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ABSTRACT 

Genome evolution is not always shaped by a Darwinian-fashion of vertical inheritance 

from ancestral lineages. The historical gene content of a species contains many atypical 

gene sequences showing high similarity to those of distantly related taxa. This 

evolutionary phenomenon is referred to as lateral gene transfer (LGT). Lateral gene 

transfer permits the exchange of genetic material across lineages, completely ignoring 

IV 

any concept of taxonomic boundary. The rapid acquisition of foreign genes into bacterial 

genomes has greatly obscured the historical phylogeny ofprokaryotes. In this thesis we 

calculate the rate of LGT on a Bacillaceae phylogeny, to determine the extent to which it 

controls species evolution. First, we examined the evolution of the phylogeny according 

to a simple model of maximum likelihood. We assume equal rates of gene insertion and 

deletion on the phylogeny and show high rates of evolution in the genomes of B. 

anthracis, B. cereus, and B. thuringiensis (Be group), representative of adaptive evolution. 

We then improved the model to account for differential rates of gene insertion and 

deletion, thus offering a more realistic model of gene evolution. Again, we demonstrate 

that members of the Be group are rapidly evolving, with the rate of gene insertion being 

significantly higher than the rated of gene deletion. Finally, we evaluate the sole effect of 

LGT on the phylogeny in a simple birth-death analysis with immigration. We show that 

LGT is the main vehicle of gene acquisition when the number of gene families 

substantially increases from external taxa to members of the Be group. Collectively, our 

findings suggest that the Bacillaceae genome is rapidly expanding, and that laterally 

transferred genes may facilitate adaptive evolution and subsistence in a new niche. 
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It has been a central focus of evolutionary inquests to reconstruct a universal 'tree 

of life' detailing the historical relationship among all species. With the rise ofwhole 

genome sequencing, substantial evolutionary classification could be made on the basis of 

gene content. As more sequences became available, sound conclusions on the hierarchal 

decent of a species could be drawn from larger and more reliable data sets (Gu and Zhang 

2004; Snel et al. 2005). It soon became apparent that analyses of different gene content 

data yielded different tree topologies for the same phylogeny (Woese 1987; Mirkin et al. 

2003; Gu and Zhang 2004). For example, when informational genes, those involved in 

transcription, translation, and replication, and operational genes, those involved in 

metabolism, structure, etc., are used to infer the universal phylogeny of life, both produce 

different trees (Rivera et al. 1998; Jain et al. 1999; Mirkin et al. 2003). The reason for 

the incongruity is attributed to the lateral transfer of genetic material across taxa, 

otherwise known as lateral gene transfer (LGT) (Doolittle 1999; Bushman 2002). 

Lateral gene transfer, or horizontal gene transfer (HGT), is in direct apposition to 

Medelian inheritance where descendants inherit genes vertically from parental taxa. It 

introduces atypical genes into the genetic sequence (Daublin et al. 2003) and is 

characterized by genes owing high levels of similarity to genes found in distantly related 

taxa and by phylogentic relationships that are inconsistent with most other genes 

(Gogarten et al. 2002). It has greatly obscured the evolutionary relationship among the 

Archaea, Bacteria, and Eukarya domains, as well as, the identification of a sole last 

common ancestor (Woese 1987; Doolittle 1999). The exchange of genetic material 

across the universal phylogeny is evident in many taxonomic genomes, including the 
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acquisition ofbacterial mitochondria and chloroplast into the Archaea and Eukarya 

domains (Doolittle 1999). As such, the last common ancestor for the evolutionary tree of 

life is usually depicted as a community of interacting species that consistently trade 

genetic infonnation, rather than a single organism. 

The exchange of genetic information from LGT can occur from: viral 

transduction of a gene into host DNA, transformation of a gene from the surrounding 

environment, or direct physical transfer of a gene from another cell (Bushman 2002; 

Gogarten et al. 2002). In order for a newly transferred gene to survive, it must undergo 

cell division and be inherited with ancestral gene content (Berg and Kurland 2002; 

Bushman 2002). Those genes that successfully persist in the phylogeny may provide a 

selective advantage to the organism, helping it readily adapt to adverse environmental 

conditions (Lan and Reeves 1996; Rivera et al. 1998; Gogarten et al. 2002; Daubin et al. 

2003a; Jain et al. 2003; McLysaght et al. 2003; Hao and Golding 2004, 2006; Lake and 

Rivera 2004; Novozhilov et al. 2005; Marri et al. 2006, 2007). The impact ofLGT on 

genome innovation is most prominent in prokaryotic evolution (Lan and Reeves 1996; 

Gogarten et al. 2002; Snel eta/. 2002; Jain et al. 2003; McLysaght eta/. 2003; Mirkin et 

al. 2003; Galtier 2007; Linz eta/. 2007; Marri et al. 2006, 2007). By introducing novel 

genes into the genome, LGT induces genetic divergence and can assist the evasion of 

antibiotics (Berg and Kurland 2002; Gogarten et al. 2002; McLysaght et al. 2003), 

invasion of new hosts (Doolittle 1999; Daubin et al. 2003a; Mirkin et al. 2003; Marri et 

a!. 2006), and growth in the presence of pollutants (Bushman 2002). Because LGT is so 



common in prokaryotes, bacteria are emerging as fundamental tools in studying the 

influence ofLGT on phylogenetic evolution. 
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The incidence of LGT in prokaryotes has been explored by a variety of 

approaches, including: distance-based methods (Snel et al. 1999), parsimony (Snel et al. 

2002; Daubin et al. 2003a, b; McLysaght et al. 2003; Mirkin et al. 2003; Hao and 

Golding 2004), birth-and-death models (Berg and Kurland 2002; Gu and Zhang 2004; 

Huson and Steel 2004; Novozhilov et al. 2005), genome signatures (Karlin et al. 1997; 

Karlin 1998; Karlin et al. 1999), and maximum likelihood analyses (Gu 2001; Kunin and 

Ouzounis 2003; Huson and Steel2004; Lake and Rivera 2004; Hao and Golding 2006; 

Marri et al. 2006, 2007; Linz et al. 2007). Most methods use gene content data to infer 

incidences of gene gain and gene loss on a phylogeny. In distance models, the degree of 

similarity between two genomes is used to infer the extent ofLGT in shaping gene 

content. Evolutionary distance is quantified as the relative proportion of shared genes 

between the taxa and construes the phyletic pattern of gene gain and gene loss (Snel et al. 

1999). Measures of taxonomic similarity can also be inferred from genome signatures. 

An organism's genomic signature defines the relative abundance of dinucleotides in a 

sequence and is used in comparison with other genome signatures to determine the 

degree of divergence between taxa (Karlin et al. 1997; Karlin and Mrazek 1997; Karlin 

1998; Karlin et al. 1999). Here, an evolutionary relationship is constructed on the basis 

that closely related taxa have more similar genome signatures than distantly related taxa 

(Karlin et al. 1997; Karlin and Mrazek 1997; Karlin 1998; Karlin et al. 1999). 



The significance of LGT in driving prokaryotic evolution has also been noted in 

current models of maximum parsimony (Snel et al. 2002; Daubin et al. 2003a, b; 

McLysaght et al. 2003; Mirkin et al. 2003; Hao and Golding 2004). Maximum 

parsimony aims to reconstruct phylogenies based on genomic arrangements 

representative of minimal evolutionary change (Felsenstein 1988, 2004; Mirkin et al. 

2003). Some models may apply a gain penalty with LGT to obtain rates more reflective 

of a natural evolutionary course (Snel et al. 2002; McLysaght et al. 2003). Once the 

most parsimonious scenario of gene insertion and deletion is assumed on the phylogeny, 

the extent to which LGT effects genomic context can be inferred. 

5 

Gene insertions and deletions have also been modeled according to a stochastic 

birth-and-death process of evolutionary growth (Berg and Kurland 2002; Kurland et al. 

2003; Gu and Zhang 2004; Huson and Steel2004; Novozhilov et al. 2005). In this 

approach, mathematical equations describing gene gain (birth) and gene loss (death) are 

used to simulate probable scenarios of genome evolution. Some methods employ 

sophisticated algorithms to monitor changes in genomic populations when the additional 

forces of mutational inactivation, selection, intraspecific horizontal gene transfer, 

population size (Berg and Kurland 2002) and interspecific horizontal gene transfer 

(Novozhilov et al. 2005) are assumed to affect the rate of gene insertion and deletion. 

Other models utilize simple gene content data to infer the basic evolutionary rates of gene 

gain and loss (Gu and Zhang 2004). 

Recently, models describing the role of gene insertion and gene deletion on 

bacteria evolution have adopted the powerful approach of maximum likelihood {Gu 2001; 
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Kunin and Ouzounis 2003; Huson and Steel 2004; Lake and Rivera 2004; Hao and 

Golding 2006; Marri et a!. 2006, 2007; Linz et a!. 2007). Likelihood methods try to 

approximate a phylogenetic tree that maximizes the probability of the observed data 

according to a specified model (Felsenstein 1988, 2004; Brocchieri 2000). Often phyletic 

patterns of gene presence and absence are cataloged to identify the rates of gene insertion 

and deletion required to maximize the outcome of the proposed model (Gu 2001; Kunin 

and Ouzounis 2003; Huson and Steel2004; Hao and Golding 2006; Marri eta!. 2006, 

2007). Statistical methods, like the Markov model (Lake and Rivera 2004; Galtier 2007) 

and the Poisson distribution (Linz et a!. 2007), have also been successfully incorporated 

in the likelihood framework to infer the rate of LGT on prokaryotic evolution. The intent 

of our research is to assess and improve the modeling ofLGT with the goal to better 

understand the dynamics of this important process. Using a group of Gram-positive 

Bacillus bacteria, we successfully reconstruct the evolutionary history of the phylogeny 

and provide a rigorous portrayal ofLGT in shaping the genome via our constant-rate 

maximum likelihood model, differential-rate maximum likelihood model, and birth-death 

model. 

First we model the rate ofLGT according to a constant-rate maximum likelihood 

scheme. Equal rates of gene insertion and deletion were assumed on each branch and 

phyletic patterns of gene presence and absence were used to infer the rates required to 

maximize the likelihood. The optimal rates of evolution were determined for four 

different rate cases: a single constant rate across all branches (a = f3 = y), a rate 

distinguishing members of B. anthracis, B. cereus, and B. thuringiensis (the Be group) 



from the rest of the phylogeny (a, jJ = y), an additional rate along the branch leading to 

the Be group (a, jJ, y), and branch-specific insertion/deletion (indel) rates (a1,a2, ... ,a23 ). 

An algorithm that continually tests the boundary of a subset of three rate estimates was 

used to infer the optimal rates. Statistical testing via bootstrap sampling and standard 

deviation measures from the likelihood curve confirm the robustness of the constant-rate 

likelihood model. Results of the likelihood ratio test and Akaike Information Criterion 

(AIC) both suggest that the evolutionary history of the Bacillaceae bacteria is best 

portrayed when branch specific indel rates are assumed across the phylogeny. 

The likelihood model was then modified to calculate differential rates of gene 

insertion and gene deletion for the Bacillaceae phylogeny. By acknowledging that the 

rates at which a gene is inserted or deleted need not be equal, the enhanced model 

provides a more accurate reflection ofbacterial evolution. Powell's (1964) maximum 

convergence algorithm was applied to the above rate cases and gene presence/absence 

patterns, to infer the optimal rate(s) of gene insertion and gene deletion. Higher rates of 

gene insertion were observed in most rate cases, signifying genome growth and possible 

adaptive evolution. Strong statistical support for the differential rate conditions is 

granted in the small estimates of standard deviation in the bootstrap samples and 

likelihood curve measurements. Once again, the likelihood ratio test and AIC confim1 

that genome evolution is most accurately modeled when different rates of gene insertion 

and gene deletion are assigned to each branch. 

After the role ofLGT on Bacillaceae evolution was extensively explored in the 

maximum likelihood analyses, a birth-death model of genomic growth was applied to 

7 
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infer the optimal rates of gene insertion and deletion. Interesting conclusions can be 

drawn when different models of evolution are assumed on the same phylogeny, as 

congruencies between the models can assist in identifying the true nature of genome 

evolution. In the birth-death model, a separate 'immigration' parameter was used to 

determine the sole rate of LGT on the phylogeny. Therefore, gene 'birth' results from 

either a duplication or LGT event and gene 'death' results from a deletion. Phyletic 

patterns of gene families were used to infer the optimal rate of gene insertion and gene 

deletion according to a maximum likelihood scheme. Only the simple evolutionary 

scenario of an equal duplication, LGT, and deletion rate across all branches was assumed 

on the phylogeny. Further improvement of our current birth-death model to infer the 

evolutionary rates of the other rate models using a larger set of gene patterns, will help 

provide a more accurate depiction of Bacillaceae evolution. 



Chapter 1 

Maximum likelihood model of 
Bacillaceae evolution under equal 
rates of gene acquisition and loss 

1.1 ABSTRACT 

Maximum likelihood models are emerging as important tools in identifying the 

evolutionary forces that drive bacterial genomic growth. The statistical framework of the 

method allows for rapid and efficient calculation of those parameters required to 

maximize the outcome of a proposed model. In phylogentic studies, likelihood models 

can predict the influential forces of gene insertion, gene deletion, and/or lateral gene 

transfer (LGT) that shape the bacterial genome, thus revealing the unique evolutionary 

relationships that exists among the species. We applied a likelihood-based approach to a 

group of thirteen closely related Bacillaceae species, to reveal the genetic history of the 

group. Four evolutionary rate scenarios were assumed on the phylogeny and the 

9 
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insertion/deletion rate(s) (indel rate) of each were calculated. The optimal rate 

parameters produced by the model were then statistically verified via estimates of 

standard deviation inferred from bootstrap sampling and variance in the likelihood curve. 

Both statistical tests indicate little deviation in the predicted optimal indel rates, thus 

supporting the assumptions of our maximum likelihood model. Through the innate 

consistency and robustness of such models, confidence in identifying the true 

evolutionary mechanism governing bacterial genome growth is granted. 

1.2 INTRODUCTION 

Models of maximum likelihood often serve as the general means of statistical inference 

in phylogenetic reconstruction studies. In fact, with the expansion in computational 

capacity, maximum likelihood has been deemed superior to other methods of statistical 

inference, like parsimony and distance matrix methods (Huelsenbeck 1995). The method 

of maximum likelihood was founded by Fisher (1912) (Felsenstein 2004) and its 

statistical implications for phylogenetic reconstruction were justified by Felsenstein 

(1981) (Schrago 2006). In phylogenies, likelihood analyses provide estimates of branch 

length or infer the hypothetical gene states of ancestor taxa (Felsenstein 1988). The 

innate sufficiency of the model allows it to predict parameter estimates from which no 

other statistics, based on the same data set, can provide additional information (Fisher 

1922). Furthermore, accuracy in predicting the true parameter values is observed to 

increase with the number of tested sample sets (Fisher 1922; Felsenstein 1988). For these 



reasons, the statistics of maximum likelihood have proved extremely beneficial in the 

reconstruction of phylogenies from genomic data. 
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Maximum likelihood is a simple statistical test that is utilized in a vast array of 

computational algorithms. Essentially, likelihood methods try to approximate an 

unknown parameter that maximizes the outcome of a known model. As defined by 

Fisher (1922), the frequency of this event is a likelihood rather than a probability because 

it depends on the occurrence of past events and, as such, the predicted outcomes may not 

sum to one. Maximum likelihood is an ideal statistic because it tests for the parameters 

best suited to fit the model when varying restrictions of the model are imposed on the 

same data set. In phylogenetic analysis, models of maximum likelihood attempt to 

identify the phylogenetic arrangement that best represents the evolutionary succession of 

a given genome. This is done by estimating the phylogenetic tree (1) that maximizes the 

probability of the observed data (D) under a specific model (M) (Felsenstein 1988, 2004; 

Brocchieri 2000). The statistical relationship is formally represented in the conditional 

probability: 

P(D[ T, M). 

