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Abstract 

The last 15 years have seen a significant progress in the development of 

general purpose algorithms and software for polyhedral computation. Many 

polytopes of practical interest have enormous output complexity and are often 

highly degenerate, posing severe difficulties for known general purpose algo­

rithms. They are, however, highly structured and attention has turned to 

exploiting this structure, particularly symmetry. We focus on polytopes arising 

from combinatorial optimization problems. In particular, we study the face 

lattice of the metric polytope associated with the well-known maxcut and mul­

ticommodity flow problems, as well as with finite metric spaces. Exploiting the 

high degree of symmetry, we provide the first complete orbitwise description of 

the higher layers of the face lattice of the metric polytope for any dimension. 

Further computational and combinatorial issues are presented. 
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Chapter 1 

Introduction 

Convex polytopes are the d-dimensional analogues of 2-dimensional convex 

polygons and 3-dimensional convex polytopes. To a large extent the geom­

etry of polytopes is just that of JRd itself. These geometric objects of relevant 

importance in various areas of mathematics and other disciplines have been 

studied since antiquity (e.g., the platonic solids). Interest in the theory of con­

vex polytopes grew tremendously in the second half of the 20th century due to 

its relation with linear programming (i.e., optimizing a linear function over the 

solutions of a system of linear inequalities). DANTZIG's Simplex Algorithm, 

developed in the late 40's, showed that geometric and combinatorial knowledge 

of convex polytopes is key for finding and analyzing solution procedures for 

linear programming problems. 

A convex polytope can be defined as the bounded intersection of a finite 

set 'H(P) of halfspaces. The well known theorem of Minkowski-Weyl states 

that polytopes can also be defined as the eonvex hull of its set V(P) of vertices. 

These two independent characterization of polytopes give rise to two closely 

related computational problems: how to compute V(P) from 'H(P), known 
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as the vertex enumeration problem, and how to compute 1t(P) from V(P), 

known as the facet enumeration problem. These two problems are essentially 

equivalent under the point/hyperplane duality. 

The vertex/facet enumeration of combinatorial polytopes, i.e. polytopes 

arising from combinatorial optimization problems, is often trivial for the very 

first cases and then suddenly the so-called combinatorial explosion occurs even 

for small instances. While these polytopes turn out to be quickly intractable 

for enumeration algorithms designed for general polytopes, algorithms using 

their rich combinatorial features can exhibit surprisingly strong performances. 

Recently, different research groups have proposed new enumeration techniques 

for combinatorial polytopes, in particular the metric polytope, that exploit 

their large symmetry groups making it possible tackle problems that until now 

have been intractable. 

An even computationally harder problem is the face lattice enumeration. 

Previous works on the facial structure of the metric polytope include the or­

bitwise complete description of its face lattice in dimension 6 and 10, see [12], 

and of the top 3 layers of its face lattice for any dimension, see [11, 13]. In this 

thesis, we provide the orbitwise complete description of faces of codimension 4 

for any n. 

1.1 Preliminaries 

1.1.1 Convex polytope 

We recall some definitions and elementary properties concerning polyhedra. A 

complete presentation can be found in BAYER AND LEE [5], BR0NDSTED [8], 

GRUNBAUM [19], MCMULLEN AND SHEPHARD [23], and ZIEGLER [27]. A 
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convex polyhedr-on is an intersection of a fini te number of closed half spaces in 

JRd . Since we do not consider non-convex polyhedra, we often omit t he term 

convex. A polytope is a bounded polyhedron. 

Let P be a d-dimensional polytope, a linear inequali ty c · x ~ c0 is valid 

for P if it is satised for all points x E P. A face f of P is any set of the form: 

f = P n { x E IRd : c · x = co } 

where c · x ~ Co is a valid inequality for P . The dimension of a face is the 

dimension of its affine hull. A proper fa ce of P is a face f such that f =1- 0. 

The faces of dimension 0, 1, d-2 , and d-1 are respectively called t he ver-tices, 

edges, ridges, and facets of the polytope. One of the earliest results in the field 

is the generalization by SCHLAFLI in 1852 of E ULER.s rela tion stating that the 

alternating sum of t he number of i-faces (including the improper faces 0 and 

P ) equals zero . For t he case d = 3, it was discovered by E ULER in 1752. The 

face lattice of a convex polytope is the set of all its faces partially ordered by 

inclusion. Two polytopes are combinatorially equivalent, respectively dual, if 

there i a bij ection between their faces which preserves, respectively reverses, 

the inclusion relation. 

Tetrahedron Cube Octahedron Dodecahedron Icosahedron 

Figure 1.1: Platonic solids 

A d-dirnensional polytope with exactly d+ 1 vertices is called a simplex. 

A polytope such that each vertex belongs to exactly d edges is simple, and 
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a polytope such that each facet contains exactly d vertices is simplicial. A 

d-dimensional polytope is called k-simplicial if each k-face is a simplex. The 

dual of a k-simplicial polytope is called k-simple. Figure 1.1 illustrates different 

types of polytopes in dimension 3, namely the five platonic solids: tetrahedron, 

cube, octahedron, dodecahedron and isocahedron. We recall some denitions 

and elementary properties concerning the graph of a polytope. A complete 

presentation can be found in BR0NDSTED [8] and ZIEGLER [27]. The main 

reference for the general graph theory is BROUWER, COHEN AND NEUMAIER 

[9]. The vertices and edges of a d-dimensional polytope P clearly form an undi­

rected graph G(P) called the skeleton of P. The diameter <5(P) of a polytope 

P is the diameter of its skeleton, that is, the smallest number k such that any 

two vertices of P can be connected by a path with at most k edges. In this the­

sis we will consider only non-redundant, full dimensional, and bounded convex 

polyhedra. 

1.2 Face lattice enumeration 

1.2.1 Vertex enumeration 

Given a polytope P defined by the linear inequalities associated with the set 

F(P) of its facets, the computation of its vertex set V(P) is referred to as 

the vertex enumeration problem. The main vertex enumeration algorithms can 

be viewed as not just generating all vertices of a polytope P, but actually 

generating the skeleton of P, i.e. the graph formed by its vertices and edges. 

There are essentially two main classes of algorithms for producing these graphs: 

graph traversal algorithms and incremental algorithms. 

A graph traversal algorithm, also called a pivoting method, first finds one 
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vertex of P and then identifies all vertices (and edges) by moving from one 

vertex to an adjacent one. In this method, each vertex v is described by a 

basis - i.e. d affinely independent inequalities containing v. Moving from one 

vertex to an adjacent one amounts to changing one member of the basis in 

some proper way. The basic incremental algorithm first selects d + 1 affinely 

independent inequalities and computes the vertices and edges of the associated 

d-simplex. Then at each step k one of the remaining inequalities Hk is inserted 

and the vertex and edge description is updated by removing the vertices cut 

off by the newly inserted inequality Hk and adding new vertices (and edges) 

created by the intersections of edges of the intermediate polytope Pk with the 

newly inserted inequality Hk. 

For a detailed presentation of the main existing algorithms we refer to 

AVIS, BREMMER AND SEIDEL [1] and references therein. Even though these 

algorithms often perform quite well for many cases, in particular for low di­

mensional and simple polytopes, and despite the fact that the vertex enumer­

ation problem has been extensively studied by many authors see for instance 

[2, 10, 17, 22, 24], there is no satisfying algorithm for generating the vertices of 

a general polytope given by its facets. 

1.2.2 Face lattice enumeration 

For most of the combinatorial polytopes, the number of faces usually grows 

extremely large as the dimension of the faces is getting close to roughly half 

the dimension of the polytope: Face lattices are usually "fat" making the com­

putation of the full face lattice of a polytope extremely hard. 

In general, a proper face pj-t of P can be defined either by the subset 

5 



Master Thesis - Jonathan Li McMaster-Comput. Eng. and Sc. 

:F(#-t) of facets containing J:j-t or as the convex hull of the vertices vu:;-t) 
belonging to J:j-t. The codimension of a (d - t)-face J:j-t is t. Given the 

facet set :F(P), the face enumeration problem consists in enumerating all the 

faces of P in terms of :F(J:j-t). A face enumeration algorithm usually first 

generates the set Ld-t of all the possible intersections between facets and the 

face of codimension t-1, removes the duplicates, and then determines the facet 

set and computes the rank of the remaining intersections. The computation 

can quickly become intractable, when the number of intersections becomes too 

large. To exploit the symmetries displayed by most combinatorial polytopes, 

an orbitwise face enumeration algorithm is proposed in Chapter 3. 

