
Blind FIR Channel Estimation in the Presence of Unknown Noise 



BLIND FIR CHANNEL ESTIMATION IN THE PRESENCE OF 

UNKNOWN NOISE 

By 

XIAOJUAN HE, Bachelor Eng. (Applied Electronics) 

Nanjing University of Science and Technology, 

Nanjing, China, 2001 

Master Eng. (Signal and Information Processing) 

Nanjing University of Science and Technology, 

Nanjing, China, 2004 

A Thesis 

Submitted to the School of Graduate Studies 

in Partial Fulfilment of the Requirements 

for the Degree 

Master of Applied Science 

McMaster University 

November 2005 



MASTER OF APPLIED SCIENCE {2005) 

(Electrical and Computer Engineering) 

MCMASTER UNIVERSITY 

Hamilton, Ontario 

TITLE: 

AUTHOR: 

Blind FIR Channel Estimation in the Presence of 

Unknown Noise 

Xiaojuan He 

Bachelor Eng. (Applied Electronics) 

Nanjing University of Science and Technology, 

Nanjing, China, 2001 

Master Eng. (Signal and Information Processing) 

Nanjing University of Science and Technology, 

N anjing, China, 2004 

SUPERVISOR: Dr. Kon Max Wong 

NUMBER OF PAGES: x, 82 

11 



Acronyms 

FIR 

AWGN 

lSI 

ML 

sos 
ED 

CMORS 

MAl 

iid 

pdf 

NRMSE 

SNR 

SISO 

SIMO 

CCD 

CCD-SS 

CCD-ML 

ss 
MSS 

MAP 

Finite impulse response 

Additive white Gaussian noise 

Inter - symbol interference 

Maximum likelihood 

Second order statistics 

Eigen - decomposition 

Covariance matrix of the received signals 

Multiple access interference 

Identically and independently distributed 

Probability density function 

Normalized root mean square error 

Signal to noise ratio 

Single - input - single - output 

Single - input - multiple - output 

Canonical correlation decomposition 

CCD based subspace (algorithm) 

CCD based maximum likelihood (algorithm) 

Subspace (algorithm) 

Modified subspace (algorithm) 

Maximum a posteriori (algorithm) 

iii 



Notations 

(·)H 

(·f 
ot 
II·IIF 
11·112 

E{-} 

tr(·) 

det(·) -(.) 

0* 
span(·) 

span(·) 

/.:., 

p(·) 

log 

vee(-) 

® 

Bold upper - case symbol 

Bold lower - case symbol 

Conjugate transpose 

Transpose 

Pseudo - inverse of a matrix 

Frobenius - norm 

2- norm 

Expectation 

Trace of a matrix 

Determinant of a matrix 

Estimate of a quantity 

K x K Identity matrix 

Conjugate 

Column span of a matrix 

Orthogonal complement of span(·) 

Log - likelihood function 

Probability density function 

Natural logarithm 

Column vectorization of a matrix 

Kronecker product 

Matrix 

Vector 

iv 



Abstract 

In this thesis, we present three algorithms for blind estimation of the finite impulse 

response (FIR) channels in the presence of unknown noise. The algorithms are devel­

oped considering different available system resources: 1) If only one receiving antenna 

is available, based on the single-input-single-output (SISO) system model, with the 

output being up-sampled, we develop the maximum a posteriori (MAP) algorithm 

for Gaussian distributed noise. With large enough samples being collected, during 

which the channel keeps invariant, an efficient implementation of the MAP algorithm 

is also obtained; 2) If two receiving antennae can be affordable, based on the single­

input-multiple-output (SIMO) system model and up-sampling both the outputs, we 

develop a subspace based algorithm utilizing Canonical Correlation Decomposition 

(CCD) to obtain the subspaces, and a maximum likelihood (ML) based algorithm 

which starts from the Gaussian distributed projection error from the noise subspace 

onto the COD-estimated signal subspace. The developed channel estimators achieve 

superior performance measured by the normalized root mean square error (NRMSE), 

compared with some existing second-order-statistics (SOS) based methods while keep­

ing the computation complexity comparable. When more than two receiving antennae 

are available, by treating them as one group and applying the MAP algorithm or sep­

arating them into two groups and applying the CCD based algorithms, the channels 

can still be blindly estimated with or without up-sampling the outputs. 
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Chapter 1 

Introduction 

1.1 Overview 

In conventional analysis of the communication systems, classical (ideal) additive white 

Gaussian noise (AWGN) channel, with statistically independent Gaussian noise sam­

ples corrupting data samples free of intersymbol interference (lSI), is usually assumed. 

However, in many communication systems, especially the wireless, the channel is often 

lSI induced with unknown correlated additive noise. 

lSI exists because the signals often travel from the transmitter through multiple 

paths to arrive at the receiver due to the reflection, diffraction, or scattering caused 

by the objects in the channel. The received signal is an addition of the transmitted 

signal and its several delayed version which can cause fluctuations in the received 

signal's amplitude, phase and angle of arrival, giving rise to the multipath fading. 

This phenomenon is referred to as multipath propagation. When low data-rate com­

munication systems are concerned, the presence of lSI due to the multipath fading 

is often neglected. However, with the advent of many emerging advanced wireless 

applications, there is currently a significant interest in the design of wireless net­

works which would support medium- to high-rate data communications where lSI is 

no longer negligible. To satisfy the demand of these new applications, the channel 

1 
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is usually modelled as a finite impulse response (FIR) filter which induces lSI rather 

than simply a flat-fading scalar channel free of lSI. 

Mitigation of lSI distortion is often carried out by filtering, channel equalization, 

and appropriate signal designs for which a proper knowledge of the channel charac­

teristics is required. Thus, channel estimation is a very important process in digital 

communications, especially in wireless. Channel estimation algorithms can be roughly 

sorted into two basic categories: pilot aided algorithms and blind algorithms. Tra­

ditionally, the estimation is carried out by observing the received pilot signals sent 

over the channel and various estimation algorithms have been developed based on 

the transmission of pilot signals [3-6]. However, the insertion of pilot signals often 

means a decrease of bandwidth efficiency and the resulting limitation of effective data 

throughput [7,8] may be a substantial penalty in performance. Thus, blind identifi­

cation of the channel could be helpful. 

Noise 11 

Transmitted signal s Received signal r 
Channel H \....L.I 

~ unaccessible --+ accessibl~ 
Figure 1.1: Scheme of blind channel estimation 

Various existing blind algorithms can be classified into moment-based and the 

maximum likelihood (ML) based methods. Within the family of moment-based blind 

channel estimation algorithms, the so-called subspace method (SS) is of particular 

interest. Starting from the second-order statistics (SOS) of the received signals [9], 

by applying eigen-decomposition (ED) on the covariance matrix of the received sig­

nals (CMORS), two subspaces which are orthogonal to each other are obtained. The 
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essence of this subspace based blind estimation rests on exploiting the structure of 

the channel matrix and the orthogonal property between the signal and noise sub­

spaces. Due to the advantage of having a closed-form solution and the so-called finite 

sample convergence property, the SS method is popular and its wide application can 

be found in frequency selective channel estimation in direct sequence code division 

multiple access (DS-CDMA) systems [28, 29] and its multicarrier (MC)-CDMA sys­

tems [31]; space-time block coded multiple input multiple output (STBC-MIMO) sys­

tems [30]; and orthogonal frequency division multiplexing (OFDM) systems [32-34]. 

However, for this SS method, the noise has been assumed to be white Gaussian dis­

tributed which is not necessarily the case in practice. ML based channel estimation 

has been developed in [35, 36] for white Gaussian noise and recently in [24] for cor­

related noise. ML is a popular criterion employed in parameter estimation because 

the class of ML estimators are usually optimal for large data records as they approx­

imate the minimum variance unbiased estimators. However, many of the ML based 

estimators suffer from not having a closed-form solution and from the requirement of 

high computation complexity. Nowadays, external noise and interference are among 

the major performance-limiting features of modern wireless communication channels, 

e.g. multiple-access interference (MAl). When these interference are coming from a 

large number of identically and independently distributed (iid) sources, the resultant 

interference can be modelled as Gaussian distributed [26], but the covariance matrix 

are not usually known beforehand. 

To meet the new demand of modern communication systems, developing algo­

rithms to blindly estimate the frequency selective channels in unknown noise envi­

ronment has become an earnest request. 
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1. 2 Contribution of This Thesis 

This thesis is focused on the development of blind channel estimation algorithms for 

FIR channels in unknown noise environment. 

If only one antenna is available at the receiving end, using a single-input-single­

output (SISO) system model with the output being up-sampled, we develop an algo­

rithm based on the maximum a posteriori (MAP) criterion when the noise is Gaussian 

distributed with zero mean and unknown covariance matrix. The MAP criterion is 

related with the ML criterion by Bayesian rule for which the a priori probability den­

sity function (pdf) of the noise covariance matrix is explored. Since we assume little 

is known about the noise, a noninformative pdf is chosen and derived according to the 

Jeffrey's rule [14, 15]. After the noise pdf is obtained, the MAP objective function is 

established. Then, assuming large enough samples can be collected before the channel 

changes, through decomposing the CMORS, we derive an efficient implementation of 

this MAP algorithm. 

When two receiving antennae can be affordable, utilizing Canonical Correlation 

Decomposition ( CCD) for identification of subspaces, we develop a subspace based 

algorithm (CCD-SS) and a ML based algorithm (CCD-ML), for which the noise does 

not have to be known as Gaussian distributed as long as its second-order central 

moment is finite. Both of these algorithms are based on the single-input-dual-output 

(SIDO) system model with both outputs being up-sampled. In the blind noise envi­

ronment, we first obtain the signal subspace and the noise subspace through CCD, 

based on which the orthogonality between these two subspaces is utilized to estimate 

the channel coefficients. Through the use of CCD, superior performance is obtained 

with the CCD-SS method, compared with the performance of the modified subspace 

method (MSS) developed for correlated noise in [10] or the standard SS method which 

utilizes ED on the CMORS to obtain the subspaces [9]. Furthermore, we use the CCD 



M.A.Sc. Thesis - X. He -McMaster - Electrical & Computer Engineering 5 

combined with the knowledge that the projection of the noise subspace onto the es­

timated signal subspace is Gaussian distributed with zero mean to form our second 

CCD based algorithm CCD-ML. 

When more than two receiving antennae are available, by treating them as one 

group and applying the MAP algorithm or separating them into two groups and 

applying the CCD based algorithms, the channels can still be blindly estimated with 

or without up-sampling the outputs. 

1.3 Outline of This Thesis 

This thesis is organized as follows: 

• In Chapter 2, the multipath propagation channel model is introduced, including 

its characteristics and different fading modes. The block transmission system 

model for frequency selective channel is also developed. 

• In Chapter 3, the fractionally spaced system model is presented. Based on this 

model, the SS method is discussed. The relationship between the SS estimation 

and the ML estimation is also established. Then the MSS method is outlined 

for the convenience of comparison in the simulations. 

• Chapter 4 and Chapter 5 are devoted to develop the new algorithms for blindly 

estimating the FIR channels under unknown noise. The MAP algorithm is 

presented in Chapter 4 when one receiving antenna is available, followed by the 

development of the CCD based algorithms in Chapter 5 applicable when two 

receiving antennae can be affordable. 

• In Chapter 6, the simulation examples and results are provided and discussed. 

• Finally, the conclusion of this thesis and suggestion for possible future work are 

given in Chapter 7. 



Chapter 2 

Multipath Propagation Channel 

Model 

In multipath propagation, the signal arrives at the receiver through different paths 

from different directions and with different time delays, introducing relative phase 

shifts between the component waves and then leading to constructive or destructive 

addition at the receiving end, resulting in multipath fading. In this chapter, we will 

discuss this multipath propagation phenomenon and its fading effects which occur in 

most wireless communication systems and also some wireline communications. The 

contents of this chapter are mainly based on the references [20, 21]. 

In the following, we first introduce the mathematical characterization of the mul­

tipath channel, then the fading effects, time spreading (dispersion) of the signal and 

time variant behavior of the channel, are analyzed. Finally, with respect to the fre­

quency selectivity caused by the time dispersion effect, the block transmission scheme 

used to combat it in this thesis is presented. The fading channel manifestation is il­

lustrated in Figure 2.1 to give a general pictorial relationship [20]. 

