For example, an OOM can 

learn the probability distribution of an unknown symbol generator from its training 

data. As a method of choice for describing an unknown distribution of stochastic 

process, the OOM is comparable to higher order Markov chain, Hidden Markov 

Model (HMM), stochastic grammar or even stochastic Turing machine. A grow­

ing interest in OOM has recently been witnessed in the field of optimal decision­

making and action-selection for autonomous agents. In the context of this work. 

OOM plays a key role in capturing the true data generation mechanism of a MFR. 

In this chapter, we present the mathematical formulation of OOM. This chap­

ter is in fact, a summary of results of the original work carried out by Herbert 

Jaeger [7-10], the inventor ofOOM. 

Definition Am-dimensional OOM is a triple, A= (9tm, ('ta)ae:E,C.OO), where Cllo E 

9tm and 'ta : 9tm -+ 9tm are linear maps represented by matrices, satisfying 

25 
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1. lmo = 1. 

2. p. = Lei: 'ta has column sum equal to l, where ~ is the alphabet 

3. 'Vao ... ar it holds that l'tamo?: 0, where 'ta = 'ta,.a,_ 1 ••• a0 = 'ta,'ta,_1 ••• 'tao· 

'm' in this definition refers to the dimension of the vector space spanned by 

the prediction function or predictor space. In other words, 9tm is the domain of 

the operators. 'ta is the operator which is indexed over the output symbol 'a' of 

the stochastic process and roo is the initial state vector. From the first and second 

conditions of the above definition, we see that the state vector components and the 

entries of p. can take negative values while satisfying the condition that column 

sum is equal to 1. Such relaxations in freedom of sign have played a key role 

in developing a more efficient OOM learning algorithm than HMM's EM algo­

rithm [10]. 

Note: We shall use 1 = ( 1, ... 1) E 9tm, a row vector consisting of all 1's 

throughout the thesis. Further, we shall denote the Kleene closure operation over 

~ as ~*, which includes an infinite set of all finite strings formed by concatenation 

of symbols from ~ and the empty string. 

Proposition4.0.1 Let A= (9tm,('ta)ae::E,mo) be an OOM. Let Q =~*and'¥ be 

the cr-Algebra generated by all finite-length initial events on Q. Then a numerical 

function 

(4.6) 
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can be uniquely extended to a probability measure P on (Q, '¥) defining a 

discrete time, finite valued stochastic process (Q, '¥ , P, (Y,1) 11 EN). 

Why Operators are named as Observable Operators? 

An OOM describes the change of our knowledge about the future of a stochas­

tic system by means of linear operators chosen from a finite set of operators on 

the basis of current observations. In other words, the stochastic trajectories in 

OOM are conceived as sequence of operators. As shown in Figure 4 .1, an ob-

served piece of trajectory ... , a 1 a2a3 , . . . would correspond to a concatenation of 

operators ... , 'ta1 ( 'ta2 ( 'ta3 )), .•.• The fact that the one-to-one relationship between 

the selection of operator and the observation symbol has led to the naming of 

operators as observable operators. 

wo W1 W2 W3 

Figure 4.1: Stochastic Trajectory as a Series of Operators 

4.1 HMMs and OOMs 

HMM basically specifies a distribution of a discrete-time, discrete-valued stochas­

tic observation process (Y,1)nEN• where the random variables Y11 have outcomes in 

an alphabet L ={a1 ... ,aa} . Assume a state process (Xm)mEN having the Markov 

chain with finite number of hidden states { s 1, ••• , sm} · The state transition proba­

bility from s J at time ( n- 1) to Si at time n is denoted by the ( i , j)lh element of the 
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Markov matrix M of size m x m. To characterize the HMM completely, we need 

to specify three components: initial distribution mo. Markov matrix M and the 

observation matrix 0 0 , Va E I.. For every a E I., we collect the emission probabil­

ities P(Yn = a;/Xm = Sj) in a diagonal observation matrix Oa of size m x m. This 

section presents how the HMM describing a stochastic process can be associated 

with an equivalent OOM. 

The process described by the HMM is stationary if roo is an invariant distribu­

tion of the Markov chain, as shown by 

(4.7) 

Let the operator indexed over the symbol a taken from the alphabet I., be 

'ta = MT 0 0 • Then the probability to observe the sequence a0 ••• ar can be obtained 

by 

(4.8) 

M can be recovered from the operators 'ta by observing that 

L 'ta = MT LOa 
ae:E ae:E 

= MTid 

- MT 

We can therefore rewrite the HMM with a structure (JRm,('ta)ae:E,mo), where 

lim is the domain of the operators. 
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For example, consider a HMM with two hidden states s1 and s2 and the two 

outcomes l: = {a, b}. The parameters needed to describe the HMM completely 

is shown in Figure 4.2. As just outlined, the HMM with a modified structure i.e., 

(M, Oa, Ob, roo) becomes 

- ( 1/4 3/4 ) - ( 1/2 M- ,Oa-
1 0 0 

( 
2/3) roo = , respectively. 
1/3 

a:1/2 .... """""--­
b:1/2 ....... 

o ) 'ob = ( 1/2 o ) , and 
1/5 0 4/5 

1.0 

~a:1/5 
~b:4/5 

Figure 4.2: Hidden Markov Model 

Since MT roo :f: ro0, this example describes a non-stationary process. Similar 



CHAPTER 4. INTRODUCTION TO OOMS 

to OOM structure, the HMM can now be rewritten as (9tm, 'ta, 'tb, co0), where 

Similarly, 

'tb = ( 1/8 4/5 ) 
3/8 0 

30 

At this point, one can perceive how the OOM components such as m, COo and 

matrix IJ.T in a kind of abstract definition of an OOM are associated with number of 

states, the state probability vector and Markov matrix or state transition matrix M 

of a corresponding hidden Markov model respectively. However, one can interpret 

an OOM by doing the following: 

1. Relax the requirement that the transpose of the Markov matrix MT be the 

stochastic matrix, to a weaker condition that the column of MT each sums 

to 1. 

2. Relax the requirement such that COo merely needs to satisfy the component 

sum equal to 1. In other words, COo is allowed to assume negative values. 

The mathematical construction of an OOM can therefore be considered as a 

generalization of HMM. This is one of the virtues of OOM. Since the learning in 

OOM is rooted in the efficiency sharpening (ES) principle, OOM learning algo­

rithm is known as the ES algorithm. The ES learning algorithm will be discussed 



C~R4. ThiTRODUCTIONTOOO~ 31 

in Chapter 4 in detail. The following are some other virtues of modelling and 

learning with OOMs: 

• Speed of Convergence- for a given stochastic process, OOMIES learning 

yields a model estimate in a fraction of the computational time than that of 

HMMIEM algorithm [10]. Typically, OOMIES learning algorithm requires 

not more than five ES iterations to converge to a reasonably good model, 

whereas HMMIEM algorithm converges to the target model in more than 

one hundred iterations in general. Also, it should be noted that the compu­

tational load of one ES iteration is comparable to one EM iteration. 

• Accuracy- the model obtained via the ES learning algorithm is markedly 

more accurate than the corresponding model obtained via HMMIEM algo­

rithm. This has been proved after testing over a number of standard data 

sets [10]. We also carried out an experiment to verify this in Chapter 5. 

With large data sets, HMMIEM algorithm often gets trapped in one of the 

suboptimal maxima of the likelihood function. In order to get a reasonably 

good model, a good guess of initialization is crucial in HMM/EM algorithm. 

• Expressness- for the same level of modelling accuracy, OOM assumes 

less dimension than HMM. Another aspect of the enhanced expressiveness 

of OOM is that the class of processes that have finite dimensional OOM 

properly includes the process characterized by finite dimensional HMMs. 

There are certain linear dependant processes that can be captured by OOMs 

whereas HMMs cannot be employed (e.g., the probability clock [10] where 

the outcome probability fluctuates in time). 

• Tractability- since OOM is expressed in terms of linear algebra which is 
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one of the the well established fields in applied mathematics, OOM can be 

interpreted transparently. 

