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Abstract 

In this thesis, we extend the Ai-Zhang direction to the class of semidefinite 
optimization problems. We define a new wide neighborhood N(T1 , T2 , TJ) and, 
as usual, we utilize symmetric directions by scaling the Newton equation with 
special matrices. After defining the "positive part" and the "negative part" 
of a symmetric matrix, we solve the Newton equation with its right hand side 
replaced first by its positive part and then by its negative part, respectively. 
In this way, we obtain a decomposition of the usual Newton direction and use 
different step lengths for each of them. 

Starting with a feasible point (X0 , y0 , S 0 ) in N(Tt, T2, TJ), the algorithm ter
minates in at most O(TJ~log(l/t)) iterations, where /'i,= is a parameter 
associated with the scaling matrix and E is the required precision. To our best 
knowledge, when the parameter TJ is a constant, this is the first large neighbor
hood path-following Interior Point Method (IPM) with the same complexity 
as small neighborhood path-following IPMs for semidefinite optimization that 
use the N esterov-Todd direction. In the case when rJ is chosen to be in the or
der of fo, our complexity bound coincides with the known bound for classical 
large neighborhood IPMs. 

To make this thesis more accessible to readers who are new in this area, we 
start with a brief introduction to IPMs and SDO. The basic concepts and 
principles of IPMs and SDO are presented in Chapter 2 and 3. 
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Notations and Symbols 

e: 

nn: 

R"!t-: 
R"!t-+: 

nmxn: 
sn: 
S~: 

s~+: 
Q ~0: 
Q >-- 0: 

Tr(Q): 

)..i(Q): 
Amin(Q): 
Amax(Q): 

A(Q): 

cond(Q): 

IIQII: 
IIQIIF: 

llqll: 
vec(Q): 

Diag(q): 

(x, y): 

the all one vector with an appropriate dimension. 
the n-dimensional Euclidean space. 
the nonnegative orthant defined as R"!t- = {x E Rn!x 2:: 0}. 
the positive orthant defined as R"!t-+ = {x E Rn!x > 0}. 
the set of all m x n matrices. 
the set of all n x n symmetric matrices. 
the set of all n x n symmetric positive semidefinite matrices. 
the set of all n x n symmetric positive definite matrices. 
Q is positive semidefinite, where Q E Sn. 
Q is positive definite, where Q E sn. 

n 
the trace of a matrix Q E nnxn, i.e., Tr(Q) := L Qii· 

i=l 

the eigenvalues of Q E sn, i = 1, 2, ... , n. 
the smallest eigenvalue of Q E sn. 
the largest eigenvalue of Q E sn. 
the diagonal matrix with all the eigenvalues of Q as diagonal 
elements. 
the condition number of Q, defined as cond ( Q) = A max ( Q) /A min ( Q). 
the Euclidean norm for Q E nnxn, i.e., IIQII = max IIQull-

11 J.L II~= 1---,---,c=--...,.. 

the Frobenius norm of Q E nnxn, i.e., IIQIIF = JTr(QTQ). 
the 2-norm of q ERn, i.e., llqll = (qr + · · · + q~) 1 12 . 
the vector obtained by stacking Q's columns one by one. See App
endix A for more details. 
the diagonal matrix in nnxn with elements of q E Rn, q1 , ... , qn, 
distributed along the diagonal. 
the inner product of variables X andy. If X, y ERn, then (x, y) = 

n n n 
xTy = L XiYi· If x, y E nnxn, then (x, y) = Tr(xTy) = L L XijYij· 

i=l i=l j=l 
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Chapter 1 

History of Semidefinite 
Optimization 

For almost two decades, Semidefinite Optimization (SDO), which yields a 
generalization of Linear Optimization (LO) problems, has been one of the 
most active research areas in mathematical programming. More and more 
difficult problems arising from practice could be modeled as SDO problems. 
Nevertheless, when we carefully review the literature, the first paper which 
discusses an SDO problem can be traced back to the 1960s, almost four decades 
ago[?]. 

One of the reasons that SDO was out of interest for such a long time was the 
lack of robust and efficient algorithms for solving SDO problem. This situa
tion has changed since the 1990s. Alizadeh [3] and Nesterov and Nemirovskii 
[24] independently developed the first IPMs for SDO. Alizadeh [3] applied Ye's 
potential reduction idea to SDO and showed how variants of dual IPMs could 
be extended to SDO. Almost at the same time, in their milestone book [24], 
Nesterov and Nemirovskii proved that IPMs are able to solve general conic 
optimization problems, in particular SDO problems, in polynomial time. Af
ter that, notable successes are achieved in the theory and practice of SDO. 
Nowadays, algorithms for SDO has been already matured and one can solve 
large scale problems even on a desktop PC. 

Another reason that SDO was out of interest for a long time is the limited real
ization of its importance in various applications. In [4], Alizadeh showed how 
SDO could be used in combinatorial optimization. One of the landmark work 
was done by Goemans and Williamson [10]. Using SDO they proposed a ran
domized 0.878-approximation algorithm for the famous NP hard MAX-CUT 
problem. In the past two decades, more and more applications of SDO were 
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derived in e.g., control theory, probability theory, statistics, signal processing 
and structural design [34]. 

The difficulty to extend primal-dual path-following IPMs from LO to SDO 
lies in acquiring a symmetric search direction with the desired properties. The 
Newton method applied to the central path equation X S = T pJ leads to the 
linear system 

Xb..S + 6..XS = Tf..d- XS, (1.0.1) 

which generally results in non-symmetric search directions. Over the years, 
people suggested many strategies to deal with this problem. Alizadeh, Hae
berly and Overton (AHO) [5] suggested to symmetrize both sides of (1.0.1). 
Another possible alternative is to employ a similarity transformation P(-)P- 1 

on both sides of (1.0.1). This strategy was first investigated by Monteiro [20] 
for P = x-112 and P = S 112 . It turned out that the resulting directions by this 
approach could be seen as two special cases of the class of directions introduced 
earlier by Kojima, Shindoh and Hara [16]. At the same time, another motiva
tion led Helmberg, Rendl, Vanderbei and Wolkowicz [12] to the direction given 
by P = S 112

. The search directions given by P = x-112 and P = S 112 are usu
ally referred to as the H .. K. .M directions, respectively. Another very popular 
direction was introduced by Nesterov and Todd [25, 26] in their attempt to 
generalize primal-dual IPMs beyond SDO. In [39], based on Monteiro's idea, 
Zhang generalized all the approaches to a unified scheme parameterized by a 
nonsingular scaling matrix P. This family of search directions is referred to 
as the Monterio-Zhang (MZ) family of search directions. 

Thanks to two decades of efforts of numerous researchers and scientists from 
mathematics and computer science, nowadays SDO turns out to be a very 
sophisticated technique. Several efficient and accurate solvers are available, 
such as SeDuMi [30] and SDPT3 [33]. More and more engineers utilize SDO 
in their own research projects. Nevertheless, there are still some challenging 
questions in SDO. 

As in the case of LO, there is an intriguing fact about IPMs for SDO. Al
though their theoretical complexity is worse, large neighborhood algorithms 
perform better in practice than small neighborhood algorithms. Many efforts 
were spent to bridge this gap. In [27], Peng, Roos and Terlaky established a 
new paradigm based on the class of the so-called self-regular functions. Un
der their new paradigm, large neighborhood IPMs can come arbitrarily close 
to the best known iteration complexity bounds of small neighborhood IPMs. 
Their results hold for LO, SOCO, SDO and for monotone nonlinear com
plementarity problems. Later, based on Ai's original idea [1], an important 
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result was given by Ai and Zhang [2] for monotone linear complementarity 
problems (LCP). Their algorithm uses a wide neighborhood and decomposes 
the classical Newton direction into two orthogonal directions using different 
step-length for each of them. They proved that the algorithm stops after at 
most 0( yin log(1 / e:)) iterations, where e: is the required precision. This result 
yields the first large neighborhood path-following algorithm having the same 
theoretical complexity as a small neighborhood path-following algorithm for 
monotone LCPs. 

In this thesis, we extend the Ai-Zhang technique to SDO. We define a new 
neighborhood N(T1, T2 , TJ), where 0 < T2 < T1 < 1 and TJ ~ 1 are given param
eters. This new neighborhood is proved to be a wide neighborhood itself. Not 
surprisingly, the neighborhood defined by Ai and Zhang [2] is a special case of 
our wide neighborhood. Another important ingredient of our algorithm is the 
decomposition of the classical Newton direction into two individual directions: 
one of them reduces the duality gap and the other one moves the iterates away 
from the boundary of the positive semidefinite cone. We use different step 
lengths for each of the directions. Further, we derive a symmetric direction 
by using scaling matrices P such that P X sp-l is symmetric for any iterate 
(X, y, S). Such directions are referred to in the literature as the Monteiro
Zhang (MZ) family. We prove that, given a feasible starting point (X0

, !l, 5°) 
in N(T1 , T2 , ·1,1), our algorithm terminates in at most 0(TJ~log(1/t)) itera
tions. Here n is the dimension of the problem, "'oo is a parameter associated 
with the scaling matrix P, and e: is the required precision. In other words, 
when the parameter is a fixed constant, our large neighborhood path follow
ing algorithm has the same theoretical complexity as a small neighborhood 
algorithm that uses NT scaling, and when TJ is chosen to be in the order of 
yin, this complexity coincides with the known results for the classical large 
neighborhood algorithms. 
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Chapter 2 

Semidefinite Optimization 

In this chapter, we present the Semidefinite Optimization (SDO) problem and 
some of its characteristics. After reviewing the Linear Optimization (LO) 
problem in Section 2.1, we introduce the so-called Semidefinite Optimization 
problem, which could be considered as a generalized LO problem over the 
space of positive semidefinite matrices. Although weak duality still holds for 
SDO problems, the strong duality theorem might not be true in some cases, 
even if a feasible solution exists for both the primal and the dual problems. 
In Section 2.2.2, we illustrate by some examples that strong duality may not 
hold, and present a sufficient condition which guarantee strong duality. At the 
end of this chapter, we present the optimality condition for SDO. 

2.1 Review of Linear Optimization 

Consider the Linear Optimization problem in a standard primal form 

min (c, x) 
(LP) s.t. (ai, x) = bi, i = 1, ... , m, 

X E R't, 

where cERn and the vectors ai, i = 1, ... , mare linearly independent in Rn 
and x E R't = {xlx :2: 0}. The way we present the LO problem might be 
a little different from what you see in the LO literature. However, this way 
might be more straightforward to see the similarity between LO problems and 
SDO problems. 

The notation ( , ) denotes the inner product of two variables over a certain 
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space. In LO, this space is the common vector space Rn and the associated 
inner product coincides with the dot product for two vectors, i.e., (c, x) = 

n 

cT x = :L cixi· Besides satisfying m equalities, x also has to reside in the 
i=l 

nonnegative orthant, i.e., R~ = {x E Rnlx 2: 0}. A solution x of (LP) is 
called primal feasible if it belongs to the set 

:FLP := { x E R~ I (ai, x) = bi, i = 1, ... , m}. 

A primal feasible solution x* is called a primal optimal solution if (c, x*) < 
(c, x) for any x E :FLP· 

In practice, as long as the problem is minimizing or maximizing a linear func
tion over several linear constraints, we are able to refer to it as LO, since we 
are able to transfer it to the standard primal form [35]. 

We could also give the dual of the standard primal LO as follows 

max (b, y) 
m 

(LD) s.t. :L Yiai + s = c, 
i=l 

where Yi E Rand ai E Rn, i = 1, ... , m. A solution (y, s) of (LD) is called 
dual feasible if it belongs to the set 

A dual feasible solution x is called a dual optimal solution if (b, y) :::; (b, y*) 
for any (y, s) E :FLD· 

Given a primal-dual feasible solution (x,y,s) E :FL := :FLP x :FLD, the weak 
duality property gives that the duality gap is simply 

n 

(c, x) - (b, y) = (c- LYiai, x) = (s, x) 2: 0. 
i=l 

From the strong duality theory [29], we know that if primal problem (LP) has 
an optimal solution x*, then dual problem (LD) also has an optimal solution 
(y*, s*) and the duality gap vanishes at (x*, y*, s*). 
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2.2 Introduction to Semidefinite Optimization 

2.2.1 Primal and Dual Problems 

As mentioned before, Semidefinite Optimization (SDO) could be roughly con
sidered as generalized 10 over the space of positive semidefinite matrices. 
Because the variables we care about in SDO are matrices, we, therefore, re
place the nonnegativity requirement of 10 by the requirement that the matrix 
of variables is symmetric positive semidefinite, i.e., X E S~, where sn is the 
set of symmetric matrices and further s~ = {X E sn I u T Xu :;:::: 0' \1 u E n n}. 
Now, we introduce the primal SDO in the form of 

mm (C,X) 
(SP) s.t. (Ai, X) = bi, i = 1, ... , m, 

XES~, 

where C E sn, b = (b1, ... , bm? E nm, and Ai E sn, i = 1, ... , m, are linearly 
independent. 

