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Abstract 

The liver is a multi-function organ that plays important roles in nutri­

ent metabolism, biochemical transformations and blood detoxification. The 

purpose of the current work was to optimize Blood Oxygen Level Dependent 

(BOLD) liver functional MR imaging and analysis to allow the distinction be­

tween healthy volunteers and subjects with chronic liver disorders known to 

lead to fibrosis and reduced liver function (in this case, Hepatitis-C). 

Liver BOLD signal can be modulated by breathing 100% 0 2 or through 

intake of a meal. Previous results using these stimuli have been inconclusive 

when comparing healthy and diseased livers. In addition, liver BOLD analysis 

has been traditionally carried out using general linear models (GLM). Since 

the liver has a dual blood supply (portal and arterial derived), its resultant 

haemodynamic response is complex. This makes it too difficult to employ 

GLM approaches, as they require the prediction and modeling of a response 

function. We chose a model-free, or data-driven approach, called principle 

component analysis (PCA) to analyze liver data. 

Initial optimization was done by determining the time of maximal hep­

atic portal vein (HPV) blood flow following ingestion of a controlled meal (235 

mL of Ensure Plus®). Statistically significant increases in HPV flow resulted 

at all measurement intervals, with the maximal postprandial change (71% in­

crease in comparison to the baseline flow) at thirty minutes after ingestion. 

Implementing acquisition and analysis optimizations with our dual liver 

challenge model (hyperoxia cycling in pre- and postprandial states), the PCA 
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approach was able to detect all of the diseased livers (n=6), while missing 

four of the healthy subjects (n=ll). The GLM technique, on the other hand, 

did not detect two of the patients and two of the healthy subjects. Thus, 

if this liver challenge is to be used as a screening tool, a model-free data 

analysis approach is suggested as more appropriate since it minimizes the 

chances of reporting false-negative results (based on this preliminary cohort). 

Although more false positives were detected with this method, it is of less 

concern seeing as these inaccuracies can be screened using simple blood tests. 

Promising results were obtained in this project, however, further studies using 

data-driven approaches such as partial least squares (PLS) are needed. 
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Chapter 1 

The Liver 

1.1 Anatomy 

The liver is the largest solid organ of the human body and accounts for 

2-5% of the total body weight (Geller and Petrovic 2004). In the adult, the 

liver weighs between 1400 and 1600g (Meeks et al. 1991). It is situated in the 

upper right quadrant of the abdominal cavity, below the diaphragm, and is 

partially protected by the ribs (Shier et al. 2006). 

Macroscopically, folds and fissures divide the liver into two wedge­

shaped lobes: the right and the left lobe. The right lobe, which is six times 

the size of the left one, is further divided into a caudate and a quadrate lobe 

that are located on the posterior and inferior surfaces, respectively (Sherlock 

and Dooley 2002). 

Microscopically, the hepatic organization can be described by one of two 

models: the classic lobule and the liver acinus (Bacon and Bisceglie 2000). In 

the lobular model, which is the one most commonly used, plates of hepatocytes 
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are arranged in a hexagonal structure, radiating outward from a central vein 

(Meeks et al. 1991). A portal triad, containing a hepatic artery, a portal vein, 

and a bile duct is located at the corners of the hexagon (Bacon and Bisceglie 

2000). Flow of blood from the periphery of the lobule to the central vein is 

guided through vascular channels called sinusoids. In the liver acinus model, 

on the other hand, the portal triad is described as being surrounded by three 

concentric zones of hepatocytes. Zone three is the one furthest away from the 

triad, and thus, it obtains the most oxygen-poor blood (Meeks et al. 1991). 

Although these two models outline the structural liver units differently, they 

do not provide con:f:l_icting explanations. 

The liver has a dual blood source, receiving its supply from the hepatic 

portal vein and the hepatic artery. Venous blood accounts for 75% of the 

blood conveyed to the liver, while the remaining 25% comes from the hepatic 

artery (Bacon and Bisceglie 2000). The portal vein carries digestion product­

rich blood from the intestine, the stomach, the pancreas, and the spleen to the 

liver (Meeks et al. 1991). After passing through the hepatic sinusoids, this 

venous blood returns to the circulatory system by emptying into the inferior 

vena cava (Shier et al. 2006). The oxygen-rich blood, which is about a quarter 

of the cardiac output, is supplied to the liver via the hepatic artery (Meeks 

et al. 1991). 
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1. 2 Physiology 

The design of the liver, with its one-cell thick plates of hepatocytes and 

its hepatic sinusoid vascular system allows for maximal interaction between 

the blood and the hepatic cells (Meeks et al. 1991). By exposing two sur­

faces of the hepatocytes to the sinusoidal blood, the liver is able to efficiently 

carry out its vital functions. The liver plays key roles in the metabolism of 

carbohydrates, proteins, and fats. It stores important nutrients, including 

iron, vitamins and glycogen. It also synthesizes plasma proteins, participates 

in biochemical transformations, detoxifies the blood, and activates enzymes 

(Geller and Petrovic 2004). As a glandular structure, the liver secretes many 

substances, including bile, which is stored in the gallbladder and assists in the 

digestion of fat (Shier et al. 2006). 

1.3 Diseases 

Due to the numerous functions that the liver performs, especially those 

of detoxification, it can become vulnerable to many diseases. These may arise 

from viral invasions, bacterial infections, a poor diet or the excessive intake of 

alcohol. The symptoms associated with a given disease depend on its grade 

and its stage. 
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One important viral liver disorder is hepatitis. Hepatitis has been 

serotyped into A, B, C, D and E forms. These result in the inflammation 

of the liver, which can be acute, chronic or both, depending on the strain of 

viruses involved. Chronic infection can develop from hepatitis B, C and D 

viruses (Bacon and Bisceglie 2000). This may then lead to fibrosis followed 

by the development of cirrhosis: a situation in which the liver tissue is scarred 

and can no longer function properly. 

1.4 Evaluation of Liver Function 

In order for the liver to carry out all of its functions, any diseases that 

may affect its normal performance must be identified and treated. Several 

methods are available to detect alterations of the liver and to assess its func­

tion. A set of biochemical tests, known as liver function tests (LFTs), measure 

the amount of specific molecules found in a sample of blood (Sherlock and 

Dooley 2002). Changes in the concentrations of these molecules can indicate 

diseases associated with hepatocyte damage. Some of the markers that are 

commonly assessed include enzymes; such as alanine aminotransferase (ALT), 

aspartate aminotransferase (AST) and alkaline phosphatase (ALP), proteins 

such as albumin, and biochemical breakdown products such as bilirubin (Bacon 

and Bisceglie 2000). Although these laboratory tests are simple to perform, 
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they have limitations with regards to sensitivity and specificity. Thus, they 

are commonly carried out together with other diagnostic imaging examinations 

that consider changes in the structure of the liver, such as computed tomogra­

phy (CT), ultrasound (US) or magnetic resonance imaging (MRI) (Bacon and 

Bisceglie 2000). 

Instead of assessing liver function by analyzing the blood, a biopsy can 

be performed. In this procedure, a needle is inserted through the skin and a 

sample of liver tissue is collected. While this method looks at damage to liver 

tissue directly and remains to be an invaluable tool in determining liver disor­

ders, it has some problems (Geller and Petrovic 2004). In order to successfully 

extract a liver sample, the patient must be able to lie still for a few seconds. 

This may not always be possible, given the physical fragility of some of the 

patients. Thus, an organ adjacent to the liver might get punctured (Bacon 

and Bisceglie 2000). Also, since this is an invasive procedure, complications 

such as hemorrhage or infections do arise. These are more common in children 

than in adults (Sherlock and Dooley 2002). There is a low mortality rate as­

sociated with performing a biopsy, and this is mostly because of hemorrhagic 

complications (Bacon and Bisceglie 2000). A liver biopsy does also provide 

false-negative results in some cases. 
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Due to the difficulties that accompany a biopsy, and the uncertainty 

associated with interpreting the results of LFTs, researchers have been at­

tempting to develop reliable imaging procedures, using US, CT, PET or MRI 

to look at liver function. 

The imaging modality that is first used to assess diffuse liver disorders 

is B-mode ultrasound (Abbattista et al. 2008). Doppler ultrasonogrpahy is 

sometimes utilized to evaluate hepatic blood flow. Many hemodynamic stud­

ies have also used contrast enhanced ultrasonography, where the intravenous 

administration of microbubbles results in the enhancement of flow signals. By 

analyzing the transit times of the injected contrast agent, research groups have 

been able to use this as a tool to differentiate between patients with liver cirrho­

sis and healthy individuals (Abbattista et al. 2008). Ultrasound elastometry 

has also been recently employed to evaluate liver fibrosis (Friedrich-Rust et al. 

2007)(0liveri et al. 2008). Since fibrosis is associated with an increase in 

stiffness, by inducing compressions and measuring tissue strain, an estimate 

of the hardness of the liver can be obtained. Although US is a widespread 

modality and has a relatively low operational cost when compared to other 

imaging systems, it still has limitations. In some cases, when the patient size 

is large, the image quality tends to be poor, making it difficult to interpret 

the results. In addition, some groups have shown that biologic effects, such as 
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enlarged intercellular spaces, dilated sinusoids and ultrastructural damage do 

exist in the liver of rabbits that undergo an ultrasound( Caruso et al. 2005). 

When it comes to evaluating hepatic metastasis, contrast-enhanced CT 

is the preferred imaging modality due to its high specificity ( Chezmar et al. 

