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Abstract

Novel scalar and full-vectorial mode solvers based on quadratic spline
collocation (QSC) method have been developed in MATLAB for optical dielectric
waveguide with arbitrary two-dimensional cross-section and refractive index profile.

Compared with the conventional finite difference mode solver in the literature
and a commercial mode solver, the QSC mode solvers are simple and easy to
implement in MATLAB without losing the accuracy of the mode solutions. The
scalar mode solver is fast for solving weakly guiding waveguides. Three typical rib
waveguides are calculated by the QSC scalar mode solver and compared with the
numerical results of a finite difference scalar mode solver in the literature. The
full-vectorial mode solver is capable of solving both weakly and strongly guiding
waveguides. Typical numerical examples are calculated by the full-vectorial QSC
mode solver and the solver is verified by comparing the results to a commercial
mode solver.

At the end of the thesis, methods of calculating leaky and radiation modes of
general dielectric waveguides and possible methods of increasing the accuracy of the

QSC mode solvers are proposed.
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Chapter 1. Introduction

1.1 Background and Overview

The basic building block of all key elements in modern optical communication
systems is longitudinally invariant waveguide. Like the connecting “wire” of the
electric circuit, optical waveguide functions as the link in optoelectronic integrated
circuits (OEICs) and also forms the basis of photonic devices, including active
devices and passive devices. Therefore, accurate modeling of the characteristics of the
constituent waveguides is one of the most critical issues in photonics and
optoelectronic simulation and design.

Even for the most fundamental waveguide, for example, the three layer slab
waveguide, the analytic solution is usually out of reach. Numerical modeling and
simulation are the alternatives. With the fast development of computer technology,
most of the ordinary personal computers nowadays are more powerful than the super
computers of a decade ago. So, even when there is an analytic solution available, most
people will prefer to choose a reliable numerical tool to simulate the waveguide rather
than going deep into the complicated analytical analysis. In other words, the
numerical analytical tools will play a larger and larger role in the waveguide analysis,
which is the basis of further advanced designs of optical devices and circuits.

For a complete modeling for the longitudinally invariant optical waveguide, mode
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analysis of optical waveguides is a fundamental and important issue. In the past more
than two decades, continuous and significant effort has been made to solve the
full-vectorial modes of longitudinally invariant waveguide (also called as planar
optical waveguide in the literature, such as rib, ridge, slot, etc.) in order to fully
describe the behavior of optical waveguides. Various numerical methods and
techniques have been investigated and developed.

Among the numerous numerical mode solvers in the literature, characterized by
the numerical algorithms, finite difference (FD) method and finite element (FE)
method are two of the major types.

The basic idea of finite difference method is to replace the partial differential
operators of the vector solutions of Maxwell Solutions by difference operators [1].The
finite difference idea is straightforward and understandable, and for most of the
conventional planar dielectric waveguide, like ridge waveguide and directional
coupler, it is one of the most effective choices for its simplicity. However, finite
difference mode solver may meet great challenges when dealing with irregular
interfaces of the cross-section. Usually the finite difference mode solver is much
oriented to specific categories of waveguides such as the rectangular waveguides with
dielectric interfaces along the coordinates.

The finite element idea on the other hand may not be described and understood
easily. And it is more complicated than the finite difference method to implement,

though the finite element mode solvers are generally regarded as one of most
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powerful and adaptable methods for all kinds of waveguides with various cross
section geometries. The reason of the generality of the finite element solver is mainly
the result from its basic idea: the basic operating blocks in the finite element method
are usually triangles. However, though the traditional finite element method provides
us a great possibility of finding a perfect numerical solution, the processes of finding
a suitable and effective mesh for a specific problem may become overwhelming.

Besides the conventional finite element method and finite difference method, there
are also other numerical approaches available in the literature. For example, D.
Marcus proposed to use a complete and orthogonal set of basis functions, e.g.
sinusoidal basis functions, to approximate the unknown fields, and when a proper
number of basis functions are chosen, the method will result in a matrix equation with
much lower rank compared with equivalent matrix forms resulting from finite
difference and finite element methods [2]. The idea of using basis functions to
simulate the unknown solution is also used in the conventional finite element method.
But instead of using global complete and orthogonal basis, a set of linear local basis
functions are usually used.

Quadratic spline collocation method is one of numerical approaches in the
literature to solve boundary value problems. No particular interest in the literature has
been shown in the past decades. The reason might be that it seems more complicated
and less accurate. However, with the improvement of the accuracy of this method in

the 1990s and 2000s [3], it is worth trying to include this method in the waveguide
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solver family. In this thesis, starting from the basic idea of quadratic spline collocation
method, both scalar and full-vectorial mode solvers were explored to solve

two-dimensional waveguide with arbitrary cross-sections.

1.2 Thesis Organization

Chapter 2 reviews the basic electromagnetic theory relevant to this work and some
common techniques for the analysis of dielectric waveguides. In Chapter 3, the full
coverage will be concentrated on the quadratic spline collocation method. In Chapter
4, two-dimensional scalar mode solvers are developed based on QSC method. In
Chapter 5, based on the previous Chapters, a full vectorial two-dimensional mode
solver is fully examined. Chapter 6 concludes the thesis and presents the future work,
including the proposal of calculating leaky and radiation modes and the methods of

increasing the accuracy of QSC mode solvers.
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Chapter 2. Basic Electromagnetic Theory

In this chapter the fundamental equations and concepts applied throughout the
whole thesis are presented. The Maxwell’s equations, the modal solutions for
longitudinally invariant waveguides, and the commonly used levels of approximation

to modes (scalar and semi-vectorial) are discussed in the following sections.

2.1 Maxwell’s Equations

In complex form, time-harmonic Maxwell’s equations in source-free regions are

(4
VXE:—Z—?z—ij 2.1
wn:%‘%:ym 22)
V.D=0 23)
V.B=0. 2.4)

In these equations, E and H are the electric and magnetic field vectors, D is
the electric displacement current vector and B the magnetic flux density vector. A
time-harmonic factor e’”is assumed and suppressed from hereon, with the angular
frequency w related to the vacuum wavelength A by

w =27 2.5)
3 .

where ¢ is the light speed in free space. In isotropic media we have the following

constitutive relations
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D=¢E (2.6)
B=yH 2.7)

with the permittivity ¢ and permeability p given by
€ =€, (2.8)
H = fold,.. (2.9)
In the two equations above, €, and p, are the permittivity and permeability of
free space; €, and p, are the relative permittivity and relative permeability of the

medium. Since most of the materials widely used in the optical waveguides are

isotropic and non-magnetic (1, = 1), we restrict ourselves to these kind of dielectric

materials. The other two definitions which will be frequently used throughout this

work are the wave number of free space &, defined as

ky = w. fe 1, (2.10)

and the refractive index n defined as

n=JE @.11)
2.2 Vector Helmholtz Wave Equation
2.2.1 Vector Wave Equation for Electric Field

By taking the curl of the both sides of (2.1) and using (2.2), (2.6), (2.7), (2.10), and
(2.11), we can obtain the following equation for electric field
Vx(VXE)=k’n’E (2.12)

Using the identity



Master Thesis - B. Xu McMaster - Electrical Engineering

Vx(VxE)=V(V-E)- V’E (2.13)
and
V- (n’E)=E - Vn’+n’V-E=0 (2.14)
by (2.3), we obtain from (2.12) the vector Helmholtz wave equation for the electric
field

Vn?

n?

V’E+ V(E- )+ n’k’E =0 (2.15)

Since we will concentrate on the longitudinally invariant waveguides, in which the
refractive index depends on the two transverse coordinates only (n = n(z,y)), the
modal solution of Maxwell’s equations can be written in the following form

E = E(z,y) exp(—3jBz) (2.16)
where E, is a vector and has three field component as E (z,y), E, (z,y), and
E (z,y); 0 is the propagation constant and its relation with the effective refractive
index 7, , which is a commonly used concept in the waveguide theory, is

B = nk, (2.17)
From (2.16) we can decompose the Laplace operator V? in the above equation as

o° a°
Vi=——+——-p3. 2.18
o oy 5 (2.18)

And, in Cartesian coordinates which will be the default coordinate system throughout

the whole thesis, the vector wave equation can be decomposed into z, y, and =z

components. However, since we are considering source free waveguide and have the

divergence identity (2.3), the E_ field component can be expressed in terms of the
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transverse components £, and E,  as

(8  , .
=—|—(n’E)+— ,
i nzﬁ[aw(n .,,;)+ay(n E,,)] (2.19)

And from (2.1) and (2.7), together with (2.19), the three magnetic field components

can be expressed in the terms of E, and E, as

-1 [O’E 2 .
= 1 L OB, _ n’k’E, (2.20)
wp,B\ Oz dxzdy
— 2 O°F
i lz ——~ —n’k’E, 21
Y owpBl 0y 9z0y '
, (OF
H == [ v aEz]. (2.22)
wy, | Oz Oy

Thus, only two of the three equations from the vector Helmholtz wave equation

for electric field (2.15)

O’E, O’E 2.2 o2 0 Jln(n) 0ln(n)

L L+ (nk,” —BH)E +2—|FE + F, =0 (223
O’E, OFE . 9 |, dln(n) d1n(n)
— k> —B)E, +2—|E +FE =0 (224
Ozt o0y’ + (k= FOE, Ayl © Oz Y Oy (224)

need to be solved for the total mode solutions.

2.2.2 Vector Wave Equation for Magnetic Field

Similarly, starting from the Maxwell’s equations, we can derive the vector wave
equation for magnetic field and the two desired component equations. Taking the curl
of both sides of (2.2), and using (2.6), (2.8), and (2.11), we obtain

V x(VxH) = jwe,V x (n’E) (2.25)
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Using vector identities
V(n’E) = n*(VXE)+ (Vn*)xE
Vx(VxH)=V(V-H)-V’H

and (2.1), (2.2), (2.4), (2.7), and (2.10) we further obtain

V*H + n’kH + (Vn?) x —lg(v xH)[=0
n
By vector identity
2 1 1 2
(Vn?) x ?(VXH) = g;[(Vn )% (V x H)]

the vector wave equation for magnetic field assumes the form

) =

V2H+n2sz+[%2—x(VxH) =0
And the transverse components of (2.30) yield
a;;y + 8;;” + 0’k — °)H, -2 algin) (aa}i - 8;; '
8;;1 + ‘9;—;’ +(n’k," = B1)H, +2 81;;") (38? - aafz

2y =

0

0

(2.26)

2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

which are the two necessary equations to be solved for the whole modal solutions.

Here, we write the H, first to reveal a better comparison with the electric

component equations (2.23) and (2.24), since for plane waves in free space, H, and

H, have the same transverse spatial distributions as E, and E, [2].

And similarly, we can express the rest components of the magnetic field and

electric filed into combination of H, and H,
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i OH, 6 OH
E, =— 27 (2.33)
nwe, 0Oy Oz
OH ‘
E, = : kiH, — 9 —12— OH, 2 (2.34)
we,3 Oz |n*{ Jy ox
_ 0H
E =1 kOZHeri L|o4, L (2.35)
Y wefB oy|n*| 0y Oz
, (OF
H =" [ v _ aE“J. (2.36)
wp, \ Oz dy

2.3 Semi-vectorial and Scalar Approximations

The wave equations for electric field (2.23) and (2.24), or the wave equations for
magnetic field (2.31) and (2.32) are the full-vectorial equations, the solutions of which
are the exact solutions of Maxwell equations for longitudinally invariant waveguides.
To get the most accurate solutions in a numerical approach, without other
considerations such as memory limit and time consumption, we should always
attempt to solve the full-vectorial equations. However, when we consider numerical
modeling, memory limit and time consumption in most cases are two of the most
important issues and can never be neglected. Thus, proper approximations, which will
simplify the original problems within the allowance of accuracy, are always sought
and used. Here in the waveguide problems, two major approximations are widely
utilized for specific problems.

The semi-vectorial approximation arises from the physically justifiable

assumption that one of the two transverse components is dominant over the other one.

10
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The assumption that E, or H, is dominant will lead to the quasi-TE equation for

Y

E, or H, after discarding the minor component E, or H, from (2.23) or (2.31).

And the quasi-TM equation can be obtained through the same way when we assume
that E, or H, is the principal component and E, or H, 6 can be dropped from
(2.24) or (2.32) [5]. The semi-vectorial approximation can reduce the two full-vectorial
coupled equations into a single equation, which greatly reduces the whole
computation effort. The semi-vectorial approximation is suitable for the waveguides
which well support solutions polarized along the axis, like the rectangular waveguides
of low index-contrast and the rib waveguides [6].

For weakly guiding structure, namely the structure consisting of materials whose
refractive index n is nearly identical in those regions where the field intensity is
large, the scalar approximation can be applied [2]. Scalar approximation discards the
polarization dependence and for smooth refractive index, the scalar solution satisfies
the scalar Helmholze equation

V¢ + (k'n’ — 8%)p =0 (2.37)

at all points, where ¢ can represent any component.

2.4 Interface Conditions and Peﬁect Conductor

Boundary Conditions

At an interface between two media in a planar dielectric waveguide, the fields in

medium 1 and medium 2 of an interface must satisfy the following interface

11
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conditions
nx(E, —E,)=0 (2.38)
ii-(D, = D,) = pg (2.39)
nxH, —H,)=1J; (2.40)
i-(B, —B,)=0 (2.41)

where pg is the surface charge, J, is the surface current density, and 7 is a unit
vector with the normal direction of the interface. The above four equations can be
derived from the Maxwell’s integral equations [5].

