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ABSTRACT 

In this thesis, the current-voltage (I-V) behaviour of Liquid Organic Field-Effect 

Transistor (LOFET) was systematically studied with respect to the gate voltage, 

channel length and channel fluid. LOFETs in both internal and external gate 

modes were successfully fabricated in four-probe configuration. 

It was discovered that the effect of gate voltage on the source-to-drain current of 

LOFETs was significant. The drain current clearly increased when the gate 

voltage increased. This phenomenon was found in all LOFETs samples with 

different channel fluids and channel lengths. In addition, it was also proved that 

anions are the majority carriers in LOFETs. The concentration of anions inside the 

LOFET channel increased while applying a larger voltage to the gate, resulted in 

an increase of the drain current. This achievable gate modulation set up a solid 

foundation for further research on the manipulation of ionic and molecular species. 

It was also obtained that the drain current was changed with variable channel 

lengths. The current through the LOFET channel decreased while the channel 

length increased. At the same time, the difference between drain current in 

various channels evidently increased when the gate voltage increased from 0 to 

5V. This was found to be due to the anion concentration change with varying gate 

voltages. 

The drain currents through LOFET channels filled with fluids of different 

polarities were also measured. It was observed that when the polarity of the 
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molecule increased from that of 4,4'-Dihydroxybiphenyl to that of 2-Amino-4 

Phenylphenol, the drain current increased significantly. At the same time, the 

difference between drain current in specific solutions was also more significant, 

when applying higher voltage to the gate. Combining these results with the gate 

modulation above, there is great potential of developing new sensing techniques 

and even logic operation in the future. 

This work represents a step towards a new group of cheap and effiecient 

electronic components of LOFETs. Guided by systemic observations from the 

effects of gate voltage, channel length and fluid structure, there is no doubt that 

LOFET will become a more attractive research topic because of its promising 

advantages, such as easy fabrication, low cost and its highly sensitive response. 
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1 INTRODUCTION 

It is beyond anyone's imagination how fast the Field-Effect Transistors (FETs) 

industry has been booming over the past several decades. The invention of 

germanium point-contact transistor by Shockley and his two Bell Labs colleagues, 

Brattain and Bardeen, not only brought them the Nobel Prize in Physics in 1956, 

but also formed a milestone in the 20th century electronic industry. In addition, 

Metal-Oxide-Semiconductor FETs (MOSFETs) and Complementary MOSFETs 

developed respectively by Kahng and Wanlass in the 1960's greatly motivated the 

IFET to dominate the semiconductor industry for their wide range of applications 

from memories and microprocessors to signal and imaging systems [1, 2]. 

Since the 1980's, Organic Field-Effect Transistors (OFETs) based on conjugated 

polymers, oligomers, or other organic molecules have been envisioned as obvious 

alternative to traditional IFETs for their structured flexibility, low-temperature 

fabrication and low cost. In this case, OFETs hold promise for applications in 

large-area, flexible and ultralow-cost electronics such as computer displays and 

disposable cell phones [3-5]. 

During the last decade, interest in microfluidic circuitry has grown steadily with 

the advent of advanced etching and lithography techniques capable of creating 

fluidic circuits. This became a driving force for the development of M/NFET for 

applications in biomedical research, environmental testing and medical 

diagnostics [6-10]. 

- 1 -



M.A.Sc Thesis- Feihong Nan McMaster - Materials Science and Engineering 

It is obvious that the trend in the FET industry is always directing to exploit the 

modest end of cost and performance. That is why materials scientists and device 

engineers have been collaborating to develop new breeds of cheap and efficient 

electronic components. In current LOFET research, the device is simply 

assembled with micro-glass slides and metal electrodes. Current flow between 

source and drain is impacted by the gate voltage. I-V behaviours corresponding to 

different gate voltages, channel lengths and fluid types, predict the potential 

advantages of LOFETs of easy fabrication, low cost and sensitive response, 

applying in biochemical testing techniques in the future. 

In this thesis, after detailed review of history, working mechanism, advantages 

and applications of existing IFETs, OFETs, and MINFETs, the limitations in the 

current device, which is also the motivation of the study on LOFETs, will be 

summarized. The experimental set-up, testing technique and results, followed by 

the discussion and future work, will be given in separate chapters. 

-2-
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2 LITERATURE REVIEW 

2.1 History of Field-Effect Transistors 

2.1.1 History of Inorganic Field-Effect Transistors 

The Field Effect Transistor was first flled as a patent by Julius E. Lilienfeld in 

1926, "Method and Apparatus for Controlling Electric Currents," in which a 

three-electrode structure using copper-sulfide semiconductor material was 

proposed. However, he never got the device to work because he did not fully 

appreciate the role of surface defects or surface states [ 11-13]. 

In the process of trying to experimentally demonstrate such a field-effect 

transistor, Bardeen, Brattain and Shockley invented the bipolar transistor, the 

world's fust transistor, at the Bell Telephone Laboratories in 1947. This 

germanium point-contact device, along with its field-effect counterpart, reigned 

supreme in the early days of semiconductor integrated electronics [ 14-17]. 

It was only much later, after the problem of the surface states was resolved by 

growing an oxide insulator on Si, that the first MOSFET was demonstrated in 

1960 by Kahng and Atalla, which had been long anticipated by Lilienfeld, Heil, 

Shockley and others. Unlike previously bipolar transistors, the various types of 

MOSFETs are characterized by high input impedance, since the control voltage is 

applied to a reverse-voltageed junction or Schottky barrier, or across an insulator. 

These devices are particularly well suited for controlled switching between a 

- 3 -
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conducting state and a nonconducting state, and are therefore useful in digital 

circuits. They are also suitable for integration of many devices on single chips. In 

fact, millions of MOS transistors are commonly used together in semiconductor 

memory devices and microprocessors today[17-21]. 

