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Abstract 

This thesis addresses the design of fractionally-spaced equalizers for a digital communication 

system which is susceptible to Adjacent Channel Interference (ACI). ACI can render an 

otherwise well designed system prone to excess bit errors. Algorithms for a trained adaptive 

FIR linear fractionally-spaced equalizer (FSE) with explicit sidelobe control are developed 

in order to provide robustness to ACI. The explicit sidelobe control is achieved by imposing 

a quadratic inequality constraint on the frequency response of the equalizer at a discrete set 

of frequency points in the sidelobe region. 

Algorithms are developed for both block adaptive and symbol-by-symbol adaptive modes. 

These algorithms use interior point optimization techniques to find the optimal equalizer 

coefficients. In the block adaptive mode, the problem is reformulated as a Second Order 

Cone Program (SOCP). In the symbol-by-symbol adaptive mode, the philosophy of the 

barrier approach to interior point methods is adopted. The concept of a central path and 

the Method of Analytic Centers (MAC) are used to develop two practically implementable 

algorithms, namely IPM2 and SBM, for performing symbol-by-symbol adaptive, fractionally­

spaced equalization, with multiple quadratic inequality constraints. 

The performance of the proposed algorithms is compared to that of the Wiener filter, and 

the standard RLS algorithm with explicit diagonal loading. In the computer simulations, 

the proposed algorithms perform better in the sense that they provide the desired robustness 

when the communication model is prone to intermittent interferers in the sidelobe region of 

the frequency response of the FSE. Although the proposed algorithms have a moderately 
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higher computational cost, their insensitivity to the deleterious effects of ACI make them an 

attractive choice in certain applications. 
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Chapter 1 

Introduction 

Equalization is an important component of the receiver in many digital communication 

schemes. Therefore, it is one of the better studied components in digital communications. 

Over the years, many researchers have made significant contributions to this field, and there 

is a wealth of knowledge available regarding several useful algorithms and the instances of 

those algorithms that are used in individual standards [1], [2]. In particular, the use of 

fractionally-spaced equalizers, instead of symbol-spaced equalizers, has greatly improved the 

equalization capability, especially when using an FIR filter as the equalizer. The use of 

adaptive equalizers further allows equalization over time-varying channels. However, most 

of the available equalization algorithms address unconstrained equalization problems. There 

can be scenarios in which one would like to implement an equalization algorithm with mul­

tiple equality and inequality constraints. In such a scenario, the conventional equalization 

algorithms/architectures are insufficient. In such a case, the path to the development of a 

new equalization algorithm is to model the equalization problem as a convex optimization 

problem with multiple equality and inequality constraints, and this is the approach that will 

be taken in this thesis. 

In this work, we solve a training-based constrained fractionally-spaced adaptive equaliza­

tion problem using the theory and concepts of convex optimization. The problem of adaptive 
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equalization has been treated several times, but the novelty of the proposed approach lies 

in the way in which we handle multiple quadratic inequality constraints. We develop al­

gorithms for adaptive constrained fractionally-spaced equalization, in block adaptive and 

symbol-by-symbol adaptive forms. These algorithms are based on the principles of inte­

rior point methods [4], [8] for the solution of convex optimization problems with multiple 

quadratic inequality constraints. 

The motivation for the development of our constrained fractionally-spaced adaptive 

equalizer comes from applications in which there is intermittent adjacent channel interfer­

ence. That is, interference in the sidelobe region of the frequency response of the fractionally­

spaced equalizer that might not be present during the training phase of the equalizer. A 

conventional adaptive equalization algorithm, like LMS or RLS [1], [3], might have unac­

ceptably high sidelobes in the frequency response of the equalizer. Should an unexpected 

interferer strike the sidelobe region during data transmission, it might result in a severe 

symbol error rate at the detector. 

In order to achieve robustness to intermittent interferers in the sidelobe region of the 

fractionally-spaced equalizer, we constrain the frequency response of the equalizer to be 

below a desired sidelobe level over the sidelobe region. This is achieved by imposing multiple 

quadratic inequality constraints on the equalizer coefficients, and hence the designer can 

exercise explicit control over the sidelobe level. 

Using this approach, the problem of performing constrained adaptive equalization is 

translated into solving an optimization problem with multiple quadratic inequality con­

straints. We develop both block adaptive and symbol-by-symbol adaptive equalizers with 

explicit sidelobe control. In these scenarios, we use different approaches to implement the 

principles of interior point methods. To solve the optimization problem in the block adap­

tive case, we model our problem as a Second Order Cone Program (SOCP), and use well­

developed primal-dual interior point methods, such as that implemented in SeDuMi [4]. The 

symbol-by-symbol adaptive equalization problem is more challenging because a new filter 

2 
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that satisfys the sidelobe constraints must be computed for each received symbol. We solve 

this problem using the principles of the barrier method [8] approach. In order to evaluate the 

performance of the proposed equalizers, we compare their performance to that of standard 

equalizers, such as the Wiener Filter and the RLS algorithm with explicit diagonal loading, 

and discuss the advantages and disadvantages of our approach. 

1.1 Adjacent Channel Interference ( ACI) 

In a practical communications scheme, transmitter imperfections result in adjacent channel 

emissions which lie in the transmitted band of spectrally neighboring schemes. This occurs 

due to insufficiently stringent limitations on the acceptable leakage at the transmitter. These 

interfering signals in the adjacent channel pose a threat to the successful communication 

for an operator using this adjacent frequency band, and are said to constitute adjacent 

channel interference (ACI). The affected operator in the adjacent band has no control over 

interference from other users. Therefore, it is possible that a majority of bit errors might be 

due to ACI and not due to the given channel or the inherent noise at the receiver. The ability 

of a receiver to accept signals at the desired frequencies, and suppressing any signals from 

the adjacent channels is called the selectivity of the receiver, or adjacent channel rejection. 

In cellular mobile radio systems that employ TDMA and FDMA, there is substantial 

amount of frequency re-use in order to achieve high spectral efficiency. Spectrally adjacent 

channels are kept in separate cells, so as to minimize the impact of spectral overlap. However, 

adjacent channel interference can still occur due to mobile users in different cells. Spectral 

overlap between the signal of interest, and interfering signals from adjacent channels, can 

result in severe performance degradation. In 2G systems, such as GSM, the ACI was managed 

by allocating guard bands of unused spectrum between operators. This would generally 

ensure that the adjacent channel interference would attenuate to acceptable levels. However, 

in 3G systems using wideband code division multiple access (WCDMA), the higher channel 

3 
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bandwidth requirement means that this approach is not feasible. 

When the level of ACI is a significant fraction of the desired signal power, it can lead to 

disruption of signal quality at the receiver. Sometimes ACI can lead to formation of dead 

zones in the network where the adjacent operator blinds the mobile user and the QoS target 

cannot be achieved. Therefore, due to the wide bandwidth requirements, a typical WCDMA 

system is limited by the extent of interference; hence ACI has become an important issue 

for WCDMA. 

To combat the problem of ACI, it makes sense to try to curb the problem at the source 

itself, by incorporating better transmitter designs at the base station which would reduce 

emissions into the neighboring channel. This would certainly help the operator using a 

neighboring channel. Ironically, this operator could be a competitor, in which case there 

might be little motivation for the wireless company to improve on the transmitter design. 

Besides, the user can experience ACI from other mobile users as well. Hence, it is prudent 

to make the receivers robust to ACI. 

In summary, the design of the receivers ought to incorporate measures to combat ACI, 

along with the control of lSI and noise. Conventional receivers with no treatment of the 

sidelobe regions often have unacceptably high sidelobe levels and can be quite susceptible to 

degradation caused by intermittent interferers in adjacent channels. To ensure robustness to 

ACI, explicit control over the sidelobe regions of the spectrum of the equalizer presents itself 

as an attractive proposition. This opens up an exciting avenue to improve upon conventional 

receiver designs, especially if the user can adjust the robustness of the receiver at will, 

depending the extent of interference that is expected. Considering the potentially adverse 

effects of ACI, it does not appear unreasonable to invest a moderately higher computational 

cost, if required, to attain explicit control over the sidelobe region of the receiver. 

In this thesis several ACI immune receiver structures are proposed. We investigate trade­

offs between performance degradation due to ACI and computational complexity. We com­

pare our performance with the standard RLS algorithm with explicit diagonal loading. This 

4 
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is a good choice for comparison as it has a lower complexity than our interior point based 

algorithms, and also boasts of marginal sidelobe suppression due to explicit diagonal loading. 

1.2 Contribution and Organization 

The focus of this work is to develop practically implementable block adaptive and symbol­

by-symbol adaptive fractionally-spaced equalization algorithms with multiple quadratic in­

equality constraints on the sidelobe region of the frequency response of the equalizer. We 

demonstrate the usefulness of interior point based algorithms in achieving this task. The 

aim is to be able to analyze and and develop algorithms which solve the core problem of 

attaining a good sub-optimal solution with a limited number of available training symbols. 

For simplicity we use linear equalizers and test our symbol-by-symbol adaptive algorithms 

in a block fading scenario. Our algorithms can be used in scenarios prone to ACI, as dis­

cussed in the previous section. At a moderately higher computational cost, now we have a 

class of receiver structures that is insensitive to intermittent ACI, and in which the level of 

robustness can be explicitly controlled by the designer. 

The thesis is organized as follows. Chapter 2 provides a general background on popu­

lar equalization algorithms and architectures using a linear filter. This chapter considers 

scenarios involving unconstrained equalization. In Chapter 3 we develop a mathematical 

formulation of the problem from a block adaptive standpoint, and model the problem as a 

Second Order Cone Program (SOCP). Chapter 4 presents the theory of interior point based 

techniques for solving optimization problems with multiple quadratic constraints, and bar­

rier methods in particular. We discuss the concept of the central path, and its importance in 

using the barrier methods. The application of barrier methods to perform symbol-by-symbol 

constrained adaptive equalization is developed in Chapter 5. We discuss different approaches 

and their limitations. Chapter 6 demonstrates the application of the theoretical concepts 

by computer simulations. Finally we present conclusions and potential avenues for future 

5 
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research in Chapter 7. 
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Chapter 2 

Equalization 

2.1 Introduction 

Equalizers are a fundamental component of many digital communication systems [1], [2]. 

In a practical scenario, the channel over which the symbols are transmitted is often non­

ideal. Therefore, its frequency response characteristics are such that the channel introduces 

amplitude and phase distortion in the frequency response of the received signal. This, in 

turn, causes overlapping of some of the received pulses, leading to intersymbol interference 

(ISI). If left unchecked, the lSI can be a major source of symbol errors at moderate-to­

high signal-to-noise ratios (SNRs), at the receiver, and hence there is a need to provide a 

mechanism by which the receiver can compensate for the channel distortion and free the 

received signal from lSI, or at least minimize its deleterious effects. Hence the need for an 

equalizer, which compensates or equalizes the channels degrading effects, thereby reducing 

IS I. 

There are several standard approaches to performing equalization. We can perform opti­

mum detection from a probability of error point-of-view at the receiver by doing a Maximum 

Likelihood Sequence Estimation (MLSE) using the Viterbi Algorithm, where decisions are 

made on entire sequences of received symbols. However, that approach has a high com-
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putational cost, which increases exponentially with the length of the channel (in symbol 

intervals). In a practical scenario, a good sub-optimal equalizer with a lower computational 

cost might be more desirable, than a computationally intensive optimal equalizer. Hence, 

several sub-optimal equalization algorithms have been proposed, which work well in differ­

ent scenarios. If the channel is unknown at the receiver, and/or time varying, then the 

equalizer needs to be consistently updated to keep track of the changing channel conditions. 

Hence, the need for adaptive equalization. An adaptive equalizer can either be block adap­

tive or symbol-by-symbol adaptive, depending on the application. Both approaches will be 

elaborated on later in the chapter. 

Equalization is a very well studied field and in the subsequent sections we give a general 

idea of some of the prevalent approaches to equalization. This chapter attempts to provide 

a good background which will enable the reader to get a glimpse of the amount of effort 

made to perform unconstrained adaptive equalization. This will in turn enable the reader 

to understand and appreciate the adaptive equalization algorithms with multiple quadratic 

inequality constraints (both block adaptive and symbol-by-symbol adaptive) we develop later 

on the the thesis. 

8 
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Figure 2.1: Standard model for baseband PAM. 
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Figure 2.2: Equivalent discrete-time model for baseband PAM. 

2.2 Models 

Consider the standard model for baseband digital communication shown in Fig. 2.1. The 

data is waveform coded by pulse amplitude modulation (PAM). The transmitted waveform 

uc(t) can be written as 

Uc(t) = L d(n)pc(t- nT), 
n 

where d( n) is the input data sequence, n is the symbol spaced time index, T is the symbol 

interval, and Pc(t) is the pulse shaping filter. The signal uc(t) is transmitted through the 

linear time-invariant (LTI) baseband equivalent channel cc(t) and the noise, which is assumed 

to be zero-mean, white and Gaussian, is represented by vc(t). In general, all quantities are 

complex valued. This noisy signal is fed to the demodulator qc(t). A popular choice is to 

choose the demodulator to be the so-called "matched" filter, qc(t) = p~(-t). This is a good 

choice for an AWGN channel where are errors are due to noise. The sampled output of the 

matched filter qc(t) is a sequence which has sufficient statistics for making a correct decision 

on the received signal [2]. Ideally for lSI channels, the prefilter q( t) should be matched to 

the cascade of the transmit filter, and the channel model. However, more often the channel 

characteristics are not known a priori at the receiver. Therefore, in general the receiver 

9 
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prefilter q(t) is chosen as a matched filter to the transmit filter. 

It is convenient to view the communication model in Fig. 2.1 as a discrete time system. 

The equivalent discrete time model for baseband PAM is shown in Fig. 2.2. From Fig. 2.1 

and Fig. 2.2, the equivalent discrete time channel model is 

h(n) = J cc(>..)rpq(nT- >..)d>.., 

where 

and 

v(n) = J qc(>..)vc(nT- >..)d>... 

We need to correctly extract the information contained in the samples in order to suc­

cessfully estimate the transmitted symbols. There are several detection schemes that can 

be employed for optimal or sub-optimal detection depending on the application. We discuss 

some of the standard approaches in the following sections. 

2.3 Optimum Receivers 

Compensation for lSI or optimum detection of transmitted symbols at the receiver are the 

aim of most communication receivers. In an ideal case, the channel is AWGN, and does 

not introduce any distortion in the received signal. In that case, the channel corrupts the 

transmitted signal only by the addition of white Gaussian noise. An optimum receiver in such 

a case would comprise of a matched filter, a symbol rate sampler and a memoryless optimum 

detector. The probability of error can be minimized by performing optimum detection at the 

demodulator output. This decision criterion can be expressed as a conditional probability 

function (likelihood function). For optimum detection we maximize the likelihood function, 

hence the name Maximum-Likelihood (ML) criterion. This in turn translates itself into 

10 
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computing a set of correlation metrices [2] and selecting the signal corresponding to the 

largest correlation metric. This symbol-by-symbol detection scheme is optimum when the 

signal has no memory. 

