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ABSTRACT 

Protein sequences display replacement rate heterogeneity across sites. In an ear
lier work, half of the causal site-wise variation in replacement rates was explained 
by a simple linear regression model consisting of terms for the solvent exposure of 
each residue, distance from the active site, and glycines in unusual main-chain con
formations. Replacement rates vary not only across sites, they may also vary over 
time. In this study, we apply the linear regression model to phylogenies divided 
into subtrees to see if lineage-specific rate shifts have a structural basis that can be 
detected by the model. This approach is applied to two different data sets. The first 
set consists of phylogenies containing two representative structures, divided into 
subtrees such that one structure is present in each subtree. These structures have 
little or no obvious functional divergence between them. The model is tested with 
permutations of subtrees and structures from each subtree. While there is a slight 
effect of the specific structure on the fit of the model, the specific subtree has a 
greater effect. The second data set involves homologous structure pairs where the 
quaternary structure has changed at some point in the phylogeny. These pairs are 
examined to see how the change in constraint on the new interface sites affect the 
replacement rate, and its relationship with other structural factors. We find that the 
unique interfaces are as conserved as the shared ones, and they exhibit a different 
relationship between replacement rates and indicators of constraint than the shared 
interfaces or other protein sites. We also find that the unique interfaces display 
characteristic amino acid preferences that may identify interfaces which are still in 
the process of stabilizing. 
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Kimura's neutral theory of molecular evolution (Kimura 1989) proposed that 
the majority of evolutionary changes at the molecular level are selectively neutral. 
This theory predicts that substitutions will occur by a molecular clock for sequences 
that are not under selective pressure. Where substitution rates vary, the variation is 
thought to be largely due to constraint and purifying selection rather than positively 
selected adaptation. To some degree, constraint can be described in terms of gen
eral structural features of the protein for coding sequences, and evolutionary rates 
at each protein site often change to reflect the structural constraints that they are 
subject to. 

There have been many works seeking to exploit this link between protein struc
ture and evolutionary rates. A fuller understanding of this relationship has uses both 
in refining structural prediction, and in distinguishing those residues under actual 
positive selection from those that are merely under low constraint. 

One approach is the creation of amino acid transition matrices built with a con
sideration of structural factors (Wako and Blundell 1994; Goldman, Thome and 
Jones 1998; Mizuguchi and Blundell 2000; Shi, Blundell and Mizuguchi 2001; 
Robinson et al. 2003). While this approach is likely to be useful for creating more 
accurate alignments for coding sequences, it is often computationally demanding 
(particularly when multiple interactions of factors are considered), and of limited 
explanatory power when proteins are introduced that are outside the scope of the set 
which were used to create the matrix. Another approach is to model some metric 
of evolutionary rates as a product of various structural factors (Dean and Gold
ing 2000; Dean et al. 2002; Bustamante, Townsend and Hartl 2000). With this 
approach, the focus is on explanation of rates or polymorphisms rather than on pre
diction of structural factors. It is generally less computationally demanding, and 
allows for easy tests of new hypotheses about which factors introduce constraint. 
Additionally, some factors exhibit a continuous relationship with evolutionary rates, 
and linear models readily allow expression of this relationship. 

Various works have tested a variety of structural factors, such as secondary 
structure (Saunders and Baker 2002; Shi, Blundell and Mizuguchi 2001; Mizuguchi 
and Blundell2000; Bustamante, Townsend and Hartl2000; Goldman, Thome and 
Jones 1998; Thompson and Goldstein 1996b; Thompson and Goldstein 1996a; 
Dean and Golding 2000), length of secondary structural elements (Mizuguchi and 
Blundell 2000; Goldman, Thome and Jones 1998), interactions between residues 
(Robinson et al. 2003; Shi, Blundell and Mizuguchi 2001; Dean and Golding 2000; 
Dean et al. 2002), specific physiochemical properties (Saunders and Baker 2002; 
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Bustamante, Townsend and Hartl 2000; Thompson and Goldstein 1996b; Thomp
son and Goldstein 1996a; Dean and Golding 2000; Dean et al. 2002), and solvent 
exposure of residues (Robinson et al. 2003; Saunders and Baker 2002; Shi, Blun
dell and Mizuguchi 2001; Mizuguchi and Blundell 2000; Bustamante, Townsend 
and Hartl2000; Goldman, Thome and Jones 1998; Thompson and Goldstein 1996b; 
Thompson and Goldstein 1996a; Dean and Golding 2000; Dean et al. 2002), and 
various interactions between these factors. The solvent exposure is almost uni
versally a significant factor in these studies, with buried residues tending towards 
greater conservation. Secondary structural elements are significant in many stud
ies, but not in some (Dean and Golding 2000; Dean et al. 2002). Dean and Gold
ing (2000) tested the explanatory power of various structural factors with a linear 
regression model. They found three factors that were significant sources of varia
tion in the replacement rates at a protein site: solvent accessibility, distance of the 
residue from the active site of the protein, and whether or not the residue was a 
glycine in a conformation that could not be adopted by other residues. Dean et al. 
(2002) expanded on this work, and demonstrated that this minimal model could ac
count for half of the causal rate variation between sites in a variety of proteins. In the 
following chapters, we develop this relationship between site-specific replacement 
rates and structural factors further. In the first chapter, we test the linear model on 
a sub-divided phylogeny to see if it is capable of detecting lineage-specific changes 
in constraints. In the second chapter, we investigate changes in constraint that occur 
as a result of changes in quaternary structure. 

Chapter 1 

Evolutionary rates do not just change over protein sites, they also change through
out time. One of the earliest works recognizing this pattern was the covarion model 
of Fitch (1976), but the topic has recieved renewed interest. The most obvious 
causes of these temporal rate changes is functional divergence, due to gene du
plication, or speciation resulting in strongly varied functional requirements on the 
protein. However, Lopez, Casane and Philippe (2002) found evidence of these rate 
shifts in vertebrate mitochondrial cytochrome b, which is unlikely to be undergoing 
such divergence. Rate shifts at a site may therefore also occur in a drift-based fash
ion, and it is possible that these shifts are often due to minor changes in structural 
constraints across lineages. We test this by splitting large phylogenies into sub
trees, and comparing changes in the fit of the model across these subtrees, deriving 
structural parameters from a representative structure from each subtree. 

In this chapter, we test whether or not these changes in constraint are detectable 
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with the basic linear model. We also attempt to improve upon this basic model. 
The hydropathy of the current residue is found to be another significant factor 
in rate variation. Additionally, Dean and Golding (2000) found that the distribu
tion of replacement rates was atypical for the large subunit of RUBISCO, which is 
chloroplast encoded. We find that the nuclear-encoded small subunit does not share 
this atypical pattern. Overall we do find that using the structure native to the spe
cific subtree has a small positive effect on the fit of the model, but there is a much 
greater effect due to subtree-specific effects. The distribution of site-specific rates 
becomes more stochastic at smaller evolutionary scales, making the current form of 
the model unsuitable for detecting smaller-scale constraint changes. 

Chapter 2 

Protein-protein interfaces are more conserved than other surface residues (El
cock and McCammon 2001; Landgraf, Xenarios and Eisenberg 2001; Glaser et al. 
2003; Halperin, Wolfson and Nussinov 2004; Ma et al. 2003; Hu et al. 2000; Teich
mann 2002). In the first chapter, there was generally little prior evidence for func
tional divergence between the subtrees and associated structures in a phylogeny. In 
this chapter, we select a set of homologous protein pairs where the quaternary struc
ture has changed between the two forms, which offers clear and strong functional 
divergence between the sites involved in the new interface. The sites in each pro
tein are divided into those which participate in an interface for only one structure, 
the aligned sites that do not participate in an interface in their native structure, sites 
which participate in interfaces in both structures, and sites which do not participate 
in any interface. The replacement rates and the relationship between the rates and 
the solvent accessibility and hydropathy are compared for these various categories. 
The amino acid compositions for each alignment site in the subtrees are investi
gated in a similar manner. We find differences in the overall replacement rates, 
hydrophobicity, and amino acid preferences of each category. These differences 
offer an insight into how novel interfaces evolve and change over time. 
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Chapter 1 

Patterns in Amino Acid Replacement 
at Smaller Evolutionary Scales 

1.1 Abstract 

Protein sequences display replacement rate heterogeneity across sites. In an earlier 
work, half of the causal site-wise variation in replacement rates was explained by 
a simple linear regression model consisting of terms for the solvent exposure of 
each residue, distance from the active site, and glycines in unusual main-chain con
formations. Replacement rates vary not only across sites, they may also vary over 
time. In this study, we apply the linear regression model to phylogenies divided 
into subtrees to see if lineage-specific rate shifts have a structural basis that can 
be detected by the model. The model is tested with permutations of subtrees and 
structures from each subtree. While there is a slight effect of the specific structure 
on the fit of the model, the specific subtree has a greater effect. We conclude that 
the model is more appropriate for larger phylogenetic scales, as differences in con
straints become more apparent as the number of taxa increase. A new hydropathy 
term is added to the linear model, and the atypical distribution of replacement rates 
for RUBISCO is anaylzed in further detail. 

7 
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1.2 Introduction 

The neutral theory of evolution (Kimura 1989) states that most substitutions have 
no or nearly no effects on the fitness of the organism. It proposes that new alle
les become fixed in a population at the same rate as the appearance of new neutral 
mutations. However, most protein sites are not truly selectively neutral, as general 
hydrophilic and hydrophobic interactions are necessary to ensure that the protein 
does not precipitate out of solution, and the general form must be maintained to 
bring the catalytic residues into the active site. These structural constraints still fit 
within the neutral model, as the protein sites which are less important for maintain
ing the structure and function of the enzyme can be expected to evolve more freely, 
and so the actual neutral mutation rate will vary between sites. Working under a 
neutral framework allows one to test which structural factors are useful determi
nants of constraint by measuring the effects these have on the replacement rate at 
each site in a protein. As each site in a protein experiences different degrees of 
constraint, the constraints on a site can also change over time. The most obvious 
causes of such change are gene duplication and major speciation events. 

After a gene duplication event, it is generally expected that one copy retains 
the original function and associated constraints, and the other copy (if it does not 
become a pseudo gene) experiences a temporary relaxation of constraint until it 
evolves a new function and gains a new set of constraints. There are several methods 
currently being developed to detect such changes in constraint from the evolution
ary rates at a site in different lineages (Gu 1999; Gu 2001; Gu 2003; Yang, Swanson 
and Vacquier 2000; Gaucher et al. 2002; Knudsen and Miyamoto 2001; Knudsen 
et al. 2003; Susko et al. 2002). In general, these follow the approach described 
in Golding and Dean (1998), which focuses on only a few sites which are likely 
to be responsible for the functional divergence. This approach has the advantage 
of creating testable hypotheses about which replacements are adaptive. This can 
be carried out with biochemical assays that reveal how historical adaptations have 
taken place at the molecular level. Where these studies consider the protein struc
ture, it is typically only at a small number sites which are identified as playing a 
pivotal role in functional divergence. 

Speciation events can result in changes in constraint in a manner similar to 
that of gene duplication, but that is more likely when the protein experiences new 
functional demands due to the new environment or lifestyle of the organism (or 
if it is a protein which is typically under positive selection, such as those related 
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to sex (Yang, Swanson and Vacquier 2000) or pathogen evasion). In these cases, 
one might similarly expect that only a few sites are experiencing acute changes 
in constraint. However, there are also causes of more subtle changes in constraint, 
such as co-operative drift between interacting proteins (Lopez, Casane and Philippe 
2002), and changes in population size that change selective pressures overall (Fay 
and Wu 2003). 