2.1.2 History of Organic Field-Effect Transistors 

Organic semiconductors were identified as early as 1948 [22]. However, in spite 

of several significant advances, such as electroluminescence and photovoltaic 

effect, these materials remained confidential for several years [23-26]. The first 

organic field-effect transistor was reported until 1986, with device made on an 

electrochemically grown polythiophene film. Different from geometry of the 

MOSFETs, OFETs used "thin film" transistor (TFT) architecture, in which the 

organic semiconducting film worked as an active layer for charge transport [27-

29]. Over the last decades, the improving performance of OFETs made it possible 

to develop low-cost, large-area plastic electronics by a number of industrial 

laboratories. As noted by Dimitrakopoulos and Malenfant in their 2002 review, 

industrial emphasis is shifting away from organic semiconductor testing and more 

towards manufacturing process development [30, 31]. 

-4-
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2.1.3 History ofMicro/Nanofluidic Field-Effect Transistors 

Interest in micro/nanofluidic technique has grown steadily over the past decade 

[6-34]. The first commercial Microfluidic "lab-on-a-chip" system was introduced 

for life science applications in 2003 [35]. Following that, several lab-on-a-chip 

companies, including Aclara, Caliper, and Orchid Biosciences, have developed 

micro/nanofluidic technologies that work for highly predictable and homogeneous 

samples that are common in the drug discovery process, whether in compound 

screening, genomic analysis, or proteomics [36-38].Later in 2005, the control of 

current flow in a liquid-state field-effect transistor was achieved by using 

electrowetting [10], an important enabling technology in microfluidics [39, 40]. In 

the same year, nanofluidic FET was reported which exhibited rapid field effect 

modulation of ionic conductance [8]. 

2.2 Working Mechanisms of Field-Effect Transistors 

2.2.1 Working Mechanism of Inorganic Field-Effect Transistors 

Although FETs can be built according to several architectures, the MOSFET 

structure, whose parent structure was established in 1960 by Kahng [18, 29], is 

one of the most widely used inorganic field-effect transistors in digital integrated 

circuits. Channel current in MOSFET is controlled by a voltage applied at a gate 

electrode which is isolated from the channel by an insulator. Such devices are 

-5-
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made b using metal or heavily doped polysilicon for the gate electrode, Si02 for 

the insulator, and silicon for the semiconductor The term of Metal-Oxide-

Semiconductor Field-Effect Transistor (MOSFET) is commonly used [ 13]. 

...t. 
s__jl__c 

B 

,.~, 

Figure 2- I Tridimensional image of an Enhancement-type n-channel MOSFET, reprinted 

from Encyclopaedia Britannica. Inc. 

Structure 

Figure 2- I illustrates the basic MOSFET structure for the case of an 

enhancement-mode n-channel device formed on a p-type Si substrate. where two 

n+ domains have been diffused; they constitute the source and drain electrodes. A 

- 6 -
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thin oxide layer separated the conducting gate from the Si substrate. No current 

flows from drain to source without a conducting n channel between them. This 

can be clearly understood by looking at the band diagram of the MOSFET in 

equilibrium along the channel in Figure 2-2. The Fermi level is flat in equilibrium. 

The conduction band is close to the Fermi level in then+ source/drain, while the 

valence band is closer to the Fermi level in the p-type substrate. Hence, there is a 

potential barrier to the built-in potential of the back to back p-njunctions between 

the source and drain. 

Electrons ... ~/ "\... ..... 
Ec C+>G>C+>C+>ct> ,_ - ' C+>G>G>G>C+> Ec 
E ~ '" E 

F j 000 ' F 

E, - - - - :;:o ';/''('" ---· E, 

Ev ----" Holes Ev 

Figure 2-2 Band diagram of the MOSFET in equilibrium along the channel 

Gate control operating mode 

When a positive voltage is applied to the gate relative to the substrate (which is 

connected to the source in this case), positive charges are in effect deposited on 

the gate metal. In response, negative charges are induced in the underlying Si, by 

the formation of a depletion region and a thin surface region containing mobile 

-7-
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electrons. These induced electrons form the channel of the PET, and allow current 

flow from drain to source. Since electrons are electrostatically induced in the p­

type channel region, the channel becomes less p-type, and therefore the valence 

band moves down, farther away from the Fermi level. This obviously reduced the 

barrier for electrons between source, channel, and drain. If the barrier is reduced 

sufficiently by applying a gate voltage in excess of what is known as the threshold 

voltage, VT, there is significant current flow from the source to the drain. For a 

given value of gate voltage, V a, there will be some drain voltage, Vn, for which 

the current becomes saturated, after which it remains essentially constant. 

Current-Voltage (1-V) Behaviour 

Figure 2-3 and Figure 2-4 illustrated the current-voltage behaviour in inorganic 

PETs. 

Linear region: as the gate voltage increases, more electron charge is induced in 

the channel and the channel becomes more conducting. The drain current initially 

increased linearly with the drain voltage. 

Pinch off: as drain current flow in the channel keeps increasing, more ohmic 

voltage drops along the channel such that the channel potential varies from zero 

near the grounded source to whatever the applied drain potential is near the drain 

end of the channel. That is, the voltage difference between the gate and the 

channel reduces from V a near the source to V a-V n near the drain end. Once the 

- 8-



M.A.Sc Thesis- Feihong Nan McMaster- Materials Science and Engineering 

drain voltage is increased to the point that V0 -Vn = VT, threshold is barely 

maintained near the drain end, and the channel is said to be pinched off. 

Saturation region: increasing the drain voltage beyond the saturated drain voltage 

V D(sat.) causes the point at which the channel gets pinched off to move more into 

the channel, closer to the source end. Electrons in the channel are pulled into the 

pinch-off region and travel at the saturation drift velocity because of the very high 

longitudinal electric field along the channel. Now, the drain current is said to be in 

the saturation region because it does not increase with drain voltage significantly. 

