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Abstract 

Tuned Liquid Dampers (TLDs) are increasingly being used to suppress the 

dynamic vibration of tall buildings. An equivalent mechanical model is essential for rapid 

analysis and design of a TLD. The most common TLD tank geometries are circular, 

annular and rectangular. Rectangular tanks are utilized for 1-D and 2-D TLDs, whereas 

circular and annular are usually applied to axisymmetric structures. The amount of fluid 

that participates in the sloshing motion is directly influenced by the tank geometry. 

Although not commonly used, a TLD having a curved-bottom tank is expected to perform 

more effectively due to its relatively large value of effective mass. The main objective of 

this study is to develop mechanical models for seven TLDs with different tank geometries 

including the curved-bottom case, and to theoretically investigate the performance of 

rectangular, vertical-cylindrical and horizontal-cylindrical TLDs. 

Potential flow theory, linear long wave theory, Lagrange's equations and virtual 

work method are employed to develop the equivalent mechanical model parameters of 

TLDs with rectangular, vertical-cylindrical, horizontal-cylindrical, hyperboloid, triangular, 

sloped-bottom, and parabolic tank geometries. A rectangular, vertical-cylindrical and 

horizontal-cylindrical TLD are selected for further study using a single-degree-of

freedom (SDOF) model and a two degree of freedom structure-TLD system model 

applying the derived equivalent mechanical parameters. 

The dynamic characteristics of the TLDs as a SDOF system are investigated. The 

mechanical model is verified by comparing calculated values with experimental results 

for a rectangular TLD. The free surface motion, sloshing force and energy dissipation are 
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found to be dependent upon the excitation amplitude. Analytical results also indicate that 

the horizontal-cylindrical TLD possesses the greatest normalized sloshing force and 

energy dissipation among the TLDs considered. 

The performances of various TLDs installed in a structure are studied in terms of 

effective damping, efficiency and robustness. Tuning ratio, structural response amplitude, 

mass ratio and liquid depth are adjusted to investigate their affect on the performance of 

the studied TLDs. Performance charts are developed and subsequently used to present the 

results. It is found that small liquid depth ratio and large mass ratio can lead to a robust 

structure-TLD system with small relative motion ratio between the structure and the 

vibration absorber. Comparisons of performance between the three TLDs are made and it 

can be concluded that the horizontal-cylindrical TLD is the most robust and effective 

device with the smallest relative motion ratio. 

KEYWORDS: Conical, Dynamic Vibration Absorber, Horizontal-Cylindrical, 

Hyperboloid, Liquid Sloshing, Mechanical Model, Parabolic, Rectangular, Structure-TLD 

System, Structural Vibration Sloped-Bottom, Tank, Triangular, Tuned Liquid Damper, 

Vertical-Cylindrical 
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Chapter 1 Introduction and Literature Review 

1.1 Introduction 

Slender, flexible and lightly damped structures are often sensitive to dynamic 

excitation, such as wind and earthquake forces, which can result in an unacceptably large 

dynamic response. Various serviceability limit state criteria have been proposed to limit 

wind-induced building accelerations. For instance, NBCC (2005) indicates that 10 to 30 

milli-g has been generally considered as an acceptable range for one-in-ten-year average 

hourly peak accelerations for many tall buildings. Different devices have been employed 

to suppress wind-induced vibrations in order to satisfy serviceability limit state criteria. 

They include passive, semi-active and active control energy dissipating devices. A 

dynamic vibration absorber (DVA), which reduces the dynamic response of a structure by 

modifying its frequency response behaviour, belongs to the category of passive control 

energy dissipating devices. 

1.1.1 Tuned Mass Damper 

A commonly used type ofDVA is the tuned mass damper (TMD), which consists 

of a mass, a spring and a dashpot as shown in Figure 1.1 a, where the structure is 

represented by a single-degree-of-freedom (SDOF) system with mass, Ms, stiffuess, Ks, 

and damping ratio, s:;. The natural frequency of a TMD is tuned to the natural frequency 

of the structure so that when the structure is at resonance the TMD vibrates out of phase, 

thus exerting an inertial force onto the primary structure anti-phase to the excitation force, 

which suppresses the structure's motion. In order to minimize the response of a structure 
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under external excitation, a TMD must be properly designed. The optimal design 

parameters for a linear TMD attached to an undamped structure are well-understood and 

formulated (Warburton 1982). The performance of a TMD can be evaluated in terms of 

effective damping, (eff, which is a function of the tuning ratio, Q, mass ratio, Jl, and 

damping ratio, (A, of a structure-TMD system. The tuning ratio equals the natural 

frequency of the damper divided by the natural frequency of the structure. The mass ratio 

is the ratio of the mass of the damper to the mass of the structure. Figures 1.2a to 1.2c 

show the relationship between the effective damping and these three parameters, 

respectively. It can be seen in Figure 1.2a that the level of effective damping increases as 

the mass ratio is increased. Figure 1.2b is the variation of (effwith Q for an optimally 

damped TMD and Figure 1.2c is the variation of (effwith (A for an optimally tuned TMD, 

for a particular mass ratio value. These plots show that the mass ratio, tuning ratio and 

damping ratio significantly influence the performance of a TMD. Figure 1.3 shows 

performance charts of the effective damping and root-mean-square (RMS) relative motion 

ratio, respectively, for a linear TMD, as functions of Q and (A for a particular value of Jl. 

RMS relative motion ratio is defined as the ratio of the RMS motion between the absorber 

and the primary structure. These charts allow the performance of a TMD to be rapidly 

examined. In this study, the performance of a DV A is evaluated by effective damping, 

efficiency and robustness. Effective damping of a DV A is defined as the additional 

damping provided by the DV A to a SDOF system with the same dynamic properties as 

the original primary structure of the structure-DVA system (Vickery and Davenport 

1970). Efficiency of a DV A is defined here as the ratio of effective damping of a DV A to 

2 
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that of an equivalent optimized linear TMD with the same liquid mass ratio. Robustness 

is defined as the insensitivity of efficiency or effective damping to variations in the tuning 

ratio and (or) level of applied excitation. 

Applications of TMDs include the Centerpoint Tower in Sydney (Australia), the 

Canadian National (CN) Tower in Toronto, the John Hancock Tower in Boston, the 

Citicorp Center in New York and Shenzhen Bridge in Hong Kong. In addition, a total of 

11 applications ofTMD installations in Japan have been reported on (Tamura 1998). 

1.1.2 Tuned Liquid Damper 

Another type of DV A is the tuned liquid damper (TLD). It is increasingly being 

used to suppress the resonant motion of tall buildings due to its low cost, ease of 

implementation and efficiency. The TLD was first employed in 1902 by Frahm to reduce 

the rolling motion of large ships (Den Hartog 1956), and has also been applied to space 

satellites (Carrier and Miles 1960). Research on the application of TLDs to civil 

engineering structures began in the 1980s (Bauer 1984, Modi and Welt 1987, Kareem and 

Sun 1987). A TLD, shown in Figure 1.1 b, is a rigid tank that is partially filled with a 

liquid (often water). The liquid in a TLD supplies not only the mass, but also the damping 

through viscous action at the interface of tank and liquid. Additionally, gravity of the 

liquid acts as an equivalent spring. As a TLD and TMD are both dynamic vibration 

absorbers, they mitigate dynamic motion by modifying the frequency response of a 

structure. Figure 1.4 shows the frequency response of both a structure and a structure

TLD system. It can be seen from Figure 1.4 that the resonant response is significantly 

reduced after a TLD is installed in the structure. For random excitation, the effective 
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damping is determined by equating the area under the frequency response function of a 

structure-TLD system to that of an equivalent SDOF system (see Figure l.lc). As shown 

earlier in Figure 1.2a, an increase in the mass ratio leads to an increase in the effective 

damping. As a result, it reduces the area under the frequency response function, which is 

related to the RMS response of the structure. However, not all the liquid in a TLD tank 

participates in the sloshing motion, which results in a reduction in the mass ratio. One 

way to resolve this problem is to modify the tank geometry of the TLD. The most 

common TLD tank geometries are vertical-cylindrical, annular and rectangular (Modi and 

Welt 1987, Kareem and Sun 1987). Another type of liquid damper widely studied is tuned 

liquid column damper (TLCD) (Xu et al.l992) as shown in Figure 1.5. 

Based on potential flow theory, the velocity profile of sloshing liquid in a 

rectangular tank is obtained. The dimensionless velocity at different locations of a tank is 

shown in Figure 1.6. As a curved-bottom tank possesses a larger effective mass by 

reducing the inactive water near the tank end-walls, it is postulated that a TLD with a 

curved-bottom tank may be a more effective vibration absorber compared to a rectangular 

tank (Gardarsson et al. 2001). Similar to a TMD, the damping ratio of a TLD influences 

the effective damping. The inherent damping of a TLD indicates the amount of energy the 

TLD can dissipate. Usually the inherent damping is significantly lower than the optimal 

damping value that permits the effective damping to achieve its maximum value. For 

small excitation amplitudes, an effective way to achieve optimal damping is to insert 

screens inside the TLD tank. The addition of screens has been considered for both 

rectangular and vertical-cylindrical TLDs. 

4 
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TLD applications include The Suites at 1 King West in Toronto, Nanjing TV 

Tower in China and the European Court of Justice in Luxembourg. In addition, Tamura 

(1998) documented a total of 12 TLD applications in Japan. Full-scale monitoring of the 

wind-induced response of four buildings equipped with TLDs has been conducted, and 

the results show that TLDs can significantly improve the serviceability of tall buildings 

(Tamura 1995). 

1.2 Literature Review 

TMD theory is not directly applicable to TLD analysis and design due to its 

nonlinear response behaviour. Initial research on TLDs began with the development of 

analytical models, which can simulate the dynamic response of a TLD and a structure

TLD system. In addition, equivalent mechanical models of TLDs were constructed to 

simplify the complex sloshing motion inside the tank and to allow the application of 

TMD theory. 

1.2.1 Analytical Models 

1.2.1.1 Shallow Water Tuned Liquid Dampers 

In early TLD applications, shallow water depths were utilized to resolve the 

problem of insufficient inherent damping induced by the boundary layers. Shallow water 

depths introduce wave breaking, which results in significant energy dissipation leading to, 

or even exceeding, the required amount of damping. A number of analytical models for 

shallow water TLDs were developed based on nonlinear long wave theory, which is able 

to capture the nonlinear dynamic response behaviour. The governing equations of wave 
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motion are simplified by integrating or averaging through the liquid depth (Shimizu and 

Hayama 1987, Lepelletier and Raichlen 1988). Fujino ( 1992) utilized Shimizu and 

Hayama's model to study the response of a structure-TLD system, and Sun (1992) 

expanded on this model by incorporating the influence of wave breaking. The drawback 

of the shallow water TLD is that a large number of TLDs are required to achieve a 

sufficient mass ratio and the response behaviour of the TLD is highly nonlinear. 

Alternative strategies and devices have been studied to increase the inherent 

damping of TLDs, such as using high viscosity liquid, adding floating surface particles 

and inserting energy dissipating devices (Isaacson and Premasiri 2001, Ju 2004). Fediw et 

al. (1995) modelled a TLD equipped with screens by dividing the TLD into a number of 

subtanks. In this model, the governing equations for linear long wave theory are solved by 

applying the boundary condition of equal velocity and head loss at the screen. Kaneko 

and Ishikawa (1999) developed a model of a TLD with a submerged net, based on 

nonlinear long wave theory introduced by Lepelletier and Raichlen (1988). Staggered

grid finite-difference and Runge-Kutta methods were applied to compute the average 

horizontal velocity component and the wave height, taking the effect of a submerged net 

into consideration. It was found that the nonlinear model can capture the dynamic 

response of a TLD over a large range of excitation amplitudes (Tait 2004). 

1.2.1.2 Intermediate and Deep Water Tuned Liquid Dampers 

The response behaviour of intermediate and deep water TLDs is more linear than 

that of shallow water TLDs, however, less liquid participates in the sloshing motion and 

the inherent damping decreases. Thus, energy dissipating devices are usually required to 
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provide sufficient damping. In order to resolve the problem of reduced mass ratio, due to 

the loss of participating liquid, the geometry of a TLD can be modified. Potential flow 

theory is often utilized to describe the sloshing motion in intermediate and deep water 

TLDs. Coupled mode nonlinear simultaneous ordinary differential equations for sloshing 

motion in both a rectangular (Kaneko and Yoshida, 1999) and vertical-cylindrical TLD 

(Kaneko and Mizota, 1999) were formulated, taking into account a submerged net at the 

centre of the TLD. In these two models, the Galerkin method was applied to obtain the 

sloshing force. Energy dissipation due to the submerged net was obtained by using the 

relationship between the pressure loss, wave height and the average horizontal velocity 

component at the net. 

With the assumption of small wave amplitude, the nonlinear terms in the 

governing equations of sloshing motion can be neglected and a simple approach to 

investigate sloshing motion in a tank is attained. Budiansky (1960) applied Lagrange's 

equations to formulate the generalized properties of the sloshing motion in a horizontal

cylindrical tank. Wamitchai and Pinkaew (1998) applied the same technique to develop a 

mathematical model of liquid sloshing in a rectangular tank, which includes the effects of 

an energy dissipating device at the centre of the tank, assuming viscous and velocity 

squared damping. All of the analytical models mentioned above can be used to evaluate 

the response wave amplitude, sloshing force and energy dissipation of a TLD. 

1.2.2 Equivalent Mechanical Models 

Equivalent mechanical models of the liquid dynamics inside a rigid tank include 

mass-spring dashpot and pendulum models (Graham 1951 and 1952, and Bauer 1960, 
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1961 and 1962). Simple equivalent mechanical models ofTLDs are essential for the 

preliminary design and investigation of their performance. Although the properties of 

TLDs are amplitude dependent, they have been successfully studied using linear TMD 

analogy. 

1.2.2.1 Semi-empirical Equivalent Mechanical Models 

Several semi-empirical equivalent mechanical models have been developed. Sun 

et al. (1995) determined the nonlinear properties of a TLD, which include the natural 

frequency, effective mass and damping, using the concept of virtual mass and virtual 

damping. Yu (1999) constructed a model with nonlinear damping, nonlinear stiffuess and 

constant mass, based on energy dissipation equivalence of experimental and theoretical 

results. Tait (2004) expanded on this model to permit the evaluation of the amplitude 

dependent effective mass and the damping due to a number of energy dissipating devices 

inside the tank. 

1.2.2.2 Theoretical Equivalent Mechanical Models 

Equivalent mechanical models of TLDs are also developed theoretically without 

the need of conducting any shaking table experiments. Graham and Rodriguez (1952) 

constructed an equivalent mechanical model of the fluid sloshing motion inside a 

rectangular tank. This model consists of a rigid mass representing the inactive portion of 

the liquid and a series of masses and springs representing the equivalent mass and 

stiffuess of each sloshing mode. The natural frequency is obtained using potential flow 

theory, while the properties of the mechanical model are obtained by equating the force 
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exerted by the mechanical system to the pressure forces exerted by the liquid inside the 

tank. Similarly, Bauer (1964) constructed an equivalent mechanical model for a vertical

cylindrical tank. In the 1990s, theoretical equivalent mechanical models of various TLDs 

emerged. Chang and Qu (1998) calculated the generalized properties for a number of 

different dynamic vibration absorbers and developed models to evaluate the performance 

of the corresponding structure-TLD systems. However, no energy dissipating devices 

were included in these models. Cai et al. (1999) introduced a model of a vertical

cylindrical TLD with baffles. In this model, the effective mass is obtained by matching 

the kinetic energy of the sloshing motion to that of the equivalent mechanical model; 

while the damping due to the baffles is formulated using virtual work principles. Recently, 

Tait (2007) extended Wamitchai's approach by permitting the evaluation of the damping 

due to multiple energy dissipating devices at any location inside a rectangular tank using 

the concept of virtual work. In addition, a co-ordinate relationship was applied to convert 

the generalized TLD properties to equivalent properties for developing an equivalent 

TLD mechanical model and a structure-TLD model, which are capable of simulating the 

dynamic response of a TLD and a structure-TLD system, respectively, under random or 

sinusoidal excitation. 

1.2.3 Application of TMD Theory to TLD 

It is noted that the equivalent mechanical model and simplification of damping 

(linearization of the velocity squared damping and neglecting viscous damping) (Tait 

2007) result in the applicability of the optimal design criteria for the well-studied TMD to 

a TLD. Earlier, Chang and Qu (1998) applied similar concepts to formulate optimum 
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parameters of various types of DV As with no energy dissipating devices. Linearization of 

nonlinear damping has been performed for several different types of DV As. Gao and 

Kwok (1997) linearized the velocity squared damping of a TCLD equipped with an 

orifice by minimizing the error between the linear and nonlinear damping forces. Vickery 

et al. (2001) linearized the velocity squared damping and constant force damping by 

matching the energy dissipation rate to that of a linear viscously damped SDOF system. 

Before the concepts of linearization of damping and equivalent mechanical modelling 

were introduced, the optimum damping of a TLD was studied both experimentally and 

analytically. Fujino et al. (1988) found that there exists an optimal damping that 

minimizes the response of the structure by conducting experiments on a structure-TLD 

system, using liquids with different viscosities. Gao and Kwok (1997) conducted a 

parametric study using a numerical search technique to determine the optimal values of 

tuning ratio and damping ratio for a structure-TLCD system. 

A theoretical equivalent mechanical model, which can simulate the response of a 

TLD with different tank geometries and energy dissipating devices under different types 

of loading, is of interest. This particular type of model for a TLD permits the direct 

application of TMD theory. Therefore, it is essential for rapid design and preliminary 

investigation of TLD performance. However, such models are not currently available, 

except for a rectangular TLD (Tait 2007). In addition, most of the modelling focuses on 

sinusoidal excitation. In this thesis, TLDs under both sinusoidal and random excitation 

will be studied. 
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1.3 Research Scope and Objectives 

An equivalent mechanical model of a rectangular TLD with inserted screens has 

been developed (Tait 2007) and is adopted here. In this thesis, equivalent mechanical 

models for TLDs with different tank geometries are developed using potential flow theory 

and linear long wave theory, respectively, under the assumption of small response 

amplitude. In addition, the performance of rectangular, vertical-cylindrical and 

horizontal-cylindrical TLDs is investigated theoretically for a structure-TLD system 

under random excitation. 

1.4 Organization of Thesis 

Chapter 2 presents the derivation of the properties of an equivalent mechanical 

model for TLDs with commonly used and new tank geometries applying potential flow 

theory, Lagrange's equations, Morison's formula and the method of virtual work. 

Subsequently, the effective mass, damping ratio and natural frequency of each TLD are 

studied and compared. 

Chapter 3 presents the derivation of the properties of an equivalent mechanical 

model for a triangular, sloped-bottom, parabolic and rectangular TLD based on linear 

long wave theory. Comparisons of the TLD properties are subsequently made. 

Chapter 4 reports the dynamic characteristics of a rectangular, vertical-cylindrical 

and horizontal-cylindrical TLD as an SDOF system excited sinusoidally. Dynamic 

characteristics-response amplitude, sloshing force and energy dissipation-of a TLD are 

investigated first, followed by comparisons of their dynamic response behaviour. 
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Chapter 5 investigates the performance of three TLDs for a structure-TLD system 

under random excitation in terms of effective damping, efficiency and robustness. The 

effects of the various parameters on the performance of the TLDs are examined, and 

comparisons of TLD performance are made. 

