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Abstract 

In this thesis, first we propose a new approach to solve Semi Infinite Linear Optimiza­

tion Problems (SILP). The new algorithm uses the idea of adding violated cut or cuts at 

each iteration. Our proposed algorithm distinguishes itself from Luo, Roos, and Terlaky's 

logarithmic barrier decomposition method, in three aspects: First, the violated cuts are 

added at their original locations. Second, we extend the analysis to the case where multiple 

violated cuts are added simultaneously, instead of adding only one constraint at a time. Fi­

nally, at each iteration we update the barrier parameter and the feasible set in the same step. 

In terms of complexity, we also show that a good approximation of an optimal solution will 

be guaranteed after finite number of iterations. 

Our focus in this thesis is mainly on the implementation of our algorithm to approx­

imate an optimal solution of the SILP. Our numerical experiences show that unlike other 

SILP solvers which are suffering from the lack of accuracy, our algorithm can reach high 

accuracy in a competitive time. 

We discuss the linear algebra involved in efficient implementation and describe the 

software that was developed. Our test problem set includes large scale second order conic 

optimization problems. 
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Chapter 1 

Preliminaries 

1.1 Linear Optimization and Optimality Conditions 

A linear optimization problem (LP) deals with minimizing (maximizing) a linear function 

subject to finite number of linear constraints. In standardform, it can be formulated as 

min { cT x : Ax = b, x ~ 0 } , 
xelR" 

(1.1) 

where c E Rn, b E Rm, and A is an m x n real matrix. If x satisfies the constraints 

Ax = b, x ~ 0, we call it a feasible point, and the set of all feasible points is the feasible 

set. 

Associated with any LP there is another linear optimization problem, called the dual 

1 
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problem, which consists of the same data objects. The dual of ( 1.1) is 

(1.2) 

where s is a vector in Rn. The components ofvector yare called the dual variables while 

s is the vector of dual slacks. 

Problem (1.1) is often called the primal problem, to distinguish it from (1.2), and the 

two problems together are referred to as the primal-dual pair. 

For further use, let us define 

r = { (x,y,s) 

ro = { (x,y, s) 

Ax = b, AT y + s = c, x 2:::: 0, s 2:::: 0 } 

Ax = b, AT y + s = c, x > 0, s > 0 } 

to be the primal-dual feasible set and its relative interior, respectively. 

(1.3) 

(1.4) 

A duality theory that explains the relationship between the two problems (1.1) and (1.2) 

has been developed during the last sixty years. In 1947, Dantzig introduced the simplex 

method to solve problem (1.1). Appendix (A.l) contains those aspects of the duality theory 

that have a direct bearing on the design and analysis of our algorithm. We do not attempt to 

present a complete treatment of this fascinating topic, we refer the reader instead to standard 

reference texts [22]. Our main focus is the implementation and numerical property of our 

new algorithm. 

Optimality conditions are derived from the fundamental principles of the duality theory 

oflinear optimization problem. They can also be regarded as a special case of the optimality 

2 
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conditions for general constrained linear optimization problem, known as Karush-Kuhn­

Tucker conditions (or KKT) [ 5]. The optimality conditions for primal problem ( 1.1) are as 

follows (see Theorems A.l.1 and A.1.2): 

The vector x E ~n is a solution of the problem (1.1) if and only if there exist vectors 

s E ~n andy E ~m for which the following conditions hold 

ATy + s = c, 

Ax= b, 

XjSi = 0, i = 1, 2, ... , n, 

(x, s) :?: 0. 

(1.5a) 

(1.5b) 

(1.5c) 

(1.5d) 

This is a crucial result that defines the relation between the primal and dual problems. 

Formally, we state the dual optimality conditions as follows: 

The vector (y, s) E ~m x ~n is an optimal solution of (1.2), if and only if there exists a 

vector x E ~n such that the conditions (1.5) hold 

By examining the conditions (1.5) from both the primal and the dual point of view, 

we can conclude that vector (x* ,y*, s*) solves system (1.5), if and only if x* solves the 

primal problem (1.1) and (y*, s*) solves the dual problem (1.2). Vectors x*, (y*, s*), and 

(x* ,y•, s*) are called primal optimal solution, dual optimal solution, and primal-dual op­

timal solution, respectively. Excluding (1.5d) from the system of equations (1.5) gives 

us a simple bilinear equation system that can be solved efficiently by Newton's method. 

However, satisfying the nonnegativity constraint is a challenging problem. 

3 
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1.2 Interior Point Methods 

1.2.1 llisto~ 

Although interior-point techniques, primarily in the form of barrier methods, were widely 

used during the 1960s for problems with nonlinear constraints [9, 21], their use for the 

solution of the fundamental problem of linear optimization was unthinkable because of 

the dominance of the simplex method. During the 1970s, the interest in barrier methods 

decreased, nearly to the point of oblivion by emerging and seemingly more efficient al­

ternatives, such as augmented Lagrangian [9, 23] and sequential quadratic optimization 

methods. By the early 1980s, barrier methods were almost universally regarded as a closed 

chapter in the history of optimization. This picture changed dramatically in 1984, when 

Karmarkar [20] announced a fast polynomial-time interior point method for linear opti­

mization problem. In 1985, a formal connection was established between Karmarkar's 

method and classical barrier methods [ 1 0]. Since then, interior point methods have contin­

ued to transform both the theory and practice of constrained optimization. 

1.2.2 The Central Path 

One of the widely used methods to track the solution ofKKT systems is to follow a smooth 

curve that starts somewhere inside the interior of the feasible set and ends at an optimal 

solution. The best known such curve is the central path. The central path C is an strictly 

feasible curve that maps any positive real number J.1 > 0, the so-called barrier parameter, 

4 
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to a solution (x1.oY1.o s11 ), that is the unique solution (see [28]) of the following system: 

ATy + s = c, 

Ax= b, 

XjSi = J..l, i = 1, 2, ... , n, 

(x,s) > 0. 

(1.6a) 

(1.6b) 

(1.6c) 

(1.6d) 

The unique solution of system (1.5) is called the p-center of the primal-dual problem. 

This system differs from the KKT conditions only in the term of J.1 on the right hand side 

of (1.6c). Instead of the complementarity condition (1.5c), we require that the pairwise 

products Xisi have the same value for all indices i. It is well known that system (1.6) has 

a unique (see [28]) solution for each J.1 > 0 if ra is nonempty. As J.1 ! 0, the sequence 

of unique solutions (x11 ,yJL, sJL) of p-centers converges to a solution (x* ,y•, s*) where x* is 

an optimal solution of (1.1) and (y*, s*) is an optimal solution of (1.2). Hence, the central 

path leads us to a solution of the primal and dual problems at the same time. 

Most interior point algorithms take Newton steps toward the p-center on the central 

path, rather than taking pure Newton steps for equations (1.5). Then, subsequently J..l is 

reduced and the process is repeated. Since, in practice, there is no need to find the exact 

solution of (1.6), a measure is required to make sure the approximate p-centers are close 

enough to the exact ones. There are different methods to measure the distance of a given 

point (x,y, s) to the p-center [7]. The proximity measure used in our implementation is 

the one given in [27], which is 

8(x) = ~ llv- v-III' 
5 

(1.7) 
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where 

Y=f¥. (1.8) 

Note that the vector product in (1.8) and the vector inversion in (1.7) is component wise. 

