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Abstract

Fiber optic temperature and vibration sensors were designed and built to take readings
in the harsh environment of a steel mill. The sensors are insensitive to electromagnetic noise;
making them well suited for the use in such an environment. The temperature sensor uses an
optical filter technique. A piece of intrinsic silicon is inserted between two optical fibers and
1064nm wavelength light is transmitted through the silicon. As the temperature increases, the
silicon becomes more highly absorbing. The vibration sensor uses an optomechanical technique.
Light is transmitted across a short air gap between two optical fibers. One of the fibers acts as
cantilever while the other is fixed. As the cantilever vibrates, the transmitted power fluctuates,
which enables the detection of the frequency and amplitude of the vibration. Sensors were
initially tested under laboratory conditions, and subsequently field tested at ArcelorMittal
Dofasco. The temperature sensor has a sensitivity of 0.4°C over the temperature range from
22°C to 120°C. The vibration sensor has a sensitivity of 2.87mV/g peak over a frequency range

from O to 1250 Hz.
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1 Introduction

The aim of this research is to develop photonic temperature and vibration sensors for
harsh environments. The motivation for the project came from ArcelorMittal Dofasco who
sponsored the work in partnership with the Ontario Centre of Excellence (OCE). The company
identified a specific requirement for sensors that can monitor the temperature and vibration of
motors and bearings within a steel mill; however, the sensors that have been developed can

also be used in a wide range of other environments and applications.

An essential feature of the photonic sensors is to have no electronic components at the
site of the measurements. Thus, all the data collecting equipment must be in a remote control
room so that it can be shielded from the harsh environment. The sensors must be compact (a
few cubic centimetres) and must be interrogated via optical fiber. The application envisioned by
ArcelorMittal Dofasco, requires a sensor that can read temperature within 5% of the actual
temperature. As for the vibration, they anticipate acceleration measurements in the range

between O to 2g’s or 19.62m/s’.

The temperature sensor is an extrinsic optical fiber sensor; this means the fiber is used
to transmit light to and from a sensing medium, but the sensor itself is not the fiber. In this case,
the medium for the sensor is undoped silicon. The band edge wavelength for any semiconductor
is highly temperature dependent. The measurement of temperature is accomplished by
measuring the relative transmission of light for a wavelength near the band edge. The vibration

sensor is an intrinsic optical fiber sensor, meaning that the optical fiber is the actual sensor



element. This is an optomechanical sensor in which the vibration is sensed by monitoring the

overall power loss, which is dependent on the movement of a fiber optic cantilever beam.

An extensive literature search was conducted to determine what other groups have
developed. Other researchers made alterations to the cantilever fiber, such as adding a seismic
mass to the cantilever fiber. With regard to the temperature sensor literature review, the main
purpose was to research how the band gap and the index of refraction change with

temperature.

Although that the two sensors are fundamentally different in terms of their physical
mechanisms, they have much in common in terms of assembly, packaging and instrumentation.
Before packaging, the sensors underwent laboratory testing to make sure they performed as
expected. When the sensors are packaged, they went through laboratory testing as well as

industrial testing to determine their durability.



2 Background Theory

2.1 Temperature Dependence of Absorption Coefficient

Semiconductors are virtually opaque for photon energies greater than the bandgap
energy and, if lightly doped, highly transparent for photon energies below the bandgap. The
transition between opaque and transparent occurs smoothly over a narrow range of
wavelengths that is centered at the bandgap wavelength. Since the bandgap changes with
temperature, the semiconductors attenuation coefficient changes within this wavelength range.
“The variation of the energy gap with temperature originates from two different processes™.
The first process is the variation with bond length in relation to the temperature. This is linked
to the pressure coefficient via compressibility and the thermal expansion coefficient. The second
process is due to the electron-phonon interaction. The second process overtakes the first at
temperatures higher than 100 Kelvin. The following four analytical equations will help to clarify
our previous statements. The equations will be given and then explained in both their

theoretical and application meaning. A graphical representation will then be given®:



E (T)=E,(0)- 2L 2 @.1)

E (T)=E;-a, [1 +%—} (22)

expl@/T)-1
E (T)=E,(0)+BT +CT? (23)
P
E (T)= Eg(o)—“—ze » 1+(%) -1l @49

E,(0): Initial Bandgap Energy at 22°C (V)

a, : Fitting Parameter (eV/K)

B :Debye Temperature (K)