Dean and Golding (2000) used a simple linear model to explain rate variation 
between protein sites in terms of the structural factors that are likely to introduce 
constraint. The model consists of terms for solvent accessibility, distance of the 
residue from the active site, and glycine residues in unusual main-chain conforma
tions, and it can explain half of the causal variation in a number of proteins (Dean 
et al. 2002). Here we wish to determine if the model can detect lineage-specific 
constraints as well. This approach is not site-specific, so it will not point to indi
vidual sites which have experienced great changes in constraint. It does consider 
structural factors over the entire protein, and gives a numerical estimate of which 
structural factors are responsible for the changes in constraints across lineages over 
the whole protein. 

We have chosen five a/ f3 barrel proteins from a previous study (Dean et al. 
2002), based on their large phylogenies and room for improvement in the linear 
model. We have also chosen three new non-a/ f3 barrel proteins to see if their rates 
are similarly amenable to explanation by the linear model. 

1.2.1 The Linear Model 

The linear regression model used in previous works (Dean and Golding 2000; Dean 
et al. 2002) models the replacement rate at a protein site as a function of the solvent 
exposure of the residue, its distance from the active site, and whether or not it is 
a glycine with an unusual main-chain conformation. These three factors were able 
to explain about 50% of the causal rate variation for 25 functionally unrelated a/ f3 
barrel proteins. Dean and Golding (2000) tested a number of other structural factors 
as well (main-chain torsion angles, involvement in hydrogen bonding, secondary 
structure, flexibility, individual amino acid identity), but these were found to have 
insufficient explanatory power for the degrees of freedom required. The hydropathy 
of the residue was not tested, and we add it to the model here. 

Since mutations are a largely stochastic, Poisson process, one cannot expect all 
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of the variation in replacement rates to be deterministic. Dean et al. (2002) intro
duced the concept of partitioning the site-wise variation in rates into its Poisson
distributed component and a causal component. The fit of the model is compared 
to the expected amount of causal variation (the Poisson estimated coefficient of 
determination, PECD) which is calculated from the mean and variance of there
placement rates across the protein: 

A2- 1 y p- -s2 
y 

Dividing the f 2 from the linear regression by the PECD gives the normalized 
coefficient of determination (NCD). 

1.2.2 The Model at a More Local Evolutionary Scale 

To detect structure-based changes in constraint for different lineages, we divide a 
large phylogeny into subtrees and determine if the fit of the linear model (as mea
sured by the NCD) is improved at this smaller evolutionary scale. Where available, 
a second structure from the other subtree will also be used to model the replace
ment rate heterogeneity both for the subtree that it is a member of, and for the other 
subtree. If there are changes in constraint that are due to structural variation, we 
expect the NCD to be higher for a subtree when a native structure is used than if a 
strucutre from another subtree is used. 

1.2.3 Enzymes Studied 

The enzymes used in this study are summarized in Table 1.1. The Root Mean 
Square (RMS) distances between a-carbons of structures provided in the table were 
obtained from with the Swiss-PdbViewer (Guex and Peitsch 1997). 

Enolase 

Enolase is a glycolytic a/ f3 barrel enzyme which catalyzes the reversible dehy
dration of 2'-phosphoglycerate to phosphoenolpyruvate. It is cytoplasmic, and 
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it is a homodimer in all of the species used in this study. Two divalent cations 
(Mg2+ in vivo) are absolutely required for function. One induces a conformational 
change in the enzyme, and the second is catalytic and binds in the presence of sub
strate (Duquerroy, Camus and Janin 1995). Our tree for enolase (Figure 1.2) spans 
the Fungi/ Metazoan group, and we use structures from Saccharomyces cerevisiae 
(20NE:Zhang et al. 1997) and Homarus gammarus (lobster, 1PDZ:Duquerroy, Ca
mus and Janin 1995). The two structures are fairly similar, with aRMS distance of 
0.83 A between a-carbons, and consistent secondary structure. Yeast enolase may 
be more tolerant of a monomeric state, which has been observed in the absence of 
divalent cations and at low enzyme concentration. A monomeric lobster enolase 
has not been observed (Duquerroy, Camus and Janin 1995). As the enzyme cat
alyzes an essential and conserved reaction, we do not expect functional divergence 
between the two structures. 

Fructose 1,6 Bisphosphatase (Class I) 

Fructose-1,6-bisphosphate aldolase (ALDO) is another alj3 barrel, glycolytic en
zyme catalyzing reversible aldol cleavage of fructose-1 ,6-bisphosphate to dihydrox
yacetone phosphate and glyceraldehyde 3-phosphate. Our phylogeny (Figure 1.3) 
has representatives from plants, alveolates, and metazoans. All are class I, which do 
not use a divalent cation cofactor. The representative structures for ALDO are from 
an Alveolate, Plasmodium falciparum (human malarial parasite, 1A5C:Kim et al. 
1998), and an invertebrate, Drosophila melanogaster (1FBA: Hester et al. 1991). 

We expect some degree of functional divergence, particularly in the metazoan 
subtree. There are two plant isoforms, a cytosolic one and one which is plastid
targeted. These two isoforms are monophyletic. In the metazoan subtree, verte
brates have three forms (A, B, and C) with tissue-specific expression patterns and 
different substrate specificities. Type A is expressed in muscle and erythrocytes. 
The Drosophila ALDO has the greatest sequence similarity with vertebrate type A, 
so this is most likely the more ancestral form. The Drosophila and Plasmodium 
forms have an RMS distance of 1.5 A between them. Drosophila and vertebrate 
type A have an RMS of 3.89 A, but Plasmodium and vertebrate type A are more 
distant, but have a much lower RMS distance of 1.4 A (Kim et al. 1998). As Plas
modiumfalciparum lives in human erythrocytes, it's possible that there are selective 
pressures towards PfALDO maintaing a more similiar structure to the human ery
throcyte form. 
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5-Aminolevulinate Dehydratase 

5-Aminolevulinate dehydratase (ALAD) is an octameric al/3 barrel enzyme that 
catalyzes the dimerization of two 5-aminolevulinic acid molecules to form porpho
bilinogen, which leads to the biosynthesis of tetrapyrroles such as chlorophyll and 
heme. It is found across archaea, bacteria, and eukaryotes, with high sequence simi
larity. Our phylogeny (Figure 1.4) is limited to bacteria and a small archaeal cluster, 
and our structure is from Escherichia coli (1B4E:Erskine et al. 1999). The enzyme 
requires two metal ions for function, which can be zn2+ or Mg2+ depending on the 
enzyme. Our tree is divided into zn2+ and Mg2+ dependent subtrees. There are a 
number of functional differences between the zn2+ and Mg2+ dependent forms, so 
some functional divergence is likely. The zn2+ -dependent form can be inactivated 
by lead, and the Mg2+ -dependent form is less susceptible to oxidation. There are 
also differences in kinetics and pH dependence between forms. This is the only 
enzyme for which only one subtree had a structure available, so we can only test 
for an elevated NCD in the zn2+ -dependent subtree. 

3-a-Hydroxysteroid Dehydrogenase 

3-a-hydroxysteroid dehydrogenase (3aHSD) is a monomeric, al/3 barrel liver en
zyme that reversibly inactivates circulating steroid hormones. Our first structure is 
from Rattus norvegicus (lLWI:Bennett et al. 1996). However, our phylogeny (Fig
ure 1.5) for this enzyme spans the vertebrate Aldo-keto reductase superfamily, with 
enzymes of many different functions. Our alternate structure is for human Aldose 
reductase (ALR), which converts glucose to sorbitol as the first step of the polyol 
pathway (lPWM:El-Kabbani et al. 2004). It has no known physiological role. Nei
ther enzymes use a metal cofactor, though 3aHSD binds NADP+ and ALR binds 
NAP+. We expect functional divergence for these enzymes, as the two structures 
carry out distinct biological roles, and most of the enzymes in the phylogeny have 
different functions. Dean et al. (2002) found a very low NCD (0.113) for 3aHSD, 
which they attributed largely to a cluster of hydroxysteroid dehydrogenases. Re
moval of this cluster raised the NCD to 0.42. The HSD cluster showed the fastest 
rates clustered around the substrate-binding cleft, whereas the rest of the enzymes 
in the tree had a more typical conserved pattern around the active site. 
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~ Enolase 20NE Saccharomyces homodimer 0.75 2'-Phosphoglycerate Mg2+,u+ D320-P327 (b 

cerevisiae L342-S355 tf.l ..... 
lPDZ Homarus homodimer Phosphoenolpyrnvate Mn2+ D319-P326 

tf.l 
I 

gammarus 2-Phosphoglycolic Acid !'1'1 
Fructose-1,6- lASC Plasmodium tetramer 0.91 V228-N238 ::tl 
Bisphosphatase falciparum ~ lFBA Drosophila tetramer V221-N231 tf.l 

melanogaster 

5-Aminolevulinate 1B4E Escherichia octamer n/a Glycerol so4- G240-Y252 

~ Dehydratase coli Levulinic Acid Zn2+ 

3-a-Hydroxysteroid lLWI Rattus monomer 0.96 NADP+ M151-Fl68 ~ 
Dehydrogenase norvegicus L268-V283, G45-G62 tf.l 

lPWM Homo monomer NAP+ CI- (b 
'"'t 

sapiens Fidarestat I 

RUBISCO 8RUC Spinacia 8L8S 0.34LSU 2-Carboxyarabinitol- Mg2+ 
0:1 

KCX201, D203 ..... 
oleracea 0.64SSU 1,5-diphosphate E204 £. 

1IR2 Chlamydomonas 8L8S 2-Carboxyarabinitol- Mg2+ ~ 
reinhardtii 1,5-Diphosphate "< 

Superoxide lYAZ Saccharomyces homodimer 0.73 Azide Cu2+ G44-T54 
Dis mutase cerevisiae Zn2+ G138-1149 

1HL5 Homo homodimer Cu2+ G44-T54 
Sapiens Zn2+ G138-1149 

Calmodulin lCLM Paramecium monomer 0.41 ea2+ D20-L32, D56-F68 
tetraurelia D93-L105, Dl29-F14l 

lCLL Homo monomer Ethanol ea2+ D20-L32, D56-F68 
sapiens D93-L105, Dl29-F141 

SRC Tyrosine 2SRC Homo monomer 1.31 Phosphoaminophosphonic acid- L273-K295 
Kinase sapiens Adenylate Ester Phosphotyrosine Y382-V394, Y527 

lADS Homo monomer Phosphoarninophosphonic acid- ea2+ L273-K295 
sapiens Adenylate Ester Phosphotyrosine Y382-V394, Y416 

Table 1.1: Enzymes used in this study. ..... 
w 
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Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase 

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) is an a/{3 bar
rel protein that fixes atmospheric carbon dioxide (or oxygen) to ribulose-1,5-
bisphosphate as the first step of the dark reactions of photosynthesis. The protein is 
a heterohexadecamer (8 large and 8 small subunits). The small subunit (RSSU) is 
encoded in the plant nuclear genome and only plays a modulating role, whereas the 
large subunit (RLSU) is encoded in the chloroplast genome and is catalytic. Each 
large subunit binds a Mg2+ cofactor, and an activator C02 molecule in addition to 
the reactant C02• Our trees include only eukaryotic species, ranging from Chloro
phytes to Angiosperms (Figures 1.6 and 1. 7). We use structures from Spinacia ol
eracea (8RUC:Andersson 1996) and Chlamydomonas reinhardtii (1IR2:Mizohata 
et al. 2002). The sequence for the large subunit is very highly conserved and 
slowly-evolving, and has been frequently used in plant taxonomies. The structure 
is also very similar for the large subunit. The structure for the large subunit is also 
very conserved. The spinach and Chlamydomonas structures have a RMS distance 
of only 0.33 A (Mizohata et al. 2002). By comparison, the small subunit varies 
much more in both sequence and structure. We do not expect functional divergence 
for RUBISCO, as the enzymatic function is mostly unchanged between cyanobacte
ria and angiosperms, though there are minor kinetic differences between the spinach 
and Chlamydomonas forms (Mizohata et al. 2002). 