For a source-free passive dielectric waveguide, which means pgy =0 and
J, = 0, by using the constitutive relations (2.6) and (2.7), the boundary conditions

(2.38) ~ (2.41) are reduced to

Eemoemtid — pTongentia (2.42)
e By = e, By (2.43)
H]Tangential — HzTangential (2 4 4)
/141 Hlnormal — /LQ H;ormal (2 4 5)

where €, €, are the permittivity of medium 1 and medium 2, respectively, p,, w,
are the permeability of medium 1 and medium 2, respectively. From (2.42) ~ (2.45), we
can conclude that in a passive source-free waveguide, the tangential part of electric

field and magnetic field are continuous at the dielectric interfaces, and for most of the

typical cases where €, = €, and p, = p, = 0, the normal part of the electric field is

discontinuous and the normal part of the magnetic field is continuous at the dielectric

12
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interfaces.
For perfect electric conducting boundary conditions, which are widely applied in
numerical simulations for unbounded problems, we can assume medium 1 is a perfect

ential
ET™ % must be zero

conductor, which means the tangential electric field

(equal-potential of the perfect conducting surface), and the normal magnetic flux

H™" must be zero since there is no electric field inside the perfect conductor. Thus,
(2.42) and (2.45) for a perfect conductor surface become

Byl = 0 (2.46)

Hy™™ =0 , (247)

Furthermore, from Maxwell equations (2.1), (2.2) and (2.46), (2.47), we obtain

the first derivatives of the electric field and the magnetic field in dielectric medium 2

at the boundary of the perfect conductor medium 1

normal
OE:

=0 2.48
an (2.48)

Tangential
OH!

=0 2.49
an (2.49)

Namely for a perfect conductor boundary, the tangential electric field is zero and the
first derivative of the normal electric field is zero; the normal magnetic field is zero

and the first derivative of the tangential magnetic field is zero.

13
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Chapter 3. Quadratic Spline Collocation
Method

In this thesis, we will explore the quadratic spline collocation method for solving
the vector Helmholtz wave equations. Before we start to solve our specific problems,
we will first describe the basic idea of quadratic spline collocation (QSC) method.
Then, QSC method for solving a single general partial differential equation (PDE) is
discussed. Since we will solve the set of vector wave equations, QSC method for a set

of equations will be discussed at the end of this chapter.

3.1 Quadratic Spline Collocation Method General

Discussion

The basic idea of the QSC method is to approximate the original solution of a
partial differential equation by a set of localized quadratic basis functions (quadratic
spline) and to calculate the weights of each basts by forcing the residual between the
exact solution and the approximate solution to be zero at a complete set of points
(collocation). The piecewise polynomial collocation approximation guarantees that
the values at the collocation points are accurate and the values between the collocation
points are stable without oscillation, since three stable quadratic basis functions at
most determine the values, which are shown straightforwardly in the one-dimensional

QSC basis function example in Figure 3.2. This property makes this method
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substantially different, hence more useful, from a global polynomial expansion which
is capable of fitting a given set of points but fails to avoid oscillation between the

given points, since all of the values are determined by all the global coefficients.

3.1.1 Validity of Quadratic Spline Collocation Method for

Solving Vector Wave Equations

Before we attempt to use the quadratic spline collocation method, we first prove
its validity for solving the vector wave equations. Unlike the eigen-function expansion,
such as the eigen-expansion of a complete orthogonal set of sine functions [2], the
quadratic spline collocation method doesn’t employ a complete set of orthogonal basis,
but a set of piecewise second-order polynomials.

Though the subspace built on the quadratic basis functions is not complete,
namely, the combination of the quadratic spline basis functions cannot represent all of
the possible solutions in computation space, the QSC subspace may well represent the
continuous solution with continuous first-order derivative in the second-order partial
differential equations, for example, the vector Helmholtz wave equations.

The uniqueness and convergence property of the quadratic spline collocation
interpolant for a second-order partial differential equation will be discussed in 3.2
when the specific basis functions are selected. QSC method is verified based on the

proof of the uniqueness and the convergence property [3].

15
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3.1.2 Promising Advantage of Piecewise Quadratic Spline

Interpolant

The eigen-function expansion usually adopts a complete set of functions that
represent the global property of the computation window. The number of the
orthogonal and complete basis functions for the eigen-funciton expansion is usually
infinite and a probable truncation of the basis functions will be crucial in deciding the
accuracy of the expansion. Usually the first dozens of basis functions will be reserved
to approximate the exact solution to have a good representation the global property. If
the exact solution is generally evenly and smoothly distributed throughout the entire
computation domain, only a few terms of the global eigen-basis functions will be
needed to gain a good result [2]. However, if the exact solution has tremendous
changes or is generally centralized in a tiny region like the strongly guide waveguides
we will discuss later, the global eigen-basis expansion will have to include as many
basis functions as possible to well represent the exact solution, and thus dramatically
lose its efficiency in simulation.

Piecewise quadractic spline basis functions or other piecewise spline basis
functions, on the other hand, may have advantage in simulating the cases when the
exact solution shows significant localized property. And in this sense, the piecewise
spline basis functions will be more general for solving all of the problems under the
assumption of its validity. To make this point much clearer, we can imagine the
extreme case of piecewise localized basis functions — the set of localized delta

16
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functions when the grid size becomes infinite small. Every point of the computation

window can be represented exactly by the weights of the local delta function.

3.2 QSC Method for A Single PDE in 2D Space
3.2.1 Problem Description

We first consider quadratic spline collocation (QSC) method for solving a single
linear second order partial differential equations (PDEs) in a two-dimensional

rectangular region, which can be expressed as

Lu = au,, +bu,, +cu, +du, +eu, + fu=g

in Q= () (c,,d,) 3D

subject to mixed boundary condtions

Bu = au + Bu, = 7 on I = boundary of {2 (3.2)

where w,a,b, ¢ d,e f,g 0 3,+v are functions of z and vy, wu, denotes the

7

normal derivative of u. u, and wu, denote the second-order derivative of u with

respect to = and y respectively, and the subscripts of u,

»> U, and u, hold

similar derivative meaning. §2 is the inner rectangular region, and O is the
boundary. L is the linear second order operator and B is the boundary operator

respectively.

3.2.2 QSC Mesh and Collocation Points

The first step of quadratic spline collocation method is the mesh generation and

17
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the selection of collocation points. In our problem (3.1) and (3.2), define
Q=QUaN=a,,b]x]c,d,] (3.3)
as the total problem region and let

Azz{a1:$0<xl<'“<$1‘1:br} (34)

Ay ={c, <y, <y < <yy=4d} (3.5)
Yy

be uniform partitions of the intervals [ax,bx], [cy,dy] with mesh size h, , A

respectively. Then we can define the induced grid partition of Q as
A=A, xA, (3.6)
We denote the midpoints of A, and A, by 7/(i=1..,M) and
7¢(j =1,...,N) respectively. For convenience, we extend the notation to boundary
points as T, =x,, Ty, =Ty, T, =Y,, and 7%, =yy . Thus, the set of
collocation points of € can be defined as
Ts{(rf,rf),z’=0,...,M+1,j=0,...,N+1} (.7)

To illustrate the induced grid partition and the collocation points, an example of

5x4 grid is displayed in Figure 3.1.
3.2.3 One-dimensional Basis Functions

The second step is to formulate the localized quadratic basis functions, which will

be used to form the quadratic spline interpolant of the true solution of our problem.

18
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Yy = T4
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Y,
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(3,73)
%
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Yo =Ty

Figure 3.1. The collocation points for M =4, N = 3.
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Figure 3.2. An example of general one-dimensional quadratic spline basis functions
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Throughout, we denote by P, , P, the one-dimensional space of piecewise

quadratic polynomials with respect to partitions A, , A, respectively, by

o0, =B 5 NCY([a,,0,]), 8,4, =PB,4 NC([c,,d,]) the one-dimensional space of
piecewise quadratic polynomials with continuous first-order derivative in A , A,
respectively, by P,, =P,, xP,, the two-dimensional space of piecewise

biquadratic polynomials with respect to partiion A of Q , and by

Sya =Sy, X5, the two-dimensional space of piecewise biquadratic polynomials

in © with continuous first-order derivative with respectto = and y.

The one-dimensional basis functions for 5,, can be chosen as [3]

¢i(x)z§w[$;“’ —i+2] i=0,..,M+1 (3.8)

4

where the quadratic spline function % is defined by

[0 >3 or <0

z? 0<z<1

= ) 3.9
Y= 60 1<z<2 3-9)

L9—6x+ac2 2<z<3
An example of one-dimensional basis functions for M =4, a, =0, h, =1 is
shown in Figure 3.2. The basis functions {qﬁj(y)}:)l for 5,,, are constructed in a

similar way.

3.2.4 Two-dimensional Basis Functions and Interpolant

The two-dimensional bi-quadratic basis functions for 5,, are constructed by
forming the tensor product of the two set of one-dimensional basis functions

20
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{p.@L" and {30} B

Then based on the two-dimensional basis functions, we can construct the

bi-quadratic spline interpolant, which will be represented as

M+1N+1

S=>">0,6(z)%,y) (3.10)

=0 j=0

where S €S5,, is the interpolant with continuous first-order derivative, 6, is the

unknown coefficient for bi-quadratic basis function ¢,(z)¢,(v).

3.2.5 Collocation Method

In quadratic spline collocation method, the way of determining the unknown

coefficients 6, is the collocation method, which requires the interpolant S to

exactly match the true solution of the partial differential equation w at the

rory

;,77), namely,

collocation points (7.
S(ri, ) = (], 7! 0<i<M+1, 0<3j<N+1. (3.11)
The biquadratic spline collocation interpolant S, which is defined by (3.10) and

satisfies (3.11), exists and is uniquely defined [3]. If u € C*(Q), the interpolation

error e(z,y) = S(z,y) — u(z,y) satisfies [3]
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where h = max(

lell. = O(h*)
|D.el,, = O(*)
[Dyel., = 0?)
[D.e], = o)
|Dell,, = O(h)
I, = o)

McMaster - Electrical Engineering

(3.12)

), D, means the first-order derivative with respect to axis 7,

and D, means the second-order derivative with respectto ¢ and j.

3.2.6 Dirichlet and Neumann Boundary Conditions

Since usually only guided modes are studied and the simple zero boundary

condition and perfect metal boundary condition are effective for solving the guided

modes, we will first concentrate on QSC method for partial differential equation with

Dirichlet boundary condition

or Neumann boundary condition

u=0 on 99

u, =0 on IO

(3.13)

(3.14)

The perfect metal boundary condition is also applicable for the perfect matched layer

absorbing boundary condition, which will be discussed in Chapter 6.
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Figure 3.3. An example of one-dimensional basis functions with Dirichlet boundary condition

For the Dirichlet boundary condition, we introduce a special set of basis functions

o (z) = ¢,(z) — ¢y (2)
¢¢D($) =¢,(z),1=2,...,.M -1

(3.15)
¢1€1(7") = ¢y (z) — ¢M+1(37)

which satisfies (3.13) directly. An example of one-dimensional basis functions with

Dirichlet boundary condition for M =4, a, =0, h, =1 isshown in Figure 3.3.

For the Neumann boundary condition, similarly, we introduce

23
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¢1N(x) = ¢1(x) + ¢0(‘75)
¢ (z) = ¢,(2),i=2,....M —1 (3.16)

Su (2) = 4 (2) + P (2)
which satisfies (3.14) directly.
With Dirichlet boundary condition or Neumann boundary condition
pre-configured, the collocation relation (3.11) can be simplified into

S(r, ) =w(r],7!) 1<i<M, 1<j<N. (3.17)

irly

3.2.7 In Matrix Form

With the basis functions (3.15) or (3.16), and the simplified collocation relation

(3.17), we can build the algebraic equations to solve for the coefficients 6, in (3.10).

For a general partial differential equation with Dirichlet boundary condition, by
using the Dirichlet basis functions (3.15), we can obtain from (3.17) the following

Dirichlet discrete equations

L(ii%ﬂD(x)#)(,V)):g 1<i<M,1£jSN=>

i=1 j=1

1 2 2 1 4
-1V | —TY |® =—TY ™ (9 —T¢
{a(3h2 DZJ (6 D,6)+ [3hx D,O) (3]’1 Do]+6(6 Dﬁ) [3h2 D,~ j (318)

N 1 M 2 N 1 N o __ =
( J TD6 gTD,6)®[3h TDoJ"'f( )®(ETD,6]}g =8

Where ® represents the tensor product of two matrices, T, ,, Ty, Tpy, Tp ,,
T),, and T, are tridiagonal matrices. The superscripts M and N denote the

order of the matrices. The matrices T,  , and T _, are the second-order derivative
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matrices for Dirichlet boundary condition, and are defined in terms of the generic

matrix T, ,

(3.19)

Similarly, the matrices Tg{o and Tg o are the first-order derivative matrices from

the generic matrix T,

-1 0

1

-1

0
-1

1
-1

(3.20)

and the matrices T, and T{,\f ¢ are the zero-order matrices from the generic matrix

TD,c

(3.21)

In the same way, for a general partial differential equation with Neumann

boundary condition, by using the Neumann basis functions (3.16), we can obtain from

(3.17) the Neumann discrete equations
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L[ii%¢f()f)¢}v(y)]=g 1<i<M, 1< j<N=

i=1 j=1

{a[izw.z)@a(lfrm}b[im)«@[iTﬁoJ o[ )@( T]
7l A A E TRl e E TR ) 322
TM lTM J@ 2y +f(l )®( Ty )}9
N.0 6 N6 3h N0 N6 6 N.,6

y

:>KNN

The similar generic matrices are the second-order derivative matrix Ty, _,

-1 1
1 =21
Ty, = oo (3.23)
1 -2 1
1 1
the first-order derivative matrix Ty,
-1 1
-1 0 1
Ty, = B (3:24)
-1 0 1
-1 1
and the zero order matrix Ty ¢
7 1
1 61
Tye=| =~ = = (3.25)
1 6 1
17
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Figure 3.4. The sparse bi-qudratic matrix K for M=8, N=6, the maximum number of non-zero
element is 352.