The advantage of using proximity (1.7) is not only because it tells us how far (x,y, s) is 

from the current Jl-center (xJL,yJH sJL), it also tells us whether the given point is close to the 

boundaries of the positive orthant. In the next subsections, we present three well known 

directions towards the 11-center. 

1.2.3 Primal 

This method is based on search directions that are variant of Newton's method applied 

to the equalities in (1.5) and modifying the search directions and step lengths so that the 

inequalities x ;::: 0 are satisfied strictly at every iterations. Given an x > 0 with Ax = b, 

the Newton direction to solve (1.6) can be computed as follows: 

s =c-Ary, 

1 2 !!!,.x = x- -X s, 
J1 

(1.9) 

where X= diag(x). Then x will be updated by choosing a step length a such that the 

updated point minimizes the primal barrier function: 

(1.10) 

6 
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and the new iterate stays inside the positive orthant: 

a = argmin { i.pp(x + t!::J.x) : x + t!::J.x > 0 } . 
t>O 

Sept. 2008 

In Chapter 3, we discuss some computational linear algebra methods that are essential for 

efficient and numerically stable implementation of this method. 

1.2.4 Primal-Dual 

This methods find approximate primal-dual optimal solutions by applying a variant ofNew­

ton's method to the three equalities in (1.5). The search directions and step lengths are cho­

sen so that the inequalities (x, s) ~ 0 are strictly valid at each iterations. The full Newton 

direction to solve (1.6) is given by: 

(1.11) 

(1.12) 

(1.13) 

where S = diag(s) and (x, s) > 0 is a primal-dual strictly feasible starting point. Then 

(x, s) will be updated by choosing the step length a such that the updated point minimizes 

the primal-dual barrier function 

(1.14) 

7 
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and the new iterate stays inside the positive orthant: 

a = argmin { cpd(x + t6x, s + t6s) x + t6x > 0, s + t6s > 0 } . 
t > 0 

Sept. 2008 

In Chapter 3, we discuss some computational linear algebra methods that are essential for 

efficient and numerically stable implementation of this method. 

1.2.5 Infeasible Primal-Dual 

For the primal-dual direction discussed in the previous section, we assume that the given 

iterate (x,y, s) is strictly feasible. If one chooses x > 0 and s > 0, usually for such a 

choice Ax- b and c- s-AT y are not zero. In this case, the following direction will lead 

us to find a ,u-centering Newton direction. To solve (1.6): 

where 

rb = b -Ax, 

8 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

(1.19) 
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If x and (y, s) are primal and dual feasible, respectively, we have the primal dual search 

direction where rb and rc are zero. 

1.3 Semi-Infinite Linear Optimization 

1.3.1 General Form 

Semi-infinite linear optimization (or programming) (SILP) deals with an optimization prob-

lem with linear objective and linear constraints in which either the number of constraints 

or the dimension of the variables space, but not both, is allowed to be infinite. The primary 

propose of the thesis is to develop and study an algorithm to solve SILP, i.e., programs that 

can be formulated as 

(1.20) 

where b E JRm, T is an arbitrary (possibly infinite) index set, 

a1 = a(t) = (a1 (t), . .. , a~(t)) (1.21) 

maps T into ]Rm, and c1 = c(t) is a scalar function on T. 1 Problem (1.20) is said to be the 

Dual SILP. 

Let us observe that the feasible set of (1.20); 

(1.22) 

1 Different sources define semi-irifinite linear optimization in different manner but equivalent to each other. 
The above definition is borrowed from Go bema and L6pez, [ 12]. The reader may find more details and results 
in [I, 2, 8, II] 

9 
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is a closed convex set in JRm, since it is the intersection of a family of closed half spaces. 

The semi-infinite linear system (SILS short form) { a{ y ~ Ct, t E T } provides an external 

representation of the feasible set §. Therefore, to some extent, (1.20) is a convex linear 

optimization problem. If (1.20) is consistent, i.e., if it has at least one feasible solution, 

then the optimal value v of problem (1.20) can be either a real number or +oo. 

There are two major classes ofSILPs. Those where the infinite index set Tis countable 

and those where the index set is the continuous subset of the Euclidean space (such as a line 

segment or rectangle). We shall call them the countable and continuous semi-infinite linear 

programs, respectively. Therefore, we can rewrite the countable case of problem (1.20) as 

follows: 

(1.23) 

The primal semi-infinite linear optimization problem associated with problem (1.24) is 

defined as follows: 

(1.24) 

where xi is zero for all i = 1, 2, 3, ... , except for a finite number of indices for which 

xi~ 0 (see [1]). 

Example 1.3.1 (Example of Karney). Consider the following primal semi-infinite linear 

10 



Master Thesis, Hamid R. Ghaffari, McMaster University, Computational Eng. & Sci., Sept. 2008 

optimization problem: 

mm 

- X3 - X4- · · · = -1, 
(1.25) 

X ~ 0 

Problem (1.25) meets its optimal value 1 at point xi = 1, x; = 0, i = 2, 3, .... 

The dual problem associated with problem (1.25) is given as follows: 

max -y! 

s.t. -y! ~ 1, 
(1.26) 

Y2 ~ 0, 

Y2 
-y! +-:-

l 
~ 0, i = 3,4, .... 

The optimal solution is y = (0, 0) with the optimal value 0. 

In Example of Karney, although both primal and dual are feasible, however, the duality 

gap is not zero. The duality theories which dealing with this problem are presented in 

Appendix A.2. 

1.4 Analytic Center Cutting Plane Method (ACCPM) 

The analytic center cutting plane method (ACCPM) [16, 29] is an efficient algorithm (see 

[4, 18]). The complexity of related algorithms where given in [3, 4], and subsequently in 

[17]. Extensions to deep cuts were given in [13] and to very deep cuts in [15] in which the 

11 
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method studied corresponds to the practical implementation of ACCPM given in [19] with 

a single cut. 

1.4.1 Analytic Center 

The analytic center of rv is the unique point maximizing the dual logarithmic barrier 

function 
n 

<Dd(s) = L log(si), (1.27) 
i=l 

where s = c-AT y > 0. We now introduce the linear optimization problem 

max{ <Dd(s) s =c-Ary> 0} (1.28) 

and the associated first order optimality conditions 

XS = ln, 

Ax= 0, x > 0, (1.29) 

where ln is the all one vector in the euclidian space Rn. Recall that the notation xs indi-

cates the Hadamard, or componentwise product of the two vectors x and s. The solution 

of (1.29) gives also a vector x that is the ,u-center of the set { x : Ax= 0, x ~ 0} with 

,u = 1. The analytic center of r can alternatively be defined as the optimal dual solution 

12 
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of 

max { -cr x + <l>p(x) Ax = 0, x > 0 } , (1.30) 

where 
n 

<l>p(x) = 2.:: log(xi) (1.31) 
i=l 

denotes the prima/log-barrier function. One easily checks that problem (1.31) shares with 

(1.28) the same first order optimality conditions. 

Finally, we define approximate centers by relaxing the condition xs = ln in the first 

order optimality conditions. Formally, any solution (x, s) of 

llln - xsll ~ (), 

Ax= 0, x > 0, (1.32) 

where () < 1, defines a pair of (}-approximate centers. 

1.4.2 Cut 

Now let us define what we mean by a cut for the set r. 
A cut at y fl. r is given in the form 

If y > 0, then the cut (a; y) separates y from the feasible set, consequently we say that the 

13 
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cut is deep; if y < 0, the point y stays on the feasible side of the cut, thus we say that the 

cut is shallow; if y = 0, the cut passes through Y, and we will refer to this cut as a central 

cut. 