In the linear space of n X n matrices, we define the inner product in nnxn as 

n n 

(C,X) = Tr(CTX) = LLCijXij· 
i=l j=l 

Since in our case C and X are symmetric, we may simply denote ( C, X) = 
Tr( C X). If we think of X as an array of n2 components in the form vec(X) = 
(xn, · · · , Xml, X12, · · · , Xm2, · · · , Xnl, · · · , Xnn)T, then the inner product of ma
trices coincides with the dot product of vectors. We also use X t 0 instead of 
X E S~ when X is symmetric positive semidefinite. With these notations, it 
is easy to see that (SP) is equivalent to 

min Tr(CX) 
(P) s.t. Tr(AiX) 

X >-
bi, i = 1, ... , m, 
0. 

Again, C, X E sn, and we assume that Ai E sn, ·i = 1, ... , m, are linearly 
independent and b = (b1 , ... , bm? E nm. We call problem (P) in the given 
form the primal problem, and X is the primal matrix variable. A primal 
variable X of (P) is called primal feasible if 

X E F p := {X t 0 I Tr( AiX) = bi, i = 1, ... , m} . 

7 



M.A.SC Thesis - Li, Yang Chapter 2 - Semidefinite Optimization 

In particular, we say that X is a strictly feasible primal solution if 

X E :F~ :={X>-- 0 I Tr(AiX) = bi, i = 1, ... , m}, 

where X >-- 0 denotes that X is positive definite. A primal feasible solution 
X* is called a primal optimal solution if Tr(CX*) :::; Tr(CX) for all X E :Fp. 

Note that we are working in the space of symmetric positive semidefinite ma
trices. The dual of problem (P) [8] can be written in the form 

max bTy 
m 

(D) s.t. I: YiAi + S = C, 
i=l 

s ~ 0, 

where y E nn and S E sn. A solution (y, S) is called dual feasible if 

(y, S) E :F0 '~ { S!:: 0 t, y;A; +- S ~ C} . 

In particular, we say that (y, S) is a strictly dual feasible solution if 

A dual feasible solution (y*, S*) is called a dual optimal solution if bT y* ~ bT y 
for all (y, S) E :FD. 

Strictly speaking, we should write "inf' and "sup" instead of "min" and "max". 
Not only because the problems might be unbounded, but also because the op
timal values might not be attained even if they are finite. We will present some 
examples in the next subsection where positive duality gap or non-attainment 
of the optimal value is demonstrated. We, however, still choose to stick with 
the notations "min" and "max" in this thesis due to the fact that we shall 
impose conditions that ensure that the optimal values are actually attained 
when they are finite. 

Consider the LO problem (LP) and let X = Diag(x), S = Diag(s), C = 
Diag(c) and Ai = Diag(ai), i = 1, ... , m, then SDO problems (P) and (D) are 
exactly LO problems (LP) and (LD), respectively. This representation also 
shows that SDO is a generalization of 10 to the space of positive semidefinite 
matrices. 
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2.2.2 Duality Theory 

Analogous to 10, we are interested in the relation between (P) and (D) as well. 
In this section, we investigate how a feasible solution of the primal problem 
(P) implies a bound of the optimal value for the dual problem (D), and vice 
verse. 

First, we note the following trivial but key fact that we call it weak duality 
theorem. 

Theorem 2.2.1 (Weak Duality). If X E :Fp in (P) and (y, S) E FD in 
(D), then 

Tr(CX)- bry = Tr(XS);::: 0. 

Proof. From the feasibility of X and (y, S), we have 

Tr ( (~ YiAi + S) X) - bT y 

Tr (fi YiAX) + Tr(SX)- bry 
m 
2::: YiTr(AiX) + Tr(X S) - bT y 
i=l 

Tr(X S) 
> 0. 

Here we used the fact that Tr(SX) = Tr(X S). • 
The difference between the primal and dual objective values at feasible so
lutions of (P) and (D), which is always nonnegative by Proposition 2.2.1, is 
called the duality gap. Strong duality is the assertion that the duality gap is 
zero and both of (P) and (D) attain their optimal value whenever both of 
them are feasible. Although this is always true for 10, it does fail for SDO 
occasionally. 

We illustrate two examples from 1uo, Sturm, and Zhang [19] and Vanden
berghe and Boyd [34] respectively, to show how strong duality fails. 

Example 2.2.2. Consider the following problem 

max -y1, s.t. ( ~1 ~ ) Y1 + ( ~ ~1 ) Y2 =S ( ~ ~ ) · 

9 
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The constraint is equivalent to ( ~1 
:

2 
) t: 0. Then, we have the feasible 

region is {(y1,y2) I Y1 > 0, Y2 > 0, Y1Y2 ~ 1}. To maximize -y1, it is possible 
to choose y1 arbitrarily small such that the optimal value is 0, but is never 
attained. The dual form of this problem is 

min Tr((~ ~)x) 
s.t. Tr ( ( ~l ~ ) X) -1, 

Tr ( ( ~ ~1 ) X) 0, 

X >- 0, 

for which the only feasible, hence optimal, solution is X = ( ~ ~ ) with 

optimal value 0. Hence, the duality gap for this pair of primal and dual 
problems could be arbitrarily close to 0, but it never vanishes. 

Example 2.2.3. Consider the problem 

n( 0 0 Ox) min 0 
0 

n( 0 0 Ox) s.t. 0 
0 

0, 

n( n 1 Ox) 0 
0 

2, 

X >- 0. 

10 
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optimal value is 1 with w1 = 0 and w2 = 0. The dual form is 

max 2y2 , s.t. 
(
100) (0 0 0 0 Yl + 1 
0 0 0 0 

Equivalently, it requires that 

i.e., y1 ~ 0 and y2 = 0. Therefore, it follows that the optimal solution is (0, O)T 
with an optimal value 0. Here both of the primal and dual problems attain 
their optimal values, but with a positive duality gap. 

From these examples, we see that unlike in the case of LO, we cannot assert 
that the duality gap vanishes if either the primal or the dual problem has an 
optimal solution, unless certain conditions are imposed. One such condition 
is summarized in the following theorem. Before doing that, it is necessary to 
make some assumptions which is assumed throughout the entire thesis. 

Assumption 2.2.4. The matrices A, i = 1, ... , m, are linearly independent. 

Assumption 2.2.5. F 0 := F~ x F~ is nonempty. 

Theorem 2.2.6 (Strong Duality/. Let X* and (y*, S*) denote the optimal 
solutions of (P) and (D), respectively. Under Assumptions 2.2.4 and 2.2.5, 
then both ( P) and (D) attain their optimal values with zero duality gap, i.e., 

Tr(CX*)- bT y* = Tr(X* S*) = 0. 

Eventually, if we assume that the strong duality theorem holds, then X* and 
(y*, 8*) are optimal if and only if they satisfy the optimality conditions [8], 

Tr(AX*) - bi, X* C::: 0, i = 1, ... , m 
m 

C, S* C::: 0, (2.2.1) 
i=l 

X*S* 0, 

1For a proof, we refer to Todd [31] and de Klerk [8]. 
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where we replace the strong duality requirement Tr(X* S*) = 0 by X* S* = 0, 
since they are essentially equivalent. Note that the first two equations request 
the primal and dual feasibility, respectively. The last equation is called com
plementarity condition, which is a nonlinear function. The complementarity 
condition guarantees optimality and the solution of (2.2.1) is a challenging 
problem. 
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Chapter 3 

Interior Point Methods 

To start this chapter, we introduce the barrier method which serves to exhibit 
the basic idea of path-following IPMs and many relevant concepts, such as 
centrality and neighborhood. We consider the Newton method to solve the 
optimality condition equations which are derived from the barrier method. 
However, unlike in the case of 10, the Newton direction usually does not exist 
for SDO, since a symmetric search direction is not guaranteed to exist for 
the Newton system. One general remedy, originally proposed by Zhang [39], 
is stated in Section 3.3. At last, we present two frameworks of primal-dual 
path-following IPMs based on the small and large neighborhoods. 

3.1 Barrier Method 

We define the logarithmic barrier function over the cone of positive definite 
matrices s~+ by 

f(X) := {-lndetX if X >---.0, 
+oo otherwise. 

(3.1.1) 

We say f(X) has the barrier property overS~+· For the simple case n = 1, we 
get a smooth function -ln x which is defined on the positive axis and whose 
function value tends to +oo as x approaches 0. In general, f(X) goes to +oo 
when X approaches the boundary of the cone of positive definite matrices. 

Let X >- 0, .6X E sn and II.6XII ::::: J, where J is an arbitrarily small positive 
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number. Then, one has 

f(X +~X) -ln det [X (I+ x-1 ~X)] 

-ln det X -ln (1 + Tr(X- 1 ~X)) 

f(X)- Tr(X- 1~X), 

from which we derive that 

To utilize the barrier property of f (X), we implicitly enforce the positive 
semidefiniteness in (P) to be embedded in the objective function. Then, it 
follows a sequence of parameterized primal and dual problems 

min Tr(CX) + pJ(X) 
BP(JL) s.t. Tr(AiX) = bi, i = 1, ... , m, 

X>- 0, 

and 
max bT y- fLf(S) 

m 

BD(p,) s.t. 2::: YiAi + S = C, 
i=1 

s >- 0, 

where JL > 0 is referred to as the barrier parameter. 

Note that BP(JL) is to minimize a convex function, Tr(CX) + JLf(X), with 
linear constraints, 'Ir(AiX) = bi, i = 1, ... , m, over a convex set, X >- 0. The 
Lagrange conditions are necessary and sufficient. Thus, we are able to derive 
the optimality conditions from Lagrange function 

m 

J:(X, y) = Tr(CX) + JLf(X)- LYi(Tr(AiX)- bi), 
i=1 

where y = (y1, ... , Ymf is the Lagrange multipliers. From the Lagrange's 
theorem [28], X is an optimal solution of BF(JL), if and only if there exists 
some y E Rm such that 

Tr(AiX) 

\lxJ:(X,y) 

bi, i = 1, , .. , m 
m 

C + JLf'(X) - 2::: YiAi 
i=1 

m 

c- JLx- 1
- I: YiA 

i=1 
0. 
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Let us denote S := {LX-1
. Then we have the following optimality conditions 

for BP(J-L) 

bi, X >-- 0, i = 1, ... , m 
m 

L YiA + s = C, s >-- 0, (3.1.2) 
i=l 

xs [Ll. 

The set of equations (3.1.2) is also the optimality conditions for the dual 
barrier problem BD(J-L). In fact, the first two equations in equations (3.1.2) 
keep primal and dual feasibility and the last equation in equations (3.1.2) 
can be considered as a perturbation of the complementarity condition in the 
equations (2.2.1). 

3.2 Central Path and Neighborhood 

We show the existence and uniqueness of solutions to equations (3.1.2) for 
every positive fL· For all {L > 0, the solutions (X(J-L), Y(J-L), S(J-L)) E S?;:+ X nm X 

S?;.+ to equations (3.1.2) form a smooth curve, which is called the central path. 
Note that equations (3.1.2) look almost the same as equations (2.2.1), except 
the right-hand-side of the last equation. Equations (3.1.2) approximate (2.2.1) 
more and more closely as fL tends to zero. If the central path converges to any 
point as fL ---+ 0, it must be an optimal solution to (P) and (D) because the 
central path is differentiable, as it is showed later in this subsection. 

The next theorem proves the existence and uniqueness of the central path. 

Theorem 3.2.1~ Suppose that Assumptions 2.2.4 and 2.2.5 hold. Then for 
every p. > 0, there is a unique solution (X(JL), y(Jl.), S(JL)) E S?;:+ x nm x S++ 
to the cental path equations (3.1.2). Further, X(J-L) and (y(J-L), S(J-L)) are the 
unique solutions to B P (J-L) and B D (J-L), respectively. 