Chapter 6 presents the major conclusions drawn from this research work and 

recommendations for future studies on TLDs. 
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Chapter 2: Theoretical Modelling of TLDs with Different Tank Geometries 

Using Potential Flow Theory 

This chapter focuses on the derivation of equivalent mechanical models for TLDs 

with different tank geometries. Potential flow theory, Lagrange's equations, and the 

virtual work method are employed to calculate the generalized properties of TLDs 

equipped with screens. The general procedure for the derivation of an equivalent 

mechanical model will be introduced first, followed by derivations for TLDs with 

different tank geometries. Specific parameters of the TLDs can be substituted into the 

equations shown in the general procedure, which leads to the properties of the mechanical 

model corresponding to the particular tank geometry of interest. Finally, comparisons of 

the equivalent mechanical properties of these TLDs are presented. 

2.1 General Procedure of Derivation 

Wamitchai and Pinkaew (1998) determined the generalized properties (mass, 

stiffness, damping and excitation factor) for a rectangular TLD, employing Lagrange's 

equations and Morison's formula. Tait (2007) derived an expression for the damping 

resulting from a number of energy dissipating devices (screens) inside a rectangular TLD, 

using the method of virtual work. In this section, the derivations will employ the above 

procedures and extend them to permit their application to TLDs with different tank 

geometries including horizontal-cylindrical and hyperboloid tanks. 

As shown in Figure 2.1, a Cartesian coordinate system is established such that x 

denotes the transversal direction, y denotes the longitudinal direction (pointing out of 
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plane), and z denotes the vertical direction. In order to obtain the generalized properties, it 

is necessary to determine the velocity of sloshing liquid. In this study, this is 

accomplished by means of either potential flow theory or linear long wave theory. These 

theories are valid for different liquid depth ratio, h/L, and/or response amplitude ratio qo/L, 

where h, L and q0 denote liquid depth, free surface length and wave amplitude, 

respectively. It is noted that the free surface amplitude, 1J, can be expressed as 

ry(x,t) = q0 f(x)g(t), where fix) and g{t) are functions of space and time, respectively. 

2.1.1 Generalized Properties: Mass, Stiffness and Natural Frequency 

For a TLD subjected to base excitation, X(t), applying the formulation for the 

velocity and Equations 2.1 and 2.2, given below, leads to the kinetic energy of the 

sloshing liquid. 

(2.1) 

KE = fd(KE) (2.2) 

where d(KE) is the kinetic energy due to the motion of the liquid particle of mass dm, KE 

is the kinetic energy due to the motion of the liquid inside the tank, X is horizontal 

velocity due to external excitation, and u and w are the horizontal and vertical fluid 

velocity components, respectively. In long wave theory, w is assumed to be much smaller 

than u such that it is neglected. 

Next, the free surface amplitude, IJ, is assumed to be sufficiently small such that 1J 

can be computed by applying a linearized free surface boundary condition. 
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(2.3) 

where rjJ is the velocity potential. 

The potential energy of the sloshing liquid can be expressed as 

d(PE) = (dm)gz (2.4) 

PE= fd(PE) (2.5) 

where z is the height measured from the bottom of the tank to the centre of gravity of the 

liquid mass and is a function of YJ. 

The final step of the derivation for an undamped TLD is to apply the well-known 

Lagrange's equations to the kinetic energy equation and the potential energy equation 

~(oKE)- oKE +oPE =O 
at aq aq aq (2.6) 

where q denotes the free surface sloshing amplitude at the end-walls; it is also a function 

of time, and dot denotes the time derivative. In addition, q is used as a set of generalized 

coordinates. The generalized properties (generalized mass m *,generalized stiffuess k* and 

generalized excitation factory*) are evaluated with reference to the generalized coordinate 

q. It is noted that all generalized properties are mode dependent, and only the first mode is 

considered in this study. Expanding the kinetic energy and potential energy in Equations 

2.2 and 2.5 and substituting into Equation 2.6, the generalized mass m * and generalized 

excitation factor y * can be found in the acceleration terms, and the generalized stiffness k * 

in the displacement term. 

20 



M.A.Sc. Thesis -X. Deng McMaster University - Civil Engineering 

a (aKE) • .. ·x·· ---=mq-r 
at aq_ 

(2.7) 

(2.8) 

(2.9) 

The generalized stiffuess k * can also be computed as 

k * * 2 = m w (2.10) 

The natural frequency, w, can be determined by applying the boundary condition. Details 

of this will be shown later for TLDs with different tank geometries. The effective mass, 

meffi of a TLD is the mass of liquid that participates in the sloshing motion. It is used as 

the mass for the equivalent mechanical model of a TLD and is expressed as 

.2 
r 

meil =-. 
m 

2.1.2 Generalized Damping Due to Screens 

(2.11) 

The addition of damping due to the screens is attributed to the drag force, a flow-

induced force in the horizontal direction of flow. Based on Morison's formula (Morison 

1950), the drag force per unit area is as follows. 

(2.12) 

where fd is the drag force, Cr is the loss coefficient, and u is the horizontal component of 

the sloshing velocity. It can be assumed that this non-conservative force,Jd, acts upon the 
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liquid particles over a distance bq(x,z,t), expressed in terms of the generalized coordinate 

q(t), where bq(x,z,t) is a virtual displacement. The virtual work done by the non-

conservative damping force is expressed as 

liS '7 

&nc =-L f fJdn&jdzdy (2.13) 
j=l b -h 

Assuming small response amplitude, i.e. 17 << h , 

liS 0 

&nc =-L f fJdn&jdzdy (2.14) 
j=l b -h 

where ns denotes the number of screen( s) placed inside the tank, and b is the width of the 

tank. 

Expressing u in term of q(t) and substituting Equation 2.12 into Equation 2.14, the 

virtual work can be rewritten as 

(2.15) 

where 

(2.16) 

Q is defined here as the generalized non-conservative force corresponding to the 

generalized coordinate q(t). The parameter L1 is a constant related to the tank geometry, 

and E relates to number of screens and their location inside the tank. Applying 

Lagrange's equations of motion to the TLD system, 

(2.17) 

The generalized damping c *can be found in the velocity term of the equation of motion. 
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fc • = c * q(t) = ..!_ pC L ~S I q(t) I q(t) 
2 

where fc * is the generalized damping force. 

2.1.3 Linearization of Generalized Damping 

(2.18) 

It can be seen from Equation 2.18 that the damping force, fc *, is proportional to 

I q(t) I q(t) . Determination of an equivalent linear viscous damping expression is a 

necessary step in the development of a mechanical model which permits the application 

of TMD theory to preliminary TLD design. The error between the nonlinear damping 

force c * q and the equivalent generalized linear damping force ceq* q can be expressed as 

follows (Gao et al1997) 

[; = c * q- ceq* q (2.19) 

To minimize the error, the following condition is applied 

(2.20) 

where E(i) represents the expected value. Assuming a sinusoidal response, for instance, 

q(t) = q0 cos( cot), Equation 2.20 yields 

4 CLp~S 
ceq = 3 Jr mqo (2.21) 

(2.22) 

where Ceq* is the equivalent generalized viscous damping, and (eq * is the equivalent 
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damping ratio. Equation 2.22 is the general expression for the equivalent damping ratio 

for sinusoidal response. 

An expression for the equivalent damping ratio for random excitation can be 

achieved by matching the energy dissipation rate of a linear device to that of a nonlinear 

device (Vickery et al. 2001). It is assumed that individual cycles are sinusoidal in form 

with slowly varying amplitude, a(t); and the distribution of a(t) follows the Rayleigh form 

associated with a narrow-band Gaussian process. The average dissipated energy per cycle 

for linear viscous and velocity squared damping are given as 

- 0 2 
E (linear) = 2JTC eq OJCY, (2.23) 

(2.24) 

Equating Equations 2.23 and 2.24 yields 

(2.25) 

where fJ" is the RMS free surface motion at the tank end-wall. 

The remaining steps required to determine the final value of the equivalent 

damping ratio are to compute the values of L1 and S. 

The general procedure for the derivation of equivalent mechanical parameters -

mass, natural frequency and damping ratio - have been presented above. This allows a 

nonlinear TLD to be modelled as an amplitude dependent TMD using the derived 

equivalent parameters. This procedure can be applied to any tank geometry. 
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2.2 Potential Flow Theory 

In this study, it is assumed that the nonlinear terms in the equations describing the 

boundary conditions are small and, therefore, can be neglected. The assumptions of 

incompressible and irrotational fluid lead to the Laplace equation. 

(2.26) 

or 

(2.27) 

where ¢ is the velocity potential and lf/ is the stream function. These differential 

equations can be solved with the application of suitable boundary conditions. Since the 

liquid is assumed to be ideal and the tank is rigid and impermeable, the component of the 

velocity tangential to the boundary is nonzero whereas the component perpendicular to 

the boundary is zero, therefore, 

a¢ =0 
an 

on the container walls, where n is normal to the container walls. 

(2.28) 

For irrotational motion and inviscid fluid, the Bernoulli equation can be expressed as 

__!_ o¢ + - 1-(a¢)2 

+ _!!_ + z =canst. 
got 2g an pg 

(2.29) 

where g, p and p denote the gravity acceleration, pressure and density of liquid, 

respectively. It is noted that p = 0 at the free surface. The assumption of small liquid 
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motion permits the nonlinear terms in the equation to be neglected. The linearized 

Bernoulli equation is given as 

(2.30) 

where F denotes the still liquid surface. 

On the free surface, there is another kinematic boundary condition 

(2.31) 

Combining Equations 2.30 and 2.31 gives 

82¢ + 8¢ = 0 
8t2 g an lz=F (2.32) 

Equations 2.26, 2.28, 2.29, and 2.32 are the governing equations, which must be satisfied 

by the velocity potential. It is noted that potential flow theory is valid for any liquid depth 

ratio h!L, where h is the still liquid depth, L is half of wavelength for the first sloshing 

mode, and it is equal to the length of free surface (Le Mehaute 1976). Figure 2.1 shows 

the geometrical parameters and coordinates for an arbitrary tank with the free surface 

corresponding to the first sloshing mode. 

The velocity potential functions of sloshing liquid in tanks with different 

geometries have been investigated theoretically. Bauer ( 1964 and 1984) provided the 

velocity potential for a rectangular and a vertical-cylindrical tank, respectively. 

Bartkowiak (1985) anticipated that the streamlines in a horizontal-cylindrical tank are 

circular, and posed a stream function for the streamlines. Budiansky (1960) calculated the 
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integration of the velocity component over a volume ofliquid. Troesch (1960) formulated 

the natural frequency and velocity potential in a conical and hyperboloid tank, 

respectively. By following the procedure discussed in Section 2.1, the derivations of 

equivalent mechanical models for a rectangular, vertical-cylindrical, horizontal-

cylindrical, conical and hyperboloid TLD are presented, respectively. Additionally, the 

equivalent viscous damping resulting from the screens will be determined. This has not 

previously been considered for several different tank geometries. 

2.3 Derivation of Equivalent Mechanical Models of TLDs with Different Tank 

Geometries 

2.3.1 Rectangular Tank 

To express a two-dimensional wave, a local Cartesian coordinate (x-o-z) is 

introduced as shown in Figure 2.2. Here z = 0 represents the still liquid surface, h is the 

still liquid depth, L is the tank length, and X(t) is the horizontal displacement of the tank 

due to external excitation. 

2.3.1.1 Generalized Mass and Stiffness 

The Laplace equation (Equation 2.26) can be written in the following form for a 

rectangular tank (Bauer 1984), 

(2.33) 
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Equation (2.28) gives the kinematic boundary conditions at the end-walls (x = 0, L) and 

the bottom (z = -h), 

8¢ 
u(x,z,t)= 8xlx=O,x=L =0 (2.34) 

8¢ 
w(x,z,t) = 8z iz=-h = 0 (2.35) 

For a rectangular tank, the free surface condition (Equation 2.32) is given as, 

82¢ + 8¢ = 0 
8t2 g 8z lz=O (2.36) 

It is assumed that the velocity potential ¢ can be expressed in the form of 

rjJ(x,z,t) =X(x)Z(z)cosmt (2.37) 

where m is the natural frequency of the sloshing motion. Substituting Equation 2.37 into 

the Laplace equation (Equation 2.33), and applying the boundary conditions (Equations 

2.34 and 2.35) to X(x) and Z(z), respectively, X(x) and Z(z) can be expressed in the 

following forms 

7r 
X(x) = Acos-x 

L 

7r(z+h) cos _____:_ _ _____:___ 
Z(z) = B L 

. h 7rh sm-
L 

where A and B are constants. 

The velocity potential can therefore be expressed as 

28 
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;r(z +h) 7rX 
cosh( ) cos(-) 

¢(x,z,t) = AB L 7rh L cos(wt) 
sinh(-) 

L 

(2.40) 

Substituting Equation 2.40 into Equation 2.36 leads to the natural frequency (Lamb, 1932) 

(2.41) 

The free surface amplitude Yf, can be expressed in terms of the generalized coordinate q(t) 

and the mode shape, 

7rX 
rJ(x,t) = q(t)cos(-) 

L 
(2.42) 

The generalized coordinate, q(t), can be obtained by substituting Equation 2.40 into 

Equation 2.30, and equating the term Yf(x,t) to that in Equation 2.42. 

7rh 
cosh(-) 

q(t) = AB w ; cos(wt) 
g sinh(-) 

L 

(2.43) 

Introducing q(t) from Equation 2.43 and w2 from Equation 2.41 into Equation 2.40, the 

velocity potential can be expressed as 

7r(z+h) 7rX 
cosh( ) cos(-) 

¢(x,z,t) = q(t) L h L 
(Jr )sinh(~) 
L L 

(2.44) 

To obtain the kinetic energy, Equations 2.1 and 2.2 are employed. 

IKE = dm (.X + u) 2 + w2 = (pbdxdz) (.X + u) 2 + w2 

2 2 
(4.45) 
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Substituting for the velocity terms, the kinetic energy is expressed as 

KE = _!_ pb rl(x + a¢)
2 

+(a¢)
2

]dxdz 
2 -hll ax az 

(2.46) 

where 

h( ;rr(z +h)) . (JTX) a¢ cos sm-
u = - = -q(t) L L 

ax . h(;rrh) sm-
L 

(2.47) 

and 

. h(;rr(z+h)) (JTX) a¢ sm cos-
w=-=q(t) L L 

az . h(;rrh) sm-
L 

(2.48) 

Applying Lagrange's equations (Equation 2.6) to the kinetic energy (Equation 2.46) leads 

to the following expressions for the generalized mass m * and the generalized excitation 

factory*. 

• I pbL2 

m = 
2 ;rr tanh(-;rrh) 

L 

(2.49) 

(2.50) 

Substituting m * and y * from Equations 2.49 and 2.50 into Equation 2.11, the effective 

mass, meffi is obtained (Graham and Rodriquez 1952). 
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8tanh( nz) 
mr = h mw 

n3-

(2.51) 

L 

where mw denotes the mass of liquid in the tank, and mr is used here to denote the 

effective mass, meffi of a rectangular TLD. 

2.3.1.2 Additional Damping Due to Screens 

A certain level of energy must be dissipated by a TLD in order for it to operate 

effectively as a dynamic vibration absorber. The required level of damping is often 

achieved by inserting screens into the TLD tank, as shown in Figure 2.2. Consider the 

case where a number of screens, ns, are placed at discrete locations, Xj, inside the tank. 

Based on the horizontal component of the velocity, u, in Equation 2.47, Jq in Equation 

2.15 becomes 

h( n(z+h)) . (7lX1 ) 
COS Sill-

L L Jq(x1 ,z,t) = Jq(t) 7rh 
sinh(-) 

L 

Substituting Equations 2.47, 2.52 and 2.12 into Equation 2.14 yields 

[ ]

3 
ns 7lX. 

3= L sin{-1 ) 

J=l L 
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~ 
;r(z+h) ]

3 

o cosh( ) bL 1 
~ = J . !dz dzdx = -Jr 3" + -. --;(-;rh"""7""") 

b- smh(L) smh2 L 
(2.54) 

The damping ratio can be computed by substituting L1 and S into Equations 2.22 and 2.25. 

For the case of sinusoidal excitation, the linearized damping ratio can be expressed as 

r • = 3_ CLpbLq0 ~[ . (JTX1 )]
3 

1 1 
'=>eq 2 * ~ sm -+---:--~ 

3 7r m J=l L 3 sinh 2 ( ~) 
(2.55) 

For the case of random excitation, the linearized damping ratio is found to be 

. -g; CLpbLCY" ~[ . JlXJ ]

3 

_!_ 1 
Seq - 2 • ~ sm( ) + -----,(-.,..-) 

7r m J=l L 3 sinh 2 ~ 
(2.56) 

It is evident that the equivalent damping ratio ts dependent on the type of applied 

excitation, i.e. sinusoidal or random excitation. 

2.3.2 Vertical-Cylindrical Tank 

The geometry of a vertical-cylindrical tank is shown in Figure 2.3 together with 

the cylindrical coordinate system adopted in the following derivation. The still liquid 

surface is defined by z = 0, h is the still liquid depth, and a is the radius of the tank. 
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2.3.2.1 Generalized Mass and Stiffness 

The Laplace equation (Equation 2.26) can be written in the following form for a 

vertical-cylindrical tank (Bauer 1964), 

(2.57) 

Equation 2.28 gives the kinematic boundary conditions at the end-walls (r =a) and the 

bottom (z = -h) of the tank, 

(2.58) 

(2.59) 

For a vertical-cylindrical tank, the free surface condition (Equation 2.32) is given as, 

(2.60) 

The velocity potential ¢ can be expressed in the form 

¢(r, z,B,t) = R(x)Z(z)cosmBcosmt (2.61) 

where w is the natural frequency of the sloshing motion. When m = 1 in Equation 2.61, 

the sloshing mode results in a horizontal sloshing force (Abramson 1966), which is the 

mode of interest in this study. Substituting Equation 2.61 into the Laplace equation 

(Equation 2.57), and applying the appropriate boundary conditions (Equations 2.58 and 

2.59) to R(x) and Z(x) respectively, they can be expressed in the following forms 

R(r) = AJ1 (A.r) (2.62) 
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Z(z) = B(coshA.z +tanh AhsinhA.z) (2.63) 

where A and B are constants, A = (Ia, and ( = 1.841 is obtained by applying the boundary 

condition at the container wall, which is given by Equation 2.58. 

The velocity potential can, therefore, be expressed as 

rjJ(x,z,t) = ABJ1 (A,r)(cosh Az +tanh Ahsinh A.z)cos(mB) cos(wt) (2.64) 

Substituting Equation 2.64 into Equation 2.60 leads to the natural sloshing frequency for 

a vertical-cylindrical TLD (Bauer 1964) 

w 2 = ;tg tanh( ;th) (2.65) 

The free surface amplitude, Yf, can be written in terms of generalized coordinate and shape 

function, 

17(x, t) = q(t) cos(m B) _J..:....1 (=-~-· r_l_a-'-) 
Jl(~) 

(2.66) 

Substituting q(t) from Equation 2.66 and ol from Equation 2.65 into Equation 2.64, the 

velocity potential can be expressed as 

1 J(~r/a) 
rjJ(x,z,t)=q(t) 1 coshA(z+h)cosmB 

(~I a)sinh(~/ a) J 1 (~) 
(2.67) 

To obtain the kinetic energy, Equations 2.1 and 2.2 are employed. The kinetic energy of 

an infinitesimal volume of fluid can be expressed 

dKE=dm (XcosB+ur)
2 

+(XsinB+u8 )
2 

+w
2 

2 
0 2 0 2 2 

=(prdrdBdz)(XcosB+ur) +(XsinB+u8 ) +w 

2 
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where ur, u8 and w are radial, circumferential and axial velocity components, which are 

given by Equations 2.69, 2.70 and 2.71, respectively, below. 