1988). However, the injection of iodinated agents is not always possible, due 

to renal insufficiency or patient's allergies. This, along with the fact that the 

patient must be exposed to a small dose of ionizing radiation, may limit the 

application of CT in evaluating the liver. 

Fluorine-18-labelled fiuorodeoxyglucose (FDG)-PET imaging has also 

been used to detect hepatic metastases, and has been shown to have the highest 

sensitivity, in comparison to US, CT and MRI (Kinkel et al. 2002). However, 

this technique's use is limited due to its high costs and non widespread avail­

ability (Oliva and Saini 2002). In addition, PET has low spatial resolution 

and requires the administration of a radiopharmaceutical, thereby exposing 

the patient to ionizing radiation. 

Dynamic contrast enhanced MRI has been used by various groups to 

evaluate tumor vasculature. Since knowledge of whether the tumor is be­

ing perfused by means of hepatic artery or portal vein allows for choosing 

the appropriate treatment method, studies that characterize the hemody­

namics of hepatocellular carcinoma and liver metastases have been under-
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taken. By injecting a Gadolinium chelate, such as gadoterate dimeglumine, 

researchers have been able to quantitatively evaluate perfusion to the liver and 

to characterize various hepatic cancers (Abdullah et al. 2008). Gadobenate 

dimeglumine-enhanced MRI has also been shown to be able to detect hepa­

tocellular carcinoma nodules that are 1 em in diameter or larger (Choi et al. 

2008). 

All of the above mentioned imaging techniques are advantageous com­

pared to blood assessment, yet suffer from some limitations when it comes to 

evaluating liver function. Thus, if a noninvasive, reproducible imaging tech­

nique that is safe and does not expose the patient to ionizing radiation can 

be developed, it might be able to complement the routine liver tests. Re­

cent attempts, using MRI protocols such as Blood Oxygen Level Dependent 

(BOLD) imaging have been developed. These procedures are non-invasive and 

utilize endogenous deoxyhemoglobin as a contrast agent, thereby eliminating 

the complications associated with intravenous injections. However, like any 

emerging method, there are many areas that need to be further investigated 

to assess the reliability of these techniques in evaluating liver function. 

8 



M.Sc. Thesis- Alyaa H. Elzibak- McMaster University- Med. Phys. & App. Rad. Sci. - 2008 

Chapter 2 

BOLD MRI 

2.1 Theory 

The BOLD effect has been utilized in functional MRI studies since it 

was first observed by Ogawa and his colleagues in the early 1990s (Ogawa 

et al. 1990). Although many BOLD experiments are directed at assessing the 

function of the brain, the technique has been recently applied to examining 

other organs, such as the muscle (Noseworthy et al. 2003), the kidneys and 

the liver (Semple et al. 2001)(Foley et al. 2003)(Shuter et al. 1995). 

BOLD contrast is based on changes in the magnetic field that result 

from changes in the oxygenation level of the hemoglobin molecule. The mag­

netic properties of this molecule depend on its oxygenation state. When 

hemoglobin is attached to oxygen, giving rise to oxyhemoglobin (OxyHB), it 

becomes diamagnetic and has a weak effect on the local magnetic field (H uettel 

et al. 2004). Deoxyhemoglobin (DeoxyHB), which is not bound to oxygen, is 

paramagnetic and has a significant effect on the local magnetic field (Huettel 
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et al. 2004). Thus, using a pulse sequence that is sensitive to microscopic 

field gradients, an increase in signal loss will accompany an area of highly de­

oxygenated blood (Semple et al. 2001). Sequences such as the gradient-echo, 

which are based on T2*-weighting, are therefore commonly used in BOLD 

imaging (Talos et al. 2006). 

The physiological basis of the BOLD effect that is observed when imag­

ing the brain is attributed to the increase in oxyhemoglobin supply that ac­

companies neuronal activity (Huette! et al. 2004). When an area of the brain 

is activated, blood flow to that area increases. However, since the amount 

of oxygen delivered is more than that actually extracted, there is a relative 

decrease in the amount of deoxyhemoglobin, in comparison with an inactive 

state (Huette! et al. 2004). This results in less signal loss in the activated 

state. 

This BOLD technique can also be extended to study the liver. Under 

basal conditions, there is a characteristic ratio of OxyHB to DeoxyHB in the si­

nusoidal bed. When physiological processes that affect the proportion of blood 

oxygen occur, such as changes in blood flow, blood volume or metabolism, an 

associated change in the amount of deoxyhemoglobin present in the vessel is 

evident. Since the BOLD MR signal is proportional to the ratio of oxyhem-
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Basal conditions Physiolog'ical changes 

Oxyhemoglobin 

De oxyhemoglobin 

BOLD Signal ex: OxyHB 
DeoxyHB 

Figure 2 .1: U nder basal conditions. there is a certain ratio of oxyHB t.o cle­
oxyHB in R blood ve. se l. Phy. iologic;::d cha nges Rit er thi s m tio, th ereby affecting 
the BOLD signa l. 

globin to dPoxyhemoglol. in , oxygena tion ch anges tha t accompany physiological 

[actors have an observed effect on the measured signal (Figure 2.1) 

In order Lo utilize the BOLD Pfrect to look a t tlw fun ction of organf' . an 

experiment can be ~et.-up u ing various arrangement , one of which if' a blocked 

design. To u e thi s a.pproach in the brain , for example. if one is interes ted in 

studying the vi ual cortPx , t wo ~0 second block · can be employed. In the first 

block, whi ch erve as the control/ bas lin , the sui ject may be asked to just 

focu on a spot on a blank screen . During the following 30 ~econds . the sui ject 

may be asked to look a t a flashing checkerboard , and thi would serw as th 

timulu Lh a t would ·a use physiological changes and alter the BOLD ignal. 

1] 
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If trying to study the liver, the stimulus used to modulate the signal may be 

hypero:xia exposure or the intake of a meal. These can affect the proportion 

of blood oxygen reaching the liver, thereby changing the measured signal. 

The collected BOLD data, which can be one or more slices gathered 

over time as the experimenter presents the stimulus, are then analyzed to 

find if there is a relationship between the applied stimulus and the observed 

changes in the organ of interest. This collected data set that consists of images 

in temporal order is referred to as the time-series. There are two ways in which 

the BOLD time-series can be analyzed: hypothesis driven analysis, which is 

the most common approach (Huettel et al. 2004), and data driven analysis. 

2.2 Hypothesis Driven Analysis of the BOLD 

Time-series 

In order to analyze the BOLD data using the hypothesis driven tech­

nique, an idealized waveform, which represents the hemodynamic response of 

the region being studied, must be assumed. Since the researcher is apply­

ing a stimulus and expecting to observe changes during this application, an 

estimate of the BOLD signal that each voxel should exhibit in response to 

the task must be generated. For instance, if an experiment has 2 repeating 

blocks, each having 30 seconds duration, and the task is performed during the 
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I 
OFF 0 OFF ON OFF 

I 

0 30 60 '90 120 150 Time (sec) 

I \ I \ ldealiz,ed 
Response 

Figure 2 .2: A sample block design and lhe ideali zed waveform. 

second block, t l1en t he reLearcher nli ght hypothesize that during the second 

block. an increase in the BOLD signal wi ll be observed relative to tha L Leen in 

th . fir t block and thi s would allow for the development or an ideal r sponse 

(F igur 2.2) 

One . a model L estimated and the BOLD time-series iL collected . the 

goal of the hypothe is driven analysis is Lo find voxelf' in Lhe region under 

inveLtigation that exhibit changes in Lhe BOLD ignal that match t he change 

predi ·ted by the model. Figure ~ .3 show. the collected BOLD signal from two 

sample voxeL , one t haL matches the prediction of the model and one that does 

not , along with the idealized response. 
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Mathematically, the collected data from all of the voxels in the chosen 

slice (the time-series of all of the voxels in the imaged slice) can be arranged 

into a data matrix, Y. This observed data can then be represented using 

a general linear model as shown in Equation (2.1), where X is a matrix of 

the idealized response, E is a matrix of the noise or an error term and K, is a 

matrix of the parameter weights. These weights measure the contribution of 

the predicted model to the observed data (Huettel et al. 2004). The goal of the 

general linear model is to calculate the parameters (determine the K, values) 

that best explain the observed data (Y) in terms of the predicted model (X) 

while minimizing the error term (E). 

Y = fl,x +E (2.1) 

Once the parameter weights are calculated using the regression model in Equa­

tion (2.1), at-statistic is obtained by dividing K, for a given voxel by its residual 

error (Huettel et al. 2004). The p-value corresponding to this t-statistic is then 

determined. If the p-value is lower than the preselected threshold, then the 

voxel is considered to show statistical significance and is thus said to well fit 

the hypothesized hemodynamic response. 

Although this hypothesis driven analysis is most commonly used by 

researchers performing fMRI experiments, the approach has some limitations. 
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First of all, if a complex experiment is to be developed, it might be impossible 

to create an ideal waveform that best explains the expected changes that 

will accompany the stimulus. In addition, even if one could come up with 

a predicted response, it might not be an accurate one (Huette! et al. 2004). 

Thus, since this technique relies on modeling the collected signal in terms of 

the ideal hemodynamic response, if the predicted response is not accurate, 

wrong conclusions might be made. A model free approach has been used by 

some researchers to overcome these difficulties. 

2.3 Data Driven Analysis of the BOLD Time-
. series 

The data driven analysis is a technique that tries to find patterns in 

the BOLD time-series that might be related to the application of the stimulus. 