Many phylogenetic reconstruction studies (Gu 2001; Huson and Steel 2004; Lake and 

Rivera 2004; Hao and Golding 2006) have utilized the aforementioned relationship to 

describe the role of gene insertions, gene deletions, and lateral gene transfer (LGT) on 

bacterial evolution. In their model, Hao and Golding (2006) were able to determine the 

rate of evolution for a group of Gram-positive Bacillaceae bacteria under the assumption 

that genes are inserted and deleted at equal rates. The group consisted ofthirteen 
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completely sequenced Bacillaceae genomes ofhigh similarity: B. anthracis Ames, B. 

anthracis "Ames ancestor," B. anthracis Sterne, B. thuringiensis, B. cereus ZK, B. cereus 

ATCC 10,987, B. cereus ATCC 14,579, Geobacillus kaustophilus, B. licheniformis, B. 

subtilis, B. clausii, B. halodurans, and Oceanobacillus iheyensis. Because the gene 

sequences of B. anthracis, B. cereus, and B. thuringiensis are so similar, they were 

grouped as the Be group. The predicted phylogeny (see Fig. 1.1) was assumed to evolve 

according to three separate rate cases: a single constant rate, a (Case 1 in Fig. 1.2); two 

rates, a and fJ, separating the Be group from the rest of the phylogeny (Case 2 in Fig. 1.2); 

and three rates, a, /3, and y, where r defines the rate along the branch leading to the Be 

group (Case 3 in Fig. 1.2). The rates for each case were estimated from the observed 

gene presence/absence patterns inferred for the phylogeny (see Table 1.5, for a list and 

frequency of the most common phyletic gene patterns). Those rate values that 

maximized the likelihood (see Table 1.1) were denoted optimal for genomic evolution. 

Although their model of maximum likelihood was successful in predicting the in del rate 

for the Bacillaceae group, the robustness of the model must be verified through statistical 

scrutiny. Only after the statistics of the model are examined, can the fittingness of the 

inferred parameter values to the algorithm be confirmed. 

Statistical tests are often employed to verify the robustness of a theoretical model 

under varying statistical environments. With current improvements in computational 

technology, the solution of many intricate statistical algorithms can be achieved at the aid 

of a computer (Efron and Tibshirani 1991 ). One such method of computational 

efficiency is the bootstrap. Bootstrap estimates are fairly unbiased (Efron and Tibshirani 
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1986) and may be applied to almost any statistic (Efron 1979a; Efron and Gong 1983; 

Efron and Tibshirani 1986). The error of a sample set is assessed in terms of bias, 

standard error (Efron and Gong 1983), variance ofthe sample mean (Efron 1979a), 

and/or prediction error (Efron and Tibshirani 1986). These estimates help determine the 

accuracy of the original data. The bootstrap algorithm operates on the premise of a 

random number generator that draws random points, x1, x2, ... , Xn, from the original data 

set, Z. Each point is drawn independently and with replacement, thus generating an 

independent and random bootstrap sample, X= (x1, x2, ••. , X 11 ), ofthe original data set 

(Efron 1979b ). The procedure is repeated for a large number of trials, m, to establish a 

sufficient set of randomly independent bootstrap samples, Y(l), Y(2), ... ,Y(m), required 

for statistical testing. A sample size of 1000 bootstraps estimates is usually adequate for 

error analysis (Efron and Tibshirani 1986). This form of bootstrapping is typically 

referred to as the Monte Carlo approximation of the bootstrap distribution (Efron 1979a, 

Efron and Gong 1983; Efron and Tibshirani 1986). Often, estimates of standard 

deviation are used to infer the statistical accuracy of a sample. The standard deviation of 

a bootstrap reflects the theoretical error that occurs when an arbitrary data sample is 

identical to the observed data distribution (Efron and Tibshirani 1991). As such, the 

standard error of the original sample can be inferred directly from the standard deviation 

of the bootstrap data. Standard deviation can also be linked to the estimated parameter 

mean of the bootstrap sample. This correlation creates an interval of confidence from 

which many statistically accurate measures of error may be inferred (Efron and 
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Tibshirani 1986). Both statistical attributes, standard deviation and mean, were 

considered in testing the certainty of the original data. 

Variance assessment of the likelihood curve is another means of statistical 

validation. Altering the parameter values in the proposed model generates a curve 

representative ofthe likelihood function. From the graphical surface, the statistical 

relevance of the observed results is affirmed. Geometrical analysis begins by evaluating 

the negative second derivative of the likelihood function at the maximum estimate, 

otherwise known as curvature (Edwards 1972; Felsenstein 1988; Schrago 2006): 

The reciprocal ofthis value: 

Curvature = - d2 L 
dtf 

1 /Curvature = -11 d2 L 
dtf 

taken at the maximum estimate is the observed formation, and corresponds to the radius 

of curvature of the support function (Edwards 1972). The square root of the observed 

formation approximates the standard deviation, or span, ofthe maximum likelihood 

estimate (Edwards 1972). It approximates an interval of confidence, reflective of the 

width of the likelihood curve at the maximum value (Edwards 1972), from which the 

statistical significance of the proposed model is inferred. Confidence intervals 

symmetrical about the estimate (Edward 1972) and of limited range usually confirm the 

robustness of the model. Geometrically, this narrow span is representative of functions 

of extreme curvature with rapidly decreasing slopes on either side of the maximum. Such 

centralization of the function provides a precise estimate of the true maximum likelihood 

value. In addition, support for the estimate is anticipated to increase with increasing 



sample size (Edwards 1972). The statistical implications of these confidence intervals 

were used to reveal the inherent variation of the original test sample. 
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The intent of the proposed research is to assess the reliability, via bootstrap testing 

and calculation of standard deviation from the likelihood curve, of the gene 

insertion/deletion rates inferred by Hao and Golding (2006) for the Bacillaceae group. 

For each rate model they assumed on the phylogeny (Case 1 -Case 3 in Fig. 1.2), the 

bootstrap data and standard deviation calculations will confirm the accuracy of the 

predicted maximum likelihood estimates. An additional rate model ofbranch specific 

insertion/deletion rates, a 1, a 2, .. . ,a23 , will be assessed in like manner (Case 4 in Fig. 1.3). 

Divergence between the original and bootstrapped data will be evaluated according to the 

mean and standard deviation obtained for the parameters of each model. Deviation of the 

bootstrap mean from the original insertion/deletion rates might indicate possible bias in 

the original data set. Further uncertainty in the primary data set will be measured by 

estimating the standard deviation of the maximum likelihood curve. This deviation 

calculation is intuitive of the relative distance between the estimated rate value and the 

expected rate value. Incidences of low deviation indicate little departure from the 

inferred rates, with certainty in the estimated values granted in narrow error margins. 

Such localization will help establish the true maximum likelihood, and thus, validate 

estimates of the original data. Taken together, the statistical implications attained by both 

the bootstrap and variance calculations will provide valuable insight regarding the ideal 

rates ofbacterial gene insertion/deletion. 
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1.3 THE MODEL 

The maximum likelihood model ofHao and Golding (2006) offers a simple algorithm 

that quickly and efficiently solves the likelihood of a given phyletic pattern. The model 

assumes independent evolution of phylogenetic site and lineage so that the likelihood at 

each point may be determined separately. The probability equations used in the 

likelihood analysis are formed on the basis that a gene present at a descendant site may be 

determined from the known ancestral gene state. Thus, assuming equal rates of gene 

insertion and deletion, the conditional probabilities: 

Prob(PdiPa,t) = v/(u + v) + e-(u+v)1[1-v/(u + v)], 

Prob(AdiPa,t) = ul(u + v)- e-(u+v)t[1-v/(u + v)], 

Prob(PdiAa,t) = v/(u + v)- e-(u+v)1[1-ul(u + v)], 

Prob(A(tiAa,t) = ul(u + v) + e-(u+v)1[1-u/(u + v)], 

represent all possible gene states of descendant taxon, where P is gene presence, A is 

gene absence, d is descendant node, a is ancestral node, v is the rate of gene insertion and 

u is the rate of gene deletion (Hao and Golding 2006). These probability relationships 

may be simplified to the form: 

Prob(Pd.aiPd.a,t) = 1/2 + (1 + e-
21

). 

The likelihood of a given pattern is obtained by calculating the probability that a gene (x) 

is present at an ancestor node (G), given the genetic states of the descendants (E and F), 

see Figure 1.4. This practical reconstruction method makes use of the recursion principle, 

and thus, was appropriately coined pruning by Felsenstein (2004). Here, the likelihood of 
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the ancestral genetic state is represented by the product of the observed gene 

present/absent patterns in the descendants (Hao and Golding 2006): 

L"G (P) = (Prob(Pdl Pa, t1) * L\(P) + Prob(Adl Pa, t1) * LxE(A)) 
X (Prob(Pdl Pa, t2) * LxF(P) + Prob(Adl Pa, t2) * LxF(A)). 

Therefore, starting likelihood calculations at the tip of the tree requires the likelihood of a 

gene being present in either descendant (E or F) to be one, Lx(P) = 1, and the likelihood 

of it being absent to be zero, Lx(A) = 0. Another simplification ofthe model is that the 

likelihood of the ancestral genetic state (x) is determined equally by gene presence and 

absent patterns at the root (Hao and Golding 2006): 

(f = (LX G (P) +LX G (A))/2. 

Gene sites absent from the data must also be considered in the model. Hao and Golding 

(2006) accounted for this by adopting the approach devised by Felsenstein (1992) in his 

restriction site analysis of phylogenies. For such data, likelihood calculations of the 

genetic state are based on the probability of the gene being present in at least one species: 

where Q'. is the likelihood of the gene being absent in all species. Once an estimate of 

likelihood is established for a single point, the value is used to infer the transition 

probability of the successive ancestor node. This pattern continues upwards the 

phylogenetic tree. At the root of the tree, the overall likelihood of the phylogeny is the 

sum ofthe conditional likelihoods (Felsenstein 1992, 2004). Therefore, the sum 

likelihood of a tree with n phylogentic sites is (Hao and Golding 2006): 
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11 

Q = TI Q\. 
x=l 

Often, the likelihood function is reverted to its log counterpart: 

11 

log(Q) = L: log(g + ), 
x=l 

so that the mathematical relations of extremely small likelihood values are easier to 

access. This simplified algorithm was employed to calculate likelihood, under the 

assumption of an equal gene insertion and deletion rate, in the statistical testing of the 

model. 

1.4 METHODS 

Genomic rate data for the Bacillaceae group was statistically tested to verify the results 

obtained by Hao and Golding (2006). In their model, genomic evolution was inferred 

under the assumption that genes are inserted and deleted at equal rates. Thirteen 

completely sequenced Bacillaceae genomes of high similarity were examined to 

reconstruct the evolutionary history of the bacterial group. The frequency of gene 

presence and absence patterns across the phylogeny were assessed in a maximum 

likelihood analysis, used to estimate the optimal indel rate of evolution. 

A bootstrap algorithm described by Efron (1979b) was first implemented to test 

the significance of the estimated insertion/deletion rates. For computational efficiency, a 

script was written to perform the bootstrap analysis. Bootstrap samples where generated 
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using a random number generator to randomly select a phylogenetic pattern, from the 

original 7228 gene presence/absence patterns tallied for the Bacillaceae group (Hao and 

Golding 2006). Each pattern was drawn independently and with replacement from the 

original data set. A total of 7228 gene patterns were selected from the original 

presence/absence patterns to establish a new bootstrap sample. In total, 1000 bootstrap 

samples were taken for each rate parameter, thus establishing 1000 independent estimates 

of each variable in a rate case. All of the rates cases defined in Figure 1.2 (a = f3 = y, a, 

f3 = y, and a, f3, y), and the additional case ofbranch specific insertion/deletion rates, 

a1,a2, ... ,a23 (Fig. 1.3), were considered in the bootstrap analysis. A script borrowed 

from a fellow colleague, Dr. Weilong Hao, was used to calculate the optimal 

insertion/deletion rates using an algorithm called "golden". The algorithm golden uses a 

bracket interval to pinpoint the best estimate(s) of gene insertion/deletion required to 

maximize the likelihood. Once 1000 independent estimates of each rate variable in a rate 

case was obtained, the data was analyzed using the statistical package STAT A 7.0 (Stata 

Corporation, College Station, TX). The mean and standard deviation of the inferred 

insertion/deletion rates was calculated for each of the parameters. From these statistical 

estimates, a confidence interval for each rate variable was established and used to assess 

the accuracy of the original model of gene evolution (Hao and Golding 2006). The 

confidence interval for each variable is scored in Table 1.2. 

The statistical variance of the actual gene model (Hao and Golding 2006) was 

evaluated from the observed curvature at the maximum likelihood estimate. This 

graphical interpretation of variance follows the maximum support method devised by 
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Edwards (1972). For each of the defined rate cases, the rate parameters were altered to 

establish values reflective of the true likelihood function. Each rate parameter was 

altered separately, thus generating a likelihood curve representative of only that estimate. 

The likelihood curve for each rate was obtained by increasing and decreasing the optimal 

rate values by 1%, respectively. The degree of increase and decrease for consecutive rate 

estimates was kept consistent to establish values reflective of a symmetrical distribution. 

A total of nine rates: four rates greater than the optimal rate, four rates less than the 

optimal rate, and the optimal rate, were plotted against their associated likelihoods in the 

statistical software system STAT A 7.0. In order to get single variable estimates, a two 

dimensional approach was adapted to graph changes in likelihood when the rate of 

insertion/deletion varied for only one parameter while the others remained constant. A 

likelihood function ofthe form: 

L( 8) = afl + bB + c 

was estimated, via regression analysis, for each individual rate parameter. From the 

second partial derivative of this quadratic function: 

d2Lidfl = 2a 

a measure of curvature at the maximum estimate was inferred. The negative inverse of 

this value: 

is an estimate of the statistical variance ofthe suggested model. From the variance 

estimate, a measure of standard deviation can easily be calculated. Values for standard 



deviation were used to assess the validity of the data produced by the model. These 

values are tabulated in Table 1.2 in the corresponding insertion/deletion rate cases. 

21 

To evaluate the parameter restrictions that best fit the maximum likelihood model, 

the likelihoods estimated for each rate case were compared using the likelihood ratio test. 

When multiple hypotheses (H1 and Hz) are developed for the same model, it is important 

to identify that distribution with parameters best suited for the model. The superior 

model often consists of those parameters that generate the greatest maximum likelihood 

under the given assumptions (Fisher 1922). As defined by Fisher (1922), the likelihood 

ratio test is simply a comparison ratio of the likelihood of one hypothesis to another: 

A(x) = L1/Lz, 

where x defines the data set. The more reliable hypothesis, based on the assumed 

parameter distributions, is the one that returns the observed results more frequently 

(Fisher 1922). For example, if the likelihood ratio of H1 :Hz is 4:1, then we would expect 

H 1 to return more reliable results, more often. Although Fisher's (1922) comparison ratio 

tells us the relative expectancy of a given hypothesis, it does not explicitly assess the 

quality of the decision. In order to verify which model best describes the observations, 

the significance of the predicted likelihoods need to be statistically evaluated. One such 

test statistic is Wilks (1938) chi-square approximation of the likelihood ratio test. In his 

theorem, Wilks ( 193 8) states that the likelihood ratio test asymptotically follows a chi­

square distribution. The relationship is formally represented by: 

-2ln /l = i 
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where /L is the likelihood ratio and the degree of freedom is the difference in the number 

of parameters between the two hypothesis. This chi-square approximation was used to 

evaluate the statistical significance of the maximum likelihood values obtained for the 

different rate models (see Table 1.3). 

The statistics of a model often depend upon the restrictions imposed on the 

parameters. Therefore, to ensure the number of parameters did not falsely identify the 

superiority of a model, the estimated likelihoods were also evaluated according to the 

Akaike Information Criterion (AIC) (Akaike 1972). The AIC is founded on principles of 

maximum likelihood estimation and information theory criterion. It uses the Kullback­

Leibler (1951) definition of information: 

I(H1,Hz) = f H1(x) log[HJ(x)/Hz(x)]dx, 

where H1 and H 2 are defined as before, to identify the optimal estimate based on the 

informational divergence (separation/distance) between two models (Akaike 1972). In 

order to determine the number of parameters that best fit the suggested model, the AIC of 

each rate case was calculated. The AIC of a model is defined by: 

AIC = -2 ln(L) + 2k, 

where L is the maximum likelihood and k is the number of parameters of the model 

(Akaike 1972). The parameter restrictions that result in the minimal information 

theoretic criterion estimate (MAICE) are the best fit for the model. If two hypotheses 

estimate the same MAICE then the principle of parsimony is considered, where the 

model with fewer parameters denotes the superior choice (Akaike 1974). Support for a 

given model was evaluated by taking the difference between the MAiCE and the 
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alternate hypothesis. In general, the greater the distance between the two hypotheses, the 

more likely the tested hypothesis is not the best model, given the data. Burnham and 

Anderson (2002) developed a general support scheme based on the difference in AIC 

values, to assess the statistical support for an alternative model: substantial support (0-2), 

considerably less support ( 4-7), and essentially no support (> 1 0). The statistics of the 

AIC are listed in Table 1.4. 

