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ABSTRACT 

The overall focus of this thesis is the implementation of a process monitoring 

system in a real manufacturing environment that utilizes multivariate analysis techniques 

to assess the state of the process. The process in question was the medium-high volume 

manufacturing of discrete aluminum parts using relatively simple machining processes 

involving the use of two tools. This work can be broken down into three main sections. 

The first section involved the modeling of temperatures and thermal expansion 

measurements for real-time thermal error compensation. Thermal expansion of the Z­

axis was measured indirectly through measurement of the two quality parameters related 

to this axis with a custom gage that was designed for this part. A compensation strategy 

is proposed which is able to hold the variation of the parts to ±0.02mm, where the 

tolerance is ±0.05mm. 

The second section involved the modeling of the process data from the parts that 

included vibration, current, and temperature signals from the machine. The modeling of 

the process data using Principal Component Analysis (PCA), while unsuccessful in 

detecting minor simulated process faults, was successful in detecting a miss-loaded part 

during regular production. Simple control charts using Hotelling's T2 statistic and 

Squared Prediction Error are illustrated. The modeling of quality data from the process 

data of good parts using Projection to Latent Structures by Partial Least Squares (PLS) 

data did not provide very accurate fits to the data; however, all of the predictions are 

within the tolerance specifications. 
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The final section discusses the implementation of a process monitoring system 

in both manual and automatic production environments. A method for the integration 

and storage of process data with Mitutoyo software MCOSMOS and MeasurLink® is 

described. All of the codes to perform multivariate analysis and process monitoring were 

written using Matlab. 
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Chapter 1 - Introduction 

1.1 Overview 

This thesis outlines the investigation of a process monitoring system for 

machining in a production environment using multivariate modeling techniques. This 

process monitoring system is to provide a variety of functions from the multitude of 

process sensor data acquired during the manufacturing of discrete parts. Furthermore, the 

role of a manufacturing process monitoring system can be outlined by three main criteria 

as defined by Inasaki and Tonshoff(2001): 

• Capable of detecting undesirable process 

• Capturing information regarding the process and using this information to 

optimize the process 

• Relating the input of the process to the output 

The work presented in this thesis attempts to satisfy these criteria, as well as 

provide some additional functionality. While capturing the information of the process, it 

must be able to relay the information regarding the state of the process in a simple yet 
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effective way to operators and employees. Through the use of principal component 

analysis (PCA) and projection to latent structures or partial least squares (PLS) 

multivariable modeling techniques, it is possible to create simple control charts using 

parameters such as Hotelling's T2 statistic. Furthermore, these modeling techniques 

provide easy to understand diagnostic tools, such as contribution plots, which can be used 

to determine the cause of problematic process conditions by identifying the process 

variables most responsible for the poor quality. 

With much of the research in this field performed in the laboratory, it was 

necessary to develop a monitoring system which is still capable of satisfying the three 

main criteria while implementing a solution that can be seamlessly integrated into an 

existing process in a real production environment. An example of this is the use of table 

force dynamometers for measurement of cutting forces; a sensor that is frequently used in 

highly controlled laboratory experiments, but is not generally compatible with the 

machining process that is investigated throughout this thesis. With this being said, a 

sensor fusion system is developed, based on the literature review of sensors, which can 

satisfy the requirements of measuring crucial machining process parameters while 

providing no interference or alteration to the process. Using the sensor information it is 

possible to develop process monitoring schemes that are capable of satisfying criteria 

specified by the customer, such as modeling the quality data with process information 

and real-time thermal error compensation. 
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Finally, with all of this process data now becoming available, there are 

commercially only few options available when it comes to storing the process data, as 

these process monitoring systems (including laboratory based systems) are often custom 

designed to suit their respective applications. Inspection information, however, is 

frequently stored in databases and statistical packages, like Mitutoyo's MCOSMOS 

CMM inspection software and STATMeasure Plus which links to MCOSMOS through 

MeasurLink. Using these software packages developed by Mitutoyo, a method of 

relaying the process information to a database is developed and information is tagged to 

the parts using a simple part ID tagging convention. Once this data is stored in an easily 

accessible location, multivariate statistical analysis can easily be performed. 

1. 2 Thesis Layout 

This document follows a standard thesis layout. The main goals here are to 

effectively outline the experimentation procedures and results while providing 

justification for the methods used and to conclude on the findings made. 

This first chapter provides an overview for the thesis while illustrating the main 

criteria that a process monitoring system must satisfy. The multivariate tools that are 

implemented throughout this thesis and the need for a sensor fusion system capable of 

meeting these criteria are introduced. Finally, the idea that the large amounts of new data 

coming do not have a place to be stored is addressed. 
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In the second chapter the literature review is performed where several key topics 

are investigated. A brief look at errors that are experienced in machining is discussed 

followed by a look at the sensors used on a machine for various process quantities such as 

force, vibrations, temperatures, etc. The next section involves a look at existing process 

monitoring schemes, with emphasis on the measured process quantities and modeling 

techniques in order to assess pros and cons of these systems. All of the schemes that are 

discussed here consider the cases where all of the modeling is done on controlled 

laboratory experiments with little emphasis on monitoring machining in a production 

environment. Finally, the theory and techniques used for multivariate analysis of the 

process data is mentioned, along with addressing the control charts that are used to relay 

process information to the operators. 

The third chapter outlines the experimental methods that are performed during 

this work. The methods described for the design of a real-time thermal error 

compensation system using temperature measurements from machining conditions during 

production. The need for the investigation of this compensation is verified by the 

measurement of the thermal expansion of the Z-axis using proximity sensors and later the 

indirect measurement of this quantity through the measurement of the height quality 

parameter on the parts. The sensor fusion system is described for the overall process 

monitoring of a discrete part manufacturing system. The description of the sensors used 

to fulfill the requirement that the system must yield seamless integration into the existing 

manufacturing process is also outlined. The experimental and analysis techniques used in 

this research are also described. 
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Chapter four addresses the analysis of this experimental work while providing 

the results and discussion of these experiments. The analysis of the real-time thermal 

error compensation involves the use of modeling the expansion of the machine via PLS. 

Using quality measurements during the production to indirectly measure thermal 

distortion, a model was created and was found to yield predictions that can hold the 

quality parameters to within tolerance. The model is applied to new data and a 

compensation strategy is proposed and investigated. The monitoring of the machining 

process using a combination of vibration, current, and temperature sensors is 

investigated. The experimental simulation of the process faults is then investigated and 

the use of control charts is illustrated. The modeling and application of several quality 

parameters affected by machining is illustrated here using PLS. 

The fifth chapter discusses the implementation of this process monitoring 

system. The structure of the data collection environment is illustrated here, as well as the 

integration with the Mitutoyo software. Since codes were developed to perform the PCA 

and PLS algorithms in Matlab, a comparison is performed with the modeling results 

generated by commercial software such as SIMCA-P+. 

The final chapter concludes on the work presented here and outlines the key 

results and findings of the various experimental work performed here. Ideas for future 

work are also presented here. 

5 
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Chapter 2 - Literature Review 

2.1 Errors in machining 

Ramesh et al. (2000) stated that while accuracies in machine tools have reached 

the range of 0.005mm which is a result of improved design practices and material 

selection; it is still difficult, however, to completely remove all forms of error. 

Furthermore, errors are broadly classified in four categories which include geometric and 

kinematic; thermal; cutting force induced; and other errors (tool wear and fixturing errors 

fit in this category). Ramesh et al. also go on to distinguish between accuracy and error; 

with accuracy being how close the final part matches the desired geometry and error 

being the "deviation from the position of the cutting edge from the theoretically required 

value" needed to attain a specific accuracy. The goal in much research is simply to 

compensate for this error through its measurement. The only requirement, however, is 

that the errors are repeatable in order to track and compensate for these changes. There 

has also been much research into real-time error compensation where by continuous error 
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tracking is performed and corrections are made frequently to the process while it is 

running (Ramesh, Mannan, & Poo, 2000). 

2.2 Sensors 

Within a manufacturing environment, there are a number of aspects related to the 

process that can be measured. It has become standard practice to use multiple sensors, 

both multiple locations and types, in a method known as sensor fusion (lnasaki & 

Tonshoff, 2001). The combination of these sensors enables the user to observe or capture 

effects from a complex process, such as machining, in order to determine if the process is 

good or give the ability to predict certain quality parameters. Using various sensors, it is 

important to measure process variables such as forces, acoustic emissions (AE), cutting 

power (Byrne et a/, 1995), as well as vibrations and temperatures (Inasaki & Tonshoff, 

2001 ). From this information the user is able to relate process variables to quality 

parameters via modeling techniques. Another benefit of sensor fusion comes from the 

ability to "provide data for the decision-making process that has a low uncertainty owing 

to the inherent randomness or noise in the sensor signals (Inasaki & Tonshoff, 2001)." 

Furthermore, Figure 2.1 provides an example of process sensor locations on a both 

milling and turning machines. 
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milling 
@ 

..... -..... 
turning 

• . 
I • 

Figure 2.1: Possible sensor locations on machine tools. Sensors: 1- piezo-electric dynamometer; 2-
strain gauge; 3 - force measuring bearing; 4 - power sensor; 5 - torque sensor; 6 - AE sensor, 
surface mounted; 7 - AE Sensor, fluid coupled; 8 - acceleration sensor; 9 - tool inbuilt sensor 
(Inasaki & Tonshoff, 2001). 

2.2.1 Force 

In any machining process, the interaction of the tool with the work ptece 

generates forces at the interface of the two objects (Tlusty, 2000). This is true for both 

single-point tool operations like boring or multipoint tool operations like milling; 

however the nature of the force differs with process. Furthermore, the detection of a 

change in the force signal from the process could be the result of tool chipping or 

breakage and is required for assessing the current tool condition (Inasaki & Tonshoff, 

2001). 

Strain gauges have been used for measuring forces; however, methods using these 

sensors suffer from the need to place the sensor as close to the element under load as 

possible (Inasaki & Tonshoff, 2001). 
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Piezoelectric table dynamometers for use in milling and smaller tool shank 

mounted dynamometers (as seen in Figure 2.1) have been reported as being the most 

accurate force measurement devices (Byrne et al, 1995; Inasaki & Tonshoff, 2001; and 

others). The use of these types of sensors, however, have been limited to the laboratory 

due to their high costs (Byrne et al, 1995) and lack of robustness under the harsh 

machining environment. Furthermore, the charge-based nature of the piezoelectric effect 

requires the use of charge amplifiers that need to be reset in between tests making it 

difficult for implementation in a high volume production environment. 

While other methods of measuring forces in machine tools have been reported 

(e.g. Byrne et al, 1995), the common factor relating all of these methods of directly 

measuring forces are not ideal for production environments as they may interfere with 

processes involving multiple tool changes (e.g. the tool shank placement dynamometer in 

turning) or production environments with custom fixturing. 

2.2.2 Indirect Force Measurement 

Due to some of the difficulties mentioned in the previous section with regards to 

direct measurement of forces, there has been research into methods regarding indirect 

force sensing. These techniques often involve the measurement and recording of other 

sensors, process information and parameters within the machine and using these signals 

to estimate the actual forces. 
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A method which relies on using capacitance displacement sensors to measure the 

deflection of spindle was developed by Albrecht et al. (2005). Initially, a single 

displacement sensor is placed next to the spindle in the X -direction and cutting tests were 

performed in this direction. In addtion, the cutting forces were monitored using a Kistler 

piezoelectric table dynamometer. In the process of measuring the spindle displacement, 

the dynamics of the spindle are also observed. Compensation using a Kalman filter was 

used to remove the structural dynamics of the spindle and remove high frequency noise 

while maintaining an accurate model of the measured forces. This method was used to 

increase the bandwidth of the sensor system from approximately 350 Hz to 1,000 Hz. 

Cutting tests were performed at spindle speeds ranging from 1,000 RPM to 12,000 RPM 

with a five-fluted endmill (corresponds to 83.3Hz to 1,000Hz tooth passing frequencies). 

The Kalman filter compensation is able to reduce the error of the displacement sensor 

model in all cases and is able to replicate the measurements of the dynamometer with 

good agreement, with exception to the case at 12000 RPM. Here the bandwidth limit of 

the dynamometer was reached at 1 ,000 Hz which caused errors in the measurement of the 

forces and thus difficulties in modeling. In addition, the authors presented methods to 

compensate for thermal effects, roundness errors and unbalanced spindles by different 

and mulitple sensor configurations. 

Jeong and Cho (2002) presented a method of using feed motor currents on a 

milling machine for the estimation of cutting forces. Cutting tests were performed in 

both X andY directions and forces were measured using a table dynamometer. Current 

signals from the X and Y axis motors were measured using Hall effect current 

10 
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transducers. One of the interesting things to note was the mention of the measured 

current of the stationary axis motor. The current of the stationary axis motor flucutated in 

order keep the axis steady. Relationships between the stationary axis current and forces 

in that axis were developed. While Figure 2.2 shows good agreement with the estimation 

of cutting force from the current measurement, the limitation of the method described 

was the bandwidth ofthe current sensor at 130Hz. 

n.e 

~ ~ 
100 1A9 

Frequency (Hz) 

-?"'--
····F<>roo -

200 

115 

~ ~-
0 C. I n .~ 0.3 0 4 M O.B G.t 0.8 0.9 

Time (sec) 

Figure 2.2: Cutting forces vs. current measurement in both time and frequency domain for tooth 
passing frequency of 15 Hz. Note the phase lag in the current measurements compared to the forces 
(Jeong & Cho, 2002). 

Although the limitations of this work are limited to relatively low tooth passing 

frequencies, it is still an illustration of how measuring the feed motor currents can be 

used as a tool to indirectly measure forces. 

Spiewak (1995) demonstrated the use of acceleration measurements in the spindle 

as indirect force measurements. There were two main sources of error in this method of 

measuring forces which included the flexible mode vibrations and the motions associated 

with the spindle structure causing inertial and viscous forces. A filtering system was 

developed using an adaptive filter that was tuned using process information and sensor 

information in order to attenuate information from the spindle dynamics. External 
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excitation forces were presented to the spindle and, after filtering, the estimated force 

from the acceleration signal was in good agreement with the measured forces. 

2.2.3 Temperature 

There has been much research into the measurement of temperatures on machine 

tools for use in error compensation. Geometric deviations caused by the thermal 

expansion of the components in a machine during operation lead to errors in the 

machined parts. Much of this research involves the use of thermocouples (Ramesh, 

Mannan, & Poo, 2000a). An exaggerated example of how machine tools geometrically 

deform due to increases in temperatures can be found in Figure 2.3. In general, this heat 

generation is primarily caused by the operation of actuators within the machine. 

Room Temperature 

Ballscrews and 
Gears Heat UJ) 

Local Heating at 
the Spindle Motor 

and Spindle Bearing 

Local Heating in 
theZColumn 

Spindle Support 
Arm Heats Up 

Z Column Heats Up 

Figure 2.3: Illustration of thermal errors in machine tools (Veldhuis, 1998) 
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It has been reported by Attia and Kops (1993) that E-type thermocouples provided 

the best performance when taking surface temperature measurements in machine tools. 

This type of thermocouple has higher sensitivity when compared to other types of 

thermocouples such as K-type. Furthermore, this type of thermocouple has been used in 

practice with success in several studies, including (Chen J. , 1996), (Chen & Ling, 1996) 

and (Veldhuis, 1998). 

2.2.4 Vibration 

The measurement of vibrations in a machine tool has been used for various 

reasons including: tool condition monitoring (lnasaki & Tonshoff, 2001) and surface 

quality (Azouzi & Guillot, 1996), for example. 