This is sometimes known as an exploratory analysis (Huette! et al. 2004) as the 

researcher investigates the underlying data structure and attempts to extract 

important task-related features. In order to find the underlying components 

that characterize the fMRI data, a few techniques have been used, including 

principle component analysis (PCA) (Anderson et al. 1999). In PCA, a set 

of variables, which are orthogonal to each other and are known as principal 

components, are initially generated. The collected fMRI data is transformed 
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into a new feature space that is created from these principle components. The 

resulting transformed data set contains time-series that are sorted based on 

directions in the data that have maximal variance (Suma and Murali 2007). 

The mathematical formalism of this technique can be explained as fol­

lows. Let the collected BOLD data be made up of a single slice that has n 

time points and m voxels. A data matrix, D can then be constructed with 

dimensions n x m, where the rows represent the data in time (the time-series) 

and the columns represent the data in space (the voxels) (Anderson et al. 

1999). Calculating the sample covariance matrix, DT D, results in a square 

matrix having the dimensions of m x m. The eigenvectors of this covariance 

matrix, which are known as the loadings, and the eigenvalues can then be 

computed. By organizing the m loadings in decreasing order of their corre­

sponding eigenvalues, the principle components of the data set can be found. 

The first principle component explains the direction in the data that has the 

largest variance, and the successive components represent the remaining di­

rections arranged in order of their significance (Suma and Murali 2007). The 

final step requires constructing a feature space from the most dominant prin­

ciple components and representing the original time-series in terms of this new 

variable space, resulting in vectors known as scores. 
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The decomposition of the data matrix into loadings and scores can be 

written using the PCA equation (Equation (2.2)), where Dis the data matrix, 

tk are the score vectors and Pk are the loadings (Geladi and Grahn 1996). 

(2.2) 

Although the data driven analysis technique does not rely on estimat-

ing the hemodynamic response of the region being studied, there are certain 

challenges that accompany its use. For instance, it is not always straightfor-

ward to decide how many principle components should be used to model the 

data. Using less components allows for reducing the dimensionality of the 

data, but it may result in missing some of the variance in the original data 

(Huettel et al. 2004). 

2.4 Applying the BOLD Effect to the Evalua­

tion of Liver Function 

The BOLD contrast has been used by a number of researchers to assess 

liver function. Although many BOLD experiments have been undertaken to 

evaluate the function of the brain, the extension from neuronal studies to those 

dealing with the liver reveals that the BOLD contrast is further enhanced in 

the liver due to its vasculature. Since the liver contains a higher blood volume 
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than the brain, it is more sensitive to changes in oxygenation, and thus, changes 

in liver signal intensities are higher than those observed in brain studies (Foley 

et al. 2003) . 

2.5 Literature Review 

A few groups have utilized the BOLD contrast to assess changes in liver 

tissue oxygenation that accompany various challenges. Foley et al investigated 

the effect of alcohol consumption on hepatic microvasculature using male Wis­

tar rats (Foley et al. 2003). After dividing the rats into a control group and a 

chronically-ethanol treated one, a spin echo pulse sequence was used to acquire 

images following the exposure of the rats to normoxic, hyperoxic, hypoxic or 

hypercapnic conditions (Foley et al. 2003). The study found that challenges 

that resulted in an increase in the oxygenated blood entering the vessels were 

accompanied by an increase in signal intensity on the T2-weighted images, 

as expected (Foley et al. 2003). The results also indicated that there was a 

microvascular dysfunction in the treated rats, since their images showed less 

signal changes following the challenges, when compared to the control rats 

(Foley et al. 2003). 

Semple et al studied fetal oxygenation before and after the mother 

breathed 0 2 for twenty-minutes (Semple et al. 2001). Analysis of a region 
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of interest selected from the liver of the fetus indicated that there was a sig­

nificant increase in the measured T2* value in the BOLD images that were 

acquired following the 0 2 breathing in seven of the nine healthy subjects tested 

(Semple et al. 2001). The study concluded that this technique may be useful 

in detecting placental dysfunction resulting in insufficient delivery of oxygen 

to the fetus (Semple et al. 2001). 

Shuter et al investigated the effects of sacrifice on the MR signal by 

measuring the T1, T2 and T2* of the liver, kidney and brain before and 

after sacrifice of Wistar rats (Shuter et al. 1995). A reduction of the T2* 

values was observed in all three organs postsacrifice, indicating that as the 

deoxyhemoglobin content increased in the blood, a change in the susceptibility 

resulted, which was manifested as a decrease in the MR signal. 

Noseworthy et al tested the effect of cycling between 100% 0 2 and 

20.8% 0 2 on the oxygenation of the human liver (Fan 2006). They also in­

vestigated whether a fasted liver can show BOLD signal changes following the 

intake of a can of Ensure Plus®. In addition, they collected the BOLD signal 

during the ingestion of the meal and tried to determine if any useful infor­

mation regarding liver meal response can be obtained from that data. The 

reason behind deciding to analyze the BOLD signal following meal intake is 

that earlier work done by Noseworthy et al demonstrated alterations in the 
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oxygenation of the liver parenchyma when comparing fasted and postprandial 

states (Noseworthy et al. 1999). A decline in the BOLD signal after the in­

take of a meal has also been shown on T2*-weighted images (Fan et al. 2006), 

suggesting that BOLD signal changes may provide information about liver 

function. 

The hyperoxia cycling data collected from their experiments showed 

positive enhancement in most of the healthy individuals that participated in 

the study, while some subjects showed negative enhancement and some did not 

show any enhancement (Fan 2006). In addition, by comparing the postpran­

dial data to that obtained before the intake of the meal, their results showed 

that for subjects with positive enhancement, significant reduction in the en­

hancement was evident after the intake of the meal. However, for the subjects 

that did not show positive enhancement, there were no observed significant 

changes between the two states (Fan 2006). Although their challenge did not 

provide consistent results among all the healthy subjects, the novel BOLD 

approach that they developed raised the possibility that functional assessment 

of the liver may be achieved using BOLD MR Imaging. 
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Chapter 3 

Problem Definition and Hypothesis 

3.1 Problem Definition 

The liver plays important roles in biochemical transformations and 

blood detoxification. Although various techniques are now available to eval­

uate liver function and detect diseases that may alter its performance, they 

all have some drawbacks: they are either invasive, have limitations with re­

gards to sensitivity and specificity, involve the injection of a contrast agent, or 

expose the patient to ionizing radiation. Thus, if a noninvasive, reproducible 

and safe imaging technique can be developed, it might be able to complement 

routine liver tests. A few groups have demonstrated that Blood Oxygen Level 

Dependent (BOLD) imaging may be used to study liver tissue oxygenation. 

This technique is non-invasive and relies on endogenous deoxyhemoglobin as 

a contrast agent, thereby eliminating the complications associated with intra­

venous injections. Although these studies show promising results, a reliable 

procedure has yet to be developed to evaluate liver function. 
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3.2 Hypothesis Statement and Proposed Solu­

tion 

The objective of this project is to use BOLD MRI in the functional 

assessment of the human liver. A former member of our group has previously 

developed a liver challenge procedure that relies on modulating the BOLD 

signal with hyperoxia and meal intake (Fan 2006). Although the original 

protocol was tested on healthy subjects, inconsistent results were obtained. In 

addition, due to time limitations, patient recruitment was not possible. Thus, 

further work is needed in order to make statistically significant conclusions 

about the possibility of detecting liver disease using the BOLD procedure. 

A brief description of the method that was employed is given here. A 

more thorough explanation can be found elsewhere (Fan 2006). The technique 

involved imposing two challenges that alter the oxygenation of hepatic blood; 

exposure to 100% 0 2 and ingestion of a can of Ensure Plus®. BOLD images 

were collected during the hyperoxia cycling sessions, which occur pre and post 

intake of the meal. Image data was also gathered during food ingestion. 

Since the available challenge did not provide consistent results among 

all healthy subjects, the first purpose of this project was to make any changes 

that could optimize the current technique. This included changes in the ex­

perimental set-up as well as data analysis. In the original protocol, hypothesis 
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driven analysis was employed to analyze the collected BOLD data. Since 

the liver has a dual blood supply, it is hypothesized that using a model-free 

approach may be more accurate when it comes to evaluating changes that 

accompany the applied stimuli in this organ due to its complex blood supply. 

In addition, it is postulated that since physiological changes alter the BOLD 

signal, in order to optimize post Ensure BOLD acquisition, the data should be 

collected when there is maximal blood flow, as opposed to immediately after 

intake. Furthermore, since calculating the percentage of the liver that was re­

sponsive in the pre and postprandial states and performing at-test to compare 

them did not prove to be a good detection measure, it may be more appropri­

ate to calculate the percentage difference between the responsive pixels in the 

pre and postprandial states. 

The second purpose of this project was to test if the technique can dif­

ferentiate between healthy livers and those of individuals with liver disorder, 

especially those with Hepatitis C. Based on studies that have looked at the 

effects of meal intake on the BOLD signal in healthy livers (Noseworthy et al. 