(2.69) 

h ~(z+h) cos 
_ 1 8¢ _ . () a J 1 (~·rIa) . B u8 ----q t sm 

r 88 sinh(~h) J 1 (~)~rIa 
(2.70) 

a 

8¢ ·c) 1 Jl(~·rla) . h~(z+h) e w =- = q t sm cos 
8z sinh( c;h )JI ( ~) JI ( ~) a 

(2.71) 

a 

Integrating Equation 2.68 over the volume of fluid yields 

(2.72) 

Applying Lagrange's equations (Equation 2.6) to the kinetic energy equation leads to the 

following expressions for generalized mass m * and generalized excitation factor y *, 

respectively. 

(2.73) 

* 1 3 r = -:rrp·a e (2.74) 
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Substituting m * and y * into Equation 2.11, the effective mass is obtained as 

m = tanh- m 2 a ( ~h) 
vc ~(~2 -1) h a w 

(2.75) 

where mw denotes the mass of liquid in the tank, and mvc denotes the effective mass of a 

vertical-cylindrical TLD. The effective mass of a vertical-cylindrical TLD derived using 

the method described above is the same as that obtained by integrating the hydrodynamic 

pressure acting on the tank walls (Bauer 1964). 

2.3.2.2 Additional Damping Due to Screens 

Consider the case where a number of screens are placed in parallel at discrete 

locations, xi> inside the tank and the horizontal component of the velocity, u 

( = urcos8 + uesin8), is normal to the screens (Figure 2.3). Based on the expressions of Ur 

and u8 in Equations 2.69 and 2. 70, bq in Equation 2.15 is expressed as 

cos h ~(z+h) 
{q(t) a ~h [J0 (~·rla)-al(~·r)J1 (~·rla)]cos 2 B 

J1 (~)sinh(-) 

(2.76) 

a 

h ~(z+h) cos 
. ( ) a J 1 (~·rIa) . 2 B} -qt ~n 

_!_sinh( ;h) ?JJ (~)rIa 
a a 

Substituting u, Equations 2.76 and 2.12 in Equation 2.14 yields 
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(2.77) 

(2.78) 

The damping ratio can be computed by substituting L1 and E into Equations 2.22 and 2.25. 

This procedure could also be used to compute the equivalent damping for the case of 

radial screens inserted in a vertical-cylindrical tank. 

2.3.3 Horizontal-Cylindrical Tank 

2.3.3.1 Natural Frequency and Effective Mass 

Budiansky ( 1960) calculated the natural modes and frequencies of liquid sloshing 

in a horizontal-cylindrical tank having an arbitrary liquid depth using an integral-equation 

approach. Based on this work, the effective mass of sloshing motion can be computed. 

The geometry of a horizontal-cylindrical tank is shown in Figure 2.4a. The still liquid 

surface is given by z = 0, the still liquid depth is expressed in terms of eR, where e is 

ranged from -1 to 1 and R is the radius of the tank. 

Assuming the velocity potential 

rjJ(x,y,z,t) = rjJ(x,y,z)coswt (2.79) 
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the vertical velocity at the free surface w can be expressed in terms of sloshing frequency 

w and velocity potential. Substituting Equation 2.79 into Equation 2.32 the vertical 

velocity at the free surface can be expressed as 

1 2 w=-w¢ 
g 

(2.80) 

After the introduction of the dimensionless coordinate I-J (see Figure 2.4b), the 

relationship between vertical velocity and the velocity potential indicated in Equation 

2.80 becomes 

I 

v(I,i) = A
11
a J¢(I,l)v(l)dl (2.81) 

0 

where I= x/aR, J = zlaR, lis a certain location on the I axis, An = w/Rig; vis the vertical 

velocity along the I axis (J = 0) and the integration is the velocity potential for the internal 

flow along the I axis. By employing conformal mapping, Equation 2.81 can be solved 

numerically. The solution of Equation 2.81 provides the natural sloshing frequency of the 

liquid corresponding to the nth mode 

(2.82) 

where An is a function of e for the nth sloshing mode. Based on the numerical results for An 

from Budiansky (for h S R), a least square fit is conducted as shown in Figure 2.5a and a 

fitted equation for An can be expressed as 

( 

13.129 ( h ) 

~ = 2:) +1.542 2R (2.83) 
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The theoretical results from Equation 2.82 are found to be in good agreement with the 

experimental results (McCarty and Stephens 1960). Applying Lagrange's equations, 

Budiansky (1960) also formulated the sloshing forces of the liquid in a horizontal-

cylindrical tank. Based on this formulation, the effective mass can be evaluated as follows. 

Let x be the displacement potential, 

(2.84) 

where an(t) is a set of generalized coordinates. The displacement potential is associated 

with the fluid displacement relative to the tank. For instance, the free surface amplitude 

can be expressed as ox/oz. The potential energy and kinetic energy can subsequently be 

calculated based on the formulations above 

(2.85) 

KE= 

(p/2) f{[x + l:an(o¢11 I ox)f +[La/1(8¢11 I 8y)f +[Lan(o¢n I oz)f}dV (2.86) 

v 

where F denotes the free surface and Vis the volume of the liquid. 

Substituting Equations 2.79 and 2.84 into Equation 2.85, and substituting Equations 2.79, 

2.80 and the surface condition into Equation 2.86 leads to 

(2.87) 

(2.88) 

where 
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(2.89) 

(2.90) 

p is the liquid mass density, g is the acceleration of the gravity, and mw is the mass of 

liquid. By applying Lagrange's equations to the potential energy and kinetic energy, a 

differential equation and the expression for sloshing force are obtained as follows 

(2.91) 

F- mX "P .. s -- -p~ nan (2.92) 

In 1-J coordinates, Equations 2.91 and 2.92 become 

(2.93) 

(2.94) 

where 

I 

A"= J[v"(1)]2d1 (2.95) 
0 

(2.96) 

r is the free surface amplitude in 1-J coordinates, X is the displacement amplitude of the 

tank in x direction and An and Bn can be evaluated numerically. A least squares fit was 

applied to the numerically obtained values of An and Bn, for n = 1 as shown in Figure 2.5b. 

The following equations are obtained for h/L = 0 ~ 0.6. 
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AI = (1/3) (2.050)h/L (2.97) 

Bl = 0.339(1.392)h/L (2.98) 

The generalized mass and generalized excitation factor, corresponding to the fundamental 

sloshing mode, can be obtained from Equations 2.93 and 2.94. The generalized mass is 

given by 

(2.99) 

and the generalized excitation factor is expressed as 

(2.100) 

For n = 1, the effective mass is given by 

(2.101) 

A comparison of the effective mass calculated using values of AI and BI from Equations 

2.95 and 2.96 to that based on the fitted AI and B I values is shown in Table 2.1. The error 

introduced when AI and BI calculated using the fitted values is found to be less than 3%. 

Therefore, for h/L values within the fitted range, the value of mhc can be readily 

determined using the fitted values for A I and B I. 

2.3.3.2 Generalized Mass and Stiffness 

Since the solution of the velocity potential is an integral, the previous method does 

not lend itself well to calculating the damping that results from inserting screens into the 

tank. In this section, a closed-form solution of a velocity potential is presented. A 
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Cartesian coordinate (x-o-z) is attached to the top of the cylinder as shown in Figure 2.6a. 

Bartkowiak (1985) postulated that the streamlines in a horizontal-cylindrical tank are 

circular, and posed a stream function to satisfy the Laplace equation (Equation 2.27). The 

stream function is given as 

( ) 
M z . 

If/ x,z,t = 
2 2 

smwt 
27r X + Z 

(2.102) 

This function corresponds to a doublet of strength M located at the ongm of the 

coordinate system. A doublet is an equal strength source-sink pair with infinitesimal 

distance between them (White 1999). Based on this stream function and using the 

relationship between If/ and¢, a velocity potential function can be expressed as 

¢(x,z,t) = cc 
2 

x 
2 

sinwt 
x +(z-R) 

(2.103) 

from the relationship 

ax 8z 
(2.104) 

where cc is an unknown constant. For simplicity of integration, the Cartesian coordinate is 

moved from the top of the circle to its origin as shown in Figure 2.6b. Since the stream 

function is circular, the velocity normal to the container wall is zero, i.e. the boundary 

condition given by Equation 2.28 is satisfied. Applying the linearized Bernoulli equation 

(Equation 2.30) to the velocity potential function (Equation 2.1 03) yields 

2R(R-H) X 
rJ(x,t) = q(t) .J 2 2 2 (H R)2 = q(t)rp(x) 

R -H X + -
(2.105) 
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The response amplitude is expressed as 

q(t) = q0 COSOJt (2.106) 

where q0 is the wave amplitude at point A as shown in Figure 2.6b, and qJ{x) is the mode 

shape (see Appendix B for detailed derivation). 

Expressing¢ (x, z, t) in terms of the generalized coordinate q(t) 

A.(x z t) = q· (t) JL 2R(R-H) x 
r ' ' 2 1 2 2 2 ( R)2 OJ vR -H x + z-

(2.107) 

the velocity components, u and w, thus become 

(2.108) 

8¢ . g 2R(R-H) 2x(z-R) 
w(x z t)--- q(t)--r====------' ' - a - 2 1 2 2 [ 2 ( R)2 ]2 z OJ vR -H x + z-

(2.109) 

Unlike the rectangular and vertical-cylindrical tank cases, derived previously, the natural 

frequency of the sloshing motion in a horizontal-cylindrical tank cannot be obtained by 

utilizing the free surface boundary condition due to the nature of the posed stream 

function. However, the natural frequency can be determined by using either the mass-

stiffness relationship (Equation.2.1 0) or Equation 2.82 derived by Budiansky (1960). 

The kinetic energy of liquid sloshing can therefore be expressed in terms of u and 

was follows 

(2.110) 
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1 H .J R2-z2 

KE=2pb J J[(k +uJ +w
2
Jfxdz 

-R_.J R2-z2 

(2.111) 

No explicit solution for this integral was found. However, this equation can be 

evaluated numerically for given values of H and R. In this study, H is the liquid depth 

measured from the origin of the circular cross-section, and R is the radius of the tank 

(Figure 2.6b ). Applying Lagrange's equations (Equation 2.6) to the kinetic energy 

(Equation 2.111) and using Equation 2.11, the effective mass for the horizontal-

cylindrical tank can be calculated. Values of normalized effective mass, rneflrnw, 

calculated using this procedure are listed in Table 2.1. The rneflrnw values can also be 

obtained using Equation 2.101, formulated by Budiansky (1960). The effective mass 

values determined using the velocity potential based on the stream function are in good 

agreement with those based on Budiansky' s work, however, as the depth ratio increases, 

greater discrepancy is observed. The effective mass values calculated using the two 

different methods are found to be within 3% when h/L<0.4 and is within 7% at h/L = 0.5. 

Therefore, for h/L < 0.5, the equation of the stream function given by Equation 2.102 is 

considered suitable for determining the effective mass. 

2.3.3.3 Additional Damping due Screens 

Using the velocity potential, based on the assumed stream function, given by 

Equation 2.1 07, the damping provided by screens can be calculated. Consider a number 

of screens placed at discrete locations, Xf> inside the tank, based on the horizontal 
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component of the velocity u in Equation 2.1 08, the virtual displacement Jq in Equation 

2.15 becomes 

;;:,.,( ) = ;;:,.,( )_K_ 2R(R-H) (z-R)
2 
-x

2 

tAJ x.,z,t tAJ t 2 ( 2 1 
m .JR2 -H2 [x 2 + z-R) f 

(2.112) 

Substituting Equations 2.1 07, 2.112 and 2.12 into Equation 2.14 yields 

(2.113) 

-H [ 2 2 J3 
~ ns (z - R) -X j 

c = L J J 2 2 2 dzdy 
j=l b -h'-x' [xj + (z- R) ] 

(2.114) 

The damping ratio can be computed by substituting L1 and 2 into Equations 2.22 and 2.25. 

2.3.4 Conical and Hyperboloid Tank 

2.3.4.1 Natural Frequency and Effective Mass 

Troesch ( 1960) solved the Laplace equation (Equation 2.26) for conical and 

hyperboloid tanks, and found the natural frequency of the sloshing motion. The geometry 

of a conical and hyperboloid tanks are shown in Figure 2.7 together with the cylindrical 

coordinate system. 

A velocity potential function, which satisfies the Laplace equation, is introduced 

¢ = (r+Arz)cosBcosmt (2.115) 

Substituting Equation 2.115 into Equation 2.32, the free surface boundary condition, 

yields 
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(2.116) 

The kinematic boundary condition at the tank walls (Equation 2.28) can be rewritten in 

the following form in the cylindrical coordinate system for the conical and hyperboloid 

TLDs, 

8¢ 8¢ 
-dr--dz=O 
8z 8r 

(2.117) 

Substituting the velocity potential in Equation 2.115 into Equation 2.117 and integrating 

gives 

2 1 2 r = (z+-) -C 
A 

(2.118) 

When the constant Cis chosen to be zero, the container represent a 45-degree cone with a 

depth of h = 1/A. and a radius at the free surface of R = 1/A.. The natural frequency of the 

free surface oscillation with one nodal diameter can be obtained from Equation 2.117 as 

(2.119) 

When the constant C in Equation 2.118 is a positive number, the shape of the tank 

is a hyperboloid asymptotic to a 45-degreee half-angle cone, and the natural frequency is 

(2.120) 

The natural frequency of a 45-degree conical tank, given by Equation 2.119, agrees with 

the theoretical results found by Moiseev and Petrov (1968). 
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Substituting the velocity potential (Equation 2.115) into Equation 2.30 yields the 

wave height 

r OJR . r 
17(r,t) = -cosB(-smwt) = -cos8:J(t) 

R g R 
(2.121) 

where 

() 
wR . . 

q t = -smOJt = q0 smOJt (2.122) 
g 

Here q(t) represents the wave height when B equals -1 or 1 in free oscillation. The 

velocity potential can be rewritten in term of q(t), and the velocity components are given 

as 

8¢ ( 1 ) 1 . u=-= -+z -q(t) ax A R 

w =a¢ = !_cos(B)q(t) 
8z R 

To obtain the kinetic energy, Equations 2.1 and 2.2 are employed. 

(2.123) 

(2.124) 

(2.125) 

(2.126) 

Applying Lagrange's equations (Equation 2.6) to the kinetic energy equation leads to the 

following expressions for generalized mass m * 

(2.127) 
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and generalized excitation factor y * 

* 1 3 r =-p7rR 
4 

(2.128) 

Substituting m * and y *from Equations 2.127 and 2.128 into Equation 2.11, the effective 

mass meff is obtained as 

(2.129) 

where mw denotes the mass of liquid in the tank, and mh denotes the effective mass of a 

hyperboloid and conical TLD. 

2.3.4.3 Additional Damping Due to Screens 

Based on the horizontal component of the velocity u in Equation 2.123, the virtual 

displacement Jq in Equation 2.15 becomes 

Substituting Equations 2.123, 2.130 and 2.12 into Equation 2.14 yields 

L1 = 1 

ns 

';:::;'-""' ~-~ 

j=l 

[(-3+a 2 .A? +2a 4 A-4 ).Jli.A? -a 2 +(3h/A-4 +18h/.A? -h/A-4 a 2 

-12h/ A-3 -12hjA- + 2h/~}a 2 - a 2 A-2 - 2a 4 A-4 + 3)~(hj -1 I A-) 2 -a 2
] 

(-15A-4 R 3
) 

The parameters A., a, and hj are given as 
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(2.133) 

(2.134) 

(2.135) 

where h is the liquid depth at the centre of the tank, and hj is the liquid depth at the 

location of the screen. The damping ratio can be computed by substituting L1 and S into 

Equations 2.22 and 2.25. 

With the natural frequency, effective mass and amplitude-dependent damping 

ratio, a mechanical model of a TLD, for the tank geometries considered, can be 

constructed. All equations for the parameters corresponding to the equivalent mechanical 

model of TLDs derived in this chapter are summarized in Appendix A. 

2.4 Comparison of Properties between Equivalent Mechanical Models 

The key properties of TLDs, which significantly affect the dynamic response of a 

structure-TLD system, include the natural frequency, effective mass and damping ratio. 

They will be discussed in this section and comparison of the TLD properties for different 

tank geometries will be presented. 

2.4.1 Natural Frequency 

The formulas for calculating natural frequency have been derived in the previous 

sections. From Equations 2.41, 2.65, 2.82 and 2.120, the fundamental sloshing frequency 
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of a rectangular, vertical-cylindrical, horizontal-cylindrical and hyperboloid TLD can be 

expressed as 

Rectangular 

r 1 1.841g tanh 1.841h = _1 3.682g tanh 3.682h 
J vc = 2tr R R 2tr L L 

Vertical-Cylindrical 

Horizontal-Cylindrical 

J; __ l ~ _ _!_ 2g h/L 
h- 2tr V~- tr L l+4(h/ L) 2 

Hyperboloid/Conical 

The free surface length and depth ratio influence the natural sloshing frequency of 

the various TLDs, as shown in Figures 2.8 to 2.11. For all tank geometries considered, the 

natural frequency is found to increase as the liquid depth ratio h/L increases, or as the 

tank length, L, is decreased. The rate of increase in the natural frequencies of the TLDs is 

found to be the largest when the liquid depth ratio is small. For a horizontal-cylindrical 

tank, it is found from geometry that L = ..J(Rh/2 - h2/4). Therefore, unlike other TLDs, 

when computing the natural frequency of a horizontal-cylindrical TLD, in order to hold 

the free surface length L at a certain constant value with adjustment of h/L, the radius R 

must be varied (Figure 2.1 Oa). It is more practical to study the natural frequency by 

defining the liquid depth ratio as h/2R, although 2R is not half the wavelength 

corresponding to the fundamental sloshing mode. Figure 2.1 Ob is the natural frequency of 

a horizontal-cylindrical TLD with the newly defined liquid depth ratio. The natural 

frequencies for all TLDs considered here are normalized by .frand shown in Figure 2.12. 
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In most of the studied h/L range, the following trend is found: fie> .fvc > f,. > Ji,. This is a 

result of the difference in equivalent tank length between the different geometries 

considered in this study. 

2.4.2 Effective Mass 

Observing Equations 2.51, 2.75, 2.101 and 2.129 given below, the effective mass 

of a TLD formulated based on potential flow theory depends upon the liquid depth ratio, 

h/L. 

m = r 

h 
8tanh(7r-) 

L m 
3 h 

Jr -
L 

mvc = ; a (tanh !;h )m 
!;(!; -1) h a 

Rectangular 

Vertical-Cylindrical 

Horizontal-Cylindrical 

mh = 45{(64(h I L)6 -80(h I L)4 + lOO(h I L)2 + 15][3 -4(h/ L)2
]}-

1 
m 

Hyperboloid/Conical 

It is evident from Figure 2.13 that the normalized effective mass, meflmw, decreases as 

liquid depth ratio, h/L, is increased for all tank geometries considered. In other words, a 

smaller liquid depth ratio value results in a greater percentage of liquid participating in 

the sloshing motion. Usually rectangular TLDs are examined in the region where the 

effective mass is approximately 70 to 80 % of the total liquid mass. This corresponds to 

an h/L value ranging from 0.1 to 0.3. For most h/L ratio values, mhc> mh> mr;::::; mvc· The 
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inactive liquid at the end-walls of a rectangular and vertical-cylindrical TLD is eliminated 

by using a horizontal-cylindrical or hyperboloid tank. This results in nearly 100% of the 

fluid participating in the sloshing motion for horizontal-cylindrical and hyperboloid tanks 

at small h/L values. However, for the rectangular and vertical-cylindrical cylindrical tanks 

the maximum me.tlmw values are approximately 80%. The dotted lines in Figure 2.13 

indicate commonly employed h/L values for rectangular and vertical-cylindrical tanks. A 

horizontal-cylindrical tank is found to have meff values approximately 15% greater that 

rectangular or vertical-cylindrical tank values for corresponding h/L values. This is a 

significant increase and results in a larger mass ratio value, given the same total liquid 

mass mw, as that of a rectangular or vertical-cylindrical tank. 