There are two limitations associated with an OOM. One is the negativity issue 

associated with some (rare) model predicted probabilities. Another one is the 

instability problem associated with larger model dimension. Fortunately, there 

exist heuristic counter measures for both of these issues. 

4.2 OOM as a Generative Model 

When an OOM is said to be a generative model, it means that the OOM in­

cludes all the formalized and compressed description of the probability distribu­

tion of all possible realizations. Consider an OOM, A = (9tm, ( ta)ae:E, roo) where, 

l: ={at ... ,aa}. Now we will see how the task of producing observations at,a2··· 

is performed at times n = 1, 2, ... such that 

1. at time n = 1 the probability of producing a is equal to P(Yt = a) 

2. and at every time step n > 1, the probability of producing a (after at, a2, ... , an 

have already been produced) is equal to P(Yn+t = aiYt =at, ... ,Yn =an) 

The entire generation procedure can be summarized as follows: 

1. State vector initialization: put ro = 000 

2. Assume that at time n, the state vector ron has been computed. Now deter­

mine the probability vector p of then+ 1'h symbol as 

(4.9) 
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(

hat) 
where, S = ; and choose an according to the p-vector 

haa 

3. Update the state vector by ron+l ='tan+! COn/l'tan+t COn· 

At each instant of time n, the OOM passes through a certain stochastic trajec­

tory. From the third step, the trajectory can be a expressed as a vector called state 

vector ron+I which is obtained by COn and the new observation obtained at time 

(n+ 1). Figure 4.3 illustrates how the symbols are generated from an OOM of 

dimension 2 with an alphabet l: = {a, b} for one time step. At time n = 0, let the 

state vector be roo. At time n = 1, the symbol a orb can be chosen according top­

vector. Assume that the symbol a is chosen. Therefore, the state vector ro1 at time 

n = 1 is obtained by applying the operator 'ta and renormalizing to component 

sum 1. 

4.3 Reverse OOMs 

For an OOM A= (9tm, ('ta)ae:E,roo) with an induced probability distribution PA, 

its reverse OOM A' is characterized by a probability distribution PAr satisfying, 

A reverse OOM can be computed from the forward OOM by observing the 

following proposition. 

Proposition 4.3.1 If A = (9tm, ('ta)aeo, roo) is an OOM for a stationary process, 

roo has no zero entry, then A'= (9tm,(Dt~D- 1 )aeo,roo) is a reverse OOM to A, 
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n = 0 n = 1 

...__ 
" \ 

\ 
I wo 

Figure 4.3: OOM as a Sequence Generator 

where D = d iag( roo) is a diagonal matrix with roo on its diagonal. 

For proof, see [8]. 

From the above proposition, it is observed that the process dimension is the 

same for forward and reverse cases. Also, we will see how an important type of 

characterizer is obtained from the reverse OOM when we discuss the OOM/ES 

learning Algorithm. 

4.4 Equivalent OOMs 

Two OOMs are defined to be equivalent precisely if and only if they induce the 

same probability distribution for any finite sequences. The following proposition 

provides a necessary and sufficient condition for two OOMs to be equivalent. 



C~R4. ThiTRODUCTIONTOOO~ 35 

Proposition 4.4.1 Given two OOMsA = (9tm, ('t'a)ae:E,Olo) and A'= (9tm, (Ta)aei,m0), 
A and A' are equivalent by describing the same stochastic process if and only if 

there exists a bijective linear map p : 9tm --+ 9tm satisfying the following condi­

tions: 

• p(roo) = m~ 

• Ta = p't'aP -l for all a E ~ 

• Iu = Ipufor all (column) vectors u E 9tm 

4.5 Interpretable OOMs 

Within the equivalence class of OOM, there is a proper subset of minimal dimen­

sional OOMs. The states of the such minimal dimensional OOMs can be inter­

preted as future distributions of trajectories. This class of OOMs are collectively 

known as interpretable OOMs. Interpretable OOM is pivotal for OOM learning 

algorithm. It has the following three properties: 

1. Its state vectors are probability vectors. 

2. The components of its state vector provide probabilities of a certain well­

defined future events (characteristic events) as described below. 

3. It can constructively be obtained through a learning algorithm which is to 

be discussed in Chapter 5. 
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4.5.1 Characteristic Events 

For a discrete time stochastic process Yn with the alphabet l.:, k-event B is defined 

as a nonempty subset of r,k. In mathematical notation, it is represented as 

(4.11) 

P( (Yn+ 1, Yn+2, ... , Yn+k) E B;) denotes the probability of observing the process 

trajectory passing through B; in the time window of [n + 1, n + k]. For brevity, we 

shall use (P(B)) instead of P((Yn+b Yn+2, .. . , Yn+k) E B;) throughout the thesis. 

Definition Let (Yn)n~o beam-dimensional stationary process with observables 

from an alphabet"£. Let, for sufficiently large k, r,k =BtU ... UBm be the partition 

of the set of strings of length k into m disjoint, non-empty sets B;. Then this 

partition is called a set of characteristic events B;(i = 1, ... ,m), if some sequences 

Ci1 ••• ,am exist such that the matrix V = (P(B;Icii)h~i,j~m is nonsingular. 

Hereby P(B;Icij) we mean l:bea
1
P(blcij)· We will see the importance of the 

invertibility of V when we discuss about the OOM learning algorithm. Now let us 

define interpretable OOMs. 

Definition LetA= (9tm, ('ta)ae:E,COo) be a finite dimensional OOMand let (B;), (i = 

1, ... , m) be the characteristic events of A. Then A is called interpretable with re­

spect to the characteristic events (Bt), (j = 1, ... ,m) if 

P(B;Iron) = (ron);, 'v'nEN,iE{1, ... ,m} (4.12) 

where P(B;Iron) denotes the probability of observing (Xn+ 1, ... , Xn+k) E B; given 

that the OOM was in state ron at time n. Further, (ron); denotes the i-th component 
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of the state vector ron. Since B 1 u ... u Bm is an exhaustive and disjoint partitioning 

of r.k, it follows that I,; P(B;Iron) = 1 and hence lron = 1. In other words, ron is a 

probability vector. 

Proposition 4.5.1 In an interpretable OOM (interpretable with respect to Char­

acteristic events Bt ... ,Bm ), it holds that 

1. O>o = (P(Bt), ... P(Bm))T 

2. 'taCJlo = (P[iiBt], ........ , P[aBm]l 

where P(aB) = LiiesP(ab). 

4.6 Fingerprint Plots 

The state dynamics of the an interpretable OOM can be graphically represented in 

a standard fashion. The graphical representation allows one to visually compare 

the dynamic process expressed by two stochastic generators. Figure 4.4 shows 

the fingerprint plots of states obtained from generating runs of a 3-dimensional 

OOM over an observation alphabet of size 3. Interpretable states, being probabil­

ity vectors are non negative and thus lie in the intersection of the positive orthant 

of9t3 with the hyperplane H = {x E 9t311x = 1}. This intersection is the triangu­

lar surface. Its comers mark the three unit vectors of 9t3• Figure 4.4 is, in fact, 

the projection of a 3-dimensional plot over the 2-dimensional planar surface. The 

states are colored with one of the three colors depending upon which of the three 

operators was used to produce this state. When plotting the states of interpretable 

OOMs with dimension m > 3, one can join some of the characteristic events until 

three merged events are left. State vectors can then be plotted on a 2-dimensional 
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triangular canvass in a way similar to the one obtained in Figure 4.4. Plotting of 

state fingerprints is an indispensable means to sharpen one's intuitions about the 

objects one is dealing with. It is noteworthy that there exists a similar technique 

to graphically represent the states of HMMs. 