However, in the scenario when the signal has memory, the optimum detector must make 

decisions on a sequence of received signals, and estimate an entire sequence of transmitted 

symbols, instead of performing symbol-by-symbol detection. The received signals in succes­

sive symbol intervals are now interdependent, and the optimal detector must calculate the 

probability of correct decision on a sequence of received signals. This is done by calculating a 

joint pdf of the outputs of the demodulator, and then selecting a sequence which maximizes 

this likelihood function. Therefore, this is called the Maximum-Likelihood Sequence Detec­

tor. Due to the Gaussian nature of the noise, maximizing the conditional PDFs translates 

itself into minimizing a Euclidean Distance function [2]. If the size of the symbol alphabet 

is M and the length of the sequence is K, the task is to calculate the Euclidean distance 

function for all the MK possible sequences, and then choose the sequence for which the 

Euclidean distance function is minimum. 

The computational complexity of the ML sequence detector can be reduced by using the 

Viterbi algorithm (VA). This algorithm acts as a Maximum-Likelihood Sequence Estimator 

(MLSE) and performs a sequential trellis search, while eliminating sequences with each new 

received signal. It reduces the number of paths searched in the trellis to find a sequence 

that minimizes the Euclidean distance function and in turn maximizes the probability of 

correct decision on a sequence of received signals. Even though VA brings down the initial 

computational complexity, it still requires ML-l channel states [1], where Lis the length of 

the channel. Hence, MLSE is difficult to implement in a practical scenario having a large 

signal constellation, or long channels. This kind of situation might be seen when we compare 

the use of MLSE in the Global System for Mobile Communications (GSM) and in Enhanced 

Data rates for GSM evolution (EDGE). One of the standard channel models used in GSM 

and EDGE is oflength 7 [14] . Then, for GSM which uses binary modulation, the VA would 

11 
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·r 
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Figure 2.3: Equivalent discrete-time model for baseband PAM using an equalizer. 

need 26 = 64 states. On the other hand for EDGE, where 8-ary PSK is used, the VA would 

require 86 = 262144 states. 

2.4 Sub-Optimal Receivers 

In order to reduce computational cost, sub-optimal channel equalization techniques have be-

come popular in many practical applications. One popular choice is to use a linear transversal 

equalizer after the matched filter, followed by a memory less detector. A linear transversal 

filter offers lower computational complexity to perform channel equalization to compensate 

for lSI. In the MLSE the cost rises exponentially with the channel length, whereas in this 

case it is a linear function of the length of the channel. However, we have to settle for a sub-

optimal solution. A scheme involving the linear transversal equalizer in a communication 

model is shown in Fig. 2.3. 

There are different approaches to implement a linear transversal equalizer. We discuss 

two popular criteria, namely the peak distortion criterion and mean squared error criterion. 

Zero-Forcing Equalizer 

The worst-case intersymbol interference at the output of the equalizer is called the peak 

distortion. An equalizer designed with the aim of minimizing the peak distortion is said to 

be based on the peak distortion criterion. It is called a Zero-Forcing Equalizer and it derives 

its name from the fact that it attempts to achieve zero lSI. (Zero lSI might not be achievable 

using a finite length filter.) Consider the communication scheme depicted in Fig. 2.3. For 

12 
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convenience, we define, g(n) = h(n) 0 f(n), where 0 denotes convolution [20], so that 

g(n) = L f(i)h(n- i). 
i 

The output d(n) can be written as 

d(n) = d(n) ® g(n) + v(n) 0 f(n) 

= L g(i)d(n- i) + L f(j)v(n- j) 
j 

= g(<5)d(n- <5) + L g(i)d(n- i) + L f(j)v(n- j). 
i=f-8 j 

(2.1) 

(2.2) 

(2.3) 

We assume that the output d(n) is an estimate of the transmitted symbol d(n- <5), where 

<5 represents the system delay. Therefore, the error between the input and output symbols 

can be defined as 

e(n) = d(n)- d(n- <5). (2.4) 

We see that the first term in (2.3) is a scaled version of the desired response. We normalize 

g( <5) to unity for convenience. Therefore, we have that 

e(n) = L g(i)d(n- i) + L f(j)v(n- j), (2.5) 
j 

where the first term is the lSI term and the second term is due to noise. Here we mathe-

matically see that the symbol error results from a combination of the lSI and noise. 

The optimum taps of the linear equalizer are those for which the peak value of the 

interference, or the peak distortion 

I: lg(i)l, 
i=f-8 

is minimized. For an infinite number of taps it is possible, under the conditions outlined 

below, to obtain a set of filter coefficients for which the peak distortion for the given system 

13 
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goes to zero. Therefore, it is possible to completely eliminate the lSI and thus the symbol 

errors would only be due to noise. 

It is useful to investigate the given problem using the z transform. If H(z) is the z 

transform of the discrete time channel, then the z transform F(z) of a zero-forcing equalizer 

would be given by 1/ H(z). Due to the inverse relation of the z transforms of the channel 

and the equalizer, the zeros of H(z) are the poles of F(z), and vice-versa. Therefore, for the 

equalizer to be causal and stable, the channel should be minimum phase. A minimum phase 

system is one for which the zeros and poles in the z transform are restricted to lie inside the 

unit circle [20]. 

We observe that the peak distortion criterion gives no consideration to the white Gaussian 

noise. Due to the inverse nature of the of z transform of the zero-forcing equalizer, it might 

enhance noise power when the channel zeros are close to the unit circle. Therefore, for deep 

nulls, and even for moderate depressions in the channel frequency response, the performance 

of a linear infinite length zero-forcing equalizer might be poor. In a practical scenario, a 

finite length (FIR) filter is used instead of the infinite impulse response (IIR) filter that we 

have discussed up until this point. For the FIR filter, the taps are chosen so that the peak 

distortion is minimized, however it is not possible, in general to make the peak distortion to 

go to zero completely due to a finite number of taps. 

Minimum Mean Squared Error {MMSE) Equalizer 

While the focus of a zero-forcing equalizer is only on reducing the lSI, an MMSE equalizer 

takes into account the effects of both lSI and noise. The tap weights of the linear MMSE 

equalizer are adjusted so as to minimize the mean squared value of the error, 

(2.6) 
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where E{ ·} denotes the expectation operator. We assume that the data symbols are inde­

pendent and identically distributed (i.i.d), with zero mean, and are uncorrelated to the zero 

mean white Gaussian noise. The z transform F(z) of the optimal infinite length equalizer is 

given by 1/(H(z) + N0 ), where H(z) is the z transform of the discrete time channel, and N0 

is the noise spectral density [2]. Due to the special consideration given to the noise along 

with lSI, the MSE for an MMSE equalizer is always lower then the MSE at the output of an 

zero-forcing equalizer, although for higher SNRs, both MMSE and zero-forcing equalizers are 

expected to give a similar performance. Nevertheless, in the presence of noise, the lSI never 

goes to zero for a linear infinite length MMSE equalizer. That said, it is still the preferred 

choice over zero-forcing equalizer in many applications due to its treatment of noise along 

with lSI. 

To find the optimal tap weights (optimum in a mean-squared-error sense), the MSE 

defined in (2.6) is minimized. This leads to solving the Wiener-Hopf equations [3], whose 

solution requires true knowledge of the channel characteristics, and the resulting filter is 

called the Wiener Filter. In a practical implementation a finite length linear equalizer is 

used instead of an IIR filter. For a M-tap linear filter, the MSE criterion leads to solving 

a system of M simultaneous equations, to get the optimal tap weights. Consider an input 

vector 

rn = (r(n), r(n- 1), r(n- 2), ... , r(n- M + 1)) T' 

where r(n) is the input to the equalizer in Fig. 2.3 and (·f denotes transpose. The output 

d(n) becomes 

A H 
d(n) = f rn, 

where ( · )H denotes Hermitian transpose, and 

f = (f*(O), j*(1), j*(2), ... , j*(M- 1)) T' 

15 
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where ( *) denotes complex conjugate. Equation (2.6) now becomes 

(2.7) 

where 

is the M x M auto-correlation matrix of the equalizer input vector rn, and the cross­

correlation vector is, 

p = E{rnd*(n- 5)}, 

where d( n) is the transmitted symbol, 5 represents system delay and ( *) denotes complex 

conjugation. Minimizing the mean squared error in (2.7) yields the optimal FIR MMSE 

filter [2] 

(2.8) 

The minimum MSE in a linear symbol-spaced equalizer is dependent on the sampler 

phase at the receiver, which might be a source of errors. Next we consider the design of 

a fractionally-spaced linear equalizer, which offers several advantages over a symbol spaced 

equalizer. 

Fractionally Spaced Equalizers 

Another design using a linear filter is the so called fractionally-spaced equalizer. In this 

design, the received signal is sampled at a rate higher than the baud rate at which the symbols 

are transmitted. The motivation for that is the fact that there is an excess bandwidth present 

in the received signal, due to spectral roll-offs at the band edges. Hence, it makes sense to 

sample at a higher rate than the symbol rate to avoid aliasing. Consequently, the tap spacing 

of the equalizer is a fraction of the input symbol period. 

A standard model for baseband PAM communication using a fractionally spaced equal-

16 



M.A.Sc: Ashish Mittal McMaster - Electrical and Computer Engineering 

Vc(t) 

~ kT/L 

1---~1 Cc(t) ~----~~~ 

Figure 2.4: Standard model for baseband PAM using a FSE. 

d(n)~~~----~·11 h(k) 

Figure 2.5: Equivalent discrete-time (multirate) model for baseband PAM using FSE. 

izer (FSE) is shown in Fig. 2.4. The T-spaced symbols d(n) are transmitted through the 

continuous time pulse shaping filter Pc(t) and continuous time linear time-invariant (LTI) 

channel cc(t). The received signal rc(t) is corrupted by additive noise vc(t) which is assumed 

to be zero-mean white, and Gaussian. The noisy received signal is oversampled, where the 

oversampling factor L is a positive integer. The fractionally-spaced samples r(k) are then 

linearly combined with the FIR FSE tap weights f(k) to yield the equalizer output x(k). 

For clarity, the index n (n E Z) is used to represent the symbol spaced quantities, and the 

index k (k E Z) is used for representing fractionally-spaced quantities. The output x(k) of 

the equalizer is then downsampled to the symbol rate, so that the input and output symbol 

rates are the same. We assume that the output d( n) is an estimate of the transmitted symbol 

d(n- 6), where b is the system delay. 

Multirate Model 

It is convenient to visualize the baseband model of Fig. 2.4 as a discrete time system. An 

equivalent discrete time (multirate) model for the baseband PAM communication scheme 

using an FSE is shown in Fig. 2.5. In this model, two successive input symbols are spaced 

by L- 1 zeros, and the output of the FSE is decimated by a factor of L. The oversampled 
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noisy received signal r( k) at the input of the FSE is 

r(k) = rc(t)it=kT/L, 

= L_,d(n)hc(k~ -nT) +vc(k~) 
n 

where 

(2.9a) 

(2.9b) 

For simplicity, we assume that the length of the FIR FSE is N L, where L is the oversampling 

factor, and N is a positive integer. The output of the FSE in Fig. 2.5 is 

NL-1 

x(k) = L f(m)r(k- m). 
m=O 

The output symbol d(n) = x(Ln), so that 

NL-1 

d(n) = L f(m)r(nL- m) (2.10) 
m=O 

(2.11) 

where the vectors f and rn are defined according to (2.10). 

From (2.11), the mean squared error between the transmitted symbol d(n) and its esti­

mate d(n) (assuming a system delay of 6) becomes 

where 

18 
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v1 (n) 

~ 
h1(n) ~ h(n) 

• • 
d(n) • 

• 

• ~ vL(n) 

j • 

hL(n) ~ h(n) 

Figure 2.6: Multi-Channel Model 

is the LN x LN auto-correlation matrix of the equalizer input vector rn, and the LN x 1 

cross-correlation vector b between the FSE input and transmitted symbols is given as 

b = E{rnd*(n- <5)}. 

Multi-Channel Model 

Another useful discrete time interpretation of the continuous time baseband model in Fig. 2.4 

is the multi-channel model of the FSE as shown in Fig. 2.6. From the baseband equivalent 

model in Fig. 2.4 we have 

r(k) = Ld(n)hc(k~ -nT) +vc(k~). 
n 
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We define the polyphase components of the received signal r(k), channel impulse response 

h(k) and additive noise v(k) in Fig. 2.5 as 

rq(P) = r(pL + q- 1), 

hq (p) = he (pT + ( q - 1) ~) , 

and vq(P) = Vc (pT + (q- 1) ~), 

where q = 1, 2, ... ,Land p E Z. For Fig. 2.5, the discrete time channel h(k) of length ML 

and equalizer f ( k) of length N L can be interpreted as being divided into L sub-channels each 

of length M and N, so that they are decimated versions of the discrete time channel and 

fractionally-spaced equalizer in Fig. 2.5. The outputs of each L symbol-spaced sub-equalizers 

are added to provide the output d(n) at symbol rate. 

Therefore, the received signal at the the input to the i-th sub-equalizer is 

M-1 

ri(n) = L hi(j)d(n- j) + vi(n). 
j=O 

(2.12) 

Using (2.12) we can obtain a useful expression for the input vector to the N L tap equalizer 

filter bank at the nth symbol. Defining 

r(n) = (r1(n), r2(n), ... , rL(n)f, 

the L x M channel matrix 

H= 
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and the transmitted symbol vector 

d(n) = (d(n), ... , d(n- M + 1)f, 

we get 

r(n) = Hd(n) + v(n). (2.13) 

Zero-Forcing Conditions for Fractionally Spaced Equalizers 

From Fig. 2.6, assuming a noiseless condition, the overall impulse response g(n) between the 

transmitted symbol and the baud spaced equalizer output can be written as 

L 

g(n) = L hm(n) ® fm(n), 
m=l 

where hm is the m-th subchannel and fm is the corresponding symbol spaced sub-equalizer. 

Taking the z-transform of both sides in the above relation we get 

L 

G(z) = L Hm(z)Fm(z) 
m=l 

For a perfect zero-forcing model, we require that G(z) = z-8 , where 5 is a non-negative 

integer representing system delay. That is, we require that, 

L 

z-8 = L Hm(z)Fm(z). (2.14) 
m=l 

This relation given in (2.14) is known as the Bezout relation [25], [26] and it leads directly 

to the perfect equalization requirements concerning sub-channel roots. That is, to attain 

perfect equalization using a FIR equalizer, there should not exist a common root for all the 

sub-channel z-transforms. 

This can be easily illustrated by an example [27]. Suppose a common root does exist 
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between the sub-channel polynomials, and let it be represented by say, K(z) = k0 + k1z-I, 

so that Hm(z) = K(z)Hm(z). Extracting out this common roots from all sub-channel 

polynomials we get 

L 

z-8 = (ko + klz-1
) L Hm(z)Fm(z) (2.15) 

m=l 

(2.16) 

Hence there is contradiction, because there is no finite length polynomial A(z) that when 

multiplied by K(z) would result in the delay operator z-8 . In order to satisfy (2.15), we 

would require 

which is an IIR system. 

