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Abstract 

We are interested in backward-in-time solution techniques for evolutionary PDE problems 

arising in fluid mechanics. In addition to their intrinsic interest, such techniques have 

applications in recently proposed retrograde data assimilation. As our model system we 

consider the terminal value problem for the Kuramoto-Sivashinsky equation in a lD pe

riodic domain. The Kuramoto-Sivashinsky equation, proposed as a model for interfacial 

and combustion phenomena, is often also adopted as a toy model for hydrodynamic turbu

lence because of its multiscale and chaotic dynamics. Such backward problems are typical 

examples of ill-posed problems, where any disturbances are amplified exponentially during 

the backward march. Hence, regularization is required to solve such problems efficiently in 

practice. We consider regularization approaches in which the original ill-posed problem is 

approximated with a less ill-posed problem, which is achieved by adding a regularization 

term to the original equation. While such techniques are relatively well-understood for 

linear problems, it is still unclear what effect these techinques may have in the nonlinear 

setting. In addition to considering regularization terms with fixed magnitudes, we also 

explore a novel approach in which these magnitudes are adapted dynamically using simple 

concepts from the Control Theory. 



Table of Contents 

Table of Contents 

1 Introduction 
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 
1.2 Regularization via solution of a less ill-posed problem . 
1.3 Structure of the thesis ................. . 

2 Kuramoto-Sivashinsky Equation (KSE) 
2.1 Rescaling the Kuramoto-Sivashinsky equation 
2.2 Kuramoto-Sivashinsky equation in Fourier space . 
2.3 Form of the energy function spectrum ...... . 

3 Numerical solution of the Kuramoto-Sivashinsky equation 

4 Analogies between the TVP for the heat equation and the KSE 

5 Regularization of the terminal value problem 
5.1 General remarks . . . . . . . . . . . 
5.2 Regularization techniques ..... 

5.2.1 Hyperviscous regularization 
5. 2. 2 Pseudo-parabolic regularization 

5.3 Spectrum change due to regularization 
5.3.1 The low wavenumber part of the spectrum 
5.3.2 The high wavenumber part of spectrum .. 

IV 

2 
2 
3 
4 

6 
8 

10 
10 

14 

18 

21 
21 
24 
25 
25 
26 
26 
29 

5.4 Energy, £ 2 norm . . . . . . . . . . . . . . . . . . 31 
5.4.1 Energy equation for hyperviscous regularization technique 31 
5.4.2 Energy equation for the pseudo-parabolic technique . . . . 32 

5.5 H-1 norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
5.5.1 Equation for H- 1 norm for hyperviscous regularization technique 34 
5.5.2 Equation for H-1 norm for pseudo-parabolic technique . . . 34 

5.6 Adaptive adjustment of the magnitudes of the regularization terms . . . 34 

iv 



5.6.1 
5.6.2 
5.6.3 
5.6.4 

Instantaneous adaptation . 
P-regulator . . . . . . . . 
PD-regulator . . . . . . . 
Comparison to different adaptive schemes 

35 
37 
37 
37 

6 Results of the regularization algorithms 39 
6.1 Hyperviscous regularization . . . . . . . . . . . . . . . . . . . . . . . . 41 

6.1.1 Regularization of the linearized K uramoto-Sivashinsky equation 41 
6.1.2 Instantaneous adaptation . . . . . 
6.1.3 £ 2 norm with the P-regulator . . 
6.1.4 £ 2 norm with the P D-regulator . 
6.1.5 H-1 norm with ?-regulator ... 

47 
47 
50 
53' 

6. 2 Pseudo-parabolic regularization . . . . . 56 
6.2.1 Regularization of the linearized Kuramoto-Sivashinsky equation 56 
6.2.2 Instantaneous adaptation . . 58 
6.2.3 £ 2 norm with ?-regulator . 58 
6.2.4 £ 2 norm with P D-regulator 61 
6.2.5 H-1 norm with ?-regulator 64 

7 Conclusions & Summary 68 

A Inertial range in the N avier Stokes equation 70 

B Inertial range in the K uramoto-Sivashinsky equation 72 

v 



Acknowledgements 

I would like to thank my supervisor Dr. Bartosz Protas for introducing me to the problem 

described in this thesis and his willingness to share his knowledge and time with me. I 

would also like to thank my supervisory committee members Dr. Lightstone, Dr. Kevlahan 

and Dr. Nedialkov for taking time to review the thesis and giving helpful suggestions. I 

give my great appreciation to the faculty of the School Computational Engineering and 

Science for its support and insightful help. 



Chapter 1 

Introduction 

1.1 Motivation 

Many problems in science and engineering are not properly posed in the sense of Hadamard 

[1]. Here we present the definition of well posed problems. 

Definition A solution to a mathematical problem is well posed in the sense of Hadamard 

if, in a given metric space, 

• There exists a solution for all initial data. 

• The solution is unique. 

• The solution depends continuously on the initial data. 

These problems come from a wide range of fields, for example reservoir engineering, seis

mology, meteorology, hydrodynamics and weather forecasting. But just because they are 

ill-posed does not diminish the importance of being able to solve these problems. Special 

care needs to be exercised to solve ill-posed problems. As regards evolutionary problems, 

the most classical case of a ill-posed problem is the terminal value problem of the heat 

equation. There have been a lot of research conducted at this particular problem. In 

this thesis we will look at the backward-in-time Kuramoto-Sivashinsky equation (KSE). 

The backward-in-time Kuramoto-Sivashinsky equation is nonlinear, which makes it more 

interesting than the terminal value problem for heat equation. The effect of the nonlinear 

term on the amount of regularization needed has not been studied in the past. There are 
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several established methods to use to solve approximately the terminal value problem for 

the heat equation; here we will apply two of them to the terminal value problem of the 

K uramoto-Sivashinsky equation. 

A motivation for pursuing this problem is the retrograde approach to variational data 

assimilation in numerical weather prediction. Data assimilation allows one to determine 

the initial condition for a weather forecast based on some observations of the atmosphere 

over some time period. The problem is that we would like to reconstruct the evolution of 

a system over [0, T] based on incomplete and/or noisy measurements. One way of solving 

this problem is to optimize the initial data at t = 0, so the resulting system trajectory 

matches the available measurements as well as possible; thus this method requires repeated 

solution of the governing system over [0, T] and the ad-joint system backwards over [0, T]. 

Note that both these systems are well-posed. The disadvantage of this approach is that 

using more measurements means moving the initial condition further into the past and 

therefore making it less relevant for a chaotic system such as the Earth's atmosphere or 

the model problem we will be using, which is the Kuramoto-Sivashinsky equation. 

This disadvantage disappears in the retrograde formulation [2], where we optimize for 

the terminal condition at t = T, instead of the initial condition. One problem is that the 

retrograde approach requires repeated solution of the governing system backward in time 

and the ad-joint system forward in time, both of which are ill-posed. Finding a good 

method solving these ill-posed problem would make this disadvantage of the retrograde 

approach disappear. 

1.2 Regularization via solution of a less ill-posed prob
lem 

One way to solve ill-posed problems is to approximate their solutions by solutions of 

suitably-defined less ill-posed problems. Such problems can be obtained by adding a well

conceived term to the evolution equation in the original ill-posed problem. In the context of 

the backward heat equation such approach is known as "quasi-reversibility" [3]. The main 

problem is that we need to choose the magnitude of the regularization term so that the new 
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less ill-posed problem is stable and does not deviate too much from the original problem. 

While for linear problems such as the heat equation this issue is relatively well understood 

[3], little is known in the context of nonlinear problems. In addition to investigating this 

issue, in this thesis we also explore the possibility of an dynamic choice of the magnitude 

of the regularization term. We will attempt this by using simple concepts from control 

theory. 

1.3 Structure of the thesis 

Chapter 2 presents the Kuramoto-Sivashinsky equation. It introduces the two forms of 

the equation and shows how they are related. Also shown is the way of rescaling the 

Kuramoto-Sivashinsky equation to exhibit its dependence on a single parameter L. We 

also show the Fourier representation of the Kuramoto-Sivashinsky equation. This section 

also features a brief discussion about the energy function spectrum of a solution on the 

attractor for Kuramoto-Sivashinsky equation. 

Chapter 3 is about the numerical schemes used to solve the Kuramoto-Sivashinsky 

equation. We will use the pseudo-spectral method together with a low-storage Runge

Kutta / 8-method to solve this problem. 

Chapter 4 addresses similarities and differences between the terminal value problem 

(TVP) for the heat equation and the terminal value problem for the Kuramoto-Sivashinsky 

equation. It features a proof (from [4]) that the terminal value problem for the heat 

equation is indeed ill-posed. 

Chapter 5 deals with regularization techniques. It describes the regularization tech

niques that we choose to use and how we implemented them. The change of the energy 

function spectrum due to regularization is presented. The dynamic equations for the L2 

norm and the H-1 norms are derived and we show what effect regularization has on these 

norms. The last part of chapter 5 deals with different algorithms used to adapt the mag

nitudes of the regularization terms. Some of these algorithms are from classical control 

theory. 

4 
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Chapter 6 features the computational results concerning the performance of the regularization~ 

algorithms proposed in chapter 5. 

Summary of the main results and final conclusions are deferred to chapter 7. 

There are two appendices, Appendix A is a brief introduction to the "inertial range" 

phenomenology in the Navier Stokes equation. This is needed for Appendix B where the 

power law region of the energy function spectrum for the Kuramoto~Sivashinsky equation 

is examined. 

5 



Chapter 2 

Kuramoto-Sivashinsky Equation 
(KSE) 

The Kuramoto-Sivashinsky equation was proposed in [5] and [6] to model instabilities 

of a flame fronts. The Kuramoto-Sivashinsky equation is a good test case for nonlinear 

evolutionary system, because its solution features multiscale structures with characteristic 

length and time scales. It also has self sustained chaotic behaviour for large L. The 

Kuramoto-Sivashinsky equation was used to model flame fronts [6]. Our focus here will 

be entirely on the case with 1D periodic domain, 0 = [0, L]. However all results can be 

generalized to a more complicated domains as in [2]. There are two different formulations 

of the K uramoto-Sivashinsky equation: 

• The primitive form 

(2.1) 

ov ~ (av) 2 
o

2
v 8

4
v = 0 

87 + 2 ox + 8x2 + ox4 ' 
()iv(O, r) ()iv(L, r) 

X E 0, T E [ 0, T], 

T E [0, T], i = 0, ... , 3, 

v(x, 0) = 1/J(x), X E 0. 

The trouble with this form is that we have no bounds on the average of v in 0 [7] 

(2.2) a r 1 r (ov(x, t)) 
2 

1 r 2 
at lo v(x, t)dx = -2 lo ox dx = -2 lo (u(x, t)) dx. 

To see this one needs to integrate (2.1) over domain 0 and the linear terms vanishes 

due to the boundary condition. Note that even if u is bounded as t --+ oo, there is 

no reason that the average of v to remain bounded. 