So far, it is clear that for any fL > 0, the set of equations (3.1.2) has a unique 
solution and the set of solutions for all fL > 0 forms the central path. The 
following theorem reveals that the central path is also differentiable and it 
makes explicit how the duality gap is associated with the barrier parameter fL· 

1For a proof, we refer to Todd [31] and de Klerk [8]. 
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Theorem 3.2.2.2 Suppose that Assumptions 2.2.4 and 2.2.5 hold. Then the 
set of solutions to (3.1.2) for all J-l > 0 forms a nonempty infinitely many times 
differentiable path, called central path. If (X (J-l), y(p), S(p)) solves equations 
(3.1.2) for a specific positive p, then X (p) is a strictly feasible solution to ( P), 
and (y(p), S(p)) is a strictly feasible solution to (D) with duality gap 

Motivated by Theorem 3.2.2, path-following algorithms attempt to track the 
points on the central path which leads to an optimal solution when J-l is steadily 
decreasing to zero. Usually, we use a primal-dual algorithm, i.e., maintaining 
both the X and the (y, S) iterates simultaneously. 

Although path-following interior point algorithms try to trail the central path 
while the barrier parameter J-l is decreasing to 0, they do not have to stay 
on the central path exactly. All the iterates are only required to reside in a 
neighborhood of the central path, while steadily approaching the optimal set. 

One of the popular neighborhoods is the so-called small neighborhood, defined 
as 

where e E (0, 1) and p9 := Tr(X S)/n is associated to the actual duality 
gap. Another one is the so-called negative infinity neighborhood that is a large 
neighborhood, defined as 

N;;,(1- I) := {(X, y, S) E F I Amin(X S) 2:: 1/-lg}' 

where 1 E (0, 1). 

For the special case of SDO, i.e., LO, the small neighborhood is equivalent to 

where e E (0, 1) and p9 := xT s/n; the counterpart of the large neighborhood 
is given as 

.CN;;,(1- 1) := { (x, y, s) E :Ffl xs 2:: IJ-l9 e}, 

where 1 E (0, 1) and Ff denotes the interior of FL. 

2For a proof, we refer to Todd [31] and de Klerk [8]. 
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In theory, IPMs based on the small neighborhood NF(fJ), e.g., short step al
gorithms, have a better iteration complexity bound than algorithms based on 
large neighborhoods, e.g., large update algorithms. However, computational 
experience [28, 37] shows that large neighborhood IPMs typically perform 
much better in practice than small neighborhood algorithms. In Chapter 4 
of this thesis, we will explore a variant of large neighborhood path-following 
IPMs and prove its polynomial iteration complexity which will coincide with 
the complexity of small neighborhood IPMs. 

3.3 Symmetrization and Search Direction 

One of the crucial problem of the path-following IPMs is to choose how to 
solve system (3.1.2). Due to the last equation, system (3.1.2) is nonlinear. 
Therefore, it is not trivial to get a solution to system (3.1.2). Usually, people 
would like to use (damped) Newton methods to solve it. 

Given an iterate (X, y, S), path-following IPMs generate the next iterate by 
taking a Newton step to system (3.1.2). Let us target the point on the central 
path corresponding to J.L = TJ.Lg, where T E [0, 1] is called the centering param
eter and J.Lg = Tr(X S) /n corresponds to the actual duality gap. To move from 
the current point (X, y, S) towards the target on the central path, we wish a 
symmetric search direction (6-X, 6-y, 6-S) E sn X nn X sn is available from 
the following linear system 

Tr(Ai6.X) 0, 
m 

0, (3.3.1) 
i=l 

6-XS + X6.S Tj.Lgl- XS. 

From the second equality we have a symmetric 6-S, however, system (3.3.1) 
do not allow a symmetric solution matrix 6-X. Various remedies are proposed 
since the middle of 1990's. 

One of the ideas was proposed by Alizadeh, Haeberly, and Overton [5]. They 
suggested to replace the last equation in system (3.3.1) by 

1 1 
2(6-XS + X6.S + X6.S + 6-XS) = Tj.Lgl- 2(XS + SX). 

In [32], Todd, Toh, and Tutuncu pointed out that the resulting search direc
tion, called the AHO direction, gives a unique symmetric 6-X and 6.5 only 
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if X S + S X is positive semidefinite. Otherwise, it might be not well-defined. 
Another difficulty with the AHO direction is that there is still no polynomial 
complexity proof for large neighborhood, i.e., long step, IPMs based on the 
AHO direction. 

Another possible alternative is to employ a similarity transformation P(-)P- 1 

on both sides of the third equation of system (3.3.1). This strategy was first 
investigated by Monteiro [20] for P = x-112 and P = 8 112 . It turned out that 
the resulting directions by this approach could be seen as two special cases of 
the class of directions introduced earlier by Kojima, Shindoh and Hara [16]. 
At the same time, another motivation led Helmberg, Rendl, Vanderbei and 
Wolkowicz [12] to the direction given by P = 8 112 . The search directions 
given by P = x-112 and P = 8 112 are usually referred to as the H .. K..M 
directions, respectively. 

The last popular direction we would like to introduce, the NT direction, was 
first proposed by Nesterov and Todd [25, 26] in their attempt to generalize 
primal-dual IPMs beyond SDO. The NT direction not only has many nice 
properties in theory but is also robust and accurate in practice. It is widely 
used in state-of-the-art SDO software, such as SeDuMi and SDPT3. 

In [39], based on Monteiro's idea, Zhang generalized all the approaches to a 
unified scheme parameterized by a nonsingular scaling matrix P. This fam
ily of search directions is referred to as the Monterio-Zhang (MZ) family of 
search directions, which turns out to involve all the aforementioned directions, 
i.e., AHO, H .. K..M and NT directions. Zhang suggested to replace the last 
equation in system (3.1.2) by 

Hp(XS) = pi, (3.3.2) 

where Hp(-) is a symmetrization transformation that is defined for a given 
matrix M and a given nonsingular matrix P as 

In particular, if P = I then for any symmetric matrix M, H1(M) = M. In 
[39], Zhang observed that if P is nonsingular, then 

Hp(M) =pi{:} M =pl. 

Therefore, the search direction is well defined by the following system 

Tr(AiflX) = 0, (3.3.3a) 
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m 

(3.3.3b) 
i=1 

(3.3.3c) 

For the choices of P, when P = I, the direction obtained from (3.3.3) coin
cides with the AHO direction [5]. If P = x-112 or S 112 , then (3.3.3) gives 
the H .. K..M directions [12, 16, 20, 21], respectively. Further, we obtain the 

NT direction when p = w~i/2, where w NT is the solution of the system 
WN~XWN~ = S. Nesterov and Todd [25, 26] prove the existence and unique
ness of such a solution as WNr = X 112 (X 112SX112)-112 X 112 . We refer to the 
directions derived by (3.3.3) as the Monteiro-Zhang (MZ) family. 

In terms of Kronecker product3 , equation (3.3.3c) can be expressed as 

Evec(~X) + Fvec(~S) = vec(Tp9I- Hp(XS)), 

where 

(3.3.4) 

In [32], Todd, Toh and Tutuncu proved that system (3.3.3) has a unique 
solution for any (X, y, S) E s~+ X nm X s~+ and for the scaling matrix p 

for which PXSP- 1 E sn. Apparently, P = x-112 , S 112 and W~i/2 belong to 
this specific class. However, P = I does not. In [32], the authors proved that 
the solution to system (3.3.3) is not uniquely defined. 

The next result shows that the solution set to system (3.3.3) keep the same in 
terms of V = pT P not changing. 

Theorem 3.3.1~ The set of solutions to system (3.3.3) remains invariant as 
long as the matrix V = pT P does not change. 

Thus, for fixed V E S~+' there is no loss of generality in considering only the 
matrix V112 among all those scaling matrices P such that pT P = V, since 
their corresponding system (3.3.3) all have the same solution set. Hence, we 
will assume P E S~+ in the remaining of this thesis, with the exception of 
Section 4.3.2. 

3For the definition and properties of Kronecker product, please refer to APPENDIX A. 
4For a proof, we refer to Todd, Toh and Ti.iti.inci.i [32]. 
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3.4 Primal-Dual Path-following Algorithms 

From the previous discussions, the motivation of path-following IPMs should 
be clear: starting with a relatively big but fixed f..L, e.g., f..L = 1, take a (damped) 
Newton step along the directions derived from system (3.3.3). After updating 
the iterates, a decrease in duality gap is obtained and one repeats the process 
until the required precision is obtained. In practice, we usually use primal-dual 
methods, i.e., maintain the iterates X and (y, S) in the same time. 

Algorithm 1 presents a generic framework of primal-dual path-following IPMs. 

Algorithm 1 Generic Primal-Dual Path-following IPMs 

Input: 
required precision E > 0; neighborhood N 
an initial point (X0

, y0
, 8°) E Pj, x :F~ with f..L~ = Tr(X 0 S0 )jn; 

while f..L~ > E do 
( 1) Compute the scaling matrix pk and choose a centering parameter 

Tk E [0, 1]. 

(2) Compute the directions (~Xk, ~yk, ~Sk) by (3.3.3). 

(3) Find a step length ak > 0 giving a sufficient reduction of the duality 
gap and assuring (Xk + ak~Xk, yk + ak~yk, Sk + ak~Sk) EN. 

(4) Set (Xk+l, yk+l, Sk+1) = (Xk + ak~Xk, yk + ak~yk, Sk + ak~Sk). 

(5) Set f..L~+l := Tr(xk+lsk+1)/n and k := k + 1. 
end while 

In this framework, the algorithms starts with a strictly feasible point. How
ever, people usually utilize either infeasible algorithms or self-dual embedding 
models. The first strategy is reducing the infeasibility and the duality gap 
simultaneously; the later one is able to find a trivial strictly feasible point, but 
works with a larger problem in terms of dimension. 

In Algorithm 1, we use the notation N to denote a certain neighborhood of 
the central path. According to various algorithms, it might be the small neigh
borhood or the large neighborhood, i.e. the negative infinity neighborhood, 
or even our new neighborhood method in the next chapter. In the subsequent 
subsections of this chapter, we show the main complexity results for both 
of small and large neighborhood algorithms. Theoretically, the algorithms 
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based on the small neighborhood are proved to be better than those based on 
the large neighborhood, in terms of the number of iterations. Nevertheless, 
in practice the situation seems to be the opposite: large neighborhood algo
rithms perform much better than small neighborhood ones. The main work 
in this thesis is motivated by this contradiction. We propose a class of large 
neighborhood algorithms for SDO whose complexity bound coincide with the 
one for small neighborhood algorithms. This new algorithm is presented in 
Chapter 4. 

We will state two classical primal-dual path-following algorithms based on 
the small and large neighborhoods, respectively. The choices of the centering 
parameter T also depend on the algorithms used. The details are discussed 
subsequently. 

3.4.1 Small Neighborhood Algorithm 

In this subsection, we state a small neighborhood algorithm based on the MZ 
family, see e.g. Monteiro [20]. The algorithm generates iterates in the small 
neighborhood NF(f3) of the central path and selects step sizes a = 1, i.e., it 
takes a full Newton step, and centrality parameters Tk = 1 - fJ I yin, where fJ is 
a constant specified in Theorem 3.4.1. 

Theorem 3.4.1? Let {3 E (0, 112) and fJ E [0, yin) be constants satisfying 

{32 + fJ2 

2(1- {3)2(1- olyin) :::: {3. 

Suppose that (X, y, S) E NF(f3) and let (~X, ~y, ~S) denote the solution 
of (3.3.3) and T = 1- fllyin. Then, every iterate (Xk,yk,Sk) generated by 
the small neighborhood algorithm is in the neighborhood NF(f3). Moreover, 
the algorithm terminates in at most 0 (yin log( 1 IE)), where E is the required 
precision. 

A pair {3, fJ satisfying the conditions stated in Theorem 3.4.1 is {3 = 0.3 and 
fJ = 0.3. Using these parameters, we provide a variant of the algorithm. 

5For the proof, we refer to Monteiro and Todd [22]. 
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Algorithm 2 Path-following IPMs based on small neighborhood NF(f3) 

Input: 
required precision E > 0; 
neighborhood parameter j3 = 0.3; 
parameter associated with the centrality 6 = 0.3; 
an initial point (X0

, y0
, S0

) E NF(/3) with 11·~ = Tr(X0S0 )/n; 

while tLZ > t do 
(1) Compute the scaling matrix pk E P(Xk, Sk) and set the centering 

parameter Tk = 1 - 6/ fo. 

(2) Compute the directions (6_Xk, 6_yk, 6.Sk) by (3.3.3). 

(3) Set (Xk+I, yk+I, sk+l) = (Xk + 6.Xk, yk + 6.yk, Sk + 6.Sk). 

(4) Set M~+ 1 := Tr(Xk+lsk+1)/n and k: := k: + 1. 
end while 

The main difference between Algorithm 1 and 2 is that line search for largest 
step length is not required, since a full Newton step guarantees the feasibility of 
the iterates and polynomial iteration complexity bound. From Theorem 3.4.1, 
we know that the iteration complexity of small neighborhood algorithms do 
not depend on the scaling matrix P, i.e., no matter which member of the 
MZ family is used, the iteration complexity does not change theoretically. 
Nevertheless, this fact is not true for large neighborhood algorithms. 

