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Abstract 

It is possible to interpret multi-resolution analysis from both Fourier-domain 

and temporal/spatial domain stand-points. While a Fourier-domain interpre

tation helps in designing a powerful machinery for multi-resolution refine

ment on regular point-sets and lattices, most of its techniques cannot be di

rectly generalized to the case of irregular sampling. Therefore, in this thesis 

we provide a new definition and formulation of multi-resolution refinement, 

based on a temporal/spatial-domain understanding, that is general enough 

to allow multi-resolution approximation of different spaces of functions by 

processing samples (or observations) that can be irregularly distributed or 

even obtained using different sampling methods. We then continue to pro

vide a construction for designing and implementing classes of refinement 

schemes in these general settings. The framework for multi-resolution re

finement that we discuss includes and extends the existing mathematical 

machinery for multi-resolution analysis; and the suggested construction uni

fies many of the schemes currently in use, and, more importantly, allows 

designing schemes for many new settings. 
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Preface 


I T IS POSSIBLE to interpret multi-resolution analysis from both frequency 

or z-domain (FzD) and temporal or spatial domain (TSD) stand-points. 

Traditionally, it has been common in signal processing to rely on FzD no

tions and techniques in designing and interpreting multi-resolution schemes. 

Based on the notions of filters and filter-banks, these interpretations provide 

valuable insight into the whole process of multi-resolution approximation; 

and using FzD techniques, different classes of multi-resolution schemes that 

are optimal in different senses have been successfully devised in the past. 

Nevertheless, there are limits on what can be accomplished by relying solely 

on FzD techniques: z-transforms and discrete Fourier transforms depend on 

translation-invariance, and are suitable only for analyzing data associated 

with regularly spaced points on the line or in several dimensions (i.e. on lat

tices). In many instances, no obvious extension of FzD notions to irregular 

and arbitrary settings exists. 

On the other hand, results obtained using the FzD machinery can often 

be translated to, and derived in, the TSD as well. And what makes TSD 

interpretations more attractive is that there is essentially no difference in 

xiii 



P.D. Tafti: On Multi-Scale Refinement of Discrete Data. 

M.A.Sc. thesis. Department of Electrical and Computer Engineering, 

McMaster University, Hamilton, Ontario, Canada, 2005. 


the TSD tools used for analyzing regular versus irregular data-sets: in both 

cases, we are concerned with weighted summations: the TSD counterparts of 

FzD filters. Translation-variance and any irregularities in the distribution of 

data samples can simply be taken care of by suitably modifying the weights 

for approximation at different positions. 

While TSD designs and interpretations of multi-resolution systems relat

ing multi-resolution approximations to splines and polynomial interpolation 

have existed from the very early days (the works of Deslauriers and Dubuc, 

Donoho, and Unser, among others come to mind), the introduction of the lift

ing scheme by Sweldens (1996), and his successive 1997 introduction of sec

ond generation multi-resolution constructions, were fundamental in many 

generalizations of multi-resolution signal processing to multi-dimensional, 

irregular, and translation-variant (for example involving bounded domains) 

settings. These contributions helped deepen our understanding of the con

nection between multi-resolution analysis (MRA), and works on subdivision 

and sequential refinement schemes, which date back to at least the 1950s 

and '60s, when Paul de Faget de Casteljau devised his algorithm for sequen

tially subdividing a piecwise linear curve, so that in the limit it would con

verge to a smooth curve that we know today by the name of Bezier.1 

Works of Schroder, Sweldens, Daubechies, Kovacevic, and others, that 

shortly preceded or followed the presentation of the lifting scheme, concen-

Bezier and de Casteljau worked for two competing companies: Bezier worked for Re
nault and de Casteljau for Citroen. At about the same time, with two different ap
proaches, they both discovered a class of smooth curves that are particularly useful 
in geometrical design. de Casteljau was not allowed by Citroen to publish his discov
ery and the family became known as Bezier curves. Today, de Casteljau's innovative 
algorithm for finding a point on a Bezier curve commemorates his name. 

xiv 
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trated on applying this TSD understanding to refinement on multi-dimen

sional and irregularly-distributed point-sets. In one of the later works, Dau

bechies et al. (1999) provided a description of multi-resolution refinement 

on irregular multi-dimensional point-sets, and suggested a refinement scheme 

that uses Lagrange interpolation to insert values for new points at each level. 

In this thesis I focus on a more general TSD framework for multi-scale 

refinement, and also study designing new classes of multi-resolution refine

ment schemes in this framework. The hope is to help in developing and 

extending a coherent and applicable understanding of multi-resolution re

finement in a broad sense, and to provide a general machinery that can be 

utilized to construct multi-resolution refinement schemes suitable for a wide 

variety of settings. 

Towards this aim, the main matter of thesis is divided into three chapters. 

Chapter 1 is concerned with the theory of multi-resolution refinement. In 

the first part of that chapter, I provide an alternate interpretation of multi

resolution refinement, similar to but more general than that of Daubechies 

et al. (1999), that is based exclusively on a TSD understanding of signals 

and signal processing; and prove parallels to several fundamental results, in 

particular providing a link between discrete representations and spaces of 

signals on the continuum. As I was following the path set by Sweldens and 

his colleagues, what is discussed in section 1.1 is conceptually very similar to 

the work of Daubechies et al. (1999). This section can therefore be viewed as 

an introduction to, and review of, their theory. I have not however intended 

an exact presentation of their construction; and the exposition is certainly 

different in ways, to prepare the stage for the subsequent presentation of a 
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new and more general theory of multi-resolution refinement in section 1.2. 

Chapter 2 discusses some examples for the theoretical framework pro

vided in chapter 1. I start by discussing several relevant constructions for 

multi-resolution refinement, before going on to provide a general construc

tion for families of refinement schemes suited to any given space of discrete 

signals, as defined in 1.2. It will then be shown that the other discussed 

schemes are examples of this general construction. 

A few concluding remarks and suggested directions for further investiga

tion form the final chapter. 

In appendix A, I have tried to summarize some mathematical definitons 

that the reader may wish to review, but the inclusion of which in the main 

text would further deflect the already not -so-straight course of discussion. 

For some other mathematical definitions and results I could find a place 

within the main text. A summary of the used notation is provided as a 

second appendix. 

Footnotes have been used extensively. They are intended to provide ex

planations, side remarks, and/or reservations, that might be of interest, but 

which may not directly fit within the course of the thesis. They are aimed 

to provide a side note, or to serve as a friendly chat with the reader about 

a secondary point; and as such, I have not always attempted for a complete 

evaluation of the concept in consideration. Some of the footnote discussions 

have therefore been left open-ended. 

This thesis addresses, and extends, certain aspects of the theory of multi

resolution analysis from a particular perspective. Many excellent reference 

texts on the general theory exist. Mallat's (1999) A Wavelet Tour of Signal 
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'Then you should say what you 
mean,' the March Hare went on. 
'I do,' Alice hastily replied; 'at 
least-at least I mean what I 
say-that's the same thing, you 
know.' 
'Not the same thing a bit!' said the 
Hatter. 'Why; you might just as well 
say that "I see what I eat" is the same 
thing as "I eat what I see"!' 

Alice's Adventures in Wonderland 
CHARLES LUTWJDGE DODGSON (LEWIS CARROLL), 

ENGLISH MATHEMATICIAN AND WRITER 

(1832-1898) 
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1 
Multi-Resolution Refinement 
Revisited 

All generalizations, with the possible 
exception of this one, are false. 

Paraphrased words of 
KURT GODEL, MATHEMATICIAN AND LOGICIAN 

(1906-1978) 

0 NE OF THE FIRST notions that someone learning to read a map comes 

across is that of scale. As (s)he learns, on a 1 : 1, 000,000 scale map 

only the locations of cities and primary inter-city motorways can be marked. 

To see city roads one has to tum to a medium-scale map, for example one at 

1 : 50, 000 scale. At 1 : 10, 000, it is even possible to clearly mark details such 

as by-ways and major buildings. 

The full range of scales that man has explored is even wider-and much 

so. He has studied sub-micron and sub-atomic phenomena, but has also 

looked at stellar systems hundreds of light-years wide. Philip and Phylis 

Morrison, and the Office of Charles and Ray Eames, take us to an expedition 

1 
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through the sweep of scales in Powers ofTen: A Book about the Relative Size of 

Things in the Universe and the Effect ofAdding Another Zero (Morrison et al., 

1982). 

It may be difficult, or even impossible, at smaller scales to separate some 

of the features that are clearly distinguishable at finer resolutions. At the 

same time, wide-scale presentations help us notice and better appreciate 

general patterns and properties which might otherwise be missed in the lim

ited scope of highly-detailed microscopic views. 

In this context, the word resolution refers to 'the act, process, or capabil

ity of rendering distinguishable the component parts of an object or closely 

adjacent optical or photographic images, or of separating measurements of 

similar magnitude of any quantity in space or time', and also, to 'the small

est quantity which is measurable by such a process' (Oxford English Dictio

nary, 1989). From the above discussion, one immediately sees an appeal for 

multi-resolution representations. And while in our examples we have thus 

far focused on spatial resolution, the concept of resolution may be, and has 

been, extended and applied to almost anything that can be perceived. 

When dealing with multi-resolution representations, the ability to switch 

between different resolutions is of prime importance. Through a refinement 

process, we are able to add details to and thus refine an initial representa

tion, thereby creating a more detailed and more complex image at a higher

resolution. 

As engineers usually find it useful to work with mathematical abstractions 

of concepts, in this chapter we study and formalize such an abstraction of 

multi-resolution refinement, for which we provide a new formulation based 

2 
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on our definition of spaces of discrete signals (first introduced in subsec

tion 1.1.1 and later generalized in subsection 1.2.1). This formulation then 

allows us to generalize and extend the notions of multi-resolution refine

ment, based on a temporal/spatial domain understanding. 

It is important to emphasize here that while the classical development of 

multi-resolution analysis has depended extensively on Fourier- and z-domain 

techniques, these techniques often do not readily-or at all-extend to irreg

ular settings. Therefore, in the first part of this chapter we adopt a different 

approach, structurally similar to that of Daubechies et al. (1999), which we 

later generalize in section 1.2. Our treatment, which is based on refinement 

operators and hierarchies of sampling procedures, is more general than that 

of Daubechies et al. (1999), who study subdivision operators in one and two 

dimensions.1 

This new approach makes an abstract and general treatment of multi

resolution in wide ranges of domains and functional spaces possible. 

1.1 Multi-Resolution Refinement 

1.1.1 Discrete Signals. Of the simplest discrete signals that one may 

imagine are sequences of numbers (called samples) that are associated with 

equally-spaced points along a single axis (e.g. integral points on the real 

line). In a more general setting, a discrete signal may be thought of as an 

association of values to-not necessarily uniformly distributed-points in a 

A brief review of the development of these schemes was provided in the preface. 

3 
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countable2 subset of the d-dimensional Euclidean space, JRd. 

Specifically, if E> c JRd is such a countable point-set, .eP(E>) for a choice of 

p, 1 ~ p ~ oo, will be a possible space of signals.3 For a choice of p, a signal 

a is then an element of .ep (8) and maps each 9 E 8 to a value, denoted 

by a[e], from a field4 IF of scalars. The classic theory of multi-resolution 

analysis originated with the study of the setting where d = 1 and IF is the 

field of reals, lR (see e.g. Meyer, 1992; Daubechies, 1992; Cohen and Ryan, 

1995; Mallat, 1999). 