The concept of shallow and deep cuts was first introduced in the context of the analytic 

center cutting plane method by [15]. 

1.4.3 Analytic Center Cutting Plane Algorithm 

ACCPM can be shortly stated as follows; 

Initialization Let ~ = { y E Rm : 0 ~ y ~ 1m } be the unit cube and Yo = i 1m be its 

center. The centering parameter is 0 < (} < 1. 

Basic Step ;/' is a (}-approximation of the analytic center of 'T~; 

nk =2m+ L:Y:~ pj the total number of hyper-planes describing 'T~; 

1. The oracle returns the cuts (ank+j; 'Ynk+j) for j = 1, ... ,ph at;/'; 

2. Update 'T~+I = 'T~ n { y : a~k+j(y- ;/') ~ -rnk+j,j = 1, ... ,pk}; 

3. compute a (}-approximation of analytic center of r~+ 1• 

If only central cuts are employed, then 'Yj = 0 for all generated cuts. 

The computation of a new (}-approximate center, after adding new cuts, will be discussed 

in a later section. Convergence results and complexity analysis can be found in [14]. 

In the original ACCPM all the cuts added at each iteration are central, while in our 

algorithm, which is described in Chapter 2, the cuts are always deep. An illustration of the 

ACCPM is given in Figure 1.1. 

14 
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Figure 1.1: The ACCPM algorithm starts at y0 close to the analytic center of the initial 
problem. The oracle returns a cut (a1; 0) passing throw y0 ; using recovery direction in one 
step (see [15]), the algorithm gets into an interior pointy~ of the updated feasible set. From 
there, it takes a few iterations to get inside the ()-neighborhood of the analytic center YI· 
Then, the procedure is repeated for the new cut and for the new analytic center y2 • 

1.4.4 A Logarithmic Barrier Decomposition Method 

Luo, Roos, and Terlaky [22] proposed another column generation interior point based ap­

proach to solve (1.20). Their algorithm is based on adding only shallow cuts, too. The 

algorithm can be briefly described as follows: 

Algorithm (LBDM): 

Initialization Let T2 = { y E Rm : 0 ~ y ~ 1m } be the unit cube and Yo = ! lm be its 

center. The barrier parameter updating factor is 0 < TJ < 1, the centering parameter 

is 0 < () < 1, barrier parameter J1 = Jlo, and no = 2m; 

Basic Step I is a ()-approximate Jlk -center of r~; 

nk =2m+ k- 1 is the total number of hyperplanes describing r~; 

15 
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/ ........ ------;;- ... , 
\ .Yilo .-'yo ,' ...... __ -~_ ....... 

Figure 1.2: The ACCPM method explained in Section 1.4.4 starts at a point y0 close to 
the J.lo -center of the initial problem. The oracle returns a violated (deep) cut (ah y1); the 
algorithm shifts this cut to make y0 feasible (make it shallow). After updating the feasible 
set by adding the shifted cut, Newton steps are employed to get close to the new J.lo -center 
to get yo. Again, Newton steps are needed to get close to the J.l 1 -center to get y1 • 

2. Update 1}/1 = rt n { y : a~(y- y") ~ Yk}; 

3. Compute a 0-approximate J.lk-center of rt+1• 

4. Reduce J.lk+l = (1 - TJ)Jlk; 

5. Compute a e -approximate J.lk+ 1 -center of rt+ 1 
• 

Recall that a e -approximate J.L-center is a point in <fv that is contained in the e -neighborhood 

of the J.L-center on the central path, that is; 

ATy + s = c, Ax= b, II;- ell~ e < 1. (1.33) 

Note: In case that no cut is returned by the oracle, then steps 1, 2, 3 are ignored. 

In the next section we present our new approach to solve (1.20) and compare it with the 

ones discussed in Sections 1.4.3 and 1.4.4. 

16 
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1.4.5 Convex Optimization Problems and SILP 

Consider the following convex linear optimization problem: 

(1.34) 

where :D is a closed and bounded subset of Rm, and g : Rm --? R is a convex function. 

Problem (1.34) is equivalent to the following SILP 

(1.35) 

where the vector v(Y) E Rm is a sub-gradient of g at Y, i.e., it satisfies the following 

inequality: 

g(y)- g(Y) ~ v(Y)T (y- .Y). (1.36) 

If g is differentiable at Y, then the only sub-gradient of g at y is the gradient V g(Y) (See 

Figure 1.3 for an illustration of sub-gradient cuts). 

17 
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---... -... :.::..::.-:::-

Figure 1.3: The dashed lines indicate two different sub-gradient cuts of the function g at 
y1, while the only sub-gradient cut at y2 is the tangent line. 

18 
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Chapter 2 

A Cutting Plane Method for 

Semi-Infinite Linear Optimization 

2.1 Constraint Generation Algorithm 

Sept. 2008 

In this section we present our constraint generation algorithm for solving SILP. The mate­

rial of this section is selected from paper [26]. Let us consider the SILP (1.20). 

We make the following assumptions: 

Assumption 1. The index set T is compact and the mappings t ~ at and t ~ Ct are 

continuous in t. 

Assumption 2. The feasible set § contains a o -radius full dimensional ball. 

Assumption 3. § is contained in the unit cube [0, 1 r and all m -vectors b and at are 

normalized. 
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Assumption 1 is made to ensure that the optimal solution of the constraint generation 

algorithm coincides with that of problem (1.20), see Lemma 2.1.2. Assumption 2 is needed 

to establish a bound on the number of constraints, and Assumption 3 is a scaling assumption 

that helps to keep the complexity bound simple. 

We now describe the algorithm. Let y be a point in the vicinity of the central path of 

the current LP sub-problem and cify ~ cj, for j = 1, ... ,p be p constraints in $ such 

that cj < &[y. The updated feasible set therefore reads 

where A e Rmxp is composed of the p column vectors &1, i = 1, ... , p, and c = 

(c1; ••• ; cpf. Let Jl+ = (1 - TJ)Jl be the updated barrier parameter for a later-specified 

value 0 < 17 < 1 . The task is now to find a point in the vicinity of the central path of 

the updated discretization, close to the Jl+ -center of <f;J . However, since c < _ATy, then 

_AT y ~ c represent deep cut constraints for <fd, and thus the current pointy is not a feasible 

point of <fd+ . Therefore we first need to derive a strictly feasible point for <f;J . Let 

(2.1) 

where V = _AT (AXZ AT)-1 A, and X= diag(x). Define 

J = p(ATy- c)ft. (2.2) 

Notice that since _ATy- c > 0, and ft > 0, then J > 0. Let a < 1 - (} be fixed. We 
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consider two cases: 

1. Moderately deep cuts: d < aln. In this case we show that all violated cuts cross 

through the Dikin ellipsoid 1 around y and the dual feasibility can be recovered using 

the current point y. 

2. Very deep cuts: There exists a constraint for which Ji ~ a. In this case dual fea­

sibility cannot be recovered. We show that one can recover feasibility in the primal 

space 

'0+ = { x E R~ , u E R~ : Ax +Au = b } , 

and obtain a ()-approximation of the new Jl+ -center using the primal barrier function. 

