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ABASTRACT 

This thesis addresses recent trends and developments of the adjoint-variable 

method (A VM) for microwave structures with the time-domain transmission-line 

modeling (TD-TLM) method. 

Design sensitivity analysis of high-frequency (HF) structures is concerned with 

estimating the sensitivity of the response with respect to the design parameters. This 

information is essential at different stages of the design cycle such as the optimization, 

tolerance analysis, and yield analysis. 

Traditional approaches of sensitivity calculations involve estimating the 

sensitivities thought fmite-difference approximations. They suffer from formidable 

simulation time, as the full-wave analysis of practical HF structure requires extensive 

computational time. For a structure with N design parameters, at least N+l system 

analyses are required to extract the design response and its sensitivities. The adjoint 

variable method, on the other hand, supplies the sensitivity information in a very efficient 

way. Using at most two system analysis, the algorithm provides the design responses and 

its sensitivities, regardless of the number of the design parameters. 

In this thesis two contributions have been achieved which aims at enhancing the 

efficiency of the TLM-A VM framework. The first contribution is a reformulation of the 

A VM. This reformulation results in casting both the original and the adjoint systems in 
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mathematically identical forms. It is shown that both systems can thus be modeled using 

a single TLM simulator with the only difference in the excitation. The second 

contribution focuses on generalizing the A VM algorithm by employing it for more 

advanced TLM nodes. The compatibility of the symmetrical condensed node (SCN) with 

the A VM algorithm has been verified in previous work for a general 3-D problem. Here, 

this is extended to include the hybrid symmetrical condensed node 

(HSCN), which is more efficient in terms of memory saving and simulation time. The 

new approaches are all illustrated through sensitivity estimation of different waveguide 

structures. 
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Chapter 1 

INTORDUCTION 

1.1 Motivation 

Sensitivity analysis of electromagnetic (EM) structures concerns with evaluating 

the sensitivities of the design response to the variations of the design parameters. This is 

essential in a wide range of EM problems including gradient-based optimization, 

tolerance analysis, as well as yield analysis. In an optimization problem, the design 

response is usually expressed as a real-valued scalar objective function (cost function) 

which denotes the global performance of the system. In other cases, network parameters 

such as the S-parameters may be considered as the system response. Typically, the design 

parameters describe the physical dimensions of the problem and the medium's properties 

characterized by the constitutive parameters. 

Traditional approaches for estimating the design sensitivities mostly suffer from 

the extensive simulation time. Examples are the finite-difference approximations based 

on the forward/backward fmite differences as well the more accurate approach of the 

central finite differences. For a problem with N design parameters, the formers require N 

additional system analyses for estimating the sensitivities, while 2N extra simulations are 
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required in the later case. In practice, for problems with large N, it becomes apparent that 

the imposed plentiful simulation time makes them infeasible. Smarter techniques are; 

therefore, inevitable. 

The adjoint variable method (A VM) offers a robust and efficient framework for 

estimating the design sensitivities. This is achieved by introducing an auxiliary system, 

referred to as the adjoint system. Regardless of the number of design parameters, the 

algorithm extracts the design response and its sensitivities using, at most two analyses of 

the original and the adjoint problems. A VM has a long history in other disciplines such as 

structural design [1], circuit theory [2]-[10], and control theory. Nevertheless, it has 

received small attention in analysis of the full-wave electromagnetic problems. The first 

appearance of the algorithm in this area was limited to the numerical techniques using the 

finite-element method [11]-[16]. It was then extended to other techniques such as the 

method of moments (MoM) [17]-[20], the finite-difference time-domain (FDTD) method 

[21]-[24], and the transmission-line modeling (TLM) method [25],[26]. 

This thesis specifically focuses on the recent enhancements of the A VM 

algorithm for the time-domain TLM. Since the initial proposal of the TLM-A VM 

framework, the algorithm has been well developed in different manners. In [27], the 

algorithm is extended to include problems with dispersive absorbing boundaries. Further 

development included the sensitivity estimations of the objective function with respect to 

dielectric discontinuities [28]. A novel technique has been recently proposed to cast the 

sensitivity estimations of the S-parameters within the time-domain framework [29]. In all 

these problems, the equations expressing the original and the adjoint systems have 

distinct mathematical form, which impedes the integration of the simulation of the two 
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systems into a unique TLM simulator. In this work a novel approach has been illustrated 

which casts the mathematical form of the original and the adjoint simulation into an 

identical form with is implemented using a single engine [30]. 

Further improvement of the TLM-A VM framework has been achieved by 

illustrating the algorithm for more efficient 3-D TLM discretization elements. So far, the 

symmetrical condensed node (SCN) is utilized to show the A VM algorithm [31]. 

Although SCN is regarded as the most popular 3-D discretization node, in the standard 

form, it is not efficient in terms of dispersion properties, simulation time step and 

memory storage. The hybrid symmetrical condensed node (HSCN) is a good substitution 

which tackles the undesirable features of the standard SCN. The second major 

contribution of this thesis is devoted to illustrate the compatibility of the HSCN with the 

adjoint variable method. 

1.2 Overview of the Thesis 
The thesis can be divided into two major sections. The first section (chapters 1-3) 

provides comprehensive reviews of the methods and algorithms which have been 

employed throughout this work. The second section (chapters 4 and 5) contains the major 

contributions to the subject. To illustrate specific points, results are presented in each 

chapter, separately. 

Chapter 2 reviews the underlying theory of the transmission-line modeling 

method. Both 2-D and 3-D techniques are discussed. The shunt scheme in 2-D and the 

symmetrical condensed node (SCN), as the most popular 3-D TLM node, are described in 

details. Mesh parameters, excitation for a particular field configuration, mesh output, and 
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the scattering and connection properties are all presented. A short discussion is also 

devoted to handling different kinds of boundary conditions in TLM including single 

reflection and wide band absorbing boundaries and the wideband absorbing boundaries. 

Chapter 3 is concerned with the theory of the adjoint-variable method for time­

domain TLM. Main issues regarding the practical implementation of the algorithm is 

described, by emphasizing on the appropriate impulses storage on the original and the 

adjoint simulation for metallic and dielectric discontinuities. As a recent novel technique, 

the sensitivity analysis of complex-values S-parameters within time domain framework is 

discussed. The approach is illustrated though real-values objective functions as well asS­

parameter sensitivities with respect to physical dimensions of waveguide discontinuities. 

Chapter 4 proposes a novel formulation to improve the adjoint algorithm by 

reversing the time reference of the adjoint simulation. This results to expressing both the 

original and the adjoint simulations in an identical mathematical form, where the two 

simulations differ only in the excitation. A unique TLM engine is then utilized to run 

both analyses. 

Chapter 5 describes the employment of the hybrid symmetrical condensed node 

(HSCN) within the A VM framework for the first time. A thorough discussion about the 

underlying theory of the HSCN is provided, where its advantages over the standard SCN 

are emphasized. 

Finally, our achievements and results are concluded and summarized in Chapter 

6, where possible directions for future researches are suggested. 
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Chapter 2 

TRANSMISSION-LINE MODELLING (TLM) 

METHOD 

This chapter reviews the time-domain transmission-line modeling (TD-TLM) 

method used for modelling two and three dimensional electromagnetic problems 

involving linear and isotropic materials. 

2.1 Basic Formulation 

The transmission-line modelling method is a powerful technique for solving 

electromagnetic field problems with the most general type. Initially proposed by P .B. 

Johns [1], the method was based on the realization of the Huygens's principle of wave 

propagation in a discretized space-time framework. 

In TLM, the computational domain is discretized into a network of transmission­

lines, referred to as "link-lines". The intersections of the link-lines then form the TLM 

nodes. In this work, 2-D shunt node [1] and the stub-loaded symmetrical condensed node 

[2] are used as the discretization elements in two and three dimensional problems, 

respectively. The structure of the nodes and the characteristic impedances of the link-
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lines are selected such that the voltages and currents on the link-lines provide the electric 

and magnetic field information at the node location. In fact, TLM inherits the advantage 

that at a certain simulation time all electromagnetic field components are collocated. This 

is in contrast with other approaches such as the finite-difference approximations where 

averaging techniques over space and time are required to obtain all the field components 

at one position. The TLM simulation is carried out by the consecutive execution of four 

major steps: 

• Scattering the incident impulses 

• Connecting the reflected impulses 

• Applying boundary conditions 

• Exciting the structure 

Initially, the desired excitation is introduced into the simulation by injecting 

incident impulse voltages to designated link-lines of certain nodes. The excited voltages 

are partly reflected and partly transmitted at the nodes. These scattered impulses then 

form the incident impulses on the neighboring nodes in the next time step, where they get 

scattered and so on. The appropriate boundary conditions are applied if a link-line has an 

interface with an external boundary. 

Assume the computational domain is discretized into N nodes. We denote the 

total number of associated link-lines by NL. A single TLM simulation with non-

dispersive boundary at the kti:t time step is then expressed by 

(2.1) 

where 

kV e R N L xl is the vector of incident impulses of all nodes at the kti:t time step, 
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S e JRNLxNL is the block diagonal system scattering matrix whose mth block is 

the nodal scattering matrix of the mth node, 

C e JRNLxNL is the system connection matrix specifying how the reflected 

impulses are connected to the neighboring nodes, and 

is the excitation vector. 

The initial condition, V (0) = 0 ensures that at the beginning of the simulation the 

incident impulses on all link-lines are set to zero. In (2.1), the application of boundary 

conditions resides in the connection step. Later in this chapter a more general expression 

will be presented to deal with dispersive absorbing boundaries modeled by Johns' matrix 

[7,8]. 

2.2 Two Dimensional TLM Nodes 

A major group of electromagnetic problems can be solved by two-dimensional 

models. Examples include propagation of TE and TM waves within waveguides. For a 

given problem an initial2-D simulation, which is more efficient in simulation time and 

storage, usually provides considerable information. A full 3-D analysis may be required 

at the final stage. 

Figure 2.1 shows the discretization of a section of the computational domain in 2-

D TLM where the network of the transmission-lines forms a uniform Cartesian mesh. 

Regardless of node structure, the figure illustrates the propagation of unit impulse 

excitations at the end of the first and second iterations. Two common node topologies for 

analysis of 2-D problems are the "series" and the "shunt" configurations. The first suits 

modeling of TE wave propagation, while the second admits TM waves. The 2-D shunt 
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Figure 2.1: Schematic of 2D TLM mesh with uniform Cartesian link-lines: (a) unit impulse 
excitation, (b) scattered impulses at the first iteration, and (c) scattered impulses at 
the second iteration. 

node has received more attention in the literature. This is mainly because the shunt 

scheme deals more easily with problems where the medium non-homogeneities are due to 

the relative permittivity. As in most problems, the permeability of the medium is 

constant, equal to that of the free space J.l = J.lo, shunt scheme is used more widely. 

Hybrid schemes are also available for 2-D TLM problems. Such a technique is reported 

in [9], where the utilized node can model mediums where both er and J.lr vary. 