6 
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nme 
spreading of 

the signal 

nmevariance 
of the channel 

Figure 2.1: Multipath fading manifestations 

2.1 Characterization of Multipath Channels 

7 

Assume a general case that the channel is time varying with multiple paths, each 

associated with a time variant propagation delay Tn(t), and a time variant multiplica­

tive fading factor an(t). Neglecting noise, the received bandpass signal can be written 

as 

r(t) = L an(t)s[t- Tn(t)] {2.1) 
n 

where s(t) is the transmitted bandpass signal which can be represented as 

(2.2) 

with s(t) being the complex envelope of s(t). Then the channel output can be ex­

pressed as 

i'(t) = Re { ( ~ <>n(t)e-""for.(t) s[t - r.(t)]) ei"''"'} 
and it is clear that the complex envelope of the output is 

n 

(2.3) 

(2.4) 
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So we can describe the multipath channel by a time-varying, complex, low-pass equiv­

alent impulse response as 

h(7, t) = L an(t, 7)8[7- 7n(t)] (2.5) 
n 

With an(t, 7) = O!n(t)e-j21r/cT. 

h(7, t) can be treated as a wide-sense stationary uncorrelated scattering (WSSUS) 

model [23] where the signals arriving at the receiver with different delays are uncor­

related. The scattering function is introduced in [21] to simultaneously provide a 

description of the channel properties with respect to the delay variable 7 which mani­

fests as the time dispersion of the signal, and the frequency-domain variable (Doppler 

frequency) v which manifests as the time variant behavior of the channel. This func­

tion is obtained by Fourier transforming the channel autocorrelation function in !:lt 

based on the WSSUS model 

S(7, v) = FAt[Rh(7, flt)] = 1: Rh(r, !:lt)e-i27r
11

At d!:lt {2.6) 

where Rh(r, !:lt) = E{h*(7, t)h(r, t + !:lt)} is the channel autocorrelation function. 

The scattering function S ( 7, v) provides a single measure of the average power output 

of the channel as a function of the delay rand the Doppler frequency v. It can be 

seen that the variable v is the dual of the variable flt, hence it captures the rapidity 

of the channel change. 

2.1.1 Time Spreading of the Signal 

In time domain, signal dispersion can be represented by the so called multipath in­

tensity profile which is the average received power as a function of delay timer 

q(r) = Rh(r,O) = Elh(r,t)l2 

It can be shown that q(r) is related to the scattering function via 

q(7) = 1: S{r, v) dv 

(2.7) 

{2.8) 
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Here, the delay time T refers to the excess delay which is measured from the first 

perceptible signal that arrives at the receiver. The maximum excess delay also termed 

maximum delay spread, T m is the delay between the first and the last component of 

the signal during which the received power falls below some threshold level. In a 

fading channel, the relationship between T m and the symbol duration time Ts can be 

viewed in terms of two different degradation categories: frequency selective fading and 

frequency nonselective or flat fading. A channel is said to exhibit frequency selective 

fading if T m > Ts and flat fading, otherwise. We can see that frequency selective 

fading occurs whenever the received multiple components of a symbol arrive beyond 

the symbol's time duration which is very probable in high data rate communication. 

Such dispersion of the signal obviously causes the lSI between adjacent symbols or 

even beyond if the delay is really large. 

Viewed in frequency domain, the signal dispersion can be specified by the Fourier 

transform of q( T). It can be thought of _as the channel's frequency transfer function 

with the coherence bandwidth fo being a statistical measure of the range of frequencies 

over which the channel passes all spectral components with equal gain and linear 

phase. As an approximation, we can say that fo = 1/Tm. A channel is referred 

to as frequency selective if fo < 1/Ts ~ W8 when a signal's spectral components 

are not all affected equally by the channel. Some of the signal's spectral components 

falling outside of the coherence bandwidth will be affected differently (independently), 

compared with those components contained within the coherence bandwidth. Judging 

from the discussion above, we can see that for high data-rate communication, the 

channel is very probably frequency selective, which is the motivation for this thesis to 

be focused on the estimation of the frequency selective channel. In flat fading case, 

since the multipath components arrive within the duration of the current symbol, the 

channel can be well modelled by a single ray and the input-output relationship can 

be expressed as a multiplication. For a frequency selective channel, the input-output 

relationship is a convolution which explicitly manifests the lSI induced nature of the 
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channel. 

2.1.2 Time Variance of the Channel 

The time varying nature of the channel is often caused by the relative motion between 

the transmitter and the receiver or the motion of the objects within the channel. It 

is manifested in time-domain by the space-time correlation function d(fl.t) which is 

the autocorrelation function of the channel response to a sinusoid. This function 

specifies the extent to which there is a correlation between the channel response to 

a sinusoid sent at time t 1 and a similar sinusoid sent at time t2 , where fl.t = t2 - t 1 . 

The coherence time To is a measure of the expected time duration over which the 

channel's response is essentially invariant. The space-time correlation function and 

the coherence time To provide knowledge about the fading rapidity of the channel 

which can be viewed in terms of two degradation categories: fast fading and slow 

fading. A channel exhibits fast fading if T0 < T8 where T8 is the time duration of a 

transmitted symbol, and slow fading, otherwise. 

In frequency domain, the time variance characteristics can be represented by the 

Doppler power spectrum D(v) which yields knowledge about the spectral broadening 

of a narrowband signal in the Doppler frequency domain and can be related with the 

scattering function as 

D(v) = 1: S(r, v) dr {2.9) 

where I vi~ !d with !d being the width of the Doppler power spectrum, referred to as 

the Doppler spread. The maximum Doppler frequency can be expressed as fd = v /A, 
where v is the relative velocity of travel between the transmitter and the receiver, 

assuming the objects in the channel are stationary and A is the signal wavelength. 

The coherence time and the Doppler spread are inversely related as To = 1/ !d. A 

channel is considered as fast fading if !d > W 8 , where W8 ~ 1/Ts is the signal 

bandwidth, and slow fading, otherwise. 
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This thesis will focus on the blind identification of the frequency selective, slow 

fading channel. By "slow", we mean during the transmission of N snapshots of the 

signal block which bears K symbols, the channel stays invariant. We will be concerned 

with digital signal transmission over the discrete-time baseband equivalent channels 

which can be modelled as linear time-invariant (LTI) within each data frame (N 

snapshots). Before finishing this chapter, let us briefly discuss the discrete channel 

model we will use and the data transmission scheme suitable for the frequency selective 

dispersive channel. 

2.2 Signal Transmission over Dispersive Channels 

To create a link between a physical continuous-time channel and its discrete-time 

equivalent, consider the setup depicted in Figure 2.2. The digital signal s(n) is pre­

Noise IJ(t) 

r(n) 

Figure 2.2: Discrete-time channel model 

filtered by the spectral shaping filter <Ptr(t) and then transmitted over the 9ontinuous 

dispersive channel <Pch(t) corrupted by the additive noise 71(t), the received signal is 

processed by the filter <Prec(t) and then the resulting signal is sampled at the symbol 

rate 1 fTs to get the digital received signal r( n). If we denote the equivalent channel 

to be the cascade of the shaping filter <Ptr(t), the channel <Pch(t) and the receiving 

filter <Prec(t), i.e. h(t) = <Ptr(t)®<Pch(t)®<Prec(t), where"®" denotes convolution, the 

received baseband signal can be represented as 
00 

r(t) = L s(J.L)h(t- J.LT8 ) + TJ(t) ® <Prec{t) (2.10) 
p.=-oo 

Since most channels have impulse responses approximately finite in time support, we 

can assume that h(t) = 0 fort¢ [0, LT8 ], where L > 0 is an integer, that is, we discuss 
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here the FIR channels with the maximum channel order L. After being sampled at 

the symbol rate, the discrete-time received signal becomes 

L 

r(n) = r(t)it=nT. = L h(R)s(n- f)+ "l(n) (2.11) 
l=O 

where h(f) = h(t)lt=er. and 'f1(n) = "l(t) ®q,rec(t)lt=nT.· The upper bound of the order 

L can be determined by dividing the maximum delay spread T m by the sampling 

period T8 • 

For high-data rate communications over the dispersive channel, the lSI is a major 

negative effect we need to combat with. To mitigate such a time domain dispersive 

effect, transmitting the information symbols in blocks will be useful. To be specific, we 

group the serially transmitted signals into blocks of size K which is greater than the 

channel order L. The ith transmitted block is sb(i) = [s(iK), s(iK- 1), · · · , s(iK­

K + 1)]T and the corresponding received block is rb(i) = [r(iK), r(iK -1), · · · , r(iK­

K + 1)jT. The input-output relationship can be expressed according to Eq. {2.11) as 

(2.12) 

where 

SJsi(i) = [sb(il,s(iK- K), .. ·, s(iK- K- L + 1)]r (2.13) 

and the corresponding Hb has the form 

h(O) h{1) h(L) 0 0 

0 h(O) h(L -1) h(L) 0 
Hb= (2.14) 

0 

0 h(O) h(L -1) h(L) 
Kx(K+L) 

From Eq. (2.13), we can see that for the ith received signal block, L symbols of 

the ( i - 1 )th transmitted signal block is involved which results in the inter block­

interference (IBI). However, within each received signal block, there are K-L symbols 

which are only involved with the current transmitted signal block. When K » L, 
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the interference can be small enough to be neglected. To obtain the IBI free block, 

the guard chips can be inserted between the transmitted signal blocks. Usually, two 

kinds of guard chips are available for use: cyclic prefix (CP) and zero padding (ZP). 

We are not going to discuss the CP and ZP in detail here, although our algorithms 

can surely be applied when CP or ZP is used. [37] and [38] can serve as tutorials on 

CP and ZP for interested readers. The algorithms developed in this thesis are based 

on the general IBI channel model, and we are going to use the up-sampling at the 

receiver to combat the IBI. 



Chapter 3 

Subspace Based Channel 

Estimation 

There are currently two main streams of algorithms available for blind channel estima­

tion: one is moment-based and the other is ML-based. Regarding the moment-based 

category, we are more interested in the SOS based algorithms because they converge 

more quickly with respect to the sa.mple size and thus more applicable in the real 

communication systems. One of such SOS based algorithms is the popularly used SS 

method [9] which takes advantage of the orthogonality between the signal and noise 

subspace. With absence of noise, the exact channel coefficients can be obtained and 

when white noise is present, the estimation problem can be solved as a closed-form 

solution with high accuracy. For this method to be applied, the system model, specif­

ically the channel matrix, needs to be structured. Also, it has to provide sufficient 

diversity for the two column subspaces to be available. The special Sylvector structure 

for the channel matrix has been obtained by block transmission of the signal which is 

discussed in Section 2.2. For the diversity, the SISO system needs to be up-sampled 

at the receiver or multiple receiving antennae have to be used. In this chapter, we 

will first discuss the up-sampled system model, also called fractionally spaced system 

model since the sampling period is a fraction of the symbol period [11, 12]. Then we 

14 
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will present the SS method [9] and show that it is actually a large sample realization 

of the ML estimation under some regulatory conditions [19]. The MSS method [10] 

is also discussed to introduce an idea on estimating the channel ba.sed on SOS when 

the noise is correlated. 

3.1 Fractionally Spaced System Model 

As discussed in Section 2.2, the output of a LTI complex channel can be represented 

in ba.seband as 
+oc 

r(t) = L s(!-L)h(t- 1-LTs) + 'f}(t) (3.1) 
p.=-oo 

Let M be an integer and the sampling interval be D. = Ts/M. The up-sampled 

channel output can be written as 

+oo 
r(t0 +mb..)= L s(!-L)h(to+mfi-~-LMI::!..)+'TJ(t0 +mb..) (3.2) 

p.=-oo 

where t0 E [0, Ts) is the initial sample time instant and M is called the up-sampling 

factor. 