A fractionally spaced equalizer is a better design then a conventional symbol spaced 

equalizer. Not only does it simply the demodulator design by reducing restrictions on the 

front end filter, it also provides a robustness to variations in the sampler phase at the receiver. 

Furthermore, it does so at only a modest increase in implementation cost. Consequently, 

fractionally-spaced equalization is very popular, and has replaced the conventional symbol-

spaced equalization in several applications involving a linear receiver structure [22]. However, 

for the same length both the fractionally-spaced and symbol-spaced equalizers have similar 

convergence properties with respect to mean squared error [16]. A common practice is to 

use aT /2 spaced equalizer, in which the input signal is sampled at twice the symbol rate. 

22 



M.A.Sc: Ashish Mittal McMaster - Electrical and Computer Engineering 

2.5 Adaptive Equalization 

In the design of the optimum and sub-optimum receivers discussed up until this point, it 

was assumed that the channel characteristics are known at the receiver. However, in a 

practical communication system this is seldom the case. The channel may be different for 

different transmissions, as in a switched telephone network where the channel is different 

for each new dialed number [2], or the channel may be time varying even during the signal 

transmission, as in many wireless channels. In many cases, the channels are dispersive, and 

therefore distort the transmitted signal by causing intersymbol interference. Therefore, we 

need equalizer structures which are self adjusting to changing channel conditions, and do 

not rely on apriori knowledge of the channel characteristics. Such self-adjusting receivers are 

called adaptive equalizers. In this section we discuss popular adaptive filtering approaches 

which are widely used in modern digital communications. There are two broad modes in 

which adaptive equalizers are applied. One is the block adaptive mode, and the other, more 

widely used mode, is the symbol-by-symbol adaptive mode. We now discuss these modes in 

detail. 

2.5.1 Block Adaptive Equalizers 

Consider the communication model in Fig. 2.3. This model was discussed earlier for a static 

channel, assuming that true channel characteristics are known at the receiver. The block 

adaptive approach to equalization can be used when the channel characteristics may be 

different for two separate transmissions, but remain unchanged for a given transmission. 

Therefore, the equalizer needs to be calculated only once per block of transmitted symbols, 

for which the channel remains unchanged. 

In Section 2.4, an FIR MMSE equalizer was calculated in (2.8). For convenience, we will 

call this equalizer the Wiener Filter. Hence for the discrete-time communication model of 

23 



M.A.Sc: Ashish Mittal McMaster - Electrical and Computer Engineering 

Fig. 2.3, an FIR MMSE Wiener Filter fw of length M is calculated as, 

(2.17) 

where R is the theM x M auto-correlation matrix of the equalizer input signal r(n), and p 

is the length M cross-correlation vector of the transmitted data symbols with the equalizer 

input. Recall, that for Fig. 2.3, if r(n) is the input to the equalizer, then the equalizer input 

vector is defined as, 

rn = (r(n), r(n- 1), r(n- 2), ... , r(n- M + 1)) T. (2.18) 

Then we can define the auto-correlation matrix as 

(2.19) 

and the cross-correlation vector becomes 

p = E{rnd*(n- 5)}. (2.20) 

The Wiener filter fw calculated above requires knowledge of the true channel auto­

correlation matrix and cross-correlation vector at the receiver. In practice, the equalizer 

needs to estimate the channel characteristics in order to adjust itself to the frequency char­

acteristics of the present channel. It is a common practice to have a training period for 

the equalizer to adapt itself to the channel, before actual data is transmitted. A training 

sequence is a finite sequence of symbols known a priori at the receiver. The covariance ma­

trix of this sequence should have the same structure as that of the data (typically a scaled 

identity), and the length of training should at least be equal to the length of the equalizer. 

If N, N 2: M, training symbols are transmitted for a given channel, the estimates of the 
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channel auto-correlation matrix, or the sample auto-correlation matrix for a length M input 

vector rn (2.18) is given by, 

1 
NH-1 

A """' H R= N ~ rnrn, 
i=c5 

and the sample cross-correlation vector becomes 

1 
NH-1 

f> = N L rnd*(n- 6). 
i=c5 

The resulting estimate of the FIR MMSE filter is 

Hence, by using a part of the transmitted block of symbols as training, we can estimate 

the Wiener Filter. Therefore, we have a block adaptive equalizer structure, which is not 

dependent on the knowledge of true channel characteristics, and tries to adapt itself to the 

channel for different transmissions, as long as the channel does not change for a given block 

transmission. 

2.5.2 Symbol-by-Symbol Adaptive Equalizers 

The symbol-by-symbol adaptive approach is more commonly used in equalizer design than 

the block adaptive approach. In the symbol-by-symbol adaptive case, the equalizer can 

track changing channel conditions and update itself with each new symbol arriving at its 

input. Thus, the equalizer is able to account for time-varying channels, and provide a more 

adaptive design as compared to the block adaptive equalizer. Again, there needs to be a 

training period for the equalizer, but in the case of a time-varying channel, even after the 

training period, the equalizer can still operate in a decision directed mode, in which the 

equalizer continues to update itself using its output symbols instead of the true transmitted 

symbols, assuming a high probability of correct decision. 
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Two very popular approaches to symbol-by-symbol adaptive equalization are the stan-

dard Least Mean Squares (LMS) algorithm, which has a computational complexity of O(M), 

and the standard Recursive Least Squares (RLS) algorithm, which has a computational com­

plexity O(M2
), but has a better convergence rate then the LMS algorithm [1], [3]. Both 

approaches are discussed in the following sections. 

LMS algorithm 

Before understanding the actual LMS algorithm, it is useful to discuss the method of steepest 

descent. A virtue of the MSE criterion is that it is a quadratic function of the taps of the 

FIR linear equalizer. Therefore, the error performance surface may be thought of as an 

M dimensional paraboloid [1] such that its bottom represents the optimal tap weights of 

the FIR filter. Therefore, one may progress towards this optimal solution iteratively from 

an arbitrary starting point. A popular approach is to use the steepest descent algorithm 

which is based on a first-order approximation [3] of the error performance surface around 

the present iterate. This presents itself as a simple to implement approach and has been 

a widely accepted method due to its computational simplicity [2]. Now we do not have to 

invert the matrix to get the Wiener solution, but we can instead approach it in a step-by-step 

manner. As the name suggests, the taps of the FIR filter are adjusted in the direction of the 

steepest descent, i.e. opposite to the gradient of cost function (MSE) at the present iterate. 

Therefore, if fn is the M tap FIR equalizer after n iterations, and J(fn) is the MSE, then 

the relationship between successive iterates is 
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where, 1-L is a positive constant, and g gives the direction in which the tap weight vector is 

incremented, and it is the negative gradient of the MSE at the present iterate 

The positive constant 1-L is called the step-size parameter, and governs the convergence of 

the algorithm. For a given the auto-correlation matrix R and cross-correlation vector p, the 

MSE is 

J(fn) = f:Rfn- f:p- pHfn + (}~, 

where (}~ is the variance of the desired response d( n). Therefore, the update relation of the 

tap weight vector can be written as 

The method of steepest descent is a deterministic gradient algorithm, and iteratively 

calculates the Wiener Filter. However, it relies on the knowledge of the true correlation 

matrices, which are seldom available in a practical scenario. Therefore, we resort to the very 

popular Least Mean Square (LMS) algorithm which is a stochastic gradient algorithm. In 

this approach the update relation becomes, 

where r n is the length M input to the equalizer and e( n) is the estimation error 

e(n) = d(n)- r: rn-

The computational complexity of the algorithm is O(M), due to which it is quite popular. 

However, it is sensitive to the eigenvalue spread in the input signal auto-correlation matrix. 
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Also, compared to the RLS algorithm it has a slow convergence [3]. 

RLS algorithm 

The Recursive Least Squares (RLS) algorithm is one of the most popular adaptive filtering 

algorithms. Although it has a higher computational complexity ( O(M2 )) than the LMS 

algorithm, it has gained wide acceptance due to its better convergence rate, which is an 

order of magnitude faster than the simple LMS algorithm [3]. 

The idea behind the RLS algorithm is to find optimum tap weights for the FIR equalizer, 

that minimizes the sum of squared errors, 

n 

E(n) = L ,\n-ild(i- t5)- r:rnl 2
, 

i=t5 

where,\ is an exponential forgetting factor (0 < ,\::; 1). The solution to the above problem 

is the filter estimate 

Here, \(In is a time average correlation matrix of the tap-input vector ri, 

n 

\(In= L ,\n-irir{l + ~,\nl, 
i=t5 

where, ~ is a small positive real constant and is called the regularization parameter, and I is 

an identity matrix of appropriate dimensions. The regularizing term is required to ensure the 

invertibity of \It n in the initial stages of the iterations when insufficient data are available. 

The effect of the diagonal loading dissipates with time due to the forgetting factor. The 

cross-correlation vector Zn between the tap inputs and desired response is given as 

n 

Zn = L An-irid*(i- t5) 
i=t5 
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The estimate of the FIR filter can be calculated as, 

However, in practice, we avoid calculating the inverse of the correlation matrix '~~n· Instead, 

we develop a recursive update relation for the estimate of tap weight vector. The calculation 

and update of the inverse matrix w;;-1 is carried out using the matrix inversion lemma [3], 

which enables us to avoid direct matrix inversion. If P n = w;;-1 , then from the matrix 

inversion lemma [3], 

where, 

and P 0 = (-1 I can be used for initialization. The recursive update of the FIR equalizer is 

given by 

where ~n is the a priori estimation error, 

and f0 = 0 can be used for initialization. 

Therefore, by using the matrix inversion lemma, the RLS algorithm avoids direct calcu­

lation of the inverse of the auto-correlation matrix, and provides a recursive relation for the 

calculation of the tap weight vector estimate with a computational complexity of O(M2
) 

calculations per sample. The RLS algorithm enjoys better convergence properties than the 
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LMS algorithm, which render it an attractive choice for adaptive filtering, even at a higher 

computational cost. 

The discussion presented m this chapter was aimed at providing the reader with an 

overview of the standard algorithms and approaches for performing "unconstrained" equal­

ization. We introduce the interesting problem of performing "constrained" equalization in 

the future chapters. We will discuss the multiple inequality constrained, block adaptive, frac­

tionally spaced equalization approaches first, and then provide the theory and algorithms for 

performing multiple inequality constrained, symbol-by-symbol adaptive, fractionally-spaced 

equalization. 
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Chapter 3 

Block Adaptive Equalization with 

Explicit Sidelobe Control 

3.1 The Communication Model 

In this chapter we develop a block adaptive, fractionally-spaced equalizer with explicit side­

lobe control. We impose multiple quadratic inequality constraints, and model the problem 

as a Second Order Cone Program (SOCP). We then use well developed interior point meth­

ods [4] to obtain an optimal solution. We use the multirate model of Fig. 2.5 as the basic 

communication scheme. The oversampling factor is L = 2, and we assume the presence of 

an interferer in the sidelobe region of the equalizer frequency response. This modified com­

munication model is shown in Fig. 3.1 consisting of a Pulse Shaping Transmit Filter p(n), a 

v(n) 

Figure 3.1: The Communication Model 
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dispersive channel c(n), additive noise v(n), adjacent channel interference (ACI) i(n) and a 

receiver filter f ( n). The dispersive nature of the channel causes distortion of the transmitted 

pulses and gives rise to Inter Symbol Interference (lSI). The noisy and distorted input to 

the T/2 spaced equalizer is r(n). A popular approach is to design f(n) as a Minimum Mean 

squared Error (MMSE) Equalizer, which minimizes the joint effects of noise and lSI. This 

design may work well if lSI and noise are the only sources of symbol errors at the receiver. 

However, a practical system may also suffers from ACI. For example, in FDMA cellular radio 

systems, to enhance spectral efficiency and traffic carrying capacity, two neighboring cells 

might be using spectrally adjacent carrier frequencies. In such a scenario, there might be a 

partial overlap between the power spectral density spectrums of these two channels. This 

leads to Adjacent Channel Interference as the signal from the adjacent channel is seen as an 

interference at the present channel. Therefore robustness to intermittent adjacent channel 

interference needs to incorporated in the optimum filter design to ensure good performance 

at the receiver. 

The fractionally-spaced MMSE equalizer mentioned above might have unacceptably high 

sidelobes in the frequency response of the equalizer. This maybe a potential source of 

performance degradation if unexpected interferences are present in the sidelobe region due 

to ACI. In order to ensure robustness to ACI, special treatment of this sidelobe region is 

required. Therefore, explicit sidelobe control of the frequency response of the equalizer is 

required. The aim here is to design an optimum receiver, such that the mean square error 

between the received and the desired signal is minimized and the sidelobe of the receiver 

baseband filter in the frequency stopband Wstop ::; w ::; 1r (where w denotes frequency) should 

be less then a prescribed level. 

Let d(n) be an input symbol to the communication system in Fig. 3.1 and d(n) denote 

the estimated symbol at the output of the receiver filter. As in (2.4), the error between the 

input and output symbols is 

e(n) = d(n)- d(n- J), 
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where 6 is the system delay. The receiver output d(n) can be written as 

where f is a vector 

f = (f(O)*, f(1)*, f(2)*, ... , f(M- 1)*) T' 

containing the M tap coefficients of the FIR filter f(n), and 

r2n = (r(2n), r(2n- 1), r(2n- 2), ... , r(2n- M + 1)) T. 

As shown in (2.7), the Mean Squared Error (MSE) is, 

where 

Pdr = E{r2nd*(n- 6)} 

and 

Note that we assume the knowledge of true channel characteristics here. We shall develop 

our algorithm to calculate the desired optimal equalizer using these true matrices, so that it 

can be used as a benchmark in our simulations. This analysis can be directly applied to the 

block adaptive approach, as will be discussed in Section 3.6. 

3.2 Sidelobe Control 

The degrading effects of ACI might render an otherwise well-designed system prone to errors. 

Therefore, there is a need for the use of specialized techniques, tailor-made to constrain the 
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ACI power to a desired level of attenuation. We aim at exercising explicit control over the 

sidelobe region of the equalizer, so that the designer may change the sidelobe suppression at 

will. 

In order to explicitly control the sidelobe level, we introduce quadratic inequality con-

straints in the sidelobe region of the FIR fractionally-spaced equalizer. These constraints 

guarantee that the sidelobe level is not higher then the prescribed value. We also enforce an 

additional constraint to put an upper bound on the norm of the FIR filter f to bound the 

output noise at the receiver. The problem of designing the M-tap equalizer that minimizes 

the MSE subject to these constraints can be formulated as 

llfll ::; R, 

(3.1a) 

(3.lb) 

(3.1c) 

where E is the prescribed value of the sidelobe level, 'l! sl = { Wstop ::; lwl ::; 1r} denotes the 

sidelobe region on either side of the mainlobe, R is a scalar and s( w) is the vector 

The above problem is convex, as it has a convex quadratic objective function (Rrr is 

positive semi-definite) and convex quadratic inequality constraints. However, the sidelobe 

frequency w is considered to be continuous and hence we have an infinite number of quadratic 

inequality constraints. In order to approximate the above optimization problem in a convex 

and finite manner we can chose to implement a finite subset of the quadratic constraints 

by discretizing the sidelobe region. As will be shown in the following sections, the (convex) 

approximation of the problem in (3.1) can then be formulated as a Second Order Cone 
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Program (SOCP), and hence can be solved efficiently using well-established interior point 

methods; e.g. [4], [8]. 