3.4.2 Large Neighborhood Algorithm 

Although small neighborhood algorithms possess the best known iteration 
complexity bound, they are less closely related to practical algorithms than 
algorithms based on a large neighborhood. Because the small neighborhood 
NF(f3) contains only a small fraction of the points in the strictly feasible set 
:F0

, so algorithms based on this neighborhood do not have much room to 
maneuver, and the amount of progress they can achieve at each iteration is 
limited. The large neighborhood N;;;,(1-'"'(), on the other hand, is much more 
expansive. When 1' is small, it might take up almost the entire strictly feasible 
set :F0

. 

In this subsection, we summarize Monteiro and Zhang's work [23], in which 
they proposed a unified analysis for large neighborhood algorithms. Different 
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from small neighborhood algorithms, large neighborhood path-following algo
rithms do not allow all members of the MZ family. Thus, we further restrict 
the scaling matrices P to the specific class 

P(X, S) :={PEs~+ I PXSP-1 E sn}, (3.4.1) 

where X, S E S~+· Apparently, P = x-112
, S112 and W~if2 belong to this 

specific class. However, P = I does not. In other words, the polynomial 
complexity results for large neighborhood algorithms are only valid for the 
H .. K..M and NT directions, but not the AHO direction. Furthermore, this 
restriction on P does not lose any generality, in terms of the solution set of 
system (3.3.3), as Monteiro proves in [21]. 

Let Tk be a constant in every iteration, say Tk = T. We present a framework 
of large neighborhood IPMs in Algorithm 3. 

Algorithm 3 Path-following IPMs based on large neighborhood N~(1- r) 

Input: 
required precision E > 0; 
neighborhood parameter r E (0, 1); 
centrality parameter Tk = r; 
an initial point (X0

, y0
, S 0

) E N~(1- r) with f.-l~ = Tr(X0S 0 )/n; 

while f.-l; > E do 
(1) Compute the scaling matrix pk E P(Xk, Sk). 

(2) Compute the directions (~Xk, ~yk, ~Sk) by (3.3.3). 

( 3) Find a the largest step length o;k > 0 such that 

(Xk + ak~xk, l + ak~yk, sk + ak~sk) E N~(1- ,). 

(4) Set (Xk+l, yk+l, Sk+1) = (Xk + o:k~Xk, yk + o:k~yk, Sk + o:k~Sk). 

(5) Set JL;+l := Tr(xk+lsk+1)/n and k := k + 1. 
end while 

The next theorem gives an iteration-complexity bound for Algorithm 3 in 
terms of a parameter ""= defined as 

""==sup { cond((Ek)-1 Fk) : k = 0, 1, ... }, 

where F; and Pare defined by (3.3.4). Obviously, ""= ~ 1. 
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Theorem 3.4.2.? Assume that 1'1,00 < oo. Then the sequence {p,k} generated 
by the large neighborhood algorithm satisfies 

where 

ak>min(1, T~/( ) 
1 

)· - 1 - 2T + T 1 - 1 ~n 

Consequently, Algorithm 3 terminates in at most 0( ~n log(1/ c)) iterations. 

From Lemma B.0.20, it is easy to obtain the following corollary. 

Corollary 3.4.3! Algorithm 3 based on the NT direction and the H. .K. .M 
directions have iteration complexity bounds equal to 0 ( n log( 1 j c)) and 
0( n 312 log(1/ c)), respectively. 

Evidently, the iteration complexity of large neighborhood algorithms depends 
on the scaling matrix P. A sufficient condition is that P E P(X, S) is required. 
Among all of the choices for P, the NT scaling achieves the best iteration result, 
since for the NT direction 1'1,00 = 1. Nevertheless, although the AHO direction 
is proved to be convergent, but no polynomial complexity is known so far. 

6 For the proof, we refer to Monteiro and Todd [22]. 
7For the proof, we refer to Monteiro and Todd [22]. 
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Chapter 4 

New Interior Point Methods 

In this chapter, we intend to propose our new algorithm, which is based on 
a large neighbor hood but with an 0 ( y'n log( 1/ E)) iteration complexity when 
the NT scaling is used. 

We organize this chapter as follows. We first review the Ai-Zhang algorithm 
in Section 4.1. Then, from Section 4.2, we extend their algorithm to SDO. We 
first define the positive and negative part of a symmetric matrix, and prove 
some of their intriguing properties. By using these new definitions, we in
troduce a new neighborhood which is proved to be a large neighborhood. In 
Section 4.3, we explain the way to decompose the classical Newton direction 
and present the framework of our algorithm. We also suggest a computation
ally cheap methodology to apply our algorithm to practical implementation 
in the same section. In Section 4.4, the theoretical complexity bound and 
the convergence analysis are presented. Following by the technical lemmas in 
Section 4.4.2, we present the most important polynomial complexity result in 
Section 4.4.3. 

4.1 Ai-Zhang Algorithm 

In this section, we summarize Ai-Zhang algorithm for 10. In [2], Ai and Zhang 
proved the convergence and polynomial iteration complexity for linear comple
mentarity problems (1CP). To make their idea more accessible, in this thesis 
we only concentrate on 10, which is a special case of 1CP. On the other hand, 
it is more straightforward to extend their algorithm to SDO from 10. 
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Recall that if X = Diag(x), S = Diag(s), and Ai = Diag(ai), i = 1, ... , m, 
then SDO problems (P) and (D) are 10 problems (LP) and (LD), respec
tively. In this case, system (3.3.1) is identical to 

0, i = 1, ... ,m 

0, (4.1.1) 
i=l 

S6.x +X 6.s 

Note that both X and S are diagonal, hence symmetric, then there is no 
trouble with symmetrization as general SDO. 

In the following part, we would like to explain Ai-Zhang's idea in [2] that 
motivated our work. Before proceeding, we need to introduce a new notation. 
For any vector q E Rn, q+ denotes its positive part, i.e., (q+)i = max{ qi, 0} 
and q- denotes its negative part, i.e., (q-)i = min{qi, 0}. Later in Section 
4.2.1, we will apply this notation to any symmetric matrix. Nevertheless, we 
stick this notation with vector in this section. 

central path 

Figure 4.1: Decomposition of the Newton direction 
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Suppose we have an iterate (x, y, s) in a certain neighborhood which is able 
to warrantee the convergence, namely, (x, y, s) is feasible and reasonably away 
from the central path. In the next iterations, IPMs aim at a target point 
on the central path, say, TJ.L9e. Figure 4.1 illustrates the classical Newton 
direction, from xs to T J.L9e. Note that T J.L9e = xs + ( T J.L9e- xs)- + ( T J.L9e- xs )+ 
and the fact that xr s indicates the current duality gap, hence ( T J.L9e - xs)-, 
which is component-wisely non-positive and shooting towards another point 
on the central path with a smaller duality gap than Tf-1.9 e in this special two 
dimensional case as illustrated in Figure 4.1, plays the role to reduce the duality 
gap. However, for higher dimensions, i.e., n ?: 3, (TJ.L9e- xs)- might not 
exactly aim at a point on the central path associated with a smaller duality gap, 
but provides us the possibility to head to it. In the other hand, (TJ.L9e- xs)+ 
is trying to drag the iterate back close to the central path, namely, protecting 
the duality gap from decreasing too fast. From this geometrical intuition, Ai 
and Zhang [2] first proposed to decompose the classical Newton direction and 
treat the resulting components individually: one for optimality and the other 
one for centrality. 

Another important ingredient of the new algorithm is to introduce a new 
neighborhood for the central path, 

£N(T1, T2, TJ) := £N~(1-T2)n{ (x, y, s) E :Ff: IITIJ.lge- xsll:::; TJ(Tl- T2)J.L9}, 

where TJ ?: 1 and 0 < T2 < T1 < 1. One can easily verify that 

£N~(1- Tl) ~ £N(Tl, T2, TJ) ~ £N~(l- T2), 

i.e., the new defined neighborhood is itself a large neighborhood. 

To decompose the Newton direction, Ai and Zhang [2] suggested to solve the 
following two systems: 

(ai, L\x_) 0, i = 1, ... ,m 
m 

L fl(yi)-ai + L\s_ 0, (4.1.2) 
i=l 

SL\x_ +X L\s_ (TJ.L9e- xs)-

and 

(ai, L\x+) 0, i = 1, ... ,m 
m 

L L\(yi)+ai + L\s+ 0, (4.1.3) 
i=l 

SL\.1:+ +X L\s+ (TJ.L9e- xs)+ 
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rather than system ( 4.1.1) in every iteration. 

Let a := (a1, a2)T E R~ be the step sizes taken along (~x-, ~Y-, ~z-) and 
( ~x+, ~Y+, ~z+). Then, the new iterate is denoted by 

The best choice of the step sizes is the solution of the following optimization 
subproblem: 

min (x(a)s(a)) 
s.t. (x(a), y(a), s(a)) E £N(T1, T2, 17) 

0 :::; a_ :::; 1, 0 :::; a+ :::; 1. 
(4.1.4) 

But in practice, it is not necessary and also expensive to exactly solve the 
above problem for step sizes. For details, we will discuss in Section 4.3.1. 

So far, we are clear how to decide the search directions in Ai-Zhang's new algo
rithm. We describe a generic framework for their algorithm which is referred 
to [2]. 

Algorithm 4 The Ai-Zhang Large Neighborhood Algorithm 

Input: 
required precision E > 0; 
neighborhood parameters 17 2 1, 0 < T2 < T1 < 1; 
reference parameter 0 :::; T :::; 1; 
an initial point ( x 0

, y0
, s0 ) E £N ( T 1 , T2 , 17) with p,~ = (x0

, s0 ) / n; 

while f-l; > E do 
( 1) Compute the directions 

(~x~, ~y~, ~s~) by (4.1.2) and (~x~, ~Y!, ~s~) by (4.1.2). 

(2) Find a step length vector ak = (a~, a~) > 0 giving a suffi
cient reduction of duality gap and assuring (x(ak), y(ak), s(ak)) E 

£N(TI, T2, 17). 

(3) Set (xk+l, yk+l, sk+1) = (x(ak), y(ak), s(ak)). 

(4) Set f-l;+l := (xk+l,sk+1)/n and k := k+ 1. 
end while 

Following this framework, Ai and Zhang [2] proved the iteration bound stated 
as follows. 
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Theorem 4.1.1. Suppose that TJ 2:: 1, 7 = 7 1 ::; 1/4, and 0 ::; ~71 ::; 72 < 71 < 
1 are fixed for all iterations. Then, Algorithm 4 terminates in O(folog(1/E)) 
iterations, where E is the required precision. 

After Peng, Roos, and Terlaky [27] proposed the self-regular based large neigh
borhood IPMs which could be arbitrarily closed to the small neighborhood 
IPMs, it is the Ai-Zhang algorithm that first achieved the same iteration bound 
for the large neighborhood as the result for the small neighborhood. 

4.2 A New Neighborhood 

In the remaining of this thesis, we will extend the Ai-Zhang algorithm to a 
more general class of SDO. In order to do so, we need to first redefine their 
neighborhood .CN(T1, T2 , TJ) for the SDO case. 

4.2.1 Separation of Positive and Negative Parts 

Let M be a symmetric real matrix, i.e., M E sn, with the Eigenvalue De-
n 

composition Jlf = QAQT = 2:: Aiqiq'[, where A is a diagonal matrix with all 
i=1 

the eigenvalues of M in its diagonal, and Q is an orthonormal matrix, i.e., 
QQT = I, and each column qi of Q is an eigenvector of M corresponding to 
the eigenvalue Ai. Then, we define the positive part M+ and the negative part 
M- of Mas 

(4.2.1) 

In particular, for a real number M E 5 1, M+ denotes its positive part, i.e., 
M+ = max{M, 0}, and M- denotes its negative part, i.e., M- = min{M, 0}. 
Furthermore, if M E sn is a diagonal matrix, M+ and M- could be easily 
constructed by taking the positive and negative elements separately along the 
diagonal and leaving the zeros where they are. Apparently, M = M+ + M-. 

In the next, we investigate some algebraic properties of M+ and M-. These 
properties play a crucial role throughout the paper. 

First, we show that the triangle inequality holds for the positive part. 
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Proposition 4.2.1. Assume U, V E sn, then we have 

Proof. As we see, 

and 

u = u+ + u- = u+ + L >-.i(U)qi(U)qi(uf 
>-;(U):SO 

v = v+ + v- = v+ + L >-.i(V)qi(V)qi(vf. 
>-;(V):SO 

According to Lemma B.0.19, we obtain 

for i = 1, ... , n. 