2.2.1 The Shunt TLM Node 

In order to model the propagation of electromagnetic fields using transmission-

lines a mapping between the parameters in the two models is required. Such a mapping 

for the shunt scheme can be obtained by applying both Kirchhoff's laws for circuit 

analysis and Maxwell's equations. The topology of the 2-D shunt node, and its equivalent 

lumped element network, used for modelling a lossless and homogenous medium is 

illustrated in Figure 2.2. The characteristic impedances of all link-lines are considered to 

be identical. This is done in order to avoid extra reflections at the interface of the adjacent 

nodes. Using Kirchhoff's voltage and current laws, we have 
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y 

iL:z 
(a) (b) 

Figure 2.2: 2-D shunt node structure. (a) Transmission-line model where the characteristic 
impedances of the intersecting TLs are identical and equal to Z0• (b) Lumped-element 
model where L ·~ ( ~ = x, z) is the inductance per unit length along the ~-direction, and 
c~ is the capacitance per unit length along they-direction. 

avy =-L' a1x 
ax x at (2.2) 

(2.3) 

(2.4) 

Differentiating (2.2), (2.3) and (2.4) with respect to x, z and t, respectively, and 

combining them together, we get 

(2.5) 

The mappings between the lumped-element values and the medium properties are 

thus given by [5] 

L'- L\y 
x- J..lm L\z 

L' L\y C' - e L\xl\z 
z = J..lm L\x ' y- m 2{L\y)2 ' (2.6) 

where em and J..lm are the medium permittivity and permeability, respectively. Inserting 

(2.6) in (2.5) gives 
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(2.7) 

For TMy waves where the non-zero field components are Ey, Hx and Hz, 

Maxwell's equations are: 

(2.8) 

Accordingly, the wave equation of the EY component, propagating in the.xz-plane is 

fiE B2E B2E 
y+ y_I/C' y 

-2- --2-- rm"m -2- · ax az at (2.9) 

Comparison between equations (2.2)-(2.9) suggests the following mappings 

between the parameters in the two models 

2.2.1.1 Mesh Parameters 

vy 
E ~--

y L\y 

H ~-b._ 
X /1x 

Hz~lL. 
llz 

(2.10) 

Assume a uniform 2-D shunt node where M = l1x = L\y = llz. Using (2.6), the 

lumped-element values are related to the medium properties according to 

L' =L' =L' =II x z rm 

C'=C~ =em/2. 
(2.11) 
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Once the circuit elements are determined, they are replaced with transmission-

lines to establish a two dimensional network. In order to satisfy the synchronization 

requirement, the propagation time, !:it on each link-line should be identical. Using (2.11) 

and from the transmission-line theory, the characteristic impedance, Z0 and the 

propagation velocity, v0 of the link-lines are obtained by 

$: Zo = = J2 __!!!. 
& m 

1 r::: 1 
v0 = ,.-;-;-;:;; = v 2 .JM . 

vL'C' 11 e rm m 

(2.12) 

For the medium characterized by parameters (em,J.Im), the characteristic 

impedance and the propagation velocity are, zm = ~J.Im/em ' and vm = 1/ ~J.Im&m' 

respectively. Expression (2.12) then implies 

(2.13) 

The choice of parameters in (2.11) suits homogenous problems where the medium 

properties remain unchanged throughout the structure. To consider non-homogeneities, it 

is customary to define a host TLM mesh as a background medium, which is usually taken 

as free space, and introducing, whenever necessary, extra capacitances in the form of 

shunt stubs. To ensure synchronization, the length of the capacitive stub is taken to be 

equal to Ill I 2 , with a propagation time M I 2. The characteristic impedance, ~s of the 

stub is then determined to compensate for any deficiency in modeling the permittivity of 

the medium at the node location [ 5] 
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Y = _4(_&~r,m,;;_-_1_) 
OS z 

0 

(2.14) 

where &r,m is the relative permittivity of the medium at the node. 

The existence of electric losses can easily be addressed in 2-D shunt scheme by 

introducing resistive loads in the form of matched stubs. Since the loss stub is matched, 

no incident impulses appear on it, and energy is simply removed from the node. For a 

medium with electric conductivity, ue,m the characteristic admittance, G08 of the loss 

stub is [5] 

(2.15) 

2.2.1.2 Field Calculations in 2-D Shunt Node 

The field calculations are easily carried out by using the Thevenin's equivalent 

model of the link-lines. Figure 2.3 illustrates the equivalent model of the 2-D shunt node 

when capacitive and electric loss stubs are included. Using Millman's theorem for 

parallel sources, the nodal voltage Vy is 

(2.16) 

It is customary to normalize all characteristic impedances to Z0 • Expression 

(2.16) is then simplified to 

V = 2(V/ +Vi+ Vj + V~) + 2~sv:s 
y 4+~s +Gos 

(2.17) 

Using Figure 2.2, the net currents in the x- and z-directions are 
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Gos 

Figure 2.3: Thevenin's equivalent model of the 2-D shunt node with capacitive and lossy stubs. 

(2.18) 

Using (2.17) and (2.18), and the mapping between the two models given in (2.1 0), 

the field values are evaluated as 

(2.20) 

2.2.1.3 Field Excitations in 2-D Shunt Node 

The excitation of a specific field is carried out by applying particular incident 

voltages on appropriate ports. As an example, to excite the node center with the field 

value, Ee;citation the following incident voltages can be applied on ports of the 2-D shunt 

node: 

v.i - TFi - ui - TFi -vi - Eexcitation A 7 I _,2 _,3 _,4- OS-- y ill. (2.21) 

Similarly, to excite H:Citation one may set the incident impulses as 
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V/ _ -V/ _ -Z MHexcitation I 2 1- 3- 0 X • (2.22) 

Finally, to excite H:XCitation the incident impulse can be set to 

(2.23) 

2.2.1.4 Scattering Properties of 2-D Shunt Node 

The scattering properties of the node are derived from the Thevenin's equivalent 

model in Figure 2.3 by evaluating the reflected impulses on each port. The reflected 

voltages are given by: 

kv..r = vy - kv..i = ~ [ (2- Y) kv..i + 2 kVi + 2 kvi + 2 kv; + 2i;,s v;s J 
kV{ = VY- kVi = ~[2kV..; +(2-Y)kVi +2kVf +2kV1 +2i;,sv;s] 

kV{ = Vy- kvf = ~[2kV..; +2kVi +(2-YhVf +2kV1 +2i;,sv;s] 

kv; = Vy - kVl = ~ [ 2 kV..; + 2 kVi + 2 kVf + (2- Y) kVl + 2i;,sv;s] 

kv:s = vy - kv;s = ~ [2 kV..i + 2 kvi + 2 kvf + 2 kvl + c2ts - Y)v;s J 

where Y = 4+ I:s + Gos. 

2.2.1.5 Connection Properties of 2-D Shunt Node 

(2.24) 

The connection step at the kth time step is carried out by simply exchanging the 

reflected impulses between the neighboring nodes to form the incident impulses at the 

(k+lt1 time step. This is true only if the characteristic impedances of all link-lines are 

identical. For the case of variable or graded meshes, we must take into account the 

possibility of extra reflections at the nodes arms. 
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* Figure 2.4: Connection in a mesh of2-D shunt nodes. 

Figure 2.4 illustrates the node located at the coordinate (x, y) with its neighboing 

nodes. The connection procedure is expressed by 

k+r/cx,y) = kv;cx,y-1) 

k+ricx,y)= kv:cx-l,y) 

k+tYf (x, Y) = kVir (x, Y + 1) 

k+rlcx,y) = kv;cx+l,y) 

k+tY~s(x,y) = kV~(x,y). 

(2.25) 

The last expression in (2.25) relates the incident and reflected impulses on the 

capacitive stub. As this is modeled using an open-circuit stub with reflection coefficient 

+ 1, the reflected impulses at the TCh time step become incident at the (k+ 1 tt time step. We 

note that in practical problems where different boundary conditions exist, the above 

algorithm should be modified to properly model these boundaries. 
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Figure 2.5: The symmetrical condensed node. 

2.3 Three Dimensional TLM Nodes 

The accurate analyses of many electromagnetic problems comprise 3-D modeling 

of the structure to obtain comprehensive information about the electromagnetic fields. In 

TLM, several topologies have been proposed as 3-D discretization elements. Among 

these is the symmetrical condensed node (SCN), initially proposed by Johns [2]. The 

SCN has received the greatest attention mainly because of its simplicity and the 

advantage of modelling all field components at the node center. The SCN has also 

become the basis of more advanced schemes including the hybrid and the generalized 

symmetrical condensed nodes [10]-[14]. 

The following section provides a review of the characteristics of the SCN 

including the mesh parameters, field calculations and excitations, and the scattering and 

connection properties. 
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2.3.1 The Symmetrical Condensed Node (SCN) 

The symmetrical condensed node, in its basic form, is composed by the 

convergence of twelve transmission-lines, each with length Ill I 2 and characteristic 

impedance Z0 • Figure 2.5 illustrates the node with adopted Johns convention for 

numbering the ports [2]. 

Each arm of the node is assumed to carry two orthogonal polarizations without 

any mutual coupling. It should be apparent that the node is only an abstraction for 

modeling the fields, and is not physically realizable. 

The uniform node with Ill = !J.x = l'l.y = ~ can be used to model homogenous 

mediums where the material properties remain unchanged. In practical problems where 

non-homogeneities exist, a host TLM mesh is employed to model a background medium 

which is usually taken as free space, and deficiencies in modeling material properties are 

then compensated for by adding extra stubs at the node center. 

To model a material with permittivity other than air, three open-circuit stubs for x, 

y and z polarizations are included (ports 13, 14 and 15, respectively). Similarly, three 

short-circuit stubs are added to model permeabilities other than that of the free space 

(ports 16, 17 and 18). To model electric and magnetic losses, six more stubs should be 

considered: three matched stubs in parallel with the capacitive stubs, (ports 19, 20 and 

21), and three matched stubs in series with the inductive stubs (ports 22, 23 and 24). 

A similar approach to the 2-D shunt scheme can be employed to establish the 

mappings between the circuit elements and the field components. The mappings used 

here are [5] 
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E ~-~ vy 
E ~-~ 

' E ~-- ' X Ax y ~y z /).z 

(2.26) 
H IX 

I H Iz ~-
' 

H ~_L 
' z~/).z. X Ax y ~y 

2.3.1.1 Mesh Parameters 

Consider a uniform block of free space with size Ill which is characterized by a 

single symmetrical condensed node. Each transmission-line of the twelve link-lines has a 

length of Ill I 2 , a propagation time llt I 2, and a characteristic impedance Z0 • The 

propagation velocity is equal to 

lll/2 Ill 
Vo=--=-. 

ll.t/2 llt 
(2.27) 

From transmission-line theory, the associated capacitance and inductance of each 

link-line is C0 = M/(2Z0) and L0 = Z0~t/2, respectively. The total capacitance and 

inductance for a given direction can then be obtained by taking into consideration the 

contribution of all four link-lines associated with a given direction. Therefore 

c - & ~yllz - 2~t 
Ox- 0 Ax - Z 

0 

Axllz 2llt 
Co =&o--=-

Y ~y Zo 

C _
8 

Ax~y _ 2llt 
Oz - o /).z - Zo 
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Consequently, the propagation velocity on the uniform mesh is derived as 

(2.29) 

Expression (2.29) implies that the propagation velocity on the TLM mesh is half 

of the propagation velocity of impulses on each individual link-line. When the host 

network models free space, the simulation time step is 

l!J 
111=-

2c 
(2.30) 

where c is the speed of propagation in free space. Once the background network is 

characterized, the parameters of the extra stubs can be evaluated. We assume that the 

uniform block of Figure 2.5 is modeling a medium with permittivity e . The required 

values of the total capacitances in each direction are 

c =&l!..yllz 
X !lx 

!lxllz 
C =e--

Y fl.y 

c =&tul!..y_ 
z llz 

(2.31) 

These capacitances are partly modeled by the background network, based on 

(2.28). The deficits should be compensated by adding open-circuit stubs with 

capacitances 

cs =C -C =el!..yllz- 2111 
x x Ox /lx Z 

0 

cs =C -C =e!lx!lz- 2111 
Y Y oy l!..y Zo (2.32) 

cs =C -C =ellxl!..y- 2111 
z z Oz !lz Z · 

0 

The associated characteristic admittances of the capacitive stubs are thus given by: 
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y:s = 2c; = 2cly&' _ ~ 
x M tullt Z0 

2c; 2e!lx&' 4 
ys=--=---

y M lly Z0 

(2.33) 

y:s = 2C! = 2e!lxlly 4 
z M &' Zo 

It is customary to normalize all the impedances/admittances of the stubs to Z0 • 

Expressions (2.33) are simplified using Z0 = ~ J.lo/ s0 and v0 = 1/ ~ p0s0 to get 

ys = 2&7 lly&' _ 4 
x voM tu 

ys = 2sr tu& - 4 
Y v0M lly 

~s = 2&7 tully _ 4. 
v0M &' 

(2.34) 

A similar approach is employed to calculate the inductance deficit, and the 

normalized characteristic impedances of the required short-circuit stubs [5] 

and 

Ls =L -L
0 

= ully&' -2MZ
0 X X xr-tu 

zs = 2f.lr lly&' -4 
X V0/:1t tu 

zs = 2f.lr tu&' -4 
Y v0M lly 

z: = 2f.lr tully _ 4. 
v01lt & 
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Electric and magnetic losses can be modeled using either infinitely long stubs or 

by using matched stubs. In either case the energy is absorbed from the node, and no 

incident impulses appear on the stubs. The required normalized admittances, G ~ 

(~ =x,y,z) and normalized impedances, Rq to model electric and magnetic losses are, 

respectively, given by [5] 

" l!ly!!.z 
R =U --

X mr AxZ 
0 

" Axl!ly 
G =u Z0--z ez !!.z 

(2.37) 
" Axl!ly R =U --
z mz !!.zZ 

0 

where u eq and u eq are the electric and magnetic conductivities in the ~-direction, 

respectively. 