1.5 RESULTS 

The maximum likelihood analysis performed by Hao and Golding (2006) was statistically 

tested using the bootstrap and curvature methods of statistical inference. Support for an 

observed insertion/deletion rate was evaluated in terms of closeness to the statistically 

inferred estimate. Overall, little deviation from the proposed rate was observed in both 

the bootstrap and curvature approximations (see Table 1.2). Even the gene 

presence/absence patterns predicted by the bootstrap testing (Table 1.6) were very similar 

to the observed phylogenetic patterns (Table 1.5). These results are indicative of robust 

rate estimates for the Bacillaceae group. 

Under the assumption of a sole constant rate of gene evolution (Case 1 in Fig. 1.2), 

the statistics of the bootstrap sample and likelihood curve were consistent with the 

proposed insertion/deletion rate. The confidence interval of the bootstrap approximation 

is very narrow, 0. 5187 ± 0.0252, with a sample mean almost identical to the predicted 



optimal rate of0.5175. Additionally, from the acute curvature ofthe maximum 

likelihood curve, little deviation, 0.0069, is observed in the data set. 
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Following the grouping of the Be group by Hao and Golding (2006), statistical 

verification was performed on the case of two separate rates (Case 2 in Fig. 1.2), a and fJ, 

influencing the rate of Bacillaceae gene evolution. Branches in the Be group were 

estimated to evolve under the assumed rate of a, while the rest of the phylogeny evolved 

at the rate of fJ. The parameter means of the bootstrap sample for a and fJ, 4.572 and 

0.3487 respectively, are very similar to the purposed indel rates of 4.564 and 0.3487, 

respectively. Estimates for standard deviation also indicate little divergence in the 

suggested rate values, with lower deviation observed in rate fJ. Standard deviation 

estimates from the likelihood curve are relatively analogous to the bootstrap results, 

predicting little variation in the rate data with less variation in fJ, 0.0051, than in a, 

0.1098. 

Based on clear differences in the rate of genome evolution between the Be group 

and the rest of the phylogeny, a third rate scenario was developed to model the rate of 

Bacillaceae evolution. A new rate ywas used to describe gene evolution on the branch 

leading to the Be group (Case 3 in Fig. 1.2). In the bootstrap analysis, the estimated 

sample means for a, fJ, and y, 4.015, 0.2836, and 1.274 respectively, are comparable to 

their observed insertion/deletion rates, 4.011, 0.2837, and 1.273 respectively. Once 

again, estimates of standard deviation from the bootstrap sample and the likelihood curve 

are in close approximation of the observed rate values. In the bootstrap data, the measure 

of deviation for fJ is less than that of y, followed by a. A similar pattern is observed in 



the curvature estimates of the likelihood curve, where the values for a, fJ and y, are 

0.0899, 0.0045, and 0.0430 respectively. 
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An additional case of Bacillaceae rate evolution was also considered in the 

extended study. Individual insertion/deletion rates were assigned to each branch in the 

phylogeny ( a1, a2, ••• , a23 ), to establish rate parameters unique to the evolutionary history 

of each member (Case 4 in Fig. 1.3). Rates were ordered from left to right on the 

phylogeny, beginning at the most recent members, the BC group. Overall, the statistics 

of the bootstrap samples and likelihood curve show little deviation in the predicted 

optimal rates and are in agreement with each other. In the bootstrap data, the estimated 

insertion/deletion rates for members outside of the Be group are nearer the optimal rate 

values. The confidence intervals of these members are also more limited in their range. 

Only small variation in the standard deviation values of rates a 13 , a17, and a23 , is noted 

between the two test statistics (see Table 1.2). Rate a20, describing the branch leading to 

Bk and Bh, is observed to have the highest deviation in both data sets, with an estimate of 

zero curvature. 

When the likelihood ratio test was applied to the estimated maximum likelihood 

of each rate case, greater support for a model is observed as the number of parameters 

increase (see Table 1.3). The parameter distribution supporting the best model is that of 

rate Case 4 (Fig. 1.3), with a maximum likelihood of -34864.39 (x2 = il2 LnL > 31.41 

with d.f. = 20). The results of the AIC test also agree with those of the likelihood ratio 

test (see Table 1.4). A sequential increase in the goodness of fit ofparameters to a given 
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model is noted down Table 1.4, as the distance between the AIC values increase. Again, 

rate Case 4 appears to best represent the genomic data, owing to a MAICE of69774.78. 

1.6 DISCUSSION 

In order to justify the assumptions of a given model, the statistics of alternative 

hypotheses need to be analyzed and evaluated to determine the criterion that best fits the 

data. The preferred hypothesis is usually the one with the greatest consistency and 

agreement among its test statistics. The alternate rate hypotheses (Case 1 -Case 3 in Fig. 

1.2) suggested by Hao and Golding (2006) and the additional case of independent branch 

evolution (Case 4 in Fig. 1.3), were evaluated in terms of the maximum likelihood model. 

The statistics of each rate model were compared to determine the number of parameters 

that best fit the genome data. Together, the statistical results reveal that rate Case 4 most 

accurately models the rate of evolution governing the Bacillaceae phylogeny. 

The bootstrap and maximum likelihood curve results are quite consistent for the 

three rate cases (Case 1 -Case 3) assumed by Hao and Golding (2006). The mean rate 

values predicted by bootstrap sampling are extremely close to the estimated optimal 

insertion/deletion rates. Measures of standard deviation also support the inferred indel 

rates and, together with the bootstrap mean, create narrow confidence intervals indicating 

little divergence between the data sets (see Table 1.2). Similar results are observed in the 

statistical analysis of the likelihood curve. The standard deviation values obtained for the 



three rate cases are comparable to those obtained in the bootstrap samples. Only the 

estimate for rate a in Case 3, 0.0899, varies slightly between the two test statistics. 
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Like the statistical results of the first three rate cases, little deviation is noted 

between the bootstrap samples and curvature data in the fourth rate case (Case 4 in Fig. 

1.3). Most of the estimated standard deviation values agree between both test statistics. 

Only slight variation is noted in some ofthe values obtained in the curvature analysis: 

a 13 , 0.0089, a 17 , 0.0981, and an 0.0696. Rate a20 is observed to have infinite variation 

in the curvature data. Altering the optimal indel rate of a20 resulted in no difference in 

the maximum likelihood estimate. As such, when the rate values were plotted against 

their associative likelihoods, the graph resembled a horizontal line, indicating infinite 

deviation in the rate estimate. The predicted bootstrap means are very close to the 

optimal insertion/deletion rates estimated by the maximum likelihood model. Again, the 

bootstrap mean and standard deviation of each rate establish narrow confidence intervals, 

thus providing continued support for the likelihood model. 

The results of the likelihood ratio test identify rate Case 4 as the most statistically 

significant hypothesis. As the number of parameters increase from Case 1 - Case 4, there 

is a clear succession of increase in the estimate for maximum likelihood, with Case 4 

having the highest estimate of -34864.39. Doing a chi-square comparison of the 

maximum likelihoods obtained from the different rate cases, confirms that the indel rate 

of Bacillaceae evolution is best described by the parameter assumptions of Case 4 (X2 = 

~2 LnL > 31.41 with d.f. = 20). To ensure that the choice of Case 4 as the best likelihood 

method is not simply a product of the number of parameters defined in the model, the 
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different rate hypothesis were also evaluated according to the AIC. This statistical 

identification method tests for the superior hypothesis based on the maximum likelihood 

estimate and number of parameters, rather than on levels of significance (Akaike 1974). 

It offers a practical way to mathematically identify the best likelihood model among a 

series of hypothesis. The AIC measures certainty in the different parameter restrictions 

assumed by various models, all of which must be derived from the same number of 

observations (Akaike 1974). The strength of a result is ranked as the degree of 

informational difference between competing hypotheses. The greater the distance 

between two hypotheses, the more likely the challenging hypothesis is not the best model. 

One of the most prominent features of the test is that the order of computing the AIC for 

alternate hypothesis is not important (Akaike 197 4). Therefore, multiple hypotheses can 

be arbitrarily compared, regardless of the sequential increase in parameter restrictions. 

Applying AIC to the four defined rate cases, reveals that the number of parameters in rate 

Case 4 give the MAICE, 69774.78, and are best fit for the likelihood model. These 

results confirm those obtained by the likelihood ratio test, and provide further support for 

the parameter assumptions of rate Case 4. Although both test statistics identify Case 4 as 

the 'best-fit' model, it is important to note that it is only the best model out of the 

hypotheses offered. Also, the results ofthe tests are only as good as the data and 

observations they originate from. Therefore, based on the hypotheses offered (Case 1 -

Case 4), the rate of Bacillaceae evolution is most accurately portrayed when branches are 

assumed to change independently, according to branch specific indel rates. 
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Table 1.1. The optimal indel rates and the associated maximum likelihood, as inferred 

by Hao and Golding (2006) for the three rate cases defined in Figure 2. 

Rate Case MLE LnL 

a=fJ=r 0.51 -40277 

a 4.42 
-36902 

f3=r 0.35 

a 3.92 

f3 0.28 -36128 

r 1.23 

30 
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Table 1.2. Optimal rates of gene insertion/deletion as predicted by the maximum 

likelihood analysis, bootstrap testing, and curvature method for rate Cases 1 - 3 in Figure 

2 and rate Case 4 in Figure 3. 

Bootstrap Curvature 

Rate MLE MLE.:±:St. Dev St. Dev 

a=fJ=r 0.5175 0. 5187 ± 0.0252 0.0069 

a 4.564 4.572 ± 0.1558 0.1098 

fJ=r 0.3487 0.3487 ± 0.0055 0.0051 

a 4.011 4.015 ± 0.1156 0.0899 

f3 0.2837 0.2836 ± 0.0052 0.0045 

r 1.273 1.274 ± 0.0413 0.0430 

a I 2.351 2.705 ± 1.394 1.175 

a2 1.117 0.6902 ± 0.8404 0.8175 

a3 14.62 15.15 ± 3.241 2.988 

a4 9.211 9.218 ± 0.7634 0.6934 

as 5.519 5.483 ± 0.5245 0.4586 

a6 11.67 11.69 ± 0.6135 0.6124 

a7 1.562 1.560 ± 0.1959 0.1306 

as 0.4434 0.4429 ± 0.0183 0.0176 

a9 0.2760 0.2757 ± 0.0164 0.0155 

aJO 0.2531 0. 2528 ± 0.0149 0.0147 

a11 0.2473 0. 2465 + 0.0122 0.0121 

a12 0.3096 0.3102 ± 0.0145 0.0137 

a13 0.0172 0.0554 ± 0.0291 0.0089 

a14 13.74 13.73 ± 0.6344 0.6104 

a1s 1.184 1.193 ± 0.1675 0.1578 

a16 7.206 7.226 ± 0.5856 0.5303 
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Bootstrap Curvature 

Rate MLE MLE ±St. Dev St. Dev 

an 1.030 1.038 ± 0.1481 0.0981 

a1s 1.321 1.323 ± 0.0418 0.0427 

a19 0.5345 0.5373 ± 0.0257 0.0818 

a2o 3.674 X 10"11 1.188x 10-4 ±0.0017 infinite 

a21 0.4991 0.4988 ± 0.0517 0.0493 

a22 0.1701 0.1704 ± 0.0205 0.0188 

a23 1.456 1.155±0.2158 0.0696 



Table 1.3. Results of the likelihood ratio test for the four rate cases (Case 1 - 3 in Fig. 

1.2 and Case 4 in Fig. 1.3) assumed on the Bacillaceae phylogeny. 
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Rate Case 

Case 1 

LnL 

-40276.543557 

- ~2LnL df P-value 

Case 2 -36901.410594 

Case 3 -36126.560876 

Case 4 -34864.390508 

-6750.26592 

-1549.69944 

-2524.34074 

1 

1 

20 

3.84 

3.84 

31.41 
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Table 1.4. AIC statistics calculated from the maximum likelihood estimated by each rate 

case (Case 1 - 3 in Fig. 1.2 and Case 4 in Fig. 1.3). The AIC value of rate Case 4 gives 

the MAICE. 

Rate Case LnL k -2 Ln(L) + 2k 
Difference from 

MAICE 
---- ·--·----. ----------------~--- ... -------

Case 1 -40276.543557 1 80555.0871 10780.3061 

Case 2 -36901.410594 2 73806.82118 4032.04018 

Case 3 -36126.560876 3 72253.12174 2478.34074 

Case 4 -34864.390508 23 69774.781 
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Table 1.5. The number of genes with the most common phyletic patterns in the 

Bacillaceae group as observed by Hao and Golding (2006). 

-----·----· ·--·---~- -------··--------------- ------- ·--------

Number 

of genes Ba1 Baz Ba3 Bt Bc1 Bcz Bc3 Gk Bl Bs Bk Bh Oi 
- - -·· --- ------ ------ ------

1139 1 1 1 1 1 1 1 1 1 1 1 1 1 

1024 1 1 1 1 1 1 0 0 0 0 0 0 

285 0 0 0 0 0 0 0 0 1 1 0 0 0 

194 1 1 1 0 0 0 0 0 0 0 0 0 0 

156 0 0 0 0 0 0 0 1 0 0 0 0 0 

148 0 0 0 0 0 0 0 0 0 0 0 1 0 

132 1 1 1 1 0 0 0 0 0 0 0 

128 0 0 0 0 0 0 0 0 0 0 1 0 0 

119 0 0 0 0 0 0 0 0 0 1 0 0 0 

118 0 0 0 0 0 0 0 0 0 0 0 0 1 

109 1 1 1 1 0 1 0 0 0 0 0 0 

103 1 1 0 1 0 0 0 0 0 0 0 0 

99 1 1 0 0 0 0 0 0 0 0 

96 1 1 1 1 1 1 1 1 1 0 

90 1 1 1 1 1 1 0 1 1 1 

85 0 0 0 0 0 0 0 0 1 0 0 0 0 

3203 Other patterns 
------ ---- ------ ---- ---
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Table 1.6. An example of one bootstrap result of the number of genes with 

the most common phyletic patterns in the Bacillaceae group. 

··- -- ----- ----·----~·- ----~ -~---~---~- ---· ~-------~------- ----~---

Number 

of genes Ba1 Ba2 Ba3 Bt Bc1 Bc2 Bc3 Gk Bl Bs Bk Bh Oi 
---- -·~-----~--~-------~--------~-~-----~----------------~·---

1111 1 1 1 1 1 1 1 1 1 1 1 1 1 

1034 1 1 1 1 1 1 1 0 0 0 0 0 0 

253 0 0 0 0 0 0 0 0 1 1 0 0 0 

174 1 1 1 0 0 0 0 0 0 0 0 0 0 

163 0 0 0 0 0 0 0 1 0 0 0 0 0 

151 1 1 1 1 1 1 0 0 0 0 0 0 0 

149 0 0 0 0 0 0 0 0 0 0 0 1 0 

133 0 0 0 0 0 0 0 0 0 0 1 0 0 

119 0 0 0 0 0 0 0 0 0 0 0 0 1 

115 0 0 0 0 0 0 0 0 0 1 0 0 0 

114 1 1 1 1 1 0 0 0 0 0 0 0 0 

104 1 1 1 0 1 0 0 0 0 0 0 0 0 

95 1 1 1 1 1 1 1 1 1 1 1 1 0 

88 0 0 0 0 0 0 0 0 1 0 0 0 0 

87 1 1 1 1 1 1 0 1 1 1 1 1 

85 1 1 1 1 0 0 0 0 0 0 0 

3253 Other patterns 
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Figure 1.1. The evolutionary branching order of the Bacillaceae phylogeny inferred by 

Hao and Golding (2006), using the concatenated gene sequences of gmk, glpF, and pycA. 

Members used to construct the phylogenetic history of the group include: Bacillus 

anthracis Ames (Ba1), Bacillus anthracis "Ames Ancestor" (Ba2), Bacillus anthracis 

Sterne (Ba3), Bacillus thuringiensis (Bt), Bacillus cereus ZK (Bc1), Bacillus cereus 

ATCC 10,987 (Bc2), Bacillus cereus ATCC 14,579 (Bc3), Geobacillus kaustophilus (GK), 

Bacillus licheniformis (Bl), Bacillus subtilis (Bs), Bacillus clausii (Bk), Bacillus 

halodurans (Bh), and Oceanobacillus iheyensis. Note, time is scaled as the expected 

number of nucleotide substitutions per site. 
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Figure 1.2. The different evolutionary scenarios assumed on the Bacillaceae phylogeny 

by Hao and Golding (2006). The Be group is boxed off and evolves at rate a, while the 

remaining hatched section of the phylogeny evolves at rate fJ. Rate ydenotes the rate of 

divergence between the two groups. Case 1: a single constant rate throughout the 

phylogeny (a = f3 = y). Case 2: two rates differentiating the Be group (a, f3 = y). Case 3: 

three rates differentiating the Be group and the branch leading to the group (a, fJ, y). 
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Figure 1.3. Additional rate model of Bacillaceae evolution assumed on the phylogeny. 