The previous work found an atypical pattern of replacements in the large subunit 
of RUBISCO. While most sites of the large subunit of RUBISCO are very strongly 
conserved, some sites have very high replacement rates, leading to an atypically 
high variance and an a very low mean-to-variance ratio. Previous investigation 
focused on the large subunit, which is chloroplast-encoded. The small subunit is 
nuclear-encoded. Our refinement was motivated by a desire to separate out any 
rate variation which might have occurred due to selective pressures at a particular 
encoding location. 

Superoxide Dismutase 

Superoxide dismutase (SOD) converts superoxide radicals to hydrogen peroxide 
and molecular oxygen, and is necessary for life in oxygenic environments. Superox
ide radicals are created as a by-product of photosynthesis and oxidative respiration, 
they can cause damage to the cell. SOD has an alternating parallel I anti-parallel 
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folded hairpin Greek key ,8-barrel fold. Each monomer binds one Cu2+ and one 
zn2+ ion. These ions are both catalytic, though they are also necessary for proper 
folding (Strange et al. 2003). Our tree (Figure 1.8) includes species from plants 
and fungi/metazoans. SOD is a homodimer in all eukaryotes. Our representative 
structures are from Saccharomyces cerevisiae (1YAZ:Hart et al. 1999) and Homo 
sapiens (1lll.5:Strange et al. 2003). Though we would not expect functional di
vergence in SOD, (Miyamoto and Fitch 1995) used a covarion approach and found 
that SOD had different variant and invariant sites for plant and vertebrate SODs. 
The channel leading to the active site has a conserved set of charged amino acids to 
lead superoxide ions to the active site, and these were invariant in both groups. The 
differently-variable sites were mostly in the beta-strand hairpins and random coils 
on the surface of the protein. 

Calmodulin 

Calmodulin (CaM) is a small protein that modulates the activity of a variety of pro
teins. It has four EF-hands, each of which binds a calcium ion. It is found in all eu
karyotes, and our tree (Figure 1.9) includes representatives from plants, fungi, meta
zoa, and protists. Our structures come from Homo sapiens (lCLL:Chattopadhyaya 
et al. 1992) and Paramecium tetraurelia (lCLM:Rao et al. 1993). The structure 
is very similar across our two structures, with an RMS distance of 0.52 A. This 
protein is unlike the others in this study, in that it is fairly short (148 residues) and 
has a long fully-exposed a helix connecting two smaller globular domains. Our 
structures are also from the same subtree, so it will show if structures that are closer 
can also lead to differences in NCDs. We do not expect functional divergence for 
this protein. It is generally very conserved (Rao et al. 1993). Its role in modulating 
the activity of a number of proteins will also limit the number of sites with low con
straint. Even if one of these proteins is no longer regulated by CaM in one lineage, 
CaM will still be constrained by the requirement for interaction with the remaining 
proteins. 

SRC Tyrosine Kinase 

SRC tyrosine kinase (c-src) is a non-receptor protein tyrosine kinase involved in a 
number of signalling pathways and is implicated in carcinogenesis. The c-src gene 
family has nine members (blklp56, c-fgr/p58, fynlp59, hcklp59, lcklp56, lynlp53, 
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p56, c-srclp60, c-yes/p62 and yrklp60) with various functions and tissue expression 
patterns. These are monomeric, and they all share three domains which are similar 
among the family members, and a variable N-terminal domain. Some of the family 
members also have splice variants. Our tree (Figure 1.1 0) includes members of 
all these families, as well as some invertebrate src genes. Our structures are both 
from Homo sapiens, one is c-src/p60 (2SRC:Xu et al. 1999), and the other is a 
haematopoietic cell kinase (hck, 1AD5:Sicheri, Moarefi and Kuriyan 1997). The 
c-src family has many differences in function and expression patterns. The c-src, 
fyn, e-yes, and yrk genes are expressed in a broad range of tissues, but hck, blk, 
c-fgr, lck and lyn genes are only expressed in haematopoietic cells. (Gu and Gu 
2003) found evidence of rate-shifted sites between two subtrees of the c-src family. 
Our analysis may determine if there is a structure-based explanation for these rate 
shifts. 

1.3 Methods 

1.3.1 Phylogenetic Trees 

Each candidate sequence was BLAST' ed against the non-redundant database. Only 
sequences with an E-value of 10-30 or less were accepted (an E-value of this level 
most likely implies functional equivalence). If any two sequences were more than 
95% identical, only one representative was used. 

Sequences were aligned with ClustalW (Chenna et al. 2003). Phylogenetic trees 
were initially generated with Mr. Bayes (Huelsenbeck and Ronquist 2001). Branch 
lengths longer than 0.3 were pruned from the Bayesian trees and the trees were re
generated until no long branches remained. The final trees were generated from this 
restricted set of sequences using proml in the Phylip package (Felsenstein 1989), 
with the slow option enabled. These trees were used to estimate the replacement rate 
at each site in the alignment using a maximum likelihood method (Fitch 1971) with 
a Jukes-Cantor-like correction (Dean et al. 2002). Each tree was partitioned into 
two or more subtrees, depending on how many species were available. Replacement 
rates at each site were also estimated for the subtrees. 
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1.3.2 The Linear Model 

The linear model described the corrected replacement rate at each site as dependent 
on a number of biological factors. The parameters used in the linear model included 
solvent exposure of each residue, minimal distance to an active site, a binary vari
able for prolines or glycines with unusual side chain conformations, hydropathy of 
the residue, and a binary variable for membership in a turn. The model is of the 
form: 

where Yi is the estimate of the replacement rate at site i, a1 is the intercept, 
accessi is the fractional solvent exposure of the residue, distancei is the distance 
of the residue from the active site, hydroi is the Kyte-Doolittle hydropathy of the 
residue, and ¢'lj;Gly/Proi is a dummy variable for glycine residues in a range of tor
sion angles normally unoccupied by other amino acids, or proline residues, which 
normally occupy this range as well. 

Solvent exposure values were obtained with DSSP (Kabsch and Sander 1983), 
and normalized by the solvent accessibility for the fully-exposed Gly-X-Gly tripep
tide (Shrake and Rupley 1973). We calculated the minimal distance to an active site 
for each residue, with an active site being a bound ion, ligand, or specified residues 
in the PDBsum database (Laskowski et al. 1997). We did a second assigment of 
distances where residues specified by PROSITE (Hulo et al. 2004) were included. 
The set of distances that gave the best sum of squares for each pair of enzymes was 
chosen. Hydropathy values were the Kyte-Doolittle hydropathy for the residue. 
Turns were assigned based on the assessment of DSSP. Odd angles were defined as 
any proline residue, or a glycine with '1/J less than -70 and ¢ greater than -40. The 
'1/J and ¢ angles describe the rotation of bonds about the a-carbon of an amino acid, 
with reference to the carboxylic carbon and the nitrogen atom, respectively (see fig
ure 1.1 ). Torsion angles in the selected range represent those that are unlikely to be 
found in amino acids that are not proline or glycine residues. The same biological 
factors were collected for the second structure in the cases where it was available. 

For each tree, we did one linear regression using the replacement rate estimates 
from the entire tree, and repeated it using the replacement rates from each subtree. If 
multiple structures were available, we used one from each subtree and repeated the 
whole-tree and subtree analyses with the structural factors for the second structure. 
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Figure 1.1: Torsion angles in the peptide backbone 

1.4 Results 

1.4.1 Data Quality 

Dean et al. (2002) established a number of criteria that the phylogenies must meet 
in order to ensure that the data were statistically reliable. These critera are: 1) The 
parsimony tree has at least 1.5 replacements per site; 2) The tree contains at least 
5 sequences; 3) All sequences are less than 99% identical; 4) Each sequence is at 
least 40% identical to a known structure; 5) No branch length is longer than 0.3; 6) 
No more than 30% of the replacements are assigned to branches longer than 0.2. 
Our data satisfies all of these criteria except for the sixth one (Table 1.2). ALAD 
has 35.9% of its replacements from branches longer than 0.2, and c-src has 26.2%. 

Phylogenetic Trees 

The details of the trees and subtrees are listed in Table 1.2. Each subtree auto
matically meets the above criteria 3, 4, and 5, as those were restrictions in the 
construction of the entire tree. The smallest subtree has only 13 species, but the av
erage has 44 species. This is well above the minimum requirement of 5 for criteria 
2. There are three subtrees for which criteria 1 is not met, even with the corrected 
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Tree Length/ Corrected Standard Parsimony %Branches 
Length Species Species Mean Variance Deviation Mean Over0.2 

ALAD 20.3162 93 0.2185 18.274 219.539 14.817 16.415 35.9 
tl 10.7456 48 0.2239 10.213 71.958 8.483 
t2 9.4598 45 0.2102 8.180 58.127 7.624 

CaM 3.3582 63 0.0533 3.228 13.091 3.618 3.315 7.3 
tl 1.8157 34 0.0534 1.789 7.198 2.683 
t2 1.5425 29 0.0532 1.470 2.735 1.654 

Enolase 3.1284 40 0.0782 3.174 14.822 3.850 2.920 0.0 
tl 1.4774 13 0.1137 1.532 3.731 1.932 
t2 1.6092 27 0.0596 1.623 5.964 2.442 

ALDO 12.0534 91 0.1325 10.234 89.265 9.448 9.807 19.9 
tl 6.5258 45 0.1450 5.526 26.873 5.184 
t2 5.3620 46 0.1166 4.731 28.081 5.299 

SRC 7.8241 64 0.1223 5.321 29.598 5.440 4.909 26.2 
tl 1.3878 26 0.0534 0.764 1.662 1.289 
t2 6.3790 38 0.1679 4.551 21.488 4.636 

SOD 14.8074 117 0.1266 13.400 181.916 13.488 12.261 14.2 
tl 7.7432 42 0.1844 6.863 40.522 6.366 
t2 3.2054 31 0.1034 3.111 16.196 4.025 
t3 3.5960 44 0.0817 3.750 22.521 4.746 

3aHSD 8.0332 63 0.1275 7.118 41.934 6.476 6.876 9.0 
tl 2.6025 22 0.1183 2.334 6.396 2.529 
t2 3.0007 22 0.1364 2.684 8.511 2.917 
t3 1.9851 19 0.1045 1.867 5.050 2.247 

RUBISCO 

LSU 4.8294 265 0.0183 4.657 118.764 10.898 4.118 0.0 
tl 3.3114 186 0.0178 3.147 62.146 7.883 
t2 1.4992 79 0.0190 1.506 12.475 3.532 

ssu 10.3015 127 0.0811 6.784 57.958 7.613 6.264 14.5 
tl 7.3479 103 0.0713 5.336 43.416 6.589 
t2 22764 24 0.0949 1.056 1.865 1.366 

Table 1.2: Features of phylogenetic trees for enzymes used in this study. 
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replacement rates. 

The phylogenetic trees are shown in Figures 1.2-1.10. The trees were preferren
tially split along the longest branch in the phylogeny that split the tree in a balanced 
fashion. 

The total branch lengths of the trees and subtrees are given in Table 1.2. Ideally, 
the total branch length of the entire tree would be about equally divided between 
the subtrees, but this is not always the case. SOD, c-src, and both RLSU and RSSU 
are particularly unbalanced. We divided the total whole and subtree lengths by the 
number of taxa to see if there were different overall rates for each subtree. Most 
enzymes do not show a drastic overall rate difference between subtrees, but enolase, 
c-src and SOD do have large differences in the branch length per species in their 
subtrees. 

Dean et al. (2002) reported that the NCD is highly unstable below a mean of 
two replacements per site, and accurate above a mean of five. Three of the phyloge
nies (CaM, enolase, and RLSU) have a corrected mean of less than 5 replacements 
per site, and all of the phylogenies aside from ALAD have a subtree with a mean of 
less than 5 replacements per site. Further, 6 of the phylogenies contain at least one 
subtree with a mean of less than 2. This could have been avoided in one of the phy
logenies, but a phylogeny would need to have a mean greater than 10 replacements 
per site in order to split it into two subtrees and ensure reliable NCDs in each. 

