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Abstract 
In this thesis we develop several approaches to the problem of blind channel equal

ization based on second-order statistics (808). We consider the single-input single

output (8180) system with minimum phase channel where the received signal is 

sampled at the symbol rate (T-spaced equalizer). We formulate the equalizer design 

criterion as a simple convex optimization problem, where the equalizer can be ob

tained efficiently avoiding the local minima problem. 

We also extend the problem to the single-input multiple-output (8IMO) systems 

where the received signal is sampled at an integer multiple of the symbol rate. We 

formulate the problem as a convex optimization problem using the features existing 

in the channel matrix structure. The problem can be solved efficiently to obtain the 

equalizer where a global minima is guaranteed. Moreover, we modify this formulation 

and deduce a closed form solution to the equalizer. Although both methods are sen

sitive to the channel order as well as existing subspace methods, they perform better 

than the subspace methods when the channel matrix is close to being singular. 

Furthermore, we propose an efficient direct minimum mean square error (MM8E) 

approach to estimate the equalizer. The method does not rely on the channel order 

and utilizes the channel matrix structure in 8IMO systems. Therefore, it outper

forms existing algorithms including the previously proposed methods. However, due 

to the large amount of computations involved in this method we present a new algo

rithm that belongs to the same class with moderate computational complexity and 

acceptable performance loss with respect to the latter algorithm. 
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Chapter 1 

Introduction 

In communication systems it is required to reliably transmit data from the trans

mitter to the receiver through a channel. In the case of ideal transmission/reception 

scenarios the channel does not impose any kind of distortions to the transmitted data. 

However, transmission through a practical channel causes distortion to the original 

transmitted signal. One of the practical problems in digital communications is inter

symbol interference (ISI), which causes a given transmitted symbol to be distorted 

by other transmitted symbols. The lSI is imposed on the transmitted signal due to 

the band limiting and the multipath effects of practical channels. The effect of lSI 

can be reduced by passing the received signal through a filter at the receiver end. 

This process is known as channel equalization, and the filter is usually denoted as 

equalizer. If the channel is known, the equalizer is designed based on the information 

available at the receiver end about the channel. If the channel is unknown, two meth

ods are used to obtain this design. Training based method depends on transmitting 

a short sequence of data (known at the receiver end) to the receiver which in turn 

uses this sequence to design an equalizer that minimizes the error between the final 

output (estimated data) and the known transmitted sequence. However, inclusion of 

this training sequence with the transmitted information reduces the throughput of 
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the system. The second method is based on estimating the equalizer blindly based on 

information about the statistics of the channel input. This method is, thus, denoted 

as blind channel equalization. Moreover, the structure of the channel may be used as 

an additional information (if known) in the equalization procedure. 

1.1 Communication System 

A simple block diagram for a communication system is shown in Figure 1.1, where a 

transmitter processes an input data sequence to a suitable format to be transmitted 

through the channel. In digital communication system the transmitter usually con

sists of a source encoder, a channel encoder, a pulse shaping filter and a modulator. 

The source encoder compresses the transmitted data by removing the redundancy 

found in the original data. The channel encoder adds controlled redundancy to the 

data to improve the reliability of the transmission. In most communication systems 

the pulse shaping filter is a root raised cosine filter which has the effect of reducing 

the resulting lSI at the receiver end; where the output signal from the matched filter 

(root raised cosine filter) has nulls at multiple of the sampling period. After that, 

the signal is passed through the modulator which maps the signal to a certain con

stellation and modulates it to the required frequency band. The final signal is then 

aata Paise 
Shaping Moaalator 

Channel 

Data 
Channel estimate Matchea .. Equalizer Demoaalator Filter 

Figure 1.1: Communication System. 
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transmitted through the channel to the receiver. After demodulation and matched 

filtering with the receiver filter, the analog output is sampled with the symbol time 

T (symbol spaced receiver). Propagation through practical channels may cause se

vere distortion to the matched filter output. Therefore, an equalizer will be required 

to reduce this effect. In the following, the transmission system shown in Figure 1.2 

will be considered for the discrete time baseband representation. The equalizer is 

the same as Figure 1.1 while the remaining blocks are combined into an equivalent 

discrete time baseband channel with impulse response denoted as h(n) which is re

sponsible for the lSI effect. In subsequent chapters, the channel impulse response 

h(n) is assumed to be finite and time invariant. Although in general the channel is 

time varying, however, when the variations are slow such that a channel estimate can 

be obtained from a data sequence shorter than channel variation time then we can 

consider it as a time invariant channel. 

1.2 Characterization of Propagation Channels 

As the signal propagates from the transmitter to the receiver it is subjected to differ

ent kinds of distortion. The concept of modelling a propagation channel as a tapped 

delay filter was first introduced in [1]. Choosing the tap spacing to be less than the 

inverse bandwidth of the transmitted signal is sufficient to satisfy the requirements for 

accurate modelling. Therefore, it is common to model the channel as a finite impulse 

response (FIR) filter with taps chosen at the signal's sampling interval with complex 

valued weights. Moreover, the delay spread and the Doppler spread were introduced 

as characteristics for the propagation channel. The delay spread of a channel mea

sures how much the transmitted pulse is elongated by passing through the channel. 

The Doppler spread measures the amount that the channel widen the spectrum of a 

transmitted signal. The lSI effect arises when the symbol interval is in the order of 

3 
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the channel delay spread which commonly occurs in high data rate transmission. 

Consider the discrete baseband representation of the communication system shown in 

Figure 1.2, where the channel is considered to be a linear time invariant (LTI) chan

nel. The received sequence is the discrete time convolution between the transmitted 

data 
Transmitter 

Sm Channel 
h(n) 

n(k) 

x(k) Sm 
r--------1~ Equalizer 

r-------, Estimated 
data 

Receiver f---

Figure 1.2: Baseband Communication System. 

symbols sm and the channel impulse response h(n). This can be written as 

x(k) = L Smh(k- m) + n(k), 
m 

= skh(O) + L smh(k- m) + n(k). (1.1) 
m=f.k 

The second term represents the lSI caused by the channel. This effect arises due to 

the existence of a channel bandwidth limitation causing the transmitted pulse to be 

elongated in time domain. The other factor that introduces the lSI in wireless commu

nication is the multipath problem where the channel consists of multiple propagation 

paths. In order to simplify the analysis, it is usually assumed that finite number 

of propagation paths exist and that each path differs from the other in amplitude 

(attenuation/gain) and by a constant time delay. Assuming that the direct line of 

sight channel impulse response is p(t), and n multipaths, the total channel impulse 

response can be written as, 

where ai and ti are the amplitude and the time delay of the i-th multipath, respec

tively. As we mentioned before, using equalizer at the receiver end is essential to 

mitigate the effect of lSI resulting from the multipath channel. 

4 
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1. 3 Equalization 

As both the signal and the noise pass through the equalizer, the latter should be 

designed such that it mitigates the lSI and avoids the noise amplification. Most 

equalizers design criteria aim to minimize the output noise along with lSI mitigation, 

however, a tradeoff between these needs and the complexity always exists. Equal

ization techniques can be classified into two main categories, linear and nonlinear 

equalizers. Linear equalizers are simple to implement, but their abilities to reduce 

the output noise are limited compared to nonlinear equalizers [2]. On the other 

hand, nonlinear equalizers can efficiently reduce the noise at the output and this is 

achieved with relatively higher complexity than linear equalizers. In this thesis we 

focus on linear equalizers due to lower implementation complexity. An attractive set 

of linear equalizers, from the perspective of implementation, are implemented using 

a transversal structure which is a typical FIR filter. FIR filters consist of a series 

of delay elements and taps with adjustable weights to adjust the impulse response. 

The transversal structure of an FIR filter is shown in Figure 1.3. In particular, linear 

input 

output 

Figure 1.3: Transversal FIR Filter Structure 

transversal equalizer can be expressed as an FIR filter as follows, 

L 

g(z) = "2::: giz-1 (1.2) 
i=O 

5 
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where 9i is the i-th tap weight of the equalizer and L is the equalizer order. The 

weights are obtained by minimizing a certain cost function that guarantees the miti

gation of the lSI and the decrease of the output noise as much as possible. The most 

popular linear equalizers are, the zero-forcing (ZF) equalizer and the minimum mean 

square error (MMSE) equalizer. 

1.3.1 Zero-Forcing Equalizer ZF 

Consider the system shown in Figure 1.2, the received signal can be written as, 

x(k) = L smh(k- m) + n(k), (1.3) 
m 

which can be expressed in the z-domain as follows, 

x(z) = h(z)s(z) + n(z). (1.4) 

The zero forcing equalizer is the inverse channel filter g(z) = 1/h(z) and hence the 

equalizer output can be expressed as, 

y(z) = g(z)h(z)s(z) + g(z)n(z), 

= s(z) + n(z), 

where n(z) is the output noise. Note that, it may not be applicable to implement 

g(z) as an FIR filter when there does not exist such a finite weights g/s satisfying 

that, 
L 1 
~ -1 
~giz = h(z)" 
2=0 

(1.5) 

In this case it may be implemented as an infinite impulse response (IIR) filter. Al

though zero forcing equalizer has the ability to cancel the lSI, it deals poorly with the 

noise, as a result, the output signal-to-noise ratio (SNR) decreases. Moreover, if the 

channel has a spectral null or is deeply attenuated at certain frequencies within the 

6 
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band of interest then the output noise power will be increased dramatically. There

fore, zero forcing equalizers perform well at high SNR while for noisy channels a 

performance degradation occurs over other equalizers (those have the capability of 

reducing the output noise power) due to decreased output SNR even though they 

remove the lSI. 