2.4.3 Damping 

Given the dimensions of a TLD, the four factors that influence the damping ratio 

are the liquid depth ratio h/L, number of screens ns, loss coefficient Cr and fluid response 

amplitude qo. For simplicity, the case of one screen inserted at the centre of the tank for a 

TLD having the same length of free surface (L = 1m) is studied here. As shown in Figure 

2.14, the normalized damping ratio, (!Cr, for a rectangular tank is found to decrease as 

the liquid depth ratio, h/L, is increased, which is attributed to the decrease in L1 and S. In 

addition, the effects of liquid depth ratio, h/L, and normalized free surface response 

amplitude, rtiL, on the normalized damping ratio, (!Cr, are shown in Figures 2.15 to 2.18 

for the TLDs considered in Section 2.3. The increase in (!Cr with rtiL is linear for all 

TLDs as a result of the velocity squared damping. This is expected as the damping ratio is 

amplitude dependent (see Equations 2.22 and 2.25). Large response amplitude and 
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shallow liquid depth result in high fluid velocity causing increased drag force. The drag 

force is proportional to the fluid velocity squared and is directly related to the energy 

dissipated by the screen. As a result, increased damping is attributed to large response 

amplitude and shallow liquid depth. For a h/L = 0.1, 0.15 and 0.2, the following trend is 

found, respectively: (/CL > (vciCL > (hcfCL > (h/CL, (/CL > (vciCL ::::::: (hcfCL > (h/CL and 

(/CL > (hcfCL > (vcfCL > (h!CL. According to Equations 2.22 and 2.25, the above findings 

are similar for both sinusoidal and random excitation. 

2.5 Summary 

The parameters of an equivalent mechanical model, which are the effective mass, 

damping ratio and natural frequency, are derived for TLDs with different tank geometries 

by applying Lagrange's equations, Morison's formula and the method of virtual work. 

The effective mass of rectangular and vertical-cylindrical TLDs, derived using the 

method described in Section 2.1, are the same as those obtained using an analytical 

mechanical system approach (Graham and Rodriguez 1952) or by integrating the 

hydrodynamic pressure acting on the tank wall (Bauer 1964). The derived effective mass 

for a horizontal-cylindrical TLD is in good agreement with results based on Budiansky's 

work (1960). The damping ratio, which is modelled as an amplitude-dependent parameter, 

is found to increase with fluid response amplitude due to the velocity squared damping 

resulting from the screens. Additionally, for all TLDs, as the liquid depth ratio increases, 

the effective mass of the TLD decreases, and the natural frequency of the TLD increases. 

Furthermore, comparisons are made among each parameter for TLDs with different tank 

geometries. From the results obtained using linear potential flow theory, the equivalent 
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mechanical model parameters for the TLDs considered have the following relationship. In 

the common design and operational range of h/L values, the following trends are found 

for the sloshing frequency values, fie> fvc> f,. > .fh; for the effective mass values, mhc > mh 

> mr::::: mvc, and for the normalized equivalent viscous damping values, (/CL > (vciCL ::::: 

(h/CL > (h!CL, i.e. the horizontal-cylindrical TLD possess the properties of high natural 

frequency and effective mass but the lowest normalized damping value. The effective 

mass of a horizontal-cylindrical tank is approximately 15% larger than those of a 

rectangular or vertical-cylindrical tank. This increase in effective mass results in a larger 

mass ratio value. 

This model is limited to small wave amplitude such that linear potential theory is 

valid, and that the effective mass and natural frequency are regarded as amplitude

independent parameters. This model is valid for TLD response amplitudes associated with 

wind-induced building motions. However, large free surface response amplitudes, which 

may occur, for example, during an earthquake event, are expected to exceed the valid 

response amplitude range of this model. 

A velocity potential function of fluid flow is not always available for certain tank 

geometries. However, linear long wave theory can be applied to evaluate the fluid 

velocity in complex tank geometries. Thus, equivalent mechanical models for TLDs with 

more complex geometries can be constructed, which will be presented in the next chapter. 
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Table 2.1 Comparison of Calculated Effective Mass Values 

%different %different 
Budiansky 

Budiansky between 
Velocity 

between 
(1960) Potential 

fitted A1, B1 (mhclmw)a (mhcfmw)a 
actual A1, B1 

&(mhclmw)r 
Theory 

&{mhclmw)v 

h/2R (mhclmw)a (mhclmw)r (mhclmw)v 

0.1 92% 94% 2% 92% 0% 

0.2 84% 86% 2% 83% -1% 

0.3 75% 77% 3% 74% -1% 

0.4 66% 67% 2% 64% -3% 

0.5 57% 58% 2% 53% -7% 
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Figure 2.2 Delmition Sketch for Liquid Sloshing in a Rectangular Tank 
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(a) Delmition Sketch for Liquid Sloshing in a Horizontal-Cylinder 
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Figure 2.6 (a) Definition Sketch for Liquid Sloshing in a Horizontal-Cylindrical 
Tank with Streamlines (b) Coordinate Transformation 
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Chapter 3 Theoretical Modelling of TLDs with Different Tank Geometries 

Using Linear Long Wave Theory 

The dynamic properties required to construct an equivalent mechanical model of a 

TLD were derived in the previous chapter using potential flow theory. It is valid for any 

liquid depth ratio, h/L, whereas linear long wave theory can be utilized when h/L < 0.1. 

Additionally, linear long wave theory is limited to small free surface amplitude, that is, 1J 

<<hand 11 /(16L4/h 3
) << 1 (Le Mehaute 1976). Derivation of the dynamic properties of 

TLDs will be presented in this chapter using linear long wave theory, following the 

procedure outlined in Section 2.1. The following section provides a brief introduction to 

linear long wave theory. 

3.1 Linear Long Wave Theory 

The governing equations of linear long wave theory are the one-dimension linear 

continuity (Equation 3.1) and momentum equations (Equation 3.2), in which the 

convective inertia, friction terms and the nonlinear terms are neglected, respectively 

a(uhb) = -b a77 
ax at (3.1) 

(3.2) 

where b is the tank width and 11 is the free surface amplitude. The wavelength for the first 

sloshing mode is denoted by 2L and it is equal to twice the length of the free surface. The 

horizontal velocity component is assumed to be constant through the liquid depth due to 
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the small liquid depth ratio. Differentiating Equation 3.1 with respect to time, and 

eliminating b(8u/8t), using Equation 3.2, leads to 

(3.3) 

For the case of a constant tank width b, and the assumption of simple harmonic motion, 

the wave height at any location along the tank length can be expressed as 

1J(x,t) = f(x)q 0 coswt (3.4) 

where j(x) is an arbitrary function of x and q0 is the wave amplitude at the end-wall. 

Substituting Equation 3.4 into Equation 3.3, the following differential equation for the 

free surface response is obtained (Lamb 1932, Le Mehaute 1976) 

(3.5) 

The horizontal velocity component and wave height of the sloshing liquid in 

different tank geometries have previously been investigated using linear long wave theory. 

Lamb (1932) formulated the wave height and natural frequency for rectangular, triangular 

and parabolic tanks. Zeit (1986) extended the formulas of wave height and natural 

frequency for a sloped-bottom tank. Bauer (1981) approximated the velocity potential and 

natural frequency of sloshing liquid in a sloped-bottom tank using potential flow theory. 

However, these approximations yield acceptable results only when the sloping angle of 

the tank is large. The derivations of equivalent mechanical models for triangular, sloped-

bottom, parabolic, and rectangular TLD are provided in the following sections. 
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3.2 Derivation of Equivalent Mechanical Models of TLDs with Different Tank 

Geometries Using Linear Long Wave Theory 

3.2.1 Triangular Tank 

3.2.1.1 Generalized Mass and Natural Frequency 

A local Cartesian coordinate (x-o-z) is introduced as shown in Figure 3.1. The still 

liquid surface is defined by z = 0, h is the still liquid depth at the centre, and s is the 

length of the sloping region. The liquid depth, h(x), increases linearly from either end to 

the centre of the tank. 

Setting 

h(x) = hx/ s (3.6) 

and substituting Equation 3.6 into Equation 3.5 and subsequently solving the differential 

equation yields (Lamb 1932) 

(3.7) 

where 

(3.8) 

The constant A can be determined by equating the term 17 in Equation 3.7 to that given by 

Equation 3.4. The solution to Equation 3.5 is found to be in the following form 

Restoring the time factor yields 

lJ(x,t) = q0J 0 (2.f;;)coswt 
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or 

l](x,t) = J 0 (2J;;;)q(t) (3.11) 

where 

q(t) = q0 cos mt (3.12) 

For the lowest sloshing mode, the wave height, '7, is zero at the centre of the tank (x = s), 

and the natural frequency can be determined by solving the following equation, 

(3.13) 

or 

(3.14) 

The solution to Equation 3.14 is 2f;; = 2.405. From Equation 3.8, it is found that 

OJ
2 = 5.784 g~ 

L 

The horizontal velocity component can be obtained by integrating the momentum 

equation (Equation 3.2) over time 

u = -g J8l](x,t) dt 
ax 

Substituting Equations 3.8 and 3.11 into Equation 3.16 yields (see Appendix C) 

(3.15) 

(3.16) 

(3.17) 

In long wave theory, it is assumed that the vertical velocity component is much 

smaller than the horizontal velocity component. Therefore, the vertical velocity 
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component can be neglected with negligible loss of accuracy when the kinetic energy is 

calculated (Dean and Dalrymple 1984). The mass of a liquid particle can be expressed as 

h 
dm = p-xdx 

s 
(3.18) 

Using Equation 2.2, the kinetic energy of the sloshing liquid in a triangular tank can be 

expressed as 

sf1 . 2 h 
KE=2 -(u+X) p-xdx 

02 s 
(3.19) 

Applying Lagrange's equations (Equation 2.6) to the kinetic energy equation above leads 

to the generalized mass, m *, generalized excitation factor, y *, and effective mass, m1, 

respectively, of a triangular tank, 

(3.20) 

(3.21) 

8[cJ o (c)- 2JI (c )r 
(3.22) 

where 

c=2Jh, (3.23) 

and mw denotes the total mass of liquid in the tank. Substituting the solution of Equation 

3.14 into Equation 3.22, an effective mass ofm1 = 95.7% mw is obtained. 

71 



M.A.Sc. Thesis- X. Deng McMaster University- Civil Engineering 

3.2.1.2 Additional Damping Due to Screens 

Based on the horizontal component of the velocity u in Equation 3.17, the virtual 

displacement oq in Equation 2.15 becomes 

(3.24) 

Substituting Equations 3.17, 3.24 and 2.12 into Equation 2.14, the parameters L1 and S for 

a triangular tank can be expressed as 

(3.25) 

(3.26) 

The damping ratio can be computed by substituting L1 and S into Equations 2.22 and 2.25. 

3.2.2 Sloped-Bottom Tank 

3.2.2.1 Generalized Mass and Stiffness 

The coordinate system used for a triangular TLD is also used for a sloped-bottom 

TLD (Figure 3.2). The liquid depth h(x) is expressed as 

{

hxls 
h(x) = h (3.27) 

where s is the length of the sloping region, and La is equal to half of the free surface 

length. Substituting Equation 3.27 into Equation 3.5 and solving the differential equation 

yields 
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for (x < s) (3.28) 

81J t ,-- =- -J1 (2-v ~a )q(t) 
8x X 

for (x < s) (3.29) 

for (s < x < L 0 ) (3.30) 

for (s < x < L0 ) (3.31) 

In order to obtain the constants a 1 and a;z in Equations 3.30 and 3.31, the conditions of 

equal head loss and velocity at x = s are applied. That is to force 11 and 8yt/8x to be 

continuous at x = s, where the sloping region and the uniform-depth region meet. 

Complete expressions for Equations 3.30 and 3.31 are given by Zeit (1986). 

The horizontal velocity component of the sloshing motion can be determined using 

Equations 3.16, 3.29 and 3.33 and can be expressed as 

s t ,-. U = - -JI (2v Ia )q(f) 
Tdz X 

for (x < s) (3.34) 

for(s<x<L0 ) (3.35) 
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To obtain the natural frequency of oscillation, the condition of 1J(L0, t) = 0 is applied to 

Equation 3.32, that is, 

for (s < x < 1) (3.36) 

The final solution to the above equation, which yields values of K, is computed using 

MathCAD, as a closed-form solution was not found. 

Equations 2.1 and 2.2 are used to calculate the kinetic energy with 

h 
dm = p-xdx 

s 
for (x < s) (3.37) 

dm = phdx for (s < x < L0 ) (3.38) 

The kinetic energy of sloshing liquid in a sloped-bottom tank can be expressed as 

KE=2 J-(u+XY p-xdx+ J-(u+X/ phdx 
[

s 1 h Lo 1 ] 

0 2 s s 2 
(3.39) 

Applying Lagrange's equations to the kinetic energy equation leads to the generalized 

mass and the generalized excitation factor. 

[

cJ0 

2 
(c)- 2J0 (c )J1 (c)+ cJ1

2 
(c)+ cL0J 1

2 
(c )I 2s l 

m * = 2p(:h J -2J0 (c )J1 {c )cosc(l-11 s) -J1
2
(c )sinc(1-11 s) 

+J0

2 (c )sinc(1-11 s) +cL0J 0

2 (c )1 s 

y* = 
8.0: 2 

[- 2J1 (c)+ cJ1 (c )sinc(1-1/ s) + cJ0 (c )cosc(1-11 s)] 
c 

(3.40) 

(3.41) 

The effective mass can be found by substituting Equations 3.40 and 3.41 into Equation 

2.11 
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32ps 2h 2 
[- 2J1 (c)+ cJ1 (c)sinc(l-1/ s) + cJ0 (c )cosc(1-1/ s)Y 

m =----~~~~--~~------------~~----~--~ 
s [cJ0

2
(c )- 2J0 (c )J1 (c)+ cJ/(c)+ cL0 J 1

2 
(c)! 2s l 

c 4 
- 2J0 (c )J1 (c )cosc(1-ll s)- J 1

2 (c )sinc(1-ll s) 

+ J 0 

2
(c )sinc(l-1/ s) + cL0J 0 

2 (c )! s 

(3.42) 

3.2.2.2 Additional Damping Due to Screens 

Equations 3.34 and 3.35, which describe the horizontal component of the velocity 

u, are employed to compute the virtual displacement bq of the liquid particles in Equation 

2.15, which can be expressed as, 

for(x<s) (3.43) 

for (s < x < L0 ) (3.44) 

Substituting Equations 3.34 and 3.35 for u, Equations 3.43, 3.44 and 2.12 into Equations 

2.14 yields 

• for the case of Xj < s, Z and L1 are the same as the expressions found for a triangular 

tank given by Equations 3.25 and 3.26. 

• for the case of s < Xj < L0, L1 is the same as Equation 3.26, and 

1lSi[ i i ] 2 = L - J 1 (c)cos -(x-s) +J0 (c)sin -(x-s) h 
;=I S S S 

(3.45) 
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3.2.3 Parabolic Tank 

3.2.3.1 Generalized Mass and Natural Frequency 

The geometry of a parabolic TLD is shown in Figure 3.3 with a Cartesian 

coordinate system, where L 0 represents half of the free surface length. 

(3.46) 

Substituting Equation 3.46 into Equation 3.5 and solving the differential equation gives 

(Lamb 1932) 

(3.47) 

for the first sloshing mode (n = 1) and 

(3.48) 

Substituting Equation 3.47 into the momentum equation (Equation 3.2) and integrating 

over time yields 

L . 
u(x,t) = - 0 q(t) 

2h 

To obtain the kinetic energy, Equations 2.1 and 2.2 are employed 

x2 
dm = ph(l- -

2 
)bdx 

Lo 
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Applying Lagrange's equations to the kinetic energy leads to generalized mass, m *, 

generalized excitation factor, y *, and effective mass, mp, respectively, for a parabolic tank, 

* - 3_L 2b r - o 
3 

(3.52) 

(3.53) 

(3.54) 

All liquid is found to participate in the sloshing motion. It is noted that in the linear long 

wave theory the velocity is assumed to be constant through the liquid the depth. 

3.2.3.2. Additional Damping Due to Screens 

Based on the horizontal component of the velocity u in Equation 3.49, <5q in 

Equation 2.15 becomes 

L 
&j(x, t) = -&j(t) - 0 

2h 
(3.55) 

Substituting Equations 3.49, 3.55 and 2.12 into Equation 2.14, the parameters L1 and S are 

found to be 

ns 

3= _Lh(x) (3.56) 
j=O 

(3.57) 
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3.2.4 Rectangular Tank 

3.2.4.1 Generalized Mass and Natural Frequency 

The geometry of a rectangular TLD is shown in Figure 3.4 with a Cartesian 

coordinate system. The still liquid depth h(x) is constant in this case, therefore, 

h(x) = h (3.58) 

Substituting Equation 3.58 into Equation 3.5 and solving the differential equation yields 

(J) 
r;(x,t)=q(t)cos( Gx) 

...;gh 

where 

q(t) = q0 COS(J)t lx~o 

(3.59) 

(3.60) 

For the lowest sloshing mode, the free surface elevation 17 is zero at the centre ofthe tank 

(x = L/2), and the natural frequency can be determined by solving the following equation 

(Lamb 1932), 

(J) 
cos( Gx) = 0 

...;gh 

and is found to be 

2 h (J) =g;r-
L 

Integrating the momentum equation (Equation 3.2) over time yields 

u(x,t) =-~sin(" x)q(t) 
7fh L 

Additionally, the mass of a liquid particle can be expressed as 
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dm = phxdx (3.64) 

Applying Equation 2.2, the kinetic energy of sloshing liquid in a rectangular tank can be 

expressed as 

s 1 
KE = f-(u+X) 2 phdx 

0 2 
(3.65) 

Applying Lagrange's equations to the kinetic energy equation leads to generalized mass, 

m *, generalized excitation factor, y *, and effective mass, mr/, respectively, 

(3.66) 

(3.67) 

(3.68) 

where mr1 denotes the effective mass of a rectangular TLD based on linear long wave 

theory. Note that Equation 3.68 can be considered as a special case of Equation 2.51 with 

h/L :S 0.1 and 

(3.69) 

3.2.4.2. Additional Damping Due to Screens 

Based on the horizontal component of the velocity u in Equation 3.63, the virtual 

displacement Jq in Equation 2.15 becomes 
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Ciq(x,t) = -~sin(Jr x)Ciq(t) 
7rh L 

(3.70) 

Substituting Equations 3.63, 3. 70 and 2.12 into Equation 2.14 yields 

(3.71) 

(3.72) 

For comparative purposes, equations for the equivalent mechanical model properties for 

all tank geometries investigated in this chapter are summarized in Appendix A. 