6 
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• The derivative form of Kuramoto-Sivashinsky. This is obtained by setting u = av I ax 

in equation (2.1). Then we acquire the following equation, 

au au a2u a4u 
aT +uax + ax2 + ax4 = O, X E 0, T E [0, T] 

(2.3) aiu(O,T) aiu(L,T) 
T E [0, T], i = 0, ... , 3, 

u(x, 0) = </J(x), X E 0. 

This also means that 

(2.4) 1L u(x) dx = 0. 

In this research, the second form (2.3) of the Kuramoto-Sivashinsky equation is used. 

We need the solution of this initial value problem when T is large, the reason is that the 

solution should have reached its attractor. This attractor was shown by [8] to be connected 

and compact in the following space 

(2.5) j}(O) = ( u E L 2 (0), 1L u(x) dx = 0) . 
So now we need to define the attractor set for the initial value problem of the Kuramoto

Sivashinsky equation [7]. 

Definition An attractor to Kuramoto-Sivashinsky is a set A C L2 (0) that has the fol

lowing properties: 

• A is an invariant set. 

• A possesses an open neighbourhood U such that, for every initial value u0 E U, will 

converge to A as t ---+ oo. 

When using the Kuramoto-Sivashinsky equation in hydrodynamic turbulence it is impor

tant that the solution has reached the attractor. If the solution is not at the attractor, we 

would observe transient behaviour instead of the statistical steady phenomena that we are 

interested in. 

7 
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The terminal value problem which we want to solve is 

aq aq a2q a4 q 
at + q ox + 8x2 + 8x4 = 0' x E D, t E [0, T], 

(2.6) aiq(o, t) aiq(L, t) 
oxi oxi t E [ 0, T], i = 0, ... , 3, 

q(x, T) = ~(x), xED. 

The difference between (2.3) and (2.6) is that in the initial value problem we know the 

solution at u(t = 0) cjJ and in the terminal value problem we know the solution at q(t = T) ~· 

Solution of the initial value problem (2.3) exist for all square-integrable initial conditions 

cjJ(x). But for the terminal value problem (2.6) solution only exists when ~(x) is on the 

attractor [9]. If ~(x) is not on the attractor, we could even have a solution in which 

llu(·, t)IIL goes towards infinity faster than any exponential [10]. In other words, the 

solution to the terminal value problem will not exist in [0, T], unless one makes sure that 

~(x) actually comes from a solution of an initial value problem (2.3) that has reached the 

attractor; only such terminal conditions will be considered in the present work. 

2.1 Rescaling the Kuramoto-Sivashinsky equation 

We want to show that the Kuramoto-Sivashinsky equation only depends on one parameter. 

The most general form of this equation is 

aq aq a2q 04q 
at + o:q ox + {3 8x2 + I 8x4 = O, x E [0, 2n], t E [0, T], 

(2.7) oiq(O, t) 8iq(2n, t) 
oxi oxi t E [ 0, T], i = 0, ... , 3, 

q(x, T) = ~' x E [0, 2nj. 

So by rescaling we want to get 

aiJ _aiJ a2ii a4iJ 
at + q ax + ax2 + ax4 = o, x E [0, L], t E [0, T], 

(2.8) aiiJ(O, i) aiiJ(L, i) t E [-T, 0], i = 0, ... '3, 

ij(x, T) = cp, x E [0, L], 

where L is now the only free parameter. This is the form often used in the literature. For 

large L the system becomes chaotic in space and time. The rescaling of equation (2. 7) is 

8 
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done by introducing the following variables 

(2.9) x = (x, t = 77t, q = eq_. 

This will change the equation into 

aq 77e _aq_ 77 a2 q_ 77 erg_ 
at + a(q a:r + f3 (2 a:r2 + 1 (4 ax4 = o, i E [0, 27r/(], t E [0, T/TJ], 

(2.10) aiq(o, t) aiq(21rj(, t) 
tE[O,T/TJ], i=0, ... ,3, axi axi 

q(i, T) = ip, i E [0, 27r I(]. 

In order to determine the parameters characterizing this change of variables we need to 

solve the following system, 

(2.11) 

(2.12) 

(2.13) 

TJe 
a-= 1 

( ' 
TJ 

(3 (2 = 1, 

TJ 
'Y (4 = 1. 

By solving the above system we obtain the following relations, 

(2.14) 

(2.15) 

(2.16) 

t E [o, r~], 

(2.17) aiq_(o, t) aiq_(27r ~, t) 
axi a:ri 

- [ (32] t E 0, T----:; , i = 0, ... , 3, 

- (- T(32) -q x, ----:; = lp, x E [o,z"~ 
Now we rescale it to L and T by the following relation 

(2.18) 

9 
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which yields a equation system that depends only on one parameter 

(2.19) 

aif _aif a2 if a4 if 
at + q ax + 8x2 + ax4 = 0' 

ai if( o, l) aiif( L, t) 
axi 8xi 

x E [0, L], 

t E [0, T], 

if(x, T) = <fJ, x E [o, L]. 

t E [0, T], 

i = 0, ... '3, 

2.2 Kuramoto-Sivashinsky equation in Fourier space 

For the numerical solution of the Kuramoto-Sivashinsky equation we will employ the 

Fourier-Galerkin method [11]. The reason for using this method is its accuracy and com

putational efficiency. This is because of the periodic boundary condition and the way of 

calculating derivatives in Fourier space. We represent the solution in the following way 

(2.20) (jK(t) = F(q) = 1L q(x, t)e-iKxdx, K, E Z. 

Substituting (2.20) into (2.6) yields 

(2.21) 
K, E Z, t E [0, T], 

K, E Z, 

where wK is the nonlinear term in (2.6). Also note that since q is real, two Fourier modes 

corresponding to values of K, with opposite signs are complex conjugates, i.e. [11] 

(2.22) 

where q denotes the complex conjugate of q. To simplify the notation we will introduce 

{ 

afiK A A A '71 

at ~ wK + ~K, K, E !LJ, 

qK(T) = YKl K, E Z, 
(2.23) 

t E [O,T] 

where A ~ f\,
2 - f\,

4 is the linear operator of the Kuramoto-Sivashinsky equation. 

2.3 Form of the energy function spectrum 

Since we are doing calculations in Fourier space it is useful to see which Fourier modes 

will inject energy and which will dissipate energy. These phenomenological observations 

10 
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will shed some light on the physics represented by the Kuramoto-Sivashinsky equation 

and will also aid us in choosing physically motivated regularization strategies. The in

stantaneous amplitudes of the different Fourier modes can be seen in the energy function 

spectrum. Another thing we are interested in is the nonlinear transfer of energy between 

different Fourier modes. It is important to have a sense in which wavenumbers energy is 

created, destroyed, transported from and to. If this is understood it will be easier to find 

regularization strategies for the terminal value problem. 

The energy function spectrum is defined by 

(2.24) 

The typical appearance of the spectrum is a fiat region for small wave numbers, a hump 

at the most energetic modes, a sub range with power law decay and exponential decay for 

the high wavenumbers. See figure 2.1 for a typical spectrum of a solution at the attractor. 

The fiat region corresponding to small wavenumber is similar to white noise [12]. A 

maximum approximately near K = 1/ J2, which can be used to get a typical length scale 

for the energetic modes. The region 0.8 ~ K ~ 1.25 has power law decay close to K-
4 [13], 

which is why it is sometimes referred to as an "inertial range" similar to the range found in 

Navier Stokes equation [14], for more information see Appendix A. For Fourier coefficients 

corresponding to high wave numbers the spectrum will go towards zero exponentially fast. 

The reason for that, is for a infinitely differentiable function which is periodic on [0, L], 

Fourier coefficients will behave like [15] 

(2.25) A - 0( -QK,) u,- e , for K--+ oo 

where a> 0. 

Now we are going to focus on the power law region of the energy function spectrum. 

This power law region is supposed to be in between the large scales of the solution, where 

all the energy gets injected, and the small scales where the energy gets dissipated. All the 

energy flux towards higher wavenumber that goes through a wavenumber in the inertial 

11 



MSc thesis -Jonathan Gustafsson McMaster- Comp. Eng. & Science 

Figure 2.1: The energy function spectrum for a solution of the initial value problem (2.3). 

12 
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range will get dissipated, where flux is defined as 

(2.26) 

where E is the total dissipation for the system. And lastly the "inertial range" does not 

contain a lot of energy. For more details on how one makes the argument concerning 

existence of an "inertial range" in the Navier Stokes equation see Appendix A. 

To ensure existence of an "inertial range" for the Kuramoto-Sivashinsky equation, the 

following assumptions have to be true [14]; 

• In the dissipating scales the energy flux due to nonlinear terms is equal to the dissi

pation 

(2.27) 

• In the inertial sub range, no energy is lost or gained through the linearized part of the 

Kuramoto-Sivashinsky equation due to the shape of the energy function spectrum 

and 

(2.28) 

• The flux past any wavenumber inside the inertial range is 

(2.29) 

We do not believe that the power region which is seen in the energy function spectrum 

of the Kuramoto-Sivashinsky equation is an "inertial range". We believe that the second 

assumption is only true at a point, but not in the whole power region. For more information 

we refer the reader to Appendix B. 

13 



Chapter 3 

Numerical solution of the 
K uramoto-Sivashinsky equation 

We will use the truncated discrete Fourier representation of equation (2.23). This means 

that we will only use Fourier modes corresponding to wavenumbers ranging from zero to 

N. The terminal discrete value problem we are solving is thus 

(3.1) 
t E [0, T] 

where the nonlinear term w/'i, is given by the convolution [11] 

(3.2) 
N' 

wk = i L lijz{jm, K, = 0, ... , N'. 
l,m=O 
l+m=k 

where N' > N. We will see that the nonlinear term generates higher frequencies N < K, < 

N', however they have to be truncated when we use a finite and fixed number of Fourier 

modes in equation (3.1). The symbol q represents the truncated solution to the terminal 

value problem. The discrete Fourier transform is defined as 

(3.3) 
1 N . 

{j/'i, = F(q) = N L q(xi)e-tK,x;, /1, = 0, ... , N. 
i=l 

where Xi are the discrete nodes in real space, defined as 

(3.4) 
iL 

Xi = N' i = 0, 0 0 0 'N. 

14 
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To calculate this we will use the built-in command fft in MATLAB which is based on the 

library FFTW [16]. 