Figure 2-3 MOSFET drain current vs drain-to-source voltage for several values ofVG-Vr, 

reprinted from Wikimedia Commons 

-9-
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Soun:e Gate Dl'llin 

Depletion Region 

(a) (b) 

Source Gate Soun:e Gate Dl'llin 

Pinch-ofT Channel 

(c) (d) 

Figure 2-4 MOSFET (a) at equilibrium; (b) linear regime; (c) pinch off; (d) saturation 

regime 
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2.2.2 Working Mechanism of Organic Field-Effect Transistors 

imilar to Inorganic Field-Effect Trans istors ( IFETs), Organic Field-E ffect 

Transistors (OFETs) comprise of three electrodes: source, drain and gate shown in 

Figure 2-5. However, the semiconducting layer of OFETs reduces to a very thin 

film compared with the bulk solid in IFETs. Secondly, there are no p-n junctions 

at the source and drain electrodes. Without forming an inversion layer to deliver 

the mobile charges, the source and drain in OFETs are supposed to easily inject 

charge into the organic semiconducting layer Thirdly, OFET is n-channelled 

when the semiconductor type is n-type and p-channelled when the semiconductor 

is p-type, which is different from the n-type channel formed in p-type substrate in 

IFETs. 

Figure 2-5 Tridimensional image of Organic Filed-Effect Transistor (OFET) 

When a gate voltage is applied to the OFET device, a conducting channel is 

forming at the insulator and semiconductor interface. Most often, the output 
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characteristics of OFETs have the general shape predicted by Figure 2-3 with well 

separated linear and saturation regions. Equqations 

Error! Reference source not found. and Error! Reference source not found. 

are widely used to account for these characteristics. [29] 

2.2.3 Working Mechanism of Micro/Nanofl.uidic Field-Effect 

Transistors 

Micro/nanofluidic devices transport ionic or molecular species passively through 

the channel, analogous to electron transport through source and drain terminals in 

IFETs. Similar to MOSFETs, introducing field-effect modulation of ionic or 

molecular species in micro/nanofluidic systems would promote a higher level of 

controllability and even logic operation. 

Microfluidic Field-Effect Transistors 

Microfluidic Field-Effect Transistors via electrowetting has similar structure to 

the conventional solid state MOSFET as shown in Figure 2-6. The device consists 

of a glass substrate, a dielectric-covered transparent ground electrode, source and 

drain metal terminals, a hydrophobic insulator layer, a hydrophilic grid (defmes 

circular active device area and confines the oil by strongly attracting water 

molecules), two fluids (electrolyte KCl and oil), and the top gate electrode. 
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Figure 2-6 Schematic diagram of microfluidic FET via electrowetting, reprinted from ref. 10 

For zero gate voltage. the low surface tension oil preferentially covers the low 

surface energy hydrophobic insulator, forming a thin film that excludes the high 

surface tension polar electrolyte solution. ln this case, the transistor is in the 

electrically off state, with the source-to-drain channel closed to charge transport. 
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Figure 2-7 Drain current vs drain voltage at different values of gate voltage in Microfluidic 

FET, reprinted from ref. 10 

When a negative voltage is applied to the gate, the electrowetting starts and the 

resulting field across the hydrophobic insulator effectively increases its surface 

energy and reduces its hydrophobicity, attracting the polar water molecules and 

electrolyte anions to the insulator surface and replacing the oil layer. In this case, 

an electrical channel similar to that is in a MOSFET is formed, through which 

electrons can flow from source to drain, establishing the Microfluidic FET drain 

current [10]. 
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Naoofluidic Field-Effect Transistor 

The nanotluidic Field-Effect Transistor consists of the following components as 

shown in Figure 2-8: lithographically defined gate electrodes which surround the 

silica nanotube, deep etched source-drain microtluidic channels, and PDMS 

(polydiemethylsiloxane) cover KCI solution is used as the nano-channel fluid [8, 

9]. 

aoun:e 
lltctrode 

Figure 2-8 Schematic diagram of Nanofluidir FET, reprinted from ref. 8, 9 

Voltages applied to the gate electrode shift the electrostatic potential distribution 

inside the nanotubes. In the case of silica nanotubes having negative surface 

charges, cations are the majority carriers so that negative V
11 

will enhance cation 

concentration while positive VK depletes cations. 
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Figure 2-9 Drain current vs drain voltage at different values of gate voltage in NanoOuidic 

FET, reprinted from ref. 8. 9 

2.3 Advantages of Field-Effect Transistors 

2.3.1 Advantages of Inorganic Field-Effect Transistors 

The continuous improvement of integrated circuit performance is a prerequisite 

for the success of the modem electronic industry This improvement is achieved 

by reducing the featured size of the fundamental switching component, MOSFETs, 

the most important type of the IFETs. Indeed, the reduction of device dimensions, 

or scaling, allows the packing of a great number of circuit functions into a small 

space. As a result complex electronic equipment can be employed in many 

applications where weight and space are critical , such as in aircrafts or space 

vehicles. 
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In addition, the large-scale integration of many IFETs based circuits on a Si 

substrate has led to a major reduction in computer size, thereby tremendously 

increasing speed and function density of the operating system. An example of this 

is the 45nm Intel SRAM chip which has more than 1 billion IFETs. 

2.3.2 Advantages of Organic Field-Effect Transistors 

Compared with conventional IFETs, the OFETs fabrication process is much less 

complex. This is due to the much lower temperature deposition and solution 

processing techniques that can be applied on a variety of substrates. 

At the same time, mechanical flexibility of organic channel materials makes the 

relevant devices naturally compatible with plastic substrates for light weight and 

foldable products. 

Another advantage of OFETs is their high portability, which leads to the 

miniaturization of devices. Small sample volumes as well as arrays with many 

elements are also achievable [41, 42]. 