Let I denote the index set satisfying 

I:= { i I )..i(U + V) 2:: 0}. 

Then, 

II(U + v)+IIF [~ >-.7(U + v)] 
112 

< [I: >-.;(u+ + v+)] 1/2 

~EI 

< 11u+ + v+IIF 
< IIU+IIF + IIV+IIF' 

which completes the proof. • 

The next lemma reveals that a unitary transformation preserves the Frobenius 
norm over the positive part of a symmetric matrix. 

Lemma 4.2.2. Let M E sn and Q be a unitary matrix. Then we have 

Proof. Because M is similar to QMQT, they have the same eigenvalues. 
Specially, they have the same nonnegative eigenvalues. Then the result follows 
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easily. • 
The next paramount lemma reveals that the positive part of a symmetric 
matrix does not exceed, in the sense of Frobenius norm, its positive part after 
a similarity transformation. 

Lemma 4.2.3. Suppose that W E nn is a nonsingular matrix. Then, for any 
!11 E Sn, we have 

To prove this result, first we need to verify an interesting fact about symmetric 
matrices. 

Lemma 4.2.4. Let M E sn and Ai and mii denote the ith eigenvalue and the 
ith diagonal element of M, respectively. Then we have 

L AT~ L mTi· 
.A;2:0 m;;2:0 

Proof. If M is positive semidefinite, then for any eigenvalue of M, we have 
Ai ~ 0 and mii ~ 0. In this case, 

n n 

L AT= LAT = IIMI/~ ~ LmTi = L 
.A;(M)2:0 i=l i=l m;;2:0 

Let us consider the general case. For any symmetric matrix, there exists a 
n 

spectral decomposition such that M = QAQT = L Aiqiqf, where A is the 
i=l 

diagonal matrix with all of the eigenvalues of M and Q is a unitary matrix, 
i.e., QQT =I, where qi is the eigenvector of M corresponding to the eigenvalue 

Ai· 

Recall the definitions of M+ and M-as in (4.2.1), and let m0 and rnij denote 
the (i,j) element forM+ and M-, respectively. By definition, 

M = M+ + M- = L Aiqiq[ + L Aiqiq[' 
.A; 2:0 .A; :SO 

and M+ and M- are positive and negative semidefinite, respectively. Note 
the fact that for any i, mt ~ 0 and mjj ::::; 0, then we can define the set I as 

I = { i I mt + mii_ ~ 0}. 
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For any i E I, we have mt ~ mt + mii, ~ 0, since m;;, < 0. Further, we obtain 
(mt) 2 ~ (mt + mii,)2

, for all i E I. 

The proof of the lemma follows by 
n 

I: >..f = IIM+II~ ~ I:(mt)2 ~ I:(mt)2 ~ I:(mt +mii,)2 = I: mzi .• 
Ai2:0 i=1 iEI iEI mi;2:0 

Now, we are ready to prove Lemma 4.2.3. 

Proof of Lemma 4.2.3. It is easy to see that liM+ II~ = II [A(M)]+ II~ = 
I: >..z ( M). Let us consider the right hand side. According to Theo

.A,(M)2:0 

rem B.0.18, there exists a unitary matrix U such that U(W MW- 1 )UT = 
A(W MW-1) + N = A(M) + N, where N is a strictly upper triangular matrix. 
The last equality is due to the similarity of W MW-1 and M. From Lemma 
4.2.2, we know that 

From Lemma 4.2.4, we claim 

! [u(wMw- 1 + (WA1w- 1f)urJ+IIF 
~ [A(M) + N + A(M) + NTt IIF 
II [A(M) + N+2NT] +t 0 

JI[A(M)]+JJ~:::; [A(M) + N ~Nr] + 
F 

• 
Proposition 4.2.1 and Lemmas 4.2.2 and 4.2.3 will play a crucial role in proving 
convergence and complexity of our new large neighborhood IPM. 

4.2.2 Neighborhood N( 11, 12, TJ) 

With the notations above, we are ready to define a new neighborhood, using 
the positive part in (4.2.1), as 

N(71, 72, 77) := N;;(1- 72) n (4.2.2) 

{(X, y, s) E :P : II hM9I- X 1;2 SX1;2]+ IIF :::; 77( 71 - 72)M9 } , 

where 77 ~ 1 and 0 < 72 < 71 < 1. 
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The next proposition indicates that the neighborhood N(71, 72, TJ) is indeed a 
large neighborhood. 

Proposition 4.2.5. If TJ ~ 1 and 0 < 7 2 < 7 1 < 1, then we have 

N,;;;(1- 71} ~ N(71, 72, TJ) ~ N,;;;(1- 72). 

Proof. From the definition of N(71, 72, TJ) it is obvious that 

N(7I,T2, TJ) ~ N,;;;(1- 72)· 

For the first inclusion, we need to prove that 

N,;;;(1 - 71) ~ {(X, y, s) E :P : II [7IJ-Lgi- X 1;2 SX112]+ IIF s TJ( 71 - 72)J-L9 } . 

Given that for (X, y, S) E N~(1- 71), one has 

(4.2.3) 

which implies hp,9 I -X 112SX 112 ]+ = 0, leading to the claimed relationship. • 

Moreover, if the parameter TJ ~ yn, then the neighborhood N(71, 72, TJ) is 
exactly the negative infinity neighborhood N~(1- 72). 

Proposition 4.2.6. If TJ ~ vn and 0 < 72 < 71 < 1, then we have 

N(71, 72, TJ) = N,;;;(1- 72). 

Proof. To complete the proof, it is sufficient to show that for any (X, y, S) E 

N~(1- 72), we have 

N,;;;(1 - 72) ~ {(X, y, s) E :P : II [7IJ-Lgi- X 1; 2 SX1; 2]+ IIF s TJ( 71 - 72)tt9} . 
( 4.2.4) 

Because (X, y, S) E N~(1 - 72), it follows that 

Amin(X112SX112) = >-min(XS) ~ 72J-lg· 

Therefore, 

That implies 

II h11-9I- X 112 SX1;
2]+ IIF s v'n( 71 - 72)p,9, 

which proves that (4.2.4) holds when TJ ~ yn. • 
From Propositions 4.2.3 and 4.2.4, it is clear that this new neighborhood 
N(7I, 72, TJ) could include any given large neighborhood N(1 - f'). Hence, 
N ( 7 1, 72 , TJ) is a large neighbor hood itself. 
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4.3 Search Direction 

In this section, we aim to present our strategy to decompose the classical 
Newton direction. The original idea was proposed by Ai and Zhang [2]. They 
suggested to treat the Newton direction as a combination of two separate 
directions for monotone linear complementarity problem (LCP), which is a 
class of more general problems including 10. Using different step sizes to 
each of the decomposed Newton direction, they proved their new algorithm 
terminates in 0( y'nlog 1/ E) iterations, where n is the problem size and E is 
the required precision. In this section, we extend their idea to SDO. 

4.3.1 Decomposition of the Newton Direction 

In our new algorithm, we decompose the Newton direction into two separate 
parts according to the positive and negative parts of TJ.L9l- Hp(X S). Thus, 
we need to solve the following two systems: 

Tr(AflX_) = 0, (4.3.1a) 
m 

L(Llyi)-Ai + LlS_ = 0, (4.3.1b) 
i=l 

Hp(LlX_S + XflS_) = [TJ.L9l- Hp(XS)t, (4.3.1c) 

and 

Tt(AllX+) = 0, ( 4.3.2a) 
m 

L(Llyi)+Ai + LlS+ = 0, ( 4.3.2b) 
i=l 

Hp(LlX+S +X LlS+) = [TJ.L9l- Hp(X S)]+, ( 4.3.2c) 

where P E P(X, S) and (Llyi)-, LlX_ LlS_ denote the negative part of the 
search direction, while (Llyi)+, LlX+, LlS+ analogously denote the positive 
part of the search direction. Again, equations ( 4.3.1c) and ( 4.3.2c) could be 
written, in Kronecker product form, as 

Evec(flX_) + Fvec(LlS_) = vec([TJ.L9l- Hp(X S)t) ( 4.3.3) 

and 

(4.3.4) 
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respectively. 

Obviously, systems ( 4.3.1) and ( 4.3.2) are also well-defined and have a unique 
solution because P E P(X, S). To get the best step lengths for both of the 
directions, we expect to solve the following subproblem 

min Tr(X ( a)S(a)) 
s.t. (X( a), y(a), S(a)) E N(7I, 72, TJ) 

0::::; a_ ::::; 1, 0::::; a+ ::::; 1, 
(4.3.5) 

where a = (a_, a+) denotes the step lengths along the direction 
(.6.X_,.6.y_,.6.S_) and (.6.X+,.6.y+,.6.S+), respectively. Finally, the new it
erate is given by 

(X( a), y(a), S(a)) ·- (X, y, S) + (~X(a), ~y(a), ~S(a)) ( 4.3.6) 

So far, we have already introduced the most important ingredients of our new 
algorithm: the newly-defined neighborhood N(71, 72, 77) given by (4.2.2) and 
the new search directions based on systems (4.3.1) and (4.3.2). Now, we are 
ready to present a generic framework for our algorithm. 

Algorithm 5 Path-following IPMs based on the N(71, 72, 77) neighborhood 

Input: 
required precision E > 0; 
neighborhood parameters TJ ;::: 1, 0 < 7 2 < 7 1 < 1; 
reference parameter 0 ::::; 7 ::::; 1; 
an initial point (X 0

, y0
, S 0

) E N(7I, 72, TJ) with p~ = Tr(X0 S 0 )/n; 

while p; > E do 
(1) Compute the scaling matrix pk E P(Xk, Sk). 

(2) Compute the directions 
(.6.X~, .6.y~, .6.S~) by (4.3.1) and (.6.X!, .6.y!, .6.S!) by (4.3.2). 

(3) Find a step length vector ak = (a~, ai) > 0 giving a suffi
cient reduction of duality gap and assuring (X(ak), y(ak), S(ak)) E 

N ( 71, 72) TJ). 

( 4) Set (xk+I, yk+I, Sk+1) = (X ( ak), y( ak), S( ak)). 

(5) Set p;+I := Tr(xk+Isk+I )/nand k := k + 1. 
end while 
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We have to remark three important facts about the presented algorithm. First 
of all, although we suggest to solve problem (4.3.5) to decide the best step 
lengths, to solve this problem is very expensive in general, and thus a "suffi
cient" duality gap decrease obtained for low computational cost is preferred 
against the "maximal possible" duality gap decrease for high computational 
cost. Furthermore, solving problem ( 4.3.5) is also not a must. Even if we do 
not use the optimal solution of problem ( 4.3.5) as the step lengths, we are still 
able to achieve the polynomial convergence, as it is discussed later. Second, in 
spite of the fact that two linear systems (4.3.1) and (4.3.2) have to be solved, 
however, the additional cost is very marginal, since both of (4.3.1) and (4.3.2) 
have the same coefficient matrix. At each iteration, the algorithm only needs 
to form and decompose the Schur matrix once, both of which together usu
ally take up 90% of the total running time, then backsolve once for the two 
right-hand-sides simultaneously. Third, it seems that it might be expensive 
to obtain the negative and positive parts in (4.3.1) and (4.3.2). However, we 
can utilize the strategy, scaling X and S to the same diagonal matrix, pro
posed by Todd, Toh and Tutuncu in [32] to obtain the negative and positive 
parts cheaply as a byproduct when computing the NT scaling matrix. We 
summarize the procedure in the coming subsection. 

4.3.2 Computing Positive and Negative Parts 

Obviously, computing the positive and negative parts explicitly is 
computation-averse, since the eigenvalue decomposition is very expensive. In 
this subsection, we will suggest a marginal way to compute the positive and 
negative parts of Tf.L9 I - Hp(X S) w.r.t NT scaling. It turns out that the 
positive and negative parts can be obtained together with the scaling matrix 
P = WN'if2 when NT scaling is employed. 

Recall that when p = WNif2, where WNT = X 112 (X112SX112
)-112 X 112 is the 

unique solution to the system W_N~XW_N~ = S. We called the direction arising 
from (3.3.3) as NT direction and the scaling used as NT scaling. From Theorem 
3.3.1, we know that the solutions of (3.3.3) are equivalent as long as pT P does 
not change. For simplicity but without loss of generality, people always assume 
that P = V112

, e.g., P = WNif2 in the convergence and complexity analysis. 
From the implementation side, however, this is not necessary. In [32], based on 
Theorem 3.3.1, Todd, Toh and Tutuncu proposed a computationally cheap way 
to calculate the NT scaling matrix. We first summarize their strategy, from 
which how to compute the positive and negative parts are very straightforward. 
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Let the Cholesky factorization of positive definite matrices X and S be 

X= LLT s = RRT 
) ) 

and let U DVT = RT L be the Singular Value Decomposition (SVD) of RT L. 
Define Q := L - 1 X 112 . It is easy to see that Q is orthogonal, since 

QQr = L-1xL-r = L-1LLrL-r =I. 