2.3.1.2 Field Calculations in SCN 

Let's consider the evaluation of the field components Ex and Hx. Figure 2.6 

shows the link-lines contributing to these field elements. The center of the node is regard 

as an undefmed region where the link-lines converge to form the condensed node. The 

total voltage in the x-direction can be evaluated by calculating the total charge on the 

SCN node and dividing it by the total capacitance in the x-direction. For the total incident 

charge one can write 

Q;ncident =Co (~1 
+Vi+ V~ + ~~ )+ C~ (~~) 

M (v.i v.i TTl v,t ) y: l!lt (v.i ) = -- 1 + 2 + y 9 + 12 + -- 13 • 
2Z0 2 

(2.38) 

As no incident impulse appears on the loss stubs, they have no contribution on the 

total incident charge. The conservation of electric charge implies that the total incident 
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Figure 2.6: The symmetrical condensed node link-lines contributing to: (a) electric field 
component, Ex; (b) magnetic field component, Hx. 

and the reflected charges should be equal. Hence 

Qtotal = Qincident + Qrejlected = 2Qincident • (2.39) 

The total capacitance in the x-direction is given by 

4 Cs Closs 2At s At as At 
ctotal = Co+ X+ X =-+I:-+ x-

Zo 2 2 
(2.40) 

Consequently, the total voltage in the x-direction, after normalizing all 

impedances/admittances of the stubs to Z0 , is 

Q 2(~; +Vi +V~ +~~ +Y:~~) 
V = total = ----'"-----=----=---~ 

X " " • 

Ctotal 4+Y: +G; 
(2.41) 

Using the mappings in (2.26), the field component Ex is derived as 

(2.42) 

From Figure 2.6b, it can be seen that the ports contributing to the current Ix are 

ports 4, 5, 7 and 8. Using Thevenin's equivalent model of transmission-lines, the total 

voltage is 
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(2.43) 

The associated total impedance is Ztotal = 4Z0 + z; + R;. After normalizing the 

impedances to Z0 , the current Ix is evaluated as 

v. 2(v~ -v; +Vi -Vi -Vi~) 
I = total = ~----,,----,---.,--.,....--!.... x z ( "s "s) total Zo 4+Zx +Rx 

(2.44) 

Accordingly, 

(2.45) 

Similar procedure can be followed to evaluate the other field components. 

2.3.1.3 Field Excitations in SCN 

The excitation of a desire field component is carried out by applying particular 

incident impulses on appropriate ports. Consider the excitation of the electric field 

E:Citation in the x-direction. One possible solution is selecting the incident impulses as 

v. i _ Tri _ ui _ v,i _ v,i _ -£excitation A_/ 2 
1 - y2 - Y9 - 12 - 13 - X L.J.,I. (2.46) 

Similarly, to excite the magnetic field H:Citation in the x-direction, the appropriate 

incident impulses can be taken as 

vi = v.: = &xZ0 ( 
4z,; fi; )n:"',_, 

v; =Vi = -&xZ, ( 4Z0; R; )n;-'-
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2.3.1.4 Scattering Properties of SCN 

The scattering properties of the SCN node can be derived using the method 

described in [15]. This method simply applies the conservation principles of electric 

charge and magnetic flux density and enforces the continuity of the electric and magnetic 

fields. Using the nodal voltages Vx,Vy, and Vz, and the loop currents Ix,Iy, and /z the 

reflected impulses into all ports can be determined. For the twelve link-lines which form 

the standard SCN the reflected impulses are 

V( = Vx -Z0lz -~~ 

V{ = Vx +Z0ly -V~ 

V{ = VY +Zolz -~;1 

VI.= Vy -Z0lx -Vi 

v; = ~ +Z0lx -V.f 

v; = ~ -Z0IY -~~ 

V{ = Vz -Z0Ix -Vi 

v; = Vy +Z0lx -V1 

v; = Vx -Z0IY -Vi 

~~ = ~ +Z0Iy -VJ 

~~ = VY -Z0lz -Vf 

~; = Vx +Zolz -~;· 

(2.48a) 

For the capacitive stubs (ports 13, 14, and 15), and the inductive stubs (ports 16, 

17 and 18) the reflected impulses are 

~; =Vx-~~ 

~~ =Vx-~~ 
~~ =Vx-~;5 
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Jl]~ = Z0Z;I x + Jl]~ 
Jl]; = z0z;1y + J't~ 

Jl]~ = Z0Z;Iz + Jl]~. 

(2.48b) 

Finally, the reflected impulses on electric loss stubs (ports 19, 20 and 21), and 

magnetic loss stubs (ports 22, 23 and 24) are given as 

Jl]~ = ~ 
v{o = vy 

V;It = Vz 

V;z'; = Zofl.;Ix 
V{j =Z0R;Iy 
V~ =Z0R;Iz. 

2.3.1.5 Connection Properties of SCN 

(2.48c) 

For a uniform mesh where the characteristic impedances of all link-lines are 

identical and equal to Z0 , the connection step is implemented simply by exchanging the 

reflected impulse between the neighboring nodes. As the capacitive stubs are modeled by 

open-circuit stubs, the reflected impulses become inciden~ in the next time step with a 

reflection coefficient + 1. However, for the inductive stubs modeled by short-circuit stubs, 

the reflection coefficient is -1. 

Consider the node located at the coordinate (x,y,z). The connection step for the 

twelve link-lines of the standard SCN are 
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external boundary 

Figure 2.7: External boundary placed at the node arm of the symmetrical condensed node. 

k+1V/(x,y,z) = kr;;(x,y-l,z) 

k+1Vd(x,y,z) = kv;(x,y,z-l) 

k+Iv;(x,y,z) = k¥;~(x-l,y,z) 

k+IV1(x,y,z)= kVg'"(x,y,z-1) 

k+Iv;(x,y,z) = kV{(x,y-l,z) 

k+IV~(x,y,z) = k¥;~(x-l,y,z) 

k+Iv;(x,y,z) = kv;(x,y+l,z) 

k+1Vi(x,y,z) = kv;(x,y,z+l) 

k+lv;(x,y,z) = kV{(x,y,z+l) 

k+I¥;~(x,y,z) = kV[(x+l,y,z) 

k+I¥;;1 (x,y,z) = kV{ (x+ l,y,z) 

k+I¥;~ (x,y,z) = ky;r (x,y + l,z). 

The connection procedure for the capacitive and inductive stubs are expressed as 

k+1¥;~(x,y,z) = kr;;cx,y,z) 

k+l¥;~(x,y,z) = k¥;~(x,y,z) 

k+I¥;~(x,y,z) = k¥;~(x,y,z) 

k+l¥;;6(x,y,z) = -i';~(x,y,z) 

k+l¥;;7(x,y,z) =-k~;(x,y,z) 

k+l¥;ig(x,y,z) =-k~~(x,y,z). 

2.49a) 

(2.49b) 

As the electric and magnetic loss stubs are terminated with matched loads, no 

incident impulses appear on them. This condition is enforced separately on the loss stubs 

k+I~~(x,y,z) = 0 

k+1Vd0 (x,y,z) = 0 

k+1Vd1(x,y,z) = 0 
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k+1Vd2 (x, y, z) = 0 

k+1Vd3(x,y,z) = 0 

k+1Vd4(x,y,z) = 0. 

(2.49c) 



2.4 Boundary Conditions in TLM 

In TLM, external boundaries are place halfway between the nodes, at the node 

arms. This is illustrated in Figure 2. 7 for the symmetrical condensed node. 

In many problems, the property of the boundary can be expressed by a single 

reflection coefficient, r b • This reflection coefficient is then translated to an equivalent 

load resistance using the medium properties. We denote by Zm the characteristic 

impedance of the medium where the wave is propagating. The resistance associated with 

the reflection coefficient, r b is 

z =Z l+rb 
b m 1-rb. (2.50) 

The resistance Zb can be regarded as the load which terminates the TLM mesh to 

provide the mesh reflection coefficient, r b • The reflection coefficie~t of each individual 

link-line, however is different and is given by 

rr = Zb -Z0 = Zm(l+rb)-Z0(1-rb)' 
Zb + Z0 Zm(l+rb)+Z0 (1-rb) 

(2.51) 

where Z0 is the characteristic impedance of line-lines. For example, consider the 

following cases where the external boundary can be represented by a single reflection 

coefficient. 

Short-circuit (electric-wall): 

(2.52) 

Open-circuit (magnetic-wall): 

(2.54) 
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Match-load: 

(2.55) 

In another group of TLM problems, absorbing boundaries are required to truncate 

the computational domain. Examples are antenna radiation and scattering problems. 

Ideally, no reflections from an absorbing boundary into the computational domain should 

occur. Several techniques have been developed for this purpose. In this thesis, discrete 

Green's function approach or Johns' matrix boundary [7, 8] is used extensively. The idea 

behind the Johns' matrix is to obtain the response of a TLM mesh to unit impulse 

excitations at specific nodes. As TLM forms a linear system, the response of the network 

to an arbitrary excitation is evaluated by convolving the excitation with the Johns' matrix. 

In order to model an absorbing boundary for a waveguide, a long enough section of the 

waveguide is simulated beforehand. The waveguide should be long in order to ensure that 

no reflections from the far end reach the input reference place before the computation is 

terminated. This technique is specifically useful when the waveguide is excited with its 

dominant mode profile. In [7] it is shown that the Johns' matrix in this cases reduces to a 

vector which results in considerable storage saving. For a TLM problem with Johns' 

matrix absorbing boundaries, the TLM expression in (2.1) is rewritten as 

k 

k+r = cs kv + L J(k-k'h·Vr + kvs , V(O) = o (2.56) 
k'=O 

where J(k) e RNLxNL is the kth time layer of the three dimensional Johns' matrix. 
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Chapter 3 

THE ADJOINT-VARIABLE METHOD FOR 

SENSITVITY ANALYSIS OF TIME-DOMAIN 

TLM PROBLEMS 

Sensitivity analysis of high-frequency electromagnetic (EM) structures is essential 

m a vast group of EM problems including gradient-based optimization, statistical 

analysis, as well as the tolerance and yield analyses [1]. Traditional full-wave analysis 

approaches for extracting sensitivity information of the system response in the design 

parameter space require extensive time which makes them inefficient. For an 

electromagnetic structure, the design problem can be expressed as 

x· = arg {minF(x,R(x))} (3.1) 
X 

where x • is the set of optimal parameters, R( x) is the vector of responses, and F is the 

objective function. The problem (3.1) is usually solved using gradient-based optimizers. 