1999)(Fan et al. 2006), it is hypothesized that, healthy livers will show a de­

crease in their hyperoxia-induced BOLD contrast post-prandial, in comparison 

to the pre-intake response. Diseased livers, on the other hand, are postulated 
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to respond differently; either showing an increase in response to the meal, or 

no significant change due to food ingestion. 
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Chapter 4 

Materials and Methods 

4.1 MR Scanner 

All MR imaging was performed using the G E Signa HD 3-Tesla short­

bore MR imaging system (General Electric Healthcare, Milwaukee, WI) lo­

cated at the Imaging Research Center of the Brain-Body Institute, St. Joseph's 

Healthcare, Hamilton, Ontario, Canada. Experiments were performed in the 

early morning following an overnight fast. An eight-channel torso phased array 

coil (USA Instruments ln., Aurora, OH, USA) was used to receive the signal 

while the body coil was used for transmitting the radio frequency pulses. All 

experiments in this study were approved by the St. Joseph's research ethics 

board (REB) in accordance with the declaration of Helsinki. 

4.2 Blood Flow 

This was a preliminary study undertaken to investigate the effects of 

meal ingestion on hepatic portal vein flow. 
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4.2.1 Accessories 

Peripheral pulse gating was employed in this study to monitor the car­

diac cycle and provide a way of triggering while the data was being acquired. 

4.2.2 Protocol 

All subjects were examined in the supine position and they were placed 

feet first into the magnet bore. Flow measurements were performed during 

breath holding using a vascular fast 2D phase contrast pulse sequence that was 

commercially available. Images were collected for sixteen consecutive cardiac 

phases using a velocity encoding strength ( venc) of 40cm/ s for the hepatic 

portal vein (a =20°, TR automatically set based on heart rate of subject). The 

imaging plane was prescribed perpendicular to the vessel of interest. Three 

baseline MR flow measurements of the portal vein were acquired after an 

overnight fast. Following acquisition of the fasting images, subjects consumed 

a standardized meal (one can of 235ml of Ensure Plus® ,Abbott Laboratories, 

Saint-Laurent, Qc) while remaining in their original supine position in the 

scanner. Images of the hepatic portal vein were collected immediately following 

food intake and in ten-minute intervals up to fifty minutes postprandial. 
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4.2.3 Subjects 

Four healthy human subjects (mean age: 33±6 years) participated in 

this preliminary study. None of the participants had a history of liver or 

cardiac disease or were on long-term medication use. Informed consent was 

obtained from each subject prior to the examination. 

4.2.4 Data Analysis 

Blood flow in the vessels was measured using the CV Flow software 

package that was commercially available on the GE Advantage Windows (AW) 

workstation (AW 4.2_03). A separate region of interest (ROI) was manually 

drawn around the chosen vessel on the magnitude image for each of the frames 

in the cardiac cycle. This ROI was then applied to the phase images and a 

flow rate was calculated for each of the cardiac phases by multiplying the 

contoured area of the vessel with the mean flow velocity in the vessel. The 

volumetric flow rate over the cardiac cycle was then determined by averaging 

the flow rates from all of the frames. The collected data was entered into a 

spreadsheet and statistical analysis was performed using computer software 

(SPSS for analysis, Excel for plots). The Paired Student t-test was used to 

compare the basal flow to that following meal intake. 
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4.3 BOLD Experiments 

These BOLD examinations were performed to test the response of the 

liver to two challenges: hyperoxia cycling and the intake of a meal. 

4.3.1 Accessories 

A respiratory bellows, which is a pneumatic elastic belt, was used to 

monitor the subject's breathing activity. For most subjects, this was placed 

around the chest. However, for subjects that were heavy stomach breathers, 

the bellows was put closer towards the stomach area. 

For the hyperoxia cycling part of the experiment, 100% 0 2 and medical 

air (20.8%02 ) were supplied to the subject through a face mask. The mask 

was connected to the hospital oxygen supply. Our cycling was employed by 

manually switching between 0 2 / medical air within the scan room. 

For the meal ingestion part of the study, one can of 235ml of chocolate­

flavoured Ensure Plus® (Abbott Laboratories, Saint-Laurent, Qc) was given 

to subjects as they laid in the supine position on the MR table. The contents 

of the can were poured into a plastic cup, and a person was required to enter 

the room and place a straw in the subject's mouth to allow for the fluid to be 

sipped out of the cup. 
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4.3.2 Protocol 

In order to choose the appropriate region of the body for the BOLD 

study, a 3-plane localizer was initially used (a standard beginning for all MRI 

exams). A fast spin-echo (FSE) pulse sequence is typically employed for local­

ization. Since this sequence is optimized by the vendor, the scan parameters 

were automatically set. 

An axial Fast Imaging Employing Steady-state Acquisition (FIESTA) 

scan was then applied through the liver for the purpose of localizing subsequent 

scans with more clarity. This required breath-holding from the subject, which 

usually lasted for about 20 seconds. The subject received clear breathing 

instructions from the technologist. 

From the acquired axial FIESTA images, the slice that showed the first 

bifurcation of the right hepatic portal vein was selected. Six 8mm thick sagittal 

FIESTA slices were then prescribed to the right of the bifurcation (TE= 1.2ms, 

TR automatically set, a =30°, 8mm slice thickness, 256 x 256 matrix size). 

This was followed with acquisition of six sagittal GRE-EPI images (TE= 35ms, 

TR= lOOOms, a =90°, 8mm slice thickness, 64 x 64 matrix size) at the same 

slice locations. One slice was finally chosen from these slices and was used in 

subsequent BOLD experiments. The slice had to satisfy a few criteria in order 

to be chosen: it had to contain a big volume of liver with a reasonable signal 
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intensity and show the kidney border. The BOLD time series imaging was 

then performed using a single-shot G RE-EPI sequence on the selected slice 

and the time-series data was collected (with the same parameters as above). 

4.3.3 Liver Challenge Procedure 

Hyperoxia cycling and meal intake were used as challenges to study 

liver response. Two protocols were tested, both of which involved switching 

inspired gases between hyperoxia (100% 0 2) and normoxia (medical air: 20.8% 

0 2), with each having 3 hyperoxia phases. In the first experiment, hyperoxia 

was cycled 3 times, each time being 3 minutes long. These were separated by 

5 minutes of normoxia (Figure 4.1). The second experimental protocol was 

reversed; that is hyperoxia was cycled 3 times but for periods of 5 minutes 

in duration, and these were separated by 3 minutes of normoxia (Figure 4.2). 

Both experimental protocols lasted twenty-one minutes and eight seconds and 

resulted in the acquisition of 1248 images. The first twenty seconds consisted 

of discarded images. 

Following image acquisition, the subject's liver was challenged by meal 

intake. No images were collected during ingestion. Previous work showed that 

images that were acquired during the meal consumption were too varied and 

resulted in high degree of inconsistency between and even within the same 
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F igure 4 .1: Model 1 a t iming diagram of the gases t hat were cycled through 
to induce changes in liver oxygenation. 
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F igure 4.2 : Model 2: a timing diagram of the gases t hat were cycled t hrough 
to induce changes in liver oxygenation. 
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F igure 4 .3 : Timing diagram for the entire BOLD imaging procedure including 
both hyperoxia sessions and meal intake. 

subj ect (Fan et al. 2007) Therefore, postprandial imaging was done when 

blood flow in the HPV was maximal (i. e. t hirty minutes post ingestion) At 

this time, the gas cycling experiment was repeated. It should be noted that 

if t he first model (Figure 4.1) was used for a given subject in the pre-intake 

session, then this same model was employed postprandial. Similarily, using the 

second model (Figure 4.2) in the initial session required that this same model 

be used following food intake. Figure 4.3 shows the t iming of the BOLD 

imaging sessions after the localization data was collected . 

4.3.4 Subjects 

Eight healthy human subj ects (mean age: 30±7 years) were studied 

using model 1 hyperoxia set-up (Figure 4.1) and three healthy human subjects 

(mean age: 27±5 years) participated in the study using model 2 (Figure 4.2) 

33 



M.Sc. Thesis - Alyaa H. Elzibak - McMaster University - Med. Phys. & App. Rad. Sci. - 2008 

Patient Diagnosis 
Number 

- Mild chronic hepatitis 
1 - Grade 2 inflammation 

- Stage 1 fibrosis 
- Mild chronic hepatitis with increase of eosinophils 

2 
- Mild increase of fibrosis resulting in mild expansion of portal 
tracts 
- Chronic inflammatory infiltrate 
-Chronic hepatitis 

3 - Stage 3 fibrosis 
- Possible cirrhosis 

4 -Mixed macro and micro cirrhosis 
5 - Hepatocellular carcinoma 
6 - Cirrhosis and steatosis 

Table 4.1: Diagnoses of the patients that took part in the study. 

One of the healthy participants in this group was examined twice: once with 

the second hyperoxia cycling session commencing immediately at the end of 

the meal intake and on another day where the hyperoxia session began thirty-

minutes post intake (Figure 4.3). In addition, six patients with biopsy-proven 

liver disease took part in the liver challenge. Three were studied using the 

first model (mean age: 54±8 years) and three were studied using the second 

model (mean age: 63±7 years). The diagnoses of the recruited patients are 

shown in table 4.1. Informed consent was obtained from all subjects prior to 

the examination and all subjects participated in the entire study (Figure 4.3). 

None of the healthy participants had a history of liver disease. 
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4.3.5 Data Analysis 

4.3.5.1 Motion Track 

Although subject movement was minimized during the scanning ses­

sions, the liver constantly moves with respiration. Thus, the collected BOLD 

time-series were initially corrected so that all the images from one session were 

spatially aligned in time (i.e. voxel one in BOLD image one described the same 

anatomical region as voxel one in all the remaining BOLD images). In order 

to track liver motion, an in-house software developed in C (Realtime MRI 

Motion Tracker) was used. The algorithm is based on a correlation coefficient 

motion tracking technique. This was originally developed by Sussman and 

Wright (2003) to track coronary artery motion. However, Noseworthy et al. 