For a general PDE subject to Dirichlet boundary condition on one direction and
subject to Neumann boundary condition on the other direction, we just choose the
right basis functions in the directions and choose the right generic matrices
accordingly. For instance, if » is subject to Dirichlet and Neumann boundary

conditionin z .and y respectively, the discrete equations will be expressed as
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Note that the single PDE matrix K,,, K,, and K,, are MN x MN square
diagonal matrices with at most 9 non-zero elements per row. Usually MN are much
larger than 9 so that K,,, K,, and K,, are very sparse matrices. Figure 3.4

shows the K matrix for M=8 and N=6.

3.3 QSC Method for A System of Two PDEs

We consider a system of two linear second-order PDEs in the same

two-dimensional region as in (3.1)

L
L

L
L

U 9

9,

11 12

(3.27)

vl =
21 22

where, for i =1,2 and j=12, Lyu=au, +bu, +cu, +du, +eu, + fu,

g T 1y TY oYy yor ]

A5y bij » Cijy

d;,e; f;> 9, are given functions of z and y, v and v are the unknown
functions of z and y, uw and v are subject to either Dirichlet or Neumann
boundary condition, and the induced grid partition is the same as before. The

quadratic spline basis functions are built according to the boundary conditions and the

bi-quadratic interpolants are used to approximate the true solutions as in (3.10)

MoN pu
S, =>5"0:6""" ()5, " " () (3.28)
=1 j=1
L& v Do N v Dor N
S, =35"0:0"""(2)$,”" " () (3.29)

=1 j=1
After the interpolants are chosen, the collocation relations
$,(r1,8) = u(r},7!)

r Y\ _ T _y
S, (7 ,TY) = (T \ T

(3.30)
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are applied into the original set of PDEs (3.27) to form the algebraic equations

9
9

gu

Ky Ky
Ky Ky

— 3.31
7o (331)

as in (3.26), where K, ,K,,,K, ,K,, are the MN x MN known sparse matrices as

K,,, K,y and K,, in the single PDE problem with at most 9 non-zero elements

perrow,and 6" and 6° are the unknown coefficients MNx1 vectors.
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Chapter 4. QSC Scalar Mode Solver

In this chapter, QSC scalar mode solver is developed in MATLAB to solve the
traditional weakly-guiding planar waveguides, and numerical examples of rib

waveguides are calculated and compared with known results in the literature.

4.1 The Governing Equation and Boundary Condition

The governing partial differential equation for the QSC scalar mode solver is the
scalar wave equation (2.37), and we can further express it as an eigen-system as
P + &, + (2,90 = BP9 @.1)
where ¢, and ¢, are the second order derivative with respect to z and y
respectively, k, is a given constant, n(z,y) is a known refractive index profile
throughout the problem region, and 3 is the propagation constant along z and the
unknown eigen-values of the eigen- system. ¢ represents £, or H,, which is
continuous throughout the solution region € and has continuous first-order
derivative d¢/0x and J¢ /0y.
The zero boundary condition is applied at the computation window boundary
JQ with the assumption that the computation window is sufficiently large and the
field at the boundary is very close to zero. Note that, to calculate the leaky modes and
radiation modes, other specific boundary conditions should be applied, such as

perfectly matched layer absorbing boundary condition, which will be discussed in the
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future work in Chapter 6. Since we only discuss guided mode solution in this chapter,
we will use zero boundary condition.

With the boundary condition selected, the basis functions, according to Chapter 3,
are chosen to be the Dirichlet basis functions and the true solution ¢ is
approximated by the bi-quadratic interpolant as

M N
¢ = ;;&,&f’ ()9, (y) + O(h") = 87 + O(*) (42)
and the interpolant has the collocation relation with the true solution
(7,7 =8(r5, 1Y) 1<i<M1<j<N (4.3)

By applying (4.2) and (4.3) into (4.1), we obtain the algebraic equations at the

collocation points and in matrix form, as in (3.18), it is

s Jolam bt ol s Joon(Bmt ol ) 2
3 6 — 6 3hy2 ’ 6 6

-r(Ls oL o

where N isa MN x MN refractive index matrix with repeated rows

n(ri,m) (7)o T ) (T T)
n(r, ) (7)) e Ty Ths) (T T)
N = 4.5)
n(ri, ) () e n(rThL) n(rhTh)
n(rp, ) n(r,Ty) e Ty Ty

and 0 isthe MN x1 unknown coefficients vector or the eigen-vector
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911
012
6 = (4.6)
9M(N-1)
gMN
Tg’_z R T{)V{O , TI%, Tl],\f a5 T{,‘{ o> and Tf,v, ¢ are known tridiagonal matrices as defined
in Chapter 3.

Thus, the QSC scalar mode solution with zero boundary condition becomes the

eigen-system solution

A9 = 3°BO (4.7)

4.2 The Simple MATLAB Program

The embedded sparse matrix functions and the great graphic display functions of
MATLAB enable us a very simple, fast and effective QSC scalar mode solver for the
traditional weakly-guiding planar waveguide. In this section, we will go through the
MATLAB program of QSC scalar mode solver. An example of QSC scalar mode
solver in MATLAB can be found in Appendix A. The MATLAB program can be

easily transformed into other programming languages.

4.2.1 Inputs

The necessary inputs for solving (4.7) in MATLAB include the grid sizes h, and
h,, the problem domain size M and N, the refractive index profile N, the wave

length X, and the necessary constants, including the vacuum permittivity ¢,, and the
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vacuum permeability .

4.2.2 Formulation

With the inputs M and N, the tridiagonal Dirichlet matrices T _,, Ty,
T, Ty ,, Tp,,and T are built. Since for practical problems, M and N are

usually in the order of hundred, it will greatly save computer memory to store the very

sparse Dirichlet matrices in Sparse Matrix Form by the MATLAB  built-in function

sparse () in the beginning.

function [varargout] = sparse(varargin)
%  SPARSE Create sparse matrix.
% S = SPARSE(X) converts a sparse or full matrix to sparse form by
%  squeezing out any zero elements.

The tensor product of the sparse Dirichlet matrices can be formed by handily

using the kron () function.

.
function K = kron(A,B)
%  KRON Kronecker tensor product.

%  KRON(X,Y) is the Kronecker tensor product of X and Y.
%  The result is a large matrix formed by taking all possible
%  products between the elements of X and those of Y.  For
%  example, it X is 2 by 3, then KRON(X,Y) is

%

% [X(LD*Y X(1.2)*Y X(1,3)*Y
% X2, 1*Y  X(2,2)*Y X(2.3)*Y]
0/

/0
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%  Ifeither X or'Y is sparse, only nonzero elements are multiplied
%  in the computation, and the result is sparse.

%  Previous versions by Paul Fackler, North Carolina State,
%  and Jordan Rosenthal, Georgia Tech.

%  Copyright 1984-2004 The MathWorks, Inc.

%  $Revision: 5.17.4.1 § $Date: 2004/01/24 09:22:29 §

When forming the A matrix in (4.7), we will have a major matrix multiplication
of the refractive index profile N by (1;*{6) ® (T{{ 6) . If no optimization is made here,
it will exhaust the computer resource quickly when M and N increase, since both
of the matrices are MN x MN matrices. Directly use of the matrix multiplication
for this step should be avoided. A simple and fast matrix multiplication is developed
based on the fact that N has repeated rows and (Tng@(Tg) 6) is extremely sparse
matrix.

The idea is to only multiply the non-zero elements in (TKJ@(T[’;’, 6) with the
correct refractive index element in N. The embedded function in MATLAB of
finding the non-zero element in (TKJ@(TK 6) is find (). Then for each non-zero

element, based on its row number m(i), we use

7, = Int[m(3)/ N]+1

. . (4.8)
Tg =m() — (1] = 1)N

where Int means to get the integer of, 77 and 7] are the corresponding

collocation point where the refractive index should be chosen. The MATLAB code

block for doing this multiplication is
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u = kron(TOxs_
[M. N] = find(u);
lengthM = length(M);
for i= l:lengthM
ypos = mod(M(i),je):
if (ypos ==0)
ypos = je;
xpos = M(i)/je;
else
xpos = (M(i)-ypos)/jetl;
end
u(M(1),N(i)) = cRI(xpos,ypos)*u(M(@i).N(i)):
end

4 1 I 4
The left side matrices (—Tg_J@(—TgJ, (—TKG)(X{—TZ{_ZJ, and
30 6 6 3

kSN (%TKJ@(% b v 6) then can be added up to form A in eigen-system (4.7), and

the right side matrix (%Tgs)@)(%TgJ is B in (4.7).

4.2.3 Eigen-System Solution

To solve the eigen-system (4.7), MABLAB offers the eigs() function, which uses

ARPACK [7]

function varargout = eigs(varargin)

% EIGS Find a few eigenvalues and eigenvectors of a matrix using ARPACK.
% D =EIGS(A) returns a vector of A's 6 largest magnitude eigenvalues.

% A must be square and should be large and sparse.

%
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%  [V,D] = EIGS(A) returns a diagonal matrix D of A's 6 largest magnitude
%  eigenvalues and a matrix V whose columns are the corresponding eigenvectors.

%  [V.D,FLAG] = EIGS(A) also returns a convergence flag. If FLAGis 0
%  then all the eigenvalues converged; otherwise not all converged.

%  EIGS(A.B) solves the generalized eigenvalue problem A*V == B*V*D. B
must

%  be symmetric (or Hermitian) positive definite and the same size as A.

%  EIGS(A,[l....) indicates the standard eigenvalue problem A*V == V*D,

4.2.4 Outputs

To show the mode profile, contour (), peolor (), etc. in MATLAB provide very
good graphic display. Throughout our numerical method, the 5% contour is widely

used.

function [cout, hand] = contour(varargin)

%CONTOUR Contour plot.

%  CONTOUR(Z) is a contour plot of matrix Z treating the values in Z
% as heights above a plane. A contour plot are the level curves

%  of Z for some values V. The values V are chosen automatically.
%  CONTOUR(X,Y,Z) X and Y specify the (x,y) coordinates of the

%  surface as for SURF.

%  CONTOUR(Z.N) and CONTOUR(X,Y,Z,N) draw N contour lines,
%  overriding the automatic value.

4.3 Numerical Results and Discussion

To validate our QSC scalar mode solver, we calculate several typical weakly-
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guiding planar dielectric waveguide which have various numerical results in the
literature. Our results are compared to the known results in the literature.

We consider the three rib waveguides BT1, BT2, and BT3, which was analyzed
by a finite difference scalar mode solver with zero boundary condition [1]. The typical
semiconductor rib waveguide structure within the computation window for BT1, BT2,
and BT3 is shown in Figure 4.1. The optical and geometrical parameters for the
numerical computation shown in Figure 4.1 are listed in Table 4.1. The operating
wavelength is 1.55 um . Note that, for a practical rib waveguide, the width of the
substrate Xs, the thickness of the substrate Y, and the thickness of the cladding Y¢
are much larger than the parameters in the table. Also Note that, since Xg, Ys, and Y¢
can be chosen as needed under the assumption that the computation window is
sufficient large to have nearly zero field values at the boundary, our values in Table
4.1 are slightly different from the original ones in [1].

The fundamental symmetric scalar modes are calculated in the QSC scalar mode

solver. The modal indices, as well as the grid sizes A, and h , are listed and

compared with [1] in Table 4.2. The 5% percent contour of the fundamental

37



Master Thesis - B. Xu McMaster - Electrical Engineering

h
Y
Yc I
‘____\V___> x
A z
Cladding
n
B C Xs R H Xs .
y
Guiding region
Ng D
Substrate Ys
Ng
y

Figure 4.1. Typical semiconductor rib waveguide structures.

scalar mode profiles as well as the computation time' of our QSC scalar mode solver,
which mainly consists of the time for the MATLAB eigs solver is recorded and listed
in 4.3. The complete scalar mode solver in MATLAB for BT1 is listed in Appendix A.