2.3.3 Advantages ofMicro/Nanofluidic Field-Effect Transistors 

Micro/Nanofluidic Field-Effect Transistors have made great progress within the 

last decade and offer promising potentials in the future. The key to 

Micro/Nanofluidic FETs is the manipulation of fluids within micrometer or 
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nanometer-sized channels. In this case, micro-fabricating techniques adapted from 

the semiconductor and plastic industries such as micromachining, 

photolithography and injection moulding are applied in the micro/nanofluidic 

FETs industry. These achievable miniaturization methods bring the following 

benefits: reduction of the size of the equipment, fast analysis, a short reaction 

times, parallel operation for multiple analyses, and the possibility of portable 

devices. Specific to the field of Micro/Nanofluidic FETs is the advantage of the 

fast analysis with low sample and reagent volumes, leading to low waste levels 

and the unique physical consequences of mico/nanoscale fluid flow, and 

ultimately establishing "lap-on-a-chip" systems. [ 43-45] 

2.4 Applications of Field-Effect Transistors 

2.4.1 Applications of Inorganic Field-Effect Transistors 

Since the scientists in Bell Laboratories invented the world's first transistor in 

1947, IFETs have dominated the mainstream microelectronics industry. They are 

fundamental building blocks for basic analytical circuits, such as amplifiers, as 

well as the key elements for digital combination logic circuits. Moreover, IFETs 

are essential to the modem memory devices, integrated circuits, and 

microprocessors used in personal computers and laptops [41]. 
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2.4.2 Applications of Organic Field-Effect Transistors 

Since the first OFET was reported in 1986 [27], there has been great progress in 

both the materials performance and development of new fabrication techniques. 

OFETs have already been demonstrated in the applications of: electronic papers 

for displays [46-48], sensor devices for chemical vapour and humidity sensing 

[49,50], pentacene-based OFETs integrated circuits for Radio Frequency 

Identification Cards (RFIDs) [5,51]. 

2.4.3 Applications ofMicro/Nanofluidic Field-Effect Transistors 

In conventional micro/nanofluidic devices, analytical separations can be achieved 

by micro/nanofluidic FETs which apply the on-chip operations including 

chemical separations by chromatography or electrophoresis [52, 53]. In 

conjunction with fluid manipulation and chemical separation, detection of 

analysis via optical, electrochemical and metric methods is another important 

application [54-57]. Moreover, nucleic acid analysis [58, 59], protein analysis [57, 

59] and cellular studies are proved applicable in micro/nanofluidic devices for 

bioanalytical applications [60, 61]. 

Besides the applications in conventional micro/nanofluidic devices, it has been 

reported that the current control in a microfluidic FET was achieved by 

electrowetting between competitive insulating/conducting fluidics [1 0]. It has also 

been demonstrated in Nanofluidic FETs that gate voltage can modulate the 
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concentration of ions and molecules in the channel and controls the ionic 

conductance [8, 9, 62]. 

2.5 Disadvantages of Field-Effect Transistors 

2.5.1 Disadvantages of Inorganic Field-Effect Transistors 

As mentioned before, the 45nm Intel SRAM chip has more than 1 billion 

transistors per 300mm silicon wafer. However, such high precision requires a 

facility with a photolithography set-up that requires a huge capital investment. For 

example, a state-of-the-art 300mm silicon integrated circuit fabrication facility 

costs approximately US$3 billion, to which only a few industrial leaders, such as 

Intel, are able to finance. 

The most common type of IFETs is typically Silicon complementary metal oxide 

semiconductor FET (Si-CMOSFET). This device is single-crystalline with typical 

2 
carrier mobility near 1000 em N·s at room temperature, which accounts for the 

high performance. However it must be built on a silicon wafer, which has a 

limited diameter of approximately 300mm with high price of about US$1 000 per 

piece. The high cost and limited dimension make it incompatible with some 

electronic markets including large-area displays and low-end applications such as 

RFID tags and E-Papers. 

-20-



M.A.Sc Thesis- Feihong Nan McMaster - Materials Science and Engineering 

2.5.2 Disadvantages of Organic Field-Effect Transistors 

Because of the relatively low mobilities of organic semiconductor channel 

materials, OFETs cannot compete with the performance of IFETs based on single­

crystal Si or Ge semiconductor which have charge carrier mobilities (Jl) at least 

three orders of magnitude higher than OFETs. For this reason, OFETs are not 

appropriate for applications that require very high switching speeds [42]. 

In order to meet benchmarks for performance criteria, such as mobility and on/off 

ratio, active layer materials should ideally be easy to process and have long-term 

stability for device longevity. However, there is a delicate balance between the 

performance and the processability of the active layer component, which becomes 

another disadvantage in current OFET technology [41]. For example, the reported 

organics possessing good electronic characteristics such as pentacene, is insoluble 

and therefore difficult to process [63, 64]. 

2.5.3 Disadvantages of Micro/Nanofluidic Field-Effect Transistors 

In micro/nanofluidic FETs, fused silica nanotubes were used which led to the 

enhancement of the electrophoretic separation efficiency, rather than the gate 

control of flows in integrated devices [7]. 

Moreover, the experiments were carried out in nanotubes covered with a thin, ion­

conductive polymer film. The the thickness of the nanotube walls required a high 

gate voltage to obtain sufficiently high radial electric fields, the voltage 

magnitude of which is far too high for today's integrated circuits [6, 8, 9]. 
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With micro/nanotube channels, device sizes have been reduced to much smaller 

dimensions compared to conventional nanofabrication, but in terms of integration, 

it is more difficult. 
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3 OBJECTIVES 

As mentioned in Chapter 2, the relatively low mobilities of the charge carriers in 

the channel and the delicate balance between the performance and the 

processability became the limitations of OFET development. At the same time, 

higher gate voltage required for integrated circuits and capillary effect affecting 

the gate control were also found to be the drawbacks of the nanofluidic devices. 

Therefore, Liquid Organic Field-Effect Transisotrs (LOFETs) with potential 

advantages and applications listed below have attracted much attention. 