1.3 Combinatorial polytope 

Combinatorial polytopes, i.e. polytopes arising from combinatorial optimiza­

tion problems, are usually associated with the complete directed graph Dn or 

the complete undirected graph Kn on n nodes. Solving an instance of a com­

binatorial optimization problem means finding a feasible solution of minimum 

or maximum cost. The combinatorial polytope is the convex hull of the set of 

vectors representing the feasible solutions. A standard approach is to try to 

describe the polytope in terms of linear inequalities with the hope of applying 

the tools of linear programming. For instance, for matchings, spanning trees, 

and several other structures, we are able to get a compact description of the 

convex hull in terms of linear inequalities. In many cases, though, it is hard to 

obtain such a description. Combinatorial polytopes become quickly intractable 

for enumeration algorithms designed for solving general polytopes. 
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1.4 Cut polytope 

The cut polytope Cn is the convex hull of the incidence vectors of all the cuts 

of Kn- More precisely, given a subset S of {l...n}, the cut determined by S 

consists of the pairs (i,j) of elements of {l...n} such that exactly one of i,j is 

inS. By J(S) we denote both the cut and its incidence vector in IRn; that is, 

<5 ( S)ij = 1 if exactly one of i, j is in S and 0 otherwise for 1 S: i S: j S: n. So, 

6 ( S)ij could be considered as coordinates of a point in mn. The cut polytope is 

the convex hull of all 2n-l cuts, and the cut cone is the conic hull of all2n-l -1 

nonzero cuts. 

One of the well-known applications for the cut polytope is the maxcut 

problem. The maxcut problem could be stated as follows: given a graph G = 

(N, E) and nonnegative weights We, e E E, assigned to its edges, the maxcut 

problem consists in finding a cut 6(8) whose weight l".::eEc5(S) We is as large as 

possible. It is well known that it is an NP-complete problem. By setting We = 0 

if e is not an edge of G, we can consider without loss of generality the complete 

graph Kw Then the maxcut problem can be stated as a linear programming 

problem over the cut polytope Cn as follows: 

such that x E Cn 

1.5 Metric polytope 

The metric polytope mn is one of well-studied relaxations of the cut polytope. 

It also can be defined in terms of a finite metric space in the following way. For 
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all 3-sets { i, j, k} E {1, ... , n }, we consider the inequalities: 

Xij + Xik + Xjk S 2 (2) 

(1) induces 3G) facets, which define the metric cone. Then, bounding the latter 

by the (~) facets induced by (2), we obtain the metric polytope. While the cut 

cone is the conic hull of all, up to a constant multiple, {0, 1}-valued extreme 

rays of the metric cone, the cut polytope is the convex hull of all {0, 1 }-valued 

vertices of the metric polytope. 

We have en ~ mn with equality only for n S 4. Any facet of the metric 

polytope contains a facet of the cut polytope and the vertices of the cut polytope 

are vertices of the metric polytope, in fact the cuts are precisely the integral 

vertices of the metric polytope. Actually the metric polytope mn wraps the cut 

polytope c"n very tightly since, in addition to the vertices, all edges and 2-faces 

of Cn are also faces of mn, for 3-faces it is false for n ;::: 4. Any two cuts are 

adjacent both on Cn and on mn. Since the metric polytope is a relaxation of 

the cut polytope, optimizing wT · x in the previous section over mn instead of 

Cn provides an upper bound for the maxcut problem. 

1.5.1 Faces of the metric polytope 

The metric polytope mn is a (;)-polytope with 4(~) facets inscribed in the 

cube [0, 1](;). We recall some results on the vertices of the metric polytope. 

The cuts are the only integral vertices of mn. All other vertices with are not 

fully fractional are so-called trivial-extensions of a vertex of mn-I· In other 

words, the new vertices are the fully fractional ones. The (!, j)-valued fully 
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fractional vertices are well studied and include the anticut orbit formed by the 

2n-l anticuts 8(8) = H1, ... , 1) - ~8(8), where 8(8) represents both the cut 

and its incidence vector in JR(~). Consider the mapping: ¢0 : R('"'~
1

) ::::::? R(~), 

defined by ¢0 (v)ij = Vij for 1 ~ i < j ~ n- 1, ¢o(v)i,n = VI,i for 2 ~ i ~ n- 1 

and ¢0 (vh,n = 0, both ¢0 (v) and its switching by 8( {n}) are called trivial 

extensions of v. 

While the diameter of the dual of the metric polytope is 2, the diameters 

of the dual cut polytope and mn are respectively conjectured to be 4 and 3, see 

[11, 21]. We recall two independent conjectures concerning the combinatorial 

structure of the metric polytope: the dominant clique conjecture [21] stating 

that the cut vertices form a dominating set, and the non-cut set conjecture [15] 

stating that for n 2: 6, the restriction of the skeleton to the non-cut vertices 

is connected while the dominant clique conjecture was disproved in [15], the 

non-cut set conjecture is still open. The full face-lattice enumeration has been 

performed for m4 and m5 , see [12]. The orbitwise descriptions of the faces of 

mn of codimension 1, 2 and 3 was given in [11, 13]. 

1.6 Symmetry group and orbits 

In this thesis we consider polytopes associated with problems that are symmet­

ric. We recall that the symmetry group Is( P) of a polytope P is the group of 

isometries preserving P. Typical examples of polytopes with large symmetry 

group are polytopes associated with problems arising from the complete di­

rected graph Dn or the complete undirected graph Kn on n nodes. Some such 

well-known polytopes are: the traveling salesman polytope tspn which is the 

convex hull of all the incidence vectors of all Hamiltonian cycles of Kn and the 
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linear ordering polytope lon which is the convex hull of the incidence vectors 

of all acyclic tournaments of Dn- The isometries preserving tspn are induced 

by then! permutations on {1,2, ... ,n}, that is, ls(tspn) c::: Sym(n). In this 

thesis, we consider polytopes with even larger symmetry group: the cut and 

metric polytope. More precisely, for n ~ 5, Is(mn) =Is( en) is induced by then! 

permutations on {1, 2, ... , n} and the 2n-I switching reflections by cuts and we 

have /Is(mn)/ = 2n-1n!, see [14]. As these symmetries preserve the adjacency 

relations and the linear independency, all faces of mn are partitioned into orbits 

of faces equivalent under permutations and switchings. 

10 



Chapter 2 

Face Lattice Computation 
Under Symmetry 

As the face lattice enumeration over combinatorial polytopes turns out to be 

intractable due to the exponentially growing combinatorial structure, we fo­

cus on enumerating the face lattice by exploiting symmetry. We consider the 

problem of enumerating the orbits of the face lattice with a given facet set 

:F(P) = {ff-1
, ~~-1 , ••• , ~~- 1 

}. By duality, the methods we discuss here also 

apply when the polytope is defined as the convex hull of its vertex set. 

2.1 Decomposition method 

The decomposition method consists in enumerating the orbits of the face lattice 

by decomposing the original problem into several subproblems. Subproblems 

here refer to the smaller input size regarding current available vertex (resp. 

face) enumeration algorithm, and they are usually defined with respect to cer­

tain orbit sets. For example, in the incidence decomposition method (resp. 

adjacency decomposition method), the subproblems are corresponding to the 

orbits of facets (resp. the orbits of vertices), while in the orbitwise face enu-

11 
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meration algorithm, the subproblems are corresponding to the orbits of faces. 

Although different variants of decomposition method require different analysis 

of the computation, we outline here the common tasks this type of method 

usually involves: 

(i) decomposing the original problem into subproblems with respect to certain 

sets of orbits, 

(ii) applying traditional vertex (resp. face) enumeration algorithm for each 

subproblem, 

(iii) identifying the canonical representative for the vertex (resp. face) set 

result from ( ii), 

(iv) updating the orbit list until the orbit list is completed. 

In (i), by taking advantage of the complete description of faces up to 

symmetry, the computation of the decomposed subproblems are guaranteed 

to generate all the orbits of desirable vertex (resp. face) set. For most of 

the orbitwise enumeration algorithms, the efficiency of the algorithm results 

from the trade-off among ( i), ( ii), (iii). In many cases, the performances are 

empirical and rely on heuristics such as skipping the high degeneracy in the 

adjacency decomposition method. 

2.2 Incidence decomposition method 

The incidence decomposition method reduces the problem of vertex enumera­

tion into a number of smaller subproblems with respect to orbits of facets, in 

which the algorithm generates vertices that are incident to the chosen facets. 

12 
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Let P be a polytope in JRd generated by facet set F(P) ={Jt-1, ... , J!-1 }, the 

set F(P) = {ff-1
, ... , J!-1} is partitioned into orbits under the action of Is(P). 