As shown in Table 4.2 and Table 4.3, the QSC scalar mode solver can quickly
calculate the fundamental scalar mode for rib waveguides BT2 and BT3 and gain a
good match of the modal indices with the results from [1]. The modal index of BT1 is
not matched so well. Due to the lack of a third party scalar mode solver, it is hard to
tell whether QSC scalar solution is less accurate, or BT1 may be not a good example

of scalar approximation.

i Computer: Intel Pentium 4 CPU 3.6GHz, 1.00GB of RAM; MATLAB: 7.0.4

38



Master Thesis - B. Xu

McMaster - Electrical Engineering

My ng N W H D Xs Ys Yc

(pm) | (um) | (um) | (pm) | (pm) | (um)

BTl |[344 [334 |10 2 1.1 02 |3.00 [500 [0.50
BT2 |3.44 [336 |1.0 3 0.1 09 [3.00 |500 [0.50
BT3 (344 [3435 |10 |4 25 |35 |400 [750 |050

QSC n,,
BT1 3.3815478
BT2 3.3953972
BT3 3.4366916

QSC h,, h,

wm

0.1000, 0.05

0.0938, 0.05

0.1000, 0.10

scalar mode solver in [1], with nearly identical grid sizes and parameters.
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Table 4.1. The semiconductor rib waveguide structures BT1, BT2, and BT3 from [1]

Table 4.2. Comparison of modal indices between QSC scalar mode solver and finite difference
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5% Contour of the Fundamental Scalar Mode Time
Fundamotal Soatar My B BT Refe3 B2
BT1 i s 20.7
7k second
V3
il
ki
&
&
3 % % % & 5
BT2 2 ¢ rwxsamomxw Sestse Mo W2, el H5E 3 9 1 9
TR
second
8
- 3
il
M
i g % W % >
BT3 Frntarsntal Sosi Mods ff BT, NeSe 3 432 77.5
7
second
i
8 2:) é & 2 41 ?‘} &® 2‘9 93

Table 4.3. Fundamental Scalar Mode 5% Contour and Computation Time for BT1, BT2, and

BT3
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Chapter 5. QSC  Full-vectorial Mode

Solver

The scalar mode solution in Chapter 4 doesn’t tell us anything about the
difference between polarized modes, which are very important in some optical
devices. And the scalar mode solver is not applicable for strongly-guiding waveguides
and its use is limited. A full-vectorial mode solver, theoretically, will solve any
problem since the governing equations are exactly derived from Maxwell’s equation.
In this chapter, a full-vectorial mode solver based on QSC method is developed for

arbitrary two-dimensional dielectric waveguides.

5.1 Governing Equations and Boundary Conditions

5.1.1 Choice of Governing Equations

Unlike the scalar mode solver, which has the same equation for electric field E,
and magnetic field H_, the full-vectorial mode solutions have two sets of equations,
the transverse electric field equations (2.23) and (2.24), and the transverse magnetic
field equations (2.31) and (2.32).

From our discussion in Chapter 2, we know that the electric field and magnetic
field should meet interface conditions at the dielectric interfaces. In practical cases,

usually the permittivity is piecewise throughout the problem region and has sudden
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changes at the interfaces. The sudden changes of the permittivity will result in the
discontinuity of electric field. This discontinuity will greatly harm the accuracy of the
bi-qudratic spline interpolant, since the QSC interpolant itself is continuous
throughout the problem region. Thus, the electric field equations should be used
carefully if the discontinuity plays a great role in the waveguide.

On the other hand, in most practical cases, the permeability behaves well and is
constant throughout the waveguide cross-section, which means the magnetic field is
continuous throughout and the bi-quadratic interpolant will be a good approximation.

Therefore, intuitively, it seems more reasonable to choose the magnetic equations
as our governing equations for the QSC full-vectorial mode solver. However, since the
equations for the electric fields must be the adjoint of the equations of the magnetic
field, the QSC eigen-solution should be the same for both the transverse electric field
equations and the transverse magnetic field equations [2, 14].

In this thesis, the transverse magnetic field equations are chosen as the governing
equations for our QSC full-vectorial mode solution. The solution based the transervse

electric field equations can be constructed in a similar way.

5.1.2 Governing Equations and Boundary Condition

Our governing equations for QSC full-vectorial mode solver are selected as the

magnetic vector wave equations (2.31) and (2.32), which can be rewritten as
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(H,).. +(H,),, +Inn™(@,y)L(H,), +n’(@yk’(H,)
—nn(z,y)L(H,), = 5°(H,)
(H,),, +(H,),, —[Inn"(z,y)],(H,), + n’(zy)k,’(H,)
Hinn™(z,y)],(H,), = B*(H,)

(5.1)

(5.2)

where (H,), means the second-order derivative of H, with respect to z and so
forth, (H,),, means the second-order derivative of H, with respect to z and so
forth, k, is a given constant, n(z,y) is the known refractive index profile
throughout the problem region, [Inn~(z,y)], and [Inn~*(z,y)], are the first-order
derivative of n(z,y) with respect to z and y respectively, and [ is the
propagation constant along 2z and the unknown eigen-values of the eigen- system.
The selection of boundary condition for our full-vectorial mode solver can be
zero boundary condition or perfect metal boundary condition. We choose the perfect

metal boundary condition, which gives us the choice of mixed boundary basis

functions.

From the discussion in Chapter 2, for perfect metal boundary condition, H, has
Neumann boundary along =z direction and has Dirichlet boundary along y
direction, while H_, has Dirichlet boundary along z direction and Neumann

boundary along y direction. Thus, we approximate H,6 by the following

bi-quadratic interpolant

H,=>"3"08"(2)8"(y)+ O(h*) = §™ + O(h*) (5.3)

i=1 j=1

and approximate H_ by the following bi-quadratic interpolant
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H, = 33072 @) (4) + O0w") = 5™ + O(h") (54

=1 j=1
The interpolant S " has the collocation relation with the true solution H , as
H(r,m)=S8 (Tf,T]y 1<i<M1<j<N (5.5)
And the interpolant S™ has the similar collocation relation with H_ as

H, (5, 7)) =8"%(r5,77) 1<i<M1<j<N (.6)

R

5.1.3 QSC Matrix Form

By applying (5.3), (5.4), (5.5), and (5.6) into the original magnetic wave equations

(5.1) and (5.2) , we obtain the algebraic equations at the collocation points

Y% +X 8% =Bo™ +08™ (5.7)
Y,0% +X,0"% =00" +B,o"™
9 9 = N (5.8)
where
4 1 1 4
%= [3h2 T Z] ® [ETII’V’S] * (ET]AV{“] ® 3h? 2

+Nf[ 2 T,(‘,”O] [%Tgﬁ]Jrko’zN[%T;{G]@(%Tgﬁ]

3h,
(5.9)
.(1 2
X, =|-N (6 Db] gh—yTgo
2 M 1 N
& *ﬁ[ ) ol525)
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4 1 4
X, =t o )+ (2o | o
_Ny _2_T1\[ ®[1TN ]“"kzN( T}ll] [lTNJ
3h, Do g NS D6 g Ve
(5.10)
1 2
Y2 = Ny[ngyb]@) %TII)V,O
1
B —ﬁz[ Tgls] [ETJ{IVG]
and N has the same form as in (4.5)
n(ry, 1) (1,7 e Ty The) (TaTy)
n(ry,my) (1, TE) e Ty ThL) (T T
n(1y,my) n(1y,78) e T Tho) n(Ty,Tx)
n(ry,7y) n(1i,7y) o n(ThTho) (T Tx)

N° and NY are the MN x MN first-order derivative matrices of Inn~*(z,y)

with respectto z and y respectively, and have the following forms

[ln n(ri, 7! )L [ln n> (1,7 )L [ln W Ths Ty )]z [ln (T, T )]m
[ln n2(ry, 7! )L [ln n (5,7} )L . [ln (T, T}J\Ll)]m [ln Ty T )L
N°® = (5.12)
[ln n (e T )L [ln (T )L [ln (T T 4 )L [ln (T T )L
{ln n(ri, ! )L [ln n(rf, 7! )L v [In n(Tyy, 7'}(,_1)]1 [ln n(Ty Ty )]Z
[ln n (7! )L [ln n (i, T )] [ln (T3, T}’i,_l)]y [ln Ty T )] 1
[ln n2(rs, T )]y [ln n(re, T )] [ln n(Ty, T}(,,l)]y [ln (T, T+ )]
NY = (5.13)
[ln n 2 (r{, 7l ] [ (T )] . [Inn(ry, T'I”\,;l)]y [Inn(ry, 75 )]y
[ln n(ry, 7! )]y [ln n (s, 7 )L .. [Inn(ry, T?\,Al)]y [Inn(ry,, T?V)]y

We further integrate (5.7) and (5.8) into a single matrix equation
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A = 3°BO (5.14)
where
Y, X,
A= 5.1
Y, X, (5.15)
B, 0
B= 5.16
0 B, (5.16)
g%
g = - (5.17)

The final matrix form (5.14) for our QSC full-vectorial mode solver is again very

sparse.

5.2 The Simple MATLAB Program

Similar to our scalar mode solver, the embedded sparse matrix functions and the
great graphic display functions of MATLAB enable us to develop a simple but
effective QSC vector mode solver. In this section, we will go through the MATLAB
program of QSC vector mode solver based on the governing matrix equation (5.14).
An example of QSC full-vectorial mode solver in MATLAB for calculating the
fundamental Quasi-TM mode and Quasi-TE mode of slot waveguide can be found in

Appendix B.

5.2.1 Inputs

The necessary inputs for solving (5.14) in MATLAB includes the grid sizes A,

and kb, , the problem domain size¢ M and N, the refractive index profile N, the
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wave length A, and the necessary constants, including the vacuum permittivity ¢,

and the vacuum permeability g, .

5.2.2 Formulation

Step 1: Forming the one-dimensional basis matrices

With the inputs M and N, the necessary tridiagonal Dirichlet matrices and
Neumann matrices in (5.9) and (5.10) are built. Like the scalar mode solver, we store
the very sparse Dirichlet matrices in sparse matrix form by the MATLLAB function
sparse () in the beginning.

Step 2: Forming the two-dimensional matrices

The tensor product of the sparse Dirichlet and Neumann matrices can be formed
by handily using the kron () function as in our scalar mode solver.

Step 3: Forming the coefficients matrices N° and N’

These two matrices are very important for our success of vector mode solver,
since they are the coefficients matrices for the coupling terms. One simple and
effective wave of forming N* is the central difference scheme correct to second
order of h,

[Inn@ 7)) =[nn (72, m0) —Inn (77, 7)) /2h, + O(h?)  (5.18)
or correct to fourth order of A,

[ (rf, 7)), = [~Inn (7], 7)) + Blun (75, 7}

| (5.19)
~8Inn (7, 70) + Inn(r,, 7] /12h, + O (h,*)

Similarly, we can build N?,
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Step 4: Multiplication of coefficients matrices and two-dimensional matrices

When forming the A matrix in (5.14), we will have several matrix multiplication,
including N (Ty,)®(To,) . N(T¥)®(Ty,) ., N(Th)®(Td,) .
NY (T3, ® (T]’v‘fﬁ), N (Tgﬁ) ® (Tf\}"ﬁ), NY (Tﬁ{s) ® (T},). If no optimization is made
here, it will exhaust the computer resource quickly when M and N increase, since
both of the matrices are MN x MN matrices. Directly use of the matrix

multiplication for this step should be avoided. A simple and fast matrix multiplication

is developed based on the fact that N has repeated rows and (TKJ@(T};" 6) is
extremely sparse matrix. We use the same coding technique as in the scalar mode
solver.

Step 5: Forming the final eigen-system

4 1 ] 4

The left side matrices [——Tg‘_J@(— gs) , (~T346)®(—2 T,’)V_2] , and
3 6 6 30

kozN(—é Tg{s)®(éTg 6) then can be added up to form A in eigen-system (4.7), and

the right side matrix (%TKJ@(%T&) is B in (4.7).

5.2.3 Eigen-System Solution
The MATLAB ¢igs ( ) can still be used for the full-vectorial QSC mode solver.

5.2.4 Calculate E Field from H Field

The governing equations for calculating the transverse electric fields from the

48



Master Thesis - B. Xu McMaster - Electrical Engineering

transverse magnetic field are (2.34) ~ (2.35). The central difference scheme as in

forming the N® and N* is again applied.

5.2.5 Outputs

The same as the scalar mode solver, the mode profile can be shown by contour ()

in MATLAB.

5.3 Numerical Results and Discussion

To validate the two-dimensional QSC full-vectorial mode solver, we calculate
two typical examples and compare the QSC results to a commercial mode solver
LUMERICAL?. The first example is the conventional ridge waveguide, which is
weakly guided in the high index core region. The second example is the slot

waveguide, which is strongly guided in the low index air region.

5.3.1 Ridge Waveguide

The structure of a typical ridge dielectric waveguide is shown in Figure 5.1.
Compared with the rib waveguide structure of Figure 4.1, the ridge waveguide has
one more layer as the core region with a higher refractive index 7, . The optical and
geometrical parameters defined in Figure 5.1 for the simulation is listed in Table 5.1.

The numerical simulation parameters, including the grid sizes and boundary

conditions, were set identical for both the LUMERICAL simulation and the QSC

2 http://www.lumerical.com/mode
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Figure 5.1. Typical structure of ridge waveguides
Ng g oy (L)) W H D Xs Yc Ya Ys
um um nm um um um um
345 | 3.19 1.0 3.19 3.0 0.5 0.1 4.0 0.5 0.2 2.5
Table 5.1. The optical and geometrical parameters of the ridge waveguide
h, h, Wavelength MB First 4 Modes
0.125 pm | 0.025 pm 1.5 um Yes Yes

Table 5.2. The simulation parameters for both LUMERICAL and QSC

simulation. The simulation parameters and condition are listed in Table 5.2.