E, :Bandgap energy in Bose - Einstein Model (eV)

ay :Strength of the electron - phonon interaction (MeV)
6 : Temperature in Phonon Mode (K)

B : Fitting Parameter (eV/K)

C : Fitting Parameter (eV/K?*)

« :Fitting Parameter (eV/K)

The first equation was derived from Varshni and it is the most commonly used one in optical
temperature sensing. The second equation, the most recent one, is the Bose-Einstein empirical
expression in which the energy gap at 0 Kelvin is given by Eg(T) = Es — as. The third and fourth
equations were derived by O’'Donnell & Chen and Passler respectively. Both the effects of

thermal expansion and electron-phonon interaction are not taken in account in all the

equations. Thus, the parameters’ physical meaning is not always obvious.



Bandgap Energy vs Temperature for Different Theoretical Equations
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Figure 2.1.1: Bandgap Energy vs. Temperature for Different Theoretical Equations

Figure 2.1.1 shows the curves of different theoretical equations from 2.1,2.2,2.3 and 2.4
respectively. The bold curve represents the Varshni equation while the three dash lines

represent the Bose-Einstein, O’Donnell & Chen and Passler equations.

According to the many researchers who have done experiments with the
photoluminescence or absorption measurements, many of the data points fit the Varshni
equation in the range from 1.5°K to 750°K. Thus for this research, the Varshni equation of

energy bandgap will be used to model the transmission?.

The first parameter, Eg(0), is the bandgap energy for silicon at 0 Kelvin. The second

parameter, B, is the Debye Temperature. In brief, the Debye Temperature is the compensation



for the contribution of phonons to the specific heat. The last parameter, ay, is the fitting

parameter of the Varshni equation’.

For photon energies near the bandgap energy, the absorption coefficient (units in cm™)

depends on photon energy as®:
a=K[pv-E (1)} (2.5)

K and P are the transition probability constant and the optical absorption process index
respectively. Normally, K and P have the values of 2400 cm™eV™ and 1.5 respectively®. The P
value is assumed to be correct; however the K value is subject to change depending on the

nature of silicon (doping and defect levels) and external factors such as dust and dirt®.

The main aspect of this research is developing a silicon filter to sense the temperature.

The temperature will be detected and interpreted in terms of transmission of light*:
I=1,exp(-al) (2.6)

Where L is the thickness of the sample in centimeters. With equation 2.1, 2.5 and 2.6, the

relative transmission 1/ly, is therefore given by:

15
T2
Transmission = exp| — K |:-}E -E,(0)+ %o ] -L (2.7)
T+p

With these equations, we can plot the transmission in relation to temperature at different
thickness using the following parameters: K = 2400 cm™eV™®, h = 4.13566733x10eV-s, E,4(0) =
1.17eV, ¢ = 2.998x10%m/s, A = 1064x10°m, 0, = 473x10°8 eV/K, B = 636 K, the curves look like

the following with the L ranging from 100pum to 500um®®,



Transmission vs Temperature for Various Widths of Silicon
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Figure 2.1.2: Transmission vs. Temperature at Various Thickness of Silicon for
A=1064nm

2.2 Mechanics

The fiber optic vibration sensor is based on monitoring the variations in the power
coupled between two fibers separated by a short air gap, with one fiber suspended as a
cantilevered beam. Therefore we need to examine the basic mechanics of a cantilever system to

estimate the sensitivity and frequency response of the sensor.

2.2.1 Modeling Physical Systems

The description of a mechanical system involves six degrees of freedom, which are

characterised by the variables {X, Y, Z} and {®, ©, W}. The {X, Y, Z} represents the linear motion



in the (i, j, k) directions while {®, ©, W} represents the rotation about the (i, j, k) directions.
Before modeling the system, one must understand the dynamics of rigid body as described by
Coriolis’ equation of motion’:

& _&
dt dt

| T@OXF 2.8)

in equation 2.8, variables T and @are the position and angular velocity of the body respectively. |
and B are the inertial frame and body frame respectively. The vector T can be represented in
Cartesian coordinates (x, y, z) or in cylindrical coordinates (r, 6, z). This implies that the rate of
change of position in the inertial frame (a frame that is fixed and cannot be moved) is the rate of
change of position in the body frame (a frame that can be translate and rotate with respect to
the fixed frame) plus the cross product of the angular velocity and the position. This simple

equation allows the derivation of the velocity and the acceleration in full. For simplicity, we will

look at the acceleration of the system only given as’:

G=F+OXF+20xF+@xDXF (2.9)
The acceleration equation contains four terms: radial acceleration (i': ), the tangential
acceleration ( DOXF ), the Coriolis acceleration ( 2@ x F ) and the normal acceleration
(@x@x7 ). Notice the total acceleration equation is not a single term; it is a combination of
four different acceleration terms. However, the only acceleration that is necessary is the normal
acceleration. The reason is that the majority of motor assemblies are not balanced; thus there is
an eccentric load. The motors tend to rotate at constant angular velocity thus tangential

acceleration is non-existent. Coriolis and radial acceleration are not available because there is



no change in the radius of the eccentric load. Therefore, normal acceleration is the only major

acceleration causing vibration in the motor.

2.2.2 Solid Mechanics

Every mechanical system has three main components: mass, spring and a damper. For
this research and application, we are primarily concern with the mechanical vibration of a
cantilever beam application. To find the mechanical vibration sequence of the cantilever beam,
our analysis will use solid mechanics®. The following force distribution figure shows the relations

of distributed forces on a beam and the resultant changes.

AN
¥
The distributed load acts as the weight of the fibei itself. The bar will act massless.
| |
Distributed Load (w)
N Y NN \ NN NS NN
Diameter {d) -»Area {A) and Geometric Moment of Inertia {f) X
Denstty {p), Young's Madulus of Elasticity (E) -~

Length (1) !

Figure 2.2.2.1: Cantilever Beam Analysis

Figure 2.2.2.1 shows the analysis of the cantilever beam. The Ry represents the reaction
moment in the k - axis . This moment only appears in the fixed structures, such as cantilever

beams. The Ry and Ry are the reaction forces in the i-and j- axis . Reaction forces and

moments are there to balance the external forces exerted on the structure. These will appear in



any hinges or pinned-wheels; in this case, these reactions all occur at one spot, the fixed end of
the cantilever. The other end of the cantilever is completely free. Reaction forces and moments
are in units of Newtons (N) and Newton-meters (N-m). To have a better understanding of the
solid mechanics analysis, we can assume that the beam is massless with distributed load along
its length. The distributed load compensates for the weight of the beam. The units of the

distributed load are in Newtons per meter (N/m)2.

Young’s Modulus of Elasticity (E) determines the stiffness of the material. It is
dependent on the stress related to the strain of the material. The common units of elasticity are

given in gigapascals {(GPa)®.

Inertia (1) is the amount of resistance to the motion of a structure. The larger the
moment of inertia, the more resistant to motion it is. There are two types of inertia, mass and
geometric. Mass moment of inertia applies to objects in motion and has its units in kilograms
meters square (kg-m?). However, mass moment of inertia is not a concern in this research.
Geometric moment of inertia (also known as the second moment of area) applies to change in

the structural shape of the object and has the units of meters to the fourth power (m*)%.

With these parameters, we use the beam deflection differential equation to derive the

deflection equation:

*y(x,t) 8%y(xe) .
EI A =0 2.10
ax Mo @10

To simplification the equation, the time component of the equation will be ignored.
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First, we have to develop the boundary conditions for the cantilever beam®’:

C) T aﬁ (x, t)l =0 (211
x=0 x x=0
o2 &
< y(x,t* 0 (21Lii) o y(x,t)( =0 (21liv)
ax x=L 63&' x=L

From equation 2.10 without the time component, and using the boundary conditions of group
2.11, we will form our cantilever beam equation. The beam equation is the initial step in for the
development of the natural frequency equation. For simplicity, we will use the final equation®®.

wx* N wlLx® _ wl?x?
24 6 4

Ely(x) = (2.12)

2.2.3 Mechanical Vibration

From the preceding results, we can derive the cantilever beam deflection equation and
proceed towards finding the mechanical vibration of the cantilever beam. There is no direct way
to find the natural frequency of the beam via this equation alone; however we can find the
stiffness of the cantilever. Since time is not a factor in the cantilever beam analysis, the

following equations has been simplified as follows™:

11



Derivation of the Natural/Re sonance Frequency Equation

w=p-A-a (2.13)
m=p-A-L (2.14)
x=L (2.15)
4 4 4
Ely(L)=E15 =-P4eL_ pdal _ pdal (2.16)
24 6 4
pdaL?
=— 2.17
8EI @17)
F=pALa=k-6—>k=§ (2.18)
8EI
k= 5 (2.19)
k
m
1 |8EI
= 2.21
vl s 2.21)
w: Distributed Load (N/m) E: Modulus of Elasticity (Pa)
m : Mass (kg) I: Geometric Moment of Inertia (m*)
p : Density (kg/m’) 6 :Deflection of the beam (m)
a : Acceleration (m/s*) F :Force (N)
L : Length of the beam (m) k : Stiffness constant (N/m)
A : Cross - section Area (m?) o, :Resonance Frequency (rad/s)
x : Linear position of the beam (m) /., :Resonance Frequency (Hz)

To begin, we start by writing down the distributed load, mass and position relations respectively
(2.13-15). Then we use the deflection equation that was developed from equation 2.12 and
replaced w, m and x to form equation 2.16. That resultant equation is the deflection constant at
the end of the cantilever; thus, we can replace y(L) with & to represent deflection constant,
which leads to equation 2.17. in equation 2.18, we rewrote the force equation to represent the

weight of the beam; then we equated it to Hooke’s Law; thus finding the stiffness (or spring)

12



constant of the cantilever shown in 2.19. We know that the natural frequency is the square root
of the stiffness divide by the mass (2.20). Repiace k and m into the natural frequency equation
and the result will be the natural frequency equation as shown in 2.21. In Chapter 4 Design
section, we will look at how the length, the area and the geometric inertia influence the natural

frequency of the fiber.

The natural frequency dictates that at a certain frequency, the body will be resonating.
At resonance, all readings will be inaccurate and imprecise up to two and a half times the
natural frequency. At this point, the device will act as a seismometer instead of an
accelerometer. The difference between the two is a seismometer is a device that measures the
position of an object; an accelerometer is a device that measures the acceleration of an object™.

Now, that the natural frequency has been found, we can use it to develop the motion

equation of the sensor™™*:

I , ’J\Ibase

Figure 2.2.3.1: Free-Body Diagram of the Sensor

mj}sensor + c(j)sensor - .}.]base )+ k(ysensor - ybase ) = 0 (222.1)
LetS =Y nor — Voase (2.22.ii)
m$+cs+ks=-mj,,, (2.22.ii)

s(t)= Se~% (cos(co d t)+ cos(w d t))+ (1 = f’;”;‘; :;24‘,.)2 cos(Zaﬁ —arctan(fgr2 D (2.22.iv)
2

(t)—ybase(t),r=fi,é’=ciandwd= 1-¢“w

n C

Such that s(t) =y

sensor n
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We start with a simple modeling analysis of the system. Despite that we have a cantilever beam
sensor, we can approximate it to a simple mass-spring-damper system. We fit two frames in the
system: one at the mass (Ysensor) and one at the base (ygase). Now, we create the differential
equation of the system. In equation 2.22.ii, that statement allows to measure the relative
position of the sensor. After the replacement, in equation 2.22.iii, the input function is the base,
which is the motor itself. We solve equation 2.22.iii to get the time domain of the system
(2.22.iv). There are several components that appear in the equation. There is the time
component, t. The natural damped frequency, wy, is when the structure is left alone after an
initial shock, the structure vibrates at a certain frequency, the damped frequency, until the
structure comes back to rest. The frequency ratio, r, is the input frequency over the natural
frequency of the system. Lastly, the damping ratio, Z, is the ratio of the damping coefficient (c)
over the critical damping constant (c.). The critical damping constant is 2(km)1/2. We can analyze
the magnitude and phase versus the frequency ratio and the damping ratio. Below are the two

plots of the magnitude and phase of the equation above®:

14



Amplitude of Vibration vs Frequency Ratio at Different Damping Ratios

35 T increasing damping ratio /
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Figure 2.2.3.2: Amplitude Ratio vs. Frequency Ratio vs. Damping Ratio using Maple 11

Phase Angle of Vibration vs Frequency Ratio at Different Damping Ratios
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Figure 2.2.3.3: Phase Angle vs. Frequency Ratio vs. Damping Ratio using Maple 11

In order to have a useful accelerometer, the frequency ratio, r, has to be less than 0.25™.
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Using the combined knowledge of solid mechanics and mechanical vibration, we can
then proceed to apply this knowledge to optical systems. Later on, there will be further
discussion on the design of the cantilever beam and the results of the vibration sensors built and

tested.