For M > 1, the channel impulse response and the noise can be divided into M 

subchannel impulses and M subchannel noises so that the up-sampled channel output 

r(t0 + mb..) can be divided into M subsequences such that 

where 

L 

rm(n) = L hm(f)s(n- £) + 'fJm(n), m = 1, 2, · · · , M {3.3) 
f=O 

rm(n) r(to + nTs + (m- 1)1::!..) 

hm(n) = h(to + nTs + (m- 1)ti) 

'fJm(n) = 'f}(to + nT8 + (m -1)1::!..), m = 1, 2, · · · , M 
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Clearly, these !VI subsequences can be viewed as stationary outputs of M discrete FIR 

channels with a common input sequence {s(n)}. The up-sampled received signal can 

now be represented at time instant n in vector form at the symbol rate as 

L 

r 0 (n) = 2: h(f)s(n- £) + '17 0 (n) 
l=O 

= Hoso(n) + '11o(n) (3.4) 

where h(£) = [h1(£) h2(£) · · · hM(f)jT is composed of the fth taps of the M sub­

channels, r0 (n) = h(n) r2 (n) · · · rM(n)]T is the up-sampled received signal at time 

instant n, s0 (n) = [s(n) s(n-1) · · · s(n-L)jT is composed of the transmitted sym­

bol at time instant n and the interference symbols transmitted in the L immediately 

previous symbol periods, '11o(n) = [771(n) 172(n) · · · 1JM(n)JT is the up-sampled noise at 

time instant n which can be correlated if the sampling rate is fairly high although it 

is assumed to be white in many algorithms, such as the SS method. The up-sampled 

channel matrix Ho can be expressed as 

h1(0) h1(1) h1(L) 

Ho = [h(O) h(1) .. · h(L)] = 
~(0) ~(1) ~(L) 

(3.5) 

hM(O) hM(1) hM(L) 

So far, we see that up-sampling at the receiving end provides the diversity and the 

block transmission discussed in Section 2.2 provides structure for the channel matrix. 

For the SS method to be applied, we need to combine these two features to arrive at 

a new model which will be shown in the next section. 

3.2 Subspace Method (SS) 

In this section, we are going to present the SS method for FIR channel estimation 

developed in [9]. 
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For the frequency selective, slow fading channel, during the time period of K 

symbols over which the channel keeps invariant, the nth up-sampled received M K x 1 

signal vector 

can be represented as 

r(n) = Hs(n) + 1J(n) (3.7) 

where 

s(n) = [s(nK) s(nK- 1) · · · s(nK- K- L + 1)]T (3.8) 

is the transmitted signal vector and 71(n) = [1J 0 (nK)T 1J0 (nK -l)T · · · 1J0 (nK- K + 
1fjT is the up-sampled noise vector. The essence of the SS method lies in the block 

Toeplitz structure of the channel matrix H which is of dimension MK x (K + L) 

H= [ ht ·.·: ~::: ·.:: hL I (3.9) 

where 0 is the M dimensional null vector and the channel coefficients vector is defined 

as 

(3.10) 

As has been discussed, for the signal and noise subspaces to be available, we need 

the channel matrix H to be "tall", i.e. M K > K + L. In other words, for the channel 

to be identifiable for any system with M > 1, the block size K has to be greater than 

the channel order L. Eq. (3.7) serves as the system model for the SS method and for 

the channel to be identifiable, the following assumptions have to be made: 

1. the channel matrix H is "tall" and of full column rank, i.e. the subchannels 

share no common zeros; 

2. the signal covariance matrix I.:s = E{s(n)s(n)H} is full rank; 
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3. the noise process is uncorrelated with the transmitted signals; 

-1. tlw channel orcier L is known or has been correctly estimated; 

5. the noise is a complex and white process, i.e. :E71 = E{17(n1)11H(n2)} = cr~IOn1n2 , 

where cr~ is the noise variance, I is the identity matrix of dimension M K x M K 

and c5n1n2 is the Kronecker delta function. 

Denote ::Er to be the covariance matrix of r, then 

(3.11) 

which can be eigen-decomposed as 

(3.12) 

Since ::Er is Hermitian and positive definite, its eigenvalues are real and positive and 

the eigenvectors are orthonormal. Furthermore, since H is a tall matrix with full 

column rank, and the signal covariance matrix :E8 is full rank, the matrix H:EsHH is 

singular with M K - ( K + L) zero eigenvalues. Also considering the noise covariance 

matrix :E71 is an identity matrix with a multiplicative scalar cr~, A can be written as 

A= diag(>.1 + cr~, · • • , >.K+L + cr~, cr~, · · · , cr~) (3.13) 

where >.1 ~ >.2 ~ • • • ~ >.K+L are the nonzero eigenvalues of H:EsHH. If we collect 

from U = [u1 u2 · · · llK+L UK+L+l · • · llMK] the eigenvectors corresponding to the 

largest K + L eigenvalues to form matrix Us and the remaining eigenvectors to form 

U 71 , Er can be further written as 

(3.14) 

with As = diag(>.1 + cr~, · · · , AK+L + cr~) and ~ = cr~IMK-(K+L)· Since U is 

orthonormal, we have uflu; = 0 for i =f j and thus, u:us = 0, i.e. the subspace 
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spannerl hy the columns of Us called the signal subspace is orthogonal to the subspace 

t;pauneu by the columns of U 77 called the noise subspace. 

From the definition of eigenvalues and eigenvectors, we can write 

:ErU77 = U 77A77 = a~U171MK-(K+L) = a~IMKU77 

=> (:Er- a~IMK)U77 = 0 

Using Eq. (3.15) together with Eq. (3.11), we get 

Since H:Es is full rank, it follows that 

(3.15) 

(3.16) 

(3.17) 

So we can say that the subspace spanned by the columns of H is also orthogonal to 
li) 

the subspace spanned by the columns of the matrix U 77 , i.e. 

span{U s} - span{H} 

span{U77 } - span{H} 

where span{H} denotes the orthogonal complement of span{H}. 

In practice, we can only get the estimated CMORS f:n calculated by 

1 N 
~r = N L r(n)r(n)H 

n=l 

(3.18) 

where r(n), n = 1, 2, · · · , N are the N snapshots of the received data with each 

vector r(n) defined as in Eq. (3.6). Since f:r is still Hermitian and positive definite, 

its eigenvalues are still real and positive and eigenvectors are still orthonormal. We 

can select the eigenvectors corresponding to the smallest MK- (K + L) eigenvalues 

of f:r to form the noise subspace. Although this estimated noise subspace is not 

orthogonal to the true signal subspace spanned by the columns of the channel matrix, 
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we can search for the subspace that is closest to being orthogonal to this estimated 

noise subspace, i.e. 

m~n II u:H II} 
s.t. II h ll2= 1 (3.19) 

where the quadratic constraint is added to avoid the trivial solution. Considering 

the relationship between the Frobenius norm and 2-norm, the above optimization 

problem can be converted to 

MK-(K+L) 

m~n L II u?H II~ (3.20a) 
j=l 

s.t. (3.20b) 

where ui is the jth column of U11 • 

Due to the special block Toeplitz structure of the channel matrix H, we have the 

following lemma [9]: 

Lemma 1 Suppose that v = [vll v2, · · · VMKJT is in the noise subspace, then the 

following relationship holds 

h(L) 

h(O) h(L) I =0 

where ve is the R.th subvector ofv and h = [h(O)H · · ·h(L)H]H is the channel coeffi­

cients vector to be estimated and V K is of dimension M(L + 1) x (K + L). D 
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According to Lemma 1, we have 

MK-(K+L) 

2: llufHII~ = 
j=l 

MK-(K+L) 

L II hHiij II~ 
j=l 

= hH CfL) fr;fr:) h (3.21) 

where iii is constructed from ui as in Lemma 1. The optimal solution for Eq. (3.20a) 

with the constraint in Eq. (3.20b) is obtained if and only if h is chosen to be the 

eigenvector corresponding to the smallest eigenvalue of the matrix 'E~~ -(K +L) iii u: 
in Eq. (3.21). This can be proved as follows: 

MK (K+L)"' ""'H - .-Proof: Denote Ej=l- ujuj to be w and eigen-decompose it as w = 

{3.22) 

where Aw = diag{.\~, _\~(L+l)} with _\~ > _\~ > ... > _\~(L+I)-1 > _\~(L+I) = 

.\:in·~ 0 and Uw = [u~ U~ · · · U~{L+I)j with U~ being the eigenvector corresponding 

to the eigenvalue.\~. Denote Xw = U~h, then, Eq. (3.22) can be further shown as 

M(L+I) M(L+I) 

hHfi A iJHh = ~ ).i !xi 12 > )_min ~ lxi 12 = ).min 
www LJ ww-w LJ w w {3.23) 

i=l i=l 

where x~ is the ith entry of :Xw and the last equality holds because 

M(L+I) M(L+I) 

~ lxil2= ~ hHuiuiHh=hHU iJHh=l L w L ww ww (3.24) 
i=l i=l 

since U w is orthonormal and II h 1!2= 1. 

Next, we can show that hHWh achieves its minimum .\;:in if and only if his 

chosen to be the eigenvector corresponding to the smallest eigenvalue of the matrix 

w. 
~ M(L+l) ~H-~ ~ · 

Sufficiency: h = Uw ==> h Wh = .x;:tn 
Since h = ft~(L+l), then :Xw = e1 = [0, 0, · · · , 0, ljT. Refer to Eq. {3.23), the 

conclusion :hHw:h =.\;:in follows immediately. 
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' -' ' · ' M(L+1) Necessity: hHWh = >.:tn ===> h = Uw 

This can be shown in two steps: 

Step 1: Assume x~o is the first nonzero entry of :Xw counting from x~(L+l) up, 

then 

(3.25) 
i=1 

Since for No =I M(L+ 1), )..~o > )..~(L+l) =>.:in, the minimum is not achieved unless 

No= M(L + 1), which means i:~(L+l) cannot be zero. 

Step 2: Assume there is another entry of :Xw which is not zero, then 

M(L+l) 

hHWh = 2: 5..~1x~l2 
i=1 

M(L+l)-1 

= L 5..~1x~l2 + >.~<L+1>1x~<L+1)12 
i=1 

> ).!'<L-Hl-1 c<~r IX~ I') + ).!'<L+1l [ 1 - c<~-
1 

IX~ I') l 
(3.26) 

' -' ' · 'M(L+1) Since hHWh = >.:tn = Aw , from Eq. (3.26), we have 

M(L+l)-1 

( ~<LH)-1 - ~<LH>) L lx~ 12 ~ o (3.27) 
i=1 

Now, since )..~<L+ 1)- 1 > )..~<L+1 ), Eq. (3.27) cannot hold with the assumption of this 

step. Thus, we can conclude that x~ = 0 fori= 1, 2, · · · , M(L + 1)- 1. 

By combining the conclusion of step 1 and step 2, we can see that Xw = e1. 

Recall that Xw = U~h, so we can finally conclude that the minimum is achieved only 

"f hA - • M(L+l) 
1 - Uw . 0 

Now we have obtained the estimate of the channel vector and the following The­

orem tells us that this estimate is the true channel vector up to a constant of propor­

tionality [9]: 
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Theorem 1 Let HJ. = span{V71 } be the orthogonal complement of the column space 

of H. For any h and its corresponding estimate h satisfying the identifiable condition 

that the subchannels are co-prime, HJ. = fi:J. if and only if h = ah, where fi:J. = 
span{V11 } is the estimated orthogonal complement of the channel matrix H and a is 

u cunstant. D 

3.3 Relationship Between SS Estimation and ML 

Estimation 

The ML-based estimation can be derived as statistical ML (SML) or deterministic 

ML (DML) based on wether the input signals are random with a known distribution 

or deterministic parameters. If we follow the line of DML and represent the received 

data over N snapshots in matrix form as RN = [r(1) r(2) · · · r(N)] where r(n), 

n = 1, 2, · · · , N are theN snapshots of the received signals defined in Eq. (3.7). The 

log likelihood function can be expressed as 

J:.,ml (RNih,:E;1
) = logp(RNih,:E;1

) 

NMK N 1 N 
= -

2 
log(27r) + 2 1og (det :E;1

)- 2 L [r(n)- Hs(n)]H 1::;1 [r(n)- Hs(n)] 
n=l 

(3.28) 

where s(n), n = 1, 2, · · · , N are the transmitted signal vectors defined in Eq. (3.8). For 

white noise, 1::71 is an identity matrix multiplied by the noise covariance u~. Omitting 

constants from Eq. (3.28), the log-likelihood function becomes 

N 

J:.,ml ~-L II r(n)- Hs(n) II~ (3.29) 
n=l 

which is a well known standard least square problem. After concentration with respect 

to {s(n)}, the log-likelihood is given by 

(3.30) 
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which is highly nonlinear with respect to the channel coefficients and multimodal when 

the optimization procedure is applied. To combat with the intimidating computation 

complexity of ML, some more statistically efficient methods are developed provided 

that the channel stays invariant before large enough data samples are collected [19]. 

In the subsequent parts of this section, we will show that the SS method [9] 

presented in Section 3.2 is a large sample realization of the ML estimation, following 

the arguments in [19]. 