The average length/ species is 0.10643, and most trees are close to this value. 
ALAD is by far the fastest-evolving tree overall, with 0.21845, and CaM (0.05331) 
and both subunits of RUBISCO (0.01834 and 0.08111) are the slowest. It is inter
esting to note that though they cover a similar taxonomic range, RSSU is evolving 
at 4.4 times the rate of the large subunit. 



Table 1.3: Results of linear regressions. ~ 
Tree Length p2 f2 NCD MSM MSE dist hydro Gly!Pro 

('") 
ace 

~ 
Enolase (1) 

\n .... 
20NE 435 0.7858 0.3871 0.4926 622.53 9.17 989.82 360.15 36.43 210.25 \n 

20NE-t1 435 0.5895 0.2359 0.4002 95.47 2.88 173.78 43.29 23.91 35.52 I 

20NE-t2 435 0.7274 0.3478 0.4781 226.13 3.94 397.59 102.19 2.96 41.80 ~ 
1PDZ 432 0.7846 0.3886 0.4953 618.53 9.11 1061.55 401.41 15.79 154.29 :::0 
1PDZ-t1 432 0.5873 0.2134 0.3634 83.55 2.89 135.63 56.99 2.95 32.99 ~ 1PDZ-t2 432 0.7281 0.3446 0.4733 221.16 3.94 409.47 126.24 6.46 37.83 \n 

Fructose-1,6-Bisphosphatase 

1A5C 341 0.8854 0.3844 0.4342 2916.66 55.61 5089.88 1935.75 504.31 549.95 ~ 1A5C-tl 341 0.7944 0.3088 0.3887 705.38 18.80 1260.33 397.06 100.65 221.66 
1A5C-t2 341 0.8313 0.2896 0.3484 674.16 19.69 944.23 698.33 123.29 14.34 ~ 
1FBA 359 0.8818 0.3813 0.4324 3069.16 56.28 6025.88 2015.05 619.60 735.11 \n 

1FBA-t1 359 0.7863 0.3048 0.3876 727.28 18.74 1317.68 514.95 86.60 222.04 ft 
'"I 

1FBA-t2 359 0.8275 0.3202 0.3869 828.57 19.88 1565.18 645.15 246.83 107.50 I 

5-Aminolevulinate Dehydratase 
t:x:l .... e. 

1B4E 322 0.9168 0.4003 0.4366 7052.23 133.32 19135.38 3001.57 2302.47 4082.32 ~ 
lB4E-t1 322 0.8581 0.3565 0.4155 2058.39 46.89 5346.33 994.82 512.37 1259.99 <..::: 
1B4E-t2 322 0.8603 0.3062 0.3559 1428.97 40.85 4015.80 479.47 300.14 812.02 

Continued on Next Page ... 

N 
.......... 
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Tree Length p2 f-2 NCD MSM MSE ace dist hydro Gly/Pro 

3-a-Hydroxysteroid Dehydrogenase 

ILWI 304 0.8303 0.1690 0.2036 536.73 35.31 1111.44 324.80 202.53 437.63 
ILWI-tl 304 0.6351 0.1236 0.1946 59.86 5.68 135.38 24.12 28.13 56.79 
ILWI-t2 304 0.6888 0.0920 0-.1336 59.91 7.91 95.28 43.77 13.78 72.31 
ILWI-t3 304 0.6322 0.1576 0.2493 59.67 4.27 149.07 29.64 19.24 21.03 
IPWM 315 0.8369 0.2073 0.2477 734.38 36.23 2311.40 820.82 497.14 468.84 
IPWM-tl 315 0.6635 0.1112 0.1676 63.68 6.57 175.60 91.52 25.94 45.38 
IPWM-t2 315 0.6921 0.1011 0.1461 72.08 8.27 192.15 111.80 72.82 44.63 
1PWM-t3 315 0.6217 0.2130 0.3426 85.77 4.09 318.40 12.19 70.80 51.88 

RUBISCOLSU 

8RUC 465 0.9608 0.1747 0.1818 2411.60 99.04 4963.39 1281.66 1796.32 621.96 
8RUC-t1 465 0.9493 0.1552 0.1635 1120.98 53.05 2359.57 592.47 702.05 289.00 
8RUC-t2 465 0.8792 0.1658 0.1886 240.41 10.51 472.02 122.88 246.64 62.46 
lffi2 461 0.9611 0.1701 0.1770 2332.59 99.85 4736.01 1199.04 1832.17 612.89 

~ 1ffi2-t1 461 0.9496 0.1506 0.1586 1084.23 53.64 2275.27 544.93 696.13 289.38 
UR2-t2 461 0.8802 0.1702 0.1934 243.56 10.41 469.14 115.61 286.59 56.86 (") 

RUBISCOSSU ~ 
(!) 
l:n 

8RUC 122 0.8837 0.3454 0.3909 604.49 39.17 1162.96 717.19 102.45 40.04 ..... 
l:n 

8RUC-t1 122 0.8794 0.3067 0.3488 403.82 31.20 746.63 515.41 105.28 47.07 I 

8RUC-t2 122 0.4523 0.2938 0.6495 17.76 1.46 36.87 12.20 0.00 0.12 !"r1 
1ffi2 139 0.8825 0.3330 0.3773 642.85 38.44 1106.78 776.68 378.41 2.53 ::0 
1ffi2-t1 139 0.8849 0.2691 0.3041 399.46 32.38 665.26 493.59 266.30 2.50 ?. 1ffi2-t2 139 0.4060 0.3045 0.7499 21.15 1.44 49.23 14.34 3.76 0.00 

l:n 
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Tree Length p2 f2 NCD MSM 

Superoxide Dismutase 

1YAZ 152 0.9256 0.4586 0.4955 3151.27 
1YAZ-tl 152 0.8306 0.4512 0.5432 690.26 
1YAZ-t2 152 0.8094 0.3954 0.4885 24D.42 
IYAZ-t3 152 0.8289 0.2970 0.3583 242.31 
1HL5 152 0.9252 0.4617 0.4990 3139.39 
1HL5-t1 152 0.8305 0.4147 0.4993 636.13 
1HL5-t2 152 0.8093 0.4343 0.5367 264.56 
1HL5-t3 152 0.8283 0.2876 0.3472 234.82 

Calmodulin 

1CLM 143 0.7534 0.1405 0.1865 65.30 
ICLM-tl 143 0.7514 0.1457 0.1939 37.24 
1CLM-t2 143 0.4626 0.1150 0.2486 11.17 
1CLL 143 0.7534 0.1418 0.1882 65.92 
1CLL-t1 143 0.7514 0.1466 0.1951 37.45 
1CLL-t2 143 0.4626 0.1117 0.2415 10.84 

SRC Tyrosine Kinase 

2SRC 448 0.8213 0.3171 0.3861 1049.44 
2SRC-tl 448 0.7390 0.2040 0.2761 151.55 
2SRC-t2 448 0.7043 0.2839 0.4031 374.72 
lADS 436 0.8246 0.2870 0.3481 935.95 
1AD5-tl 436 0.7405 0.1688 0.2280 121.71 
1AD5-t2 436 0.7163 0.2855 0.3986 386.22 

MSE ace dist 

101.22 4962.77 2268.45 
22.84 1091.38 555.51 
10.00 345.91 190.76 
15.61 535.49 80.58 
99.61 4315.30 1923.88 
24.43 601.88 652.08 
9.38 381.28 158.44 

15.83 424.50 68.29 

11.58 217.33 3.68 
6.33 136.72 31.73 
2.49 15.06 6.57 

11.56 204.84 8.52 
6.32 136.47 40.66 
2.50 10.96 5.64 

20.41 2232.79 643.73 
5.34 401.98 50.05 
8.54 625.22 348.63 

21.58 1920.51 939.99 
5.56 278.19 93.58 
8.97 702.80 455.38 

hydro 

897.30 
339.40 

11.57 
134.17 
613.44 

71.03 
20.14 
39.21 

45.99 
50.60 

0.18 
18.10 
27.03 

0.22 

9.38 
14.14 
2.82 
0.08 
0.34 
1.66 

Gly!Pro 

1640.91 
251.03 
104.86 
99.53 

1518.12 
266.28 

75.31 
114.75 

76.81 
38.47 

9.09 
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43.10 
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1.4.2 Regression Analyses 

The results of the linear regression analyses for each structure and subtree are shown 
in Table 1.3. {;2 ranges from 0.7534 (CaM) to 0.9608 (RLSU), with an average of 
0.8624. This indicates that these data sets contain a large degree of causal rate vari
ation, making them suitable for analysis. {;2 almost always decreases for subtrees, 
as it decreases with the mean number of replacements and this always decreases for 
subtrees. 

The 4-term linear regression model is significant at the 95% confidence level for 
all whole trees and subtrees used (P(f2

) < 0.05). In all cases, the mean square model 
value (MSM) is much larger than the mean square error term (MSE), usually by an 
order of magnitude or more. This indicates that the 4-term model does manage 
to explain a significant amount of the variation in the replacement rates. The f 2 

value for the linear regressions ranges from 0.1405 (CaM) to 0.4586 (SOD), with 
an average of 0.2991 for the whole trees. It is also below 0.2 for 3aHSD and the 
RLSU, and above 0.3 for all other enzymes, including RSSU. The NCD ranges 
from 0.1818 (RLSU) to 0.4955 (SOD), with an average of 0.3564 for the whole 
trees. If the three lowest enzymes are excluded (RLSU (0.1818), CaM (0.1865), 
and 3aHSD (0.2036)), then the average NCD is 0.4393. Our basic model explains 
between 35%-43% of the causal rate variation in this set of enzymes. 

Our model used the three terms found to be significant sources of rate varia
tion in the last study (Accessibility, Distance, Gly/Pro ), as well as one new one, 
Hydropathy. Membership in a turn was also tested, but was found to be a trivial 
source of variation in most of the enzymes. The criteria we use for a factor being 
a significant source of variation in the rates is if it is larger than the MSE, as all 
terms use one degree of freedom. If the sum of squares for a factor (SSF) is greater 
than the MSE, the factor is more useful than a random variable for each position. 
In most cases, the SSF is much larger than the MSE. 

The Accessibility term is significant for all whole trees, and is the strongest 
source of variation for every enzyme. The Distance term is significant for all whole 
trees except CaM. The Gly/Pro term only applies to a few sites in each enzyme, but 
it is for the whole trees for all enzymes except RSSU. The new Hydropathy term is 
significant for 8 of the enzymes for the whole tree. 
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Table 1.4: Comparison of replacement rates and linear regressions for enzymes used in both this study and Dean 
et. al (2002). 
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To check how strongly the overall rate of evolution in the tree affects the fit 
of the model (and by extension, how much of the causal variation the model ex
plains), we correlated the branch length per species in the trees with the p2, f 2, and 
NCD. There was a strong and significant correlation between the branch length per 
species and the f 2 value (r = 0.5414, P(0.5414) < 0.0001), and a slightly weaker 
one between the number of substitutions per species and the NCD (r = 0.4722, P(r) 
< 0.0001). The correlation between the number of substitutions per species and p2 

was weak and not significant (r = 0.0500, P(r) = 0.7273). Not only is the model and 
the NCD more reliable when a phylogeny has a faster overall rate of evolution, but 
the amount of variation in rates that the model explains is higher as well. 

1.4.3 Comparison With Previous Results 

Five of the enzymes used in this study were also used in Dean et. al (2002). The 
results of the regression analyses from that study and the current ones are presented 
in Table 1.4. The same primary PDB structure files were used for all enzymes 
expect RUBISCO. We created a tree for the PDB file used by Dean et al. (2002) 
(lBWV from Galdieria partita), but the Bayesian trees we used in the first step 
produced longer branches than the parsimony method used earlier. This resulted 
in the Galdieria tree containing too many long branches, requiring pruning of so 
many sequences as to make the tree unuseable. The different tree construction 
method also affected enolase, as our tree has less than half the number of species 
that the tree from the earlier study does. 