(2007) showed that the technique could also be applied to track the motion of 

the liver. Briefly, the matching algorithm is based on finding the location of 

a template in each of the images in a time-series by determining the position 

where the correlation coefficient is maximized. In order to use this technique 

in the liver, a template of size 32 x 32 is manually chosen from a reference 

image in the series. The algorithm then tries to find the best location of this 

template in all the subsequent images by calculating the correlation coefficient 

between this template and regions of equal size in the remaining images. The 
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location with the maximum correlation coefficient is chosen as the most prob­

able position of the template. Figure 4.4 shows a snapshot of the program 

while it was tracking the motion of a template within the liver. 

Once the position of the template was found, the corresponding 32 x 

32 region was extracted from the BOLD time-series, resulting in a data set 

that was registered across time. This step was carried out using Matlab (Ver. 

7.4.0, The MathWorks, Inc., USA). The registered BOLD data set was then 

analyzed using both hypothesis driven analysis and data driven analysis to 

investigate the effects of hyperoxia and the intake of a meal. 

4.3.5.2 Hypothesis Driven Analysis of the BOLD Time-series 

Using the hypothesis driven technique, an idealized waveform had to be 

initially created. Figures 4.5 and 4.6 show the model response function that 

was predicted to match the stimulus for set-up 1 and set-up 2, respectively. 

To analyze the collected data using this approach and determine the re­

sponse of the liver, the registered BOLD time-series obtained following the mo­

tion correction step and the predicted waveform were inputed into the FEAT 

(FMRI Expert Analysis Tool) algorithm (Version 4.0), which is part of the 

FSL (FMRIB's Software Library, http:/ jwww.fmrib.ox.ac.uk/fsl/ ) package. 
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Figure 4.4: The motion tracking 1 rogram. by choosing a li ver region to be 
t racked (area enclo ed by the yellow box in the image), the algorithm calcu lated 
the position of the template that maximized tbe c-orrelat ion coefficient. 
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This is a model-based analysis tool that employs a general linear model (GLM) 

to find voxels that exhibit changes that are matched to the changes predicted 

by the hypothesized model. The program generated z statistic images, where 

pixels that had z scores corresponding top-values less than 0.05 (thresholding 

was set to 0.05 in these experiments) were considered to show statistically 

significant correlation with the ideal model. 

4.3.5.3 Data Driven Analysis of the BOLD Time-series 

Local principal component analysis (PCA) was employed to extract 

patterns from the BOLD data series that were related to the application of 

the stimulus. The technique used was an extension of work done by Lai and 

Fang (1999). In order to perform local PCA, the time-series data was initially 

divided into two segments, an active one (during the application of 100% 0 2 ) 

and an inactive one (during the application of medical air). These segments 

were taken from the center of each of the regions to avoid data from the 

transition periods that may be associated with errors. The selected segments 

all had equal length. Figure 4. 7 shows these regions in grey for both model 

1 and 2 set-ups. Note that it was not necessary to know the shape of any 

hypothesized waveform in this type of analysis. All that was required was 

that two different states exist, where the two states were dissimilar. Thus, 
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for each voxel, three hyperoxia segments and two normoxia segments were 

chosen. In the first model, the length of each of these segments was 120 time 

points, and in the second model, it was 140 time points. If local principle 

component analysis was performed using a single voxel, then the dimensions 

of the data matrix would have been 5 x l (where 5 corresponds to the sum 

of the 3 active and 2 inactive segments and l represents the length of these 

segments (i.e. 120 or 140, depending on the set-up used)). However, local 

principle component analysis was performed on segments that were in the 

neighborhood of each voxel (i.e. the center voxel with its eight neighboring 

voxels). The data matrix for each voxel thus had the dimensions of 45 x 120 

and 45 x 140 for model1 and model 2, respectively. The first 27 rows of the 

data matrix contained the active time-series while the last 18 rows contained 

the inactive time-series. After carrying out the decomposition using principle 

component analysis, the two dominant components for each of the voxels were 

selected and the feature space was formed. By projecting the data from the 45 

time-series onto this new subspace, it was assumed that two separate clusters 

can be formed, one for the data in the active segments and one for the data 

in the inactive segments. The Bhattacharyya distance was finally used to 

determine the degree of separability between the centers of these two clusters 

(Theodoridis and Koutroumbas 2003). By carrying out the above mentioned 
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Figure 4. 7: The selected segments (shown in grey) for the data driven analysis 
for the first model (top) and t he t he second model (bottom) 

analysis for each of the voxels in the image , a response map was obtained 

similar to t hat in t he hypothesis driven analysis. Data driven analysis was 

computed using Matlab (Ver 7.4.0 , The MathWorks, Inc., USA) 

4 3.5.4 Determining Liver Response 

In order to determine t he response of t he liver to the applied stimuli , 

two approaches were used. In the first method, the response map that was 

generated from t he analysis of t he BOLD t ime-series was imported into Mat-

lab (Ver 7.4.0, The MathWorks , Inc. , USA) and t he responsive pixels were 
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counted. The total number of liver pixels was also determined by contouring 

around the liver. By dividing the number of responsive pixels by the number 

of liver pixels, a measure of the percentage of the liver that was responsive was 

obtained. This was done for each of the pre and postprandial response maps. 

In the second method, the pre and postprandial response maps for a 

given subject were initially imported into Matlab (Ver. 7.4.0, The Math Works, 

Inc., USA) along with masks that were created around the liver region. The 

masks were used to extract only the pixels that were inside the liver region 

from the response maps. A t-test was then performed between the means 

of the pre and post intake response maps for a given subject to determine if 

there was a statistically significant effect of the meal on the response of the 

subject. The difference in the means of the response values between the two 

states (post intake- pre ingestion) was calculated and this was turned into a 

percentage difference by normalizing by the pre intake values and multiplying 

the resulting number by 100 to get a percentage. Thus, a p-value (from the 

t-test) and the percentage difference in the means of the responsive pixels 

between the extracted responsive pixels from the pre and post intake images 

were computed. 
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Chapter 5 

Results 

5.1 Blood Flow 

5.1.1 Baseline Hepatic Portal Vein flow 

The basal flow values for each of the subjects before the ingestion of 

the standardized meal were initially determined. The average pre-intake flow 

in the portal vein was found to be 1312.8 ml/min with a standard deviation 

of 267ml/min. 

5.1.2 Operator's Error 

Intra-observer variability was determined by contouring the same exam 

set on three different days. In all cases, the variation was evaluated and found 

to be less than 5.1%. 
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5.1.3 Variation within Subject 

Intra-individual variability was determined by comparing data obtained 

by repeating the experiment on the same subject on two different days. A 

variation of 16.6% was found between these measurements. 

5.1.4 Effect of Intake of Ensure Plus® 

The ingestion of a can of Ensure Plus resulted in an increase in hepatic 

portal vein blood flow for all subjects. This was found to be significant at 

all intervals following intake (P<0.004) as shown in Figure 5.1. The largest 

increase in flow, relative to the baseline value (70.5%) was seen thirty minutes 

following meal ingestion (Table 5.1). 

Time following intake (minutes) Change from baseline measurement (%) 

0 0 
1 19.9 
10 45.7 
20 68.6 
30 70.5 
40 65.2 
50 46.2 

Table 5.1: Percent change in portal vein blood flow 
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Figure 5.1: Blood flow in the portal vein before and after the intake of a can of 
Ensure Plus®. Results are shown as a mean and standard deviation. Significant 
changes from baseline measurements were noted at all intervals (P<0.004). 
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5.2 BOLD Experiments 

5.2.1 Hypothesis Driven Analysis (GLM) 

In this section, the results of the experiments conducted using hypoth­

esis driven analysis will be presented. 

5.2.1.1 The First Hyperoxia Model (Gas Cycling Modell) 

Using the GLM to analyze the first gas cycling approach, three healthy 

subjects (out of 8) were found to exhibit a decrease in BOLD signal intensity 

with application of 100% 0 2 (i.e. their response was the exact opposite of that 

depicted in figure 4.5). These subjects are referred to as negative responders 

and the ones that showed the hypothesized expected increase in signal intensity 

with 100% 0 2 are referred to as positive responders. Figure 5.2 shows a sample 

time-series from one subject whose BOLD signal exhibited the unpredicted 

behavior. A sample response from a subject with expected signal intensity 

increase is also shown in the same figure for comparison. 

In the first analysis technique, the percent of liver that was modulated 

by inspired gas was determined for all subjects. Table 5.2 shows the results 
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Pre intake Post intake 

Subject Responsive Total % of Responsive Total % of 
Liver Liver Liver Re- Liver Liver Liver Re-
Pixels Pixels sponding Pixels Pixels sponding 

1 187 814 22.97 163 808 20.17 
2 78 687 11.35 15 639 2.35 
3 335 663 50.53 211 644 31.78 

4 527 796 66.21 403 728 55.35 
5 179 476 37.61 246 566 43.46 
6 541 754 71.75 369 703 52.48 
7 628 866 72.52 268 761 35.22 
8 137 665 20.60 27 646 4.18 

9 461 720 64.03 723 863 83.78 
10 367 769 47.72 325 519 62.62 
11 703 928 75.75 671 921 72.54 

Table 5.2: The percent of liver that had BOLD signal change in the pre and 
postprandial states for the negative responders (1-3), positive responders (4-8) 
and patients with liver disease (9-11) using gas cycling model 1. 

for negative responders, positive responders, and patients with liver disease, 

respectively, using gas cycling model 1. 