The simulation results of the ridge waveguide are listed in Table 5.3. The modal

indices and the 5% contour of the first four modes calculated by the QSC

full-vectorial mode solver are displayed with the corresponding simulation results by
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LUMERICAL in Table 5.3 and Table 5.4. The fundamental Quasi-TE mode and the
fundamental Quasi-TM mode are perfectly matched, while the secondary Quasi-TE
mode and the secondary Quasi-TM mode are well matched. The computation time for
calculating the first four modes by our QSC full-vectorial mode solver is
approximately 600 seconds while LUMERICAL mode solver took around 200

seconds to complete the simulation’.

* Computer: Intel Pentium 4 1.5 GHz; 524 MB of RAM
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QSC Full-Vectorial Mode Solution

LUMERICAL Mode Solution

The
Contour of Hy, Neff=3.2397 TE:100% Contour of Hy, Neff=3.2397 TE:100%
fundamental
Quasi-TE
mode
20 40 60 80 20 40 60 80
Contour of Hx, Nef=3.2397 TM:0% Contour of Hx, Neff=3.2397 TM:0%
50 50
20 40 60 80 20 40 60 80
The
Contour of Hy, Nef=3.2276 TE:1% Contour of Hy, Neff=3.2273 TE:1%
fundamental
Quasi-TM
mode

20 40 60 80

Contour of Hx, Neff=3.2276 TM:99%

50

20 40 80

Contour of Hx, Nefi=3.2273 TM:99%

Table 5.3. Fundamental quasi-TE and fundamental quasi-TM modes of ridge waveguide
calculated by both QSC full-vectorial mode solver and LUMERICAL Mode Solution.
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QSC Full-Vectorial Mode Solution LUMERICAL Mode Solution
The
Contour of Hy, Neff=3.2215 TE:93% Contour of Hy, Neff=3.222 TE:99%
secondary
Quasi-TE
mode
50 50
10 20 30 40 50 B0 70 80 10 20 30 40 & 6 70 80
Contour of Hx, Neff=3.2215 TM:1% Contour of Hx, Nef=3.222 TM:1%
50 50
10 20 30 40 50 B0 70 &0 10 20 30 40 & & 70 &
The
Contour of Hy, Neff=3.2082 TE:4% Contour of Hy, Nef=3.2082 TE:2%
secondary
Quasi-TM
mode %
50 50
0 20 30 40 & 60 70 80 10 20 30 40 & 6 70 80
Contour of Hx, Neff=3.2082 TM:96% Contour of Hx, Neff=3.2082 TM:98%
50 50
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 €0

Table 5.4. Secondary quasi-TE and secondary quasi-TM modes of ridge waveguide calculated
by both QSC full-vectorial mode solver and LUMERICAL Mode Solution.

5.3.2 Slot Waveguide

Unlike the conventional optical waveguide, the slot waveguide, proposed and

experimentally proven in [8], can confine the electric field of the fundamental
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Figure 5.2. The computation window of slot waveguide

quasi-TE guided mode in the nanometer-wide low-index region. The cross-section of
the slot waveguide is shown in Figure 5.2. The low index air slot is embedded
between two high index silicon regions, and the whole structure is built in low index
cladding background.

The optical and geometrical parameters for our simulation for QSC full-vectorial
mode solver and LUMERICAL mode solution are identical and listed in Table 5.5,
which are adopted from [8].

The numerical simulation parameters, including the grid size, boundary conditions,
were set identical for both the LUMERICAL simulation and the QSC simulation. The
simulation parametéfs and condition are listed in Table 5.6.

The QSC simulation results for wavelength 1.6 um for the slot waveguide are

listed in Table 5.7 and Table 5.8. The modal indices and the 5% contour of the first
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W, W, W, h he ng Ny ne

0.10 0.22 1.00 0.25 1.00 1.00 348 1.46

wm um um um um

Table 5.5. The optical and geometrical parameters of the slot waveguide

h, h, Wavelength MB First 4 Modes

0.01 um 0.025 pum 1.6 um Yes Yes

Table 5.6. The simulation parameters for both LUMERICAL and QSC

two modes calculated by the QSC full-vectorial mode solver are displayed in Table
5.7, and the corresponding simulation results by LUMERICAL are displayed in Table
5.8.

We can see the QSC and LUMERICAL results are fundamentally matched,
though not perfectly. The electric field of the fundamental Quasi-TE mode is well
confined in the air slot as in the [8]. However, while the result of the LUMERICAL
shows that the electric filed in the slot is almost evenly distributed, the result of the
QSC shows aggregated electric field in the interfaces of silicon and air. And the modal
indices from QSC and LUMERICAL are not so well matched as in the previous ridge

waveguide.

5.3.3. Mesh Average Technique for QSC

To find out the causes of the simulation difference between QSC and
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Ex, Neff=1.7066 Contour of Hy, Neff=1.7066 TE:1%
%0 %0
80 1 80 1
70 70 1
60 B0
50 - . 4 50 i
30 1 30 1
20 1 b 1
10 10 1
&0 w0 2w 20 &0 0 18 0 20
Ey, Neff=1.7066 Contour of Hx, Neff=1.7066 TM:99%
90 %0
80 80 g
70 1 70 1
€0 1 60 1
50 1 50 1
7| 1 40 1
0 1 0 1
2 1 2
10 10 1
N W B, 20 %0 50 0 1 200 250
Contours of Fundamental Quasi-TM mode
Ex, Neff=1.5593 Contour of Hy, Neff=1.5593 TE:93%
% Ch)
=) S S e B A U ] B0
70 el 1 70
gob d 80
50 1 50
40 1 40
W ¢ 0
0 1 2
10 10
& W W W
Ey, Neff=1.5593 Contour of Hx, Nef=1.5593 TM:1%
90 % : -
80 1 &0 1
70 70 1
60 60 1
50 50 1
4 1 4 1
20 1 k1| 1
20 1 2 1
10 10 1
& 00 e 20 280 & 0 10 20 20

Contours of Fundamental Quasi-TE mode

Table 5.7. QSC simulation results of slot waveguide




Master Thesis - B.

McMaster - Electrical Engineering

Hy, Neff=1.7664 Hymax:0.0026342

8 8

88888

§N8&s53883388

=)

90

80

70

40

20

Contour of Hy, Neff=1.7664 TE:1%

Contours of Fundamental Quasi-TM mode

Hy, Nef=1.6214 Hymax:0.0026342

388

888883

=]

5858388

88

50 100 160 200 250

70
B0
50
40

10

Contour of Hy, Nef=1.6214 TE:98%

Contour of Hx, Nefi=1.6214 TM:2%

Contours of Fundamental Quasi-TE mode

Table 5.8. LUMERICAL simulation results of slot waveguide
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QSC index LUMERICAL index-x

‘REETRRRRRRNERARINNRANY

UREIERATRENRONRIRAANGD BZRNUIRARERARARE RGN

LUMERICAL index-y LUMERICAL index-z

4 iRanigaRRARAREINRR:

1aRERRRARAARISRARAE

e R 0 S T O B

i
i
|
a8 &
SERRANIRERARERERANIRAR:

T

Figure 5.3. QSC original mesh and LUMERICAL’s meshes index-x, index-y, index-z

LUMERICAL, and provide possible improvement, we investigated the meshes of
LUMERICAL. In LUMERICAL mode solution, three different meshes are generated
and named as index-X, index-y, and index-z, which are shown in Figure 5.3. We can
see that the meshes used in LUMERICAL algorithms are not the original mesh as the
QSC mesh in Figure 5.3, but are treated to have more smooth interfaces. To test
whether the treated meshes will help reduce the difference between the simulation
results of QSC and LUMERICAL, we apply the three meshes of LUMERICAL to

QSC. The modal indices for the fundamental Quasi-TM and Quasi-TE modes are
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QscC Qsc QscC QsC LUMRICAL
with index-x with index-y with index-z

Effective Index

of fundamental 1.7656 1.7340 1.7670 1.7066 1.7664
Quasi-TM

Effective Index

of fundamental 1.5695 1.6086 1.6142 1.5593 1.6214
Quasi-TM

Table 5.9. Modal indices of difference simulation conditions

listed and compared in Table 5.10. We can see that if we choose the LUMERICAL
meshes, the differences become smaller, and if QSC uses the index-z mesh, the
simulation results of QSC and LUMERICAL becomes close.

A closer look at the mesh and the collocation points of QSC will tell us why the
LUMERICAL average meshes seems better for the simulation of the slot waveguide
for QSC. Since slot waveguide is a strongly guided waveguide and heavily dependent
on the high-index and low-index interfaces, we should create a mesh which should
represent the real structure as close as possible. Though the original QSC mesh in
Figure 5.3 absolutely reflects the refractive indices of the real structure, the interfaces
of the real structure are not so well reflected in the program due to the locations of
collocation points. Figure 5.4 shows why the collocation points in the original QSC
mesh cannot well reflect the interface: there is a large undefined shadow area between
the two collocation points and the simulation interface can be placed anywhere in the
undefined area.

On the other hand, the LUMERICAL meshes sacrifice the absolute reflection of
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1.00

collocation point

real interface

Figure 5.4. Collocation points in the original QSC mesh cannot well reflect the real interface

the refractive indices to better reflect the position of the interfaces by introducing
average meshes index-x, index-y, index-z.

To address this problem and make the QSC full-vectorial mode solver more
capable of simulating strongly guided waveguide, a simple scheme of mesh average
technique is introduced. The idea is to set the refractive index at the collocation points

the average of the surrounding four points half of the grid size away

! 1 y y , ;
Rlauera_qe(z’j) S Z[}Z‘I(2 + 0‘5h’:1:’]) + RI(Z s O'5hz’]) (5 20)

+RI(3,j + 0.5h,) + RI(i,j — 0.5h,)]
If the refractive indices in the surrounding area are not defined, a further simple

average scheme can be applied as

RI(i +0.5h,,j) = [RI(i £1,5) + RI(i, )]/ 2

5.21
RI(3,j £ 0.5h) = [RI(i,5 £ 1)+ RI(i, 5)] /2 o

and (5.20) in this case can be rewritten as
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Figure 5.5. Effective index curve of slot waveguide

RI (4,J))=[4-RI(Gj)+ RIGE—1,j)+ RI(i+1,j)

average (522)
+RI(i,j—1)+ RI(i,j+1)]/8

The effective index curve of slot waveguide by QSC full-vectorial mode solver
with average mesh technique is plotted in comparison with the experimental and
simulated results of [8]. The optical, geometrical, and simulation parameters are the

same as before. The QSC curves shows great match to the curves adapted from [8].
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Chapter 6. Conclusion and Future Work

6.1 Thesis Summary

In this thesis, we apply quadratic spline collocation method to the mode solution
of longitudinally invariant dielectric waveguide, which are the important fundamental
building blocks for the complicated optical devices and integrated optoelectronic
circuits.

Starting from the fundamental electromagnetic theory for the waveguide theory
and the basic numerical ideas of quadratic spline collocation, we build both scalar
mode solver and full-vectorial mode solver with Dirichlet or Neumann boundary
conditions as simple MATLAB programs. Particular attention has been concentrated
on the full-vectorial mode solver, since the scalar mode solver has limited use for
weakly guided waveguides while the full-vectorial QSC mode solver is supposed to
solve any kinds of waveguides.

The quadratic spline collocation method utilizes a set of localized quadratic basis
functions to approximate the exact solution and uses the discrete equations at the
collocation points to solve for the coefficients of the basis functions. Though such
localized piecewise polynomial basis functions are not a complete and orthogonal
basis functions of the simulation space, they meet the convergence property when the

grid size goes smaller and they are essentially more suitable to represent those
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solutions which will have strong local properties. The idea results in an eigen-value
problem in sparse matrices, and the advantages of sparse matrix treatment and handy
graphic display in MATLAB enable us to realize simple but effective MATLAB mode
solvers.

Based on the scalar wave equation, the QSC scalar mode solver can quickly
calculate the scalar modes of weakly guiding waveguides, such as conventional rib
waveguides. The correctness and effectiveness of the QSC scalar mode solver are
proven by simulating three rib waveguides and comparing the QSC results with the
finite difference scalar mode solver results in [1].

The full-vectorial mode solver is based on the two wave equations of the
transverse magnetic fields. To verify the solver, we apply the QSC full-vectorial mode
solver to both weakly guiding ridge waveguide and the strongly guiding slot
waveguide and compare the results with the simulation results of a commercial mode
solver, LUMERICAL. Under the same simulation conditions, including the grid size,
boundary conditions, etc., the QSC results of the ridge waveguide perfectly match the
LUMERICAL results, while for the slot waveguide QSC results only fundamentally
match LUMERICAL results. Mesh average technique, as in the LUMERICAL mode
solution, is proposed to increase the accuracy of QSC full-vectorial mode solver
simulating strongly guided waveguides, and is proven useful by calculating the
effective index curve of the slot waveguide and comparing it with the original results

from [9].
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At appendices, simple MATLAB examples of the scalar mode solver and

full-vectorial solver are listed for readers’ further reference.

6.2 Future Work
6.2.1 Calculating Leaky and Radiation Modes

Though the simple QSC scalar mode solver and QSC full-vectorial we have
developed are a handy tool for calculating the scalar or full-vectorial guided modes,
the perfect metal boundary condition and zero boundary condition that we have
applied will no longer be applicable for calculating leaky modes or radiation modes
for an open-boundary problems. The reason is simple: neither the perfect metal nor
the zero boundary conditions can properly reflect the actual mode profile at the
boundaries. And since the leaky modes and radiation modes are becoming more and
more important in some of the optical application, e. g., some active optical devices, it
is demanding for a successful mode solver to possess the capability of dealing with all
eigen modes in a waveguide, not just guided modes.