All of the previously-used enzymes have large differences in the number of 
species used in the final tree. In all cases aside from enolase, it is higher by a 
factor of at least 1.5. For enolase, the number of species is decreased by a factor of 
2.6. There were 408 species in the enolase tree before pruning, so it has probably 
been more strongly affected by the use of more accurate Bayesian trees than the 
other protein sequences were. The mean and variance for both the parsimony and 
corrected replacement rates also differ. In all cases except RUBISCO, the larger 
phylogeny also has a higher mean replacement rate. This is expected, as a larger 
phylogeny would allow more opportunities for replacements to occur. However, 
this means that the sums of squares cannot be directly compared across studies (the 
total sum of squares for the linear regression analyses of the previous study were 
not provided, so the results cannot be normalized). The differences in means and 
variances seem to have an effect on the PECD (p2), as these all vary across the 
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two studies (they also tend to increase with phylogeny size). The f 2 values for the 
linear regressions are close to those of the previous study for the RLSU, ALDO, 
and ALAD. For enolase and 3aHSD, they increase or decrease with the number of 
taxa. The NCDs follow a similar trend. 

Though we cannot directly compare the sums of squares for the terms used in 
the regression, we can look at the relative values of them. Accessibility has the 
largest SSF for every enzyme but one in the previous study, and for every enzyme 
in the current one. The Accessibility SS makes up on average 48.5% of the SSM 
for the previous work, and 62.5% of the current one. The Distance term is slightly 
diminshed as a source of variation, making about 32.0% of the SSM for the previous 
work and 17.8% of this one. While the Gly term covers the remaining 19.4% of the 
last work, the remainder is about evenly divided between the Gly/Pro term (10.0%) 
and the new Hydro term (9.7%). This indicates that the Hydro term is a worthwhile 
addition, as it is about as significant source of variation as the Gly/Pro term is. 

The new enzymes also have the Accessibility term explaining the majority of 
the variation ( 60.5% average) of the variation than the Distance term does (20.1% ). 
However, the Hydropathy term explains about half as much variation as the Gly/Pro 
term for these enzymes (7.0% and 12.3%, respectively). These proportions are 
similar to the new values for the enzymes used in both studies. 

'1.4.4 The Fit is Not Improved at a Smaller Evolutionary Scale 

In order to see if the structural linear regression model improves the fit of the model 
at a smaller evolutionary scale, we repeated the analysis with the phylogenetic tree 
divided into two or three smaller trees (Table 1.3). For 8 of the 9 enzymes used, 
we have structures from two different species, one in each subtree (except CaM, 
where both are in the same subtree). We predict that the causal variation will be 
better explained in the subtree that contains the target structure and less so in the 
other subtree. This will be reflected by an increase in the NCD for the subtree that 
contains the structure, relative to the NCD for the whole tree and the other subtree. 

In general, we do not see this trend. Only 1 of the 9 enzymes (SOD) shows an 
NCD that increases more for the subtree containing the structure for both structures 
used, though 4 of the 9 enzymes show an increase in the subtree that has a higher 
number of substitutions per species. For the 8 enzymes that have a second structure 
available, the average difference in NCD between structures for the whole trees is 
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0.0138. Between the subtrees, there is an average difference of 0.0296, indicating a 
greater difference in the NCD at the subtree level. Though the difference is greater, 
there is no direction implied by the difference (i.e., whether this is due to a relatively 
higher NCD for the subtrees containing their own structure when using the factors 
from that structure). For enolase, ALDO, RSSU, and SOD, one of the subtrees has 
a difference between the subtrees that is at least an order of magnitude greater than 
that between the whole trees. These higher differences correspond to a higher NCD 
in that subtree for the native structure. 

In general, there is a high correspondence between the NCDs for the same sub
tree, across homologous enzymes. The correlation coefficient between whole-tree 
NCDs for the two enzymes is 0.9862, and for the subtrees it decreases only slightly 
to 0.9645. For comparison, the correlation coefficient between the two subtrees 
for a single enzyme is much lower, 0.5278. From this, we can conclude that the 
specific subtree has a greater effect on the NCD than the structural variant. We 
also took the average of all of the NCDs for subtrees containing their structure (tl 
for the main structure, t2 for the alternative structure) and those subtrees which 
do not contain the structure (tl for the alternative structure, t2 for the main struc
ture). The mean NCD for the structure-containing subtrees is 0.3616, and for the 
non-structure-containing subtrees it is 0.3194. This indicates that to some degree, 
the NCD will be higher for the tree that is phylogenetically closer to the enzyme 
structure, though using a closer subtree does not increase the NCD over the whole 
tree. 

The relative power of the structural factors changes somewhat with the parti
tioning. The Accessibility term is significant (P < 0.05) for all whole trees, and 
this does not change for the subtrees or across alternate structure. The Distance 
term is significant for all whole trees except CaM, and it is significant for all but 
one subtree among the other enzymes. The other two factors are less often signifi
cant across all subtrees. While the SSF varies substantially by subtree, it does not 
vary as much across homologous enzyme pairs. In the cases of ALDO and 3aHSD 
there is more of a difference in the relative SSF values across the enzyme pair, but 
there is no obvious reason why this should be so. While some of the enzyme pairs 
are fairly close phylogenetically, these enzymes are not the ones with the greatest 
branch length between them. 
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1.4.5 Rate Colourings 

The replacement rates were normalized and mapped onto the tertiary structures for 
ALAD and ALDO. The replacement rates were normalized over the whole protein, 
and replaced the temperature column in the PDB structure file. The sites range 
from dark blue (highly conserved) through green, yellow, orange and red (rapidly 
evolving). This technique allows quick visualization of constraints on protein sites. 
A conserved core with fast-evolving sites scattered over the surface of the protein 
is a typical pattern. We may also use this technique to visualize sites which have 
altered constraints across subtrees. 

ALAD has only one structure available. This is a long protein (322 aa) with a 
high mean number of replacements in both subtrees (10.2 and 8.1). Both subtrees 
have a decreased NCD, but t2 shows a 4-fold greater decrease. The enzyme is an 
octamer. We show both sides of a single subunit for clarity. The extended tail 
wraps around a neighbouring subunit, so the interior side of it is shielded from 
solvent. The colouring for the whole tree shows the expected pattern, with the 
external residues generally evolving faster (Fig. 1.11c) and the surface shielded by 
other subunits (Fig. 1.11d), as well as the core (Fig. l.lla, Fig. l.llb), being 
more conserved. When the subtree rates are used, a number sites on the surface 
show a rate change (Fig. l.lle, Fig. 1.11f, Fig. l.llg, Fig. l.llh). Some sites are 
faster in one subtree and not the other, and are evolving at a moderate speed over 
the whole tree. Others are evolving more slowly in both subtrees, but quickly over 
the whole tree. These are like the Type I and Type II sites described by Gu (1999), 
respectively. Comparing the rates for tl and t2, the tl rates seem to have a more 
reasonable distribution of fast sites on the unshielded surface, whereas t2 has more 
hotter sites, but also more apparently conserved sites on the unshielded surface. 
Conserved sites would not be expected on a solvent-exposed surface, unless the sites 
were involved in a protein-protein interaction or some other ligand. This tree was 
divided into zn2+ and Mg2+ -dependent forms of the enzyme, and some moderate 
structural rearrangements are not unlikely. Some degree of functional divergence 
was also possible for this enzyme, and it may be reflected in the different pattern of 
rates seen across the subtrees. 

ALDO is another long protein (341 aa) with a relatively large mean number 
of replacements in both subtrees (5.5 and 4.7). ALDO had a relatively high RMS 
distance between the two structures, so it may be possible to detect rate distribution 
differences that are related to the structural differences. Specifically, Plasmodium 
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ALDO (1A5C) has a greater overall surface area exposed compared to the human 
form (Kim et al. 1998). Both subtrees experience a decrease in NCD, but it is 
greater for t2 when the non-native structure is used to model the rates. Comparing 
the two structures with the rates for the whole trees (Fig. 1.12a, Fig. 1.12b), a char
acteristic pattern of replacement rates is seen across both structures. The conserved 
patch towards the middle of each subunit reflects the channel of the a/ {3 barrel, 
which leads to the active site. The patch is clearly larger in 1A5C, which suggests 
that a greater protrusion of this channel is partly responsible for the increased sur
face area of this structure. Despite the significant structural differences, there is 
not a large difference in the NCD for the whole tree between these two structures 
(0.0018). Subtree 1 has an even smaller difference between subtrees (0.0011), and 
it shows roughly the same pattern of replacements scattered over the surface of 
the two structures, though with fewer very rapidly evolving sites (Fig. 1.12c, Fig. 
1.12d). The conserved cleft is still more prevalent on 1A5C, but in both cases this 
does not seem to be a great enough difference to strongly influence the NCD. For 
subtree 2, the difference in NCDs is much larger (0.0385). The pattern of replace
ments has also changed somewhat (Fig. 1.12e, Fig. 1.12f). Though 1FBA shows 
more sites on the surface that appear to be conserved, 1A5C shows this pattern 
much more strongly. The conserved cleft has expanded to cover a much larger part 
of the exposed surface. It follows that the model, which is largely influenced by the 
solvent accessibility of residues, would provide a poorer fit with this combination 
of structure and subtree. 

1.4.6 Atypical Replacement Patterns in the Large Subunit of 
RUBIS CO 

The previous work observed that the NCD was particularly low for RLSU, despite a 
fairly high p2• RLSU also had an abnormal distribution of replacements compared 
to the other a/ {3 barrel proteins, in having a much higher variance. Specifically, 
while most sites are strongly conserved, quite a few had very high replacement 
rates. The authors did not propose any structure-based explanation for this deviance 
from the other proteins. 

We see this pattern as well (Fig. 1.13). However, we have also included the 
small subunit of RUBISCO, which is nuclear-encoded. While the large subunit 
shows the same pattern of a number of sites with abnormally high replacement 
rates, the small subunit shows a pattern much more similar to the other enzymes 
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Nuclear Chloroplast 

1st 2nd 3rd Mean 1st 2nd 3rd Mean 

Chlamydomonas reinhardtii 64.7 47.9 86.1 66.3 44.4 37.4 19.4 33.7 
Pinus thunbergii 54.0 47.0 53.6 51.5 45.8 38.5 31.7 38.7 
Oryza sativa 58.4 46.4 61.3 55.4 48.5 39.9 33.7 40.7 
Spinacia oleracea 52.5 41.5 42.3 45.4 47.7 39.1 31.6 39.5 

Average 57.4 45.7 60.8 54.7 46.6 38.7 29.1 38.2 

RUBISCOSSU RUBISCOLSU 

1st 2nd 3rd Mean 1st 2nd 3rd Mean 

Chlamydomonas reinhardtii 52.1 44.4 84.5 60.3 60.1 44.1 25.0 43.1 
Pinus thunbergii 49.4 44.8 72.7 55.6 58.2 43.9 30.0 44.0 
Oryza sativa 51.2 43.8 82.4 59.1 56.3 44.3 32.0 44.2 
Spinacia oleracea 50.2 43.6 63.5 52.5 57.8 43.9 29.8 42.9 

Average 50.7 44.2 75.8 56.9 58.1 44.1 29.2 43.6 

Table 1.5: %G+C content of whole nuclear and chloroplast genomes, RUBISCO 
SSU and LSU genes. 

in this study. We see this pattern is also reflected in a mapping of the rates onto 
the protein structure (Fig. 1.14). While both subunits display the fastest sites on 
the exterior of the protein, the large subunit is generally conserved with only a few 
rapidly-evolving sites. The small subunit shows more of a range of rates, and the 
distribution of these is not as skewed towards low values as it is with the large 
subunit. The different distribution between the large and small subunits suggests 
that the atypical distribution of replacements in the large subunit may be due to its 
location in the chloroplast genome, and not due to any structural constraints. While 
the mean replacement rate of the small subunit ( 6. 73) is higher than that of the large 
subunit (4.67), its variance is much lower (57.86 vs 118.97), decreasing the p2 from 
0.9608 for the large subunit to 0.8837 for the small subunit. The f 2 value is also 
about twice as high for the small subunit (0.1747 vs. 0.3454), leading to an even 
larger difference in the NCDs (0.1818 vs 0.3909). 

