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ABSTRACT 

Atherosclerosis generally occurs near the branching in the arteries where there tends to be 

flow irregularities. A build up of fatty deposits (plaque) occurs in the blood vessel in such 

regions making it to lose its elasticity. Such hardening of the arteries and the narrowing 

of the lumen can cause severe atheromas and even high blood pressure and blockage of 

the vessels. It is observed in North America that nearly 47% of the deaths are caused due 

to cardiovascular diseases and hence determination of such regions becomes very critical 

and can be very beneficial if done at an earlier stage. In this thesis, we present: an 

approach to model the pulsating flow of blood through such an atherosclerosis affected 

region of the artery using finite element method and further discuss the statistical model 

used to implement the optimization techniques to estimate the region of maximum 

rigidity. Here within we present a numerical and non-invasive approach to predict such 

regions. The computational modeling is carried out under two categories: a. The 

mathematical model and b. The statistical model. 

The mathematical model which is the forward model, comprises of the artery and the 

cardiac muscle as hyperelastic material modeled with the neo-hookean model and the 

three dimensional Navier-Stokes equations solve for the blood flowing through it. We 

perform fluid dynamic analysis for the blood flowing through the vessel to compute the 

velocity at different time instances and mechanical analysis to compute the deformation 

of the artery which is a function of the elasticity of the vessel. The two models are 

interconnected to each other by boundary conditions as the normal component of the 
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surface force provides the coupling between the two models. The shear modulus 

represents a measure of the elasticity of the vessel. We use linear spatial basis functions 

to model the shear modulus which spatially varies along the geometry of the vessel thus 

we have a region of atherosclerosis and the geometry shows the stenosis. The change in 

the shear modulus affects the velocity of blood through the vessel. 

In the statistical model, we propose an inverse computational model for estimating the 

elasticity profile of the arterial wall where we implement the inverse modeling approach 

to estimate the maximum shear modulus which helps us to predict the region of 

atherosclerosis. The velocity and the deformation obtained for a particular shear modulus 

from our COMSOL forward model provide the realistic simulated measurements that are 

made noisy by introduction of white Gaussian noise with different SNR and we try to 

estimate the shear modulus that minimizes the error-function. We use COMSOL with 

MATLAB for simultaneous iterative computations of velocity and deformation 

measurements by running the optimization code. We estimate these unknown parameters 

using optimization algorithm that minimizes the cost function of our model. For our 

estimation we use the least squares estimator and we derive the maximum likelihood 

estimator. The unconstrained optimization is carried out with Neider Mead Simplex 

Method and the Trust Region Method which uses only the function evaluations to find 

the minimum: making it a very robust algorithm and very efficient for problems that are 

nonlinear or have a number of discontinuities. Our preliminary results demonstrate 

significant change in velocity of the blood and occurrence of vortices in the region of less 

elasticity and the tendency of the artery to deform minimum in the hardened less elastic 
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region. Our estimation results show that the parameters are identifiable. The mean square 

error of the estimate as a function of SNR shows accuracy of the estimation. 
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Chapter 1 

Introduction 

Blood flow in the arteries is a complex process of cellular interactions consisting of 

mechanical, electro-mechanical and electro-chemical components as a result analyzing 

the blood flow is a very difficult process. However nearly 47% of the deaths in North 

America are caused by cardiovascular diseases and this has created significant research 

interest directed towards developing cardiovascular imaging techniques, diagnosis 

procedures etc. An essential and important part of these efforts is mathematical modeling 

that enables us to evaluate different scenarios from a clinical perspective: to obtain more 

accurate diagnosis of pathological conditions and from academic point of view to study 

the causes behind occurrence of such a condition. Modeling the blood flow is a very 

complicated process if done at a cellular level where we have to incorporate all the 

electro-mechanical and electro-chemical interactions taking place, which is not 

computationally feasible at this point, however to study a certain condition we need not 

have to necessarily focus on all the aspects ofblood flow. We can focus on one particular 

aspect of the blood flow and try to develop an inverse model which can be useful for 

improved diagnosis on predicting the onset of certain pathological condition. We focus 

on the mechanical aspect associated with the blood flow and if we can detect the trend in 

the change in elasticity sufficient enough, we can take the necessary actions in prevention 

pathological condition such as atherosclerosis. 
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Blood flows through the artery under the influence of an applied pressure drop across the 

artery. Human blood is a suspension cells in an aqueous solution of electrolytes and non 

electrolytes. The blood is separated into plasma and cells. The plasma is about 90% 

water, 7% plasma protein, 1% inorganic substances and 1% other organic substances. 

The cellular contents are essentially all erythrocytes, or red cells with white cells of 

various categories making up less than l/800th of the cellular volume and platelets 

making up less than 1!60dh cellular volume. Normally the red cells occupy about 50% of 

the blood cellular volume. The viscosity of the blood depends on the amount of 

suspended particles, mostly red blood cells in the blood. The viscosity of blood is 

generally observed [McDonalds, 1990] to range from 1.2cP to 70cP for different range of 

shear rates. In large blood vessels, whose dimensions are much larger than the 

dimensions of the red blood cells, the blood appears to be a homogeneous fluid and the 

blood in such a case is treated as a Newtonian fluid with constant coefficient of viscosity 

without causing a significant error on the pressure flow relationship. The blood pressure 

decreases as the blood moves away from the heart. The typical values of the arterial 

blood pressure [Fung, 1990] for a resting healthy adult human range from are 

approximately 120 mmHg systolic and 80 mmHg diastolic with significant individual 

variations. If the tube is elastic then high pressure end would distend more than the low 

pressure end. The diameter of the vessel therefore becomes non-uniform and the degree 

of non-uniformity depends on the flow rate. If we wish to determine the pressure flow 

relationship for such a system we may break the problem into two familiar components 

we regard the vessel to have a specified wall shape, for a given flow we compute the 

2 



Master's Thesis - Tushar Gadkari. McMaster University- ECE Dept. 

pressure distribution. This pressure distribution is then applied as loading on the elastic 

artery, we then analyze the deformation of the artery according to the theory of elasticity 

for hyperelastic vessels. The result of this calculation is used to determine the boundary 

shape of the fluid dynamic problem. When a consistent solution is obtained the pressure 

distribution corresponding to a given flow and the shape of the vessel is determined. The 

arteries are structurally made up of connective tissue embedded in layer of smooth 

muscle this gives the elastic nature to the arteries. The elasticity of the arteries is 

observed to be 'in the range of 104-109 dyne/cm2
, [Mcdonalds, 1960, Bergel1961]. In the 

arteries, there can be formation of abnormal regions of hardness due to a build up of fatty 

deposits or plaque making it to lose its elasticity. Such hardening of the arteries and the 

narrowing of the lumen can cause severe atheromas and even high blood pressure and 

blockage of the vessels. Determination of such regions can prove very beneficial if done 

at an earlier stage. 