3.3 Comparison of Equivalent Mechanical Model Properties 

Linear long wave theory can be considered as a special case of small amplitude 

wave theory when h/L approaches zero (Le Mehaute 1976). Linear long wave is valid 

when h/L is less than 0.1. If h/L exceeds the limit of 0.1, the natural frequency, effective 

mass and damping ratio will be overestimated, as this theory assumes the horizontal 

velocity is uniform through the liquid depth. 

3.3.1 Natural Frequency 

The formulas for calculating the natural frequency for four different tank 

geometries have been derived. From Equations 3.15, 3.36, 3.48, and 3.62, the 

fundamental sloshing frequency of triangular, parabolic, sloped-bottom, and rectangular 

tanks, respectively, can expressed as 
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+ = 1.023 c;; 
J t JLL V gn 

f. - & c;; 
s - 2L -vgn 

where 

1. _1 c;; 
rl- 2L vgn 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

(3.77) 

The ratio of the natural frequency of a sloped-bottom TLD to that of a rectangular TLD is 

denoted by c, which is a function of siLas shown in Figure 3.5 (Gardarsson et al 2001 ). 

It is shown in Figures 3.5 to 3.9 that tank length and liquid depth ratio affect the 

natural frequencies of these TLDs. The natural frequency is found to increase as the depth 

ratio hi L increases, or as the tank length L decreases. The rate of increase in the natural 

frequencies of the TLDs is large when depth ratio is small. For a sloped-bottom TLD, the 

ratio of the length of sloping region to free surface length siLo also affects the natural 

frequency as shown in Figure 3.5. The natural frequency decreases with an increase in 

siLo. Triangular and rectangular tanks correspond to siLo values of unity and zero, 

respectively (Gardarsson et al. 2001). The error between the theoretical results and the 

experimental results is found to be less than 4% (Gardarsson 1997). 
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The formulations of natural frequency based on linear long wave theory are valid 

when the liquid depth ratio is less than 0.1. Thus, Equation 3.73 to Equation 3.77 for 

triangular, sloped-bottom, parabolic and rectangular TLD cannot be used to accurately 

evaluate the natural frequency when the depth ratio is larger than 0.1. 

Lamb (1932) developed a solution for a triangular tank with 45° sloping angle 

(corresponding to h/L = 0.5) using potential flow theory. In Figure 3.6, the lines present 

the natural frequency calculated using linear long wave theory, and the makers at h/L = 

0.5 are the natural frequency values which have been 'determined using Lamb's solution. 

It is shown that the natural frequency, derived using linear long wave theory, is 

overestimated when h/L exceeds 0.1. This overestimation of the natural frequency is also 

shown in Figure 3.9 for a rectangular tank (where the markers represent the results based 

on potential flow theory, note that good agreement is found for h/L < 0.15). Figure 3.6 

can be used to approximate the natural frequency of a triangular tank with any sloping 

angle in the range of 0 to 45° by assuming the natural frequency increases linearly 

between the linear long wave theory results at h/L = 0.1 and the potential flow theory 

results at h/L = 0.5. Bauer (1981) approximated the natural frequency of a triangular and 

sloped-bottom tank with a large sloping angle using potential flow theory. It is postulated 

that the method described above to estimate the natural sloshing frequency for h/L values 

greater than 0.1 can be applied to sloped-bottom tanks as well. The natural frequency of 

triangular and sloped-bottom tanks in this range of h/L values has not been determined 

theoretically. For all h/L values, the trend is found, frt >Is > ft > /p, as shown in Figure 

3.10. 
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3.3.2 Effective Mass 

The effective mass of a TLD derived from linear long wave theory is independent 

of the depth ratio hiL. The effective mass for a parabolic, triangular and rectangular TLD 

has been found to be 100, 95.7 and 81.1 % of the total liquid mass, respectively. For a 

sloped-bottom TLD, the effective mass depends upon the length of free surface L and the 

length of the sloping regions. By holding L0 constant, and changing the value of s, it is 

found that a maximum effective mass of 99.4%mw occurs at siLo= 0.6 or sloping angle of 

18° (Figure 3.11 ), i.e. this configuration of a sloped-bottom TLD is the most effective in 

eliminating the inactive liquid at the end-walls of a rectangular tank. Also, when keeping 

s constant, and varying the value of L0, the maximum effective mass occurs at Lois = 1.8 

(Figure 3.12) i.e. siLo= 0.6. The effect of the sloping region on the properties of the TLDs 

is reduced, as L 0 increases. As a result, the sloped-bottom TLD possesses similar 

properties to those of a rectangular TLD. For instance, the effective mass of a sloped

bottom TLD will reach 81% as Lois approaches infinity as shown in Figure 3 .12. For siLo 

= 0.6, the following trend is found: mp > ms > m1 > mrl· The effective mass values of 

parabolic and sloped-bottom tanks are large, therefore, valid mechanical models for these 

tanks for larger hiL values are of interest. 

3.3.3 Additional Damping Due to Screens 

Given the dimensions of a TLD, the four factors which affect the damping ratio 

are liquid depth ratio, number of screens, drag coefficient and free surface response 

amplitude. Variations of the normalized damping ratio, (ICL, with liquid depth ratio, hiL, 

and normalized response amplitude, J]IL, are plotted in Figures 3.13 to 3.17 for the TLDs 
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considered in this chapter. For simplicity, the case of one screen inserted at the centre of 

the tank is studied here. The same variations of (ICL with h/L and l'f/L, as those observed 

in Chapter 2, are found. The damping ratio is found to increase linearly with the 

normalized excitation amplitude for all the tanks considered in this chapter due to 

velocity squared damping (see Equation 2.22). Additionally, the increase in damping ratio 

with a reduction in liquid depth ratio is attributed to an increase in the horizontal velocity. 

The relationship between the normalized damping ratio for the different tanks considered 

is as follows, (r/CL > (r/CL ;:::; (/CL > GICL. 

3.4 Summary 

In this chapter, linear long wave theory was used to calculate the horizontal 

velocity component of the sloshing liquid, which is assumed to be constant through the 

liquid depth. Also, it is assumed that the vertical velocity component is negligible. These 

assumptions are reasonable when 11 << h and h/L < 0.1. The parameters for an equivalent 

mechanical model for triangular, sloped-bottom, parabolic and rectangular TLDs have 

been derived using linear long wave theory in conjunction with the method described in 

Section 2.1. Subsequently, the natural frequency, effective mass and damping ratio for the 

tanks with different tank geometries are compared, respectively. Relationships between 

the derived parameters for the studied tanks are as follows. For the sloshing frequency 

values, which were computed for a range of h/L values, the following trend was observed, 

.fr1 > Is > .ft > J;. Furthermore, the following pattern was determined for effective mass 

values, mp > ms > m1 > mrt· Finally, the normalized equivalent viscous damping values, 

due to the screens, were determined and the normalized damping ratio values for different 
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tank were examined. It was found that (r/CL > (p'CL :::::: GICL > GICL. The effective mass 

for a parabolic tank and sloped-bottom tank, with a sloping angle of 18°, is 100%. This 

indicates that all the liquid mass is participating in the fluid sloshing motion. The 

derived models are valid for small fluid response amplitudes. For larger response 

amplitudes, which result in a hardening type behaviour, an equivalent mechanical system 

which is capable of simulating the amplitude dependent nonlinear natural frequency 

would be more suitable. 
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Figure 3.1 Definition Sketch for Liquid Sloshing in a Triangular Tank 
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Figure 3.2 Definition Sketch for Liquid Sloshing in a Sloped-Bottom Tank 
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Figure 3.3 Definition Sketch for Liquid Sloshing in a Parabolic Tank 
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Figure 3.4 Definition Sketch for Liquid Sloshing in a Sloped-Bottom Tank 
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Figure 3.6 Natural Frequency for a Triangular Tank 
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Figure 3.9 Natural Frequency for a Rectangular Tank 
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Figure 3.12 The Effect of L0 on Effective Mass 
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Figure 3.13 Variation of Normalized Damping Ratio with Liquid Depth and 
Normalized Response Amplitude for a Triangular Tank 
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Figure 3.15 Variation of Normalized Damping Ratio with Liquid Depth and 
Normalized Response Amplitude for a Sloped-Bottom Tank (s = 0.3m, 
Lo= O.Sm) 
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Figure 3.16 Variation of Normalized Damping Ratio with Liquid Depth and 
Normalized Response Amplitude for a Parabolic Tank 
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Chapter 4 Dynamic Response Characteristics of TLDs with Different Tank 

Geometries 

This chapter examines and compares the dynamic response behaviour of TLDs 

with different tank geometries using an equivalent linear mechanical model. The 

properties for the equivalent single-degree-of-freedom (SDOF) linear mechanical models 

have been determined in Chapter 2. Since an increase in both the effective mass and 

natural frequency of a TLD are negligible for small excitation amplitudes, the effective 

mass and natural frequency are assumed to remain constant in the model (Wamitchai and 

Pinkaew 1998); whereas the damping is treated as an amplitude-dependent parameter. 

The model, which only takes the fundamental sloshing mode into account, can be used to 

predict the dynamic response characteristics of a SDOF system under sinusoidal or 

random excitation. The dynamic response of the free surface motion, sloshing force and 

energy dissipation of a TLD will be investigated first, followed by a comparison of the 

dynamic response behaviour ofTLDs with different tank geometries. 

4.1 Dynamic Characteristics of TLDs as a SDOF System 

First, the equations used to compute the dynamic response of a TLD will be 

derived. Subsequently, the free surface response amplitude, sloshing force and energy 

dissipation of rectangular, vertical-cylindrical and horizontal-cylindrical TLDs with 

screen(s) inserted inside the tank will be investigated at several excitation amplitudes. 
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4.1.1 Formulation of Dynamic Characteristics 

For a TLD is subjected to sinusoidal base excitation X(t) with amplitude Xo and 

excitation frequency We (Figure. 1 (a)), 

X(t) = X 0 sinwJ (4.1) 

the equation of motion, derived from Equation 2.17, becomes 

(4.2) 

Dividing the above equation by the generalized mass leads to 

* 2 .• 
ij + 2wt;eq q +OJ q = rx (4.3) 

Where 

(4.4) 

and it is denoted as the modal participation factor. 

The steady-state solution of q(t) can be expressed as 

(4.5) 

where() is the phase angle. For a SDOF system having amplitude dependent damping, the 

response amplitude q0 of the sloshing wave height is given as (Clough 1993) 

(4.6) 

where the forced frequency ratio,/], is defined as the ratio between the excitation 

frequency and the natural frequency of a TLD 

(4.7) 

96 



M.A.Sc. Thesis- X. Deng McMaster University- Civil Engineering 

and the equivalent viscous damping is expressed as 

(4.8) 

where ( 0 was determined in Section 2.1.3 of Chapter 2. 

The solution for q0(we) is the positive real root of Equation 4.6 and is found to be 

(4.9) 

The phase angle, B, can be written in terms of q0 

( 4.1 0) 

For a liquid filled tank, where m(x,y,z) is defined as the liquid mass per volume 

and qJ(x,y,z) is the corresponding mode shape for the horizontal sloshing motion, then at 

any location, the corresponding horizontal component of the generalized sloshing force 

can be expressed as 

f(x,y,z,t) = q(t)rp(x,y,z)m(x,y,z) (4.11) 

The horizontal component of sloshing force, Fd, can be obtained by integrating the 

generalized force over the volume of fluid. 

Fd = fJ(x,y,z,t)dV = fq(t)rp(x,y,z)m(x,y,z)dV 
v v 

= q(t) frp(x,y,z)m(x,y,z)dV = q(t)r* 
(4.12) 

v 

It can also be computed by integrating the fluid pressure at the end-walls of the tank. 

Fd = fp(x,t)dA = f- p a¢(x,t) dA = q(t)r* 
A A fu 

(4.13) 
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where p(x, t) is the fluid pressure inside the tank at the end-walls, A is the area of the end-

walls, and ¢(x, t) denotes the velocity potential (Bauer 1964). 

The sloshing force, Fd, is also equal to the product of the effective mass and its 

acceleration. 

(4.14) 

Equating the expressions for Fd in Equations 4.12 and 4.14, a coordinate relationship is 

found, 

x(t) = q(t) 1 r (4.15) 

and therefore, 

x(t) = q(t) I r (4.16) 

To obtain the acceleration in an equivalent TMD system (Figure 4.1 b), the co-ordinate 

relationship (Equation 4.16) can be utilized. Using either Equation 4.12 or Equation 4.14 

and the co-ordinate relationship, the sloshing force can be expressed as 

Fd (t) = y * OJe 
2 
q(t) = Fdo sin(mJ +B) ( 4.17) 

where the amplitude is found to be 

( 4.18) 

The energy dissipated by the sloshing liquid motion per cycle, Ed, is defined as the work 

done by the sloshing force over one period of base excitation. 

(4.19) 

Substituting Equations 4.1 and 4.17 into Equation 4.19 leads to 

(4.20) 
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4.1.2 The Influence of Viscous Damping Due to Boundaries 

The viscous damping due to boundaries is assumed to be zero in the formulation 

of the dynamic characteristics in Section 4.1.1. This damping is due to energy dissipation 

from the boundary layers due to shear stress exerted on the bottom of the tank, the sides 

of the tank and the free surface dynamics. The equation of motion accounting for the 

viscous damping due to the boundaries is expressed as (Wamichai and Pinkaew 1998), 

(4.21) 

where (eq * is the equivalent viscous damping ratio determined in Chapter 2, and (w * is the 

equivalent viscous damping computed using linearized boundary layer theory (Fujino et 

al. 1990) 

;-. = (l+hlb) ~ 
':.w 2h v-;;; 
where vis the kinematic viscosity of the liquid. 

(4.22) 

From Equation 4.21, the response amplitude q0 of the sloshing wave height can be 

expressed as 

(4.23) 

The solution for q0 is significantly more complicated than that given by Equation 4.9. A 

study is conducted to investigate the affect of (w * on q0. Findings will be used to 

determine if (w *can be neglected in order to simplify the analysis. 

In order to validate the assumption of neglecting (w *, the loss coefficient required 

to achieve a certain fluid response amplitude is computed for two different cases. Case 1, 
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corresponding to Equation 4.3, neglects the contribution of (w *. Case 2, corresponding to 

Equation 4.21, includes the contribution of (w *. An iterative procedure is employed to 

obtain a loss coefficient Cr for a particular base excitation amplitude, by matching the 

normalized free surface response amplitude qo/L corresponding to a total damping ratio of 

5% for the two cases considered. Loss coefficients are computed with f = 0.15, 0.5 and 

1.5 Hz and h/L = 0.1, 0.15, 0.2, 0.25 and 0.3. Five base excitation amplitude are selected 

such that the normalized response amplitudes qo/L are in the range of 0.01 - 0.1, i.e., the 

free surface response amplitude is in the small amplitude wave range. 

Table 4.1 shows the affect of viscous damping due to boundaries in terms of Cr 

for different natural frequency and liquid depth ratio values. In the table, Cu is 

normalized by CL2, where Cu denotes the loss coefficient computed ignoring the viscous 

damping (Case 1) and CL2 is the loss coefficient computed taking the viscous damping 

into account (Case 2). Except for the case off= 1.5 Hz, the viscous damping due to 

boundaries can be neglected with negligible influence on the estimated value of Cr. The 

results for Case 2 approach the Case 1 values, as liquid depth ratio increases and as the 

natural frequency of the TLD deceases, i.e. the dimensions of the tank increase. It is 

observed from Equation 4.22 that as the dimensions of a tank become large, and 

considering liquid depth ratio values in the range of 0.1 to 0.5, the viscous damping due 

to the boundaries is found to be significantly less than the velocity squared damping 

resulting from the screens. As a result, the viscous damping due to the boundaries can be 

neglected for large tank dimensions allowing Equation 4.21 to be replaced by Equation 

4.3. For wind applications, the natural sloshing frequency is expected to be less than 0.5 
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Hz and the design value of h/L is typically in the range of 0.1 to 0.25. As indicated from 

Table 4.1, the assumption of neglecting the viscous damping due to boundaries can be 

considered acceptable permitting the use of Equation 4.9. 

4.1.3 Dynamic characteristics ofTLDs 

This section reports on the dynamic characteristics of rectangular, vertical-

cylindrical and horizontal-cylindrical TLDs based on the equations derived in Section 

4.1.1. Normalized parameters will be used to present the results, which are defined below 

(Fujino et al. 1992). 

• Normalized wave amplitude r( 

1J'=~ 
h 

where q0 is the wave amplitude at the tank end-wall and h is the still liquid depth. 

• Normalized sloshing force F': 

(4.24) 

(4.25) 

where Fd is the sloshing force, mw is the mass of the liquid, We is the excitation frequency, 

and X 0 is the excitation amplitude. The product mw/ X0, in the denominator, is the 

maximum inertia force of the liquid mass if treated as a solid mass. 

• Normalized energy dissipation per cycle£': 

(4.26) 
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where the denominator is the maximum kinetic energy of the liquid mass if treated as a 

solid mass. 

Theoretical and experimental results for a rectangular TLD with inserted screens 

are compared to validate the proposed model. The experimental data is provided by 

Hamelin (2007) for shaking table experiments to determine the dynamic characteristics of 

a rectangular TLD. The dimensions of the tank are L = 0.966 m, h = 0.119 m, and b = 

0.360 m. Two screens with a solidity ratio of S = 0.426 are inserted at locations of 0.4L 

and 0.6L inside the tank as shown in Figure 2.2. The dynamic response characteristics are 

investigated for three excitation amplitudes Xo = 2.5, 5.0 and 10.0 mm, respectively. 

Results are shown in Figures 4.2 to 4.4 for the normalized free surface response 

amplitude, sloshing force and energy dissipation, respectively. The experimental data for 

the free surface response amplitude is digitally filtered; therefore, the response amplitude 

corresponding only to the fundamental sloshing mode is presented. The free surface 

response amplitude is found to increase with increased excitation amplitude. Both the 

normalized sloshing force and energy dissipation decrease with an increase in excitation 

amplitude (Figures 4.3 and 4.4), which indicates the amplitude-dependency of the TLD 

and is a direct result of the amplitude dependent damping. Since the model only takes the 

fundamental mode into account, it is unable to simulate the "hardening" phenomenon and 

predict the multi-peaked values in the frequency response of the TLD. 

The nonlinear response of the TLD tested is found to exhibit a hardening type 

behaviour, characterized by an increase in the sloshing resonant frequency value with 

increased excitation amplitude. This has been observed in experimental tests on TLDs 
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both with (Tait 2004) and without screens (Yu 1999). A characteristic of this type of 

nonlinear dynamic system is that higher harmonics, referred to as superharmonics, are 

present in the sloshing fluid response (Chester 1968). The presence of higher harmonics 

results in the excitation of higher sloshing modes. The higher sloshing modes are excited 

at frequencies that are integer multiple values less than the corresponding calculated 

natural sloshing frequency values (Shimizu and Hayama 1987). This results in the multi

peaked response observed in experimental test results. 

The free surface response amplitude was measured at a distance of 0.05L from the 

end-wall of the tank. Figure 4.2 shows the experimentally measured free surface response 

amplitude corresponding to the fundamental sloshing mode along with predicted values 

from the equivalent mechanical model. Greater discrepancy between the measured and 

predicted response values is observed as the excitation amplitude is increased. This is a 

result of the nonlinear response behaviour of the sloshing fluid. At the 2.5 mm, 5 mm and 

10 mm excitation amplitudes, the maximum predicted free surface response amplitude 

was within 3%, 10% and 8% ofthe measured values, respectively. 