We analyzed the differences between the replacement patterns for the small and 
large subunits in more detail. Specifically, we looked at the profile of the numbers 
and types of different amino acids represented at the rapidly-evolving sites in each 
subunit, and we tested to see if the abnormal patterns were driven by a nucleotide 
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composition bias. The %G+C for the entire and chloroplast genomes of the four 
species, as well as the %G+C from the genes for the large and small subunits of 
RUBISCO are shown in Table 1.5. There is a pronounced difference in the %G+C 
content of the plant nucleus and the chloroplast genome for many species. We fo
cused on a sample of four species from our tree, a chlorophyte (Chlamydomonas 
reinhardtii), a gymnosperm (Pinus thunbergii), a monocot (Oryza sativa), and a 
dicot (Spinacia oleracea). Among these, the overall nuclear-chloroplast difference 
in coding %G+C is greatest in Chlamydomonas (32.53% ), and weakest in spinach 
(5.94%). Such a pronounced difference points to the possibility of the composi
tion bias being strong enough to result in non-synonymous substitutions at some 
unconstrained sites. 

For the whole genomes, the %G+C varies most between species at the third 
coding position, indicating that the bias would mostly result in synonymous substi
tutions. This pattern is also reflected for just the RUBIS CO genes (except that there 
is little change in the composition of the large subunit at all, relative to the small 
subunit and genome-wide comparisions). This effectively rules out a change in 
composition bias in the chloroplast genome contributing to replacements in RLSU. 
The average 1st, 2nd, and 3rd codon positions have a %G+C of 58.07, 44.06, 29.04 
for the large subunit, and 50.72, 44.12, 75.77 for the small subunit. While there 
is a noticeable difference in the composition of the first, and especially third posi
tion, there is virtually no difference in the second position. Further, the values for 
the first position are not changing much across species for the large subunit. Even 
if the composition bias may have favoured some amino acids over others initially, 
there is no evidence that it is currently driving nonsynonymous subsitutions in the 
large subunit. 

We looked at the actual pattern of replacements in the hot sites for the large 
and small subunits. Hot sites were defined as those with a replacement rate greater 
than two standard deviations from the mean replacement rate in the protein. For the 
small subunit, 8.45% of the sites were above this cut-off, and 5.09% were above it 
for the large subunit. We found that the number of different types of amino acids 
represented at each hot site differed between the small and large subunits. The dis
tribution of different amino acids also differs for the large and small subunits. We 
ordered the proportions of each amino acid represented in a hot site, and took an 
average of these across all sites. For the small subunit, the most-represented amino 
acid makes up an average of 33.77% of the sites in an alignment position, the sec
ond most-represented makes up 24.98%, the third makes up 16.54%, and there is a 
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gradual taper for the rest of the ranks. For the large subunit, the most-represented 
amino acid makes up a much greater proportion of the site at 63.82%. The sec
ond most-represented covers 23.97%, leaving little room for other amino acids to 
be represented. This describes the pattern that the large subunit hot sites display 
in the sequence alignment (not shown), which is an alternation of two amino acids 
throughout the whole tree. This pattern could indicate a high rate of change between 
two different amino acids throughout time. Alternately, it could represent high het
erozygosity at these positions, which appears as replacements due to insufficient 
sampling of plastid genotypes for each species. The chloroplast genome is repre
sented in much greater copy numbers than the nuclear genes, so the maintenance of 
heterozygosity is plausible in this case. 

1.5 Discussion 

Dean et al. (2002) found that a simple linear regression model with terms for sol
vent exposure, distance from the active site, and the presence of glycines or pro lines 
explained half of the causal variation in a broad sample of a/ {3 barrel proteins. In 
light of observations that replacement rates change along branches as well as across 
sites, we wanted to see if restricting our analysis to smaller lineages could account 
for some of the remaining variation. If replacement rate heterogeneity is influenced 
by phylogenetically local structural adaptations. we predict that a subtree will have 
a greater NCD when a structure native to that subtree is used to model the rates 
than if a non-native structure is used. We instead found that the NCD generally 
decreased for subtrees compared to the whole tree. Among subtrees, there was a 
slight increase in the NCD when a native structure was used relative to a non-native 
structure, but the specific subtree generally had a much greater effect on the NCD. 

The previous study set standards for data quality that may have limited the 
power of this study. Specifically, the requirements that branch lengths all be shorter 
than 0.3 may have truncated some data sets such that upholding this criteria in 
conjunction with the requirement that each subtree have a mean of at least two 
replacements per site was not possible. Dean et al. (2002) used parsimony trees 
for their analysis, which generally underestimates the number of replacements. In 
the interest of improving tree quality, we used a Bayesian tree initially, and pruned 
sequences accoring to that tree. The Bayesian trees had longer branches overall 
than Neighbour-Joining trees made from the same sequences (data not shown). 
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Neighbour-Joining trees also typically have higher replacement estimates than par
simony trees. While the Bayesian tree is more accurate, it is also probably incom
patible with the branch length maxima established for parsimony trees. 

Only one enzyme (ALAD) has a mean of more than 5 replacements for all sub
trees, and that tree exceeds the 30% allotment of branches over 0.2. The enzymes 
that did have reliable NCDs (mean greater than 2 replacements) for all subtrees are 
ALDO, SOD, and 3aHSD. Among these, only SOD follows the expected pattern of 
NCD elevation for the subtree when modelled by its native enzyme, though ALAD 
and ALDO also have relatively higher NCDs for subtrees modelled by their native 
enzymes. This suggests our basic results would not change even if our trees had 
higher means. 

Since this study sought changes in the fit of the linear model across different 
lineages, the requirement of high sequence identity ( 40% in Dean et al. (2002), we 
used a BLAST E-value above 10-30) probably limited the power of the method as 
well. This cut-off was chosen to minimize structural differences between homologs, 
but structural differences were exactly what are required to see differences in the 
fit of the linear model. However, this may be an inherent limitation, since struc
ture tends to change much more slowly than sequence. If sequences with greater 
structural differences were chosen, the probability of multiple replacements at each 
protein site becomes greater, and rate estimates become more inaccurate. How
ever, there is probably some conjunction of identity requirements and phylogenetic 
method will maximize power of this analysis without compromising the accuracy 
of the rate estimates. 

Despite different phylogeny sizes and the addition of a new term to the linear 
model, our results for the whole tree regressions are fairly similar to those of Dean 
et al. (2002) for the old enzymes. It is presumed that where the number of se
quences used changes between this study and Dean et al. (2002), these sequences 
are more or less equally distributed over the whole tree, not all added to one new 
cluster. Thus, we can compare the changes in p2 , f 2, and the NCD with those for the 
subtree analysis to gauge how much of an effect non-lineage-dependent changes in 
phylogeny size has on these values. The RLSU is the only enzyme for which the 
mean and p2 seem largely unaffected by the change in phylogeny size. However, 
RLSU has both the largest phylogeny in both studies and the lowest replacement 
rate per species, indicating that it is probably very conserved and evolutionarily sta
ble. For all of the other enzymes used in both studies, the number of taxa change by 
a factor of 1.5-2.6, and the mean number of replacements follows a similar pattern. 
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The p2 also increases with number of taxa, but not as drastically. The NCD changes 
even less drastically, and hardly at all for the enzymes where the uncorrected mean 
is greater than 5 for both studies. This supports the simulation studies of Dean et al. 
(2002). The notable decrease in p2 for the enzymes with a mean below 5 in one 
study and above it in another (enolase and 3aHSD) suggests that more of the vari
ation in rates appears stochastic over smaller phylogenies with fewer replacements. 
We see this pattern reflected in the subtree analyses as well. 

Though the models have differences across the two studies, these are somewhat 
minor. Our model included a term for hydropathy, and included prolines in the 
binary variable for glycine residues in unusual main chain conformations. Minor 
differences in the assignment of distance from the active site were also likely. De
spite these differences, there is a clear trend to the fluctuation in NCDs that follows 
the change in the number of taxa across studies, so it is reasonable to use the dif
ferences in NCD between studies as a guide to how much NCDs fluctuate when 
the phylogenetic differences are not restricted to distinct lineages. For most of the 
enzymes used in both studies, the difference in NCD due to lineage-specific effects 
(non-overlapping subtrees) is greater than the difference in NCD between studies 
(overlapping subtrees). This difference is greater even for the two enzymes that 
have a mean of more than two replacements in each subtree, so this result is not 
likely just due to fluctuation in NCD based on the size of the data set. 

Some enzymes had a subtree with a much greater difference in NCD between 
structures compared to the whole tree difference in NCD between structures (eno
lase, 3aHSD, RSSU, SOD). For these enzymes, there was a strong and significant 
correlation (r = -0.6504, P(r) = 0.0161) between the difference between structures 
(for whole and subtrees) and the PECD (p2). This correlation is much greater than 
that for the enzymes which do not have a subtree with a much greater difference 
(c-src, 3aHSD, RLSU, CaM, r = -0.2242, P(r) = 0.4616). In the cases where one 
subtree shows a much greater NCD for one structure, it is always higher for the 
native structure. This pattern indicates that the subtree which is better modelled by 
its native enzyme also has a greater proportion of Poisson rate variation. 

The enzymes with a large difference between structures for a subtree do not 
fit any obvious pattern. The subtrees are not universally those expected to be un
dergoing functional divergence, and some of the subtrees that were expected to be 
divergent do not show great differences. These enzymes do not have the great
est RMS distances between structures, nor are there any obvious differences in the 
sums of squares for individual model terms in all cases. 
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We propose that for these subtrees where more of the variation is stochastic, 
the NCD is higher because the causal variation is simpler in form, and is more 
fully described by our model. There are other types of causal rate variation that is 
not included in our model, and for the subtrees with the higher PECD, it is likely 
that other constraints are at work. These constraints are probably represented in 
the structure for that subtree, but not in a form that our model draws out. Without 
this additional information about causal rate variation, the two structures appear to 
provide roughly equivalent NCDs. Some other terms not yet tested that could be 
relevant when looking for lineage-dependent changes in constraint include sites of 
protein-protein interactions and the number of other proteins that the protein inter
acts with (Lopez, Casane and Philippe 2002). Another likely cause of deterministic 
but unaccounted for rate variation is the effects of a fluctuating neutral space model 
(Takahata 1987), wherein certain replacements in a protein results in a new land
scape of neutral or deleterious replacements in neighbouring residues. Such effects 
are not suitable for inclusion in a simple linear model, but they do appear to have 
an effect on site-wise rate heterogeneity. 

In almost all cases, the NCD was greater for the whole tree than for either sub
tree. This result indicates that the subtree approach is not useful for explaining the 
remaining rate variation. This pattern suggests that the effects of simple structural 
parameters are stronger over longer evolutionary times. At smaller scales, more of 
the variation in the rates can occur randomly, but over longer scales, the difference 
between structurally constrained and unconstrained sites becomes more apparent. 
This is supported by the observation that the variance in rates is larger for all whole 
trees relative to the subtrees. The approach described in this paper does not focus 
on rate shifts that occur at specific sites, and may be too general to detect subtle 
changes that occur over relatively close evolutionary times. A model that describes 
and models the differences in the rates and all factors between sites may perform 
better. A difference-based model would also allow the inclusion of differences in 
the organisms, such as the temperature they live at, or relative exposure to various 
substances such as acid or free radicals. 

We tested two new terms for addition to the linear regression model: the hy
dropathy of the residue, and membership of the residue in a tum. Tum membership 
was not a significant source of variation for almost all enzymes (data not shown), but 
the Kyte-Doolittle hydropathy value was. The Hydropathy term may seem redun
dant when the Accessibility term already explains such a large part of the variation, 
but the Hydropathy value conveys additional information. It is the only term in our 
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model that allows some indication of amino acid identity other than Gly or Pro, but 
it does so in a manner that requires only one degree of freedom. It also indicates 
charged residues. 