Individual rates of gene evolution were used to differentiate each branch of the 

phylogeny. Case 4: branch specific indel rates in Chapter 1 and branch specific insertion 

and deletion rates in Chapter 2 (a1, a2, . .. , a23). 
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Figure 1.4. The branching relationship representing the simplest case for determining 

the likelihood of the ancestral state, using the recursion principle. The likelihood that 

gene x is present at the ancestor node G depends on the genetic states of the descendent 

taxa E and F, separated by t1 and t2 generations. 
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Chapter 2 

Differential-rate maximum likelihood 
model of Bacillaceae evolution 

2.1 ABSTRACT 

The genomic history of bacteria is largely influenced by the dynamic interactions of gene 

insertions, gene deletions, and incidences of lateral gene transfer (LGT) that occur during 

sequence evolution. Increased rates ofLGT observed during prokaryotic evolution have 

prompted the conclusion that it is the most prominent force controlling the topology of 

the taxa. Through the constant introduction of alien genes into the phylogeny, LGT can 

dramatically alter gene content, rapidly driving species divergence. To determine the role 

of each evolutionary factor in shaping the history of a phylogeny, the extent to which 

each impacts genomic evolution needs to be quantified. Using a multidimensional 

maximum likelihood model, we calculated the optimal rates of genome evolution for a 

group of Bacillaceae bacteria. Differential rates of gene insertion and 
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gene deletion were assumed on the phylogeny, and their evolutionary patterns were 

inferred under four different rate models. Overall, the phylogeny evolves according to a 

higher rate of gene insertion than gene deletion, with increased rates of gene acquisition 

observed in members belonging to B. anthracis, B. cereus, and B. thuringiensis (the Be 

group). Statistical testing of the inferred optimal rates by bootstrap sampling and 

curvature measurements revealed little deviation in the observed data set. In fact, only 

slight deviation is noted when independent branch evolution is assumed on the phylogeny 

(Case 4), with the Bacillus anthracis group showing the greatest variation in the predicted 

rate values. Both the likelihood ratio test and Akaike Infonnation Criterion (AIC) reveal 

that the history of the Bacillaceae phylogeny is best modeled when independent rates of 

evolution are assigned for each branch (Case 4). The strong statistical support of the 

model, along with the inferred optimal rates of gene insertion and gene deletion, confirm 

the robustness of the maximum likelihood algorithm and help provide valuable insight to 

the true nature of bacterial evolution. 

2.2 INTRODUCTION 

As databases of whole genome sequences continually expand and become readily 

available to research, increased interest has been directed at understanding the 

evolutionary history of the genes. Of particular interest are the microbial genomes. With 

the accumulation of fully sequenced genomes, bacteria are emerging as the ideal subject 

in modeling genome evolution. The genome of a bacterium is shaped by many processes, 
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including: gene duplication, gene loss, lateral gene transfer (LGT), and mutation (Snel et 

al. 2002; Gu and Zhang 2004; Lake and Rivera 2004; Hao and Golding 2004, 2006; 

Novozhilov et al. 2005; Marri et al. 2007). As reviewed in Doolittle (1999), lateral gene 

transfer is the exchange of genetic material across taxa and has been denoted the most 

prominent factor regulating prokaryotic evolution (Lan and Reeves 1996; Gogarten et al. 

2002; Jain et al. 2003; Mirkin et al. 2003). Therefore, microbial research often aims to 

identify incidences of LGT and analyze the resulting effect on genomes of closely related 

species. Most models of bacterial evolution (Snel et al. 2002; Lake and Rivera 2004; 

Hao and Golding 2004, 2006; Linz et al. 2007; Marri eta/. 2007) only consider the rate 

of gene insertion and gene deletion, assuming that both processes occur at equal rates. It 

is not always the case, however, that the genomes are shaped in such a balanced manner. 

For example, in the poxvirus study by McLysaght et al. (2003) the rate of gene loss was 

found to vary across the poxvirus genome and higher rates of gene insertion were 

observed in the orthopox group. Therefore, the evolution of a genome may be influenced 

by a variety of forces, including unequal rates of gene insertion and gene deletion (Berg 

and Kurland 2002; Huson and Steel 2004; Novozhilov et al. 2005). As such, it is 

important to devise a model that provides an accurate depiction of microbial evolution by 

considering the effect of varying rates on genome evolution. 

In order to explore the differential evolution of a genome, the maximum 

likelihood method ofHao and Golding (2006) was adapted to estimate separate rates of 

gene insertion and gene deletion. The new model was applied to the same group of 

Gram-positive Bacillaceae bacteria (Hao and Golding 2006) so that the results could be 
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compared to the previous findings. Gene presence/absence patterns used to infer the 

maximum likelihood estimate (MLE) of insertion and deletion were also obtained from 

their likelihood study (see Table 1.5 for the most commonly noted patterns and their 

frequency). Calculation of the maximum likelihood and the corresponding optimal rates 

of gene insertion and gene deletion were achieved using Powell's (1964) method of 

quadratic convergence. For a detailed description of the maximization algorithm applied, 

please see section 2.2 ofthis chapter. 

The proposed convergence model examines the role of varying gene insertion and 

gene deletion rates on a bacterium genome. The multidimensional maximum likelihood 

analysis was applied to the four rate scenarios defined in Chapter 1: a single constant 

insertion rate and deletion rate throughout the phylogeny, a= f3 = y, (Case 1 in Fig. 1.2); 

two insertion and deletion rates differentiating the Be group, a, f3 = y, (Case 2 in Fig. 1.2); 

three insertion and deletion rates differentiating the Be group and the branch leading to 

the group, a, /3, y, (Case 3 in Fig. 1.2); and branch specific insertion and deletion rates 

(a1, a2, ... ,a23) (Case 4 in Fig. 2.1). For most of the rate parameters, the insertion rate was 

found to be considerably greater than the deletion rate, indicating growth in the genome. 

Collectively, the model provides an efficient means of estimating evolutionary rates and 

establishes supplementary support for the optimization algorithm detailed by Hao and 

Golding (2006). 



45 

2.3 POWELL'S CONVERGENCE ALGORITHM 

Powell's (1964) convergence algorithm is an efficient method of optimization when the 

derivative of the function being maximized is unknown, and provides quick convergence 

to the global optimum, even when initial estimates are bad. Starting at some initial point 

x0, the maximum of a function is obtained by moving along some direction z until the 

function is maximized in that direction. Upon reaching a maximum for the first vector, 

the algorithm then proceeds to the next directional vector, moving along it to reach a new 

maximum. This cycle repeats itself for the entire set of directional vectors. The goal of 

the algorithm is to find a set of vectors that are orthogonal to one another in order to find 

the function maximum most efficiently. When all the vectors ofthe directional set are 

orthogonal to one another, the function is said to be maximized. Therefore, the 

maximum of an n-dimensional function is achieved by moving along each directional 

vector, one vector at a time, to the maximum until a set of n mutually conjugate 

directions is obtained. 

The computation of Powell's algorithm formally begins by saving the initial 

approximations as the starting point, P0, and setting the initial set of directions ui equal to 

the unit vectors, fori= 1, 2, ... , n. The program then applies the following steps to 

search for a maximum: 

(i) Choose an initial point P0 and set ui equal to unit vectors, fori= I, 2, ... , n 

(ii) Optimize the likelihood starting from P0 in the direction u1 and label the 
resulting vector P1• 

(iii) Optimize the likelihood starting from P1 in the direction u2 and label the 
resulting vector P2, 



Optimize the likelihood starting from P 2 in the direction u3 and label the 
resulting vector P3, 

Optimize the likelihood starting fromPn-l in the direction un and label the 
resulting vector Pn 

(iv) Set ui = ui+l fori= 1, ... , n- 1. 
Set Un = Pn- Po. 

(v) Optimize the likelihood starting from Pn in the direction Un and label the 
resulting vector P0• 

(vi) Return to step (ii) until the maximum of the function is reached or until some 
specified stopping criterion is met (for example, when the required accuracy is 
reached; Powell1964). 
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In order to improve the efficiency of the algorithm along narrow valleys, only the current 

directions oflargest increase can be used in lieu of the previous best estimates. This 

minor adjustment was considered in the multidimensional analysis because calculating 

the global maximum is complicated by the increase in the number of rate parameters 

from rate Case 1 - Case 4. Therefore, in the more complex rate scenarios, the 

modification allows for quick convergence in the new direction of a complicated 

landscape and minimizes the incidence of linear dependence in the direction set (Flannery 

et al. 1992). 

2.4 METHODS 

In the previous maximum likelihood analysis (Chapter 1), a likelihood algorithm adapted 

from Hao and Golding (2006) was used to infer the optimal rate of gene 

insertion/deletion (indel) for the Bacillaceae phylogeny. In total, thirteen fully sequenced 

Gram-positive Bacillaceae genomes were analyzed, including: B. anthracis Ames, B. 
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anthracis "Ames ancestor," B. anthracis Sterne, B. thuringiensis, B. cereus ZK, B. cereus 

ATCC 10,987, B. cereus ATCC 14,579, Geobacillus kaustophilus, B. licheniformis, B. 

subtilis, B. clausii, B. halodurans, and Oceanobacillus iheyensis. The genomes of B. 

anthracis, B. cereus, and B. thuringiensis were further considered as a single group, the 

Be group, because studies previous to Hao and Golding (Ash et al. 1991; Priest et al. 

2004) have revealed their sequences to be very similar (Hao and Golding 2006). Indel 

rates for the four defined rate scenarios (Case 1 - Case 3 in Fig. 1.2 and Case 4 in Fig. 1.3) 

were determined by using bracket intervals to pinpoint the rate required to maximize the 

likelihood. The robustness of the predicted rate values was confi1med using bootstrap 

results and by measuring deviation in the likelihood curve. Further statistical analysis by 

the likelihood ratio test and AIC, reveals the parameter assumptions of rate Case 4 to 

support the best model of phylogenetic evolution. 

To provide a more accurate depiction of gene evolution in the Bacillaceae group, 

the maximum likelihood model offered by Hao and Golding (2006) was improved. In 

their model, genes are assumed to be inserted and deleted at an equal rate. Genomic 

evolution, however, is not necessarily shaped by a balance between gene insertion and 

gene deletion, but rather by unequal rates of acquisition and loss (Berg and Kurland 

2002). In fact, gene insertions have been predicted to occur more often than gene 

deletions in some viruses (Daubin et al. 2003; McLysaght et al. 2003). Hao and Golding 

(2006) assumed equal rates of gene insertion and deletion to prevent the genome size 

from diverging to zero or infinity, especially for longer term gene content analysis. By 

assuming a single rate, they were able to efficiently and accurately model the indel rate of 
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Bacillaceae evolution under a simplified likelihood scheme. As such, the model offers a 

reliable base algorithm from which more complicated likelihood models can be derived. 

Following the assumptions of the aforementioned likelihood model, a multidimensional 

approach was adapted to determine the optimal rate( s) of insertion and deletion for the 

bacteria. The conditional probabilities: 

Prob(PdiPa,t) = v/(u + v) + e-(u+v)t[l-vl(u + v)], 

Prob(AdiPa,t) = ul(u + v)- e-(u+v)t[l-vl(u + v)], 

Prob(PdiAa,t) = v/(u + v)- e-(u+v)1[1-ul(u + v)], 

Prob(AdiAa,t) = ul(u + v) + e-(u+v)t[l-ul(u + v)], 

where Pis present, A is absent, dis descendant, a is ancestor, v is the rate of gene 

insertion, and u is the rate of gene deletion, were used to calculate the likelihood that a 

given gene was present at an ancestor node. The overall likelihood of the phylogeny was 

determined in similar manner as outlined in Chapter 1, using the equation: 

LxG (P) = (Prob(Pdl Pa, t1) * LxE(P) + Prob(Adl Pa, t1) * LxE(A)) 
X (Prob(Pdl Pa, tz) * LxF(P) + Prob(Adl Pa, tz) * LxF(A)). 

where G is the ancestor taxon, E is a descendant, and F is a descendant. The rate of gene 

insertion and gene deletion was inferred from the same gene presence and absence 

patterns used by Hao and Golding (2006). 

Multidimensional maximization algorithms usually require the calculation of a 

conjugate gradient to determine the successive directions of increase of some function. 

When the derivative of a function cannot be determined, however, maximization of a 

quadratic function can be achieved by calculating conjugate directions. Powell (1964) 

describes such an efficient method of minimization/maximization, where conjugate 
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directions are used to determine the minimum/maximum of a function by changing one 

variable at a time. Because derivatives cannot be determined for the likelihood function, 

Powell's optimization algorithm was applied to infer the rate of gene evolution. 

The scripted formula outlined in Numerical Recipes for C (Flannery et al. 1992) 

for Powell's method of quadratic convergence, was altered to perform the 

multidimensional maximization of the modified likelihood function. The modified 

algorithm was applied to the three rate cases defined by Hao and Golding (2006): single 

constant insertion rate and deletion rate throughout the phylogeny (a = fJ = y), two 

insertion and deletion rates differentiating the Be group (a, fJ = y), three insertion and 

deletion rates differentiating the Be group and the branch leading to the group (a, p, y) 

(Fig. 1.2), and the additional rate case of branch specific insertion and deletion rates ( a 1, 

a2, ... , a2 3) (Fig. 2.1). For each rate case, the initial conjugate directions were set equal to 

the unit vectors. To estimate the maximum likelihood, the independent insertion and 

deletion rates were changed in accordance to the conjugate directions, until the optimal 

rates required to maximize the likelihood function were achieved. Upon completion of 

the n111 dimensional conjugate direction, the average direction moved, x 11 -x0, was used to 

replace the previous directions of increase, where x0 is the initial rate and x 11 is the final 

rate after maximizing in n directions. The entire process is then repeated. In the 

successive iterates, former direction estimates representing the largest increase in the 

function were ignored to minimize the occurrence of linearly dependent directions 

(Flannery et al. 1992). The entire procedure was repeated until the fractional tolerance of 

the function value WaS leSS than 0.1 X 1 o-22
. 
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For the evolutionary scenarios of higher dimension (Case 3 and Case 4), Powell's 

routine was run multiple times in order to establish the exact, global maximum estimate 

of the likelihood function. After each iterate the newly calculated insertion and deletion 

rate estimates were used to replace the previous initial estimates. This substitution was 

done to aid in the efficiency of the algorithm, as the new rate estimates should constitute 

a more reliable initial data set. The number of required iterates for the algorithm varied, 

depending on the initial rate values, with the more ambiguous values requiring more 

repetition. 

Bootstrap sampling and curvature measurements were applied to the 

maximization algorithm to test the statistical significance of the differential gene 

insertion and gene deletion rate model. Methods for both statistical processes follow 

from the procedures as detailed in Chapter 1. To test the accuracy of the predicted 

insertion and deletion rates, bootstrap samples were generated for each of the defined rate 

cases (Case 1 -Case 4). Bootstrap sampling of each scenario was repeated for a total of 

1000 iterates, producing 1000 independent parameter estimates of the different rates 

assumed on the phylogeny. The bootstrapped estimates were then evaluated in the 

statistical package STAT A 7.0 (Stata Corporation, College Station, TX). The accuracy of 

an inferred insertion or deletion rate was determined from the confidence intervals, 

consisting of the mean and standard deviation, predicted for each parameter (Table 2.1 ). 

Deviance in the actual convergence model was analyzed based on variance 

measures from the maximum likelihood curve. Independent likelihood curves were 

constructed for each parameter in the different rate cases, separately. This was achieved 
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by varying only one parameter at a time while the remaining parameters were kept 

constant. For each likelihood curve, nine rates: four rates lower than the maximum 

estimate, four rates greater than the maximum estimate, and the maximum estimate, were 

used to estimate the curvature of the likelihood function. Estimates for rates greater than 

or less than the maximum estimate were calculated by increasing and decreasing, 

respectively, the optimal rate estimate by a specified value. For each rate predicted by 

altering the maximum estimate, the corresponding likelihood was calculated and plotted 

with the rate as a coordinate in the likelihood curve. Variance in the model was inferred 

from the negative inverse of the second derivative, or curvature, of the associated 

likelihood function, evaluated at the maximum rate estimate. This value was then used to 

measure the standard deviation of the likelihood model (Table 2.1 ). 

To evaluate whether increasing the number of parameters ofthe likelihood model 

actually produces a better estimate of maximum likelihood, the likelihood ratio test 

(Fisher 1924) was applied to the four defined rate cases. The statistical significance of an 

estimate was detennined using Wilks (1938) chi-square approximation ofthe likelihood 

ratio (see Chapter 1 for a more detailed description of Wilks' chi-square approximation). 