These optimizers require not only the structure response but also its derivatives. The 

classical approach for extracting sensitivities using fmite differences can be time-

intensive even for problems with a small number of design parameters. 
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Adjoint variable methods (A VMs) have been recently developed and incorporated 

with time-domain TLM problems for efficient sensitivity analysis [2]-[3]. A VM 

estimates the gradient of a given objective function using only two simulations of the 

original system and an auxiliary system, referred to as the adjoint system. 

This chapter provides the mathematical background of the sensitivity analysis of 

time-domain TLM problems using the novel technique of the adjoint variable method. 

3.1 Adjoint-Sensitivity Analysis for TLM Method 

In the adjoint-variable method for TLM, the design sensitivity is obtained through 

estimating the gradient of a real-valued objective function, F(x, V) which is taken in the 

form 

Tmax Tmax 

F(x,V) = J JfjVF(x,V)dQdt = J 'P(x,V)dt (3.2) 
o n 0 

where 

Vf(x, V) is the objective function's kernel. It is a differentiable function of the 

vector of incident impulses, V and the vector of design parameters x, 

T max is the simulation time, and 

Q is the observation domain where the objective function is evaluated. 

The objective function in {3.2) is the system's global performance measure. The 

design sensitivity analysis underlies the estimation of the gradient vector of the objective 

function, defmed by 

(3.3) 
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Using the chain rule of differentiation, the ith element of the gradient vector can be 

expressed as follows 

(3.4) 

where ae F I ax; indicates the explicit dependency of the objective function on the ith 

design parameter which is usually equal to zero. The explicit dependency of the kernel 

function on the vector of incident impulses is known beforehand, so the derivative term 

inside the integrand can be evaluated for the entire simulation time. However, the vector 

of incident impulses has an implicit dependency on the design parameters, and the 

sensitivity expression in (3.4) should be evaluated indirectly. Two possible approaches 

for sensitivity estimation are the direct differentiation, and the adjoint-variable method. 

The former is costly in terms of the simulation time. Using forward/backward or central-

difference approximations require (n+l) and (2n+l) system analyses, respectively. It is 

apparent that even for a small number of design parameters direct differentiations is 

impractical. 

The adjoint-variable method, on the other hand, estimates the sensitivity 

expression in (3.4), using at the most two system analyses by employing an auxiliary 

system, referred to as the adjoint system. 

Assume a band-limited excitation where smooth field variations exist between 

successive simulation samples for the entire simulation time. Satisfying this condition, 

the vector of incident impulses at the (k + It1 time step can be approximated using the 

first two terms of the Taylor's series as [2] 
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k+r = V(kM+M}~V(kM)+(~)L\t 

~ kV+ k(~)M. 
(3.5) 

Using (3.5), the TLM simulation is reformulated to [2] 

(3.6) 

Simplifying (3.6), we get 

(av) vs - =A(x)V+-at M 
(3.7) 

where A(x)=[C(x)S(x)-1/M] is defmed as the TLM system matrix, and I is the 

identity matrix. The time step subscript was dropped to imply that the expression is valid 

at any time during the simulation. Let llx; denotes a one-cell perturbation in the ith design 

parameter. The associated changes in the vector of incident impulses and the system 

matrix are denoted by L\~ and ~, respectively. For the perturbed structure, (3.7) 

becomes 

a vs 
-(V +L\~)=(A(x)+M;))(V +L\~)+-. at M 

(3.8) 

Dividing both sides by llx; we get 

(3.9) 

Taking the limit of (3.9) as llx; ~ 0 gives 

(3.10) 
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The terms containing the variation of the system matrix are kept unchanged, as 

later in the derivation the discrete form will be used. Multiplying both sides of (3 .1 0) by 

the transpose of the adjoint vector, A, we get [5] 

(3.11) 

Integrating (3.11) by parts yields 

The vector of the adjoint impulses is assumed to satisfy the terminal condition 

A(Tmax) = 0. The initial condition of the original simulation requires that V(O) = 0. It 

follows that the first term in the last expression vanishes. Comparing the left-hand side of 

(3.12) with the second term of (3.4), suggests the following expression for the vector of 

adjoint impulses 

d). T Ol.J' 
-+(A+M;) A=-. 
dt av 

(3.13) 

Using backward finite-difference approximations, the first term in (3.13) is given by 

(3.14) 

The second term in (3.13) can be expanded as 

(3.15) 

where S(x+Ax;) and C(x+Ax;) are the system scattering and connection matrices of 

the perturbed problem. The vector, Ax; is defined as the perturbation vector with non-
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zero element only at the ith element, where its value is flx;. Inserting (3.14) and (3.15) in 

(3.13) results in a TLM simulation for the adjoint vector 

(3.16) 

with the adjoint excitation given by 

(3.17) 

The implementation of (3.16) is impractical as the vector of adjoint impulses is 

derived from a perturbed problem. An approximation is thus necessary to estimate the 

adjoint vector from the unperturbed structure. In fact, we assume that perturbation done 

in each parameter is small and does not significantly affect the distribution of the incident 

impulses. Accordingly, the required adjoint impulses in (3.16) are approximated by the 

values of the corresponding incident impulses for the unperturbed adjoint problem 

(3.18a) 

When Johns matrix absorbing boundaries are employed, it is shown that the TLM 

simulation of the adjoint problem can be expressed as [3] 

(3.18b) 

The following points should be made regarding the TLM simulation of the adjoint 

system: 

• The A VM simulation runs backward in time starting at t = Tmax, with the 

terminal condition l(Tmax) = 0. 

• The system scattering and connection matrices of the adjoint system are the 

transpose of those in the original system. 
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• The order of the scattering and the connection steps in the adjoint system is 

reversed. 

• The excitation of the adjoint system is obtained from the original simulation. 

Hence the two simulations can not be run in parallel. 

• Both the original and the adjoint simulations are obtained from the 

unperturbed structure. 

Returning to the sensitivity expression in (3.4), the z.th element of the gradient 

vector of the objective function is approximated to obtain 

(3.19) 

where k 1/i = [ M; /Ax;) kV, and N, is the total number of simulation time steps. It should 

be noted that the vector k '1; has a small number of non-zero elements. This it apparent 

from the fact that the variation of the system matrix, ~ is non-zero only for the TLM 

nodes which are directly affected by the one-cell perturbation. In practice, only the non-

zero elements are stored and employed in the sensitivity estimations. A detailed 

discussion about determining the elements of the vector k'1i for the general cases when 

the structure undergoes perturbations in the physical dimensions as well as the material 

properties is provided in the next section. 
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3.1.1 Practical Implementation 

The vector k11; plays an important role in the TLM-A VM algorithm. It simply 

reflects the variation of the system matrix and its elements depend on the way link-lines 

are affected by the perturbation. In general 

(3.20) 

where M; = S(x+Ax;)-S(x) and llC; =C(x+Ax;)-C(x) are the variations in the 

system scattering and connection matrices, respectively. The first term in (3.20) addresses 

the case when flx; is due to a metallic discontinuity, while the second term includes the 

perturbations due to dielectric/magnetic discontinuities. 

3.1.1.1 Metallic Discontinuities 

The variations of the system matrix due to a perturbation in a metallic 

discontinuity is realized by associated changes in the system connection matrix, while the 

system scattering matrix remains unchanged: 

M; = llC;S(x) = C(x+Ax;)S(x)-C(x)S(x). 
llt llt 

(3.21) 

Consider the case where the link-lines with indices m and n are connected 

together, and the perturbation flx; results in metallizing the node of the nth link. Using 

(3.21), the mth component of the vector ktl is 

k11~ =(M; kvJ =-
1
-[C(x+Ax;)S(xhV -C(x)S(xhV] 

flx. fu./lt m 
I m I (3.22) 
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As the mth link-line observes a metallic boundary after the perturbation, the first 

term in (3.22) is evaluated as 

(3.23) 

On the other hand, the second term in (3.22) refers to the unperturbed problem. 

As the mth and nth link-lines are connected to each other, this term can be simplified to 

(3.24) 

Inserting (3.23) and (3.24) into (3.22), gives 

i 1 ( vr vr) k'1m = --- k m + k n • 
llx;ll.t 

(3.25) 

Similar argument shows that when the perturbation removes the metallization of 

the node of the nth link-line, the mth element of k'1; is evaluated as 

(3.26) 

Figure 3.1 illustrates snapshots of the impulses in the original and the adjoint 

simulations which determine the final impulse storage in the two simulations. 

3.1.1.2 Dielectric Discontinuities 

When the structure experiences a perturbation due to a dielectric discontinuity, the 

variations in the system matrix is realized through the associated changes in the system 

scattering matrix. In this case the system connection matrix remains unchanged. This 

becomes clear by noticing that a dielectric perturbation only affects the nodal scattering 

property which depends on the medium constitutive parameters. In mathematical form we 

have 
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(a) (b) 

(c) (d) 

Figure 3.1: Illustration of the impulse storage for the original and the adjoint simulations for a 
metallic discontinuity at the kth time step. (a) The scattered impulses of the original 
simulation for the nodes affected by the perturbation. (b) Reflected impulses of the 
original simulation to be stored for the evaluation of k t/ . (c) Adjoint impulses of the 
perturbed structure. (d) The approximated adjoint impulses to be stored for sensitivity 
calculations. 

C(x)M; C(x)[S(x+.1.x;)-S(x)] 
~= ~~ = ~~ . (3.27) 

Accordingly 

. C(x)M. 1 [ ] 
k'l' = '=--C(x) S(x+.1.x;)-S(x) kv. 

11x;~t 11x;~t 
(3.28) 

In implementing (3 .28), the incident impulses of the original system are scattered using 

the temporary scattering matrix, M; where its block diagonal matrices are zero 

everywhere except for the nodes which are directly affected by the perturbation. This 

results in a considerable memory saving. 

Figure 3.2 illustrates the impulses in the original and the adjoint simulations to be 

stored for sensitivity estimations. 
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(a) (b) 

(c) (d) 

Figure 3.2: Illustration of the impulse storage for the original and the adjoint simulations for a 
dielectric/magnetic discontinuity at the kth time step. (a) The incident impulses of the 
perturbed nodes in the original system are scattered using the temporary nodal 
scattering matrix, M ; (b) The temporary reflected impulses of the original system 

are connected to the neighboring nodes, are used to evaluate k '1; . (c) The associated 

non-zero adjoint impulses of the perturbed structure. (d) The approximated adjoint 
impulses to be stored for sensitivity calculations. 

A second approach for obtaining the sensitivities with respect to dielectric 

discontinuities is proposed in [6], where the analytical dependencies of nodal scattering 

matrices to medium properties are employed. It is shown that the sensitivities of the 

objective function are derived as 

(3.29) 

where Er,n is the relative permittivity of the nth node, and the outer summation is carried 

over all the perturbed nodes. 

It is worth mentioning that the sensitivity calculations based on (3.28) and (3.19) 

is general and can be applied to both dielectric and magnetic discontinuities. The 
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expression (3.29), however, provides acceptable results only if the contrast between the 

relative permittivity or permeability of the discontinuity and the surrounding medium is 

not large. 