Potential advantages of LOFETs 

• Wide range of channel materials 

• Low cost 

• Simple structure, nanotube-free 

• Easy to assemble 

Potential applications of LOFETs 

• Sensiri.g in low concentration conditions 

• Biochemical sequencing 

As a result, the objectives of this thesis were shown as below, 

• Observe if Electric-field effect exists in LOFETs 
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• Study Current-Voltage (I-V) behaviour in LOFET devices, via parameters 

of gate voltage, channel length and channel fluids 

• Study structure of channel materials X-ray diffraction, in order to control 

device behaviours in atomic scale more precisely 
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4 EXPERIMENTAL PROCEDURE/DETAILS 

4.1 LOFET Design and Construction 

Schematics of LOFET design in both internal gate mode and external gate mode 

were shown in Figure 4- 1. The LOFET cell is composed of electrodes and 

solution container. The electrodes include source, drain and double-gate 

electrodes which are prepared from platinum foil. Pre-cleaned micro cover glasses 

(VWR, Ltd.) with designed sizes are assembled by instant glue (Elmer's Products 

Canada, Corporation) which cannot be dissolved in N,N-Dimethylformamide, the 

solvent of the channel materials. Therefore good electrical contact as well as a 

proper sealed organic solution is attained. 
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Figure 4- I Schematic diagrams of Liquid Organic Field-Effect Transistor (LOFET): (a) 

internal gate mode, (b) external gate mode 
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4.2 Preparations of electrodes and solution 

Source, drain and double-gate electrodes are made from 99.99% pure platinum 

foil produced by Alfa Aesa. Before being placed into the LOFET cell, all the 

electrodes had been immersed in concentrated hydrochloric acid and subsequently 

heated up to 80°C for 2 hours in order to eliminate metal impurities. Deionized 

water was used to flush the electrodes. Acetone and N,N-Dimethylformamide 

were also used to clean the electrodes in order to keep the organic impurities away 

from the electrodes. In the fmal step, the electrodes were dried in vacuum 

overnight so that the influence from water vapour to the cell has been minimized. 

N,N-Dimethylformamide (Caledon Laboratories Ltd.) was selected as the solvent 

of the channel fluid shown as Figure 4-2. Small-molecule organic chemicals such 

as 4,4'-Dihydroxybiphenyl, 2-(4-Hydroxyphenyl)-5-pyrimidinol and 2-Amino-4 

Phenylphenol were obtained from Sigma-Aldrich Canada and used as the solute 

of the channel fluid, structures of which are shown in Figure 4-3. 

Figure 4-2 Solvent structure of the channel fluid, N,N-Dimethylformamide 
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Figure 4- 3 Solute structures of the channel fluid: (a) 4,4'-Dihydroxybiphenyl, (b) 2-(4-

Hydroxyphenyl)-5-pyrimidinol and (c) 2-Amino-4-Phenylphenol 

4.3 Experimental Set-up and I-V Measurement 

Figure 4-4 is the experimental apparatus for the LOFET cell operation and 

measurement. Source-drain and double-gate electrodes are all kept inside the cell, 
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perpendicular to each other The LOFET cell was placed in a Faraday shield 

which lowered the electronic noise effectively 

D 
D 

CMSlOO 

Figure 4-4 Schematic diagram of LOFET cell operation and measurement apparatus 

The variable voltage for double-gate was controlled by Hewlett Packard DC 

Power Supply (Model 6614C), and gate current is recorded by Keithley 

Picoammeter (Model 485). The system is operated by programs written in Visual 

Basic Language as the experiment progressed. Gamry Instruments CMS 100 

Electrochemical Analyzer and Framework Software System were used to record 

1-V Curves between source and drain electrodes. All the measurements were 

taken with samples kept in the shield at room temperature. 
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4.4 Visualization Techniques 

4.4.1 Optical Microscope Observation 

The Axioplan 2 Imaging and Axiohot 2 University Microscope were used for 

optical microscope observation of the electrode surface in order to obtain better 

understanding of the reason behind the phenomena. 

4.4.2 X-Ray Diffraction Observation 

The composition of the film formed in the channel was studied by XRD with a 

diffractometer (Nicoleti2) using Cu Ka radiation at a scanning rate of0.16°/min. 
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5 EXPERIMENTAL RESULTS AND DISCUSSION 

LOFET were successfully fabricated by using the four-probe configuration. The 

experimental results were obtained in both internal gate mode and external gate 

mode. The influence of gate voltage, channel length and channel fluid type on the 

current-voltage behaviour of the devices was investigated. 

5.1 Current-Voltage Behaviours of LOFETs in Internal Gate Mode 

5.1.1 Impact of Gate Voltages 

To study the effect of gate voltage to drain current in internal gate mode, 

0.5mol/L of2-(4-Hydroxyphenyl)-5-pyrimidinol channel fluid was prepared and a 

channel 2mm in length was made. The applied source-to-drain voltage was set 

within a range from OV to 1 V at a scan rate of 50m VIs. Figure 5- I shows the 

source-to-drain current for the gate voltage varying from 0 to 5V. As the 

magnitude of gate voltage increased, the current in the channel increased 

significantly. The main reason for the increase of the drain current is due to the 

increase of the anion concentration inside the channel of the LOFETs, which will 

be explained in details in the following sections. 
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Figure 5- 1 Effect of gate voltage on drain current with respect to drain voltage in O.Smol/L 

of 2-(4-Hydroxyphenyl)-5-pyrimidinol channel fluid with a channel length of lmm: (a) 

V<F()V, (b) VG=O.lV, (c) V?l.OV, (d) V?S.OV 

Inside the LOFET channel filled with 0.5mol/L of 2-(4-Hydroxyphenyl)-5-

pyrimidinol fluid, there is equilibrium: 

The ionic current under source-to-drain voltage can be calculated as a 

superposition of conductive and convective contributions 

h 

I= J we[(n+ + n_),uE + (n+- n_)u]t:U 
-h 

(5.1.1) 

Eq. (5.1.2) above is the integration over the volume of the channel, where w, 2h, 

fJ, n+ and n- are the width, height of the channel, ionic mobility, cation and anion 

concentrations, respectively [65, 66]. 
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To further understand the gate effect and determine the ions that dominate the 

drain current, protons that possess the highest mobility among all the particles in 

the channel fluid were assumed as the majority carriers. 0.05ml of hydrochloric 

acid with a pH value of 1.70 was added to lml of 0.5mol/L of 2-(4-

Hydroxyphenyl)-5-pyrimidinol channel fluid. As a result, the pH value of the 

fluid decreased from 8.50 to 5.90. The drain current in the channel with proton 

additives was two times higher than it is in the pure fluid as shown in Figure 5- 2. 