For each rate case, the predicted maximum likelihood was compared to the maximum 

likelihood value of the next consecutive rate case, following an order of increasing 

complexity from Case 1 to Case 4. The resulting ratios were then compared in a chi­

square distribution, with the degree of freedom determined from the difference in the 

number of independent variables between two cases (Table 2.3). 
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It is often the case that the statistics of a model depend largely on the parameters 

being considered. Therefore, the statistical choice for the best-fit model needs to be 

validated. By penalizing a model based on the number of parameters it uses, the Akaike 

Information Criterion (AIC) identifies the best hypothesis void of significance levels 

(Akaike 1974). An AIC value can be calculated from the maximum likelihood of each 

rate case, using the equation: 

AIC = -2 ln(L) + 2k, 

where k is the number of parameters defined in the model. The rate hypothesis that gives 

the minimum AIC estimate (MAICE) is considered the best model for the likelihood 

analysis. The AIC of each rate case was compared to the MAICE, to determine the 

statistical support of the competing hypothesis (Table 2.4). 

2.5 RESULTS 

Using Powell's (1964) algorithm, the multidimensional maximum likelihood analysis 

modeled the influence of unequal gene insertion and gene deletion rates on the evolution 

of the Bacillaceae phylogeny. The model was applied to a group of thirteen highly 

similar bacteria sequences, in order to explore the patterns of lateral gene transfer (LGT) 

in closely related species. Optimal rates of acquisition and loss were determined for each 

ofthe rate cases defined in Figure 1.2, and the additional rate case ofbranch specific 

insertion and deletion rates (Fig. 2.1 ). Once the rates required to maximize the likelihood 

function were achieved, the accuracy of the estimates were statistically tested by 



53 

bootstrap sampling and variance measures from the maximum likelihood curve. 

Together, the observed results will aid in understanding the nature ofLGT in shaping the 

Bacillaceae genome. 

Initially, the phylogeny was assumed to evolve according to a constant rate of 

gene insertion and gene deletion across all branches of the phylogeny (Case 1 in Fig. 1.2). 

The likelihood function was maximized according to an insertion rate of 0. 7326 and a 

deletion rate of 0.6132. Bootstrap testing and maximum likelihood curve approximations 

reveal very little deviation in the statistical estimates from the observed rate values (Table 

2.1 ). In fact, the mean insertion rate of the bootstrap sample is identical to the observed 

rate. Additionally, the standard deviation estimates for the bootstrapped rates are very 

small, with the insertion rate having a slightly smaller deviation interval, 0.7346 ± 0.0057, 

than the deletion rate, 0.6136 ± 0.0275. Standard deviation in the likelihood curve is also 

minor for the insertion rate and the deletion rate, 0.0081 and 0.0151 respectively, and the 

predicted curves appeared to fit the data points well. 

Two differential rates of evolution were used to describe the Bacillaceae 

phylogeny in the second rate model (Case 2 in Fig. 1.2). The high sequence similarity 

between Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis resulted in the 

grouping of these species into the B. cereus group (Be group) (Hao and Golding 2006). 

Rate a was used to describe gene acquisition and loss within the Be group and rate fJ is 

the evolutionary gene rate assumed on the remaining phylogeny. In the differential rate 

model, the inferred rate of gene insertion and gene deletion for a is 14.08 and 1.809, and 

for fJ 0.4049 and 0.3524, respectively. Statistical sampling of the two rates indicates little 
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deviation from the proposed estimates, with the rates predicted for a showing slightly 

more deviation than the rates for fJ (Table 2.1 ). The confidence intervals predicted for the 

insertion rate, 14.09 ± 0.3920, and deletion rate, 1.812 ± 0.1082, of a, and the insertion 

rate, 0.4051 ± 0.00089, and deletion rate, 0.3516 ± 0.0169, of fJ, are relatively small and 

the predicted mean rates are extremely close to the optimal insertion and deletion rates. 

Additionally, only minor disparities in the rate values are observed when testing the 

variance via the curvature method. Measures of standard deviation inferred from the 

likelihood curve are small for both rate a, 0.2457 for gene insertion and 0.1022 for gene 

deletion, and rate/], 0.0067 for gene insertion and 0.0118 for gene deletion, thus 

providing continued support for the proposed model. 

In the third model of Bacillaceae evolution, a third rate was added into the 

phylogeny (Case 3 in Fig. 1.2). It is evident from the phylogenetic tree that members of 

the Be group have a lager genome size than the rest of the Bacillaceae phylogeny. 

Therefore, following the reasoning ofHao and Golding (2006), the incidence of gene 

insertion and gene deletion between these two groups might be expected to occur at 

different rates. Rate ywas used to describe gene acquisition and loss along the branch 

separating the two parts of the phylogeny. The optimal rates of insertion and deletion 

estimated by this model are 9.909 and 2.289 for rate a, 0.3633 and 0.3376 for rate fJ, and 

1.592 and 0.6351 for rate y. Again, both statistical tests provide strong support for all 

rate estimates. The inferred gene insertion and deletion rates are predicted to have 

narrow confidence intervals from the bootstrap samples. Rate fJ has the most consistent 

values, 0.3638 ± 0.0074 for gene insertion and 0.3378 ± 0.0159 for gene deletion, 
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followed by rate y, and then rate a. Estimates of standard deviation from the curvature 

are reflective of the bootstrap results. Only modest dispersion in the data is predicted, 

again with rate fJ showing slightly less deviation, 0.0065 for gene insertion and 0.0116 for 

gene deletion, than rate rand rate a. All values used to construct the likelihood curves 

appear to fit the model well. 

For the first three rate scenarios, it is interesting to note that the rate of gene 

insertion to gene deletion is always greater. In fact, in the second and third rate cases, the 

relative number of gene insertions to gene deletions increases towards the Be group, with 

the Be group having the highest insertion rates. The phylogeny outside the Be group 

appears to evolve more steadily, owing to an insertion rate that is almost par with the 

deletion rate. In rate Case 3, even rate yis predicted to have a higher rate of insertion to 

deletion in comparison to the branches outside the Be group. 

The final rate model assumed on the phylogeny was branch specific insertion and 

deletion rates (Case 4 in Fig. 2.1 ). By allowing each branch to evolve independently, the 

unique evolutionary rates influencing a single Bacillaceae genome can be observed and 

compared to the rest of the group. The optimal rates of gene insertion and gene deletion 

for rates a 1 - a23 , starting from left to right on the phylogenetic tree (Fig. 1.1 ), are listed 

in Table 2.1. Although, the bootstrap results produced reliable confidence intervals for 

most members of the phylogeny, slightly more deviation is observed in the rates 

estimated for the Be group. Rates a 1, a2, and a3, all belonging to the Bacillus anthracis 

group, show some departure from the optimal values, particularly in the insertion rate 

estimated for a1. The rate of gene insertion, 1.684, and gene deletion, {).4339, for a 18, 
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representing the branch leading to the Be group, are quite similar to those predicted for 

rate yin Case 3. Extreme deviation is observed in rates a1, a 13 , a 17 , a20, and a23 . Rates 

a 1 and a 17 both belong to the Be group, where a 1 describes the branch leading to Bacillus 

anthracis Ames and a 17 represents the branch leading to Bacillus cereus A TCC 14,579. 

The insertion rate of a 1 is extremely small, 1.227 x 10-
13

, and it has a wide confidence 

interval of 3.44 x 10-II ± 4.38 x 10-
11

. Likewise, the deletion rate of a 17 is also very 

small, 1.467 x 1 o-II, and a reliable estimate of deviation could not be achieved in the 

bootstrap sampling. Rates a 13 , a2o, and a 23 all occur outside the Be group, closer to the 

root of the phylogeny. Rates a 13 , representing the branch leading to Oceanobacillus 

iheyensis, and a 23 , both have extremely low optimal rates of gene insertion, and thus, 

statistical departure from the inferred values could not be determined in the confidence 

intervals. Rate a 20 has a low deletion rate of 3.042 x 1 o-II, with a confidence interval of 

4.83 X 1 o-Il ± 2.54 X 1 o-Il_ Deviation estimates from the likelihood curve produced 

similar statistical results as the bootstrap testing. Once again rate estimates for members 

of the Be group show slightly more deviation. Even the curvature analysis for a 1, a2, and 

a3, resulted in poorer fitting ofthe likelihood curve. The minute nature of rates a 1, a 13 , 

a 17 , a20, and a23 made it difficult to determine additional plot values that deviated from 

the maximum likelihood, and thus, a reliable likelihood curve could not be constructed. 

As a result, the data points reflected a horizontal line rather than a curve, and this reflects 

a standard deviation/variance approaching infinity. 
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Most of the branches are observed to evolve according to a higher rate of insertion 

than deletion in rate Case 4. Only rates a1, a 13 , and a21 - a23 have MLE deletion rates 

greater than the inse1iion rate. An increase in the relative number of insertions to 

deletions is also observed in the branches nearer the Be group. The Be group has the 

highest rates of gene insertion, with the exception of a1• Outside the Be group, the rest of 

the phylogeny evolves at a more steady pace, with insertion rates more similar to deletion 

rates. The incidence of greater gene deletion along the branch leading to Oceanobacillus 

iheyensis ( a 13 ) is most engaging, as this species has a genome size of only 3.6 Mb. 

A likelihood ratio test was done to assess the statistical significance of the 

proposed rate cases (Case 1 -Case 4). The results indicate that altering the model to 

include more rate parameters provides a larger estimate of the maximum likelihood 

(Table 2.3). The insertion and deletion parameters considered in rate Case 4, give the 

best estimate of maximum likelihood, -34823.650, indicated by the 62LnL value of 

3837.776 with 40 degrees of freedom. 

To ensure that the choice of Case 4 as the best model of Bacillaceae evolution is 

not skewed by the number of parameters considered in the model, the rate cases were also 

evaluated according to AIC. In support of the likelihood ratio test results, the MAICE, 

69739.3, is defined by the parametric assumptions of rate Case 4. When the AIC values 

of the alternate rate hypothesis were compared to the MAICE, little statistical support is 

observed for the parameter values of the opposing hypothesis of rate Case 1- Case 3 

(Table 2.4). 
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2.6 DISCUSSION 

When attempting to reconstruct the phylogenetic history of a set of taxa, the predicted 

gene tree does not always agree with the species tree. Inconsistencies between the 

branching patterns reveal the inherent diversity of the genome resulting from gene 

insertions, gene deletions, and/or lateral gene transfer (LGT) (Snel et a/. 2002, 2005; 

Mirkin et al. 2003; Kunin and Ouzounis 2003; Gu and Zhang 2004; Hao and Golding 

2004, 2006; Novozhilov et al. 2005; Linz et al. 2007; Marri et al. 2007). Recent models 

of prokaryotic evolution (Jain et al. 2003; Mirkin et al. 2003; Hao and Golding 2004, 

2006; Galtier 2007; Linz et al. 2007; Marri 2007) have revealed the rampant and 

pronounced influence of LGT in shaping bacterial evolution. Through the exchange of 

genetic material across species, LGT incorporates new genes into the genome and 

initiates divergence within the taxonomic group. Often, the presence of atypical genes, 

with closer resemblance to genes found in distantly related species, can only be explained 

by LGT (Gogarten et al. 2002; Daubin et al. 2003). 

Cataloging the patterns of gene presence and absence may identify lateral gene 

transfer in closely related taxa (McLysaght et al. 2003; Hao and Golding 2004, 2006; 

Charlesworth and Eyre-Walker 2006; Marri et a/. 2007). It is important to consider 

genomes of high similarity because any irregularities in the sequences can be attributed to 

LGT (Hao and Golding 2006; Marri et al. 2007). In our model, a group of thirteen fully 

sequenced Bacillaceae genomes ofhigh similarity were used to infer the extent ofLGT 

on the evolution of the phylogeny. The method ofmaximum likelihood offers an 



approach to estimate the rate of LGT when the rates of gene insertion and gene deletion 

are assumed unequal. Criterion for optimization and patterns of gene presence and 

absence used to estimate maximum likelihood were adopted from Hao and Golding 

(2006). Applying the model to the group of Bacillaceae bacteria reveals the extensive 

and important role of LGT in shaping the genome. 
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By allowing for differential rates of gene insertion and gene deletion, values for 

the evolutionary rates assumed on the phylogeny (Case 1 -Case 4) were estimated using 

the proposed likelihood framework. The likelihood model reveals that the estimates are 

consistent and reliable. The efficiency of the model and its ability to be easily 

manipulated, make it a good algorithm to infer the rapid rate ofLGT within a phylogeny. 

This is clear in the robust rate estimates predicted for the individual parameters defined in 

the different rate cases (see Table 2.1). Almost all ofthe values calculated for the 

maximum likelihood estimates are well supported, indicated by the narrow error margin 

of the bootstrap samples and curvature variance. In fact, only the increasing complex 

case of branch independent rate parameters shows some deviation in the estimated dataset. 

The optimal rates predicted for a1, a13 , a17 , a20 , and a23 have extremely wide confidence 

intervals and exhibit infinite variation. Rates a 1, a13 , and a23 have a relatively large rate 

of gene deletion to gene insertion, creating high variation within the individual datasets. 

As a result, the instability of the estimates made it difficult to construct reliable 

confidence intervals and maximum likelihood curves. Likewise, rates a 17 and a20 have 

an extremely high rate of gene insertion to gene deletion, contributing to high deviation 

in the predicted rates. Because these rates are so low in magnitude relative to the 



60 

maximum likelihood, the resulting likelihood curves resemble a horizontal line rather 

than an arc. Hence, the curvature ofthe line is zero, resulting in infinite variation, and 

similarly, infinite deviation. The relative degree of gene insertion to gene deletion, and 

vice versa, observed among these rates will be further considered in our discussion on the 

evolutionary patterns observed to influence evolution in the Bacillaceae genome. 

When estimating the optimal rates of gene insertion and gene deletion, multiple 

trials were run to ensure that the exact values required to maximize the likelihood were 

obtained. This was done because the maximization algorithm would often return 

alternate optimal rates for the same maximum likelihood. In order to evaluate the 

inconsistency in the predicted optimal rates further, a 3-dimensional surface plot of the 

simplest rate Case (Case 1) was evaluated (Fig. 2.2). Plotting various insertion and 

deletion rates against their associative likelihoods reveals that the resulting surface 

resembles a saddle. Therefore, because the algorithm maximizes one rate at a time, it is 

very easy for other rates to fall off the edge of the saddle and skew the results. Looking 

at the contour map of these results (Fig. 2.3), it is clear that points can fall on the border 

of the saddle and are unable to reach the maximum value because they continually fall 

down the edge ofthe structure. To limit such inconsistencies in the data set, all rate 

parameters need to be jointly maximized at the same time. 

When the insertion/deletion rates of the equal rate model (Table 2.2) were 

compared to the differential rate model, little deviation is observed between the two data 

sets, as predicted by Powell's (1964) algorithm. Overall, the rates estimated by the single 

parameter model are more consistent than those estimated under varying rates of gene 
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insertion and gene deletion. Rates assumed on the phylogeny for the first three rate cases 

(Case I - 3 in Fig. 1.2) are quite consistent between both models. The only discrepancy 

between the two sets occurs in the rates estimated for the forth case of branch specific 

evolution (Case 4 in Fig. 2.1 ). Greater deviation is observed in more of the assumed rates 

of the differential model than in comparable rates of the single rate model. In fact, only 

rate a20 of the single rate model exhibits high deviation, likely owing to the very small, 

predicted estimate ofthe parameter, 2.719 x 10"11
. 

The predicted optimal rates suggest the Bacillaceae phylogeny is evolving 

according to a higher rate of gene insertion than gene deletion, especially for the first 

three rate cases (Case 1 -Case 3 in Fig. 1.2). Such elevated rates of gene insertion are 

representative of a growing genome and may induce adaptive evolution in new habitats 

(Lan and Reeves 1996). When branches are assumed to evolve separately, however, the 

dominance of insertion over gene deletion changes in branches closer to the root of the 

tree (see Case 4 in Table 2.1 ). Rates belonging to the Be group have the highest rate of 

gene insertion to gene deletion. In particular, rates a3-a7, a 14, a 16 and a17 show 

extremely high levels of gene acquisition to loss and are likely the result of larger 

genome sizes and smaller branch lengths. Only rate a 1 of the Be group has a higher 

deletion than insertion rate. This peculiar incident is likely the product of the small 

branch length originally predicted for the branch leading to Bacillus anthracis Ames. 

Because the branch is so small, the estimated number of gene insertions and/or deletions 

along the branch can fluctuate greatly, causing high deviation in the predicted rates. 

Outside the Be group, most of the phylogeny evolves in a more gradual manner. 
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Although the relative number of gene insertions to deletions is still greater, the values are 

closer in magnitude. As the branches approach the root of the phylogeny, a greater rate 

of gene deletion to insertion is observed for a13 and az1 -an. This result is very 

interesting and may indicate genome shrinkage. For example, a higher deletion rate for 

a 13 , representing the branch leading to Oceanobacillus iheyensis, is indicative of a 

smaller genome size of 3.5 Mb. 