The mean percentage of liver that exhibited BOLD signal change, for 

all healthy positive-responding subjects, was 53.73±23.40 (mean+/- standard 

deviation) in the pre intake session and 38.14±20.57 in the postprandial ses-

sion. These differences were statistically significant (P< 0.05, paired student 

t-test). The negative responders, on the other hand, showed no significant dif-
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ference between the two states (mean percentage of liver responding pre intake: 

28.28±20.12, mean percentage of liver responding post intake: 18.10±14.82, 

P> 0.05). The patients with liver disease also did not show any significant 

differences between pre and postprandial states (mean percentage of liver re­

sponding pre intake: 62.50±14.08, mean percentage of liver responding post 

intake: 72.98±10.59, P> 0.05). A sample response map for a healthy individ­

ual and a liver disease patient are shown in figure 5.3 for both pre and post 

intake sessions. 

In the second analysis technique, the percentage difference between 

the means of the responsive pixels from the pre and post intake images was 

computed for each of the subjects along with the p-value from the t-test. Table 

5.3 shows the percent change in liver response between these two states for 

healthy individuals (1-8) and patients suffering from chronic liver disease (9-

11). P-values less than 0.05 indicate that the change was significant (unpaired 

student t-test ). 
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Subject % Difference in Liver Response Between P-value 
Pre- and Postprandial States 

1 1.29 0.55 
2 -17.09 3.0x w-4 

3 -11.34 0.09 
4 -98.56 7.7x w-6 

5 -65.43 0 
6 -50.35 4.6 X 10 17 

7 -69.49 0 
8 -88.16 2.6 X 10 20 

130.67 
-25.99 

I ~.9x w-
6 

7.8x 10 18 

Table 5.3: The percentage change in liver response between the pre and post­
prandial states for healthy subjects (1-8) and those with liver disease (9-11) 
using response maps from the hypothesis driven analysis and gas cycling model 
1. 

5.2.1.2 The Second Hyperoxia Model (Gas Cycling Model 2} 

All subjects exhibited an increase in the BOLD signal intensity with 

the application of 100% 0 2 (i.e. their response was as shown in figure 4.6). 

Figure 5.4 shows a sample BOLD time-series from one of the subjects. 

The percent liver responding for healthy subjects was 78.79±10.59 

(mean +/- standard deviation) in the pre intake session and 52.62±16.86 in 

the postprandial session. These differences were not statistically significant 

(P> 0.05, paired student t-test). The patients with chronic liver disease also 

did not show any significant differences between the two states (mean per-
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Pre i nta~e Post in ake 

(a) Pre and postprandial response ma ps for a heaJthy indi vidu al. 

Pos intake 

(b) Pre and postprand ial response maps for a patient with chronic liver d isease. 

Figure 5.5: The response maps for the pre and po t int ake sessions for one 
hea lthy subject and one pati ent with chronic li ver disease. A hypothesis driven 
analysis was used t.o obtain t.he response maps, here u ing ga cycling model 2. 
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Pre intake Post intake 

Subject Responsive Total % of Responsive Total % of 
Liver Liver Liver Re- Liver Liver Liver Re-
Pixels Pixels sponding Pixels Pixels sponding 

1 759 860 88.26 559 800 69.87 
2 763 945 80.74 288 796 36.18 
3 582 864 67.36 455 878 51.82 

4 416 845 49.23 529 847 62.46 
5 100 432 23.15 81 311 26.05 
6 726 965 75.23 727 908 80.07 

Table 5.4: The percentage of liver that was responsive in the pre and post­
prandial states for healthy subjects (1-3) and chronic liver disease patients ( 4-6) 
using inspired gas cycling model 2. 

subjects (1-3) and patients suffering from chronic liver disease (4-6) along with 

the p-values (unpaired student t-test). 

5.2.2 Data Driven Analysis (PCA) 

5.2.2.1 The First Hyperoxia Model (Gas Cycling Modell) 

Using data driven analysis (local PCA), the response maps were only 

analyzed by finding the percentage difference between the response value of 

the pixels from the pre and post intake images. Table 5.6 shows the percent 
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Subject % Difference in Liver Response Between P-value 
Pre- and Postprandial States 

1 -60.11 0 
2 -80.49 0 
3 -32.22 1.5x 10-16 

127.59 
47.36 

19.1 X J0-
7 

0.005 I~ -20.76 

Table 5.5: Percent change in liver response between pre and postprandial 
states for healthy subjects (1-3) and those with chronic liver disease ( 4-6) using 
response maps from the hypothesis driven analysis (i.e. GLM) with gas cycling 
model2. 

change in liver response between these two states for healthy individuals (1-8) 

and patients suffering from liver disease (9-11). Again, p-values less than 0.05 

indicate that the change was significant (unpaired student t-test). A sample 

response map for a healthy individual and a liver disease patient are shown in 

figure 5.6 for both pre and post intake sessions using data driven analysis. 

5.2.2.2 The Second Hyperoxia Model (Gas Cycling Model 2) 

Using the second hyperoxia model, response maps were analyzed by 

finding the percentage difference between the response value of the pixels from 

the pre and post intake images for the maps obtained using local PCA. Ta-

ble 5. 7 shows the calculated results for the healthy subjects (1-3) and the 
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Subject % Difference in Liver Response Between P-value 
Pre- and Postprandial States 

1 -6.09 0.17 
2 -47.16 3.6x 10 17 

3 3.16 0.10 
4 -40.25 1.8x 10 10 

5 -46.91 5.2x w-14 

6 13.37 0.9 
7 -21.38 0.001 
8 -29.91 1.1 x w-7 

1-2.01 
0.47 

I 0.39 

0.53 

Table 5.6: The percentage change in liver response between the pre and post­
prandial states for healthy subjects (1-8) and those with liver disease (9-11) 
using response maps from the data driven analysis and with gas cycling model 
1. 

liver disease patients ( 4-6) along with the p-values obtained using the student 

unpaired t-test. A sample response map for a healthy individual and a liver 

disease patient are shown in figure 5. 7 for both pre and post intake sessions 

using data driven analysis. 

5.2.2.3 Timing of the Post Intake Session 

One healthy subject was studied with the post intake session commenc-

ing immediately after meal intake and on another occasion where the data was 
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Subject % Difference in Liver Response Between P-value 
Pre- and Postprandial States 

1 -68.96 2.9x 10-::s7 

2 -60.13 1.2x 10-::sl 

3 -2.12 0.06 

127.29 
50.57 

11.1xl0 4 

0.001 li 9.93 0.9 

Table 5.7: The percentage change in liver response between pre and postpran­
dial states for healthy subjects (1-3) and those with liver disease ( 4-6) using 
response maps from the data driven analysis with gas cycling model 2. 

Set-up % Difference in Liver Re- P-value 
sponse Between Pre- and 
Postprandial States 

Session 2 commencing im- -22.31 8.1x 10-5 

mediately following intake 

Session 2 commencing 30 -68.96 2.9x 10-::s7 

minutes following intake 

Table 5.8: The percentage change in liver response between the pre and post­
prandial states for one healthy subject where the second session began either 
immediately following meal intake or 30 minutes postprandial. 

collected thirty minutes post intake. Table 5.8 shows although the percent 

difference in response is similar, waiting 30 minutes produces 3 times greater 

BOLD percent change, with much higher degree of significance. Figure 5.8, 

shows the difference in response maps for pre and postprandial healthy liver 

comparing these timing differences. 
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(a ) Pre and postprandial respon e ma ps wher sess ion 2 commenced immed i­
a tely following mea l inta ke. 

(b) Pre and postprand ia l re. pone ma ps where ession 2 commenced 30 lltin­
utes following meal inta ke. 

Figure 5.8: Tb r pon e map for t.he pre and po t intak . . ion for one 
healthy subje ·t wher the second session began either imm d iaL ly following 
meal intake ( 5. (a)) or 30 minu tes po t prandial ( -5. (b)) 
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Chapter 6 

Discussion 

6.1 Blood Flow 

Doppler sonography has been used by various research groups to eval­

uate the effects of food intake on hepatic circulation (Lafortune et al. (1993), 

Dauzat et al. (1994), Iwao et al. (1996), Salo et al. (1997)). All such studies 

confirmed that following the ingestion of a meal, hepatic portal blood flow 

increases. Iwao et al. (1996) monitored changes in hepatic portal blood flow 

at thirty minute intervals, up to 120 minutes after meal consumption and 

found that statistically significant changes were obtained at all measurement 

intervals. In addition, their work revealed that maximal postprandial changes 

resulted at thirty minutes following food intake. These findings were further 

confirmed in a study by Dauzat et al. (1994) who evaluated alterations in 

the volume of blood flowing through the main portal vein at fifteen, thirty, 

forty-five, and sixty minutes after the ingestion of two cans of Ensure. They 

reported increases in blood flow at all intervals and maximal postprandial 
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changes were seen at thirty minutes after intake, with a 79% increase at this 

interval in comparison to basal values (Dauzat et al. 1994). 

In our study, hepatic portal vein blood flow was determined using phase 

contrast MR imaging. This technique had been previously used to evaluate 

blood flow (Pelc et al. (1992), Sadek et al. (1996), Hara et al. (1996)) and 

was shown to produce superior images of the hepatic portal vein (Hara et al. 