Dimla and Lister (2000) showed how the use of piezoelectric based 

accelerometers (used in conjunction with a tool shank mounted dynamometer) can be 

used for assessing tool condition monitoring in turning. Vibration signatures in the 

frequency domain were used to illustrate the effects of increasing tool wear and are 

shown in Figure 2.4. Note how the vibration signature increases in two locations: slightly 

at -2.5 kHz and more so at -10kHz. It was found that the force and vibration signatures 

in the Z-direction were most effective at identifying tool wear. 
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12 

Frequency (Hz) 
2 0 Increasing Tool Wear 

Figure 2.4: Vibration spectra showing an increase in vibrations with tool wear (Dimla & Lister, 2000) 

Furthermore, it has also been noted that acceleration based sensors do not need to 

be mounted close to the tool/workpiece in order to capture important information in the 

process. Also, they are suitable for use in the rough environments of machining (Inasaki 

& Tonshoff, 2001). 

2.2.5 Acoustic Emissions (AE) 

Regarded as one of the most popular methods for monitoring tool wear and 

breakage, AE sensors suffer from the drawback that they must typically be placed close 

to the tool/workpiece interface. In an industrial setting with frequent tool changes it is 

not always practical or possible to use AE signals in assessing tool condition or surface 

quality (lnasaki & Tonshoff, 2001). Still, many studies have used AE signals for tool 

condition monitoring (e.g. Byrne et al, 1995; Inasaki & Tonshoff, 2001) and surface 

quality (e.g. Azouzi & Guillot, 1996; Axinte et al, 2004; Huessin, 2007). 
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2.2.6 Current 

Another method of assessing the state of the machine tool during cutting is 

through the measurement of cutting power. With most machine tools using three-phase 

AC motors for spindle drives, the measurement of the current is a direct measurement of 

power consumption during cutting. Hall-effect style current transducers are often 

desirable because of their ease of installation. Either toroidal sensors or split-ring clamp 

style sensors, where the current-carrying wire passes through the sensor, are commonly 

used. One of the benefits of this sensor over an inline device is that the original 

connections to the controller are used. Another benefit of using current sensors is they 

are often placed in the back of the machine and away from the workspace preventing 

them from interfering with the process. Li et al. (2003) reported using Hall-effect sensors 

to monitor spindle current for the diagnosis of a tapping process while monitoring spindle 

with a 93% success rate in differentiating between five different process conditions. 

While, used for a tapping process it was suggested that the presented approach is generic 

and can be used for any process that can be "characterized using motor current signals." 

Hussein (2007) used spindle current signals from Hall-effect sensors in the multivariate 

sensor fusion for the prediction of surface quality in milling. 

Previously mentioned in section 2.2.2, the use of Hall-effect sensors for current 

signal measurements from feed motors was performed by Jeong & Cho (2002) for the 

indirect measurement of forces in milling. 
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2.3 Machine Process Monitoring 

There has been much research conducted on the monitoring and control of various 

machining processes. The motivation behind this research is explained by Liang et a/. 

when they describe the main idea being to improve product quality and reduce 

manufacturing costs, and go on to define process monitoring as ''the measurement and 

estimation of process variables" (Liang, Hecker, & Landers, 2004). The process 

monitoring of machining, however, can be very complex; often requiring the use of 

intensive data preprocessing to extract the important information contained within the 

signals. Monitoring a machining process includes the measurement of various process 

variables including forces, vibrations, acoustics and temperatures on and around the 

machine. In general, machine process monitoring can be used for two main purposes: 

using process variables to predict various part quality output parameters and error 

compensation. The interesting thing to note here is that regardless of the method of 

monitoring, the overall goal is to improve or maintain quality in some capacity. This 

section briefly discusses various techniques of machine process monitoring found in the 

literature regarding all of the aforementioned process variable measurements and quality 

measurements. All of the reviewed articles use some kind of modeling technique with 

the bulk of them using artificial neural networks in some capacity. 

Azouzi and Guillot (1996) used an artificial neural network (ANN) for predicting 

the surface finish and dimensional deviation in a turning operation using sensor fusion 

techniques. They illustrate how sensor fusion can be used to create a model for the 
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estimation of desired quality parameters. In their experiments, they measured forces, 

vibrations, acoustic emissions and the speed/feed deviations. The goal here was to model 

various cutting parameters (feeds, speeds, depths of cut) and process parameters (cutting 

fluid variation, part diameter, tool wear, material properties). Combinations of tests 

were designed using orthogonal arrays and each set of tests was performed multiple times 

to build the sensor fusion model. After the model was built using the training set data, a 

data set used to check the model was used with cutting parameters that varied slightly 

from those in the training set. Furthermore, signal conditioning was performed such that 

the data was taking during steady state cutting only and is shown in Figure 2.5. 

Signal 
magnitude 

Toot entering 

1 
material Toot 

/exiting 
~~•"- Steady , ""· material ~ ~.~----~~~~----•••L•••-----..: • state · • • 

Time 

Figure 2.5: Signal conditioning for cutting tests (Azouzi & Guillot, 1996). 

A multilayered feed-forward neural network was used for building a model to relate 

process data to quality data. A total of thirty models were designed using different 

combinations of sensors as inputs and neural network architectures. In the end, the model 

that gave the best performance (lowest total squared error from both quality parameters) 
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consisted of feed, depth of cut, radial force and feed force to predict the dimensional 

deviation and surface finish (a.k.a 4x3x2 neural network). The surface finish was 

predicted with an error ranging from 2 to 25% with dimensional deviations were 

predicted with an average error of 6!Jm. An interesting feature of these models is the use 

of the known process parameters such as feed and speed. Including this type of data in a 

set of experiments is useful only when these parameters are changing, as in the tests 

performed. In the case of a high volume manufacturing, however, these parameters are 

often static. 

Chen, Yuan and Ni (1996) developed a real-time compensation strategy for 

modeling thermal errors in machine tools. In this study, they used two different types of 

modeling techniques: multiple regression analysis (MRA) and ANN's. It should be noted 

that a discussion of the theory and methods behind additional modeling techniques are 

beyond the scope of this report and are left to the reader for future investigation. Eight 

thermocouples were placed about the machine in various locations with an additional 

thermocouple measuring the ambient "environmental" temperature. Thermal drift of the 

spindle in all three directions (x, y, and z) was measured at various speeds ranging from 

600 - 2,600 RPM. Both methods provided models with good fits and an example of this 

is shown in Figure 2.6. As machine shops can be very noisy environments, a 0.4°C noise 

level was added to simulate this effect and Figure 2.7 shows how well both models are 

able to predict the thermal drift with the noisy data. 
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Figure 2.6: Spindle drift in z-axis- models vs. experimentally acquired data (Chen, Yuan, & Ni, 
1996). 
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Figure 2.7: Prediction of spindle drift with 0.4°C noise (Chen, Yuan, & Ni, 1996). 

The techniques used in this study were implemented on a 3-axis machine and reported a 

reduction in y-axis and z-axis errors from 92.4J.1m to 7.2J.1m and 196J.1m to 8J.1m, 

respectively. 

Process monitoring for machine tools has also been applied to the monitoring of 

tool condition. Chen and Jen (2000) investigated a data fusion method using neural 

networks for the assessment of tool condition during milling. In this investigation, a data 

fusion model was created using signals from a dynamometer, placed under the machine 

table, and an accelerometer, placed on the spindle shaft. A combination of four feed 
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rates, ranging from 28 - 70mm/min, and four spindle speeds, ranging from 900-1,800 

RPM, was used totaling 16 different tests. Since cutting was performed in the x-y plane, 

the z-axis was ignored and signals from the x and y directions of the dynamometer were 

used with the accelerometer signal. For signal preprocessing the average value, variance 

in amplitude, and local fluctuation in frequency were all computed and combined into 

various data fusion combinations. Furthermore, the tool condition, for which the models 

were trained, was categorized into four groups ranging from light wear to tool breakage. 

In the end, the data fusion ANN model that provided the best results come from the use 

of a five layer ANN which used the "Index Multiplication Group" data fusion type. Data 

from each signal were combined via multiplication from each preprocessing type yielding 

three fusion indices. This model yielded an overall error of 1.35% with a standard 

deviation of the measurements of0.015% in the prediction of tool wear. 

Another example of machine process monitoring was done by Mathews and 

Shunmugam (1999) where they used neural networks for prediction of hole quality in 

reaming. In this study, they acquired acoustic emission (AE), forces and vibration signals 

and trained their ANN to predict surface finish (including roughness average, Ra, and 

residual stresses) and roundness error of the holes. Here acoustic signals are categorized 

as two different types; continuous type caused by plastic deformation during and burst 

type caused by fractures in the material. Mathews and Shunmugam (1999) also used 

sensor fusion claiming its ability to "improve the performance and reliability of 

manufacturing process monitoring" due to "insufficient sensitivity of a sensor to a 

specific phenomenon of interest." ANN Models were built using each signal type 
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individually and then with the signals combined in a sensor-fused model. In all tests, the 

multi sensor (or fused) data created more accurate models than in the single sensor 

models, further illustrating the power of using multisensory data for machine process 

monitoring. 

V eldhuis and Elbestawi (1995) proposed a strategy for the compensation of 

thermal errors in five-axis machining. This study used ANN's to model the non-linear 

behavior of the machine. In addition, a kinematic model of the machine was developed 

and simulation data from this model was used to train the ANN. Another interesting 

feature of this work was the strategy for determining the optimal number of 

thermocouples placed on a machine for model accuracy. Basically, an excessive amount 

of thermocouples were installed on the machine and a model was built using these inputs 

and then they were removed from the model. If removing the input did not significantly 

affect the model performance that it was deemed unnecessary. Overall, the error in the z­

axis was reduced from 0.060mm to 0.020mm and the angular error in the x-axis rotation 

direction was reduced from 0.008° to 0.002°. Furthermore, the ANN was shown to 

provide reliable results when tested against actual cutting conditions. 

Ramesh et al. (2003) noted, in their discussion of thermal error measurement and 

modeling in machine tools, how "commercially viable system capable of providing an 

effective solution to the needs of a production-class machine tool is still to be realized" 

and attempted to develop a thermal error compensation system which can be 

implemented in a production machine. An interesting finding in this study was that a 
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simple mapping of measured temperatures to thermal errors did not give an accurate 

model when different machining conditions were used. An example of this is shown in 

Figure 2.8 as temperatures on the X-ballscrew nut were measured under four different 

machining conditions where the variation in the X direction changes quite differently 

under the 4 conditions. 

10~--------------------------------~ 
0 

~~--------------------------------~ 
Temjll!tlJ!l!rCRise of X BallseMVNUI(dcg. C) 

AFM I DfM2 OEMI <> E.\-12 

Figure 2.8: Differences in X-axis positioning error caused by thermal effects under various 
machining conditions (Ramesh, Mannan, & Poo, 2003). 

While there has been much research on this topic, a review article addressing 

monitoring of tool wear using artificial neural networks over the past decade (Sick, 2002) 

discusses how and why "the development of tool wear monitoring systems is an on-going 

attempt." Sick describes the usage of ANN's and fuzzy systems for modeling the non-

linear dynamics within the machine tool. Some of the problems mentioned include the 

requirement of many training cycles, the restriction to specific trained cutting conditions 

and limiting the machine tool to operate within the trained performance range. In total 

22 



M.A.Sc. Thesis- Darryl Wallace-- McMaster University- Mechanical Engineering 

138 articles were reviewed for tool condition monitoring of turning and it was reported 

that the general consensus, regardless of all of the research, is there still remains little 

industrial implementation these methods. 

Using multivariate techniques relevant to those used in the methods described in 

this thesis, Hussein (2007) presented some techniques using latent variable techniques of 

principal component analysis (PCA), projection to latent structures-discriminant analysis 

(PLS-DA) and projection to latent structures (PLS). Hussein's work had several 

objectives which included identifying work done by a particular machine via PLS-DA; 

predicting surface finish from tests performed on three different machines; using model 

inversion techniques to identify which machine would be best suited to obtain desired 

quality parameters; and, a case study using plant data from a manufacturing process from 

General Motors. Overall, the multivariate modeling techniques proved to be successful 

in accurately predicting surface finish and the model inversion was shown to be useful in 

the prediction of which machine would provide the best quality parameters with 

verification by experimental results. Hussein also provides a comparison to these 

modeling techniques with more traditionally used techniques like ANN's. It was found 

that while all modeling techniques provided reasonable fits to the data, it was noted for a 

process monitoring system, however, "there is a need for more than a good predicted 

value." Using the tools available with PCA and PLS (described later in this chapter), it is 

possible to gain insight into what is actually happening during the process via 

contribution plots and score plots, for example. 
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While researching machine process monitoring an interesting thing to note is that 

no tools were found that are capable of easily conveying the process information into 

simple control charts such as those described by (Nomikos & MacGregor, 1995) and 

(Kourti & MacGregor, Multivariate SPC Methods for Process Monitoring and Product 

Monitoring, 1996) that had been developed for chemical engineering applications, for 

example. While SPC methods have been developed for tracking quality; e.g. (Bering, 

2003), (Automotive Industrial Action Group, 2005), all of these techniques which rely on 

tracking quality parameters only and altering the process based on what is observed in the 

final part quality. Again, it is important to note that the process monitoring techniques 

described here are for a very specific set of tasks, which limits the applicability of these 

techniques to industry. Furthermore, it was also found that few studies involved the use 

industrial case studies to validate their methods with practical applications. 

2.4 Multivariate Data Analysis 

In any type of statistical process control (SPC), the main idea is to keep the 

process within operating conditions that are statistically 'in control.' Traditionally in the 

manufacturing industry, quality parameters are measured and individually monitored 

using SPC charts like Shewhart, Exponentially Weighted Moving Average (EWMA), 

Cumulative Sum (CUSUM) and these types of charts are available in commercial 

software such as Mitutoyo's MeasurLink package. However, the monitoring of a few 

quality variables has been noted as being inadequate for the diagnosis of a process 
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(Kourti & MacGregor, 1995). Using Hotelling's T2 and squared prediction error control 

charts (as described in section 2.4.3), it is possible to monitor all of the measured process 

and quality variables at once, as opposed to individually as is done by the, previously 

mentioned, traditional control charts. As processes become complex with many different 

variables affecting the outcome of a process, it becomes difficult to assess the state of the 

process using traditional univariate techniques. Figure 2.9 illustrates the case where two 

arbitrary parameters, yl and y2, are shown to be individually in-control; but when 

multivariate analysis techniques are applied, an observation can be shown to be out-of­

control when the analyzed together. Multivariate analysis takes this lower dimensional 

example further by explaining what is happening in a process with 10-20 variables, for 

example, in as few as only 2-3 latent variables. In the case of machining, the process 

variables can include information from vibrations, forces, temperatures, etc. When 

looking at many variables there are often a few underlying effects causing a process to 

move a certain way (called multicollinearity) and multivariate data analysis is the only 

way to look at all the data simultaneously (Eriksson et a/., 2001). As previously 

described, there are many different types of measurements in machining and the most 

common method of analysis has been ANN's. 

The methods of multivariate data analysis described here include principal 

component analysis (PCA) and partial least squares or projection to latent structures 

(PLS). PCA is the method of determining the underlying structure of multi variable data 

of process data only (X). PLS is the method of projecting the process data (X) onto the 

quality data (Y) in order to determine the covariance between the two data structures. 
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Figure 2.9: Illustration of how univariate style control charts can be misleading. Note how yl andy2 
are both in control, but together they lead to a data point outside of acceptable quality (Kourti & 

MacGregor, 1995). 

2.4.1 Principal Component Analysis (PCA) 

When working with data sets containing large amounts of variables, a common 

practice for reducing the dimensionality of the system is by way of using PCA (Jackson, 

1991; Kourti & MacGregor, 1995; Eriksson eta/, 2001). 

In a data set, the first principal component (PC) can be found by identifying the 

direction with the most variance in a multidimensional space. The second principal 

component is the direction with the second most variance, and so on (see Figure 2.10). 

This method can be described mathematically as follows (Kourti & MacGregor, 1995): 
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• The first principal component, t 1, of dataset X is a linear combination such that: 

(2.1) 

which has the maximum variance with IP11 = 1 . 