2.3 Lightwave Propagation

In this section, we will describe the elements of electromagnetic theory that relate to
light wave propagation in free space and optical fibers, as required for an understanding of the

fiber optic sensors that were developed.

2.3.1 Optical Fiber Modes

An electromagnetic wave consists of coupled electric and magnetic waves propagating
through a medium perpendicular to each other, and in phase with each other™. Electromagnetic
radiation has dual properties: wave and particle. The wave model describes the propagation of

coupled electric and magnetic waves with velocity **:
v = fA where f is the frequency in sec™ and A is the wavelength in meters (2.23.i)

In a vacuum, the velocity of the wave is the speed of light, c; in any other medium, the velocity

of the wave is reduced as per to the equation™:
v =cn where n is the index of refraction of the medium (2.23.ii)

The particle model of light quantizes the energy in the wave into a discrete packet.

According to Planck’s equation, the frequency and the energy are directly proportional®:
E=hf (2.23.iii)
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The coefficient ‘h’ is Planck’s constant, given as 6.62608696*10* Js’.

Electromagnetism is governed by Maxwell's equations. These equations show the

interrelationship between electric and magnetic fields, electric charge and current. Maxwell's

equations are shown as following™’:

(2.24 and 2.25)

VxE:—%ﬁ
' (2.26and2.27)
Vxﬁ=J+a—
ot

p = Charge Density
= Electric Field

E
D = Electric Displacement Field

b O
il
>

es]]

bt

Il
=
<

Sl

+ Ry

Magnetic Field Strength

= Magnetic Field

M =Magentization

P = Electric Dipole Moment per volume
H

oo} m|
Il

= Permeability
&, = Permittivity of free space
U, =Permeability of free space

If we assume the light is passing through a linear, isotropic and uniform medium and that the

electric charge density is zero, the electric dipole moment is directly proportional to the electric

field':

=g yE such that y is the susceptibility

p
D=¢,EQ+y)=¢,6,E=¢E

(2.28)
(2.29)

The € represents the permittivity of the material. With the assumptions, which are valid for

lightwave propagation in optical fibers, Maxwell's Equation simplifies as follows®:




- = oH

VeE=0 VXE:-‘,U—a
(2.30 and 2.31) 9 (232and 2.33)
= . OF
V.H=O VXH:g-Et—

The solution for the EM waves for light is in the form of the following, in cylindrical coordinates:
E(r,p,z,t) = Eo (5,1)- exp(i(E o5 — a)t)) such that s = (r,@,z) (2.34)

The k is the wavenumber and it equals to 2rt/A and its units are in m™. The wavenumber is the

magnitude of the wave vector®,

In any optical fibers, the fiber modes within the core are in a shape of the Bessel
function. The Bessel beam is a non-diffractive beam that propagates through the optical fiber.

The Bessel beam function is shown in the following equation™:

E(r,4,2,t)=E, expli(- ot + k,z))- J (k. 7) (2.35)
Where k, = 27” cos(8),k, = 27” sin(@)

J, 1s the Bessel function of the zeroth order

Within the optical fiber, the fundamental mode of light is show below:

Figure 2.3.2.1: The fundamental mode of light in an optical fiber *’.
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2.3.2 Free Space Propagation

Once the light leaves the optical fiber, we can approximate the mode shape as a
Gaussian function. The Gaussian beam is a solution of the Helmholtz equation. The solution of
the mathematical equation is in complex amplitude of the electric field. Below are the equations

of the Gaussian beam?*:

I(r,z)=Io(Ww°Z—)J2 exp(;fzzz)) (2.36)

2.37)

W,
Each equation will be explained in detail in ascending order. The z, =_il is the Rayleigh’s

length. Note that w is the waist size of the beam. Rayleigh’s length is the “distance from the
beam waist to where the mode area is doubled.”*® The purpose of the Rayleigh’s length is to
determine the focus depth. Thus, there is a trade-off; the shorter the Rayleigh’s length, the
higher the optical intensity in its focus and stronger the focus of the beam. w(z) is the spot size
of the beam. Above shows that w(z) is related to the axial distance z along the beam. R(z) is the
radius of curvature of the wavefronts within the beam. At the end of the Gaussian beam
equation, there is the parameter called the Guoy phase. The arc tangent of the axial distance to
the Rayleigh's length (arctan[z/zy]); the Guoy phase is the longitudinal phase delay of the

beam®.
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With the vibration and temperature sensors, there are physical gaps between the two
fibers, whether 