1996). However, it had not been used to track haemodynamic changes in 

hepatic circulation that result from the ingestion of a meal, nor had it been 

employed to evaluate when such changes were maximal. Our findings showed 

that statistically significant increases in hepatic portal vein flow resulted from 

the intake of the standardized meal at all measurement intervals. Moreover, 

maximal postprandial changes were seen at thirty minutes after ingestion, 

with a 71% increase in comparison to the baseline flow. These findings were 

in agreement with the results of previous studies that were carried out using 

Doppler sonography (Dauzat et al. (1994), Iwao et al. (1996)). 

We have demonstrated that phase contrast MR imaging can produce 

comparable results to those obtained using Doppler sonography when tracking 

postprandial changes over an interval. Although both MRI and Ultrasound are 

capable of non-invasively imaging blood flow in a vessel of choice, MRI provides 

some advantages over Duplex Doppler sonography when it comes to evaluating 
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portal vein blood flow, especially if a breath-held, 2D phase contrast sequence 

is used. This is because Duplex Doppler sonography measurements rely heavily 

on the placement of the angle of insonation (Paulson et al. (1997), Sadek et al. 

(1996)). Since it is difficult to consistently position the angle of insonation, 

large variation is seen when ultrasound is used to measure flow(Paulson et al. 

1997). However, this issue is not a problem for MRI. Also, using a breath held 

sequence minimizes the motion of the portal vein and results in high quality 

images (Hara et al. 1996), allowing accurate detection of vessel edges and 

correct determination of flow values. 

Based on blood flow results it was decided that in order to maximize 

pre-intake compared to postprandial BOLD signal contrast, images were to be 

collected at thirty-minutes after meal ingestion (i.e. the time to peak hepatic 

portal vein flow). 

6.2 BOLD 

One objective of this project was to optimize the current liver BOLD 

protocol experimental set-up and data analysis techniques. Some of the changes 

that were made to the set-up included asking the subject to drink the Ensure 

using a cup and straw (as opposed to having subjects ingest the drink while 

in the bore of the magnet from a tube connected to an Enema bag containing 

63 



M.Sc. Thesis - Alyaa H. Elzibak - McMaster University- Med. Phys. & App. Rad. Sci. - 2008 

the food contents, which the original set-up employed). This change made the 

study more subject-friendly as it eliminated anxieties that may have resulted 

from having the meal contents rapidly empty into the mouth, forcing rapid 

food ingestion during scanning. All healthy subjects and patients with chronic 

liver disorders who took part in the study were satisfied with the set-up and 

did not express any anxieties regarding meal ingestion since this intake method 

was one more natural. One draw back of this new set-up was that a person 

had to come into the room to supply the subject with the meal and had to 

hold the cup while the subject sipped the contents. However, the presence of a 

person in the MR room was necessary anyway to manipulate the gases during 

the remainder of the study, so this was just a minor issue. Another change to 

the set-up was that instead of performing the second hyperoxia session imme­

diately after food intake (which was done previously ((Fan 2006))), the post 

Ensure BOLD acquisition was performed thirty-minutes postprandial. This 

was done in hopes of maximizing liver parenchyma BOLD contrast as our 

HPV blood flow studies resulted in maximal flow thirty minutes after intake. 

Since the BOLD signal intensity is proportional to the ratio of oxyhemoglobin 

to deoxyhemoglobin, in order to maximize the difference in BOLD intensity 

between a basal state and a state that accompanies physiological changes due 

to meal intake, data collection was performed when there was maximal blood 
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flow due to food ingestion. The response maps in figure 5.8 reveal that in 

fact, a larger change between the pre and post intake states was evident on 

the response maps when the BOLD data was collected at the time to peak 

hepatic portal vein flow. The percentage change in liver response between the 

pre and postprandial states was found to be -22.31% and -68.96% when the 

second BOLD session began immediately following meal intake and 30 minutes 

postprandial, respectively. 

Since negative responders were seen, modifying the gas cycling by re­

versing the order of when 100% 0 2 and medical air were supplied was tested 

to see if this would eliminate those responders. Although none were found 

among the three healthy and the three diseased subjects recruited, this may 

be just due to the small sample size and not necessarily the fact that this was 

a better ordering of the gases. It should be noted that for both gas cycling 

experiments (Figures 4.1 and 4.2), the timing for the application of medical 

air and 100% 0 2 did not seem to have an effect on the BOLD signal's recovery 

to baseline (Figures 5.2 and 5.4). As this part of the challenge lasted twenty­

one minutes, future testing might focus on testing different gas cycle timings 

to determine whether decreasing the time of the challenge has an affect on the 

final results. If not, then shorter scan times can be implemented. 
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In terms of data analysis, a few changes were implemented compared to 

that previously done ((Fan 2006)). Originally, the percentage of the liver that 

was responsive was assumed to be a good measure of the viability of the liver. 

In this technique, the number of pixels that showed response to the applied 

stimulus was counted and then divided by the total number of liver pixels, 

giving a response percentage. However, this approach has a limitation in that 

it does not take into account the degree of response of each of the responsive 

pixels. For instance, two pixels might show response to an applied stimulus, 

however, one might weakly respond, while another might respond strongly. 

This important information is omitted when only the number of pixels (and not 

their actual response) is used in the calculation. Looking at any of the figures 

that represent the response maps for the pre and post intake sessions for either 

healthy or diseased subjects (Figure 5.3, Figure 5.6, Figure 5.5, Figure 5.7), it 

can be seen that there is in fact a change in the response of pixels and not just 

in the number of pixels that are responsive. Thus, although analysis of the 

data was carried out in this project by calculating the percentage of the liver 

that was responsive, this was only done as an extension of the previous work. 

Using this analysis method, no statistically significant changes were found 

between the pre and post intake sessions using gas cycling model 2 for healthy 

subjects (mean percentage of liver responding pre intake: 78.79±10.59, mean 
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percentage of liver responding post intake: 52.62±16.86, P> 0.05) or liver 

disease patients (mean percentage of liver responding pre intake: 49.20±26.04, 

mean percentage of liver responding post intake: 56.19±27.55, P> 0.05). In 

addition, using gas cycling model 1, only the positive-responding subjects 

showed differences between the states that were statistically significant (mean 

percentage of liver responding is 53. 73±23.40 in the pre intake session and 

38.14±20.57 in the postprandial session, P< 0.05). This was not the case 

for the negative-responders or the patients (for negative responders, mean 

percentage of liver responding pre intake: 28.28±20.12, mean percentage of 

liver responding post intake: 18.10±14.82, P> 0.05, for chronic liver disease 

patients, mean percentage of liver responding pre intake: 62.50±14.08, mean 

percentage of liver responding post intake: 72.98±10.59, P> 0.05). 

To make use of the response values of each pixel, the response maps 

were analyzed using a method other than the percentage difference, which was 

previously employed. In this second approach, at-test was performed between 

the means of the pre and post intake response maps for a given subject to 

determine if a differential effect of the meal on the response of the subject 

could be observed. The difference in the means of the response values between 

the two states (post intake - pre ingestion) was then calculated. This value 

was turned into a percent difference via normalizing with the pre intake value 
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and multiplying the resultant number by 100. Using this technique, with gas 

cycling modell and a hypothesis driven GLM analysis, most healthy subjects 

(6 of the 8) showed significant decrease in liver BOLD contrast following meal 

intake, while two healthy subjects did not show any significant difference be­

tween the two states (Table 5.3). In addition, two of the patients showed 

statistically significant BOLD contrast increases following intake, while a sig­

nificant decrease was observed in one patient (Table 5.3). Using the second 

gas cycling model and a hypothesis driven GLM analysis, all healthy subjects 

showed significant decreases in BOLD contrast with meal intake, while a sig­

nificant increase was observed in two of the three patients (Table 5.5). A 

significant decrease in BOLD contrast was observed in the third patient, simi­

lar to the results of the healthy subjects. With such variation between subjects 

and patients, the GLM hypothesis driven approach was not able to differenti­

ate between healthy and diseased, with either model of cycling inspired gases. 

Since the liver has a dual blood supply, it was hypothesized that us­

ing a model-free approach may be more accurate when it comes to evaluating 

changes that accompany an applied stimulus. Due to the complex blood sup­

ply, it is quite likely there are complex delays that manifest as temporal phase 

shifts in the BOLD signal, thus giving what appears to be opposite of our 

suggested ideal wave. Whatever the source of data shifts, it is quite clear that 
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GLM based approaches are not appropriate for liver BOLD analysis. Using 

data driven analysis, specifically the PCA technique, no prior knowledge about 

the expected response of the liver had to be made. The only assumption was 

that two states existed, one for the application of 100% 0 2 and one for the ap­

plication of medical air. When this technique was used, it eliminated the issue 

of having negative responders, visible because their response was the opposite 

or out of phase with that predicted by the model. When a model-free approach 

was applied, the response was based on changes between the two states (hy­

peroxia and normoxia), and not on some a priori assumed correlation between 

the model and the BOLD data. This was a major improvement in liver BOLD 

analysis. One problem with having negative and positive responses is that if 

an individual exhibits some negative and some positive responding pixels, it 

becomes difficult to try and decide if this individual should be classified as 

a negative responder or a positive responder. Figure 6.1(a) shows the neg­

atively responding pixels for one of the subjects. The positively responding 

pixels for the same subject are shown in Figure 6.l(b). Note that this subject 

was classified as a negative responder because the response maps showed more 

negative than positive pixels. However, this individual could have also been 

classified as a positive responder since the response map does show some posi­

tively responding pixels. Thus, this issue can be avoided by using a technique 
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that only relies on detecting differences between the two states and not on the 

correlation between the response and a predicted model. Another limitation 

that was evident when using the model based GLM approach is that certain 

pixels that were seen to show response were not detected (Figure 6.2). This 

was likely because although they did show changes between the two states, 

these changes did not match those predicted by the model and thus, they were 

not considered to be responsive. 

