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Abstract 

Detection and estimation of multiple unresolved targets with a monopulse radar is a challeng­

ing problem. For ideal single bin processing, it was shown in the literature that at most two 

unresolved targets can be extracted from the complex matched filter output signal. In this 

thesis, a new algorithm is developed to jointly detect and track more than two targets from 

a single detection. This method involves the use of tracking data in the detection process. 

For this purpose, target states are transformed into the detection parameter space, which in­

volves high nonlinearity. In order to handle this, the sequential Monte Carlo (SMC) method, 

which has proven to be effective in nonlinear non-Gaussian estimation problems, is used as 

the basis of the closed loop system for tracking multiple unresolved targets. In addition to 

the standard SMC steps, the detection parameters corresponding to the predicted particles 

are evaluated using the nonlinear monopulse radar beam model. This in turn enables the 

evaluation of the likelihood of the monopulse signal given tracking data. Hypothesis testing 

is then used to find the correct detection event. The particles are updated and resampled 

according to the hypothesis that has the highest likelihood (score). A simulated amplitude 

comparison monopulse radar is used to generate the data and to validate the extraction and 

tracking of more than two unresolved targets. 
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Chapter 1 

Introduction 

1.1 Unresolve Targets with a Monopulse Radar 

The simultaneous lobing technique, better known as Monopulse processing, is widely used 

in radars to measure the angle of arrival (AOA) of a target with sub-beam accuracy. In 

amplitude comparison monopulse radar, two squinted beams (per angular coordinate) are 

used to receive two diverse returns of the target. The comparison of the in-phase difference 

signal and the in-phase sum signal yields the Direction Of Arrival (DOA) of the target. This 

method is more preferred over other conventional methods like maximum likelihood estimator 

and moment matching for its simplicity with estimation accuracy close to the Cramer-Rao 

lower bound (CRLB) at moderate or high signal-to-noise ratios (SNRs). However, it fails 

when multiple targets fall into the same resolution cell. In that case, the DOA estimate 

indicated by the in-phase monopulse ratio can wander far beyond the angular separation of 

the targets [22]. These merged measurements often result in high errors in the ensuing data 

association and track filtering algorithms. 

1 



CHAPTER 1. INTRODUCTION 2 

Various methods have been proposed in the literature to extract unresolved targets from 

radar returns. Some involve special antenna configuration [13, 17, 18] or array signal process­

ing (beamforming, interference nulling or high-resolution direction finding) [10, 15]. Others 

involve the complete utilization of the standard monopulse system, which is the focus of 

this thesis [5-7, 22-24, 29]. In [22], the complex ratio was used to estimate the DOAs of 

two fixed amplitude targets with known Relative Radar Cross Section (RRCS) by applying 

the method of moments. This method has limited applicability due to RRCS fluctuations 

in real problems. Statistical description of complex monopulse parameters were explicitly 

derived in [6]. With this description, Neymen-Pearson hypothesis testing was applied to 

detect target multiplicity in [5]. In [7], it was further developed to estimate DO As of two 

unresolved Rayleigh (Swelling I) targets with known or estimated RRCS. For two unresolved 

Rayleigh targets, the maximum likelihood (ML) angle extractor using numerical method is 

proposed in [23]. It was proven to be effective for sea-surface multipath monopulse radar 

signals [24]. But a closed-form solution for this ML extractor was derived in [29]. In [31,32], 

a more realistic case, where targets' spillover in the adjacent bins was taken into account, 

was considered. Using the identifiability principle, it was inferred that up to five targets can 

be extracted using joint bin processing of two adjacent matched filter samples. This in turn 

implies that using ideal bin processing, as in [7, 23, 29], at most two targets can be pulled 

out. 

1. 2 Contribution of the Thesis 

All existing methods consider the detection and tracking of the unresolved targets separately. 

In this thesis, they are performed jointly so that tracking information can be utilized in 

detection and vice versa. This requires the transformation of target state into the detection 
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parameter space, which involves high nonlinearity. The sequential Monte Carlo (SMC) 

method [2, 8, 20], also known as the particle filter, which has proven to be effective for 

nonlinear non-Gaussian estimation problems, makes it possible. With SMC as the basis, a 

new algorithm is developed to jointly detect and track unresolved targets using an amplitude 

comparison monopulse radar with ideal single bin processing. It enables us to jointly detect 

and track more than two targets from a single cell. 

In addition to the standard SMC steps, the directions of arrival (DOAs) corresponding 

to the predicted particle states are evaluated using the nonlinear monopulse radar beam 

model. All hypotheses corresponding to ideal bin processing (i.e., all possible combinations of 

targets being in different detected bins) are constructed. The likelihood of monopulse signals 

given the DOAs of the particles of the different targets and given a particular hypothesis 

is computed based on the distribution of the monopulse signal. This likelihood is also the 

joint weight of the particles. The likelihood of a hypothesis is shown to be the sum of the 

corresponding joint weights. The hypothesis with the highest score is then selected and the 

corresponding particle sets, which are updated with the marginal of the above joint weights, 

are taken to be the correct representation of posterior of the target states. That completes 

a recursion of the SMC. Since detection and tracking are performed jointly, estimation of 

the DOA of each target is no longer needed. Hence DOAs are not explicitly estimated. In 

addition, the hypothesis testing of detection events incorporates the data association process 

as well. The recursive Riccati-like formula for the Fisher Information matrix for nonlinear 

state estimation from [27] is used to derive the posterior covariance of the target state, which 

enables us to assess the proposed algorithm. 
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1.3 Organization of the Thesis 

This thesis is organized as follows. In Chapter 2, a brief introduction to monopulse radar 

systems is given. In addition, it gives the monopulse signal distribution that is used later. 

Chapter 3 reviews detection theory and the track filtering. In Chapter 4, the proposed 

algorithm is presented. In Chapter 5, the posterior covariance matrix of target state is 

derived. The simulation results are given in Chapter 6. Finally, Chapter 7 gives conclusions 

and suggestions for future work. 

1.4 Related Publications 

1. N. Nandakumaran, A. Sinha and T. Kirubarajan, "Joint Detection and Tracking of 

Unresolved Targets with a Monopulse Radar Using a Particle Filter", Proceedings of 

the SPIE Conference of Signal and Data Processing of Small Targets, San Diego, CA, 

Aug. 2005. 

2. N. Nandakumaran, A. Sinha and T. Kirubarajan, "Joint Detection and Tracking of 

Unresolved Targets with a Monopulse Radar Using a Particle Filter", To be submitted 

to IEEE Transactions on Aerospace and Electronic Systems. 