The algorithm of the adjoint-variable method is summarized in the following 

steps [2]: 

Stage 1: Parameterization 

For each perturbation, At; i = 1, 2, ... , n, determine the set of link-line indices, L; 

for which the associated scattering and connection matrices are perturbed. 

Stage 2: Original System Analysis 

Perform the original TLM simulation, and store the non-zero elements of the 

vector k'l from (3.20) for all time steps. Also obtain the vector of adjoint 

excitation defined in (3.17) for the entire simulation time. 

Stage 3: Adjoint System Analysis 

Using the derived adjoint excitations from stage 2, perform the adjoint simulation 

(3.18). At each time step approximate the adjoint impulses associated with the set 

oflink-lines, L; i = 1, 2, ... , n and store them for all time steps. 

Stage 4: Sensitivity Estimation 

Approximate the objective function sensitivities given in (3.19) for all design 

parameters. 
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3.1.2 Adjoint-Variable Method for S-Parameter Sensitivities 

The adjoint-variable method has been recently extended to include the sensitivity 

estimation of the S-parameters within the time-domain framework [7]. This section 

provides a review of this algorithm. 

Consider an Np-port network, where the qth port is excited and the rest of the 

ports are matched. For a given mode v and frequency m0 , the S pq parameter is defmed 

as [8] 

Spq = (3.30) 

Here, zt) (~ = p,q) is the wave impedance of the ~th port for mode v, and 

Tmax 

E(u) = J JJE0
" (r' t)e(u)(r')ds' e-lOJot dt pq q.L ' p.L p 

o nP 
Tmax 

E~u) = J JJE!~Cr',t)e~f(r')ds~e-lOJotdt 
(3.31) 

o nq 

where 

E<;i is the spectrum at the pth port, due to the excitation of the qth port, 

E~v) is the spectrum at the qth excitation port, 

E;r is the field solution of the outgoing wave at the pth port which is transverse 

to the propagation direction, 

E~".t is the field solution of the incoming wave at the qth excitation port, which 

is transverse to the propagation direction, 

e~'2 is the modal distribution at the ~th port, 
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ds~ is the surface element at the ;th port, and 

Q~ is the cross-section of the ;th port. 

Assuming that the spectrum of the reference is independent of the design 

parameters, the sensitivity of S pq , with respect to the ith design parameter is evaluated as 

8Spq 
--= 

ax; 

z~v) 1 aF;<;j 
z<v> E-<v> a;-· 

p q I 

(3.32) 

Expression (3.32) indicates that the sensitivity of the S pq parameter is basically a 

-(v) 
scaled value of the sensitivity of the output spectrum, E pq ; hence it suffices to 

concentrate only on estimating the sensitivities of F;<;:j. 

In order to obtain an objective function in the form given by (3.2), the expression 

of £<;/j is decomposed into its real and imaginary components 

Re[ F;<;:j J = TJ JJ E;1 (r',t)ef2<r')cos(w0t)ds~dt 
o nP 

1m[ E~v> J = -TJ JJE~1 (r',t)e~'2(r')sin(w0t)ds~dt. 
o nq 

(3.33) 

Accordingly, the objective function kernels are determined as 

'PRe= JJE;Hr',t)ef2<r')cos(w0t)ds~ 
np 

'Prm =- JJ E;1 (r',t)ef2<r')sin(w0t)ds~ 
(3.34) 

np 

which are further discretized to 
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'lfRe =& L E;~(ri,t)e~l(ri)cos({L}0t) 
jeQP 

f//Im =-!!8 L E;~(ri,t)e~l(ri)sin(m0t). 
(3.35) 

jeQP 

The excitation of the adjoint simulation is obtained from the kernel of the 

objective function based on (3 .17). In order to derive the required adjoint excitation for 

the real and imaginary parts of the output spectrum, the expressions given in (3.35) 

should be reformulated in terms of the incident impulses. This can be done through 

mapping the field components to the vector of incident impulses 

(3.36) 

where a relates the vector of incident voltage impulses to the field vector. Replacing 

(3.36) in (3.35), the adjoint excitation at the kth time step, at the node location specified 

by rj is obtained as 

k~e(rj) = M!!sae~l(rj)cos({L}0kM) 
klfm(rj) = -M!!sae~l(rj)sin({L}0kM). 

(3.37) 

Notice that the real and imaginary parts of the adjoint excitation inherit the same modal 

distribution as that of the original simulation. Also, the two excitations have only a phase 

difference of 1r/2 which can be translated, in time-domain, into a time-shift 

1t 
T0 ( m0 ) =round(-) 

2m0 

(3.38) 

At first glance, it may appear that two separate adjoint simulations with 

excitations ~ and lfm are required to obtain the vector of adjoint impulses. This, 

however, can be avoided In [7] it is shown that the sensitivities of the real and imaginary 

parts of the output spectrum can be obtained from 
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(3.39) 

where .lp,Re is the vector of the steady-state adjoint impulses obtained from the adjoint 

simulation with excitation ~e, and T0 is the shift in the sampling index given by (3.38). 

For an Np-port network, the steps (3.30)-(3.39) should be repeated to evaluate all 

the S-parameters sensitivities, hence Np adjoint simulations are required to estimate the 

sensitivities with respect to all design parameters. 

The above algorithm is applicable if the sensitivities at a single frequency is 

desired. However, in wide-band problems where the sensitivity estimations are required 

over a band of frequencies, the above algorithm becomes inefficient. A novel technique 

to tackle this problem is proposed in [7]. In the suggested method, instead of using a 

monochromatic excitation, a wide-band excitation is used which covers the entire range 

of frequencies of interest. Discrete Fourier Transform (DFT) is then employed to 

decompose the adjoint impulses into their spectral components. Same excitation is 

utilized for the original simulation with the only difference in the time-reference. The 

wide-band excitation is taken as: 

(3.40) 

where 'l' is the time variable in the adjoint framework which is backward in time with 

respect to that of the original system, and h( 'l') represent the time dependence of the 
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Figure 3.3: An illustration of a wideband excitation waveform, centered at fo = 12.5 GHz and 
covering the frequency range of 10.0 GHz- 15.0 GHz, used for extracting the S­
parameter sensitivities. (a) Time dependence in the original and the adjoint system. 
(b) Fourier transform of the excitations. 

wide-band excitation. Figure 3.3 illustrates an example of the excitation waveform in the 

original and the adjoint simulations. 

Once the structure is excited using the wide-band excitation (3.40), the real and 

imaginary parts of the fh component of the adjoint impulses are extracted as 

(3.41) 
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where 

lp,Re is the vector of the real part of the predicted steady-state adjoint impulses 

due to a monochromatic adjoint excitation in the form given in (3.37), 

lp,Im is the vector of the imaginary part of the predicted steady-state adjoint 

impulses due to a monochromatic adjoint excitation, 

.A. p is the vector of the adjoint impulses obtained from the wideband adjoint 

excitation given in (3.40), 

H is the Fourier transform of the wideband adjoint excitation defined as 

N, 
H(mm) = Lh(Tn)e-j(m-IXn-1).!\ant 

n=l 

where Am = 2tr / N,At , and AT = At , 

'Pp,l is the phase ofthe fh component ofthe vector of adjoint impulses obtained 

from the wideband adjoint excitation of(3.40) 

and 

rph is the phase of the wideband adjoint excitation in (3.40) and is defined as 

The predicted adjoint impulses are then employed in (3.39) to estimate the 

sensitivities of the S-parameters over the range of frequencies of interest. 

The A VM approach for the S-parameter sensitivity estimations is summarized in 

the following steps [7]: 
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Stage 1: Parameterization 

For each perturbation, !lx1 i = 1,2, ... ,n, determine the set oflink-line indices, L1 

for which the associated scattering and connection matrices are perturbed. 

Stage 2: Original System Analysis 

Perform the original TLM simulation with the wideband excitation in form of 

(3.40), to obtain the S-parameters. Store the non-zero elements of k'l; from (3.20) 

for all time steps. 

Stage 3: Adjoint System Analysis 

Using the wideband excitation in form of (3.40) at the pth port, carry out the 

backward A VM. simulation (3.18), and store the associated adjoint impulses .lp 

for a111ink-lines L; i = 1,2, ... ,n for all time steps. 

Stage 4: Sensitivity Estimation 

Repeat for port q = 1,2, ... ,NP 

Repeat for port p = 1, 2, ... , N P 

Repeat for parameter i = 1, 2, ... , n 

Repeat for frequency mm m = 1,2, ... ,Nm 

Obtain the mth spectral component of the vector iP 

Evaluate the real and imaginary parts of the predicted steady-state 

adjoint impulses using (3.41). 

Estimate the sensitivities of the output spectrum, E~1 given in 

(3.39). 

Obtain the S-parameter sensitivities through (3 .32). 
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End 

End 

End 

End 

3.2 Examples 

This chapter is finalized by illustrating the TLM-A VM approach for sensitivity 

analysis of waveguide structures. Time-domain functions such as the energy function and 

S-parameters are both considered. 

3.2.1 Rectangular Dielectric Discontinuity 

The geometry of a rectangular waveguide with a dielectric discontinuity is 

illustrated in Figure 3.4. The width of the waveguide is a = 30.0 mm. Its length is d = 

60.0 mm. The structure is uniformly discretize with TLM cells of size M = 1.0 mm. A 

narrowband Gaussian-modulated sinusoidal excitation centered at fc = 3.0 GHz with 

bandwidth 4f = 500 MHz is used. The excitation has a dominant mode spatial profile. 

The objective function is taken as a measure of the delivered power to the output port and 

is expressed as 

Tmax(N ) 
F= I ~E;,k dt (3.42) 

where EY is they component of the electric field, and Nx is the number of nodes along 

the x-direction at the output port. The vector of design parameter is x = [ L Wf . The 
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W= 10.0 mm 
L = 16.0 mm 

Figure 3.4: Rectangular waveguide with dielectric discontinuity. 
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Figure 3.5: The objective function sensitivity, 8F/8L for different values of W. 

simulation is run for 4000 time steps. Figures 3.5 and 3.6 illustrate the objective function 

sensitivities obtained from the A VM and the fmite differences for different values of W. 
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Figure 3.6: The objective function sensitivity, oFf oW for different values of W. 

As can be observed, the results obtained from the A VM and the finite differences 

have excellent match. While the forward/backward and central finite differences estimate 

the sensitivities using 3 and 5 TLM simulations, respectively, the A VM extracts the same 

information using only two simulations. 

3.2.1 Double-Resonator Filter 

The geometry of the double-resonator waveguide filter is shown in Figure 3.7. 

The A VM approach is used to estimate the sensitivities of the reflections S11 and S21 

with respect to the physical dimensions of the metallic discontinuities. The structure is 

discretized with uniform cells of size M = 1.0 mm. A wideband Gaussian modulated 

excitation centered at fc = 4.0 GHz with the spectrum range from 3.0 GHz to 5.0 GHz, 
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w w 
(b) 

Figure 3.7: Double-resonator waveguide filter. (a) 3D view. (b) The cross section of the filter in 
the xz-plane with employed symmetry and Johns matrix absorbing boundaries at the 
input and output ports. 

is employed. The excitation has TE10 mode spatial profile. Symmetry is utilized to 

simulate only half of the structure. The filter is terminated at the input and output ports by 

modal Johns' matrix boundaries with N1 = 6000 time steps. The vector of design 

parameters is taken as x = [ ~ L2 ]T. Figure 3.8 illustrates the S-parameters of the filter. 