Lemma 2.1.1. Let <fp and <fn be the primal and dual feasible regions of the current 

discretization problem, respectively. Let J1 be the barrier parameter, and (X, S) be a point 

in the vicinity of the central path that satisfies (1.33). Let p violated cuts _AT y :::::; c be 

added to <]=d. Then, for Ji <a< 1- ()and 11x = -.i2AT(AX2-ATt1Au the vector 

X+= (X+ a/1x; au), 

vector 

s+ = (s + al1s; r) 

is strictly feasible for r:. Recall that u-! E JRP is the component-wise inverse of vector u. 
1The Dikin ellipsoid around a vectors E r~ is the set { l'is : l'is = -A1!1y, lls-1/1s ~Ill}. where 

S = diag(s), see [14] for more details. 
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Proof An analogous lemma is presented in [14] for a cutting plane algorithm with multiple 

cuts where J1 = 1 and d = 0. The directions l!:..x and l!:..s defined in this lemma are similar to 

those of [ 14]. Therefore the proof in [ 14], to some extend, remains valid here. In particular 

A(l!:..x) +Au = 0 is obtained by construction. Furthermore, strict feasibility of the updated 

vectors x + al!:..x > 0 and s + al!:..s > 0 are obtained when a < 1 - () (see [26], Lemma 7). 

We prove that _ATy+ + r = c and r > 0. Notice that AT(Y + l!:..y) + i + l!:..s =c. Thus 

ATI!:..y= -l!:..s and l!:..y= -(AX2ATt 1Au. Therefore, 

and from the KKT optimality conditions of problem (2.1) we have 

':IT- a A-1 1 A A-1 = A y- -u + -(aln- d)u 
p p 

':IT- 1 ~A-1 = A y- -au 
p 

= c. 

On the other hand since d < aln, we have r > 0. D 

Lemma 2.1.1 shows that if the violated cuts are moderately deep then Newton's method 

can be initiated from x+ and s+ to obtain a point in the vicinity of the new central path. In 

the next section we derive a bound for the number of Newton steps required to update the 

Jl+ -center. 

In case 2 (see page 21), when there is at least one very deep cut, dual feasibility cannot 

be recovered because it is not clear how far away the constraint is from the Dikin ellipsoid. 
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In this situation one can still recover primal feasibility using x+, and Newton's method in 

primal space, to update the J.l+ -center. This procedure is repeated until the barrier parameter 

J.1 falls within the desired accuracy. 

The next lemma, proved in [22], shows that the constraint generation algorithm pro­

duces an approximate optimal solution of problem ( 1.20). 

Lemma 2.1.2. Lets> 0 be given. Under Assumption 1, if y E ~ is in the vicinity of a 

j.l-center with J.1 < n+e-Vn, then y is an s-maximizer of problem (1.20). 

We now formally present our algorithm. 

Algorithm (CIPM): 

Initialization. Initiate rJ = [0, 1 r, Jlo = 1 , y0 = ! lm , s0 = ! ln, n0 = 2m, and 

TJo = 
9
Jzm, () = 0.25 and k = 1. 

While (nk + Vri0Jlk ~ s do 

Step 2. Update nk = nk-l + Pk. T/k = 9 ~, J.lk = (1- T/k)J.lk-l 

Step 3a. Compute ft from (2.1) and d from (2.2). If d < aln, then use s+ to start a 

dual Newton procedure to obtain~ and xk := x(~) in the vicinity ofthe J.lk-center 

orr:. 
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Figure 2.1: The method explained in Section 2.1 starts at a point y0 close to the J.lo -center 
of the initial problem. The oracle returns a violated cut (a1; y0) assuming (a1; y0) is a 
moderately deep cut, one recovery step leads us to an interior point yo. After updating the 
feasible set by adding the cut (a1;y1) and updating J.lo at the same time to J.lJ. Newton's 
method is employed to get close to the J.li -center to get y1• If (a1; y1) is a very deep cut, 
then we recover infeasibility by employing Newton steps for the primal problem. 

Step 3b. Otherwise use x+ to start a primal Newton procedure to obtain X' and 

s" := s(X') in the vicinity of the J.lk-center of r;. 

Step 4. k = k + 1. 

End 

2.2 Comparison 

The Algorithm CIPM, described in Section 2.1, is a variant of the Algorithm LBDM, pre­

sented in Subsection 1.4.4, with major differences both from the theoretical and implemen­

tation viewpoints. There are three main theoretical enhancements: 
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First: our algorithm adds violated cuts with no changes to the right hand side. In Algo­

rithm LBDM, when a violated constraint is identified, it is relaxed by changing its 

right hand side to make the current Jl.-center strictly feasible, which of course results 

in loss of information. We keep the violated constraints as deep as they are. 

Second: we extend the analysis to the case where multiple violated cuts are added simul­

taneously instead of adding only one constraint at a time. 

Third: at each iteration we update the barrier parameter together with updating the feasible 

region in the same step. 

25 



Master Thesis, Hamid R. Gha.ffari, McMaster University, Computational Eng. & Sci., Sept. 2008 

Chapter 3 

Implementation 

Our major concern in this thesis is the , Algorithm CIPM, implementation of an algo­

rithm that can solve SILP problems, including any LP with n <« m. A successful piece 

of optimization software requires more than just a good algorithm. Having a good code 

requires good knowledge of the algorithm, linear algebra and linear optimization problem, 

of course. 

The implementation, as well as the algorithm, can be divided into two tasks, oracle 

and computations. Although an oracle is highly case dependent, and it generally differs 

from one problem to another, we consider the oracle as a main part of the implementation 

because it has significant impact on the efficiency of the software. 
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3.1 Oracles 

Recall that $ is the dual feasible set of the semi-infinite linear problem (1.20). By an 

Oracle we mean a machinery to find either that a given point y is in $, or it returns a 

finite non-empty subset Tk of T such that 

T yk a1 y > c1, t E • 

Each specific SILP might need its own oracle according to the constraint generator func-

tions. Here we discuss two main strategies that we use for two types of test problem sets 

that are presented in the next chapter. 

3.1.1 Direct Random Search 

The first search method that we use is the so called Direct Random Search (DRS). In this 

method, we randomly check all the possible indices in the parameter set until we find as 

many violated constraints as we need. The the identified violated constraints are added to 

the current localization as cuts, and the indices of these constraints are removed from the 

set od constraints to be checked. 

The direct random search method has advantages and disadvantages, too. The important 

advantage is that this method works for all types of SILP problems and, in fact, sometimes 

it is the only possible choice (see Examples 4.1.1 and 4.1.5). However, it gets too slow 

as the algorithm gets closer to the optimal solution, i.e., when we need to check all the 

constraints to find violated constraints, when in fact there is none. 
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3.1.2 Sub-Gradient Method 

Consider Problem (1.34). To find out if there is any violated cut at y among the cuts in 

(1.35) one can easily check the value of g(ji). There are two cases: 

1. if g(ji) > 0, then for any sub-gradient v the cut 

is violated by Y, then the oracle returns one or more of these cuts; 

2. if g(ji) ~ 0, then y is feasible for all the constraints and the oracle returns the empty 

set; 

The complexity of finding v strongly depends on g. For instance, if g is differentiable, 

simply, the gradient Vg at y is the only candidate for v. Examples 4.2 and 4.5 are of this 

kind. 