4.7 Summary 

This chapter presents the basic structure of the OOM and how the well known 

stochastic modelling technique called Hidden Markov Model (HMM) falls into 

the special case of the OOM. Different classes of the OOM are also presented in 

this chapter. The interpretable OOMs play a key role in the development of OOM 

learning algorithm. The state dynamics of a well defined interpretable OOM can 

be represented in a graphical form using finger print plots. 
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Figure 4.4: Fingerprint Plots 



Chapter 5 

Learning OOMs 

The HMMIEM algorithm [10] finds the local maximum of a likelihood function 

when it is trained on a data set of interest. But with a large amount of data, there 

can be many maxima in the likelihood function and the EM algorithm may fail 

to find the most optimal one. Selection of a reasonably good initial guess for the 

starting point is therefore crucial in obtaining an optimal solution. To eliminate 

this limitation in HMM, the Observable Operator Model (OOM) can be employed 

as an alternative to HMM. Though the OOM is structurally similar to HMM, it 

is radically different in learning operation. The OOM allows negative entries in 

its state vector and operators. The relaxation in sign thus, allows us to develop 

a better learning algorithm than HMMIEM learning algorithm. Given the OOM 

A = (9\m, ('ta)ael:, roo), OOM learning means computing the estimates for opera­

tors ('ta)ael: from the the sample of finite length produced by an unknown station­

ary process. 

This chapter is broadly categorized into two parts: The first part presents the 

40 
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basic version of OOM learning algorithm and its asymptotic correctness. The 

second part presents an advanced version of the OOM learning based on the Effi­

ciency sharpening (ES) principle. 

5.1 Basic Learning Algorithm 

As mentioned in Chapter 4, interpretable OOMs are pivotal for the basic learn­

ing algorithm. In deriving the learning algorithm, it is assumed that the training 

sequence s is produced by a stationary process which can be modelled by some 

OOM, A= (9tm,('ta)aei,Cllo) of minimal dimension m. If we assume that the 

OOM A is interpretable with respect to characteristic events B 1, ••. , Bm, then the 

argument value pair for the operator ('ta)aei can be obtained from Proposition 

3.6.1 as follows: 

Probabilities of the kind P( iiB;) that make up the argument value pairs in eq 

(5.15) can be estimated from the training sequence s through the relative frequen­

cies Ps of the event iiB; as follows: 

number of occurrences of words ab within s 

N-laB;I+1 

where, b E B; and Iii I = length of the string a. 

(5.14) 

A linear operator on 9tm is determined by m-argument value pairs provided 
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that arguments are linearly independent. It should be noted that similar to char­

acteristic events, indicative events can also be thought of as rasters through which 

the training sequence is exploited. In other words, indicative events are also de­

fined by partitioning of sequence space. The only difference is that the indicative 

events are perceived as events which describe the past process trajectories whereas 

characteristic events describe the future. Considering this fact, we denote A; for 

an indicative event and B; for a characteristic event throughout the thesis. Now 

the procedure for the learning algorithm can be summarized in the following three 

steps: 

• Step 1: Choose characteristic events B1, ... , Bm and indicative sequences 

al, ... ,llm such that the matrix \1 = (Ps(lljB;));,j=l,···,m is invertible (this 

matrix contains m linearly independent argument vectors for the operators 

'ta in its columns) 

• Step 2: For each a E 0, collect the corresponding value vectors in a matrix 

Wa = (Ps{ajaB;));,j=l.-··,m 

• Step 3: Obtain an estimate for 'ta by, 

(5.15) 

It is interesting to note that the statistical efficiency can be improved by in­

creased exploitation of the given training data. Indicative sequences for instance, 

can be substituted with indicative events A i that partition the "'.k into m non-empty 

disjoint subsets. To simplify the counting further, \1 and Wa can be substituted 
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with vraw and w:aw as follows: 

yraw _ (count the number of events AjB; in s)i,j=l, ... m 

Wraw 
a - (count the number of events A jaB; in s )i,j=l, .. m 

5.1.1 Toy Example 
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(5.16) 

(5.17) 

Consider a generator of binary symbols 'a' and 'b' and the training sequences of 

length 20 is given as 'abbbaaaabaabbbabbbbb'. Assume that the estimated model 

dimension is 2; characteristic events B1 = {a} and B2 = { b} and indicative events 

A 1 = {a} and A2 = { b}. First we estimate the initial state vector roo by putting 

&o - ( #ajN #b/N ) 

- ( 8/20 12/20 ) 

Using eqs (5.18) and (5.17), yraw and Wa can be calculated by a single sweep 

of the inspection window of certain length over s as follows: 

yraw - (#aa #ba)=(4 3) 
#ab #bb 4 8 

wraw - ( #aaa #baa ) = e 2 ) a 
#aab #bah 2 1 

l ( 0.4 0.1 ) Hence,ta = w;aw(Vraw)- = 
0.6 -0.1 
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Similarly, 

( 
0.0 0.25) tb = 
0.2 0.55 

It is interesting to note that ta is no longer a stochastic matrix as it takes a negative 

entry. 

5.2 Asymptotic Property 

OOMs are a special class of Linear Dependant Processes (LOPs) [8]. This section 

paraphrases the discussion of the basic OOM learning algorithm given in [8] with 

special emphasis to the aspect of asymptotical correctness. 

Lemma 5.2.1 Let Yn be a stationary ergodic WP of finite dimension with dis­

tribution P taking values in a finite alphabet L Let s E l:* be a realization of 

(Yn),A; C l:k,Bj C 1:1 and Ps(l:nJ(A;) and Ps(l:nJ(Bj) the frequencies of A; and 

BJ in the initial string s[l : n] E l:n of the realization s. Let V = (P(BjA;)), 

v = Ps(l:nJ(BjA;), Wa = P(BjaA;) andWa = Ps[l:nJ(BjaA;). As n-+ 00, it holds 

1. Ps(l:nJ(A;) -+ P(A;) 

2. v-+ v 

3. 'Va E l: : Wa -+ Wa 

Corollary 5.2.2 Assume the situation as in lemma( 5.2.1 ). As n -+ oo, it holds 
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I. IIV- ~II- o 

where 11·11 denotes the matrix 2-norm. 

Theorem 5.2.3 Let Yn be a stationary ergodic WP of dimension m on a finite 

alphabet~ Lets E l:* be a single realization of (Yn)· Assume (A;); and (Bj)j 

are indicative and characteristic events ofYn and A denote the concrete OOM of 

Yn which is interpretable with respect to (A;);. Assume that An(s) is the OOM 

estimated from the initial strings S[l:n]· By applying the basic learning algorithm 

using (A;); and (Bj)j. it holds 

An(s) -t A as n -too in some matrix norm sense 

5.2.1 Properties of the Basic Learning Algorithm 

We have seen that the asymptotic correctness of the basic learning algorithm in 

the previous section given the training sequence of infinite length. This section 

summarizes the properties of the basic learning algorithm. 

1. Conceptually transparent and computationally cheap. 

2. Complexity: Run time complexity is O(N +m3) and the space complexity 

is O(N log(m) + ll:lm2) where N is the length of the sample, m is the model 

dimension and 11:1 is the length of the alphabet. 

3. Event selection: The statistical efficiency of the basic learning algorithm 

heavily depends on the selection of indicative and characteristic events. In 

other words, we have to choose the characteristic and indicative events such 
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that counting matrix V has to be a matrix with condition number closer to 

1. 

4. Counting statistics: Small portion of the counting statistics, typically twice 

the length of characteristic events are entered into the estimation algorithm. 

Much information contained in the training data is thus ignored. 

As just outlined, the major challenge in the basic version of algorithm is to find 

good indicative and characteristic events so that the estimated OOM could capture 

the m significant dimension of the underlying dynamics. In other words, our task 

is not to find the true dimension but the dimension which captures the data such 

that the data is neither over-fitted nor underexploited. In order to achieve this ob­

jective, the counting matrix vraw has to be selected with the numerical rank closer 

to 1. In other words, the smallest singular value of yraw should be significantly 

larger than 0 to become the full ranked matrix. The question now is how to find 

yraw with numerical rank closer to 1 with less computational overhead. 

Applying a small perturbation in vraw, we can show that 

where, 

cr,nin is the smallest singular value of V 

E is the average relative error of matrix entries (llvraw- v;~urbedll> 

and II· I loa refers to the infinity norm. 
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Moreover it can be shown that 

1 1 
E = 2 LA·A .. (#(A;Aj)(1-#(A;Aj)/N)) 1/n (5.19) 

m i,j ' J 

under the assumption that #(A;A i) is binomially distributed. It should be noted 

that ll::lk ~ m often works well in practice, where 11::1 is the length of the alphabet 

and k is the event length. 