• The second component, t2, of X is 

defined similarly as: 

(2.2) 

where t2 is orthogonal to t1 and is also subject to IP2 1 = 1 . 

• This method continues as follows 

and can be summarized with: 

A 

X= L/;P{ +E (2.3) 
i=l 

where X is the matrix of process data with columns representing process variables and the 

rows are the observations, A is the number of PC' s computed and E is the residual matrix. 
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Figure 2.10: The geometric interpretation ofPCA on three arbitrary process variables illustrating 
the first two principal components (adapted from Kresta, J.V. et al, 1991; Eriksson et al, 2001). 
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It should be noted that X consists of N observations and K variables (NxK) and 

the corresponding score (t) and loading (p) vectors are of NxA and KxA dimensions, 

respectively. 

One of the methods for computing the PC's is known as the NIPALS algorithm 

(Non-linear Iterative PArtial Least Squares). This algorithm, given in chapter 2.4.1.1, is 

ideal since it iteratively computes each PC, and typically only 2 or 3 components are 

needed to efficiently describe the variation in a process (Kourti & MacGregor, 1995). 

Principal component models are generally trained on historical reference data that 

contains information from successful process conditions so that new observations can be 

compared to what has been identified as 'in-control' (Kourti & MacGregor, 1995; 

Nomikos & MacGregor, 1995). These historical data bases often contain missing 

information and so the NIP ALS algorithm has been widely accepted by commercial 

software (e.g. SIMCA-P) due to its ability to handle missing data (Grunge & Manne, 

1998). 

2.4.1.1 PCA NIPALS Algorithm 

Before using PCA some data preprocessing needs to be performed. Since a wide 

variety of values from different types of measurements are being used, it is necessary to 

scale all of the data by its standard deviation and mean center the data (Kourti & 

MacGregor, 1995; Eriksson eta/, 2001). In a comparison of several different expanded 

methods of PCA and PLS, Westerhuis, Kourti & MacGregor (1998) present the NIP ALS 

algorithm used for PCA: 
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1. Select a column of X as the first PC score vector, t 
2. Loading vector: p= Xt/ (l t) 
3. Normalize the loading vector: p=piiPI 
4. Score vector: t=Xpl(prp) 
5. Check t for convergence: 

a. If t has converged, move on to step 6 
b. If t has not converged, go back to step 2 

6. Compute residual matrix E =X- tpr 
7. Go to step 1, and repeat with X= E, to extract the next PC if desired. 

Finally, a graphical representation ofthe NIPALS algorithm is presented in Figure 2.11. 

Figure 2.11: Graphical illustration ofPCA NIPALS algorithm (Westerhuis, Kourti, & MacGregor, 
1998). 

2.4.1.2 Predictions Using PCA 

With a model built using the NIP ALS algorithm, with A principal components, on 

process data (the X matrix) where the t-scores and p-loading vectors are computed, the 

loading vectors can be used to compute the new t-scores on newly acquired process data. 

For a matrix of new observations, Xnew, having the same number of columns the matrix 

for which the model was built, the new scores, tnew, can be computed as: 

(2.4) 

29 



M.A.Sc. Thesis - Darryl Wallace --McMaster University - Mechanical Engineering 

With the new scores computed, the predictions of the new observations can be 

computed as: 

(2.5) 

where X represents the predicted data points. The predicted data becomes useful when 

computing the squared prediction error for multivariate control charts in chapter 2.4.3. 

2.4.2 Partial Least Squares (PLS) 

When only process variable data or product quality data is available one must use 

PCA. But, when measurements are also made on both it is possible to use PLS to relate 

the process data (X) to the quality data (Y). Using contribution plots, as described in 

2.4.3.3, it then becomes possible to identify which process variable was the cause of an 

undesirable product (Kourti & MacGregor, 1995). 

2.4.2.1 PLS NIPALS Algorithm 

The NIP ALS algorithm for PLS is very similar to the one presented for PCA. As 

done with PCA, before entering the algorithm, values in both X and Y data matrices are 

scaled to unit variance and mean centered to bring the data to the same level. As 

mentioned in 2.4.1.1, Westerhuis, Kourti & MacGregor (1998) present the NIPALS 

algorithm used for PLS: 
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1. Select column of Y to be the first score vector, u 
2. X weighting vector: w=XTul(uTu) 
3. Normalize weighting vector: w=w/JwJ 
4. Score vector: t=Xwl(wTw) 
5. Yweighting vector: q=YTt!(lt) 
6. Y score vector: u= Yq 
7. Check t for convergence: 

a. If t has converged, move on to step 8 
b. If t has not conver~ed, go to step 2 

8. X loading vector: p=Xt/(t t) 
9. Compute residual matrices: E =X- tpT 

F= Y-tqT 
10. Go to step 1, and repeat withX=E and Y=F, to extract the next component 

if desired. 

A graphical representation of the PLS NIP ALS algorithm, similar to that for PCA in 

Figure 2.11, is presented in Figure 2.12. 

• my 

Figure 2.12: Graphical illustration ofPLS NIPALS algorithm (Westerhuis, Kourti, & MacGregor, 
1998). 

2.4.2.2 Predictions Using PLS 

With a PLS model, created via the NIP ALS algorithm having A principal 

components, it can be very useful to predict the outcome of the process (Y), whether it be 

quality information or any other quantity (for example, thermal drift in the Z-axis in the 
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case of machine tools), from the process data (X). With a model built with training data, 

it can then be possible to describe the model as a regression model as (Eriksson et al, 

2001): 

Y=XB+F (2.6) 

Where Y is the matrix of response variables (or quality variables) X is the matrix of 

predictor variables (or process variables), B is the vector of PLS regression coefficients, 

and F is the residual (or error) matrix. The vector, B, of PLS regression coefficients is 

computed by: 

(2.7) 

where w is the matrix of weights describing the correlation between X and the u-scores, p 

is the matrix of loadings on the X matrix, and q is the matrix of weights that explain the 

correlation between Y and the t-scores, as illustrated in section 2.4.2.1. 

With the regression coefficients, B, are computed and based on the training data, 

predictions of the quality variables from new process conditions can be simply performed 

by the following calculation: 

~ 

where Y is the matrix of predictions on the new observations, Xnew· In the case of 

machining, for example, these predictions could be used for thermal error compensation. 
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2.4.3 Multivariate Control Charts 

There has been much research in the development of control charts for assessing 

the state of a multivariable process (Kourti & MacGregor, 1995; MacGregor & Kourti, 

1995; Nomikos & MacGregor, 1995; Kourti & MacGregor, 1996). These control charts 

not only provide a tool for determining if a process has gone 'out of control,' but they 

also provide some tools for diagnosing the process. Two of the control charts that are to 

be discussed here are the Hotelling's T2 (T2) and Squared Prediction Error (SPE) charts. 

The T2 control chart is one that is specifically applicable to the monitoring of a 

machining process because it is noted in the Statistical Process Control guide for 

automotive SPC by the Automotive Industrial Action Group (2005) as an acceptable 

control chart. The T2 control chart, however, is noted as not being sufficient for 

monitoring the process since it is only capable of detecting variation in the plane of the 

PC's if it is greater than what can be explained by noise or 'common cause.' If a new 

event is occurring then the observation will tend to move off the plane (or hyperplane) 

and these events can be detected by SPE (Kresta, MacGregor, & Marlin, 1991). 

Furthermore, contribution plots provide a method of diagnosing 'out-of-control' 

observations. 

2.4.3.1 Hotelling's T2 Statistic 

Hotelling's T2 statistic for the lh observation from a model using A components is 

computed using equation (2.9): 
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(2.9) 

where t is the score of the lh observation from the a1
h principal component and l is the 

variance of the t-scores from the a1
h principal component (Eriksson, Johansson, Kettaneh-

Wold, & Wold, 2001; Kourti & MacGregor, 1995). 

Since the T2 statistic is directly related to the F-distribution, the upper control 

limit (UCL) for these control limits is given equation (2.10) as: 

T2 = A(N2 -1) F (AN -A) 
UCL N(N -A) a ' 

(2.10) 

where A is the number of components, N is the number of observations and a is the level 

of significance for the F-distribution with A and N-A degrees of freedom (Jackson, 1991; 

Eriksson, Johansson, Kettaneh-Wold, & Wold, 2001; Kourti & MacGregor, 1995). 

2.4.3.2 Squared Prediction Error 

Also known as the Q-statistic (Jackson, 1991) or DModX (Distance to the Model 

X, (Eriksson, Johansson, Kettaneh-Wold, & Wold, 2001)), SPE is used as a 

complementary control chart to the T2 control chart. The SPE is often used in the Y 

space (Kourti & MacGregor, 1995) but can also be used on process data from the X space 

(MacGregor & Kourti, 1995). SPE for a new observation can be computed using 

equation (2.11 ): 
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M 

SPEx = ~)xnew,i -Xnew,Y (2.11) 
i=I 

Where M is the number of process variables (or quality variables for SPEy) and X is the 

predicted observation. The upper control limit for this is computed according to Jackson 

and Mudholkar (1979) and has been used successfully in multiple studies (Kourti & 

MacGregor, 1995). To compute the UCL let: 

i=A+I 

(2.12) 
i=A+I 

Where l is the vector of eigenvalues which form the sample covariance matrix of the data 

matrix X with K variables and A is the number of components in the model. Then, let: 

(2.13) 

and the UCL for the SPE can be computed using: 

(2.14) 

Where the Ca is the value of from the Normal distribution "cutting off the area of a under 

the upper tail of the distribution if ho is positive and under the lower tail if ho is negative 

(Jackson, 1991)." 
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2.4.3.3 Contribution Plots 

One of the powerful tools for diagnosing a multivariable process is through the 

use of variable contribution plots. When trying to find the cause of an 'out-of-control' 

observation, contribution plots sum up the weighting of each variable in a simple bar-

chart to show which variables caused the observation to go awry. Methods for finding 

the contribution are described by Kourti and MacGregor ( 1996) and in (Y oon & 

MacGregor, 2001). The contribution of the lh variable in X to the large value ofthe/h t-

score of the a1
h principal component is given by: 

ta,j ( ) cant a i = -2 Pa i X; - f.l; 
, sa , 

(2.15) 

where 11 is the mean and i is the variance of the t-scores of component a. It should be 

noted that if the data is mean centered than 11 is simply zero. In order to find the total 

contribution of the variable in the model across A principal components, all which is 

required is to simply sum equation (2.15) across all components in the model. This is 

given by: 

A 

CONI;= ~)conta) (2.16) 
a=l 

A graphical illustration of how contribution plots can be used to diagnose an 'out-of-

control' observation from a process is shown in Figure 2.13. 
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Figure 2.13: Contribution plot illustration for 'out of control' observation #1493 as detected by the 
Hotelling's T2 control chart. 

2.5 Summary 

Presented in this literature review are various works that illustrate techniques for 

process monitoring. With any type of monitoring system, sensor selection is crucial to 

capturing the features of the process that can help indicate when something might have 

gone 'out-of-control.' Due to the fact that table force dynamometers or tool shank 

mounted dynamometers are difficult to implement in practice (due to fixturing and tool 
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changes) a review was performed on alternatives to measuring forces during cutting. 

From this review, current sensors and accelerometers are noted as being indirect 

indicators of forces during cutting. Using the data analysis tools (e.g. PCA, PLS), 

however, it is not necessary to initially model the forces because the data is mean 

centered and scaled to unit variance before analysis. Furthermore, review on thermal 

measurements and modeling on machine tools was performed so that the thermal errors 

can be monitored. Finally, control charts based on Hotelling's T2 statistic and Squared 

Prediction Error of the multivariate models have been shown to be powerful tools in the 

diagnosis of a process in many chemical engineering applications and are to be 

implemented for process monitoring of machining. 
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Chapter 3 - Experimental Methods 

One of the main goals of this work was to work through the issues associated with 

a practical implementation of a multivariate approach in an industrial environment. All 

of the experimental setup and work described was performed at Nixon Integrated 

Machining Designs Ltd. (Nixon), located in Burlington, Ontario. Because of the 

industrial implementation, all of the sensor selection was done on the basis that it needed 

to be seamlessly integrated into their current machining process with no interference to 

normal operation; with the final goal being the implementation of a fully functional 

process monitoring system. 

3.1 Description of Process 

The machining process used for the manufacturing of "widgets" is relatively 

simple consisting of two features that are machined: a bore and a boss. The machine 

used is a Daewoo DMV -400 vertical machining center with a rotary table. The rotary 

table system, with two fixture tables, enables the operator to inspect and load new parts 

during a machining cycle with each table holding 8 parts. Since there are two features 
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that are machined, one tool machines the bore feature (boring tool) and one tool machines 

the boss feature (boss tool). The parts are machined in the order shown in Figure 3.1 and 

is repeated after a tool change to machine the second feature. To save time in a 

machining cycle there is only one tool change per cycle and each cycle starts with the 

opposite tool. This means that it is necessary to know which tool is being used in order 

to properly preprocess data for analysis. 

Figure 3.1: Illustration of machining cycle. 

For the machining of the widgets, the bore tool was operated at 7,000 RPM and 

the boss tool was operated at 5,000 RPM. The boring tool also has another single tooth at 

its base so that when it plunges through the bore it also faces the surface around the bore. 
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Figure 3.2 shows a generic dimensionless sketch of the part to illustrate the machined 

features. 

Boss 

Figure 3.2: Sketch of part to illustrate machined features. 

3.2 Machine Thermal Expansion Modeling 

It is well known that machine error is induced by a change in temperature during 

a machining operation and there has been much research into the compensation of these 

types of errors (Ramesh, Mannan, & Poo, 2000a). Of the two features that are machined 

on the part shown in Figure 3 .2, the dimension of most concern was in the Z-direction. In 

order to model the expansion of the Z-axis, first an initial test was carried out to observe 

the behaviour of this system. One of the goals of the initial test was to measure the 

temperatures until a maximum expansion was captured. If a model with reasonable fit 

and predictive ability could be created with the data from this initial test then it would be 

possible to model the system during production. It was important to try to capture the 

behaviour of the system during production since there were other factors that can 
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contribute to the thermal expansion; for example, during cutting the load can increase on 

both the spindle motor and the axis motor which will affect the thermal profile of the 

machine (Ramesh, Mannan, & Poo, 2003). For this reason, experiments were later 

carried out during production in an attempt to model the thermal behaviour of the 

machine. It should be noted that sensor noise was expected during the production 

experiments due to the fact that only one surface of the cast part was machined. 

3.2.1 Initial Measurement of Z-Axis Expansion 

The initial measurement was carried out in a similar method as performed by 

Statham, Martin, & Blackshaw (1997). In this experiment proximity sensors are placed 

in a fixture that was designed to hold them in the directions of the X, Y, and Z axes. This 

method of measuring thermal distortion only considering the case where it is caused by 

spindle rotation and does not take into account other factors causing thermal distortion of 

the part during machining. This experimental work follows standards described in 

ASME B5.54-2005 and ISO 230-3. While the ASME standard has this experimental 

method in the section describing methods for measuring tilt error motion, the main sensor 

of interest was the one in the Z-direction. The experimental set up is illustrated in Figure 

3.3. 
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Figure 3.3: Sensor fixture design for measuring thermal distortion and expansions (The American 
Society of Mechanical Engineers, 2005). 

At the time of performing this experiment, only three sensors were used, one for Z and 

two for the X and Y directions. In this case only the Z axis direction was considered as it 

was the direction with the tightest tolerance and was consistently measured by the 

operators and the CMM. 

3.2.1.1 Sensors and Equipment 

For this experiment, E-type thermocouples manufactured by Omega were used to 

measure the surface temperatures around the spindle. These thermocouples were chosen 

as per the literature review in section 2.2.3. While the temperatures to be measured 

during machining do not come near to the extremes of the temperature that the 

thermocouple is capable of measuring (-200°C to 900°C), Figure 3.4 from OMEGA, 

shows that the E-type thermocouples are the most sensitive of the common types of 
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thermocouples. This type of thermocouple uses a Nickel-Chromium vs. Copper-Nickel 

junction. Furthermore, the error limits for these thermocouples are listed as 1. 7°C or 

0.5% (whichever is greater) above 0°C. 