We like to have a basis for our spaces of signals. One such basis for .eP(E>) 

consists of the signals 

for all 9 E E> (cf. A.3.5). A signal a can be decomposed in this basis as 

(1.1) 


1.1.2 Multi-Resolution Representations. Now, to have multi-resolution 

representations, one could think of a sequence of point-sets with decreasing 

spacings, and signals defined on these point -sets, which form a sequence of 

representations at increasing resolutions. For ( E>d to be such a sequence, 

the spacing between points in E>i should become smaller in some sense as 

-1 oo. We formalize this by requiring that all these point-sets belong to 

a domain .Q ~ JRd, and that in the limit, this sequence become dense (see 

2 By countable we mean either finite or denumerable. 
3 tP(I) spaces for a general index set I are defined in A.3.5. Here 8 is the index set. 
4 Examples of fields include the reals, JR., and the complex numbers, C. For the definition 

of a field, see A.l.l. 
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• level -1 

• level 0 

• level 

• • • level 2 

Figure 1.1 : Dyadic point -sets are constructed by inserting mid-points be
tween adjacent points. 

A.2.2) in .0, i.e. 

(1.2) lim ei = .0. 
i-too 

Our discrete multi-resolution representations will then be a sequence ( ai) of 

signals ai E ev (Bd. 

1.1.3 Example. In the uni-dimensional case (d = 1) the simplest exam

ple of such a sequence of point-sets is perhaps the one obtainable by be

ginning with an infinite and equally-spaced point-set 8 0, and for i ~ 0, 

recursively constructing 8i+1 by adding to Si the mid-points between each 

two adjacent points. Fori < 0, Si is constructed from Si+, by removing 

every other point (see fig. 1.1). The resulting (Bd sequence may be called 

dyadic because the spacing between adjacent points changes by a factor of 

lJz at each level. 

Along the same line, it is possible to subdivide the interval between two 

adjacent points into M ~ 2 sub-intervals. The scale would then change by 

a factor of 1/M at each stage. The following lemma shows that this scheme 

leads in the limit to a point-set that is dense in~. 

5 
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1.1.4 Lemma. The limit as i ~ oo of a so-constructed sequence (8;.), 

which we denote by 8 00 , is dense in R. Every x E R is a limit point (for a 

definition seeA.2.2) of 8 00 • 

Proof Let h be the distance between adjacent points in 8 0• For an arbitrary 

point X E R, denote by xk its closest point in ek that is distinct from all XiS 

fori< k. Clearly d(x, xk) ~ h/Mk. Also since the sequence (E>i) is nestedS, 

xk E limi---loo ei := 8 00 for all k. The sequence (xk) consists of distinct points 

and converges to x. Therefore, by theorem 5 of section II.9 of Kolmogorov 

and Fomin (1998), xis a limit point of 8 00 and 8 00 is dense in R. D 

1.1.5 Example. Let G be a non-singular d x d matrix, and let D be a 

non-singular d x d integer matrix with p(D) > 1.6 The following lattice 

construction provides a sequence satisfying (1.2) in the multi-dimensional 

(d 2 2) setting (for discussion and some applications see Kovacevic and 

Sweldens, 2000; Tafti et al., 2005; Gibson and Sayood, 1988): 

That the limit of this sequence is dense in R d can be proved in a manner 

similar to the proof of lemma 1.1.4, based on the understanding that the 

distance between adjacent points in ei approaches 0 as i ~ 00 because of 

the p(D) < 1 condition. 

5 A sequence (Ad of sets is nested if Ai c Ai.+ 1 for all i. 
6 p(D) denotes the spectral radius of D, which is equal to maxi IAil, where Ais are the 

eigenvalues. 

6 
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• 

(a) A triangular lattice 	 (b) A checker-board (a.k.a. 
quincunx) lattice 

Figure 1.2: Choosing E\ = GD-izd leads to structures known as lattices. 

1.1.6 Example: The Quincunx Lattice. An example of the described lat

tice structure which has found frequent applications in image processing, is 

the quincunx (a.k.a. checker-board or red-black) lattice. One of the possible 

G, D pairs for this lattice is 

The quincunx lattice is depicted in fig. 1.2. 

1.1.7 Linear Approximations. To improve the resolution, one may form 

an approximate of the higher-resolution signal to which details can then be 

added. For this, a way should be devised to approximate a level i + 1 signal 

ai.+l E £P(8i.+1) from the level i signal ai E £P(8i). 

In the simplest case this approximation will be linear, meaning that the 

value of the level i+ 1 approximate, ai.+l, is calculated at each point 8 E 8i+l 

7 
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as a weighted summation of ai[<f.>]s, <P E E>i; i.e. 

(1.3) ai+1 [8] := L si,e,<P ai[<f.>], 
<(JE8i 

where si,e,<Ps are weights. If necessary, this approximation can then be ad

justed by adding a correction signal, di+ 1 E £P (ei+1), representing the de

tails:7 

(1.4) di+1 [8] + ai+1 [8] = di+1 [8] + L si,e,<P ad<f.>] for each 8 E 8H1· 
<jJE~ 

di+1 in effect contains the new information that could not be, or simply was 

not, extracted from the low-resolution signal in the linear approximation 

process. 

1.1.8 Refinement Operators. The above formulation can be re-stated us

ing the notion of linear operators (A.3.4). If the sum in eqn (1.3) converges 

for all 8 E E>i+1, a linear refinement operator 6i-so named because it maps 

low-resolution signals to their refined high-resolution associates-may be de

fined for each i by specifying its operation on an arbitrary ai E £P (E>i): 

(1.5) (6iai)[8] := L Si,e,<jJ ai[<f.>] for all 8 E ei+1· 
<fJE8t 

The following proposition holds: 

We always assume that the summation weights are chosen such that the infinite sum
mation converges for allOt E €P(8) for the chosen p (cf. 1.1.9). 

8 


7 



sec. 1.1] P.D. Tafti: On Multi-Scale Refinement of Discrete Data. 

M.A.Sc. thesis. Department of Electrical and Computer Engineering, 


McMaster University, Hamilton, Ontario, Canada, 2005. 


1.1.9 Proposition. For ai E fP(E>d, 1 :::; p :::; oo, let q be such that 1/p + 

1/q = 1. Then if 

converges and is bounded for all e E E>H1, the sumimations in eqns (1.3) 

and (1.5) converge. 

The proof follows directly from Holder's inequality. For a more general 

result see theorem 1.2.7. D 

Let us now revisit eqns (1.3) and (1.5). Each weight si,S,<J> bears three 

indices: The first index, i, indicates the level or resolution; the second one, 

e, informs us that this weight is being used to calculate a new approximation 

at point e; and finally, the third index, cfJ, over which the summation is 

being performed, tells us which sample of the low-resolution signal is being 

weighted by this coefficient. We therefore see that each sample in ai is given 

different weights in the calculation of different samples in ai+1• 

1.1.10 Example. We will see general classes of refinement operators in 

the next chapter. Here, as a simple example of an operator related to the uni

dimensional point-sets introduced in example 1.1.3, suppose that at each 

refinement step we approximate the value associated with a newly inserted 

mid-point by averaging the values for the two neighbouring points in the 

coarse point -set; and for points that exist in both sets we simply copy the 

value. This scheme and its associated weights are depicted in figure 1.3. 

Informally, we may represent 6i by an infinite matrix (cf. Strang and Nguyen 

(1997)): 
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level i 

level i + 1 
I I I I I I I I I 

dl dl dl dl dl dl dl dl dl 
I I I I I I I I I 
I I I I I I I I I 
I I I I I I I I I 

Figure 1.3: A simple uni-dimensional refinement scheme consists in copying 
original values and inserting averages between them. Details (corrections) 
may then be added. 

(S;_,e,<j>) 9EEli+ 1 
<!JEElt 

0 1 0 0 0 

0 lf2 lf2 0 0 

0 0 1 0 0 

0 0 1J2 lf2 0 

0 0 0 1 0 

1.1.11 Choosing Refinement Operators. Upon introducing the detail 

term di+1[8] in eqn (1.4), the reader may have questioned the need for the 

approximation term (i.e. the summation). After all, no matter how inaccu

rate this approximation may be, it can be nonetheless adjusted by adding 

a larger correction term. So why not dismiss the approximation step alto

gether and save ourselves the trouble? 

The answer lies in our wish to find a compact representation for the 

high-resolution signal. To this end we would like to be able to construct an 

acceptable approximate to our higher-resolution signal based on its coarser 

representation, thereby reducing the norm of the difference signal di+ 1• 

10 
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Hence in practice we intend to choose the refinement weights such that 

Siai approximates ai+1 closely and therefore the (norm of the) adjustment 

di+1 becomes small. The choice shall thus depend on the properties of the 

discrete signal, which in tum depend on the properties of the underlying 

distribution on the domain Q-if such a distribution in fact exists-and our 

sampling procedure. 

We will describe a novel approach to designing refinement operators, that 

makes explicit use of our model for the sampling procedure, in the second 

part of chapter 2. 

1.1.12 Example. When dealing with point-wise evaluations of a linear 

function, we immediately see that, using the weights given in the previous 

example, mid-point samples can be exactly computed and there will be no 

need at all to consider detail coefficients. And yet for some other function, 

the 2-point average might not be a good estimate. This difference is visible 

in fig. 1.4. 

The 2-point average provides in fact the value of the first-order polyno

mial interpolant at the mid-point. As we will later see, this idea can be 

extended by using higher-order polynomial approximations. 

1.1.13 The Cascade Algorithm. We are now in a position to establish a 

link between our discrete scheme and spaces of functions. This connection 

also underlies the definition of multi-resolution analysis. 8 

A multi-resolution analysis (MRA) consists of a sequence (Vi) of nested functional 
spaces satisfying several axioms that are detailed for example in Meyer (1992) and 
Mallat (1999). Sweldens (1997) generalized this definition and introduced second 
generation constructions. In his definition, Vis should satisfy the following properties 
(he uses a slightly different notation): 

11 
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,, 

Figure 1.4: Approximation with the 2-point average recovers samples of a 
linear function without error, but introduces error in approximating a higher
order curve. 

Fix p such that 1 ~ p ~ oo and consider an ak E ev (E>k), k E Z. Fori ~ k 

we define the signals ai E ev (E>i) by9 

(1.6) 

• 	There exists a Riesz basis for each Vt, given by scaling functions {gf[k E X(i)}, 
where X(i) c X(i + 1) is an index set. 

In this study we will not limit ourselves to L1 functions. The reader will see later 
that multi-resolution spaces, as we will define them in this thesis, satisfy the first of 
the above properties. The second property is replaced by a requirement guaranteeing 
the unique representation of any function in our space of functions with the set of its 
samples as i -7 oo. Our multi-resolution spaces are also defined in terms of a basis 
consisting in scaling functions. We do not consider Riesz bases as they are relevant 
for a Hilbert space structure, which may not always exist in our choices of functional 
spaces. Instead, as a stability condition, we, after fixing -p, require that for any ini
tial sequence ak E €P(Sk) (and late:r; in section 1.2, any ak E tP(A.k)), the cascade 
algorithm converge to a function f~k in the functional space in consideration. 

The rest of this section concerns multi-resolution functional spaces and their relation 
to spaces of discrete signals tP (St). In the next section we suggest a more general 
definiton of discrete signals, and then construct multi-resolution spaces based on a 
generalized understading, of which the discussions of this section will be a special 
case. 
That at E tP (St) (for finite i) follows from proposition 1.1.9. 

12 
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As mentioned earlier, Boo := limHoo Bi is dense in a domain .0. If in the 

limit, 

(1.7) 

exists in £P(B00 ), under certain conditions we can extend (or interpolate 

if you may) the function a 00 := limHoo ai-which is defined on B00-tO a 

C0 (.Q) function10 f~, that is defined on .Q and satisfies 

(1.8) 


This approach to defining a function over .Q through refinement ad infinitum 

is known as the cascade algorithm (Daubechies, 1992) or sometimes as sub

division (Cavaretta et al., 1991; Daubechies et al., 1999). Some conditions 

for the convergence of the cascade algorithm have been previously studied 

for stationary schemes (i.e. schemes in which the refinement coefficients 

remain the same across resolutions).11 

10 eN (.Q) is the space of functions on .Q that are at least N times continuously differen
tiable (Al-Gwaiz, 1992, pp. 16-17). 