The forward problem associated with blood flow modeling comprises of the artery and 

the cardiac muscle as a hyperelastic material [Fung, 1965, Fung, 1993], and the three 

dimensional Navier-Stokes equations [Kundu, 2004], solves for the blood flowing 

through it, where we perform fluid dynamic analysis for the blood flowing through the 

vessel to compute the velocity at different time instances and mechanical analysis to 

compute the deformation of the artery which is a function of the elasticity of the vessel. 

The immersed boundary method [Peskin, 2002], is both a mathematical formulation and 

numerical scheme that employs a mixture of eulerian and lagrangian variables to model 

the fluid structure interaction at the boundary. It is employed to derive the equations of 
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motion for an elastic material. [Rosar, Peskin, 2001 ], used the immersed boundary 

method to model the flow in collapsible tubes. The equation of immersed boundary can 

be implemented using different numerical methods, such as the Navier-Stokes equations, 

that can be solved numerically for the blood flowing through the vessel using finite 

element method and the deformation that is computed by modeling the artery as a neo 

hookean case of hyperelastic material. These are well posed problems where we obtain 

the measurements from a model under the set of given parameters [Peskin, 2002]. 

Conversely, in an inverse problem we estimate the elasticity of the artery from the 

velocity and the deformation measurements to predict the region of atherosclerosis. In 

this case we have the measurements available to us and we try to predict the model 

parameters from these measurements. The inverse problem is actually the one that is 

made difficult by two characteristics. The first it does not have a unique solution i.e. the 

relationship between the true measurement point and the remote observations are not 

unique such that the same set of measurements could result from more that one 

parameter. The second problematic characteristic is that the problem can be ill posed. 

One way of improving the ill posed problem is to impose constraints on our solution 

which will restrict the admissible class of solutions, so that a continuous inverse exist. 

Some work has been done in developing inverse problems on blood flow and elasticity 

estimation using different modeling techniques: [Hasegawa, 2006] tried to estimate the 

displacement of the artery as a measure of elasticity of the artery, [Garbey, 2005], tried 

estimating the average blood flow and vessel location [Whiteley, 2005], localized the 

breast tumor by computing the coordinates of an undeformed elastic body. 
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Research Outline 

In our study we try to develop our computational model in two main categories: First the 

computation of a transfer vector that establishes a relationship between the simulated and 

actual measurements ofblood flow. Then second we develop an inverse model by solving 

an optimization problem by using the aforementioned transfer vector. 

We outline the research approach in the following steps: 

1. Develop a finite element model for the flow ofblood through the artery to obtain 

the source to transfer measurement matrix for blood flow and deformation in the 

artery. 

2. Perform statistical analysis on the measurement matrix obtained from our forward 

model. 

3. Propose an inverse computational model for estimating the elasticity profile of the 

arterial wall. 

4. Analyze the results and evaluate the performance of our estimation to infer 

appropriate conclusions. 
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Thesis Layout 

This thesis comprises of six chapters. In the Chapter 2, we introduce the reader to the 

concepts of mathematical modeling; discuss the governing equations associated with 

modeling the blood flow through the arteries, the equations describing the deformation 

occurring in the artery and some basic assumptions associated with the modeling. 

Further, in Chapter 3 we implement the mathematical model described in the previous 

chapter, present numerical examples demonstrating the blood flowing through a branch 

of an artery and the behavior of blood flow in the region of atherosclerosis. Here we also 

provide a brief overview of the programming aspects of finite element analysis associated 

with the numerical computations. In the Chapter 4, we describe the statistical model, 

including the development of our measurement model and estimation algorithms. Then in 

Chapter 5, we present the applicability of our statistical model where we use numerical 

examples to demonstrate the performance measures of our estimators and discuss our 

numerical results obtained by implementation of the estimation algorithm in MATLAB. 

Our study is concluded in Chapter 6 where we also discuss the future directions for this 

research. 
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Chapter 2 

Mathematical Modeling 

In this Chapter, we discuss the governing equations associated with modeling the blood 

flow through the arteries, the equations describing the deformation occurring in the artery 

and some basic assumptions associated with the modeling. 

2.1 Modeling the Blood Flow 

As described earlier, the blood is a suspension of particles like erythrocytes that are 

suspended in plasma making it to behave as a non-newtonian fluid. Further, in smaller 

vessels of internal radius less than 0.5 mm, the changes in apparent viscosity occur, 

however, in the larger vessels; blood may be considered as a homogeneous fluid with a 

viscosity that is independent of the velocity gradient. It has been shown, [Whitemore, 

1968], [Schmid-Schonbein, 1976], [Cokelet et al., 1980], [Dintenfass and Seaman, 1981] 

and [Dintenfass, 1985] that, in vessels in which the internal diameter is large compared 

with the size of the red blood cells; it behaves as a Newtonian fluid. We model one such 

larger section of the artery where the blood behaves as a homogeneous, Newtonian fluid. 

The motion of the blood in such a region of the artery is described by the continuity 

equation and the Navier-Stokes Equation [Kundu, 2004]. 

For notational simplicity, we use the Einstein's notations, where for a variable v, a scalar 

vis denoted as v, vector vis denoted as v1 for i=1,2, ... ,n, where v1represents a row vector 
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and a column vector is represented as (vJr. A matrix vis denoted as Vij for i=l,2, ... ,n, 

}= 1,2, ... ,m, where i is the number of rows and j is the number of columns. The matrix 

N 

multiplication a Jk = ~ u 11 v Jk is represented as a Jk = u 11 v Jk and the multiplication of a 
}=I 

2.1.1 Continuity Equation 

The continuity equation presents the conservation of mass law which is given by 

(2.la) 

The particle derivative Dp is the rate of change of density following the blood particle. 
Dt 

It is made of two parts: opl ot which is the local rate of change of p at a given point and 

the second part is the convective derivative, v1 op which is the change in pas a result of 
OX; 

the convection of the particle from one location to another. It can be non zero because of 

the changes in the pressure, temperature or composition; however blood is considered to 

be incompressible in the regions where its density does not change with pressure. The 

continuity equation in the incompressible form reduces to 

(2.1b) 
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r(O)=a 

Particle Derivative 

.... 1 Dp = ap + , •. v P 
Dt fJt 

Particle -Lagrangian description. 

xl Independent 1'ario../Jles: (a,t) 

x3 

Dependant variables: r(a,t), '' = (Br 1 fJt)a,p=p (a.,t), etc 

x2' 

x3' 

Field -EuleriQII descrlptien. 