80 
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so + 

<f) 

~ 40 
:i 

E Chrome! vs. Constantan 
J Iron vs. Constantan 
K Chrome! vs. Altamel 
R Platinum vs. Platinum 

20 13% Rhodium 
S Platinum vs. Pla,tlnum 

10% Rhodium 
T Copper vs. Constantan 

0() SW' 1000° 1600" 2000" 

Temperature °C 

Figure 3.4: Millivolts vs. Temperature for various types ofthermocouples (OMEGA). 

While the ASME standard for measunng effects due to environmental 

temperature variation lists only one spindle surface temperature measurement and one 

ambient temperature measurement, four surface measurements were taken up the front of 

the spindle structure with one ambient temperature measurement. Figure 3.5 shows the 

placement of the thermocouples on the front of the spindle. 

In order to measure the movement of the axes, Bently-Nevada 3300 series eddy-

current type proximity sensors were used. These sensors are capable of measuring over a 

range of 80 mil (2mm) with a sensitivity of 200 mV/mil (7.87V/mm or 7.87mV/!lm). It 

is also recommended that the proximity sensor be placed 50 mil (1.27mm) away from the 

target at the start to ensure the change can be measured in either direction. The output 
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voltage of the proximity sensors ranges from -1 V to -17V. Furthermore, the sensors were 

placed at least 43mm from each other to ensure there was no cross-talk between the 

sensors, as suggested by the data sheet. The experimental setup using the proximity 

sensors and the fixture to hold them from Figure 3.3 is shown in Figure 3.6. Since the 

datasheet states that the sensors are calibrated with an AISI 4140 steel target, the sensors 

were recalibrated using an external dial indicator with 10.62 V/mm, 9.96V/mm and 11.20 

V/mm for the X, Y, and Z sensors, respectively, for the stainless steel shaft target shown 

in Figure 3.6 . 

Figure 3.5: Placement of four thermocouples during initial thermal experiment. 
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Proximi 
Sensors 

Figure 3.6: Measurement of z-axis movement carried out in similar fashion to Statham, Martin & 
Blackshaw, (1997) and ASME B5.54-2005. 

The acquisition system consisted of a PC with two National Instruments (NI) PCI-

6023E data acquisition (DAQ) cards. These DAQ cards are capable of measuring 16 

analog inputs with a total sampling rate of 200kHz and 12-bit resolution across a ±10V 

range. One card was used for measuring the thermocouple inputs was connected to an 

SC-2345 connector block and one card was used for measuring the proximity sensor 

inputs which are connected to a BNC-2110 standard connector block using BNC cables. 

Since the input range of the card is ± 1 OV but the sensor output range is -1 V to -17V, the 

distance from the target to the sensor was set to fall within a range of -1 V to -1 OV. To 

46 



M.A.Sc. Thesis- Darryl Wallace-- McMaster University- Mechanical Engineering 

convert the voltage signals from the thermocouples to temperatures, the thermocouples 

were connected to the SC-2345 connector block via a SCC-TC02 connector block 

modules. These thermocouple modules have built in cold-junction-compensation to 

accurately convert the thermocouple signals to temperatures. The method used to 

compute thermocouple signals using the NIST - ITS 90 standard polynomial coefficients 

and the cold-junction-sensor signal from the modules is illustrated in a Matlab code 

function that is presented in Appendix A. 

Thermocouple and proximity sensor signals were acquired usmg the Data 

Acquisition toolbox in Matlab. The decision to use the Matlab as the acquisition 

software was made because it is compatible with NI hardware (including the PCI-6023E) 

and could thus be used later for programming an online monitoring system. 

3.2.1.2 Experimental Conditions 

The experimental conditions for this section were set simply to capture the 

maximum amount of thermal distortion using spindle speeds that are typically used 

during production. At the time of testing, the maximum spindle speed used during the 

machining was 7,000 RPM. While not typical of the machining cycle where the axes are 

moving and there are spindle starts and stops during tool changes, the spindle was set to 

run constantly at 7,000 RPM for 3 hours in an attempt to capture the maximum distortion 

while it was expected that the measured temperatures would level off over this period of 

operation. 
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The data for the proximity sensors was acquired at 10kHz for 1 second at 30 

second intervals. The thermocouple data was acquired at 100 Hz for 1 second at 30 

second intervals, for a total of 360 samples. While many samples were acquired, for the 

purpose of this analysis only the signal means across the 1 second sample were taken. 

3.2.1.3 Analysis 

Often before any in depth analysis is performed, PCA is performed on the data to 

ensure there is good correlation between all of the variables, both process and quality 

(Burnham, MacGregor, & Viveros, 1999). Demonstrating a good model fit using PCA 

ensures the data is coherent and has structure. In general, a model with a goodness of fit, 

R2
, and goodness of prediction, fi, greater than 0.5 is considered as acceptable. It should 

be noted that (j cannot exceed R2
, as it is not possible to predict with better accuracy 

than the model is able to fit (Eriksson, Johansson, Kettaneh-Wold, & Wold, 2001). 

The next step for analysis of the data is to use PLS to model the Z-axis proximity 

sensor measurements by the thermocouple temperature measurements. The rules and 

guidelines describing goodness of fit in PCA are also applicable to PLS analysis. 

Analysis will initially be carried out using the commercial software package 

SIMCA-P+ v.11 (UMETRICS, 2005) for multivariate analysis. 
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3.2.2 Measurement of Z-axis Expansion During 

Production 

While measurement of the Z-axis expansion during the test described in section 

3.2.1 may be effective in determining the behaviour of a machine under certain 

conditions; however, the specific conditions involving only spindle rotation cannot be 

representative of the machine's performance during a production machining cycle 

involving changing spindle speeds, movement of the axes, etc. For this reason, an 

indirect method of measuring the change in the Z-axis position induced by thermal 

effects was required. 

The main quality parameter of the two machined features of the part shown in 

Figure 3.2 was the height of those features as machined in the Z-direction. At the 

operator's station there was a custom gage with a dial indicator fixed on the unit so that 

the operator can check the heights of these features and manually adjust offsets in the 

controller to maintain this quality parameter within tolerance. Using this measurement it 

was possible to indirectly track the change in the in the Z-axis over time as the machine 

was being used throughout the day. 

3.2.2.1 Sensor Locations and Operating Conditions 

The placement of the thermocouples used in the previous section, while in 

accordance with some methods described in the ASME standard and using some 

additional thermocouples, does not account for some additional major heat sources. In 

past research, major sources of heat have been shown to include axis motors, spindles, 
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ball screws, and guideways (Ramesh, Mannan, & Poo, 2003). A study by Lo et al. 

(1995) for the real-time error compensation (RTEC) on a turning center showed that the 

number of temperature sensors can be reduced from 80 to 16. In this case they used an 

optimization strategy which maintained the desired prediction accuracy using just a few 

temperature locations. It should also be noted that the thermal error of the machine tool 

was closely related to its operating conditions (Ramesh, Mannan, & Poo, 2003). While 

studies like Lo et al. (1995) optimize the number of thermocouples used after some 

empirical testing, the case where sensors need to be placed on a production machine 

within a limited time frame has resulted in the placement of thermocouples on some 

major heat sources. The placement of the thermocouples used in this research is 

summarized in Table 3.1 and their physical location is shown in Figure 3.7. It should 

also be noted that the DMV -400 machining center is outfitted with a third-party spindle 

chiller unit which attempts to remove heat from the spindle region. Since the SC-2345 is 

only capable of handling eight thermocouple inputs, only this many were used during the 

experiments and modeling. If the experimental work had shown inadequate modeling 

additional sensors would have been implemented. 

As previously mentioned, the operator used a custom gage with a dial indicator to 

track the heights of the part for occasional offset updates. Typically, the operator would 

measure a part at the start of the shift then set the offsets to account for the cold-start state 

of the machine. Approximately an hour later another offset change would be made and 

another after lunch break. Assuming normal operation throughout the day, there would 

be anywhere from three to six offset changes in a day, depending on the operator. This 
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"human-factor" was another reason for this work so that a real-time thermal error 

compensation system making adjustments at scheduled intervals could maintain quality 

that is within the specified tolerance. While the resolution of the machine was O.OOlmm, 

offsets in the Z axis are only ever made with a resolution of O.Olmm due to the tolerance 

requirements of the parts as well as the repeatability of the machine and the repeatability 

of the castings. Furthermore, the resolution of the dial indicator on the gage is O.Olmm. 

Table 3.1: List of thermocouples and locations 

Thermocouple# Description of location 
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Figure 3.7: Thermocouple and accelerometer locations on the machine. 
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3.2.2.2 Analysis 

As performed in section 3 .2.1, a PLS model was built to relate the measured 

heights (i.e. change in Z-axis) to the temperatures on the machine. An initial trial of 

measuring the parts showed the data to be very noisy due to the imprecise nature of the 

cast aluminum parts. Because of this noise, simple smoothing techniques were 

investigated with the intention of improving the predictability of the model. Since the 

temperatures of the machine do not increase or vary in a fashion similar to the discrete 

measurements taken on the custom gage, the smoothing techniques were used to capture 

the general trend of the quality measurements. 

3.3 Machine Production Process Monitoring 

In general, it is known that in a production environment, whether manually or 

automatically operated, process faults will occur. It is very rare for a company to 

perform 100% quality inspection simply due to the time required to do a CMM 

inspection. Most SPC is performed, however, using a few measured quality parameters 

on a small number of parts on an infrequent schedule (Kourti & MacGregor, 1996). It is 

possible, however, to mount sensors on the machine to monitor what is happening while a 

part is being produced. Since many parts are being produced all the time it is possible to 

collect process data on every part that is created. The main finding of this research was 

that with massive amounts of process data composed of multiple variables it is possible to 
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create an effective multivariate SPC system to identify good and poor process conditions 

related to specific quality outcomes. 

One of the main criteria of developing this system, as mentioned in section 3.1, 

was that it cannot interfere with the part manufacturing process. Sensors such as table 

dynamometers, often used in laboratory experimental work (Yan, El-Wardany, & 

Elbestawi, 1994), cannot be used in this case because of the use of both the multiple 

rotating tables and the custom fixtures. As mentioned in chapter 2, there has been 

research involving the indirect measurement of forces either through vibrations, spindle 

power measurements, or feed-drive current measurements. Also, the studies that have 

modeled forces on these other parameters have originally measured the cutting forces 

directly with a dynamometer. Because of the status of the machine and the fixture tables 

it was never possible to model the forces on the machine during production conditions. 

However, due to the preprocessing used in PCA, namely mean-centering and unit­

variance scaling, it should not be necessary to first model the forces. Instead, simply 

using the sensors that have been shown to adequately model forces in the literature 

should be sufficient for process monitoring where variation in these measurements would 

be the key indicator and not the exceeding of specific threshold values. 

For sensor selection, two types of sensors are capable of measuring critical 

machine process conditions without interference: accelerometers and current sensors. 

Accelerometers mounted on the spindle structure will be capable of measuring vibrations 

during cutting while not being restricted to the table movement. Current sensors are 
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fixed to the motor power leads in the back of the machine far removed from the cutting 

fluids and metal chips. Using these sensors satisfies the conditions specified in section 

3.1 as they will not interfere with the process or structure of the machine. Furthermore, 

the boring and bossing operations consist of a plunging in the Z direction and the 

monitoring of process conditions in this direction was of primary concern. Therefore, 

applying a single axis accelerometer in the Z direction and a current sensor on the Z feed­

drive motor should be sufficient for observing the process in its primary dimension. The 

actual removal of material using both tools occurs in the X/Y plane as well; hence, the 

use of single axis accelerometers in the X and Y directions was also employed. 

Furthermore, since temperatures also have a great influence on quality (especially 

geometric parameters), thermocouple measurements will also be recorded during the 

machine production process monitoring. 

3.3.1 Sensors and Equipment 

The thermocouples used in the general machine process monitoring are of the 

same setup as those used in section 3.2.2.1. As mentioned in the previous section, three 

Kistler 8702B50 accelerometers were used mounted within the spindle structure behind 

the covering panel of the machine. A one-inch cube was created with 10-32 tapped holes 

on the center of the cube faces for mounting the accelerometers in the directions of the 

three axes. These accelerometers are capable of measuring a maximum range of ±50g, 

have a sensitivity of 100mV/g, and have a frequency response of 0.5- 10,000 Hz. The 
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accelerometers were connected to a Kistler 5134 power coupler and then connected to the 

BNC-2110 connector block of the acquisition system. The coupler was setup to filter the 

signals with the low-pass filter setting at 1 kHz and, after some initial test recording of 

the machining cycle, a gain of 100 was required due to the relatively low sensitivity of 

the accelerometers and the strength of the signal in this location on the machine for this 

application. The location of the accelerometers on the machine is presented in Figure 

3.7, and is denoted as 'A'. 

As previously mentioned current sensors are to be used on the Z-axis feed motor 

and the spindle motor. On the DMV -400 both motors are three-phase A. C. motors; 

however, since each phase will contain the same motor signal separated by a phase angle 

of 120°, only one phase on each motor will be monitored. On the Z-axis motor a Sypris 

(F.W. Bell) IHA-150 open loop hall-effect current sensor was used which had a 

sensitivity of 33m VI A and an AC bandwidth of 50 kHz. The current sensor used on the 

spindle motor was a clamp-type current sensor with a sensitivity of 5m VI A. 

The acquisition equipment setup was very similar to that of section 3 .2.1.1 except 

in this case 5 channels are used on the BNC-2110. Each channel on the BNC-2110 was 

initially sampled at a rate of 1OkHz, however, after it was established that only the 

magnitude of the spindle RPM peaks was going to be used the sample rate was reduced to 

2kHz. Acquisition software was again written using the Data Acquisition toolbox in 

Matlab 7 so that data could be saved in MAT files for easy processing and compatibility 

with other Matlab programs written for the online-process monitoring software. The 
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acquisition and process monitoring system followed a standard configuration with the 

sensors all connected to a central acquisition system PC and a monitor setup to provide 

feedback to the operators. 

3.3.2 Operating Conditions 

For this machining operation, the spindle speeds were 7,000 RPM and 5,000 RPM 

for the boring tool and bossing tool, respectively. The cycle length when eight parts were 

being manufactured is 70 seconds and the acquisition was triggered off the X-axis 

accelerometer since the first movement was in the X direction. 

3.3.2.1 Inspection 

Formal CMM inspection for the parts was generally carried out only once per day. 

Since the boring and bossing tool dimensions were fixed, this inspection is mainly used 

to provide a formal measurement of depth and verification of tool setup. During the 

inspection one cycle from each table was taken to the CMM for manual inspection, for a 

total of 16 parts :from each machine were measured. Inspection on the CMM, however, 

takes a long time (approximately 2 minutes per part versus 70 seconds to machine eight 

parts) which was one reason why constant inspection cannot be performed. Furthermore, 

the long inspection time was also caused by the fact the inspection includes all of the 

features of the parts, including the cast features which are not machined and Nixon is not 

responsible for. 
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Due to the long inspection time of the parts, it was not plausible to inspect 

representative samples of the parts as they were manufactured throughout the day if all 

eight parts are to be inspected. For this reason, a sample part from the first nest location 

on each table was taken approximately every 15 minutes during two days. This sampling 

of parts provided an adequate amount of data to model the quality data with the process 

data while still providing some additional data to test against the model. 

Throughout the time spent monitoring this machining process, many machining 

cycles have been inspected and modeling of these parts were also investigated. 

For the inspection of these parts, there are multiple quality parameters that are 

affected by machining. Table 3.2 shows a list of the quality parameters that are affected 

by machining. These parameters will be investigated using PLS. 

Table 3.2: List of quality parameters affected by machining operations. 