1.3.2 Minimum Mean Square Error Equalizer 

The minimum mean square error (MMSE) equalizer is designed such that the mean 

square error between the transmitted symbol sm and its estimate sm is minimized. 

Therefore, MMSE equalizers perform better than ZF equalizers for noisy channels be

cause the effect of the noise is considered in the equalizers design. Consider the linear 

equalizer g = [g0 , g1 , · · • , gLJT, where the weights gi's are obtained by minimizing the 

following cost function, 

(1.6) 

Substituting by the equalizer coefficients g and the received data vector x we get the 

following cost function, 

where (.)H and '*' denote the hermitian transpose and the conjugate operators re

spectively. Define Rx = E{xxH} to be the covariance matrix of the received signal 

and rd = E{xs~J the cross covariance vector, the MMSE equalizer g that minimize 

the above cost function is given as, 

R -1 
g = x rd. (1.7) 

7 
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1.4 Blind Equalization 

Blind channel equalization has attracted many researchers in the last decades [3], 

[4], [5], [6], [7], [8], [9] and [10]. In such a technique, while both the channel and 

the transmitted symbols are unknown to the receiver, it utilizes the observed signal 

to estimate the propagation channel and/ or the transmitted symbols. Although the 

transmitted symbols and the channel are unknown, the receiver should have a starting 

point for estimation. The blind equalization is mainly built on the exploitation of the 

statistics of the transmitted symbols and in some cases the structure of the channel 

matrix may be used as an additional information. 

Conventional design of the equalizers require either the knowledge of the channel 

or the transmitted symbols. The latter is known as a training sequence where, most 

of the communication systems depend on having an access to the transmitted symbols 

in equalizer design. Although training sequence is efficient, transmitting a training 

sequence decreases the system throughput. For time invariant channels the loss is 

insignificant while for time varying channels the time used for training is comparable 

to the transmission time. An example where a training sequence is not favorable is 

the computer network where links between terminals and central computers need to 

be established in an asynchronous way, in some situation, training is impossible. 

Many approaches to the problem of channel estimation and equalization use the 

higher order statistics (HOS) of the received signal to solve the problem [11], [12] 

and [13]. HOS contain not only the magnitude but also the phase information about 

the process, that is why they are efficiently employed to estimate/equalize nonmin

imum phase channels [14]. Moreover, HOS of Gaussian process are equal to zero, 

hence, they are capable of handling colored Gaussian noise [15]. However, although 

8 
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HOS based techniques solve the problem efficiently, they suffer from many drawbacks. 

HOS are computationally very expensive and require large data record to estimate 

the statistics. Moreover, for time varying channels this method may fail to be fast 

enough to track the channel changes. 

In the recent years most of the channel estimation and equalization algorithms were 

directed to employ the second-order statistics (SOS) instead of HOS. The first SOS 

approach to blind channel estimation in multichannel system was proposed in [16] 

where the transmitted signal is assumed to be white and the channel matrix is esti

mated through a recursive method. It requires the estimation of the channel order 

and the noise variance. However, the algorithm does not consider the special struc

ture of the channel matrix as well as it is affected by the covariance matrix estimation 

accuracy due to the recursion procedure used in estimation. The extension for colored 

signal is presented in [17]. The subspace method proposed by Moulines et al.[18], [19] 

and [20] exploits the structure of the channel matrix and due to this feature the algo

rithm performs better than some existing algorithms. It should be noticed that, the 

perfect knowledge of the channel order is required as order estimation error leads to a 

performance degradation. Also it may be not robust when the channel matrix is close 

to being singular. The cross relation (CR) approach presented in [21] is also a type 

of subspace estimation where the channel order is an important issue in estimation. 

The method is very effective for small data samples at high SNR. 

A new algorithm that does not rely on the signal and noise subspace separation and 

consequently robust against channel order estimation error was proposed by Ding [22]. 

Also a closely related approach was introduced by Prakriya [23]. Although these al

gorithms are not sensitive to the channel order estimation error, they do not include 

the channel matrix structure in the estimation procedure. The moment matching 

9 
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technique proposed in [24] is also robust against channel order estimation error and 

channel condition yet it suffers from the problem of local minima in the estimation 

of the channel. 

It can be noticed that, most of the proposed algorithms for channel equalization 

using 808 suffer from at least one of the following: 

• Channel order is a critical parameter in formulation. 

• Performance degradation when the channel matrix approaches singularity. 

• Error propagation due to recursion. 

• Error accumulation when multiple estimated covariance matrices are utilized. 

• Not considering the channel matrix structure in estimation. 

In this thesis we propose algorithms that avoid and overcome most of these problems. 

1.5 Contributions and Outline 

In what follows we give a brief overview of our work. Detailed definitions and back

ground information are given in individual chapters as appropriate. In this thesis 

we present different approaches to blind channel estimation and equalization prob

lem. We consider two systems, the single-input single-output (8180) system and 

the single-input multiple-output (8IMO) system. First we formulate the problem of 

blind channel equalization for 8180 minimum phase channels as a convex optimiza

tion problem in the autocorrelation sequence of the equalizer. Then using the spectral 

factorization technique the equalizer can be obtained efficiently. The two main ad

vantages of convex formulations are, they can be efficiently solved using interior point 

methods and they guarantee a global minima. 

10 
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Furthermore, a convex formulation for channel equalization is also presented for 8IMO 

system. Quadratic objective function and linear constraints are employed to estimate 

a zero-forcing (ZF) equalizer. In addition, we deduce a closed form solution to the 

equalizer. The proposed algorithms are robust when the channel matrix approaches 

singularity. Moreover, the channel matrix structure is employed in estimation. 

Finally a new direct MM8E method for blind 8IMO channel is presented where the 

structure of the channel matrix and the statistics of the transmitted signal are jointly 

employed to estimate the channel. This method outperforms other 8IMO equaliza

tion methods where it does not require the perfect knowledge of the channel order. 

Moreover, it is robust against channel matrix singularity. 

This thesis is organized as follows. In Chapter 2 we present the 8I80 minimum 

phase channel equalization. In Chapter 3 we develop a convex formulation for 8IMO 

channel equalization as well as a closed form solution to the problem. In Chapter 4 

robust direct methods for 8IMO channel equalization are proposed which outperform 

existing algorithms. Each chapter includes simulation results to demonstrate the 

performance of the proposed algorithms and comparisons with existing algorithms. 

11 



Chapter 2 

SISO Minimum Phase Channel 

Equalization 

In this chapter we consider the blind channel equalization problem for single-input 

single-output (SISO) minimum phase channels. We formulate the problem as a convex 

optimization problem where the optimization variable is the autocorrelation sequence 

of the equalizer. The equalizer is obtained by applying the well known spectral 

factorization technique to the autocorrelation sequence that results from the solution 

of the optimization problem. The proposed method is simple and can efficiently 

estimate the equalizer where a global minima is guaranteed. 

2.1 Introduction 

Several approaches have been proposed to solve the channel estimation and equal

ization problem. Applying higher order statistics (HOS) results in efficient but com

putationally expensive methods to equalize the channel. Recently, most of the blind 

channel equalization algorithms utilize the second-order statistics (808). In this chap

ter, we present a method for baud rate (T-spaced) channel equalization via simple 

12 



M.A.Sc. Thesis - Ahmed Farid McMaster - Electrical & Computer Engineering 

convex optimization problem. We estimate the equalizer using the SOS of the channel 

output. The proposed approach depends on matching the equalizer output autocor

relation and the channel input autocorrelation, (which is ideally assumed to be a 

delta function). We will show that minimizing the .e2-norm (respectively the .e00-

norm) of the output autocorrelation will lead to a semi-definite programming (SDP) 

(respectively linear programming (LP)) problem in the autocorrelation sequence of 

the equalizer. Applying the spectral factorization technique to the equalizer auto

correlation sequence obtained by solving the optimization problem yields the FIR 

equalization filter. 

It is important to mention that, SDP and LP problems are both convex optimization 

problems. The main advantage of convex optimization problems is that, they do not 

suffer from local minima. Moreover, well developed and highly efficient interior point 

algorithms are available to solve these problems [25]. 

2.2 Problem Analysis 

Consider the baseband communication system shown in Figure2.1. The channel input 

n(k) 

s(k) y(k) 

Figure 2.1: System Model 

s is assumed to be unknown at the receiver end. However, its statistics in the second 

order sense are known and considered to be white (uncorrelated signal). Moreover, 

the channel impulse response h(z) and its order pare unknown and expressed as, 

13 
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In the following we will consider the noise free case. The received signal can be written 

as, 

x(k) = Lh(k- j)s(j) = h ® s, 
j 

(2.1) 

where s = (s1 , · · · , snf is the transmitted signal and '®' denotes the convolution 

operator. The equalizer output can also be expressed as, 

y(k) = L g(k- j)x(j), 
j 

(2.2) 

where x = (x1 , x2 , • • • , Xn+pf is the received data vector, y is the equalizer output 

and g is the FIR equalizer that is required to be estimated with an order q. In other 

words, 

The basic idea in our approach is to estimate an equalizer g( z) that minimizes the 

error between the actual output autocorrelation ry and the ideal output autocorrela

tion rideal = (0 0 · · · 0 1 0 · · · 0 Of, where we assumed a white input data vector s. 