Sloshing forces develop as a direct result of the fluid motion. Frequency response 

curves for the experimentally measured normalized sloshing forces are presented and 

compared with calculated values from the equivalent mechanical model in Figure 4.3. 

Good agreement is found for all three excitation amplitudes considered. These results 

indicate that the proposed model can predict the TLD sloshing forces corresponding to 

expected wind-induced excitation amplitudes. This confirms that the velocity squared 

103 



M.A.Sc. Thesis- X. Deng McMaster University- Civil Engineering 

losses due to the screens can be modelled using an equivalent linearized viscous damping 

ratio. 

Figure 4.4 shows experimental and calculated nondimensional energy dissipation 

frequency response curves. The model can accurately predict the peak nondimensional 

energy dissipated by the TLD for all three excitation amplitudes considered. This 

indicates that the model correctly predicts the sloshing force and the phase angle between 

the base excitation motion and the TLD sloshing forces. 

Overall comparisons between the model prediction and the experimental results 

for 17', F' and E' for two screen case show reasonably good agreement. However, the 

model cannot capture the nonlinear response behaviour of the TLD. 

Figures 4.5 to 4.7 show results for the case of one screen at the centre of the tank. 

The calculated results show greater discrepancy compared to the case of two screens, 

which is attributed to a reduction in the TLD damping as only a single screen is present 

((eq < 5%) resulting in a larger response wave amplitude. It should be noted that the two 

screen case is more representative of the amount of equivalent viscous damping that 

would be required for a TLD ((eq::::: 5%). In order to achieve the required level of damping, 

the solidity of the single screen at the centre of the tank simply needs to be increased, 

resulting in an increased value of Cr. 

4.2 Comparison of Dynamic Response Characteristics of TLDs as SDOF Systems 

The following section reports on a study conducted to compare the dynamic 

characteristics and response behaviour between rectangular, vertical cylindrical and 

horizontal-cylindrical TLDs, respectively, in terms of the free surface response amplitude, 
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sloshing force, energy dissipation, liquid mass and required space for TLD installation. 

For the TLDs considered in this particular study, one screen is inserted at the centre of the 

tank. It is evident from the findings in Chapter 2 that TLDs with different tank geometries 

possess different equivalent mechanical model properties, which are the natural frequency, 

effective mass and damping. As a result, it is assumed that an optimal tank geometry 

among these different TLDs in terms of dynamic characteristics exists. The first part of 

this study is conducted to investigate the dynamic response characteristics of the different 

TLDs. The matching parameters used here are the natural frequency, damping ratio, 

liquid mass and liquid depth ratio; while the tank width and loss coefficient are adjusted 

to hold both the liquid mass and damping ratio equal for all three different TLDs, 

respectively (f = 0.15 Hz, (rw = 5%, h/L = 0.1, mw = 2.31 x 105 kg). A damping ratio of 

5% corresponds to the level of damping obtained for the two screen case considered in 

the previous section. Since a vertical-cylindrical tank does not possess the dimension b, 

the properties of the vertical-cylindrical tank are computed first, and subsequently, b and 

CL of the other two tanks are adjusted to match mw and (rw. 

From Figures 4.8, 4.9 and 4.1 0, it is evident that the free surface response, base 

shear force and energy dissipated are the largest for the horizontal-cylindrical TLD 

followed by the rectangular TLD. The vertical-cylindrical TLD is found to have the 

smallest response parameter values. These results are attributed to the different effective 

mass values corresponding to the different tank geometries. 

Part 2 of this study is conducted to identify the TLD that requires the least amount 

of liquid to achieve a certain sloshing force value. The matching parameters used are the 
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damping ratio and sloshing force; while the varying parameters are the loss coefficient 

and tank width. The findings for the case off= 0.15 Hz, ( = 5% and X0 = 0.1 m are 

summarized in Tables 4.2a-4.2c. It is found that the required liquid mass and the loss 

coefficient are the largest for a vertical-cylindrical TLD. The required liquid mass is less 

for a horizontal-cylindrical TLD than for vertical-cylindrical or rectangular TLDs. These 

results are attributed to the differences in effective mass and damping properties of the 

TLDs as discussed in Chapter 2. For the h/L = 0.1 and 0.2 cases at f = 0.15 Hz, a larger 

loss coefficient is required for a horizontal-cylindrical TLD than for a rectangular TLD; 

for h/L = 0.3, a larger loss coefficient is required for a rectangular tank. Nevertheless, in 

order to maintain a damping ratio of 5%, the required loss coefficient can easily be 

obtained by selecting a suitable screen solidity ratio. 

The floor area, A, and the volume, V, for the installation of the TLDs are 

computed as bL (or ;ra2 for a vertical-cylindrical tank) and Ach, respectively, where L is 

the length at height, ch, and c equals 1.0, 1.5 or 2.0, such that the space under the curve 

and available freeboard of a horizontal-cylindrical tank are taken into consideration. 

Figure 4.11 is a definition sketch of floor area and volume requirements for the 

installation of rectangular and horizontal-cylindrical TLDs. Tables 4.3a-4.3d show the 

percent difference of the required liquid mass, area and volume for installation, between 

the three TLDs, respectively. The floor areas for installation of a vertical-cylindrical, 

rectangular and horizontal-cylindrical TLD are denoted by Ave, Ar and Ahc, respectively. In 

addition, Vveo Vr and Vhc represent the volume for installation of a vertical-cylindrical, 

rectangular and horizontal-cylindrical TLD, respectively. From the tables, the following 
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trends are observed: Ave< Ar < Ahc and, Vr < Vvc < Vhc· However, the required mass of 

liquid for a horizontal-cylindrical TLD, mwhc, is at least 16% and 17% less than that of a 

rectangular and vertical-cylindrical TLD, respectively, as shown in Table 4.4d. The 

difference between mwhc and mwr is found to increase with the liquid depth ratio, since the 

effective mass of a rectangular TLD decreases faster than that of a horizontal-cylindrical 

TLD. As a result, the differences between Vhc and Vr and between A he and Ar decrease as 

h/L increases. Similar results of required liquid mass, loss coefficient, area and space for 

the installation of the three TLDs are found in the case off= 0.5 Hz as shown in Tables 

4.2d-4.2f and Tables 4.3e-4.3h. 

4.3 Summary 

The dynamic behaviour of rectangular, vertical-cylindrical and horizontal

cylindrical TLDs has been investigated using an equivalent linear mechanical model. 

Results show that the viscous damping due to boundaries in the model can be neglected 

without loss of accuracy. Both the normalized sloshing force and energy dissipation are 

found to decrease with an increase in excitation amplitude as a result of the amplitude

dependent damping of the TLD. The dynamic characteristics of a rectangular TLD 

obtained from an experimental study are compared to results determined using the 

equivalent mechanical model. It is found that the model is in good agreement with 

experimental results for small response amplitudes. Furthermore, the dynamic 

characteristics of rectangular, vertical-cylindrical and horizontal-cylindrical TLDs are 

compared in a two-part study. In the first part of this study, natural frequency, damping 

ratio, liquid mass and liquid depth ratio values are matched in order to investigate the 
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dynamic characteristics of the TLDs. The sloshing liquid in a horizontal-cylindrical TLD 

is found to dissipate the largest amount of energy given the same liquid mass as that of a 

rectangular TLD or a vertical-cylindrical TLD. Part two of the study is conducted to 

identify a TLD with the least amount of liquid required to achieve the same amount of 

sloshing force. Required area and volume for installation of the different TLDs is also 

investigated. The results are as follows: for the required liquid mass, mwhc < mwr < mwvc, 

for the required floor area, Ave < Ar < Ahc, for the required volume, Vr < Vvc < Vhc· 
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Values of C LI/ C LZ for a Rectangular TLD 

0.1 0.15 0.2 0.25 0.3 

1.02 1.02 1.02 1.01 1.01 

1.15 1.08 1.04 1.04 1.03 

3.59 1.56 1.21 1.20 1.12 

Mass of Liquid Required and Loss Coefficient 
for TLDs with Different Tank Geometries 

(a) Matching properties: F = 161072 N, h/L = 0.1, f= 0.15 Hz 

h L b 
CL 

mw 
(m) (m) (m) (kg) 

Ver-Cyl 1.433 14.331 - 1.508 231147 

Rect. 1.056 10.555 20.409 1.041 227480 

Hor-Cyl 0.888 8.878 36.100 1.440 191260 

(b) Matching properties: F = 731782 N, h/L = 0.2, f= 0.15 Hz 

h L b 
CL 

mw 
(m) (m) (m) (kg) 

Ver-Cyl 1.433 14.331 - 1.508 231147 

Rect. 1.056 10.555 20.409 1.041 227480 

Hor-Cyl 0.888 8.878 36.100 1.440 191260 

(c) Matching properties: F = 1961093 N, h/L = 0.3, f= 0.15 Hz 

h L b mw 
(m) (m) (m) CL (kg) 

Ver-Cyl 9.786 32.618 - 5.514 8177000 

Rect. 7.665 25.549 40.085 3.700 7849969 

Hor-Cyl 6.812 22.705 58.601 3.500 6463092 
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(d) Matching properties: F = 161072 N, h/L = 0.1, f= 0.5 Hz 

h L b 
CL 

ffiw 

(m) (m) (m) (kg) 
Ver-Cyl 0.129 1.290 - 1.360 169 

Rect. 0.095 0.950 1.907 1.936 172 

Hor-Cyl 0.080 0.799 3.333 1.261 143 

(e) Matching properties: F = 731782 N, h/L = 0.2, f= 0.5 Hz 

h L b 
CL 

ffiw 

(m) (m) (m) (kg) 
Ver-Cyl 0.459 2.294 - 3.002 1897 

Rect. 0.348 1.739 3.111 2.029 1883 

Hor-Cyl 0.301 1.507 5.069 2.440 1,580 

(f) Matching properties: F = 1961093 N, h/L = 0.3, f= 0.5 Hz 

h L b 
CL 

ffiw 

(m) (m) (m) (kg) 
Ver-Cyl 0.881 2.1006 - 4.965 5965 

Rect. 0.690 2.299 3.608 3.331 5723 

Hor-Cyl 0.613 2.043 5.339 3.220 4765 
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Table 4.3 Comparisons of mw, A and V between Horizontal
Cylindrical, Vertical-Cylindrical and Rectangular TLDs 

(a) L at 2h, f= 0.15 Hz 

h/L (Ahc-Avc)/Avc (Vhc-Vvc)!Vvc (Ahc-Ar)/ Ar (Vhc-Vr)IVr 

0.1 175% 71% 106% 73% 

0.2 152% 57% 92% 58% 

0.3 80% 26% 47% 31% 

(b) L at 1.5h, f= 0.15 Hz 

h/L (Ahc-Avc)/Avc (Vhc-Vvc)!Vvc (Ahc-Ar)IAr (Vhc-Vr)IVr 

0.1 141% 49% 80% 52% 

0.2 128% 42% 74% 43% 

0.3 77% 23% 44% 28% 

(c) Lath, f= 0.15 Hz 

h/L (Ahc-Avc)/Avc (Vhc-Vvc)/Vvc (Ahc-Ar)/ Ar (V he-Vr)!Vr 

0.1 99% 23% 49% 25% 

0.2 93% 21% 48% 22% 

0.3 59% 11% 30% 16% 

(d) f= 0.15 Hz 

h/L (mwhc-illwr) (mwhc-illwr) 
lmwr lmwr 

0.1 -16% -17% 

0.2 -17% -17% 

0.3 -18% -21% 
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(e) L at 2h, f= 0.5 Hz 

h/L (Ahe-Ave)/Ave ('fhe-'fve)/\Tve (Ahe-Ar)IAr ('f he-'1r)1'1r 

0.1 182% 75% 104% 72% 

0.2 139% 57% 83% 58% 

0.3 82% 27% 49% 32% 

(f) L at 1.5h, f= 0.5 Hz 

h/L (Ahe-Ave)/Ave ('fhe-'fve)/\Tve (Ahe-Ar)/ Ar ('1 he-'1 r)/\T r 

0.1 147% 53% 78% 50% 

0.2 117% 42% 66% 43% 

0.3 79% 24% 46% 30% 

(g) Lath, f= 0.5 Hz 

h/L (Ahe-Ave)/Ave ('fhe-'fve)/\Tve (Ahe-Ar)IAr ('1 he-'fr)/\Tr 

0.1 104% 26% 47% 24% 

0.2 85% 21% 41% 22% 

0.3 61% 12% 32% 17% 

(h) f= 0.5 Hz 

h/L (mwhe-illwr) (mwhe-illwr) 
lmwr lmwr 

0.1 -17% -15% 

0.2 -16% -17% 

0.3 -17% -2% 
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Figure 4.1 (a) TLD; (b) Equivalent Mechanical Model of a TLD 
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Figure 4.3 Comparison of Normalized Sloshing Force (Two Screens) 
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Figure 4.4 Comparison of Normalized Energy Dissipation (Two Screens) 
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Figure 4.7 Comparison of Normalized Energy Dissipation (One Screen) 
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Figure 4.10 Comparison of Normalized Energy Dissipation for Different TLDs 
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Figure 4.11 Definition Sketch of Floor Area and Volume Required for the 
Installation of a TLD 
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Chapter 5 Performance of Structure-TLD Systems 

The nonlinear dynamic characteristics of a TLD increase the complexities of 

design and analysis. Nevertheless, an equivalent mechanical model of a TLD equipped 

with screen(s) has been constructed (see Chapter 2) to simplifY the dynamic 

characteristics of a TLD and its response behaviour was studied as a SDOF system in 

Chapter 4. In this model, the damping of the TLD is expressed in terms of an amplitude 

dependent equivalent viscous damping, while the natural frequency and the mass of the 

SDOF system are assumed to be constant for small response amplitudes. The natural 

frequency of the SDOF system is determined using linear sloshing frequency (Bauer 

1984), and the effective mass is used as the mass of the SDOF system. 

This chapter presents the performance of TLDs in terms of effective damping, 

efficiency and robustness. A structure-TLD system with a rectangular, vertical-cylindrical 

or horizontal-cylindrical TLD, respectively, is investigated utilizing the equivalent 

mechanical model constructed in Chapter 2. The definition sketches for these TLDs are 

given in Figures 2.2, 2.3 and 2.6b. Tait (2004) introduced a scheme to study the 

performance of TLDs, in which performance charts for structure-TLD systems are 

developed. These performance charts, which were originally developed for TMDs 

(Vickery and Davenport 1970), consider the effects of tuning ratio, structural response 

motion, mass ratio and liquid depth. The contour lines in a performance chart represent 

the effective damping, efficiency or the RMS relative motion ratio of free surface liquid 

at the end-wall of the tank. The parameters and basic concepts will be introduced first, 
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followed by the influence of various parameters on the performance of TLDs and 

comparisons of the performance between the different TLDs. 

5.1 Parameters of a Structure-TLD System 

5.1.1 Modelling of a Structure-TLD System 

The performance of TLDs is investigated using a structure-TLD system under 

random excitation. A structure-TLD system with the TLD mounted at the top the 

structure is shown in Figure 5.la. Often one response mode of a structure dominates, 

therefore, the structure can be modelled as a generalized SDOF system. As illustrated in 

Figure 5.lb, M* is the generalized mass of the primary structure for the vibration mode 

being suppressed; K*, c* and Xs are the generalized stiffuess, damping and motion of the 

primary structure, respectively. The nonlinear TLD is modelled here as an equivalent 

mechanical system (i.e. equivalent TMD), which has been studied and is well understood. 

This permits the complex sloshing motion in an excited TLD to be greatly simplified and 

allows the performance of a TLD to be determined using formulas developed for a TMD. 

The TMD representation of a TLD, discussed in the previous chapter, is employed in this 

study of structure-TLD systems as shown in Figure 5.1c. The dynamic properties of a 

TLD are amplitude dependent, that is, the natural frequency, damping ratio and effective 

mass vary with amplitude (Sun 1995). However, for a TLD equipped with screen(s), the 

amplitude dependency of the natural frequency is considered to be negligible for wind

induced serviceability response levels (Tait 2004). In addition, this mechanical model of 
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the TLD has been developed for small response amplitudes. Therefore, the natural 

frequency and effective mass are assumed to remain constant. 

5.1.2 Description of Parameters 

The parameters affecting the response of a structure include mass ratio Jl, tuning 

ratio Q, TLD damping ratio (and structure damping ratio G. 

• TLD mass ratio 

(5.1) 

(5.2) 

where rjJ is the mode shape value at the damper location, corresponding to the structural 

mode being targeted (it is assumed that the TLD is located at the top of the building and 

rjJ has a value of unity), mw is the total liquid mass, meffis the effective mass of a TLD and 

Ms is defined as the mass of the structure, which takes account of the inactive mass of 

liquid, m0, inside the tank (Vandiver and Mitone 1979). 

• tuning ratio 

(5.3) 

where frw is the natural frequency of a TLD, and Is denotes the natural frequency of the 

structure. Based on potential flow theory and linear long wave theory, frw has been 

derived for TLDs with different tank geometries in Chapters 2 and 3, respectively. The 

natural frequency of a structure can be expressed as 
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(5.4) 

• TLD damping ratio 

c;; = c 
4mnfrw 

(5.5) 

for random excitation the damping ratio is expressed as 

(5.6) 

which is given in Equation 2.22 

• structural damping ratio 

(5.7) 

where c* is the equivalent generalized viscous damping of the primary structure. The 

value of the structural damping ratio is usually small for civil structures, typically 1 % to 

5 %, and its influence on the performance of a TLD is often negligible (Warburton 1982). 

Thus, the structural damping ratio is assumed to be zero in this study when determining 

the efficiency of a TLD. However, the total damping of the structure-TLD system can be 

estimated as (Luft _1979) 

(5.8) 

The performance of a TLD attached to a structure can be evaluated by its effective 

damping, (effi efficiency, 'P, and robustness. Effective damping of a TLD is defined as the 

additional damping provided by the TLD to a SDOF system with the same dynamic 

properties as the original primary structure in the structure-TLD system (Vickery and 
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Davenport 1970). It can be calculated by equating the response of the structure-TLD 

system to that of a SDOF system shown in Figure 5.ld. McNamara (1977) gave a closed 

form solution to determine the effective damping for both undamped and damped 

structures. 

For undamped structures, 

(5.9) 

Efficiency, IJI, of a TLD is defined here as the ratio of effective damping of a TLD to that 

of an equivalent optimized linear TMD with the same liquid mass ratio Jlw· 

\}' = Sejj X 1 00 
SejJ-opt 

(5.1 0) 

where (eff-opt is the optimal effective damping for a linear TMD with 

(5.11) 

Robustness is more difficult to quantify. It is defined here as the insensitivity of 

efficiency or effective damping to variations in the tuning ratio and (or) level of applied 

excitation. 

Freeboard is an important parameter that must be considered in TLD design. It is 

defined here as the distance between the still liquid depth and the tank lid height. 

Freeboard thus places a physical limit on the maximum wave amplitude. For a TLD, R'l is 

defined as the ratio between the RMS free surface motion at the end-wall, f71J, and the 

RMS primary structural response motion, f7s. In addition, it can be determined for an 

undamped structure (Gerges 2003) as follows 
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(5.12) 

The required amount of freeboard can be calculated by computing Rq and applying a peak 

factor, PF, to determine the maximum response amplitude. As the first approximation, PF 

can be estimated by (Davenport 1964 and Tait 2004) 

PF = ~21n(vT0 ) + 0
·
5772 

~2ln(vT0 ) 

where v is the cycling frequency and To is the averaging time. 