The algorithm generates a list of Is(P)-inequivalent vertices of P incident to 

each canonical representative for each orbit of facets. Then, all the computed 

vertices are merged to a list of Is(P)-inequivalent vertices of P. The certificate 

of the complete enumeration of vertices up to symmetry comes from the fact 

that every Is(P)-orbit of vertices of P contains a vertex which is incident to 

one of the chosen canonical representatives of facets. In other words, it is suffi­

cient to enumerate all the orbits of vertices by enumerating the vertices of each 

canonical representative of facets. 

To compute the vertices incident to a given facet J!'-1 , the method enu­

merates the vertices of lower dimensional polytopes. For each subproblem 

we may not have to consider all the facets of P because some of the facets 

may not be incident to the vertices incident to the canonical representative 

J!'-1
. The facets not incident to J!'-1 correspond to redundant inequalities for 

Pr* : = { P n J:-1}. The lower the number of incident facets of each canonical 

representative, the more computational gain we could have by applying gen­

eral vertices enumeration algorithm for each lower-dimensional polytope. If the 

computational cost is still too high for each subproblem, the method could be 

applied recursively. 

2.3 Adjacency decomposition method 

The adjacency decomposition method traverses the orbits of vertices directly. 

Starting from a (set of) initial Is(P)-inequivalent vertex (vertices), it traverses 

the adjacency graph of vertex orbits. To traverse adjacent vertices, the method 

13 
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can either apply incremental algorithm or graph traversal algorithm. When 

applying graph traversal algorithm, the method traverses the so-called basis 

graph. The nodes of the basis graph are the bases, and the edges are the pairs 

of adjacent bases. 

2.4 Orbitwise face enumeration 

The orbitwise face enumeration generates the set Ld-t of all intersections be­

tween the canonical representatives t:,d-t+l and facets from :F(P), and extracts 

t:,d-t from Ld-t by applying orbitwise equivalency checks. 

Similarly to the incidence decomposition method that lowers the number 

of possible orbits of vertices to enumerate by only enumerating those being 

incident to the orbits of facets, the generation of faces of codimension t in­

tersections can be obtained by intersecting the orbits of faces of codimension 

( t - 1) with all facets. After generating the list of possible orbits of faces of 

codimension t up to symmetry, the algorithm further computes the canonical 

representatives using the list. Further details can be found in the following 

chapters, also see [13]. 

2.5 Refinement using symmetry 

2.5.1 Recursion 

The incidence decomposition method and the adjacency decomposition method 

reduce the vertex enumeration problem over a (d- t)-dimensional polytope 

P to a number of vertex enumeration subproblems over polytopes in ( d - t -

1) dimension. These lower dimensional subproblems may still be difficult to 

14 
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solve for general enumeration algorithms. If so, we might apply the methods 

recursively to further lower the input size. In both methods, after reaching the 

step computing a list of vertices for a (d- t) dimensional polytope f!'-t, the 

further exploitation of symmetry with respect to f!'-t could be done; that is 

computing Is(f!--t) where Is(f!'-t) is some symmetry group acting on the face 

lattice of f!'-t. With Is(f!'-t), we can then obtain a list of Is(f!'-t)-inequivalent 

vertices of f!'-t. In a post processing step, we then have to obtain a list of 

Is(P)-inequivalent vertices out of the set of Is(f!'-t)-inequivalent vertices of all 

subproblems, r = 1, ... , Jd-t. 

2.5.2 Adjacency decomposition pruning method 

Adjacency decomposition pruning method is the refinement of the adjacency 

decomposition method. Consider vertices v0 and v1 that are equivalent under 

some symmetry of the basis automorphism group. This same symmetry acts 

as an isomorphism between corresponding basis graphs. In other words, the 

neighborhood of v0 is symmetric to the neighborhood of v1 • It follows that 

when we discover a basis (vertex) B defining a new orbit, the orbit shall be 

visited only once, since the combinatorial structures of the vertices in the same 

orbit are equivalent. In other words, it is suffcient to enumerate all the orbits of 

vertices by exploring the neighborhood of canonical representatives. Although 

this pruning method does not reduce the number of orbits of bases explored, it 

can reduce the number of actual bases visited and save the computational cost 

result from computing the adjacent vertices. 

15 
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2.5.3 A pivoting method using symmetry 

Pivoting methods are among most successful methods for vertex enumera­

tion problem and it is natural to consider whether pivoting technique can be 

adapted to the symmetric setting. In the typical case, generating the entire 

basis graph is impractical due to the large number of bases that correspond 

to each facet in the degenerate case. The performance of pivoting method un­

der symmetry is determined by the number of orbits of bases with respect to 

the basis automorphism group defined as the subgroup of the combinatorial 

automorphism group that acts on the basis graph; for further details, see [7] 
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Chapter 3 

Orbitwise Face Enumeration 
Algorithm 

This section presents the complete characterization of the orbits of faces of 

codimension 4 for the metric polytope mn for n ~ 3. 

3.1 Orbitwise enumeration algorithm 

Given a polytope P defined by its (non-redundant) facet set :F(P) = {ft-1
, ... 

, f!- 1 }. The algorithm first computes the list t:_d- 1 = {]t-1
, ... , Jfd~-11 } of all the 

canonical representatives of the orbits of facets. Then the algorithm generates 

the set Ld-2 = {]f- 1 n J;!- 1 : s = 1, ... ,Id-1, r = 1, ... , m }. To identify and keep 

only the ( d - 2)-faces, the algorithm computes the dimension of each subface 

]f- 1 n J;!-1 • Then it computes the list of canonical representatives of orbits of 

(d- 2)-faces _cd-2 = {]t-2
, ••• , Jfd-=.;} from the Ld-2. In general, the algorithm 

computes t:_d-t from t:_d-t+l through the following steps: 

1. generating the set Ld-t by intersecting canonical representatives .ff-t+1 

with facets J;!- 1 for s = 1, ... , Jd-t+l and r = 1, ... , m, 
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2. computing the set F(jd-t+l n id-l) of all facets containing jd-t+l n id-l 

and then its rank dim(jd-t+l n id-1) 

3. for dim(jd-t+I n id-1) = d- t, computing the canonical representative 

p-t of p-t+I n id-l 

The algorithm terminates after the list £ 0 of canonical representatives of 

the orbits of vertices is computed. The algorithm performs better when the 

symmetry group Is(P) is larger since the number of orbits could be relatively 

small. One of major computational costs arises from the computation of the 

canonical representative ];!-t of the orbit 0 #-t generated by a face i;!-t and 

the or bitwise equivalency check. The computation of dim(jd-t+I n id-l) is 
- - d-t+1 

performed by computing the rank of F(Jd-t+l n id-l ). Assuming is = 

{if-1
, ... , it:--l} and i;!-1 = itd-l by re-ordering the given facets and defining 

iid-l = { af x = bi, x E P}, the following LPj, j E { t + 1, ... , m }, is used to 
- d-t+l 

determine F(fs n i;!-1 
): 

max aJx- bj 
s.t. afx-bi=O 

afx- bi ~ 0 
X E JR(~) 

i = 1, ... , t 
i = t+ 1, ... ,m 

The LPj checks if the facet if~t~l contains the intersection J:-t+I n Jf-1 by 

· id-1 - d-t+1 jd-l T d-1 trymg to push away j2:t+l from is n r . If aj X- bj > 0, ij2:t+1 does 

not contain the intersection and so it can be "detached" from the intersection. 

On the other hand, if~t~l does contain the intersection if aJ x- bj = 0. 
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3.2 Previous results and computation 

3.2.1 Full face lattice of the metric polytope m5 

Using the algorithm presented at section 3.1, the full face lattice for m5 is pre­

sented. 

4N 
1iff * 

1}) 1% * rr 

·I!Y 1J;;; 1» * 1---------------------J 

1v 
I 

* 
Figure 3.1: Non-simplices of the face lattice of m5 
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3.2.2 Or bitwise description of face of codimension 2 and 
3 of the metric polytope for any n 

In the following the orbitwise description of face of codimension 2 and codi­

mension 3 for any n are presented, for details see [13]. 