3.3 Discretization 

As discussed in the previous section, the original optimization problem (3.1) with an infinite 

number of quadratic inequality constraints can be approximated by one with a finite number 

of quadratic inequality constraints. We approximate the semi-infinite sidelobe constraint by 

the corresponding discretized constraints at a set of Nd frequencies in the sidelobe region 

W 8 z, wi E W 8 z, i = 1, 2, ... , Nd. The approximated optimization problem can be written as, 

subject to ls(wi)Hfl :::; E i = 1, 2, ... , Nd, 

llfll :::; R. 

(3.2a) 

(3.2b) 

(3.2c) 

Care should be taken to ensure that the chosen grid of frequencies wi, i = 1, 2, ... , Nd, 

is sufficiently dense in the sidelobe region W 8 z, otherwise some of the sidelobe constraints 

in (3.1) between two consecutive frequency points in the grid may be significantly violated. 

However, a large value of Nd results in a large computational complexity (rv O(NJ·5)) [18] . 

Another approach is to choose a slightly tighter prescribed sidelobe level, say E - E instead 

of E. The feasible set off for problem (3.2) shrinks for a tighter sidelobe level, therefore we 

must be careful to make sure that E/ E is sufficiently small. There is generally a trade-off 

between the number of discretizations Nd and the reduction in sidelobe level E. As Nd is 

increased E can be reduced. In practice, the prescribed sidelobe level is not altered when Nd 

is sufficiently large (Nd ~ 15M) [6]. 
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3.4 Second Order Cone Programming (SOCP) 

Each quadratic inequality constraint in (3.2) can be imposed by modeling it as a Second 

Order Cone (SOC) constraint. An n-dimensional Second Order Cone (also known as a 

quadratic cone or Lorentz cone is defined as [34], 

where II · II denotes the Euclidean norm. We intend to rewrite (3.2) in the dual standard 

form of a convex cone optimization problem, namely 

subject to (3.3) 

where JC is a symmetric cone 1 , y is a variable vector, b, c and A are arbitrary vectors 

and a matrix of appropriate dimensions, all of which can be complex valued. Since all the 

constraints in (3.2) can be represented by Second Order Cones, we now reformulate our 

optimization problem as a Second Order Cone Programming (SOCP) problem. 

3.5 Reformulation using SOCP 

We re-write the quadratic objective function of (3.2) in a more suitable form as 

1 "A symmetric cone is a Cartesian product of a non-negative orthant, quadratic cones and cones of positive 
semidefinite matrices", [4] where each elementary cone corresponds to a constraint of the optimization 
problem. 
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where the (M + 1) x (M + 1) upper triangular matrix L is a Cholesky factor of Q (i.e. 

LHL = Q), where 

Q= [ R 
-pH 

and 

-p] 
(}2 

d 

Therefore, minimizing 11Lf1 ll is equivalent to minimizing the cost function in (3.2). We 

further write L = [L1 , L2], where L1 is an (M + 1) x M matrix and L2 is an (M + 1) x 1 

vector; hence II Lf1 II can be written as IIL1f + L2 ll· We now introduce a non-negative scalar 

T and a new constraint IIL1f + L2 ll ::; T, so that the original problem in (3.2) becomes, 

min T 
T,f 

subject to IIL1f + Lzll ::; T 

ls(wi)Hfl ::; E: i = 1, 2, ... , Nd 

llfll ::; R. 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

Now we will reformulate (3.4) as the SOCP program in (3.3). We define an (M + 1) x 1 

dimensional variable vector y, such that 

where y1 = T and y 2 =f. We define an (M + 1) x 1 vector b, 

h = [-1 o ... o]r 
' ' ' ' 

and hence 
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Therefore, the problem in (3.4) becomes 

max bTy (3.5a) 
y 

subject to IILlf + L211 ::; Y1 (3.5b) 

ls(wi)HY21 ::; c i=1,2, ... ,Nd (3.5c) 

IIY211 ::; R. (3.5d) 

Now we formulate the constraints in (3.5) as second order cone constraints. The constraint 

(3.6) 

(3.7) 

fori= 1, ... , Nd, and IIY2II ::; R can be written as 

(;,) (:) (: (3.8) 
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Now we define a vector c and a matrix AT so that 

cl AT 
1 

c2 AT 2 

c := AT:= (3.9) 

CNd+l A:;,;.d+l 

CNd+2 A:;,;.d+2 

Hence, from (3.9), the optimization problem in (3.5) can be expressed as 

subject to c-ATyEJC, (3.10) 

where JC is the symmetric cone corresponding to the constraints, i.e., JC is a Cartesian product 

of the elementary cones, 

JC := socM+2 x soc2 x ... x soc2 xsocM+l. 

This indicates that the first ( M + 2) terms of the vector c-AT y lie in the ( M + 2) dimensional 

SOC, next Na pairs each lie in the 2 dimensional (complex) SOC, and the last ( M + 1) terms 

belong to the (M + 1) dimensional Second Order Cone. Thus, we have reformulated the 

original optimization problem in (3.2) into a Second Order Cone Program which can be 

efficiently solved by using interior point methods e.g. [8]. A convenient implementation of 

these methods is the SeDuMi tool [4]. If the convex optimization problem is feasible, the 

optimal solution for y yields the optimal equalizer for the system. 
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3.6 Block Adaptive Equalizer with Explicit Sidelobe 

Control 

The analysis in the preceding sections of this chapter assumed prior knowledge of the true 

channel characteristics. However, this is seldom the case. Recall from Section 2.5.1, that 

in a scenario where the channel characteristics remain unchanged during a transmission, 

but may be different for two separate transmissions, a block adaptive approach to estimate 

the optimal (FIR) equalizer can be adopted. As in the unconstrained case, for the present 

problem of constrained equalization, the auto-correlation matrix Rrr of the equalizer inputs 

and cross-correlation vector Par(n) can be estimated using a finite length training sequence. 

If N, N ~ M, training symbols are transmitted for a given channel, the estimates of the 

channel auto-correlation matrix, or the sample auto-correlation matrix for a length M input 

vector r2n is given by, 

and the sample cross-correlation vector becomes 

1 
NH-1 

Pdr = N L r2nd*(n- 15). 
i=8 

Hence, the problem (3.2) becomes 

//f// :S R, 

(3.11a) 

(3.11b) 

(3.11c) 

which can be implemented using the same analysis provided in Section 3.5, to yield an 

estimate of the optimal filter. 
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Chapter 4 

Interior Point Methods for Convex 

Inequality Constrained Optimization 

Problems 

4.1 Introduction 

Interior Point Methods have recently emerged as a powerful tool for solving a host of con­

vex optimization problems, including those with multiple convex quadratic inequality con­

straints. In this chapter we discuss the use of interior point methods for solving convex 

optimization problems with multiple inequality constraints and analyse some of the preva­

lent approaches. The underlying idea behind all these approaches is that a solution to the 

original optimization problem can be approached by solving a sequence of unconstrained 

problems which are easier to solve. In particular, we will discuss the "barrier method" ap­

proach and the concept of the central path. An alternate approach that uses the concept of 

"analytic centers" is also presented. The application of both these approaches to solve the 

dynamic problem of performing symbol-by-symbol constrained adaptive equalization with 

quadratic inequalities will be dealt with in the next chapter. 
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4.2 Standard Barrier Method 

The standard form of the barrier method is discussed in detail in [8], on which the following 

discussion based. Consider the following generic convex optimization problem with inequality 

constraints, 

mm fo(x) 

subject to fi(x) :::; 0 i = 1, ... , m 

(4.1a) 

(4.1b) 

where fo, ... , fm :en ---7 Rare convex and twice continuously differentiable. To simplify the 

analysis, we will assume that there exists a strictly feasible point x 0 ; i.e. there exists an x 0 

such that 

fi(xo) < 0 i = 1, ... ,m. 

The set of all strictly feasible points will be represented by the set 

<I>= {xlfi(x) < O,i = 1, ... ,m}. 

A "barrier function" for the set <I> is a (smooth convex) function that tends to infinity at the 

boundary of the set. A good choice of a barrier function for (4.1) is the logarithmic barrier 

function, 
m 

¢(x) = - 2:)og(-fi(x)). (4.2) 
i=l 

Not only is its domain the set <I> defined above, the function ¢(x) also grows without bound 

as x approaches the boundary of this set. 

The logarithmic barrier function can be used to approximate the original optimization 

problem (4.1) by the unconstrained optimization problem 

min tfo(x) + ¢(x), (4.3) 
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where t is a non-negative parameter that gives a measure of the accuracy of the approxima­

tion. As the parameter t grows, the approximation becomes more accurate. The function 

¢(x) is convex and differentiable, hence ( 4.3) is also a smooth convex optimization problem. 

Note that we have "lifted" the non-linear constraints of the original optimization problem in 

(4.1) into the objective in (4.3) using the logarithmic barrier function. The standard barrier 

methods approach a solution to original problem in ( 4.1) by solving a sequence of uncon­

strained problems of the form in ( 4.3). For a given value oft, the unconstrained optimization 

problem in ( 4.3) has a unique solution that can be found using standard methods for solving 

convex unconstrained problems, such as Newton's Method. While solving this sequence of 

unconstrained minimization problems, the solution to the previous problem is taken as the 

starting point for the Newton's Procedure in the present problem. The rate of update of the 

parameter t from one unconstrained problem to the next determines the aggressiveness of 

the barrier method. 

We call the set of solutions of ( 4.3) for non-negative values oft the central path, and we 

let x*(t) denote the central point on that path corresponding to the given value oft. The 

point x*(O) is the analytic center of the feasible set q> (see Section 4.3) and the goal of a 

barrier method is to successively increase t and to solve ( 4.3) for the next central point so 

that we follow the central path to an optimal solution. Each central point x*(t) is a strictly 

feasible point, (i.e., fi(x*(t)) < 0, i = 1, ... , m) and since it is the minimizer of (4.3), we have 

t'Vfo(x*(t)) + \lcp(x*(t)) = 0. (4.4) 

From the definition of ¢(x) in (4.2), we have that 

Vql(x'(t)) = ~ j,(~•~t)) V' /;(x'(t)). (4.5) 
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Using (4.5) in (4.4) we get the relation, 

'i7/o(x*(t)) + t, tf;(:.:(t)) 'i7/;(x*(t)) ~ 0. (4.6) 

Defining, 

(4.7) 

where fort> 0, the fact that fi(x*(t)) < 0, i = 1, ... , m, implies that 

A.:(t) > 0 i = 1, ... , m. (4.8) 

Using ( 4. 7) in ( 4.6) we have that 

m 

t'\1 fo(x*(t)) + L A.:(t)'\1 fi(x*(t)) = 0. (4.9) 
i=l 

From ( 4. 9) we observe that the central point x* ( t) minimizes the Lagrangian of the primal 

problem (4.1) 
m 

L(x, .X) = fo(x) + L A.i(t)fi(x). 
i=l 

From (4.8) we know also that A.7(t) > 0. Therefore we may conclude that .X*(t) (where the 

ith element of .X*(t) is A.7(t)) is a dual feasible point. We define the dual function g(.X*(t)) 

to be the minimum value of the Lagrangian over x. That is 

m 

g(.X*(t)) = fo(x*(t)) + L A.:(t)fi(x*(t)) (4.10) 
i=l 

= fo(x*(t))- mjt. 

Hence an important property of the central path is that for each central point there exists 

a dual function, and hence there exists a lower bound on the optimal value p* [8], where p* 

denotes the optimal value of the objective of the primal problem given in (4.1). From (4.10) 
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we see that for a given value oft, the duality gap between the primal and dual solutions is 

mjt. Since the dual function g(.X) yields a lower bound on the optimal value p* of the primal 

problem (4.1), we can say that, 

f 0 (x*(t))- p*:::; mjt, 

i.e., "x*(t) is no more than mjt suboptimal" [8]. This supports the fact the parameter t is 

gives us a measure of the accuracy of the approximation in problem in ( 4.1). When x is 

strictly feasible, we see that as t ---* oo, the duality gap becomes vanishingly small and the 

central path converges to an optimal solution of the original optimization problem in ( 4.1). 

From the above discussion, we know that for a given value of t the barrier method 

provides us with an mjt suboptimal solution, and that a certificate of accuracy (a lower 

bound on p*) is provided by the dual feasible point .X*(t). The barrier method involves 

the solution of a sequence of unconstrained minimization problems with increasing values 

of t, which can be solved using a popular technique like the Newton procedure, with the 

solution of the previous problem as a starting point for the present problem, to arrive at an 

E suboptimal solution of the original problem in ( 4.1). This approach is called the Sequential 

Unconstrained Minimization Technique (SUMT) [8]. 

In the algorithm described in Table 4.1, each centering step corresponds to an outer 

iteration in which a new point on the central path is calculated using the previously calculated 

point on the central path as the starting point. Each centering step may require several 

Newton steps, or inner iterations to arrive at the optimal solution for a given value oft. The 

algorithm is designed to follow the central path to approach an optimal solution of problem 

in (4.1) as t---* oo. Hence it is also called a path following method. 

The rate at which the parameter t increases defines the behavior of the algorithm. This 

is so because the objective function in ( 4.3) is dependent on t, as the parameter t decides 

the relative importance of f 0 (x) and the barrier term ¢>(x). If t is updated conservatively, 

45 



M.A.Sc: Ashish Mittal McMaster - Electrical and Computer Engineering 

Table 4.1: Sequential Unconstrained Minimization Technique (SUMT) 

•Step 1: Initialization. Let m, x 0 , t 0 > 0, J.L > 1, E be given. Set 

x : = x 0 , t := t0 , 

where x 0 E <I> is a strictly feasible point. One possible value for x 0 

is x*(O). 

•Step 2: Centering Step. The new central point x*(t) is obtained by 
solving the unconstrained problem 

min tj0 (x) + ¢(x) 

with x as the starting point. 

•Step 3: Updating. Set 

x := x*(t), t := J.Lt. 

•Stopping Criterion. QUIT if mjt < E, else RETURN to Step2. 
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Le., with each outer iteration t increases only by a small value, then the previous iterate 

is a very good starting point for the Newton procedure, and a small number of Newton 

steps (inner iterations) would be sufficient for precise centering, i.e., calculation of the next 

iterate. In contrast if t is increased aggressively, then the problem is changing very fast, 

and the previous iterate might not be a very good starting point, thus requiring more inner 

iterations. 

The barrier method described above is a standard approach for solving inequality con­

strained convex optimization problems. In the next section we discuss an alternate approach 

for efficiently solving the same problem by using the concept of analytic centers. 