11 Most of the research in this context has addressed regular and one-dimensional set
tings. See for example Daubechies and Lagarias (1991, 1992) for L 1 (JR) solutions. 
Micchelli and Prautzsch (1989); Dyn and Levin (1990) study the problem for inter
polating schemes. Hell (1992) surveys several approaches. The work of Daubechies 
and Lagarias (1992) is extended in Colella and Hell (1994). Cavaretta et al. (1991, 
ch. 2) prove (with a different notation) the following condition to be necessary for the 
convergence of stationary refinement schemes with finite masks in the uniform case: 

(1.9) L Si,ti>,<P = 1 for cp E 8t.tJ.l E 8i+1,i E Z. 
cjJESi 

The regularity of the solution to refinement equations in multi-dimensional settings 
linked to lattices introduced in example 1.1.5 has been studied in Ron and Shen 
(2000); Cohen et al. (1999); Jia (1999). 
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1.1.14 Scaling Functions. We will assume from now on that the refine

ment operators are such that the cascade algorithm converges to a continu

ous function f: for any initial ak E £P (8k) at any level i. Then, for a choice 

of ak, f: can be represented as a linear combination of scaling functions g~ 

with 8 E 8k, which are introduced in the following. 

Let us fix 8 E 8k and assume the notation em,e := be E £P(8m). Fur

thermore, let Cm---m,e, m < n, denote the signal in £P (8n) defined by the 

equation: 

It then follows from eqn (1.1) that 

ek---tk+l,e = L ek---tk+l,e[cfJ]f>(j> (with b(j> E £P(8k+d) 
(j>E~+l 

and therefore, from eqns (1.5) and (1.6), 

= ~im 6k+j · · · 6k+l (ek---tk+l,e)
)--tOO 

Consideration of the continuity of the solution falls under the more general study of 
the regularity of solutions to refinement equations. We will not discuss convergence 
and regularity issues any further in this thesis (except briefly on one other occasion: 
see footnote 18 on p. 25), and will from now on assume that the refinement operators 
are such that for any initial signal ak E tP(8k) the cascade algorithm converges to a 
continuous function f~k in the limit. 
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= L ek-tk+l,e[<f>]ek+l-H>O,cf>· 
cf>E~+l 

We also have 

ek-tk+l,e[¢] = Skek,e = L sk,cJ>,w be[11>] = sk,cJ>,e· 
wE~ 

Thus, 


ek-too,e -- L' sk,cJ>,e ek+l-too,cf>•· 

cf>E~+l 

and as we have assumed that the cascade algorithm for arbitrary ai E £P (Si) 

converges to a unique continuous function f~, 

f!·a = L ek-tk+l,e[¢]f~+l,<t> 
cf>E~+l 

(1.10) = L sk,cJ>,ef~+l.<t>. 
cf>E~+l 

Eqn (1.1 0) is known as a two-scale or refinement equation, as it relates 

functions from two scales or resolutions. The weights sk,cf>,e, with <P E E>k+l. 

are sometimes referred to as refinement coefficients or weights, or collectively 

as the refinement mask. The solution to eqn (1.10) is called a scaling or 

refinable function, the reason being that it is a linear combination of refinable 

functions of the next finer resolution. 
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For simplicity in the following we will use g~ to denote f~.e as defined 

above. With this new notation, what was just proved can be re-written as 

the following proposition: 

1.1.15 Proposition. 

(1.11) 

1.1.16 Multi-Resolution Spaces. Now for arbitrary ai E tP(E>d, we have 

ai = L ai[QJ]bcfJ. 
cPE8t 

Refining both sides of this relation ad infinitum and looking for the limiting 

continuous functions leads us to 

(1.12) 	 f~ = L ai[<fl]gt. 
cfJES; 

Thus, if we define spaces Vi as 

(1.13) 


it follows from eqn (1.12) that 


Also, as a result of eqns (1.11) and (1.13) we have the following corollary: 
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Figure 1.5: Multi-resolution spaces are nested. 

1.1.17 Corollary. If for any initial discrete signal at any resolution the 

cascade algorithm converges to a unique continuous function in the limit, 

the spaces Vi defined by eqn (1.13) are nested, i.e. 

Proof From eqns (1.11) and (1.13), 

(1.14) g~ E Vi+l for all 8 E E\. 

The conclusion then follows from (1.13). D 

This nestedness property is depicted in fig. 1.5. We call the spaces Vi 

multi-resolution spaces, as they represent families of functions at different 

resolutions. 
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1.2 Multi-Resolution Refinement Revisited 

1.2.1 Discrete Signals Revisited. The generalization of the definition of 

a discrete signal in 1.1.1 makes the study of classical (i.e. point-wise) reg

ular and irregular sampling (using delta distributions) possible in the most 

general case. Nevertheless, this representation is still limiting, and also, it is 

arguable that when dealing with discrete representations of functions over 

the continuum, rarely in practice do we actually come across signals sampled 

in such manner. 

Sampling is the task of performing measurements on an observable. Now, 

first of all, measurements in practice are often not truly point-wise evalua

tions, as the use of delta distributions would suggest. This causes not much 

difficulty when all measurements are identical except for them happening 

at different temporal or spatial instances; as in this case again a natural 

connection between measurements and point-sets in JRd can be established. 

However, it is not difficult to convince oneself that not all different measure

ments can be simply linked to, and represented by, points in JR d. 12 

Secondly, it is desirable to be able to consider multi-resolution approxi

mations of functions in spaces that may not have a Hilbert-space structure, or 

those which may be defined over arbitrary domains equipped with different 

measures. 

To overcome these limitations, we propose the following disposition: Let 

the original observable be an element of a Banach space13 F with a separable 

12 Think for example of samples that represent averages of a function over irregular do
mains of different shapes and sizes in the d-dimensional Euclidean space. How is one 
going to link each of these domains to a single point in lR d? 

13 A Banach space is a complete space equipped with a norm. Examples of separable Ba
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dual F* . 14 Every continuous linear functional (hereafter functional; cf. A.2.4) 

on F is a mapping from F to a field IF of scalars, and therefore represents 

one type of measurement on elements of F. We define a sampling procedure 

A as a countable collection of functionals, that is, a countable subset of the 

dual (A.2.4) F* of F. Next, we define a discrete signal as an element of the 

space fP (A) for some pre-specified p. 

Thus, in this more general definition of a discrete signal, each sample 

value is no longer associated with a point in the Euclidean IR d space, but is 

rather paired with a point in the dual F* of the space F of observables. 

1.2.2 Multi-Resolution Representations. We suppose a sequence (Ad 

of countable subsets ofF* with the property that the linear span of 

Aoo :=lim Ai 
i--+oo 

is weak*ly15 dense in F*. It then follows from the next theorem that a set of 

evaluations over Aoo identify exactly one element of F. 16 

1.2.3 Theorem. Let x E F. Having AX for all A E Aoo identifies exactly 

one x E F iff span A00 is weak*ly dense in F*. 

Proof of sufficiency. We will prove that if AX = A1J for some x, 1J E F and all 

nach spaces include LP and £P spaces with 1 ::; p < oo (cf. A.3.5 and A.3.6). See A.3.3 
for further discussion. 

14 	 cf. A.2.2. From the separability of :F* the separability of :F also follows (Megginson, 
1998, theorem 1.2.11). 

15 	 Weakly* and weak* are more common, and are pronounced weakly-star and weak
star respectively; however, weak-star-ly is perhaps more grammatically precise. The 
adjective weak* refers to properties that are true with respect to the weak* topology 
(A.2.5). 

16 	 This condition was communicated to the author (without proof) by Dr Robert Israel 
of UBC in answer to his question on Usenet (Israel, 2005). I here provide an original 
proof. 
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A E /\.00 , then x = y. 

As span Aoo is dense in :F*, for any x* E :F* there exists a sequence ( x~J 

in span /\.00 that weak*ly converges to x*. 

Now, from the assumption of AX = A1J for all A E Aoo it follows that 

x*x = x*y for all x* E :F*. This is because: 

The natural map defined by 

Ftx* := x*f 

for arbitrary f E :F is by definition continuous in the weak* topology. Conse

quently, 

(1.15) 


Now, as for all n, x~ are chosen to be in span /\.00 , we have 


The left-hand-side of (1.15) is therefore identically zero, and we have 

(1.16) fx_11x* := x*(x- y) = 0 for all x* E :F*. 

We will now proceed to show that (1.16), together with the assumption 

that x # y lead to contradiction. Specifically, if x # y, let z := x - y. 

Z := span{z} = {azla E IF} is a subspace of :F. We define the map 11: Z --t IF 
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by 

11(az) :=a. 

11 is clearly linear and therefore a functional on Z. By the Hahn-Banach 

Extension Theorem (cf. A.3.7) we can extend 11 to a continuous linear func

tional over :F (i.e. a functional in :F*). But then, 

11(X -y) := 11Z = 1, 

which contradicts (1.16). D 

Proof of necessity. We will prove this direction again by contradiction. As

sume that the set of values AX for all A E Aoo identifies a unique x E :F while 

span Aoo is not dense in :F*. We can therefore find an x0 E :F* such that 

x0ct span J\.00 • From lemma 2.10.1 of Hille and Phillips (1957), there exists 

an x0 E :F for which we have x0xo = 1, but x*x0 = 0 for all x* E span A00 • 

x0 is obviously non-zero. It follows that for any A E span A00 , 

(1.17) Ax= A(x + cxxo), 

for any scalar ex, which contradicts the initial uniqueness assumption. D 

1.2.4 Remark. Let :F = C0 (.Q) (i.e. the space of contiuous functions with 

compact support). Then choosing Ai to be the set of functionals correspond

ing to point-wise evaluations on a point-set ei satisfying the requirements 

of section 1.1, leads to all possible muti-resolution representations of sec

tion 1.1. We therefore see that this new approach includes all cases discussed 
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in the previous section. That the linear span of limi-loo A.i is weak*ly dense 

in F* for F = C0(0) follows from the following lemma. 

1.2.5 Lemma. With the definitions of remark 1.2.4, span Aoo is weak*ly 

dense in the dual of the space C0(Q) of continuous functions with compact 

support. 

Proof. As a continuous function is uniquely identified by its value over a 

dense subset of its domain (in this case 8 00 c 0), from theorem 1.2.3 we 

know that span Aoo is weak*ly dense in the dual of C0(0). D 

The space C0 (Q) is itself dense in L1' ( Q) for 1 :::; p < oo (Adams and 

Fournier, 2003, theorem 2.19). Therefore, these discrete representations of 

continuous functions in the limit (i---+ oo) identify a dense subset of L"~'(O). 

1.2.6 Refinement Operators. Now that our spaces of discrete signals 

have been defined and we have formally described multi-resolution repre

sentations, we are in the position to address the issue of travelling between 

these spaces. Similar to the definitions of 1.1.8, the means for this change of 

resolution will be refinement operators, which are mappings from spaces of 

lower-resolution signals to spaces of finer representations. 

Formally, for a sequence (Ad satisfying the properties stated in 1.2.2, 

we define refinement operators as bounded linear operators 6i: t"~'(A.i) ~ 

t"~'(A.i+l): a t-t (6ia) with 

(1.18) (6ia)[A] := L si,?-.,~a[!l-] for A E A.i+l· 
!!EAt 
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The following theorem provides conditions on the weights si,:>.,!-1- assuring 

that 6i is bounded. 