Then, one has 

x1/2sx1/2 = Qr(Lr R)(Rr L)Q = (Qrv)D2(vrQ). 

Note Qrv is also orthogonal, then we have 

(X1/2SX1/2)-1/2 = (QTV)D-1(VTQ). 

Finally, W NT can be computed easily by 

WNr = x1/2(x1/2sx1/2)-1/2x1/2 = LvD-1vrLr = ggr, 

where 
g :=LV D-1/ 2 . 

(4.3.7) 

From (4.3.7), we remark that g-rg-1 = w-1. According to Theorem 3.3.1, 
the choice P := g-1 yields the same direction to system (3.3.3), hence to 

systems (4.3.1) and (4.3.2), asP= W~if2. Therefore, we have 

grsg D-112VTLTSLVD- 112 
D-1/2vr Lr RRr LV D-1/2 
D-1/2vrv D2vrv D-1/2 

D. 

In a similar way, we also have g-1 xg-r =D. In other words, g scales X and 
S to the same diagonal matrix D. In this case, the second term in the right 
hand side of system (3.3.3) becomes 

Hg-1(X S) = (Q-1 X SQ + grsxg-r)/2 = D 2 . 

Then, according to Theorem 3.3.1, we can obtain the NT direction as the 
solution of 

Tr(Ai~X) 
m 

L~YiA+~S 
i=l 

0, 

0, 

(4.3.8a) 

(4.3.8b) 

( 4.3.8c) 

Because Tp9 I- D 2 is a diagonal matrix, only O(n) operations are needed to 
compute the positive and negative parts w.r.t. Tp9 I - D 2 , namely, our new 
algorithm is also viable from the computational point of view. 
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4.4 Complexity Analysis 

In this section, we present the convergence and complexity proofs for Algo
rithm 5. Recall that our algorithm is based on the MZ family, we scale prob
lems (P) and (1J) as Monteiro and Todd proposed in [22] in order to analyze 
the algorithm in a unified way for the class of matrices P E P(X, S). Further
more, this scaling procedure simplifies the proofs of the main results. At the 
end of this section, after proving some technical lemmas, we present the most 
important polynomial convergence result. 

4.4.1 Scaling Procedure 

Scale the primal and dual variables in the following way, 

X :=PXP, (4.4.1) 

To keep consistency, we have to apply the same scaling to the other data as 
well, i.e., 

As mentioned, to investigate the new algorithm, we restrict the scaling matrix 
to P E P(X, S) as defined by (3.4.1). It is easy to see that for X, S E S~+ 
one has 

P(X,S) :={PEs~+ I PXSP-1 E sn} ={PEs~+: xs = SX}, (4.4.2) 

i~:..1- we require P to make ~and ~to commute after scaling, implying that 
X Sis symmetric, as lon[ as X ~nd S are both symmetric. This requirement on 
P also guarantees that X and Scan be simultaneously diagonalised (i.e., they 
have eigenvalue decompositions with the same Q) according to Proposition 
B.0.23. 

From now on, we use A to denote the diagonal matri~~ = diag(A1, A2, ... , An), 
where Ai for i = 1, ... , n are the eigenvalues of X S with in<::E~as~[ order 
A1 ~ A2 ~ · · · ~ An· We should emphasize that the matrices X S, SX, X S, 
sx' X 112 S112 X 112 and S 112 X 112 S 112 have the same eigenvalues, since they are 
similar. 

In the scaled space the primal and dual problems are equivalent to the following 
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pair of problems: 

and 

min Tr(CX) 

('P) s.t. Tr(AiX) 

X 

max 

bi, i = 1, ... , m, 

>- 0, 

I/:y 
(V) s.t. 

m - -
2:: YiAi + S = C, 
i=l 

s t 0. 

The search direction (~X, ~y, ~S) based on system (4.3.1) and (4.3.2) corre
sponds to the scaled direction (EX, ~y, M) defined as 

~X_= P~X_P, ~Y- = ~Y-, ~S- = P~S_P, 

~X+= P~X+P, ~Y+ = ~Y+, ~S+ = P~S+P. 

- - - - --

( 4.4.3) 

(4.4.4) 

The directions (~X_,~y_,~S-) and (~X+,~Y+,~S+) are readily verified 
to be solutions of the scaled Newton systems 

Tr(Ai~X_) = 0, 
m 

:l)~Yi)_Ai + ~S- = 0, 
i=l 

and 

Tr(AM+) 0, 
m 

I)~Yi)+Ai + ~s+ = o, 
i=l 

( 4.4.5a) 

(4.4.5b) 

( 4.4.5c) 

(4.4.6a) 

( 4.4.6b) 

( 4.4.6c) 

respectively. To simplify the notation, we use X S rather than H1(X S), since 
XS = H1(XS) when the scaling matrix P E P(X, S). In terms of the Kro
necker product, equations ( 4.4.5c) and ( 4.4.6c) become 

(4.4.7a) 
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(4.4.7b) 

respectively, where 

(4.4.8) 

Having the search directions, and after deciding about the step lengths, the 
iterates are updated as follows: 

(X(a), y(a), S(a)) (X, y, S) + (~X(a), ~y(a), ~S(a)) (4.4.9) 

The next proposition formalizes the equivalence between the original and the 
scaled problems. 

Proposition 4.4.1. If (X, y, S) and ex, y, S) are related to each other as 

specified by (4.4.1), (X(a), y(a), S(a)) and (X(a), y(a), S(a)) are defined by 
(4.3.6) and (4.4.9), respectively, then we have 

1. (X, y, S) E :F if and only if (X, y, S) is feasible for ('P) and ('D); 

2. (X,y,S) E N(T1 ,T2,TJ) if and only if (X,y,S) E N(T1 ,T2,TJ), where 

N(T1 , T2, TJ) is the neighborhood corresponding to ('P) and (V); 

3. X(a) = P X(a)P, y(a) = y(a), S(a) = p-1S(a)P- 1 and J-L(a) 

IJ,
9
(a), where IJ,

9
(a) = Tr(X(~)S(a)). 

4.4.2 Technical Results 

Before proving the complexity of our algorithm, we have to prove some techni
cal lemmas. Throughout this section we fix the reference parameter to T = T1 

and let: 

A.l (:5:X _, b.y_, M_) and (:5:X +> b.y+, M+) be the solutions of ( 4.4.5) and 
( 4.4.6), respectively; 

From the following lemma, we see that if current iterate is a feasible point, the 
search directions are orthogonal. 
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Lemma 4.4.2. Under A.1 and A.2, we have 

Proof. The proof is straightforward by using (4.4.5a), (4.4.5b), (4.4.6a), and 
(4.4.6b). • 

Lemma 4.4.3. If P E P(X, S), then we have 

(4.4.10) 

and 

(4.4.11) 

Proof. Using the fact that Tr(M) = Tr(H1 (M)) for any matrix ME nnxn, 
it is easy to see that 

~- - ~ 

Tr(X6.S_) + Tr(6.X _S) 

One can show ( 4.4.11) analogously. 

Tr(X 6-S_ + 6-X _S) 

Tr(H1 (X 6-S_ + 6-X _S)) 

Tr(h!L9I- xst). 

• 
Intuitively, we wish to reduce the duality gap as much as possible in every 
iteration. The next result, however, shows that Algorithm 5 holds a lower 
bound for duality gap reduction. In the later discussion, it will be seen that 
this bound derives from feasibility considerations. 

Lemma 4.4.4. Let (X, y, S) E F 0
, then for every a := (a_, a+) E [0, 1], we 

have 

Furthermore, 
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Proof. Using Lemma 4.4.2 and Lemma 4.4.3, we have 

Tr(X (a )S( a)) Tr((X + a_~X _ + a+~1\)(S + a_M_ + a+M+)) 
-- -- - ---

Tr(XS) + a_(Tr(~X_S) + Tr(X~S-)) + 
-- - --- --

a+(Tr(~X+S) + Tr(X~S+)) + Tr(~X(n)~S(c1')) 
Tr(XS) + CL Tr(hJ:Lgl- XSt) +a+ Tr([TljLgl- xs]+). 

Then, we have 

jig ( Ql) Tr(X(a)S\a)) 
n 

Tr(XS) + Tr([Tt!l9I-Xs]-) + Tr([T11l9I-XS]+ 
-n- Ql_ n Ql+ n 

> - Tr(XS) J-lg- Ql_-n-

where the inequality is due to the fact that X, S E S:;:_ implies 

Tr([T1jL9I- XSt) 2:: Tr( -XS). • 
In fact, the negative part of T 1 jL9I- X Sis also bounded in terms of the duality 
gap at this iteration as the next lemma shows. 

Lemma 4.4.5. Let (X, y, S) E :F0
, then 

Proof. It is easy to see that 

Taking the trace of both sides, we have 

which completes the proof. 

(T1- 1)Tr(XS)- Tr(hJ:L9I- Xs]+) 

< -(1- T1)Tr(X S), 
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The next results, Proposition 4.4.6 and Corollary 4.4.7, imply that Algorithm 
5 reduces the duality gap steadily if the feasibility of the iterates can be pre
served. From now on, we introduce the notation {3 = ( T1 - T2) I T1, then we 
have {3 E (0, 1) and T2 = (1- {3)T1. Further let us denote 

It follows that if (.X, S) E N(T1 , T2 , ry), then 1 :S; f7 :S; ry. 

Proposition 4.4.6. Let (X,y,S) EN(T1 ,T2 ,ry). Then we have 

Proof. Using Lemmas 4.4.3, 4.4.4 and 4.4.5, we see that 

where the first inequality is due to the Cauchy-Schwarz inequality and the 
last inequality derives from the assumption that (X, y, S) E N(T1 , T2 , rJ) . • 

When the parameters T1 and {3 are chosen appropriately and all the iterates 
reside in the neighborhood N(T1 , T2 , ry), we claim that the duality gap is de
creasing in 0 ( 1 - 1 I y'n). 

Corollary 4.4.7. Let T1 :S; ~' {3 :S; ~and (X,y,S) E N(Tl,T2,TJ). If cL = 

o:+fl{iff, then we have 
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Proof. From Proposition 4.4.6, it follows that 

Here the second inequality is because T1 ::; t and the last inequality is due to 
the fact that TJ ::; ~. • 

Subsequently, we show how to ensure that all the iterates remain in the neigh
borhood N(T1 , T2 , TJ). Although we wish to decrease the duality ~ap a~ much 
as possible, we still need to control the smallest eigenvalue of X(a)S(a) in 
order to stay in the neighborhood N(T1 , T2, TJ). 

Lemma 4.4.8. Suppose P E P(X, S) and x(a) = XS + a_hfJ:9 I- XS]- + 
a+hfLgl- xs]+. Jf(X,y,S) EN(TI,T2,TJ), then we have 

(4.4.13) 

Proof. To prove this lemma, we first consider the situation when Amin ( TifLg -
XS) 2 0. In this case, h!J:gl- xs]- = 0. Then, 

Amin(x(a)) Amin(XS + a+hfLgl- xs]+) 
Amin(XS + a+(TlfLgl- XS)) 
>-min((1- a_)XS + a_TlfL9 I) 

> (1- a_)>-min(XS) + a_TlfLg 
> (1- a_)T2fLg + Qo_TlfLg 

T2fL9 +a_ ( T1 - T2)fJ:9 . 

The second inequality holds due to (X, y, S) E N(T1 , T2, TJ). 
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When T1jigl- xs is negative semidefinite, i.e., [T1jigl- xs]- = T1jigl- xs 
and [T1jigl - X s]+ = 0, we have 

Amin(x(a)) Amin(XS + a_hjigl- xs]-) 
Amin(Q(A + a_(T1ji9l- A))QT) 
Amin(A + a_(T1ji91- A)) 

> Amin(A + (T1ji9l- A)) 
-T1f.lg 

T2Mg + ( T1 - T2) jig 
> T2Mg + a+(T1- T2)ji9 . 