Chapter 2 

Monopulse Radar 

This thesis is concerned with handling unresolved targets using a monopulse radar. The 

goal of this chapter is to provide the necessary background on monopulse radar systems. In 

addition, this chapter provides the distribution of monopulse signals that is used in later 

chapters. Several references that explain the monopulse system are also listed in the bibli­

ography [6], [19], [22], [25], [30]. 

Monopulse processing is the simultaneous lobing technique where the angular measure­

ment is made on the basis of one pulse rather than many pulses. It has significant advan­

tages with respect to target echo fluctuation over other lobing methods, for example, the 

conical-scan and sequential-lobing techniques, which are severely affected by pulse-to-pulse 

amplitude fluctuation. There are two kinds of monopulse techniques, namely, amplitude 

comparison monopulse and phase comparison monopulse. In this thesis, we focus on track­

ing unresolved targets with amplitude comparison monopulse radar. 

5 



CHAPTER 2. MONOPULSE RADAR 6 

Squinted beams 

Figure 2.1: Monopulse radar beams 

2.1 Amplitude Comparison Monopulse Radar 

In an amplitude comparison monopulse radar system, a pulse energy is transmitted towards 

the targets and the target echoes are received with two beams (per angular dimension) 

that are squinted relative to the transmitted direction. Figure 2.1 shows the pair of beams 

required to measure a single angular coordinate. For the case of tracking targets in 3 - D 

space, it requires four beams to measure bearing as well as elevation. In a conventional radar 

system, the direction of arrival (DOA) is estimated with the in-phase part (i.e., real part) of 

the monopulse ratio, which is formed by dividing the difference of the two received signals 

by their sum. 
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si 

s( t ) 7 dt 1 ~ SQ 

REFERENCE 90DEG 

OSCILATOR 
PHASE 
SHIFT 

7 I ~ dt ~ 
d( t) 

I ~ dt 7 
~ 

t=nT 

Figure 2.2: Monopulse radar signal processing for a single angular dimension 

2 .2 Monopulse Radar Signal P rocessing 

The monopulse signal processor consists of a bank of matched filters that are fed with the 

sum and difference signals. This sum and difference signals are obtained using passive adders 

and subtractors at radio frequency to avoid drifts in active devices. Figure 2.2 shows a typical 

monopulse radar signal processor for a single angle measurement. The outputs comprises 

the in-phase sum (s1 ), Q-phase sum (sQ), in-phase difference (d1 ) , and Q-phase difference 

(dQ) · 
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2.3 Monopulse Signals with N Unresolved Targets 

Consider the monopulse radar system with N independent targets falling into a single range 

bin in 3-D space. The matched filter outputs comprises six signals and they can be written 

as 

1. In-phase sum signal 

SJ 

2. Quadrature sum signal 

3. In-phase bearing difference signal 

4. Quadrature bearing difference signal 

5. In-phase elevation difference signal 

N 

2:::: ai cos ¢i + nsl 

i=l 

N 

L ai sin cpi + nsQ 

i=l 

N 

L 'TJbiai cos ¢i + ndbi 

i=l 

N 

L 'TJbiai sin ¢i + ndbQ 

i=l 

N 

L 'TJeiCVi cos ¢i + ndel 

i=l 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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6. Quadrature elevation difference signal 

where 

a· t 

T/bi 

T/ei 

K 

A-t 

G~ (Bbi, Bei) 

Gbt:. (Bbi, Bei) 

Get:. (Bbi, Bei) 

ebi 

eei 

Po 

cPi 

nsf I'V 

nsQ 

ndbi I'V 

ndbQ 

ndel I'V 

N 

L T/eiO:i sin cPi + ndeQ 
i=l 

JA;AiG~ (Bbi, Bei) Po (signal amplitude of target i) 

Gbt:. (Bbi, Bei) 
(bearing DOA of target i) 

G~ (Bbi, Bei) 
Get:. (Bbi, Bei) 

(elevation DOA of target i) 
G~ (Bbi, Bei) 

constant proportional to transmitted power 

voltage amplitude of target i 

sum channel voltage gain 

bearing difference channel voltage gain 

elevation difference channel voltage gain 

bearing of the target i 

elevation of the target i 

receiver matched filter gain 

phase angle of target i return 

N (o, ();) sum in-phase noise 

N (o, ();) sum quadrature noise 

N (o, ()~) bearing difference in phase noise 

N (o, ()~) bearing difference quadrature noise 

N (o, ()~) elevation difference in phase noise 

9 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 
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ndeQ "' N ( 0, O"~) elevation difference quadrature noise (2.24) 

with N(p,, 0"
2

) denoting Gaussian distribution with mean p, and variance 0"
2

. The chan­

nel voltage gains Gr. (Bbi, Bei), Gbb.. (Bbi, Bei) and Gee:. (Bbi, Bei) can be expressed in terms of 

individual beam voltage gain as follows 

'll (sqe, sqb, Bbi, Bei) + \ll ( -sqe, sqb, Bbi, Bei) 

+'ll (sqe, -sqb, Bbi, Bei) + 'll ( -sqe, -sqb, Bbi, Bei) 

'll (sqe, sqb, Bbi, Bei) + 'll ( -sqe, sqb, Bbi, Bei) 

-\ll (sqe, -sqb, Bbi, Bei)- 'll ( -sqe, -sqb, Bbi, Bei) 

'll (sqe, sqb, Bbi, Bei)- 'll ( -sqe, sqb, Bbi, Bei) 

+'ll (sqe, -sqb, Bbi, Bei)- 'll ( -sqe, -sqb, Bbi, Bei) 

(2.25) 

(2.26) 

(2.27) 

where sqe and sqb are the squint angles for bearing and elevation, respectively, and are given 

by 

sq0 / cos(b- b0 ) 

sq0 / cos(e- e0 ) 

(2.28) 

(2.29) 

with sq0 being the broadside squint angle, b0 and e0 are the bearing and elevation broad­

side angles, respectively, and b and e are the bearing and elevation beam-pointing angles, 

respectively. 
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The beam voltage gain, w (x, y, ebi, Bei), can be written in terms of the normalized voltage 

patterns for bearing and elevation as follows: 

(2.30) 

The normalized voltage patterns for the bearing and elevation, VI, (Obi, x) and Ve (Bei, y), are 

given by 

7r sin(Nb2 ) [sin(b1 + 0.57r) sin(b1 - 0.57r)] 
4V0 N sin(b2 ) b1 + 0.57r + b1- 0.57r 

(2.31) 

7r sin(Ne2 ) [sin(e1 + 0.57r) sin(e1 - 0.57r)] 
4Vo N sin( e2 ) e1 + 0.57r + e1 - 0.57r 

(2.32) 

where 

Vo 
sin(0.5N 7r sin( sq0 )) sin(0.57r) 7r_....:..._ ___ ..:......,::,;_:_:_ 
N sin(0.57r sin( sq0 )) 0.57r 

0.25sin(Bbi- bo) 

0.5 [sin(Bbi- b0 )- sin(x- bo)] 

0.25sin(Bei- eo) 

0.5 [sin(Bei- eo)- sin(y- eo)] 

with V0 being the normalizing factor and N is number of elements in the array along a single 

dimension. 