(5.13) 

To minimize the response of a structure under external excitation, a TLD is 

required to be properly designed. In order to achieve the maximum performance, the 

effective damping, tuning ratio and TLD damping ratio values must be optimized. 

Optimal values are formulated by Warburton (1982) for a structure-TMD system with G 

= 0 under random excitation, and are given as 

• optimal tuning ratio 

Q -opt-

• optimal TLD damping ratio 

1 
Sopt = 4 

• optimal effective damping 
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By substituting Equation 5.14 and 5.15 into Equation 5.9, the optimal effective damping 

can be determined as 

1 
S~tf-opt = 4 (5.16) 

• ratio of root-mean-square (RMS) relative motion ratio for an optimally designed 

absorber 

Similarly, substitution of .Qopt and (opt into Equation 5.12 leads to 

Ropt 1 + J1 
= --======== 

K r 
(5.17) 

All of the above expressions are a function of the mass ratio. Since the TLDs considered 

in this study are modelled as equivalent TMDs, these formulas are applicable to the 

proposed structure-TLD system for a particular target structural response amplitude, (js-

target· As the absorber damping ratio is amplitude dependent, the optimal value will only 

be achieved for a particular (j11 value. As a result, the performance of a TLD is expected to 

be amplitude dependent. 

5.2 Assessing the Effective Damping, Efficiency and Robustness of TLDs 

A detailed parametric study is conducted in order to assess the effective damping, 

efficiency and robustness of TLDs with different tank geometries. Performance charts are 

utilized in this three part study, which is conducted to investigate the effect of .Q, (j/{js-

target, h/L and J1 on the performance ofTLDs with different tank geometries. 
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• In Part 1 of this study, the performance of a TLD is investigated over a range of Q and 

ri/ris-target values for four flw values and three h/L values. The tuning ratio, Q, is 

adjusted by changing Ks thus changing.fs while h/L and fl. are held constant. 

• In Part 2 of this study, Q is varied by changing h while b is adjusted in order to 

maintain a constant flw value. This allows the influence of h/L to be investigated. 

• In Part 3 of this study, h is varied in order to investigate the performance of TLDs 

when Q, hi L, fl. and flw are all varied simultaneously. 

Part 1 and Part 3 are the variations which may be expected to occur in an actual TLD 

application. 

A brief description of the procedure employed to develop a particular performance 

chart is provided as follows. For a certain mass ratio, fl., values of Qopt and (opt are 

computed using Equations 5.14 and 5.15. The screen solidity ratio, S, of a TLD is 

subsequently selected to achieve the optimal effective damping ratio by applying 

Equation 5.6, where CL is a function of S. In Part 1 of this study, the stiffness of the 

structure is varied to obtain different tuning ratio values ranging from 0.8 to 1.2, which is 

approximately a 20 % variation from the optimal tuning ratio value. The efficiency, 'P, 

and relative motion ratio, R,, are calculated for different tuning ratio and normalized 

structural response amplitude values, respectively. The value of ri/ris-target is varied from 

0.2 to 5 to demonstrate the influence of structural response motion on the performance of 

the TLD. Plotting the contours of various 'P and R, values produces a performance chart. 

Performance charts for parts 2 and 3 of this study are constructed in a similar manner 

while varying different parameters as described at the beginning of this section. 
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5.2.1 Influence of Mistuning 

Part I of this study investigates the influence of mistuning due to a change in the 

natural frequency of the structure while other properties of the structure-TLD system 

remain constant. This mistuning case can result from the amplitude dependent natural 

frequency of a structure (Tamura and Suganuma 1996) and/or a change in the stiffness of 

a structure (i.e. cracked/uncracked concrete). Figure 5.3a shows a performance chart with 

'P contours for a horizontal-cylindrical TLD as a function of Q and r5/r5s-target· Figures 5.2a 

and 5.2b are extracted from Figure 5.3a to show the efficiency of a horizontal-cylindrical 

TLD at particular tuning ratio, Q, or normalized structural response values, r5slr5s-target, 

respectively. It is found in Figure 5.2a that for all cases of normalized structural response 

motion, the efficiency decreases when the TLD is mistuned. Figure 5.2b shows the 

variation of efficiency as a function of r5/r5s-target for different tuning ratio values. 

Although the efficiency is less sensitive to variations in the structural response motion, it 

rapidly decreases as the TLD is mistuned. These observations indicate that TLD 

efficiency is highly dependent on the tuning ratio. For example, a 5% variation in the 

tuning ratio results in approximately a 40% reduction in the efficiency at r5/r5s-target = 1. 

This behaviour can also be observed by examining the distance between the contour lines 

at a certain normalized structural response amplitude in Figure 5.3a. Since the equivalent 

mechanical model of a TLD is constructed with the assumption of small response 

amplitude, further investigation on the validity of these charts is required for the large 

normalized structural response region. 
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5.2.2 Influence of Structural Response Motion (lJ/lJs-targer) 

The damping ratio for the TLDs studied here is amplitude dependent as 

determined in Chapter 2. When r5./r5s-target is small, the amount of TLD damping is 

insufficient. This leads to an under-damped system, which is defined as a TLD with ( < 

(opt· Therefore, an under-damped system occurs when r5/r5s-target is less than unity. In 

addition, excessive TLD damping results in an over-damped structure-TLD system, 

which is defined as a TLD with ( > (opt· This is found to occur when r5/r5s-target is greater 

than unity. It can also be observed from Figure 5.2a that the range of tuning ratio values 

for a certain level of efficiency is reduced in an under-damped system. However, in an 

over-damped system, the efficiency decreases while the range of tuning ratio values 

increases for a particular value of 'P. The efficiency decreases as the normalized structural 

response motion is adjusted away from its target value, which is shown in Figure 5.2b. In 

this figure, the efficiency is found to decrease more rapidly in the direction of small 

structural response motion (under-damped system) than in the direction of large response 

motion (over-damped system) for the case of Q;:::::; Qopt (Q = 1). These observations 

demonstrate that an over-damped TLD is a more robust dynamic vibration absorber 

(DV A) compared to an under-damped DVA (McNamara 1977). These findings combined 

with those found in Section 5.2.1 demonstrate that there is a trade-off between TLD 

efficiency and robustness, which agrees with previous studies on a specific structure-TLD 

system with a rectangular TLD (Tait 2004). 
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5.2.3 Influence of Mass Ratio (Jt and Pw) 

To examine the performance of TLDs at different mass ratio values, Part 1 is 

repeated for flw = 0.01, 0.02 and 0.05, respectively. The flw value is adjusted by varying 

the mass of the structure such that the properties of the TLD are held constant. Since not 

all of the liquid participates in the sloshing motion, fl is always smaller than flw but still 

affects the performance of a TLD in the same manner as flw· It is shown in Figures 5.3a to 

5.3d that for a certain value of h/L, as flw is increased, the level of efficiency can be 

retained in a comparable range of CJ/CJs-target values but over a wider range of tuning ratio 

values, i.e., the robustness is improved. For example, for 'P > 90%, the range of CJsiCJs-target 

values is found to be approximately 0.6 to 2.0 for all flw value considered. However, the 

range of tuning ratio values, !J.Q, increases from 0.04 (for flw= 0.005) to 0.09 for (for flw= 

0.05). 

5.2.4 Influence of Liquid Depth Ratio (h/L) 

Using the same tank, additional performance charts are developed for TLDs with 

h/L = 0.15 and 0.2, respectively, by adjusting h. In order to hold flw constant, Ms is varied. 

Figures 5.3d to 5.3f show the efficiency of an attached horizontal-cylindrical TLD with 

flw = 0.05 at h/L = 0.1, 0.15 and 0.2, respectively. It is found that an increase in the liquid 

depth ratio results in a reduction in both the Q and CJ/CJs-target ranges for a given 'P contour 

line. This is attributed to a reduction in normalized effective mass, me.ffmw, as h/L 

increases, that is, a smaller percentage of total liquid mass participates in the sloshing 

motion. Results indicate that the robustness of a TLD can be improved by a reduction in 

129 



M.A.Sc. Thesis- X. Deng McMaster University- Civil Engineering 

the liquid depth ratio. However, an increase in the nonlinear response behaviour of the 

TLD is expected to occur for small h/L values. 

In Part 2 of this study, Q and (efffor a structure-TLD system with f.lw = 0.02 are 

optimized at h/L = 0.15. The tank width b is adjusted to hold f.lw constant so that the 

influence of h/L can be investigated. Since a vertical-cylindrical tank does not possess the 

dimension of b, only rectangular and horizontal-cylindrical TLDs are investigated in this 

part of the study. Figures 5.4 and 5.6 show the performance charts for rectangular and 

horizontal-cylindrical TLD, respectively. The solid lines, dotted lines and dashed lines 

correspond to Part 1, Part 2 and Part 3 of this study, respectively. Figures 5.4a and 5.6a 

show the effective damping for structure-TLD systems equipped with rectangular and 

horizontal-cylindrical TLDs, respectively. It should be noted that the effective damping of 

the TLD in Part 1 can be calculated by multiplying the efficiency by the effective 

damping of a corresponding optimized TMD. 

As determined in Chapter 2, an increase in h/L results in a decrease in the 

normalized effective mass. As a result, as h/L is increased, f.1 decreases, since f.lw is held 

constant in this part of the study. Therefore, it is expected that the effective damping will 

also decrease ash/Lis increased. The TLD damping ratio, which is another parameter that 

influences the effective damping value, decreases ash/Lis increased. 

A performance chart can be divided into four regions, namely, OD, OI, UI and 

UD, based on the level of TLD damping, as shown in Figure 5.4a. The letters U and 0 

represent an under-damped system and over-damped system, respectively, for a TLD 

having a constant liquid depth ratio as described in Part 1. The letters D and I denote a 
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decrease or an increase, respectively, in TLD damping due to a change in h (and 

corresponding h/L). The contours in region 01 correspond to an over-damped system and 

the contours in region UD correspond to an under-damped system. However, the TLD 

may be under-damped or over-damped in the UI and OD regions, depending on the 

effects of (J/(js-target and h/L on(. Consequently a change in h/L will influence both J1 and(, 

and both of the parameters affect (eff· In some cases, J1 will have a greater influence on (eff, 

in other cases, (will have greater influence on (elf 

For the structure-TLD system with a rectangular TLD, as shown in Figure 5.4a, 

the influence of the mass ratio, J1, has a greater influence in region UI. Therefore, for a 

particular (Jsl(js-target value, the effective damping increases as h/L is increased up to Q = 

Qopt and decreases thereafter. However, (has a greater influence on the effective damping 

for the structure-TLD system with a horizontal-cylindrical TLD as shown in regions UI 

and 01 in Figure 5.6a. Excessive damping at h/L = 0.02 (corresponding to Q = 0.97 and 

regions Ul and 01) leads to an over-damped structure-TLD system. Unlike the case of a 

structure-TLD system with a rectangular TLD, the effective damping deceases compared 

to that found in Part 1 of this study when Q < Qopt· When Q > Qop~> as h/L is increased, J1 

and (rw both decrease, therefore, the effective damping is reduced compared to the values 

found in Part 1. 

The increased influence of ( on the structure-TLD system with a horizontal

cylindrical TLD is attributed to the significant change in h/L, which is varied from 0.020 

to 0.618. However, the h/L values are only varied from 0.093 to 0.246 for the system with 

a rectangular TLD. It is noted that for the horizontal-cylindrical TLD with a radius of 
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23.5 m considered here, the lowest attainable tuning ratio is 0.97 based on Equations 5.3 

and 2.84. This is attributed to the insensitivity of the natural frequency of a horizontal

cylindrical TLD to h/2R as shown in Figure 2.1 Ob. In order to match Q of a structure

TLD system with a horizontal-cylindrical TLD to a structure-TLD system with a 

rectangular TLD, h/L requires significantly greater adjustment. As a result, the effect of 

h/L on effective damping is greater for a horizontal-cylindrical TLD than for a rectangular 

TLD. 

5.2.5 Influence of Liquid Depth (h) 

Part 3 of this study represents the case of a loss/ or the addition of liquid in a TLD 

tank. First, the TLDs are optimally tuned and damped for h/L = 0.15, Jlw = 0.02 and f5slf5s

target = 1. This corresponds to certain Dapt, (opt and (effopt values for each TLD. Next, h is 

adjusted, and (eff is determined for different f5/f5s-target· For comparative purposes, the 

contours are plotted in the same domains as those in Part 1 and Part 2 of this study, and 

additional axes of h/L and J1 are attached in Figures 5.4 to 5.6. The adjustment of h results 

in a change in h/L, Q, (and Jl. In this part of the study, J1 increases with h (and h/L), 

which is a direct result of an increase in effective mass, although the normalized effective 

mass, meflmw, decreases as hi L increases. 

Comparing the results from parts 1 and 3 of this study in Figures 5.4a and 5.5a, 

the effective damping is found to decrease when Q < Dapt, and increase when Q > Dapt for 

a rectangular and a vertical-cylindrical TLD. This is attributed to the significant increase 

in J1 as h is increased. Generally, the efficiency of the structure-TLD system has the same 

trend as the effective damping for both rectangular and vertical-cylindrical TLDs, as 
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shown in Figure 5.4b and 5.5b. For a rectangular TLD, the total liquid mass increases 

more rapidly than the effective mass as h/L is increased above the value of 0.15 

(corresponding to fJ0p1). As a result, the efficiency decreases compared to that found in 

Part 1 in region UD and a portion of region OD. These same trends are also observed in 

Figure 5.5b for a structure-TLD system with a vertical-cylindrical TLD. 

As previously mentioned, the natural frequency of a horizontal-cylindrical TLD is 

found to be weakly dependent on h/L over a large range of h/2R values. Thus, to adjust 

the tuning ratio, h has to be varied significantly, resulting in a large change in the mass 

ratio. Fortunately, in most practical application, a change of h for a tuned horizontal

cylindrical TLD by this large amount would be considered rare. It is also noted that for 

the same level of change in h, due to evaporation or spillage of liquid in a tank, the tuning 

ratio of a structure-TLD system with a horizontal-cylindrical TLD is affected less than a 

system using a rectangular or vertical-cylindrical TLD. The influence of h on effective 

damping of a horizontal-cylindrical TLD is shown in Figure 5.6a. The small liquid depth 

ratio at Q = 0.97 causes significant over-damping. As h/L increases, the mass ratio 

increases, thus the effective damping increases, however it is still less than (eff in Part 1 

due to an under-damped system in region UD. It is interesting to note that an effective 

damping value larger than (eff-opt occurs at Q ;::::; 1-1.04 and (js/rJs-target ;::::; 1.4-5 due to a 

significant increase in the mass ratio; however, it does not lead to a system with higher 

efficiency because of the corresponding increase in the total liquid mass as shown in 

Figure 5.6b. Figures 5.4 to 5.6, which show results from all three parts of this study, 

indicate that the influences of liquid depth and mass ratio on the effective damping and 

133 



M.A.Sc. Thesis- X. Deng McMaster University- Civil Engineering 

efficiency are greater than the influence of liquid depth ratio for the particular TLDs 

studied. 

5.2.6 Relative Motion Ratio of Structure-TLD Systems 

As mentioned previously, freeboard is defined as the air space between the still 

free surface of the liquid and the lid or top of a tank. It is one of the physical limitations 

that must be considered in TLD design. For example, building storey height may limit the 

over all height of a tank. Required freeboard can be computed based on the relative 

motion ratio R 11• Part 1 of this study is used to investigate the influence of Q, fY/fYs-target, fl 

and h/L on the relative motion ratio of the free surface, R11• It is found that R11 and 'P have a 

similar trend as the parameters Q, fYslfYs-target, h/L and Jl are varied, which is indicated by 

the similarity of Equations 5.9 and 5.12. Figure 5.7a shows that R11 decreases with an 

increase in fY/fYs-target, which is a result of increased damping. R 11 is also found to be less 

sensitive to the normalized structural response motion when the TLD is mistuned. For a 

certain value of h/L, an increase in the mass ratio causes a decrease in R11 and also the rate 

of decrease in R11 as shown in Figures 5.7a to 5.7d. The influence of h/L is presented in 

Figures 5.7d to 5.7f. For a certain value of flw,R 11 and the rate of decrease in R 11 are found 

to increase as h/L increases. These can be attributed to the influence of the effective mass 

and the total liquid mass as discussed in Sections 5.2.3 and 5.2.4. These observations 

indicate that a small liquid depth ratio value and a large mass ratio can lead to a structure

TLD system with a small value of R 11 having reduced sensitivity to Q and fYslfYs-target· 
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5.3 Comparison of Efficiency of TLDs 

In Part 1, a study has also been conducted on both rectangular and vertical

cylindrical TLDs with different values of h/L and flw in order to compare the performance 

of various TLDs considered in this study. The same efficiency and relative motion ratio 

trend as those discussed in Sections 5.2.1, 5.2.2 and 5.2.6 are found for the rectangular 

and vertical-cylindrical TLDs. Figure 5.8 shows the efficiency of all three TLDs with flw 

= 0.02 at h/L = 0.1, 0.15 and 0.2, respectively. It is found that the efficiency of a vertical

cylindrical TLD is slightly higher than that of a rectangular TLD for the cases of h/L = 0.1 

and 0.15. However, it is slightly lower than the efficiency of a rectangular TLD as h/L 

approaches 0.2. 

Results also show that within the range of ()sirJs-target ~ 0.2-1.8 and Q ~ 0.9-1.1, the 

efficiency of a horizontal-cylindrical TLD is approximately 10% larger than the 

efficiency of a rectangular or vertical-cylindrical TLD; while for other ranges of Q and 

(ji(js-target, the efficiency of a horizontal-cylindrical TLD remains at least 6% greater than 

the rectangular and vertical-cylindrical TLDs. The optimal efficiency of the three TLDs 

studied is given in Table 5.1. In this table, 'Pr, 'Pvc, 'Phc denote the efficiency of an 

installed rectangular, vertical-cylindrical and horizontal-cylindrical TLD, respectively. 

The difference in efficiency values between these TLDs greatly reflects the effective mass 

of the TLDs with changes in h/L. A large effective mass, leading to a large mass ratio, 

results in a high effective damping value. Observing the value of the contours for the 

same level of efficiency, a horizontal-cylindrical TLD is found to be more robust than 

both rectangular and vertical-cylindrical TLDs. 
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The relative motion ratio between the free surface and the structure, R11, of these 

three TLDs is shown in Figure 5.9. Within the examined ranges of the parameters Q and 

f5/f5s-target, R 11-hc is the smallest, followed by R 11_r and R 11-vc (R11_n Rq-vc and Rq-hc denote the 

relative motion ratio between free surface and the structure of structure-TLD systems 

with a rectangular, vertical-cylindrical and horizontal-cylindrical TLD, respectively). The 

values of R11 of the three optimized structure-TLD systems are provided in Table 5.2 for 

h/L = 0.1, 0.15 and 0.2. As h/L increases, the difference between Rq-hc and R 11_r increases 

from -11.1% to -11.9%, while the difference between Rq-hc and R 11_vc decreases from -

55.1% to -53.2%. Comparing the distance between contours for each TLD shows that the 

sensitivity of R 11 to Q and f55!f5s-target are in the order of Rq-hc < Rq-vc < Rq-r· In other words, 

Q and f5slf5s-target have the smallest influence on the relative motion ratio of a horizontal

cylindrical TLD for the three TLDs studied. It is noted that the calculated values of Rq-hc 

are based on the wave amplitude at the edge of the tank corresponding to the still liquid, 

and not the wave amplitude at the end-wall, q *, which is larger than the utilized wave 

amplitude, q, as shown in Figure 2.6b. The free surface mode shape tp(x) obtained using 

Equation 2.105 is similar to that found by Budiansky (1960). Figure 5.10 shows half of 

the axis-symmetric mode shape for different h/L values. It can be seen that in general q 

underestimates q *. However, as h/L increases, the difference between q * and q becomes 

insignificant. Therefore, the results of relative motion ratio discussed above are 

considered valid. 
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5.4 Summary 

The effective damping, efficiency and robustness of a rectangular, vertical

cylindrical and horizontal-cylindrical TLD installed in a structure have been investigated. 