Based on the presented issues thus far, it can be said that in order 

to optimize the technique used to analyze the data collected during the liver 

challenges we used, the response values of each pixel, and not just the number 

of pixels, needs to be taken into consideration. In addition, a model-free 

approach (e.g. PCA) is desired, since trying to appropriately model liver 

BOLD signal is not possible with a simple GLM approach. This is likely due 

to the complex blood supply to the liver. Using PCA, the response values 

of the pixels, and the original cycling of gases, most healthy subjects (five 

out of eight) showed significant decreased liver BOLD contrast following meal 

intake, while three healthy subjects did not show significant difference between 

the two states (Table 5.6). For patients, one showed significant increase in 

BOLD contrast, while two did not show significant changes (Table 5.6). Using 

our second gas cycling model, two of the healthy subjects showed significantly 
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(a) Pre and postprandi al response maps for a subject who wa con. idered to 
be a negativ responder The negative r sponding pixe l are hown in boLh 
states. 

Post intake 

(b) Pre and pos tprandial response ma ps for Lhe same subject bowing t lw 
po ~itive responding pixels. 

Figure 6.1: The response maps fo r the pre and post intake es ion for one 
healt hy ubject using a. negative ideal wave re ponse( 6.l(b)) and a. po iti ve 
ideal wave res ponse ( 6.l(a.)) in Lh e hypothesi driven a.na.lysi . 
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Figure 6. 2: L eft . Response map using PC A analy i . C nt r .. Th time-series 
of the s Jec t.ed region. Right. Respon e map using hypoth i driv n analysi ·. 
Note that P A is abl Lo identify the responsi ve region. whi l th hy pothesis 
driven t chnique is not. 

decrea~ed BOLD ·ontrast following meal in take, while one subj ect did noL show 

any signifi a nL difference between t h two states (Ta ble 5. 7) For patients. 

significant increased BOLD conLra. 'L in response to the meal was seen in Lwo 

<·a ·es. while on did not show any significant change (Tabl " r::. 7) 

Based n studies that looked aL the effecL of m al intak on t h BOLD 

sign al in healthy li ver ( o e'' orthy el al. 1999)(Fan t a l. 2006) , it was 

hypothesiz d tb at following food ingest ion. healthy liver will bow a decrease 

in hyperoxia-modula ted BOLD contrast following the meal, in compari son to 

Lh pre intake re. ponse. Diseas d li vers . on the other hand. were post ul ated 

to respon d differently; either ~ howing an incr at in re, ponse to th meaL 

or no jgnifi ·ant change due to rood ingestion. Using Lhe first gas cycling 

approach. result s from hypoi. b . is driven analysis sbowed two . ubje ·t and 

one patient who did not fit these pr di ctions. \Vith PC!\ . e: 11 pa li c-nL · fit the 
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expected predictions, but three healthy individuals did not. With the second 

gas cycling method, one patient did not fit the expected predictions, while 

PCA showed all patients to fit the expectations and only one healthy subject 

did not. 

When combining all results (eleven healthy subjects and six disease 

patients), the model-free PCA approach was able to detect all of the diseased 

livers, while missing four of the healthy subjects. The model-based GLM 

technique, on the other hand, did not detect two of the patients and two of the 

healthy subjects. Thus, if this liver challenge is to be used as a screening tool, 

then a model-free data analysis approach is more appropriate as it minimizes 

the chances of reporting false-negative results (i.e. has higher specificity). 

Although more false positives were detected with this method, these can easily 

be sorted out using more tests. In fact, as a screening tool, it is desirable to 

try and limit the false negative responses since concluding that a disease is not 

present when a person does actually suffer from it has detrimental effects. In 

addition, it should be noted that using a different model-free approach (such 

as partial least squares (PLS) instead of principle component analysis) may 

minimize the number of false positives detected. This can be tested in future 

studies. 
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One of the limitations of the current study is that in order to track 

the motion of the liver, rigid registration was used. However, the liver does 

also get deformed as it moves. Thus, a non-rigid registration technique should 

be evaluated and used in the future (if possible). In addition, registration of 

the pre and post intake images should be carried out for each of the subjects. 

This will ensure that correct inferences can be made about the response maps 

obtained from the two sessions. 

In conclusion, the BOLD MR imaging liver challenge that had been 

previously developed was optimized using hepatic portal vein blood flow re­

sults. In addition, as the liver has a complex dual blood supply, a model­

free approach, such as PCA, was shown to provide more reliable results than 

GLM approaches when analyzing BOLD time-series data. The optimized liver 

challenge was tested on healthy individuals and patients with chronic liver 

disorders and the protocol is able to distinguish between these two classes. 

Although promising results were obtained, further studies are needed before 

implementing the technique as a screening tool. 
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Appendix A 

Matlab Code to Create a Registered 

BOLD Data Set 

%This file corrects the motion in the BOLD time-series and outputs 
% a registered .nii image set 
%It uses the displacement data from 11 Motion Track 11 

% Input the dicom BOLD 
ser = 'Ser 1/' ; 
exam= 'E1234S1I'; 
ext = '.MR.dcm'; 
for i = 1 : 1248 

images that are to be registered 
% specify series # 

% specify exam # 

num_str = num2str(i); 
filename= strcat(ser,exam,num_str,ext); 
A(:, :,i) = dicomread(filename); 

end 

%generate a new matrix to store the registered data 
R = zeros(1,32,32,1248); 

%Put the initial displacement & size of the template 
posi = [10 7] ; 
size = 32; 

%load in the .txt file containing the location of the template 
% that is generated using motion track program 
disp = dlmread('1234_pre.txt'); 
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%convert the inputed mm values into units of pixel 
disp = disp(:,1:2)./4.375; 

% Extract the template from the inputed time series 
for i = 1 : 1248 

R(1, :, :,i) = imcrop(A(:,:,i),[disp(i,1)+10 disp(i,2)+7 31 31]); 
end 

% Create and save a .nii file (to be used in FSL) 
nii = make_nii(R, [8 4.375 4.375]); 
save_nii(nii,'registerd_pre.nii'); 
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Appendix B 

Matlab Code to Calculate the % of 
Liver that is Responsive 

%This file calculates the percentage of the liver that is responsive 

stat=load_nii('glm_pre.nii'); 
mask=load_nii('mask_pre.nii'); 

r=stat. img; 

% load in liver response map 
% load contoured liver 

%read the 32*32 response map 

%find and display the number of responsive pixels 
[row,col,v]=find(r); 
num_of_responsive_pix=size(v) 

m=mask.img; %read the contoured liver data 

%find and display the total number of liver pixels 
[row1,col1,v1]= find(m); 
num_of_liver_pix=size(vl) 

%find and display the % of the liver that's responsive 
per_respon=100*(num_of_responsive_pix/num_of_liver_pix) 
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Appendix C 

Matlab Code to Perform a T-test on 
the Extracted Liver Data 

%This file loads in the liver response maps along with the 
%liver masks and performs an unpaired t-test on the data 

%load in the response map (.nii file) for the pre-intake data 
%generated using hypeothsis driven analysis 

stat1=load_nii('glm_pre.nii'); 

%load in the response map (.nii file) for the pre-intake data 
%generated using data driven analysis 
pca1=load_nii('pca_pre.nii') 

%load in the mask liver data (.nii file) for pre-intake session 
mask1=load_nii('mask_pre.nii'); 

%load in the response map (.nii file) for the post-intake data 
%generated using hypothesis driven analysis 
stat2=load_nii('glm_post.nii'); 

%load in the response map (.nii file) for the post-intake data 
%generated using data driven analysis 
pca2=load_nii('pca_post.nii'); 

%load in the mask liver data (.nii file) for post-intake session 
mask2=load_nii('mask_post.nii'); 
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%extract the only the liver data from the pre-intake response map 
%genertated using hypothesis driven analysis 
b1=pca1.img(mask1.img==1); 

%extract the only the liver data from the post-intake response map 
%genertated using hypothesis driven analysis 
b2=pca2.img(mask2.img==1); 

%extract the only the liver data from the pre-intake response map 
%genertated using data driven analysis 
c1=stat1.img(mask1.img == 1); 

%extract the only the liver data from the post-intake response map 
%genertated using data driven analysis 
c2=stat2.img(mask2.img ==1); 

%perform an unpaired ttest on extracted liver data(hypotheis drive) 
[h_glm,p_glm]=ttest2(c2,c1,0.05,'left','unequal') 

%find the percent difference between the means of the pre and post 
%intake data (hypothesis driven) 
glm_per= 100*((mean(c2)-mean(c1))/mean(c1)) 

%perform an unpaired ttest on the extracted liver data (data drive) 
[h_pca,p_pca]=ttest2(b2,b1,0.05,'left' ,'unequal') 

%find the percent difference between the means of the pre and post 
%intake data (data driven) 
pca_per= 100*((mean(b2)-mean(b1))/mean(b1)) 
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