Orbit Op Representative f/' mn for which ft is a ( d - 2)-face \On\ 
on ~1,2,3 n ~1,2,4 mn?:.4 16or~) 
on ~1,2,3 n ~1,4,5 mn?:.5 48(~) 
on ~1,2,3 n ~4,5,6 mn>6 240(~) 

Orbitwise description of face of codimension 2 

Orbit Of3 Representative fl mn for which Jl is a (d- 3)-face \Of3\ 
on ~1,2,3 n ~1,2,4 n ~1,3,4 mn?:.4 32(~) 
on ~1,2,3 n ~1,2,4 n ~1,3,4 mn?:.4 24C) 
on ~1,2,3 n ~1,4,5 n ~2,3,4 mn?:.5 160(~) 
on ~1,2,3 n ~1,2,4 n ~1,3,5 mn?:.5 96oG) 

of~ ~1,2,3 n ~1,2,4 n ~1,2,5 mn?:.5 480(~) 
of~ ~1,2,3 n ~1,4,5 n ~2,3,4 mn?:.5 480(~) 
on ~1,2,3 n ~1,3,5 n ~2,4,6 mn?:.6 5760(~) 
Ofi ~1,2,3 n ~1,2,6 n ~1,4,5 mn?:_6 5760(~) 
Ofg ~1,2,4 n ~1,3,5 n ~2,3,6 mn?:.6 3840(~) 
Op ~1,2,4 n ~1,3,5 n ~2,3,6 mn?:.6 3840(~) 

10 

of3 ~1,2,5 n ~1.2,1 n ~3,4,6 mn?:.7 6720(~) 
11 

Op ~1,2,7 n ~1,3,5 n ~2,4,6 mn?:.7 6720(~) 
12 

Of3 ~1,2,3 n ~1,4,5 n ~1,6,7 mn?:.7 40320(~) 
13 

of3 ~1,3,5 n ~1,7,8 n ~2,4,6 mn?:.8 53760(~) 
14 

of3 ~1,3,5 n ~2,4,6 n ~7,8,9 mn?:.9 17920(~) 
15 

on~~ ~1,2,3 n ~1,2,8 n ~1,2,4 m4 2(~) 

Orbitwise description of face of codimension 3 
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3.3 The faces of codimension 4 of the metric 
polytope for any n 

As mentioned in Section 3.2, the first 3 upper layers of mn are known for any 

n. We have Jd- 1 (mn~3)=1, Jd-2 (mn~6)=3, Jd-3 (mn~g)=15 and by Theorem 

3.3.1, we get Jd-4 (mn~l2)=94. 

Theorem 3.3.1 For n;::: 12, the face of codimension 4 of the metric polytope 

mn are partitioned into 94 orbits equivalent under permutations and switchings. 

For n = 4, ... , 11 the face of codimension 4 are partitioned into 2, 10, 34, 61, 

79, 88, 92, 93 orbits respectively. 
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Orbit 01~ Representative fi4 
mn for which /i4 is a (d- 4)-face 

Oft ..6.1,2,3 n ..6.1,2,4 n ..6.1,3,4 n ..6.2,3,4 mn~4 

0 fi ..6.1,2,3 n ..6.1,2,4 n .6.1,2,5 n .6.1,3,4 mn~5 

Oft .6.1,2,8 n .6.1.2,4 n .6.1,3,5 n .6.1,4,5 mn~5 

0 ft .6.1,2,3 n .6.1,2,4 n .6.1,2,5 n .6.1,3,4 mn~5 

o,t .6.1,2,8 n .6.1,2,4 n .6.1,2,5 n .6.3,4,5 mn~5 

o,i ..6.1,2,3 n .6.1,2,5 n .6.1,3,4 n .6.2,4,5 mn~5 

0# .6.1,2,8 n .6.1,2,4 n .6.1,2,5 n .6.3,4,5 mn~5 

0ft ..6.1,2,3 n .6.1,2,4 n .6.1,3,4 n .6.2,3,5 mn~5 

o,~ .6.1,2,8 n .6.1,2,5 n .6.1,3,4 n .6.2,4,5 mn~5 

o 14 
10 

.6.1,2,8 n .6.1,3,5 n .6.1,4,5 n .6.2,4,6 mn~6 

o 14 
11 

.6.1,2,8 n .6.1,3,5 n .6.1,4,6 n .6.2,4,5 mn~6 

o 14 
12 

.6.1,2,8 n .6.1,4,5 n .6.2,4,6 n ..6.3,5,6 mn~6 

0 tt3 .6.1,2,3 n ..6.1,2,4 n .6.1,3,4 n .6.1,5,6 mn~6 

o,4 
14 

..6.1,2,8 n .6.1,4,5 n .6.2,4,6 n .6.3,5,6 mn~6 

o,4 
15 

.6.1.2,3 n .6.1,2,4 n .6.1,3,5 n .6.2,3,6 mn~6 

Or 16 .6.1,2,8 n .6.1,2,4 n .6.1,3,4 n .6.1,5,6 mn~6 

o,4 
17 

..6.1,2,8 n .6.1,2,4 n .6.1,3,4 n .6.2,5,6 mn~6 

Or 18 
.6.1,2,8 n .6.1,3,5 n .6.1,4,5 n .6.2,4,6 mn~6 

o 14 19 .6.1,2,8 n .6.1,2,6 n .6.1,4,5 n .6.3,4,5 mn~6 

0!4 
20 

.6.1,2,3 n .6.1,2,4 n .6.1,2,5 n .6.3,4,6 mn~6 

o,4 
21 

..6.1,2,5 n .6.1,2,6 n .6.1,3,4 n .6.2,3,4 mn~6 

0!4 22 .6.1,2,3 n .6.1,2,4 n .6.1,2,5 n .6.1,3,6 mn~6 

0!4 23 .6.1,2,8 n .6.1,2,4 n .6.1,2,5 n .6.3,4,6 mn~6 

0!4 24 .6.1,2,8 n .6.1,2,5 n .6.1,3,4 n .6.1,4,6 mn~6 

0!4 
25 

.6.1,2,8 n .6.1,2,4 n .6.1,3,5 n .6.2,4,6 mn~6 

0!4 26 .6.1,2,3 n b.1,2,4 n .6.3,5,6 n .6.4,5,6 mn~6 

014 
27 

.6.1,2,4 n .6.1,2,5 n .6.1,3,4 n .6.2,3,6 mn~6 

o,4 28 .6.1,2,5 n .6.1,2,6 n .6.1,3,4 n .6.2,3,4 mn~6 

0!4 29 .6.1,2,4 n ..6.1,2,5 n .6.1,3,4 n .6.2,3,6 mn~6 

0!4 
30 

..6.1,2,3 n .6.1,2,6 n .6.r,4,5 n .6.3,4,5 mn~6 

or 31 .6. 2 3 n .6. - n .6.1 4 6 n .6.-1, , 1,3,5 , , 2,4,5 mn~6 

0!4 32 .6.1,2,8 n .6.1.2.4 n .6.1,2,5 n .6.1,2,6 mn~6 

o 14 33 .6.1,2,8 n .6.1,3,5 n .6.1,4,6 n .6.2,4,5 mn~6 

0!4 34 .6.1,2,3 n .6.1,2,4 n .6.3,5,6 n .6.4,5,6 mn~6 

ot1fi .6.1,2,4 n .6.1,2,1 n .6.1,3,5 n .6.2,3,6 mn~7 
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Orbit 0 1-J. Representative fi4 mn for which fi4 is a (d- 4)-face 