Quality Parameter Description 

Item 34 

Item 37 

Item 38 

Item 53 

Item 56 

Item 57 
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3.3.2.2 Simulation of Process Faults 

Multivariate statistical models are generally built on historical data from 

processes that have resulted in good quality product while experiencing common-cause 

variation (Yoon & MacGregor, 2001). In this study, however, there was no readily 

available historical process data. Furthermore, there exists no historical data that can 

represent events containing process faults. In the machining process examined here, 

there were two main types of process faults not related to thermal errors: catastrophic and 

minor. During the catastrophic process fault, the operator completely miss-loaded the 

part so that it was sitting crooked and both tools entered the part at such an angle that in 

some cases machined completely through the wall of the bore hole. An example of a 

minor process fault was when the operator had not removed the chips from the previous 

machining cycle, and the parts were resting on these chips while the fixture clamps them 

down. Since the case of the catastrophic fault results in shut down and retooling of the 

machine, only the minor fault was investigated. If a process monitoring scheme is to be 

implemented and provide appropriate feedback to the operator, it is important that it is 

able to differentiate between a good process and a bad process. 

As described, the major cause of process faults in this machining process was 

operator miss-loads. Since the catastrophic case was not feasible to simulate and results 

in broken tools and down-time, a simulation of the minor process faults was investigated 

here. In order to simulate minor process faults, shims under were placed the parts in 

three locations where they rest on the fixture nest. This was an attempt to recreate the 
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case where the part was sitting slightly crooked due to residual chips. With these minor 

process faults, it was possible that the parts may pass the initial quality check from the 

custom gages. Furthermore, the operators do not routinely perform 100% inspection. 

Here it would be useful to detect these minor process faults from process data to inform 

the operator of a possible problem. The shim was placed on three different locations 

under the part where it sits on the fixture nest. Different combinations of thicknesses and 

locations were used in an attempt to capture some different process faults. Because of the 

limited time available to perform these experiments only three sets of tests were 

completed and, because of the similar results from each test, only one is presented. To 

prevent damage to the tool, a maximum shim thickness of 0.008" (~0.2mm) was used. 

The shim placement of the process fault simulation trials are summarized in Table 3.3. 

The 'NestiD' refers to its location on the fixture, as shown in Figure 3.1. 

Table 3.3: Shim thicknesses and locations used in experimentation. 

Nest ID Location 1 Thickness 

1 (Control) 

Location 2 Thickness 
I 
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3.3.3 Analysis 

The preprocessing of this data was performed in a manner similar to that used in 

(Huessin, 2007) and is summarized in Table 3.4. The analysis for this experimental work 

can be broken up into two categories: process data and quality data. In the event that 

only process data can be made available to monitor the machine, PCA models can be 

built on data which is known to produce good parts while experiencing common-cause 

variation. Once a model with sufficient fit and predictive ability can be created, the use 

of simple control charts can be investigated. Hotelling's T2 and Squared Prediction Error 

charts could be used together to determine if a part was good or if it required further 

inspection. Next, a process monitoring system employing these simple control charts 

could be used and presented to the operator. These techniques will be investigated and 

discussed in the following chapter. For a PCA model, the structure of the X matrix is 

shown in Figure 3.8. For shorter notation in this figure, the Boss and Bore tool 

measurements are labeled as A and B, respectively. 

In the case where there is an automated CMM inspection site with lots of quality 

data, PLS models can be created which will relate the quality data to the process data. 

This action can be used to associate trends in process data to the outcome of various 

quality parameters and also provide predictive monitoring of these parameters. 

Identifying process trends, either good or bad, is a crucial step in quality improvement. 

This method of modeling will also be investigated. 
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Table 3.4: Signal preprocessing techniques. 

Signal Preprocessing 

Spindle Current 

Z-Axis Current 

Accelerometers (X,Y,Z) 

Temperatures (8) 

ID SpinCurr SpinCurr ZAxis ZAxis MagX MagX MagY MagY MagZ MagZ T1 ... T8 
A B A B A B A B A B 

041907-
1602-51 

... 

... 
041907-
1608-62 

Figure 3.8: Illustration of X-matrix structure. 
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Chapter 4 Results and Discussion 

4.1 Machine Thermal Expansion Modeling Results 

This section is devoted to the investigation of modeling the thermal expansion of 

the DMV -400 under operating conditions experienced during production. 

4.1.1 Initial Measurements of Z-axis Expansion 

As previously stated, the goal of this measurement was to capture the maximum 

expansion of the Z-axis to both ensure that a maximum was achieved and to see if it was 

possible to model this behaviour with temperature measurements. 

The measured data from the proximity sensors during the three hour test is shown 

in Figure 4.1. The convention used in this figure is at time zero there has been no 

movement so this will also be the starting point at a distance of zero. It can be seen that 

as time progresses with the spindle spinning at 7,000 RPM, the Z-axis moves downward 

as temperatures increase. The arrow in Figure 4.1 denotes the time which the external 

spindle chiller unit has turned on. It can be seen that this unit operates in a cyclical 
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control fashion (similar to a thermostat controlling a furnace) in an attempt to provide 

thermal compensation. After about 75 minutes trajectory of the Z-axis starts to reverse 

direction, however, this test does show the large deviation of the Z-axis over a course of 

three hours. It is important to note that this test does not encompass any distortion that 

may be caused by the movement of the machine while running a production cycle. While 

the case here does not reach an equilibrium point, this kind of behaviour from the spindle 

chiller unit is to be expected (due to its on-off style control) and result in some fluctuation 

over long periods of time. Furthermore, the spindle chiller unit has a temperature 

indicator which displays the temperature of the coolant. The temperatures on the chiller 

started at 15.5°C, peaked at l9°C after 1.5 hours, then dropped to l7°C in the next half 

hour, and ended up showing l8°C at the end ofthe test. 

Mean Trajectories of Target 

0.01 X 

···········X Sensor 

-0.01 
----- Y Sensor 
--zsensor 

g 
.l!! -0.03 

"' i5 
-0.04 

-0.05 

-0.06 

-0.07L__ _ _l_ __ __l__ _ __t_ _ _L_ _ __L _ __j_ _ __j_ _ __j __ __j 

0 20 40 60 80 100 120 140 160 180 
Time (mins) 

Figure 4.1: Mean trajectories of the target shaft. The time at which the spindle chiller is suspected to 
have turned on is denoted by the arrow. 
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The measured temperatures, which correspond to the thermocouple placements in 

Figure 3.5, are shown Figure 4.2. All of the temperatures, including Ambient, appear to 

follow a general trend of slow increase over the time period. While the temperature 

measured at location Temp 3 has the lowest overall measured value, it also appears to 

mimic the action of the spindle chiller the closest as recorded and best matches the Z-axis 

proximity sensor. Furthermore, the temperatures appear to reach an equilibrium point 

after approximately 140 minutes which was contrary to the measurement of the Z-axis 

trajectory. 

Mean Trajectories of Spindle Temperatures 

--Ambient 
-----·Temp 2 

30 -·-·-·- Temp 3 
.......... Temp4 

25 

15 

5~--~--~---~--~--~--~--~--~---~ 

0 20 40 60 80 100 120 140 160 180 
lime (mins) 

Figure 4.2: Mean trajectories of spindle temperatures. 

While the plot in Figure 4.1 indicates the movement of all three axes, this setup 

only employed the use of three sensors and their values were only recorded for the sake 

of interest. That being said, there is drastic movement in the Y -axis suggesting tilt of the 

spindle support arm as illustrated in Figure 2.3. The modeling and investigation of these 
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measurements was not explicitly performed in this study, however, they are noteworthy 

and may affect quality parameters such as squareness and location of the bore and boss. 

4.1.1.1 Modeling of Initial Measurements 

In this case, the X matrix consists of the measured temperatures from Figure 3.5 

and the Y matrix contained the Z-axis thermal drift. For the analysis of these 

measurements, PCA on the XY space was performed to ensure coherent data correlation 

between the process and quality data. Using the SIMCA-P+ software, a PCA model was 

created with two components and the results are shown in Figure 4.3. After two principal 

components (PCs) were identified, a cumulative R2 value of 0.989 and a cumulative Q2 

value of 0.936 indicate a very good model. A quick investigation into the structure of 

this model via score and loading plots was done, and is shown in Figure 4.4 and Figure 

4.5, respectively. 

Model XY Space • Thermal Experiment (PCA-X) 

CompNo. 

Ill R2X(cum) 
• Q2(cum) 

Figure 4.3: Model overview of XY space for thermal experiment. 
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2 

-1 

-2 

Model XY Space- Score Plot -Thermal Experiment (PCA-X) 
I{Comp. 1]/t[Comp. 2] 

'· . ·······\ 
··. 

~ ~ ~ ~ ~ ~ ~ 0 

t[1J 

2 3 4 5 

R2X[l] = 0.864823, R2X[2] = 0.124572, Ellip,e: !lotelling T2 (0.95) 

6 

Figure 4.4: Score plot showing the two principal components in model. 

Z• 

0.8 

0.6 

~ 
Q. 0.4 

0.2 

0.0 

-0.3 

Model XY Space - Loading Plot -Thermal Experiment (PCA-X) 
p[Comp. 1]/p(Comp. 2] 

-0.2 -0.1 -0.0 0.1 

p[1] 

0.2 

R2X[l] = 0.864823 R2X[2] = 0.124572 

0.3 

Ambient• 

Temp1• 

Temp2• 

Temp3· 

0.4 

Figure 4.5: Loading plot showing the variable weightings on the model. 

Looking at the score plot in Figure 4.4, it is clear to see that the mam factor 

affecting this model is the Z axis measurement as the general trend of this model follows 

67 



M.A.Sc. Thesis- Darryl Wallace-- McMaster University- Mechanical Engineering 

the trajectory of the Z-axis from Figure 4.1. Furthermore, a look at the loading plot 

shows the Z variable almost completely opposite of the temperature variables; which are 

clustered together, indicating strong correlation between these variables. The opposing 

location of the temperature variables and Z variable makes sense considering the Z-axis 

values decrease while the temperatures are increasing, which can be observed in Figure 

4.1 and Figure 4.2. The loading plot makes it clear that the first PC mostly explains 

inverse relationship between the Z-axis and the temperatures, while the second PC 

explains the movement in the Z-direction. It was clear from this quick investigation that 

the data was strongly correlated yet with multivariate techniques still capable of 

producing a good model. 

Modeling the data using PLS on the X and Y data was performed using the 

SIMCA-P+ software as well. The model relating the temperature measurements to the Z­

axis trajectory yielded a three component model with cumulative R2v of 0.824 and 

cumulative Q2 of 0.822. A plot showing the trend of the Z-axis trajectory with the trend 

of the model predictions is shown in Figure 4.6. Over the first 5 minutes of predictions, 

the model was not capable of describing the change in the Z-axis with the change in 

temperatures. Excluding the first 5 minutes worth of measurements, this model provided 

an RMS error (RMSEE) of 0.0041 mm with a maximum deviation of 0.013 mm. 
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-0.01 

-0.02 
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Thermal Experiment - PLS Model 

- Observations 
c Predictions 

-0.07 L___.L._ _ _L__...J._ _ _J_ _ __L_ _ __L_ _ __L _ ____l _ __j 
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Figure 4.6: Plot showing model predictions vs. observations over the 3 hour test. 

Looking closer at Figure 4.6, it can be seen that the model predictions tend to lag 

behind the observation. At the time of 40 minutes, where it was previously noted that the 

spindle chiller turns on, the model continues to predict that the Z-axis should still be 

moving down. This model behaviour suggests there was some time lag between the 

surface temperatures and the internal spindle temperatures that were actually affecting the 

thermal expansion of this axis. 

Possible causes for this poor modeling ability during the first 5 minutes can be 

investigated using contribution plots. Figure 4. 7 shows the contribution to the score of 

the first observation from the weights of all three components. It is clear that the 

temperatures are much lower than the average, with Temp 3 being more than three 

standard deviations lower. This, again, suggests a temperature measurement time lag 
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between the measured temperatures and the actual internal temperatures of the spindle, 

since there was a measureable change in the Z-axis. 

PLS Model - Thermal Experiment 
Score Contrib(Obs 1 -Average), Weight=w'[1)-w'[3) 

N 
a. 

! 
Var ID (Primary) 

... 
"-
E 
~ 

Figure 4.7: Score contribution plot showing the temperatures for the first measurement. 

The modeling of time-lags in PLS time series models is described by Eriksson et 

al. (2001). Using the SIMCA-P+ software package, it was possible to introduce time 

lags into a PLS time series analysis model. Using this feature, lags were introduced into 

the Z-axis for the first 5 minutes of observations (or 10 samples). The model built using 

this feature had a fit with R2v = 0.998 and Q2 
= 0.998 (rounded up to the third decimal) 

with two components. The observed vs. predicted plot in Figure 4.8 showed a very good 

model fit to the data with a RMSEE of0.00044 and a maximum deviation of0.0013 mm, 

and order of magnitude improvement. 

This investigation clearly states that it is possible to model behaviour of the Z-

axis while experiencing thermal distortion using only a few temperature measurements 
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on the machine. It should be noted again, that this analysis does not encompass the 

behaviour of the machine while it was running a production machining cycle. The next 

section attempts to investigate the behaviour of the machine under full production 

operation. 

-0.015 

-0.02 

-0.025 

E' -o.o3 
.§. 
~ -0.035 
c: s 
6 -0.04 

-0.045 

-0.05 

-0.055 

20 

Thermal experiment - PLS Model with Z-axis Lags 

40 60 

- Observations 
o Predictions 

80 100 120 140 160 180 
Trme (mins) 

Figure 4.8: Plot showing model predictions vs. observations with Z measurement lags of 5 minutes 
introduced. 

4.1.2 Indirect Measurements of Z-axis Expansion 

To capture the true nature of this system's response to thermal distortion, the Z-

axis needed to be measured during production. This was done by measuring the value of 

the heights of the part on the custom gage that was set up next to the operator. This gage 

is set up so that the nominal reading was set as Omm and has a resolution of O.Olmm. 

Furthermore, while not shown on the plots, the standard error for all measurements was 
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±0.005mm. These quantities were measured over two days. The measured heights and 

temperature profile for day one are shown in Figure 4.9 and Figure 4.1 0, respectively. 

The same quantities for day two are shown in Figure 4.11 and Figure 4.12, respectively. 

A comparison of the two plots shows some slightly different behaviour between the two 

days, which was to be expected because of different ambient temperatures in the building 

as well as changes in the operator's behaviour throughout the two days. The employee 

morning and lunch breaks are clearly visible on the plots of the temperature profiles. 

Also, the first measurement of the corrected heights indicates the first measurement taken 

that day. The heights are 'corrected' by subtracting the original machine offset from the 

new offsets, as they are changed throughout the day, and adding the difference to the 

measured height. This will give an approximate profile of the Z-axis distortion 

throughout the day. 

-0.01 

-0.02 

E' .s -0.03 

:E 
0> 

~ -0.04 

al 
i -0.05 

8 
-0.06 
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Boss/Bore Feature Height Measurements for Day One 

-----· Boss Height 

-- Bore Height 

Lunch Break 

\ 

-0.08 L__,_ __ _L_ __ _j_ __ ____l ___ _l__ __ _L_ __ __j 

0 ~ ~ M M 100 1~ 

Measurement # 

Figure 4.9: Boss and Bore heights measured throughout day one from -7:30AM to -3PM. 
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Temperature Profile for Day One 
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Figure 4.10: Temperature profile for machine on day one from -7:30AM to -3PM. 
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Figure 4.11: Boss and Bore heights measured throughout day two from -7:30AM to -3PM. 
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Temperature Profile for Day Two 
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Figure 4.12: Temperature profile of machine for day two from -7:30AM to -3PM. 

While the data in Figure 4.9 and Figure 4.11 reveal the general trend of the 

machine, these data sources are very noisy as only one side of the part was machined. 