One of most popular and successful boundary conditions that have been applied in
the literature for calculating the leaky and radiation modes is the perfectly matched
layer (PML) absorbing boundary condition (ABC) [9, 10]. The basic idea of PML
ABC is to truncate the computation window with numerical layers which will not
reflect any of the incident waves. The idea was first introduced- in FDTD application

in [11] and later further investigated for other problems in [12].
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In Cartesian coordinates, the generalized PML formulation replaces original

coordinates by the following complex coordinates

z'=(1-j"2)
we
N
y'=0-7")y 6.1)
we
2'=(Q1—-j—%)
we

where o,, o,, and o, are pre-determined values for the perfectly matched layers
[13]. With such simple replacements, the perfect non-reflectional interfaces at the
perfect matched layers and the problem regions are realized [10].

Thus, to integrate the PML boundary for our scalar mode solver, we just change

the original governing equation (2.37) by inserting (6.1) into

0 9¢ , 0 9¢ 2,2 a2
— 4y k — =0 6.2
9z' Oz ay'ay'+(°n o ©2
and by using
Oz o
= = (1 — ==y
oz’ ( we) 63
9y SOy ©63)
(-2
ay' we

we obtain the governing equation for QSC scalar mode solver with PML. ABC

. Uy -1 8 . Uy -1 8¢
gyt - g2yt 2
J ws) oy l( J ws) Jy (6.4)

+(k02’ﬂ2 _ ,32)(25 =0

Gey1 01y %199
(1_](4)8) 83:[(1 ]ws) 8x]+(1

Besides changing the governing equation, we should include extra perfectly matched
layers at the boundaries by introducing non-zero conductivity distribution and may

use the perfect metal boundary for the outmost boundary.
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And similarly, we can quickly integrate the PMI, ABC into our QSC full-vectorial
mode solver.

Theoretically, the PML can be implemented as stated above. But due to shortage
of time, not enough numerical examples have been carried out to fully verify the PML
ABC in QSC for calculating leaky and radiation modes. Only a one-dimensional QSC
scalar mode solution for an ARROW [9] waveguide is verified. Thus one of our future
projects will be focused on developing high performance full-vectorial mode solver
with PML ABC boundary conditions so that the mode solver will be capable of
solving not only conventional guided modes but also leaky modes and radiation
modes, which may have more and more important applications.

Here, we present the one dimensional scalar QSC mode solution of the leaky
modes of the ARROW waveguide with PML ABC.

The governing equation is easily reduced from (6.4) by dropping variable y

j oyt 99
we we’ Oz

(1- j&)—l j—xl(l - J + k’n’p = B’ (6.5)

The refractive index of the ARROW waveguide in [9] is shown in Figure 6.1. The

conductivity distribution is also shown in Figure 6.1 and assumed as

2
a(a;) =0, [_I_‘”__””WL_I] (6.6)
| Zep — Zppg, |

where o, is a pre-determined value [13] and here is set at 0.1 Q7' (um)™, zp,

X

and z,, are the starting position of the PML and the position of the ending perfect

metal boundary, respectively. The PML boundary at both sides of the simulation
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Figure 6.1. The refractive index profile and PML profile of a typical ARROW waveguide [9]

window has a width of 2 um . The grid size of the QSC simulation is set at 0.05 um .
The wavelength is 1.55 um . The total window size is 10 um . In Figure 6.2, the real
part of the lowest TE leaky mode is shown. To be illustrative, the simulation result
without PML is also shown in Figure 6.2. We can see that with PML, the field profile
in the guided region is no longer affected by the field at both ends of the computation
window and thus has an accurate simulation result. The effective index is calculated
as N = (1.448186133, - 3.835x10™), which is a good match with [9] and thus
verify the one-dimensional QSC scalar mode solver with PML ABC.

Here, we cannot observe much difference between the results with PML or

without PML; however, in Figure 6.3, we display the simulation results for the second
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Figure 6.2. The lowest leaky mode of the ARROW waveguide
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Figure 6.3. The second lowest leaky mode of the ARROW waveguide
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order TE leaky mode and the difference becomes apparent: the reflected field for the

simulation without PML totally change the field profile.

6.2.2 Higher Accuracy Solvers

The quadratic spline collocation method is not a widely-used numerical approach
since its accuracy is not optimal [3]. We can see that though the QSC solution of the
weakly guided ridge waveguide is quite good, the strongly guided slot waveguide is
not so well calculated. One way to increase the accuracy is already introduced and
implemented in Chapter 5 and called as the mesh averaging technique. However, the
mesh averaging technique is not an essential solution to increase the accuracy.

Basically, there are two way of increasing the accuracy of the QSC mode solver.
One general way is to use higher order polynomial basis functions. Instead of
quadratic interpolant, we can choose cubic interpolant or even higher order
interpolants. However, we will certainly sacrifice computation time since we can
image that higher order interpolants will result in denser matrices.

The other way of increasing the accuracy is to use specific perturbation method
[3]- Though it is not so obviously available to most of the potential QSC mode solver
user, it is worth trying out optimal QSC method [3] if higher accuracy is required.

Another critical issue for the mode solvers in the literature is the ability of
simulating the dielectric corners [14 — 16]. Since QSC mode solvers are also based on

continuous basis functions, we should investigate the performance of QSC simulating
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dielectric corners. No particular attention has been paid to this issue in our previous

work and it should be one of our projects in the future.

6.2.3 Extending to Propagation Simulation

Like the widely used finite difference method, the QSC method also has the
simplicity of implementation without losing much accuracy. So, it should be handily
applied to other equation system. One natural potential application is the beam

propagation method based quadractic spline collocation method.
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Appendix A: QSC Scalar Mode Solver Example

0007 G 03 00 0 07 6 D7 O e BB D 0 0L O G s O 0 B G G Bl ) G TP
Y67 %0% %6 056%6%5 %07 %06 %0 9096969500 %% 6 %6 %09 6969 5900 Y e Y Y %6969 5600 e b e e Y e e Yo

% 2DOQSC_Scalarm
LEXA

g

% AUTHOR:  Bin Xu, Photonics Research Laboratory, McMaster University

% Email: xubd{@memaster.ca
% Created:  10.08.2006

% Modificd: 10.09.2006

%

% This program is the main part of the optical waveguide scalar mode solver
% by standard quadratic spline collocation method, for BT

%

% The Scalar Mode Solver Governing Equation is:

%o Unex+Uyy+n"2%k"2Hz = beta™2*Hz

clear all;
t0 = cputime;

0 0 O G 5, 00 5 0. Gl B0 0, 5,50, 0, 0/ G/ s 50,0 07 0 oy
a6 %6%6%6%5%5 %460 M P a2 0959695900 % M %0 Y 6%t P6%0%0%6%6%6 %6955 6% 0006 % %%

3 3,676 S ) /(3/1)9’5)/ /(}/0/(}/)’(5

% Fundamental Parameters

s ar oo o DD GGG P G a6l O 5
%0%090%6%0%%%6%6 %0 Y% % %0%6%5%6%0%6 % %% %% 0% 0% 595%6%6 %4 Y e Y Y% 0 %0969 090 % % Y6 6 %% % a6 %6 %0 %6 e
cc =3.0e8;

muo = 4.0*pi*1.0e-7;

epso = 1.0/(cc*cc*muo);

lambda = 1.55¢-6; %% wavelength = 1.3 [micron]
dy = 0.05¢-6; % hy = 0.05 [micron]
dx =0.1e-6; % hx = 0.1 [micron]

267676 % % % %0%6%5%6%0%6 %00 e %% 0% % 596907 %% Y e %0 %% 64 6% %6 %0766 94 % %0 %% 680900606 Yo ale
%o Grid parameiers

%%%%626%0%6%%6% % 0% % %07 6%0%0%0%6 %% % %62 67 6%6%6%6 % % %% %% 0%6%6 04680746 %690 % 0% e Y6 %6 Y6 %%
iair = 3.0e-6/dx; % Xs

iw = 2.0e-6/dx; G W

ie = iair+iw+iair

jair = 0.525¢-6/dy; % Ye

jela=1.1e-6/dy; % H

jela2 = 0.2e-6/dy; Y% D

jeore =0;

jsub = 5.0e-6/dy; % S

je = jairtjclatjcla2+jcoret+jsub+jair
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’ 4 ’ g . ¥ 9.8, G
)0“0/{;),00 G000 87 G0 67 0/ By #),0),0{),(,0,&(} Gr s s 3 )/‘)/(}ﬁ'(;“ LA R FALEA TS ) )( /{)‘3‘/{)?/0',)’(';-{.)’(30/(30/0‘}/()0/) 34

\G

VNS NG 6 a%%696%0%5%6 %% Y0%5%%949%0% 6% a%0% 0% %%
% lnitialize the coefficient array and QSC cocfficient matrices
‘3’u‘?’a?’a‘,”o"/n“/n(’/n()/f)(%)“/g)? 0() 0()/0(3,0(),0(!/0() 0(}/0( £ )( /Oif/Ui‘),gt,)/gil)/s(}/nﬁlo(!/n(‘i (){)0/ U ()‘ /0()/05),0{)/@(}/“(!,0(3 ( ( ( 0 )(Z/UO/(,%)/(,O/Q{),G() b

%% x direction

TOx = zeros(ie);

Tix =T0x;

T2x = T0x;

clx =2.0/(3.0*dx);

¢2x = 4.0/(3.0*dx*dx);

Y% vy direction

TOy = zeros(je);

T1ly = TOy;

T2y =TO0y;

cly =2.0/(3.0*dy);

c2y = 4.0/(3.0*dy*dy);

% x direction coefficient matrice for Dirichlet Boundary Conditions

for i = 2:ie-1
TOx(i,i) = 1.0;
TOx(i,i-1) = 1.0/6;
TOx(i,i+1) = 1.0/6;
Tix(i,i-1) = -clx;
Tix(@i,i+1) = clx;
T2x(i,i) = -2.0%c2x;
T2x(i,i-1) = ¢2x;
T2x(i,i+1) = ¢2x;

end

TOx(1,1) =5.0/6.0;

TO0x(1,2) =1.0/6.0;

TOx(ie,ie) = TOx(1,1);

TOx(ie,ie-1) = TOx(1,2);

Tix(1,1) =clx;

T1x(1,2) =clx;

T1x(ie,ie) = -c1x;

Tix(ie,ie-1) = -clx;

T2x(1,1) =-3.0*c2x;

T2x(1,2) =¢2x

T2x(ie,ie) = -3.0*c2x;

T2x(ie,ie-1) = ¢2x;

%%y direction coeflicient matrice for Dirichlet Boundary Conditions

for j = 2:je-1
TO0y(j.j)=1.0
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TOy(j,j-1) = 1.0/6;
TOy(j,j+1) = 1.0/6;
Tly(.j-1) = -cly;
Tly(.,j+1) =cly;
T2y(j,j) = -2.0*c2y;
T2y(j.j-1) = c2y;
T2y(j.j+1) = ¢2y;
end
TOy(1,1) =5.0/6.0;
T0y(1,2) =1.0/6.0;
TOy(je,je) = TOy(1,1);
TOy(je,je-1) = TOy(1,2);
Tly(1,1)=cly;
Tiy(1.2) =cly;
Tly(e.je) = -cly;
Tly(e.je-1) =-cly;
T2y(1,1) =-3.0*c2y;
T2y(1,2) = c2y;
T2y(je,je) = -3.0*c2y;
T2y(je,je-1) = c2y;
% Save bagis matrices as sparse matrices
TOxs_D = sparse(T0x);
Tlxs_D = sparse(T1x);
T2xs_D = sparse(T2x);
TOys_D = sparse(T0y);
Tlys_D = sparse(T1y);
T2ys D = sparse(T2y);
clear TOx Tix T2x TOy Tly T2v; % Free memories

/09100 (,’/0‘,)/(')(,}/60’, 2 ’0’()/,(3/0!)/00/& PR PR LIA L FAL A (74 ()/00 370, 070,00/ 070

GG D0 ey R4
269600909 %% %6966 Vg 0%6%6%0%6%6%0% % % %% %69 6%6%0% %% % %0 0 %02 % 262650 %

CYOYE) 0% %% 00040404
% Set up the refractive index profile

sy
LA

OO0/ 0 G 055 0 0 0 0L GO Y
6% %6%056%6%6 %5 %% Y% %6 %696% 0% 6%0%695%% % e Y% Y e Ve 0%

0%0%%% 6% 0%6% 0969594 %Y 16%6%6%% %% %%
RI = ones(ie,je);
RlI(iair+1:iair+iw,je+1-(jairtjcla);je+1-(air+1)) =
3.44*Rl(iair+L:iair+iw,je+1-(jairtjcla):je+ 1-(jair+1));
RI(:,je+1-(airtjclatjcla2):je+1-(jairtjcla+tl)) = 3.44*RI(;,je+1-(jair+jclatjcla2);je+1-(jair+jclat+1));
RI(:,jet1-(airt+jclatjcla2+jcore);jet1-(air+jclatjcla2+1)) = ...
3.34*RI(:,jet1-(jair+jclatjcla2+jcore):je+1-(air+jclatjcla2+1)) ;
RI(:,jet1-je:jet+1-(airtjclatjcla2+jcoret+1)) = ...
3.34*RI(: jet1-je;jet1-(jairtjclatjcla2+jcore+1));