0!4 36 ~1,2,3 n ~1,3,4 n ~1,5,6 n ~2,4,7 mn?_7 

o14 
37 

~1,2,5 n ~T,3,4 n ~1,6,7 n ~2,3,4 mn?_7 

Or 38 ~1,2,3 n ~1,2,4 n ~3,4,5 n ~5,6,7 mn?_7 

Or 39 ~1,2,3 n ~1,2,4 n ~1,3,4 n ~5,6,7 mn?_7 

0!4 40 ~1,2,3 n ~1,4,6 n ~2,5,7 n ~3,4,5 mn?_7 

0!4 41 ~1,2,3 n ~1,2,4 n ~1,3,4 n ~5,6,7 mn?_7 

0!4 42 ~1,2,3 n ~1,2,4 n ~1,3,5 n ~1,6,7 mn?_7 

Or 43 ~1,2,3 n ~1,2,4 n ~1,3,5 n ~2,6,7 mn?_7 

0!4 44 ~1,2,3 n ~1,3,4 n ~1,4,5 n ~2.6,7 mn?_7 

o 14 
45 ~1,2,5 n ~1,3,6 n ~1,4,7 n ~2,3,4 mn?_7 

o 14 
46 ~1,2,3 n ~1,2,4 n ~1,2,5 n ~3,6,7 mn?_7 

0!4 47 ~1,2,3 n ~1.2,4 n ~1.2.1 n ~1,5,6 mn?_7 

0!4 48 ~1,2,3 n ~1,4,6 n ~2,5,7 n ~3,4,5 mn?_7 

0!4 49 ~1,2,4 n ~1,2,1 n ~1,3,5 n ~2,3,6 mn?_7 

0!4 50 ~1,2,3 n ~1,3,4 n ~1,5,6 n ~2,4,7 mn?_7 

0!4 51 ~1 2 5 n ~1 3 4 n ~1 6 1 n ~2 3 4 ', '' '' ', mn?_7 

o 14 
52 ~1,2,3 n ~1,2,4 n ~3,4,5 n ~5,6,7 mn?_7 

o 14 
53 ~1,2,3 n ~1,3,7 n ~1,4,5 n ~2,4,6 mn?_7 

o 14 
54 ~1,2,3 n ~1,3,7 n ~1,4,5 n ~2.4,6 mn?_7 

o,4 55 ~1,2,5 n ~1,2,6 n ~1,3,4 n ~3,4,7 mn?_7 

o,4 56 ~1.2,4 n ~1.2,5 n ~1,3,6 n ~1,3,7 mn?_7 

o,4 57 ~1,2,3 n ~1,2,6 n ~3,4,5 n ~4,5,7 mn?_7 

o 14 
58 ~1,2,5 n ~1,3,6 n ~1,4,7 n ~2,3,4 mn?_7 

o 14 
59 ~1,2,3 n ~1,4,6 n ~2,5,7 n ~3,4,5 mn?_7 

0/,4 60 ~1,2,6 n ~1,3,4 n ~2,5,7 n ~3,4,5 mn?_7 

0/,4 61 ~1,2,6 n ~1,3,4 n ~2,5,7 n ~3,4,5 mn?_7 

0/,4 62 ~1,2,3 n ~1,4,5 n ~2,3,4 n ~6,7,8 mn?_8 

0/,4 63 ~1,2,5 n ~1,3,6 n ~2,4,7 n ~3,4,8 mn?_8 

0/,4 
64 ~1,2,3 n ~1,2,4 n ~1,3,5 n ~6,7,8 mn?_8 

0/,4 65 ~1,2,a n ~1,2,4 n ~1,5,6 n ~3,7,8 mn?_8 

0/,4 66 ~1,2,3 n ~1,2,8 n ~1.4,5 n ~1.6,7 mn?_8 

0/,4 67 ~1,2,3 n ~1,2,8 n ~1,4,5 n ~2,6,7 mn?_8 

0/,4 68 ~1,2,4 n ~1,3,5 n ~1,3,8 n ~2,6,7 mn?_8 

0/,4 69 ~1,2,3 n ~1,4,5 n ~1,6,7 n ~2,3,8 mn?_8 

o#o ~1,2,3 n ~1,5,6 n ~2,3,4 n ~4,7,8 mn>8 
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Orbit 0 14 Representative ft mn for which fi4 is a (d- 4)-face 
of4 

71 
~1,2,5 n ~1,6,7 n ~2,3,4 n ~3,4,8 mn~8 

0f4 
72 

~1,2,4 n ~I,3,8 n ~1,5,6 n ~2,3,7 mn~8 

0!4 
73 

~1,2,5 n ~1,3,6 n ~2,3,4 n ~4,7,8 mn~8 

Or 74 
~1,2,3 n ~1,2,4 n ~1,2,8 n ~5.6,7 mn~8 

or 75 
~1,2,3 n ~1,4,5 n ~2,3,4 n ~6,7,8 mn~8 

0!4 
76 

~1,2,5 n ~1,2,6 n ~3,4,7 n ~3,4,8 mn~8 

0!4 
77 

~1,2,4 n ~1,3,8 n ~1,5,6 n ~2,3,7 mn~8 

0!4 
78 

~1,2,5 n ~1,3,6 n ~2,3,4 n ~4,7,8 mn~8 

0!4 
79 

~1,2,5 n ~1,3,6 n ~2,4,7 n ~3,4,8 mn~8 

o,4 
80 

~1,2,3 n ~1,2,4 n ~3,5,6 n ~7,8,9 mn~9 

o14 
81 

~1,2,3 n ~1,2,9 n ~1,4,5 n ~6,7,8 mn~9 

0!4 
82 

~1,2,4 n ~1,2,5 n ~3,6,7 n ~3,8,9 mn~9 

0!4 
83 

~1,2,4 n ~1,3,5 n ~2,3,9 n ~6,7,8 mn~9 

0!4 
84 

~1,2,3 n ~1,4,5 n ~2,6,7 n ~3,8,9 mn~9 

o14 
85 

~1,2,9 n ~1,3,4 n ~1,5,6 n ~2,7,8 mn~9 

o14 
86 

~1,2,3 n ~1,4,5 n ~1,6,7 n ~1,8,9 mn~9 

0!4 
87 ~1,2,4 n ~1,5,6 n ~2,3,9 n ~3,7,8 mn~9 

0!4 
88 

~1,2,4 n ~1,3,5 n ~2,3,9 n ~6,7,8 mn~9 

Or 89 
~1,2,3 n ~1,2,1o n ~4,5,6 n ~7,8,9 mn~lO 

0:{,4 
90 

~1.2,10 n ~1,3,4 n ~2,5,6 n ~7,8,9 mn~lO 

0!4 
91 

~1,2,3 n ~1,4,5 n ~1,9,10 n ~6,7,8 mn~lO 

o"4 92 
~1,3,4 n ~1,5,6 n ~2,7,8 n ~2,9,10 mn~lO 

0!4 
93 

~1,2,3 n ~1,1o,n n ~4,5,6 n ~7,8,9 mn~ll 

O:r,4 
94 

~1,2,3 n ~4,5,6 n ~7,8,9 n ~1o,11,12 mn~12 

O:r,4 
95 

~1,2,3 n ~1,2,3 n ~1,2,4 n ~1,3,4 m4 

OJ~~ ~1,2,3 n ~1,2,3 n ~1,2,4 n ~1,2,5 m5 

3.4 Proof of the Theorem 3.3.1 

Proof: For n 2: 12, the faces of codimension 3 of mn are partitioned into 15 

orbits generated by 61,2,3n61,2,4n61,3,4, 61,2,3n61,2,4n61,3,4 , 61,2,3n61,2,4n 

61,2,s, 61,2,a n 61,2,4 n 61,3,5, 61,2,3 n 61,2,4 n 63,4,5, 61,2,3 n 61,2,4 n 63,4,5• 
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61.2,3 n 61,2,4 n 61,5,6' 61.2,3 n 61,2,4 n 63,5,6, 61,2,3 n 61,4,5 n 62,4,6, 61,2,3 n 

61,4 .. 5n62,4,6' 61,2,3n61,2,4n65,6,7, 61,2,3n61,4,5n61,6,7, 61,2,3n61,4,5n62,6,7, 

61,2.3 n 61,4,5 n 66,7,8, 61,2,3 n 64,5,6 n 67,8,9. Any face of codimension 4 of mn 

can therefore be written as the intersection of a facet £::, of mn with one of these 

15 faces 6' n !::," n 6'" of codimension 3. If the support a(6) cj_ {1, ... , 12}, by 

elementary permutations preserving 6', 6", and !::,'" we can generate Z. E 0 6 

with 0 6 'n!::."n!::."'nL = 0 6 'nd'n!::."'n!::. and a(l.) c {1, ... , 12}. In other words, 

to generate orbitwise all the subfaces of the canonical faces of codimension 3 it 

is enough to consider the case n = 12. By applying orbitwise face enumeration 

algorithm, we can obtain 94 orbits of faces of codimension 4. Therefore we 

have to first determine the set Fn(Ji) of facets of mn containing fi· Clearly, 

if an inequality ( i) defining a facet of mn is forced to be satisfied with equality 

by the inequalities defining !::,', !::,", 6"', and l being satisfied with equality, 

then the same inequality (i) - now seen as defining a facets of mn+l - will also 

be forced to be satisfied with equality. In other words, the set Fn(Ji) can only 

increase with n and dim(Ji) can only decrease with n. Therefore, only the 94 

faces of codimension 4 for m12 given in Table are candidates for being faces of 

codimension 4 for mn212· A case by case study of the 94 faces fi, gives Fn(Ji) 

and proves that indeed these 94 faces generate 94 orbits of faces of codimension 4 

for n 2: 12. The idea is simply to notice that the pattern of Fn(fi) is essentially 

given by the value of F15(Ji). Since all the cases are similar, we only present 

the computation of Fn (!94) where f94 = 61,2,3 n 64,5,6 n 61,8,9 n 610,11,12 . Using 

the orbitwise face enumeration algorithm with t=4, one can easily check that 

F15(!94) = {61,2,3, 64,5,6, 67,8,9, 610,11,12}.Let n 2: 15 and 6 be a facet of mn 

with a(!::,) cj_ {1, ... , 15}. By elementary permutations preserving F 15 (!94) we 
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can generate 6. E 0~:::,. with 0"(6.) C {1, ... , 15}. Let now consider!:::. as a facet 

of m 15 . Since 6. rf:. :F15(!94) at least one vertex v of m15 satisfies v E f 94 and 

v r:j:. 6.. Then, the (n-15)-times 0-extension Vext of vis a vertex ofmn satisfying 