1.2.7 Theorem. 6i: £P(J\d ----1 £P(J\i+1), defined in 1.18, is bounded for 

1 < p::; oo if for q := p/(p -1), 

converges and is bounded for all A E /\i+1• Also, 6i is bounded for p = 1 if 

sup!-1-EA, si,:>.,!-1- is bounded for all A E /\i+1• 

Proof Consider an arbitrary a E ev (J\i). For all valid i, and for A E /\i+1, 

form the mapping si,:>. : /\i ----1 IF : J.! H si,:>.,w The stated conditions are 

equivalent to 

The conclusion then follows from Holder's inequality: 17 

that is, 

As the right-hand-side is bounded when the conditions of the theorem are 

17 llxy ll1 ~ llxllv 1111 II q • 
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satisfied, and since 

L a[~]si,J\[~] ~ L la[~]si,J\[~]1, 
J.lE At J.lE At 

6i is bounded. D 

1.2.8 Adding Details. At the i-th stage, new details may be added in 

the form of a signal di E fP(Ai) (cf. 1.1.7). These details account for the 

difference between the information that can be represented by an fP (Ad 

signal, and that representable as 6i-1 ai-l for some ai-l E fP (Ai-d. 

1.2.9 The Cascade Algorithm. The cascade algorithm in this new setting 

is quite similar to that mentioned in the previous section; and, when conver

gent to a function in :F, leads to a similar definition of refinable functions. 

Specifically, let ak E fP(Ak) for some chosen p, and for a sequence of 

refinement operators ( 6i), define: 

a

We have already shown in theorem 1.2.3 that any x E :F can be uniquely 

identified by the values Ax, A E Aoo. Now if for any initial choice of ak E 

fP(Ak) (for a fixed p), as i---t oo, the sequence ( ai) converges to a mapping 

00 that identifies a function f~ E :F through 

(1.19) 
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we say that the cascade algorithm converges.18 We will assume the conver

gence of the cascade algorithm in the sequel. 

1.2.10 Refinable Functions. Similar to the previous section, when the 

cascade algorithm converges, we will denote by em-m,A (with n > m, A E 

AnJ the mapping iteratively defined through 

For AE Ak, let g~ be the (unique) function in :F satisfying 

(1.20) 

i.e. g~ = f~.A = f~ in the notation of eqn (1.19) (with [)A E £P(Ad). The 

following proposition holds: 

1.2.11 Proposition. 

The proof is similar to that of proposition 1.1.15. 	 D 

18 	 In practice we often choose F to be a space of sufficiently smooth functions (e.g. 
C~ (.Q) for some N). In this thesis we will not further study conditions for the conver
gence of the cascade algorithm to a smooth function, as these can be quite involved, 
especially in the irregular case. The interested reader may wish to review, among oth
ers, Daubechies et al. (2001) for one possible analysis. (cf. footnote 11 on p. 14.) 
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1.2.12 Multi-Resolution Spaces. Again, multi-resolution approximation 

spaces19 Vi can be defined as the linear span of functions g~, l\ E 1\.i. That is, 

It then follows from proposition 1.2.11 that these spaces are nested. Also, 

following a discussion similar to that of 1.1.16, we see that when starting 

with an arbitrary signal ak E £P(J\.k), the limit function of the cascade algo

rithm will be 

(1.22) f~ = L adl\] g~, 
7\EAk 

which resides in vk. 

For a discussion of how this definition relates to and extends the classical definitions of 
multi-resolution analysis, see footnote 8 on p. 11. 
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2 
A New Construction for 

Refinement Operators 


A theory has only the alternative of 
being right or wrong. A model has a 
third possibility: it may be right, but 
irrelevant. 

In The Physicist's Conception of Nature, edited by 
Jagdi.shMehra (p. 618). Dordrecht, 1973. 

MANFRED EIGEN, 1967 NOBEL LAUREATE IN 

CHEMISTRY (1927-) 

I N THE PREVIOUS CHAPTER we saw that multi-resolution representations 

and related multi-resolution spaces of functions could be described in 

terms of a sequence of sampling procedures (for different resolutions), which 

define spaces of discrete signals; and refinement operators that link these sig

nal spaces. A fundamental question that we did not answer then, was that of 

how to choose the refinement coefficients that define those refinement oper

ators. We briefly mentioned that properties of the underlying function and 
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the sampling procedure should be taken into consideration, but did not clar

ify what we exactly meant by them; nor did we indicate how these properties 

could be considered. 

In this chapter we will propose a novel construction for refinement op

erators, that is naturally linked to the sampling procedures underlying our 

discrete signal spaces, and also allows us to account for the geometrical 

relationship between the samples. But first, we will review some related 

examples of multi-resolution on uni-dimensional domains, that have been 

previously studied in the literature (section 2.1). We will follow by introduc

ing some useful mathematical notions and results. Then, after revisiting two 

examples of multi-resolution on lattices, we will continue to introduce our 

new construction, that is based on local functional interpolation. 

2.1 	 Multi-Resolution on Uni-Dimensional 

Domains 

As the idea of associating signal samples with points in space is quite com

mon (see 1.1), not surprisingly, interpolating multi-resolution schemes

schemes that in the limit converge to functions passing through the original 

samples-have received considerable attention in the past. A central tool 

in many of the devised schemes, both single- and multi-dimensional, is La

grange interpolation (see e.g. Deslauriers and Dubuc, 1989; Kovacevic and 

Sweldens, 2000; Daubechies et al., 1999). 

Interest has also existed in average interpolation, where samples are not 
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considered as point-wise evaluations of a function, but rather as integrals or 

averages on short intervals in the uni-dimensional case (Donoho, 1994) or 

on partitions in multi-dimensional settings (Tafti et al., 2005). 

Multi-resolution refinement schemes based on Lagrange and average in

terpolation were first studied for regular uni-dimensional point-sets, and 

later generalized to multi-dimensional and/or irregular settings. To provide 

an entree en matiere for our ultimate discussion of new families of multi-

resolution schemes, in this section we review uni-dimensional constructions 

for Lagrange and average interpolating refinement. 

2.1.1 Lagrange Interpolation. Lagrange interpolation deals with finding 

polynomial solutions to point-wise interpolation problems: Let 8 be a finite 

set of distinct points from IR, and let a E ~P(E>), for some p, represent a set 

of values associated with these points. In Lagrange interpolation, one then 

tries to find the lowest degree polynomial 7ta that satisfies the conditions 

1ta(8) = a[8] for 8 E 8. 

In the univariate case, i.e. when 8 c IR, it is well understood that the 

Lagrange interpolation problem has a unique solution, that can be found by 

solving the following linear algebra equation:1' 2 

(2.1) 


1 	 For the rest of this chapter; it is easier to assume an order on point-sets e (and later 
on sampling procedures A), and write the equations in the vector form. Then, for an 
a E £P (8), a is used to denote the vector [ a[9l] BEe· 

2 We use the convention that 0° := 1 . 
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where c = [ci] o::::i<n is the vector of interpolant coefficients (i.e. ci is the 

coefficient of ()i), a := [a[8]] 
8

, and n := #8. [Si] e~e is known as a 
9E O~J<n 

Vandermonde matrix. For an arbitrary point <P we then have 

which shows that for each map a E .ev (8), 7tu( <P) can be evaluated by taking 

a weighted average of the sample values (represented by the vector a, with 

weights that depend on 8 and <P (represented by [<Pi] ~::::i<n (inv [ei] o~T~n) ). 
The above equation shows that Lagrange interpolation is linear; that is, 

given two different maps a and b on the same point -set, and a scalar (3, the 

polynomial 7tu+b that interpolates (3 a+ b is equal to f3nu +nb. Therefore, the 

solutions to all interpolation problems on 8 form a sub-space ne of n. We 

say ne is correct for 8 to mean that the interpolation problem has a unique 

solution in ne for any a E .ev (8). 

Eqn (2.2) also shows that the set {1, () 1, ••• , ()n-1} is a basis for all sub

spaces n8 with #8 = n,3 which means that all these sub-spaces are in fact 

the same: the space n<n of all polynomials of degree less than n. 

2.1.2 Deslauriers and Dubuc's Lagrange Iterative Interpolation. A lit

tle less than twenty years ago, Deslauriers and Dubuc introduced their now 

famous iterative interpolation scheme (see Deslauriers and Dubuc, 1989). 

This interpolation scheme consists in iterative insertion of new sample val

ues at mid-points of a discrete point-set-thus forming a sequence of dyadic 

point-sets (1.1.3)-by interpolating neighbour sample values at each stage. 

()i : JR -----1lR: x H xi is a monomial map (see also 2.2.2). 

30 


3 



P.D. Tafti: On Multi-Scale Refinement of Discrete Data. sec. 2.1] 
M.A.Sc. thesis. Department of Electrical and Computer Engineering, 

McMaster University, Hamilton, Ontario, Canada, 2005. 

To be specific, suppose that (Sd is a sequence of dyadic point-sets, and that 

we are given a map a 0 E f"P(8 0 ). Let ai be the ith level data map. The values 

associated with points in ei+1 are then calculated iteratively from values for 

For each new mid-point 8 E 8i+l \8i, let Na be the subset of Si contain

ing then points (n even) in ei closest to e. The new sample value at e, 
which is ai+1[8], is calculated by interpolating the values ai[QJ] for cp E N8 

with a Lagrange interpolant of degree n - 1. For points e that exist both in 

Si and in 8Hb adS] and ai+1[8] will be equal. 

Using the formulation of section 1.1, the Deslauriers-Dubuc iterative La

grange interpolation scheme is equivalent to applying refinement operators 

6i defined by the following formula: 

(2.3) 

where from eqn (2.2) we have 

Furthermore, from the uniqueness of the interpolant (which follows from 

that the Vandermonde matrix is not singular), with a simple change of vari

ables we can see that the interpolation scheme is shift and scaling invariant, 

meaning that the refinement weights do not change across scales, and also 

that the vectors of refinement weights used to calculate values for any two 
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Table 2.1: Deslauriers and Dubuc's iterative interpolation scheme may be 
represented by a vector of refinement weights. These weights are used to 
compute ai+1 [9] from ai[cjJ] for cjJ E N9 • In this table (from Kovacevic and 
Sweldens (2000)) points from Ne c ei are marked with crosses and the 
new mid-point from 8i+1 is marked with a dot. n is the size of the neigh
bourhood. 

n 
2 
4 
6 
8 

X X X X X X X X 

0 0 0 liz lf2 0 0 0 

0 0 -ljz2 91z2 9lz2 -lj22 0 0 

0 3f2s -251zs 150/zs 1501z8 -25/zs 3lzs 0 


-5/zll 49/zll -245/zll 1225/zll 1225/zll -245/zll 49/zll -5/zll 


points in ei+1\ei have the same elements. 

The example we studied in 1.1.10 is the simplest case of Deslauriers

Dubuc interpolation, with n = 2. Table 2.1, from Kovacevic and Sweldens 

(2000), summarizes refinement coefficients for some other values of n. 

2.1.3 Extension to Non-Uniform Settings. The idea behind Deslauriers

Dubuc interpolation is easily extensible to non-uniform settings. Again, sup

posing that we have a nested sequence (Bik~o of point-sets, for each new 

point 9 E 8i+l \8i. the value ai+l [9] is calculated by locally interpolating the 

ai[cjJ] values for cjJs in a certain set Ne (which can be of different sizes for 

different 9s) of points in 8i neighbouring 9. For points 9 E 8i+l n 8i.4 the 

value of ai[e] is copied to ai+1[9].5 

Even in the uniform setting, this approach provides a natural answer 

for multi-resolution refinement on bounded domains; since for points near 

the boundaries, the neighbours can be chosen from one side. This results 

in different refinement weight vectors for central versus near-the-boundary 

4 Since ( E>t) is nested, we actually have E>i+ 1 n E>t = E>t. 
5 	 This is in fact a second generation construction (Sweldens, 1997), and was provided 

in Sweldens and Schroder (1996) as an example (with a different formulation). 
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points. 