Depe~rdanl "'ariables: v = (r', t'), p= p (r',t ), etc 

Fig. 2.1 Eulerian and Lagrangian Description of Motion, [Kundu, 2004] 
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2.1.2 N avier-Stokes Equation 

The Navier-Stokes equation states that the changes in momentum in infinitesimal 

volumes of blood are simply a sum of the dissipative viscous forces, changes in pressure, 

gravity, and the internal forces acting inside the blood and is given by 

(2.2) 

where p denotes the density of blood, v denotes the velocity of blood, pg1 is the 

gravitational force, the term Bp represents the pressure gradient in a particular direction, 
a xi 

and the Kronecker delta ~ij is defined as 

o .. ={1,\/i=j 
u O,Vi* / 

(2.3) 

Further, in the Navier-Stokes equation, ~[2f..l·eiJ-'!:_f..l·(av1 )·oiJ] represents the 
ax} 3 axi 

surface forces where 

(2.4) 

is the strain rate tensor that represents the symmetric part of the velocity gradient tensor 

given by 

10 
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(2.5) 

The anti-symmetric part here produces fluid rotation without deformation, and cannot by 

itself generate stress. The stresses are generated by the strain rate tensor. Here we 

consider a linear relationship between shear stress o-IJ and the strain rate emn of the type 

(2.6) 

where Kijmn is a fourth order tensor of viscosity coefficients having 81 components, where 

each stress component is linearly related to all nine components of eij. We note that 81 

parameters are required to describe this relationship [Aris, 1962]. However as we 

consider the blood to be isotropic medium and the stress tensor to be symmetric, the 

stress-strain relationship is independent of the rotation of the co-ordinate system, and thus 

Kijmn has the form 

(2.7) 

where A, f.l, and r are scalars that depend on the local thermodynamic state. As o-IJ is a 

symmetric tensor (2.6) requires that KIJmn also must be symmetric in i and j. This is 

consistent with equation (2. 7) only if r = f.l . Thus only 2 constants A and f.l are left of 

the original 81 constants. Thus (2.6) becomes 

(2.8) 
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Ov 
where e = - 1 is the volumetric strain rate and the dynamic viscosity of the blood p, 

mm axl 

provides interaction between the blood and the inner wall lining of the artery. 

The complete stress tensor in our case is thus described as 

(2.9) 

where in addition to shear stress a-iJ the blood develops additional components of stress 

due to thermodynamic pressure p, these are represented as the diagonal terms of the 

stress tensor T. For blood in motion this can thus be split into a part - poiJ that would 

exist if it were at rest and a shear stress tensor part a if due to the fluid motion alone thus, 

(2.10) 
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2.2 Boundary Conditions 

In the previous section, we have defined the continuity equation and the Navier-Stokes 

equation in the three directions thus we have four equations. To compute the four 

unknown variables: the velocity of blood in the three directions and the pressure at that 

point, we need to solve these four differential equations. For this we need boundary 

conditions. We impose the boundary conditions as the known pressure drop across the 

branch ends of the artery and the second being the no-slip condition. 

The no-slip condition is the flow conditions at a contact surface between the artery and 

the blood. The blood has a tendency to adhere to the surface because of the 

intermolecular interactions; that is it satisfies the condition of zero relative velocity at the 

artery surface. There are actually two conditions: one on the normal velocity and one on 

the tangential velocity. When we consider an artery that confines the blood flowing 

through it, a kinematic condition we impose is that the particle paths cannot go into the 

solid. Mathematically, the requirement is that the fluid velocity perpendicular to the wall 

vanishes. Ifni is the local unit normal to the surface, the condition is expressed as 

Viscosity is responsible for the velocity component that is tangential to the wall. The no 

slip condition is velocity at the wall is given as 

(2.11) 
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These conditions enter into the mathematical formulation of the flow problem thus 

enabling us to solve of the four unknown parameters. 
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2.3 Modeling the Deformation in the Artery 

The deformation in the artery results as the pulsating blood flow exerts a pressure on the 

inner wall of the artery. We assert that the deformation can be measured only relatively 

with respect to some reference state in which the cross-sectional plane is considered to be 

undeformed. We consider the state of the beginning of the pressure pulse in the artery as 

the undeformed state and neglect the residual strain present in the artery. Thus every 

material particle P has a reference state So with three coordinates ai, i=l,2,3 and a 

neighboring particle P' has coordinates ai+da 'i, when the artery is deformed the particles 

P,P' are moved to Q,Q' whose coordinates are Xi and xi+dx'i respectively. The 

deformation in the artery is completely known if for every point we can compute 

i = 1,2,3 (2.9) 

where ui is the displacement of the particle P. 

It is not practically possible to have one on one mapping of the points so we resort to 

computing the partial derivatives that provide the necessary information. We express this 

as deformation gradient F 

(2.10) 
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Fig. 2.2 Deformation in the Artery, [Fung, 1993] 
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Physically, what the deformation gradient enables us to do is to describe how the distance 

between two neighboring points P(aJ,P'(ai+daJ is changed after they are deformed to 

Q(xJ, Q '(xt+dxJ. 

The deformation gradient thus provides us with all the information about the complete 

deformation and the location of the artery undergoing deformation under the influence of 

the pressure exerted by the blood on its wall. The deformation gradient is a positive 

definite matrix as long as the artery is not annihilated. 

To model the deformation in the artery we start with the Green's strain tensor Eij, that 

characterizes the deformation near a point. [Fung, 1993; Landau, 1970]. It is given as 

(2.11) 

The pressure exerted by the blood on the wall of the artery produces the stress in the 

artery that causes the artery to deform. To model the stress strain relationship, we 

consider the artery and cardiac muscle and to be a hyperelastic material. A hyperelastic 

material is characterized by its strain energy function Whyp, which is the function of its 

strain state. The stress in such a material is computed from its strain energy function Whyp 

as described below. 

Work is done by the blood in applying the force on the wall of the artery. The force 

multiplied by the velocity of its travel is the power of the force. Now let us assume a 

blood vessel tied at one end and loaded by a force at the bottom. In the deformed state the 
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length of the specimen be Lo, cross-sectional area be a , the longitudinal stress is u, so the 

force is u. a. if the length is extended by a small amount oL then the work done is u. a. oL. 

Hence the work done by the force per unit original volume is 

WorkDone a·a·8·L 
(2.12) ----=----

We denote the work done by the force per unit mass by the symbol oWhyp. and the mass 

per unit volume or the initial density by po. Thus Po.oWhyp is the work done or the strain 

energy per unit volume. The work energy function Whyp can be expressed in of nine terms 

of strain components Eij when the partial derivatives of Whyp are formed. When such 

strain-energy functions exist the stress components Sij can be obtained as derivatives of 

Po. oW 

(2.13) 

where 

(2.14) 

is the Piola-Kirchoff stress. It is computed by the numerical differentiation of the strain 

energy function. 
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Thus with the expression (2.14) we establish a relationship between the Cauchy stress Tij 

(2.9) defined with respect to the present configuration and the Piola-Kirchoff stress 

defined with respect to the reference configuration of motion. For infinitesimal 

deformations, the Cauchy and Piola-Kirchoff stress tensors are identical. 

Further, in Chapter 3 we will discuss the implementation of the forward model, the 

programming aspects associated with it and some related concepts of mathematical 

modeling. 
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Chapter 3 

Implementation of the Mathematical Model 

In this Chapter, we implement the mathematical model described in the previous chapter, 

present numerical examples demonstrating the blood flowing through a branch of an 

artery and the behavior of blood flow in the region of atherosclerosis. Here we also 

provide a brief overview ofthe programming aspects of finite element analysis associated 

with the numerical computations. 