Vext E fg4 but Vext r:j:. 6. where 6. is now considered as a facet of mn. Thus, 

6. rf:. :Fn(f94 ) and, by the same elementary permutations, 6 rf:. :Fn(f94 ) ;that is, 

:Fn(f94) = { 61,2,3, 64,5,6, 67,8,9, 6w,l1,12} and codim(fg4) = 4 for any n ~ 12. 
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Chapter 4 

Implementation and Design 

Generating the canonical representatives is one of major computational chal­

lenges for the enumeration of the upper layers of the orbitwise face lattice. In 

our work, we show that by further exploring the combinatorial structures, we 

can generate most of the canonical representatives efficiently. In this chapter, 

we present the design of preprocessing heuristics 

4.1 Design 

In this section, we sketch the orbitwise face enumeration algorithm and present 

the framework of our preprocessing heuristics. We use the following terminol­

ogy: matrix representation, row-sum-set, column-sum-set, segment-i and trace 

of a ( -1). A face Jd-t can be defined as intersection of some facets of a polytope 

P th t . d fi f fd-t Jd-t fd-1 n n fd-1 h fd-1 ; a 1s, we can e ne a ace as = 1 ... \\F(Jd-t)\\' w ere i 

is defined by aT x = bi, x E P. A face J;!-t of mn can be represented by a set 

of vectors with n entries. For example, the vector representation of the face 

fd- 2 = 61,2,3 n 61,2,4, where n = 4, is 

[ ~ 1 1 
1 0 
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This set of vectors is called as the matrix representation of the face jd-t. 

The row-sum-set of jd-t is defined as the set R := {r1, r 2 , ... }, where ri is the 

sum of i-th row of the matrix representation. Similarly, the column-sum-set of 

fd-t is the set C : = { c1 , c2 , ... } , where ci is the sum of i-th column of the matrix 

representation. The segment-i refers to the set of columns, of which the sum of 

all entries of each column equals to i. The trace of a (-1) refers to the collection 

of other possible entries to become (-1) entries by switchings or multiplying by 

(-1) row-wise. 

Given the list Ld-t the orbitwise face enumeration algorithm calls three 

main subroutines to obtain the canonical representative list £d-t; ( i) generation 

of the set {jd-t+1 n jd-1 }, (ii) computation of the facet set F(}d-t+1 n jd-1 ), 

and (iii) identifYing the elements belonging to £d-t. Note that to obtain £d-t, 

it is not necessary to compute the facet set for each output element from first 

subroutine since some of the output elements can be identified as belonging to 

the same orbits even if without the complete facet set. A face of codimension t 

can be defined by t equalities. Another element of the algorithm is to perform 

efficiently orbitwise equivalency checks and this is the core of our designed 

preprocessing heuristics. 

1. Orbitwise invariants check: Set of invariants to differentiate faces into 

partitions, such as number of cuts, anti-cuts, and trivial-extension-cuts. 

2. Orbitwise equivalency check: Exploiting the matrix representation to 

identify if there exists an isometry between faces. 

Computing the set F(}8 d-t+l n J:-l) requires to call the linear program­

ming subroutine O(m) times, where m is the number of facets. Given pairs 
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of dimension-(d- t) faces from the list Ld- t, we can look either for invariants 

proving that the faces are not orbitwise equivalent or permutation and switch­

ing to prove they are orbitwise equivalent. While the invariants are used to 

partition faces into subsets and, therefore, provide a lower bound for l£d-tl, 
checking the orbitwise equivalency provides a upper bound for l£d-tl . 

One important issue when developing the heuristics is the trade-off be­

tween the computational cost and the effectiveness to obtain a certificate of 

equivalency or non-equivalency. Figure 4.1 outlines the order in which the 

heuristics are performed. 

' Generation of Intersections set I Normalization I I 
--------------- -- --- ---------------------------
Intersecting Facets with orbits ' lnvarlance Check I 

' ' 

I I 
' ' Filtering I ' ---------------------- ------------ ·- -- --------

~ 

Computation of facet lists set 
.. -•. --- -- -·---- --·---- --·--- .--.------------ .. -- -- Full facet list 

' ' generation •Solving Linear programming model ' 
•Checking the rank of facet lists I 

' ' ---- __ ___ .., __ ---- ----- ----- ----- ------- -------· 
! 

Computation of canonical representatives set 
lnvariance Check II 

------------- --------------- -------- ------·--- I Normalization II I ' ' •Differentiating faces by lnvariance ' ' 
•Filtering faces through operations ' 

I I 
' Filtering II ' ----------- ~. -- ~ ~ - ------------------ -- ------ -' 

Figure 4.1: Sequential heuristics 
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• Regularization I: Apply permutation and switching operations to all the 

elements in Ld-t to put 0 entries after -1 or 1 entries, then minimize the 

overall number of -1. 

• Invariants Check I: Check the orbitwise invariants: the number of cuts, 

anti-cuts, and trivial-extension-cuts. Note that at this stage we do not 
- d-t+l 

need to compute the facet set F(fs n J;!-1
) for each face. 

• Tuning I: Check orbitwise equivalency of faces in each partition by tem­

porarily treating -1 as 1. 

• Facet set F(}d-t+l n jd-1) Generation: As the lower bound for !£d-tl is 

reduced, the algorithm computes the list offacets containing jd-t+lnjd-1 

using the LP model. 

• Invariants Check II: Given the facet list for each face, we further eheck 

the invariants of eolumn-sum-set and row-sum-set of each segment-i, and 

the number of facets containing the face. 

• Regularization II: In each partition, we further minimize the number of 

( -1) by repeatly checking the overlaps between the traces of different ( -1) 

entries. 

• Tuning II: Check or bitwise equivalency of faces in each partition by using 

the information of the traces of (-1)s. 

• Exhaustive-Invariants-Check: Full generation of the action of the sym­

metry group Is(P). 
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For codimension ::; 4 we successfully generate all the orbits without using 

Exhaustive-Invariants-Check approach. The order of execution is set according 

to the empirical performance of the heuristics. For example, the heuristic Regu­

larization I empirically identifies a much larger number of candidates belonging 

to the same orbits than other heuristics, and is therefore performed first. 

4.2 Implementation for the metric polytope on 
12 nodes 

We provide the first complete orbitwise description of the faces of codimension 

4 for any n of the metric polytope. In this section, we give a detail discussion 

of the performance of different heuristics applied to compute the canonical 

representatives of codimension 4 of m12 . We also present the few faces which 

challenge the heuristics and require further investigation. 

Figure 1 Enumeration of faces of codimension 4 for m 12 

steps lower bound for I.Ca--4 1 upper bound for l£d -4 1 
Generating Ld-4 1 13155 
Regularization I 1 1186 

Invariants check I 37 1186 
Tuning I 37 300 

Invariants check II 92 300 
Regularization II 92 167 

Tuning II 92 98 
Special cases filtering 92 94 
Exhuastive checking 94 94 

Throughout the steps of heuristics, the algorithm decreases the gap between 

the upper and lower bounds for l£d-4 1, and as it reaches zero, the enumeration 

of all the orbits is complete. Our designed heuristics successfully bring the gap 
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from 13154 to 6 till the step Tuning II. In the step Special cases filtering, the 

undetermined 6 faces in Ld-4 are examined by first applying switching opera­

tion or multiplying by (-1) row-wise even if the total number of (-1) increase to 

enhance the possibility to identify equivalency. The step successfully identifies 

4 of those 6 faces as equivalent to some of the 92 faces forming the lower bound 

for I.Cd-4 1. Finally, the exhaustive approach is applied to identify the remaining 

two elements forming two new orbits. 

Figure 2 Four elements solved by special cases filtering and the orbits they 

belong to: 

faces require further investigation for Is(P)-equivalency 

on,, [.6.1,2,3 n .6.1,2,4 n .6.1,3,4 n .6.2,3,5], [.6.1,2,3 n .6.1,2,4 n .6.1,3,4 n .6.2,5,6] 

o f4 , .6.1,2,3 n .6.1,2,4 n .6.1,3,4 n .6.2,5,6 

As the earlier steps heuristics try to minimize the number of ( -1) by 

multiplying rows or columns by (-1) so that the number of (-1) is reduced. 