The coefficients of the Hydropathy term were all positive where they were sig
nificant. The Kyte-Doolittle hydropathy scale runs from 4.5 for the most hydropho
bic residues to -4.5 for the most hydrophilic/ charged residues. This suggests either 
an elevated replacement rate with hydrophobic residues (which would contradict 
the strongly conservative effect that being buried has on residues), or a decrease in 
the replacement rate for charged residues. As the Kyte-Doolittle scale is weighted 
towards negative values (hydrophilic and charged residues), the latter explanation 
seems more likely. Dean and Golding (2000) did not find a factor for hydrophobic, 
hydrophilic, charged, and Pro or Gly sufficiently significant for the four degrees of 
freedom required. However, in an additional analysis of enolase, Dean et al. (2002) 
found that Arg, Asp and Glu were the most conserved of the 20 individual amino 
acids, indicating some conservative role for charged amino acids. The hydropa
thy scale consumes only a single degree of freedom, and allows for a gradient of 
hydrophilicity or charge. 

The large subunit of RUBISCO displayed an atypical distribution of rates in 
both Dean et al. (2002) and in this work. We included the nuclear-encoded 
small subunit in this study to see if coding location had some effect on the pattern 
of replacement rates. The large subunit is generally highly conserved, but some 
sites have very high replacement rates. This leads to an abnormally low mean-to
variance ratio as compared to the other enzymes in this study. We found that the 
small subunit had a more typical mean-to-variance ratio, suggesting that the encod
ing of the large subunit in the chloroplast genome was responsible for the atypical 
pattern. 

The chloroplast genome has a much different genomic and population structure 
than the plant nuclear genes. It is a small, circular chromosome, with an inter
spersed repeat and two single-copy regions. Each plant cell has between 50-150 
chloroplasts, and these segregate in a more or less random fashion upon cell divi
sion, and they are strictly maternally inherited for most species. Each chloroplast 
contains many copies of its genome, on the order of about 100. There is some ev
idence that there is recombination between these, particularly in the interspersed 
repeat regions (Maier et al. 1995). The chloroplast genome-encoded gene used 
in this study showed a pattern of replacements that differed from the other pro
teins studied, in that most sites were strongly conserved, and a few had a very high 
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replacement rate. Closer analysis has shown that most of these sites are fluctuat
ing between two amino acids throughout the tree. The great copy number of the 
chloroplast genome, coupled with some gene conversion biased in favour of the 
wild type (Birky CW and Walsh 1992) is probably sufficient to prevent most new 
replacements, as even if a new neutral mutation arose, the chances of it coming to 
prominence through drift are much lower than they would be for a nuclear gene. For 
the hot sites, we propose that there is a certain level of heterozygosity that is more 
or less permanently maintained, which is possible in a very large population. It is 
likely that any chloroplast would be genotypically uniform, but any cell may have 
a collection of plastids with different genotypes. Since dividing cells would inherit 
between 25 and 75 chloroplasts, it is reasonable that each cell inherits plastids with 
a variety of genotypes. Whatever the cause of the atypical pattern, it is likely that 
the population structure of the organelle genomes will create some deviation from 
the patterns that would be expected for a diploid nuclear population, which may 
make it unsuitable for analysis by this method. Additionally, this method is cur
rently most suitable for globular proteins, and most organelle-encoded proteins are 
membrane-embedded. 
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Figure 1.2: Phylogenetic tree for Enolase. The asterisks indicate sequences with 
structures which were used for this study. 
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Figure 1.3: Phylogenetic tree for Fructose-1,6-bisphosphate aldolase (Class 1). The 
asterisks indicate sequences with structures which were used for this study. 
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Figure 1.4: Phylogenetic tree for 5-Aminolevulinate Dehydratase. The asterisk 
indicates the sequence of the structure which was used for this study. 
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Figure 1.5: Phylogenetic tree for 3-a-hydroxysteroid dehydrogenase. The asterisks 
indicate sequences with structures which were used for this study. 
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Figure 1.6: Phylogenetic tree for the large subunit of RUBISCO. The asterisks 
indicate sequences with structures which were used for this study. 
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Figure 1.7: Phylogenetic tree for the small subunit of RUBISCO. The asterisks 
indicate sequences with structures which were used for this study. 
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Figure 1.8: Phylogenetic tree for Superoxide Dismutase. The asterisks indicate 
sequences with structures which were used for this study. 
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Figure 1.9: Phylogenetic tree for Calmodulin. The asterisks indicate sequences 
with structures which were used for this study. 
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Figure 1.10: Phylogenetic tree for SRC Tyrosine Kinase. The asterisks indicate 
sequences with structures which were used for this study. 
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Figure 1.11: Rate-coloured structure for 5-Aminolevulinate Dehydratase monomer, 
Escherichia coli (1B4E). The left side shows the more solvent-exposed surface, the 
right side shows the surface that is buried in the octamer. The top row (a, b) shows 
a cross-section with rates from the whole tree, showing conserved interior. The 
second row (c, d) shows rates from the whole trees, third row (e, f) is for subtree 1, 
and bottom row (g, h) is for subtree 2. See figure 1.4 for phylogeny. 
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Figure 1.12: Rate-coloured structures for Fructose-1 ,6-bisphosphate aldolase( class 
1). Plasmodium falciparum (IA5C) structures left, Drosophila melanogaster 
(lFBA) structures right. Top row (a, b) rates are for the whole tree, second row 
( c, d) is for subtree 1, and third row ( e, f) is for subtree 2. See figure 1.3 for phy
logeny. 
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Figure 1.13: Distribution of normalized replacement rates for enzymes used in this 
study. The large subunit of RUBISCO displays the same atypical pattern that it did 
in Dean et al. (2002), but the small subunit displays a pattern much more like that 
of the other enzymes. 
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Figure 1.14: Schema and rate-coloured structures for Ribulose- I ,5-bisphosphate 
carboxylase/oxygenase, Chlamydomonas reinhardtii (1 IR2). (a) Shows arrange
ment of small (yellow, orange, red) and large subunits (green and blue). (b) Shows 
rate colouring for all subunits. (c) Shows rates for only the small subunit, and (d) 
shows rates for the large subunit. See figures 1.6 and 1.7 for phylogenies. 
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Chapter 2 

Patterns of Amino Acid Replacement 
at Protein-Protein Interfaces 

2.1 Abstract 

Some of the variation in replacement rates that occurs across protein sites corre
sponds to structural factors of the protein site, particularly the solvent exposure of 
the site. Physically unconstrained sites tend to evolve more rapidly, but constraints 
can change over the evolutionary history of a protein. Such changes would be ex
pected to affect the evolutionary rate of the site in tum. A set of four proteins that 
have changed their quaternary structure at some point are examined to see how the 
change in constraint on the new interface sites affects the replacement rate, and its 
relationship with other structural factors. The existing and new interfaces are also 
compared in order to see exactly how protein interfaces change over time. We find 
that the unique interfaces are as conserved as the shared ones, and they exhibit a 
different relationship between replacement rates and indicators of constraint than 
the shared interfaces or other protein sites. We also find that the unique interfaces 
display characteristic amino acid preferences that may identify interfaces which are 
still in the process of stabilizing. 

53 
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2.2 Introduction 

The neutral theory of evolution (Kimura 1989) states that the majority of fixed 
mutations have little or no effects on the fitness of the organism. While most nu
cleotide sites may be evolving in a more random, rather than positively selected 
manner, protein sequences typically have stronger functional constraints and so are 
often subject to negative selection at many sites. The strength of these constraints 
typically varies throughout a protein sequence, frequenly in a very general man
ner that can be correlated with physical features of the protein such as the solvent 
exposure of a site, its distance from an active site in the protein, or special fold
ing constraints (Dean and Golding 2000; Dean et al. 2002). These constraints can 
aslo change throughout time, based on changes in the organism's environment or 
lifestyle (Golding and Dean 1998; Susko et al. 2002; Gaucher et al. 2002; Fay and 
Wu 2003), new functional roles as a result of gene duplication (Gu 1999; Gu 2003; 
Susko et al. 2002; Knudsen et al. 2003), or due to random changes in neighbouring 
residues that may allow or restrict new replacements (Lopez, Casane and Philippe 
2002; Takahata 1987). 

Dean and Golding (2000) developed a linear model that described the sitewise 
replacement rate heterogeneity in a protein as a product of the solvent exposure of 
the site, its distance from the active site, and identity as a glycine in a main chain 
conformation that could not be found in an amino acid with a longer sidechain. In a 
subsequent study Dean et al. (2002), half of the causal replacement rate variation in 
a variety of proteins was explained using this model. We expanded on this work in 
the previous chapter, and tried to use the model to detect changes in the replacement 
rate at a site throughout time by dividing a large phylogeny into two smaller phylo
genies. We used a representative structure from each subtree to provide structural 
factors. There was weak evidence for local adpatation (demonstrated as a relatively 
better fit of the model when a structure native to the subtree was used), but generally 
the model performed better for the larger phylogeny than for either of the smaller 
ones. However, the points of division for the phylogenies were fairly arbitrary, and 
for most of the proteins there was little or no evidence of functional divergence be
tween the two structures. In this chapter, we use the same linear model and divided 
phylogeny approach with sites of known functional divergence. We compare the 
differences in constraint that arise when a protein changes its quaternary structure at 
some point in its evolutionary history. In order to ensure the strongest phylogenetic 
signal possible, our work is restricted to proteins that form permanent associations. 
For the sake of simplicity, we only consider homomeric proteins. 
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Though proteins frequently change their quaternary structure in a transient man
ner, permanent changes in the number of subunits in a protein are rare. In Es
cherichia coli, only 19.4% of proteins occur as monomers, and 79% have higher
order quaternary structures (Goodsell and Olson 2000). These figures suggest that 
such associations are favourable, though most proteins are likely already in a stable 
quaternary structure. (Goodsell and Olson 2000) presented a list of compelling ar
guments in favour of larger proteins obtained through an increase in the number of 
subunits. Larger proteins have greater stability due to a greater number of stabiliz
ing contacts (many of which are weak, and so allow greater flexibility that is often 
necessary for catalysis), and require less solvent. An increase in active sites through 
an increase in the number of subunits means that diffused substrates will have an 
increased chance of useful contact, are easier to regulate, and are more densely en
coded in the genome. Symmetric protein contacts are additionally easier to evolve, 
as a single interface-stabilizing mutation will result in two new points of contact 
(Goodsell and Olson 2000). In cases where a new gene arises from duplication, it 
might be expected that the new gene would maintain the quaternary structure of the 
old gene as well. Cases where a protein has different quaternary structures through
out a phylogeny are likely to be experiencing different constraints. Such differences 
in constraint include a requirement to diffuse quickly or remain stable at low con
centrations (for monomers), or a requirement for even greater stability due to life in 
extreme environments (Goodsell and Olson 2000). Alternately, the fixation of the 
quaternary structure could have occurred after some speciation or duplication event, 
or through drift in one lineage. There is no general rule for the form of an interface, 
though they can be classified into three general types that correspond to the manner 
in which the interface evolved (Xu, Tsai and Nussinov 1998). One type involves 
the initial exchange of one domain between subunits, in which case the individual 
subunits undergo significant conformational change upon association. A second 
type requires association for proper folding; it has no stable smaller subunit. The 
simplest case involves mutation in the surface residues of existing stable smaller 
units (Xu, Tsai and Nussinov 1998). This latter type is the general form that all of 
the larger structures used in this study take, as the smaller homologs demonstrate 
the existence of a stable subunit. 