4.3 Method of Analytic Centers 

The method of analytic centers is an alternate approach to the barrier method described in 

the previous section, based on another parametrization of the central path. In this approach 

the driving force of the algorithm is to find a "central" feasible point in a set defined by 

convex inequalities. The idea is to include the original objective function f 0 (x) into the 

constraints and define a convex feasibility region Dn. One measure of the "center" of this 

convex feasibility region is called the analytic center of nn. 
Recall that the original optimization problem in ( 4.1) was 

mm fo(x) 

subject to fi(x) ~ 0 i = 1, ... , m 

(4.11a) 

(4.11b) 

where f 0 , ... , fm :en ---*Rare convex and twice continuously differentiable. To formulate this 

problem as a sequence of convex feasibility problems, we define a convex feasibility region, 

[2 = {x E Cnlfo(x) ~ T, fi(x) ~ 0, · .. , fm(x) ~ 0}, (4.12) 
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where Tis a scalar, which may be determined adaptively, or could remain constant depending 

on the approach. The inequality constrained convex optimization problem in ( 4.11) can be 

modeled as the problem of finding a feasible point which satisfys all the convex quadratic 

inequalities in (4.12). Now we define the following potential function on 0, 

m 

1/J(x) = -log(T- fo(x))- p L log(-fi(x)), (4.13) 
i=l 

where pis a non-negative scalar. The function 1/J(x) is a logarithmic barrier function, and is 

convex and differentiable. We assume that the minimizer of 1/J(x) over 0 exits and is unique. 

A point in the deep interior of 0 will have a low potential, whereas towards the boundary 

the potential tends towards infinity. The unique minimizer of this potential function is called 

the analytic center of 0, and hence the name of the algorithm. It is important to note here 

that the analytic center is different from the geometric center of 0. Whereas the geometric 

center depends only on the geometric shape of 0, the analytic center depends on the algebraic 

representation of 0 as well. A desirable property of the analytic center is that it is reasonably 

easy to compute. In contrast, the geometric center can be difficult to compute. We discuss 

two approaches to find the optimal solution of the original optimization problem in ( 4.11) 

using the concept of analytic centers. The idea is to solve a sequence of convex feasibility 

problems with either T or p as the parameter that drives the algorithm towards an optimal 

solution of problem in ( 4.11). 

4.3.1 Method of Analytic Centers-1 (MAC1) 

In this approach we let the parameter T drive the algorithm to the optimal solution, i.e., T 

is made adaptive, whereas the parameter p = 1. Therefore, the potential function defined 

on the convex feasibility region 0 is, 

m 

1/J(x) = -log(T- fo(x))- L log(-fi(x)). 
i=l 
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The unique minimizer of this potential function is called the analytic center of n. The 

set of analytic centers of each of these convex feasibility problems for different values of T 

form the central path. By solving a sequence of convex feasibility problems with decreasing 

values ofT the algorithm follows the central path from a feasible starting point to an optimal 

solution of problem in ( 4.11). We use the previous analytic center as a starting point for 

the Newton procedure to arrive at the analytic center of the present problem. This is called 

the recentering step or an outer iteration, and the Newton steps needed to arrive at the new 

analytic center are called the inner iterations. The mathematical analysis of this approach 

is subject to the definition ofT which in turn is dependent on the nature of the problem at 

hand. 

An interesting analogy between the Standard Barrier Method described in the previous 

section, and MACl exists. Both are used to solve the same optimization problem given in 

(4.11). Let x*(t) denote a central point for the Standard Barrier Method for a given value 

oft (t > 0) which minimizes (4.3), and let z*(T) denote the analytic center of n forT> p*, 

where p* is the optimal value of the problem (4.9). "For each T > p*, there is at > 0 for 

which x*(t) = z*(T), and conversely, for each t > 0, there is aT> p* for which z*(T) = x*(t)" 

[8]. Hence, we can deduce that the central path formed by the analytic centers in MACl is 

another parametrization of the central path formed by the central points in the Standard 

Barrier Method. 

The success of this scheme is dependent on an appropriate definition ofT for each problem. 

Instead of having to redefine T for each new problem, we can use a different approach based 

on the method of analytic centers. This approach is discussed in the next section. 

4.3.2 Method of Analytic Centers-2 (MAC2) 

In the second approach, we let T remain a constant, and decrement p with each iteration. 

The unique minimum of 1/J(x) over n is called the p-analytic center of D. The function 1/J(x) 

is governed by the relative importance of the objective function term and the inequality 
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constraint terms. For each value of p a convex feasibility problem is solved, and the solution 

(called a p-analytic center) is used as the starting point for the Newton procedure in the 

next problem. As p---+ 0, we approach an optimal solution via a central path formed by all 

the p-analytic centers calculated for decreasing values of p. Let x*(p) be a p-analytic center. 

Therefore, it satisfys \l'lj;(x*(p)) = 0. Hence we have that 

(4.14) 

Now we define .\i(P) such that, 

- * -p( T- fo(X.*(p)) 
\ (p) = fz(x*(p)) (4.15) 

Since p > 0 and since the p-analytic center x*(p) belongs to the convex feasibility region 0 

in (4.12), we have that 

.\;(p) > 0 i = 1, ... , m. 

Using (4.15) in (4.14), we have that 

m 

'lfo(x*(p)) + 2:.\;(p)\lfi(x*(p)) = o. (4.16) 
i=l 

However, from (4.16) we observe that the p-analytic center x*(p) would minimize the La­

grangian for the primal problem in (4.11), 

m 

L(x, ..\) = fo(x) + L >..di(x), 
i=l 
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for A= 5-.*(p), i.e., 5..*(p) is a dual feasible point. We define a dual function g(5..*(t)) to be 

the minimum value of the Lagrangian over x. That is, 

m 

g(5..*(p)) = fo(x*(p)) + L 5..7(p)fi(x*(p)) (4.17a) 
i=l 

= fo(x*(p))- mp(T- fo(x*(p)), (4.17b) 

where Tis a constant, and f0(x*(p)), the value of original objective function at the p-analytic 

center is measurable for each p. For simplicity, we define, 

~p,T = p(T- fo(x*(p)). (4.18) 

The duality gap between the primal and dual solution is m~p,n where ~p,T is a measurable 

quantity, and m is given. Also, since the dual function g(..X) is such that, 

g(5..) :::; p* 

we have from (4.15), 

fo(x*(p))- p* :S m~p,T, (4.19) 

i.e., x*(p) is no more than m~p,T suboptimal. Therefore, we see that the accuracy of the 

solution via this approach using the method of analytic centers depends on the choice of 

constant T. 

As the non-negative parameter p is decreased with each iteration, the duality gap also 

reduces, and we approach an optimal solution of problem in ( 4.11) as p ~ 0, irrespective 

of the value of the constant T. Therefore, we see that it is possible to solve an inequality 

constrained convex optimization problem by solving a sequence of convex feasibility prob-

lems. The Newton procedure is used to arrive at the analytic center for each new convex 

feasibility problem using the analytic center for the previous problem as the starting point. 
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Table 4.2: Method of Analytic Centers-2 (MAC2) 

•Step 1: Initialization. Let m, Xo En, Po > 0, j3 < 1, E and T be given. 
Set 

x := xo, p := Po, 

•Step 2: Recentering. Solve 

m 

mm -log(r- fo(x))- p L log(- fi(x)) 
i=l 

with x as the starting point. 

•Step 3: Updating. Set 

x := x*(p), 

p := j3p, 

flp,r = p( T- fo(x*(p)) 

eStopping Criterion. QUIT if m!:lp,r < E, else RETURN to Step2. 

The accuracy of the analytic center with respect to the original optimization problem in 

(4.11) is given by mflp,r as proved earlier in (4.19). Hence, an algorithm which provides us 

with a guaranteed specified accuracy E for a constant T and decreasing p, is given in Table 

4.2. Each recentering step is an outer iteration, and may require several inner iterations 

(Newton steps), starting from the analytic center of the previous convex feasibility problem. 

The constant j3 (0 < j3 < 1) is a measure of the aggressiveness of the algorithm, a small 

value indicating a more aggressive approach towards the optimal solution of the inequality 

constrained convex optimization problem in ( 4.11). As stressed earlier, a wise choice of the 

constant T would improve the performance of the algorithm. However, eventual convergence 

of the algorithm to an optimal solution as p-----> 0 is independent ofT. 

In the next chapter, we develop practically implementable algorithms based on the Stan-
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dard Barrier Method, and Method of Analytic Centers for performing, quadratic inequality 

constrained, symbol-by-symbol adaptive, fractionally-spaced equalization. 
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Chapter 5 

Adaptive equalization with explicit 

sidelobe control using interior point 

methods 

5.1 Introduction 

The problem of performing adaptive equalization with strict sidelobe control control was 

described in the Chapter 3. This problem was reformulated as a Second Order Cone Pro­

gramming (SOCP) problem, which can be solved using standard interior point methods, such 

as that in the SeDuMi tool [4]. The method however had its limitations because it could 

only perform block adaptive equalization. In this chapter, we develop algorithms based on 

interior point methods for performing fractionally-spaced symbol-by-symbol adaptive equal­

ization with explicit sidelobe control. This is important because it enables us to perform 

symbol by symbol adaptive equalization while maintaining strict control on the sidelobe re­

gion of the equalizer. Therefore it renders itself useful in applications where the filter needs 

to be updated adaptively with each new incoming symbol, for example in the case of a time 

varying channel with ACI in the sidelobe region. The algorithms developed in this chapter 
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are practically implementable and are based on the theory presented in the previous chapter. 

We write the problem of minimizing the mean squared error with explicit sidelobe control 

as a convex optimization problem with multiple inequality constraints. We discuss the 

application of the Sequential Unconstrained Minimization Technique (SUMT) and Method of 

analytic centers (MAC) approaches to solve the problem in a symbol-by-symbol fashion. The 

changing channel conditions and practical considerations like computational cost encourage 

us to make adjustments and approximations to the algorithm, which will be discussed later 

in the chapter. 

In this chapter, we also provide a discussion of the Interior Point Least Squares (IPLS) 

algorithm proposed by Afkhamie et al. [10]. When applied to unconstrained problems, 

the IPLS algorithm enjoys a better transient performance than the RLS algorithm [10]. 

This is due to the implicit adaptive diagonal loading in the IPLS algorithm which provides 

robustness to variations in the initialization of the algorithm. IPLS has a slightly higher 

computational complexity than RLS, namely O(M2·2 ) operations per symbol, as compared 

to O(M2 ). Afkhamie et al. briefly discussed the use of IPLS algorithms in solving adap­

tive filtering problems with linear equality constraints [11]. They reported a computational 

complexity of O(M3) operations per symbol. We analyse the applicability of this approach 

to inequality constrained optimization problems and demonstrate that the structure of the 

IPLS algorithm is not directly applicable to inequality constrained optimization scenarios. 

The inability of the IPLS algorithm to directly solve inequality constrained convex opti­

mization problems is the primary motivation for this thesis. We provide algorithms (IPM2 

and SBM) in this chapter (and their detailed mathematical analysis) which are successfully 

applied to such problems. 

The concept of central path and related parameters is of fundamental importance in 

the success of the iterative interior point algorithms. We have provided discussion and 

mathematical analysis on these concepts in the last chapter. In the next section we apply 

the Method of Analytic centers to solve our constrained adaptive equalization problem. In 
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the following section we solve the same problem using an approximation of the standard 

barrier method. Lastly we discuss the computational complexity of these algorithms, and 

its comparison with standard RLS algorithms. 

5.2 Analytic Center based estimators 

The Method of Analytic Centers has been discussed in detail in the previous chapter. A 

convex feasibility region is defined which encompasses all the inequality constraints as well 

as the objective function. Then we take multiple Newton steps from a starting point to 

arrive at a unique minimizer of a potential function defined on this convex feasibility region. 

This unique minimizer is called the analytic center of the convex feasibility region, and 

is used as the starting point for the next convex feasibility problem. Each centering step 

requires one or more Newton steps to arrive at the optimal solution. In order to closely 

follow the central path, one must perform several Newton steps (inner iterations) so that 

one obtains a sufficiently accurate minimizer of the problem. However, calculating a good 

minimizer instead of an accurate minimizer can substantially reduce the computational cost. 

Therefore, in a practical adaptive filtering scenario, a reasonable approach is to aim for a 

good minimizer while taking only one Newton step. Therefore, in all future discussions, it 

will be assumed that only one Newton step is taken per outer iteration. 

As discussed in the previous chapter, there are two approaches for using the Method of 

Analytic Centers for solving inequality constrained optimization problems, namely MAC1 

and MAC2. Afkhamie et al. [11] proposed two versions of the IPLS algorithm, namely IPM1 

and IPM2, to solve Adaptive Filtering problems with linear equality constraints. In the light 

of the Method of Analytic centers discussed in the previous chapter, we modify IPM1 and 

IPM2 to accommodate quadratic inequality constraints as well. The first approach is called 

the Interior Point Method -1 (IPM1). It uses a parameter associated with the original 

objective function to follow the desired central path whereas the second approach, called 
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Interior Point Method-2 (IPM2), uses a parameter with the constraint functions to drive 

the algorithm towards an optimal solution. Both approaches are described in detail in the 

following sections and their limitations (if any) are discussed as well. 

5.2.1 Interior Point Method-1 (IPM1) 

In an attempt to perform symbol-by-symbol adaptive equalization with multiple quadratic 

constraints, we introduce the IPMl approach, based on the principles of the MACl approach 

discussed in the previous chapter. 

The quadratically constrained optimization problem described in Chapter 3 can be re-

written as 

where 

mm ln(f) 
f 

(5.1a) 

(5.1b) 

(5.1c) 

is the Mean Squared Error (MSE) between the input and output in the communication 

model described in the Chapter 3, and 

are the length M sample cross-correlation and M x M sample auto-correlation matrix, 
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respectively. The M tap equalizer is denoted by f, and 

r2n = (r(2n), r(2n- 1), r(2n- 2), ... , r(2n- M + 1)) T 

with r( n) being the input to the equalizer f. The parameter o is the system delay, and ( *) 

denotes complex conjugation. The approach of IPM1 is to view this problem as a convex 

feasibility problem. To do so, we define a convex feasibility region, 

(5.2) 

where Tn 2:: 0 is a scalar and R > 0 is a constant. The threshold Tn is determined adaptively 

and is, in fact, the driving force behind the IPLS algorithm. The quadratically constrained 

adaptive equalization problem can be modeled as the problem of finding a feasible point 

which satisfys all the convex quadratic inequalities in (5.2). For convenience, let us define 

and 

Now we define the following potential function on On, 

1 
Nd 

1/Jn(f) = -log(sn(f)) -log(tn(f))- N L log(ri(f)). 
d i=l 

(5.3) 

The sidelobe constraint term is divided by Nd in order to take into account the average effect 

of the sidelobe constraints. The function 1/Jn (f) is a logarithmic barrier function. It is strictly 

convex and has a unique minimizer over On. A point in the deep interior of On will have 
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a low potential, whereas towards the boundary the potential tends towards infinity. The 

unique minimizer of this potential function is the analytic center of On. 