The sensitivities of the real and imaginary parts of S11 and S21 obtained from the adjoint-

variable method and the central finite differences over a frequency band are shown in 

Figures 3.9-3.12. The results indicate good match between the two approaches. While 

the central differences provide the sensitivities using 7 TLM simulations, the A VM 

extracts the same information using only two simulations. 
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Figure 3.8: The S-parameters of the double-resonator waveguide filter. (a) jS11 j,jS2d. (b) 
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Figure 3.9: Sensitivities of the real and imaginary parts of S11 with respect to Lt. 
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Figure 3.10: Sensitivities of the real and imaginary parts of S11 with respect to L2• 
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Figure 3.11: Sensitivities of the real and imaginary parts of S21 with respect to L,. 
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Figure 3.12: Sensitivities of the real and imaginary parts of S21 with respect to L2• 
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Chapter 4 

A TRANSFORMED TLM FORMULATION 

FOR ADJOINT-VARIABLE BASED 

SENSITIVITY ANALYSIS 

In the previous chapter, an adjoint system was developed for the efficient 

sensitivity estimation ofTLM problems [1]-[2]. It was explained that the analyses of the 

original and the adjoint systems are obtained from the unperturbed structure. However, 

the two systems are different in the following: 

• The original TLM simulation runs forward in time, while the A VM simulation 

runs backward, starting at the simulation time, TIIUIX • 

• The system scattering and connection matrices of the adjoint problem are the 

transpose of those of the original problem. 

• The order of the scattering and the connection steps in the adjoint problem is 

reversed. 
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The above differences imply that, in general the TLM~A VM framework requires 

two distinct simulation engines for analyzing each problem. This, in turn limits the 

employment of the available commercial~solvers with the adjoint variable method. 

In this chapter, a novel approach is presented which unifies the mathematical 

form of the original and the adjoint problems into an identical TLM expression [3]. The 

unique formulation suggests using a single TLM engine with the only difference in the 

excitation. 

4.1 The Transformed TLM-A VM Formulation 

In TLM, the nodal scattering matrix is generally asymmetric. In the proposed 

formulation, a matrix transformation is utilized to split the nodal scattering matrices of all 

nodes into two matrices 

(4.1) 

where sm is the nodal asymmetric scattering matrix of the mth node, S'm is the new 

nodal symmetrical scattering matrix, and Tm is the transforming diagonal matrix. For the 

lossless 2-D shunt node [4] (see Figure 2.2), the mathematical forms of S'm and Tm are 

given as 

2-Y 2 2 2 2 

2 2-Y 2 2 2 

S'm =_.!._ 2 2 2-Y 2 2 
y 2 2 2 2-Y 2 

2 2 2 2 
y 

2--
Yo 

T = m [[' rJ (4.2) 
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where YO is the normalized admittance of the dielectric stub of the mth node, Y = 4 + YO , 

and 14 e 9t4
x
4 is the unity matrix. The matrix Tm scales the incident impulse of the 

dielectric-stub (fifth link) by the normalized admittance of the same stub. 

Similarly, for the lossless 3-D TLM problems with symmetrical condensed nodes 

[5], the asymmetric nodal scattering matrix can be decomposed into 

[s· B"] S'm = sym 
BmT Dm 

112 

~ 0 

yy (4.3) 

Tm= 
~ 

1/Zx 

0 1/Zy 

1/Zz 

capacitive/inductive stubs of the mth node in the x, y and z directions, respectively, and 

s;, e 9t12
x

12 is the scattering matrix of the symmetrical condensed node without 

capacitive and inductive stubs. The matrices Bm e 9t12
x
6 and Dm e 9t6

x
6 are given by 
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e f 
e -I 

e -! 
e f 

e -! 

Bm= e f 
e f 

e -! 
e f 

e -! 
e f 

e -f 
hi"Yx 

h/Yy 0 

Dm= hi~ 

jZx 
(4.4) 

0 jZy 

jZz 

where e, J, h and j are functions of the characteristic impedances and admittances of the 

different stubs of the mth node [ 6]. 

Assume that the computational domain is uniformly discretized into a total of N 

nodes with the total number of associated TLM links, N L • As was explained earlier in 

chapters 2 and 3, a single TLM step of the original and the adjoint problem, at the J(h time 

step are respectively given by 

(4.5) 

and 

(4.6) 
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The new formulation exploits the matrix decomposition (4.1). Define 

S' e ffiNLxNL and T e ffiNLxNL as the new block diagonal matrices whose mth blocks are 

S'mand Tm, respectively. Using the transformation (4.1}, and multiplying both sides of 

(4.5) by the matrix T, the original TLM simulation can be written as 

V' - C'(x)S'(x) V' + V'8 V'(O)- 0 k+l - k k ' - (4.7) 

where 

is the transformed vector of incident impulses at the kth 

time step, 

is the new connection matrix, and 

is the transformed vector of original excitation at the kth 

time step. 

The TLM expression (4.7) is the transformed original TLM simulation. 

For the adjoint simulation, we multiply both sides of (4.6) by sr and exploit the 

lossless domain property sT sT = sT (ST)-] =I where/ E ffiNLxNL is the identity matrix. 

Expression (4.6) can then be rearranged as 

(4.8) 

Using sT = TS', and taking into account that the connection matrix C is 

symmetric, ( 4.8) can be rewritten as 

(4.9) 

vectors of adjoint impulses and adjoint excitation, respectively. In (4.9) the commutative 
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property of the matrices C and Tis exploited. 

Expressions (4.7) and (4.9) are the transformed original and adjoint simulations, 

respectively. They have an identical mathematical form and they differ only in their 

excitation. A single TLM simulation engine can be used for both simulations. For a TLM 

problem with N design parameters, the transformed formulation estimates the sensitivity 

of the objective function using only one adjoint simulation while the corresponding 

accurate central finite differences approximation requires 2N simulations. 

4.2 Examples 

4.2.1 Metallic Discontinuity in Rectangular Waveguide 

The geometry of a rectangular waveguide with a metallic discontinuity is 

illustrated in Figure 4.1. The waveguide is filled with polystyrene ( er = 2.56 ). The vector 

of design parameters is x = [ H W L f . The structure is uniformly discretized with cell 

size !!J = 1 mm. A narrow band Gaussian modulated sinusoid centered at fc = 3.5 GHz is 

used to excite the structure with dominant mode spatial profile. The objective function is 

taken as 

(4.10) 

where Nx, NY and Nz are the number of cells in the x, y and z directions, respectively. 

Figures 4.2-4.4 illustrate the sensitivities of (4.10) obtained using both the new AVM 

formulation and the central-finite differences. The results show good match between both 

approaches. Note that in Figure 4.4, the results almost completely coincide and their 
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boundary 

Figure 4.1: Rectangular waveguide with a metallic discontinuity. 

difference can hardly be observed. The A VM approach requires only one extra 3-D 

simulation while the central difference approximation requires 6 additional simulations. 
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Figure 4.2: Sensitivities of the objective function with respect to the dimensions of the metallic 
discontinuity for H = 5/i/ and W = 10/i/, over a sweep of L; 8F/8L obtained using 
A VM (-•-) and using CDs (-•-). 
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Figure 4.3: Sensitivities of the objective function with respect to the dimensions of the metallic 
discontinuity for L =20M and W = 10M, over a sweep of H; oF/oH obtained using 
AVM (-•-) and using CDs (-&-). 
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Figure 4.4: Sensitivities of the objective function with respect to the dimensions of the metallic 
discontinuity for H = 5!:11 and L = 10M, over a sweep of W; oF/OW obtained using 
A VM ( -•-) and using CDs ( -&-). 
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4.2.2 Single-Resonator Filter 

The new A VM formulation is applied to estimate the sensitivities of a single-

resonator filter (see Figure 4.5) filled with polystyrene ( er = 2.56 ). A uniform square 

TLM cell of dimension Ill = 1.0 mm is utilized. The vector of design parameters is 

x = [D wf . The objective function is defined as a measure of the power delivered to 

the output port 

N N 

F(x,V) = ~<t!: Vf,~c(i,Nz) (4.11) 
k=l i=l 

where V4 k is the value of the incident voltage at the forth link at the kth time step. The 
' 

waveguide is excited at the input port with a Gaussian-modulated sinusoidal signal 

centered at frequency fo = 3.0 GHz. The simulation runs for 4000 time steps. The 

sensitivities of ( 4.11) are estimated using the modified A VM formulation and the 

forward/backward and central-differences (CDs), as illustrated in Figures 4.6-4.8. Good 

matches are obtained in all cases, however the best match is derived between the A VM 

and the central finite differences, which implies the efficiency of the adjoint variable 

method in terms of the algorithm's efficiency. 
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Figure 4.5: Single-resonator waveguide filter. (a) 3D view. (b) The cross section of the filter in 
the xz-plane with employed symmetry and single-reflection absorbing boundaries at 
the input and output ports. 
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Figure 4.6: Sensitivities of the objective function, 8F/8W at D = 36111 over different values of W. 
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Figure 4. 7: Sensitivities of the objective function, oF/OD at W = 16M over different values of D. 

~~------L-------L-------L-------~------L-------~----~ 
~ M ~ M ~ ~ ~ G 

D(mm) 

Figure 4.8: Sensitivities of the objective function, oF/oW at W = 16M over different values of D. 
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Chapter 5 

ADJOINT-VARIABLE METHOD FOR 3D-TLM 

WITH HYBRID SYMMETRICAL CONDENSED 

NODE 

In the stub-loaded symmetrical condensed node [1], it is required that all the 

twelve link-lines have the same characteristic impedance. This impedance was selected to 

be equal to that of the free space. Any deficiency in the modeling of the permittivity and 

permeability of media other than air was compensated by introducing extra open and 

short circuit stubs at the node center [2]. The stub-loaded SCN was later utilized in TLM 

problems with variable meshes. The goal was reducing the required memory storage by 

defining finer mesh in areas with fast field variations, and coarser mesh for the rest of the 

structure. In the graded and variable mesh schemes, the maximum required time-step is 

determined by the ratio of the largest to the smallest grid dimensions. This constraint 

could impair the advantage of reducing the memory storage in large problems where 

large grid dimension ratios where used. Scaramuzza and Lowery [3] addressed this issue 

for the stub-loaded SCN by relaxing the required condition of having identical 
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characteristic impedance on all twelve link-lines. The resulting node was referred to as 

the hybrid symmetrical condensed node (HSCN). Here, the required inductances are 

modeled at the node and only three extra open-circuit stubs are added to take into 

consideration the required capacitances. It turned out that the HSCN had also the 

advantage of having better dispersion properties in addition to memory storage saving. 

Alternative schemes were proposed in [4] where all the required capacitances are 

included at the node and the inductance deficiencies are compensated for by adding three 

extra short-circuit stubs for each polarization direction. 

The aim of this chapter is to utilize the HSCN scheme in the adjoint sensitivity 

analysis for time domain TLM. A detailed discussion about the theoretical background of 

the HSCN is provided to gain deeper insight into the characteristics of the hybrid node, 

and to emphasis its advantages over the traditional SCN. The algorithm is then integrated 

with the adjoint variable method for sensitivity analysis of 3-D EM problems. 

5.1 The Hybrid Symmetrical Condensed Node 

In this section the characteristics of the hybrid symmetrical condensed node 

including the choice of the mesh parameters, the field calculations and excitations, and 

the scattering and connection properties are discussed in detail. In all derivations, the 

node numbering scheme proposed by Johns for symmetrical condensed node are adopted. 

5.1.1 Mesh Parameters 

Consider the node shown in Figure 5.1 which illustrates the discretization element 

of the medium in a single block of size (ax, ~y. !lz). We define Lx, Ly and Lz to be 
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z 

Figure 5.1: The unit cell of the standard symmetrical condensed node used as the basic building 
block of the hybrid node. 

the total inductances modeled by the block in the x, y and z directions, respectively. 