3.2 Implementation 

The implementation of our algorithm presented in Section 2.1 is done in a MATLAB code 

to solve linear optimization problem (1.20). We assume that the feasible set of (1.20) is 

bounded (contained in the unit cube), however, in general the implemented code dose not 

require this assumption. 
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3.2.1 The Initial Problem 

After initialization of a specific problem and the related parameters, we use an infeasible 

primal-dual technic, see Section 1.2.5, to get close to the ,u-center with ,u = 1 of 

The vector bounds lb and ub are considered as the dynamic boundary conditions on y. We 

use these boundaries to make sure we always have a bounded feasible set. The algorithm 

dynamically increases the magnitude of lb and ub as any component of y gets close to 

the corresponding component of lb and ub. The advantage of this strategy is to handle 

problems with unbounded feasible sets by monitoring the increment of each components 

of the boundary vectors. Thus, the algorithm starts with the following matrix A and right 

hand side vector c; 

A= 

0 1 0 -1 

1 0 -1 0 

(ubl c= 
-lb 

2mxl 

mx2m 

By default, we set ub = lm to be the all one vector in Rm and lb = Om to be the zero vector 

in the same space. The implementation is capable of accepting user input of an initial set 

of linear constraints as well. We then simply add the corresponding coefficient matrix to A 

and its right-hand side to vector c. 

The first step is to get close to the ,u -center of the initial problem. The reason that we 

perform this centering instead of taking the middle point is that, in general, we do have 
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some initial linear constraints that would be added to the block constraints at initialization. 

For this purpose, an irifeasible primal-dual method is employed (see Section 1.2.5). 

3.2.2 Recovering Feasibility 

The main loop of our algorithm starts by checking the current value of J1 given in Lemma 

2.1.2 as the stopping criterion. Then the specific oracle is called to return a violated cut, if 

there are any. Clearly, by adding deep cuts to the feasible set, the current iterate y becomes 

infeasible. However, by using Lemma 2.1.1, we can easily recover feasibility when the 

added cut is moderately deep. We use the same method, no mater if the added cut is very 

deep or moderately deep. The reason is that after this update we have primal feasibility 

anyway, and the updated xis a good warm start point for Newton's method in the primal 

centering process, (see [15] for more details). As a result, we can recover dual feasibility 

either by a simple dual steps, or if it is needed, after primal centering steps. 

3.2.3 Primal Centering 

In primal centering steps, we use damped Newton steps to get inside the fJ-neighborhood 

of the jl-center of the primal problem 

min { cT x Ax = b, x ;:::: 0 } , (3.1) 

which is equivalent to solving the KKT system (1.5). We update x by using the Newton's 

direction which is the solution of (1.9). This iterative Newton procedure leads to a {}­

approximate solution of (1.5). 
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To find !:u from (1.9) we first decompose the coefficient matrix AXZ AT into its Cholesky 

factors: 

Then we solve two triangular linear systems Lz = AXZc- jib and LT y = z, using forward 

and backward solving. We implemented subroutines for this purpose that are faster than 

the analogous built in MATLAB functions. Therefore, this way, we have more control on 

these problems. One of the challenges in solving the KKT system is when x becomes 

close to the boundary. In this case, the diagonal matrix J(l has components close to zero, 

and consequently the matrix AXZ AT becomes ill-conditioned. In our implementation, we 

use the Modified Cholesky Decomposition technic proposed by Wright [28]. Due to nu­

merical errors, the search direction ~x computed by (1.9) not always satisfy A~x = 0. To 

overcome this problem we project the computed ~x into the null space of A as follows: 

(3.2) 

To fulfill the non-negativity constraints in (1.6d), we choose a step length a that ensures 

x+a~x > 0. (3.3) 

The maximum value of a, when at least one of the components of the updated point hits 

the boundary of the positive orthant, is calculated as follows: 

{ 
X; } 

amax = max -~X; : ~X; < 0 . (3.4) 
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On the other hand, we want to optimize the primal barrier function 'Pp given in (1.10). So, 

we choose a to be 

a = argmin { 'Pp(x + A~x) 0 ~ A ~ amax } • 

After such a primal centering step we keep iterating until x reaches the (}-neighborhood of 

x11 , that provides US a {}-approximate jl-Center in rp. 
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Chapter 4 

Computational Results 

In this section we test our algorithm on two sets of problems. First we study the conver­

gence behavior of the algorithm on some classical SILP selected from [6], and then we 

show the capability of our algorithm to solve a class of large scale SOCO problems. The 

set of SOCO test problems is randomly generated. We set the accuracy of all examples to 

be 1 o-s, unless otherwise is stated. 

All the test problems were solved on a desktop computer using Intel(R) Core(TM)2 

Quad CPU 2.66 GHz processor with 4 GB RAM. 
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4.1 Examples 

4.1.1 Examples Using Direct Random Search in the Oracle 

In the following examples, Examples 4.1.1 through 4.1.5, we solve an linear optimization 

problem of the form 

min{ f(y) : g(y, t) ~ 0, Vt E T}, 
yeJI!.m 

(4.1) 

where g(y, t) is a linear function of y for a given t in the compact set T. 

To solve these problems of this form by our constraint generation algorithm, we need to 

convert problem (4.1) into the form of problem (1.20). To do this, at each iteration an oracle 

is used to discretize T and identify multiple violated constraints using a random search. 

The violated constraints are then added to the relaxation problem as new constraints, and 

the ,u-center is updated at the same time. At each iteration of the algorithm, therefore, we 

deal with a relaxation problem in the form of (1.1), and its corresponding primal problem 

(1.2), which is a restricted form of the primal of the original problem. 

Example 4.1.1. [6], In this example dual dimension m = 3, and the one dimensional 

parameter set T = [0, 1] is uniformly partitioned into 1000 pieces. We have 

m m 

f(y) =- L:~i' 
i=l l 

g(y, t) = tan(t)- l:y/-1
, 

i=l 

t E [0, 1]. 

The optimal solution of this problem is y* = (0.089073; 0.423147; 1.0450756), with the 

optimal value bTy* = -0.6490412. 

Figure 4.1 shows the convergence behavior of our algorithm for Example 4.1.1. In this 
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Figure 4.1: The primal and the dual objective values when solving Example 4.1.1. The 
horizontal axis represents the iteration count. 

figure we plot the objective values of the relaxed dual and restricted primal problems at the 

current approximate J.L-center of each iteration. The upper (lower) curve gives the value 

of cT x ( bT y ), the objective function of the restricted primal (relaxed dual) problem, at the 

current approximate J.L-center. 

This figure illustrates that our algorithm quickly approaches the optimal value with a 

reasonably small duality gap. Observe that a good ( 10-4 accuracy) approximation of the 

optimal solution is achieved in less than 40 iterations. However, to get a high precision 

( 1 o-s) solution, we let the algorithm run for about 90 iterations. 

Notice that since the primal feasible region of the discritized problem is also feasible 

for the primal of the original problem, therefore cT x at the J.L-center always gives an upper 

bound on the optimal objective value, i.e., the upper curve never crosses the optimal value 

line. However, this is not true for the lower curve. This curve is obtained by evaluating 
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Figure 4.2: CPU time used by the primal centering and the oracle process in Example 
4.1.1. Considering the fact that calling the oracle and the centering procedures are the most 
expensive part of the algorithm, one can imply that most of the time used by our algorithm 
is dedicated to the oracle. This is resulted by the nature of the direct random search oracle. 

bT y, the objective value of the dual problem at a feasible point of the relaxation. Therefore 

this point is not necessarily feasible for the original dual problem. This is the reason why 

the lower curve may cross the optimal value line at the early iterates. 