3.1 Modeling with COMSOL MULTIPHYSICS 

COMSOL MULTIPHYSICS (FEMLAB) is a finite element analysis and solver software 

package that solves different engineering problems which are formulated by partial 

differential equations (PDE's). The Multiphysics environment along with different 

modules features a variety of solvers that address complex non-linear problems formed 

by a combination of differential equations. COMSOL even provides an extensive 

interface to MATLAB which gives us the ability to export the model into the MATLAB 

environment and exploit its numerical computing techniques. It also allows for entering 

coupled systems of partial differential equations wherein two models can be made to 

interact with each other by coupling the parameters that govern the equations, for 

example, the pressure from the Navier-Stokes model can be used in the stress-strain 

model to produce the deformation in the artery as a proportion of the applied pressure. 
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With the COMSOL-MATLAB INTERFACE we intend to develop a forward model that 

computes numerically the flow of blood through a section of an artery under normal 

conditions as well as in the presence of atherosclerosis. 

The Mathematical model which we refer to as the forward model consists of the pulsating 

blood flowing through an artery embedded in the cardiac muscle. The artery and the 

cardiac muscle are modeled as a hyper-elastic material modeled with the neo-hookean 

model, and the three dimensional Navier Stokes equation (2.2) solves for the blood 

flowing through it. The blood is modeled to flow under the no slip condition along the 

inner linings of the arterial wall. The blood flows under the influence of pulsating 

pressure drop [fig. 3.5] across the artery. We consider a time varying function for 

pressure drop, defined as 

(3.1) 

where l!.p is the pressure drop across the branch of the artery. Thus we perform fluid 

dynamic analysis for the blood flowing through the vessel to compute the velocity at 

different time instances. Mechanical analysis is done to compute the deformation of the 

artery and muscle which is a function of the elasticity of the vessel. The pressure 

computed from the Navier-Stokes model is provided as a boundary condition for the 

mechanical analysis done with the stress strain model. The two models are interconnected 

to each other by boundary conditions as the normal component of the surface force 

provides the coupling between the two models. 
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If we consider a section of an artery, its elasticity lies within a certain range. There are 

some tissues that may have a homogeneous elasticity profile over a large region of the 

artery, while in cases of some pathological condition like atherosclerosis the elasticity 

might vary drastically, and a section of non homogeneous elasticity profile is observed. 

To model such arteries we choose the shear modulus which is a measure of the elasticity 

of the artery. 

3.1.1 Homogeneous and isotropic elasticity profile 

The arteries have large number of sections over which the elasticity does not change 

significantly. Such regions can be modeled have an elasticity profile that does not change 

from one point to another and is the same at a given point in all directions. Such an 

elasticity profile can be modeled as 

G(r)= g, (3.2) 

where g is the constant shear modulus. 

3 .1.2 Non Homogeneous and isotropic elasticity profile 

There are regions in the artery where the elasticity changes considerably along its length. 

To model such regions we can have an elasticity profile that changes spatially and can be 

expressed as function of a linear combination of different spatial basis functions 

q 

G1(r)= Lg1 • J;(r), (3.3) 
1=1 
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where q is the number of unknown basis functions and fi(r) are the spatial basis functions 

modeling spatial variations. 

3.1.3 Non Homogeneous anisotropic elasticity profile 

The arteries are complex cardiovascular tissues whose structure can vary quite 

significantly from region to region. To model such complexity in structure we need a 

more detailed representation of the elasticity profile, which changes from one point to 

another and is different in different directions as well. For example, we can model the 

shear modulus that has different shear components in different directions. This can be 

done by explicitly specifying 36 components of the compliance matrix that expresses the 

relationship between the stress and the strain. 

3.2 Numerical Example for the Forward Model 

We create a numerical example to implement the forward mathematical model. In this 

numerical example we take into consideration the condition when the blood flows 

through the artery without any irregularities in the hardening of the vessel and the case 

when there is atherosclerosis present in the artery. Note that we are simulating the 

measurements for the blood flow to validate that the elasticity parameters can be 

estimated and that the inverse model implemented later is applicable and can be used in 

realistic clinical environment. 
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For implementing the mathematical model we set the density of blood p = 1060 kg/m, 

viscosity of blood 11 = 0. 005 Pa-s, and vary the pulsating pressure from 8000 to 16000 

Pa. [Fung, 1990] modeled as a time varying cosine function of the pressure drop across 

the artery. The cardiac muscle and the artery have the poisson's ratio v = 0.5, [Fung, 

1990]. Furthermore, we consider the artery and the cardiac muscle to be a case of 

homogeneous, isotropic hyperelastic material. By this we mean that the third invariant of 

the right Cauchy Green tensor, C=FFT (2.10) is equal to 1, and the poisson's ratio 

v = 0.5, [Fung, 1990]. The stored energy functionWhyp = Whyp(lp12 ), can be expressed in 

the polynomial form [Fung, 1993; Fung, 1990] as 

00 

whyp = _Lcv(I1 -3Y{I2 -3)1, (3.4) 
1=0,}=0 

where !1 and hare the invariants of the right Cauchy Green tensor. For different values of 

i and j different hyperelastic models are obtained. We use the simplest and the most 

widely used neo-hookean model [Fung, 1993; Fung, 1990]. 

(3.5) 

where 11 is the trace of right Cauchy Green tensor C, and the constant C10 = ..!... .G where 
2 

G is the shear modulus. The cardiac muscle is modeled to have a constant shear modulus 

G = 7e5 Pa. The artery is modeled to have a homogeneous and isotropic elasticity profile 

as described in (3.2) with shear modulus 6e6 Pa, and the atherosclerosis region is 

26 



Master's Thesis - Tushar Gadkari. McMaster University- ECE Dept. 

modeled with non homogeneous and isotropic elasticity profile (3.3). In this case, we 

choose spatially varying exponential basis function having a decay constant a = 2 , and 

the shear modulus varying in the range between 6e6 Pa to 8e6 Pa. [Fung, 1993]. 

The blood-vessel geometry structure available to us as a parasolid file, is imported into 

the COMSOL environment. The structure being divided into three subdomains [fig 3.3] 

models the blood, artery and the cardiac muscle. Meshing the geometry with tetrahedral 

elements enables us to create a finite element model with degrees of freedom as 

illustrated in [fig 3.4] along with the size and the number of elements. We create a 

relatively finer mesh in the region of interest to study the deformation and the flow with 

better accuracy where as resort to a relatively coarser mesh in the outer less important 

region of cardiac muscle to save the time on computation. 

To solve the model we use the time dependant 'SPOOLES' solver provided in the 

COMSOL package which works on the general systems of the form Ax = b using the 

multi-frontal method and the direct LU factorization of the sparse matrix A. [Ashcraft, 

1999]. 