The output autocorrelation sequence can be expressed as follows, 

ry(m) = E{y*(k) y(k + m)} 

=E{ (~g'(k-j)x'(j)) (~g(k+m-l)x(l))} 
= L L g*(k- j)g(k + m- f) E{x*(j)x(f)} 

j £ 

= L L g*(k- j)g(k + m- f) rx(f- j) 
j £ 

= L L g*( -j)g(m- f) rx(f- j). 
j £ 

14 
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substituting i = .e - j we get, 

ry(m) = L L g*( -j)g(m- i- j) rx(i) 
j i 

(2.3) 

It is obvious that, the output autocorrelation sequence ry is simply the linear convo

lution of the autocorrelation rx of the received vector and the autocorrelation r9 of 

the equalizer. 

2.3 Problem Formulation 

In this section we provide two optimization formulations for estimating the equalizer 

g(z) based on the £2-norm and the t'00-norm of the vector ry, and discuss the fre

quency domain characteristics of the autocorrelation r 9 . The autocorrelation r x of 

the received vector x can be estimated from N data vectors as, 

1 N 
rx(k) = N L L Xn(i)xn(i + k), 

n=1 i 

where Xn is a truncated subsequence of the received signal. The equalizer output 

autocorrelation (2.3) can be written in a matrix form as follows, 

rx(L) 0 0 

rx(L-1) 0 

rx(L) 

ry = Rxr9 , where Rx= rx(L-1) rx(L-1) 

rx(L) 

0 rx(L-1) 

0 0 rx(L) 

15 



M.A.Sc. Thesis - Ahmed Farid McMaster - Electrical & Computer Engineering 

In the following sections we will formulate the problem of estimating the equalizer au

tocorrelation in two convex optimization forms, £2-norm and £00-norm. These convex 

formulations can be solved efficiently and result in the equalizer autocorrelation se

quence. Also the frequency domain characteristics of the equalizer autocorrelation are 

discussed and introduced in the optimization problem as a linear inequality. Finally, 

the spectral factorization technique is utilized to obtain the equalizer coefficients from 

the autocorrelation sequence. 

2.3.1 .€2-norm Approach 

The assumption that the transmitted signal is white implies that the autocorrelation 

sequence of the transmitted signal resemble a delta function (i.e. r 8 ( m) ~ 6' ( m)). 

Therefore, the equalizer can be estimated by minimizing the cost function II ( r y- r 8 ) 11 2 . 

Moreover, the Fourier transform of the equalizer autocorrelation should be greater 

than or equal to zero for all frequency points. Based on these facts, the problem of 

finding the equalizer autocorrelation can be formulated as, 

minimize I:r~(m) {::} min (r~ry- 1) 
rg 

m:;i:O 
rg 

subject to ry(O) = 1 

r
9
(eiw) 2: 0 Vw. (2.4) 

The above formulation can be rewritten in terms of the equalizer autocorrelation 

vector and the received autocorrelation vector in a matrix form as minimizing a 

quadratic objective function with linear equality and inequality constraints as, 

minimize 
rg 

subject to 

(2.5) 

16 
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Moreover, the quadratic objective function can be replaced by a linear function and 

the constraint rrR;Rxr 9 :S t, which can be formulated using the Schur complement 

[26] as a positive semi-definite (PSD) constraint as follows, 

minimize 
r 9 ,t 

subject to 

t 

r
9
(eiw) ~ 0 Vw 

[ 
(R;Rx)-1 r 9 ] 

~ 0. 
rr t 

9 

(2.6) 

This convex optimization problem can be solved efficiently using the interior point 

methods [25] to obtain the equalizer autocorrelation vector. 

2.3.2 £00-norm Approach 

Considering the infinity norm will reduce the complexity of the problem from an SDP 

problem to an LP one. This can be written as, 

minimize 
rg 

max ry(m) 
m;i:O 

subject to ry(O) = 1 

r9 (eiw) ~ 0 Vw. (2.7) 

The formulation will differ only in the objective function. Following the same previous 

steps, this objective function can be replaced by a linear function associated with 

linear inequality constraint instead of a PSD constraint as follows, 

mm1m1ze t 
r 9 ,t 

subject to ry(O) = 1 

11Rxr9lloo :S t 

r9 (eiw) ~ 0 Vw. 

17 

(2.8) 



M.A.Sc. Thesis- Ahmed Farid McMaster - Electrical & Computer Engineering 

The problem is transformed to an LP problem with linear equality and inequality 

constraints. 

2.3.3 Frequency Domain Constraint 

The Fourier transform of the equalizer autocorrelation sequence r 9 is defined as, 

q 

r9 (ejw) = r 9 (0) + 2 L r9 (k) cos kw. (2.9) 
k=l 

Since r 9 is an autocorrelation sequence then r 9 ( ejw) is nonnegative for all values of w, 

i.e., 

r (ejw) > 0 
g - ' 

w E [0, 1r). (2.10) 

From this frequency representation we can note that for fixed w the inequality (2.10) 

is a linear inequality in the equalizer autocorrelation coefficients, i.e., it defines a 

closed hyper-halfspace. Therefore (2.10) is an intersection of infinitely many hyper

halfspaces parameterized by w and consequently it defines a closed convex set. A 

popular method of handling the linear constraint r 9 ( eJw) 2: 0 is to sample it at 

certain frequencies Wn, n = 1, ... , N. in the interval [0, 1r]. The infinite constraints 

(2.10) are replaced by N linear inequalities [26]. 

q 

r 9 ( 0) + 2 L r 9 ( k) cos kwn 2: 0 n=1, ... ,N. (2.11) 
k=l 

To this point, the optimization problem is complete and its solution yields the equal

izer autocorrelation sequence. In the following section we will show how the equalizer 

coefficients can be obtained from this autocorrelation sequence. 
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2.4 Spectral Factorization 

The autocorrelation sequence r 9 of a given vector g is obtained as follows, 

q-k 

r 9 (k) = L g(i)g(i + k). (2.12) 
i=O 

It is important to mention that, starting from r 9 and working towards finding a vector 

g whose its correlation match r 9 will not yield a unique solution. Where there are 

many possible solutions gj (where j is related to the number of zeros of r 9 in z-plane) 

having the same autocorrelation sequence r 9 • The spectral factorization method [26] 

computes the unique minimum-phase spectral factor g = (g0 , g1 , ......... , gq_1 , gq) 

which satisfies the property that, 

(2.13) 

is nonzero for lzl > 1 and 

q-k 

r9 (k) = L g(i)g(i + k). (2.14) 
i=O 

In our proposed method, we apply the spectral factorization technique to obtain the 

polynomial g(z) from the autocorrelation sequence. 

2.5 Simulation Results 

In this section numerical examples are presented to evaluate the performance of the 

proposed method. 

2.5.1 Noise Free Channel Equalization 

In this example we consider the minimum phase channel h(n) = [1, 0.5, 0.2, 0.1]. A 

transmitted data vector s of length 1000 is drawn from BPSK constellation. The 
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autocorrelation of the received signal is estimated by segmenting the received vector 

x into subvectors each of length Lx = 10. In this simulation the equalizer order is 

adjusted to q = 10 and consequently the equalizer autocorrelation sequence length 

is set to Lr
9 

= 21 in the optimization problem. We consider the £00-norm approach 

where it is computationally less expensive than the £2-norm approach. The constraint 

r9 (eiw) ~ 0 is discretized in the frequency domain toN= 512 frequency points [26]. 

Figure. 2.2 illustrates the combined channel impulse response where the equalizer 

g ( z) perfectly equalizes the channel. 

2.5.2 BER versus SNR 

The second evaluation for the proposed method will focus on the ability of the pro

posed algorithm to estimate the equalizer g(z) in the presence of additive white 

Gaussian noise (AWGN) at different signal-to-noise ratios (SNRs). A transmitted 

data vector s of length 1000 is drawn from 4-QAM constellation. We consider the 

following minimum phase channel, 

h(z) = 1 + 0.2z-
1

. 

1 + O.Bz-1 

The transmitted data is convolved with the channel impulse response and AWGN is 

added to form the received vector x at different SNRs. For each SNR the equalizer 

g(z) is estimated and utilized to equalize the channel output. For the purpose of 

comparison we simulate the (BER) for the zero-forcing (ZF) equalizer (when the 

channel is perfectly known), where g(z) = 1/h(z). Figure 2.3 shows the performance 

of the proposed method compared to ZF equalizer. The proposed method has the 

same performance of ZF equalizer at low SNR as the dominant factor in this case 

is the noise, whereas, for relatively high SNR the dominant factor that affects the 

performance is the inter-symbol interference terms appearing in the combined channel. 

20 



M.A.Sc. Thesis - Ahmed Farid McMaster - Electrical & Computer Engineering 

2.6 Conclusion 

We present a new approach to channel equalization problem based on second order 

statistics for minimum phase channels. In particular, we formulate the problem as 

a convex optimization problem which can be solved efficiently using interior point 

methods. Therefore, our approach does not suffer from local minima. The method 

we provide is computationally less expensive than the correlation fitting method which 

involves nonlinear optimization over the channel parameters. The performance in the 

presence of white Gaussian noise is very close to the ZF equalizer with known channel 

at the receiver end. This intuitively mean that, the channel was perfectly equalized 

even at low SNR. 