From Eq. (3.30), we can see that the ML estimate of the channel can be equiva­

lently obtained a.s the maximizer of 

(3.31) 

For the snapshots N large enough, the estimated CMORS iSr can be eigen-decomposed 

a.s in Eq. (3.14). Substitute Eq. (3.14) into Eq. (3.31), we get the log-likelihood func­

tion for large samples a.s 

J:.,lsml ~ tr { U~H (HHH) - 1 HHVsAs} + tr { u:H (HHH) - 1 HHU7Ju~I} 

- trAs + tr { [u~H (HHHf1 HHiJs- I] As} 
+tr { (HHH) -l HH (I- U8U~) H} u~ 

= trAs + tr { [u~H (HHHf1 HHiJs- I] (As- u~I)} (3.32) 

Define T = u7Ju:H = H- UsU~H, then we can write HHH as 

HHH = [rH +HHiJsv~J [r+ U8U~H] 
= yHT+HHiJ iJHH 

8 8 (3.33) 

where the second equality follows since U~T = 0. We can substitute H for H in 

Eq. (3.33) without affecting the asymptotic property. Since His full column rank and 

both H and Us span the estimated signal subspace, there exists a full rank matrix 

T such that H = VsT. Since Tis full rank, we know that u~:H: is full rank. So we 
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can multiply (HHUs)-1 to the left and (U~H)-1 to the right of HHH in Eq. (3.33), 

and obtain 

Therefore, 

U~H ( HHH) -
1 

HHtJ s - I 

= [(:H:Hfis)-1-rHT(U~H)-1 +1]-1 -1 

~ - (ftHtJs) -1 yHy (fi~H) -l (3.35) 

where the last approximation holds because, for a subunitary matrix A, we have 

(I+ A)-1 =I- A+ A 2 - A3 + · · ·. Inserting Eq. (3.35) into Eq. (3.32), we obtain 

Furthermore, since 

(3.37) 

we have 

(3.38) 

Then, Eq. (3.36) can be further derived as 

Since trAs is a constant, the large sample ML (LSML) can be estimated as the 

minimizer of 

{3.40) 

Compare Eq. {3.40) with Eq. (3.21) for SS method, we can see that the SS method is 

a large sample realization of ML when Es = al with a being a constant, which means 

the transmitted signals are uncorrelated with one another and have equal power. 
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3.4 Modified Subspace Method (MSS) 

In Section 3.2, we know that the SS method is developed with a necessary condition 

that the noise is white. Under correlated noise, since ED on the CMORS is not 

enough to obtain the signal and noise subspaces, the conventional SS method is not 

applicable. But it can be modified so that the channel estimate does not directly 

depend o11 the ClVIOR.S and thm;, is independent of the covariance matrix of the 

additive noise. This modified subspace method (MSS) is originally developed in [10]. 

We include it in this section for the convenience of the comparison in the simulations. 

For this MSS method to be applicable, the identifiability conditions for SS method 

still need to be satisfied except that the noise can be correlated with unknown co­

variance matrix :EfJ. Using the same system model as in Eq. (3.7) in Section 3.2, the 

lag-r K CMORS can be expressed as 

{3.41) 

where r is the received signal vector of length MK as defined in Eq. (3.6), :Es(r) = 

E{s(n + r)s(n)H} is the cross correlation of the transmitted signals with s being a 

(K + L) x 1 vector as defined in Eq. {3.8). The lag-rK correlation matrix of the 

noise :EfJ(r) = E{17(n+r)17(n)H} will be equal to zero when r ~ 1 since when r ~ 1, 

17(n + r) and 17(n) are not overlapping and the noise is assumed uncorrelated before 

up-sampling in [10]. To get rid of the effects of the noise, we can chooser= 1 and 

look at the lag-K CMORS which is 

(3.42) 

The standard SS method introduced in Section 3.2 can then be applied on :Er(K) to 

estimate the channel provided that :Es(K) is of full rank. Without further assump­

tions, to satisfy the identifiability condition that :Es(K) is full rank, the transmitted 

signals have to be correlated. 
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When the signals are independent, :E8 (K) will not be full rank, but some simple 

further steps can be added after Eq. (3.42) to obtain a useable matrix on which the 

SS method can be applied. If the complex symbols are all unit-variance, then :E8 (K) 

is a shift Identity matrix, denoted by J(K), with the (i,j)th element defined by 

{ 

1, i- j = K 
Jii(K) = 

0, otherwise 

In this case, a new matrix :Er(K) is obtained in [10] such that 

(3.43) 

:Er(K) = :Er(K) + :E:: (K) = H (J(K) + J(K)H) HH (3.44) 

The middle matrix J(K) + J(K)H can be full rank provided that K = L. Then the 

SS method can be applied on :Er(K) to get the channel estimate. 

So far, we see that for this MSS method to work under correlated noise, some 

restrictive assumptions on the transmitted signals have to be made: for the uncor­

related signals, the block length K has to be equal to the channel order L which 

requires that the number of the subchannels M has to be greater than 2, or the 

transmitted signals have to be correlated to make :Es(K) full rank (or at least make 

~(K) = :E8 (K) + :E~ (K) full rank if :Er(K) is used in the case of correlated signals). 

3.5 Channel Matrix Transformation 

In the first two sections of this chapter, we presented the two SOS based algorithms: 

SS and MSS. In the following two chapters, we are going to present the new algorithms 

we develop for estimating the FIR channels under unknown noise. To facilitate our 

algorithms so that the channel estimates can be obtained more directly, we will make 

use of the following results developed in [17]. 

It has been shown that a highly structured matrix G 71 the columns of which spans 

the orthogonal complement of a special Sylvestor channel matrix can be obtained 

using an efficient recursive algorithm. This Sylvestor channel matrix, denoted by H 
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in turn, has a structure which is the row-permuted form of the block Toeplitz channel 

matrix H shown in Eq. (3.9), i.e. 

h1(L) 

Hc1> 

H= 
Hc2) 

= 
h2(L) 

H(M) 

where II is a proper row-permutation matrix, and 

Hem>= [ hm(O) ·. ·.: hm(L) . l 
hm(O) · · • hm(L) 

=IIH (3.45) 

{3.46) 

with { hm (f), m = 1, · · · , M} being the elements of the ( f + 1 )th column vector of 

Ho in Eq. {3.5). H(m) is of dimension K x (K + L) form= 1, 2, · · · , M. Delete the 

last L rows and L columns of H(m), and denote the truncated matrix by H(m) which 

has the dimension of (K - L) x K, then we can form the matrix G~m such that (17] 

G~m-1 0 

-H(m) 0 0 0 Hell 
GH -'ll,m- -Hem) 0 0 Hc2> {3.47) 

-H(m) Hcm-1) [<m-;l)""(K-L)] x[mK] 

with m = 2, · · · , M being the index of the subchannels. (For m = 2, we have 

G~2 = [-H(2) H(1)]). Specifically, for the channel model with M subchannels (m = 
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M). we denote G,1,M by G 11 which has the following desirable properties useful to our 

channel estimation algorithms. 

Properties of G 11 : 

1. We note that G 11 is of dimension M K x [ M ( M -1) ( K-L) /2] and the orthogonal 

complement of the column subspace of H is of dimension M K- ( K + L). Since 

the columns of G 11 span the orthogonal complement of the column subspace of 

H, then we have 

(3.48) 

Since the M ( M - 1) ( K - L) /2 columns of G 11 span the orthogonal complement 

of H, we must have 

M(M -1)(K- L)/2?:. MK- (K + L), or, K?:. ~ ~ ~L (3.49) 

This implies that to make use of this matrix G11 , the number of symbols Kin 

the block of transmitted signals must be greater than the length of the channel 

impulse response. 

2. For any vector b = [bf bf · · · b'LJT, where bm = [bm(1) bm(2) · · · bm(K)jT, m = 

1, 2, · · · , M, the following relation holds 

(3.50) 

where h = [hf hf · · · h.LJT with hm = [hm{O) hm(1) 

1, 2, · · · , M being the vector comprising of the coefficients of the mth subchannel 

and B M is constructed from b recursively according to 

Bm-1 0 

B(m) -B{l) 

Bm= B(m) -B(2) (3.51) 

B(m) -B(m-1) 
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with B2 = [B(2) - B(l)J and 

bm(1) bm(2) bm(L + 1) 

B(m}= 
bm(2) bm(3) bm(L + 2) 

for m = 2,·· · ,M 

bm(K- L) bm(K- L + 1) bm(K) 
(3.52) 

A proof for Property 2 is provided in Appendix C. 



Chapter 4 

MAP Channel Estimation 

In this chapter, we present the MAP estimation algorithm, following a similar deriva­

tion in [25], based on the SISO system with the output up-sampled by a factor M as 

in the SS method in Chapter 3. For the MAP criterion to be established, the prior 

distribution of the noise is needed. Since little is known about the noise, we take ad­

vantage of the Jeffreys' rule [14, 15] to arrive at a noninformative a priori pdf for its 

covariance matrix. Thereafter, we get the MAP objective function the maximizer of 

which is the estimated channel vector. To increase the efficiency of implementation of 

the algorithm, we simplify the objective function in large sample sense. Together with 

exploiting the structure of the channel, a much simpler criterion is obtained. While 

constructing an orthogonal projector in [25], a non-orthogonal projector is derived in 

this thesis and together with the matrix transformation introduced in Section 3.5, we 

reformulate the MAP criterion such that the channel estimate is obtained. 

4.1 Calculation of the Noise Prior Distribution 

The aim of this section is to derive the prior distribution for the unknown noise 

parameters when little is known a priori. What we know here is the received signals 

which can provide information about the unknown parameters through the likelihood 

31 
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function. To make it easier to understand, we will start from the case of a single 

parameter and then extend the result to the case of multiparameters needed for this 

thesis. The development of this section is based on [15] and [25]. 

4.1.1 Data Translated Likelihood 

Suppose y = [y1 y2 • • • YN]T is the independent random samples of a random variable 

y with normal distribution :N(O, u2). Then the likelihood function can be expressed 

as 

(4.1) 

where 
N 

2 1""'2 
Yav = N LJYn 

n=l 

(4.2) 

Definition 1 [15] Denote cf>(u) as a function of u and write the likelihood function 

p(ylu) as a function of c/>, denoted as p(ylcf> ). Then p(ylcf>) is said to be data translated 

with respect to c/> if the likelihood curve p(ylcf>) is completely determined a priori except 

its location with respect to cf>. 0 

As we know, when a parameter is unknown, u under current discussion, a uni­

form distribution is often naturally assumed for it. This means we are almost equally 

willing to accept one value of u as another. From Definition 1, we know that this as­

sumed uniform distribution is justified if the corresponding likelihood function is data 

translated with respect to that unknown parameter, otherwise not. If the uniform 

distribution assumed directly for the unknown parameter u is not justified, we can 

try to find a ¢( u) with respect to which, the corresponding likelihood function is data 

translated. Then a uniform distribution can be assumed for cf>(u) and accordingly, 

the prior distribution of u can be obtained as p( u) = p( cf>) I~ I, provided that the 

transformation between u and c/> is one to one. 
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For illustration, we take ¢(a)= log a in Eq. (4.1), and the likelihood function can 

be written as the function of log a such that [15] 

p(ylloga) "'exp { -N (log a -logyav)- ~ exp [-2 (log a -logyav)] } (4.3) 

From Fig. 4.1 and Fig. 4.2, we can see more clearly that the likelihood in terms of 

log a is data translated while it is not in terms of a. 

6 

5 

i 
4 

!!!!! 3 

2 

a-

Figure 4.1: Likelihood function vs. the noise standard deviation u 

Thus, in this logarithmic metric, the data acting through Yav serve only to relocate 

the likelihood. A noninformative prior should therefore be locally uniform in ¢( u) = 

log u. Since the projection from u to ¢(a) = log u is one to one, the informative prior 

distribution for a should be 

p(a) <X I d~~) I = (1-1 (4.4) 

Mathematically, a data translated likelihood must be expressible in the form of 

p(yia) = g[¢(u)- f(y)] (4.5) 

where g(x) is a known function and f(y) is a function of the observation y [15]. 
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Figure 4.2: Likelihood function vs. log a 

4.1.2 Jeffreys' Rule 

As might be expected, a transformation which allows the likelihood expressible exactly 

as in Eq. (4.5) is not generally available. So we can try to find a transformation ¢ 

for which the likelihood is approximately data translated [15]. That is to say, the 

likelihood for ¢ is nearly independent of the observation data y except for its location. 