The rigidity profile [fig 3.8] shows the elastic behavior of the artery and the deformation 

plots [fig 3.6 and fig 3.10] enables us to study the deformation as a result of abnormal 

hardening in the artery. The irregularities in the blood flow in presence of atherosclerosis 

[fig 3.9] can be compared with the normal flow ofblood [fig 3.7]. 
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Fig. 3.3 Subdomain Geometry Plot. 
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Fig. 3.4.a Mesh Plot. 

Number of degrees of freedom 22663 
Number of mesh points 857 
Number of tetrahedral elements 4162 
Number of boundary elements 1670 
Number of edge elements 346 
Number of vertex elements 52 
Minimum element quality 0.1881 

Fig. 3.4.b Me h Parameter . 
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Fig. 3.5 Pulsating Pressure Plot. 

Fig. 3.6 Artery Deformation Plot. 
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Fig. 3.7.a Blood Flow at Time T/4 sec. 
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Fig. 3.7.b Blood Flow at Time T/2 sec. 
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Fig. 3.7.c Blood Flow at Time 3T/4 sec. 

t tl • 

Fig. 3.7.d Blood Flow at TimeT ec. 
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Fig. 3.8 Elasticity Profile demonstrating Atherosclerosis. 
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Fig. 3.9 a Blood flow at Time T/4 sec under influence of atherosclero is. 

Fig. 3.9 b Blood flow at Time T/2 ec under influence of atherosclero i . 
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Fig. 3.9 d Blood flow at TimeT sec under influence of atherosclero i . 
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0..011 

Fig. 3.10 Artery Deformation Plot under the influence of Athero clero i . 
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Chapter4 

Statistical Modeling 

In this Chapter, we propose a statistical model for the simulated measurements obtained 

from the Forward Mathematical Model described in the earlier chapters, and use the 

inverse modeling technique to predict the atherosclerosis affected region in the artery. 

4.1 Measurement Model 

We obtain measurements from the finite element model that is used to simulate the 

experiments or the imaging process. Finite element model with large number of point and 

some what realistic elasticity parameters can be used to simulate the actual experimental 

measurements. In realistic measurements we always have an inherent occurrence of 

measurement noise. This noise may be due to our inability to obtain the measurements 

accurately such as an uncertainty in the data acquisition process or may be a result of 

experimental limitation such as in tagged MRI we only have a certain degree of 

knowledge about where the displacement can be obtained or in case of Doppler 

ultrasound the images are obtained with a certain resolution. Thus when we obtain the 

measurements for velocity by Doppler ultrasound method we have noise and sources of 

errors in measurement of velocity by the Doppler ultrasound method [Gill, 1985]. In 

addition there are technological constraints that we need to consider when we simulate 

the data measurements such as, the spatial resolution of the Doppler ultrasound 
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[ Cristopher, Starkoski, 1996]. We take into consideration the spatial resolution by 

confining ourselves to selecting the velocity measurements at nv number of points. To 

model the noise in our measurement we use the multivariate analysis of variance 

(MANOVA) [Vonesh and Chinchilli, 1997], where for velocity measurements at r; 

location for instance tj of the period length Tis given as 

(4.1) 

where Yv is the velocity measurement vector, avis the source to transfer measurement 

matrix obtained from the COMSOL forward model discussed in the previous chapters that 

we export into the MATLAB environment and perform statistical analysis by introducing 

noise Ev. 

Thus the lumped velocity measurement vector for nv number of velocity measurement 

points can be written as 

y v (t j) = (y v ~1 't j y 'y v (r2 't j y , .. , y v ~nv 't j y r' 

E)t 1 )= (Ev(r1 ,t 1 Y ,Ev(r2,t 1 Y , .. ,Ev{rnv ,t 1 YY, 

:. y )t J= a)t J+ Ev (t J , j=l,2, ... ,p. 

(4.2) 

(4.3) 
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Further the deformation measurements are assumed to be obtained from MRI tagging 

method [Reichek 1999] where speckles in the tissue are used as reference markers and 

the deformation is calculated as a measure of the displacement of these speckles from 

their original location. These measurements are not available with such precise accuracy 

as the velocity measurements obtained from the Doppler ultrasound method. To take this 

into consideration in our simulated measurements, we restrict ourselves to considering 

the deformation measurements for considerably less number of points than the velocity 

measurements. We do this by dividing the geometry into s number of sections as 

illustrated in [fig 4.1]. Thus for every n measurement points of a particular section we 

select a certain percent of those n points of measurements for our estimation model. This 

way we can be flexible in dividing the geometry in a number of sections as well as the 

percentage of measurements we want to choose from a particular section. Thus we have 

the deformation measurements at ri location for instance fj of the period length T given as 

Yu (rl,t 1 )=au (rl, t 1 )+ Eu(rl,t 1 ), i=I,2,3, j=J,2, ... p, (4.4) 

where Yu is the deformation measurement vector, au is the source to transfer measurement 

matrix and f:u. is the noise in the measurement of deformation. 

Thus the lumped deformation measurement vector for nu number of deformation 

measurement points can be written as 

y u (t 1) = (y u (rl 't J y' y u (r2 't J y , .. ,y u (rn. 't J y r' (4.5) 
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(4.6) 

Thus we have the deformation and the velocity measurements, however we want to use 

these measurements so that we can fit the measurement data with the model data and 

develop a technique to minimize the error between the two measurements. For this we 

need to process the data together, so we combine the measurements together as they both 

play an important role our parameter estimation. The entire measurement matrix is thus a 

combination of nv velocity measurements, nu deformation measurements for different 

time instances with noise incorporated in them. Thus we have 

y( t j ) = (y u ( t j r. y v ( t j r r . (4.7) 

a(t j) =(au (t j y ,av (t j y r' 

:. y(t 1 )= a(t 1 )+ E(t 1 ) ,j=l, ... ,p. (4.8) 
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4.2 Statistical Model 

In the previous section, we incorporated the noise in our measurements now we want to 

study the characteristics of the noise and how the noise affects the measurements. Hence 

here we discuss the noise model associated with the measurements in velocity and 

deformation. For both our deformation and velocity measurements, we assume the noise 

to be Gaussian with mean zero and variance au 2 and a v 
2 respectively. We consider that 

there is no correlation of noise in the measurements from one measurement point to 

another, i.e. the measurements are spatially uncorrelated and there is no correlation of 

noise at one time instance with another, i.e. the measurements are temporally 

uncorrelated. For such a case the covariance is expressed as 

(4.9) 

where E" represents the noise present in the deformation measurement at ri and ri' for 

time instances tj and fj·. Further, we consider that there is no correlation in the 

deformation measurements in different directions the covariance matrix in this case 

becomes a diagonal matrix of the variance a; , thus 

(4.10) 

and the delta function is denoted as 
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(4.11) 

and 

(4.12) 