Now, let us conside:_ ~he last case, when T 1J.L9l- X Sis indefinite. Recall that 
the eigenvalues of X S are ~<!ered increasingly, i.e., A1 :::; ... , :::; An· Assume 
Ak is the first eigenvalue of X S such that T1ji9 - Ak :::; 0, e.g., T1ji9 - A1 2: · · · 2: 
T1ji9 - Ak-1 > 0 2: T1Mg - Ak 2: · · · 2: T1ji9 - An· It is easy to see that 

Amin(x(a)) Amin(XS + a_hji91- Xs]-) + a+[T1ji9I- xs]+) 
Amin(Q(A + a_[T1ji91- At+ a+hJi91- Aj+)QT) 
min{A1 + a+(T1ji9 - A1), Ak + a_(T1ji9 - Ak)} 
min{ T2Mg + a+(T1- T2)ji9 , T1ji9 } 

> T2ji9 + a+(T1 - T2)ji9 . 

Taking all of the cases into account, we conclude that ( 4.4.13) is true. • 

To follow the central path, we also need to make sure that the iterates remain 
in the prescribed neighborhood of the central path. 

Lemma 4.4.9. Suppose P E P(X, S)and x(a) = XS + a_hji9 I- XS]- + 
a+[T1ji9 I- is]+. Jf(X,y,S) EN(T1,T2 ,TJ), then we have 

llhii9 (a)J- x(a)J+IIF:::; (1- a+)i]f3T1ji9 (a). (4.4.14) 

Proof. Assume that the eigenvalues of X S are ordered so that 

T1Mg- A1 2: T1Mg- A2 2: · · · 2: T1Mg- Ak-1 2: 0 2: T1Mg- Ak 2: · · · 2: T1Mg- An. 

Now, let us consider the diagonal elements of A+a-hji9 l-A]-+a+hii91-
A]+. Fori= 1, ... , k- 1, Ai + a+(T1ji9 - Ai) = (1- a+)Ai + a+T1ji9 , then 

T1Ji9 (a)- (Ai + a+(T1Mg- Ai)) < T1Ji9 (a)- ii~~a) (Ai + a+(T1Mg- Ai)) 

iig_(a) (T1'ji9 - (1- a+)Ai- a+T1M9 ) 
/lg 
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TlMg(o:)- (>,i + o;_(TlMg- Ai))::; TlMg- TlMg = 0. 

For convenience, let <p(o:) = [T1ji9 (o:)I -(A+o:- hJi9 I -A]-+o:+[T1ji9 I -A]+)]+. 
Therefore, together with Lemma 4.2.2, we have 

< Ji~o:) (1- o:+) lll71Mgf- AJ+iiF 
J.Lg 

ji~o:) (1- o:+) IIQ[Tljigi- A]+QTIIF 
J.Lg 

(4.4.15) 

Jig ( 0:) ( ) II [ - - S-] + II Mg 1 - 0:+ TIJ.Lgi - X F 

< (1- o:+)fJfJTlMg(o:). 

On the other hand, let ¢(o:) = [T1ji9 (o:)I- x(o:)]+, then we have 

li¢(o:)IIF lllTIMg(o:)J- (xs + o;_[TIJigi- xst + o:+hiigi- xsJ+)J+IIF 

IIQ[TIMg(o:)J- (A+ o;_hJigi- A]-+ o:+[Tljigf- A]+)]+QTIIF 

ilhJig(o:)I- (A+ o:_hJii- At- o:+hJigi- A]+)]+jjF 
< (1- o:+)~(3T1Ji9 (o:). 

The proof is completed. • 
The next two lemmas together bound the distance between the current iterate 
and our reference point T1 ji9 I on the central path. 

Lemma 4.4.10. Let X, s E s~+' p E P(X, S), X and s are defined by 

(4.4.1), and E and F are defined by (4.4.8). Then, 

II(.FE)-lf2vec(hJigi- xsr)ll
2

::; Tr(XS). (4.4.16) 

Proof. Using Equ~tion (~A.8) and Proposition B.0.23, we find the spectral 
decompositions of E and F to be 

- 1- - 1 - -
E = 2(5 c>9 I+ I c>9 S) = "2Qx(A(S) c>9 I+ I c>9 A(S))Qi, 

-1- - 1 - -
F = 2(x c>9 I+ I c>9 X)= "2Qx(A(X) c>9 I+ I c>9 A(X))Qi, 
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where QK = Q 0 Q is an n 2 x n2 orthogonal matrix. Furthermore, because X 
~ ~~ 2 

and S commute, from Proposition B.0.22, we have FE E S~+· Then, we have 

where the matrix in the middle is diagonal with the properties that the ( ( i -
1)n+i)th component is 1/(4..\i) and the largest component is 1/(4>.1). On the 
other hand, 

vec(T1/),9I- QAQT) 
( Q 0 Q)vec( T1IJ,9 I - A) 
QKvec(T1 jj9I- A), 

where vee( T1J-Ll- A) is an n2-vector with at most n nonzeros at the ((i -1)n+ 
i)th positions which are equal to T 1/),9 - >.i. Finally, we have 

n 

2::: ( hJJ,g - >.i]- )2 I >.i 
i=l 

n 

I:([vx:- T1Mg;v:\r)2 
i=l 

n 

< 2::: ).i 
i=l 
Tr(XS), 

which leads to inequality (4.4.16). • 

Lemma 4.4.11. Let P E P(X, S), X and S be defined by (4.4.1), and E and 
F be defined by (4.4.8). If (X, y, S) E N(T1, T2 , 17) and (3::; 1/4, then 

II(.FE)-ll2vec(h/igl- xs]+)ll
2

::; i?fJTlMg/3. 

Proof. Noticing that Amin(F E) = >.1 ~ T2 jj9 , it is easy to see that 

II(FE)-1/2vec(hiJ,gl- xs]+)ll2 < II(FE)-1/2112IIvec(hiJ,gl- xs]+)ll2 

II(FE)-l/211
2

11[TlMgl- XSJ+It: 
< iJ2(32TfM;/(T2M9 ) 

< ry2(3TIM9 /3. 
The last inequality follows from the fact that (3::; 1/4 implies (3TI/T2 ::; 1/3. • 

Now, we apply Lemmas 4.4.10 and 4.4.11, together with Lemma B.0.21, to 
conclude the following result. 
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Lemma4.4.12. LetPEP(X,S) andG=E-1F. Ij(X,y,S)EN(T1,T2 ,TJ) 
and (3::; 1/4, then 

llc-112vec(M(a))ll
2 

+ IIG1I2vec(M(c10))11
2 

+2M • M 
::; a~ Tt(XS) + a~iJ2 (3Tl/i9 /3. 

Proof. From ( 4.4. 7), we have 

Applying Lemma B.0.21 to this equality, we obtain 

II(FE)-112Evec(M(a))ll
2 

+ II(FE)112Fvec(M(a))ll
2 

+2M • M 
= II(FE)-ll2 [a_vec(h/igf- xs]-) + o:+vec(h/igf- xs]+)JII

2 

- -
The commutativity of E and F implies that 

Hence, to complete the proof, it is sufficient to show that 

II(FE)-112 [a_vec([T1Mgf- xs]-) + o:+vec(h/igf- xs]+)JII
2 

::; Ct~ II(FE)-112vec([Tl/igf- xs]-)11
2 

+ Ct~ II(FE)-112vec((T1Mgf- xs]+)ll
2 

::; a~ Tt(XS) + a~iJ2(3Tl/i9 , 

where the last inequality can be derived from Lemma 4.4.10 and 4.4.11. • 

~ng ~rna B.0.27, we can explore a bound for the second order term 
LlX (a )L:lS( a). 

Lemma 4.4.13. Let p E P(X, S) and G = e-lF. If (3 ::; 1/4, (t_ = 
o:+fJfifj and (X, y, S) E N(T1, T2 , TJ), then we have 

IIHI(t.X( a)t.S( a)) IIF ~ llvec(t.X( a)) llllvec(t.S(a)) II ~ ~ J cond( G)a~fJ2 
j)Tlflg· 

(4.4.17) 
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Proof. Noticing the last inequality in Lemma B.0.26, we have 

//HI(~X(a)~S(a))t < ~~~X(a)~S(a)IIF 

< 1/~X(a)/IF /I~S(a)/IF 
< 1/vec(~X(a))l/1/vec(~S(a))l/. 

From Lemmas 4.4.2 and B.0.27, it follows that 

/IHI(~X(a)~S(a))t < /lvec(~X(a))/1/lvec(~S(a))/1 

< ~ (/lc-112vec(M(a))l/
2 

+ 

I/G1 12vec(~8(a)) 1/
2

) 

< Jcond(G) ( 2 T (X-S";') 2 ,A2fJ - / 3) 
2 a_ r + a+TJ 7 1 f.L9 . 

Substitute a_ with a+iJ~ and apply Lemma 4.4.12, then we finally obtain 

/IHI(M(a)M(a))IIF = ~ (a!'it2f371'nii9/n + a!fJ2fJ71ji9/3) 

< h/ cond (G) a! ij2 {h1 ji9 , 

observing that Tr(x s) = nJi9 . • 
In the next proposition, we achieve one of the most important results in 
this thesis, a sufficient condition to keep all the iterates in the neighborhood 
N(71, 72, TJ). 

Proposition 4.4.14. Let (X, y, S) E N(71 , 7 2 , TJ), 7 1 < 4/9, fJ ::=:; 1/4, P E 

P(X, 8) and G = ff;-lp_ If a_ = a+iJV {37!/n and a+ :S 1/( Jcond(G)'ft2), 
then 

Proof. By Corollary 4.4.7 we have ji9 (a) ::=:; ji9 . Further, using Lemmas 4.4.8, 
4.4.13 and the fact that AminO is a homogeneous concave function on the space 
of symmetric matrices, one has 

Amin(HI(X(a)S(a))) > Amin(HI(XS + a_hji9 I ~ xs]- + a+hJ19 I ~ XS]+)) 
+.\min (HI( ~X (a )~S( a))) 

> Amin(F(a)) -IIHI(~X(a)~S(a))ll 
> 72ji9 + a+(71 - 72)J19 -llHI(~X(a)~S(a))llF. 
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One can derive from Lemma 4.4.13 that 

Amin(HI(X(a)S(a))) > T2ji9 + a+(T1- T2)ji9 - ~Jcond(G)a!~2,6Tlj"ig 
> T2jig + a+,(JTlj"ig - a+,(JTlj"ig 

T2f..Lg 
> T2ji9 (a) 
> 0. 

This implies that X(c~)S(a) is nonsingular, implying that each of the factors 
X(a) and S(a) are nonsingular as well. By using continuity, it follows that 
X(a) and S(a) are also inS~+' since X and S are. Then, we may claim that 

Since j3 S 1/4 and T1 S 4/9, from Lemma 4.4.4, we have 

From Proposition 4.2.1, we have 

'I)'( a) ·- II [Tlj"ig(a)J- X 112 (a)S(a)X112 (a)J+IIF 

< lllHxt/2(al(TI/i9 (a)J- X 112(a)S(a)X112(a))J+t 

II [HI(Tlji9 (a)I- X(a)S(a))J+t. 

(4.4.18) 

Because X(a)S(a) =(X +a_hl_ +a+hl+)(X +a_hl_ +a+hl+) and 
use the triangular inequality, we have 

'1/J(a) s II[HJ(Tl/Ig(a)J- xs- CL[T/Igi- xst- a+[T/Igi- xs]+)J+IIF + 

II [-HI(~X(a)~S(a))]+ IIF 

llhfi9 (a)I- xs- a_[T/I9I- xst- a+[T/I9I- xs]+J+IIF + 

II[HJ(~X(a)~S(a))J-IIF. 

Using the fact that II[H1(hl(a)M(a))J-IIF s IIH1(M(a)M(a))t and 
Lemma 4.4.9, we can prove 
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Further, from Lemma 4.4.13 and inequality (4.4.19), one has 

'l/;(a) ::; (1- o~+)~/h1 ji9 (o:) + ~Jcond(G)o:!~thlji:9 
::; (1- a+)~/371 ji:9 (a) + Jcond(G)o:!~f371 ji9 (a). 

Since a+ ::; 1/( Jcond(G)~2 ) and if 2:: 1, we have Jcond(G)o:!~f371 ji9 (a) ::; 
a+~f37IJL9 (a). Thus, 

'l/;(c~) < (1- a+)~f37lji9 (c~) + a+'flf37lji9 (a) 
'f7/371JL9 (o:) 

< rJf371 ji9 (a) 
TJ(71- 72)/'ig(o:). 

This, together with (4.4.18), implies that 

Consequently, according to Proposition ( 4.4.1), one has 

(X(a), y(a), S(a)) E N(71, 72, rJ). 

4.4.3 Polynomial Complexity 

• 

In this subsection we present our main complexity result. The next theorem 
gives an iteration-complexity bound for Algorithm 5 in terms of a parameter 
""oo defined as 

(4.4.20) 

Obviously, ""oo 2:: 1. 