Now suppose y = [y1 y2 • • • YNJT is a random sample from a distribution p(yia) 

where a is the unknown parameter. To find the transformation which achieves the 

approximate data translation of the likelihood function, consider the Taylor expansion 

of the log-likelihood function about 8' which is the ML estimate of a 

.C(a) = log(p(yla)] ~ .C(u)- N (a-u?(-..!:_ 82
.C) (4.6) 

2 N 8a2 fr 

where the first derivative ( ~;) fr disappears because 8' is the ML estimate of a. 

For sufficiently large N, the likelihood function of a is approximately normal 

centered on its ML estimate 8' and remains approximately normal under one-to-one 

transformations of a (15]. Comparison of Eq. ( 4.6) with the logarithm of a general 

normal distribution function p(x) which is of the form logp(x) =canst. -~(x- p)2 fa~ 
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shows that the standard deviation of the log-likelihood curve .C(a) with respect to a 
l 

in Eq. ( 4.6) is approximately equal to N-! ( -}1 ~) : 2
. 

It iR to be noted that 

(4.7) 

is the average of N identical functions of (y1, • · • , YN ). According to the Law of Large 

Numbers, for large N, this average converges in probability to the expectation of the 

function, that is , to 

-E [82
logp(yja)] ~ !J(a) 

8a2 

Now suppose that ¢(a) is a one-to-one transformation, then 

!7((/J) = -E [82
logp(yja)J = !J(a) (da)

2 

8¢2 ~ d¢ fr 

It follows that if ¢(a) is chosen such that 

(4.8) 

(4.9) 

(4.10) 

then the likelihood will be approximately data translated in terms of ¢. Thus, the 

corresponding noninformative prior distribution for a can be obtained as 

p(a) ~ I:~ I ex !J(a)~ (4.11) 

4.1.3 Noise Prior Distribution 

To extend the noninformative distribution for single parameter to the multivariate 

parameter case and calculate the noise prior distribution needed for this thesis, we 

follow the derivation in [25] and rewrite the system model in Eq. (3.7) here for con-

venience 

r=Hs+77 (4.12) 

with r, H, s and 71 defined the same as in section 3.2. The unknown parameters 

here are the elements in the noise covariance matrix :E17 • In the case of Gaussian 
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distributed noise with zero mean and unknown covariance matrix :E77 which is of 

dimension M K x M K, there are M K ( M K + 1) /2 unknown parameters since :E77 is 

H<'rmit ian. Irlen.llv. a data. tra.nf'lated likelihood must be of the form 

(4.13) 

where the M K x M K matrix CI» is a one-to-one transformation of :E;1
, g is a known 

function and F is a M K x M K matrix function of r. Following the same arguments 

as in the single parameter case, the log-likelihood can be Taylor expanded about the 
---1 

ML estimate :E
71 

as 

where N is the number of snapshots and Gi:-1 is the M 2 K 2 x M2 K 2 matrix of the 
" ---1 

second derivative evaluated at :E
77 

, that is 

(4.15) 

where the matrix operator V':E-1 is defined such that the (m, n)th element is given by 
" 

V' = ~ ( a£ - . a~:.; ) 
mn 2 a (:E-1 re J a (:E-l)im 

71 mn 7) mn 

(4.16) 

with (:E;1)mn being the (m, n)th element of :E;1 having (:E;1):n and (:E;1): being 

its real and imaginary parts respectively. For large N, Gi:-1 can be closely approxi-
" mated by 

{4.17) 

---1 
where !f'(:E

71 
) is the information matrix , that is 

(4.18) 

Now, ideally, we should seek a transformation CI» (}5~1) such that !f'(i) is a 

constant matrix, i.e. the likelihood function would be approximately data translated 
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with respected to ~. But this is not possible in general. Alternatively, we may find 

a. transformation ~ such that the volume of the likelihood region remains constant 

for different ~. Since the determinant of the square root of the information matrix 

measures the volume of the likelihood region, the above requirement is equivalent to 

ask for a transformation for which det [ !f"{ i)] is independent of i. 
Note that 

{4.19) 

where \l c1>:E;1 is a M 2 K 2 x M 2 K 2 matrix of partial derivatives of :E;1 with respect 

to ci>. Then, 

( 4.20) 

Thus, for the likelihood function to be approximately data translated, the transfor­

mation ci> should be chosen such that 

{4.21) 

Since a uniform distribution can be assumed on ci>, the prior distribution of :E;1 can 

be obtained as 

( 4.22) 

Now we have obtained the noise prior distribution as in Eq. ( 4.22) and it can be 

summarized as the Jeffreys' rule [14, 15] for multiparameter problems which is stated 

as: The prior distribution for a set of unknown parameters is taken to be proportional 

to the square root of the determinant of the information matrix. 

4.2 MAP Algorithm Development 

We represent the received data over N snapshots as 

RN = [r{1) r(2) · · · r(N)] 
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where r(n), n = 1, 2, .. · , N are defined the same as in Eq. (3.6). With both the 

channel and the noise covariance matrix unknown, we are trying to estimate the 

channel based on the MAP criterion using RN. The MAP criterion can be expressed 

as [25] 

( 4.23) 

Noting that p(RN) is independent of h and .E11 and we are trying to estimate the 

channel without estimating the noise, we can arrive at the a posteriori pdf containing 

the channel coefficients only by integrating Eq. {4.23) with respect to .E~ 1 to obtain 

the marginal density function [25], i.e., 

p{hiRN) ()( p{h) I: p (RNih, .E~ 1 ) p (.E~1 Ih) d.E~1 

()( I: p (RNih, .E~ 1 ) p (.E~1 Ih) d.E~1 

{4.24a) 

{4.24b) 

where, to arrive at Eq. (4.24b), we have assumed that all the channel coefficients are 

equally likely within the range of distribution. 

Since the noise is Gaussian distributed with zero mean and unknown covariance 

.E11 , the likelihood function in Eq. {4.24b) can be represented as 

p(RNih,.E~1 ) = (27r)_N~K (det.E~ 1 )~ 

· exp { -~ t, (r( n) - Hs(n))H E~1 (r( n) - Hs( n))} ( 4.25) 

where s(n), n = 1, 2, · · · , N are the transmitted signals defined as in Eq. {3.8). Substi­

tuting the ML estimate of the transmitted signal s(n) = (HH.E~1H)-1 HH.E~1r(n), 

n = 1, 2, · · · , N into Eq. (4.25) and omitting the constant terms, the concentrated 

likelihood function becomes 

{4.26b) 
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where etr( ·) denotes exp [tr{ ·}] and 

(4.27) 

is a weighted projection matrix with the idempotent property (P-}j )2 = P-}j. To arrive 

at Eq. (4.26b), we employed the relationship that E11 = -Ji E~=l (P-}jr(n)] [P-}jr(n)]H 

since PJi is a non-orthogonal projector onto the noise subspace. 

To evaluate the integral in Eq. (4.24b), we must obtain an expression for p(:E;11h) 

which can be calculated according to Jeffreys' rule discussed in subsection 4.1.3 as 

( 4.28) 

It can be shown that [25] 

(4.29) 

(See Appendix A for the Proof) 

Substituting Eq. (4.29) and Eq. (4.26b) into Eq. (4.24b), the MAP criterion be-

comes 

p(hiRN) oc {det(Nf:'l)} N-a~K-1 I: {det(NI:'I)} N-~MK_M~+l 

{ det (:E;1
)} ~-MK etr { -~:E;1 NE11 } d:E;1 (4.30) 

Note that when N ~ 3MK, the integrad in Eq. {4.30) can be recognized as the 

complex Wishart distribution [16] with some proportional constants omitted, and 

hence the integral is a constant. Therefore, 

N-SMK-1 
2 

Take the logarithm of Eq. {4.31), the MAP criterion can be represented as 

(4.31) 

(4.32) 
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Since the matrix P"Jii5r(P"Ji )H is rank deficient with rank being M K- (K + L ), the 

determinant in Eq. (4.32) is strictly equal to zero. However, we can use the product 

of the M K - ( K + L) principal eigenvalues to calculate the determinant to evaluate 

Eq. ( 4.32), giving 

(

MK-(K+L) ) 

1:..-ma,p ex - log n >.i 

t=l 

(4.33) 

with >.i, i = 1, 2, · · ·, MK- (K + L) being the nonzero eigenvalues of P"Jii5r(P"Ji)H 

such that A1 ~ A2 ~ · · · ~ >.MK-(K+L) > 0. 

4.3 Efficient Implementation of the Algorithm 

In order to give a more computationally efficient implementation for the MAP ob­

jective function in Eq. (4.33), we consider the projection of the received data onto 

the range subspaces of I- P"Ji and P"Ji., with the columns of .!Is and U
71 

being the 

orthonormal basis of these two subspaces respectively. Then, i5r can be factored as 

(4.34) 

where Css and c7j7j reflect the signal correlation and the noise correlation respectively. I 

Furthermore, we have 

P"Ji.!Is = 0 (4.35) 

and 

(4.36) 

Then, 

(4.37) 
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Thus, the logarithm of the MAP criterion in Eq. {4.32) can be written as 

.Cmap ex -log { det [u7767777U:]} (4.38a) 

- log { exp [ tr [log ( U 7167117 U:) J J } (4.38b) 

= -tr [log ( u/j7117u:) J {4.38c) 

= -tr [U77 log (67117) u:] (4.38d) 

= -tr [log ( 67171)] (4.38e) 

where Eqs. (4.38b) and (4.38d) are obtained since, for a positive definite {semi­

definite) matrix A, equation det[A] = exp{tr[log(A)]} holds, and the logarithm of a 

matrix A is defined such that if A can be eigen-decomposed as A = V aAa V!!, then 

log A = V a (log Aa) V!! and the logarithm of a diagonal matrix is the matrix with the 

diagonal entries to be the logarithm of the original entries [25] and here we take the 

logarithm of zero to be still zero. 

On the other hand, we have that [25] 

Combine the derivation for Eqs. (4.38) and {4.39), we obtain 

(4.40) 

As an approximation, we now substitute the non-orthogonal projector P-Ji for the 

orthogonal projector U 71U: in Eq. (4.40) such that 

{4.41) 
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Eq. (4.41) is our MAP estimate criterion of the channel coefficients under unknown 

Gaussian noise. However, it is not very convenient to use since P"i£ is an implicit 

function of h. We overcome this difficulty by applying the result of channel matrix 

transformation [17] as summarized at the end of last chapter. By permuting the rows 

of the channel matrix H using II, we obtain the Sylvestor form H of the channel 

matrix from which we recursively generate the matrix G11 • Now, from Eq. (3.48), we 

have 

( 4.42) 

where, because of the relation of Eq. (3.49), the pseudo-inverse, denoted by t, of 

the matrix G:rrrrH G 11 has to be used. Combining the projection matrix P"if in 

Eq. (4.27) and Eq. (4.42), we obtain 

(4.43) 

··So the MAP criterion in Eq. (4.31) can be written now as 

l:rrw.p "' -tr { ( G:IT:E 11)H ( G:IT:E11ITH G 11 ) t G:rr (log Er)} 

-tr{ (a:rrEr)H (a:rr~riiHG11ra:rr(log~r)} (4.44) 

where in the second step, we have used the facts that (IIH G 11 )HH = 0 and thus :Er 

can be substituted for :E11 , and that as N increases, Er--+ :Er. 

Now, let vi denote the ith column of ITEr and wi denote the ith column of 

II(log Er), then using Property 2 of G?l in Eq. (3.50) such that a: vi = viii and 

G:wi = Wih with Vi and Wi constructed from Vi and Wi respectively as indicated 

in Eq. (3.51), then the channel coefficients can be estimated as 

We can see that the estimated channel vector ii. from Eq. ( 4.45) is a permuted version 

of the channel vector defined in Eq. (3.10). (G:IIEriiHG11r in Eq. (4.45) is a 
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weighting matrix which has the unknown channel coefficients. The IQML [18] or the 

TSML [17] algorithm can now be applied to solve this optimization problem. 



Chapter 5 

Canonical Correlation 

Decomposition Based Channel 

Estimation 

In Chapter 4, we developed the MAP channel estimation algorithm for up-sampled 

SISO system. In this chapter, we assume multiple receiving antennae are available 

and we are going to develop two algorithms using CCD, based on the SIMO system. 

For our new algorithms to work, as few as two receiving antennae are enough, and 

we will up-sample the output data of both receiving antennae. 

When the noise is white, ED applied directly on the CMORS is enough to sep­

arate the signal subspace and the noise subspace [9]. However, when the noise is 

correlated, these two orthogonal subspaces cannot be separated this way any more. 