We want to calculate the nonlinear term in physical space not Fourier space, if we 

calculated it in Fourier space, we would need to evaluate the convolution sum (3.3) which 

requires O(N'2 ) arithmetic operations. On the other hand, because of the efficiency of 

FFT, evaluating the nonlinear term in physical space requires only O(N log(N)) arithmetic 

operations. Thus calculate the nonlinear term using the following expression [11] 

(3.5) 
1 N . 

w~ = N L w(xi)e-2/\:Xi, /'i, = 0, ... 'N 
i=l 

where 

(3.6) 

Since W~~: is the expression we want to calculate in our PDE problem (3.1). We want to 

examine the difference between w~ and W~~:· This difference has to do with the so-called 

"aliasing errors" related to the fact that when the nonlinear term is evaluated in real space 

(3.6), the higher modes generated by this term (i.e. with N < K, < N') are not truncated, 

but instead become "aliased" to lower wavenumber modes [17]. If we insert equation (3.6) 

into equation (3.5) we get that 

(3.7) 

W~ = ~ t (2::.:: qzeilx;) (2::.:: imqmeimx;) e-iKX; = 

t=l l m 

N 

= ~ L L lqzqmei(l+m-~~:)x;' K, = 0, ... 'N, 
i=l l,m 

then using [11 J 

(3.8) t ei(k-l)z;/ = {N if k -l. = mN, 

i=l 0 otherwise, 

m = 0, ±1, ±2, ... , 

we will end up with the following link between the aliased W1 and original terms w( w is 
defined in 3. 2) 

(3.9) 
l,m 

l+m=k+N 
l,m 

l+m=k-N 

15 
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If we ignore this difference between the expressions w"' and w~, then the higher-wavenumber 

Fourier modes that should not resolved will be "aliased" on the Fourier modes that are 

resolved. To prevent this we will use the "3/2 rule" [18]. We are going to add Fourier 

modes corresponding to higher wavenumbers and set their amplitudes equal to zero. This 

means that we also change the grid size in physical space from N to N' = 3N /2 + 1. This 

will in turn change equation (3.9) into 

(3.10) 
l,m 

l+m=k+N' 
l,m 

l+m=k-N' 

And since the newly added Fourier modes are equal to zero, the sums on the right hand 

side are cancelled and we thus obtain 

(3.11) 

We remark that since FFTs are performed on the extended grids with N' points, we set N' 

equal to an integer power of 2 which ensures the best performance of FFT. This sequence 

of steps is summarized in algorithm 1. This is called de-aliasing. 

Input: The Fourier coefficients u 
Output: The nonlinear term w 
Calculate u by IFFT; 
u = IFFT(u); 
Multiply u with itself and divide by two; 
Then take the Fourier transform of the result; 
w = FFT(u2 /2); 
Multiply with "" to get w"'; 
w = "". w; 

Algorithm 1: Calculation of the nonlinear term 

Since we are evaluating the nonlinear terms in real space and all the space derivatives 

in Fourier space, the resulting method is called pseudo-spectral. 

There are several choices regarding discretization in time of a system of nonlinear 

ordinary differential equations (ODE) as in (3.1). Below we present a general approach 

considered most appropriate for evolutionary systems of type (3.1): 

16 
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• explicit treatment of the nonlinear term which effectively linearize this term, therefore 

avoiding the solution of a dense nonlinear algebraic system at every time step. This 

means that to nonlinear term will be calculated with information from previous sub 

steps. 

• implicit treatment of the linear terms which bypasses the stability limitations due to 

high-order derivatives; since differential operators are diagonal in Fourier represen

tation, no algebraic system needs to be solved as a result of this implicit treatment. 

To accomplish this we will use the low-storage Runge-Kutta method (RKW3) described 

by [19] combined with the 8-method. This method uses three sub steps for each time step. 

One needs to define the following coefficients 

(3.12) 8=0.75, 13= ( ~;::) 1= ( :;:~) (= ( -1~/60) 
1/6 3/4 -5/12 

o that for each sub step we need to solve the following equation, 

rk=1,2,3, ,., = 1, ... N, 

where A is the linear operator described in equation (2.23) and r(y~k) is the nonlinear term 

denoted above with the symbol w"'. Note also that y0 = u(tn) and y4 = u(tn+1
). So i3rk>. 

1rk and (rk describe the different weights assigned to the linear and nonlinear terms at 

different sub steps. Because 8 = 0. 75 the calculation will be skewed towards the implicit 

method. 
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Chapter 4 

Analogies between the TVP for the 
heat equation and the KSE 

The Kuramoto-Sivashinsky equation has certain similarities to the heat equation. Since the 

terminal value problem of the heat equation is well-understood, we consider it briefly here 

in order to understand the origins of ill-posedness in backward evolutionary problems such 

as the Kuramoto-Sivashinsky equation. We will also comment on the difference between 

the two problems. The backwards heat equation is 

ov o2v 
OT + c ox2 = 0, X E n, T E [0, T], 

( 4.1) v(O, T) = v(27r, T), T E [0, T], 

v(x, 0) = <1>, X E D. 

Now look at the Fourier formulation of the problem 

{ 

~; - CK,
2v, = 0, K, E Z T E [0, T], 

v,(O) = ~"'' K, E Z, 
( 4.2) 

where if c is positive this is an ill-posed problem. The proof that the inverse heat problem 

is ill-posed in the sense of Hadamard is from [4]. 

Theorem 1 Consider solution of (4.1) evaluated at t = T f = v(x, T), where <1>, f E L2, 

then f does not depend continuously on <I>, that is, the problem ( 4.1) is ill-posed in the 
sense of Hadamard, since the stability requirement is not satisfied. 

Proof Start by assuming that you have two different initial conditions, <1> 1 , <1> 2 E L2 ( D2 ). 

To make it easier D2 E [0, 1]. Let the two initial conditions are related by the following 
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condition 

( 4.3) <I> = <I> + K e-c(m1r)
2
T cos(m1r) 

2 1 ' ' 

with K E IR, and m is an integer. Now look at the difference between two solutions h, j 2 

at time t = 0 for the two different initial conditions. This means that one can express !2 
as a function of h by using linearity 

( 4.4) h(x) = h (x) + K cos(m1r). 

So the difference between them is given by 

If one measures the difference between <I> 1 and <I> 2 , one would obtain 

( 4.6) 2 21 2 ) K2 llh- hll2 = K cos (mnx dx = -. 
!h 2 

for all m. Making m large, one gets the following limits 

(4.7) 

So the inverse heat problem is ill-posed in the sense of Hadamard. I 

Note also that 

( 4.8) 

This makes it clear that any noise from t = 0 will grow exponentially in the problem. The 

problem we are to look into is slightly different. The Kuramoto-Sivashinsky terminal value 

problem has a nonlinear term and the inverse heat equation does not. This means that the 

inverse heat equation lacks spectral transfer between different Fourier modes. This makes 

it impossible for the modes corresponding to the large wavenumbers to lose energy. This 

means that any small perturbation in a Fourier node corresponding to large wavenumber 

will grow as time goes by. 

For the Kuramoto-Sivashinsky equation we have a non linear term that transfers energy 

between different Fourier modes. This transfer in the initial value problem move in average 
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energy from the Fourier modes corresponding to small wavenumbers into the Fourier modes 

corresponding to large wavenumber. The spectral transfer may help stabilize the solution 

to the terminal value problem, if it transfers energy from the Fourier modes corresponding 

to large wavenumber into Fourier modes corresponding to small wavenumber. So the 

term that was the source of a number of complications in the initial value problem might 

help us in the terminal value problem. For results on the regularization of the linearized 

Kuramoto-Sivashinsky equation see section 6.1.1. 
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Chapter 5 

Regularization of the terminal value 
problem 

5.1 General remarks 

To solve the terminal value problem (3.1), we first have to solve the initial value problem 

(s.
1
) { 7:t·- ,;,, -K'V, ~ K 4

U, ~_o, K ~ o, ... , N r E [o, T], 

uK(O) = ¢1\:, K, = 0, ... , N 

Then we will use the solution obtained at the last time step as a starting point for the 

solution of the terminal value problem. It is important that the terminal value for the 

backward problem be on the attractor A. Otherwise one can not be sure that the terminal 

value problem has a solution. How do we know if this is true? For sufficiently large L the 

energy of the solution trajectory at the attractor A oscillates around a fixed value, it is 

not constant, but varies within a few percent of the mean value (see figure 5.1). We must 

also check that the energy function spectrum looks as described in section 2.3, note that 

the Fourier modes corresponding to the small wavenumber will require the most time to 

reach the desired value. The difference between the terminal value problem and the initial 

value problem is where we know the solution. In the initial value problem, we know the 

solution at t = 0 and in the terminal value problem we know the solution at t = T. We 

can turn the terminal value problem into a initial value problem by making the following 

change of variables 

(5.2) T ~ T- t. 
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Figure 5.1: Energy for the solution to the initial value problem when initial value is a sine 
wave with period L. 
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Figure 5.2: Linearized operator for Kuramoto-Sivashinsky for different directions of time, 
(dotted line) for the forward problem ( 0 ---+ T), (solid line) for the backward problem 
(0 <-- T). 

This will change (3.1) into the following problem 

(5.3) 
K, = 0, ... , N, T E [O,T] 

K, = 0, ... , N. 

By comparing this equation and (5.1) we can see that role of the terms K,
2 and K4 are 

reversed. In the initial value problem the term K,
2 injects energy and the term /'i,

4 dissipates 

energy. In the terminal value problem the K,
2 term dissipates energy and the K,

4 term injects 

energy. This is easily seen if one looks at the linearized operator A defined in equation 

(2.23) and compare it the linearized operator B defined as 

(5.4) 

Reformulation of the problem will make the Kuramoto-Sivashinsky lose some of its 

properties when time is reversed, see figure 5.2. Large time stability that was proved by 

[8] for the initial value problem is not valid for the terminal value problem. This equation 

without regularization will diverge super-exponentially fast when solved numerically. This 

effect is illustrated in 5.3. 
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Figure 5.3: (a) £ 2 error for the solution to the terminal value problem without any regu
larization. Note that only the first couple of points are finite. (b) Comparison between the 
solution to the initial value problem (dashed line) and the solution to the terminal value 
problem (solid line) without regularization at t = 5.49 · 10-6

. The solution to the terminal 
value problem has more small scale features. 

5.2 Regularization techniques 

Since this terminal value problem is strongly ill-posed we need to regularize it. In the spirit 

of the quasi-reversibility method developed by [3], we propose to transform the original 

ill-posed problem (3.1) into a well-posed, or a less ill-posed, problem. We will do this by 

adding a regularizing term Bur;,, which yields 

(5.5) 
""= 0, ... , N, t E [0, T], 

""= 0, ... , N 

where z; E IR+ and B is some operator acting on fl. See [3] for different operators that 

can be used to regularize this terminal value problem. Here we will concentrate on two 

methods described in that research, we will call them hyperviscous and pseudo-parabolic 

regularization. We want z; to be as small as possible so the regularized equation is close 

to ( 3.1). On the other hand if z; is too small, then the regularized equation will have 

the same problem as (3.1). Namely, amplitudes of some Fourier modes will tend towards 

infinity. Continuous dependence on the regularization coefficients was proved for the two 

methods listed below in [20] in the case of the backward heat equation. Here we assume 
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that there is continuous dependence on the regularization coefficients for the backwards 

Kuramoto-Sivashinsky equation. 