5.3 Learning Algorithm Based on Efficiency Sharp-

ening Principle 

The Efficiency Sharpening (ES) method is iterative. In each iteration, the model 

estimated in the previous round is used to construct an estimator with a better 

statistical efficiency than the previous one. This has led to the naming Efficiency 

Sharpening. In this framework, though the characteristic and indicative events are 

used in the initial model, the subsequent models obtained iteratively exploit only 

the states of the previous model as replacement to characteristic and indicative 

events. The influence on the choice of good characteristic and indicative events 

is thus eliminated in ES based learning algorithm. The computational load is 

however, comparable to HMMIEM iteration, typically 2-5 iterations are needed 

to get a reasonably good estimated model. Moreover, the accuracy of OOM mod­

els (training and test likelihoods) is superior to HMM, except on data sets that 

have been generated by HMMs in the first place. This chapter presents a number 

of relevant theorems and propositions required to establish the learning algorithm. 

This chapter also discusses the two versions of OOMJES learning algorithm - Poor 
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Mao's version and the version based on suffix tree. 

As a generalization of characteristic events, the term characterizers is intro­

duced in the following definition. We will see how various types of characterizers 

can be generated, their properties and the role they play in ES based learning 

algorithm. 

Deftnition let A = (9tn, ( 'ta)ael:, roo) be a (not necessarily minimal-dimensional) 

OOM of an m-dimensional process (Yn)· Let kEN. A function c: d -+{r E 

9tnllr = 1} is a characterizer of A (of length k) if 

Vii E :t*: roa = L P(blii)c(b) 
bel:k 

(5.20) 

We will identify c with a matrix C = [c(bt), ... ,c(bK)] in the following, where 

bt, ... , bK is the alphabetical enumeration of d. 

Proposition 5.3.1 Let K and bt, ... b" be as in the above definition. Given an m­

dimensional process Yn. a n x Kmatrix C each column sum of which is equal to 

1 is a characterizer of some m-dimensional OOM for Yn if and only if there exist 

m sequences iij such that the n x m product matrix W = CV of C and the K x m 

matrix V = P(b;liij) has rank m. 

Now consider two equivalent minimal-dimensional OOMs A and A' which are 

related by 't~ = P'taP -l, then we find 

I 

Proposition 5.3.2 if C is a characterizer of A, then p o C is a characterizer of A . 
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Proposition 5.3.3 Let Co be a characterizer of length k of a minimal dimensional 

OOM A. Let K and V be as in the Proposition 5.3.1. Then Cis another character­

izer of length k of A if and only if it can be written as C = Co+ D, where 

D = [d1, ... ,dm-1, ~ (-d;)]T (5.21) 
i=1, ... ,m-1 

where d; is any vectors from ker(VT). 

Proposition 5.3.4 Let the dimension of(Yn) be m and let A'= (9\m, (~)aei.,COo) 

be a reverseOOMfor(Yn) thatwasderivedfromaforward OOM A= (9\m, (ta)aei.,roo). 

Let ko be the characterizing length of (Yn) and k ~ ko. Then the following two 

statements hold: 

1. C = [roh
1

, • • • , ro~) is a characterizer of an OOM A' for (Yn). 

2. The states of ro~ of A' are related to states roa of A by the transformation 

ro~ = p.roa, where p = C1tA· In addition, if COo = (1/m, ... , 1/mf, then 

p = RT R. The matrix 1tA and R are given as 

( 

l~fJ1 
) 

1tA = : 
ItbK 

(5.22) 

(5.23) 

All the above propositions state various means of obtaining characterizers and 

their relevant properties. The following definition states how the statistical model 
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variance can be expressed in terms of characterizers that are pivotal for the ES 

principle. 

Definition Consider a m-dimensional process (Yn) with characterizing length /co. 

Let k ~ koand (iij)J=l. ... ,K = (bJ)J=l....,K , where iiJ and bj are the alphabetical 

enumerations of r_k. Let~ be any K x K matrix and c 1 denote the Jh column of~· 

The mean square error is then given as 

(5.24) 

Proposition 5.3.5 Let U = ( P( btlii J) )i $i,j$K be the matrix of forward conditional 

probabilities and U' = (P'(ii;lbj))l$i,j$K be the matrix of reverse conditional 

probabilities. Then 

argmin~ - UU' 
f. -

5.3.1 Poor Man's Version of ES Principle 

(5.25) 

This learning algorithm is rooted in the estimates "(/ and W0 • The model variance 

across different training sequence (i.e., the statistical efficiency of the estimator) 

hinges among factors such as the condition of "(/, variance of the estimates "(/ 

and Wa etc. The initial model is obtained using the basic learning algorithm. 

According to Proposition 5.3.5, model variance is minimized when we use the 

characterizer C = UU'. It is proved in [8] that "(/(n) and wJn> can be written in a 
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recursive manner as follows: 

"Q'(n) = ('(n)-Q'(n-1) 

wJn) = ('(n)wJn-1) 

51 

(5.26) 

(5.27) 

Hence the estimates for the operators can be obtained using eq (5.17). The 

iterative procedure to find a new model estimate is terminated when the training 

log-likelihood of models appear to settle on a plateau. Although the poor man's 

strategy is simple and computationally inexpensive, the only limitation is that the 

indicative sequences (a;)I~K = d do not adapt to the training sequence. For 

example, some a; may not occur in the training sequence and some may occur 

only a few times. This phenomena leads to poor estimates of probability through 

relative frequencies. 

5.3.2 Suffix Tree-Based ES Principle 

This second version is rooted in a data structure called suffix tree (ST). Using ST 

representation of the training sequence, one can exploit characteristic or indicative 

events of all possible lengths simultaneously. The subsequence counting statistics 

are stored in the nodes of the ST. Instead of obtaining the operator ta from m­

argument value pairs contained in the counting matrices yraw and Waraw, all the 

counting values are exploited to obtain argument vectors. It should be noted that 

the number of used argument value pairs is in the order of the training data size. 

In short, ST is exploited to represent the following: 

1. training sample 

2. partitioning of the characteristic and indicative events 



CHAPTER 5. LEARNING OOMS 52 

3. for counting statistics. 

The following subsection therefore, recapitulates the basics of ST. 

Suffix Tree: 

Suffix Tree (ST) is a data structure that exposes the internal structure of a symbol 

sequence in a deep way. It turns out that all the possible substrings found inside 

a string. Since ST belongs to the member of a Trie family, we will first see the 

suffix trie. In fact, the word 'trie' comes from the word 'retrieval'. A trie is a 

k-ary position tree. It is constructed from input strings. That is, the input is a set 

of n strings called s1, s2, ... , sn. where each s1 consists of symbols belonging to a 

finite alphabet and has a unique terminal symbol (also known as sentinel symbol) 

which we call $. Figure 5.1 illustrates how a suffix trie is constructed from the 

string GOOGOL. 

String-G 0 0 G 0 L $ 

Indexing 1 2 3 4 5 6 7 

To obtain the suffix tree, we now replace every substring by a pair of indices 

(a, b), where 'a' is the the index representing the beginning of the string and 'b' is 

index for the end of the string. (e.g., (3,7) for OGOL$, see Figure 5.3.) 

Common Applications of ST: 

1. To perform the basic operations in a large text (e.g., searching, insertion and 

deletion of the text found in a dictionary). 

2. To store the data in a more compressed way. 
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3. To search the pattern in a picture file. 

Note:- Section 5.3.2 presents only a glimpse of how the so-called suffix tree 

data structure is exploited in OOM learning algorithm. Any interested reader may 

refer [10] to find more details in depth. 