Theorem 4.4.15. Suppose that ""oo ::; oo, TJ 2:: 1, 0 < 7 2 < 7 1 ::; 4/9, and 
f3 ::; 1/4 are fixed parameters. At each iteration, let pk E P(Xk, Sk). Then 
Algorithm 5 will terminate in O(TJ~log(l/t:)) iterations with a solution 
Tr(X S) ::; c 

Proof. In every iteration, let & = ( v/371/("'oon)/~, 1/(~~2 )). By Propo
sition 4.4.14, we have 

51 



M.A.SC Thesis- Li, Yang Chapter 4- New Interior Point Methods 

Furthermore, from Lemma 4.4.7, we also conclude 

from which the statement of the theorem follows. • 
From Theorem 4.4.15, it is easy to present various iteration complexities of 
Algorithm 5 in terms of some specific aforementioned scaling matrices P. 

Corollary 4.4.16. If the parameter 77 is a constant, then for Algorithm 
5, when it is based on the NT direction, the iteration-complexity bound is 
0 ( fo log( 1/ E)). When the H.. K.. M scaling is used, then Algorithm 5 termi
nates in at most O(nlog(1/E)) iterations. 

Corollary 4.4.17. If the parameter 77 is in the order of fo, then for Algo
rithm 5, when it is based on the NT direction, the iteration-complexity bound is 
O(nlog(1/E)). When the H..K..M scaling is used, then Algorithm 5 terminates 
in at most O(n312 log(1/E)) iterations. 

From Lemma B.0.20, Corollaries 4.4.16 and 4.4.17 are readily achieved. 

As we see, when 77 is a constant and the NT scaling is used, Algorithm 5 
achieves its best complexity bound which coincides with the best known com
plexity of IPMs for SDO. When 77 is in the order of yin, our complexity result 
is the same as the one for classical large neighborhood IPMs, since we have 
shown in Proposition 4.2.6 that in that case our neighborhood N(T1, T2, 77) is 
exactly the large neighborhood N(1- T2 ). 
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Chapter 5 

Conclusions and Future Work 

As stated by Renegar [28], "It is one of the ironies of the IPM literature that 
algorithms which are more efficient in practice often have somewhat worse 
complexity bounds." After Peng, Roos and Terlaky [27] established the self
regular paradigm, under which the complexity of large neighborhood IPMs 
for both 10 and SDO can come arbitrarily close to the best known iteration 
bounds of IPMs, Ai and Zhang [2] proposed the so-called Ai-Zhang direction 
and proved 0( ynlog(l/c)) iteration bound for LCP. In this thesis, we have ex
tended Ai-Zhang's algorithm to SDO and successfully proved that a new large 
neighborhood IPM has O(ynlog(l/c)) iteration complexity, with marginal 
additional computational cost, when the Nesterov-Todd scaling is used, where 
n is the measure of the problem size and f is the required precision. We would 
like to emphasize that, although the generalization of an IPM to SDP may 
be seen as "expected" , or "routine exercise", this was certainly not the case 
here. The generalization was far from routine, it required several innovative 
ideas, novel inequalities and new nontrivial mathematical results that may be 
of general interest on their own. 

Now, the most important theoretical work has been completed, as usual, we 
would like to implement this algorithm to see its performance in practice. 
Some issues related to the implementation deserve further discussion and ex
ploration .. 

First, as we see from Chapter 4, our analysis assumes that the algorithm starts 
from a strictly feasible point and proceeds gradually to an optimal solution. In 
practice, however, it is not trivial to find such a strictly feasible point. Some
times, a strictly feasible point even does not exist. To avoid this difficulty, 
one popular way is to embed the given SDO in a larger problem for which a 
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strictly feasible point is easily available. This embedding technique not only 
allows a strictly interior starting point, but also provides infeasibility identifi
cation. However, because we have to solve a larger problem, it will not only 
cost more physical memory, which sometimes causes memory overflow given 
the fact that SDO problems in practice might be of large dimension, but also 
need to solve a dense linear system at every iteration. Another alternative is 
to use an infeasible interior algorithm, namely, an algorithm starting with an 
infeasible point. This requires more analysis of a global and polynomial con
vergence. Generally, infeasible algorithms require a new neighborhood similar 
toN ( 7 1, 7 2 , TJ) which is able to measure the infeasibility together with distance 
to the central path. Hence, when the iterates are approaching the optimal set, 
then infeasibility and duality are reduced simultaneously until a feasible and 
optimal solution is obtained. 

Second, efficient heuristics are needed for calculating step sizes. Ideally, we 
wish to solve subproblem ( 4.3.5) with the goal to find the best step sizes that 
decrease the duality gap as much as possible. Nevertheless, subproblem ( 4.3.5) 
itself is a two dimensional linear search, namely, a plane search, which might be 
computationally expensive. In Theorem 4.4.15, we propose a possible choice 
of the step length which leads to a polynomial iteration complexity. However, 
this choice might be too conservative to achieve efficiency in computational 
practice. Some other efficient heuristics might exist. For example, to make a 
big reduction of duality gap, we might fix o:+ = 1 in every iteration, and do a 
linear search on o:~. Further research and benchmarking are needed to explore 
these possible step length heuristics . 

Third, we are interested in knowing how to compute efficiently the positive and 
negative parts of the right-hand-side in the Newton equation when a scaling 
different from the NT scaling is used. In Subsection 4.3.2, we provide a way 
to compute positive and negative parts w.r.t 7J.L91- Hp(X S). Although the 
NT scaling is widely used in SDO solvers, and it turns out to be robust and 
accurate, it is still valuable to investigate a relatively cheap way to calculate the 
positive and negative parts when other scaling is employed, e.g., the H .. K..M 
scaling. 

Besides these topics about implementation, it might be very interesting to 
extend our algorithm to second order conic optimization (SOCO). Although 
we could consider SOCO as a special case of SDO and solve it by using an 
SDO approach, IPMs that solve SOCO problems directly usually have much 
better complexity than an IPM applied to the semidefinite formulation of a 
SOCO problem. Further, at each iteration much less work is needed for IPMs 
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directly applied to SOCO than those using the SDO approach. We suspect 
that when the notion of positive and negative parts of symmetric matrices is 
employed in the Jordan algebra context, the analysis will be more challenging 
than the one we see in this thesis. 

To summarize, SDO and IPMs have matured during the past two decades. 
Nevertheless, our work in developing a new 0( folog(l/ E)) large neighborhood 
algorithm for SDO demonstrates that the development of IPMs has not been 
exhausted yet. There are still many open areas in IPMs including theoretical 
problems and computational methods. Among others, the solution of large 
scale SDO problems remains a challenging problem. 

55 



j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

r 
r J 

r J 

r J 

r J 

r J 

r J 

r J 

r J 

r J 

r J 

r J 

r J 

r J 

r J 

r J 

r J 

r J 

r J 

r J 

rJ 
j 

j 



Appendix A 

Some Properties of the 
Kronecker product 

The Kronecker product of two matrices G E nmxn and K E Rpxq is denote 
by G ® K and is defined to be the block matrix 

[ 

g11K · · · 91nK l 
G ® K = : . . . : E nmpxnq. 

9m1K 9mnK 

With each matrix Q E nmxn, we associate the vector vec(Q) E nmxn defined 
by 

vec(Q) = [qll, · · · , Qm1, Q12 1 • • • , Qm2, · · · , Qn1, · · · , Qnn]T. 

We present some useful properties of the Kronecker products. 

1. (G ® K)vec(H) = vec(K HGT). 

2. (G 0 K)T = cT 0 KT. 

3. (G ® Kt1 = c- 1 ® K-1
. 

4. ( G ® K) ( H ® L) = G H ® K L. 

5. If A( G) = diag(>.i) and A(K) = diag(/Lj), then A(G ® K) = diag(>.i/Lj)· 
If qi and rj are the eigenvectors corresponding to the eigenvalues >.i and 
Jlj of G and K, then vec(rjqT) is the eigenvector corresponding to the 
eigenvalue Ai/Lj of G ® K. 

6. vec(Gfvec(K) = Tr(GK). 
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Appendix B 

Some Properties of Square and 
Symmetric Matrices 

Theorem B.0.18 (Schur Triangulation). Given Q E nnxn, there is a uni
tary matrix U E Rn such that 

UQUT = A(Q) + N, 

where N is a strictly upper triangular matrix. 

Proof. For the proof, see Horn and Johnson [13], page 79. • 
Lemma B.O.l9. Suppose B =A+ TCCT, where A E sn and c E nn is a unit 
vector. Let Ai (A) and Ai (B) denote the ·ith largest eigenvalues of A and B, 
respectively, i.e., 

..\1(A) ~ ..\2(A) ~ · · · ~ An-1(A) ~ ..\n(A), 

..\1(B) ~ ..\2(B) ~ · · · ~ An-1(B) ~ ..\n(B). 

Then there exist nonnegative numbers 51 , ... , 5n such that 

with 51 + · · · + 5n = 1. 

Proof. For the proof, see Golub and Van Loan [11], page 412. 
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Lemma B.0.20. Let/'\,= be defined by (4.4.20), then 

• if for all k the scaling matrix pk = (WRir) 112 , then K,= = 1; 

• if for all k the scaling matrix pk = (Sk)112 , then/'\,=:::;;_;.; 

• if for all k the scaling matrix pk = (Xk)- 112 , then K,= :::; ;_;.. 

Proof. For the proof of this lemma, we refer to Monteiro's paper [23]. • 

The following technical lemma was first introduced and proved in Zhang [39]. 

Lemma B.0.21. Let u, v, r ERn and Q, R E nnxn satisfying Qu + Rv = T. 

If RQT E Sf:.+ then 

Proof. For the proof, we refer to Zhang's paper [20]. • 
To utilize Lemma B.0.21, we need to explore the conditions under which 
pjf;T E s~+' where F and if; is defined by (4.4.8). In [32] and [20], the 

authors state the same necessary and sufficient condition for F jj;T E S~+ but 
in different formats. In our paper, we utilize the proposition stated in [20]. For 
those who are interested in the proof, they are advised to consult the paper 
by Monteiro [20]. 

Proposition B.0.22. Let X, S E S~+' X and S be defined by (4.4.1), and E 

and F be defined by (4.4.8). Then 

~ ~ 2 ~~ ~~ 

(i) E, FE S~+' and thus FET =FE; 

(ii) FEE sn2 
if and only if xs E sn; 

(iii) FEE sn2 
implies FEE Sf:.~. 

For all the remaining results, we give all our credits to Monteiro and his paper 
[20]. We use his results throughout this paper from time to time. 

Proposition B.0.23. For any P E P(X, S), there exists an orthogonal ma

trix Q and diagonal matrices A(X) and A(S) such that: 



(i) X= p X p = QA(X)QT; 

(ii) S = p-lsp-l = QA(S)Qr; 

(iii) A= A(X)A(S), and hence XS = SX = QAQT. 

Lemma B.0.24. FaT any Q E sn, we have 

Amax(Q) max uTQu, 
llull=l 

Amin( Q) min uTQu, 
llull=l 

IIQII = .max l-\i(Q)I, 
~=l, ... ,n 

n 

IIQII~ L l-\i(Q)I 2
. 

i=l 
Lemma B.0.25. FaT any Q E nnxn the following Telations hold: 

max Re[(,\(Q))] < 1 T 
2Amax(Q + Q ), 

t=l, ... ,n 

. min Re [ ( ,\i ( Q))] > 1 T 
2Amin(Q + Q ), 

t=l, ... ,n 

n 

L l-\i(Q)I 2 < IIQII~ = IIQTII~' 
i=l 
Amax(QTQ) = IIQTQII = IIQII

2 
= IIQTII

2
' 

IIQIIF > II(Q + QT)/2IIF. 

(B.0.2) 

(B.0.3) 

(B.0.4) 

(B.0.5) 

(B.0.6) 

(B.O. 7) 

(B.0.8) 

(B.0.9) 

(B.0.10) 

Lemma B.0.26. Let w E nnxn be a nonsingulaT matTiX. Then, joT any 
Q E Sn, we have 

Amax(Q) < ~Amax(WQW-1 + (WQW-1)r), 

Amin( Q) > ~Amin(WQW- 1 + (WQW-1f), 

IIQII < ~ II(WQw-1 + (WQw-1fll, 

IIQIIF < ~ II(WQw-1 + (WQw-1)TIIF. 

Lemma B.0.27. FaT any ·u, v E nn and G E S~+' we have 

(B.O.ll) 

(B.0.12) 

(B.0.13) 

(B.0.14) 

(B.0.15) 
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