It follows from eqn (2.2) that this generalization of Deslauriers-Dubuc 

interpolation also results in linear operators which can be realized similar 

to (2.3). But in this case the refinement weights are in general no longer 

similar for different locations and resolutions. 

2.1.4 Average Interpolation. Donoho in 1994 suggested that a multi

resolution refinement scheme could be based on the idea of average interpo

lation. Unlike in Lagrange interpolation, where we are looking for a poly

nomial that takes given values at given points, in average interpolation one 

tries to find a polynomial which has given averages on given intervals. 

In average interpolating refinement, one begins with a set Yo of non

overlapping equi-length intervals v that partition the real axis. A dyadic 

sequence of interval-sets, (Y.d, may be iteratively constructed based on the 

following rule: Yi+h i ~ 0, is formed by subdividing each interval v in Yi 

into two equi-length intervals, vL and vR.6 In this scheme we start with a 

signal a0 on Y 0-which we assume indicates averages of a function on the in

tervals v E Y 0-and iteratively construct a multi-resolution sequence ( ai) of 

signals. A description of the scheme for refining the ith level representation 

follows: 

First, for v E Yi, let Nu be the subset of Yi containing the n closest 

neighbours of v in Yi (v included). The values ai+1[vJ and ai+1[vRJ, with 

VL, VR E Yi+1 being the subdivisions of v, are then computed by first finding 

l and R are for left and right. 
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the lowest degree polynomial nv satisfying 

and subsequently letting 

One question remains, and that is how the average interpolating polyno

mial can be found. In this case the answer lies in solving a modified version 

of (2.1) that involves a modified Vandermonde matrix, containing averages 

of monomials on different intervals rather then their evaluations at different 

points: 

(2.4) 

Also, similar to (2.2), we can see that I 7rv(t) d t and I nv(t) d t (and
VL VR 

therefore ai+1[vJ and ai+dv~), can be calculated from a weighted average 

of ai[w], w E Nv. This shows that average interpolating refinement also fits 

in the framework of 1.2. 

2.1.5 Extensions. It is not necessary to divide each partition into two at 

each level-any other number will do. Also, extension to the case where we 

have an irregular partitioning of the real line is straight-forward. We can 

choose neighbourhoods Nv of different sizes for different intervals v E 'Y'i 
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that we want to subdivide, and find the values ai+l [vJ and ai+1[v~ by aver

aging, over vL and l>R respectively, the polynomial that average-interpolates 

ai[w], w E Nv (cf. Sweldens and Schroder, 1996). 

2.2 A Few Mathematical Notions of Subsequent 

Utility 

Generalization of the previously described schemes to multivariate cases is 

in general not straight-forward.7 Simple as the interpolation problem may 

seem in one variable, it is much more involved in the multivariate case. 

First of all, unlike the single-variable case, no obvious basis of monomials 

of degree less than n exists for arbitrary n; therefore, it is not clear how an 

invertible Vandermonde matrix can be formed. 8 Secondly, due to a situation 

known as the loss of Haar, non-dimensional subspace of nd, the space of 

d-variate polynomials, is correct for all sets of n points.9 

7 	 Of course in the case of separable lattices one may construct a multi-dimensional 
scheme by applying uni-dimensional refinement masks along different dimensions. But 
this case is quite limiting, as most lattices are not separable, and moreover, this ap
proach is not generalizable to irregular settings. Furthermore, we will later introduce 
more general constructions for multi-resolution refinement, based on local functional 
interpolation, that would not have been possible if we were limiting ourselves to sepa
rable lattice structures. 

8 	 For example, in the bivariate case, when n = 5 how should we-or indeed should 
we-choose a subset of {1, x, 1J, x2,112, X1J} in forming the Vandermonde matrix? 

9 	 One of the challenges in multivariate interpolation is that, unlike the univariate case, 
no n-dimensional subspace of the space of polynomials (or any other space of contin
uous functions) is correct for all point-sets El with cardinality n. In other words, in the 
multivariate case in addition to their number, the geometrical relationship of the points 
also becomes important. This can be seen for example from the following argument by 
de Boor (1992): 

Consider an n-dimensional (n > 1) subspace P of C(JRd) (d > 1) with a basis 
{1Tto, ... , Ti't.n-1}, and a set El of n distinct points in lR d. For P to be correct for El, 
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Nevertheless, Lagrange and average interpolation are only examples of a 

more general conception of interpolation that we are just about to introduce. 

2.2.1 Functional Interpolation. The definition of an interpolation prob

lem may be generalized to that of finding a function q in a space Q that 

satisfies a set of functional equations of the form 

(2.7) Aq = a[A] for A E A, 

with A c Q* being a set of functionals on Q, and a E fP (A) for some p. 

Lagrange interpolation will then be concerned with the special case where 

Q is the space of polynomials of degree< #A, and AS are point-wise evalu

the (generalized) Vandermonde matrix 

should be non-singular; as the interpolation problem is equivalent to solving the linear 
system (cf. eqn (2.1)) 

(2.5) 


Now consider a continuous curve 

y: [0, 1] ---t (!Rd)n: t H (yo(t), ... ,'Yn-1 (t)), 

and let us define the function 

g: [0, 1] ---t IR: t H det[rni (Yt (t))] i. 
j 

g is continuous because it is a composition of continuous functions. As n, d > 1, we 
can choose y such that 

(2.6) y(1) = (y,(O), Yo (0), ... ,Yn(0) ), 

while Yt(t)s remain distinct for each value oft. (This is not true in the case of d = 1 
because there (2.6) implies that y 0 (t) and y 1(t) meet for at least one value oft.) We 
consequently have g(1) = -g(O), which implies that g vanishes at some to in [0, 1] 
(due to continuity). {'Yo(to), ... ,'Yn-1 (to)} is then a set of n distinct points for which 
the matrix described in (2.5) is rank-deficient. D 
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ation functionals. 

2.2.2 Multi-Indices and d-Variate Polynomials. We introduce the fol

lowing notation for further usage. In the d-variate case, a multi-index ex.:= 

[OCi] o~cx<d is an element of zg+ (the set of non-negative integer d-tuples). For 

X:= [xi] o~i<d E ffi.d, we then define: 

xcx := IT X~. 
O~i<d 

Also, 

lex.! := L. OCj_. 

O~i<d 

When 7t is a polynomial in d variables (or more generally, afonnal power 

series10 in d indeterminates), it is convenient to denote the normalized coef

ficient of the cx.th-degree term in 7t by cx.(n); i.e. 

n(X) =' cx.(n)xcx.
L ex.! 

We also take this opportunity to introduce de Boor and Ron's (1992a) 

notation: 

2.2.3 de Boor and Ron's Least Solution to the Interpolation Problem. 

To address the ambiguity that we have already encountered in finding the 

interpolant in the multivariate setting, de Boor and Ron in 1990 provided 

10 	 A formal power series f is an infinite sequence, here represented in the form 
LocEZd oc(~) xoc; however, as Weisstein (200Sa) indicates, with the understanding that 

0+ oc. 
no value is assigned to X. 
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a solution with many interesting properties. They generalized this solution 

in de Boor and Ron (1992b) to include functional interpolation using mul

tivariate polynomials, and addressed its computational aspects, via Gaus

sian elimination on generalized Vandermonde matrices, in de Boor and Ron 

(1992a) and de Boor (1994). 

Briefly speaking, their solution uses the following duality pairing between 

polynomials and formal power series: 11 

(n, f)= L cx(n)cx(f)/cx! = L ex( f) Docn(O). 

Here Docn(O) denotes the cxth partial derivative of n, evaluated at 0. 

For any formal power series f, de Boor and Ron introduce the notation 

fJ. to denote the least term of f, i.e. the unique homogeneous polynomial 

for which the least -degree term of f - f J. is of a higher degree than that of f 

(de Boor and Ron, 1992b). They then go on to prove that the space 

/\.1. := span{AJ.IA E span A}, 

is correct for/\., and call it the least solution to the interpolation problem.12 

Gaussian elimination by segments, on the generalized Vandermonde matrix, 

(2.8) 


11 	 This duality pairing shows that every linear functional on nd can be identified with a 
unique power series f, and vice versa. Thus, we can identify the dual of nd with the 
space of formal power series. 

12 	 There is a minor difference in notation: de Boor and Ron (1992b) actually use A to 
denote what in our notation would be span A. 
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is suggested as a method for systematically finding the interpolant to given 

data (de Boor and Ron, 1992a; de Boor, 1994). In Gaussian elimination by 

segments, all columns of the Vandermonde matrix that are related to power 

maps of the same total degree (i.e. ()(Xs with identical I<XI) are considered 

together, resulting in a block row-echelon matrix. The details of the interpo

lation are technical, and could be the subject of a monograph in their own 

right. Nevertheless, it is agreeable that this scheme is a justified generaliza

tion to the discussion given in 2.1.1. 

In realizing our construction for refinement operators, that we will in

troduce in the sequel, we have used Grandine's ISO C implementation of 

de Boor and Ron's algorithm for finding the least solution (Grandine). 

2.3 	 Multi-Resolution on Multi-Dimensional 

Lattices 

Multi-dimensional lattices were introduced in example 1.1.5. In this section 

we will review how, with proper generalization, the Lagrange and average 

interpolating refinement schemes that were discussed in 2.1 can also be ap

plied to these multi-dimensional structures. 

2.3.1 Kovacevic and Sweldens's Interpolating Multi-Resolution on Lat

tices. Kovacevic and Sweldens (2000) used the machinery of de Boor and 

Ron for Lagrange interpolation and introduced a multi-resolution refine

ment scheme on multi-dimensional lattices. Their refinement scheme can 

be viewed as a generalization of Deslauriers-Dubuc interpolation. Using the 

39 




• • • 

• • • 

P.D. Tafti: On Multi-Scale Refinement of Discrete Data. [ ch. 2 

M.A.Sc. thesis. Department of Electrical and Computer Engineering, 

McMaster University, Hamilton, Ontario, Canada, 2005. 


3 2 2 

2• 1• •1 

X 

2• 1. . 
1 

3 2 2 

Figure 2.1: Neighbours of a point on the quincunx lattice form rings (labeled 
by numbers). An x marks the location of the newly inserted point at which 
we are interpolating. 

fact that a Lattice 8i+, as defined in 1.1.5, is a union of translates of 8i>13 

they suggested the following procedure:14 

for each 8 E 8i+1 \ 8i> a neighbourhood N e E 8i of a fixed pre-chosen 

size, of closest points to 8 in ei are considered. ai+1[8] is computed by 

Lagrange interpolation of the values ai[cP] for cjJ E Ne. For 8 E 8i+l nei> the 

value of ai[8] is copied to ai+1[8]. 

Similar to Deslauriers and Dubuc's iterative interpolation, Kovacevic and 

Sweldens's scheme can be represented by linear operators and therefore 

falls within the framework of 1.2. We will prove this in more generality 

in proposition 2.4.4. For example, for the quincunx lattice (see 1.1.6) and 

the neighbourhood rings shown in fig. 2.1, this scheme can be represented 

by refinement weights of table 2.2 (from Kovacevic and Sweldens, 2000). 

2.3.2 Average-Interpolating Refinement on Lattices. As a variation of 

the above-mentioned scheme, and also a generalization of Donoho (1994), 

in Tafti et al. (2005) we suggested how Donoho's average interpolating re

13 Or the other way around: ei is a subsampled version of ei+1• 
14 To be consistent with the rest of this thesis, we have changed the formulation. 
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Table 2.2: Refinement weights of Kovacevic and Sweldens's Lagrange inter
polating multi-resolution scheme, for neighbourhoods of sizes 4 and 12. 

neighbourhood size ring (no. points) 
1(4) 2(8) 

4 
12 

finement scheme could be extended to arbitrary multi-dimensional lattices. 