Thus, the height was measured with a cleanly machined face on the top side, but the 

bottom side of the part was from the original casting of the component; and, the large 

variation in the casting process was seen in these plots. Smoothing the data using a 

simple 5-point moving average was carried out and the result was shown in Figure 4.13 

and Figure 4.14. With the smoothing applied to these data points, much of the 

dimensional variation from the casting surface was removed and the overall trend of the 

machine becomes more apparent. Based on this, it was expected that the smoothed data 

will yield a better model. Since PCA and PLS are noted for their ability to filter through 

noisy data, both cases will be investigated in the following section. 
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Figure 4.13: Height measurements from day one smoothed using 5-point moving average. 
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Figure 4.14: Height measurements from day two smoothed using 5-point moving average. 
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4.1.2.1 Modeling of Indirect Measurements 

The analysis of these measurements taken during production will be comprised of 

several modeling investigations. Since the data from the two different days shows 

distinctly different behaviour, consideration was taken to model both days together 

because incorporating more data will improve the predictive ability of the model. This 

day-to-day variation is expected due to ambient temperature variation within the shop and 

how much the machine is run during the day. Furthermore, various models are created 

which will investigate the cases in the previous section, including those with the 

smoothed data. The overall goal of modeling these data was to predict the thermal 

expansion of the Z-axis and be able to then feedback this information to the machine to 

automatically update the machine's offsets for improved quality control. This section 

will investigate several cases and model types. In depth analysis, however, will only be 

performed on the model with the best overall fit. 

The first data set to be investigated was the measured heights of day one from 

Figure 4.9. The modeled data gave an R2
y fit of 0.775 with a Q2 of 0.768 using two 

components. While the fit of this model maybe considered acceptable, a closer look at 

this data while comparing showed that the model was really only able to predict the trend 

of the machine and the discreteness of the measurements, due to the resolution of the dial 

indicator, there seems to be a natural filtering process involved with the predicted data. 

Note that the predictions are all made on data for which the model was built. While the 

entire model has a R2
y of0.775, the fit ofthe individual Y-variables are R2soss=0.751 and 
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R2sore= 0.798 and are shown in Figure 4.15. The RMSEE for the Boss and Bore heights 

are 0.006 and 0.007, respectively. 
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Figure 4.15: Day One- Observed vs. Predicted plots for Boss height (left) and Bore height (right). 

Similar results are presented for Day Two in Figure 4.16. This model fit was 

noticeably better than the model for Day One with an R2
y of 0.900 with a Q2 of 0.894. In 

both cases, however, the Q2 value was within 0.01 of the R2
y indicating good predictive 

ability. For Day Two, the fit ofthe variables was R2soss=0.751 and R2sore= 0.798 and the 

RMSEE was 0.005 and 0.006 for the Boss and Bore, respectively. 
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Figure 4.16: Day Two- Observed vs. Predicted plots for Boss height (left) and Bore height (right). 

Since the variability of the measurements was reduced by smoothing the data, it is 

to be expected that the predicted data will fit the smoothed data much better if they are 

both describing the trend of the thermal distortion. Shown in Figure 4.17 is the observed 

vs. predicted plots for both the Boss and the Bore heights after the data had been 

smoothed. This model yielded an R2v of 0.889 and a Q2 of 0.884 in two components, 

which corresponds to an improvement to the model's fit of approximately 15%. The 

interesting thing to note is that smoothing the data did not provide predictions that 

differed substantially from those of the model built on the measured data. 
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Figure 4.17: Day One- Observed vs. Predicted plot for smoothed Boss (left) and Bore (right) 
measurements. 

Figure 4.18 shows a comparison of the model types by plotting the predictions 

from the measured data model against the predictions from the smoothed data model. As 

suspected, PLS has filtered out the dimensional measurement variability of the measured 

data and predicted the general trend of the machine. While this does not give a model 

with as good of fit as the smoothed data, this illustrates that the predictions for the 

machine are as good as possible using the measured data. 
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Figure 4.18: Comparison of predictions for models built from measured and smoothed data for Day 
One. 

Next, there was the case where time-lags were introduced in the model to account 

for the delay, where by the temperature inside the machine structure/component does not 

reach the surface until a certain lag in time has occurred. As shown in Figure 4.8, lags 

accounting for 5 minutes seem to be adequate in modeling. When measuring parts, 

approximately three of the measurements would account for 5 minutes. This 

approximation was based on the times when production was continuous and did account 

for morning or lunch breaks. Shown in Figure 4.19 is the case where three time lags are 

introduced into the model built from measured data on Day One. In this model, the fit 

was not as good as the original model built on this data with R2
y of 0.72, Q2 of 0.685, 

R2soss=0.706, and R2sore= 0.741; however, the RMSEE ofthe Boss and Bore was 0.006 

and 0.007, respectively; the same as the original Day One model. 
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Figure 4.19: Day One- Observed vs. Predicted plot showing the effect of using three time-lags. 

The true test of a model, however, is its ability to accurately predict data that 

was not included in the original work set used to establish the model. Three test cases 

will be examined to identify the capabilities of this data. The first will test a model built 

on Day One with the data from Day Two. The second will test the model built on Day 

One with the time-lags with the data from Day Two. The third will try to create a model 

built on half of the data from each day (odd observations only) and then test it on the 

remaining data (even observations). The effect in the third case was to capture 

information from multiple days and test the model against known similar temperature 

days. This idea promoted the use of seasonal models that could be beneficial to a shop 

that is not temperature controlled. 

In the case where Day One data was tested against Day Two data, the plots in 

Figure 4.20 show how the original model was tested against new data. It was clear to see 
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from this figure that, while the model was very capable of predicting the trend of the data, 

however it was not capable of accurately predicting the magnitude of this data. Further 

investigation via contribution plots would yield the underlying cause of the overall 

increase in the predictions, however, simply comparing Figure 4.12 to Figure 4.10 

showed that the general temperature of the machine was higher and that the Ambient 

temperature was on average 4.24°C hotter on Day Two. 
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Figure 4.20: Data from Day Two tested against the Day One model (without time lags). 

120 

In the case where the Day One model was created with lags, the plot in Figure 

4.21 showed the effect of the addition of time - lags into the model. It can be seen on the 

plot that the first few measurements yield poor fit to the actual data, however, the cause 

of this was due to the fact that the additional X variables from the lags were missing since 

there is no information on the Boss or Bore measurements on the prediction set. Since 

the use of three time lags will take that number of units to catch up to the current 
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conditions, it was clear that after the first three predictions, the model was up-to-date and 

was predicting appropriate conditions, as the error is visibly reduced. 
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Figure 4.21: Data from Day Two tested against the Day One model with three time lags. 

It is clear from Figure 4.21 that this method provides excellent predictivity of new 

data, even when the temperature trends differ from those for which the model was built. 

The Boss predictions fit the actual data with R2
soss = 0.843 and RMSEE of 0.008, and the 

Bore predictions fit the actual data with R2
sore = 0.872 and RMSEE of 0.008. It is worth 

noting that the fit of the individual Y variables on the predicted data was better than the 

original data, as in Figure 4.19. Not including the first three measurements, this model 

yielded a maximum error of 0.0203mm for the Boss measurement and 0.0 184mm for the 

Bore measurement. 

The final model illustrated the case where a model was to be built on multiple 

days' worth of data. This was done by including the odd numbered observations from 
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both days in the model, and predicting the even numbered observations against it. The 

assumption made here was that the even numbered observations are from days where the 

machine is operating under 'similar' temperature conditions. The data from these new 

days will be referred to as Day Three and Day Four. 

The model created using the odd numbered observations from Day One and Day 

Two had six components and R2v = 0.849 and Q2=0.812. The predictions for Day Three 

and Day Four were shown in Figure 4.22. In general, this model showed relatively good 

predictive ability for data from similar days. The model had an R2soss=0.710 and an 

R2sore=0.814 with a maximum error of0.0203 and 0.0259 for the Boss and Bore Heights, 

respectively, and both prediction sets have an RMSEE of 0.008. 
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Figure 4.22: Day Three/Day Four observed vs. predicted data. 

While both of the last two models gave similar results and both were built using 

the same number of data points, the DayThree/DayFour predictions were based on a 
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model that incorporated machine trends from days where the ambient temperature in the 

shop varied significantly. The other reason why this type of model would be preferred is 

that it contains information from days where process conditions change. 

Now that possible models have been investigated and narrowed down to two 

choices, the next step would be to look at how this would perform under a real-time 

thermal error compensation strategy. 

4.1.2.2 Real Time Thermal Error Compensation 

The two model types selected in the previous section show that overall 

performance can be judged by how well compensation via the model held the heights to 

zero. In order to comply with both the resolution of the dial indicator and the resolution 

that the operators must use when entering offset values, all of the values estimated by the 

model were rounded to the nearest O.Olmm. The measurements were then subtracted 

from adjusted prediction values to see how well the compensation held the heights to a 

nominal value of 0 mm. It should also be noted that the tolerance of this part was ±0.05 

of the nominal value. 

For the case where data from Day Two was predicted using model of Day One, 

the compensation strategy, shown in Figure 4.23, yields a maximum deviation of -

0.03mm on the first measurement and held the heights of the two dimensions to within 

±0.02mm; well within the tolerance limits. 
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Figure 4.23: Real time thermal error compensation for Day Two data/predictions. 

In the second case where the data from the DayThree/DayFour was tested against 

the DayOne/DayTwo model, a similar result was achieved using the compensation 

strategy for the Z-offsets. Figure 4.24 showed the compensation holding the heights of 

the parts to ±0.02mm; also, well within the tolerance limits. 

86 



M.A.Sc. Thesis- Darryl Wallace-- McMaster University- Mechanical Engineering 

Real Time Thermal Error Compensation- Day Three/Day Four 
0.06,-------,---------,---..---------,---..,------, 

0.051----------•U._er...;"li.-ol;;,. ---------1 
0.04 

0.03 

"E o.o1 .s 
~ 
c 

~ -0.01 
i5 

-0.02 - - - - - - - - - - - -

-0.03 - - - -- - - - - -- - --- ·- - - - - - - - -----· Boss Compensation 

-0.04 ----------------------- --Bore Compensation 

-o.osr----------........... ---------1 LowerTol. 
-0.06 L..._ __ _J_ __ __.l ___ _L_ __ __L ___ .L__ __ _J 

0 ~ ~ ~ ~ 100 1~ 

Measurement # 

Figure 4.24: Real time thermal error compensation for DayThree/DayFour predictions. 

A compensation strategy was shown to give good results from two different PLS 

models on the thermal error of a machine tool in a production environment. Even though 

the measured heights of the parts provided very noisy data, the PLS model was able to 

eliminate most of the variability and determine the general trend of the thermal distortion 

of the machine that enabled a reasonably accurate compensation strategy to be deployed. 
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4.2 Machine Process Data 

The machine process data was acquired as one long time signal of data and before 

preprocessing of the signals for the individual parts could be done, this time signal for the 

entire machining cycle was first broken up into the eight sections where machining was 

taking place and eliminated additional time signals from when the machine was simply 

moving. This windowing was performed by looking at the Z-axis current signal to 

determine when machining was taking place. An example of this window for the first 

tool of the first part in a cycle was shown in Figure 4.25, where the "Start" and "Finish" 

labels indicate when the tool enters and exits the part, respectively. Once the time­

indices were determined for each part and both tools, the signal was split up and the data 

was preprocessed as discrete parts. Also, since the common practice of mean­

centering/unit variance scaling of the data prior to PCA/PLS was performed here, the 

signals were left in their original voltage signal state and not converted to their physical 

units. 

88 



M.A.Sc. Thesis -Darryl Wall ace --McMaster University - Mechanical Engineering 

Finish 

2.5 3 3.5 4 4.5 

Figure 4.25: Signal windowing example for the first tool of the first part. 

4.2.1 Machine Process Modeling 

In order to create a model of the process run on the machine, data representing 

common-cause operation must be used. This was easily done by selecting process data 

from known good parts throughout a day. As can be seen from the previous section, the 

parts were known to experience variation throughout the day and since many parts were 

made during production throughout the day, it can be as simple as building a model from 

the process data of one day. The process data was analyzed using PCA and when quality 

data is available PLS can be used to model the quality data using process data. 
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4.2.1.1 PCA on Process Data 

Throughout experimentation and data collection, process information on more 

than 20,000 parts was acquired. To simplify this discussion, models built on 

representative set of data were presented and described using score plots and loading 

plots. There were several test cases for these models, which included: testing the model 

against known good process data from the same day; testing it against known good 

process data from a different day; and testing the model using the simulated process fault 

experiments as described in section 3.3.2.2 

A process based model was built using PCA on data from the day of the first set 

of simulated process experiments. The data matrix was of the same structure as 

illustrated in Figure 3.8. This model consisted of two components with R\=0.652 and 

Q2=0.581 and was made using 1,500 observations. The plot in Figure 4.26 showed a 

score plot illustrating the data was well correlated and the number of parts outside the 

95% Hotelling's T2 ellipse was insignificant and there were no parts outside of the 99% 

Hotelling's T2 ellipse, which indicated a good model. Furthermore, the loading plot 

shown in Figure 4.27 illustrates the relationship between the variables and the 

components. All of the temperature variables were clustered together and were very 

close to the P 1 axis, indicating the first component explained the temperature variation. 

The parts that had low T1 scores represent those that were made in the morning, or when 

the machine temperatures were cooler. The variables listed in Figure 4.27 have either the 

suffix A orB indicating the Boss tool or the Bore tool, respectively. When the data from 

90 



M.A.Sc. Thesis- Darryl Wallace-- McMaster University- Mechanical Engineering 

the simulated experiments, as listed in Table 3.3, is applied to this model, these simulated 

process faults did not provide enough variation in the measurements to have these data 

points significantly jump out of the model. Figure 4.28 showed the experimental parts 

sitting in the middle of the plot. This location corresponds mostly to the temperatures as 

the experiments took place during the lunch break in the middle of the day. 
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Figure 4.26: Score plot showing Tl-T2 scores for 1500 parts. 
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Figure 4.27: Loading plot showing pl-p2 weights for 1500 parts. 
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Figure 4.28: Score plot showing Tl-T2 scores from experimental process fault simulation. 
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Since the temperature variables explained a large source of variation in the first 

component, a model was built that did not include the temperature variables. This model 

consisted of two components with R2x=0.457 and Q2=0.152 and was made using the 

same 1,500 observations. The score plot shown in Figure 4.29 shows the parts used in 

the model. Here the 'NewPart' observations indicated a few measurements from parts on 

the same day and a few from the next day, just to illustrate how the new observations fit 

in with this model. In this example, the experimental process fault simulation parts also 

lay within the 90% confidence ellipse, further indicating that this sensor fusion system is 

incapable of detecting process faults with this small magnitude. As mentioned before, 

the tests outlined in Table 3.3 used the maximum allowable deviations to prevent possible 

tooling or fixture damage. While process faults do happen, the ones that would stand out 

of this data analysis are often catastrophic and the machine is stopped before the cycle is 

complete, thus interrupting the signal. 
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Figure 4.29: Score plot showing Tl-T2 scores of process data (not including temperatures). Also 
shown are the scores for new parts and process fault experiment parts. 

Throughout all of the experimentation and data acquisition performed, there was 

only one part that was loaded in such a way that the outcome was not catastrophic but the 

part was of noticeable poor quality. For comparison purposes, the machined features of 

two parts showing a good part and a miss-loaded part were given in Figure 4.30 and 

Figure 4.31, respectively. It should be noted, however, that the following data was 

acquired during at a later date, and in the mean time the spindle speed of the Bore tool 

was increased from 7,000RPM to 8,000RPM. For this reason, the previous model cannot 

be used for the newer data and a new model was built for this purpose. 
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Figure 4.30: Picture showing machined features of a good part. 
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Figure 4.31: Picture showing miss-loaded part with catastrophic failure. 