Often, the DOA ,ry, is approximated by a linear error function given by [30] 

(2.33) 
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where Bsw is the two-way beamwidth, km is the monopulse error slope, and (}is the AOA. 

The values of the monopulse error slope employed in the radar model used in this thesis for 

bearing and elevation, k~ and k~, respectively, are given by 

where k0 = 53.9. 

ko cos (b- b0 ) rad-1 

ko cos (e- e0 ) rad-1 

2.4 Distribution of Monopulse Signals 

(2.34) 

(2.35) 

In this thesis, we consider Swerling I targets whose RCS fluctuation is described by Rayleigh 

distribution. The signal amplitude, ai in (2.7), that is proportional to target RCS, has 

Rayleigh distribution too. The phase angle of the target return, ¢i in (2.18), is usually as­

sumed to be uniformly distributed in [0, 21r]. Therefore, it can be easily shown that each sum­

mand in (2.1)- (2.6) is a Gaussian random variable [16]. Hence z = [si dbi del SQ dbQ deQf 

is Gaussian distributed given the parameter set q,N = { a0i, 'r/bi, 'flei, CJ8 , CTd, p}, 't = 

1, 2, ... , N. It can be written as 

N(z;O,P) (2.36) 

where the covariance matrix Pis given by 
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The off-diagonal blocks are zero matrices since there is no correlation between the in-phase 

and quadrature-phase signals of the matched filter. The diagonal blocks are identical and 

given by 

where the matrix elements are given by 

i=l 

N 

a12 L a6i7lbi + Pf7sf7d 

i=l 

N 

al3 L a6i7lei + Pf7sf7d 

i=l 

i=l 

N 

a23 L a6i7lbi7lei + p<7~ 
i=l 

In the above, aoi is the average value of target amplitude ai· The correlation coefficient p 

is included to allow for a real-valued correlation between the receiver errors that may result 

from the local oscillator. 



Chapter 3 

Detection and Tracking 

Since this thesis is concerned with unresolved t arget detection and t racking, this Chapter is 

dedicated to review t he basic theory behind t he detection and tracking. Figure 3.3 shows the 

block diagram of a t racking system. There are two primary blocks, which are concerned with 

this thesis, namely t he signal processor and t he information processor . The signal processor 

involves complex signal processing of noisy electromagnetic or acoustic signals and followed 

by detection. The information processor involves data association and followed by t rack 

filtering. The main issues related to this thesis namely detection theory, filtering and data 

association are briefly reviewed in section 3. 1, 3.2 and 3.3 respectively. 

Electromagnetic Target 
or acoustic Information state 

I Environment I 
energy 

Signal processor 
Measurement processor estimates 

Sensor ~ 

(Data associator I Detector Estimate 
track filter) uncertainties 

Noise 

Figure 3.3: A typical t racking system 

14 
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3.1 Detection Theory 

This section reviews the fundamentals of detection theory. Here, a brief overview is presented 

while the complete theory behind detection can be found in [28]. In a statistical decision 

problem, a decision has to be made as to which of several hypotheses is the correct one. A 

hypothesis is one of the possible events that can arise in the statistical decision problem. In 

general, there may be M hypotheses from which correct one has to be selected. Next two 

subsections brief on the simplest case where there are two possible hypotheses and general 

case where more than two hypotheses are possible respectively. 

3.1.1 Binary Hypothesis Test 

In a binary testing problem, we need to decide on choice Di based on observation z while 

the true hypothesis is denoted by Hj , where i, j = 0, 1. There are four possibilities, (i) H0 

is true, decide D 0 (ii) H1 is true, decide D1 (iii) H 0 is true, decide D1 (iv) H1 is true, decide 

D 0 . The first two are correct choices whereas the last two are errors. With the a priori 

probabilities P(Ho) and P(H1 ), and the associated cost Cij for making a decision Di when 

the true hypothesis is Hj, the average cost, C, can be written as, 

1 1 

c = :L :L cijP(Di/Hj)P(Hj) (3.37) 
i=O j=O 

where P(Di/Hj) is the probability of deciding Di while Hj is true and can be obtained by 

integrating the density function of p(z/Hj) over Zi, the decision region corresponding to Di, 

1.e. 

(3.38) 
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Thus the average cost becomes 

1 1 

c = L L cijP(Hj) 1p(z1Hj)dz 
i=O j=O Z, 

(3.39) 

Noting that the decision spaces Z0 and Z1 are exclusive and exhaustive, it can be further 

simplified as, 

CwP(Ho) +CuP( HI) 

+ { [P(H1)(C01- Cn)p(ziH1)- P(Ho)(Cw- Coo)p(ziHo)]dz 
lzo 

(3.40) 

For the Bayes criterion, the average cost should be minimized. Noting that first two terms 

are fixed, minimizing C is equivalent to select the region, Z1 , such that 

Hence the likelihood ratio test yields the decision 

A(z) 
P(Ho)(Cw- Coo) 
P(H1)(C01- Cu) 

(3.41) 

(3.42) 

Similarly, other criterions (Maximum A Posterior, Minimax, Neyman-Pearson) which are 

special cases of the Bayes criterions end up with likelihood ratio tests. 
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3.1.2 Multiple Hypotheses Test 

In many situations, there are several alternatives from which one of the hypotheses have to 

be selected. Similar to binary case, for M hypotheses testing, one can write the average cost 

with given the a priori probabilities, P(H0 ), P(Hi), ... , P(HM_1), and associated cost Cij 

for choosing Hi when the correct hypothesis is Hj, i.e., 

M-1M-1 

c = 2:::: 2:::: cijP(HiiHj)P(Hj) (3.43) 
i=O j=O 

With the similar arguments as in binary case, it can be written as, 

M-1 M-1 M-1 

c = L ciiP(Hi) + L 1. L P(Hj)(Cij- cjj)p(ziHj)dz 
i=O i=O Z, j=O,jfi 

(3.44) 

The first term represents the fixed cost and let's define the term inside the integral of the 

second term as 

M-1 

L P(Hj)(Cij- cjj)p(ziHj) 
j=O,jfi 

(3.45) 

By observing (3.44), it is obvious that we have to decide on the hypothesis which corresponds 

to the minimum value of Ii(z) as the correct one. 

An important special case, which is used in this thesis, is when 

P(Ho) = P(H1) = · · · = P(HM-1) = P, Cii = 1 fori ::1 j and Cii = 0 
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in which case we have 

M-1 

L p(ziHi)P = [1- p(ziHi)]P (3.46) 
j=O,j-fi 

Then the decision rule is to choose Hi for which p(ziHi) is maximum. 