5.4 Simulation 

This section describes a computer simulation carried out with the purpose of com­

paring the performance of OOMIES learning algorithm against the HMMIEM 

learning algorithm. It includes two different results obtained from the computer 

simulation using Poor Man version of OOMIES algorithm and HMMIEM algo­

rithm. In this simulation, a randomly created HMM with 4 states and 3 output 

symbols were used to generate a symbol sequence of 10,000 steps. The generated 

symbol sequence was then partitioned into 2 portions: a training sequence of 8,000 

steps long and a test sequence of 2,000 steps long. One hundred such train/test 

pairs were used to train and test 100 OOMs of dimension 3. For comparison pur­

pose, 100 HMMs with 3 states (same dimension like OOM) were trained with 

EM algorithm. The EM algorithm was run for at most 100 iterations and stopped 

earlier when the ratio between two successive training log-likelihoods sank below 

1 x 10-s. It should be noted that the log-likelihood obtained via HMMIEM algo­

rithm at the end of the hundredth iteration is plotted in Figure 5.4. 

The observations collected from Figure 5.4 are summarized as follows: 

• On average, the initial model estimate with the basic algorithm seems satis­

factory. 
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• With the first iteration of OOMJES algorithm, we witness a rapid in training 

and test likelihood contributing to model improvement. This is due to a 

significant decrease in condition number of counting matrices. 

• A closer inspection of the individual OOM learning runs (not shown here) 

shows that the curve is not always monotonically increasing. There can be 

a drop of training log-likelihood in the first iteration followed by a jump 

towards the plateau level only in the second iteration. This clearly shows 

a distinguishing feature of OOMJES algorithm. In the case of HMMIEM 

algorithm, the likelihood development is not bumpy as it always tries to 

minimize the training error. In contrast, OMMIES principle tries to find 

an estimator with a better statistical efficiency at each iterative step and the 

estimator with higher statistical efficiency does not always mean a model 

with higher likelihood. 

• When compared to HMMIEM learning algorithm, the training log-likelihood 

of OOM is higher by approximately 0.5-1.0%. This reflects the greater ex­

pressiveness of OOMs. Since the log-likelihood function in general has a 

rugged surface, the HMMIEM algorithm often gets trapped in one of the 

suboptimal local maxima. This is not the case for OOMIES. 

• OOM test likelihood (OOM-test) is slightly lower than the corresponding 

HMM one (HMM-test). This aspect can be attributed to the fact that HMMs 

have a built-in bias for this particular kind of data. 
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5.5 Summary 

This chapter presents three different versions of the OOM learning algorithm 

namely. the Basic version. ES/Poor man version. andES/Suffix tree version. The 

basic version of the learning algorithm is rooted in the counting statistics of a 

training sequence. Though it is simple and transparent. the statistical efficiency 

crucially depends on the selection of indicative and characteristic events. In order 

to circumvent this limitation. ES principle is introduced. Finally. two different ES 

principle based learning algorithms are presented. Computer simulation is carried 

out. based on OOMIES-Poor Man version to validate relative merits of OOMs 

over.HMMs. 
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Chapter 6 

Grid Filter-Based Mode Estimation 

Since mode estimation of MFR is formulated in grid-based filtering frame work, 

this chapter begins with an introduction to the grid-based filtering approach. The 

solution of a grid filter is optimal when the state space is discrete and has finite 

number of states. Section 6.2 describes how mode estimation of a Multi-Function 

Radar (MFR) is formulated as a filtering problem which exploits the pre-trained 

mode specific OOMs in its calculation. It also presents how one can estimate 

the design parameters involved in this filtering approach. Practicality of the pro­

posed approach is finally tested for an electronic warfare scenario by means of 

the sanitized version of Mercury type MFR example having the signal structure as 

described in Chapter 2. 

6.1 Introduction to Grid Filters 

In order to analyze and make inference about a dynamic system, at least two mod­

els are required: First, the system model describing the evolution of the state with 

time and second, the measurement model relating to the noisy measurement to the 

58 
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state. In general, these two models are available in probabilistic form. The proba­

bilistic state space model and the requirement for the updating of information on 

receipt of new measurement are ideally suited for the Bayesian approach [15]. 

In the Bayesian approach to dynamic state estimation, a complete solution to 

the estimation problem is given by the posterior probability density function, as 

it embodies all the statistical information. One can obtain the optimal estimate 

with respect to any criterion from the posterior density along with the measure of 

accuracy. Unlike the parameter estimation, state estimation in general, requires 

the estimate for the state at each sampling time. In this case a recursive filtering 

approach is appropriate. In a recursive filter approach, one needs not to store all 

the past history of data. It includes two steps: 

• Prediction 

• Update 

In the Bayesian filtering frame work, the update operation on the receipt of new 

measurement is achieved through Bayes' theorem. 

6.1.1 Algorithm for the Grid Filter 

In a grid filtering approach, the continuous state space is decomposed into partic­

ular number of cells. In other words, grid points represent regions of continuous 

space. In literature [15], a grid filter is also known as a HMM filter. This section 

presents the grid based filtering algorithm which follows the generalized filtering 

frame work. 
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To define the dynamical system, consider the system model evolution of the 

state sequence { Xk, k E N} of a system defined by 

(6.28) 

where 

fk : 9t"x x 9t"v --+ 9t"x is a non-linear function of Xk-I 

{ Vk-I, k E N} is an identically and independently distributed (i.i.d) process noise 

sequence 

nx & nv are dimension of state and process noise vectors respectively. 

The measurement model of the system is defined by 

where 

hk : 9t"x x 9t"n --+ 9t"Y is possibly a non-linear function 

{nk,k EN} is an i.i.d measurement noise sequence 

(6.29) 

ny & nn are dimensions of measurement and measurement noise vectors respec­

tively. 

The objective of the filter is to estimate some degree of belief in the state Xt. 

given all the available information (measurement) yk = {y;ji = 1 ... k}. In other 

words, it is required to calculate the posterior density function p(xk!Yk). Assum­

ing that the prior p(xo) is given, p(xk!Yk) can be sequentially obtained in two 

stages: prediction and update. 
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The prediction stage uses system model to predict the state pdf one time step 

ahead. Assuming that the required pdf p(Xk-tlYk-l) at time (k -1) is available, 

prediction distribution is given by the Chapman-Kolmogorov equation as follows: 

The update operation uses the latest measurement Yk to modify the predictive 

distribution and this can be achieved via Bayes' rule. 

(6.31) 

The recursive relations eq (6.30) and eq (6.31) form the basis for a recursive 

propagation of the posterior probability density function or posterior pdf in short. 

Next, let us see how this recursive relationship can be extended to state space 

model which satisfies the following two conditions: 

• State space model is discrete 

• Number of states in the state space is finite 

Suppose the state space consists of discrete states x;, i = 1, ... r. For each state 

Xi, let the conditional probability of the state given measurement up to time step 
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( k- 1) be denoted by mL 
11

k_ 1, where 

(6.32) 

Substitution of eq (6.32) into eq (6.30) and eq (6.31) yields the prediction and 

update equation at time step k respectively as follows. 

where 

r 

p(xklyk-1) = Lmi
1
k_1B(xk-x;) 

1=1 
r 

p(xkiYk) = L milkcS(xk- x;) 
1=1 

(6.33) 

(6.34) 

r . 
mi1k_1 = p(x(k) =x;lyk-1) - L coi-1lk-1p(x(k) =x;jx(k-1) =xffi.35) 

j=1 

mi
1
k_ 1p(yklx(k) = x;) . 

mi
1
k=p(x(k)=x;IYk) = . ,1=1, ... (6.36) 

I}=1 coilk-1p(yklx(k) = x;) 

Eqs (6.33)-(6.36) assume that p(x(k) = x;jx(k -1) = Xj) and p(yklx(k) = x;) 

for all i, j = 1, ... , r at every time step are known but do not constrain the par­

ticular form of these discrete densities. Again, this is the optimal solution if the 

assumptions hold. 

6.2 Problem Formulation 

Let the discrete variable M(k) be the mode of operation (state) at time step k. 