Iu the following sections, we will first present our system model, then our new sub­

space method is developed for unknown noise, utilizing CCD to separate the signal 

and noise subspaces based on some of its useful properties [13] [22]. Then, with the 

CCD-estimated signal and noise subspaces available, we present the ML estimator for 

which the likelihood function is obtained from the Gaussian distributed projection 

error from the noise subspace onto the estimated signal subspace. 

44 
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5.1 System Model 

Consider a receiver activated by the same transmitted signal having two antennae the 

outputs of which are up-sampled by factors M1 and M2 respectively. Without loss of 

generality, we assume that M1 < M2 . For mathematical convenience, we also assume 

the order of the two channels linking the translnitter to the two receiver antennae to 

be the same. Then, similar to Eq. {3.7), the two outputs from the antennae over K 

symbols can be represented as 

r1(n) - H1s(n) +171(n) 

r2(n) = H2s(n) + 172(n) (5.1) 

with H1, H 2 being of dimension M1K x (K + L) and M2K x (K + L) respectively 

and having the same structure asH in Eq. (3.9). Let the two antennae be sufficiently 

separated such that the noise vectors are uncorrelated [13] [22], i.e. 

E { 171 (n)172(n)H} = 0 

E { 112(n)111(n)H} - 0 (5.2) 

Note that the first four identifiable conditions of the SS method are still valid here. 

However, we allow the covariance matrix of 111(n) and 172(n) to be arbitrary and 

unknown, i.e., 

i = 1,2 (5.3) 

We now stack the two received vectors to form a new vector r the covariance of which 

is [13] [22] 

:E = E { [ r
1 

] [ r{l rf J } = [ :Eu :E12 ] 
r2 :E21 :E22 

where the submatrices :Eii are given by 

:Eii = Hi:EsJlff + :Ei7]l 

E12 = H1EsH¥ = E~ 

i = 1,2 

(5.4) 
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Eq. (5.4) can be employed in different ways to estimate the channel in the presence 

of unknown noise. The MSS method discussed in Section 3.4, for example, uses the 

received signal vectors r 1 and r 2 in consecutive time slots and employs their cross­

correlation matrix :E12 to estimate the channel taking advantage of the zero noise 

correlation term [10]. In so doing, some arbitrarily restrictive assumptions of the 

signals have to be made. If the received signal vectors r1 and r 2 are collected by 

two separate receiving antennae as is the case in this chapter, we can still use the 

matrix :E12 in Eq. (5.5) to estimate the channel following similar reasoning of the 

MSS method. In the following sections, we will develop two new algorithms which 

yield superior performance while keeping the computation complexity comparable to 

that of the MSS method or the SS method. 

5.2 CCD Based Subspace Algorithm {CCD-SS) 
1 1 

We introduce the matrix product :E~l:E 12:E;l on which a singular value decomposi-

tion (SVD) can be performed such that 

(5.5) 

where ul and u2 are of dimension MlK X MlK and M2K X M2K respectively and 

ro is of dimension MlK X M2K, given by 

where r = diag('y1 , -y2 , • · · , 'YK+L) with 'Yk, k = 1, · · ·, K + L real and positive such 

that -y1 2:: -y2 2:: · · • 2:: 'YK+L > 0. Eq. (5.5) is referred to as the CCD of the matrix 

:E [13] [22]. Now, fori= 1, 2, we define 

(5.6) 
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and partition them such that 

(5.7a) 

(5.7b) 

where Zis and Zi71 , Yis and Yi71 , Dis and Ui71 are the first K + L columns and the 

last MiK- (K + L) columns of Zi, Yi, and Ui respectively. Then, fori= 1, 2, the 

following relations hold [13] [22]: 

span{Yis} span{Hi} 

span{Zi71 } = span{Hi} 

where span{Hi} denotes the orthogonal complement of span{Hi}. 

(See Appendix B for the Proof) 

From Eq. (5.8), we can conclude that 

(5.8a) 

(5.8b) 

(5.9) 

As usual in practice, we can only estimate the covariance matrix of r, i.e. we have 

(5.10) 

All the parameter matrices obtained from this are estimates, i.e., we apply CCD on 

~to obtain Ui, Zi, and Yi accordingly. Then, the channel estimate can be obtained 

by 

min II Z~Hi IIF 
s.t. II hi ll2= 1 

(5.11a) 

(5.11b) 

Similar to the SS method in white noise, we can apply Eq. (5.11) to obtain the 

estimated channel coefficients up to a constant of proportionality such that 

(5.12) 



M.A.Sc. Thesis - X. He -McMaster - Electrical & Computer Engineering 48 

where Z3 is constructed from the jth column of Zi17 according to Lemma 1. Again, the 

channel estimate hi can be obtained from Eq. (5.12) as the eigenvector corresponding 

to the smallest eigenvalue of the matrix L~~-(K+L) zjz:. 

5.3 CCD Based Maximum Likelihood Algorithm 

(CCD-ML) 

Maximum Likelihood (ML) is one of the most powerful methods in parameter es­

timation. Because of its superior performance, it is also widely used as a criterion 

in channel estimation when the channel noise can be assumed Gaussian distributed 

and white. This assumption makes the concentration of the log-likelihood function 

from the nuisance parameters possible and results in the reduction of the dimension 

of the parameter space and thus the computational burden. However, when the noise 

covariance matrix is unknown as is the focus of this thesis, the ML estimation cannot 

be applied directly. However, we can approach the problem in a different way by 

examining the asymptotic projection error between the signal subspace and the noise 

subspace and from the statistical properties of this, we can establish a log-likelihood 

function from which a ML estimation of the channel can be obtained. 

Let us first construct the two eigenprojectors Pis and Pi17 associated respectively 

with the subspace spanned by {zik}, k = 1, 2, · · ·, K + L, and {zi3}, j = K + L + 
1, · · · , MiK, which correspondingly are the first K + L and the last MiK - ( K + L) 

columns of zi [13] [22]: 

K+L 
Pis = L Zikz{k"Eii = ZisZf;Eii = Zis Y{; 

k=l 

MK 

Pi11 = I: zi3zffEii = Zi17Z~Eii = Zi17 Y~ 
j=K+L+l 

(5.13a) 

(5.13b) 

where the last steps of Eqs. (5.13a) and (5.13b) are arrived at directly from the 

definitions of Zi and Yi in Eq. (5.6). It can be easily verified that Pis and Pi17 are 



1\J.A.Sc. Tl1esis- X. He -McMaster- Electrical & Computer Engineering 49 

both idempotent and are therefore, valid projectors. Due to the span of the columns 

of Zis and Zi17 , we can see that P:! and Pi17 project onto the signal and the noise 

subspaces respectively. Let us now consider the columns of the matrix product Y/:Zi17 

where Yis is obtained using the estimate of the covariance matrix ~ in Eq. (5.10). 

Denoting the vector obtained by stacking the columns of a matrix by vee(·), we have 

(5.14a) 

(5.14b) 

(5.14c) 

where Eq. (5.14a) holds asymptotically as Yis--+ Yis and Eq. (5.14b) comes from the 

mathematical equation that 

vee( ABC) = (CT ® A)vec(B) (5.15) 

with C being the identity matrix IM;K-(K+L) of dimension [MiK- (K +L)] x [MiK­

(K +L)]. And finally, Eq. (5.14c) comes directly from the estimated form of the signal 

subspace projector Pis in Eq. (5.13a). "®" denotes the Kronecker product such that 

for matrices A and B, 

[ 

a1~B · · · a1~B l 
A®B= : ... : 

ap1B apqB 

where aii is the (i,j)th element of a p x q matrix A. We now invoke the following 

important theorem (13] [22]: 

Theorem 2 If Xi11 ~ span(Hi), then the random vector vec(PisXi11 ), i = 1, 2 are 

asymptotically complex Gaussian with zero mean and covariance matrix 
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where the index I denotes the complement of i such that I = 2 if i = 1, and I = 1 if i = 

2. D 

(See Appendix D for the Proof) 

Applying Theorem 2 to Eq. (5.14c), we can conclude that vec{Yf.!Zi71 } is also 

asymptotically Gaussian with zero mean and its covariance matrix can be obtained 

through some algebraic simplification as 

E [vee ("Yf.!Zi71) vecH (Yf.!Zi71)] = ~ (Z~:EiiZi71)T ® (r-1Zf!:ENZisr-1
) (5.16) 

With this Gaussian distribution, the log likelihood function of vec(Yf.!Zi71 ) can be 

written as 

1:.-ccd = canst.-~ logdet { (Z~:EiiZi71)T ® (r-1Zf!:ENZisr-1
)} 

-Ntr{[(z~:EiiZi71)T ® (r-1Zf!:ENZisr-1)r1 

·vec(Yf!Zi71)vecH ("Yf!Zi71)} 

For large sample size N, the constant and the second term of the above equation 

can be omitted. Further, since for matrices A and B with compatible size, equations 

tr(AB) = tr(BA) and (A® B)-1 =A - 1 ® B-1 hold. Thus, we have 

1:.-ccd ~ -Ntr { vecH (Yf.!Zi71 ) [ (Z~:E~Z;71r1 
® (r-1z{!:EiiZisr-1

)-
1
] vee (Yf!Zi71)} 

(5.17) 

Refer to Eq. (5.15) again, we know 

(5.18) 

(5.19a) 

(5.19b) 

(5.19c) 
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where the mathematical equation (A® B)(C ®D) = (AC) ® (BD) for compatible 

matrices A, B, C and Dis used in Eqs. (5.19b) and (5.19c). 

Then, taking advantage of Eq. (5.15) for another time, Eq. (5.19c) becomes 

(5.20) 

Noticing that Z{!EiiZis = IK+L, Eq. (5.20) can be simplified to the form for which 

only the parameters with index i are left, i.e. 

(5.21) 

where we replace Eii by ~ii and r by f without affecting the asymptotical property. 

As it is, Eq. (5.21) is not convenient to use for the ML channel estimation in 

unknown noise since Zi11 is only an implicit function of the channel. Again, we can 

apply the channel matrix transformation [17] technique summarized in Section 3.5. 

For i = 1, 2, we first obtain the matrix Gi11 as described in the channel matrix 

transformation. In a similar way to the development of the MAP estimate, we obtain 

ITH Gi11 where II is a permutation matrix. Since the columns of both Zi11 and IIH Gi11 

span the orthogonal complement of Hi, then there exists a nonsingular matrix Vi11 , 

such that Zi11 = ITH Gi11 Vi11 • Substituting this expression of Zi11 into Eq. (5.21), we 

have 

(5.22) 

Now, let Qi = rrYisf and denote qii as the jth column of Qi, then 

(5.23) 

where Qii can be constructed from qii according to Eq. (3.50) of Property 2 of Gi11 • 

Thus, the ML estimate of hi which is in the same form as ii in Eq. (3.50), can be 

obtained as 

hi = arg min {hf (~ Q~ (a~rr~iirrH Gi11) t Qii) ~} 
llhill2=1 ~ 

(5.24) 
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Eq. (5.24) is designated the CCD-ML method of channel estimation. Since the in­

formation of hi is also embedded in the matrix contained in the parentheses, the 

IQML [18] or the TSML [17] algorithm can again be applied to solve this optimiza­

tion problem. 



Chapter 6 

Computer Simulation Results 

In this chapter, using computer simulations, we examine the performance of our 

channel estimation algorithms (MAP, CCD-SS and CCD-ML) and compare their 

performance with that of the two SOS based methods: the SS method [9] and the 

MSS method (10] under different SNR and number of snapshots. In the examples 

below, we will estimate the channel h used in [10] and transmit signals over it. The 

channel coefficients are: 

iil = [-0.48- 0.30i -1.17 + 0.35i - 0.06 -1.49i - 1.87- 1.20i 0.65- 0.77i] 

h2 [-0.61 + 0.57i 0.66 + 0.77i - 0.71- 1.45i - 0.86- 0.56i 0.95 + 0.86i] 

ii3 = [1- 0.06 + 0.37i 0.10- 0.46i - 3.48 0.62 + 0.90i] 

with iii as the jth subchannel of h. At the receiver, for the ith trial, utilizing the 

received signal and noise, we employ the various methods to obtain the estimate h(i) 

of the channel. We then evaluate the error of estimation (6i = h(i)- h). The criterion 

of performance comparison is the Normalized Root Mean Square Error (NRMSE) of 

estimates defined as 

(6.1) 

where NT is the number of trials. 
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Example 1: In this example, we examine the performance of the algorithms MAP, 

MSS and SS which are developed under the condition that only one receiving antenna 

is available. The transmitted signals are randomly chosen from the QPSK constella­

tion and transmitted through the lSI induced FIR channel h which is of order L = 4. 