5.2.1 Hyperviscous regularization 

This technique was suggested in [3]. We will modify the terminal value problem of the 

Kuramoto-Sivashinsky equation by adding a higher-order term. This will prevent the 

coefficients with high wavenumbers from getting too much energy and make the L2 norm 

of the solution of the terminal value problem go towards infinity. We choose to add a sixth 

order term so that the governing equation will thus become 

(5.6) 

This equation is well-posed. This extra term will prevent too much energy from getting 

injected at the highest wave number, but this extra term will also make the solution to 

the perturbed equation to have less energy than the solution to the original terminal value 

problem. Choosing v6 too small will not be sufficient to stabilize the problem, whereas 

and choosing it too large makes the backwards solution to decay too rapidly. This is more 

easily seen if we were to look at the regularized Kuramoto-Sivashinsky equation in Fourier 

space 

(5.7) K,=O, ... ,N. 

5.2.2 Pseudo-parabolic regularization 

Another option is to add a term which has both time and space derivatives. According to 

[20] such equations have been called pseudo-parabolic by [21] and been used in the context 

of backward-in-time problem by [22], [23] and [24]. So the backwards regularized problem 

will now take the following form 

ou ou 82u 84u a 84u 
(5.8) 0t + U OX + OX2 + OX4 +vdt0tfh4 = 0, X E 0. 

Note that this problem is not well-posed, however it is less ill-posed than the original 

problem. If we allow the value of vdt to be negative we get a pole at K,P = (-1/vdt) 114. 
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This can be seen in the Fourier form of the regularized equation (5.8), 

(5.9) 
ofi,_ 
fJt 

~ 2 ~ 4 ~ -w,_ + /'\, p,_ - /'\, p,_ 

1+vdtK,4p,_ 1'\,=0, ... ,N 

We will allow negative values as long as K,P > N. However negative values will amplify the 

energy injection at Fourier modes corresponding to high wavenumbers. Which will make 

the problem harder to solve, because the reason that the back-ward-in-time problem is 

hard to solve is the energy injected at small scales. 

5.3 Spectrum change due to regularization 

The regularization technique will change the energy spectrum because we are not solving 

the same equation backwards as we solved in the forward problem. The change can be 

noticeable as seen in figure 5.4. Here the spectrum has a lot more energy in the smaller 

scale when t is close to T than when t = 0. To understand why we need to look at the 

effect v6 an Vdt has not just on the high K,, but also the effect on Fourier modes with low 

wavenumbers. To see this more clearly we look at the Kuramoto-Sivashinsky equation 

with the nonlinear term removed and we will also look at the problem for a initial value 

viewpoint so time will move in the positive direction, 

(5.10) 

Notice that for the pseudo-parabolic regularization the spectrum looks much better than 

in the hyperviscous case, see figure 5.5. 

5.3.1 The low wavenumber part of the spectrum 

The linearized operator B will have one extreme point at K, = 1/ J2. If we do the same 

when we add a hyperviscous perturbation we end up with 

(5.11) 

This function has the one extreme point at 

(5.12) 
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Figure 5.4: Energy spectrum of a solution with a fixed value of v6 at t = 0, solid line, and 
t = T, dotted line, of the terminal value problem. 
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w' 

Figure 5.5: Energy spectrum of a solution with a fixed value of vdt at t = 0, solid line, and 
t = T, dotted line, of the terminal value problem. 
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We are interested in this point, because in the forward run this point is closely related with 

where most the energy is injected. The other points are uninteresting. Two are negative 

and one is at higher wavenumbers. Also notice that this function will have the peak 

switched to the higher wavenumbers. This means that when we are doing the backwards 

run we should see a change of where the most energetic modes are. They should be 

displaced into higher wavenumbers. 

If we try to do the same thing for the technique the mixed time and space derivatives 

we get that 

(5.13) 

The extreme point we are interested in is 

(5.14) 

The high wavenumbers are dampened as the previous regularization techniques. The peak 

of the linearization is switched to higher wavenumbers just as in the case of the hyperviscous 

technique. This can be seen in figure 5.6. 

5.3.2 The high wavenumber part of spectrum 

In this section we will look at the Fourier modes where energy will be injected when we solve 

the terminal value problem. The idea is to dampened the amount of energy injected into 

the Fourier modes that correspond to high wavenumbers to make sure that these Fourier 

modes do not grow too large. We want to look at two things, one is at which wavenumber 

there is now injection or dissipation of energy, the other is how much damping is made on 

the high Fourier modes. The first one will show where the power law region might be for 

the solution to the terminal value problem. 

If one adds hyperviscous dissipation to the Kuramoto-Sivashinsky equation, one point 

inside the power law region will change from Ko = 1 to the following wavenumber 

(5.15) 
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(a) (b) 

Figure 5.6: A qualitatively sketch of the effect of regularization. (a) hyperviscous regular
ization and (b) Pseudo-parabolic regularization. Linearized operator (solid line) and regu
larized operator (dotted line). The symbols K,max and K,o are the values of the wavenumber 
where the operator A, respectively, has a maximum value and is equal to zero (see section 
5.3.1). 

This method of regularization will move the power law region to a higher wavenumber. 

One can see the effect in figure 5.6. Note that this is the linearized form of Kuramoto

Sivashinsky, however the power law region should contain the point K,o in the original 

equation as well. 

The pseudo-parabolic method will not change the position of this wavenumber (/'\,0 ). 

So these regularization techniques will dampen the Fourier modes corresponding to 

higher wavenumbers more efficiently than the non-regularized equation. This is very im

portant because otherwise small perturbations in high Fourier modes will grow very quickly 

and make the solution diverge. 

Now we need to remember that we did the following change of variables T = T- t, 

this means that we moved the terminal value problem into a initial value problem. So this 

means that for the solution to the regularized problem all these shifts will be in the other 

way. So a shift to higher wavenumber will result in the regularized solution at t = 0 to 

shift into lower wavenumber. 
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5.4 Energy, L2 norm 

Here we derive the conditions for the £ 2 norm to be constant with respect to time. This con

dition will then be used in section 5.6 to adjust adaptively the values of the regularization 

parameters. So far we have assumed that the energy is constant, but what do we require 

for this to be true? Start by looking at the energy equation for the Kuramoto-Sivashinsky 

equation in Fourier space 

(5.16) dE=~~~ 171 12 = ~ ~ /'\,2171 12- /'\,4171 12 
dt dt 2 L.....t K 2 L.....t K K 

K=l K=l 
Notice that the nonlinear term has disappeared, which is because when one averages over all 

Fourier modes the sum is zero. This is true in a domain with periodic boundary conditions. 

The proof of this is the same as for Navier Stokes 

(5.17) 1L OU 1 1£ OUUU L 
u~udx = - -!=l-dx = [uuu] 0 = 0 

0 ux 3 0 ux 

By Parseval's theorem, (5.16) is the same as multiplying (2.21) with u and take the integral 

over D. Since the boundary conditions are periodic, the value of u at x = 0 and at x = L 

are the same. To calculate the £ 2 norm 

(5.18) 
N 

E(t) = ~ L l11r;,l 2. 
r;,=l 

And the dynamic equation (5.16) will change into 

(5.19) 
N N N 

dE_~~""' lA 12 _"'"' 21A 12 _""' 41A 12 dt - dt 2 L.....t Ur;, - L.....t /'\, Ur;, L.....t /'\, Ur;, -

r;,=O K=l K=l 
Now we will see how the different methods ofregularization will change the energy equation. 

5.4.1 Energy equation for hyperviscous regularization technique 

By including the higher order term we are adding hyperviscous dissipation to the flow, 

which means that in this approach will try and remove energy from the flow by means of 

a f~oo K,
6 lur;,l 2d/'\, term. So the energy equation will change into 

(5.20) ~~ = f /'\,21Pr;,l2- /'\,41Pr;,l2 + V6/'\,
6 1Pr;,l2· 

K=l 
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Note that we will solve the equation backwards-in-time. So the larger the value of v6 one 

uses, the more energy is removed from the system. If the energy is high, increase v6 . If it 

is too low, decrease v6 . 

5.4.2 Energy equation for the pseudo-parabolic technique 

By adding the mixed space and time derivative the results are not as straight forward. In 

this case the energy equation changes into 

(5.21) 

So whether or not the last term will increase or decrease the energy during the backwards 

run depends on the sign of vdt and -fft 2:::~= 1 K4 ifi~< 12
. So if the energy of the high wavenumbers 

increase during the backwards run and Vdt is positive this will remove energy from the 

domain. The effect on the spectrum will be bigger on the Fourier modes corresponding 

to large wavenumbers than the Fourier modes corresponding to small wavenumber. This 

is easily seen if one looks at the linearized forms of the operator. We will use a positive 

value of vdt because of it behaviour in the linearized operator. The other reason is that 

if the norm 2:::~= 1 K4 iu~<l 2 grows we need to decrease the energy in the backwards run. If 

Vdt -+ oo, then 

(5.22) d~ 4IAI2 
dt L.....t K PI< = 0. 

1<=1 

So for large value of Vdt we will have the effect of freezing this norm. 

5.5 H-1 norm 

Instead of choosing the £ 2 norm to be constant, we can use a different norm. For example 

we can look at H-1
, this norm concentrates on the large scales of the problem. This norm 

can be obtained by 

(5.23) 
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Note that this is the similar to taking the £ 2 norm of the primitive form of the Kuramoto

Sivashinsky equation (2.1). To see how we can change the coefficient of the regularization 

we need to look at the dynamic equation for the H- 1 norm. To get the norm we multiply 

the dynamic equation with a function r.p which has the following properties 

{ 

l:-:.r.p = q, x E [0, Lj 

(5.24) &';(o) = a';(L), i = o, ... , 2. 
xt xt 

Integrate from zero to L to get 

(5.25) 
{L fJq {L fJq {L fJ2q {L fJ4q 

Jo fJt r.pdx + Jo q fJx r.pdx + Jo fJ2x r.pdx + Jo fJ4x r.pdx = 0. 

Then use Parseval's theorem to go into Fourier space 

(5.26) f ~; i{J + (fj * iKJj)I{J + (iK)2qi{J + (iK)4qi{J = 0. 
K:=1 

Where q * v(K) is the convolution defined by 

(5.27) 
N' 

q * v(K) = L (jzVm, K = 0, ... 'N'. 
l,m=O 

l+m=k 

And since (iK) 20 = q we end up with 
00 f)A A A 

L q q (A . ') q I '1 2 21 '1 2 0 - -- - q * ZKq - + q - K q = . 
fJt "'2 /'C2 

K:=O 

(5.28) 

Rewrite it in a simpler form 

(5.29) ~~ ~ i(}l
2 

= -i ~ (q * Kq)q + liil 2 - I'C2 1(}1 2 · 
2dt~ "'2 ~ "'2 

K:=1 K:=O 

To see if the nonlinear term is zero in this norm as it was in the £ 2 norm, start by looking 

at the nonlinear term in physical space, 

(5.30) 
1

L fJq 1 1L fJqq 1 ( L 1L fJr.p ) q-r.pdx = - -r.pdx = - [qqr.p] 0 - qq-dx = 
0 fJx 2 0 fJx 2 0 fJx 

1 ( r £ fJr.p ) ' 
= - 2 } o qq fJx dx = W. 