At the same time, the proton concentration in the acid fluid was 30,000 times 

higher than it was in the pure fluid. These observations contradict the assumption 

made before. As a result, anions with much lower mobilities such as -o-R1-R2-0H, 

OH-Rt-R2-o- and -o-Rt-R2-o- were the majority carriers. 
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-D-·a Wlhut u• addlive 
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Figure 5-2 Source-to-Drain current characteristics ofO.Smol/L of2-(4-Hydroxyphenyl)-5-

pyrimidinol solution with a channel length of 2mm and gate voltage of lV: (a) without 

proton additive, (b) with proton additive 
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Anions became the majority carriers, resulting in ann-type Field-Effect Transistor 

(FET). Meanwhile the electrostatic potential distribution inside the channel varied 

under different positive voltages. Increasing gate voltage V g enhanced anion 

concentration and thus resulted in larger drain current. This simple scheme 

explains quantitatively how electric-field works in LOFET systems. In 

semiconductor systems, the smaller the band gaps, the better the ambipolar 

behaviour. However, both cation and anion densities are associated with the same 

electrical potential level in fluidic channels. This phenomenon results in gapless 

transport systems. 

It was reported that the following basic kinetic processes exist inside the 

nanofluidic channel: (i). deprotonation or protonation in response to the external 

electrical field, (ii) adsorption and desorption of counter ions, (iii) ion exchange in 

the channel leading to a steady state of ion distribution[8]. Experimental results in 

Figure 5- 3 showed that ionic conductance changed once gate voltage increased 

which are mainly due to reaction (i) or (ii). It decayed gradually to steady state 

under the same gate voltage, a high source-to-drain voltage sweeping led to a 

rapid decay (relaxation time < 50 sec at 5V) compared with the slower decay 

under lower voltage (relaxation time- 150 sec at 0.5V). However, it has also been 

observed that different gate voltages did not result in much different transient 

responses at the same source drain voltage in LOFETs. Therefore, ion-exchange 

between the transiently generated counter ions and bulk solution were believed to 
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control the kinetics of the field modulation in the liquid state channels in LOFETs. 

Further increasing the gate voltage should lead to faster field effect operation. 
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Figure 5- 3 The transient responses of ionic conductance when turning on the gate voltages, 

O.Smol/L of2-(4-Hydroxyphenyl)-5-pyrimidinol solution with a channel length of2mm 

Gate voltage effects were also obtained in a group ofLOFETs filled with different 

small-molecule organic solutions inside the channels. The channel fluids are 4,4'-

Dihydroxybiphenyl, 2-(4-Hydroxyphenyl)-5-pyrimidinol and 2-Amino-4-

Phenylphenol solutions in a concentration of 0.5mol/L. These solutions were 

injected into 2mm channels one after another for the current-voltage behaviour 

measurement. From Figure 5- 4 to Figure 5- 6, it is obvious that drain current 

increased significantly while the gate voltage increased from OV to 5V in all three 

LOFETs. 
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Figure 5- 4 Effect of gate voltage on drain current with respect to drain voltage in O.Smol/L 

of 4,4'-Dihydroxybiphenyl solution with a channel length of2mm: (a) V<rOV, (b) V<rl.OV, 

(c) VG=S.OV 

-o-av.=W 

8110 -Q-bV
8
=0.1V 

-l:::r-cV
8
=1V 

--'\1"" d V 0 =5V 
8110 Qlamell~ 

4111 

2111 

0.0 

Figure 5- 5 Effect of gate voltage on drain current with respect to drain voltage in O.Smol/L 

of2-(4-Hydroxyphenyl)-5-pyrimidinol solution with a channel length of2mm: (a) V<t=OV, (b) 

V<rO.lV, (c) V<rl.OV, (d) VG=S.OV 
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Figure 5- 6 Effect of gate voltage on drain current with respect to drain voltage in 0.5mol/L 

of 2-Amino-4-Phenylphenol solution with a channel length of 2mm: (a) V G=OV, (b) V ~.1 V, 

(c) VG=l.OV, (d) V<F5.0V 

From the results above, a preliminary summary is given below: 

1) The impact of gate voltage on source-to-drain current is significant. The drain 

current jumped up once the gate voltage increased. This phenomenon has been 

discovered in all LOFET specimens with different channel fluids and channel 

lengths. 

2) Anions are the majority carriers in LOFETs of the four-probe internal gate 

mode. Anion concentration inside the channel increased while applying a larger 

voltage to the gate, resulting in the increase of the drain current. 
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5.1.2 Effect of Channel Length 

The effects of channel lengths of LOFETs on the current-voltage behaviour are 

shown from Figure 5-7 to Figure 5- 10. The drain current increased linearly when 

the source-to-drain voltage was increased from OV to IV. At the same time, the 

current decreased when the channel length was increased from lmm to 4mm, and 

this coincided with the equation below for the linear regime in FETs: 

(5.1.3) 

It was discovered that at the same source-to-drain voltage, the difference between 

drain current in various channels increased notably when the gate voltage was 

increased from OV to 5V. This is related to the change in anion concentration with 

varying gate voltages as mentioned in the previous section. 
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Figure 5- 7 Effect of channel length on drain current with respect to drain voltage in 

0.5mol/L of 2-(4-Hydroxyphenyl)-5-pyrimidinol channel fluid with a gate voltage of OV: (a) 

channel length=lmm, (b) channel length=2mm, (c) channel length=4mm 
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Figure 5- 8 Effect of channel length on drain current with respect to drain voltage in 