Iff~ is the unique minimizer of 7/Jn(f) for a given Tn and R, then setting V'7/Jn(f~) = 0, 

we obtain the expression 

(5.4) 

Now using 

in (5.4) we have that 

f~ = ani+ Sn ~ t sisfl + Rrr(n) Pdr(n), 
( 

N )-1 
d i=l /z 

(5.5) 

where an= t· The term ani can be viewed as a regularization term for the matrix Rrr(n) 

(which maybe poorly conditioned). Recall that sn(f) = Tn - Jn(f). Thus, this analysis 

confirms that Tn is the parameter that drives algorithm towards the optimal solution. In order 

to reach a good minimizer we would therefore expect sn --t 0 close to the optimal solution. 

For an efficient algorithm, we need to decide how to update Tn effectively. Depending on 

how the parameter Tn is varied, several versions of IPMl are possible. 

One candidate is the IPLS algorithm, which is also an approximation of an analytic center 

based estimator. It would be interesting to find out if this algorithm, originally designed 

for unconstrained problems, would perform in inequality constrained scenarios. In their 

unconstrained IPLS algorithm, Afkhamie et. al. [10] suggest that Tn be updated as 

(5.6) 

where K is a constant. At first glance this looks like a good idea. Indeed, this formulation 

59 



M.A.Sc: Ashish Mittal McMaster - Electrical and Computer Engineering 

works well for the unconstrained least squares problem where \7 ln(f) ---+ 0 towards the 

optimal solution. While this might be a candidate for the unconstrained case, in the presence 

of multiple quadratic sidelobe constraints \7 ln(f) does not become vanishingly small at the 

optimal solution, due to the sidelobe constraints. Hence, (5.6) is not a very good assignment 

for Tn in the constrained case. If this method is used, then the algorithm would be limited by 

unacceptable residual sub-optimality in the steady state. Since we do not expect the IPMl 

algorithm with the adaptation of Tn in (5.6) to deliver a good sub-optimal solution, we will 

not investigate the IPMl algorithm any further in this chapter. The interested reader can 

find a description of the IPLS algorithm in Appendix-A. We now move on to an extension 

of the IPM2 algorithm, which is based on the MAC2 approach. IPM2 does provide us with 

a good sub-optimal solution to the quadratic inequality constrained least squares problem 

in the steady state. 

5.2.2 Interior Point Method-2 (IPM2) 

This is the second approach for solving the quadratic inequality constrained least squares 

problem using the Method of Analytic Centers. In this method we aim at solving a different 

sequence of convex feasibility problems to arrive at the optimal solution of problem in (5.1). 

The difference lies in the definition of the potential function 1Pn (f) for the convex feasibility 

region On. We recall the convex feasibility region 

(5.7) 

The analytic center depends on the algebraic representation of the potential function 1Pn(f) 

of On. As in MAC2, we write the potential function as 

( 
1 Nd ) 

1Pn(f) = -log(sn(f))- Pn log(tn(f)) + Nd ~log(/i(f)) , (5.8) 
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where 

and 

where T is a constant. The parameter p drives the algorithm towards the optimal solution, 

and is varied as Pn = f3Pn-1, where 0 < f3 < 1. Therefore, 'l,bn(f) is a weighted logarithmic 

barrier function of On. The function 'l,bn is convex over On and has a unique minimum 

which we call the p-analytic center of On. Again, as emphasized earlier, the main idea is 

to stay close to the central path and make sufficient progress with each iteration towards 

the desired optimal solution. The function 'l,bn(f) is governed by the relative importance of 

the objective function term and the quadratic inequality constraint terms, which in turn, is 

governed by the parameter p. Hence, f3 can thought of as a measure of the "aggressiveness" 

of the algorithm. As p ----+ 0, the algorithm approaches the optimal solution. This is verified 

by the following mathematical analysis: Iff~ is the unique minimizer of 'l,bn(f) for a given f3 

and R, then setting V''l,bn(f~) = 0, we have that 

(5.9) 

Now using 

in (5.9) we have that 

(5.10) 
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where an = Pn ;,:-. Here, it is the ani term that provides sufficient regularization for the 

matrix Rrr(n) in the initial stage, when it is poorly conditioned. Since Pn ---* 0, as n grows, 

the effect ofregularization is gradually eliminated, as desired. Note, however, that as Pn ---t 0, 

some of the sidelobe terms 'Yi(f~) ---* 0. That means that even though the coefficient of the 

first matrix under the inverse in (5.10) becomes vanishingly small at the optimal solution, 

the second matrix, which carries the effect of the sidelobe constraints, remains non-trivial. 

Therefore, \7 Jn -=/- 0 at the optimal solution for MMSE equalizer with quadratic inequality 

constraints. This is the effect of the sidelobe constraints on the equalizer. 

As discussed earlier, in order to reduce the computational cost it is desirable to take only 

one Newton step per outer iteration. As long as we stay close to the central path by taking 

only one Newton step, we can still hope to arrive at a good sub-optimal solution. Hence an 

approximate analytic center of On obtained using only one inner iteration starting from an 

approximation to f~_ 1 (previous iterate) might be sufficient, as long as f3 is not too aggressive 

(i.e., f3 is not too small). 

The Newton iteration is given as 

(5.11) 

where fn represents the approximate analytic center of On. The gradient and Hessian of 

'1/Jn (f) are given by, 

(5.12) 

and 
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respectively. The gradient and Hessian of Jn(f) are given by 

\7 Jn(f) = -2Pdr(n) + 2Rrr(n)f 

and \72 Jn(f) = 2Rrr(n), 

(5.14a) 

(5.14b) 

respectively. Thus by using an approximate analytic center instead of an exact minimizer 

we obtain an implementable analytic center based estimator for a quadratic inequality con-

strained convex optimization problem, where the approximate analytic centers are updated 

by a single Newton iteration. The details of the algorithm are summarized in Table 5.1. For 

the first Newton step, we use f = 0, as the starting point, which is the analytic center of 

the constraint set. As discussed in this section, we have a practically implementable interior 

point method based algorithm that is useful for efficiently solving quadratically constrained 

adaptive filtering problems. It is based on the Method of Analytic Centers (MAC2), and 

works well if appropriate values of the parameters are chosen. In the next section we anal­

yse the problem of performing adaptive equalization with strict sidelobe control using the 

standard barrier method. 

5.3 Standard Barrier Method based estimator 

The standard barrier method can also be employed to efficiently perform quadratically con-

strained least squares minimization. A general idea of the standard barrier method was 

given in the previous chapter. Now we intend to use it to perform symbol-by-symbol adap-

tive equalization with strict sidelobe control. A sequence of unconstrained minimization 

problems are solved to arrive at the optimal solution of the original problem defined in (5.2). 

The original optimization problem in (5.1) can be approximated as 

min 7jl(f) = Jn(f) +_!_¢(f) 
f tn 

(5.17) 
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Table 5.1: IPM2 

• Step 1: Initialization. Let E, Nd, R, j3 be given. Set 

fa= 0, Pdr(O) = 0, Rrr(O) = 0, \7 Jo(O) = 0. 

• Step 2: Updating. For n > 1, update r 2n and d(n- 5), and then 
update 

Update 

\7 Jn(fn-1) = -2f>dr(n) + 2Rrr(n)fn-1 

tn(fn-1) = R 2 
- Jlfn-d 2 

using (5.12) and (5.13), and 

Pn = f3Pn-1 

(5.15a) 

(5.15b) 

(5.16) 

• Step 3: Recentering. The new approximate center of On is obtained 
by taking one Newton step with fn_ 1 as the starting point, 

Set n := n + 1, and return to Step 2. 
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where 
1 

Nd 

¢(f)= log(u(f)) + N Llog(ri(f)) 
d i=l 

(5.18) 

where ¢ is the logarithmic barrier for the original problem and 

and 

are defined for convenience. The log barrier function ¢(f) is convex and differentiable over 

the domain of points that satisfy the inequality constraints in (5.1). The parameter tn > 0 

gives a measure of the accuracy of the approximation of the original optimization problem to 

an unconstrained modified objective function with a logarithmic barrier, the approximation 

becomes more accurate as tn increases. The function 'lj!n(f) is governed by the relative 

importance of the objective function and the log barrier, which is dependent on the parameter 

tn. The changes in the parameter tn define the aggressiveness of the algorithm, and drive 

the algorithm to an optimal solution as tn ---+ oo. We verify this by a similar mathematical 

analysis to that provided in the previous section. Let f~ denote the minimizer of the problem 

in (5.17) at the nth iteration. Therefore, we would expect Y''lj!n,t(f~) = 0, i.e., 

(5.19) 

Now using (5.14b) in the above equation, we have that 

(5.20) 

where an = -t 1 
. Here, it is the ani term that again provides the regularization required by 

nUn 

the auto-correlation matrix Rrr in the initial phase. As t ---+ oo close to the optimal solution, 
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the effect of the regularization term is gradually eliminated. Note that some of the sidelobe 

terms /i(f~) ----+ 0 as tn ----+ oo. Therefore, though the coefficient of the first matrix under 

the inverse in (5.20) becomes vanishingly small at the optimal solution, the second matrix 

which carries the effect of the sidelobe constraints remains non-trivial as tn ----+ oo. Therefore, 

the optimal solution is not equal to the Wiener solution, and in particular \7 In =1- 0 at the 

optimal solution. 

In the algorithm, we choose an initial starting point that is strictly feasible, and proceed 

using the Newton method, trying to stay as close to the central path as possible. We solve a 

sequence of unconstrained minimization problems, using the most recent approximation of 

a central point as the starting point for the next unconstrained minimization problem. 

Recall that the Newton iteration is given as, 

(5.21) 

where fn represents the approximate central point of the unconstrained problem at the nth 

iteration. The gradient and Hessian of 1/Jn (f) are given as, 

(5.22) 

and 

Therefore, we have an implementable interior point based estimater obtained by approxi-

mating the standard barrier method. This algorithm, in which a single Newton step is used 

to arrive at the approximate central point of the next unconstrained problem, is similar to 

IPM2 algorithm in implementation. It is given in Table 5.2. 

The update of tn depends on the parameter J1 2 1, and it is used to control the aggres-
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Table 5.2: SBM 

•Step 1: Initialization. Let E, Nd, R, J1 > 1 be given. Set 

fo = 0, Pdr(O) = 0, Rrr(O) = 0, \7 Jo(O) = 0. 

•Step 2: Updating. For n > 1, update r 2n and d(n - 15), and then 
update 

Update 

\7 ln(fn-1) = -2f>dr(n) + 2Rrr(n)fn-1 

Un(fn_I) = R2
- llfn-111 2 

using (5.22) and (5.23) and 

(5.24a) 

(5.24b) 

(5.25) 

•Step 3: Recentering. The new approximate central point is obtained 
by taking one exact Newton step with fn_ 1 as the starting point, 

Set n := n + 1, and return to Step 2. 
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siveness of the algorithm. A small value of fL would mean that the algorithm progresses 

conservatively towards the optimal solution, whereas a large value would make it more ag­

gressive. 

Thus we have two implementable interior point based algorithms that efficiently solve the 

symbol-by-symbol adaptive equalization with strict sidelobe control problem to a good sub­

optimal solution. Both the algorithms use a Newton step in the update of the weight vector, 

which involves the calculation of the inverse of the Hessian \727Pn(fn_1). This requires O(M3
) 

arithmetic operations per iteration. Although this is higher then the per iteration complexity 

of O(M2
) offered by the RLS algorithm, we are able to efficiently impose quadratic inequality 

constraints into adaptive filtering problems. 
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Chapter 6 

MMSE equalization with explicit 

sidelobe control: Simulation Results 

6.1 Introduction 

In this chapter, we implement the Minimum Mean Squared Error (MMSE) linear equalizers 

with explicit sidelobe control presented in the preceding chapters. We make some standard 

approximations and assumptions in our implementation, and provide simulation results for 

a host of different scenarios. We perform both block adaptive, as well as symbol-by-symbol 

adaptive equalization. In both cases we employ discretized frequency constraints, as pro­

posed in the previous chapters. We discuss the merits and limitations of each approach, 

and provide quantitative comparisons. Overall we demonstrate the utility of interior point 

based algorithms in solving the problem of adaptive equalization with multiple quadratic 

inequality constraints. Finally, we compare our results with the standard RLS algorithm 

with explicit diagonal loading. This is a good choice for comparison because of the implicit 

sidelobe suppression provided by the diagonal loading and because that algorithm has lower 

computational cost. Sidelobe suppression is required to suppress unexpected interferers in 

the sidelobe region. 



M.A.Sc: Ashish Mittal McMaster- Electrical and Computer Engineering 

v(n) 

Figure 6.1: The Communication Model 

In our implementations we send training symbols preceding the data symbols to estimate 

the statistics of the channel output. An interferer in the sidelobe region may or may not 

be present during the training phase. In this chapter, we analyse both scenarios, and also 

compare the simulation results for diagonally loaded RLS, as well as the interior point based 

algorithms. 

6.2 Block Equalization 

When communicating over a static channel, the block adaptive approach to the design of a 

MMSE equalizer with explicit sidelobe constraints can be adopted. A static channel is one 

whose coefficients do not change during the duration of message transmission. As discussed 

in Chapter 3, we formulate the problem as a Second Order Cone Programming (SOCP) 

problem, and then use the SeDuMi Toolbox [4] to obtain the FIR filter. If the true statistics 

of the channel output are available, then a good SOCP solver [4] will provide us with an 

optimal solution to the problem. However, in practice we use estimates of the channel 

auto-correlation matrix, and the cross-correlation vector between the receiver input and 

transmitted data. Therefore, SeDuMi provides us with an estimate of the optimal FIR filter. 

The sub-optimality of this filter depends on the accuracy of the sample auto-correlation 

matrix of the receiver input and the sample cross-correlation vector between the receiver 

input and transmitted data symbols. 

For convenience, we recall the communication model (Fig. 6.1) presented in Chapter 3. In 
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our experiments, the FIR equalizer has M = 32 taps and we provide N = 64 training symbols 

to estimate true the auto-correlation matrix of the receiver input and cross-correlation vector 

of the receiver input and transmitted data symbols. The input data stream is antipodal with 

each point in the alphabet [ + 1, -1] having equal probability. The transmit filter is a 13 tap 

truncated root raised cosine filter with excess bandwidth 22%. The tap weights are 

-0.0270 

0.0546 

0.0350 

-0.1269 

-0.0406 

0.4425 

p= 0.7504 

0.4425 

-0.0406 

-0.1269 

0.0350 

0.0546 

-0.0270 

We assume that the 4 tap channel is unknown and its coefficients remain constant for 

the duration of the data transmission. In our simulations we have used the channel 

( 0.7985 -0.4819 0.3561 0.0590 f. 