Similarly, for the velocity measurements, we consider that there is no correlation of noise 

in the measurements from one measurement point to another, i.e. the measurements are 

spatially uncorrelated and there is no correlation of noise at one time instance with 

another time instance, i.e. the measurements are temporally uncorrelated. For such a case 

the covariance is expressed as 

(4.13) 

where Ev represents the noise present in the velocity measurement at ri and rr for time 

instances lj and lj·. We consider that there is no correlation in the measurements in 

different directions thus the covariance matrix is a diagonal matrix of the variance u; , 
thus 

(4.14) 
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As the two measurements are obtained independently from two different methods, we 

consider that there is no correlation in the measurements of the velocity and deformation 

thus we have, 

(4.15) 

To obtain the statistical distribution of our lumped model we observe that 

(4.16) 

[
Lu ®Jn 

where I= 
0 

" L, ~I~], or using assumption of directional independence the 

I reduces to 

(4.17) 

The distribution of our measurement is therefore, 

y(t 1 )- N{a(t 1 ~I). (4.18) 
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4.3 Parameter model 

When we perform an experiment on an individual like estimating the region of hardening 

in the artery it is most likely that we do not have any knowledge about the person's 

physical condition, in such a case the parameter is considered to be deterministic. This is 

the Classical estimation where consider to have no prior knowledge about the estimate. 

Further, we can have a range of elasticity of the artery to come from a particular 

distribution of measurements that can be obtained from experimental study, thus we 

consider to have apriori knowledge on the values of the parameter that helps us to predict 

the outcome with better accuracy in estimation. If it comes from a population then one 

person from that population is treated as a stochastic case. This is the Bayesian estimation 

approach that uses the distribution of unknown parameters to minimize the error between 

the parameter estimates. However we are interested in designing a model that takes the 

measurements of a person and predicts the outcome of the experiment for that particular 

individual. Ideally, when we consider a parameter model in the inverse study we would 

treat everything as deterministic unknown unless we have a strong reason to believe that 

the parameter comes form a particular distribution or increases our estimation efficiency 

by reducing our computation time. Thus we can view the unknown parameter as either 

deterministic (completely unknown) or a stochastic (known with a certain apriori 

knowledge). 
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4.3.1 Deterministic parameter model 

In a general scenario, we would like to consider the ideal case where we have no 

knowledge about the parameters, where we measurements that are collectively expressed 

as the measurement vector as discussed in section 4.1. 

In order to estimate the unknown physical parameters we first propose a parametric 

model corresponding to our measurement and statistical models. We will consider two 

cases: a. homogeneous model i.e. where the parameters do not change in space, and b. 

non homogeneous model i.e. the parameters are spatially dependant. 

There are certain tissues that may have a homogeneous elasticity profile over a large 

region of the artery or the change in its elasticity varies very slightly across the cross 

section such that it is cannot be feasible to estimate that change. In such a case, we 

consider our parameter to be modeled to have a uniform elasticity profile over the range 

of the artery 

G(r)= g, (4.19) 

where g is the constant shear modulus. Note that for in a homogeneous case our 

parameter is a constant i.e. scalar. 

0 = [g]. (4.20) 
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However there are certain pathological conditions such as atherosclerosis where the 

elasticity changes drastically in a small region of the artery. To model such nature of the 

artery we need to consider a non homogeneous profile for the elasticity. We model the 

non homogeneity by spatially varying the shear modulus, where we use a linear 

combination of a set of known basis functions with unknown corresponding coefficients 

to demonstrate the spatial linear nature of the parameter. 

(4.21) 

where q is the number of unknown coefficients and fi(r) are the unknown basis functions 

modeling spatial variations. Thus by using a linear combination of a number of functions 

we model the variations in elasticity as in general change in elasticity over a small region 

can be modeled by infinitely many such functions. Further, we can have a parameter 

model may potentially provide us with better estimates if we model the basis function 

itself, that can better fit the data. For example we have a set of exponential functions that 

model the basis function, where, by choosing a number of different decay constants in the 

basis function we can obtain better estimates. Thus we can have an elasticity profile 

changing spatially where a set of basis functions are known upto a parameter vector with 

unknown corresponding coefficients. 

q 

G1(r)= Lg1 • J;(r,a1). (4.22) 
i=l 
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Thus unknown number of parameters in the model is dependant on the number of basis 

functions and the parameter vector 0 can be expressed as a function of the unknown 

parameters given by 

(4.23) 

These are the parameters that we estimate in the next section. So if we have a 

homogenous parameter model that fits our data it is more likely that the artery has a 

homogeneous structure and if we have a non homogenous parameter model that fits our 

data it is more likely that the artery has a non homogeneous structure however we can 

even have a homogeneous model to fit the data for a non homogeneous profile thus for 

our study we want to have both models so that we can predict or evaluate what best fits 

the data and investigate how far apart are our obtained estimates from their true value. 

4.3.2 Deterministic Parameter Estimation 

Using the above parametric model we can rewrite the statistical model in the parametric 

form as 

(4.24) 

where 0 is the unknown parameter and we use the distribution of the observed data to fit 

and obtain the value for the unknown parameter. In this case, the covariance in the 

measurements is expressed as 
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E((y(t 1)- a(t 1 ,o)Xy(t 1.)- a(t 1., O)f )= L:·o(j- j'), (4.25) 

where 

Thus the distribution of the measurement vector in this case is given by 

(4.26) 

These measurements have errors in the form of noise in them. We want to minimize the 

errors in these measurements, for this we consider the model predicted value 

(4.27) 

The error in the measurements is given by the cost function. We can have different types 

of cost function depending on the type of the estimator. The cost function for the 

maximum likelihood estimator (MLE) is given by 

(4.28) 

1\ 1\ 

and we seek to obtain the parameters OMLE and LMLEthat minimizes our cost function, 

such that, 
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(4.29) 

and 

(4.30) 

However our covariance matrix has a simplified structure under directional independence 

such that 

(4.31a) 

reduces to 

1 
0 -·1 2 n. r-1 = CTU (4.31b) 

1 
0 -·1 

2 n. 
CTV 

and thus we can rewrite 

A A A 

and the parameters OMLE, u; MLE and u; MLE that minimizes our cost function are 
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1\ ( 1\ 1\ J 0 MLE = arg ~inC MLE 0, a; MLE, a; MLE , (4.33) 

(4.34) 

and 

(4.35) 

Similarly the least squares (LS) cost function can be written as 

(4.36) 

1\ 

and we seek to obtain the parameter 0 rs that minimizes the cost function such that 

1\ 

Ors = argminCrs(o) (4.37) 
0 

As our measurement vector is a combination of measurements of velocity and 

deformation measurements that have different noise variances, we consider to put 

weights A and B on our measurements. These weights are inversely proportional to the 

variances of these measurements and are chosen to determine the importance of one 

measurement over the other and how much the each observation influences the final 

estimates. Thus we have, 
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(4.38) 

1\ 

We seek to obtain the parameter 0 that minimizes our cost function. 

(4.39) 

and estimate of the variances in the measurements of velocity and deformation i.e. 