21 



M.A.Sc. Thesis - Ahmed Farid McMaster - Electrical & Computer Engineering 

4.5,.-----,.---~----.---,----.-------.----, 

3.5 

2.5 

1.5 

0.5 

Gl (j) ~ 

-0.5'-----'-----'-----'------'----'-----'-----' 
0 10 12 14 

Figure 2.2: Combined channel impulse response 

a: 
w 
"' 

Figure 2.3: Bit error rate for different SNR. 
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Chapter 3 

SIMO Equalization Via Convex 

Optimization 

3.1 Introduction 

In this chapter we present a new approach to blind channel equalization for single

input multiple-output (SIMO) systems. We estimate the equalizer via simple convex 

optimization problem with linear and quadratic constraints using the second-order 

statistics (SOS) of the received signal and the structure of the channel matrix in 

SIMO systems. The main advantage of the proposed method is that, it is robust when 

the channel matrix approaches singularity. Moreover, convex optimization problems 

do not suffer from the local minima problem that exists in many algorithms [27]. 

Furthermore, we show that this formulation can be modified to obtain a closed form 

solution to the equalizer. In the next section we will present a brief description for 

the fractionally spaced equalizers and then we will discuss in details the proposed 

algorithm. 
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3.2 Fractionally Spaced Equalizer 

Most of the recent algorithms are directed towards the fractionally spaced equalizers 

instead of the traditional T-spaced equalizers, where the equalizer taps are closer in 

time than the symbol interval. Equivalently, the channel output is sampled at an 

integer multiple of the symbol rate. This model is equivalent to a multichannel of 

single-input and multiple-output where the output of each subchannel is still at the 

symbol rate and the estimate of the transmitted symbols is obtained by combining 

the equalizers output. In the following section we introduce a brief description to the 

fractionally spaced equalizers (FSEs) highlighting its advantage over the traditional 

symbol spaced equalizers (SSEs). 

3.2.1 T-Spaced to Fractionally Spaced Model 

A block diagram explaining the process of oversampling and the equivalent multi

channel model is shown in Figure 3.1. In Figure 3.1(a) pulse shaping filter, channel 

propagation effects, and receiver input filter are modelled in one block. The trans

mitted signal is considered to be a sequence ofT-spaced delta functions. The channel 

output x(t) is sampled at a rate of pfT and passed through the fractionally spaced 

equalizer. The equalizer output y(n) is constructed by combining p output samples 

to produce T-spaced output y(k). 

An equivalent discrete system is shown in Figure 3.1(b) where the input signal is rep

resented by samples drawn from a certain constellation (QAM,PSK, .. ), and spaced 

by p - 1 zeros. The discrete channel model is simply the original continuous channel 

(including transmitter filter, channel propagation, and receiver filter) sampled at a 

rate p /T. The system can be represented as a multichannel structure shown in Fig

ure 3.1 (c). The discrete channel is divided into p subchannels each of length L + 1 

and formed by decimating the discrete channel impulse response by p. 
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Figure 3.1: Fractionally spaced system. (a) Oversampling by factor p. (b) Equivalent 

discrete system. (c) Equivalent multichannel model. 
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3.2.2 Advantages of Fractionally Spaced overT-spaced Equal-
. 1zers 

Although it seems that FSEs are computationally more expensive than the T-spaced 

equalizers, they overcome many problems that exist in the traditional TSEs. In 

particular, sampling the received signal at higher rate make it insensitive to timing 

phase error and a matched filter can be build in the discrete domain. As a result, in 

practice sampling at a rate 1/T is not enough to satisfy the Nyquist rate. Moreover, 

the equalizer length in the fractionally spaced system is much smaller than that 

of the symbol spaced case. An important advantage in FSEs is that they provide 

FIR solution. Recently most of the channel equalization algorithms are directed to 

the FSEs due to their capability to equalize the channel using only the SOS of the 

received signal instead of using the higher order statistics (HOS) which need more 

computations and large data record to estimate the signal statistics [28]. 

3.3 Channel Condition for FSEs 

In the fractionally spaced system shown in Figure 3.1(c), the combined channel im

pulse response between the transmitted signal and the final equalizer output is given 

as, 

where '&/ denotes the linear convolution operator, hi is the i-th subchannel and gi 

is the i-th subequalizer baud rate impulse response. Considering the z-transform of 

both sides we get, 
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For perfect equalization the combined channel impulse response should be zero ev

erywhere except at certain delay d > 0, i.e., 

The above equation (which is known as Bezout relation [29]) leads to the perfect 

equalization requirement concerning the subchannels roots. Specifically, for the ex

istence of a finite length equalizer, all the subchannel polynomials must not share a 

common root. To illustrate this condition, let us consider the existence of a com

mon zero between the subchannels, and let this common zero be represented by the 

polynomial h 0 (z). The i-th subchannel can be factorized as, 

Then the Bezout relation will be written as, 

z-d = h0 (z)(h1 (z)g1 (z) + · · · + hp(z)gp(z)) 

= ho(z)f(z). 

From the above equation it is clear that there is no FIR filter f(z) which when mul

tiplied by h 0 (z) results in a delay z-d. 

3.4 Problem Formulation 

In a linear time invariant system, the received signal is given by, 

x(t) = L smh(t- mT) + n(t), (3.1) 
m 

where sm is transmitted data, T is the symbol baud duration, h(t) is the channel 

impulse response and n(t) is additive white noise independent of the input sequence. 

In the fractionally spaced scenario the received signal is sampled p times its original 
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baud rate. The resulting i-th subchannel hi(n) = h(nT- (i- 1)Ll), i = 1, ... ,p and 

Ll = T jp, is modelled as an FIR filter of order L. The fractionally spaced system is 

shown in Figure 3.2. 

Figure 3.2: Multichannel model 

The p x 1 received vector x(k) can be expressed as, 

x(k) = L smh(k- m) + n(k), (3.2) 
m 

where h(k) = [h1 (k) · · · hp(k)]T and n(k) = [n1 (k), ... , np(k)]T is the oversampled 

noise vector. Collecting M received vectors (where M is the length of each subequal

izer), the model can be expressed in a matrix form as follows, 

x(k) = Hs(k) + n(k), (3.3) 

where, 

• x(k) = [x(kf, · · · , x(k- M + 1)T]T is pM x 1 received vector, 

• s(k) = [sk, · · · , sk-M-L+l]T is (M +L) x 1 transmitted sequence of (i.i.d) symbols 

with zero mean and covariance matrix E{s(k)sH (k)} = 18 , 

• n(k) = [n(k)T, · · · , n(k- M + 1f]T is pM x 1 white Gaussian noise with zero 

mean and covariance matrix, E{n(k)nH(k)} = a 2In, 
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• His pM x (M + L) Toeplitz channel matrix, 

h(O) h(L) 0 

H= 

0 h(O) h(L) 

Let hi denotes the i-th column of the channel matrix Hand hi is the j-th element of 

the i-th column. The condition for identifying the channel matrix His given in [20], 

[27] and [30] where the channel matrix H should have a full column rank. 

3.5 Covariance Matrix 

The covariance matrix~ of the received vector x at delay i is given by, 

R = E{x(k)xH (k- i)}, 

= HE{s(k)sH(k- i)}HH + E{n(k)nH(k- i)}, 

where the transmitted signal power is assumed to be unity and the transmitted signal 

and noise are assumed to be white, with zero mean and independent. The matrix 

J is the Jordan matrix that contains zeros everywhere and ones in the first sub

diagonal below the main diagonal, Js is (M + L) x (M + L) and Jn is pM x pM 

Jordan matrices for signal and noise respectively. For the special case when i = 0, 

the covariance matrix has the following form, 

(3.4) 

In practical scenarios, the covariance matrix ~ is not available and is replaced by 

:fl, which is the sampled covariance matrix at delay i, that is defined as follows for 
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K received vectors, 

K-i 
- 1 L H . R = --. x(k)x (k- ~). 

K-~ 
k==l 

The noise variance B-2 can be estimated from the covariance matrix Ro by applying 

the eigenvalue decomposition technique to separate signal and noise subspaces. Then 

the noise updated covariance matrix at delay i is given by, 

~ - 2 . 
R =R-8- J~. 

In the next sections we will formulate the problem considering the ideal covariance 

matrix R to emphasize the idea of the proposed algorithm. However, after formulat

ing the optimization problem, R will be replaced by the sampled covariance matrix 

R and minor modifications will be introduced to guarantee a feasible and effective 

solution to the optimization problem. 

3.6 Blind Zero Forcing Equalizer 

Consider the equalizers bank shown in Figure 3.2 for SIMO system. Each subequalizer 

g~ for j = 1, ... ,pis an FIR filter with length M. The estimated symbol at delay i 

is given as, 

si = gfx(k), 1 ::; i ::; M + L, (3.5) 

where gi = vec([g{, · · · , g~JT), and 'vee' denotes the vector operator that generates a 

new vector by stacking the columns of a given matrix. Considering all the available 

delays, the equalization matrix can be written as G = [g1 , · · • , gM+LJT. For zero 

forcing equalization at delay i where i = 1, ... , M + L, the equalizer should satisfy 

the following condition for perfect equalization, 

(3.6) 
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where ei is the zero vector with the i-th entry equals to one. If H is known and 

the condition H is a full column rank matrix is satisfied, then gf is simply the i-th 

row of the pseudo inverse of H. For unknown channel matrix the equalizer gi can be 

estimated blindly without any knowledge about the channel or the transmitted signal. 

In the following section, we will present a simple convex optimization formulation to 

estimate the equalizer gi using the second-order statistics of the received signal while 

taking into account the structure of the channel matrix. Moreover, We will show that 

the zero padding in the channel matrix columns in a fractionally spaced system and 

the channel matrix full column rank property (independent columns) can be utilized 

to efficiently estimate the equalizer at different delays. 