3.2 Filtering 

Once the measurements are associated with tracks, which is to be discussed in section 3.3, 

track filters are used to estimate t~e target states. The recursive Bayesian type filters are 

easy to implement and well established. Here some well known recursive filters are reviewed. 

They work well in different settings and assumptions. The Kalman filter which is optimum 

in linear, Gaussian problems is given in section 3.2.1. In section 3.2.2, another optimal filter, 

grid based filter, is reviewed. Extended Kalman filter (EKF), a variant of the Kalman filter, 

is given in section 3.2.3. Finally particle filter which has proven to be effective for nonlinear 

non-Gaussian problems is given in section 3.2.4. 

3.2.1 Kalman Filter 

If some assumptions hold, the Kalman Filter completely and exactly characterizes the prob­

ability distribution of the state. It is then the optimal method for conducting sequential 

Bayesian inference. The assumptions of Kalman filter are: 

• p(xo) = N(mo, Co) 



CHAPTER 3. DETECTION AND TRACKING 19 

• mo, C0 , ~k and rk are known. 

where N(m, P) is a Gaussian distribution characterized by its mean, m, and covariance, P. 

It is worth noting also that the final assumption can be circumvented by transforming the 

variables such that the assumption holds. 

The Kalman filter works because, if p(xk_1 lzl:k_1) and p(xkixk-1) and p(zkixk) are all 

Gaussian distributions then so is p(xklzl:k)· It is possible to prove the same recursion us­

ing a Least Squares (LS) argument, through such an approach recursively describes, not 

characterizes, the distribution. 

N(mk-1lk-1, Ck-1lk-1) 

N(mklk-1, Cklk-d 

N(!k(mk-1lk-1), ~k + FkCk-1lk-1F[) 

p(xkizl:k) = N(mklkl Cklk) 

(3.47) 

(3.48) 

where mklk' and Cklk' are respectively the mean and covariance of the distribution of the state 

at time k given data up to time k'. The functions fk(Xk) and hk(Xk) are linear functions, 

which can include bias terms. Ok and Wk are the covariance of the innovation term, zklk-1, 

and the Kalman gain, respectively. 
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hk(mklk-1) 

dfk(x~_ 1 ) 

dx' k 
x~_ 1 =mk-1lk-1 

dhk(xk) 
dx' k I 

xk=mklk-1 

HkCklk-1H[ + fk 

cklk-1H[rr;;1 
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(3.49) 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

An interesting point to note about the recursion formed by (3.47) and (3.48) is that 

there is no effect of the measurement on the covariances of the normal distributions. The 

covariance is defined entirely by the matrices the comprise the system, Fk, Hk, L:k, rk, 

C0 . If the system matrices are known and constant over time, then the covariances can be 

precalculated. It is also worth noting that in such cases, the covariance will tend to a value. 

This means that, after some initial period, the uncertainty is constant. This steady state is 

the result of a balance between the increase in uncertainty as a result of the prediction step 

and the reduction in uncertainty due to the update step. This observation leads to the a- (3 

filter, which can be viewed as a special case of the Kalman filter. 

3.2.2 Grid Based Filter 

The Kalman filter is not the only optimal algorithm for sequential inference. The grid based 

filter is another example of an optimal recursion resulting from a different set of assumptions. 

• The state space is discrete and at any time, k- 1, consists of a finite number, Np, of 
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state at x{_1 , j = 1 : Np. 

( ) - "'Np j J:( j) • p Xo - L..j=1 Walou Xo - Xo 

For each state x{_1 , let the conditional probability of that state, given measurements up 

to time k - 1 be denoted by w{_
11

k_ 1. Then, a recursion can be derived for the posterior pdf 

at time k- 1. 

Np 

:2:: wL1Ik-15(xk-1 - x{_1) 
j=1 
Np 

L w{
1
k_18(xk- x{) 

j=1 
Np 

:2:: wi
1
k8(xk - x{) 

j=1 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

The weights can be calculated in terms of the transition and observation probabilities. 

Np 
j 

wklk-1 
:2:: l · l wk-1lk-1p(x11xk-1) (3.59) 
!=1 

j wilk-1p( zk lx{) 
(3.60) wklk L~ Wklk-1p(zkjxL) 

The above does assume that p(x{lx~_ 1 ) and p(zklx{) are known, but does not constrain the 

particular form of these discrete distributions. 
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3.2.3 Extended Kalman Filter 

In many situations of interest, neither of these sets of assumptions hold. It is then necessary 

to make approximation. If p(x0), p(xkixk_1) and p(zkixk) are approximated as Gaussian and 

fk(xk_ 1) and hk(xk) are approximated as linear, then the recursion described above becomes 

the Extended Kalman Filter, EKF. 

p(xk-11zl:k-1) ~ N(mk-1lk-1, ck-1lk-1) 

p(xklzl:k-1) ~ N(mklk-1, Cklk-1) 

~ N(fk(mk-1ik-1), L:k + FkCk-1ik-1F'[) 

p(xkizl:k) ~ N(mkik, Ckik) 

~ N(mklk-1 + Wkzklk-1, Ckik-1- WkHkCkik-1) 

(3.61) 

(3.62) 

Such a local approximation of the equations may be a sufficient description of the non­

linearity. However, it is common that it is not. A better approximation can be made by 

considering the above approximation as using the first term in Taylor expansions of the 

nonlinear functions, fk(xk_ 1 ) and hk(xk)· A higher order EKF that retains further terms in 

the Taylor expansions exists and results in a closer approximation to the true posterior. The 

additional complexity has prohibited its widespread use. 

Recently, the unscented transform has been used in an EKF framework [11]. This ap­

proach considers a set of points that are deterministically sampled from Gaussian approxi­

mations to p(xk_1jzl:k_1). These points are all propagated through the true nonlinearity and 

the parameters of the Gaussian approximation are re-estimated. This filter is equivalent to 

a higher order EKF and its algorithmic simplicity makes it more attractive that the higher 

order EKF. 

If the true distribution of non-Gaussian then a Gaussian, however good approximation, 



CHAPTER 3. DETECTION AND TRACKING 23 

can never describe the distribution well. It is possible to approximate the state space as 

consisting of a grid of points and then use an approximate grid based approach. This is 

frequently the approach taken by the speech processing research community. In such cases, 

approximate grid based filters yield an improvement in performance in comparison to that 

of EKF [1]. 

3.2.4 Particle Filter 

In traditional state estimation problem, the Kalman Filter (KF) which is the best algorithm 

for linear Gaussian system, is used extensively. It fails for nonlinear system and its variant, 

Extended Kalman Filter (EKF) which approximates the system models to fit into linear 

Gaussian frame work, also fails for the case of high nonlinear and non-Gaussian system. 