(4.40a) 

(4.40b) 

The weighted least squares estimation approach tries to minimize the residual noise by 

attempting to minimize the squared difference between the model generated measurement 

data ;(t1 ,o) and the noisy observation measurement data y(t1,0). The noisy observation 

data depends on the unknown parameter 0 that we wish to estimate. The least squares 

estimator (LSE) of 0, where 0 chooses that value of 0 that makes ;( t 1 , 0) closest to the 

observation measurement data y(t1,0). Thus to minimize the cost function we take the 

partial derivative with respect to parameter 0 and equate it to zero. 
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This derivative is not available in the analytical form as it is derivative of a function 

obtained from the of the Comsol forward model. There are various numerical techniques 

that can be used to minimize C LS ( 0). The speed and accuracy of the algorithm depends on 

the choice of the search algorithm and how close the initial guess is from the true value of 

the parameter. We will discuss the search method used and the performance evaluation of 

the proposed algorithm by computing the mean square error in the measurement and the 

means square error in the estimate in the next chapter. 
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4.3 .3 Stochastic parameter model 

From our measurement model we have, 

(4.42) 

where we can have an apriori knowledge about 9 from the experimental studies about the 

elasticity of the arteries [Fung, 1993]. Thus we can have 9 to be viewed as a random 

variable coming from a known distribution/8 (9, t J. In this case the assumption that 

y( t 1 ) is Gaussian no longer holds as because the distribution of the transfer vector 

a(t 1 , 9) is unknown because of the random nature of the stochastic parameter. 

Considering that a(t 1 , 9) and E(t 1 ) are random variables the distribution of y(t 1 ) is 

obtained as a convolution of the random variables thus, 

(4.42) 

where fY(t 1 ) is the distribution of y(t1 ) , f 8(9,t1 ) is the distribution of a(t1 ,9) 

and fe (t j' r) is the distribution of E(t J. As this is a convolution of two distributions 

which is no longer Gaussian we have a more complex distribution that can be computed 

numerically. Thus we can have 9 to be viewed as a random variable coming from a 

known distributionf8 (9,t1 ). The distribution of9 plays a vital role in the estimation and 

any prior knowledge about the parameter distribution can provide a better guess of the 

parameter 9. The distribution of measurement y; is interpreted as a conditional 
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distribution fY (y I 0). Here the problem is to estimate the value of 0 for the random 

variable 0 . Thus the problem of estimation is changed to that of prediction. To solve such 

a problem of Bayesian Estimation, we assume that no observations are available that is, 

the available information is now the prior density fo (o, t 1 ) of 0 which we assume 

1\ 

known, and our problem is to find a constant 0 close in some sense to the unknown 

1\ 

parameter 0 . The 0 is estimated in this case as 

1\ <X> 

o = E {o I y} = J o · fo ( o I y }lo , (4.43) 
-<X> 

where 

( ) 
fo (y I 0) { ) 

fo 0 I Y = ( ) ·fo ,o, t 1 • 
fy tj 

(4.44) 
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Chapter 5 

Numerical Examples 

In this Chapter, we evaluate the applicability of the statistical model proposed in the 

previous chapter. We use numerical examples to demonstrate the performance measures 

of our estimators and then we discuss our numerical results obtained by implementation 

of the estimation algorithm in MATLAB. 

5.1 Performance Measure 

To perform statistical analysis on our measurements, we import the measurement vector 

from Cornsol to Matlab. The velocity and deformation measurements consists noise in 

them as discussed in Chapter 4. Let a; and a; represent the variance (power) of noise in 

the deformation and velocity measurement vectors y" and y v such that, 

(5.1) 

and 

(5.2) 
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then the signal to noise ratio, (SNR) in dB for the deformation measurements is defined 

as, 

(5.3) 

and the signal to noise ratio, (SNR) in dB for the velocity measurements is defined as, 

(5.4) 

To measure the performance of our estimator, we compute the mean square error (MSE) 

A 

where the amount by which an estimator 0 differs from its true value is given by, 

MSE(O) =-
1
-· (o-o) 2 

11°11
2 

' 

(5.5) 

The magnitude of MSE allows us to compute the performance of our estimation. 

We also compute the MSE of the measurement vector, which can be termed as 'curve 

fitting' so that we can determine weather the analytical model fits the measured data. 

This allows us to determine how much modeling error was present when we simulate the 

measurements as compared to the analytical model. The mean squared error between the 

A 

model y, and the measurements y is given by 
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(5.6) 

5.2 Numerical Examples 

To study how the noise m the measurements affects our ability to estimate the 

parameters, we formulate numerical examples in which the elasticity of the artery is 

considered to have a non homogeneous profile. In this case, we consider elasticity being a 

single spatially varying exponential basis function; and that this can easily be extended to 

a set of multiple spatial basis functions that model the change in elasticity. Here we 

simulate our measurements considering 

(5.7) 

where xo= 1. 5, yo=O, zo=6. 5 are considered to be known, a is the decay constant, and Gs-

Go represents the range of elasticity. Here we consider two cases 

1. Estimating a single unknown parameter, shear modulus Gs. 

2. Estimating two unknown parameters, shear modulus Gs, and the decay constant a. 

In all the examples unless otherwise stated, we assume the shear modulus Go= 6e6 Pa, 

deformation SNRu= 15dB, velocity SNRv= 15dB, number of deformation spatial points 

nu=250 and the number of velocity spatial points nv=IOOO. 
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In the first case of single parameter estimation, where we consider same noise to be 

present in a combined measurement vector of velocity and deformation measurements. 

Here we fix the decay constant a= 2 and estimate the shear modulus G8 • 

We extend this numerical example to a case of two parameter estimation, where we 

consider different noise in velocity and deformation measurements. In this case, to study 

the effect of different noise variances in deformation and velocity measurements we 

consider one example where we fix the number of deformation measurement points n , the 

number of velocity measurement points nv, the SNR in velocity measurements and vary 

the SNR in deformation measurements. Further, we consider another example where we 

fix the number of deformation points nu, the number of velocity measurement points nv, 

the SNR in deformation measurements and vary the SNR in velocity measurements. 

In the Chapter 2, we described the limitations on the spatial resolution for obtaining our 

measurements. When we design our estimator it is important that we take into 

consideration the number of measurement points. To study the effect of the number of 

measurement points on performance of our estimator we consider a numerical example 

where we fix the number of deformation points nu, and the noise in the velocity and 

deformation measurements and vary the number of velocity measurement points nv 

Further, we consider one more numerical example where we fix the number of velocity 

points nv, and the noise in the velocity and deformation measurements and vary the 

number of deformation points nu. Here elasticity being a function of single linear spatial 

basis function of two unknown parameters; we estimate the shear modulus Gs and the 
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decay constant a , of the above mentioned basis function. Thus the parameter 0 in this 

case, is a vector of two parameters Gs and a . 

This example can further straight forwardly be simplified to a case of homogenous 

elasticity profile where we treat the shear modulus to be a constant G. 