Each of these inductances is associated with the corresponding magnetic field component 

at the node center. As an example, consider the total inductance with x-polarization, Lx. 

The link -lines contributing to the Hx component of the magnetic field are ports 4, 5, 7 and 

8. In the hybrid scheme, it is assumed that all the link-lines contributing to a certain 

magnetic field have the same characteristic impedance; hence the transmission-lines 

associated with ports 4, 5, 7 and 8 have identical characteristic impedances, Zx. Notice 

that although each of these ports contributes to the same magnetic field component, they 

have distinct polarizations: ports 4 and 8 are y-polarized while ports 5 and 7 have z-

polarization. It seems to be reasonable to divide the total inductance in each direction into 

two portions according to the polarization of the terms. It follows that we have 

L = L' All+ L' /).z =II Ayllz 
x yz :r zy r l:!,x 

L = L' l:!,x + L' /).z = II /:!,x/).z 
y xz zx r Ay (5.1) 

L = L' /:!,x+ L' A,,= "!:!,xAy 
z xy yx:r r /).z 
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where Lqp represents the inductance per unit length of the link-line parallel to the q-axis 

with polarization p, and J1 is the permeability of the medium at the node location1
• It 

follows that three distinct values of characteristic impedances can be assigned to three 

sets of link-lines contributing to each of the three components of the magnetic field. 

Remember from the transmission-line theory that the characteristic impedance of each 

link-line is associated to the inductance and capacitance per unit length of the same line: 

~
, 

=.....:!... 
C' zy 

=PcE~ C' zx 

$E
, 

= ......E.. 
C' yx 

(5.2) 

where c~ represents the capacitance per unit length of the link-line parallel to the q-axis 

with polarization p. Moreover, assume that each two pairs of the orthogonal link-lines 

contributing to a certain magnetic field to have the same total inductance. Hence 

L' Av=L' Az yz :r zy 

L' Ax=L' Az xz zx (5.3) 

L~Ax=L~Ay. 

From (5.1) and (5.3), it follows that the inductance per unit length of the link-lines 

can be expressed as 

1 All lumped elements and transmission line parameters with a prime superscript represent the 
corresponding per unit length parameter. 
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L' = jJ& 
yz 2Ax ' 

L' = p& 
xz 2L\y ' 

L' = f.lily 
zy 2Ax 

L' =plu 
zx 2L\y 

L' = f.Uly L' p1u 
xy 2&- ' yx = 2&- . 

(5.4) 

We denote the total capacitance modeled by the block in Figure 5.1 in the x, y and 

z directions by Cx, Cy and Cz, respectively. Each of these capacitances is composed of the 

distributed capacitances on the associated link-lines and the capacitance ofthe associated 

open-circuit stub at the node [2]: 

(5.5) 

where e is the permittivity of the medium at the node location, and c; , c; and c: are 

the capacitances of the added open-circuit stubs in the x, y and z directions, respectively. 

The capacitance per unit length of each transmission-line is related to the speed of 

propagation, un, of a pulse on the line. From transmission-line theory it is well-know that 

the speed of propagation on a transmission-line of length M can be expressed in terms of 

the capacitance per unit length, C~, and the inductance per unit length, L~, of the line as 

M 1 
u -----=== 
TL- M- ~C' L' 

d 'd 

(5.6) 

where M indicates the propagation time on the transmission-line. From (5.3) and (5.6), it 

is clear that the capacitance per unit length of each link-line can be expressed as 
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C' = 2ilz!it2 C' = 2~y!it2 
yx j.JAx~y2 ' zx j.JAxilz2 

C' = 2ilz!it2 C' = 2!lx~t2 
xy pt,. y !lx2 ' zy pt,.y &2 

(5.7) 

C' = 2~y!it2 C' = 2!lx!it2 . 
xz pAz!lx2 , yz pAz~y2 

Substituting (5.7) in (5.5) and solving for c:, c; and c:, the capacitances of the 

open-circuit stubs given by: 

c: = j.JAx~y& (.ueL\y2 &2 - 2~/ !it2-2&2 !it2) 

cs = 1 (pe!!.x2 &2 - 2!lx2 !it2 - 2&2 !it2 ) 
y j.JAx~yf}z 

c: = j.JAx~yf}z (JJe!lx2 ~l- 2!lx2 ~~2- 2~y2 ~~2 ). 

(5.8) 

The expressions in (5.8) impose a set of three constraints on the maximum 

allowable simulation time step. For the stability of the algorithm, the capacitances of the 

open-circuit stubs should be non-negative. Solving (5.8) for !it results 

1 flr&r 
!it~ -~yllz 

2~y2 + 2&2 c 

M ~.!_!lxilz flr&r (5.9) 
c 2&2 + 21lz2 

1 Pr6 r ~~~-!lx~y 
2!lx2+2~y2 c 

where c = tj ~ J.lo&o is the propagation velocity in the free space. In order to meet the 

stability requirement of the algorithm, the set of inequalities given in (5.9) should be 

simultaneously satisfied at every node within the mesh. Depending on the block 

dimensions, different values for maximum allowable time step may obtain [5]. Using 
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!:J = min { Ax, Ay, Az } , and recalling that for a uniform mesh with symmetrical 

condensed nodes of dimension AI the time step is equal to At = c/(2/:il). Consider the 

following cases: 

case 1: l:ix = l:iy = Az = l:il, the set of inequalities in (5.9) reduces to 

(5.10) 

The lower limit of the maximum possible value of At is selected when Pr = er = 1 which 

leads to 

AI 
Atmax =-. 

2c 
(5.11) 

This indicates that the maximum allowable time step for uniform HSCN and SCN 

are identical. 

case 2: 1:ix = l:iy =AI, Az = l:im >AI. From the third inequality in (5.9) 

(5.12) 

Similar to case 1, the lower limit of the maximum possible value of At is selected 

when Pr = &r = 1 which leads to 

l:il 
At =­max 2c 

(5.13) 

case 3: l:ix = Ay = l:im > l:il, Az = !:il. In this case the maximum allowable time 

step is determined by either of the first two inequalities in (5.9) as 

1 2 l:il 
At =- 1-:,---~--------- > -. 

max 2c (~2 )+(/:i~2 ) 2c 

(5.14) 
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case 4: The most general cases arises when all dimensions are different Assume 

M = Ax< .Ay < .Az. In this case the third equation in (5.9) sets the upper limit on the 

simulation time step which is obtained as 

2 M 1 
At =­

max 2c (~, HA~2 } > 2c. 

(5.15) 

From (5.14) and (5.15), it is observed that in the case that the dimension M is 

much smaller than the other two dimensions both expressions can then be approximated 

as 

(5.16) 

The above discussion defines the valid range of maximum allowable time step for 

the hybrid symmetrical condensed node according to 

(5.17) 

Once the simulation time step is determined, the rest of the mesh parameters can 

be derived. From (5.4) and (5.7) the normalized admittances of the link-lines are 

determined as follows [2]: 

(5.18) 
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Similarly, the normalized admittances of the open-circuit stubs can be obtained 

from (5.8) as 

(5.19) 

y_s = 2c: = 2er L\xL\y 
z L\tl'Q cL\t L\x 

5.1.2 Field Calculations in HSCN 

The derivations of the electromagnetic field components at the center of the 

HSCN are discussed here. We consider the Ex and Hx components of the electric and 

magnetic fields. The HSCN ports contributing to Ex are ports 1, 2, 9, 12 and the open-

circuit stub 13. We also consider a loss stub in the x-direction to include any possible 

electric losses in this direction. Figure 5.2a illustrates the link-lines used for calculating 

the Ex component. The transmission-lines associated with ports 1 and 12 contribute to Hz 

and their link-lines are assumed to have identical characteristic admittance Yz. Their total 

corresponding capacitance is therefore C~ = ~L\t /2. In the same manner, the 

characteristic admittance of the link-lines associated with ports 2 and 9 is Yy with 

capacitance per unit length C~ = YyM /2 . The capacitance associated with the open-

circuit stub is equal to c; = Y: L\t /2. The total incident charge can thus be given as 

(5.20) 
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(a) (b) 

Figure 5.2: Hybrid node link-lines contributing to: (a) electric field component, Ex; (b) magnetic 
field component, Hx. 

As no incident impulse appears on the loss stub, its effect on the calculations of the total 

incident charge was not considered. The conservation of electric charge implies that the 

total incident and reflected charges should be equal. It results that the total charge can be 

expressed as 

Qtotal = Qincident + Qrejlected = 2Qincident • (5.21) 

On the other hand the total capacitance in x direction is equal to 

(5.22) 

where the last term in (5.22) counts for the capacitance of the loss stub. Once the total 

electric charge and capacitance are known, after normalizing all admittances, the total 

voltage at the node can be evaluated as 

2~ (v/ + Vj~ )+ 2Y;, (vi+ vt)+ 2f: (Vi~) 
Vx= " ,.. " ,.. . 

2~ +2:Yy +Y: +Gx 
(5.23) 

The electric field, Ex at the node center is thus obtained as 
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E =- Vx = 
X flx 

2~ (Yt1 + Yt~)+2Yy (vi+ v~)+ 2i: (f113) 
(2~+2Yy+Y: +Gx)llx 

(5.24) 

Now, consider Figure 5.2b to express the magnetic field component Hx in terms of 

the incident impulses. As can be seen, ports 4, 5, 7 and 8 contribute to lx. Using the 

Thevenin's equivalent model of transmission-lines, the total voltage is 

( i i i i) V=2 ~-Vs+v;-vg. (5.25) 

The total impedance is equal to Z = 4Z x + Rx, where Rx counts for the magnetic 

loss in the x-direction. After normalizing the impedances, the current lx is given as 

2(v;-v; +Vf -vi) 
lx = Zo(4Zx+~) 

Consequently, for the Hx component of the magnetic field 

(5.26) 

(5.27) 

The derivation of the expressions in (5.24) and (5.27) can be easily extended to 

calculate the other field components in terms of the incident voltages: 

v 
E =---L= 

X flx 

v 
E =--L= 

y Ay 

2~ ( f}1 
+ f}~ ) + 2f;, (Vi + V~) + 2Y: ( fl~) 
( 2~ +2¥;, + f: +Gx )llx 

2~ (vi+ f11
1 )+ 2t (vi+ vi)+ 2i; (fl~) 

(2~ +2t +Y; +Gy )Ay 

_ vz _ 2t ( v; +vi)+ 2YAv~ + fl~) + 2~s ( f}~) 
Ez -- Az -- (2t+2Yy +Y: +Gz )Az 
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I 2(V~ -v; +Vi -Vi) 
H=-L=-..!.----,.--:---.,..-<-

x Llx L1xZ0 ( 4Zx + Rx) 

I 2(-Vi +V~ +V~ -Vi~) 
H=-L=---.!.--..,--...,---~--:... 

Y t\y t\yZ0 ( 4ZY + RY) 
(5.28b) 

I 2(Vi;- vf +Viii- Vi~) 
H = _z = ----.!.--,--,------,-.....,--....!.... 

z & &Zo (4zz +Rz) 

5.1.3 Field Excitations in HSCN 

Similar to exciting the SCN node, the excitation of a particular field in HSCN is 

carried out by applying particular incident voltages on the appropriate ports. For instance, 

to excite the E:Citation at the center of the hybrid node, the following incident impulses 

can be injected on ports 1, 2, 9, 12 and 13 

rri _ rri _ y;i _ v,i _ -Eexcitation A_ 
y I - y 2 - 9 - I2 - X L.U 

v.i = -£excitation A __ £excitation A _ {; x 
13 X L.U X L.U fs • 

X 

(5.29) 

Substituting with the above values in the first expression of (5.28a), one can 

easily verify that the suggested values of incident impulses excite an electric field at the 

center of the node with x-polarization and with magnitude E';citatton. Similarly, in order 

to excite the H:Citation, the associated incident impulses can take values as 

vj =Vi = .t\x.Z, ( ~Z%; R. )n;"'""lon 

v; = v; = -.t\x.Z0 ( 
4\+ k. ) H:"""""". 
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Similar expression can be obtained to excite other field components. However, 

note that the suggested values are not the only possible values, and other mappings 

could be considered to map incident voltages into field components. 