Rather than approximating the models in order to be able to fit a distribution of a given 

type to the posterior, a particle filter explicitly approximates the distribution so that it can 

handle high nonlinear non-Gaussian models. The approach has also been known as bootstrap 

filter [9], condensation algorithm [14] and sequential Monte Carlo filtering [8]. 

In particle filtering, the required posterior density function is represented by a set of 

random samples ('particles') with associated weights [2] [9]. Let {x{_1}f,:u with associated 

weights {wL1}f,:1 be the random samples representing the posterior density p(xk_1 lzl:k_1) 

of the state vector Xk at time epoch k, where z1:k-1 is the set of all measurements available 

at time k. The weights are normalized such that L:f!1 w{_1 = 1. There are many variants 

in particle filter. The simplest and widely implemented variant is Sampling Importance 

Resampling (SIR) particle filter which is also used in this thesis. 
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SIR Particle Filter 

Sampling Importance Resampling (SIR) [21], [26] propagates and updates the particles in 

which the p(xk_1 lzl:k_1) is represented by equally weighted particles. Then, 

(3.63) 

where 8(·) is the Dirac Delta function. In this thesis, the prior density, p(xk_1 lzl:k) is chosen 

as the Importance Density. The propagation and update of the particles in SIR method are 

given as follows. 

Prediction Take each existing sample, x{ and augment it with a sample x~j "'p(xklx{_1), 

using the system model. The set {x~i}f:1 gives us an approximation of the prior, p(xklz1:k-1), 

at time k, i.e. 

(3.64) 

Update Importance Weights: At each measurement epoch, to account for the fact that 

the samples, x~~1 are not drawn from p(xklzl:k), the weights are modified using the principle 

of Importance Sampling. When using the prior as the Importance Density, it can be shown 

that the weights are given by 

(3.65) 
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Reselection: Resample (with replacement) from {x~i}f,:1 , using the weights, {w~i}f:u to 

generate a new sample, {x{}f,:1 , then set w{ = 1/NP for j = 1, ... ,m. We then have: 

(3.66) 

At each stage the mean of the posterior distribution is used to estimate, :Xk-1 of the target 

state, Xk-1, i.e. 

IE[xk/zl:k] 

r Xk p(xk/zl:k)dxk 
lxk 

1 Np 

~ N :Lx{ 
p j=1 

We use regularization to over come the degeneracy problem of the SIR filter. 

3.3 Data Association 

(3.67) 

(3.68) 

(3.69) 

The data association problem is that of associating the many measurements made by a sensor 

with the underlying states or tracks that being observed. It includes issues of validating the 

correct measurement to the correct states or tracks, and initializing, confirming or deleting 

tracks or states. Whereas conventional estimation (discussed in section 3.2) is concerned with 

uncertainty in measurement localization, data association is concerned with uncertainty in 

measurement origin. Section 3.3.1 introduces a common measurement validation technique. 

The goal is to reduce computational costs by avoiding having to search for the measurements 

in the entire measurement space. The Probabilistic Data Association Filter (PDAF) for 

single targets and the Joint Probabilistic Data Association Filter (JPDAF) for multiple 
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targets are reviewed in section 3.3.2 and 3.3.3 respectively. 

3.3.1 Gating 

In tracking applications, following the signal detection process that yields measurements, 

there is a procedure that selects the measurements to be incorporated into the state estima-

tor. A gate is set up and the detection within this gate can be associated with the target 

of interest. If there is more than one measurement in the gate, this leads to an association 

uncertainty. Usually the gate is formed in terms of the normalized innovation vk which is 

defined as, 

2 -T n -1-
Vk = Zkjk-1 ~ 'k Zkjk-1 (3. 70) 

where Zkik-1 and nk are in the innovation of the given measurement and innovation covariance 

and defined in (3.49) and (3.53) respectively. Assume that the true measurement, Zk, is 

Gaussian distributed with its pdf given by: 

(3.71) 

The pdf of the innovation, zklk-1 , is 

(3. 72) 

where dis the dimension of the measurement vector and lOki is the determinant of nk. Thus, 

the true measurement will be in the following region: 

9 (I) = { z : v2 :S: 1} (3.73) 
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with probability determined by the gate threshold I· The region is called gate. The simplest 

method for data association is the Nearest Neighbor data association. It considers the 

measurement which is shortest distance from predicted mean as the associated measurement. 

3.3.2 Probabilistic Data Association (PDA) 

In case of a single target in clutter, more than one measurements may be validated that fall 

into the gate. Rather than taking a single measurement, it updates the track with all the 

validated measurement. It calculates the association probabilities for each validated measure­

ment at the current step to the target of interest. This probabilistic (Bayesian) information 

leads to a tracking filter called PDA filter (PDAF), that accounts for the measurement origin 

uncertainty. 

Assumptions: 

• There is only one target of interest 

• the true measurement is Gaussian distributed with pdf 

• At each time step a gating region is set up 

• At most, one measurement can be target originated. The remaining measurements are 

assumed due to false alarm or clutter. 

• The target detections occur independently over time with known probability PD 
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The latest set of validated measurements at time step k is denoted as 

(3.74) 

where each measurement zk,j is the j - th validated measurement. mk is the number of 

measurements in the validation region at time step k. The sequence of all measurements is 

denoted as 

(3.75) 

To model the situation in which a target has not been detected, we introduce zk,o as a 

Null-measurement. Furthermore, we define the association events fh,j as 

ek,j = { Zk,j is the target associated measurement} j = 0, ... , mk (3.76) 

The association probability f3k,j is defined as the conditional probability of an association 

event 

(3.77) 

and by using the total probability theorem, the conditional mean of the state at time step k 

can be written as 

ffik 

L E [xklek,j, Zl:k] f3k,j 
j=l 

ffik 

L XkJk,jf3k,j 
j=l 

where XkJk,j is the a posteriori state conditioned on the event fh,j· 

(3.78) 
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3.3.3 Joint Probabilistic Data Association (JPDA) 

The Joint Probabilistic Data Association (JPDA) approach is the extension of the PDA 

approach. The same assumptions as in the PDA approach are to be considered, besides that 

there is a known number of targets Nr instead of a single target. The index t designates 

one among the Nr targets. In the JPDA approach, the measurement to target association 

probabilities are evaluated jointly across the targets. After gating, a validation matrix that 

indicates all the possible sources of each measurement can be set up. From this validation 

matrix all the feasible joint association events are obtained according to the rules 

• one source for each measurement 

• one measurement (or none) from each target 

Let e denote the joint association event (the time index is omitted for simplicity where it 

does not confuse) and ej,t is the particular event which assigns measurement j to target t. 