0.5mol/L ofl-(4-Hydroxyphenyl)-5-pyrimidinol channel fluid with a gate voltage ofO.lV: (a) 

channel length=lmm, (b) channel length=2mm, (c) channel length=4mm 
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Figure 5- 9 Effect of channel length on drain current with respect to drain voltage in 

O.Smol/L of 2-(4-Hydroxyphenyl)-5-pyrimidinol channel fluid with a gate voltage of IV: (a) 

channellength=lmm, (b) channellength=2mm, (c) channellength=4mm 
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Figure 5- 10 Effect of channel length on drain current with respect to drain voltage in 

O.Smol/L of 2-(4-Hydroxyphenyl)-5-pyrimidinol channel fluid with a gate voltage of SV: (a) 

channellength=lmm, (b) channellength=2mm, (c) channellength=4mm 

-40-



M.A.Sc Thesis- Feihong Nan McMaster - Materials Science and Engineering 

5.1.3 Discussion about Solute Structure of the Channel Fluid 

The effects of solute structure and polarity on LOFET performance were also 

studied from Figure 5- 11 to Figure 5- 13. The drain currents of three different 

channel fluids were measured while the gate voltage increased from 0.1V to 5V. 

It was found that when the polarity of the molecules increased from 4,4'­

Dihydroxybiphenyl to 2-Amino-4 Phenylphenol, the drain current increased 

significantly. At the same time, the difference between drain current in specific 

solutions also increased when the gate voltage was increased from 0.1V to 5V. 

According to these results, the idea of molecule sequencing was generated by 

using this four-probe internal gate mode LOFET. It is possible that different types 

of channel fluids can be distinguished by their characteristic drain current. At the 

same time, more obvious results can be achieved by simply increasing the gate 

voltage. 
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-D-a 2-{4-H)'d!Oll)phen)t)-5-pymninilol 
-0-b 4,4'-DII)'droxybphen)t 

15110 -b--c 2-Amilo-4-Phen)iphenol 
DDB =2rnm DQ =4mm 
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Figure 5- 11 Effect of solute structure on drain current with respect to drain voltage in 

O.Smol/L of2-(4-Hydroxyphenyl)-5-pyrimidinol channel fluid with a gate voltage of0.1V: (a) 

2-(4-Hydroxyphenyl)-5-pyrimininol, (b) 4,4'-Dihydroxybiphenyl, (c) 2-Amino-4-

Phenylphenol 
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Figure 5- 12 Effect of solute structure on drain current with respect to drain voltage in 

0.5mol/L of 2-(4-Hydroxyphenyl)-5-pyrimidinol channel fluid with a gate voltage of 1V: (a) 

2-(4-Hydroxyphenyl)-5-pyrimininol, (h) 4,4'-Dihydroxybiphenyl, (c) 2-Amino-4-

Phenylphenol 
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Figure 5- 13 Effect of solute structure on drain current with respect to drain voltage in 

0.5mol/L of 2-(4-Hydroxyphenyl)-5-pyrimidinol channel fluid with a gate voltage of SV: (a) 

2-(4-Hydroxyphenyl)-5-pyrimininol, (h) 4,4'-Dihydroxybiphenyl, (c) 2-Amino-4-

Phenylphenol 
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5.2 Current-Voltage Behaviours ofLOFETs in External Gate Mode 

5.2.1 Impact of Gate Voltages 

To study the effect of gate voltage on drain current of LOFETs in internal gate 

mode, 1.063mol/L of 2-(4-Hydroxyphenyl)-5-pyrimidinol channel fluid was 

prepared and a channel lmm in length was made. The applied source-to-drain 

voltage was set within the range from 0.45V to 0.50V. Figure 5- 14 shows the 

source-to-drain current for the gate voltage varying from 0 to 1500V. As the 

magnitude of gate voltage increased, the current in the channel decreased 

distinctively. 

---D- a VG =Ov 
165 -<)-- bVG=1000v 

----6--- c V 6=1500v 
145 

125 

< c: ::p 105 

85 

Figure 5- 14 Effect of gate voltage on drain current with respect to drain voltage in 

1.063mol/L of 2-(4-Hydroxyphenyl)-5-pyrimidinol with a channel length of lmm: (a) V<FO, 

(b) V<FlOOOV, (c) V<F1500V 
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The gate voltage effect was obtained while the 1mm channel was filled with a 

higher concentration of 2.126 mol/L fluid as shown in Figure 5- 15. The drain 

current decreased notably when the gate voltage was increased from OV to 1000V. 

160 -D-aV
0
=0v 

150 
-o- b VG=500v 

~cV0=1000v 
140 

130 

~120 
_o 

110 

Figure 5- 15 Effect of gate voltage on drain current with respect to drain voltage in 

2.126mol/L of 2-(4-Hydroxyphenyl)-5-pyrimidinol with a channel length of lmm: (a) V<FO, 

(b) V<FlOOOV, (c) V<F1500V 

Applying different voltages to the external gate electrodes in the LOFETs with a 

2mm channel, the drain current decreased once the magnitude of the gate voltage 

was enhanced. This phenomenon has been observed in both channels filled with 

1.063mol/L and 2.126mol/L 2-(4-Hydroxyphenyl)-5-pyrimidinol fluid shown in 

Figure 5- 16 and Figure 5- 17, respectively. 
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Figure 5- 16 Effect of gate voltage on drain current with respect to drain voltage in 

1.063mol/L of 2-(4-Hydroxyphenyl)-5-pyrimidinol with a channel length of 2mm: (a) V<FO, 
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Figure 5- 17 Effect of gate voltage on drain current with respect to drain voltage in 

2.126mol/L of 2-(4-Hydroxyphenyl)-5-pyrimidinol with a channel length of 2mm: (a) V<FO, 

(b) V<F500V, (c) V<F1500V, (d) V<F1500V 
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5.2.2 Effect of Channel Length 