So in this norm the nonlinear term does not disappear. It is only in the £ 2 norm that the 

nonlinear term disappears. The dynamic equation for the H-1 is then 

(5.31) 
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5.5.1 Equation for H-1 norm for hyperviscous regularization tech-. 
n1que 

For v6 the dynamic equation changes into 

(5.32) 
~ 00 I A 12 00 u"'""' p,., WA ""'lA 12 21A 12 41A 12 ~ L -2- = + L p,., - /'i, p,., + Z15/'i, p,., · ut /'i, 

K=l K=1 

The higher order term will again act to decrease the norm as was the case of the regu

larization based on the L2 norm. However, in this case the regularization coefficient is 

multiplied by the H 2 norm and not the H 3 norm. This was expected as the H-1 norm has 

more to do with the large scales of the problem. So we should increase the coefficient v6 if 

the H-1 norm is higher than the reference level and decrease v6 if H-1 norm is too low. 

5.5.2 Equation for H-1 norm for pseudo-parabolic technique 

The results are similar to the treatment of the L2 norm. In the end one will get the 

following dynamic equation for the H-1 norm 

(5.33) d ~ lft,.,l2 
WA ~I A 12 21 A 12 d 21 A 12 dt L 7 = + L p,., - /'i, p,., + vdt dt /'i, p,., . 

K=1 ;;,=1 

But now the time derivative is in respect to the H-1 norm. So the dynamic equation for 

H- 1 norm using this technique is similar the dynamic equation of the L2 norm with the 

same technique, but everything has moved to a "lower" norm. 

5.6 Adaptive adjustment of the magnitudes of the 
regularization terms 

One can provide a fixed value v 6 or lldt to use to find a solution to the terminal value 

problem. This is the standard approach. The trouble with this is that the optimal value 

of the regularization coefficients depends on <p and T in a non trivial manner. And by 

"optimal" we mean a solution to the terminal value problem that is closest in a given norm 

to the solution of the initial value problem. The way of measuring this is the following: 

start with the initial value problem, get a solution at t = T, use this solution u(T) as 
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the terminal value in the backward problem. In the terminal value problem we will try 

to reconstruct the starting values u(O) from the initial value problem. If <p has a lot of 

energy located at small scales, the regularization coefficient needs to be big enough to 

prevent that too much energy is transported into small scales. Otherwise the Fourier 

modes that correspond to the high wave numbers will grow very fast. In this research we 

will do something different, namely we will try to find the good values of the regularization 

coefficient v for 0 ~ t ~ T given some properties of the problem. And by "good" we mean 

lower error in some norm at t = 0 than the best value of the error norm obtained with 

any fixed value of the regularization parameter. We will give ourselves the freedom to 

vary the coefficients while we solve the terminal value problem. So the magnitude of the 

regularization term will be allowed to change in time. This adaptation will be performed 

based on some information about the corresponding initial value problem, e.g. a mean 

or instantaneous norm of solution. Below we describe different techniques that can be 

employed to carry out this adaptation. See figure 5. 7 for a schematic sketch of what we 

we will attempt to do. Notice that we only have information about the solution and the 

regularization parameter at ti+1, not ti-l. This is because we are marching backwards-in

time. If we want to get information about the current time-step we have to calculate it, 

which is not hard but requires a "test" time step. 

5.6.1 Instantaneous adaptation 

Here the idea is to take a candidate value of the regularization coefficient and take one 

test time step and see the result. Using this method one tries to find a value of the 

regularization coefficient that satisfies some criteria. Here we will try and find a value of 

the regularization coefficients that makes the L2 norm constant in the interval 0 ~ t ~ T. 

So we want to find a value for the coefficient that solves 

(5.34) llfi(t, v)llx -llu(T)IIx = 0 

where X is a chosen function space. Using this estimate with the assumption that the func

tion that we try to find the zero of depends continuously on the regularization coefficient, 

we can use common techniques to find the optimal value of the regularization coefficient. 
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U(tn) u(tn+l l(uranaato-Sivashinsky 
--------~ ~----~----~~--~~ 

equation 

Regulator~-----' 

Figure 5. 7: A sketch describing the concept of adaptive regularization as a feedback loop. 
Note that the regulator is allowed to save information from t > tn. 
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For this research we used Newton's method. 

5.6.2 P-regulator 

This idea is from control theory [25]. The idea is to adjust the coefficient based on some 

quantity we want to have a given value. So we want e(t) to be close to zero, where e(t) is 

defined as 

(5.35) e(t) = llfi(t) llx- llu(T) llx 

and X is a chosen function space. The regularization coefficient v will update based on 

the following algorithm 

(5.36) 

Two parameters are needed in order for this algorithm to work, namely Kp and v(T). 

5.6.3 PD-regulator 

This is similar to the previous approach, but now one considers how the quantity changes 

in time as well. So the update algorithm to update this technique is 

(5.37) 

where the time derivative of e(t) is approximated by 

(5.38) 

This means that now one needs three parameters, KD, Kp and v(T). 

5.6.4 Comparison to different adaptive schemes 

We do not have any guarantee that the instantaneous adaptation will find a v that fulfills 

equation 5.34 for all p and t. If we are unable to find a solution, we will use the best 

candidate found. For the terminal value problem for heat equation it has been proved that 

the solutions will depend continuously on the amplitude of the regularization parameters 

[20], but for the terminal value problem of Kuramoto-Sivashinsky equation the question 
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is still unresolved. This means that we are not sure if there even exists a value of the 

amplitude that for the current solution keeps the selected norm constant. The P regulator 

and P D regulator will always find a new dynamic value, but in classical control theory we 

are worried about three issues: overshoot, adjustment time and offset. If e(t) changes sign 

during its adjustment to zero, the overshoot is the maximum derivative after this change 

occurred. If e(t) does not change sign, there is no overshoot. Adjustment time is the time 

it takes before e(t) is approximately constant. The offset is the value limt->oo e(t). 

The value of Kp will affect all three issues [25]. With increasing Kp, the overshoot 

will increase. However adjustment time and offset will increase. By increasing KD, the 

overshoot will decrease. Adjustment time increases and the offset will increase. 

We could use PI D regulator, this regulator would look like 

(5.39) 

This regulator would remove the offset. The problem with this regulator is that the deriva

tive response D would interact with integral response I and both of them would follow the 

proportional response P [25]. So all of them would act like a P regulator in short time 

windows. 
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Chapter 6 

Results of the regularization 
algorithms 

We will start by solving the initial value problem 

(6.1) 
t E [O,T] 

The solution u at t =Twill be used as the terminal value for (3.1). To measure the error 

we will use three different norms namely, the £ 2 norm, H 1 norm and H-1 norm. We will 

use the following truncated expressions for our calculations 

(6.2) Lz : 
lle(t)IIL l:~=lleK(t)IZ 
llu(t)IIL 2:~=1 luK(t)l 2

' 

Hl: lle(t) 1111 2:~= 1 K:
2 1eK(t)IZ 

llu(t) 1111 2:~=1 li2 1uK(t)1 2
' 

(6.3) 

lle(t)l11-1 LN le"(t)l2 
H-1: K=l K2 

llu(t) 111-1 LN lu"(t)l 2 
' 

K=l K2 

(6.4) 

where e(t) = p(t) - u(t) and fj(t) denotes the Fourier transform of the solution of the 

regularized problem (5.5) and u is the Fourier transform of the solution to the initial value 

problem in system ( 6.1) at time t. For more information about the norms see sections 

5.4 and 5.5. The different norms will focuses on different length scales of the error. The 

H- 1 norm focus on the large scales of the solution, the £ 2 norm treats all length scales 

uniformly and the H 1 norm is focused on the smallest scales of the solution. 
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X 

Figure 6.1: Comparison of a starting condition and the same starting condition shifted by 
L/2 in the x direction. 

The trouble with using the L 2 norm is that even though one solution to the terminal 

value problem can have the same energy as the solution to the initial value problem, the 

relative error can be large. It can be larger than unity which in turn means that the zero 

solution is better than the solution we have obtained from the regularization technique. 

For example if the solution is shifted in space a distance of L /2 as seen in figure 6.1, 

then the Fourier components will be shifted by ei1r. This will make the solution to have 

error equal to 2 in the L 2 norm. This solution should be almost as good as the original, 

but here we can see that the norm we are using to measure error is sensitive to shifts. We 

have not found a solution to this problem. The ideal measurement of error would be shift 

invariant. Another way to measure the error is to compare the curvature. The curvature 

is defined as [26] 

(6.5) 

This is important for applications in combustion. If one tries and measure the difference 

in curvature between two solutions, one would find that this is more sensitive to shifts. 

Furthermore, because it uses the second derivative of u, it will be focused on the small 

scales of the solution, in which regularization has a large effect. See figure 6.2 for a example 

of curvature of a solution on the attractor. Most calculations are done on a system with 

L = 154 and N = 1024 number of nodes in real space. 
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Figure 6.2: Comparison of curvature for solutions on the attractor A, solid line corresponds 
to the starting value of the initial value problem t = 0, dashed line corresponds to the 
solution of the initial value problem at t = T. 

6.1 Hyperviscous regularization 

Generally, this regularization technique will change the form of the energy spectrum as 

described in section 5.3. We want to have some reference to compare with, so we solve 

the terminal value problem with hyperviscous regularization using a fixed value of the 

regularization parameter. The typical error measured in £ 2 norm at different times are 

shown in figure 6.3. In table 6.2, one can see the result of putting different fixed value 

for the regularization coefficient. In the same table there appears to be a minimum at 

v6 = 2. 7 · 10-5 . This value will be used as a reference for the different methods of adapting 

v6 in time. The initial state ¢ reconstructed by solving the terminal value problem (5.5) 

with the best fixed value of v6 is compared against the actual initial state in figure 6.4. 

The adaptive algorithm used are listed in table 6.1. Note that this reference would cause a 

small shift in K:o, K:max as described in section 2.3. The shift is very small for both of them, 

on the order of 0(10-3 ). 

6.1.1 Regularization of the linearized Kuramoto-Sivashinsky equa
tion 

Previously we speculated that the nonlinear term would help us in stabilizing solutions to 

the terminal value problem. The idea was that the nonlinear term would transfer energy 
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Figure 6.3: The £ 2 error as a function of timeT for three different values of the hyperviscous 
regularization parameter, (solid line) v6 = 1.8 · 10-5 , (dotted line) v6 = 2.7 · 10-5 , (dashed 
line) v6 = 3.5 · 10-5 . 