To evaluate the marginal association probabilities 

(3.79) 

it is assumed that the estimation problem is Markovian, thus the joint association probabil-

ities are given by 

P(BJZl:k) P(BJZk, Zl:k-1) 

P(BJZk, Xl:Nr) 

1 
-p(ZkJe, xl:Nr)P(BJxl:Nr) 
c 

(3.80) 
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where cis a normalization constant. The term P(B/x1:Nr) corresponds to the probability of 

the assignment B given the current states of the targets. We approximate this term by 

(3.81) 

where PD is the probability of detection, and n is the number of assigned Null-measurements 

z0 . By assuming that the measurements are detected independently of each other, we get 

p(Zk/B, X!:Nr) = P;l-(Nr-n) II Pj,t 

Oj,tEO 

(3.82) 

where Pp A is the probability of false alarm and Pi,t is the association likelihood that mea­

surement j assigns target t. It is determined by 

(3.83) 

where nj,t is the innovation covariance matrix and Vj,t is the normalized innovation between 

the measurement j and the predicted measurement of target t: 

2 -Tn -1-
l/. t = z. tHJ· t ZJ· t ), J, ' ' 

(3.84) 

Thus the probability of an individual joint association event is given by 

P(B/ZI:k) = P{jr-n(l- PDt p;;,_-(Nr-n) II Pj,t (3.85) 
Oj,tEO 



CHAPTER 3. DETECTION AND TRACKING 

Then the marginal association probability is given by 

(Jj,t = L P(BIZl:k) 
B:Bj,tEB 

The estimate of the tth target is given by 

mk 

= L E [xk,tiBj,t, Zl:k] (Jj,t 
j=l 

mk 

L Xklk,j,t(Jj,t 
j=l 

where xklk,j,t is the a posteriori state of target t conditioned on the event ej,t· 
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(3.86) 

(3.87) 



Chapter 4 

Joint Detection And Tracking 

In this chapter, a novel algorithm is developed to explore the use of tracking information in 

detection (and vice versa) through joint detection and tracking. This enables us to jointly 

detect and track more than two unresolved targets using a monopulse radar with ideal single 

bin processing. This requires the transformation of the target state into detection parameter 

space, which involves high nonlinearities. The SMC method, which has proven to be effective 

in nonlinear non-Gaussian estimation problems, is used to handle the nonlinearities. In 

addition to the standard SMC steps, the hypothesis testing for detection is performed in each 

recursion, which is facilitated by likelihood computation through Monte Carlo integration of 

the particle filter. The formulation of the single recursion of the algorithm is given in the 

following section. It is also described with the help of a simple block diagram in the last 

section. 

4.1 Single Recursion of the Algorithm 

Consider a single recursion of the recursive Bayesian procedure of the SMC method for the 

closed-loop tracking of multiple closely spaced targets. At time k-1, the tracking information 

32 
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is represented by particle set {xt1 w~·~ 1 }f:1 ~:;;u where Nr is the number of tracks and Np 

is the number of particles per track. The particle state, x, includes the target's kinematic 

state and the Average Radar Cross Section (ARCS) of the target. According to the Sampling 

Important Resampling (SIR) particle filter, the particles are predicted as 

j,i r ( i l __ i,i ) 
xk "' J klk-1 xk XJ.:-1 j = l, ... ,NP; i = l, ... ,Nr ( 4.88) 

where fklk-1 (-I·) is the state transition model. 

The radar resource managing routine determines the pointing direction for the next dwell, 

fh, by considering these predicted positions {xf:i wi·1~_ 1 }~P Nr where wi·1~_ 1 = w~·~ 1 . The 
J=1 t=1 

signal parameters, <I>~,i = [aoji T}bji 'TJejif, corresponding to each particle is evaluated by 

using monopulse radar model from [12], [30]. 

<I>j,i "' g (xj,i (} ) 
k k ' k j = l, ... ,NP; i = l, ... ,Nr (4.89) 

where D:'oji is the average signal amplitude, T}bji is the bearing DOA and 'TJeji is the elevation 

DOA of the jlh particle of target i. 

The observation set, Yk = {yr}~~1 , is received for the dwell on the pointing direction 

(}k, where Mk is the number of detected cells after thresholding, Yk = [rr [zrf] T' rr is 

the mth detected range bin centroid and zr is the matched filter output of the mth detection. 

Assume that, after gating, Nk tracks are corresponding to these detections. The validation 

matrix is constructed according to this gating [3], and different hypotheses are constructed 

for all possible events from the validation matrix. The hypothesis, Hh, is the one of the 

feasible events that are determined by the following assumptions of the ideal bin processing 

for unresolved targets: 

• Each target falls into at most one cell 
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• Each detection may be due to any number of targets 

Assuming independent detections, the likelihood of the hth hypothesis, Hh, can be written 

as 

Mk 

A(Hh) = p (YkiHh) = II p (YkiHh) ( 4.90) 
m=l 

Using the total probability theorem, p (YriHh) can be written as 

1 p (Yki<I>Nm,h' Hh) p ( <I>Nm,h IHh) d<I>Nm,h 
if?Nm,h 

EP( if?Nm,h JHh) {JL} (4.91) 

where Nm,h is number of targets that cause the mth detection according to hypothesis Hh, and 

E { ·} means the expectation operator. <I>Nm,h is the stacked parameter vector corresponding 

to the Nm,h targets of detection m given by 

( 4.92) 

In the above, JL is the joint likelihood of the measurement given the stacked parameter vector 

<I>Nm,h. That is, 

JL P (Yki<f>Nm,h, Hh) 

p (rkl<f>Nm,h' Hh) p (zkl<f>Nm,h' Hh) 

P (rkiXNm,h, Hh) P (zkl<f>Nm,h, Hh) (4.93) 

with XNm,h being the stacked state vector corresponding to <I>Nm,h. The first term in (4.93) 

is the probability of the event that Nm,h targets fall into the mth cell and has uniform 
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probability density function (PDF). The second term is the likelihood of signal zk given the 

stacked parameter vector and has Gaussian PDF, which is given by (2.36). 

Using Monte Carlo integration [8], ( 4.91) can be approximated as follows: 

(4.94) 
j;=l 

where s is the set of the pair of indices of targets and particles given by 

and 1-ls is the joint likelihood of the particle set corresponding to s and evaluated using ( 4.93). 

There are Nc = (Np)Nm,h possible combinations of particles and denote them by S = { s }. 