There we introduced the notion of a partitioning ¢ of a domain .Q, as a col

lection of disjoint subsets Oe of .Q, indexed by points of a lattice 8,15 whose 

union covers .Q (except possibly for a set of measure zero). 

Then, considering a sequence ( 8i) of point -sets in lRd with the lattice 

structure of 1.1.5, we specified a corresponding sequence (¢d of partition

ings: provided with a partitioning ¢ 0 for level 0, 16 one can construct ¢;.s by 

transforming ¢ 0 with the same lattice matrices, G, D (as we did for 8 0 and 

8;.s in 1.1.5). 

Next, for a chosen neighbourhood size n, in Tafti et al. (2005) we in

troduced a refinement scheme resulting in a sequence of signals (a;.), a;. E 

fP(S;.). This scheme consists in the sequential application of the following 

two steps, here formulated for the ith level: 

1. 	 Insertion: For each 9 E 8i+1 \ 8i, we first find the minimum degree 

polynomial solution 7t;.,e to the functional interpolation problem: 

15 	 We have here simplified the unnecessarily complex notation that was used in Tafti et al. 
(2005). 

16 	 This partitioning may be, for example, given by Voronoi regions of the lattice points. 
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where N9 c ei is the set of n closest points to 8 in ei. ai+1[8] is then 

defined: 

This step amounts to resampling, by locally averaging at a finer scale, a 

polynomial with given local averages on nearby partitions. It is dubbed 

'insertion' because the points 8 E Eli+1\Eli and their associated values 

are inserted into ei. 

2. 	Update: In the second step, the original values ai[8] for 8 E ei are 

updated to give us ai+1 [8] for 8 E Eli. This is necessary because ai[8]s 

correspond to averages on coarser resolution (i.e. bigger) partitions 

in Oi, and should be changed to match local averages on the finer 

partitions in 0H1· 

To find the new values we first find the minimum degree polynomial 

ni,9 satisfying 

This time, N 9 is a subset of ei+1\ eh and we are average interpolating 

values calculated in the previous step. Next, ai+1[8] is calculated: 

I n· 9 
a. 	 [8] ·= <>t+ 1 ,a 1., 

t+1 • I ,
<>t+ 1 ,a 

This step is labeled 'update' because we change the values for sam

ples at 8 E Eli in this step-unlike Lagrange interpolating refinement 
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where, as we saw in 2.3.1, these values were simply copied.17 

Again, these two steps define a linear refinement operator; as detailed in 1.2. 

Linearity follows from the linearity of the solution to the interpolation prob

lem, which again consits in solving a linear system. 

Not knowing about de Boor and Ron's solution to the functional interpo

lation problem, in Tafti et al. (2005) we suggested that the average interpo

lating polynomial satisfying 

IIo.p 7= a[cp] for <P E e, 
O.p 

could be found by choosing proper columns of the (semi-infinite) modified 

Vandermonde matrix 

to form an invertible submatrix. 

More specifically, we suggested choosing A:= {cx.0 , ••• , cx.n-1} (where n = 

#8), with lcx.ol ~lex., I~···~ ICXn-1i, such that the matrix 

[J xocly := ----=-'Oa"--
JOe 	 l SEE> 

aoEA 

would be invertible, and ICXn-11would be minimum among all possible choices 

of such n cx.s.18 Then, our suggested solution to the interpolation problem 

17 Note that the inputs to this step are sample values ai+1 [8] fore E ei+1\Si, themselves 
obtained at the insertion step from adQ>]s. Alternatively, we could have calculated the 
outputs of this step directly from at[Q>]s. 

18 	 We then did not address the uniqueness problem. However, it turns out that due to the 
degree-reducing property of de Boor and Ron's solution (see de Boor and Ron, 1992b, 
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Figure 2.2: Partitionings (>i, (>i+1 for subsequent levels are related by the 
same transformation matrices G, D that relate lattice point-sets E\, 8i+1 of 
the two levels (depicted here for the quincunx lattice). 

(a) Level i (b) Level i + 1 

would be obtained by solving the linear system 

Vc=a. 

2.3.3 Example: Average-Interpolating Refinement on the Quincunx Lat

tice. As an example for this scheme, we may consider average-interpolating 

refinement on the quincunx lattice (1.1.6). The matrix D = [ ~ - ~ ] , that re

lates ei to ei+1, for this lattice corresponds to a rotation by 45° and a scaling 

by a factor of .Ji. Accordingly, each partition in ()i+1 is obtained by a -45° 

rotation and 1fv'2 scaling of a partition in <>i (fig. 2.2). 

The neighbourhood rings for insertion and update steps are shown in 

fig. 2.3. Weights for insertion and update steps for two neighbourhood sizes 

are summarized in table 2.3. 

theorem 5.10), their solution satisfies the requirements set in Tafti et al. (2005). 

44 



P.O. Tafti: On Multi-Scale Refinement of Discrete Data. sec. 2.4] 
M.A.Sc. thesis. Department of Electrical and Computer Engineering, 

McMaster University; Hamilton, Ontario, Canada, 2005. 

Figure 2.3: Neighbourhoods for average interpolation on the quincunx lat
tice have different shapes for insertion and update steps. Here neighbour
hood rings are labeled by numbers and the partition at which we are inter
polating is shaded. 

44 33 	 4 

4 2 4 4 2 2 4 

2 2 2 1 2 

3 3 3 1 1 3 

2 2 2 1 2 

4 4 4 2 2 4 

4 4 4 3 4 

(a) Insertion (b) Update 

Table 2.3: Insertion and update weights for average-interpolating refinement 
of Tafti et al. (2005) on the quincunx lattice. 

neighbourhood size Insertion Update 
on ring 1 on ring 2 on ring 1 on ring 2 

4 
12 

0.2500 
0.3229 - 0.0365 

0.2500 
0.3125 - 0.0313 

2.4 	 Refinement Based on Functional 

Interpolation 

The schemes mentioned in the previous sections all shared several key fea

tures. They all depended on interpolation with polynomials (Lagrange or 

average interpolation) and, as a result, could be represented by linear re

finement operators. Also, the properties of the underlying signal, in the 

sense of the correlation between nearby samples (which itself depends on 

the smoothness of the underlying function) , could be taken into account by 
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choosing neighbourhoods of different sizes. 

As we have already implied, Lagrange and average interpolation are ex

amples of functional interpolation (2.2.1). And while the focus in previous 

sections of this chapter has been only on the special cases of Lagrange and 

average interpolation, and then again only in one dimension or on multi

dimensional lattices, basing our refinement scheme directly on functional 

interpolation, as we will see, allows us to consider refinement on arbitrary 

domains, or in different functional spaces, in much more generality. It also 

provides us with the means to naturally consider the underlying sampling 

procedure. Furthermore, the resulting class of refinement schemes can be 

directly implemented, since as we saw, a powerful machinery for polynomial 

functional interpolation already exists (cf. 2.2.3). 

When sampling a function on the continuum, the correlation between 

nearby sample values depends on the properties of this function. The smooth

er the function is, the more correlated these sample values become. In de

signing a multi-resolution scheme, this could be taken into consideration 

by choosing neighbourhoods of samples, on which samples at the next finer 

resolution would depend. Introducing the notion of neighbourhoods also 

allows us to deal with arbitrary domains and different boundary conditions 

in a consistent manner. 

2.4.1 Reminder: Multi-Resolution Representations and Signals. The 

reader will recall that in 1.2 we discussed how a multi-resolution sequence 

of discrete signals ( ai) could be represented by elements of a sequence of 

discrete signal spaces:· (£P(Ad) for some p; where Ais (the sampling pro

cedures for different resolutions) are subsets ofF*, the dual of the Banach 
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space :F that our discrete signal spaces approximate. We further required 

that span(l\x,) be weak*ly dense in :F*, thus allowing any function in :F to 

be represented uniquely by a collection of sample values on Aoo (see thea

rem 1.2.3). 

We will attend to this relationship between multi-resolution representa

tions and sets of functionals in our upcoming construction for refinement 

operators. 

2.4.2 Neighbourhoods. We have already argued the utility of the notion 

of neighbourhoods. This notion will now be formally defined. With each 

'A E Ai+1, we associate a finite set N?. c Ai and call it the neighbourhood of 

'A. As we will see, the values ai[~], ~EN?., are those that will be considered 

when computing ~+1 ['A]. 

2.4.3 Refinement Based on Functional Interpolation. We are now in a 

position to finally define our refinement operators 6i. This task, against the 

provided background, is now pleasantly simple: Given ai E £P(Ai), for each 

'A E Ai+1 with a neighbourhood N?. c Ai we first find the polynomial 7t?. 

satisfying 

(2.9) 

using de Boor and Ron's algorithm for functional interpolation (see 2.2.3 

and de Boor and Ron (1992b)). 19 Next, the value ai+1['A] := (6iai) ['A] is 

19 	 Note however that this approach is not restricted to de Boor-Ron interpolation, or even 
to polynomial interpolation. For special functional spaces, other spaces of interpolating 
functions may be more suitable. 
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assigned: 

We will undertake the trouble to prove that such defined, the operator 

6i can be represented by weighted averages as detailed in 1.2; and will also 

show how the refinement weights can be computed. 

2.4.4 Proposition. Linear refinement operators 6i, as defined above, cor

respond to weighted averagings of the form 

(6iad [;\] = L si,A,J.LadJ.t], 
J.LEN?. 

with weights si,A,J.L satisfying 

(2.10) 

Proof. From A.4 we have: 

ai = L ai[J.t]bJ.L, 
J.LE/\t 

and therefore, 

6iai = L ai[Jl] ( 6ibJ.L) 
J.LE/\i 

or equivalently, 

(2.11) (6iai) [;\] = L ai[Jl] (6ibJ.L) [;\]. 
J.LE/\i 

Now, (6iai) [;\] is zero for Jl ~ NA. This is because, with Jl ~ NA, all the val
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ues that are being interpolated (i.e. &f..l.['v] for-vENA) are zero, and therefore 

the interpolant is also identically zero. Hence, we can rewrite (2.11) as 

(6iad [A] = L adl.l] (6i&f..l.) [A]. 
j.LEN;>, 

We may now denote (6i&f..l.) [A] by si,A,f..L to have 

(2.12) (6iai) [A] = L Si,A,f..Lai[l.l]. D 
f..I.EN;>, 

The following lemma also holds. We will use it to prove a subsequent 

result. 

2.4.5 Lemma. Let 1 E :F : x H 1 be the constant unity function. Let also 

l.lS be normalizable such that l.ll = 1. Then, for a signal ai E fP(J\.d that is 

constantly equal to c E IF on N ;\, we have 

Proof From l.ll = 1 for linear functionals l.l E NA, it follows that 

(cl) therefore satisfies the interpolation conditions at A (2.9). (cl) is the 

constant polynomial, and is the lowest degree polynomial that satisfies our 

interpolation conditions. Therefore nA = cl. Then, as by the normalization 
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assumption we also have A( c1) = c, it follows that 

2.4.6 Corollary. With the same conditions as those of lemma 2.4.5, we 

have 

(2.13) 	 L si,?.,f.J. = 1 for all A E Ai+l· 
!-!EN;>. 