A hierarchy of increasing maximum likelihood estimates, as the number of 

parameters increase from Case 1 to Case 4, provides strong support that the rates of 

change are variable. Applying the likelihood ratio test to the obtained likelihoods reveals 

greater accuracy in the estimated maximum likelihood when more rate parameters are 

considered (Table 2.3). Rate Case 4 returned the highest maximum likelihood estimate 

of -34823.650, reflecting the superior precision ofthe more complicated rate model (x2 = 

~2 LnL > 55.76 with d.f. = 40). The results ofthe AIC test (Table 2.4) also identify rate 

Case 4 as the superior hypothesis. The number of parameters and the maximum 

likelihood of Case 4 produced the MAICE of69739.3, while none ofthe other cases had 

comparable support. Therefore, the rate of Bacillaceae evolution is best modeled when 

branches evolve according to independent rates of gene insertion and gene deletion. 

In the maximum likelihood analysis, optimal rates of gene insertion and gene 

deletion were assumed to be unequal. Differential rates of acquisition and loss were 

considered in order to provide a more realistic model of bacterial evolution. The 

genomes ofprokaryotes are dynamically shaped by gene gains, gene losses, and LGT, but 

these factors do not necessarily occur in such a balanced manner. For example, gene 
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insertions were found to dominant the lineage of the enterobacteria group, alpha­

proteobacteria group, and the Streptococcus group studied by Daubin et al. (2003), and 

assist in the adaptive evolution of poxviruses (McLysaght et al. 2003). Many models of 

bacterial evolution (Snel et al. 2002; Mirkin et al. 2003; Novozhilov et al. 2005) have 

attempted to infer the varying degree to which each evolutionary factor controls the 

innate gene content. These models often assume conditional penalties on certain rate 

parameters, thereby limiting the biological procession of inheritance. Although the 

likelihood model operates in a fixed genome, no restrictions are applied in the calculation 

of insertion and deletion rates. The likelihood model accounts for the differential rates of 

insertion, deletion, and LGT governing the phylogeny and identifies the dominating 

factor(s) influencing genome evolution. From these predicted rates, the true nature of 

Bacillaceae evolution may be better inferred. 
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Table 2.1. Optimal insertion and deletion rates as predicted by the multidimensional 

maximum likelihood analysis using Powell's algorithm (1964), bootstrap testing, and 

curvature method for the different rate cases (Case 1 -Case 3 in Fig. 1.2 and Case 4 in 

Fig. 2.1 ). The rate of gene insertion is v and the rate of gene deletion is u. 

- ---·--·-------------- ---~---- -- - ------

Bootstrap Curvature 

Rate MLE MLE +St. Dev St. Dev 

v 0.7346 0.7346 ± .0057 0.0081 
a=fJ=r 

0.6132 0.6136± 0.0275 0.0151 u 

v 14.08 14.09 ± 0.3920 0.2457 
a 

u 1.809 1.812 ± 0.1082 0.1022 

v 0.4049 0.4051 ± 0.0089 0.0067 
fJ=r 

u 0.3524 0.3516 ± 0.0169 0.0118 

v 9.909 9.906 ± 0.2852 0.2191 
a 

u 2.289 2.285 ± 0.1167 0.1090 

v 0.3633 0.3638 ± 0.0074 0.0065 
f3 

0.3376 u 0.3378 ± 0.0159 0.0116 

v 1.592 1.591 ± 0.0603 0.0448 
r 

0.6351 0.6359 ± 0.0513 0.0403 u 

v 1.227 X 10-13 3.44x 10-ll ± 4.38 x 10-ll infinite 
a1 

u 4.109 4.158 ± 2.055 2.017 

v 2.162 2.128 ± 2.168 2.022 
a2 

u 1.030 0.9949 ± 1.007 0.9577 

v 20.52 20.60 ± 6.902 6.778 
a3 

u 16.22 16.26 ± 4.107 4.163 

a4 v 24.43 24.34 + 2.221 1.898 
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- -----·· ------- ------ - ---~- ---- ---·-

Bootstrap Curvature 

Rate MLE MLE± St. Dev St. Dev 

u 3.027 3.010 ± 0.6923 0.6240 

v 21.42 21.37 ± 1.551 1.392 
as 

u 2.130 2.136 ± 0.3992 0.3827 

v 24.70 24.71 ± 1.743 1.459 
a6 

u 9.297 9.295 ± 0.8556 0.7823 

v 5.845 5.844 ± 0.3864 0.3151 
a7 

u 0.4116 0.4068 ± 0.1805 0.1324 

v 0.5608 0.5581 ± 0.0254 0.0218 
as 

u 0.4714 0.4724 ± 0.0433 0.0352 

v 0.5025 0.5009 ± 0.0284 0.026 
ag 

u 0.1475 0.1483 ± 0.0240 0.0213 

v 0.4247 0.4245 ± 0.0265 0.0238 
a10 

u 0.1349 0.1352 ± 0.0223 0.0202 

v 0.3953 0.3958 ± 0.0206 0.0177 
a11 

u 0.1564 0.1564 ± 0.0228 0.0203 

v 0.4595 0.4587 ± 0.0207 0.0193 
a12 

u 0.2153 0.2145 ± 0.0273 0.0233 

v 1.082 X 10-1
0 1.08 X 10-1

0 ± 0 infinite 
a13 

u 0.3345 0.3353 ± 0.0245 0.0205 

v 38.87 38.94 ± 1.907 1.699 
a14 

u 7.074 7.052 ± 0.6440 0.6092 

a1s v 2.367 2.359 ± 0.4755 0.4254 
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Bootstrap Curvature 

Rate MLE MLE +St. Dev St. Dev 

u 0.7089 0.7037 ± 0.1888 0.1802 

v 13.57 13.45 + 1.429 1.250 
a16 

u 2.033 2.017 + 0.7029 0.5655 

v 2.584 2.593 ± 0.2754 0.2044 
al7 

u 1.467 x 1 o- 11 1.47 X 10-11 ± 0 infinite 

v 1.684 1.685 ± 0.0524 0.0394 
a1s 

u 0.4339 0.4319 ± 0.0453 0.0336 

v 0.9476 0.9469 ± 0.0449 0.0383 
a19 

u 0.0131 0.0173 ± 0.0181 0.0211 

v 0.0182 0.0353 ± 0.0435 0.0431 
a2o 

u 3.042 X 10-11 4.83 X 10-11 + 2.54 X 10-11 infinite 

v 0.2275 0.2152 ± 0.0651 0.0509 
a21 

u 1.626 1.624 + 0.1951 0.1560 

v 0.1385 0.1384 ± 0.0307 0.0255 
an 

u 0.2604 0.2633 + 0.0548 0.0464 

v 8.304 x 1 o-11 8.30 X 10-11 ± 0 infinite 
a23 

u 4.480 4.497 ± 0.2429 0.1986 
---···------·-- -·---~-----~--------- .. - -~------- --------------- ----
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Table 2.2. Optimal insertion/deletion rates predicted by Powell's (1964) maximization 

algorithm, bootstrap testing, and curvature method for the different rate cases (Case 1-

Case 3 in Figure 1.2 and Case 4 in Figure 1.3). 

Bootstrap Curvature 

Rate MLE MLE +St. Dev St. Dev 

cx=~=y 0.7184 0.7186 ± 0.0077 0.0081 

ex 6.454 6.464 ± 0.2279 0.1493 

~ =y 0.4632 0.4629 ± 0.0076 0.0061 

ex 5.326 5.320 ± 0.1552 0.1163 

~ 0.3719 0.3716 ± 0.0062 0.0055 

y 2.244 2.247 ± 0.0991 0.1003 

ex I 2.937 2.876 ± 1.498 1.465 

cx2 1.396 1.398 ± 1.018 1.019 

cx3 18.28 18.20 ± 3.678 3.735 

CX4 11.73 11.77 ± 1.019 0.8964 

as 7.194 7.167 ± 0.6849 0.593 

cx6 15.39 15.40 ± 0.8264 0.8110 

CX7 1.701 1.749 ± 0.4232 0.1774 

CXs 0.6022 0.6036 ± 0.0269 0.0246 

cx9 0.3513 0.3530 ± 0.0241 0.0208 

CX10 0.3329 0.3321 ± 0.0220 0.0199 

cx11 0.3257 0.3254 ± 0.0168 0.0162 

cx12 0.4105 0.4109 ± 0.0190 0.0184 

cxl3 0.0108 0.0139 ± 0.0108 0.0120 
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·--- ··--- --"--·-- --- --- -- -~----- ----- -~- ·---- - - ------·---- -

Bootstrap Curvature 

Rate MLE MLE± St. Dev St. Dev 

a14 17.83 17.81 ±D.8182 0.7945 

a1s 1.380 1.390 ± 0.2170 0.2054 

a16 9.128 9.175 ± 0.8201 0.6958 

an 1.551 1.516 + 0.3279 0.1373 

a1s 2.365 2.366 ± 0.1074 0.1023 

a19 0.7471 0.7465 ± 0.0394 0.0372 

a2o 2.719 X 10" 11 5.65 X 10"11 ± 3.19 X 10"11 infinite 

a21 0.6029 0.5994 ± 0.0755 0.0710 

an 0.1949 0.1949 ± 0.0281 0.0263 

a23 2.055 2.032 + 0.10907 0.0943 
--------~ ·- ·------------------- ------------- .... ______ 
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Table 2.3. Results of the likelihood ratio test for the four rate cases (Case 1 -Case 3 in 

Fig. 1.2 and Case 4 in Fig. 2.1) assumed on the Bacillaceae phylogeny. 

Rate Case LnL - ~2LnL df P-value 

Case 1 -41672.978 

Case 2 -37167.489 9010.978 2 5.99 

Case 3 -36742.538 849.902 2 5.99 

Case 4 -34823.650 3837.776 40 55.76 
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Table 2.4. AIC statistics calculated from the maximum likelihood estimated by each rate 

case (Case 1- Case 3 in Fig. 1.2 and Case 4 in Fig. 2.1). The AIC value ofrate Case 4 

gives the MAICE. 

~---~----~-- ~---- -~~---~ ---~--- -~----- -------------- -~----~-------~--~-

Difference from 
Rate Case LnL k -2 Ln(L) + 2k MAICE 

-------------·-- -·-·- -------

Case 1 -41672.978 2 83349.956 13610.656 

Case 2 -37167.489 4 74342.978 4603.678 

Case 3 -36742.538 6 73497.076 3757.776 

Case 4 -34823.650 46 69739.3 
-------·- ----~ ----- - ---·----·--------··--- --
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Figure 2.1. Individual rates of branch evolution assumed on the Bacillaceae phylogeny. 

Case 4: branch specific insertion and deletion rates (a1,a2, ... ,a23). 
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Figure 2.2. The likelihood surface of various insertion and deletion rates modeled under the 

simple case of a single constant rate a assumed on the phylogeny (Case 1 in Fig. 1.2). The 

plotted points resemble a saddle with steep sloping edges bordering the maximum likelihood 

estimate located at the top. 
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Figure 2.3. Contour map of the likelihood surface produced using various rates of gene 
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insertion and deletion for the simple rate model of a single rate a assumed on the phylogeny 

(Case 1 in Fig. 1.2). The contour lines are concentrated around the maximum likelihood 

estimate and rapidly drop off around the surrounding edges. 



Chapter 3 

A birth-death model of lateral gene 
transfer in Bacillaceae 

3.1 ABSTRACT 

Lateral gene transfer (LGT) is an important source of evolution in prokaryotic genomes. 

Acquisition of novel genes via LGT can promote adaptive evolution and help a species 

survive a new niche. As such, many stochastic models have been developed to infer the 

role of LGT in prokaryotic evolution. From gene presence and absence data, the 

evolutionary history of a phylogeny can be reconstructed and the rate of LGT determined. 

Here, we employ a simple birth-death model with immigration to calculate the optimal 

rate of gene duplication, LGT, and gene deletion for a group of thirteen fully sequenced 

Bacillaceae genomes. The rate of duplication, LGT, and deletion was assumed constant 

across the entire phylogeny and only six phyletic patterns were considered in the study. 

Based on the evolutionary model analyzed and the data set used, elevated accounts of 

74 



LGT are only noted when there is a substantial influx of genes from the outer phyletic 

branches to members belonging to B. anthracis, B. cereus, and B. thuringiensis (the Be 

group). In future studies the entire set of phylogenetic patterns should be used in the 

analysis and the assumptions of the birth-death model should be statistically verified. 

3.2 INTRODUCTION 
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Laterally transferred genes have been extensively noted in microbial genomes (Lan and 

Reeves 1996; Gogarten eta!. 2002; Snel et al. 2002; Jain et al. 2003; McLysaght eta!. 

2003; Mirkin et al. 2003; Linz eta!. 2007; Marri et al. 2006, 2007). Together with gene 

insertions and gene deletions, lateral gene transfer (LGT) alters the current and ancestral 

gene content and promotes evolution (Snel et al. 1999; Gogarten et al. 2002; Snel et al. 

2002; Kunin and Ouzounis 2003; Mirkin eta!. 2003; Lake and Rivera 2004; Novozhilov 

eta!. 2005). By introducing foreign genes into the genome, it rapidly increases species 

diversity and can help the species adapt to adverse environmental conditions (Lan and 

Reeves 1996; Gogarten eta!. 2002; Daubin et al. 2003a; McLysaght et al. 2003; Hao and 

Golding 2004, 2006; Lake and Rivera 2004; Marri et a!. 2006, 2007). Although the 

importance ofLGT in bacterial evolution is widely acknowledged, some advocate that its 

role in controlling genome progression is exaggerated (Kunin and Ouzounis 2003; 

Kurland et al. 2003; Kurland 2000; Kurland 2005). But, many studies of prokaryotic 

evolution have been offered that confirm the dominant impact of LGT in shaping 

genomic history 
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In bacteria, LGT can be detected by analyzing the gene content of closely related 

species. Because these genomes exhibit high sequence similarity, any abnormalities in 

gene composition or codon usage may be representative ofLGT (Daubin et al. 2003a). 

The presence and absence of a gene is used to reconstruct the evolution of gene content 

and the phylogenetic relationships may be inferred according to the method of maximum 

parsimony (Snel et al. 2002; Daubin et al. 2003a, b; McLysaght et al. 2003; Mirkin et al. 

2003; Hao and Golding 2004) or calculation of the evolutionary distance between two 

genomes (Snel et al. 1999). Other studies (Karlin et al. 1997; Karlin 1998; Karlin et al. 

1999) use similarities in genome signatures, defined as the relative abundance of 

dinucleotides in a genome, to infer phylogenetic evolution, and have even identified 

prokaryotic LGT into animal mitochondria (Mt) genomes (Karlin et al. 1999). The 

evolution of gene content has also been examined using the approach of maximum 

likelihood (Gu 2001; Kunin and Ouzounis 2003; Huson and Steel2004; Lake and Rivera 

2004; Hao and Golding 2006; Marri et al. 2006; Linz et al. 2007; Marri et al. 2007). In 

most likelihood models, phyletic patterns of gene insertion and gene deletion are used to 

reconstruct the evolutionary relationship of the phylogeny. Other models employ 

Markov processes (Galtier 2007) or the Poisson distribution (Linz et al. 2007) in their 

likelihood analysis to infer the evolutionary history of the genome. 

Stochastic processes ofbirth and death have also been employed to model the rate 

of gene acquisition and loss governing bacterial genome growth (Berg and Kurland 2002; 

Gu and Zhang 2004; Huson and Steel 2004; Novozhilov et al. 2005). The statistical 

implications of the birth-death model were first introduced in the correlation study of 
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death and diminishing surname frequency by Watson and Galton ( 187 5) (Novozhilov et 

al. 2006). Early applications of the theory attempted to model the growth of a population 

based on incidences of birth, death, and irregular mutation events in a given time period 

(Yule 1925). It was not until the results ofthe generalized birth and death process were 

completely formulated (Kendal 1948a), that the biological importance of the method 

became evident (Novozhilov et al. 2006; Nee 2006). Since then, many derivatives of the 

general birth-death process have been successfully applied in models of phylogenetic 

reconstruction (Harvey 1994; Nee et a!. 1994 ). In prokaryotes, the 'birth' of a gene 

results from duplication or LGT and the 'death' of a gene results from deletion. Birth 

and death models of evolutionary growth have been used in gene content studies to infer 

the rate of gene proliferation and loss in the genome (Gu and Zhang 2004; Huson and 

Steel 2004). In other phylogenomic studies, the external influences of: selection, drift, 

mutational inactivation, LGT between members of different species (Berg and Kurland 

2002), and LGT between members of the same species (Novozhilov et al. 2005) are also 

included in the birth and death analysis. Because the rates of gene insertion and gene 

deletion depend upon many parameters, these models require the use of sophisticated 

algorithms to calculate the evolutionary rates controlling phylogenetic growth. In this 

study, we apply a simple birth-death model with immigration (Kendall 1948b; Karlin and 

McGregor 1958; Bailey 1964) to thirteen completely sequenced Bacillaceae genomes, to 

infer the rate of duplication, LGT, and deletion on the phylogeny. By focusing on only 

the rate of gene insertion and deletion void of external evolutionary forces, our model 

offers a clear and computationally feasible method of phylogentic reconstruction. 
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Differential rates of gene duplication, LGT, and gene deletion were assumed on 

the phylogeny and modeled according to a steady state of evolution on all branches. 