M ( k) is in effect during the period starting at time ( k- 1) + and ending at k. Such 

systems are called jump linear systems. The mode jump process is assumed to be 
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left-continuous (i.e., the impact of new mode starts at k+). The mode at time k is 

assumed to be among the possible r models as follows: 

M(k) E {M;}i=l (6.37) 

The prior probability that M; is correct or the system is in mode i is given as 

(6.38) 

where, 

yO is the prior information at time 0 and 

r 

LILi(O) = 1 (6.39) 
i=l 

It is assumed that the mode switching or the mode jump process is a Markovian 

process (Markov chain) with the known mode transition probabilities (MTPs) as 

follows: 

Pii = P(M(k) = MjjM(k-1) = M;) (6.40) 

Also the mode transition probability will be assumed to be time invariant. In 

other words, it is a homogenous Markov chain. It should be noted that the state 

machine of a MFR is also a time homogenous Markov chain. The following 

section describes the estimation algorithm where Xk in the grid filter frame work 

is substituted by Mk. 
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The mode estimation algorithm includes the following three steps: 

• step 1: Mode likelihood estimation. 

• step 2: Mode probability update. 

• step 3: Current mode estimation. 

6.2.1 Mode Likelihood Estimation 

65 

As depicted in Figure 6.1, the stream of words coming out of the word extractor 

is fed to the framing module. The framing module breaks the sequence into non 

overlapping frames of fixed size. The choice of the frame size is a design param­

eter. The symbolic sequence received at the framing module may contain errors 

in the form of mismatched or missing words. The frame likelihood calculation is 

carried out on a frame-by-frame basis. Framing of the word sequence is motivated 

by the following factors: 

1. Processing of a word sequence frame by frame helps detect the mode jump 

in a timely manner. It is noteworthy that the frames with smaller sizes in­

crease the chance of on-time delectability at the expense of computational 

overhead. 

2. Since the likelihood is calculated on the basis of frames, error growth of 

mismatched model can be kept under control. This, in turn, allows soft 

switching when one of the mismatched models in the past is selected as the 

matched one at present. 
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3. OOM/ES learning algorithm was originally developed for a stationary pro­

cess. The radar environment is non-stationary. Since the likelihood calcula­

tion is performed on frames that occupy short periods of time, the applica­

tion of OOM/ES seems valid even in a non-stationary environment. 

Now let us see why and how the mode likelihood is calculated. Baysian based 

filtering normally requires two defining equations as described in Section 6.1 :(i). 

the state equation:- In the context of this work the state refers to the current mode 

of operation of the MFR, Mk and the state equation describes the nature of mode 

switching of MFR state machine which is indeed a Markovian process as de­

scribed in Chapter 2. (ii). a measurement equation:- In this context, measurements 

are word sequences (frames of words) coming out from the pre-processing stage. 

In the MFR mode estimation problem, we assume that we do not have an access 

to the optimal measurement equation and the measurement equation cannot be 

therefore explicitly written as shown in eq (6.29). Consequently, the likelihood 

estimate at k or p(ykiM(k) = M;),i = l, ... ,r is unavailable for the update step 

of the grid filter. To tackle this issue, each operating regime (mode) of a MFR 

is modelled by a distinct observable operator model (OOM). The application of 

the OOM over the other stochastic modelling techniques is motivated by virtues 

of OOM as mentioned in Chapter 4. Assume that we have a set of training se­

quences available for each mode of operation. In order to estimate the likelihood, 

we perform the following: 

l. For each mode of operation M;, we build an OOM (9tm, ('ta)aei:,COo) and 

estimate the model parameters that optimize the likelihood of the training 

set of observation for the ;th mode. In other words, the log-likelihood is 

used as a metric to obtain the optimal value for a model parameter. OOMs 
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obtained at the end of this step are called mode-specific pre-trained OOMs. 

2. During the actual operation, word sequences (frames) are recognized (which 

mode those frames come from) by employing these mode-specific pre-trained 

OOMs. 

This is the very approach taken in the isolated word HMM recognizer [14]. The fh 

mode-likelihood estimate for the frame received at time step k, .Q;(k) is evaluated 

as follows: 

.Q;(k) - p(ykjM(k) = M;) 

- l['ty(k)Cllo]; i = 1, ... , r (6.41) 

The maximum likelihood (ML) estimate, MML(k) is given as 

(6.42) 

where 't and roo are the operator and the initial state vector of Operator Observ­

able Model (OOM) associated with mode i respectively. Yk represents the frame 

packed with a fixed number of extracted words at time k. In computer simulation, 

pre-trained HMMs are also employed for the mode estimation with a purpose of 

comparing the performance of OOMs. 
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6.2.2 Mode Probability Update 

As shown in Figures 6.3 and 6.6, the ML estimate does not always seem reliable. 

Therefore, we use a grid filter to obtain a more refined version of the likelihood es­

timate by including the mode switching process of the MFR as a prior knowledge. 

The output of the grid filter or the mode probability is in fact a more smoother ver­

sion of the likelihood estimate (see Figures 6.3, 6.5). The prediction and update 

equation of a grid filter in a mode estimation frame work are given as follows: 

ro~lk-t = p(M(k) = M;jYk-I) 
r . 

- L rofc-tlk-1 Pij 
j=l 

ro~lk-IQ;(k) 
= 

~J=l wilk-IQj(k) 

(6.43) 

(6.44) 

The mode likelihood Q;(k) is obtained from the first step of the estimation al­

gorithm and the mode transition probability Pti = p(M(k) = M;jM(k-1) = Mj) 

is assumed to be known. Therefore, each mode probability, ro~lk { i = 1 1 ••• 1 r} can 

be computed now. 

6.2.3 Current Mode Estimation 

Finally, the current mode at time k is estimated in the maximum a posteriori 

(MAP) sense as follows: 

arg max roi 
M <M<M klk 1- 1- r 

(6.45) 

Figure 6.2 illustrates how this grid filter scheme operates for the time step k. 
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y(k) 

M MAP (k) 

Figure 6.2: MFR mode Estimator for r models (for the time step k) 

6.3 Structure of the Mode Transition Probability Ma­

trix 

In the previous section, the mode transition probability (MTP) which governs the 

mode jumps, is assumed to be completely known even though it depends criti­

cally on the unknown control inputs . MTP is therefore, a design parameter to be 

selected in the design process of the algorithm. Fortunately, the performance of 

the filter is not very sensitive to the choice of MTP provided that it is not too far 

off from the real value. It is noteworthy that the relationship between the aver­

age dwelling period in a state (also known as mean sojourn time) for a Markov 

chain and the MTP gives a good guess for the selection of MTP. Subsection 6.3.1 

describes how one can roughly choose the TPM in an off-line manner. 
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6.3.1 Mean Sojourn Time in a State for a Markov Chain 

Given that the model is in a known state (say M;), mean sojourn time ('t;) refers to 

the expected number of sampling periods the state i has been chosen consecutively. 

Let the probability that it stays in that state for exactly time 't (in units of sampling 

period) be p;('t). It can be shown that 

(6.46) 

The quantity p;('t) is the (discrete) probability density function of duration 'tin 

state i. The exponential duration density is the characteristic of the state duration 

in a Markov chain. Based on p;('t), we can readily calculate the expected number 

of observation (or duration) in a state conditioned on starting in that state as, 

OQ 

E(-r;) = 't; - L -rp;(-r) 
't=l 

OQ 

- L -r(p;;)'t-1 (1- p;;) 
't=l 

1 
~ 

1-Pii 
1 

(6.47) Hence, p;; = 1--
't; 

The above equation which is valid for small values of t• may lead to un­

realistic values for p;; as t approaches to 1 in MFR mode estimation problem. 

Therefore, a lower limit for p;; has been used as follows: 

1 
Pii = max{ I;, 1- =-} 

't; 

where l; is the lower limit for the mode i. 

(6.48) 
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The transition probability Pii for i =f j is selected using the following identity, 

LPii = 1-pu 
#i 

(6.49) 

The probability mass ( 1 - p;;) is apportioned to various possible jumps accord­

ing to designer's intuition. In addition to intuition, some prior knowledge applies. 

Some transitions can be assigned zero probability on account of precluded mode 

changes as in Figure 2.3 and the transition matrix as shown in eq 6.50. In fact, 

the performance of grid-based filter is not very sensitive to the choice of transition 

probability. Nevertheless, a reasonably good choice of MTP leads to the accurate 

and timely detection of mode jump [1, 12]. 