Two of the three zeros of this channel makes angles of ±60° with the positive x-axis and 

they form a complex conjugate pair with a magnitude of 0. 7 4. The third zero is at an angle 

of 180° and has a magnitude of 0.135. Thus, this is a minimum-phase channel. 

71 



M.A.Sc: Ashish Mittal McMaster - Electrical and Computer Engineering 

We need to define a sidelobe region in the frequency response of the equalizer, and 

then choose discrete frequency points at which the quadratic inequality constraints will be 

applied. In the frequency spectrum of the equalizer we define the sidelobe region W sl := 

[-1r, -edge] U [edge, 1r] and use edge= 2 in our experiments. We make Nd = 400 uniformly 

separated discretizations on W sl such that there are 200 discretizations on each sidelobe. 

The desired sidelobe suppression is 30 dB. Zero mean white Gaussian noise is added to the 

receiver input and in our experiments we operate at an SNR of 40 dB, where 

where(}; is the variance of the AWGN term, v(n). Given our definitions ofp and d(n), SNR= 

1/2(};. This is a good choice because here we are trying to show some of the fundamental 

issues of the problem. Therefore, testing the system performance at a high SNR is not 

unreasonable. The system delay is 15 = 8 for all experiments. For simplicity we have used 

real valued channel, transmit filter and data, but the same algorithm can be used for complex 

valued data and filter taps as well. 

Experiment 1 

In the first experiment, we assume that there is no interferer present in the training phase. 

The aim of this experiment is to implement the sidelobe constraints in the equalizer, and 

demonstrate the applicability of the SOCP to solve the quadratically constrained optimiza-

tion problem. 

Fig. 6.2 shows the frequency response of the optimal equalizer obtained using the true 

auto-correlation and cross-correlation matrices (dashed curve). It is clearly shown that the 

sidelobe region is successfully contained below the desired sidelobe level. Next we estimate 

this true filter using 64 training symbols. This kind of scenario is more often witnessed in a 

practical communication system, as the channel characteristics are unlikely to be known at 
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Figure 6.2: Frequency Response for SOCP based Sidelobe Constrained Equalizer 
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Figure 6.3: Frequency Response for the Wiener Filter and its estimate 
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the receiver. The frequency response of this estimate of the optimal equalizer is also shown 

in Fig. 6.2. We see that the sidelobes of both the filters are constrained at -30 dB as desired, 

thereby ensuring robustness to external interferers in the sidelobe region. 

In Fig. 6.3 we see the performance of the Wiener filter and its estimate using 64 training 

symbols on the same static channel. We observe that the sidelobe region for the estimate 

of the Wiener filter is high, and hence it is quite susceptible to even moderately powerful 

interferers due to Adjacent Channel Interference (ACI); especially in the frequency band 

2- 2.4 radjsample. Our block adaptive sidelobe constrained equalizer is however robust to 

such interferers. 

In Fig. 6.1, for convenience we define the overall channel h = p 0 c, where 0 denotes 

convolution and g = h 0 f. For Fig. 6.1 the receiver output d(n) can be written as, 

d(n) = L g(2i)d(n- i) + L f(j)v(2n- j) 
j 

= g(26)d(n- 6) + Lg(2i)d(n- i) + L f(j)v(2n- j), 
i=f.8 j 

(6.1a) 

(6.1b) 

where 6 is the system delay. In ( 6.1 b), the second term is the lSI term and the third term 

is due to noise. We can use g(n) to asses the measure of lSI performance. A good equalizer 

will naturally tend to suppress the lSI, and in turn the sum of even indexed terms of g(n) 

I: lg(2i)l. 
i=f-8 

For the optimal equalizer shown in Fig. 6.2, we plot the g( n) in Fig. 6.4 for a system delay 

of 6 = 8. Note that the even indexed terms of g(n) are small, except at n = 26, which is 

close to 1. 
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Experiment 2 
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Figure 6.4: Overall impulse response g(n) 

In this experiment, we provide the Asymptotic Mean Squared Error (MSE) and Asymptotic 

Inter Symbol Interference (ISI) performance using the same static channel for different side­

lobe regions and sidelobe levels. This provides an indication of the trade-offs incurred when 

imposing tight constraints. This is important as it can be used as a limiting performance 

index while implementing algorithms which estimate the optimal equalizer using training. 

As discussed in the previous section we can use the peak distortion as measure for lSI. This 

can be used as a measure of the quality of performance of the equalizer. 

As we see in Figs. 6.5 and 6.6, when the constraints are relaxed to 0 dB , both the MSE 

and lSI performance are same as the Wiener performance for all sidelobe regions. However , 

when tighter sidelobe constraints are applied for a given sidelobe region, the feasible set 

for the proposed equalizer becomes smaller. The rise in MSE and lSI is only due to the 

tightening of the sidelobe constraints for a given sidelobe region. Also , we see that for a 

given sidelobe level , both the MSE and lSI are higher for a larger sidelobe region , which is 

expected as now we constrain a larger sidelobe region. 
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Figure 6.5: Asymptotic MSE performance index 

Figure 6.6 : Asymptotic lSI performance index 
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6.3 MMSE symbol-by-symbol adaptive equalizer with 

explicit sidelobe control 

In this section we implement a constrained symbol-by-symbol adaptive equalizer using the 

theory and analysis provided in Chapter 5. We discussed two approaches to solve the prob­

lem, namely Interior Point Method-2 (IPM2) and the Standard Barrier Method (SBM). 

Unlike the block adaptive approach, where a block of training symbols needs to be trans­

mitted before the equalizer can be implemented, now we implement the equalizer from the 

first training symbol itself. Furthermore, we are not dependent on the availability of the 

SeDuMi tool [4], but instead we use standard methods like the Newton method. First, we 

do some experiments on a static channel, and then we use a block fading channel. 

6.3.1 Static Channel 

The aim here is to analyse the convergence properties of the equalizer when sufficient training 

is provided. We use the static channel that was used in the experiments in the previous 

section; i.e., c(n) = ( 0.7985 -0.4819 0.3561 0.0590 f. We test the performance of the 

IPM2 algorithm for different values of (3. Recall from Chapter 5 that f3 is the parameter that 

controls the aggressiveness of the algorithm. Since we are taking only one Newton step, a 

smaller value of f3 would ensure proximity to the central path with each iteration. If sufficient 

training is provided, this in turn would provide us with a good sub-optimal equalizer with 

explicit sidelobe constraints. On the other hand, using an aggressive value of f3 could result 

in the solution deviating from the central path, if an insufficient number of inner iterations 

are performed. In IPM2, we do only one inner iteration, hence in our implementations we 

intend to use a conservative (3. We shall use the mean squared tap-error plot of the FIR 

filter obtained using IPM2 as a measure of performance. The Mean Squared tap error for 

IPM2 is defined as, 

eipm(n) = E{JJf~m- fsiJD, 
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where f:fm is the IPM2 based estimate of the optimal (block adaptive) equalizer fs obtained 

using the true channel statistics. This filter was obtained using SeDuMi [4] in Section 6.2. 

Similarly, we plot the Mean Squared tap error performance of RLS as well, which is defined 

as 

where fw is the Wiener filter and f~ls is the RLS filter at the nth instant. 

In this experiment, the IPM2 algorithm is tuned so that it stays close to the central path 

while taking only one Newton step per iteration. Hence we provide sufficient training, and 

chose conservative values for (3. We plot three Mean Squared tap error plots for training 

sequence of length N = 1000 and different values of (3, namely, f3 = 0.99, f3 = 0.975 and 

f3 = 0.95. In all the 3 cases we use f = 0 as a convenient feasible starting point and we 

chooseR= 10.1 For RLS we use~= 10-4 , where~ is the amount of regularization added to 

the sample auto-correlation matrix Rrr(n) to ensure that the sample auto-correlation matrix 

remains non-singular at all iterations. The regularization term decays with the iterations, 

as the RLS algorithm implicitly computes the solution f~ls = ((~I+ Rrr) -
1 

Pdn where Pdr 

is the sample cross-correlation vector between the receiver input and desired symbol, and I 

is an identity matrix of appropriate dimensions. 

The mean squared tap error plots for f3 = 0.99, 0.975 and 0.95, along with that of RLS 

are given in Fig. 6.7. We first analyse the f3 = 0.99 case. No damping of the Newton method 

was observed in this case, indicating that for this conservative value of f3 one Newton step 

(inner iteration) keeps us close enough to the central path. Now we make the algorithm 

more aggressive by reducing f3 to 0.975. The Mean Squared tap error plot for this case is 

shown in Fig. 6.7 (solid line). We observe that the algorithm is more aggressive in this case 

as expected. After nearly 700 iterations damping was required. Therefore, for this value 
1 In our implementation of the Newton Method, we use damping to control the numerical properties close 

to the boundary. The details of this modification are provided in Appendix B. This numerical control is 
necessary when the combination of an aggressive value for f3 and the use of only one Newton step per outer 
iteration allows the sequences of estimates of the analytic center to drift away from the central path. 
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Convergence of IPM2/RLS , ENSEMBLE AVERAGED TAP ERROR 
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Figure 6.7: Convergence of RLS and IPM2 

of /3, one inner iteration is insufficient to stay close enough to the central path. However, 

compared to the performance for f3 = 0.99, in this case we arrive at a much better sub­

optimal solution given the amount of training available. Therefore, there is a trade-off 

between the best sub-optimal solution attainable and the aggressiveness of the algorithm. 

We deviate from the central path to the optimal solution for an aggressive f3 and eventually 

the performance tends to be limited at the boundary. This is so, because the Hessian tends 

to vary rapidly near the boundary of the feasible set. Due to this inherent ill-conditioning of 

barrier methods at the boundary, for an aggressive /3, the algorithm might not perform well. 

This is highlighted in the next case when the algorithm is deliberately made more aggressive 

to verify the trade off between aggressiveness and limiting performance. We choose a more 

aggressive value of f3 = 0.95. The damping starts after 300 iterations in this case. This is 

because with the more aggressive (3, one inner iteration is unable to keep the sequence of 

equalizers close to the central path. In fact, the sequence deviates substantially from the 

79 



M.A.Sc: Ashish Mittal McMaster - Electrical and Computer Engineering 

central path, and it approaches the boundary quickly, but at some distance from an optimal 

solution. From there, the progress of the algorithm towards an optimal solution is limited by 

the ill-conditioning of the Hessian of the barrier function near the boundary. Note however 

that the transient convergence of IPM2 improves with an aggressive (3. 

In all the three cases, we see that the transient performance of IPM2 is better then that 

of RLS. This is attributed to the implicit adaptive diagonal loading present in the algorithm, 

as illustrated in Chapter 5. This gives a substantial advantage over RLS algorithm which 

relies on a fixed explicit diagonal loading and takes a long time to phase out the effects of 

initialization. 

6.3.2 Block Fading Channel 

In this section we test the performance of our algorithm over a block fading channel. Here 

we assume that the channel is stationary for a finite block of transmitted symbols. Hence 

all symbols of a block experience the same fade. This standard model represents slow fading 

channel scenarios. In our implementation we assume that the channel realization in each 

block is independent from those in other blocks. Each of these independent blocks is a 4 

tap channel with uncorrelated Gaussian coefficients. We assume that these coefficients have 

exponentially decreasing variances, i.e., CJ;n = CJ;e"~n for n = 0, ... ,Lc- 1, where Lc is the , 

length of the FIR channel. In our simulations we have used 1 = -2. The distribution of the 

magnitude of zeros for 10000 channels is shown in Fig. 6.10. 

This kind of scenario may arise in wireless transmission in urban areas [14]. Therefore, 

attenuation of the delayed signal is not unexpected. This kind of channel typically has its 

zeros located inside the unit circle. This is important because for deep nulls in the channel 

frequency spectrum due to zeros close to the unit circle, the performance of the linear equal-

izer may be severely affected due to noise enhancement. Therefore, by choosing a certain 

class of channels, the majority of which have zeros inside the unit circle, we have a low 

probability of encountering channels for which a linear equalizer would be inappropriate. 
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Figure 6.8: Distribution of zeros for 10000 channels for ry = -2 
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Notice from Fig. 6.8 that even after this favorable modeling of the channels, there are still 

some channels which have zeros clustered around the unit circle. These channels are inher-

ently difficult to equalize with a linear equalizer. However, on the other hand, in a practical 

scenario one cannot imagine to have all channels to be favorable either. Hence, we proceed 

to use this class of channels in our simulations with a linear equalizer. 

We use an M = 32 tap FIR filter as the equalizer, and have 100 discrete frequency 

constraints in the sidelobe region. The desired sidelobe suppression is 30 dB . In a practical 

scenario there might be a limitation on the amount of training available to the receiver. In 

our implementation, we send a message signal of length 256 symbols of which the first 64 

symbols are used for training, and the remaining 192 are the data symbols. We want to test 

the performance of the receiver in the presence of an interferer in the sidelobe region due to 

ACI. For testing purposes we model the interferer as a sinusoid of frequency 2.2 rad./sample 

at an Interference to Signal ratio (ISR) of 0 dB. We first present simulation results for IPM2, 
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Figure 6.9: Equalization performance of IPM2 with sidelobe suppression of 30 dB for (3 = 
0. 75, 0.8 and 0.85. 

and then compare the IPM2 method with the SBM approach. 

Experiment 1 

In the first experiment, we demonstrate the BER performance of the IPM2 algorithm for 

three different values of (3. We assume the presence of ACI in the data block only, and 

that no interferer is present in the training. Due to limited training available, we choose 

aggressive values of (3, namely (3 = 0.75, (3 = 0.8 and (3 = 0.85. The results are plotted in 

Fig. 6.9. We see that the performance improves for higher (less aggressive) values of (3. One 

explanation for this behavior is that for a more aggressive value, the chances of the solution 

deviating from the central path are higher than that in the case of a less aggressive (3. We 

observe that there is a limiting BER performance towards the higher SNR values in all the 

three cases. This is because of the error in the receiver due to residual lSI present because 

of multiple sidelobe constraints. This is the cost of ensuring robustness in the equalizer to 
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ACI. 

Experiment 2 

In order to fully appreciate the constrained equalization performance of the IPM2 based 

equalizer, we now compare its performance to that of a RLS algorithm with explicit diago-

nal loading. This is a good choice because additional diagonal loading leads to a moderate 

reduction in the sidelobe levels. This is so because the sidelobe levels depend on the eigen­

value spread of the sample auto-correlation matrix of the receiver inputs [12]. The eigenvalue 

spread is the ratio ~, where Amax and Amin are the maximum and minimum eigenvalues 
Am'/..n 

of the sample auto-correlation matrix of the receiver inputs, respectively. For fewer samples 

(limited training), the eigenvalue spread might be higher. By explicitly adding a diagonal 

matrix cd to the M x M sample auto-correlation matrix Rrr in the RLS algorithm, where o: 

is a positive constant, all theM individual eigenvalues can be increased. This might lead to 

a reduction in the eigenvalue spread as some of the smaller eigenvalues might be increased 

and compressed at the loading level o:. Therefore, some additional sidelobe suppression 

might be achieved in the RLS algorithm by doing explicit diagonal loading. Note that this 

is different from the regularization term needed in the beginning of the RLS algorithm when 

data might be insufficient to ensure the invertibity of the sample auto-correlation matrix. 