The model built on this new data from 544 parts (not including the temperature 

variables) consisted of two components with R2x=0.547 and Q2=0.266. Temperature 

variables were not included in this model to simply illustrate the expected increased 
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vibrations in the model. The bad part was machined in the 141 st cycle of the day and was 

located in nest #2 of fixture 50 (141-52) and occurred in the middle of the day. Process 

data for this cycle and another cycle were tested against the model to ensure that it is 

correctly predicting the status of the parts. The plot in Figure 4.32 showed the Tl-T2 

scores for this model. There were several parts outside of the 99% confidence ellipse, 

however, these observations account for approximately 1.5% out of the 544 and were not 

investigated further as it was expected that they were the result of common-cause 

variation and were not bad quality parts. When the extra data containing the 

aforementioned bad part was applied to the model, the score plot in Figure 4.33 clearly 

illustrates how the process information from part 141-52 indicates that there was a 

problem with this observation as it was located far outside of the 99% confidence ellipse. 

However, the other three parts shown from this cycle are well within the 99% confidence. 
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Figure 4.32: Score plot showing tl-t2 scores for 544 parts. 
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Figure 4.33: Score plot illustrating the known bad part (indicated as 141-52). 

Further investigation of this part, using SIMCA software, yielded the contribution 

plot shown in Figure 4.34. It was clear that the vibrations measured at the spindle 

frequency have a significant contribution to this distance of the observation from the 99% 

confidence ellipse. Furthermore, the effects of these measured variables were seen in a 

picture of the part as shown in Figure 4.35. It is clear that this part was sitting slightly 

crooked in the fixture and resulted in increased vibrations due to the heavier load of 

machining extra material which caused the bad part. It should be noted that, this method 

is superior to using multiple control charts for each parameter as the operator would have 

to monitor multiple control charts. Furthermore, since the model is made with plant data 

from common cause variation, it is not possible to determine the individual limits for 

each parameter as no initial experimentation can be performed to identify these limits. 
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Figure 4.34: Contribution plot for part 141-52. 
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Figure 4.35: Picture showing machined features of part 141-52. 

As process faults are generally known to occur, and since 100% inspection is 

rarely practiced in industry, it would normally be possible for part 141-52 to make it 

through an automated quality control system or even a manual quality control system. 
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The described process monitoring system was capable of detecting non-catastrophic 

process faults; however, its sensitivity was limited as it could not detect the proposed 

experimentally simulated process faults as the allowable thickness of the shims was on 

the order of the variation of the cast parts. 

4.2.1.2 Simple Control Charts 

Simple control charts, whether presented to a human or computer, are an effective 

way of determining if a process is bad or at least that product requires further inspection. 

As described in section 2.4.3, two popular control charts, used in tandem, are the 

Hotelling's T2 and Squared Prediction Error control charts. The upper control limits 

(UCLs) are computed using equations 2.5 and 2.9, respectively, where observations that 

exist below the UCL can be considered "good" and observations above the UCL can be 

considered "bad." Unlike the score plots shown in the previous section, only 95% and 

99% confidence intervals will be shown. Two examples of these control charts are 

shown in figures 4.37 and 4.38 and illustrate the case where good process was observed 

and where bad process was observed. As in the score plot of Figure 4.32, there are 

several observations that appear over the 99% UCL. While Hotelling's T2 statistic 

indicates the distance of the observation from the origin model plane, the squared 

prediction error indicates the perpendicular distance of the observation from the model 

plane indicating a new type of event not included in the model (Kresta, MacGregor, & 

Marlin, 1991), part 141-52 was both far from the origin of the model plane and high off 

the plane which further showed how this observation did not belong with the model. It 
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was shown that simple multivariate control charts were effective at illustrating the state 

ofthe process. 
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Figure 4.36: Simple control charts illustrating common cause variation. 
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Figure 4.37: Simple control charts illustrating bow bad part 141-52 is handled. 
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4.2.1.3 PLS on Process and Quality Data 

It can be very useful to be able to predict quality data from the process data and 

many studies have performed this task in the laboratory. As previously mentioned, 

however, CMM inspection takes a lot of time when compared to machining and it was 

not possible to obtain a sample of parts that included all eight parts from each cycle over 

an entire day for two reasons: inspection would take a long time and parts need to be 

packaged for shipment. 

The samples used in this investigation were acquired every 15 minutes across two 

days totaling 84 parts. The initial PCA performed on this data (not shown) set yielded a 

model with four components with R\=0.663 and Q2=0.358. While this did not provide 

as good of a model as the first PCA model of process data in the previous sections, fewer 

observations were used and now noise the process signal data and the variation in the 

quality data is being modeled. When PLS was applied to these data with the regular 

process data with 18 X-variables and the six Y-variables, a model with three components 

with overall fit R2y=0.408 and Q2=0.335. The relatively poor model fit indicates that 

there was much noise in the data and the low predictive ability indicated a poor model. 

The summary ofthe variable fits was shown in Figure 4.38 and all ofthe Y-variables had 

an R2 that was below 0.5. To further illustrate the fit of these variables, the individual 

Observed vs. Predicted plots were shown in Figure 4.39. 
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'0:: 0.5 

0.4 

0.3 
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2 3 4 5 6 
Y- Variable 

Figure 4.38: Summary of the fit of the individual Y -variables. 

Item 38 -ObsVsPred Item 53 -ObsVsPred 

41.52 41.54 41.56 41.58 12.48 12.5 12.52 

Item 34-0bsVsPred Item 37 -ObsVsPred 
16.84~-------~ 

0.03 

0.02 

16.81 0.01 

16.81 16.82 16.83 16.84 0.01 0.02 0.03 0.04 

Item 56 -ObsVsPred Item 57-0bsVsPred 
21.2 ,-------f\,-c------71 

0.01 

Figure 4.39: Observed vs. Predicted plots for all Y -variables. 
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One concern with this model was that temperatures were being modeled and had 

similar trends as in Figure 4.10, for example, but the quality parameters such as Item 38 

and Item 53 are heights of the Boss and Bore features and were within tolerances. For 

this reason, the values of the corrected machine offsets (as used in section 4.1.2) are 

included in the same model which now contains 20 X-variables. This model also had 

three significant components with R2y=0.422 and Q2=0.347. The fit of the individual 

variables was shown in Figure 4.40 and when compared to the variable fits of Figure 4.38 

it can be seen that this model was slightly better than the previous one; however, all 

variable fits are still below 0.5. Further investigation via Observed vs. Predicted plots 

illustrates how this model does not provide very good prediction accuracy. 

Y-Variables R2 Fit 

0.9 - - - - - - - - - - - -- - - - - - - - - - - - -- - - - - - - - -

0.8 - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - -- - - - - - - -

0. 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

~6 ---------------------------------------

"&: 0.5 

0.4 

0.3 

0.2 

0.1 

0 
2 3 4 5 6 

Y- Variable 

Figure 4.40: Summary of the fit of the individual Y -variables with offset information included in the 
model. 
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Item 38 - ObsVsPred Item 53 - ObsVsPred 

41.52 41.54 41.56 41.58 12.48 12.5 12.52 

Item 34 - ObsVsPred Item 37 - ObsVsPred 

16.81 16.82 16.83 16.84 0.01 0.02 0.03 0.04 

Item 56 - ObsVsPred Item 57 - ObsVsPred 
21.2 

21.195 

21.19 
0.01 

6ft:-.. 
21.185 

0.01 0.02 0.03 0.04 0.05 21.185 21.19 21.195 21.2 

Figure 4.41: Observed vs. Predicted plots for allY-variables with offset information in the model. 

Using the Variable Importance for the Projection (VIP) plot as a diagnosis tool, it 

was be possible to see the variables that were most responsible for the fit of the model, 

with variables that were greater than 1 being strong predictors and variables that were 

less that 0.5 being unimportant (Eriksson, Johansson, Kettaneh-Wold, & Wold, 2001). 

The VIP plot in Figure 4.42, sorted in descending order of importance, showed the last 

four variables with little influence on the model. These variables were removed in an 

attempt to prune the model and create a better fit. 
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VIP Plot 

1.5 

1.25 

0.. 

> 
0.75 

0.5 

0.25 

0 
0 2 4 6 8 10 12 14 16 18 20 

Variable 

Figure 4.42: VIP Plot summarizing the importance of the variables when modeling this machining 
process. 

With the variables SpinCurrA, SpinCurrB, MagZA, and ZcurrB removed, the 

model now consisted of six components R\=0.536 and Q2=0.401 and an average 30% 

improvement in individual Y-variable fit, as shown in Figure 4.43. The new VIP plot, in 

Figure 4.44, showed all variables having a VIP value of at least 0.75 indicating they were 

all of importance to the model. Finally, the observed vs. predicted plots of all the quality 

parameters under the new model are shown in Figure 4.45 and a marginal improvement 

was obtained in the modeling of these parameters. 
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Y -Variables R2 Fit 

2 3 4 5 
Y- Variable 

Figure 4.43: Summary ofY-variable fits after model pruning. 

1.25 

~ 0.75 

0.5 
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2 4 6 

VIP Plot 

8 
Variable 

10 12 14 

Figure 4.44: VIP plot after model pruning. 
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16.82 

Item 38 - ObsVsPred 

41.52 41.54 41.56 41.58 

Item 34 - ObsVsPred 

16.8L'!-'-------"-""--~-~-----' 

16.8 16.81 16.82 16.83 16.64 

Item 56 - ObsVsPred 

Item 53 - ObsVsPred 

12.48 12.5 12.52 

Item 37- ObsVsPred 

0.01 0.02 0.03 0.04 

Item 57 - ObsVsPred 

Figure 4.45: Observed vs. Predicted plots for quality parameters under new model. 

While this sample of data represented only a small portion of the data acquired 

throughout experimentation, it provided an adequate picture of the ability of this sensor 

fusion system to predict the quality parameters of this part; therefore, further 

investigations into the modeling of additional data were not included here. Looking at 

Figure 4.41 and Figure 4.45 it is clear that there is a noticeable error in the modeling of 

these parameters; however, it should be noted that all of the predictions of quality 

parameters were within the specified tolerance limits as listed in Table 3.2. 
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4.3 Summary 

Throughout the analysis in this section there have been several key contributions. 

Modeling of the thermal distortion of the machine was successful in holding the machine 

to within tolerance via real-time thermal error compensation. Furthermore, identification 

and modeling of the lag between the expansion of the Z-axis and the measured surface 

temperatures was significant for accurately predicting the behaviour of the machine. 

While the modeling of process parameters with the described sensor fusion system was 

not sensitive enough to capture simulated process faults, it was still capable of detecting 

more drastic process faults. This detection was important in preventing poor quality parts 

from shipping to the customer and was illustrated through the use of simple control 

charts. Finally, the modeling of quality parameters with the measured process data 

proved to have considerable prediction error. All of the predicted values, however, were 

within specified tolerances in this case. 
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Chapter 5 - Implementation 

5.1 Structure of the Data Collection Environment 

With the implementation of a process monitoring system in any high volume 

production environment, it was important to keep track of the parts in order to accurately 

associate process and quality information to the parts. This task becomes more 

demanding when multiple machines were being used to manufacture the same part. 

Nixon Integrated was an excellent site for beta testing the implementation of this process 

monitoring system because there are multiple machines manufacturing the same parts and 

it was a medium-high volume production environment. While the implementation 

described here was somewhat specific to the conventions used at Nixon, the principles 

can be generalized and applied to any site. 

The parts at Nixon had several identification parameters that can be applied. The 

first was the machine number where the machines were identified by a three digit 

number. The next items that could used to identify the part were the date and time the 

part was made. A simple 24 hour clock and Month-Day-Year convention were used here. 
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As previously described in section 3.2, each machine has a rotary fixture enabling a cycle 

of parts to be machined while the operator is loading/unloading and inspecting parts. 

Each fixture is indentified by a single digit with each nest location being labeled from 1-

8. 

When the data from the parts are preprocessed the data was then saved in the 

following convention: 

• M***-MMDDYY-HHMM-X# 

where *** represents the machine number, in this case machine #127 was used; 

MMDDYY were the month/day/year; HHMM was the 24-hour clock format of hour and 

minutes; X represents the table #, in this case 5 or 6; and, # represents the nest number 

where the part was located on the fixture. The following is an example of the text file 

containing process information for a part: 

• M127-061207-1421-53.txt 

Files were stored in folders that were created daily and were named by the date in the 

same MMDDYY format. Data was stored in individual text files for each part, and each 

machining cycle was also stored in a Matlab MAT-file; however, since the entire cycle 

was stored in the MAT-file the# in the file name is simply left as zero (0). Once the data 

was processed and stored, the appropriate post-processing was completed in order to 

present the data in the control charts that were on a computer screen that is visible to the 

operator. This process was summarized in the flow chart that was presented in Figure 
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5 .1. This process monitoring system still requires some manual intervention and all of 

the CMM inspection was also performed manually. Furthermore, it was up to the CMM 

operator to correctly identify the part as indicated on the control charts display, as there is 

no ID that is physically stamped on the part. 
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[ Program Startup 

Is today's dated folder 
created? 

l 

Create folder 

Ask operator for startup 
conditions: 

Initial offset values 

First Table: 50 or 60 

Model File 

UPDATE CONTROL 
CHARTS and OFFSET 
INFORMATION 

WAIT FOR TRIGGER 

ACQUIRE MACHINE 
DATA 

PREPROCESS and 
POSTPROCESS 

DATA 

Figure 5.1: Process monitoring program flow chart. 
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5.1.1 Networking 

In order for the data to be available to the CMM inspector and the Mitutoyo 

MCOSMOS CMM software, the acquisition must be connected to the company network. 

Through the use of Microsoft Windows networking, a network drive could be created on 

the CMM' s PC which points to the location of the data folders on the process monitoring 

PC in the factory floor. The CMM program that was created in MCOSMOS pointed to 

this drive location when looking for data. 

5.1.2 CMM software 

Using the GEOPAK Part Program Editor, it was possible to perform a variety of 

additional functions that allow the input of information from text files, access to 

additional programs within Windows, and much more. Using these features, it is possible 

to extract the process information that is saved on a networked location of the process 

monitoring PC. One of the requirements of the CMM operator not previously mentioned 

is the need to input the cavity ID that is stamped in the part from the die of which the part 

was produced in the casting plant. As a form of quality control, only a certain range of 

cavities are allowed on one machine and this is used to determine which machine the 

parts were made. The current manual implementation of the CMM software involves the 

operator inputting some information as prompted by MCOSMOS, mainly: 
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• Cavity ID 

• Nest ID 

• Production Date/Time of part, as indicated by process monitoring system. 

Using only these inputs, it was possible to uniquely create the file name ofthe text 

file holding the process information, as described in section 5 .1. Furthermore, all of the 

data entered in the text file was input as strings and needed to be converted to numerical 

values using the '@' prefix. Finally, in order to get this information into the Mitutoyo 

MeasurLink statistical software package, each variable must be listed as a "Tolerance 

variable" and the option of inputting, nominal and upper/lower tolerance values is 

available. Setting a variable to have this property tells MCOSMOS to export these data 

to the statistical program; in this case, MeasurLink. The main goal here is that 

MeasurLink provides a tool for the 'warehousing' of the data. Once the database of 

process information was created, anyone could extract the data and perform multivariate 

analysis similar to what was done throughout this thesis. The MCOSMOS program used 

to illustrate this data acquisition technique was located in Appendix B. 

5.1.3 Integration in an Automated Environment 

While the previously mentioned system satisfied the requirements of the 

environment at Nixon Integrated, this process differs in a plant where a fully automated 

production/inspection system is implemented. In order for this system to function in this 

environment, the integration into the system's PLC will be required to keep track of the 
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parts that are manufactured. While a full description of implementation in this type of 

setting was not performed, a simplified proposal of this system is presented here. 