6.4 Simulation 

The computer experiment simulates the following scenario: 

The ES system is fitted on an aircraft that approaches a MFR on the ground. MFR 

has five different radar states denoted as Search (Sea), Acquisition (Acq), Non­

Adaptive Track (NAT), Range Resolution (RR) and Track Maintenance (TM)as 

described in Section 2.2. In the computer simulation, extracted words were fed to 

the mode estimation module to detect the accurate mode. Mode estimation was 

carried out considering four cases: Maximum Likelihood (ML) and Maximum A 

Posteriori (MAP) estimation based on OOMs and HMMs. ML estimate is an un­

filtered estimate obtained directly from the first step of the estimation algorithm. 

On the other hand, MAP estimate includes all three steps of the estimation algo­

rithm. MAP estimate is a filtered version of the likelihood estimate. 



CHAPTER 6. GRID FILTER-BASED MODE ESTIMATION 72 

In the simulation, the frame length was taken to be twenty words, which is 

equal to 5 phrases as per the model described in Chapter 2. Taking into account 

the state transition of the radar (see Figure 2.3), the mode transition probability 

matrix was defined to be as follows: 

0.80 0.20 0 0 0 

0.01 0.80 0.19 0 0 

[pij] = 0.01 0 0.80 0.19 0 (6.50) 

0.01 0 0 0.80 0.19 

0.02 0 0 0.03 0.95 

The MFR was assumed to produce the observation as those in Table 2.1. The 

probability to generate a phrase among the available phrases for the particular 

mode was defined to be uniform. 

The results of the computer simulation are shown in Figures 6.3, 6.4, 6.5, 6.6, 

6.7 and 6.8. Red line in Figures 6.3 and 6.6 shows the actual mode evolution of 

the radar. The initial state of the radar is search. As the aircraft approaches the 

radar, it enters the detection zone and the radar initiates the track for that target. 

The regime of this operation is referred to as target acquisition. After some time, it 

initiates non-adaptive tracking to track the target of interest. After the non adaptive 

tracking, it enters into the range resolution mode in order to resolve the range 

ambiguity. Finally the radar establishes the track for that target. This is known as 

track maintenance or continuation. Occasionally, it performs a range verification 

function on the track (see Figure 6.3). As the aircraft flies over and away from 
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the radar, the distance becomes too long for the radar to continue tracking. The 

target track is finally abandoned and the radar switches back to search mode. The 

estimation results are summarized in Section 6.5. 

6.5 Results 

Our findings are collected from Figures 6.3, 6.4, 6.5, 6.6, 6.7 and 6.8. Here is a 

summary of observations of interest: 

• MI.. estimator often makes jumps from one mode to another. In other words, 

MI.. estimate results seem unreliable. 

• In MAP estimate, there exists a latency associated with the new mode onset 

time up to some extent. 

• MAP estimator fails to detect the mode where the radar stays only for a 

period less than 8 phrase time units. 

• In OOM case, the computation time for the likelihood estimate was 20 sec­

onds on average when implemented on 3.07GHz Intel Pentium IV processor 

using MATLAB whereas it was 70-75 seconds in HMM case. 

• The OOM-based grid filter tracks the mode evolution of the MFR more 

reliably than the corresponding HMM-based grid filter. 

6.6 Summary 

In this chapter, we have discussed a recursive estimator approach which assumes 

that the system to be in one of a finite number of modes at a time. Each model 
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(mode) yields a model conditioned likelihood estimate evaluated over a sequence 

of fixed size known as frame. The likelihood estimation is performed using mode 

specific pre-trained OOMs and HMMs. A mode probability calculator updates the 

probability of each mode based on the likelihood function of each model and the 

prior mode probability. The mode estimator finally decides the current mode by 

taking a mode with the highest mode probability at that time. Computer simula­

tions confirms that the MAP estimator significantly outperforms the ML estima­

tor. Moreover it is observed from the simulations that the performance of OOM 

is significantly better than that of a HMM given the same scenario. This can be 

attributed to the fact that the models obtained via the OOM/ES learning algorithm 

is markedly more accurate than the corresponding models obtained via HMMIEM 

algorithm. The OOM based grid filter, in turn, yields more accurate mode estimate 

than a HMM based grid filter. 
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Chapter7 

Discussion 

This thesis has undertaken a detailed examination of the problem of estimating 

the mode of operation of MFR. In this chapter, we conclude the thesis by sum­

marizing the main results of our investigation and highlighting the most important 

contributions. Finally, some recommendations for potential future research work 

that can be carried out on the MFR problem are presented. 

7.1 Concluding Remarks 

This thesis presents a novel way of tracking the mode of operation of Multi­

Function Radar (MFR). Since radar broadcasts a very complex electro magnetic 

pulse sequence to perform multiple functions in time multiplexed manner, a lay­

ered signal architecture is proposed to keep the complexity of signal architecture 

manageable. The mode estimation is then performed at a higher level of the lay­

ered structure known as word level. This investigation also presents two types of 

stochastic modelling techniques known as Observable Operator Models (OOMs) 
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and Hidden Markov Models (HMMs) to capture the stochastic nature of the evo­

lution of the radar signature. The computer simulation shows that OOMs outper­

form HMMs by estimating more accurate mode likelihood in addition to other 

benefits of an OOM. 

Following the mode likelihood estimation, the mode probability is calculated 

using a grid filter. The filtered output based on MAP decision criteria is then 

compared to the unfiltered output (or the estimate based on ML). On average, per­

formance based on MAP criteria seems better than ML when one includes prior 

knowledge about the system in the estimation algorithm. In the context ofMFR's 

mode estimation, mode transition probability (MTP) is included as the known a 

priori. 

The limitation associated with the MAP estimate is that it suffers from a la­

tency issue to some extent. It detects the onset of mode jump after some delay 

and this may prohibit the aircraft operator from deploying counter measures such 

as jamming and evasive maneuvers in timely manner. In order to mitigate this 

problem, two solutions are proposed: 

1. Processing the frames of reduced length at the expense of increased compu­

tational overhead. 

2. On-line (adaptive) tuning of the parameters of MTP -The determination 

of MTP amounts to identifying a Markov transition law that best fits the 

unknown truth similar to the process noise covariance Q in Kalman filtering. 

Fortunately, the performance of the Grid filter is not very sensitive to the 

choice of MTP, provided that it is not too far off [12]. 
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7.2 Summary of Contributions 

1. Multiple-Model Approach: 

To track the mode of operation of MFR, we have proposed multiple models, 

in which each model is assigned to a specific mode of operation. It is a well­

known fact in control theory that the view of a large system as a collection 

of interacting small subsystems helps keep the tendency for the complexity 

to grow under control. For this reason, mode-specific OOMs are employed 

in estimating the operational mode of a MFR. 

2. OOMs for modelling: 

Similar to HMMs, OOMs are known to be a proper subset of a wider class 

of stochastic process known as linear dependent process. OOMIES learn­

ing algorithm in the context of MFR, offers specific benefits over HMMs. 

Efficiency sharpening (ES) algorithm is more accurate, compact and less 

computationally intensive and all these factors help to detect the mode of 

operation of a MFR in an accurate and timely manner [10]. 

3. Operational mode estimation at word level: 

In the development of MFR model, electromagnetic pulses emitted from 

a MFR are viewed as a sequence of symbols belonging to an alphabet of 

fixed size. This, in tum, helps to construct a hierarchical signal architecture 

providing means of clear separation of low-level elements of radar signals 

such as individual pulses from the higher level elements such as radar words 

and elements of radar state dynamics. In fact, pulse-level state estimation is 

more computationally demanding and erroneous than that of word-level. 
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4. Grid filter for tracking the mode of a MFR: 

In order to track the mode evolution of a MFR accurately, the grid filter 

is applied. It provides an optimal recursion for the mode probability when 

the number of modes of a MFR is finite. In recursive estimation, newly re­

ceived data are sequentially processed so that it is not necessary to store the 

complete data set or to reprocess it if a new measurement becomes avail­

able [15]. 

7.3 Recommendations for Future Research 

1. Information Gap and Robustification: 

In the context of MFR, there exists a considerable amount of reality gap 

between the available information about the radar and the radar in reality. In 

other words, ELINT library is an incomplete representation of a real radar. 