B0l 50 D0 6 B O B O G B s s Bt DB B (B G g
D% 680008090969 %%0 %0 Ve e b et 8009585 M 0 a0 %9085 %% %% 60 % %0 069695260690 % e Y e Y Y%
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% Form A matrix and B matrix:

% A = T2y + 02K 2¥ TON@TOY
% B =
(?/{}{3,(}i,),0(?,0(5“ /00/0()/0/6 /60//0?/0()/ 3 0/(':0/00/()( (}IO( (3 {3/00,60,00,0(}, (A ( 0/ (/94 )i 0{? 0/{;0/(}()/00/(!(!’0@ )( (6 04 (; {)/(}0,00/06/0

cRI = (2*pi*RI/lambda).”2;
u = kron(TO0xs_D,TOys_D);
[M, N] = find(u);
lengthM = length(M);
for i = 1:lengthM
ypos = mod(M(i),je);
if (ypos =0)
ypos = je;
xpos = M(i)/je;
else
xpos = (M(i)-ypos)/je+1;
end
u(M(i),N(i)) = cRI(xpos,ypos)* u(M(i),N(1));
end
A =kron(T2xs_D,T0ys_D)+kron(TOxs_D,T2ys_D)+u;
B = kron(T0xs_D,T0ys_D);

—_ 1 . g iR - AP 2
t7 = cputime % Record Start Time
3
085 0 50/ 0 Gl 0 O 0D .
9595%599% %Y %006%6%6%6%%95% %% e 0% 60%96%0%% % M Yo %% 6% 0% 0968 696 %60 Y 0% 0 0% 0% 6% 606 % % Y

% Solve the generalized Eigenvalue Problem by MATLAB Imbedded Function
Y% cig{ AB)
A TR A LYR IRV (';iz{)i:\,{‘)(l},('li}/”() Lo (V( (3/ B/ G0

000, s G, v
%0%6%%6%6%6%6% % 6% 66569626 %465 %%e e 0 0% 6% 0540960 Y000 % 60 6% 69056 %60 %% Y %% e

[V.D] = eigs(A,B,2,'1r"); % solve for the largest two eigenvalues

t8 = cputime; %% Record End Time

Step8time = t8 - t7 %6 Matrix Solver Duration

%% %% 6% 0% 0% %% %Y 0%e% 676269676 0 %%4%0 %6 %2626 6965 6% Y6 M %0 %a 0696209696 Y Y b e % %06 %% %
%% Calculate the modal index and Plot the scalar mode profile

259595%%6%0% %% %66 %0%5%6 %% %% % 6% 6 6% 69 6%46%50 0 %0 %% 0% 0% 6% %6% 694 % Y% % Y6 0606969694 % % %

Neff = diag(D,0).".5*lambda/2/pi
%% Caleualate the modal index
forii=1:2
val = Neff{ii);
NeffText = num2str(val);
Hz=kron(T0xs_D,TOys D)*V(1:ie*je,ii);

fori=l:e
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Hzz(i,:) = real(Hz((i-1)*je+1:i*je));
end
figure(ii+100)
subplot(2,1,1)
pcolor(Hzz") % Pcolor Plot
line([1,iair],[je+1-(jair+jcla),je+1-(jair+jcla)])
line([iair,iair+iw+1],[je+1-jair,je+1-jair])
line([iair+iw+1,iairtiw-tiair], [je+1-(jairtjcla),je+1-(air+jcla)])
line([iair,iair], [je+1-(air),je+1-(jair+jcla)])
line([iair+iw+1,iair+iw+1],[je+1-(jair),je+1-(jairtjcla)])
line([1,ie].[jet+1-(airtjclatjcla2),jet1-(jair+jclatjcla2)])
line([1,ie], [je+1-(air+jcla+jcla2+jcore),je+1-(jair+jclatjcla2+jcore)])

subplot(2,1,2)
contour(Hzz',20) 20 5% Contour Plot
line([1,iair],[je+1-(jair+jcla),je+1-(jair+jcla)])
line([iair,iairtiw+1],[je+1-jair,je+1-jair])
line([iair+iw+1,iair+iw+iair], [je+1-(air+jcla),je+1-(jair+jcla)])
line([iair,iair],[je+1-(jair),je+1-(jair+jcla)])
line([iair+iw+1 iair+iw+1],[je+1-(jair),je+1-(air+jcla)])
line([1,ie],[je+1-(jair+jclatjcla2),je+1-(jair+jclatjcla2)])
line([1,ie],[je+1-(airtjclatjcla2+jcore),je+1-(jairtjclatjcla2+jcore)])
title(['Contour of Hz. Neff=' NeffText])

end
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Appendix B: QSC Vectorial Mode Solve Example

%%
% AUTHOR: Bin Xu, xubdd@maomaster.ca, Photonies Research Laboratory. McMaster

Y% University

% Created: 07.24.2006
% Last Modified: 10.29.2006
%o

% This program is quadratic spline collocation full-vectorial mode solver

% for slot waveguide

25%4%%%%0% %% 0% %6569 6% %% % %% %6269 6% %65 % % % 0 %0 %6696 %% %
%% Fundamental Parameters

s y oy ¢ Y
%% %6%0%5%4%% %0 %% e M0 00969696960 e e Y6 %0 80909096 %% %0 M e e e

cc=3.0e8;
muo = 4.0*pi*1.0e-7;

epso = 1.0/(cc*cc*muo);

lambda = 1.6¢-6; % wavelength = 1.6 [micron]

dy = 0.25e-6/10; % hy ''''''''' 0.025 [micron]

dx =0.10e-6/10; o hx = 0.010 [micron]

ﬁ/f)(, ’9(3/6(’b(,)/O()/ut)/Os),(}(),ail,a{;ﬂ(i/nﬁl;)( )() 2, /0(3{04 ui)/gi)/ {),Q(}/n(‘a“’)( () R ( I ()/ {)/()“/()(}/E)(}’()(}’()@E)(%J

%o (Grid parameters

95202620 % %0 %62 6%5%0%6%6% %% %% %% %05 6% Ve % %% % % %695 0%6% 69656 %
icla = 1.0e-6/dx; %% width of cladding in x direction

isi = 0.22e-6/dx; % width of silicon region in x direction

islot = 0.1e-6/dx; %6 width of the air slot in x direction

ie = iclatisitislot+isi+icla

jela= 1.0e-6/dy; % height of cladding in v direction
jw =0.25e-6/dy; % height of the slot in v direction
je =jc1a+jw+jcla

TR LEAATA (7 [y % 3,7 8,007 407 0/(,{3/{)(2{{)(3/()9/00,(}(}/

: 000/ 0.0/
%a%6%%%%%6%6%6% %% %0 %0 %% 6%6%6% S N S A A Lo S SN Y

Vola%e® 0965 % %00 % %
%a Initialize the coeliicient array and QSC coefficiont matrices

LT TA
78
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A ‘)(3/0(3/) 0/00,0{} a0 ( £ B2 8,08, By 0,0(} B0 000, Dy LRI AR AL & .0)

g g g ) i) 070570 GG /(ili)/l)/!},é)"/ﬂ {)G'!} (Oxgt) /0/02}) FAV e} AN 080009

CSOSTS IR I TN IS N A N
% x direction

TO0x = zeros(ie);

Tix =TO0x;

T2x = TOx;

clx =2.0/(3.0*dx);

¢2x = 4.0/(3.0*dx*dx);

% vy direction
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TOy = zeros(je);
Tly =TOy;

T2y = TOy;

cly =2.0/(3.0*dy);

c2y = 4.0/(3.0*dy*dy);

% x direction cocfficient matrices for Dirichiet Boundary Conditions

fori=2:ie-1
TOx(i,i) = 1.0;

TOx(i,i-1) = 1.0/6;
TOx(i,i+1) = 1.0/6;
Tix(i,i-1) = -clx;
T1x(i,i+1)=clx;
T2x(i,i) = -2.0*c2x;
T2x(i,i-1) = ¢2x;
T2x(i,i+1) = ¢2x;

end
TOx(1,1) = 5.0/6.0;
T0x(1,2) = 1.0/6.0;

TOx(ie,ie) = TOx(1,1);
TOx(ie,ie-1) = T0x(1,2);

Tix(1,1)=clx;
T1x(1,2) =clx;
Tix(ie,ie) = -clx;
Tlx(ie,ie-1) = clx;
T2x(1,1) = -3.0*¢2x;

T2x(1,2) = c2x;
T2x(ie,ie) = -3.0*c2x;
T2x(ie,ie-1) = ¢2x;

% v direction coefficient matrices for Dirichlet Boundary Conditions

for j = 2:je-1

end

TOy(j,j) = 1.0;
TOy(j,j-1) = 1.0/6;
TOy(,j+1) = 1.0/6;
T1y(,j-1) = -cly;
Tly(G.j+1)=cly;
T2y(j,j) = -2.0*c2y;
T2y(j,j-1) = c2y;
T2y(j.j+1) = c2y;

TOy(1,1) = 5.0/6.0;
TOy(1,2) = 1.0/6.0;
TOy(je.je) = TOy(L,1);
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TOy(je,je-1) = T0y(1,2);
Tly(1,1)=cly;
T1y(1,2)=cly;
Tly(e,je) = -cly;
Tly(je,je-1) = -cly;
T2y(1,1) =-3.0*c2y;
T2y(1,2) = c2y;
T2y(je,je) = -3.0*c2y;
T2y(je.je-1) = c2y;
TOxs_D = sparse(T0x);
Tixs_D = sparse(T1x);
T2xs_D = sparse(T2x);
TOys_D = sparse(TO0y);
Tlys D = sparse(T1y);
T2ys_D = sparse(T2y);
% x direction coefficient matrices for Neurnann Boundary Conditions
TOx(1,1) = 7.0/6.0;
T0x(1,2) = 1.0/6.0;
TOx(ie,ie) = TOx(1,1);
TOx(ie,ie-1) = T0x(1,2);
T1x(1,1) = -¢clx;
T1x(1,2) =clx;
Tix(ie,ie) = clx;
Tix(ie,ie-1) = -clx;
T2x(1,1) = -1.0*c2x;
T2x(1,2) = ¢2x;
T2x(ie,ie) = -1.0*c2x;
T2x(ie,ie-1) = ¢2x;

% y direction coefficient matrices for Neumann Boundary Conditions
TOy(1,1) = 7.0/6.0;
TOy(1,2) = 1.0/6.0;
TOy(je.je) = TOy(1,1);
TOy(je,je-1) = T0y(1,2);
Tty(1,1)=-cly;
Tly(1,2) =cly;
Tly(eje) = cly;
Tly(je,je-1) = -cly;
T2y(1,1) = -1.0%c2y;
T2y(1,2) = c2y;
T2y(je.je) = -1.0*c2y;
T2y(je,je-1) = c2y;
TOxs_N = sparse(T0x);
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T1xs_N = sparse(T1x);
T2xs_N = sparse(T2x);
TOys_N = sparse(TO0y);
T1lys N = sparse(Tly);
T2ys_N = sparse(T2y);
clear TOx Tix T2x TOy Tly T2¥; % Free memories

OV TR IR IR I T TATA T T TN PR PX SO A o

7N oty O(’/ 2/ 0 ))/ 3, U/(?“/(!“ LR ( 300G 000 00 30Dy f),s()/(}(} LR ERAIAL)

Lt NI IBIBLO () 4,70 RN IR ()

% Set up the refractive index profile

96%%%%% %% %6%6%6%6%696%6%0 %% Y0 %% %6 26202650 % % %0 % %626 26%6%6%0%6 %Y Y0 %6 %6 %6664 2 6% e %
II=1.46* ones(ie,je);
RIx=RII;
Rly =RIL;
=RIL

RI_average=RII;
%% The original mesh
RIl(icla+1:iclatisijclat+1:jclatjw) = 3.48/1.46*R1l(icla+1:iclatisi,jcla+t1:jclatjw);
RI(iclat+isi+1:iclat+isi+istot,jelat+1:jclatjw) = RII(icla+isi+1:iclatisi+islot,jclat 1:jcla+jw)/1.46;
RIl(icla+isi+islot+1:icla+isi+islot+isi,jela+ 1:jclatjw) = ...
3.48/1.46*RII(iclatisi+islot+1:iclatisi+islot+isi,jclat1:jclatjw);
%% Mesh averaging
for i=2:ie-1
for j = 2:je-1
RI_average(i,j) = (4*RII(i,j)+RII(i-1,j)+RII(i+1,j)+RII(i,j-1)+RII(1,j+1))/8;
end
end
% Final mesh

fori=l:e

forj=1:e
RI(i,j) = R1_average(i,j);
end
end
%% % %626 620%0% %% %% Y ¥ a%6% 69626949 %e e 000696965 0% % Y M %0 Y0 69696565 5% Y e e % e b 0%