This greedy approach fails for the above 4 faces. To tackle these 4 faces, we 

multiply rows or columns by (-1) even if the number of (-1) increases. 

Example 1 The canonical representative Of-4 is defined as: 
13 

1 0 -1 1 0 0 
1 1 1 0 0 0 

:F(jf3) := 1 1 0 1 0 0 and 
1 0 0 0 1 1 
0 1 1 -1 0 0 
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-1 0 1 1 0 0 
1 1 1 0 0 0 

F(.6.1,2,3 n .6.1,2,4 n .6.1,3,4 n .6.2,3,5) := 0 1 1 1 0 0 
1 0 0 0 1 1 
1 1 0 -1 0 0 

and it can be checked that ft3 and .6.1,2,3 n .6.1,2,4 n .6.1,3,4 n .6.2,3,5 are in the same 

orbit by permuting the 3rd and 5th rows of F(.6.1,2,s n .6.1,2,4 n .6.1,3,4 n .6.2,3,5) 

and then multiplying 1st row and 5th column by (-1). 

Figure 3 Two elements solved by exhuastive checking, 

Representative faces requiring further investigation 
.6.1,2,s n .6.1,4,5 n .6.2 4 6 n .6.s 56 .6.1,2,s n .6.1,2,4 n .6.s,5,6 n .6.4 56 

~1,2,3 n ~1,4,6 n ~2,5,7 n ~3 4 5 ~1,2,6 n ~1,3,4 n ~2,5,7 n ~s 4 g 

We identify the last 2 faces as forming 2 new orbits by checking the row­

sum-set for each segment-i of the two elements and the respective canonical 

representatives of the partitions they belong to, treating (-1) as 1. We found 

that there is no feasible row-permutation to make the row-sum-set for each 

segment-i of :F(fid-t) and :F(ff-t) be equivalent. 

4.3 Orbitwise invariants check 

In this section detailed description of orbitwise invariants check and respective 

heuristics are presented. Invariants refer to the quantity which remains un­

changed within certain orbit. The algorithm often checks whether two faces 

fi and /j are Is(P)-equivalent; that is, whether they belong to the same orbit 
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under the action of Is(P) or not. If any invariant is different for fi and fi, the 

faces must be in different orbits. The codimension of a face and its cardinality 

are easily checkable invariants. Some other invariants can easily be added, for 

example by looking at the action of Is(P) on pairs, triples, or other k-tuples 

of indices (generators), respectively on lower dimensional faces. The number 

of elements from each such orbit included in a face is a Is(P)-invariant. In 

the implementation, the number of cuts, anti-cuts, and trivial-extension-cuts 

invariants are checked in Invariants check I. The number of incident facets, min­

imum support and the row-sum-set of each segment-i invariants are checked in 

Invariants check II. One major reason to implement the orbitwise invariants 

check separately is that Invariants check I does not require to have the com­

plete facet set :F(f;!-t) while it is required for Invariants check II. The number 

of calls to linear programming subroutine when computing the complete facet 

set :F(f;!-t) is reduced. Figure 1 in section 4.2 shows that the number of calls 

to linear programming subroutine is reduced to 300 from 1186. We give a bit 

more emphasis on the invariant, row-sum-set of each segment-i of a face as 

this invariant appears to be efficient. By utilizing the invariant, each time we 

compare only part of the matrix representations(segment-i) between faces. In 

some cases, the Is(P)-in-equivalency between faces is obtained without consid­

ering the full matrix representation. The following example demonstrates how 

to find for invariants by looking at the action of Is(P) on a face. 

Example 2 Given complete facet set, 

0 0 
0 1 
1 0 
1 1 

1 1 ] 0 0 
0 0 
0 0 
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We examine the action of row permutation on F(fid-4
). The action changes 

the fill-ins of each column. However, it does not change the sum of all the 

entries of each column. It follows that the column-sum-set of a face is an in­

variant. The column-sum-set of F(fl-4
) is ( 3 3 2 2 1 1 ) . Similarly, 

the col-umn permutation does not change the sum of all the entries of each row. 

A more useful observation is that the column permutation does not change the 

row-sum-set of each segment-i. Therefore the row-sum-set of each segment-i is 

also an invariant. For example, the row-sum-set of segment-3 for F(fid-4
) is 

( ~ ) . For a face to be orbitwise-equivalent to ff-4
, it is necessary to have 

the same row-sum-set of its segment-3. 

Remark 4.3.1 For m 12 and codimension 4, the proposed segment-based row­

sum-set check distinguished 92 orbits among 94 final orbits. For n ~ 8, and 

codimension ~ 4, the method distinguishes all the orbits. 

4.3.1 Computation of the facet set of a face 

A . f- d-t+1 {fd-1 fd-1} d jd-1 fd-1 b d . h . ssummg s = 1 , ... , t-l an r = t y re-or ermg t e g1ven 

facets and defining fid-l = {a[x = bi,X E mn}, we implement the following 

modified linear programing model to compute the facet set F(}8 d-t+l n f:-l) 

max L::;:t+1 (a] x- bj) 
s.t. a[ x - bi = 0 

a[x- bi ~ 0 
X E JR(;) 

i = 1, ... , t 
i = t + 1, ... ,m 

In the model, the objective function is the sum of all the slack variables 
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except the ones corresponding to the facet set incident to the face Us d-t+
1 n 

J;!- 1 
). Applying this model lowers the number of calls to the linear programing 

solver, however, it requires perturbation testing over 0-valued solution entries 
. - d-t+1 . 

as a facet detachmg from the face Us n J;!-1) could have 0 as solutiOn of 

the LP. 

4.4 Orbitwise equivalency check 

We present the heuristics developed to identify the orbitwise equivalency by 

utilizing the matrix representation: Regularization class and '1\ming class. For 

regularization class, the main idea is to systematically arrange 0, 1,-1 entries 

and reduce -1 entries of all candidates of orbitwise faces. A large number of 

faces can be identified this way as equivalent. For Tuning class, the heuristics 

tend to "tune" one face to another; that is, to arrange 0,1,-1 entries of one 

face in order to approximate the matrix representation of the other. One way 

to tune one face to another is to reorder the rows so that the row-sum-set of 

each segment-i is equivalent. Even though the equivalency of row-sum-set of 

each segment-i of two faces is not sufficient to prove the orbitwise equivalency 

of two faces, the tuning helps to check the orbitwise equivalency. Similar ideas 

are applied in the heuristics introduced in the following sections. 

4.4.1 Regularization I 

In Regularization I, the heuristic permutes the columns of matrix representa­

tion so that the columns are in the increasing order with respect to the sum 

of all entries in a column. Next, the heuristic minimizes the number of (-1) of 

each column. After applying this regularization procedure over all candidates 
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of orbitwise faces, the heuristic tries to identify the equivalency of matrix rep­

resentations among faces. Empirically, the heuristic succeeds in identifying a 

large number of orbitwise-equivalent faces. 

4.4.2 Tuning I 

Tuning-class heuristics try to tune one face to another to check orbitwise equiv­

alency. To check the or bitwise equivalency of two faces fi and fi, the Thning 

I permutes the rows of the matrix representation of fi so that the row-sum-set 

of each segment-i of fi can approximate the one of fi. For example, if the 

row-sum-set of segment-i of fi is (0,1,2,3), in order to satisfy the equivalency of 

the row-sum-set of segment-i between fi and fi, there is only one permutation 

to consider. It follows that the heuristic permutes rows by first considering the 

segment for which the row-sum-set has the most distinguished values. 

Example 3 We illustrate the idea of permuting rows by first considering the 

segment for which the row-sum-set has the most distinguished values. 

[

11010] (1) . d-4 1 1 1 0 0 . 1 
Gzven a face fi : 

1 1 1 0 0 
, the row-sum-set of segment-4 'lS 

1 
. 

1 0 1 0 1 1 

The row-sum-set of segment-3 is ( ~ ) and the row-sum-set of segment-1 ;., 

( ~ ) . We can either look at segment-3 or segment-1 as the segment for which 

the row-sum-set has the most distinguished values. There are only 3 possible 
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row permutations: {1, 4 }, {2, 3}, { (1, 4), (2, 3)} 

[ 

1 1 1 0 0 0 0 0 0 l 
1 0 1 1 0 0 0 0 0 

Another illustration using the face f:-4 := 
00 

1 0 0 1 0 1 0 0 

0 0 0 0 1 0 1 1 

the row-sum-set of segment-2 is ( ~ ) . There is only one possible permutation 

by looking at segment-2. 