This system involves the use of a robot collecting parts from each machine and 

dispensing them to a centralized location. The parts would be placed in a queue as they 

await inspection. While in the queue, parts could be stamped with the serial number of 

the format that is presented in section 5 .1. The PLC can communicate with the 

inspection system and provide it with the list of parts in the queue. As previously 

mentioned, the inspection of this part is time consuming, so parts can be inspected in time 

intervals. Furthermore, using the process monitoring system parts can be flagged for 

additional inspection if the process data analysis suggests a problem. This 

implementation is outlined in the flow chart located in Figure 5.2. 
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Machine #1 Machine #2 Machine #3 Machine#N 

Process Process Process ... Process 

Monitoring Monitoring Monitoring Monitoring 

System System System System 

l 
PartiD & 

Inspection Flag 

.. 
Main Programmable r---. Robotic Part 

Logic Controller Retrieval 

Part ID Stamping & ... 
Queue 

Part Inspection on regular + YES 

interval Is part flagged for 
additional inspection? 

Store Process and 
~ 

Perform additional 
Quality Data CMM inspection 

l 
Ship parts if good 

Discard parts if bad. 

Figure 5.2 Proposed design for automated process monitoring and inspection system with process 
and quality data storage. 
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The proposed automated system would still use the same conventions for 

acquiring the data from each process monitoring system through the MCOSMOS CMM 

software as described in section 5.1.2. 

5. 2 Development of Process Monitoring System 

The process monitoring system used information that was from a model created 

using offline historical data that was known to result in good parts and have experienced 

common-cause variation. Based on the results described in section 4.2, a process 

monitoring system developed on process data using PCA is presented here. 

There are some key data requirements for the process monitoring system to 

represent the multivariable data in the simple control charts, such as Hotelling's T2 and 

SPE charts. At the beginning of program start up, the operator was prompted to select a 

model file and the summary of model file contents are listed in Table 5.1. 
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Table 5.1: List and description of model file variables. 

Variable Name Description 

xMean 

xStd 

T2Crit 

SPECrit 

tVar 

The new data was first mean centered and scaled to unit variance and then the 

new scores were computed using the following equation that is adapted from equation 

(2.3), previously given in equation (2.4) and is shown again as equation (5.1). 

(5.1) 

Where fnew are the new scores and X is the new data that has been mean centered and 

scaled to unit variance. The new Hotelling's T2 statistic can be computed similar to that 

in equation (2.9), as equation (5.2). 

(5.2) 
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where r,:,_ is the Hotelling's T2 statistic for the new part, i is the variance of the t-scores 

as submitted by the model and A is the number of components in the model. 

As indicated by equation (2.11 ), the computation of SPE involves the subtraction 

of the predicted values of the data, X, from the actual values of X. The computation of 

the predicted values, previously given in equation (2.5), is again shown in equation (5.3). 

X =f T 
new newP (5.3) 

Using the two control charts in tandem, the implemented process monitoring 

system looks similar to the charts shown in Figure 4.36. Also, on the display are the 

current Z-axis offset values and predictions. There is a button located on the screen 

labeled "Update Z-Offsets" which enables the operator to manually change the value of 

the offsets if a tool change or other manual adjustments are required. Note the green box 

around the latest machining cycle, indicating a good set of parts. An example of the 

process monitoring system is presented in Figure 5.3. 
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• • 
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~ . - .. 

Figure 5.3: Typical process monitoring system display for the operator. 

5.3 Multivariate Software 

All of the code used in the implementation of this process monitoring system 

were developed using Matlab v2006a. Matlab provides an extensive set of tools for 

creating and manipulating user interfaces and is excellent for handling large matrices of 

data which are typical of these kinds of processes. 
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The codes for the various parameters and algorithms as discussed in section 2.4, 

including the NIP ALS algorithm were implemented in Matlab with great success. As a 

metric for comparing the results of the codes used here, values of the scores are compared 

to those computed using SIMCA-P+ v11. Using the data from the example presented in 

section 4.2.1.1 with 544 data points and 10 variables, the score and loading vectors from 

one component are compared and presented in Table 5.2. It should be noted, however, 

that SIMCA only stores data holding six significant digits. These results are impressive 

as the NIP ALS algorithm written in Matlab has a convergence limit set at 1 x 1 o-5 and all 

values are held in double precision floating point matrices. The precision of the variables 

and the NIP ALS convergence limit used in SIMCA is not known. 

Table 5.2: Comparison of PCA model from SIMCA and Matlab codes. 

Error Type 

MEAN 

ACCURACY 

T-score 

1.298382x 1 o-?s' 

99.99997% 

P-loading 

4.250673xl0-6 

-2.494997xl 0"7 

99.995594% 

For general analysis purposes, the codes completed for this thesis produce 

acceptable results, with the only drawback being a lack of user interface developed for 

them, which was not necessary at this stage and was thus beyond the scope of this 

project. 
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Chapter 6 - Conclusions 

6.1 Overview 

Presented in this thesis is the successful implementation of a fully featured 

machining process monitoring system based on multivariate statistical techniques. 

Concluding remarks on the individual key findings will be presented with some ideas for 

future work. 

6.2 Thermal Error Compensation 

The strategy that was presented for the compensation of thermal errors during 

production was both successful and practical. After the initial modeling of the thermal 

expansion of the Z-axis to characterize its behaviour, the modeling of this quantity during 

production through indirect measurements made on the parts proved to be successful 

regardless of the noise in the dimensional measurements arising due to the roughness of 

the casting surfaces. Furthermore, it was determined that the temperature measurements 
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lag behind the thermal error by about 5-l 0 minutes in real time and the use of lagged 

error measurements are used to compensate for this behaviour. 

Two cases that illustrated the performance of the modeling of thermal errors were 

presented. The first case where a model based on thermal measurements, all from one, 

day is applied to the data of the next day. In this case, the predicted data from the two 

measurements in the Z-axis for the second day fit the real data with an R2 of 0.843 and 

0.872, for the boss and bore measurements, respectively, and both of these quantities had 

an RMSEE of 0.008. The second case involved the use of half of the data from two 

different days to create a model. In this case, odd number data points were used in the 

model for the work set and even numbered data points were used in the test set for 

predictions. The idea of this model was to incorporate data from multiple days, and test it 

with data from days which experienced similar behaviour to assess performance. With 

the proposed automatic compensation strategy, both models were shown to hold the 

quality parameters to within ±0.02 while the tolerance for this part is ±0.05mm. 

6.3 Machine Process Data Modeling 

For the modeling of the machine process data, there were two main sections: 

modeling of process data with PCA and modeling quality data from process data with 

PLS. For the case where only the process data is modeled, PCA models were shown to 

be effective at capturing the main effects of the process. While the model was shown to 

not have the sensitivity required for detecting the minor faults performed during the 

experimental simulations, it was successful in detecting the one case where an actual non-
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catastrophic part miss-load occurred. The contribution plots identified the vibrations as 

being much higher than the nominal. Furthermore, when the process data from known 

good parts were applied to the model, the model made no false predictions as to their 

process state and they would all have been classified as "good parts." The use of the 

simple control charts is illustrated in the detection of poor process conditions for 

presentation to operators. Unfortunately, due to the fact that effort is placed on 

constantly making good parts, there were no other opportunities for detecting these major 

defects. 

The modeling of the quality data, however, using PLS proved to be moderately 

successful. The first attempt at modeling the data proved to be challenging as both 

process and quality data contained noise from the common variation that was inherent in 

the process and the imprecise nature of aluminum cast parts. Investigation into this 

model led to its pruning which involved the removal of four process variables from the 

model; shown to be of little importance. This effectively improved the fit of the quality 

variables by an average of 30%; however, the variable with the best fit still only had an 

R2 of 0.645. Although the plots showing observed vs. predicted values of the quality 

variables did not appear to be of the greatest accuracy, it should be noted that not one of 

the observations received a false prediction where the part is said to be out the tolerance 

specifications. 
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6.4 Implementation 

While modeling of process data is an excellent tool for the investigation of 

machining processes, a plan for implementation must be developed which is compatible 

with medium to high production processes. The implementation software written in 

Matlab and a description was provided as to how it was integrated with commercially 

available software supplied by Mitutoyo for data storage. Process and quality data are 

associated to parts via simple part tagging conventions and a proposed plan for this 

implementation in an automated setting was provided. Furthermore, results obtained 

through the codes developed for this work were compared to commercially available 

multivariate software with excellent accuracy. 

6.5 Future work 

Although one of the challenges of this work was implementing a process 

monitoring system where the process and quality parameters are inherently noisy, better 

modeling results may be achieved if an industrial machining process where all of the 

quality parameters are machined is investigated. This will ensure that most of the noise 

associated with the quality of the parts is generated during machining and not by other 

processes which are outside of the control of the machining process such as aluminum die 

casting. 
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Another point of interest is the vast amount of data that is collected from the 

vibration signals. The analysis performed here only considered the magnitude of the 

frequency at the spindle speed because of the limitations on data storage capabilities. In 

the case where thousands of parts are made in a day, storing all of the vibration data for 

every part is not practical so, the selection of only a few important pieces of information 

was done. There is much more information, however, with regards to the state of the 

process within the entire frequency spectra. Handling this data could be performed using 

hierarchical multi-block PCA and PLS techniques that are presented by Westerhuis eta/. 

(1998). Through this analysis, it is expected that the principal components would explain 

the variation in the frequencies that are causing the most variation, while ignoring those 

that provide no additional information. 
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Appendix A 

When using the SCC-TC02 thermocouple modules in the SC-2345 connector 

block, from National Instruments (NI), the first eight channels contain the signal from the 

thermocouple voltage and the last eight channels contained the cold junction 

compensation (CJC) voltage; i.e. if the thermocouple channel is X, then the CJC is on 

channel X+8. The NIST ITS-90 coefficients and method suggested by NI for converting 

the thermocouple signals to temperatures is listed in the Matlab code provided below: 

function tempOut = ThermoConvert (tempin, CJC) 
'i: ternpOut Thf-::r.:-Jr.cCon,/e:ct ( tempin, ,_ ... ,_); __ j 

t rs the output of the es in o~;. 

For E-type thermocouples. 

% This function will pe:form the necessary conversion rrom voltage 
signals 

to temperature values ror E-Type Thermocouples us t.h.e ;,JIST .ITS-

% coefficients for E-type To be used with the NI SC-

connector box and SCC-TC02 thermocouple moaures. 

t n - The signal voltages from the 
't c,JC - '!.'he ccld :ju.r;ct.:i.on compensation va.lues f:r:om the thenno\~,,~~·uple 

Wallace - McMaster University - © 2007 
@manaster.ca, wallacd:j@gmail.cc~ 

NIST ITS-90 Coefficients tor 
t90=d0+dl*E+d2•En2+ ... +dn*E~n 
-:.iC·:::::O; 
01=[17.057035;]; 
d2=[-0.:3301759;]; 
d3=[0.00C5435585;]; 
d4=[-0.000073562749;]; 
dS=[-0.0000017896001;] 
d6=[0.000000084036165; 
d7=[-0.00COOOOOL373587 ;]; 
d8=1.0629823e-11; 

~ d9=-3.2447087e-14; 

es 
E rs in mV 
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dO=[O; 
17.057035; 
-0.23301759; 
0.0065435585; 
-0.000073562749; 
-0.0000017896001; 
0.000000084036165; 
-0.0000000013735879; 
1. 0629823e-ll; 
-3.2447087e-14]; 

~Nist Type E thermocouple Coefficients in mV. 

Q cl=0.586655087100e-l; 
~ c2=0.450322755820e-4; 

c3=0.289084072120e-7; 
% c4=-0.330563966520e-9; 
% c5=0.650244032700e-12; 
Q c6=-0.191974955040e-15; 
~ c7=-0.12536607970e-17; 

c8=0.214892175360e-20; 
~ c9=-0.143880417320e-23; 
% cl0=0.359608994810e-27; 
cO=[O; 

0.586655087100e-1; 
0.450322755820e-4; 
0.289084072120e-7; 
-0.330568966520e-9; 
0.650244032700e-12; 
-0.191974955040e-15; 
-0.12536607970e-17; 
0.214892175360e-20; 
-0.143880417820e-23; 
0.359608994810e-27]; 

voltage. See NT SCC-TC02 
doc:1rr:.ent(.:1 tion ~ 

modu.l.e 

~b Coeff.i.c:i..ent~3 for COI!Ve:t.~t.:i.nq the.rm.i.sL':):c res.ista.nr=:e tf) Ternpe:raL .l:t.~e :i.n 
F 

as p:t:.-ov.:i.decl. by Nat.:i.()na:l. ..... :----=~ .. r' .. r.tt2n ..::; 

a=l.295361e-3; 
b=2.343159e-4; 
c=l.Ol8703e-7; 

Ccnt:.:i.nue•.:i ... 
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~ Resistance of thermistor in Ohms as calculated from CJC voltages 
Rt=5000*(CJC./(2.5-CJC)); 
~ tation of CJC temperature in °K 
Tk=1./(a+b*log(Rt)+c*log(Rt) .A3); 
% Conversion to "c 
Tc=Tk-273.15; 

:~; Conve:cs.:i .. ':'n of C,TC temperature to E-t.ypc t: 
equivalent 
% Us NIST polynomial coefficients 'c' 0-10 
Ecjc=O; 
for i=1:11 

Ecjc=Ecjc+cO(i) .*Tc.A(i-1); 
end 

% Preprocess thermocouple voltages. 

volt:aqe 

Vtc=tempin. /100; 'l; Remove fn_:,n 'l'C modulr~ 

Vtc=Vtc. *1000; C::.nver:t t:.:, rnV, T.GOCrn.v/V 
Eth=Vtc+Ecjc; Add E-type CJC voltage to 

:t r::onvert 
:~s t: 

tempOut=O; 
for i=1:10 

thermr_:,ccuple val tages tc temf::.r::rat,_:_res 
NIST pol al coefficients 'd' 

tempOut=tempOut+dO(i) .*Eth.A(i-1); 
end 
~ function complete 
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AppendixB 

Listed here is an example of program code that could be used to implement data 

acquisition from process monitoring PC's that are already attached to the network. This 

program code was performed in the graphical environment of the Mitutoyo GeoPak Part 

Program Editor v3.0.R6. This program illustrates how the data could be acquired, 

however, from one machine only: 
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I yrStr =@Year 

No. of Pt.l. = 6 Projection piane =Xi' piane' 
X = 100.000 Y = 100.000 Z = ·5.000 Diameter= 50.000 

~.of!il rmtl 
uame~ o.1em 

=@(SCA] 
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ff.' Demo (fest) • !1m E:J 
--= 1 . 

F01mula calculation 

. , Formula calculation 
_! 

J F~ula. c~culation 
·~-+~~· , --~------··---------

SCA =@[SCA) 

=@[SCB) 

TC6 =@(TCSJ 

TC7 =@[TC7) 
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:;1 Demo (Test) • l!lm]£! 

The first and second lines of the program ask the operator to input a cavity ID and 

nest ID for the part. If the cavity ID was greater than 47, then this indicated that the 

machine being used is M-127. Lines 9 through 25 were simply used for building the 

string of the suggested date in the format MMDDYY. Lines 26 and 27 were requesting 

the operator for date and time string inputs. Line 28 took all of the strings and compiles 

the filename for the part data file that is located on the network drive. In this example, 
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only the regular C-drive was used. Lines 29 through 41 were a sample CMM program 

which simply measures circles for example purposes. Lines 42 through 77 were 

responsible for assigning numerical variables to the data read from the text file and then 

assigning tolerance statistics to the variable. Placing the variables in the in the Formula 

Calculation commands also allows for the ability to update the variables with some 

additional calculations, if required. Assigning the tolerance statistic to the variable tells 

MCOSMOS that this quantity should be reported to the statistical program. When this 

CMM program is run, MCOSMOS calls MeasurLink to begin the acquisition of the 

statistical information. The data is then all stored and handled through MeasurLink. For 

sake of verification, line 78 saved these data to a text file to ensure that they are being 

correctly processed. The program was then complete. 

The program code that is shown here could be easily integrated into any Mitutoyo 

based CMM inspection site where all of the process monitoring PC' s are connected to the 

same network. It could also be easily altered to accommodate any custom changes to the 

process monitoring system. 
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