Proof Follows directly from lemma 2.4.5 and eqn (2.12) by setting c = 1 

and for each A, considering a function in iP(Ai) that is constantly equal to 1 

D 


The above result shows that, with the suggested normalization, our re

finement operators satisfy the conditions that Daubechies et al. (I999) re

quire of their subdivision operators. 20 

2.4.7 Remark. Constructions for interpolating and average-interpolating 

multi-resolution refinement that we have discussed in 2.1 and 2.3 are in fact 

special cases of the construction introduced above: 21 

20 	 Daubechies et al.'s subdivision operators are very similar to the refinement operators 
we introduced in section 1.1, where we considered discrete functions on point-sets 
(rather than on sets of functionals). While in general, (2.13) is neither strictly nec
essary nor sufficient for the convergence of a non-stationary cascade algorithm (the 
cascade algorithm is defined in 1.1.13 and 1.2.9), the reader may wish to consult foot
note 11 on p. 13 for a brief discussion of the relevance of this condition for stationary 
refinement schemes. (For stationary schemes refinement masks do nat change across 
resolutions.) As emphasized earlier, in this thesis we do not intend to investigate con
ditions for the convergence of the cascade algorithm. 

21 	 Actually, in the multi-dimensional average interpolating scheme of 2.3.2, rather than 
the scheme itself, each of the two insertion and update steps can be realized by our new 
refinement operators. 
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Simply, for the uni- and multi-dimensional schemes based on Lagrange 

interpolation (see 2.1.2, 2.1.3, and 2.3.1), it is sufficient to compose Ai of 

point-wise evaluation functionals at points in ei. Extending the same idea to 

irregular multi-dimensional point-sets directs us to the operators Daubechies 

et al. (1999) suggest. 

Similarly, for average interpolation, Ai should consist of functionals cor

responding to averaging over intervals in "(i (in the univariate case) or over 

partitions in <h (in the multivariate case). 

2.4.8 Remark. Notice how this refinement scheme is naturally linked to 

the sampling procedures, as defined in 1.2, that lead to our discrete signals. 

Properties of the underlying function, and the domain, can also be taken 

into consideration when choosing the neighbourhoods for each functional. 

Additionally, basing our definitions on topological notions such as function

als and dual spaces allows us to collectively consider refinement schemes for 

different spaces of functions. 

2.4.9 Example. As discussed above, we have in fact already encountered 

several special cases of this new construction. Here we will produce a more 

complex situation. Let F be a space of locally integrable functions including 

bivariate polynomials, defined on a domain fl in JR2 ; and suppose that each 

functional A. E Ai c F* corresponds to calculating the average of its argu

ment on the area enclosed by an arbitrary and probably irregular polygone, 

say D 1.., in fl. That is, 
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The construction we have just introduced then provides us with a multi

resolution refinement scheme for data maps associated with Ais. 

In practice, in order to find the multivariate polynomial satisfying (2. 9), 

we initially need to be able to form the generalized Vandermonde matrix 

of eqn (2.8), upon which we may then exercise Gaussian elimination by 

segments (cf. 2.2.3). We should therefore find a way to compute 

,\()"' := JJDA xntyndxdy. 
ffDA 1 dxdy 

where ex := [::;J . 22 The denominator is simply the area of D 1" and is a special 

case of the numerator integral, 

(2.14) 


with m = n = 0. It is therefore sufficient to be able to compute (2.14) 

numerically, for an arbitrary M-gone D"J... This computation is made possible 

by an application of Green's theorem: 23 ' 24 

Let the polygene D "A be defined by its M vertices, [ ~~ J , 0 :::; i < M. Also 

define[~~] := [~]. For f(x,y) = n~ xmyn+l and g(x,y) = 0, the right1 
hand-side of (2.15) will be equal to the desired integral (eqn (2.14)). Evalu

22 Recall that ()"' : JR d ----t JR : X H X"' is a function in F. 

23 A version of Green's theorem states that over a region D in the plane with boundary 


ao, 

(2.15) Iao f(x,y)dx+ g(x,y)dy = JL (~~- ::) dxdy. 

(From Weisstein, 2005b). 
24 The method for computing the integral of a bivariate monomial over a polygonal do

main, that we discuss here, is known to the numerical computation community. 
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ation of the left-hand-side involves calculating f f(x, 'Y) d x over the edges of 

DA. It can be easily shown that after elementary integrations we have: 25 

L.h.s. = __=]__ ' ' (n;l) arbn+l-r (xm+r+l _ xm+r+l);
n+l L L m+T+l k k k+l k 

kEKO::;~n+l 

where K is the subset of {0, 1, ... , M}, such that fork E K the edge connecting 

[~~] and [ ~~!~] is not vertical and can be parametrized as -y(x) = akx + bk. 

This also defines ak, bk. 

For this setting, we have implemented our refinement scheme in ISO C, 

and have used Grandine's implementation of de Boor and Ron's algorithm 

(Grandine). Two of the inputs to our programme are the two sets of func

tionals, Ai. and Ai.+l, members ofwhich are identified with the coordinates of 

their corresponding polygones. (These polygones may have different shapes 

and numbers of comers.) Another input is the neighbourhood database, that 

indicates the functionals ).1 E Ai. belonging to the neighbourhood N A of A, for 

each A E Ai.+1. Finally, the last input is the ith level signal, ai.[A] for A E Ai.. 

Our software then outputs the i + lth level signal, ai.+l := 6i.ai..26 

As an example, suppose that the solid polygones of fig. 2.4 form a neigh

bourhood NA for the dashed polygone A. As we saw in proposition 2.4.4, the 

refinement operator 6i. may be identified with weighted summations of the 

25 To see this, simply write the line equation for non-vertical edges connecting [ ~~] to 
[~~!: ] as 11 (x) = akx + bk, and replace this in the integral s~:+l f (x, 11 (x)) d x, which 
now becomes: 

Xk+l -1 l 
--xm (akx+ bk)n+ dx. 

1 

Then use the binomial expansion for (akx+ bdn. (For vertical edges the integral is 
trivially zero.) 

26 The source code and Linux x86 binaries can be found on the accompanying CD-ROM, 
and are also available from the author upon request. 

Jxk n+ 
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5 

Figure 2.4: Several irregular polygones (solid) form a neighbourhood for 
another irregular polygone (dashed). 

form 

(6iad [A] = L si,A,J.Lai[Jl.], 
J.l.EN;>. 

and the same proposition also provides us with a way to calculate the weights 

(by passing bJ.L signals as the input to the refinement scheme). We have sum

marized the weights for !lENA (here indexed by numbers) in table 2.4. As 

predicted by corollary 2.4.6, these weights add up to 1. 

Table 2.4: The new value associated with the dashed polygone is equal to a 
weighted summation of the values given for the solid polygones, using the 
following weights. 

Neighbour's Index Weight 
0 -0.722514 
1 1.008270 
2 -0.857378 
3 1.175449 
4 -0.616545 
5 1.012718 
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3 
Conclusion 

A conclusion is the place where you 
got tired of thinking. 

ANON. 

THE MAIN PURPOSE of this thesis was to provide a definition and formu

lation of multi-resolution refinement, general enough to allow multi

resolution approximation of different spaces of functions based on samples 

(or observations) that could be irregularly distributed or even differently 

obtained (chapter 1). We also provided a construction for designing and im

plementing refinement schemes in these general settings (chapter 2). The 

framework for multi-resolution refinement that we discussed in chapter 1 

includes and extends (within a new formulation) the existing mathemati

cal machinery for multi-resolution analysis. And the structure suggested in 

chapter 2 provides a unified formulation for many of the schemes currently 

in use, and allows us to design schemes for many new settings. The ap

proach we have proposed also gives rise to many questions that we have not 
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fully addressed here, and would benefit from further study. In this conclud

ing chapter some of these will be outlined. In addition, several questions 

need to be answered when designing a refinement scheme for a particular 

application. While the answeres to these questions are application-specific, 

we provide some general remarks and considerations. 

3.1 Suggestions for Further Investigation 

3.1.1 The Stability and Convergence of the Cascade Algorithm. As we 

pointed out on many occasions throughout this thesis, a question that is 

of critical importance but which we did not investigate is that under what 

conditions on the refinement coefficients the cascade algorithm is stable, 

and converges to a continuous solution; and when this happens, how the 

regularity of the solution can be characterized. 

We briefly mentioned in footnote 11 on page 14 that a necessary (but 

insufficient) condition for the convergence of stationary refinement schemes 

is that the refinement coefficients used for calculating each new sample value 

from lower resolution values sum up to 1. However, this condition is not 

strictly necessary and may be weakened in the non-stationary case. 

Another important aspect of the problem is the characterization of the 

regularity of the solution. In the uniform one-dimensional case, as well as in 

the multi-dimensional cases where we deal with lattice structures, Fourier

domain techniques may be used to answer this question, as has been done 

for example in Cohen et al. (1999), Jia (1999), and Ron and Shen (2000) 

for refinement on multi-dimensional lattices. Yet, when dealing with the 
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more general case of irregular sampling, frequency-domain methods are not 

applicable, and temporal/spatial techniques should be sought. Moreover, it 

should be kept in mind that in these cases our refinement schemes have dif

ferent properties at different locations. We should therefore look for methods 

for evaluating local regularity of the solution. A logical approach is to study 

differences between values associated with nearby samples: the smoother 

the solution is, the faster the sample values converge as a function of dis

tance between their related sample points or functionals. 1 Daubechies et al. 

(2001) follow a similar path. 

Apart from these general analyses that use the refinement weights, one 

may choose to study the regularity of solutions to the schemes described 

in 2.4 by studying the construction itself. Since those schemes are based 

on functional interpolation, perfect reconstruction of functions that fall in 

the intersection of the subspaces of solutions to the interpolation problem 

is guaranteed. Also, as we showed for example in corollary 2.4.6, known 

properties of the interpolant can help in proving results about the solutions. 

3.1.2 Spaces of Interpolating Functions. In the construction for refine

ment operators that was suggested in section 2.4, we considered subspaces 

of the space of polynomials, provided by de Boor and Ron's solution, as our 

spaces of interpolating functions. This use is justified by the many interest

ing properties of the de Boor-Ron interpolant, which are listed for example 

in de Boor and Ron (1992b). For all that, still other polynomial solution 

spaces, and more generally, other spaces of interpolating functions may be 

Of course, the notion of distance between functionals, in the sense that we intend here, 
should itself be suitably defined. 
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considered, and may prove to be more suitable for certain classes of func

tions. 

3.1.3 Formation of Multi-Resolution Sampling Procedures. A question 

that needs to be answered when designing a multi-resolution refinement 

scheme for a particular setting is that of how to form multi-resolution sam

pling procedures2 that satisfy the requirements set forth in 1.2.2, keeping 

in mind that for many applications we may not actually need an infinite 

sequence of sampling procedures. 

In some cases, the layout of these multi-level sets of functionals may be 

dictated by the application. (For example when a natural subsampling or 

clustering of the samples exists, as may be the case when processing sensor

network measurements.) In others, we may have the freedom to define the 

sampling procedures. When dealing with point-wise evaluation functionals, 

a common practice is to impose a mesh structure on the sampling points, 

and add new sampling points at midpoints of the edges connecting mesh 

points, or at mid-points of the faces bounded by these edges. Similarly, when 

working with averages on a partitioning of the domain (as in example 2.4. 9), 

we may choose to exploit the duality between Voronoi regions and Delaunay 

triangluations, subdividing the Delaunay triangluation to insert new vertices 

for our Voronoi partitioning. 

3.1.4 Forming Neighbourhoods. Our construction in 2.4 required that 

functionals in two subsequent sampling procedures be related through the 

notion of neighbourhoods. In general, the formation of these neighbourhoods 

The reader will remember that we defined sampling procedures as sets At of function
als on our space :F, that define our spaces €P (At) of discrete signals. 
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should reflect the properties of the underlying function, the samples of which 

we are processing. The neighbourhood for each higher-resolution functional 

determines which lower-resolution samples will be considered when calcu

lating a value for this functional. When the underlying function is smooth, 

the correlation between sample values for nearby functionals is higher and 

as such, we may choose a larger neighbourhood size. Also, in some applica

tions (such as sensor-network signal processing) a multi-level clustering of 

samples may already exist. 