3. 7 Equalizer Constraints 

In this section, we will consider the zero forcing equalizer. We will start by finding 

the constraints that should be satisfied by the equalizer gi. Let us assume that the 

delay i = d is the one of interest. Multiplying both sides of (3.6) by the channel 

matrix H results in, 

(3.7) 

where hd is the d-th column of the channel matrix H. Substituting the covariance 

matrix of the received signal (3.4) (Assuming a2 = 0) in the above expression will 

lead to, 

(3.8) 

From the columns structure of the channel matrix H, it can be noted that the last 

p(M- d) elements of the channel column vector hd are zeros and this number of zeros 

is independent of the sub-channels order L. It only depends on the delay d that is 

assigned according to the desired delay in the equalization procedure. In general, the 

j-th entry in the i-th column of the channel matrix is h1 = 0, fori= 1, ... , M. and 
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pi < j ::; pM. By partitioning the covariance matrix Ro into two sub-matrices Ro1 

and Ro2 of sizes pd x pM and p( M - d) x pM respectively and denoting the first pd 

elements in hd by the vector iid, equation (3.8) can be written as, 

(3.9) 

this results in, 

(3.10) 

which implies that gd belongs to the null space of R 02 . It is necessary that the 

equalizer gd satisfies (3.10), however, it is not sufficient to obtain the equalizer at any 

delay except at d = 1. It is of crucial importance to mention that although g1 can 

be utilized to equalize the channel, it would amplify the noise. Therefore, the output 

signal-to-noise ratio is decreased and the performance of the channel equalization is 

degraded. 

The following proposition illustrates how the constraint (3.10) can force the equalizer 

gd to partially satisfy the perfect equalization condition in (3.6). 

Proposition 1: Assume that there exists a vector gd where 

(3.11) 

and a= (a1, ... , aM+Lf· If gd satisfies (3.10), then a has the following structure, 

i = 1, ... ,d 
(3.12) 

i = d + 1, ... , M + L 

Proof: Starting from (3.11) and multiply both sides by H from the right we get, 

HHHgd = Ha, 

M+L 

= L aihi, 
i=l 

d-1 M+L 

= L aihi + adhd + L aihi. 
i=l i=d+l 
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Note that, since the elements hi fori ~ d (first and second term in (3.13)) and j > pd 

are zeros then the last p( M - d) elements of any linear combination of the first d 

columns of the channel matrix I:t=1 aihi will be zeros, and independent of the values 

of ai for i = 1, ... , d. In the last term of (3.13), the elements hi for i > d and 

pd < j ~ pi are nonzero and since these vectors are independent (full column rank 

assumption) then any linear combination 2:::~!!1 aihi can not lead to zeros in the 

last p(M- d) positions unless ai = 0 fori= d + 1, ... , M + L. Q.E.D. 

To continue the equalization procedure we have to ensure that ai = 0, for z 

1, ... , d- 1. This can be achieved by considering the following constraint, 

(3.14) 

where Rd1 is the covariance matrix at delay d1 = M + L - d + 1. This can be proven 

as follows, 

= H(O, ... , 0, a1, ... , ad-1), 

d-1 

= 2::aihd1 -i, 
i=1 

=0. (3.15) 

It is clear that if the condition Rd1 gd = 0 is satisfied, this will lead directly to ai = 0 

fori = 1, ... , d -1. It is important to remark that the trivial solution gd = 0 satisfies 

(3.10) and (3.15), however, in order to ensure that gd is the zero-forcing equalizer in 

(3.6), we have to add the following linear constraint to the equalizer, 

(3.16) 

where epd- 1 is a pM x 1 vector with all its entries equal to zeros except one in the 

position (pd- 1) and r is the (pd- 1)-th column of the covariance matrix R 0• This 
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constraint can be expressed in terms of the channel matrix entries as h~d-l = 1. 

3.8 Equalization Via Convex Optimization 

In this section, we formulate the problem of finding the equalizer gd for the fraction

ally spaced system as a convex optimization problem. It is required to minimize a 

quadratic objective function g:R0gd subject to the linear constraints derived in the 

previous section as, 

minimize 
gd 

subject to (3.17) 

It is well known that this objective function can be replaced by a linear function T 

subject to the constraint T- g:R0gd ;::: 0, which can be reformulated as a positive 

semi-definite constraint using the Schur-complement [25] as follows, 

subject to HA 1 r gd = ' 

(3.18) 

where 't' denotes the matrix pseudo inverse operator. For ideal estimation of the 

covariance matrices (infinity number of samples), this optimization problem will lead 

directly to a perfect equalizer g: H = elf. 

3.8.1 Constraints Relaxation 

In practice, the covariance matrices are estimated from finite number of samples as 

well as the noise variance. Therefore, it is not necessary that the equality constraints 
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R 02gd = 0 and Rd1 gd = 0 in (3.18) lead to the required perfect equalizer or even a 

feasible solution. In order to count the finite samples estimation effect, we will modify 

the constraints by introducing the constants 7 1 and 7 2 as a relaxation to the original 

problem as follows, 

minimize 7 
gd,T 

subject to 

(3.19) 

where the covariance matrices are replaced by the estimated matrices. Moreover, the 

last two constraints are relaxed such that the maximum absolute value of each entry 

in the resulting vector remains less than a certain value 7 1 and 72 . Although the above 

optimization is complete, the solution will be affected by the values assigned to the 

constants 7 1 and 72. In fact, small values for 7 1 and 72 can turn the problem infeasible, 

while large values will make the constraints ineffective. In order to overcome this 

problem we will treat 7 1 and 7 2 as variables and instead of assigning fixed values 

for 7 1 and 7 2 , we will add these two variables to the objective function and the 

minimization will be carried out over the new objective function 7 + 7 1 + 72 . This will 

guarantee that the minimum values for 7 1 and 72 are achieved and hence improve the 

performance of the channel equalization over the method of assigning fixed values. 

The problem can therefore be written as, 

minimize 
gd,T,T!,T2 

subject to 

(3.20) 
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It is important to mention that, the constraint Rd1 gd = 0 is highly affected by the 

estimation quality of the covariance matrix Rd1 • This can be inferred from (3.15), 

where we assume that the signal covariance matrix at delay d1 is perfectly estimated 

as J~1 and hence we have J~1 HH gd = (0, ... , 0, a 1 , ... , ad_1). These d1 leading zeros 

ensure that there is no contribution from the first d1 columns of the channel matrix 

in the constraint. However, the estimated covariance matrix Rd1 will not satisfy 

these leading zeros anymore and in order to improve the performance of the proposed 

algorithm, we will modify the covariance matrix Rd1 by introducing blocks of zeros 

in the previously known position of the original matrix HJ~1 HH (These positions 

depend only on d1 and p which are known to the receiver end) as follows, 

(3.21) 

where lpxp is a p x p matrix with all its entries equal to 1 and Rd1m is the modified 

covariance matrix at delay d1 . The modified problem can be written as, 

minimize 
gd,T,T!,T2 

T + 'TI + Tz 

subject to 

d-l 

II(Rdl 0 (L=JM-k ® lPxP))gdlloo ~ Tz, 
k=l 

(3.22) 

This optimization problem consists of a linear objective function with linear equality, 

linear inequalities and positive semi-definite (PSD) constraints which can be efficiently 

solved using interior point methods to find the equalizer gd. In the next section we will 

show how the original optimization problem (3.17) can be reformulated by considering 

the f 2-norm to obtain a closed form solution of the equalizer gd. 
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3.9 Closed Form Solution 

In this section, we present a closed form solution of the equalizer gd. Considering the 

original problem formulation in (3.17), the equality constraints can be reformulated 

using the £2-norm instead of £00-norm which results in the following problem, 

minimize 
gd 

subject to (3.23) 

By following the same steps considered in the previous section (relaxation), these 

two constraints can be added to the objective function. Define a matrix Q = Ro + 
R~Ro2 + RZ Rd1 , the problem can be written now as follows, 

minimize 
gd 

subject to (3.24) 

Considering the estimated finite samples covariance matrices and replacing the co

variance matrix Ito by Ro (i.e. before noise suppression) in order to minimize the 

noise power at the output, The problem can be modified as follows, 

minimize 
gd 

subject to (3.25) 

A - AHA AHA 
where Q = Ro + R 02 Ro2 + Rd

1 
Rd1 • This problem can be solved analytically and 

results in the equalizer, 
A -1 

A Q r 
gd = H A -1 . 

r Q r 
(3.26) 

Although the above optimization problem is complete, it should be noticed that the 

solution is affected by the signal power and the noise power individually and not by 
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the signal-to-noise ratio. This can be illustrated by assuming that the received signal 

is multiplied by a factor 1 such that, 

x(k) = 1(Hs(k) + n(k)), 

and let us denote the covariance matrices in this case by a subscript w. The following 

relations are easy to be deduced, 

- 2-
Row="' Ro, 

h 2 h 

Ro2w = "' Ro2, 

h - hH h hH h 
The new matrix Qw = Row + R 02wRo2w + Rd

1 
wRd1 w can be expressed in terms of the 

original covariance matrices as follows, 

Although the signal-to-noise ratio does not change, it can be easily noticed that, the 

matrix Qw is affected by the weighting factor I· For small values of 1 the last two 

terms will be vanished and become ineffective in the process of equalizer estimation, 

while for large values the last two terms will dominate. In both cases, this will lead 

to estimation errors. 

We conjecture, without proof of optimality, that by introducing a new factor f3 as 

given below we can overcome this problem and adjust the effect of this weighting 

problem on the matrix Q as follows, 

where, f3 = IIRoiiF 
(pM)2. 