The output signals are up-sampled by the factor of M = 3. During the collection of 

N = 1000 snapshots of the data blocks, the channel is a.ssumed to be stationary. For 

the additive correlated noise, we choose the same noise model a.s presented in [10] 

such that the noise sub-samples within one signal sampling period are a.ssumed to 

have the correlation matrix given by 

0.7 0.7
2

] H 

1 0.72 

0.7 1 

(6.2) 

wherea.s the noise sub-samples from two different sampling periods are a.ssumed to 

be uncorrelated. We designate this Noise Modell. The estimation error is averaged 

over Nr = 100 trials. 

As mentioned in the beginning of Section 4.3, the condition that K ~ ~~i L has 

to be satisfied for the MAP algorithm to apply the channel matrix transformation. 

Here, we choose the block size for MAP method to be K = 8. The weighting matrix 

( c:IIEriiH G 71 r in Eq. ( 4.45) is initialized by the estimate from the SS method 

and the IQML algorithm is then applied iteratively. The stopping criterion is such 

that the norm of the difference vector between two consecutive iterations is less than 

10-4 and the average number of iterations for each estimate is taken over 100 trials. 

Also, as discussed Section 3.4, the MSS method can be applied with one receiving 

antenna if the transmitted signals are fully correlated such that the lag-K correlation 

matrix of the signals is full rank. Thus, for the MSS method, we transmit the same 

signal vector s(n) in two consecutive blocks and obtain the MSS estimates. Now, 

since the MAP algorithm does not need two correlated signal vectors, the repeated 

transmission in MSS is redundant for the MAP method. Therefore, for fairness of 
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comparison, we use a transmitted signal block for MAP the length of which is two 

times that of the MSS method. 

10° ,..,..,.~·""'"·=·· ·""·· ·""'"· ·=···'""· ··""'"· .=-:T:~=-:7~~=~~~-:-:-=r.:-=== 
············· TTHHT".."..HUI=:= ~I 

·················~·-······· ·····!········· ······~·-············· 

10""o:----:----:':,o:-------!:,s:------:!::------:25~----=30 

SNR(dB) 

Figure 6.1: Comparison ofNRMSE performance ofSS, MSS and MAP under different 
SNR with Noise Modell 

Fig. 6.1 shows the NRMSE performance of the MAP algorithm in comparison with 

those of the SS and MSS methods with respect to different SNR. As expected, since 

the SS method is developed under the assumption of white noise, it does not work 

well under correlated noise environments and therefore, we can see that under all 

the SNR considered, both the MSS method and the MAP algorithm are superior in 

performance to the SS method. Furthermore, the MAP algorithm shows substantially 

better performance than the MSS algorithm, especially under higher SNR where the 

performance gain of the MAP algorithm over that of MSS is considerable. The average 

number of iterations needed in the MAP algorithm to achieve such performance are 

shown in Table 6.1. It can be observed that the number of iterations required is 

small. At high SNR (20dB and beyond), the performance of SS and MSS become 

quite close because at high SNR, the effect of the correlation of the noise becomes 

less dominant. 



M.A.Sc. Thesis - X. He -McMaster - Electrical & Computer Engineering 56 

SNR(dB) 0 5 10 15 20 25 30 

averaged 

number 5.03 3.00 2.00 1.89 1.07 1.00 1.00 

of iterations 

NRMSE 0.0637 0.0220 0.0081 0.0035 0.0017 0.0008 0.0005 

Table 6.1: Averaged number of iterations for MAP to acquire the NRMSE perfor­

mance at different SNR in Fig. 6.1 

Example 2: In the last example, we have assumed that the noise sub-samples within 

one signal sampling period are correlated whereas the noise sub-samples from two 

different sampling periods are assumed to be uncorrelated. This assumption is made 

to satisfy the noise assumption required in the MSS method. However, such an 

assumption is not easy to satisfy in practical situations. In the present example, 

we test the performance of the MAP algorithm in comparison with those of the SS 

and MSS methods under a simple noise model in which correlation time is much 

longer. We employ a second order AR model having coefficients [1, -1.8, .82]. We 

designate this Noise Model 2. The performance of the various algorithms in terms of 

the NRMSE of estimated channel coefficients are shown in Fig. 6.2. 

It is observed that while the MAP algorithm still performs just as well, due to 

the violation of its noise assumption, the MSS method has a performance even infe­

rior to that of the SS algorithm which assumes a white noise environmrnt. On the 

other hand, the MAP algorithm assumes that the noise is simply unknown and there­

fore is independent of the noise model and robust to change of the noise environments. 

Example 3: In this example, we compare the performance of CCD-SS, CCD-ML, 

and MSS. The development of CCD-SS and CCD-ML are based on having two versions 

of received data r 1 and r 2 when the same signal vector is transmitted. The noise in the 
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w 

~ z 

SNR(dB) 

Figure 6.2: Comparison of NRMSE performance of SS, MSS and MAP under different 
SNR with AR Noise Model2 

two received signals are assumed uncorrelated. Such scenario can usually occur in the 

case when there are two receiver antennae sufficiently separated, and the uncorrelated 

noise also fits well with the assumption made in the MSS method. For MSS, the 

cross-correlation of these two received vectors are calculated so that the effect of the 

uncorrelated noise in the two separate channels are removed. For CCD-SS and CCD­

ML, on the other hand, these two received signal vectors collected by two receiving 

antennae are stacked up and CCD is applied to the correlation matrix of the stacked 

vector. 

In this example, we assume that the channel order of the two channels are the 

same, i.e. L1 = L2 = 4. The up-sampling factors are M1 = M2 = 3, the block size is 

chosen to be K = 8 to satisfy K ;::: ~!~ L in the channel matrix transformation. We 

choose the noise model as that given by Example 2. For this noise model, since there 

are two separate transmission channels, the noise will be independent and therefore, 

the AR model will be used to generate two independent noise sequences in the two 

channels. This satisfies the assumption made in the MSS algorithm. To facilitate the 
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SNR(dB) 

Figure 6.3: Comparison of NRMSE performance for MSS, CCD-SS and CCD-ML 
under separately received AR noise 

CCD-ML method, the weighting matrix in Eq. (5.24) is initialized using the chan­

nel coefficients estimated from CCD-SS and then the channel is estimated iteratively 

with the up-dated weighting matrix. We use the same iteration stopping criterion as 

in Examples 1 and 2. Table 6.2 shows the average number of iterations needed for 

each CCD-ML estimate over 100 trials under different SNR, and as can be seen, these 

average numbers of iterations are reasonably small under a wide range of SNR. 
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SNR(dB) 0 5 10 15 20 25 30 

averaged 

number 0.8900 0.2800 0.0100 0 0 0 0 

of iterations 

NRMSE 0.0031 0.0017 0.0010 0.0005 0.0003 0.0002 0.0001 

Table 6.2: Averaged number of iterations for CCD-ML to achieve the NRMSE per­

formance at different SNR in Fig. 6.3 

Fig. 6.3 shows the performance of the three methods. It can be observed that both 

the CCD-ML and the CCD-SS methods are far superior in performance to the MSS 

method under all the SNR considered. Thus, employing CCD definitely provides us 

with performance advantage. While the CCD-ML method yields the best NRMSE 

performance, as shown in Fig. 6.3, it is only marginally better than CCD-SS. This 

may lead us to conclude that the extra computation needed by the CCD-ML algo­

rithm may not be worth the amount of improvement achieved. However, when the 

transmitted symbols are correlated, the advantage of CCD-ML is obvious as will be 

shown in Example 5. 

Example 4: We now examine the performance of the three new algorithms de­

veloped in this thesis for channel estimation in unknown correlated noise under 

different numbers of snapshots. We use the same channel model and parameters 

(L = 3, M = 4, K = 8) as in the previous examples and employ the AR noise model 

as in Examples 2 and 3. Under a fixed SNR, we vary the number of snapshots and 

test all the three algorithms. For the MAP algorithm, we assume that we have only 

one antenna and receive only one single signal vector for each snapshot, whereas in 

the cases of CCD-SS and CCD-ML, we assume that we have two antennae and receive 

two versions of the same transmitted signal vector for each snapshot. 
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snapshots 

900 1000 

Figure 6.4: NRMSE performance of MAP, CCD-SS and CCD-ML in AR noise under 
different snapshots 

The results of comparison are shown in Fig. 6.4 in which the dotted lines and 

full lines represent the performance curves under SNR 5dB and lOdB respectively. It 

can be observed that, again, there is almost no difference between the CCD-SS and 

CCD-ML performance especially when the number of snapshots is larger. It can also 

be observed that the performance of the MAP algorithm under higher SNR (lOdB) 

is comparable to that of the CCD methods even though it employs only one antenna 

instead of two. Indeed, when the number of snapshots is small, the difference of 

performance is very marginal, and the MAP algorithm may even be better in perfor-

mance. 

Example 5: In the previous four examples, the transmitted symbols are uncorre­

lated with one another. In this example, we transmit correlated symbols and compare 

the NRMSE performance with respect to different SNR among MSS, CCD-SS and 

CCD-ML. The correlated signals are generated by pre-multiplying an uncorrelated 

signal vector by the matrix with its (i,j)th element being 0.7li-il. Under any SNR, 
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100 snapshots are used to calculate the CMORS. All the other parameters are kept 

the same as in Example 3. 

SNR(dB) 

Figure 6.5: Comparison of NRMSE performance for MSS, CCD-SS and CCD-ML in 
separately received AR noise under different SNR, transmitting correlated signals 

It can be observed from Fig. 6.5 that the CCD-ML performs better than the CCD­

SS when transmitting correlated symbols. And both the CCD-SS and the CCD-ML 

algorithms are much superior to the MSS method. 

Example 6: In this example, we compare the NRMSE performance between CCD­

SS and CCD-ML under different snapshots when the SNR is fixed. All the other 

parameters are kept the same as in Example 5. 

The results of comparison are shown in Fig. 6.6 for the fixed SNR 5dB (dotted 

lines) and lOdE (solid lines). We can see that under all the snapshots considered, the 

CCD-ML performs better than the CCD-SS. Thus, the extra computation of CCD­

ML is worthy. 

Many tests using the same scenarios as in the above examples have been carried 
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Figure 6.6: NRMSE performance of CCD-SS and CCD-ML in separately received AR 
noise under different snapshots, transmitting correlated signals 

out on other channel models and other noise models. Similar observations as stated 

in the above examples are obtained [1, 2]. 



Chapter 7 

Conclusion 

7.1 Conclusion 

In this thesis, we address the important practical problem of FIR channel estimation 

in unknown correlated noise environments. We examine the effect of additive corre­

lated noise with unknown covariance matrix in FIR channels and develop different 

algorithms according to the different number of antennae available at the receiver. 

For receivers having only one antennae, we develop an algorithm which maximizes 

the criterion of a posteriori pdf (MAP) derived by employing the Jeffreys' principle. 

For receivers having two antennae and therefore, having two copies of the transmit­

ted signal vector infested with independent unknown noise, we employ the canonical 

correlation decomposition ( CCD) to separate the signal and noise subspaces arriving 

at the CCD-SS algorithm. By further examining the asymptotic distribution of the 

projected signal between the signal subspace and the noise subspace, we formulate 

the likelihood function for which we could maximize and obtain the CCD-ML algo­

rithm of channel estimation. The advantage of these new methods is that they do 

not need to assume any noise model, and therefore, their performance are relatively 

robust. All these algorithms, when employed under the conditions for which they 

have been developed (i.e., either having one antenna or two antennae in the receiver), 
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have been shown to have superior performance to existing (SS and MSS) methods. 

At higher SNR, and with reasonable number of snapshots, it has been observed that 

the difference in performance between the MAP and the methods based on CCD is 

small. Thus, under such conditions, the use of MAP with only one receiver antenna 

will suffice. It is also observed that there is very little difference in performance 

between the CCD-SS and CCD-ML methods when the transmitted symbols are un­

correlated, especially under higher numbers of snapshots. Hence, if there are two 

receiving antennae and a relatively larger number of snapshots available, when trans­

mitting uncorrelated symbols, the comparatively simpler algorithm of CCD-SS will 

be favoured. However, when the transmitted symbols are correlated, the CCD-ML 

method will be preferred since it has the best performance. 