Particles are updated with marginal likelihood, )..J,i, which is given by 

)..j,i = L f..ls with sj,i = { s : s E S; [i j] E s} 
s E Si,i 

The updated weight is given by 

W
j,i _ wj,i \l,i 
k - k-1"' j = l, ... ,NP; i = l, ... ,Nr 

The hypothesis testing yields the correct detection event, i.e., 

( 4.95) 

(4.96) 

(4.97) 

The corresponding updated particle set is taken as the correct representation of the posterior 

states of the targets at time k and that completes a single recursion. 
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4.2 Block Diagram for Recursion 

Figure 4.4 depicts a simple block diagram of the algorithm and its key steps. The key steps 

are 

• Predicted states are used to evaluate the detection parameters. 

• They are also used to determine the pointing direction of the next dwell. 

• Measurements are received for the dwell on the pointing direction. 

• With the availability of measurements and predicted tracks, all possible events are 

formed. 

• Likelihoods of all hypotheses are computed using Monte Carlo integration. 

• The particle sets corresponding to the best hypothesis is taken as the correct represen­

tation of the target posterior. 



Chapter 5 

Posterior Covariance of Target State 

In this Chapter, the posterior covariance of the target state is derived to assess the perfor­

mance bounds of the algorithm developed in Chapter 4. The recursive Riccati-like formula 

for the Fisher Information matrix for nonlinear state estimation from [27] is used to derive the 

posterior covariance of the target state. The inverse of the Fisher Information Matrix (FIM) 

is the Cramer-Rao Lower Bound (CRLB). The fundamental theory of behind the CRLB for 

parameter estimation can be found in [28] and the details of the Posterior Cramer-Rao Lower 

Bound (PCRLB) for state estimation can be found in [27]. The following section gives a 

brief background on CRLB and in the last section, the PCRLB of target states is derived. 

5.1 Background 

Let Z represent a vector of measured data and X ( Z) be an unbiased estimate of a parameter 

vector X. The Cramer-Rao lower bound for the estimation error covariance, C, is defined to 

be the inverse of the Fisher Information Matrix, J, i.e., 

c ~IE {[X- X][X- xf} ~ J-1 

38 

(5.98) 
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where J is defined in [28]. The inequality means that the difference C - J- 1 is a positive 

semi-definite matrix. 

5.2 Posterior Cramer-Rao Bounds for Target State Es-

timation 

According to [27], the sequence of information matrices, { Jk}, for the state vector {xi} of 

target i obeys the recursion 

Ji = D22,i _ D2l,i (Ji + Du,i) -1 Dl2,i 
k k-l k-l k-l k-l k-l (5.99) 

where Jk and JL1 are Fisher information matrices of target i at time k and k-1, respectively, 

and 

Du,i 
k-l E {-~:~- 1 logp (xUxL1)} 

k-1 

FTQ-lF 

D!~i = E { -~:L1 logp (xilxL1)} 

-Q-lF 

Dk~i E { -~:t- 1 logp (xilxL1)} 

D22,i 
k-l 

-FTQ-l 

E { -~:t logp (xilxL1)} + E { -~:t logp (Yrlxi)} 

(5.100) 

(5.101) 

(5.102) 

(5.103) 

In the above,~ is the Hessian operator, F is the Jacobian of the nonlinear process function j, 

Q is the covariance matrix of the addictive process noise and 1; = E { -~:t logp (Yrlxi) }. 
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(5.99) can be simplified using the matrix inversion lemma in [4], and written as 

(5.104) 

where J~ is the information contribution from associated measurement Yk'· In addition, 

J~ E { -~:t logp (Yk'lxi)} 

E { -~:t logp (rk'lxi)} + E { -~:t logp (zklxi)} 

Ji + Ji 
r z (5.105) 

where 

Ji 
r E { -~:t logp (rklxi)} (5.106) 

Ji = E { -~:t logp (zklxi)} (5.107) z 

The information contribution from range measurement, 1:, can also be written as 

(5.108) 

The range measurement uncertainty is uniformly distributed within the range bin and ap­

proximated as Gaussian in this computation. Thus, 

(5.109) 

where fi is the predicted range of target i that is equal to Jxt(1)2 + xt(3) 2 + xt(5)2
, (}; = 
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b2 /12 and b is the range bin size. The gradient, \i'x; logp(rrlxi), can be written as 
k 

= v 

Therefore, 

41 

(5.110) 

(5.111) 

If the mth detection is due to targets i = 1, ... , Nm, the information available in monopulse 

signal zr is shared by them. Therefore, this information lz can be written in terms of the 

information contribution to each target of (5.107) as follows: 

[ 
1T iT N T] T xk , 0 0 0, xk , 0 0 0, xk m (5.112) 

and this is corresponding to the stacked state vector Xk, and can be written as 

diag ([1;, ... , ]~, ... , J:'m]) (5.113) 

The information matrix lz can also be written as 

(5.114) 

where the likelihood function, p(zrlxk), is given by (2.36). Let us define vector a = 

[a11 a22 a33 a12 a23 a!S]T which contains the distinct elements of P1 . Similarly, de­

fine b = [b11 b22 b33 b12 b23 b!S]T, which contains the distinct elements of the inverse 
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of Pl. The gradient V' Xk log p ( zr I Xk) can be written as 

-~Y'xk (zrP-1zr)- ~Y'xklogiPI 

-~Y'xk (z/kpl-1z/k)- ~Y'xk (z'Qkpl-1z'Qk)- Y'xklogiP1I 

1 T 
-2Y'xk (II+ IQ) b- Y'xk loge (5.115) 

where 

z/k [sik dbik deik]T (in phase part of the signal) 

m 
ZQk [sQk dbQk deQkf (quadrature part of the signal) 

II [ Sik 
2 

dbik 
2 

deik 
2 

2sikdbik 2dbikdeik 2sikdeik]T 

IQ [sQk
2 

dbQk 
2 

deQk 
2 

2SQkdbQk 2dbQkdeQk 2SQkdeQk]T 

c IPll 2 2 2 2 aua22a33 - aua23 - a12a33 + a12a13a23 - a13a22 

It can be further simplified as 

[
1 T d ( d ) Tl d - - (II + lQ) -b + - log c -a 
2 da da dxk 

(5.116) 
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where the Jacobian d'~,b is given by 

e2 
a33- ~ a22- ~ -~ -2a23-~ -~ _.:::1. 