% Set up the tog{R1y*ux and log{RD*uy matrices

, o . ey o s 9, S GG
R e O I A L O A A A A S A A O U I O S I O AN U |

ogRI = log(RI);
logRIux = zeros(ie,je);
for i = 2:ie-1
forj=1:je
logRIux(i,j) = (logRI(i+1,j)-logRI(i-1,j)}/(2.0*dx);
end
end

logRIuy = zeros(ie,je);
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fori=1lie
for j = 2:je-1
logRIuy(i,j) = (logRI(i,j+1)-logRI(i,j-1))/(2.0*dy);

end
end
%% %6767 656769 %% %0 %0% %0569 09690%0 Y% % %0 6002694594 %0 1 e % e 0% 60407676 20 Ve e e %060 %%
% Form Y1 matrix and X1 matrix ;
%% Y= T2x@T0y + TOx@ T2y + 0" 2¥ 2% TOx 0T 0y -[2% In(ny*ux]* T Ix@ T 0y
8% Y1 = uxx +uyy + cRTFu - 2*logRIux*ux
Y%
Yo X1 = [2¥n(n)y*uxPTOxa Ty
%o X1 = 2%logRIux*uy
90%59595%0%0% %6 % %% 69690969620 %0%%6 %6264 69696%56%%0 %% Y% % %64 696962 5090 Y %096 %6%046940% %

% Form n 2k 2*TOx/@TOy
¢RI = (2*pi*RI/lambda).”2;
u=kron(TOxs N,TOys D);
[M, N] = find(u);
lengthM = length(M);
for i = 1:lengthM
ypos = mod(M(i),je);
if (ypos ==0)
ypos = je;
xpos = M(i)/je;
else
xpos = (M(i)-ypos)jet+1;
end
u(M(i),N(i)) = cRI(xpos,ypos)*u(M(i),N(i));
end
Yo Form T2x@T0y + TOx@ T2y + 0" 22k 24 TOxi@ TOy
Y1 =kron(T2xs_N,T0ys_D)+kron(TOxs_N,T2ys_D)+u;
clear u;
%% Form [2¥IninPux P T I T0y
ux = kron(T1xs N,TOys D);
IM, N] = find(ux);
lengthM = length(M);
for i = 1:lengthM
ypos = mod(M(i),je);
if (ypos ==0)
ypos = je;
xpos = M(1)/je;
else

xpos = (M(i)-ypos)/je+1;
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end
ux(M(i),N(i)) = 2.0*logRIux(xpos,ypos)*ux(M(i),N(i));
end
% Form finl Y1
YI=Y1-ux;
clear ux;
% Form X1
X1 =kron(TOxs_D,T1lys N);
[M, N] = find(X1);
lengthM = length(M);
for i = 1:lengthM
ypos = mod(M(i),je);
if (ypos ==0)
ypos = je;
xpos = M(i)/je;
else
xpos = (M(i)-ypos)/jet1;
end

X1(M(1),N(i)) = 2.0*logRIux(xpos,ypos)* X 1(M(i),N(i));

end
ey ; s T e s s B B 13 (B b ,
R ORI NI AN S TN N S S PO L S TN A NP Z N P P P T

Y% Form Y2 Matrix and X2 Matrix
% Y2 = 2y uy PP T Ix@T0y
% X2 = T2x@ 10y + TOx/

0G0l
%6%2%%% % %% %6 %6%6%

'0/ 4 U," 5800007 5/ ()/00/60/ ‘),('}(
% Form Y2

Y2 =kron(Tixs_N,T0ys D);

[M, N] = find(Y2);

lengthM = length(M);

for i = l:lengthM

ypos = mod(M(i),je);

if (ypos ==0)

ypos = je;

xpos = M(i)/je;
clse

xpos = (M(i)-ypos)/jet+1;
end

Y2(M(),N(i)) = +2.0*logRIuy(xpos.ypos)* Y2(M(i),N(i));

end

%% Form n 23k "2 TOx@ 10y
u = kron(TOxs_D,TOys_N);
[M, N] = find(u);
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lengthM = length(M);
for i = 1:lengthM
ypos = mod(M(i),je);
if (ypos ==0)
ypos = je;
xpos = M(i)/je;
else
xpos = (M(i)-ypos)/jet1;
end
u(M(i),N(i)) = cRI(xpos,ypos)*u(M(i),N(i));

end

TOy + TOx@T2y + " 2%k 2% TOx
X2 =kron(T2xs_D,TOys _N) + kron(TOxs_D,T2ys | N) +u;
clear u;
% Form [2%In(ny*uy PFTOx&Y
uy = kron(TOxs_D,Tlys_N);
[M, N] = find(uy);
lengthM = length(M);
for i = 1:lengthM

ypos = mod(M(i)je);

if (ypos ==0)

% Form T2x¢

Ty

ypos = je;
xpos = M(i)/je;
else
xpos = (M(i)-ypos)/jet1;
end
uy(M(i),N(i)) = -2.0*logRIuy(xpos,ypos)*uy(M(i),N(i));

end

% Form X2

X2=X2+ uy;

clear uy;

Yo% a%0% 6% 6% 6% 0% 0% 6%69 696965590506 %6 %696%6%6% % %% % %016 69696849080 Y Y % %6 Vet

% Form the right matrix B for the vectorial Helmboltz wave equation

G/ 00040, 0,0, ()/0{),(} 0{),()(! GGG TR VA 0/(}0'(30

: LTI y
709656 % %% 16%6%0%0%% %% 2%696%6% %e409096%5%%% 0% e

76%6%6%696%%% %% %% %6 %0 %096%6 %% e Yol o%o¢

,
%6%6%0%%

uy = kron(T0xs_N,TOys_D);
ux = kron(TOxs_D, TOys N);
Zerox = sparse(zeros(ie));
zeroy = sparse(zeros(je));
zeroxy = kron(zerox,zeroy);

= [uy zeroxy; zeroxy ux];
clear uy ux zeroX zeroy zeroxy;

oy GGG Y [ / 3/ §
B8, i)/(}{) AP PR A TRV YR L] ()/Oi),“),(}() LA EALEA ) /i)/“)

IR YA
P SO W L A €Ovgd) ’Q/\)/)Q) Ua%e%a%els

o026 %6%0%6%6 %% e Y

(?0/()”/ FATTA AT TR VRV A )

v
(LN WA DR I I I s ’(J{?/(){)/()‘E’O
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% Form the left matrix A for the vectorial Helimholtz wave equation

/84 s D 3/ . ’ i Y GG
45959 % %% %Y 68090%6%6%6%% %000 0 % %6 %045 %46%4%0% %6 e % e Vet 69696696040 e e e 6969695680 %

A=[Y1X1;Y2X2];
clear Y1 X1 Y2 X2;

X7 4 ’ VA ’ N
{),G{),GG (I' ( (z )()/(/(}/“ﬂ/ §)/0) 3,70 ()/0( 0(5/0(}‘)(3/{)1?/(){?,(§{?/(§il/()(} IR TR TRV

LA
S 7o Fa%6%6%96%5%6%0%6%0 %% % %646 %6540

2§
Y a%a%696%6% 6% Y Ye Ve Vo

Ya Solve the generalized Eigenvalue Problem by MATLAB Imbedded Function
Yo cig(A,B)

%5%6%%% % %% %6%0%6%06%6%6% % %% %% %6 % 6969694946900 % %620 %69 69696%%0% Y 0% %6 6269696569 %% %
t7 = cputime; % Record start time

[V.D] = eigs(A,B,2,'ir); % Solve for the largest three eigenvalues

t8 = cputime; % Record end time

Step8time = t8 - t7 %a Solver time

459696%6%% %% %0 %% 0%6%6%56%0%6 %50 % %0965 696956 %% % Y6 Y0 6 %6%6%09 6% 6% %% % Y6 %6 % 6 %6 %04 6% % %

% Find the eigenvalues and cigenvectors and plot the mode profile

G?/("{?/é{?/éi/),bﬁ O,n (3/ {) i ’2)/ ‘)/()0/00/()“/0(}' 87 ()/0(} B/ ’t), 0, “/00’6“/\')0/;)(%)(}90 09_ 4)/U<)/ ()/00/00/0(}/0(?/;)( 9("/2)()/09/O?/U?/(){,)/()‘,}/(/){,)’(,)ﬂ/t:)
Neff = diag(D,0).”.5*1lambda/2/pi YuOutput the effective tndices

forii=1:2
val = Neff(ii);
NeffText = num2str(val);
% Calculate Ex and Ey
Hy =kron(T0xs_N,TOys_D)*V(1:ie*je,ii);
Hyux = kron(T1xs_N,TOys_D)*V(1:ie*je,ii);
Hyuxx = kron(T2xs_N,T0ys D)*V(1:ie*je,ii);
Hyuxuy = kron(T1xs_N,Tlys_D)*V(1:ie*je,ii);
Hyy = zeros(ie,je);
Hyyux = zeros(ie,je);
Hyyuxx = zeros(ie,je);
Hyyuxuy = zeros(ie,je);
fori=l:e
Hyy(i}) = Hy((i-1)*je+Li*je);
Hyyux(i,:) = Hyux((i-1)*je+1:i*je);
Hyyuxx(i,:) = Hyyuxx((i-1)*jet+1:i*je);
Hyyuxuy(i,:) = Hyuxuy((i-1)*je+1:i*je);
end
Hx =kron(TOxs_D,TOys_N)}*V(ie*je+1:2*ie*je,ii);
Hxuy = kron (TOxs_D,Tlys N)*V(ie*je+1:2*ie*je,ii);
Hxuxuy = kron(Tixs_D,Tlys_ N)*V(ie*je+1:2*ie*je,ii);
Hxuyy = kron(TOxs_D,T2ys N)*V(ie*jet+1:2*ie*je,ii);
Hxx = zeros(ie,je);
Hxxuy = zeros(ie,je);
Hxxuxuy = zeros(ie,je);

Hxxuyy = zeros(ie,je);
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fori= l:ie
Hxx(i,:) = Hx((i-1)*je+1:i*je);
Hxxuy(i,:) = Hxuy((i-1)*je+1:i*je);
Hxxuxuy(i,:) = Hxuxuy((i-1)*je+1:i*je);
Hxxuyy(i,:) = Hxuyy((i-1)*jet+1:i*je);
end
DELTA = (Hxxuy - Hyyux)./(RI)."2;
DELTAux = zeros(ie,je);
for i = 2:ie-1
forj=1:je
DELTAux(i.,j) = (DELTA(i+1,j)-DELTA(-1,))/(2.0*dx);
end
end
DELTAuy = zeros(ie,je);
for i=1:ie
for j=2:je-1
DELTAuy(i,j) = (DELTA(i,j+1)-DELTA(,j-1))/(2*dy);
end
end
Exx = Hyy*(2*pi/lambda)*2 - DELTAux;
Eyy = Hxx*(2*pi/lambda)"2 + DELTAuy;
%o Simply calculate the TE and TM percent
HyyT =0;
HxxT =0;
fori=1l:ie
forj=1l:je
HyyT = HyyT + Hyy(i.j)"2;
HxxT = HxxT + Hxx(i,j)"2;
end
end
Hxmax = num2str(max(max(abs(Hxx))));
TEpercent = num2str(int32(100* HyyT/(HyyT+HxxT)));
TMpercent = num2str(int32(100* HxxT/(Hyy T+HxxT)));
% Plot the 5% contours of Ex By Hy Hx
figure(ii+100)
subplot(2,2,1)
contour(real(Exx).",20)
line([icla+1,iclat1],[jelat+1,jclatjw])
line([iclatisi+1,iclatisi+1],[jclat1 jclatjw])
line([iclat+isitislot+1,iclatisi+islot+1],[jclat 1 jclatjw])
line([icla+isi+islot+isi+1,iclatisi+islot+isi+1],[jelat 1 jclatjw])
line(ficla+1,iclatisi+islot+isi],[jclat],jclat+1])
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end

line([icla+1,iclatisi+islot+isi],[jclatjw+1jclatjw+1])

subplot(2,2,2)

contour(real(Hyy).',20)

line([icla+1,iclat+1],[jcla+1,jclatjw])
line([iclatisi+1,iclatisi+1],[jclat1 jclatjw])
line([iclatisi+islot+1,iclatisi+islot+1],[jcla+1,jcla+jw])
line([iclatisitislot+isi+1,iclatisi+islot+isi+1],[jelat1,jclatjw])
line([iclat1,icla+isi+islot+isi],[jcla+1,jcla+1])
line([icla+1,iclat+isi+islot+isi],[jclatjw+1 jclatjw+1])
title(['Contour of Hy, Neff=' NeffText, TE:, TEpercent,®o])
subplot(2,2,3)

contour(real(Eyy).",20)

line([icla+1,icla+1],[jclat1,jclatjw])
line([ictatisi+1,iclatisi+1],[jclat],jclatjw])
line([iclatisitislot+1,iclatisi+islot+1],[jclat],jclatjw])
line([iclatisitislot+isi+1,iclatisi+islot+isi+1],[jcla+1,jclatjw])
line({icla+1,iclatisi+islot+isi],[jelat1,jclat1])
line([icla+1,icla+isi+islot+isi],[jclatjw+1 jelatjw+1])
title(['Ev. Neff=' NeffText])

subplot(2,2,4)

contour(real(Hxx).',20)

line([iclat1,icla+1],[jcla+1,jclatjw])
line([iclatisi+1,iclatisi+1],[jclat1,jclatjw])
line([iclatisi+islot+1,iclatisi+islot+1],[jclat 1, jclatjw])
line([icla+isi+islot+isi+1,iclatisi+islot+isi+1],[jelat1,jclatiw])
line([icla+1,icla+isi+islot+isi],[jclat1,jclat1])
line([icla+1,iclatisi+islot+isi], [jelatjw+1,jclatjw+1])
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