When the equivalency of the row-sum-set of each segment could be at­

tained by row permutations, the next step is to check the matching between the 

set of columns within two matrix representations. It is enough to determine the 

orbitwise equivalency of two faces by exhibiting a bijection between two sets 

of columns. The heuristic separately checks the bijection between the sets of 

columns for each segment. For codimension::; 4 the bijection between the sets 

of columns of the segment usually holds if the row-sum-set of certain segment 

were equivalent between two faces. 

Proposition 4.4.1 For a face of codimension 4, given the row-sum-set of 

segment-i ( ~ ) , where i = 1, 3, 4, the set of columns of respective segment-i 

C4 

is unique. For segment-2, given the number· of the column v, ~ ( I ) and 

v2 = ( ~ ) , the set of columns of segrnent-2 is also unique. 
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Proof: For a face of codimension 4, the uniqueness of the set of columns for 

:~:n::~:b:e c:~::::p~~Trfl r f(fiTD ~( n ~nT 
Given the row-sum-set of segment-2 ( ~ ) and the number of column v, v,, it 

can be shown that there exists unique solution for the number of the remaining 

4 vectors by checking the rank. 

4.4.3 Regularization II 

When regularizing faces, a common task is to reduce (-1) entries of matrix rep­

resentation. In Regularization I, the heuristic reduce (-1) entries column-wise. 

In Regularization II, the heuristic tries to reduce (-1) entries both column-wise 

and row-wise. In practice, we apply the switching operation and multiplying 

(-1) row-wise to change (-1) entries. The following example demonstrates how 

the (-1) entries can be reduced. 

Example 4 Given two faces fid- 4 and fj- 4 with different settings of fill-ins: 

f~-4. [ ~ ~ ~ ~ 
t • 1 0 1 1 

0 -1 1 0 

-1 
0 
0 
1 ~] 
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[ 

1 0 1 0 -1 0 l 
f~-4 . 1 1 1 0 0 0 
J. 010110 

-1 0 0 1 0 1 

We show how to reduce (-1) entries of fl- 4 

[ 1 0 
0 1 -1 

~ l ~~-4. 1 1 0 0 0 
t • 1 0 1 1 0 

0 -1 1 0 1 

[ 1 0 
0 1 

-1 0 l 
multiply 4th row by (-1)-=r-

1 1 0 0 0 1 
1 0 1 1 0 0 
0 1 -1 0 -1 0 

multiply 5th column by (-1 )=> [ 1 
0 0 

1 1 0 l 1 0 0 0 1 
0 1 1 0 0 
1 -1 0 1 0 

We can also reduce (-1) entries of ff- 4 as follows: 

[ 1 0 1 0 -1 0 l 
f~-4 . 1 1 1 0 0 0 

J • 0 1 0 1 1 0 
-1 0 0 1 0 1 

[~ 
0 1 0 1 

~ l multiply 5th column, 4th row, 6th column by (-1) in tu'T"TL==? 
1 1 0 0 
1 0 1 -1 
0 0 -1 0 

multiply 3rd row by (-1 )=> [ ~ 
0 1 0 

1 0 l 1 1 0 0 0 
-1 0 -1 1 0 
0 0 -1 0 1 
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multiply 4th col·umn by (-1)-=* r i Jl 

1 0 
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1 0 1 () j 
1 0 0 0 
0 1 1 0 
0 1 0 1 

Th e t·u1o fa ces can be ident'Uied as equ·ivalent by pr'Ope·r per"mutations. 

As in the above example, tracing all the ( -1) entries after applying each 

operation helps to identify the proper operations to further reduce ( -1) entries, 

see Figure 4.2. 

1 0 
1 1 
0 1 

- 1 0 

Figure 4.2: Regularization II 

The heuristic repeatedly checks the trace of (- 1) ent ries until no more reduction 

can be found. The outline is as fo llows: 

Algorithm: Regularization II 
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Input: A0 : matrix representation of a face fi 

Output: Aafter= matrix representation of fi after (-1) reduction 

1 Put Ao in a stack: Astack 

2 Save the trace of each (-1) of A0 to the matrices a0 , a1 , ... 

3 While ( The top element Ai in Astack is not yet checked for (-1) reduction) 

4 Compare a0 , a1 , ... to see if the number of (-1) could be reduced 

5 if ( the number of ( -1) could be reduced ) 

6 Generate Ai+1 from Ai after (-1) reduction 

7 end 

8 if( Ai+1 not yet exists in Astack ) 

9 Save the trace of each (-1) of Ai+1 to a0 , a1 , ... 

10 Put Ai+1 unto Astack 

11 end 

12 end 

13 Output the top element Aafter in Astack 

4.4.4 Tuning II 

Tuning II heuristic is designed to check orbitwise equivalency of two faces hav­

ing equivalent column-sum-set and row-sum-set of each segment when treating 

(-1) as 1, and two faces have different (-1) entries. The heuristic tends to tune 

one face to another. It applies permutation/switching operations to change (-1) 

entries of one face to approximate the ( -1) entries of the other as illustrated by 
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the following example. 

Example 5 Given the two faces fid- 4 and fj- 4
: 

[ l 0 1 0 1 

~] f~-4. 1 -1 0 0 
1, • 1 0 1 0 

1 0 1 0 

r-'. [: 
0 1 0 1 

~] 1 1 0 0 
J • 1 1 0 1 0 

0 -1 0 1 0 

The algorithm applies the following actions on ft 4
: 

[ 

-1 0 1 0 1 
1 1 1 0 0 

multiply third column by {-1}, and multiply first row by {-1)==:;. 
1 1 0 1 0 
0 1 0 1 0 

Next, permute 1st, 4th row and permute 2nd 3rd roW='>- [ ~ H i ~ ~ ] 
-1 0 1 0 1 0 

Finally, permute 1st, 2nd column, then 3rd, 4th column, and 5th, 6th column 

==? f~-4 
J 

The heuristic first change (-1) entry to the entry of specific column. The 

column must have the same sum of all its entries as that of the column of 

another face containing the (-1) entry. The heuristic checks if the trace of (-1) 

under switching or multiplying (-1) row-wise overlap the column, see Figure 4.3 

for an illustration. 
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1 
1 
0 

-
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01 1 IJ 
1 2 - 1 

----· 1 2 0 
1 

1 
0 

Segment-3 . 
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0 1 1 0 ~ 

0 1 0 0 ° 
1 1 0 0° 
1 0 1 

1 

0 
Segment-2 Seglllent-1 

Figure 4.3: Thning II 

When possible, the heuristic checks if there exists row permutation to 

change ( -1) entry to the same ( -1 ) entry of anot her face. The outline is as 

follows. 

Algorithm: Tuning II 

Input: f i, !{ matrix representations of two faces 

Output: indicator showing if fi, f j are orbitwise-equivalent 

1 R1j .-- the rows to permute without changing iJ 
2 c/j <-- the columns overlapping the trace of any (-1 ) in f j 

3 for a0 := an entry E {traces of all ( -1) in fi } 

4 if a0 E Rf
3 

x C / j 

5 fi <-- fi after moving (-1) to ao 

6 fi ;- f i after moving ( -1) to a0 
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7 if( fi ==h) 
8 return" Ji, fi are orbitwise-equivalent" 

9 end 

10 end 

11 end 

return "unknown"; 

4.4.5 Dealing with faces belonging to many facets 

The large size of F(J:-t) may cause some difficulty to our method as it increases 

the input size for many of our heuristics. We may hope that our proposed 

invariants could be as efficient as in codimension 4 case to partition the input 

into subsets, and design the following heuristic. Instead of matching two full 

facet sets, F(ftt) and F(ff-t), the heuristic selects k facets among F(Jid-t) or 

F(Jf-t) to perform the matching. If the matching is unsuccessful, the heuristic 

remove one facet among the selected k facets, and add one facet among the 

remaining facets and try again to match. 
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Chapter 5 

Conclusion 

This thesis deals with the face lattice enumeration problem for convex poly­

tope in general dimension, focusing on polytopes arising from combinatorial 

optimization problem. In particular, we study the metric polytope associated 

to the well-known maxcut and multicommodity flow problems, as well as to 

finite metric space. Exploiting the high degree of symmetry, we provide the 

first complete orbitwise description of the faces of codimension 4 of the metric 

polytope for any dimension. The full face lattice is computed for small in­

stances. While the following layers of the upper face lattice probably require 

advanced computations on a parallel cluster, the or bitwise description of the 

faces of codimension 4 was achieve through a combination of partitions using 

orbitwise invariants and heuristics to identify equivalency permutations and 

switchings. 
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