X 

Figure 6.4: Comparison of the (solid line) the initial condition <jJ in the initial value problem 
(2.3) and (dashed line) the solution of the regularized terminal value problem (5.5) p(t = 0) 
with v6 = 2.7 · 10-5 . 
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L2 norm H-1 norm 
Instantaneous hiL2 -

P regulator hPL2 hPH 1 

P D regulator hPDL2 -

Table 6.1: Different algorithms used to regularize the solution to the terminal value problem 
with hyperviscous regularization technique 

l/5 II e( 0) II Lz/ llu( 0) II Lz 

6.7. 10-8 00 

8.7·10-6 1.99 
1.8 . 10-5 0.82 
2. 7. 10-5 0.81 
3.5 . 10-5 0.82 
4.5. 10-5 0.83 
5.3 . 10-5 0.86 
6.2 . 10-5 0.87 
7.1 . 10-5 0.87 
8. 10-5 0.87 

Table 6.2: The relative L2 error (6.2) at t 
parameter 

0 for fixed values of the regularization 

from the small scales of the solution into the larger scales of the solution. And since in 

the solution to the terminal value problem energy is injected into the small scales and 

dissipated at the large scales this would prevent the energy in the small scales from getting 

too big. In figure 6.5, we can see the result of removing the nonlinear term. This means 

that the linearized problem we will solve is 

op o2p 84p 
8t + 8x2 + 8x4 + v6Bp = 0, X E [0, L], t E [0, T], 

(6.6) 8ip(O, t) 8ip(L, t) 
t E [0, T], i = 0, ... '3, 8xi · 8xi 

p(x, T) = <p, x E [O,L]. 

Note that stabilizing the linearized Kuramoto-Sivashinsky equation requires a smaller 

amplitude of the coefficient in front of the regularization term, and it is also more accurate. 

Also note that the linearized K uramoto-Sivashinsky equation does not have a attractor. 
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Figure 6.5: The relative £ 2 error (6.2) at t = 0 for different fixed values of the hyperviscous 
regularization parameter v6 . o are the solutions for the linearized terminal value problem, 
• are the solutions for the full terminal value problem L = 154, • are for solutions with 
L = 49 and 0 is for the linearized terminal value problem at the same L. The normalized 
time T is the same for all plots. 
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To make the comparison we use the same initial condition to solve both the initial value 

problem for the linearized and the full equation. So the two terminal value problem will 

have different terminal values. 

It seems that the linearized problem requires a lower value of the regularization param

eter, which was not expected. This is probably because we do not know the exact role of 

the nonlinear term in the Kuramoto~Sivashinsky equation. It is believed that it works in 

the same way as the nonlinear term in Navier Stokes, but in section 2.3 we saw that the 

standard argument for the energy cascade does not hold up for scrutiny. So probably we 

may not have transfer of energy from small to large scales. Another effect could be that 

in the linearized problem one starts with less energy in the small scales and that would 

render the solution to the terminal value problem less likely to have Fourier modes with 

large coefficients. This would make the non linear problem harder rather than easier to 

regularize. Another factor is that we are not solving the two problems with the same termi

nal condition. We are solving the full and the linearized Kuramoto~Sivashinsky problem 

with the same initial value problem to get the terminal value. In figure 6.6 we can see 

the difference in the energy spectrum function for the terminal value between (6.6) and 

(3.1). The terminal value for the full Kuramoto~Sivashinsky equation has more small scale 

features than the terminal value for the linearized Kuramoto~Sivashinsky equation. 

In figure 6.5 we can see the effect of changing L, on the amount of regularization 

needed to stabilize the backward run. With increasing L a larger value of the regularization 

coefficient is required to stabilize the terminal value problem of the Kuramoto~Sivashinsky 

equafion. If L is small, then the solution to the regularized terminal value problem will 

be slightly more accurate. This is consistent with the idea that with increasing L we get 

more chaotic behaviour of the solutions. 

Because the Kuramoto~Sivashinsky equation has qualitatively different properties for 

different L [27], we will not analyze solutions at very small value of L. The reason that 

for a very small value of L the attractor is a fixed point or the zero solution. We want to 

solve a chaotic problem with multiscale behaviour and for small values L the solution to 

the Kuramoto~Sivashinsky equation does not have such properties. 
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10 w' 

Figure 6.6: Energy spectrum for the terminal value problems (5.5) and (6.6) at t = 0, (solid 
line) the full Kuramoto-Sivashinsky equation (5.5), (dashed line) the linearized Kuramoto
Sivashinsky equation (6.6). Both with L = 49. 
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6.1.2 Instantaneous adaptation 

This section is about using Newton's method to choose a value of v6 in which the L2 

norm of the solution constant. The problem is that this method is very unstable. It does 

not always work, as can be seen in figure 6. 7, it may converge to a different value of the 

L2 norm. In this figure the algorithm converged to a solution that gave the L2 norm an 

approximate value of 4200, instead of the required 3160. This is of course not a solution 

of the following equation 

(6.7) 

but a local minimum of the left hand side. The time history of the £ 2 error norm and the 

solution obtained at t = 0 are shown in figure 6.8 and 6.9. 

6.1.3 L2 norm with the P-regulator 

Here we will use the L2 norm as a reference level. The L2 norm is almost constant when the 

initial value problem (6.1) has reached the attractor. From the plots of the energy obtained 

during the solution of initial value problem starting from sine wave, we can see that the 

energy variation is a couple of percent of the total energy when the attractor is reached, 

see figure 5.1. Thus, first of all, we need to make sure that the start of the initial value 

problem is on the attractor. All calculations are made with periodic boundary conditions. 

When the energy is stable we conclude that the solution has reached the attractor 

and can be used as a terminal condition for the backwards run. So now we can start the 

backwards run with the forwards run final data. The £ 2 norm is defined by via Parseval's 

theorem: 

(6.8) 

The coefficient v6 will update based on the following algorithm (see ~ection 5.6.2) 

(6.9) 

The reference is taken from the solution of the initial value problem at t = T. If the energy 

is too large, one must increase v6 and if the energy is too small, one must decrease v6 . So 

we need two elements to make the algorithm work, Kp and a starting value for v6 : 
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Figure 6.7: (CASE hiL2 ) Time histories of (a) the regularization parameter v6 and (b) 
(solid line) L2 norm of the solution using instantaneous adaptation to control the L2 norm 
with Newtons method, (dotted line) reference level for the L2 norm. 
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Figure 6.8: (CASE hiL2 ) L2 error norm over the window [0, T], solid line is for the instan
taneous adaptation to control the L2 norm, dashed line is for a fixed value of v6 
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Figure 6.9: (CASE hiL2 ) Comparison of the (solid line) the initial condition ¢ in the 
initial value problem ( 6.1) and (dashed line) the solution of the regularized terminal value 
problem (5.5) p(t = 0). 
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• There are a lot of different candidates for the starting value of v6 . One is the value 

that makes the value of the £ 2 norm the same as in the first and second time steps. 

This value is usually very low. The second choice could be the value that v6 is equal 

to when t = 0. This means that one requires a first run to decide the starting value 

of v6 . There is no guarantee that this limit is independent of the candidate in the 

first run. This choice usually results in v6 attaining a low value after 10 time steps 

and then we have to increase it to compensate for the large amount of energy in the 

solution to the perturbed terminal value problem. The last one is picking a good 

candidate from experiments using a fixed value of v6 for the whole calculation of the 

perturbed terminal value problem. The first method will give a very low starting 

value of v6 , the second method will require a lot of numerical experiments to find the 

starting value. We choose a starting value from the fixed values already tested. The 

value used is 4. w-3 . 

• The Kp parameter is used to control the proportional response to the error. We are 

mainly interested in two things, namely the adjustment time and overshoot. We want 

the adjustment time to be as short as possible and that the overshoot is as small as 

possible. A very large value of Kp will make the backward solution unstable. A large 

value of Kp will decrease the adjustment time, but increase the overshoot. A too 

small value of Kp will cause the change in v6 to be very small and thereby making 

very little change from using a fixed value. By experiment we observe that the £ 2 

norm will start by decreasing and later there will be a sharp overshoot. We will 

adjust Kp so that the sharp overshoot will happen after T, this means that we will 

not observe it during the solution to the terminal value solution. 

In figures 6.10-6.12 we can see the effect of choosing Kp too large. The amplitude of v6 

changes very quickly .and the offset is very large. The £ 2 norm is too high in the solution 

obtained. On the other hand with a smaller value of Kp we get the solution at t = 0 

corresponding to figure 6.15. In figure 6.13 we can see that the Kp regulator has now 

lower amplitude of the regularization coefficient during the backward march. It seems that 

the £ 2 norm error increases very fast if v6 are changed rapidly. Results shown in figure 
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6.10~6.12 and 6.13~6.15 indicate that reconstruction in the second case is better, even 

though the regularization did not quite stabilize the £2 norm. 

6.1.4 L2 norm with the P D-regulator 

Because of the overshoot in the ?~regulator, one can try and use a P D~regulator to limit 

this effect. The regularization coefficient v6 (t) will be determine the following way 

(6.10) 

where the time derivative is approximated using the forward difference, 

(6.11) 

For this algorithm to work in determining the regularization coefficient one needs three 

elements: 

• There are a lot of different candidates for the starting value of v6 . One is the value 

that makes the L 2 norm constant in that time step. This value is usually very low. 

The second choice could be the value that v6 tends towards when t -+ T. This 

choice usually results in that v6 attains a low value after 10 time steps and then 

we have to increase it to compensate for the large amount of energy in the solution 

to the perturbed terminal value problem. The last one is picking a good candidate 

from experiments using a fixed value of v6 for the whole calculation of the perturbed 

terminal value problem. We will choose the starting value in the same way that we 

did in the ?~regulator i. e., v6 = 4 . 10-3. 

• The Kp parameter is used to control the proportional response to the error. We start 

by setting KD to zero and then increase Kp until the perturbed system is stable. 

We are interested in two things, namely the adjustment time and overshoot. We 

want the overshoot to be as small as possible. With the P D~regulator we have the 

possibility of increasing Kp and use KD to decrease the size of the overshoot. 

• The KD parameter is used to control the feedback from the derivative of the error. 

This parameter will decrease the overshoot and increase the adjustment time. For 

50 



MSc thesis- Jonathan Gustafsson 

o~~~--~~~~~~ 

0 50 100 150 200 250 300 350 

time 

(a) 

4000 

3500 

3000 

McMaster- Comp. Eng. & Science 

§ 2500 
0 
c;: 2000 
j' 

1500 

1000 

500 

oL-~~--~~--~~~ 

0.0 5.e-07 t .e-06 1.5e-06 2.e-06 2.5e-06 3.e-06 3.5e...o6 

time 

(b) 

Figure 6.10: (CASE hPL2 ) Time histories of (a) the regularization parameter v6 and 
(b) (solid line) L2 norm of the solution using P regulator to control the L2 norm with 
P = 7 · 10-8

, (dotted line) reference level for the L2 norm. 
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Figure 6.11: (CASE hPL2 ) L2 error norm over the window [O,T], solid line is for the P 
regulator to control the L2 norm, dashed line is for a fixed value of v6 
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Figure 6.12: (CASE hPL2 ) Comparison of the (solid line) the initial condition¢ in the 
initial value problem ( 6.1) and (dashed line) the solution of the regularized terminal value 
problem (5.5) p(t = 0). 
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Figure 6.13: (CASE hPL2 ) Time histories of (a) the regularization parameter v6 and 
(b) (solid line) £ 2 norm of the solution using P regulator to control the L2 norm with 
P = 5 · 10-9 , (dotted line) reference level for the L2 norm. 
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Figure 6.14: (CASE hPL2 ) £ 2 error norm over the window [0, T], solid line is for the P 
regulator to control the L2 norm, dashed line is for a fixed value of v6 
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Figure 6.15: (CASE hPL2 ) Comparison of the (solid line) the initial condition¢ in the 
initial value problem ( 6.1) and (dashed line) the solution of the regularized terminal value 
problem (5.5) p(t = 0). 