5.1.4 Scattering Properties ofHSCN 

The scattering matrix of the hybrid node can be obtained based on the unitary 

principal [3] or from the fundamental principals of conservation of charge, conservation 

of magnetic flux, and the continuity of the electric and magnetic fields. Here, the form of 

the scattering matrix for the general case with the electric and magnetic losses and the 

terms for the current sources are presented. A comprehensive derivation can be found in 

[2]. 

}/ y z X z y X y z z X X y 
Yt z y z X X y X X y y z z 
Ys X X y y z z z y X z y X X y z X y z 

R, Gs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
z X 1 a b d b -d c g k 
y X 2 b a d c -d b g k 
z y 3 d a b b c -d g k 
X y 4 b a d -d c b g k 
X z 5 d a b c -d b g k 
y z 6 d b a b -d c g k 
X z 7 -d c b a d b g k 
X y 8 b c -d d a b g k 
y X 9 b c -d a d b g k 
y z 10 -d b c b d a g k 
z y 11 -d c b b a d g k 
z X 12 c b -d b d a g k 

X 13 b b b b h k 
y 14 b b b b h k 
z 15 b b b b h k 

where the scattering coefficients are given by: 
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a= 
~ + Gs + 2(Yr- Y,) R,Y, 

2 [~+Gs+2(Yr+f,)] + 2(R,f,+4) 

b = A A 

2Y, A A 

~ +Gs +2(}/ +Y,) 

~ +Gs +2(Yr -Y,) 
c= 

2 [~ +Gs +2(Yr +f,)] 

2 
d = -:"A_,A,---

R.,Y,+4 

i 
g=b-!-

Y, 

h = ~ - ~s - 2(~ + ~) 
~ +Gs +2(}/ +Y,) 

1 
k= A A A A • 

~ +Gs +2(}/ +Y,) 

2(R,Y, +4) 

(5.31) 

The values of the conductance and the resistance associated with the electric and 

magnetic losses are obtained as 

A L\y~ 
G =U --

X ex L\x}'; 
0 

A L\y~ 
R =U --

X mx L\xZ 
0 

A L\xAy 
G =U --

z ez ~y; 
0 

A L\xAy 
R =U --

z mz ~z 
0 

(5.32) 

Here, Ueq and Umq are the electric and magnetic conductivities in the q -direction, 

respectively. 

5.1.5 Connection Properties of HSCN 

Unlike the connection procedure in the symmetrical condensed node where the 

reflected impulses at each time step are simply exchanged between the neighboring 

nodes, special consideration should be taken into account when implementing the 

connection 
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Figure 5.3: The J(h time step reflected and transmitted impulses at the interface of two link-lines 
with p-polarity connecting the mth and nth hybrid symmetrical condensed nodes. 

procedure for the hybrid node. Due to impedance mismatch between the link-lines of 

neighboring nodes, reflections may happen at the midpoint of two adjacent nodes. Also 

the link-lines associated with each polarization at the arms of the nodes may experience 

different impedances, hence they should be considered separately. Figure 5.3 illustrates 

the case where the link-lines withp-polarization ofthe mth and nth adjacent nodes are 

connected to each other and have characteristic impedances z;:P andz;,p, respectively. 

From transmission-line theory the incident impulses at the (k+l)th time step is [6] 

v.i,m = 1-n v.i,m + 2n v.i,n 
k+I l+n k l+n k 

· 2 · n-1 · V,'•n = __ V,'•m + __ V,'•n 
k+I n + 1 k n + 1 k • 

(5.33) 

where n = z;,p 1 z;,p . This inter-nodal reflection should be incorporated in the 

connection step. 

The previous discussion provides the theoretical background required for 

formulating the TLM with HSCN. Assume the total number of the associated TLM links 

are denoted as NL. We defme the system scattering matrix S e 9{NLxNL as a block 

diagonal matrix whose pth block, S P is the hybrid nodal scattering matrix of the pth node. 

We also consider the symmetrical system connection matrix C e mNLxNL which realizes 
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the connection step of each node within the mesh. The vectors kV; e 9tNL, kvr e 9tNL 

and kvs e 9tNL are taken as the vectors of incident, reflected and excitation impulses of 

all nodes at the kth time step. A single TLM simulation at the kfh iteration can then be 

expressed as 

k 

k+r; = cs kv; + kvs + L J(k-k1kVr , V;(O) = o (5.33) 
k'=O 

where the matrix J(k) is the kth time layer of the three-dimensional Johns matrix. Note 

that a Johns' matrix generated for a TLM problem with SCN can be employed in the 

hybrid scheme and vice versa. 

5.2 The Adjoint-Variable Method for HSCN 

The adjoint-sensitivity analysis using the hybrid symmetrical condensed node is 

similar to the case of the SCN, discussed in chapter 3. The objective function has the 

form: 

Tmax 

F = J \{l(x,V) dt (5.34) 
0 

where Tmax is the simulation time, and the real valued function \{l(x,V) is the objective 

function kernel. Using the A VM, the derivatives of the objective function with respect to 

all designable parameters can be efficiently estimated as [7] 

(5.35) 

where the first term ae F I axi corresponds to the explicit dependency of the function F on 
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the ith designable parameter. The constants M and N, denote the time step and the total 

number of simulation time steps, respectively. The vector ktl reflects the associated 

changes in the system matrix A=(C(x)S(x)-1)/M due to a perturbation dx; and is 

generally given by: 

(5.36) 

Here, llC; and M; correspond to changes of the system connection and scattering 

matrices of the hybrid scheme associated with a one cell-size perturbation of x;. A 

comparison between the dimensionality of the vector k 'I; in the SCN and HSCN 

indicates that storage saving can be achieved when the structure undergoes a perturbation 

due to dielectric discontinuities. For the case of the SCN, the dimensionality of the k'l; 

for a dielectric perturbation is l8[(n2- n1 + 1) (p2- PI+ 1)] while it is 15[(n2- n1 + 1) (p2 

-PI+ 1)] (n; andp;, i=l, 2 are the coordinate intervals ofthe affected nodes). This results 

in a storage saving of approximately 17%. However, in the case of metallic 

discontinuities the dimensionality of k'l; for both SCN and HSCN is 2[(n2- ni + 1) (p2-

PI+ I)+ 2(P2- PI+ 1) + 2(n2- ni + 1)]. This indicates that the hybrid scheme does not 

have any priority over the traditional SCN in storing the elements of k IJ; • 

Similar to the adjoint simulation of the SCN, the vector of the adjoint impulses, 

kl in (5.35) is obtained from the backward TLM simulation expressed as [10] 

(5.37) 
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5.3 Examples 

We illustrate the A VM-HSCN method by estimating the sensitivities of the S­

parameters of waveguide structure with respect to physical discontinuities. 

5.3.1 Six-Section H-Plane Waveguide Filter 

The geometry of the six-section H-plane waveguide filter [11] is shown in Figure 

5.4. The A VM approach is used to estimate the sensitivities of the reflection S11 with 

respect to the physical dimensions of the metallic discontinuities. The structure is 

uniformly discretized with hybrid cells of size Ill= 0.6223 mm . The problem can be 

reduced to a 2-D TLM problem by simulating a single layer of 3D hybrid nodes in the xz­

plane bounded at the top and bottom with perfectly conducting planes. The filter is 

excited with a Gaussian modulated sinusoid centered at fc = 7.5 GHz with the spectrum 

range from 5.0 GHz to 10.0 GHz, and with TE10 mode spatial profile. Symmetry is 

employed to simulate only half of the structure. The filter is terminated at the input and 

output ports by modal Johns matrix boundaries with N1 = 6000 time steps. The vector of 

designable parameters is taken as X= [ Jf1 w2 Wj w4t. Figures 5.5-5.8 illustrate the 

sensitivities of the real and imaginary parts of S11 obtained using the A VM and the 

central finite differences over a frequency sweep in the range 5.0 GHz- 10.0 GHz with 

an interval of 25.0 MHz. The results indicate good match between the two approaches. 

While the central differences provide the sensitivities using 9 TLM simulations, the 

A VM extracts the same information using only two simulations. 
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a 17.4244 
b 15.7988 
8 0.6223 
wl 13.0683 
w ., 11.8237 
w3 11.2014 
w4 11.2014 
Ll 16.1798 
L, 16.1798 
L3 16.8021 

all dimensions in mm 

f 
tB 
~ 
~ 

WI 

(a) 

magnetic-wall (symmetry plane) 
+ 

w.? w3 w4 - w3 w.? 

I~ 1+------+J IIII 1111+------+11+------+1 ~I 

L1 L2 L3 L3 L2 L1 

(b) 

_t 
Z X 

WI ~ 
rB 
i 
'"" 

Figure 5.4: (a) The 3D view of the six section H-plane filter. (b) The cross section of the filter in 
the xz-plane with employed symmetry and Johns dispersive absorbing boundaries at 
the input and output ports. 
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Figure 5.5: The sensitivities of the real and imaginary parts of Su with respect to W1• 
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Figure 5.6: The sensitivities of the real and imaginary parts of Sn with respect to W2• 
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Figure 5.7: The sensitivities of the real and imaginary parts of Su with respect to W3• 
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Figure 5.8: The sensitivities of the real and imaginary parts of Su with respect to W4. 
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Chapter 6 

CONCLUSIONS 

This thesis has presented recent developments in the sensitivity analysis of high­

frequency structures in time-domain transmission-line modeling (TLM) technique using 

the novel adjoint variable method (A VM) approach. Two major contributions have been 

achieved as the outcome of the research. The first contribution is a novel formulation for 

expressing the original and the adjoint systems. In general, the adjoint system for a TLM 

problem is expressed by a backward-running simulation where the order of the scattering 

and connection matrices is reversed. The system scattering and the connection matrices 

are also the transpose of those in the original system. This implies using two different 

simulators for implementing the A VM technique. Consequently, restrictions are imposed 

in using commercial solvers with the A VM approach. In Chapter 4, a new formulation is 

presented which casts the original and adjoint systems into a mathematically identical 

form with the only difference in the excitation. This is achieved by decomposing the 

systems scattering matrix, which in general is asymmetric, into a new symmetric matrix 

and a block diagonal transforming matrix. The new approach is shown to provide 

comparable results with the accurate central-finite difference approximations. The 
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proposed formulation can be considered as a substitute to the current TLM engines to 

make them compatible with the A VM algorithm. 

The second major achievement is generalization of the A VM for 3-D TLM 

problems with more advance discretization elements. In all previous A VM-related 

publications, the stuh-loaded symmetrical condensed node was used as the discretization 

node. In Chapter 5, this is expanded to include the hybrid symmetrical condensed 

(HSCN) node, where better dispersion properties, longer simulation time step and smaller 

memory storage are feasible. A detailed discussion about the underlying theory of the 

hybrid node is discussed to emphasize its advantages over the stub-loaded SCN. 

Our recent developments are illustrated using several waveguide examples. In all 

examples, the sensitivities of time-domain objective functions as well as the scattering 

parameter sensitivities are estimated and compared to those obtained using the more 

accurate central finite difference approximations. Very good match is obtained between 

both approaches. 
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