One of the important issue in this formulation is the choice of f3 as it affects the 

performance of the equalizer. More investigation is required to find out an optimal 

(or suboptimal) value for (3. 
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3.10 Simulation Results 

In this section we present three examples to evaluate the performance of the proposed 

algorithms. The oversampling factor p = 4 and the noise is white, Gaussian and with 

zero mean. We will examine the ability of the algorithm to remove the inter symbol 

interference (lSI), as well as the bit error rate (BER) for different Signal-to-Noise 

Ratios (SNRs). 

3.10.1 Example 1: lSI and Eye Diagram 

we consider the following channel, 

h = [ .04 -0.05 0.07 -.2 -0.5 0.72 0.36 0.21 0.03 0.07 .03 -.01 ] ' 

which is a typical telephone channel [12]. The sub-channel order is L = 2, the other 

parameters are adjusted such that, the delay d = 6, the smoothing lag (length of 

each sub-equalizer) M = 10 and d1 = M + L- d + 1 = 7. The data symbols are 

i.i.d and drawn from 16-QAM constellation and the covariance matrix is estimated 

over 1000 symbols. The simulation is carried out at signal-to-noise ratio SNR=20dB. 

Figure 3.3(a) shows the channel impulse response h(n) and Figure 3.3(b) present the 

received signal constellation before equalization. In Figure 3.3(c) and (d) the impulse 

response of the combined channel (channel and equalizer) and the equalized signal 

constellation using the 1!00 optimization problem are plotted. Finally in Figure 3.3(e) 

and (f), the combined channel response and the equalized signal constellation using 

the closed form solution are shown. The proposed algorithms efficiently equalize the 

channel and open the eye diagram. 
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3.10.2 Example 2: Channel Close to Singularity 

We consider a minimum phase channel with the following impulse response, 

h(z) = 1 + 0.2z-
1 

1- o.sz-1 

This channel is selected such that, the channel matrix which is formed by oversampling 

h(n) approaches singularity. The subchannel order is L = 3, each subequalizer length 

isM= 11 and the delay d = 7. The transmitted signal is i.i.d drawn from a 4-QAM 

constellation. The covariance matrix is estimated over 1000 symbols at SNR=18 dB. 

The simulation results are shown in Figure 3.4 where the channel impulse response 

h(n) is plotted in Figure 3.4(a) and the received signal constellations is shown in 

Figure 3.4(b). The resulting combined channel impulse response f = 'L;:,1 hi® 9i 

and the equalized signal constellation (for £00-norm convex optimization problem) 

are shown in Figure 3.4(c) and Figure 3.4(d) respectively. Also the combined channel 

impulse response and the equalized signal constellation for the closed form solution 

are shown in Figure 3.4(e) and Figure 3.4(f) respectively. From this example we 

conclude that, the proposed methods can efficiently equalize the channel even though 

when the channel matrix is close to being singular. 

3.10.3 Example 3: BER versus SNR 

In this example, we use the channel given in example 1. To compare the proposed 

method (£00-norm) with other existing algorithms. We simulate two methods, the 

subspace method (SSM) [20] and the constrained optimization method (COM) [30] 

for channel equalization. The transmitted signal is i.i.d and drawn from BPSK con

stellation. Each sub-equalizer is an FIR filter of length M = 9, the delay is adjusted 

to d = 6 and d1 = 6. The covariance matrices are estimated over 500 symbols. The 

BER comparison is shown in Figure 3.5 where it can be inferred that the proposed 

algorithm results in lower BER compared to [20] and [30]. It should be mentioned 
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that in both methods [20] and [30], the sub-channel order is assumed to be known 

where both methods depend on the perfect estimation of the sub-channel order L. 

However, a performance degradation will occur in the case of incorrect estimation. 

Moreover, while the SSM method utilizes an estimated channel column vector with 

zeros are placed in the previously known positions (depending on the channel order) 

along with the finite covariance matrix to estimate the equalizer, the behavior of the 

SSM method at high SNR is affected as shown in Figure 3.5. 
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Figure 3.3: (a) Channel h(n). (b) Received signal constellation. (c) and (d) Combined 

channel impulse response and equalized signal constellation: Convex Optimization. 

(e) and (f) Combined channel impulse response and equalized signal constellation: 

Closed form. 

41 



M.A.Sc. Thesis - Ahmed Farid McMaster - Electrical & Computer Engineering 

10.--~--~--~--. 

.. 
5 '" ' _,., ~ -'< ·.'~•'\ o'").L .~ ... )i~ 

1i r' ~ ' ~'. 
..... ·....' ..._ ' -.. /,~.:. . ~: ... 0 

>·- ,J,:~ __ .... : -:,· . ' ... 
-5 .. 

-0.5 '------~--~---------' -10'-----~--~--~---' 

0 5 10 15 -10 
(a) 

2.--~--~--~--. 

0.5 0 

-1 

-2'-----~----~----~---' 
0 5 10 -2 

(c) 
4.-------~---~--. 

2 

0.5 0 

-2 

-4L---~----~----~-~ 
0 5 10 -4 

(e) 

Figure 3.4: (a) Channel h(n). (b) Received signal constellation. (c) and (d) Com

bined channel and equalized signal constellation: Convex Optimization. (e) and (f) 

Combined channel and equalized signal constellation: Closed form. 
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Figure 3.5: BER vs SNR 
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Chapter 4 

Direct MMSE Channel 

Equalization 

In this chapter, we present two approaches to blind channel equalization based on 

second-order statistics for SIMO systems. Due to the oversampling associated with 

FS equalization, the equivalent channel matrix possesses a particular structure en

abling us to estimate the channel based only on information exists in the covariance 

matrix at lag zero. Simulation examples are provided to demonstrate the performance 

advantage of the proposed algorithms compared to existing techniques. 

4.1 Introduction 

Recently, blind channel equalization algorithms have been directed to utilizing the 

second-order statistics of the received signal to estimate the equalizer. The algorithm 

presented in [16], [31] is one of the first algorithms utilizing the second-order statistics 

to equalize the channel in the case of fractionally sampled channel output. It uses 

a recursive method to estimate the channel using estimated covariance matrices at 

different delays, therefore, error propagation may occur. Moreover, the method in 

44 



M.A.Sc. Thesis - Ahmed Farid McMaster - Electrical & Computer Engineering 

[16] does not include the channel structure while estimating the channel. The sub

space algorithm proposed in [20] utilizes the channel matrix structure to estimate the 

channel where it relies on the fact that, the noise subspace is orthogonal to the space 

spanned by the columns of the channel matrix. However, this method is sensitive 

to channel order estimation error and performance degradation is noticed when the 

channel matrix approaches singularity. Another subspace approach is presented in 

[30] where the analogy between the Capon direction of arrival estimation technique 

and blind channel estimation is analyzed. Although [30] presents a closed form so

lution, it requires prior knowledge of the channel order. Furthermore, [30] does not 

utilize the channel matrix structure in estimation. The methods presented in [22] 

and [23] do not require knowledge of the channel order and do not depend on the 

signal and noise subspace separation. However, they estimate the signal subspace in 

order to remove the noise component from the estimated covariance matrix at lag 

zero. Moreover, they require additional covariance matrices at different delays and 

the channel matrix structure is not employed in the estimation. 

In this chapter, we present two methods A and E for channel estimation/equalization 

in fractionally spaced system. Unlike [20], our proposed method-A is less sensitive to 

channel order estimation error and performs well when the channel is close to being 

singular. Although method-A depends on recursion while estimating the channel, it 

performs better than [16] as it makes use of the channel structure. Moreover, method

A uses only the covariance matrix at delay zero to equalize the channel. Therefore, it 

has an advantage over methods that employ multiple covariance matrices computed 

at different delays, e.g. [23], [22] and [16], where the covariance matrix estimation 

accuracy affects the equalization performance. On the other hand, method-E is com

putationally less expensive than the methods from [23] and [22] as well as method-A. 

However, Method-E partially uses the channel structure and no matrix inversion is 

needed as in [23] and [22]. Furthermore, we will show that the covariance matrix 
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at different delays can be obtained directly from the zero lag covariance matrix and 

can be used to estimate the channel with low computational complexity and good 

performance. 

4.2 Problem Formulation 

In this section the same definitions and formulations for the fractionally spaced system 

in chapter 3 will be used. We highlight some formulations and assumptions needed 

such that the flow of the proposed algorithm becomes consistent. The received signal 

is given as, 

x(k) = Hs(k) + n(k), (4.1) 

where His pM x (M + L) Toeplitz channel matrix, 

h(O) h(L) 0 

H= 

0 h(O) h(L) 

Before we proceed to channel estimation we summarize the assumptions made re

garding the signal, noise, channel matrix and the subchannels as well. 

• Transmitted symbols are (i.i.d) with zero mean and E{s(k)sH(k)} = 18 , 

• The noise is Gaussian with zero mean and E{n(k)nH(k)} = a2In, 

• The channel matrix H is full column rank ([20], [22], [16] and [27]), 

• Equivalently, the subchannels hi have no common zeros. 
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4.3 Fractionally Spaced Equalizer 

4.3.1 Blind MMSE Equalizer 

Consider the equalizers bank shown in Figure 3.2 where gi, i = 1, · · · ,p is FIR of 

order M - 1. The estimated symbol at delay i is given by, 

1 ~i ~ M +L, (4.2) 

where gi = vec([gi, · · · , gtJT) and the notation 'vee' denotes the vector operator. 