With the phylogentic patterns investigated, however, the influence of LGT on genome 

evolution was weak. Only the genetic sequences of the final two patterns show extensive 

accounts of LGT, as predicted with the high influx of genes from the out group 

Oceanobacillus iheyensis (Oi) and members of the Be group. In fact, the first two 

phyletic patterns appear to produce optimal rate estimates that suggest no reasonable 

biological meaning. Clearly, the methodology of the current model needs to be improved. 

In future investigations, estimates for the optimal rates should be based on the entire set 

of observed gene family patterns, rather than only a single pattern, and the assumptions of 

the model should be subjected to further rigorous statistical testing to confirm the 

accuracy of the results. 

3.3 THE MODEL 

Simple birth and death models are commonly used to monitor the change in population 

size with respect to the per capita birth rate and death rate, at a given period in time. 

Changes in the state of the system can only occur between three possible transition states, 

as illustrated in Figure 3.1. Here, the incident of birth is denoted by the addition of an 

individual to the population, the incident of death is denoted by the subtraction of an 

individual from the population, and the incident of neither a birth nor a death occurring is 



simply denoted by a constant population size. All three transitional states and their 

associated probabilities may be summarized as follows: 

birth 
neither 
death 

n = n + 1, vn dt + 0 dt; 
n = n, 1- (v + u)n dt + 0 dt; 
n = n -1, un dt + 0 dt; 

where 11 is the size of the population, t is time, v is the birth rate, and u is the death rate 

(Kendall 1948; Bailey 1964). The incident ofbirth, and likewise death, is dependent 

upon the number of individuals in the population, and thus, its affect is measured as a 

factor of 11. It is also important to note that only one of these events can occur in one 

instant of time and that the birth rate and death rate are assumed non-negative. 

In order to model the impact of lateral gene transfer (LGT) on Bacillaceae 

evolution, the possibility of immigration was considered in the above simple birth and 

death process. Immigration is an external factor that contributes to an increase in 

population size (Karlin and McGregor 1958) and, together with the birth rate, is 

represented in the transitional growth of the system. In our model, the size of the 
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population is measured as the number of gene in a family present in a given species. The 

rate of phylogenetic evolution can then be inferred from the probability of acquiring a 

new gene from duplication or LGT, or the probability oflosing a gene from a deletion. 

The dynamics of the model are summarized in the following difference equations: 

po(t+ 1) =-A+ up1(t), 
Pn(t+1) = [v(11- 1) + A]pn-J(t)- ((v + u)11 + A]p11(t) 

+ u(11 + 1)p11 + J(t), 

where tis time, vis gene duplication, A. is LGT, and u is gene deletion. Note, that t 

denotes the length of time separating a descendant from its ancestor and is measured as 



80 

the expected number of nucleotide substitutions per site (Hao and Golding 2006). With 

the addition of immigration, the general from of the transitional probability matrix 

becomes: 

Moo =(I- A), 
Mo1 = u, 

Mn,n+l = u(n + 1), 
Mnn = 1 - ( ( V + U )n + A], 

Mn.n-1 = v(n- 1) +A, 
MN,N-1 = v(N- 1) +A, 

MNN = 1-uN 
(Kendall 1948; Karlin and McGregor 1958; Bailey 1964), 

where N is the maximum allowed number of genes in a family. The act of immigration 

occurs independently of population size and, hence, it is not scaled according ton. The 

birth rate and death rate still depend on the number of genes present in a family and, as 

before, all parameters are assumed positive. Note, that because the system calculates the 

transitional probability of a state, it requires all matrix entries to be less than one and the 

entries of each column to sum to one. 

3.4 METHODS 

Initial research on bacterial evolution aimed at identifying the optimal insertion and 

deletion rate shaping the phylogeny of a group of Gram-positive Bacillaceae. The 

thirteen fully sequenced bacterial species comprising the group include: B. anthracis 

Ames, B. anthracis "Ames ancestor," B. anthracis Sterne, B. thuringiensis, B. cereus ZK, 

B. cereus ATCC 10,987, B. cereus ATCC 14,579, Geobacillus kaustophilus, B. 

licheniformis, B. subtilis, B. clausii, B. halodurans, and Oceanobacillus iheyensis. High 
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sequence similarity between the strains belonging to B. anthracis, B. cereus, and B. 

thuringiensis (Ash et al. 1991; Priest et al. 2004) lead to the supplementary grouping of 

these members into the Be group. Equal rates of gene insertion and deletion (indel rate) 

were assumed on the phylogeny, and the maximum likelihood algorithm ofHao and 

Golding (2006) was modified (Chapter 1) to calculate the optimal rate of evolution under 

four different rate scenarios (Case 1 - Case 3 in Fig. 1.2 and Case 4 in Fig. 1.3). By 

continuously testing possible rate estimates encircling a subset of three points, the new 

algorithm was able to converge on those values representative of the optimal indel rate(s). 

Little deviation in the predicted estimates was observed when the algorithm was 

subjected to rigorous bootstrap sampling and variance measurements from the likelihood 

curve. The evolutionary assumptions of rate Case 4 achieve the highest estimate of 

likelihood and, as confirmed by the likelihood ratio test and Akaike Information Criterion 

(AIC), support the strongest model of Bacillaceae evolution. 

The maximum likelihood model was then further modified to calculate varying 

rates of gene insertion and gene deletion for the phylogeny (Chapter 2). By 

acknowledging that the rate at which a gene is inserted or deleted need not be equal, the 

new model was able to provide a more accurate depiction of Bacillaceae evolution. The 

differential rate model was applied to the same group of closely related Bacillaceae 

species, and the rate of evolution was inferred according to four defined rate cases (Case 

1- Case 3 in Fig. 1.2 and Case 4 in Fig. 2.1). Powell's (1964) optimal convergence 

algorithm was employed to determine the insertion rate(s) and deletion rate(s) required to 

maximize the likelihood. The resulting optimal estimates were then statistically verified 
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via bootstrap testing and curvature measurements from the likelihood curve. For both 

tests, almost no variation was observed in the rates predicted for the first three rate cases, 

and only modest deviation was observed in the estimates of Case 4. Once again, the 

likelihood ratio test and AIC rank rate Case 4 as the superior model, providing further 

support that the evolution of the phylogeny is most accurately reflected when 

independent rate parameters are assumed for each branch. 

In order to satisfy a more concrete explanation of the factors regulating bacterial 

evolution, the same Bacillaceae phylogeny was investigated in our simple birth and death 

model (Section 3.3). When different modes of evolution are imposed on the same data 

set, it is interesting to note the degree of overlap between the results. Any congruencies 

between the models may validate the assumptions of the hypotheses and provide valuable 

insight on the evolutionary patterns governing bacterial growth. In the birth-death model, 

the rate of LGT was measured as a separate parameter, A., alongside the rate of gene 

duplication. The rate of evolution was inferred from the number of genes present in a 

species. Therefore, an addition of a gene via gene duplication or LGT contributes to 

genomic growth, and the deletion of a gene results in genomic decay. This requires the 

state of having no members of a gene family to be the transitional probability of going 

from one gene to none, M01 = u, or the transitional probability of remaining at zero, Moo= 

1 -A. Note that the rate of gene duplication is not included in the transitional 

probabilities of having no members in a family, as duplication cannot occur when no 

genes are present. Also note that the state of the system can never be negative because a 

negative number of genes in a family is not biologically sensible. In similar manner, the 
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probability of obtaining the maximum number of gene in a family, N, can only result 

from the transitional state of growth, MN,N-I = v(N- 1) +A., or the transitional probability 

of remaining at N, MNN = 1 - uN. Duplication of a gene cannot occur past N as it would 

overshoot the boundaries defined by the model and yield no biological meaning. Our 

model allows for a maximum of a hundred possible genes in one family, N = 100. 

To determine the expected number of gene families for the phylogeny, the 7228 

gene patterns cataloging the presence or absence of a gene (see Hao and Golding 2006 or 

Table 1.5) were altered to include the actual number of genes present in a species (see 

Table 3.1 for the most commonly noted patterns and their frequency). Calculating the 

likelihood of a particular gene family pattern follows the same approach as discussed in 

Chapter 1 and Chapter 2. The initial probabilities at the tips of the phylogeny are based 

on the observed number of genes present in a given species. Because this information is 

known for those species located at the tip of the phylogeny, the probability of obtaining 

the observed number of genes in the family is 1 and all other possibilities are 0. The 

likelihood of observing a particular gene pattern in an ancestral species is dependent upon 

the observed likelihoods of its descendant taxa, separated by t 1 and t2 generations (see Fig 

1.4). Therefore, the transitional probabilities of the given gene pattern must be 

determined for each descendant taxa. This is achieved by monitoring the change in the 

state of the system for each generation, or branch length, separating the descendant taxa 

from its ancestor. The likelihood of the ancestral gene pattern is then calculated as: 

LxG (P) = (Prob(Pdl P0 , lJ) * LxE(P) + Prob(Adl Pn, t1) * L\(A)) 
X (Prob(Pdl Pn, t2) * L\(P) + Prob(Adl P 0 , t2) * L\(A)) 



84 

where P is the presence of a gene family, A is the absence of a gene family, dis 

descendant node, a is ancestral node, G is the ancestor taxon, E is a descendant, and F is a 

descendant (Hao and Golding 2006). The process is repeated until the root of the 

phylogeny is reached. Note that, unlike the previous models of Chapter 1 and Chapter 2, 

the birth and death algorithm only reports the likelihood of a single gene pattern for each 

run of the program. In total, the evolution of six different gene family patterns (Table 3 .2) 

was examined in the birth and death analysis. 

At the root of the tree, the overall likelihood ofthe observed phyletic pattern is 

calculated by multiplying the predicted likelihood for the number of genes present in a 

family by the expected number of occurrences of a particular gene. Because the solution 

to the transitional matrix is too intricate and difficult to achieve, the Poisson distribution 

was used to approximate the expected probability for the number of genes in a family. 

For each phyletic pattern, the number of genes observed to occur across the thirteen 

species were averaged and summed with the corresponding averages for the rest of the 

phyletic patterns, to obtain the average number of genes present in a family, X, for a 

given time interval. Thus, the expected number of genes for the entire phylogeny is: 

Prob(xiX) = xe-X 
x! 

where x is the observed number of genes in a family. These probabilities were then 

multiplied by the root likelihood to obtain the overall likelihood of the tree. The resulting 

product can be an extremely small value and, therefore, the log of the overall likelihood 

is used. 
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Only the simple evolutionary scenario of a single rate for gene duplication, LGT, 

and gene deletion was assumed on the Bacillaceae phylogeny in the birth-death analysis 

(Fig. 3.2). Although Powell's (1964) maximization procedure was successful in 

determining the optimal rates of the differential likelihood model (Chapter 2), it proved 

too intricate and time consuming in calculating the rates for the birth and death model. 

Therefore, to decrease the time of the optimization process, a grid of rates within the 

natural logarithmic interval of 10-6 to10 1 were tested to see which gave the best likelihood 

estimate. The interval was subdivided to test ten points equally spaced within the defined 

logarithmic boundary. For each consecutive trial, this required the value of the rate to be 

incremented by a factor of 1 0°·7
, 5.011872336, up to the maximum allowed value of 101

. 

Each rate estimate was then tried in combination with all possible estimates ofthe other 

two variables, to see which parameters produced the highest estimate of likelihood. Once 

the optimal values for duplication, LGT, and deletion were identified in the logarithmic 

interval, they were further increased or decreased by a factor of 1% to see if any slight 

deviation from the predicted optimal rate would yield a higher estimate of likelihood. 

Values that succeeded in raising the likelihood estimate were tested again in combination 

with the other rate estimates to see if a sequential increase or decrease in the rate 

parameters would again result in a higher estimate for the likelihood. This procedure was 

repeated until the altered rate parameters produced lower than maximal likelihood 

estimates, specifically, until the maximum likelihood was reached. The maximum 

likelihood estimate and optimal duplication, LGT, and deletion rates for each of the six 

gene patterns are listed in Table 3.3. 
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3.5 RESULTS 

The evolution of gene family patterns was inferred for the Bacillaceae phylogeny using 

the birth and death model detailed in sections 3.3 and 3.4, under the assumption of a 

single constant rate of gene duplication, LGT, and gene deletion (Fig. 3.2). The optimal 

rates for each of the gene patterns considered, and the associated likelihoods, are listed in 

Table 3.3. Genomes of high sequence similarity were considered in the study, because 

the effect of LGT is easier to detect in gene abnormalities among closely related species. 

Previous genomic studies, using the method of maximum likelihood, were successful in 

estimating both the indel rate (Chapter 1) and rate of gene insertion and deletion (Chapter 

2) for the phylogeny. In this study, differential rates of gene duplication, LGT, and gene 

deletion were imposed on the phylogeny, with the intent to identify the sole impact of 

LGT in genome evolution. To achieve this, specific patterns of gene families (Table 3.2) 

were chosen to reflect the role of LGT at different stages of evolution. Unfortunately, 

with the phylogenetic patterns selected, the extent to which LGT has shaped the 

Bacillaceae genome is poorly characterized. Although a rate of LGT is predicted for 

each pattern by the model, incorporating a greater number of tested gene patterns into the 

algorithm would constitute a more reliable data set and, thus, offer better insight on the 

importance ofLGT in bacterial evolution. 

The patterns listed in Table 3.3 are ordered down the table according to an 

increase in the observed number of genes in a family. Starting at the first pattern, only a 

single gene is detected in the genomes ofBa2 and Ba3. Applying the birth and death 
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algorithm to this model reveals the rate of gene deletion to be the greatest, 0. 010, 

followed by the rate ofLGT, 9.789 x 10-4
• The effect of gene duplication does not appear 

to play a role in the evolutionary sequence. Similarly, the presence of a single gene 

across more members of the phylogeny in the next pattern produces comparable results, 

with a deletion rate of 1.160 x 1 o-4 and no rate estimates for both gene duplication and 

LGT. At the third gene pattern, however, the model predicts equal rates ofLGT and gene 

deletion, 0.0087, for the phylogeny. This is also the first pattern where a rate estimate for 

gene duplication, although small, 0.0013, is reported. As the number ofpossible genes in 

a family increases, from pattern 3 to pattern 6, the optimal rate for LGT gradually 

surpasses that of gene deletion. The phylogenetic sequence of pattern 6 generates the 

highest estimate for LGT at 0.0551. 

In all cases, the rate of gene duplication is less than the rate ofLGT and gene 

deletion, with most gene patterns suggesting few to no duplication events. Only when a 

greater number of genes are considered in the phylogenetic pattern, can an estimate for 

the rate of gene duplication be inferred. In the fifth pattern, it is important to note that the 

optimal estimate for gene duplication approaches zero but is not zero. Here a duplication 

rate of2.104 x 10-14
, along with the optimal LGT, 0.0132, and deletion rate, 1.970 x 10-4

, 

gives the maximum likelihood estimate of -36.95. The largest rate of gene duplication, 

0.0026, estimated by the birth and death model occurs in the gene family pattern of 

sequence 6. 

Together, the rates required to maximize the likelihood in pattern 6 constitute the 

largest group of values among the patterns tested. The highest rate estimates for both 
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gene duplication and LGT are also predicted by this model. Although the rate of gene 

deletion is high in the model, a higher rate of deletion is observed for patterns 1 and 3, 

with the first pattern producing the largest deletion rate of 0.01 0. It is also interesting to 

note that the evolutionary assumptions of the second model (pattern 2 in Table 3.3) 

generate the highest estimate of likelihood. 

3.6 DISCUSSION 

The genomic history of bacteria is uniquely organized according to the sequence of gene 

duplications, gene deletions, and LGT events that occur during phylogenetic evolution 

(Snel eta!. 1999; Snel eta!. 2002; Kunin and Ouzounis 2003; McLysaght et al. 2003; 

Mirkin eta!. 2003; Lake and Rivera 2004; Novozhilov eta!. 2005; Linz eta/. 2007). 