5.3 Numerical Results 

In this section, we discuss the plots obtained for our numerical examples. We further 

evaluate the performance of the estimation algorithm by making some observations 

regarding the plots. 

We use the fminsearch and lsqnonlin commands in Matlab to minimize the least squares 

costfunction. The fminsearch command minimizes the least squares function by using the 

Neider mead simplex search method [Neadler, Mead, 1965] and the lsqnonlin command 

performs nonlinear minimization using the trust region method [Coleman, Li, 1996]. In 

both the cases we choose an initial starting guess for the estimate which has a significant 

effect on the minimization. 

For clarity of presentation we will refer the MSE( 0) as mean square error and MSE(y) as 

goodness of fit. For the first numerical example where we considered estimation of one 

parameter the shear modulus of the artery G8 , the Fig. 5.1 shows the mean square error in 

the estimate versus the signal to noise ratio in the measurements, For the second 

numerical example we considered the estimation of two parameters, the shear modulus of 
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the artery Gs and the decay constant in the basis function a. The Fig. 5.3a and 5.3b shows 

the mean square error in the estimate of parameters 91 and 92 versus the signal to noise 

ratio in the velocity measurements considering fixed noise in the deformation 

measurements. The Fig. 5.4a and 5.4b shows the means square error in the estimate of 

parameters 91 and 92 versus the signal to noise ratio in the deformation measurements 

considering fixed noise in the velocity measurements. As expected the mean square error 

decreases significantly as the SNR increases which means in order to estimate our 

parameters accurately we need less noise in our measurements. The Fig. S.Sa and Fig. 

5.5b we plot the mean square error in the estimate of parameters 91 and 92 vs. the 

number of velocity measurement and in Fig. 5.6a and Fig. 5.6b. We plot the mean square 

error in the estimate of parameters 91 and 92 vs. the number of deformation 

measurements. Here we see that we get a significant decay in the mean square error as 

the number of velocity points increases, however we do not see the same when we move 

form 500 to 1000 deformation points thus it is more beneficial to increase the velocity 

points for our estimation. 

We plot the goodness of fit as a function of SNR (dB) and the parameter 9 to see how 

well the model data fits the measurement data. For Fig. 5.2 we consider 9 to be a single 

parameter, we can see the plot of goodness of fit plotted against the signal to noise ratio 

in the measurements and here we also include the dependence on the parameter 9 

because we want to study the performance of the algorithm for both the different values 

of parameters. We see that it is a little sensitive to the parameter for low values of SNR 
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however for larger values it does not change much in general it does not change much 

with the parameter. Further we consider the parameter 0 to be a vector of two parameters 

01 and 0 2· In Fig. 5.7-Fig. 5.9, we consider constant number of velocity measurements 

with fixed noise in it and vary the deformation measurements for different SNR and plot 

against parameter 0 1· We plot the same against parameter 0 2 in Fig. 5.13-Fig. 5.15. For 

Fig. 5.10-Fig. 5.12, we consider constant number of deformation measurements with 

fixed noise in it and vary the velocity measurements for different SNR and plot against 

parameter 0 1 and we plot the same against parameter 0 2 in Fig. 5.16-Fig. 5.18. We 

observe that for the least squares estimation, the parameters are identifiable with our 

estimation algorithm. When we try to estimate a single parameter as in Fig 5.1, or two 

" parameters as in Fig 5.3, Fig 5.4 the MSE(O) decreases as the SNR in the measurement 

increases thus we infer that we can have a better estimates for our parameters if we have 

less noise in our measurements. Further, we see in Fig 5.5, that with the increase in the 

" number of measurement points of velocity MSE(O) decreases and in Fig 5.6, it can be 

" seen that with the increase in the number of deformation measurement points the MSE( 0) 

decreases. Thus we infer from this that if we have more number of measurements 

available for our estimation for both velocity and deformation we can minimize the error 

in our estimation. We observe in Fig 5.2 and Fig 5.7-Fig 5.18, that when comparing the 

goodness of fit while estimating either one parameter or two parameters, that the fit is 

more sensitive to the data for higher SNR and more number of velocity and deformation 

measurements. 

66 



Master's Thesis - Tushar Gadkari. McMaster University- ECE Dept. 

Thus we infer from the above study that the parameters are identifiable. The accuracy of 

estimation and the efficiency in computational cost can be increased with the choice of a 

better estimation technique which is a subject of further study. 
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Fig. 5.1 MSE (a) vs. SNR for single parameter estimation. 

20 
15 

snr, (db) 10 
8 

20 

Fig. 5.2 Goodness of fit vs. SNR for one parameter estimation. 
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Fig. 5.12 Goodness of fit vs. SNR for 1000 velocity points. 
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Fig. 5.16 Goodness of fit vs. SNR for 250 velocity points. 
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Fig. 5.18 Goodness of fit vs. SNR for 1000 velocity points. 
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Chapter 6 

Conclusion and Future work 

In this Chapter, we present the conclusion of our work and discuss some future directions 

in which the study can be extended. 

6.1 Conclusion 

In this thesis, we developed a forward mathematical model to simulate the flow of blood 

through the artery in normal healthy condition and in conditions of some pathological 

abnormality such as atherosclerosis. We used the three dimensional Navier-Stokes 

equation to model the blood flow, the deformation in the artery and cardiac muscle was 

computed considering the artery to be a hyperelastic material. Further, we proposed 

inverse computational model for the estimating the elasticity profile of the arterial wall to 

locate the region of atherosclerosis using the velocity and deformation measurements. We 

demonstrated how the coefficients which represented the atherosclerosis can be estimated 

by minimizing the error between the measurement data set and the estimator model data 

set. We demonstrated this applicability by using numerical examples and analyzed the 

performance of our estimator by computing the mean square error. It can be seen from 

the results of our numerical examples that there are particular threshold associated with 

the signal to noise ratio and number of measurement points that can be useful in the 
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design of experiments. We thus reached to a conclusion that with our estimation model 

the parameters are identifiable. 

6.2 Future work 

Future possibilities of this work include developing the forward mathematical model for 

realistic measurements obtained from experiments such as Doppler ultrasound method 

and Tagged MRI method. For our analysis, we confined ourselves by considering the 

medium to be isotropic this can be extended to anisotropic medium. We also considered 

the blood flow to be laminar however it is very likely that there is presence of turbulence 

in the regions of atherosclerosis, the study can be extended to the modeling of blood flow 

in presence of turbulence. 

For the inverse model, we can develop better estimation techniques to accurately localize 

the region of atherosclerosis. We can compare the performance of weighted least squares 

estimator to other estimators like the maximum likelihood estimator. We can even 

perform variance analysis using Cramer Rao lower bound. The study was done 

considering the parameters to be deterministic; this can be extended to case where the 

parameters are stochastic in nature. From a physiological point of view, we considered 

estimating the region of hardening in the artery; however this model can easily be 

extended to estimating a wide range of different parameters like the pressure drop that 

governs the blood flow, the viscosity of the blood, the poisons ratio etc. 
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