The effect of channel length on LOFET current-voltage behaviour in external gate 

mode was studied in 1.063moVL of 2-(4-Hydroxyphenyl)-5-pyrimidinol channel 

fluid shown from Figure 5- 18 to Figure 5- 19. The drain current increased 

linearly when the source-to-drain voltage was increased from 0.45V to 0.5V. At 

the same time, the current decreased while the channel lengths increased from 

lmm to 2mm, which coincided with the equation (5.1.3) for the linear regime in 

FETs: 

It was discovered that at the same source-to-drain voltage, the difference between 

drain currents in lmm and 2mm channels increased notably while the gate voltage 

increased from OV to 1500V. And this is related to the change in anion 

concentration with varying gate voltage as mentioned in the previous section. 
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Figure 5- 18 Effect of channel length on drain current with respect to drain voltage in 

1.063mol/L of 2-(4-Hydroxyphenyl)-5-pyrimidinol with channel lengths of lmm and 2mm 

respectively: (a) Vc=O, (b) Vc=lOOOV, (c) Vc=lSOOV 

While the concentration of the channel fluid increased to 2.126mol/L, the impact 

of the channel length on source-to-drain current was still significant. The drain 

current increased linearly when the source-to-drain voltage was increased from 

0.45V to 0.5V. At the same time, the current decreased when the channel length 

was increased from lmm to 2mm. It was found that at the same source-to-drain 

voltage, the difference between drain current from lmm to 2mm channel length 

was larger in 500Vgate voltage than it was in OV gate voltage. 
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Figure 5- 19 Effect of channel length on drain current with respect to drain voltage in 

2.126moi/L of 2-(4-Hydroxyphenyl)-5-pyrimidinol with channel lengths of lmm and 2mm 

respectively: (a) V G=O, (b) V ~SOOV 
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5.2.3 Discussion about Channel Fluid Concentration 

The effect of channel fluid concentration on LOFET current-voltage behaviour in 

external gate mode was compared between 1.063mol/L and 2.126mol/L of 2-(4-

Hydroxyphenyl)-5-pyrimidinol. Such contrast in both OV gate voltage and lOOOV 

gate voltage were shown in Figure 5- 20 and Figure 5- 21, respectively. It is clear 

that the drain current of high-concentration channel fluid was always increasing 

more quickly than it was in low-concentration channel fluid. 

-D-- Ul63111olll 
-z.'"}- 2-126rnolfl 

11111 

0.41i 0.411 0.47 0.40 0..411 0.511 

Figure 5- 20 Effect of channel fluid concentration on drain current with respect to drain 

voltage under V <FO 
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Figure 5- 21 Effect of channel fluid concentration on drain current with respect to drain 

voltage when V G=lOOOV 
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6 CONCLUSIONS 

In this thesis, different types of LOFETs in both internal gate mode and external 

gate mode were successfully fabricated by using four-probe configuration. Impact 

factors of the current-voltage behaviour of the device, such as gate voltage, 

channel length as well as channel fluid, were systematically studied. 

It was discovered that varying gate voltage influenced source-to-drain current of 

LOFETs obviously in both internal and external gate modes. The drain current of 

internal gate mode increased significantly once the gate voltage was increased. 

This phenomenon has been found in all LOFETs samples of different channel 

fluids and channel lengths. It was also proven that anions including -o-R1-R2-0H, 

OH-Rr-R2-0- and -o-Rr-R2-o- were the majority carriers in LOFETs. The 

concentration of anions inside the channel increased when a larger voltage was 

applied to the gate, resulting in the increase of the drain current. This achievable 

gate modulation formed a good foundation for the research on the manipulation of 

ionic and molecular species. 

It was also obtained that the drain current was changed when channel length was 

changed in two gate modes that were mentioned above. The current through the 

LOFET channel decreased when the magnitude of the channel length was 

increased: At the same time, the difference between drain currents in various 

channels increased significantly when the gate voltage was increased from OV to 
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5V. This was found to be due to the anion concentration change with various gate 

voltages. 

The drain current was also measured when LOFET channels were filled with 

fluids of different polarities. It is observed that with the polarity of the molecule 

increasing from 4,4'-Dihydroxybiphenyl to 2-Amino-4 Phenylphenol, the drain 

current increased significantly. At the same time, the difference between drain 

current in specific solutions were also more significant when applying a higher 

voltage to the gate. By combining these results with the gate modulation in 

LOFET channel fluid, there is of great potentials in developing new sensing 

techniques and even logic operation in the future. 

LOFET research in this thesis represented a step towards new groups of ecnomic 

and efficient electronic component. Followed by systemic observations on the 

effects of gate voltage, channel length and channel fluid. It is obvious that LOFET 

will became a more attractive research topic because of its promising advantages 

in the future, such as easy fabrication, low cost and quickly sensitive response. 
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7 FURTHER WORK 

The current-voltage behaviour was also measured inside the LOFET channel 

filled with conjugated polymer-based fluid. Poly(3,3"'-didodecylquarter­

thiophene), PQT-12, which is widely used in advanced organic photon-electronic 

materials research, was chosen as the solute of the LOFET channel fluid. The 

structure of the film deposited on top of the electrode contact was studied by XRD. 

The data in zero magnitude gate voltage was compared with it was in 40V gate 

voltage. The peak appeared at a 28 of 5° coincided with the PQT-12 reference 

patterns. It is clear that a diffraction peak appeared at a 28 of 7 .SO after applying a 

gate voltage of 40V to the device. It could be related to crystal orientation change 

caused by the increase of system energy, which was a result of the electric field 

effect. 

However, the background noise from the current XRD facility is too high for 

further characterization on the fllm structure. High intensity and highly collimated 

beam techniques such as Synchrotron XRD is required for the future work on the 

gate effect of the LOFETs on crystal orientations as well as the texture changes in 

order to control the performance of the LOFET device more precisely. 
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Figure 7- 1 XRD spectrum of the film deposited on top of the electrode without gate voltage 
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Figure 7- 2 XRD spectrum of the film deposited on top of the electrode with gate voltage of 

40V 
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