The radar model we develop should therefore be robust so that it will be 

flexible in adjusting the parameters efficiently when faced with unexpected 

circumstances or surprises. Theory of Info-Gap may be useful to tackle this 

problem. 

2. OOM-Based Pulse Processing: 

Accuracy of word processing heavily relies on radar pulse processing and 

the completeness of ELINT records. For radars with static word template 

structure, pulse processing falls in the class of a pattern-recognition prob­

lem. This problem can also be addressed by OOMs by converting the Time 

of Arrivals (TOAs) into binary sequences [19]. 
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3. Intelligent Target Controller Design: 

As discussed in the previous chapters, the aircraft takes action in response 

to noisy delayed version of MFR's signal. In the case of the unmanned 

aircraft, it initiates counter measures with the guidance of embedded intel­

ligent controller. Also, the aircraft should be aware of the potential actions 

taken by the radar when it initiates its own action. In other words, the tar­

get should be aware of the consequences of its own actions. In general, the 

consequences of the aircraft action are highly uncertain, so in one way or an 

other, they must be internally represented to the aircraft in some manner. Ei­

ther Input-output OOMs (IQ-OOMs) or Partially Observable Markov Deci­

sion Process (POMDP) can be employed. Bellman's dynamic programming 

which provides a mathematical basis for determining optimal control pol­

icy for a target to take optimal control. Reinforcement learning in the form 

Q-learning or TO-Learning provides a computationally tractable solution in 

real time to Bellman's dynamic programming [3]. 

4. Radar Classification: 

From the target's view point, the primary objective of the target (acting as 

a passive sensor observing the EW scene) is to control its own behaviour in 

the light of emissions produced by the MFR and thereby take the appropri­

ate action to escape the missile engagement from MFR. For this objective 

to be achieved, the target has to classify the radar responsible for the emis­

sions. For the target to be aware that it has converged onto the correct class 

of MFR, it needs to minimize the error produced in predicting future values 

of the radar state as the state evolves. Signal parameters might help to clas­

sify the radar responsible for the emissions to some extent. However, unlike 
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conventional radars, a MFR exploits sophisticated signal architecture. So­

phisticated modelling technique can be considered in this regard. 



Appendix A 

Word Extraction Schemes 

After the successful identification of a radar class which is responsible for the 

emissions, ESM system initiates the word extraction process over the deinter­

leaved pulse train with the aid of ELINT data. In reality, ESM system has to 

account for the following problems in extracting word symbols from noisy pulse 

stream: 

• Electromagnetic channel is non-stationary ,characteristics of which may be 

unknown. 

• Pulse originating from one radar may leak into another radar's pulse train 

during the deinterleaving process 

• Synchronization is difficult to achieve as the target-emitter environment is 

not co-operative 

• Received sequence of pulses may suffer from quantization distortions 

The filtering approach for a mode estimation which follows the word extrac­

tion relies on the sequence of the radar words. Word extraction is performed at the 
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pulse-level component of a hierarchical radar model. This chapter presents two 

different types of word extraction algorithm though they are conceptually similar. 

They are 

• Event-based scoring 

• HMM-based Viterbi scoring. 

A.l Event-Based Scoring Algorithm 

The score of the sequence with respect to the HMM is defined in [14] as 

Mk 

P(OII..k) = LaL(i) 

where 

0= {Ot,02,03, ... } 

Ak is the HMM for the word template 

Forward variable, aL(i) is defined as, 

S; is the ;th state of the HMM. 

i=l 

(A.51) 

(A.52) 

For the case of static word-to-pulse mapping, we may find an alternative to the 

HMM Ak that is easier to use in a score evaluation procedure. We define the model 

for the fthword template ~ simply as a vector of pulse of TOAs of the word k as 
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follows: 

(A.53) 

where, 

ti is the TOA of the fh pulse 

Nk is the total number of pulses in the Jth radar word. 

There are four possible events which contribute to the probabilistic scoring. 

They are spurious, missing, split and matching pulse events with the probability 

Pe1 , Pe2, Pe3 ,and Pe4 respectively. The total probabilistic score in terms of these 

events is defined as, 

N 

P(OI~) = TIPet (A.54) 
i=l 

where, 

0 = [11, f2, ... ]Tis the TO As of pulse sequence in the reconstructed pulse domain 

N = The number pulses being processed 

Pet= Pspur 

Pe2 = (1- Pspur)Pmiss 

Pe3 = {1- Pspur)(1- Pmiss)Pi 

Pe4 = (1- Pspur)(1- Pmiss)(1- Pi) 

Pi = ll't;/Tobs 

In this investigation, we consider that the pulses emitted by a radar, could be 

lost with a probability Pmiss and spurious pulses could be introduced with a prob­

ability Pspur· Here Pmiss refers to the probability that no pulse is detected at a 
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particular sampling instant given that no one should have occurred in that instant 

and Pspur is the probability that a pulse is detected at some sampling instant, given 

that no such pulse was emitted. The quantization distortion and phase distortions 

are due to to details of a specific hardware implementation of ESM system. The 

pulse sequence quantization process is in general controlled by the observer clock 

described by Tabs· The theoretical Synchronized pulse quantization model is de­

fined as, 

n; - L __!!___ J 
Tobs 

where. 

t; is the relative TOA of the received pulse 

n; is the associated quantization index 

n = L x J denotes that n assumes the floor value of x. 

(A.SS) 

In practice. the pulse model should include a uniformly distributed random 

phase <P E [0, Tobs) to account for the asynchronous nature. The modified index 

n;( <P) is therefore defined as follows: 

n;(<P) = L-i -J = '' t + <P { n· with 1 - p;; 

Tobs n;+l, withp;. 

where the pulse splitting probability Pi is defined as 

t· 
p; - -' -n;(<P) 

Tobs 

(A.56) 

(A. 57) 

From(A.57). we witness that lower the local clock period is. the lower the Pi 
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is. It is interesting to note that this algorithm is independent of local clock period 

Tabs· Moreover, it is conceptually transparent and efficient, especially for a static 

word template. The run time complexity is O[N] which is computationally cheaper 

than HMM/Viterbi Scoring which requires the computation of order(N2). 

Figure A.2 shows the simulation output of this algorithm. 

A.2 HMM-Based Viterbi Scoring 

In this approach, channel is assumed to be binary. Leading edge of the incoming 

noisy sequence is detected and its time of arrival is recorded. Subsequently, it 

is transformed into binary observation sequence .This is referred to as quantiza­

tion process. After quantization, the hidden Markov model for the incoming word 

symbol is constructed for the word template. Now the problem of determining 

the radar token from the noisy and corrupted pulse sequence is equivalent to the 

problem of scoring the pulse sequence in Viterbi sense. 

The strength of the Viterbi algorithm for the radar pulse processing and word 

extraction is in its ability to process highly structured pulse patterns. This algo­

rithm does not even require a one-to-one mapping between the radar tokens and 

their pulse representations. The serious limitation of this algorithm is in the depen­

dance of the number of states, Mk of a HMM word template on the quantization 

realization. Any interested reader may refer [21] for a detailed description of this 

approach. 
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Figure A.l provides a geometric interpretation of the event-based analysis al­

gorithm. Reconstructed pulses are expected to appear in either lower left or right 

vertices of the triangle in the figure shown at the top. Otherwise the pulse should 

be declared missing. The figure drawn at the bottom shows the operation of the 

algorithm using the specific example of a reconstructed pulse sequence. The tem­

plate has a constant PRJ= 2.25f.lS pulse sequence of five pulses~= [tt, ... ,tsV 
with the first pulse tt = 1.25f.tS. Tobs = lf.tS and the reconstructed observed se­

quence also contains five pulses 0 = [1, 6, 7, 8, lO]T. Six events are considered in 

this example. The first pulse was found when it was expected and thus it matched 

the word template. Similarly, how each pulse was declared, is shown in Figure 

A.l. The total score can therefore, be calculated using (A.54). 
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Figure A.2: Simulation results showing Event-based Scoring and Extracted Word 
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