c c c c c c 

a ele2 
e2 an- e2q _ e2e4 _e2es -2a13- e2e6 _:2 33- -c- c c c c c 

a22-~ au-~ 
e2 

-2a12-~ -~ -~ 
~b=~ 

_:::.:J. 
c c c c c c 

da c ~ ~ -a12 + ~ -a33 + ~ a+~ a+~ 
c c c c 13 c 23 c 

-a23 + ~ ~ ~ a+~ -an+~ a+~ c c c 13 c c 12 c 

~ -a13 + ~ ~ a+~ a+~ -a22 + ~ c c c 23 c 12 c c 

The gradient ia log c is given by 

d 
da loge (5.117) 

with 

e1 
2 a22a33- a23 

e2 
2 aua33- a13 

e3 2 aua22- a12 

e4 2 (a13a23- a12a33) 

e5 2 ( a12a13 - au a23) 

e6 = 2 (a12a23- a13a22) 

e7 a12a33 - a13a23 

es an a23 - a12a13 

eg a13a22 - a12a23 
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and the Jacobian _dd a is given by 
Xk 

with 

0 0 0 0 0 0 

-21/bik~xk (3) 0 21/bik~xk(i) 0 0 0 
(r~h)2 (r~h)2 

-2"7eiki\,A(l)x~(5) 0 -21/eiki\,x~ (3)x~ (5) 0 21/eiki\,fh 0 
Ai = a6i (r);Yrih (r)J2rh (rJ.Y 

-k~xk(3) 0 -k~xk(i) 0 0 0 (fh)2 (fh)2 

-"'eik~xi, (3) "'eiki\,xk(l)xk(5) 0 1/bik~xk(l) 1/eiki\,xk (3)xi, (5) 0 1/eiki\,rh 0 (fh)2 (r~)2f~h (fh)2 (rJ.Yrh (rJ.Y 
-rye;ki\,xk(l)x~(5) 

0 -rye;ki\,xi,(3)xk(5) 0 1/e;ki\,r&a 0 (r~)2fh (rU2rh (ft)2 

In the above, flh is the azimuth range given by Jxt(1) 2 + xt(3t In the above differ­

entiation, a linearly approximated monopulse error function (2.33) is used. Therefore, the 

information contributed by monopulse signal measurement is 

(5.118) 

This expectation can be computed using Monte Carlo integration. 



Chapter 6 

Simulation Studies 

In this chapter, results of the simulation studies for the algorithm that was developed in 

Chapter 4 are presented. There are two objectives for our simulation studies: the first is to 

evaluate to the performance in terms of track purity and the second is to analyze its tracking 

error performance relative to the PCRLB derived in Chapter 5. The first scenario used in 

the simulations is shown in Figure 6.5, where three aircrafts that are initially resolved and 

travel such that they approach each other with linear motion for 20 s and then make a 

coordinated-turn for 20 s so that they are brought into a convoy formation. During this 

period, the targets start to become unresolved. After 5 s of convoy movement, during 

which the targets are fully unresolved, they start to separate with 20 s of coordinated-turn 

followed by linear motion for 20 s. During the convey movements targets move with a 

constant velocity of 100 m/ sin parallel courses separated by the distance of 0.4 km. The 

ARCS of each target is 1.4m2 . 

The radar is located at the origin of the coordinates. The radar is a nominal 4 G Hz 

phased array using amplitude comparison monopulse with uniform illumination across the 

array. A waveform of four subpulses (frequency diversity) is used. In this simulation a 
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discretized white noise acceleration model [4] for target's kinematic state transition model 

and a white noise process model for ARCS transition model are used for state transition 

model in (4.89). That is, 

~klk-1 F~k-1ik-1 + fv 

O"kik-1 - O"k-1lk-1 + n 

(6.119) 

(6.120) 

where ~ is the target kinematic state, a- is the target ARCS, v is a Gaussian noise vector 

realization with independent components having a standard deviation of 10 m/ s2
, each n is 

a white noise with standard deviation 0.05 m 2 and the matrices F and r are given by 

F= 

f= 

1 8 0 0 0 0 

0 1 0 0 0 0 

0 0 1 8 0 0 

0 0 0 1 0 0 

0 0 0 0 1 8 

0 0 0 0 0 1 

52/2 0 0 

8 0 0 

0 82/2 0 

0 8 0 

0 0 82/2 

0 0 8 

where 8 is the time duration between the two consecutive dwells. 
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The results from 50 Monte Carlo runs are presented below. Figure 6.6 shows the 50 

Monte Carlo run average. The average tracks are almost following the truth with degraded 

performance during target maneuvering intervals. The estimated tracks of 50 Monte Carlo 

runs are overlayed in Figure 6.7, which demonstrates track purity. Figure 6.8 shows the 

average position Root Mean Squared Error (RMSE). It shows how the uncertainty increases 

with the number of targets and reduces once the targets are resolved again. 
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Figure 6.5: Target trajectories of the first scenario 
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In the second part of this study, a scenario set similar to the eighth set of target trajec­

tories in [30], which consists of a number of inbound aircraft flying along parallel courses, is 

used with the same radar setup as in the first simulation study. The aircraft have an initial 

range of 70 km and maintain a constant velocity of 200 m/ s with a separation of 0.4 km so 

that they are unresolved during the whole period considered in the simulation. The ARCS 

for all targets is 1.4m2
. The trajectories for the scenario with three targets is shown in 

Figure 6.9. 

Figure 6.10 shows the estimated position RMSE and the corresponding lower bounds 

for the single target case. As expected, the algorithm performs well, matching the lower 

bounds. For the case of two targets, as shown in Figure 6.11, it is approaching the lower 

bound and agrees with results of [23]. Similarly, it is somewhat approaching for the case 

of three unresolved targets as shown in Figure 6.12. This is a clear demonstration of the 

possible detection of more than two targets with the help of tracking information. 
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Figure 6.10: Average position RMSE and posterior position standard deviation lower bound 
for a single target 
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Figure 6.11: Average position RMSE and posterior position standard deviation lower bound 
for two unresolved targets 
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Chapter 7 

SUMMARY 

7.1 Conclusions 

An algorithm is developed to jointly detect and track unresolved targets with a monopulse 

radar using ideal bin processing. It explores the use of tracking information in detection. For 

this purpose, it constructs the hypotheses for the possible detection events and selects the one 

with the highest score via hypothesis testing. The particle filtering method makes it possible 

to evaluate the likelihoods of the hypotheses through Monte Carlo integration. The particle 

set corresponding to the best hypothesis represents the target posterior. Posterior covariance 

is derived to assess the algorithm using a recursive formula for the Fisher Information Matrix. 

Simulation studies confirm the possible joint extraction and tracking of more than two targets 

using single bin processing. 
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7.2 Recommendations for Future Work 

In this study, we considered ideal single bin processing, where target returns are assumed to 

be at only one matched filter sampling point. But, in real-world problems, target returns are 

spread over more than one sample point. The joint bin processing for this target spill-over 

into adjacent bin has proven to improve the detection [31,32]. Keeping this in mind, current 

work can be extended to exploit the target spill-over so that the estimation accuracy could 

be improved. The second possible extension of this work is to accommodate automatic track 

initialization and termination. In the current implementation, only the maintenance of the 

tracks corresponding to multiple unresolved targets is considered. With suitable birth and 

death models, the current work can be extended to handle more realistic problem where 

targets appear and disappear intermittently. 
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