Considering all the available delays, the equalization matrix can be written as G = 
[g1 , · · · , gM+L]T. For the minimum mean square equalizer MMSE the equalization 

matrix is given by, 

G = argminE{II Gx(k)- s(k)li 2
} 

G 

= argminE{xHGHGx- 2xHGH§- §Hs} 
G 

= arg minE{ trace{ GxxH GH - 2sxH GH}} 
G 

= argmintrace{GR0GH- 2HHGH} 
G 

where s(k) is the estimated sequence. The equalizer can be obtained from the above 

optimization problem in closed form as, 

where 't' denotes a matrix pseudo inverse operator. Since Ro can be estimated 

from the received signal, it remains to estimate the columns of the channel matrix 

H corresponding to different delay equalizers. The channel equalization quality is 

affected by the delay selection. It was noticed in many algorithms that, the delay 

i should be selected such that the corresponding channel column vector contains all 

the channel coefficients. 
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4.3.2 Covariance Matrix 

The covariance matrix R of the received signal x at delay i is given by, 

R = E{x(k)xH(k- i)}, 

(4.4) 

where Js is (M + L) x (M + L) and Jn is pM x pM Jordan matrices (matrix with 

ones in the subdiagonal below the main diagonal) defined as, 

J= 

0 0 0 0 

1 0 0 0 

0 1 0 0 

0 0 1 0 

The covariance matrix at delay i = 0 (which is a special case from ( 4.4)) is the one of 

interest in all algorithms as it provides information about signal and noise subspaces. 

The covariance matrix R 0 and its eigen decomposition are given as follows, 

(4.5) 

where the transmitted data and noise are assumed white, independent of each other 

and with zero mean. Separating signal and noise subspaces, we can express HHH as 

follows, 

The channel matrix H can be obtained up to an unknown orthonormal matrix VH 

(where Vis the (M + L) x (M + L) right singular matrix of H) as, 

(4.6) 
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where A= U 1At and yH = [v1 , ... , VM+L]· In the next section we will present two 

methods (A and B) for blind channel equalization. The key step in method-A is to find 

v1 and then apply a recursive method to estimate the j-th vector Vj from which we can 

obtain the j-th channel matrix column containing all the channel coefficients. While 

in method-B we avoid the recursion procedure in method-A and compromise between 

the computations and the performance. Note that, it is not necessary to estimate the 

equalizer at all the (M +L) delays (i.e v1 , · · ·, VM+L). However, estimating a channel 

column vector that has all the channel coefficients results in a performance that is 

very close to the best delay equalizer. 

4.4 Channel Estimation 

4.4.1 Method A 

In this section we present a robust and efficient algorithm to estimate a channel 

column vector that contains all the channel coefficients. This will result in an equalizer 

with performance very close to the best delay equalizer. We define a matrix H 1 of 

size p(M -1) x (M + L), containing the last p(M -1) rows of the original matrix H 

with the following structure, 

0 h(O) h(L) 0 

0 h(O) h(L) 

Since H is a full column rank matrix with rank(H) = M + L then it is clear that 

rank(H1 ) = M + L -1 where the first column in H 1 induces the rank deficiency. The 

matrix H can be divided into two sub-matrices H1 and H1 of sizes (M -1) X (M + L) 

and p( M- 1) x ( M + L) respectively (the same procedure is applied to matrix A and 
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results in A1 and A 1 respectively). Then (4.6) can be written as, 

(4.7) 

Equating the last p(M- 1) rows it yields, 

(4.8) 

Comparing the first column in both sides of ( 4.8) we get, 

(4.9) 

meaning that VI belongs to the null space of A 1 . Since yH is a full rank matrix and 

rank(H1) = M + L - 1, from ( 4.8) it yields that rank(A1) = M + L - 1 and A{l A 1 

has a unique zero eigenvalue. Since v1 is a unit norm vector, then VI is the solution 

to the following problem. 

minimize subject to II VI\\ = 1. (4.10) 
Vl 

Therefore, v1 is the eigenvector corresponding to the unique zero eigenvalue of A{f AI. 

Starting from VI we can estimate v2 and from v1 and v2 we can estimate v3 and so on. 

Applying this recursive method we can obtain Vj where j > 1. In this method we make 

use from the orthogonality property existing between Vj and Vi for i = 1, ... , j- 1. 

To illustrate the recursion procedure, let us consider that vi,··· , Vj-l are already 

estimated and the vector Vj is the one of interest at the moment. 

To find the j-th column ofVH (j > 1), we define a matrix Hj of size p(M -j) x (M +L) 

that has the last p(M- j) rows of the channel matrix H with the condition p(M- j) > 

( M + L). This condition is necessary to ensure that, Hj is a tall matrix and the rank 

deficiency arises from the first j zero columns. The structure of Hj is shown below, 

0 0 h(O) h(L) 0 

0 0 h(O) h(L) 
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Following the same steps, the matrices H and A in ( 4.6) can be partitioned and 

considering the last p(M- j) rows of the channel matrix H we obtain, 

(4.11) 

where rank(Aj) = M + L- j and the matrix Af Aj has j zero eigenvalues. Equating 

the j-th column in each side we obtain, AjVj = 0. which can be rewritten as, 

(4.12) 

Since the null space N(Af Aj) has dimension j then Vj can not be obtained di

rectly from (4.12) as many solutions exist for Vj and satisfy (4.12). Let N(Af Aj) = 
Range(Uj) = span(u1 , · · ·, uj) where, u.;, is the i-th eigenvector of Af Aj correspond

ing to the i-th zero eigenvalue (i = 1, ... ,j). Since Vj E span(u1 , · · ·, uj) then vi can 

be expressed as a linear combination of these vectors i.e., 

(4.13) 

where a = (a1 , • • • , aj)T and \\a\\ 2 = 1. This condition guarantees that \\vi\\ 2 = 1. 

At this stage, it is required to find a vector a such that Vj is the j-th column of the 

matrix yH. However, Vj should also belong to the null space of the matrix Wj whose 

columns are the first (j - 1)-th columns of yH (previously estimated) defined as, 

wj = [vl, ... 'Vj-ll· This can be formulated as, 

(4.14) 

meaning that, the vector a lies in the null space of B. Since Wf is (j -1) x (M +L) 

full row rank matrix and U j is ( M + L) x j full column rank matrix, it follows that, 

the matrix B is j - 1 x j full row rank matrix and BHB has a unique zero eigen

value. Therefore, a is the eigenvector corresponding to the unique zero eigenvalue 

of BHB. Starting from v1 and applying this recursive algorithm we can estimate 
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the first j columns of yH. The advantage of method-A appears in the estimation 

of Vj where it lies in the intersection of two sets N(Wj) (orthogonal to previous vi, 

i < j) and N(Af Aj) (due to the channel matrix structure). Therefore, utilizing the 

orthogonality property and the channel matrix structure leads to a better estimates 

to the channel. In comparison to the methods proposed in [16], [20] the computa

tional complexity associated with our proposed method is higher due to the number of 

eigen decompositions required. However, our method outperforms existing methods 

as can be noticed from Figure 4.2 where method-A has a gain of 1.5 dB and 3 dB 

over the Direct [22] and the TXK [16] methods respectively at BER=10-4
• Moreover, 

the proposed method can efficiently estimate the channel when the channel matrix 

approaches singularity where the method utilizes the eigenvectors and the associated 

eigenvalues of the covariance matrix to estimate the equalizer while the SSM method 

[20] fails at moderate SNR because it utilizes only the eigenvectors to estimate the 

equalizer as shown in Figure 4.3. 

Algorithm Steps 

The following steps summarize the procedure of estimating the equalizer g. 

1. Apply eigen decomposition to Ro to obtain U 1 , A and noise variance &2 . 

1 

2. Form the matrix A= U 1A2. 

3. Start a loop for j=1 to J where L + 1 ~ J ~ L(M + L)/2J. 

• Form the matrix Aj as the last p(M- j) rows of the matrix A. 

• Construct the matrix U i that contains the j eigen vectors of Af Aj cor

responding to the j zero eigenvalues . 

• Form the matrix Wj =[vi, ... 'Vj-d, where j > 1 and wl =I. 
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• The vector a is obtained as the eigenvector corresponding to the unique 

zero eigenvalue of wfujufwj. 

• Substitute to obtain Vj = Uja. 

• Go to step 4. 

4. The equalizer at delay i is obtained as gi = RQ1~ = RQ1U1A~ vi. 

4.4.2 Method B 

In this method the equalizer is estimated from the vector v 1 obtained in the previous 

section and the covariance matrix at delay i. We will show that this covariance matrix 

can be obtained directly from the covariance matrix at delay zero using the structure 

of the channel matrix. Moreover, the computational complexity is much less than 

method-A, [22] and [32]. Considering the covariance matrix at delay i, (4.4) can be 

written as, 

In practice, the noise variance and the signal subspace order are estimated from the 

covariance matrix at delay zero using the eigen decomposition technique. Substituting 

the channel matrix H by its singular value decomposition ( 4.6) we obtain, 

R- a 2J:i = UlA~VHJ!VA~ur 

Multiplying the above relation by A~Uf from the left and by its Hermitian transpose 

from the right side getting, 

(4.15) 

1 H · 1 
Defining a new matrix Ci associated with the delay i asCi= A -2U1 (R-a2J:i)U1A -2 

where Ci can be obtained from the covariance matrices at delay zeros and i. Substi

tuting in (4.15) results in, 

(4.16) 
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Multiplying Ci by V and yH from left and right respectively, 

By equating the (i + 1, 1) entry in both sides we get, 

(4.17) 

As v 1 and Ci are already estimated, it remains to solve (4.17) to obtain vi+l· To find 

vi+l from (4.17), Let us start by multiplying each term in (4.16) by its Hermitian 

transpose as, 

Multiplying the above equation by V and yH from left and right respectively results 

in, 

vcHc.vH = JiH Ji = [ IM+L-i o ] 
t t s s ' o oi 

(4.18) 

and recalling that v 1 is the first column of yH and comparing the top left entry in 

each matrix in (4.18) we have, 

meaning that I!Civ1 !1 = 1. Since Vis an orthonormal matrix i.e., l!vi+ll! = 1 then 

( 4.17) can be written as, 

which implies that () = 0, and hence, 

(4.19) 
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Therefore, the equalizer at delay d = i (i 2:: 2) can be expressed as, 

gi = R~hi, 

= (UIA-1Uf)(UIA~vi), 

U A_l (A-lUH(n. 2Jp(i-l))U A_l) = 1 2 2 1 .LLi-1 - (]" n 1 2 V 1' 

( 4.20a) 

(4.20b) 

(4.20c) 

where (4.20a) is obtained from (4.6), and (4.20b) follows directly from the definition 

of Ci. 