Another point to be noticed is the CPU time used by the oracle and the primal-centering 

process when solving the problem of Example 4.1.1. Figure 4.2 compares the time used 

by calling the oracle and centering procedures at each iteration. In this example, the oracle 

(solid line) takes the most proportion of time used by the algorithm. This is resulted by the 

nature of the direct random search technic used in the oracle. 
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Figure 4.3: The primal and the dual objective values of Example 4.1.2 along the iterations. 

Example 4.1.2. [ 6] Let y E R5, T = [0, 1] x [0, 1 ], and 

1 1 1 1 1 
f(y) = -yl- zYz- 2Y3- 3Y4- 4Ys- 3Y6• 

g(y, t) = elf+~ - (y1 + t1 Yz + fzY3 + ti Y4 + t1fzYs + ~Y6), t E [0, 1] X [0, 1]. 

The optimal solution of this problem is 

y* = (2.5782999, -4.106585,-4.0981235,4.2450596,4.5222404, 4.2370932f, 

and the optimal objective value is bry* = -2.4338899. The convergence behavior of this 

problem is shown in Figure 4.3. 

The oracle and centering time usage for Examples 4.1.2 through 4.1.5 is mostly the 

same as the one shown in Figure 4.1, therefore we do not repeat these figures here. 
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Figure 4.4: The primal and the dual objective values of Example 4.1.3 along the iterations. 

Example 4.1.3. [6] Let y E R6, T = [-1, 1] x [-1, 1], and 

f =- (4y!- ~(y4 + Y6)) 

g = Y! + fiY2 + t2Y3 + ti Y4 + t!t2Y5 + fzy6- 3- Cti + fz) t E [-1, 1] X [1-, 1]. 

The optimal solution of this problem is y* = (3, 0, 0, 0, 0, O)r, and the optimal objective 

value is j* = -12. See Figure 4.4 to see the behavior of the upper and the lower bounds of 

the approximate optimal solutions. 

Example 4.1.4. [6] Let y E R3, T = [ -1, 4] x [-1, 4], and 

f = -(2y! + 4y2 + y3), t E [-1,4] X [1-,4], 
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Figure 4.5: The primal and the dual objective values, upper and lower curve, of Example 
4.1.4 along the iterations. 

where 

Yt(t" t2) = (1/tt)(exp((-1/tt)(l + (t2 - 1)2
)) 

Y2(t" t2) = (1/ti)(exp((-lfti)(2 + ~/4)) 

Y3(t" t2) = (1/{tt- 2)(exp((-lf(ti- 2))(1 + (t2 + 1)2
)) 

if 

if 

if 

elsewhere. 

This problem has also bounds 0 ::; Yi ::; 1, i = 1, 2, 3, on the variables. 

The optimal solution is y* = (0, 0, 0.2752207f, with optimal objective value f* = -0.275209. 

The objective function behavior is shown in Figure 4.5. 

Example 4.1.5. [6] Consider Example 4.1.4 but with no bound on the variable y. Then, 

the approximate optimal solution is y* = (1.5425, -2.1014821, 0.9345579f, which gives 
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Figure 4.6: In this figure, the upper and the lower bounds of the optimal value of Example 
4 .1.5 converge to the same point which is an approximate optimal value. 

the objective value f* = 4.3862. The lower and upper bounds of the optimal value at each 

iteration is given in Figure 4.6. 

Notice that in Figures 4.3-4.6 the lower and upper curves are not monotonically ap­

proaching the optimal value when the current iterate is far from the optimal solution. This 

phenomenon is due to the fact that these bounds are computed by evaluating the objec­

tive functions of the relaxed dual problem and its corresponding primal problem at the 

current approximate jl-centers . When violated cuts are identified, the feasible region of 

the relaxed dual problem is updated by adding new constraints. Since this problem is not 

solved to optimality, but evaluated at the approximate Jl+- center, the value of the objective 

function is unpredictable at every steps of the algorithm. However, as we get closer to the 

optimal solution of the original problem, these fluctuations reduce, and the lower and upper 

curves become lower and upper bounds of the optimal objective value. Therefore, from this 
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point the curves monotonically approach the optimal value. 

Note that for all examples a good ( 10--4 precision) solution is obtained in about 40 iter­

ations, and most notably our algorithm was able to produce high precision ( 1 o-s ) solutions 

in about 90 iterations. It is also worth understanding that at each cases the time spent in the 

oracle is significantly higher than the time used to re-center. 

4.1.2 Examples a Using Sub-Gradient Method in the Oracle 

Example 4.1.6. Consider the following quadratic optimization (QO) problem 

(4.2) 

where b = (bJ, ... ,bmf, w = (w~o ... ,wmf, and q = (q~o ... ,qm)T aregivenvectorsin 

~m, W = diag(w), andy E ~m is the vector of variables. 

Define the constraint function as 

m 

g(y) = (y- qfW2(y- q)- n wf. 
i=! 

Then, the feasible set of the QO problem ( 4.2) is the subset of ~m that contains the points 

inside and on the boundary of the ellipsoid g(y) = 0. We can express this feasible set as 

the intersection of all the half-spaces introduced by the tangent lines to the boundary of the 

ellipsoid (see Figure 4. 7). 

Let t = (t1, ••• , tm) be a point on the boundary, i.e., g(t) = 0. The gradient of g is 
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Figure 4.7· This figure shows how the feasible region of Example 4.1.6 can be considered 
as a SILP by considering it as the intersection of infinitely many half-spaces introduced by 
the lines tangent to the boundary. 

'Vg(y) = 2W2(y- q). Using the first order Taylor expansion of g around vector we have 

g(y) ~ g(t) + '\i'g(t)T (y- t) 

m 

= (t-qlW2(t-q)+2(t-qfW2(y-t)- n w~ (4.3) 
i= l 

By replacing g(y) by its linear approximation (4.3) at any boundary point t , the optimjza­

tion problem ( 4.2) is equivalent to the following SILP problem 

max { bry (t- q)'W2(t- q) + 2(1- q)'W2(y- t),; 0 >'l; , IE T} , (4.4) 

where the parameter set T is the set g- 1 ({ 0 }). 

We experiment with our algorithm to solve problems in the form of problem (4.2). We 

cho em= 3, w =(I , I, If, q = (O,O, Of, and b = (1 , I, If 
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Figure 4.8: The primal and the dual objective values, upper and lower bounds, of Example 
4.1.6 along the iterations. 

After solving this problem with our algorithm, the approximate optimal solution is y* = 
(0.5126, 0.7126, 0.5067l and the approximate optimal value is bT y* = 1.7320508. Note 

that in this specific case, the solution can be analytically verified, i.e., the exact optimal so­

lution is {1/2, 1/ -../2, 1/2) and the real optimum value is Y3/2. Note that our approximate 

optimal value coincides with the exact optimum up to 8 digits. 

Upper and lower bounds, the primal and the dual objective values, of the optimal point 

at each iteration is given in Figure 4.8. The CPU time usage given in Figure 4.9 shows 

that the time used by the oracle is significantly less than the time used by the centering 

procedure. The reason is that in this example a sub-gradient based oracle is used, see 

Section 3 .1.2. 

Example 4.1.7. As the second large-scale test set we choose to implement our algorithm 

to solve general SOCO problems using randomly generated data. 
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Figure 4.9: This figure shows the CPU time used by the oracle and the centering process in 
solving Example 4.1.6. In this example, the sub-gradient based oracle is employed. 