The structure is modelled as a generalized SDOF system and the TLD is modelled as an 

equivalent mechanical SDOF system. The performance of TLDs, including the relative 

motion ratio, are examined by varying the structural response motion, tuning ratio, mass 

ratio, liquid depth ratio and liquid depth. It is found that when the values of Q and fJ/fJs

target are adjusted away from their optimum values, the TLDs become less effective but, in 

some cases, more robust dynamic vibration absorbers. Also, small liquid depth ratio and 

large mass ratio can lead to a robust structure-TLD system with a small value of R'l. 

However, it must be emphasised that the influence of nonlinearities (i.e. hardening, etc.) 

was not considered. The performance charts demonstrate that a loss or gain of a certain 

amount of liquid in a TLD tank influences a horizontal-cylindrical TLD less than a 

rectangular or vertical-cylindrical TLD. Due to the insensitivity of the natural frequency 

of a horizontal-cylindrical TLD to h/2R, the tuning ratio of a structure-TLD system with a 

horizontal-cylindrical TLD is more constant than the other two systems in terms of the 

influence of liquid depth. In addition, comparisons of performance between these three 

TLDs are made. The horizontal-cylindrical TLD is approximately 10% more efficient 

than the rectangular or vertical-cylindrical TLDs in the typical design and operational 

ranges of Q, fJ/fJs-target and h/L. For the case of f.lw = 0.02, the relative motion ratio of an 

optimally designed horizontal-cylindrical TLD is approximately 12% less than a 

rectangular TLD and 54% less than a vertical-cylindrical TLD at h/L = 0.1 to 0.2. For 
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other flw values, the relative motion ratio of a structure-TLD system with a horizontal

cylindrical TLD is also found to be the smallest. Results from this study indicate that a 

horizontal-cylindrical TLD is the most robust and effective TLD of the TLDs investigated. 

Since the equivalent mechanical model of a TLD is constructed with the assumption of 

small response amplitude, further investigation on the validity of the performance charts 

is required for the larger response region. 
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Table 5.1 Efficiency of Installed TLDs with Different Tank Geometries 
With Jlw = 0.02 at Qopt and Us-target 

h/L \}'r \}' VC \}'he (\}'he-\}' r)/\}'hc% (\}'hc-\}'vc)/\}'hc% 

0.1 88.4% 89.3% 98.4% 10.2% 9.3% 

0.15 86.7% 87.0% 96.5% 10.2% 9.9% 

0.2 84.5% 84.1% 94.1% 10.2% 10.6% 

Table 5.2 Relative Motion Ratio between the Free Surface and the Structure 
with Jlw = 0.02 at Qopt and Us-target 

h/L RTJ-r Rlj-VC RTj-hC (RTJ-hc RTJ-r)/RTJ-hc% (Rij-hc-Rlj-vc)/RT]-hc% 

0.1 2.2 3.07 1.98 -11.1% -55.1% 

0.15 3.25 4.49 2.98 -11.7% -54.3% 

0.2 4.23 5.79 3.78 -11.9% -53.2% 
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(a) (b) 

(d) 

(a) Structure-TLD (b) Theoretical Representation (c) TMD Analogy 
(d) Equivalent Single-Degree-of-Freedom System 
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Figure 5.2 Efficiency of a Horizontal-Cylindrical TLD with Dopt = 0.996 
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Chapter 6 Conclusions and Recommendations 

The research work conducted in this thesis includes the development of an 

equivalent mechanical model for TLDs with seven different tank geometries, 

investigation of the dynamic characteristics of a rectangular, vertical-cylindrical and 

horizontal-cylindrical TLD, respectively, and the performance of these three TLDs 

installed on a structure. The major conclusions of this thesis are presented below, 

followed by recommendations for future work. 

6.1 Conclusions 

The parameters of an equivalent mechanical model, which are the effective mass, 

damping ratio, and natural frequency, are derived for TLDs with rectangular, vertical

cylindrical, horizontal-cylindrical and hyperboloid tanks, respectively. Lagrange's 

equations, Morison's formula and the method of virtual work are applied in the 

derivations. The natural sloshing frequency and effective mass for each tank obtained 

using the potential flow theory agree with the results previously found by Graham and 

Rodriguez (1952), Bauer (1964) and Budiansky (1960). The additional damping 

introduced due to screens for different tanks is formulated utilizing the approach given by 

Tait (2007). The parameters of an equivalent mechanical model are compared for the 

studied tanks. It is found that for all tank geometries considered, as the liquid depth ratio 

increases, the normalized effective mass of the TLD decreases, and the natural frequency 

of the TLD increases. 

From results obtained using potential flow theory, the values of the natural 

frequency, effective mass and damping ratio of the studied TLDs have the following 
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relationships for the common design range of h/L = 0.1 to 0.2. For the sloshing frequency 

values, .fie > fvc> f,. > .fi; for the effective mass values, mhc > mh > mr:::::: mvc, and for the 

normalized equivalent viscous damping values, (/Cr > (v!Cr :::::: (hc!Cr > (h!Cr, i.e. the 

horizontal-cylindrical TLD has the highest natural frequency and effective mass but the 

lowest normalized damping. The high natural frequency value is attributed to a short 

equivalent tank length. Additionally, the amount of effective mass for a tank is relative to 

its ability to eliminate inactive liquid. Although the normalized damping ratio is different 

between the tanks, (!Cr can be easily adjusted by selecting appropriate screens. 

In order to construct an equivalent mechanical model for tanks with different 

geometries, where a suitable velocity potential function is not available, linear long wave 

theory is applied to obtain the velocity of sloshing liquid while Lagrange's equations, 

Morison's formula and the method of virtual work are utilized, as previously outlined in 

Chapter 2. The parameters of an equivalent mechanical model for triangular, sloped

bottom, parabolic and rectangular tank are obtained. The following trends are observed: 

for the sloshing frequency values,f,.1 >Is> .ft > fp, for the effective mass values, mp > m5 > 

m1 > mrt; and for the normalized equivalent viscous damping values, CrtiCr > (/Cr:::::: (/Cr 

>(/Cr. 

These equivalent mechanical SDOF models are limited to small wave amplitudes 

such that potential flow theory or linear long wave theory is valid, and that the effective 

mass and natural frequency are regarded as amplitude-independent parameters. 

Equivalent mechanical models for a rectangular, vertical-cylindrical and 

horizontal-cylindrical TLD are constructed and their dynamic characteristics are 
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investigated theoretically. First, the mechanical model for a rectangular TLD is validated 

from experimental shaking table tests conducted on a rectangular TLD. Subsequently, the 

model is utilized to investigate the dynamic characteristics of the different TLDs. It is 

observed that both the normalized sloshing force and energy dissipation decrease with an 

increase in excitation amplitude as a result of the amplitude-dependent damping. Since 

the model only takes the fundamental sloshing mode into account, the nonlinear free 

surface response behaviour cannot be captured. The study shows that to achieve the same 

magnitude of sloshing force, a horizontal-cylindrical TLD requires less liquid mass than a 

rectangular or vertical-cylindrical TLD. However, a horizontal-cylindrical TLD requires 

more installation volume than a rectangular or vertical-cylindrical TLD. In addition, it is 

confirmed theoretically that the viscous damping due to the boundaries of a tank can be 

neglected for large tanks. 

The performance of rectangular, vertical-cylindrical and horizontal-cylindrical 

TLDs has been investigated using a mechanical model of structure-TLD system, where 

the TLDs are modelled as SDOF equivalent mechanical absorbers (Chapter 2) and the 

structure is modelled as a generalized SDOF system. The performance of the three TLDs 

is investigated under various response amplitudes, tuning ratio values, liquid depth values 

and mass ratio values using performance charts. When the values of Q and ffs/ffs-target are 

adjusted away from their optimal values, the TLDs are found to be less effective but in 

some cases more robust dynamic vibration absorbers. Also, it is shown that small liquid 

depth ratio and large mass ratio values can lead to a robust structure-TLD system with a 

small value of R11 • Results from this study indicate that the performance of TLDs is 
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strongly dependent on the tuning ratio, response amplitude, liquid depth and mass ratio. 

The results also show that the influence of liquid depth and mass ratio on the effective 

damping and efficiency are greater than the influence of liquid depth ratio. Furthermore, 

the performance of these three TLDs is compared. The horizontal-cylindrical TLD is 

approximately 10% more efficient than the rectangular or vertical-cylindrical TLDs in 

typical operational ranges of Q, CJ/CJs-target and h/L. These findings are attributed to the fact 

that horizontal-cylindrical TLDs possess larger effective mass values than rectangular and 

vertical-cylindrical TLDs. The relative motion ratio of a structure-TLD system with a 

horizontal-cylindrical TLD is found to be the smallest. It can be concluded that the 

horizontal-cylindrical TLD is the most robust and effective TLD with the smallest relative 

motion ratio among the investigated TLDs, however, it also requires the largest 

installation space. The mechanical model parameters of a rectangular TLD (the 

parameters of other TLDs can be found in Appendix A) and the key absorber design 

parameters are summarized in Tables 6.1 and 6.2. 

6.2 Recommendations for Further Studies 

The following recommendations are suggested for future studies: 

• Approximated functions of the velocity potential need to be postulated for other TLDs 

tank geometries, whose velocity potential function cannot be obtained by directly 

solving the Laplace equation. Thus, additional equivalent mechanical models for 

various tank geometries can be developed for all values of liquid depth ratio, and an 

optimal container geometry can be identified. 
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• Since the equivalent mechanical model of a TLD is constructed with the assumption of 

small free surface amplitude, further investigation of the validity of these results is 

required for large response amplitudes, which would permit the study of structure

TLD systems under earthquake excitation. 

• Higher modes of sloshing motion can be investigated to capture the hardening 

phenomenon and to improve the accuracy of results of the TLDs' dynamic properties 

and performance. 

• Experiments should be conducted on all different tank geometries considered in this 

study in order to verify the proposed TLD and structure-TLD system models presented 

in this thesis. Parameters which should be experimentally investigated include screen 

location, number of screens, liquid depth, excitation type and excitation amplitudes. 
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Table 6.1 Mechanical Model Parameters of a Rectangular TLD 

Natural Frequency 1 g Jdz 
(Equation 2.41) fnD =2 -tanh-

JTL L 

h 

Effective Mass 
8tanh(1r-) 

m = L m 
(Equation 2.51) r 

3 h 
w 

Jr -
L 

Damping for Sinusoidal 2 CLp/13 
Excitation Seq* = 3 mn* qo 

(Equation 2.22) 

Damping for Random Excitation s . =if CLp/13 
(Equation 2.25) eq 2 * (Y 1J 

Jr m 

[ J s ns 1!X. 

(Equation 2.53) 
3= L sin(-1 ) 

j=l L 

L1 /1 = bL 1 1 
-+ 

(Equation 2.54) Jr 3 0 

h2(Jrh) sm -
L 

Generalized Mass * 1 pbL2 

m = -
(Equation 2.49) 2 Jdz 

Jrtanh(-) 
L 

161 



M.A.Sc. Thesis - X. Deng McMaster University- Civil Engineering 

Table 6.2 Key Absorber Design Parameters 

TLD Mass Ratio Jl= 
rplmeff· 

(Equation 5.1) Ms 

Tuning Ratio Q = fnv 
(Equation 5.3) fs 

Effective Damping ( . = OJ!( 
(Equation 5.9) eiJ (I+ Jl)2 Q4 + 2{1 + Jl)Q2 (2(2 -1) + Q2 Jl + 1 

Efficiency \f'= Seff 
x100 

(Equation 5.1 0) ( eff·-opt 

Total Mass Ratio mw 
(Equation 5.11) Jlw = M* 

RMS Relative Motion Ratio R =r 
1 

(Equation 5.12) " v (1 + Jl )2 Q4 + 2(1 + Jl )Q2 (2(2 -1) + Q2 Jl + 1 

Optimal Tuning Ratio !1 ~/+,u/2 
(Equation 5.14) opt 1 + Jl 

Optimal TLD Damping Ratio 1 Jl +3J12 I 4 
(Equation 5.15) Sopt = 4 ~ 4 + 6J1 + 2J1 2 

Optimal Effective Damping Ratio S 1 JlrMD + JlrMD 
2 

(Equation 5.16) eff·-opt = 4 ) 1 + 3 I 4 
JlrMD 

Optimal RMS Relative Motion 
Ropt 1 + Jl 

Ratio - = 
(Equation 5.17) 

r ~2Jl + 3J12 I 2 
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Appendix A Properties for Equivalent Mechanical Model of TLDs 

Al Formulas Based on Potential Flow Theory 

Al.l Rectangular TLDs 

• Natural frequency 

• Effective mass 

m = r 

h 
8tanh(7r-) 

L m 
3 h w 

7r -
L 

• Damping ratio 

Sinusoidal 

Random 

where 

[ ]

3 
ns 7lX. 

3= L sin(-1 ) 

j=I L 
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15. = bL _!_ + 1 

1f 3 . h2(trh) sm -
L 

(A 6) 

1 pbL2 

m = 
2 lfh 

1rtanh(-) 
L 

(A 7) 

A1.2 Vertical-Cylindrical TLDs 

• Natural frequency 

+ - _1 1.841g nh 1.841h 
lvc- ta 

21f a a 
(A 8) 

• Effective mass 

(A 9) 

• Damping ratio 

The damping ratio of all TLDs can be computed by substituting m *, L1 and Z into 

Equations A1.3 and A1.4. The equations for these three parameters are provided as 

follows. 

h
c;(z+h) 

cos 
a JJ (.;.rIa) . 2 8}3 BdB 

----=::..__- sm a cos 
__!__sinh( c;h) c;Jl ( c;)r I a 

(A 10) 

a a 
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{ ]

3 [ l h(;(z +h)) 
o cos a a 1 1 

A~- sinh(~) dz ~ !; 3 +sinh'(!;~ h) 
(A 11) 

where 

c;= 1.841 

(A 12) 

A1.3 Horizontal-Cylindrical TLDs 

• Natural frequency 

(A 13) 

• Effective mass 

(A 14) 

where 

AI = (l/3)(2.050)h/L 

Bl = 0.339(1.392)h/L 

• Damping ratio 

(A 15) 

[ ]

3 
-H ( R)2 2 

ns J J z- -x. 
2= L 1 dzdy 

j=l b_JR2-x2 [x/ + (z- R)2 j 
(A 16) 
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(A 17) 

The properties of the equivalent mechanical model of a horizontal-cylindrical TLD can 

also be calculated by using the method discussed in Section 2.3.3. 

A1.4 Hyperboloid TLDs 

• Natural frequency 

(A 18) 

• Effective mass 

{A 19) 

• Damping ratio 

(A20) 

[(-3 + a 2 --1? + 2a 4 A,4 ).Jll A2
- a 2 + (3h/A4 + 18h/A2

- h/ A4 a 2 

~ ns -12h/;t3 -12hJA+2hJA,3a 2 -a 2 A,2 -2a 4 A,4 +3)~(h1 -1/;t) 2 -a 2
] 

c= ~ -15A,4R3 
(A 21) 

(A 22) 

The parameters 1, a, and hi are given as 
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A2 Formulas Based on Linear Long Wave Theory 

A2.1 Triangular TLDs 

• Natural frequency 

r = 1.023 '-h 
J t 7rL V gn 

• Effective mass 

• Damping ratio 

where 

K=o/s/ gh 

c=2.Jk; 

A2.2 Sloped-Bottom TLDs 

• Natural frequency 
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{' _ _£_ q 
J s - 2L vgn 

• Effective mass 

32ps 2 h 2 
[- 2J1 (c)+ cJ1 (c )sin c(1-11 s) + cJ0 (c )cosc(1-1 I s)Y 

m =----~~~~--~~----------~~----~~ 
s [cJ0

2
(c)-2J0 (c)J1(c)+cJ/(c)+cL0J 1

2
(c)12s l 

c 4 
- 2J0 (c)J1 (c)cosc(1-1 Is)- J 1

2 (c )sinc(1-1 Is) 

+ J 0
2 (c )sinc(1-l/ s) + cL0J 0 

2
(c )1 s 

• Damping ratio 

[

cJ0
2 
(c)- 2J0 (c )J1 (c)+ cJ1

2 
(c)+ cL0J 1

2 
(c )12s l 

m' = 2p( :h)' -2J0 (c )J.(c )cosc(1-1/ s)- J, 
2 (c )sinc(1-1 Is) 

+ J 0 
2 (c )sinc(l-1/ s) + cL0J 0 

2 
(c )1 s 

where 

a77 t r-- =- -J1(2Kvsx) ax X 
for xj < s 

for s < xj < L0 
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A2.3 Parabolic TLDs 

• Natural frequency 

f =-
1 fih 

P JrL 

• Effective mass 

• Damping ratio 

ns 

3 = Lh(xj) 
j=O 

A2.4 Rectangular TLDs 

• Natural frequency 

f. - 1 Ch 
rl - 2L vgn 

• Effective mass 

8 
mrl =-2m 

Jf 

• Damping ratio 

(A 34) 

(A 35) 

(A 36) 

(A 37) 

(A 38) 

(A 39) 

(A40) 

(A 41) 
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(A42) 

(A43) 
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Appendix B Derivation of Wave Height in Horizontal-Cylindrical Tank 

The velocity potential of sloshing fluid in a horizontal-cylindrical tank is given as 

X 
¢(x,z,t) =cc 

2 2 
coswt 

x +(z-R) 
(B 1) 

Applying the linearized Bernoulli equation 

(B 2) 

to the velocity potential function (Equation Bl) at the free surface 

{I) X . 
lJ = - c 

2 2 
sm wt 

g c X +(H -R) 
(B 3) 

At point A, where the tank edge and the still liquid meet, as shown in Figure 2.6 

(B 4) 

Based on Equation B4, a mode shape function, tp(x), can be expressed as 

2R(R-H) X 

qJ(x) = ~ 2 2 2 (H R)2 R -H X + -
(B 5) 

Incorporating Equation B5 into B3 

( ) 
wee ~R2 -H2 2R(R-H) X . 

lJ x,t =-- smwt 
g 2R(R-H) ~R2 -H2 x 2 +(H -R)2 (B 6) 

or 

2R(R-H) X 

IJ(x,t) = q(t) ~ R2- H2 x2 + (H- R)2 (B 7) 

where 
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we ~R2 -H2 

q(t) = _c sin rot= q0 sin rot 
g 2R(R-H) 

(B 8) 
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Appendix C Derivation of Horizontal Velocity Component of Liquid in a 

Triangular Tank 

Momentum equation is given by Equation 3.2 

The horizontal velocity component can be obtained by integrating the momentum 

equation (Equation 3.2) over time 

Substituting ry(x,t) = q0J 0 (2,J;;)cosmt into the above equation leads to 

aJ (2,J;;) 
U = -g 0 fq 0 COSOJtdt ax 

or 
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