Many computational models of phylogenetic reconstruction (Snel et al. 2002; Daubin et 

al. 2003a,b; McLysaght et al. 2003; Mirkin et al. 2003; Hao and Golding 2004, 2006; 

Marri et al. 2006, 2007; Galtier 2007; Linz et al. 2007) have been suggested to estimate 

the role of each genetic event in controlling bacterial evolution. In this study, a simple 

birth-death model with immigration was applied to a phylogeny of thirteen highly similar 

Bacillaceae genomes (Fig. 3.2). The rate of gene duplication, LGT, and gene deletion 

was inferred according to a constant rate of evolution on all branches, for the six phyletic 

patterns defined in Table 3.3. Although a model detailing the evolutionary history for a 

lager number of gene family patterns in the Bacillaceae group would offer a more 
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accurate depiction of phylogenetic evolution, the patterns studied did provide some useful 

information on the historical dynamics influencing the phylogeny. 

Previous models of Bacillaceae evolution were successful in determining both the 

constant (Chapter 1) and differential rate (Chapter 2) of gene insertion and gene deletion 

inherent to the phylogeny. A separate parameter for LGT was included in the simple 

birth and death analysis to infer the degree at which LGT solely affects gene content. 

The model was applied to the same Bacillaceae group studied in the maximum likelihood 

models of Chapter 1 and Chapter 2, to detect possible congruencies among the predicted 

results. Any agreement in the inferred rates will help support the assumptions ofthe 

methods, and assist in understanding the evolutionary patterns controlling phylogenetic 

progression. In the model, the current number of genes present in a family is obtained 

directly from the taxa at the tip of the phylogeny. This approach was taken because 

reconstruction analysis based on historical data can sometimes provide an overestimation 

or underestimation of the actual rates as a duplication followed by two deletions or a 

deletion of a gene before it duplicates in ancestral taxa (Harvey 1994) is not detected in 

extant taxa. Therefore, by working backwards towards the root of the tree, our model 

attempts to correct for any such uncertainties in the occurrence of a duplication, LGT, 

and/or deletion event in ancestral lineages. 

Our birth and death model simply estimates the rate of gene duplication, LGT, 

and gene deletion void of any external evolutionary factors, like genetic drift or selection. 

Other models of gene acquisition and loss infer the rate of gene 'birth' and gene 'death' 

directly from gene content data (Gu and Zhang 2004) or from more sophisticated 
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equations that include the possibility of mutational inactivation, selection, genetic drift, 

LGT among species of the same phylogeny (Berg and Kurland 2002), and the insertion of 

a gene from outside the phylogeny (Novozhilov et al. 2005). The role of gene insertion, 

via both duplication and LGT, and deletion in prokaryotic adaptation has been well 

documented (Heidelberg et al. 2000; Riehle et al. 2001; McLysaght et al. 2003; Gevers et 

al. 2004; Lolkema et al. 2008). Recent duplications in the cholera pathogen Vibrio 

cholerae have promoted its subsistence in adverse environments (Heidelberg et al. 2000) 

and together, the recurring succession of gene duplication and loss has helped 

Escherichia coli adapt to high temperatures (Riehle et al. 2001). The profound affect of 

LGT on bacterial evolution is also made evident in the poxvirus study ofMcLysaght et al. 

(2003) where the apoptosis inhibitor gene AMV -EPB _ 034, belonging to the Amsacta 

moorei entomopoxvirus, is noted most similar to the inhibitor gene in the insect Bombyx 

morider (Order: Lepidoptera). Thus, it is the intent of our birth and death model to 

simply infer the raw rate estimate of gene duplication, LGT, and gene deletion inherent to 

the Bacillaceae phylogeny. 

When the most common phyletic patterns of gene families for the Bacillaceae 

group (Table 3.1) were tallied, the majority of the patterns were similar to those predicted 

in Table 1.5. Although the data set was altered to include the actual number of genes 

present, it is interesting to note that the most common phyletic patterns still reflect the 

presence and absence patterns of the original data set. For most of the phylogeny, only 

the presence of a single gene is noted. This implies that the presence of multiple genes 

among taxa does not occur as frequently as a single gene. 
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A general trend is observed in the optimal rate estimates for the phyletic patterns 

analyzed (Table 3.3). As the number of possible genes in a family increases from pattern 

1 to pattern 6, the rate ofLGT slowly increases and surpasses that of gene duplication at 

pattern 3. Additionally, there is almost no indication of gene duplication until the rate 

estimates of patterns 5 and 6. The rate of gene deletion appears to change intermittently 

depending on the phyletic pattern of gene families. A higher rate of LGT in the last two 

patterns is indicative of the large number of gene differences between the out group 

Oceanobacillus iheyensis (Oi) and members of the Be group. In the fifth gene pattern, Oi 

is observed to have 15 fewer genes than, for example, Bacillus anthracis Ames (Ba1) of 

the Be group, as well as, 30 fewer genes in pattern 6. Furthermore, an increase in the 

number of available genes can prompt a greater chance of duplication, as evident by the 

appearance of the duplication rate in the last two patterns. Similar rates of gene deletion 

and LGT are observed for patterns 3 and 4, with the gene families of pattern 3 owing to 

equal rates. The equal contribution of both evolutionary factors in pattern 3 may reflect 

possible LGT events in Bacillus clausii (Bk), Bacillus subtilis (Bs), Bacillus anthracis 

Sterne (Ba3), and Bacillus anthracis "Ames Ancestor" (Ba2) and/or gene deletions in 

Bacillus licheniformis (Bl), Geobacillus kaustophilus (Gk), and the other members of the 

Be group. Likewise, the rates predicted for pattern 4 may indicate possible LGT events 

in Gk, Ba3, and Ba2 and/or deletions in Bl, Bs, Bk, Bacillus halodurans (Bh), and the 

remainder of the Be group. 

The most puzzling results of the investigation occur in the rates estimated for the 

first two phyletic patterns. Both models evolve according to a higher deletion rate, with 
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no indication of gene duplication and/or LGT in the second pattern. In fact, the optimal 

rate estimates of the second model give the highest maximum likelihood value among the 

six phyletic patterns tested. This result implies that the Bacillaceae genome is shrinking 

and, in the absence of gene duplication and LGT, will eventually be extinct. Although 

some prokaryotic growth models have predicted the rate of gene loss to be substantial 

greater than acquisition (Berg and Kurland 2002; Novozhilov et al. 2005), this is not 

expected with the observed pattern of gene families in these two sequences. In the first 

pattern, the presence of a single gene in Ba2 and Ba3 is expected to indicate a possible 

LGT event in these two species. While a rate ofLGT is estimated, 9.789 x 10-4
, for this 

pattern, perhaps its affect is masked by a possible mass deletion event in the rest of the 

phylogeny. Unfortunately, no satisfactory conclusions can be offered for the results of 

the second pattern. 

All things considered, our simple birth and death model provides a basic and 

straightforward algorithm from which the rate of Bacillaceae evolution can be inferred. 

In order to improve the preliminary results, the entire set of gene family patterns 

characteristic of the phylogeny should be included in the analysis. The consideration of a 

lager number of phyletic patterns will constitute a more reliable data set and establish a 

more accurate portrayal of the evolutionary factors shaping the genome. Furthermore, 

the present study only examines the very basic model of rate evolution, a constant rate of 

gene duplication, LGT, and gene deletion assumed on the phylogeny. Other evolutionary 

scenarios like: separate rates of evolution for the Be group, determining a rate along the 

branch separating the Be group from the rest of the phylogeny, and branch specific rates, 
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should also be analyzed according to the birth and death process. By applying the 

assumptions of the model to various rate cases, the parameters that best model the rate of 

Bacillaceae evolution will be identified and will assist in understanding the true 

mechanism of prokaryotic development. Additionally, the assumptions of the birth and 

death model need to be statistically verified to confirm the accuracy of the proposed rates. 

Once statistical support is granted for the model, the algorithm can be applied to other 

studies of phylogenetic reconstruction to assist in understanding the role of LGT in 

microbial evolution. 
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Table 3.1. Frequency of the most common gene family patterns in the Bacillaceae 

phylogeny. 

---- ----- ---·------------- -~-- ~~-- -------~~--~~ ~-------- --------------------------

Number 

of genes Ba1 Baz Ba3 Bt Bc1 Bcz Bc3 Gk Bl Bs Bk Bh Oi 

948 1 1 1 1 1 1 1 0 0 0 0 0 0 

734 1 1 1 1 1 1 1 1 1 1 1 

251 0 0 0 0 0 0 0 0 1 1 0 0 0 

191 1 1 0 0 0 0 0 0 0 0 0 0 

156 0 0 0 0 0 0 0 1 0 0 0 0 0 

148 0 0 0 0 0 0 0 0 0 0 0 1 0 

129 1 1 1 1 1 0 0 0 0 0 0 0 

127 0 0 0 0 0 0 0 0 0 0 1 0 0 

119 0 0 0 0 0 0 0 0 0 1 0 0 0 

118 0 0 0 0 0 0 0 0 0 0 0 0 1 

105 1 1 1 1 0 1 0 0 0 0 0 0 

95 1 1 1 0 0 0 0 0 0 0 0 

89 1 1 0 1 0 0 0 0 0 0 0 0 

85 0 0 0 0 0 0 0 0 1 0 0 0 0 

70 0 0 0 0 0 1 0 0 0 0 0 0 0 

65 1 1 1 1 1 1 1 1 1 1 0 

3798 Other patterns 
- ----·---- -- --------- ·------ . ------- --------~- ----~-----
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Table 3.2. The phyletic patterns of gene families tested for the Bacillaceae group. 

-~--------~-. --- - -- ~--·---------~---------------- -------------- ---------- .. --··- ------·---·-

Pattern 

Number Ba1 Ba2 Ba3 Bt Bc1 Bc2 Bc3 Gk Bl Bs Bk Bh Oi 
-------------------- ------------ -----~--- ----~~------- ·--~--------

1. 0 1 1 0 0 0 0 0 0 0 0 0 0 

2. 1 1 1 1 1 1 1 1 1 0 0 0 

3. 1 4 2 1 1 0 0 1 1 3 2 0 0 

4. 1 1 1 1 2 2 3 2 2 2 2 3 

5. 55 53 53 50 50 50 50 47 46 46 45 45 40 

6. 100 98 98 95 95 88 83 80 80 80 74 74 70 
--~--------------------- ----------
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Table 3.3. Optimal rate of gene duplication, lateral gene transfer, and gene deletion, and 

the maximum likelihood, for each phyletic pattern listed in Table 3.2, as predicted by the 

birth and death model for the simple case of a single constant rate of evolution (Fig. 3.2). 

--~---~~------------· -------- -- ~--

Pattern Number MLE LnL 

1. 

2. 

3. 

4. 

5. 

6. 

v 
A 

---
0 

9.789 X 10-4 -7.428 
u 0.010 

~----------------------- - ----------- ----~----· ---- -------·----------- --·-·--------. 

u 
----- -- ---- ----- - - . -- --- - ---

v 
A 
u 

v 
A 
u 
v 
A 
u 

0 
0 

1.160 X 10~4 

0.0013 
0.0087 
0.0087 

-------------------

0 
8.347 X 10~5 

2.410 X 10~5 

-5.068 

-25.21 

-13.75 

------~-- --------- ~~-- ------

~0 

0.0132 
1.970 X 10~4 

--~--------"-- ·----- ···-------

0.0026 
0.0551 
0.0032 

-36.95 

-41.55 

-- ---------- ---------------------- --~-------- ------ ----~---



97 

b b 
) ) 

( ( 

d d 

Figure 3.1. The basic birth and death model of population growth, where n is the number of 

individuals in the population. Births are represented by the staten+ 1 and occur at rate b, 

while deaths are represented by the state n - 1 and occur at rate d. When there are no births 

and no deaths, the state of the population is n. 
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Figure 3.2. The evolutionary model of a constant duplication rate, v, lateral gene transfer 

rate, A, and deletion rate, u, assumed on the Bacillaceae phylogeny in the birth and death 

analysis. Members belonging to the Be group are defined within the boxed section. 
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The importance ofLGT in shaping prokaryotic genomes is becoming increasingly 

clear, with much appreciation granted in its ability to promote high rates of evolution. 

Despite pervious claims (Kunin and Ouzounis 2003; Kurland et al. 2003; Kurland 2000; 

Kurland 2005), LGT is found to occur extensively during bacterial evolution and rapidly 

spreads genetic diversity across the phylogeny. By continuously incorporating novel 

genes into the taxonomic genome, species are provided the necessary gene pool that 

allows them to readily adapt to new niches (Hao and Golding 2006; Marri et al. 2007). 

Studies show that extensive accounts of LGT are likely responsible for the subsistence of 

bacteria in the presence of antibiotics (Berg and Kurland 2002; Gogarten et al. 2002; 

McLysaght eta/. 2003) and invasion of new hosts (Doolittle 1999; Daubin et al. 2003a; 

Mirkin eta/. 2003; Marri et al. 2006). Rapid rates of adaptive evolution have also been 

noted in the genomes of Streptococcus (Marri et al. 2006), Bacillaceae (Hao and Golding 

2006), and Corynebacterium (Marri et al. 2007). Together, these findings present 

alarming evidence on the ever increasing ability of pathogens to resist medical defenses 

and induce disease onset. 

Applying computational algorithms to the evolution ofbacteria has greatly 

assisted in understanding the mechanisms of laterally transferred genes. By simulating 

possible courses of genome evolution, historical rates of change can be inferred on a 

phylogeny. When equal rates of gene insertion and gene deletion are assumed for the 

Bacillaceae phylogeny, the likelihood model predicts higher rates of evolution towards 

the Be group. Similarly, the differential-rate likelihood model estimates higher rates of 

gene insertion for members of the Be group and along branches leading to the group. 
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Such rapid exchange of gene content within this group may be indicative of adaptive 

evolution. Previous studies have revealed elevated accounts ofnonsynonymous 

substitution in these Bacillaceae genomes, which are suggestive of selectively 

advantageous evolution (Hao and Golding 2006). Together, the high rates of gene 

acquisition and directional selection may help the Bacillaceae bacteria quickly adapt and 

facilitate growth in a new niche. Although both likelihood models provide robust rate 

estimates, the differential rate model is thought to better reflect the true nature of 

Bacillaceae evolution. Accordingly, the assumption of separate insertion and deletion 

rates along each branch of the phylogeny generates the most probable model of genomic 

growth. 

The historical reconstruction of the Bacillaceae phylogeny was extended to a 

birth and death analysis in our final chapter. Due to time constraints, the optimal rate of 

evolution could only be inferred from a limited set of phyletic patterns. Growth of the 

phylogeny was also restricted to a constant rate of gene duplication, LGT, and deletion 

across all branches. High rates of LGT are noted when there is a substantial influx in the 

number of genes from the outer branches of the phylogeny to the inner branches of the Be 

group. Indeed, this rapid expansion of the genome complements the elevated insertion 

rates of the likelihood analysis and could very well indicate adaptive evolution. From the 

patterns used and simple model studied, however, it is difficult to resolve the extent of 

LGT in shaping the Bacillaceae genome. Clearly, the assumptions of the current birth 

and death model need to be improved. 
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Future research should take two directions. First, the birth and death algorithm 

should be modified to calculate the rate of gene duplication, LGT, and deletion based on 

the total set of phyletic patterns and be applied to each rate scenario studied in the 

likelihood models. This will provide a more thorough investigation of genomic 

innovation in a more natural evolutionary context, like determining the branch-specific 

rates of evolution. Secondly, both likelihood algorithms and the birth-death model 

should be applied to the same phylogenies studied in other models of bacteria evolution. 

Thus, although the models may appear to produce satisfactory results for the rate 

Bacillaceae evolution, the findings may differ when the data set is applied to other 

models of phylogentic reconstruction. In order to further confirm the robustness of our 

algorithms, bacterial genomes investigated by other reconstruction studies, like 

Streptococcus (Marri et al. 2006) and those examined by Spencer et al. (2006), should be 

tested. Any concurrences between the rates estimated by the different methods may 

assist in identifying the true evolutionary mechanisms present in such bacterial genomes 

of interest. 

Although LGT paints a hazy picture for the universal 'tree of life' some concept 

of a universal phylogeny can still be gained. It is important to recognize, however, that a 

species' genetic make-up is highly interdependent on the exchange of ancient gene 

content between the Archaea, Bacteria, and Eukarya domains (Doolittle 1999). Lateral 

gene transfer has succeeded in providing the necessary tools for innovative evolution and 

species proliferation from which modem-day taxa have emerged. Clearly, it is the 

essence of our being to which all species are united. 
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