Algorithm Steps 

The following steps summarize the procedure of estimating the equalizer g and high

light the processes of estimations and decompositions for different matrices in the 

proposed method. 

A A 

1. Estimate the covariance matrices Ro and R-1 , i 2:: 2. 

2. Apply eigen decomposition to Ro to obtain U 1 , A and noise variance a2• 

1 
3. Form the matrix A 1 = U 1A2. 

4. Obtain v 1 from the eigen decomposition of Af A1 . 

5. Substitute Ro, R-1, ul, A and VI in (4.20c) to obtain the equalizer gi. 

We can directly obtain R from Ro in a recursive method as follows. Let us partition 

the covariance matrix at delay i to three disjoint blocks as R = [Z P Q] where Z is 

pM x p, P is pM x p(M- 2) and Q is pM x p. Using the channel matrix structure, 

the covariance matrix at delay i + 1 can be obtained from the covariance matrix at 

delay i by the following relation, 

R+I = F{R} = [P Q JPQ], (4.21) 
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where F is an operator acting on the sub matrices Z, P, Q. To illustrate this op

eration, by using the channel structure it can be shown that HJ 8 HH = F{HHH}. 

Starting from R 0 , the covariance matrix at delay i can be obtained through the recur

sion method (4.21). Obviously, the computation complexity in method-B is much less 

than method-A. The algorithm is less sensitive to the over-estimation of the signal 

subspace order. Furthermore, the algorithm avoids the error propagation associated 

with the recursive channel estimation in [16], as well as the error accumulation due 

to the multiplication of the estimated covariance matrices at different delays in [22] 

and [23]. 

4.5 Simulation Results 

In this section three examples are presented to evaluate the performance of the pro

posed algorithms. For each case, the covariance matrix is estimated using 1000 sam

ples. 

4.5.1 Example 1: lSI and Eye Diagram 

In this example, the performance of methods A and B to equalize the channel are 

evaluated. The channel impulse response is shown in Figure4.1(a) which consists of 

two delayed raised cosine pulses as follows, 

h(t) = p(t, a)W(t)- 0.6p(t- t0 , a)W(t), 

where a= 0.1 is the roll-off factor, t0 = ~is the pulse delay and W(t) is a rectangular 

window of length 6T. The sub-channels order is L = 5, the delay i = 6, oversampling 

factor p = 4 and the sub-equalizer length M = 10. The input sequence is drawn 

from 16-QAM constellation. Figure 4.1(b) shows the received signal constellation 

while Figures 4.1(c) and (d) show the equalized signal constellation with method-A 
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and method-B respectively at SNR= 25 dB. As with all second-order statistics based 

algorithms, an intrinsic phase angle ambiguity may exist in the estimated signal. This 

ambiguity can be easily removed through the use of a single initial training symbol. 

4.5.2 Example 2: BER versus SNR 

In this example, we illustrate the performance of the proposed methods A and B 

regarding the BER for different SNRs. The channel impulse response utilized in this 

example is, 

h = [ 0.04 -0.05 0.07 -0.2 -0.5 0.72 0.36 0.21 0.03 0.07 0.03 -0.01 ] 

The parameters are adjusted as, M = 6, p = 4, i = 3 and L = 2. The input sequence 

is drawn from BPSK constellation and the channel order is assumed to be known. 

The covariance matrix is estimated over 1000 transmitted symbols. The BER curve is 

averaged over 500 Monte Carlo runs. The performance is compared with [16] (TXK) 

and [22] (Direct) and is shown in Figure 4.2. Method-A has a lower BER than the 

other methods, this can be attributed to the strategy used to estimate the columns of 

yH (or equivalently the columns of the channel matrix) where a restriction is imposed 

on vi such that it lies in the intersection of N(Wi) and N(Af! Ai)· 

The improvement in performance introduced by method-B over [16] and [22] results 

from avoiding the recursive estimation in [16] and covariance matrices inversion and 

multiplication in [22]. Moreover, the dependence on a single covariance matrix at 

delay i instead of multiplication of estimated covariance matrices [22], [23] reduces 

the error. In addition, method-B offers a reduction in the computational complexity. 

4.5.3 Example 3: Channel Matrix Approaches Singularity 

In this example we consider a channel matrix that is close to being singular. This 

particular case is considered to compare our proposed methods with the subspace 
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methods in [20] and [30] which are not robust against singularity although the channel 

order is perfectly known. The channel impulse response is given as, 

h(z) = 0.7- z-1 
1- 0.7z-1 

The channel is truncated such that the subchannels order L = 2. The delay is 

chosen as i = 6, oversampling factor p = 4 and the length of each subequalizer is 

M = 9. The input sequence is an i.i.d 16-QAM signal and the noise is AWGN. We 

compare the performance of the proposed methods with the Subspace method [20] 

and Capon method [30] for different SNRs. As shown in Figure 4.3 the proposed 

methods efficiently equalize the channel and open the eye diagram while the methods 

presented in [30] and [20] failed to do so at SNR=20 dB. Increasing the SNR to 28 

dB, the later methods become capable of equalizing the channel and opening the eye 

diagram. This illustrates that, our proposed methods A and B have an advantage over 

the subspace methods when the channel matrix approaches singularity even when the 

channel order in known. 

4.6 Conclusion 

In this chapter, we have addressed the problem of blind channel equalization for 

fractionally spaced systems. We have exploited the channel structure induced by 

oversampling the received signal in order to develop equalization techniques that out

perform existing schemes. The proposed methods can efficiently equalize the channel 

even when the channel matrix is close to being singular. 
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Figure 4.1: (a) Channel coefficients. (b) Received signal constellation. (c) Output 

signal constellation method-A. and (d)Equalized signal method-B 
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Chapter 5 

Discussions and Conclusions 

Blind channel equalization is a powerful technique in communication systems to re

move the distortion introduced by the channel. Many approaches and algorithms 

were presented in the last few years to estimate/equalize the channel blindly based 

on higher order statistics (HOS). However, HOS are more computationally expensive 

and require larger data record than second-order statistics (SOS). Therefore, recent 

approaches were directed to SOS based blind equalization algorithms. Specifically, 

when Tong el. al [16] exploited the capability of SOS to equalize the channel for 

single-input multiple-output (SIMO) systems (Fractionally Spaced Equalizer FSE). 

In this thesis we have shown that, for minimum phase channel the T -spaced equal

izer could be estimated using the SOS via convex optimization problem where the 

equalizer autocorrelation sequence is the variable of interest in the problem. Factor

izing the estimated autocorrelation sequence (obtained by solving the optimization 

problem) using the spectral factorization technique results in the equalizer coefficients. 

Although this method is simple, efficient and global minima is guaranteed, the ap

proach is not applicable to nonminimum phase channels. Therefore, the extension to 

the fractionally spaced equalizers was presented. We have formulated the problem as 
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a convex optimization problem which was solved efficiently providing an estimate to 

the equalizer coefficients directly. Moreover, simple modifications to the original for

mulation have been introduced which enabled us to obtain a closed form solution to 

the problem. However, both approaches require the knowledge of the channel order as 

it is a critical parameter in the formulation. In addition, the proposed algorithms out

perform the subspace methods when the channel matrix approaches singularity even 

though the channel order is perfectly known. This advantage arises as the proposed 

methods utilize the left singular vectors of the channel matrix and the associated sin

gular values to equalize the channel, while the subspace methods rely only on the left 

singular vectors obtained from the eigenvalue decomposition of the covariance matrix. 

Furthermore, we have proposed an algorithm that does not rely on the channel 

order to avoid the problem encountered in the previous algorithms. The method out

performs existing algorithms as it utilizes the channel matrix structure as well as the 

transmitted signal statistics. The new algorithm is complex since it requires a large 

number of eigenvalue decompositions. To mitigate this shortcoming, we presented a 

simplified algorithm with substantially reduced complexity and only a small perfor

mance degradation. 

Our techniques address many of the difficulties traditionally found in most blind 

equalization algorithms (see section 1.4). The proposed algorithms are insensitive to 

channel order over estimation and utilize the channel matrix structure as well. More

over, they are robust against error propagation in recursive estimation and they are 

robust when the channel matrix approaches singularity. 
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The proposed algorithms are based on batch processing procedure, as a future 

direction this could be extended to the recursive implementation scenario where online 

equalization is required. However, more investigations and analysis are required for 

the sensitivity of the estimation in method-A due to the recursion procedure. We 

expect that the error propagation will be less than other algorithms as the equalizer 

is estimated through the intersection of subspaces which guarantees that the equalizer 

should satisfy many constraints simultaneously. 
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