This regularization term~ decays at a rate of 0(1/n), and therefore is trivial in comparison 

to the explicit diagonal loading term. That is, the RLS algorithm with explicit diagonal 

loading, implicitly computes the solution f[;LRLS = ((~ + o:)I + Rrr)-1Pdr, where Pdr is 

the sample cross-correlation vector between the receiver input and desired symbols. In our 

experiments, we have chosen ~ = 10-4 and o: = 10-3 . 

In this experiment, we assume that there is no interferer present in the training, and 

that an Adjacent Channel Interferer appears only during the data transmission. We plot the 

BER curves for IPM2, and for RLS, both with and without explicit diagonal loading. For 

IPM2, based on Fig. 6.9, we choose {3 = 0.85. We provide the BER curves using the optimal 
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Figure 6.10: Equalization performance for IPM2 and diagonally loaded RLS along with their 
asymptotic performance. (3 = 0.85, ISR=O dB. 
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equalizers calculated with true statistics, which are used as a benchmark against which the 

performance of our filter estimates is measured. All the results are shown in Fig. 6.10, where 

the interferer-to-signal ratio 

ISR = power of interferer 
power of desired signal 

is set to 1, i.e., 0 dB. We see that the standard RLS algorithm is extremely sensitive to 

the interferer in the sidelobe region. Its BER performance is severely affected and is clearly 

not a suitable choice for environments in which intermittent ACI is expected. The explicit 

diagonal loading slightly improves the performance, in particular in the higher SNRs, but 

is eventually restricted due to the presence of the diagonal loading itself. The performance 

of IPM2 is however significantly better then diagonally loaded RLS especially in the normal 

operational region where the SNR is around 15- 20 dB. The limiting performance of the 

algorithm at higher SNR is due to the residual ISI induced due to the sidelobe constraints. 

We observe that the BER performance of the diagonally loaded Wiener Filter appears to 

be counter-intuitive at first sight, since we might expect the BER performance to improve 

with increasing SNR. However, it is important to note that the diagonal loading term is a 

source of errors; like noise, it corrupts the sample auto-correlation matrix. One plausible 

explanation for the rise in BER performance can be that for higher SNRs, due to less external 

noise, the Wiener filter tends to have higher sidelobes, and hence is more susceptible to ACI. 

Hence the rise in BER performance with increase in SNR. Therefore, at a higher SNRs the 

number of errors attributable to interferer increases faster than those due to noise decrease; 

hence the rise in BER at higher SNRs. 

Experiment 3 

In the next experiment, we consider three scenarios namely, (a) no interferer present at any 

time during transmission, (b) interferer present only during the data phase of transmission 
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Figure 6.11: Equalization performance of IPM2 and diagonally loaded RLS in different 
scenarios. {3 = 0.85, ISR=O dB. 

86 



M.A.Sc: Ashish Mittal McMaster - Electrical and Computer Engineering 

and, (c) interferer present in the training as well as the data mode. All three are for a 

sidelobe suppression of 30 dB. We analyse the BER performance of IPM2 and diagonally 

loaded RLS algorithm in all the three cases. The results are shown in Fig. 6.11. We see 

that IPM2 performance in all three cases remains fairly similar. Therefore, it provides a 

dependable receiver, robust to unwanted interferers in the sidelobe region which may strike 

occasionally or be present all the time. We also show the BER performance of the proposed 

equalizer in the absence of the interferer for a sidelobe suppression of 20 dB, rather than 

30 dB. At high SNRs, the performance is improved, because the relaxed constraint allows 

greater lSI suppression. This comparison provides an indication of the way in which the 

flexibility to choose the desired sidelobe level can be exploited by the designer. 

Fig. 6.11 shows that the diagonally loaded RLS performance fluctuates significantly, 

becoming much worse if an interferer strikes in the data mode. The presence of diagonal 

loading also limits its BER performance for higher SNRs in all the three scenarios for RLS. 

This happens when the distortion due to the diagonal loading exceeds the distortion due to 

noise. Therefore, in a practical scenario, a receiver based on diagonally-loaded RLS remains 

susceptible to any intermittent interferences in the sidelobe region. On the other hand, IPM2 

provides us with the necessary robustness to suppress any such undesirable interferers. We 

also observe that IPM2 outperforms diagonally loaded RLS in the normal operational SNR 

around 15-20 dB. This is because the number of errors due to noise in this range are greater 

than the errors due to residual lSI attributed to the sidelobe constraints. At higher SNRs 

however, the number of errors due to noise is lower than the number of errors due to the 

residual lSI. 

Experiment 4 

All the previous simulations for symbol-by-symbol adaptive equalization scenario used the 

IPM2 approach. However, for the same experiments the standard barrier method (SBM) 

approach can also be used. In this experiment, we compare the performances of the IPM2 
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Figure 6.12: Equalization performance of IPM2 and SBM. (3 = 0.85, J-l = 1.2, ISR=O dB. 

and SBM based algorithms. We test the two algorithms in a scenario in which the inter-

ferer is present only in the data mode. As shown in Fig. 6.12 both algorithms give similar 

performance though IPM2 performs better towards the higher SNRs because the objective 

in IPM2 is inside a logarithm. However, both algorithms perform well and can be used to 

provide a receiver which ensures robustness to intermittent interferers in the sidelobe region. 
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Chapter 7 

Summary and Conclusion 

In this work we developed block adaptive and symbol-by-symbol adaptive fractionally-spaced 

equalization algorithms which are insensitive to ACI. This is an important requirement in 

modern day WCDMA based 3G cellular systems. We attempted to combat ACI by imposing 

multiple quadratic inequality constraints at discrete frequency points in the sidelobe region 

of the magnitude response of the equalizer. In Chapter 3 we wrote our adaptive equaliza­

tion problem as an optimization problem with multiple quadratic inequality constraints. We 

modeled this problem as a Second Order Cone Program which was solved using well estab­

lished interior point methods [4]. Thereby we presented an efficient approach to solve our 

optimization problem. However, this technique is limited to block adaptive implementations. 

In Chapter 4 we analysed generic convex optimization problems with multiple inequality 

constraints. We demonstrated the potential application of barrier methods in solving such 

problems. We gained a deeper understanding of the theory in light of the concept of the 

central path, which is fundamental to interior point methods. This presented itself as a 

promising technique, but required multiple Newton steps to stay close to the central path. 

We developed and discussed two approaches based on the method of analytic centers (MAC) 

and the standard barrier method. 

In Chapter 5 we successfully developed practically implementable interior point based 
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algorithms which are able to perform symbol-by-symbol adaptive fractionally-spaced equal­

ization with multiple inequality constraints. These algorithms, namely IPM2 and SBM are 

modifications of the MAC and standard barrier methods. 

In Chapter 6 we demonstrated the applicability of these algorithms using computer sim­

ulations. We separately analysed the performance in both the block adaptive and symbol­

by-symbol adaptive scenarios. We used limited training in both scenarios, and compared our 

performance in the presence of ACI with a RLS algorithm with explicit diagonal loading. 

We demonstrated that with explicit control over the sidelobe region, the designer can adjust 

the sidelobe levels at a desirable level, and thus can combat ACI much more effectively then 

the RLS algorithm with explicit diagonal loading. 

The computational cost for IPM2 and SBM algorithms is O(M3), which is moderately 

higher then the computational cost for RLS O(M2
). However in a communication scenario 

prone to ACI, such robust algorithms might prove to be indispensable. 

7.1 Future Work 

In this work we have solved the core problem of effectively performing symbol-by-symbol 

adaptive equalization using a linear equalizer over block fading channels. An obvious exten­

sion to the decision-directed mode is possible, when the probability of bit error is low. It 

can also be extended to a decision-feedback equalizer (DFE) over time-varying channels in a 

straight forward manner. Another area that needs attention is reducing the computational 

complexity of the algorithms. The use of conjugate-gradient methods does appear to be 

an attractive choice for this purpose, but such an approach might require more training. 

Another interesting possibility is the use of active set methods which are discussed in the 

next section. 
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Active Set Methods 

An attractive avenue to reduce the computational complexity is to use Active Set Methods. 

For an inequality constrained convex optimization problem, the active set at any feasible 

point is the set of "active" inequality constraints for which the equality condition holds. 

Therefore, it might lead to substantial complexity reduction if applied efficiently. However, 

there are some of the potential problems associated with active set methods. The main 

challenge would be to determine the active set at the optimal solution at each stage of the 

algorithm. To handle this issue one natural approach could be to "guess" the active set, 

and refresh it recursively with successive iterations. This could however be a slow process, 

and might impose a lower bound on the number of iterations needed to reach optimality. To 

handle this problem, there could be approaches like using a "gradient projection method" 

[24] for rapid changes in the active set. Another potential problem in using active set method 

can be the existence of "strongly" active and "weakly" active constraints. This depends on 

the sensitivity of the optimal objective value to the presence of the constraint. The potential 

problem that may arise here is that sometimes it may be difficult for the algorithm to decide 

which of active constraints at the optimal solution are weakly active. This indecisiveness in 

the algorithm might result in successive iterations being wasted. 

Therefore, using an active set method could provide an inexpensive route towards the 

optimal solution. However, it might require a large number of steps. Nevertheless, this is 

an exciting field to explore to achieve a lower computational complexity at an acceptable 

number of iterations. 

Semi-infinite Constraints using SDP 

In Chapter 3, instead of imposing a finite number of inequality constraints, it might be 

interesting to impose infinite constraints using semi-definite programming (SDP) to achieve 

"strict" control of the sidelobe regions using techniques developed in [5], [36]. Furthermore, 

it would be interesting to explore any possibilities of achieving strict sidelobe control in the 
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Figure 7.1: Comparison of IPM2 with IPM2-d 

symbol-by-symbol adaptive scenario. 

Improving on IPMl 

One very interesting possibility is to come up with a suitable dependence of Tn in the IPM1 

algorithm. The present dependence, as used in the IPLS algorithm [10], is unsuitable for 

inequality constrained problems. This is so because it was originally proposed for uncon-

strained problems. Now Tn should change in such a way that it takes into account the 

inequality constraints as well, and manages to keep the solution close to the central path in 

a single Newton step. 

Improving on IPM2 and SBM 

Another interesting avenue is the potential scope for improvement on the IPM2 and SBM 

algorithms provided in the thesis. We rely on the use of a damped Newton approach close 
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to the boundary. Another possibility might be to take a second Newton step, when close 

to the boundary. By doing so, the solution should tend to stay closer to the central path. 

This appears to be better than spending iterations in finding a suitable direction at a point 

closer to the boundary. For example, in the IPM2 algorithm, instead of making p monotonic 

decreasing, we can make it monotonic non-increasing. That is, rather than updating pat each 

iteration, we revert back to the previous value of p, when very close to the boundary. Thus, 

we should stay closer to the central path. Although this approach (say, IPM2-d) provided 

with only a minor improvement over the IPM2 algorithm (see Fig. 7.1), for a training of 

1000 symbols and (3 = 0.975, it might be interesting to investigate further in this direction. 
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Appendix A 

The IPLS algorithm 

The IPLS algorithm was originally proposed for unconstrained optimization problems [10]. 

In the IPLS algorithm, the parameter Tn attempts to drive the algorithm to optimality. 

However, the definition of Tn in [10], which does not treat inequality constraints, is inap­

propriate for constrained problems and severely limits the movement of the solution on the 

central path. For the interested reader, a mathematical treatment of the IPLS algorithm 

for the constrained optimization problem discussed in Chapter 5 is presented below. We 

assume that the reader is familiar with the notations, symbols, and the discussion provided 

in Chapter 5. 

IPLS is an analytic center based estimator. Therefore, it defines a potential function 

1/Jn (f), and tries to find a "center" for this potential function. The gradient and Hessian of 

1/Jn(f) are given by 

(A.l) 
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and 

The gradient and Hessian of ln(f) are given by 

\7 ln(f) = -2f>dr(n) + 2Rrr(n)f 

\72 Jn(f) = 2Rrr(n), 

respectively. The IPLS algorithm is given in Table A.l. 

This algorithm works satisfactorily for the unconstrained least squares problem where 

\7 ln(f) - 0 towards the optimal solution. However, in the presence of multiple quadratic 

sidelobe constraints \7 ln(f) does not become vanishingly small at the optimal solution, due 

to the sidelobe constraints. Hence, using this algorithm in a scenario with multiple inequality 

constraints does not yield very good results. 
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Table A.1: IPLS 

• Step 1: Initialization. Let c, Nd, R, (3 be given. Set 

fa= 0, Pdr(O) = 0, Rrr(O) = 0, \7 lo(O) = 0. 

• Step 2: Updating. For n > 1, update r 2n and d(n- 6), and then 
update 

Update 

\7 ln(fn-1) = -2f>dr(n) + 2Rrr(n)fn-1 

tn(fn-1) = R2 
- llfn-111 2 

Tn = ln(f~-1) + (3 ~IIV ln(f~-1) ll2 

\71/Jn(fn-1), \721/Jn(fn-1) 

which are given by (A.1) and (A.2). 

(A.3a) 

(A.3b) 

• Step 3: Recentering. The new approximate center of On is obtained 
by taking one Newton step with fn_1 as the starting point, 

Set n := n + 1, and return to Step 2. 
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Appendix B 

Damped Newton Method 

Here we provide the damped Newton approach [8, pp. 487] used in IPM2 and SBM. We 

assume that reader is familiar with the notations, symbols, and the problem format discussed 

in Chapter 5. Only one Newton step is taken in each iteration to control computational cost. 

Close to the boundary, the Hessian matrix can become ill-conditioned and a conventional 

Newton update may produce an infeasible point. Such an outcome is obviously undesirable 

in an interior point method. To overcome this effect, we will adopt a conservative approach 

that enables us to avoid "wasting" iterations in an inappropriate direction. If a proposed 

Newton step breaks the boundary for a given iteration, then we will not perform the update. 

Instead we will use the feasible starting point of the present iteration as the starting point 

for the next iteration. We will the update the Newton direction in the standard way and 

will introduce damping (i.e., reduce step-size), in order to make conservative steps towards 

an optimal solution. 
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Table B.1: Damped Newton Method 

• Starting point: Let the cost function 'lj;(f) and a starting point fa be 
given. Set, scaling factor a = 1, damping factor >. = 0.5, (0 < 
>. ::; 1), and tolerance threshold 77 = ( x 105

, ( 77 « 1), where ( = 
2.2204 x 10-16 is the machine accuracy. 

• Step 1: Newton Update For n;::: 1, 

• Step 2: Stopping Criterion For n ;::: 1, 

If l'i(fn) > 77 for all i = 1, 2, ... , Nd 

Reset a= 1 

Set n := n + 1 

and return to Step 1. 

Else if /'i(fn) ::; 77 for some i = 1, 2, ... , Nd 

Reset fn = fn-1 

Set a= >.a 

Set n := n + 1 

and return to Step 1. 
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