I remember one occasion when I tried 
to add a little seasoning to a review, 
but I wasn't allowed to. The paper 
was by Dorothy Maharam, and it was 
a perfectly sound contribution to 
abstract measure theory. The 
domains of the underlying measures 
were not sets but elements of more 
general Boolean algebras, and their 
range consisted not of positive 
numbers but of certain abstract 
equivalence classes. My proposed 
first sentence was: 'The author 
discusses valueless measures in 
pointless spaces'. 

I want to be a mathematician, Springer-Verlag, 1985. 
PAUL R. HALMOS, MATHEMATICIAN (1916-) 
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A 
Some Mathematical Concepts 

For the things of this world cannot be 
made known without a knowledge of 
mathematics. 

OpusMajus 
ROGER BACON (C. 1214-1292) 

THIS APPENDIX is a compilation of some mathematical definitions and 

concepts cited throughout this thesis. It is not intended to be exhaus

tive, but is to serve as a brief reference only. 

A.l Preliminaries 

A.l.l Fields. Let lF' be a set for which two operations, called addition and 

multiplication and denoted respectively by + and ·, are defined. The system 

(JF', +, . ) is called a field if the following are satisfied: 1 

1. 	Addition is associative and commutative. 


Quoting Webber (1966, pp. 128-129) begins. 
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2. There is an element, denoted by z, such that 

u + z = u = z + u, for all u E IF. 

3. 	For each u E IF, there is an element denoted by -u such that 


u+ (-u) = z = -u+u. 


4. Multiplication is associative and commutative. 

5. There is an element =!= z, denoted by e, such that 

u · e = u = e · u, for all u 	E IF. 

6. 	 For each u E IF, u =!= z, there exists an element in IF, denoted by u-1, 

for which 

(A. I) 	 U·U-1 =e=U-1 ·U. 

7. 	 Multiplication is distributive over addition.2 

Informally, we usually refer to IF itself, with its known addition and mul

tiplication operations, as the field. (JR, +, .) and (CC, +,.),the systems of real 

and complex numbers, are familiar examples of fields. 

Quoting Webber (1966, pp. 128-129) ends. 
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A.2 Topological Spaces 

A.2.1 Topological Spaces. A topological space is a pair (X, (.')), where X 

is a set:and (.')is a collection of subsets of X satisfying the following axioms 

(Adams and Fournier, 2003; Wikipedia, 2005): 
I 

1. 	0, X E (.'). 

2. 	The union of any collection of elements of (.') is also in (.'). 

3. 	For all U, V E (.'), U n Vis also in(.'). 

(.') is called a topology on X. Elements of (.') are open sets, and their com

plements in X are closed sets. Any open set including an x E X is a neigh

bourhood of x. For the sake of brevity we may also refer to X itself as a 

topological space. 

A.2.2 More Definitions. Consider topological spaces (X, (.')) and (Y, 'J). 

Then:3 

• 	X is a Hausdorff topological space if for any x, -y E X where x f. -y 

disjoint neighbourhoods for x and -y exist. 

• The closure of S c X, denoted by S, is the smallest closed set including 

S, i.e. the intersection of all closed sets including S. 

• D c X is dense inS c X if D c S c D.4 

• 	X is separable if it has a countable dense subset. 

3 	 See Megginson (1998, pp. 109,139-140,142), Lang (1969, p. 22) and Kolmogorov 
and Fomin (1998, p. 24). 

4 For example, the closure of Q (the set of rationals) in JR with its familiar topology is 
equal to JR. Therefore Q is dense in JR. 
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• 	x is a limit point of V c X if every neighbourhood of x includes an 

infinite number of points in V. 

• A mapping f: X ---1 Y is continuous if for each open subset V of Y, 

f-1(V) is open. 

A.2.3 Topological Vector Spaces. A vector space X over a field IF' with a 

topology <9 is a topological vector space (1VS) or a linear topological space if 

the addition of vectors and multiplication of vectors by scalars are continu

ous operations. 

A.2.4 Functionals and the Dual Space. A functional is a mapping from 

a topological space X to a field IF' of scalars. "A is a linear functional if for all 

x, y E X and all ex E IF', 

"A(cxx +y) = cx.Ax + "Ay. 

The vector space of all continuous linear functionals on a 1VS X is called 

its continuous dual space or quite often simply its dual space,5 and is denoted 

by X* (Adams and Fournier, 2003; Megginson, 1998). Equipped with a 

topology, X* itself becomes a 1VS. 

A.2.5 The Weak* Topology. Let X be a 1VS. The weak* topology on X* is 

the smallest topology on X* with respect to which the functional 

(A.2) 	 fx: X* ---1 IF': x* H x*x, 

In the latter case, the space of all linear functionals on X is referred to as the algebraic 
dual space. 
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known as the natural mapping, is continuous for each x E X (cf. Adams and 

Fournier (2003, p. 4) and Megginson (1998, sec. 2.6)). The adjective and 

adverb weak* and weak*ly then refer to properties that hold with respect to 

this topology. 

A.3 Normed Vector Spaces 

A.3.1 Normed Vector Spaces. A normed vector space is a pair (X, II · II x), 

where X is a vector space and II · llx is a norm on X, that is, a real-valued 

function II · llx : X ---1 lR : x r--1 !lxllx satisfying the following conditions 

(Megginson, 1998, p. 9): 

For x, y EX and scalar ex, 

1. llxllx 2:: 0, with equality iff x = 0; 

2. !lcxx!lx = lcxl!lxllx; 

3. !lx +YIIx 5 llxllx + IIYIIx· 

Where not necessary to distinct different normed spaces, the subscript of 

II · llx will usually be dropped. Also informally we may refer to X itself as 

the normed space. 

A.3.2 Norm Induced Metric. The norm of X induces a metric on X th

rough the formula d(x, y) ·- llx- Yll· With this definition X is a metric 

space. 

A.3.3 Banach Spaces. A normed vector space is a Banach space orB

space or complete normed space if it is a complete metric space with the metric 
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induced by its norm. A complete metric space is a metric space in which 

every sequence ( Xn) satisfying the Cauchy criterion (see below) converges. 

(Xn) satisfies the Cauchy criterion if for all £ > 0 there exists N e, such that 

for all n', n" ~ Ne, d ( Xn' , Xn") < £ (Kolmogorov and Fomin, 1998). 

A.3.4 Linear Operators. A linear operator T : V -----1 W is a mapping 

from a first vector space V (the domain) to a second vector space W (the 

codomain), both over the same field IF, whereby for x, y E V and (X E IF, 

T(x +y) = Tx + Ty, 

(A.3) T( (XX) = (XTX. 

The notations Tx and T(x) may be interchangeably used. 

When V and W are normed spaces, boundedness of operators may be 

studied. T : V --1 W is bounded if a scalar c E IF exists such that 

I!Txllw :S cJ!x!!v, for all x E V. 

The norm of a bounded linear operator can then be defined: 

IITxllw 
IITII := sup II II . 

xEV, X V 
llxllv,,O 

Bounded linear operators extend the concept of linear transformations

which are represented by matrices in the finite-dimensional case-to possi

bly infinite-dimensional spaces. 
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A.3.5 £P(I) Spaces. For a countable set I of indices, called the index set, 

and a field JF, £P(I) is defined for 1 :::; p :::; oo as the normed vector space of 

all mappings a: I ---1 JF: t r-t a[t] for which the norm defined as 

' ia[t]IP) l/p for 1 :::; p < oo,
jjajjp = L~EI 

sup~EI ia[t]l for p = oo,l(
is finite. 

One possible basis for £P(I), 1 :::; p < oo, is formed by functions 6l (de

fined below6) for aUt E I. 

Any a E £P(I) can be decomposed as 

(A.4) 


The spaces fP(I), 1 :::; p :::; oo, are examples of Banach spaces. 

A.3.6 LP(.Q) Spaces. Let Q be a CT-finite7 positive measure space with 

a measure 1-l· For 1 :::; p :::; oo, the Lebesgue space LP(.Q) is the space of 

6 	 Using Iverson's convention (see Graham et al. (1994, p. 24) or Knuth (1992)), in 
which a true-or-false statement enclosed in square brackets is equal to one if true and 
equal to zero if false. (Iverson himself used parantheses instead of square brackets. 
See Iverson (1962, p. 11) .) 

7 	 A measure 11 on Q is cr-finite ifQ is a countable union of sets of finite measure. 
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functions f with domain .0 and codomain IF for which the norm 

(f .Q lfiP d f.!) l/p for 1 ::::; p < oo,
IJfllp = 

{ ess sup.olfl for p = oo, 

is finite. LP ( .0), 1 ::::; p ::::; oo, for each choice of p, is an example of a Banach 

space. For 1 ::::; p < oo the dual of LP(.Q) is isomorphic to Lq(.O), where q 

satisfies 1jp + 1I q = 1. 

A.3.7 The Hahn-Banach Extension Theorem (Normed Space Version). 

Let .:\0 be a bounded linear functional on a subspace X0 of a normed vector 

space X. Then there exists a bounded linear functional .:\ on all of the space 

X that agrees with .:\o on Xo, and satisfies IJ.:\IIx· = IJ.:\ollx0 (Megginson, 1998, 

p. 75). 

1\.nd you do Addition?' the White 
Queen asked. 'What's one and one 
and one and one and one and one 
and one and one and one and one?' 
'I don't know,' said Alice. 'I lost 
count.' 
'She can't do Addition ... ' 

Through the Looking-Glass 
CHARLES LUTWIDGE DODGSON (LEWIS CARROLL), 

ENGLISH MATHEMATICIAN AND WRITER 

(1832-1898) 
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B 
Summary of Used Notation 

By relieving the brain of all 
unnecessary work, a good notation 
sets it free to concentrate on more 
advanced problems, and, in effect, 
increases the mental power of the 
race. 

In P.J. Davis and R. Hersh: The Mathematical 
Experience. Birkhiiuser, 1981. 

ALFRED NORTH WHITEHEAD, BRITISH 

MATHEMATICIAN, LOGICIAN AND PHILOSOPHER 

(1861-1947) 

Special Sets and Spaces 

The field of reals. 

The field of complex numbers. 

The set of integers. 

The d-dimensional Euclidean space. 

The set of non-negative integer d-tuples. 

L''(O) The space of functions on 0 with finite L1' norm (A.3 .6). 
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fP(I) 

C~(.O) 

TT 

Miscellaneous 

A=B 

A:=B 

[statement] 

#X 

'r: V ----1 W: v H w 

(a, b) 

(-) 

[·]index 1 

[·] 	indexl 

index 2 


The space of maps on the countable set I with finite fP 


norm (A.3.5). 


The space of N -times continuously differentiable func


tions on .0. 


The space of finitely supported N-times continuously 


differentiable functions on .0. 


The space of univariate polynomials. 


The space of d-variate polynomials. 


A is equal to B. 


A is by definition equal to B. 


Iverson's convention: The bracketed statement is equal 


to 1 if the statement is true, is equal to 0 otherwise 


(footnote 6 on p. 67). 


The cardinality of the set X. 


'r maps (the space) V to (the space) W. The element 


v E Vis mapped tow E W (A.3.4). 


(Denotes a duality pairing between a and b.) 


(Used to denote a sequence.) 


(Indicates a column vector with elements indexed by 


index 1.) 


(Indicates a matrix with rows indexed by index 1 and 


columns indexed by index 2.) 


TI X~ (with X:= [xi] and ex E zg+.) 
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The exth partial derivative off (ex E zg+). 


(For ex E zg+) the mapping JRd ---tlR: X H xoc (2.2.2). 


(Where f is a polynomial or a formal power series, and 


ex E zg+) the coefficient of ()oc in f (2.2.2). 
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