52 



MSc thesis- Jonathan Gustafsson McMaster- Comp. Eng. & Science 

a large value of KD this algorithm to choose v6 makes the L2 norm of solution 

to regularized terminal value problem go towards infinity. This will be the last 

parameter we will set and it will be as large as possible to decrease the overshoot 

and still be stable. 

In figure 6.16, we can see the changing value of v6 during the solution of the terminal 

value problem. The coefficient v6 starts at 4 · 10-3 , this is the optimal value found for the 

perturbed terminal value problem with a fixed v6 . Then it decreases rapidly before settling 

into a final value close to 1.5 · 10-3 . From the plot of the L2 norm in figure 6.16, we can see 

that the P D-regulator does a good job at keeping energy at the reference level. However 

the problem is that the dip that the energy will take during the first 50 time steps. This 

dip will cause the error measured in the L2 norm to increase very fast. This limits the use 

of this regularization strategy since we can choose a fixed value of v6 that has a smaller L2 

error, see figure 6.17. So even though we manage to regulate the L2 norm better, we did 

not find a better choice of the amplitude coefficients then a fixed value of v6 . 

6.1.5 H-1 norm with ?-regulator 

The idea behind using the H-1 norm as a reference level is that this norm is more focused 

on the large scales of the problem and therefore could be less affected by noise. Generally, 

it seems that this norm is lagging in time in comparison with the L2 norm. In figure 

6.21 one can see that the solution has retained the large scales properties. However the 

solution has less energy and almost all the peaks that the solution to the original initial 

value problem has are not present in the backward march. If we look at figure 6.19, the 

energy is decreasing during the solution to the terminal value problem. The reason is that 

v6 is too large. This follows from that when the time t is close to T, the H-1 norm of the 

solution to the terminal value problem is small, so the ?-regulator will try to decrease v6 . 

Unfortunately, it decreases the magnitude of the regularization coefficient too much and 

the solution to the terminal value problem will be given a sudden peak of energy. But here 

Kp is again chosen in such a way that this will happen after t = 0. 
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Figure 6.16: (CASE hPDL2 ) Time histories of (a) the regularization parameter v6 and 
(b) (solid line) L2 norm of the solution using P D regulator to control the L2 norm with 
P = 7 · 10-9 , D = 5 · 10-14 , (dotted line) reference level for the L2 norm. 
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Figure 6.17: (CASE hP DL2 ) L2 error norm over the window [0, T], solid line is for the 
P D regulator to control the L2 norm, dashed line is for a fixed value of v6 
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Figure 6.18: (CASE hPDL2 ) Comparison of the (solid line) the initial condition¢ in the 
initial value problem (6.1) and (dashed line) the solution of the regularized terminal value 
problem (5.5) p(t = 0). 
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Figure 6.19: (CASE hP H- 1
) Time histories of (a) the regularization parameter v6 and 

(b) (solid line) £ 2 norm of the solution using P regulator to control the H-1 norm with 
P = 3 · 10-ll, (dotted line) reference level for the £ 2 norm. 
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Figure 6.20: (CASE hP H-1) £ 2 error norm over the window [0, T], solid line is for the P 
regulator to control the H norm, dashed line is for a fixed value of v6 
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Figure 6.21: (CASE hPH-1
) Comparison of the (solid line) the initial condition¢ in the 

initial value problem ( 6.1) and (dashed line) the solution of the regularized terminal value 
problem (5.5) p(t = 0). 
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6.2 Pseudo-parabolic regularization 

This regularization technique will not change the form of the energy spectrum as noticeably 

as the hyperviscous regularization does. This means that we hope that this regularization 

technique works better than the previous one. As in the previous section we want to have 

some reference to compare against. We will solve equation (3.1) with a pseudo-parabolic 

term added with a fixed magnitude of Vdt· The error measured in the L2 norm at t = 0 is in 

table 6.4. The pseudo-parabolic regularization will be less dependent on variations of the 

magnitude of the regularization coefficient than the hyperviscous regularization technique. 

For a typical error measured in the L2 norm at different times look at figure 6.22. In figure 

6.24, one can see that there is a minimum of the error at t = 0 when the regularization 

coefficient is 4.4 · 10-6 . This value will be used as a reference for the different algorithms 

of choosing a time dynamic Vdt· The initial state ¢ reconstructed by solving the terminal 

value problem (5.5) with the best fixed value of Vdt is compared against the actual initial 

state in figure 6.23. 

L2 norm H-1 norm 
Instantaneous piL2 -

P regulator pPL2 pPH-1 

P D regulator PDL2 -

Table 6.3: Different algorithms used to regularize the solution to the terminal value problem 
with the pseudo-parabolic regularization technique. 

6.2.1 Regularization of the linearized Kuramoto-Sivashinsky equa
tion 

In figure 6.24 we can see the result of removing the nonlinear term. The results are similar 

to the ones we have from the hyperviscous regularization 6.1.1. However, the difference 

between linearized Kuramoto-Sivashinsky equation and the full Kuramoto-Sivashinsky 

equation is large than in the case using hyperviscous regularization, which adds further 

evidence that the effect of the nonlinear term in the backward Kuramoto-Sivashinsky 
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Vdt II e(O) ll£2 /llu(O) ll£2 
3.9. 10- 1 00 

5.3. 10-19 7.55 
1.0. 10-18 0.91 
1.6·10-18 0.72 
2.2. 10-18 0.70 
2.7. 10-18 0.70 
3.3. 10-18 0.70 
3.8. 10-18 0.71 
4.3. 10-18 0.72 
4.8. 10-18 0.73 

Table 6.4: The error at t = 0 for fixed values of the regularization parameter 

1.0 ,--~--.-------.-----.-------.-~---,------, 

0.9 

0.8 

time 

Figure 6.22: The L2 error as a function of time T for three different values of the pseudo
parabolic regularization parameter, (solid line) 2.2 ·10-18 , (dotted line) 2.7 ·10-18 , (dashed 
line) 3.3 · 10-18 . 
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X 

Figure 6.23: Comparison of the (solid line) the initial condition ¢ in the initial value 
problem (2.3) and (dashed line) the solution of the regularized terminal value problem 
(5.5) p(t = 0) with l!dt = 2.7 · 10-18

. 

equation is far from clear. 

6.2.2 Instantaneous adaptation 

Using Newton's method to find a solution to equation (5.34) with X is taken as L2 is not 

straight forward. There is a risk that the algorithm will not converge. If it does converge, 

we can see, in figure 6.25, that it does a good job at keeping the L2 norm constant. However 

it did this by making the amplitude of l!dt very large (on the order of 108 ) which means 

that during the backward run, the following is approximately true 

(6.12) 

This will cause most of the Fourier modes to remain unchanged when we solve the terminal 

value problem. So it is as if we are using the terminal value to approximate the initial 

value. Of course this not a good strategy to solve our problem. 

6.2.3 L2 norm with ?-regulator 

Here as in the case with hyperviscous regularization technique with the ?-regulator, see 

section 6.1.3, we will update the amplitude of the regularization coefficient l!dt with the 
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Figure 6.24: The relative L 2 error (6.2) at t = 0 for different fixed values of the hyperviscous 
regularization parameter v6 . o are the solutions for the linearized terminal value problem, 
• are the solutions for the full terminal value problem L = 154, • are for solutions with 
L = 4? and 0 is for the linearized terminal value problem at the same L. The normalized 
time T is the same for all plots. 
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Figure 6.25: (CASE piL2 ) Time histories of (a) the regularization parameter vdt and (b) 
(solid line) L2 norm of the solution using instantaneous adaptation to control the L2 norm 
with Newtons method, (dotted line) reference level for the L2 norm. 
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Figure 6.26: (CASE piL2 ) L2 error norm over the window [0, T], solid line is for the 
instantaneous adaptation to control the L2 norm, dashed line is for a fixed value of Vdt 
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Figure 6.27: (CASE piL2 ) Comparison of the (solid line) the initial condition ¢ in the 
initial value problem ( 6.1) and (dashed line) the solution of the regularized terminal value 
problem (5.5) p(t = 0). 
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following algorithm 

(6.13) 

The reference is taken from the solution of the initial value problem at t = T. If the energy 

is too large, one must increase Vdt and if the energy is too small, one must decrease Vdt to 

let more energy into the solution of the terminal value problem. So we need two elements 

to make the algorithm work, Kp and a starting value for Vd( 

• Here we choose again a starting value from the fixed values already tested. The value 

used is 3.1 · 10-12 . 

• In choosing Kp, we are mainly interested in two properties, namely the adjustment 

time and overshoot. Using the pseudo-parabolic regularization technique we do not 

see the very sharp overshoot peak. However, if Kp is chosen to a large value, we 

will see a very big offset from the reference value, see figure 6.28. If Kp is slightly 

larger the solution to the terminal value problem will have much more energy than 

the reference level. Kp is chosen to 2 · 10-16 

The results are shown in figure 6.33. This method will produce a better solution than 

the hyperviscous technique, but using a fixed value of the amplitude of the regularization 

coefficients, for example 4.4 · 10-6 , will still produce a better result, see figure 6.32. 

6.2.4 £ 2 norm with P D-regulator 

We attempt to find a better algorithm to update vdt by using a P D regulator. The 

algorithm to determine the value of the regularization coefficient is the same as in section 

6.1.4, namely, 

(6.14) vdt(ti) = vdt(ti+1) + Kp(iip(ti+1)iiLz -llu(T)Ii£z) + Dd(iiP(ti+1)iiL~t-iiu(T)iiLz)' 

where the time derivative ·is approximated using the forward difference 

(6.15) 
diip(ti)iiLz- llu(T)IILz "" llp(t+i)IILz -IIP(ti)IILz 

dt "" f:lt 

For this algorithm to work in determining the regularization coefficient one needs three 

elements: 
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Figure 6.28: (CASE pP L2 ) Time histories of (a) the regularization parameter vdt and 
(b) (solid line) L2 norm of the solution using P regulator to control the L2 norm with 
P = 2 · 10-11 , (dotted line) reference level for the L2 norm. 