Consider the following SOCO problem: 

(4.5) 

where b is a non-zero vector in JR.m, lb < ub are real vectors indicating lower and upper 

bounds of y respectively, and lL n is an n- dimensional Lorentz Cone, defined by: 

(4.6) 

The boundary constraints lb ~ y ~ ub are added to ensure bounded feasible set. We use 

the MATLAB function "randn.m" to generate data for matrices Aj and vectors cj from a 

44 



Master Thesis, Hamid R. Ghaffari, McMaster University, Computational Eng. & Sci., Sept. 2008 

Optimum value CPU time (in second) 
k n cuts CIPM SeDuMi CIPM 1 Oracle SeDuMi 
3 1E+6 30 2.9913802 2.9913802 19 I 18 99 
9 5E+5 31 2.9878005 2.9878005 26 I 24 260 I 

27 1E+5 30 2.9751433 2.9751433 11 I 10 105 
81 5E+4 31 2.9492360 2.9492360 14 I 13 147 

243 1E+4 26 2.8790904 2.8790904 10 I 9 86 
729 5E+3 32 2.8021491 2.8021491 13 I 11 135 

2187 1E+3 31 2.5023178 2.5023178 11 I 10 158 
6561 5E+2 28 2.3104156 2.3104156 31 I 27 248 I 

19683 1E+2 33 1.7423363 1.7423363 110 I 101 115 
59049 5E+1 29 1.2555162 1.2555162 861 I 854 1120 

Table 4.1: Comparison of CPU times of SeDuMi and our CIPM implemented on a ran­
domly generated soco problem set with m = 3 and different values of n and k. In this 
experiment we chose the duality gap in both solvers to be less than or equal to 1 o-8

• The 
Oracle column shows the proportion of time used by the oracle in CIPM algorithm. 

normal distribution with mean zero and standard deviation one. We let 

to ensure feasibility, and nj = n for all j' and thus n = LY=l ~+2m. 

At each iteration of the constraint generation algorithm an oracle is called to return a 

cut for a violated second-order cone constraint. This is obtained by computing the gradient 

of the constraint functions at the current approximate jl-center. If no violated constraint is 

detected the algorithm is continued by updating the centering parameter. Our oracle uses 

a random search for identifying violated constraints. This technique works well when the 

number of cones ( k) is relatively small. A more efficient technique is needed to detect 

violated cuts for problems with large number of conic constraints. 
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gap CPU time in second 
k n cuts CIPM SeDuMi CIPM 1 Oracle SeDuMi 
2 1E+6 44 5.74E-03 - 139 I 134 -
4 5E+5 44 5.94E-03 91 I 87 - I -
8 1E+5 46 6.05E-03 6.93E-03 25 I 19 154 

I 

16 5E+4 44 5.72E-03 8.34E-03 14 I 7 166 
32 1E+4 46 5.83E-03 2.06E-03 10 I 4 87 
64 5E+3 49 6.13E-03 8.25E-03 9 I 3 72 
128 1E+3 49 5.95E-03 4.06E-03 9 I 3 18 
256 5E+2 53 6.17E-03 3.50E-03 7 I 2 15 I 

512 1E+2 59 6.26E-03 1.71E-03 6 I 1 8 
I 

1024 5E+l 61 6.59E-03 2.45E-03 5 I 1 5 
2048 lE+l 63 6.58E-03 1.85E-03 5 I 1 2 

Table 4.2: Comparison of CPU time of SeDuMi and CIPM implemented on randomly 
generated SOCO problem with m = 30 and different values of ii and k. The software 
process was stopped when the duality gap reached 1 o-3

• 

Tables 4.1 and 4.2 show the numerical results of this implementation. Each row shows a 

different random problem with characteristics given in the first two columns: k, the number 

of second-order cone constraints in problem ( 4.5) and n, the size of each cone, respectively. 

The column under "cuts" presents the number of gradient inequalities needed to add until 

an approximate optimal solution is reached. 

The next pair of columns in Table 4.1 compare the optimal objective values by solving 

SOCO problem by our constraint generation algorithm CIPM and SeDuMi. The corre­

sponding columns in Table 4.2 illustrate the duality gap at the final solution. The CPU 

times used to achieve these values by CIPM and SeDuMi, rounded to the nearest integer in 

seconds, are reported in the last two columns of these tables. For our algorithm, we report 

CIPM and Oracle to show the total CPU time used by our algorithm and the CPU time used 

by the oracle. 
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A close examination of these results reveals that our constraint generation algorithm 

outperforms classical interior point methods when we deal with problems with large num­

ber of conic constraints of large size, and when m, the dimension of y is relatively small. 

Except for the last two instances of Table 4.2, our algorithm outperforms SeDuMi in terms 

of cpu time. However, it should be mentioned that primal-dual interior point methods, and 

in particular SeDuMi, is superior to our constraint generation algorithm for problems with 

small to moderate values of k, n, and for large values of m . 

Table 4.1 reveals an interesting information. When m is small, duality gap 1 o-s is 

achieved quickly in all of the test problems. This is not a typical behavior of cutting plane 

methods. These techniques are known to have difficulties near the optimal solution (see 

[24, 25]). As m increases the algorithm returns to its traditional performance. This is 

the reason that in Table 4.2 we run the test problems to only three digits of accuracy. In 

this table, we show that our algorithm can reach an approximate solution with reasonable 

precision faster than SeDuMi. 

A disadvantage of our algorithm is that it requires the value of m to be relatively small. 

When the dimension of this space is large, the constraint generation algorithm requires to 

add too many constraints before the desired accuracy is reached. Also the CIPM and the 

Oracle data in Table 4.2 shows that a substantial portion of the CPU time is consumed by 

the oracle in the random search. Clearly a more efficient search could reduce this time and 

consequently enhance the performance of our algorithm. 

Since SeDuMi is designed to work with sparse matrices, we tried our algorithm on 

sparse matrices, too. Table 4.3 shows 10 of our experiences. All the columns are the same 

as in the Table 4.2 except the density column which shows how dense is the coefficient 
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Duality Gap CPUTime(s) 
k n %density cuts CIPM SeDuMi CIPM 1 Oracle SeDuMi 

0.2 40 5.60E-03 4.17E-03 81 I 58 103 
2 1E+6 0.1 46 6.03E-03 9.28E-03 27 I 16 66 

0.05 46 5.78E-03 9.35E-03 35 I 14 41 
0.2 48 5.88E-03 1.66E-02 33 I 14 89 

4 5E+5 0.1 49 5.90E-03 3.37E-02 20 I 10 54 
0.05 47 5.87E-03 5.67E0-2 12 I 8 32 

0.2 51 5.96E-03 1.18E-03 10 I 5 29 
8 1E+5 0.1 48 5.89E-03 2.73E-02 8 I 2 20 I 

0.05 49 6.05E-03 1.09E-02 5 I 2 16 
0.2 52 6.07E-03 1.954E-03 20 I 4 75 

16 5E+4 0.1 50 6.12E-03 1.14E-02 9 I 2 29 
0.05 52 6.01E-03 2.45E-03 5 I 2 22 
0.2 55 6.12E-03 1.23E-03 4 I 0.6 7 

32 1E+4 0.1 54 6.10E-03 6.57E-03 3 I 0.6 5 
0.05 57 6.17E-03 9.63E-03 2 I 0.2 4 
0.2 55 6.11E-03 6.28E-03 4 I 1 9 

64 5E+3 0.1 52 6.03E-03 5.47E-03 4 I 0.7 7 
0.05 54 6.10E-03 1.06E-03 3 I 0.5 5 
0.2 56 6.24E-03 6.11E-03 3 I 0.3 3 

128 1E+3 0.1 59 6.26E-03 4.23E-02 3 I 0.2 2 
0.05 59 6.30E-03 3.49E-03 5 I 0.1 2 
0.2 58 6.38E-03 3.42E-02 4 I 0.2 3 

256 5E+2 0.1 59 6.28E-03 1.47E-03 3 I 0.1 2 
0.05 58 6.54E-03 1.92E-02 3 I 0.1 1 
0.2 60 6.31E-03 2.84E-03 3 I 0.1 1 I 

512 1E+2 0.1 60 6.31E-03 2.47E-03 3 I 0.1 0.8 
0.05 59 6.56E-03 1.89E-02 3 I 0.1 0.6 
0.2 62 6.41E-03 1.79E-03 3 I 0.1 1.5 