7.2 Future Work 

In this thesis, since all the algorithms are based on the large sample size, the channel 

has to be invariant during a long enough time period. In practice, the channel may 

change before all the needed samples are collected. Hence, in unknown noise environ­

ment, developing algorithms for the time-variant channel is some work worth doing 

in the future. 



Appendix A 

Proof of Eq. ( 4.29) 

This proof is obtained from [25]. 

Take the logarithm of Eq. (4.26a), we obtain the log-likelihood function as 

N N 

!:.-map ex 2log (det:E;1
)- L (P:iir(n))H :E;1 (P:iir(n)) (A.l) 

n=l 

Denote ((n) = P:iir(n), and take the derivative with respect to :E;1 at both sides of 

Eq. (A.l), we can get 

v,,,L oc ~ v,,, {log (den::;')}- V,,, {~((n)n:E;'C(n)} (A.2) 

For the first term in Eq. (A.2), we have 

\1 1::;;-1 {log ( det :E;1
)} = {:E;1

} -T = :E~ (A.3) 

For the second term, we can write 
MKMK 

((n)H:E;;-1((n) = L L (~(vEuv (A.4) 
v=l u=l 

where (u is the uth entry of ((n), (~denotes the conjugate of (u and Euv is the (u, v)th 

element of matrix :E;1
. Then the (u,v)th element of \11::;;-1 {((n)H:E;1((n)} is (~(v. 

Thus, Eq. (A.2) can be written as 

N N 
V':E;;-1/:.- ex 2:E~- L (*(n)((n? 

n=l 

(A.5) 
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Then, the information matrix can be derived as 

!f'(E;1
) = -E {VI:~~ VE~~.c} = -E { ~ VE~~E~} (A.6) 

To evaluate VE~~E~, we consider 

(A.7) 

where IMK is an M K x M K identity matrix. Take the derivative VI:~~ on Eq. (A.7), 

we get 

Hence, 

VE;lE~ - - (IMK ® [E;1t) -l VE;l [E;1t (IMK ® E~) 
_ - (IMK ® E~) vE;l [:r:;~r (IMK ® :r:~) (A.9) 

Denote [E;1 t as n, then we have 

VE<MK)ln VE<MK)2n 
MKMK 

- LLEuv ®VE,.v{} 
u=l v=l 

MKMK 
= LLEuv®E;'v 

u=l v=l 

\7El(MK){} 

VE2(MK)n 

\7 E(M K)(M K) {} 

(A.lO) 

where Euv is an M K x M K matrix with the ( u, v )th element being unity and all the 

other elements being zero. Since 2:~! 2:!~ Euv ® E;'v is a permutation matrix with 

determinant to be -1 and det [IMK ® E~] = det [:E"I1]MK and considering Eq. (A.6) 

and Eq. (A.lO), we can obtain the result of Eq. (4.29) which is 

det [9'(:!:~1 )] = - ~ · E{ det [{IMK ® E;) (~~E,.. ®E~) (IMK ®Ei)]} 

= ~ det [E"I1]2MK (A.ll) 



Appendix B 

Proof Eq. (5.8) 

This proof is obtained from [13]. 

From Eq. (5.5), we know that 

Since 

~--H.~ H!! LJii- zLJs i 

(B.l) 

(B.2) 

and ~ is full column rank of K + L, we can compute the pseudo-inverse of matrix 
1 

Hfl:E~ 2 . Substituting Eq. (B.2) into Eq. (B.l) and multiply both sides of Eq. (B.l) 

by ( Hf':E~~) t to obtain 

(B.3) 

We know that both Hi and Yis are tall and full column rank of K + L, and further 

since :Es and ru[! ( Hfl:E~~) t are both full rank of K + L, thus, the columns of ~ 
and Yis are linear combination of each other. So the columns of Hi and Yis span the 

same subspace, i.e. 

span(Yis) = span(~) (B.4) 

Now using the matrices Zi and Yi defined in Eq. (5.6), we can see 

(B.5) 
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i.e. Zi7J is the orthogonal complement of Hi. Thus Eq. (5.8) holds. 



Appendix C 

Proof of Property 2 of G17 

First we give two new notations: b(~t) denotes the b vector for the system with 1-" 

subchannels and ii(~t) denotes the channel vector with 1-" subchannels. This Lemma 

can be proved recursively. 

For 1-" = 2, the matrix G:,2 is of dimension (K- L) x 2K, and we have 

G:.2b(2) = 

-h2(0) -h2(L) h1(0) h1(L) 

-h2(0) -h2(L) h1(0) h1(L) 

~(1) 

~(2) 

~(2) 

~(3) 

~(L + 1) 

~(L + 2) 

-bl(1) -bl(2) -b1(L + 1) 

-bl(2) -b1(3) 

~(K- L) ~(K- L + 1) ~(K) -b1(K- L) -b1(K- L + 1) 

·[h1(0) h1(1) · · · h1(L)h2(0) h2(1) · · · h2(L)f 

= B2h(2) 
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-b1(L + 2) 

-b1(K) 
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We can see that G~p.b(p.) = Bp.h(JL) holds for J.t = 2. Then we assume that this 

equation also holds for J.t = M- 1, i.e. 

(C.1) 

Then for J.t = M, we have 

bl 

G:.M-1 

b2 
0 

-H(M) 0 0 0 H{1) 

G:.Mb(M) = -H(M) H{2) 
bM-1 

(C.2) 0 0 
bM(l) 

-H(M) H(M-1) 
bM(2) 

bM(K) 

To establish the result for the above equation, we need to derive two other equa­

tions. The first one is 

= 

bi(K- L) MK- L+ 1) 

B(i)ii.M 

hM(£) l (K-L)xK 

bi(L + 1) 

bi(L + 2) 

bi(K) 

hM(O) 

hM(1) 

hM(L) 

(C.3) 
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Similarly, the second one will be 

[ ~(0) hi(L) 

~(£) l (K-L)xK 

bM(1) ... 

H(i)bM 
bM(2) 

= 

hi(O) 
bM(K) 

bM(1) bM(2) bM(L + 1) hi(O) 

bM(2) bM(3) bM(L + 2) hi(1) 
= 

bM(K- L) bM(K- L+ 1) bM(K) hi(L) 

= B(M}iii (C.4) 

Then, based on Eqs. (C.1), (C.3) and (C.4), we can further derive Eq. (C.2) as 

BM-1 0 iil 

B(M) -B(1} ii2 

G:.Mb(M) = B(M) -B(2} = BM:ii.(M) (C.5) 

hM-1 

B(M) -BcM-1) hM 

which is the property 2 of G 11 • Note in that property, for p. = M, we have denoted 

G 11,M as G 11 , b(M) as band ii(M) as ii, so the property 2 that 

(C.6) 

follows. 



Appendix D 

Proof of Theorem 2 

This proof is obtained from [13]. 

The estimated complex projector Pis can be expanded according to the perturba­

tion theory as 

MK 

Pis = Pis+ L [ziuzf!:Eii~'llii('llii- ~~IM;K)t 
u=K+L+l 

+ ('llii- ~~IM;K)t ~'lliiziuzf!:Eii) + O(N-1)prob. (D.1) 

where Ziu is the uth column of Zi and Wi = :Eii1:Eii:Eil1:Eii' i = 1, 2 which can 

be proved having eigenvalues being equal to {r~, ri, · · · , ~~'+K' 0, · · · , 0} and 

eigenvectors being the columns of Zi. ~q,i is defined as ~i - wi which can be 

expressed as 

awi = -:Eii1 (a:Eii):Eii1:Eii:Eil1:Eii + :Eii 1 (~:Eii):Eil 1 :Eii 

-:Eii 1 :Ea:Eil1 (~:Eii):Eil1 :Eii + :Eii 1 :Eii:Eil1 (~:Eii) + O(N-1
) (D.2) 

with ~:Eii defined as iSii- :Eii and a:Eii, ~:Eu and ~:Eii defined similarly. (wi­

~~IM;K )t denotes the pseudo-inverse of Wi- ~~IM;K which can be calculated as 
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Using Eq. (D.l) and Eq. (D.3), we can get 

We proved in Appendix A that span(Yis) = span(Hi) and since span(Xi.,J =span(~), 

we have 

(D.5) 

and then the first term under the summation sign in Eq. (D.4) vanishes. Furthermore, 

we have 

:EiiZiu. = 0, for u = K + L + 1, · · · , M K (D.6) 

Substituting Eq. (D.5) and Eq. (D.6) into Eq. (D.4) and noticing PisXi!J = 0 yields 

PisXi!J = Zisr-2Y!;:Eii1:Eii:Eii1(Ll:Eii) 
MK 

Since 

and 

Eq. (D.7) can be obtained as 

L Ziuzf;.:EiiXi!J + O(N-1 )pro b. 
u=K+L+l 

MK 

L Ziuz{;.:Eii = P i!J 
u=K+L+l 

Further considering that Y{;Zis = IK+L and Pi!J~!J = ~!J' we get 

Refer to Eq. (5.15), we have 

(D.7) 

(D.8) 

(D.9) 

(D.lO) 
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It is well known that vee( .6.:Eii) is asymptotically joint Gaussian distributed with 

zero mean [27], thus vec(Pis~11 ) is also asymptotically joint Gaussian distributed 

with zero mean. 

The asymptotical covariance matrix is then 

{ 
~ H ~ } E vec(PisXi11)vec (PisXi11 ) 

= {~ ® (Zisr-1z{!)E { vec(.6.:Eii)vecH (A:Eii)} 

{X;
11 

® (Zisr-1 Z~)} (D.ll) 

where superscript * denotes the conjugate. Also, we have the following equation 

(D.l2) 

Substituting Eq. (D.l2) into Eq. (D.ll) and using the fact (A®B)(C®D) = AC® 

BD, the conclusion of Theorem 2 follows. 



Appendix E 

Some Linear Algebra Results 

These equations are proved in [13]. 

Assume that the matrices A, B, C and D are all of dimension R. x £. But it 

should be noted that the following proofs are equally valid for compatible rectangular 

matrices. 

E.l Proof of Eq. vec(ABC) = (CT ®A) vec(B) 

Denoting the jth column of a matrix as (-).;,we have 

(E.l) 

where ei is a R. x 1 vector with the jth element being unitary and all the other elements 

being zero. And the ( i, j)th element of A can be calculated as 

Thus, the jth column of AB is 

(AB).i = (AB)ei = A(Be;) = AB.; 

Further, from the rule of the matrix manipulation, we also have 
f. 

(AB).; = L bk;A.k 
k=l 
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(E.2) 

(E.3) 

(E.4) 
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where bki is the (k,j)th element of the matrix B. Hence, we have 

e e 
(ABC).i = L cki(ABh = L(ckiA)B.k = (C; ® A)vec(B) (E.5) 

k=l k=l 

Thus, we have the conclusion that 

vec(ABC) = ( cT ®A) vec(B) 

E.2 Proof of Eq. tr(AB) = tr (BA) 

The proof is quite straight forward. 

Since 
e e e 

tr(AB) = LAt.B·i = LLatibii 
i=l i=l j=l 

and 
e e e e e 

(E.6) 

(E.7) 

tr (BA) = L Bt.A.i = L L btiaii = L L aiibii (E.8) 
i=l i=l j=l i=l j=l 

we have the conclusion that 

tr (AB) = tr (BA) (E.9) 

E.3 Proof of Eq. (A® B) (C ®D)= (AC) ® (BD) 

The ( i, j)th block of (A ® B) ( C ® D) is obtained as the product of the ith row block 

of (A® B) and the jth column block of (C ®D) which can be expressed explicitly 

as 

e 
= LatkCkjBD 

k=l 

(E.lO) 
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The ( i, j)th block of (AC) 0 (BD) is the multiplication of the ( i, j)th element of AC 

and the matrix BD which can be expressed explicitly as 

I. 

(AC)ijBD = L UikCkjBD 

k=1 

(E.ll) 

Combine the results of Eq. (E.10) and Eq. (E.ll), we can see that the (i,j)th block 

of (A® B) (C ®D) is the same as the (i,j)th block of (AC) ® (BD), so we can 

conclude that 

(A 0 B) (C 0 D) = (AC) 0 (BD) (E.12) 

E.4 Proof of Eq. (A® B)-1 = A - 1 ® B-1 

Refer to Eq. (E.12), we have 

(A 0 B) (A - 1 0 B-1
) = AA - 1 ® BB-1 = I1. ® I1. = I1.2 (E.13) 

So we have the conclusion that 

(E.14) 
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