... 
0 

1.4 

1.2 

1.0 

t: 0.8 
<l) 

s 0.6 

0.4 

0.2 

0.0 L--~----'--~--'---~---''--~----'--~--L--........:="""-1_~--' 
0.0 5.e-07 l.e-06 1.5e-06 2.e-06 2.5e-06 3.e-06 3.5e-06 

time 

Figure 6.29: (CASE pPL2 ) L2 error norm over the window [0, T], solid line is for the P 
regulator to control the L2 norm, dashed line is for a fixed value of Vdt 

X 

Figure 6.30: (CASE pPL2 ) Comparison of the (solid line) the initial condition¢ in the 
initial value problem (6.1) and (dashed line) the solution of the regularized terminal value 
problem (5.5) p(t = 0). 
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Figure 6.31: (CASE pPL2 ) Time histories of (a) the regularization parameter Vdt and 
(b) (solid line) L2 norm of the solution using P regulator to control the L2 norm with 
P = 2 . 10-16

, (dotted line) reference level for the L2 norm. 
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Figure 6.32: (CASE pP L2 ) L2 error norm over the window [0, T], solid line is for the P 
regulator to control the L2 norm, dashed line is for a fixed value of Vdt 

X 

Figure 6.33: (CASE pPL2 ) Comparison of the (solid line) the initial condition ¢in the 
initial value problem ( 6.1) and (dashed line) the solution of the regularized terminal value 
problem (5.5) p(t = 0). 
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• Here we choose again a starting value from the fixed values already tested. The value 

used is 3.1 · 10-12
. 

• We start by setting KD to zero and increase Kp until the perturbed system is stable. 

We are interested in two properties of the algorithmen, namely the adjustment time 

and overshoot. We want the overshoot to be as small as possible. With the P D

regulator we have the possibility of increasing Kp and use KD to decrease the size of 

the overshoot. So now the value of Kp will be much larger, five orders of magnitude. 

• The KD parameter is used to control the feedback from the derivative of the error. 

This parameter will decrease the overshoot and increase the adjustment time. For 

large values, the perturbed terminal value problem this method is unstable. This 

will be the last variable we will set and it will be as large as possible to decrease the 

overshoot and still be stable. KD is adjusted to make the £ 2 norm of the solution to 

the terminal value problem to be close to the reference level when t = 0. 

Figure 6.34 is similar to 6.31, but the value of Vdt is slightly smaller for the P D regulator 

when t is close to zero. This causes the solution of the terminal value problem to have a 

larger £ 2 norm than the solution obtained using the P regulator. Both of the regulators 

do a good job in keeping the £ 2 norm close to the reference level, see figure 6.34 and figure 

6.31. 

6.2.5 H-1 norm with ?-regulator 

Here we will use the H- 1 norm as a reference level. This norm is more focused on the large 

scales of the problem and therefore could be less affected by noise. Generally, it seems 

that this norm is lagging in time in comparison with the £ 2 norm. In figure 6.39 one can 

see that the solution has retained the large scales properties. However, the solution has 

more energy because of the time lag present using the H-1 norm. If we look at figure 

6.37, we can see that the energy starts decreased during the solution to the terminal value 

problem. It continues to decrease even though the £ 2 norm of the solution is higher than 

the reference level. This follows from that when t is close to T, the H- 1 norm of the 

solution to the terminal value problem is small so the ?-regulator will try to decrease v6 • 
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Figure 6.34: (CASE pP DL2) Time histories of (a) the regularization parameter Vdt and 
(b) (solid line) £ 2 norm of the solution using P D regulator to control the £ 2 norm with 
P = 1 -10-u, D = 7 · 10-17 , (dotted line) reference level for the £ 2 norm. 
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Figure 6.35: (CASE pP DL2 ) £ 2 error norm over the window [0, T], solid line is for the 
P D regulator to control the £ 2 norm, dashed line is for a fixed value of vdt 
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Figure 6.36: (CASE pP DL2 ) Comparison of the (solid line) the initial condition ¢in the 
initial value problem ( 6.1) and (dashed line) the solution of the regularized terminal value 
problem (5.5) p(t = 0). 
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Unfortunately, it decreased the magnitude of the regularization coefficient too much and 

the solution to the terminal value problem will be given a sudden peak of energy. But here 

Pis again chosen in such a way that this will happen after t = 0. 
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Figure 6.37: (CASE pPH-1
) Time histories of (a) the regularization parameter vdt and 

(b) (solid line) £ 2 norm of the solution using P regulator to control the H-1 norm with 
P = 4 · 10-14 , (dotted line) reference level for the L2 norm. 
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Figure 6.38: (CASE pPH-1
) L 2 error norm over the window [0, T], solid line is for the P 
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Figure 6.39: (CASE pP H- 1
) Comparison of the (solid line) the initial condition ¢in the 

initial value problem ( 6.1) and (dashed line) the solution of the regularized terminal value 
problem (5.5) p(t = 0). 
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Chapter 7 

Conclusions & Summary 

In this thesis we have in the first part examined hyperviscous and pseudo-parabolic regu

larization of the backward Kuramoto-Sivashinsky equation using fixed magnitudes of the 

regularization coefficients. In the second part of this thesis we proposed a new approach to 

regularize the terminal value problem of the Kuramoto-Sivashinsky equation. The basic 

idea is that instead of keeping the amount of regularization constant during the backward 

solution, we adapt it according to some criteria. We used the L 2 norm and H-1 norm 

and tried to keep one of these norms constant by changing the value of the regularization 

coefficients v6 and Vdt· Three different algorithms were used namely, the P regulator, P D 

regulator and an instantaneous adaptation based on Newton's method. 

The size of L is related to how accurate we can solve the terminal value problem of 

the Kuramoto-Sivashinsky equation. A large value of L will make the solutions less ac

curate. We also compared solutions to the regularized terminal value problem for the 

Kuramoto-Sivashinsky equation with fixed value of the regularization parameter to solu

tions of analogous problems, but with the nonlinear term removed. It was found that the 

linearized problem is more stable and it is possible to get a more accurate solution to this 

problem than for the full Kuramoto-Sivashinsky equation. 

The main findings can be summarized as follows: 

• We can see from comparing the figures in section 6.1 and 6.2 that the pseudo

parabolic regularization works better than the hyperviscous regularization. A likely 

reason is that the change of the energy function spectrum due to regularization is 
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less significant for the pseudo-parabolic regularization technique than for the hyper

viscous regularization technique. 

• When the £ 2 norm is used to measure the error in the adaptive schemes tried, i.e., P, 

P D and the instantaneous adaptation, they all preform worse than a "good" fixed 

value of the amplitude of the regularization coefficient. However, the L 2 norm is 

sensitive to shifts in real space. Therefore, even though the error is high in the £ 2 

norm the solutions obtained with adaptive techniques are often "visually" better than 

solutions obtained with fixed values of the regularization coefficients; this seems to 

indicate that for practical proposes the £ 2 norm might not be the most appropriate. 

• We show that the size of the L 2 error is dependent on the size of the domain L. More 

specifically, with increasing L we get less accurate solution to the terminal value 

problem. 

In conclusion we believe that the idea of dynamically changing the amount of regularization 

used is worth pursuing. We would like to have found a method that worked better then 

using any fixed value. Since regularization of nonlinear PDE is a relatively new topic, 

we are missing some theoretical background. For example, continuous dependence on the 

regularization parameter v or given a time window T and a regularization method what 

is the least error possible. This and other problems are still unsolved in regularization of 

nonlinear PDE. 
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Appendix A 

Inertial range in the N a vier Stokes 
equation 

In the N a vier Stokes equation three assumption are needed to ensure the existence of the 

inertial range, 

• In the inertial sub range all the flux F towards higher wavenumbers is lost through 

dissipation E 

(A.l) 

• In the inertial sub range very little energy is being lost. Because of very small 

dissipation and absence of nonlinear fluxes into the Fourier modes that correspond 

to the inertial sub range 

(A.2) 

• The flux past any wavenumber in the inertial sub range is of the order 

(A.3) 

where 

(A.4) 

is the only characteristic time that can be constructed with the use of K, and E(/'1,) only. 

The reason we can do this is that the scales are well separated. Or to make it more 

70 



MSc thesis - Jonathan Gustafsson McMaster - Camp. Eng. & Science 

clear, the Fourier modes containing most of the energy correspond to wavenumbers 

that are much smaller than the wavenumbers where most of the dissipation takes 

place. 

Notice that the expression for the flux F("") past a wavenumber in the inertial sub range 

comes from dimensional analysis. 
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Appendix B 

Inertial range in the 
K uramoto-Sivashinsky equation 

In this appendix we want to compare the assumptions needed to ensure the existence of 

the inertial range in the Navier Stokes equation, cf. Appendix A, with the assumptions 

needed to ensure the existence of the inertial range in the Kuramoto-Sivashinsky equation. 

We will need three assumptions and we will show that the argument for a inertial range 

in the Kuramoto-Sivashinsky equation is weaker than the argument for a inertial range in 

the N a vier Stokes equation. 

The first assumption is that in the dissipative scales the energy flux into wavenumber 

"" is equal to the dissipation at wave-number "" 

(B.l) 

This assumption is easy to accept by noting that the Fourier modes corresponding to large 

wave-number are small or close to zero. 

The second assumption is that in the inertial sub range, no energy is lost or gained 

through injection by the ""2 operator or dissipated through by the -/'i,
4 operator and the 

flux into the inertial sub range is 

(B.2) 

The first part of this assumption is exactly true in only one point "" = 1, but not in a finite 

range. Note that this is true for the Navier Stokes equation as well, however in Navier 
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Stokes the slope is r;,- 5/ 3 , whereas in the K uramoto-Sivashinsky equation the slope is r;,-4 . 

We can assume that the Kuramoto-Sivashinsky equation has a power law region of C r;,-4 

inside the range [r;,1 , r;,2]. This means that the linearized Kuramoto-Sivashinsky equation 

in Fourier space will look like 

(B.3) 

The first part of the second assumption is that the above expression is independent of 

changes in ""· This first part of the assumption is very hard to accept. If one does the 

same for the Navier Stokes equation, assume that there exists a power law region of Cr;,-513 

inside the range [r;, 1, r;,2]. This means that the linearized dynamic equation for the energy 

function spectrum will have the form 

(B.4) d~~r;,) = -r;,2Cr;,-5/3 = Cr;,l/3, ""E [r;,l, r;,2]· 

Here one makes the same assumption, but this function clearly has a weaker dependence on 

r;, than the previous one. How the nonlinear term behaves we do not know, so the second 

part of the second assumption could be valid. 

The third and last assumption is that the flux past any wave-number in the inertial 

range is 

(B.5) 

This is kind of a circular argument. One assumes that the nonlinear function behaves in this 

fashion and then E = C r;,- 4 inside the power law for the energy function spectrum of the 

Kuramoto-Sivashinsky equation. Let try and assume that the flux past any wave-number 

in the inertial range is 

(B.6) 

This together with assumption number two means that the energy function spectrum is 

Cr;,-n. So we can have a power law region of any power n. In the Navier Stokes equation, 

see equation A.3, we get the power law based on physical arguments. We do not just 

assume that the flux has a certain property like in B.5. 
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