1024 5E+l 0.1 60 6.34E-03 4.75E-03 3 I 0.1 1 
0.05 60 6.32E-03 4.38E-03 4 I 0.1 0.7 
0.2 63 6.42E-03 2.13E-03 4 I 0.0 0.7 

2048 lE+l 0.1 63 6.62E-03 2.74E-03 5 I 0.0 0.5 
0.05 63 6.41E-03 2.21E-03 4 I 0.0 0.4 

Table 4.3: This table compares the CPU time used by SeDuMi and CIPM in solving sparse 
SOCO problems. We have m = 100 and the box constraint [yil ~ 300 for all the problems. 
The algorithm process was stopped when the duality gap reached 1 o-3 • 
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matrix A. For each problem we experimented with three different density levels: %0.2, 

%0.1, and %0.05. Both algorithms show better results as we increase sparsity. Our con­

straint generation algorithm exhibits better speed with a small number oflarge dimensional 

Lorentz cones. However, the reverse will happen if we go to large number of cones with 

smaller dimensions, i.e., SeDuMi performs better when a large number of cones are present 

and the size of the cones are fairly small. 
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Chapter 5 

Conclusions and Future Work 

In this thesis we have presented an implementation of our new algorithm to solve a gen­

eral class of semi-infinite linear optimization problem. We developed a well structured 

software in MATLAB. Since the implementation does not dependent much on the built-in 

functions of MATLAB, the implementation can easily be translated to other more efficient 

languages, such as Cor C++. To develop such an implementation is the subject of future 

work. We can also use our code to solve second order conic linear optimization problem as 

we reformulate them into semi-infinite linear ones. Our numerical experiences show that 

this approach is particularly efficient when one has a few second order cones with huge 

dimensions. Although the complexity of our algorithm is exponential (see [26]), in many 

practical cases it provides approximate optimal solutions much faster than central path fol­

lowing methods that are using all the constraints at the same time, instead of using only 

those which are needed. Another advantage of our proposed algorithm is the use of mem­

ory. As our numerical experiences show, SeDuMi runs out of memory when it is dealing 
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with second order cones with huge size. Instead, since we are not putting all the constraints 

in memory, our algorithm uses much less memory. 

Our implementation needs to be improved in the following three parts. The first part 

is the solution of the linear normal equation system (KK.T system). The other part, which 

is strongly depend on the structure of the given problem, is the oracle. As it is clear from 

Tables 4.1, 4.2, and 4.3, a high percentage ofthe CPU time is used by the oracle, specially at 

the later iterations when very few violated cuts needed to be found. Having a good strategy 

to find violated constraints would help reducing the time of the search process used by the 

oracle. Another possibility to enhance the computational efficiency of our algorithm is to 

use some efficient heuristics, such as Mehrotra's update, to reduce the centering parameter 

J1 to make convergence to optimality much faster. 
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Appendix A 

Duality Theory 

A.l Linear Optimization Duality 

Consider the linear optimization problem (1.1) and its dual (1.2). For simplicity, denote 

primal problem (1.1) by (P) and denote its dual problem (1.2) by (D). 

Theorem A.l.l (Weak Duality). Let x and s be feasible for (P) and (D), respeCtively. 

Then cT x - bT y = xT s ;::: 0. Consequently, cT x is an upper bound for the optimal value 

of (D), if it exists, and bT y is a lower bound for the optimal value of (P), if it exists. 

Moreover, if the duality gap xT s is zero, then x is an optimal solution of (P) and (y, s) is 

an optimal solution of (D). 

Theorem A.1.2 (Duality Theorem). If (P) and (D) are feasible then, both problems have 

optimal solutions. Then, x E l)='p and (y, s) E lf'n are optimal solutions if and only if 

xT s = 0. Otherwise, neither of the two problems has an optimal solution; either both are 
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infeasible or one of them are infeasible and the other one is unbounded. 

Theorem A.1.3 (Goldman-Tucker Theorem). If (P) and (D) are feasible then, there exists 

a strictly complementary pair of optimal solutions, that is, there is an optimal solution pair 

(x, s) satisfying xT s = 0 and x + s > 0. 

Proofs can be found in [27]. 

A.2 Semi-Infinite Linear Optimization Duality Theory 

Consider the following semi-infinite linear optimization problem; 

where ci E R, ai E Rn and b E Rm, and xi > 0 for only a finite number of indices i, i.e., 

all the sums have only a finite number of non zeros components. 

Considering T = { 1, 2, 3, ... } , the linear optimization problem ( 1.20) is the dual form 

of the problem (Poo) which is 

Recall that a program is called consistent if is has a feasible solution. In general, and 

without any regularization technics, there is no reason that all such problems as ( P oo) can 

be discritized in order to be solved iteratively, or the optimal value of ( P oo) and (Doo) 

coincide. 
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Example A.2.1. Consider the SILP problem 

inf{y1 ty!+(l-t)y2;::t-r, te(0,1)}. (A.l) 

For any fixed t E (0, 1) the optimal value of the SILP problem given by (A.1) is -oo, but 

the optimal value ofproblem (A.1) is 0, (see [12], Example 1.1). Thus, some conditions 

are needed to ensure that problem (P oo) can be solved by discretization, or by constraint 

generation technics. 

Theorem A.2.2 (Weak Duality). If (P oo) and (Doo) are both consistent, then the optimum 

value of (P oo) is grater than the optimum value of (Doo), and both values are finite. 

Theorem A.2.3 (Complementary Slackness). If x = (x;):1 is feasible for (Poo), y E Rm is 

feasible for (Doo) and 
00 

2:: x;(c;- af y) = 0, (A.2) 
i=l 

then xis optima/for (Poo) andy is optima/for (Doo). 

Having formulated the primal and dual problems, we now state conditions which will 

ensure that their optimal values coincide. First we need to define two sets: 

Note that MA and M8 are cones in Rm and Rm+I, respectively. 
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Theorem A.2.4. If the optimal value of (Doo) is .finite and MB is closed, then the optimal 

values of(Doo) and (Poo) coincide. 

The proofs of the theorems can be found in [1]. 

Example A.2.5. Considering the Example ofKamey (see Example 1.3.1), MA is the cone 

generated by 

{ (-1,0)' (0, 1)' (-1, 1/3)' (-1, 1/4)' ... }, 

and MB is the cone generated by 

{ (-1, 0, 1)' (0, 1, 0)' (-1, 1/3, 0)' (-1, 1/4, 0)' ... } . 

Note that the vector b = ( -1, O)T in this example is on the boundary, not in the interior of 

MA, and MB is not a closed cone. Hence, we cannot expect to have zero duality gap in this 

example. 
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