Though there has been little work focusing on the specifics of how new inter
faces evolve, the specific composition of existing interfaces and the evolutionary 
constraints acting upon them has been covered in some detail. Protein-protein in
terfaces have evaded simple and general characterization based on single param
eters such as hydrophobicity relative to other surface regions, shape, electrostatic 
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interactions, and flexibility, though taken together, these factors can predict inter
faces with some accuracy (Jones and Thornton 1997; Liang et al. 2004). However, 
no single factor dominates for all proteins, which seem to maintain a large diver
sity of interfaces (Larsen, Olson and Goodsell 1998; Xu, Tsai and Nussinov 1998; 
Nooren and Thornton 2003). When proteins are divided into specific interface cate
gories (based on permanence of interface, and heterogeneity or homogeneity of the 
involved subunits), clearer patterns in composition differences can be found, and 
these differences can be used to predict the same interface categories with slightly 
better accuracy than structural features (Ofran and Rost 2003b; Ofran and Rost 
2003a). Glaser et al. (2001) also found differences in contact preferences between 
smaller and larger interfaces. Mutation of each residue in an interface to alanine 
provided values for the free energy contribution of various residues, identifying the 
few amino acids that generally contribute the most energetically to inter-protein as
sociations (Bogan and Thorn 1998). Bogan and Thorn (1998) found a pattern to the 
distribution of hot spots in interfaces, and described a general interface anatomy 
where a core of hot spot residues were surrounded by a ring of more hydrophobic 
residues that exclude solvent. However, their data set was relatively small and did 
not necessarily represent a general structure for all interfaces. 

Perhaps because surface residues are typically experiencing little constraint, 
they tend to have relatively rapid evolutionary rates. Previous works have found 
a positive correlation between replacement rates and the degree of solvent exposure 
of a protein site (Mizuguchi and Blundell 2000; Bustamante, Townsend and Hartl 
2000; Goldman, Thorne and Jones 1998; Thompson and Goldstein 1996b; Thomp
son and Goldstein 1996a; Dean and Golding 2000; Dean et al. 2002). This rela
tionship may be due to the greater number of interactions that buried residues must 
maintain with other amino acids for the structural integrity of the protein. Exposed 
sites would have fewer of these specific interactions, and so could be expected to 
experience less constraint in terms of specific amino acid identities. Residues that 
participate in interfaces experience greater constraint, and so tend to be more con
served. This feature has been studied and exploited in a number of ways. Evolution
ary metrics detect greater relative conservation of interface residues than of other 
surface residues, though surface sites involved in ligand binding or active sites gen
erally carry stronger conservation signals (Elcock and McCammon 2001; Glaser 
et al. 2003). Though the strength of constraint may not be as strong for interfaces, 
the entire sequence of a protein involved in some sort of complex is overall more 
conserved, indicating that the conservertaive effect probably extends beyond the 
sites involved in the interface (Teichmann 2002). Furthermore, obligate interfaces 
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tend to have lower replacement rates than transient interfaces (Landgraf, Xenar
ios and Eisenberg 2001). The constraint imposed by interface membership is also 
likely to be due to the requirement for specific interactions with other residues. This 
constraint may be of the same nature as that imposed by burial in the protein core, 
or it may have a somewhat different character. Most of the above studies exam
ined the entire interface, defined as either contiguous surface patches, or residues 
within a certain distance from a residue on another protein chain. However, the 
existence of hot spot residues revealed by alanine scanning mutations (Bogan and 
Thorn 1998) suggests that some residues play more important roles in the interfaces 
than others. Hu et al. (2000) set out to identify these residues by finding struc
turally conserved residues in the interface. With smaller data sets, these residues 
corresponded fairly well to experimentally-validated hotspots, but some residues 
that were conserved did not make large energetic contributions. In later works (Ma 
et al. 2003; Halperin, Wolfson and Nussinov 2004), the correlation between hot 
spots and structurally conserved residues improved. It was also found that both hot 
spots and structurally conserved residues had greater packing density than other in
terface sites, and the conserved residues that were not hot spots likely facilitated 
this closer packing around energetically important residues (Halperin, Wolfson and 
Nussinov 2004). This latter study used the largest data set, but does not contradict 
the picture put forth by Bogan and Thorn ( 1998). It presented a picture of inter
faces as being held together by a few critical residues which limit flexibility in the 
remainder of the enzyme. These important contacts were proposed to be restricted 
to a maximal density in the interface so as to allow the enzyme enough conforma
tional freedom to carry out its catalytic function. 

There are some general rules of interface stabilization that emerge from these 
studies, though many nuances and idiosyncracies remain in individual interfaces. 
These differences may exist because only a few sites actually play important roles, 
or because there are many different ways to form an interface. Another possibil
ity is that interfaces change their character over time. We have collected a set of 
homologous protein pairs with different quaternary structures. Typically, one inter
face is conserved between the pair, and another interface is unique to one member. 
In these cases, it is very likely that the unique interface is newer, and has not had 
as long to stabilize as the shared interface has. Our dataset allows us to contrast 
the differences between shared and unique interfaces. This offers a snapshot of an 
evolving interface, which may shed some light on the kind of changes or constraints 
that are at work in an early interface. We use the linear model and subtree approach 
that was used in the previous chapter to examine differences in replacement rates, 
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structural features, and amino acid composition that occur between related struc
tures. We find that differences in rates can be detected across subtrees between the 
sites that are under different constraints, and these differences in constraint manifest 
as changes in the relationship between the replacement rates and structural factors. 
We also find that the two different types of interfaces are both conserved, but they 
display differences in character and amino acid preferences. 

2.2.1 Enzymes Studied 

We found four pairs of enzymes that were suitable for study. Relevant details of 
these enzyme pairs are given in Table 2.1. The enzymes collected for this study 
were identified by Enzyme Commission number (a categorization based on catalytic 
function), which serves as an a priori assurance of functional similarity. Homol
ogy was assured by PRSS (Probability of Random Shuffle) scores (Pearson 2000). 
The P-values for the PRSS scores are generally low, ranging from 0.00078 and 
0.0024 for the most distantly-related Purine nucleoside phosphorylase enzyme pair, 
to 4.784e-25 and 4.863e-27 for the Alcohol dehydrogenase pair. For three of the 
four enzymes, one member of the pair is a thermophile. While the additional sta
bility requirements of high-temperature environments would clearly favour greater
numbered quaternary structures, it is possible that the evolutionary and composi
tional features of these proteins are biased by the thermostability requirements as 
well. However, the enzyme pairs in which one member is thermophilic have greater 
sequence similarity, suggesting that such drastic selective pressure is required for 
proteins to change their quaternary structure over a relatively short evolutionary 
period. The Root Mean Square (RMS) distances between a-carbons of structures 
provided in the table were obtained from with the Swiss-PdbViewer (Guex and 
Peitsch 1997). 



EC Sub- % RMS 
Enzyme number PDB units Species Length Identity (A) PRSS P-val 

Alcohol IMPO 2 Homo 374 4.784e-25 
Dehydrogenase 1.1.1.1 sapiens 24.74 1.73 

IH2B 4 Aeropyrum 360 4.863e-27 
pemix 

Triose IAMK 2 Leishmania 252 1.135e-05 
Phosphate 5.3.1.1 mexicana 20.23 1.58 
Isomerase 1HG3 4 Pyrococcus 226 2.654e-06 

woesei 

Inorganic 1WGI 2 Saccharomyces 287 4.793e-10 
Pyro- 3.6.1.1 cerevisiae 17.48 1.38 
phosphatase 1QEZ 6 Sulfolobus 174 1.357e-10 

acidocaldarius 

Purine 1V2H 3 Homo 254 0.00078 
Nucleoside 2.4.2.1 sapiens 13.89 1.58 
Phosphorylase 1ECP 6 Escherichia 289 0.0024 

coli 

Table 2.1: Enzymes used in this study. 
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Alcohol Dehydrogenase 

Alcohol dehydrogenase is an oxidoreductase with broad distribution and variable 
substrate specificity and cofactor requirements. There are three classes of ADHs. 
Our tree (Fig. 2.1) includes only type I ADHs, ranging through bacteria, archaea, 
and eukaryotes. Our structures include a tetrameric ADH from Aeropyrum pernix 
(4ADH, a hyperthermophile:Guy, Isupov and Littlechild 2003), and a dimeric 
glutathione-dependent formaldehyde dehydrogenase (2ADH) from Homo sapiens 
(Sanghani et al. 2003). Both are Zn2+ -dependent, and have a 3-Layer (a{Ja) sand
wich, nucleotide-binding Rossman fold. They have similar tertiary structures (RMS 
distance of 1.58 A) and similar sequences (24.74% sequence identity). The tetramer 
is composed of a dimer of the dimeric form. 

The dimeric Class ill ADH (2ADH) is widely expressed in animal tissues. It 
binds NAD(H), and oxidizes a variety of substrates, preferrentially long-chain car
boxylic acids. It plays an important role in formaldehyde detoxification (Sang
bani et al. 2003). The tetrameric Class I ADH also binds an NAD(H) cofactor, 
is inhibited by octanoic acid, and prefers cyclic structures (Guy, Isupov and Lit
tlechild 2003). Though increased quaternary structure is a common adaptation to 
high-temperature environment, the Class I ADH is also tetrameric in many non
thermophilic bacterial species. Upon binding the cofactor, the Class I ADH under
goes a conformation change, which does not occur in the Class III dimer (Sanghani 
et al. 2003; Guy, Isupov and Littlechild 2003). The Aeropyrum pernix tetramer 
shares 70% sequence identity with two other non-thermophilic species. The differ
ence in thermostability of the various tetramers is due to the enhanced stability of 
the subunit interfaces (Guy, Isupov and Littlechild 2003). The two ADH structures 
are the most closely related of all enzymes used in this study, though there are some 
clear differences in structure and functional constraints. 

Triose Phosphate Isomerase 

Triose phopsphate isomerase (TIM) is a glycolytic a/ {3-barrel enzyme with wide 
distribution. TIM catalyzes the interconversion of dihydroxyacetone phosphate and 
D-glyceraldehyde 3-phosphate with a diffusion-limited rate. Our phylogeny in
cludes species from archaea, bacteria, and eukaryotes (Fig. 2.2). The enzyme is 
a dimer in most organisms (Williams et al. 1999), but a few thermophilic archaea 
have tetrameric forms. Our structures include a dimer from a eukaryote, Leishmania 
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mexicana (2TIM, (Williams et al. 1999)) and a tetramer from an archaea, Pyrococ
cus woesei (4TIM:Walden et al. 2001). These two forms have the same general 
tertiary structure (RMS distance 1.58 A) and a sequence identity of 20.32%. The 
tetramer is a dimer of the dimeric form. 

The Pyrococcus woesei tetramer has experienced pruning of several helix and 
loop regions, making it more compact relative to other TIMs. These pruned regions 
were fairly flexible in dimeric structures, so the pruning has led to enhanced stability 
of the protein. It may be expected that the tetrameric TIM would have many further 
adaptations to promote the thermo stability of the enzyme, the Leishmania mexicana 
dimer experienced an increase in thermal stability from 56°C to 83°C with a single 
point mutation (Williams et al. 1999). An increase in ionic interactions is also 
expected for thermostable enzymes, but the tetramer interface of Pyrococcus woesei 
TIM is stabilized by mostly hydrophobic interactions (Walden et al. 2001 ). Though 
there are structural differences between the two TIMs, these differences are not 
entirely along the expected mesophilic versus thermophilic axes. 

Inorganic Pyrophosphatase 

Inorganic pyrophosphatase (IPPase) is an enzyme that catalyzes the irreversible hy
drolysis of the phosphoanhydride bond in inorganic pyrophosphate. Since build-up 
of inorganic pyrophosphate can be toxic, this function is essential for the continua
tion of processes that use nucleotide triphosphates. The enzyme is generally dimeric 
in eukaryotes, and hexameric in bacteria and archaea. Our phylogeny for this en
zyme encompasses this range (Fig. 2.3). We use a dimer from Saccharomyces 
cerevisiae (2IPPase:Heikinheimo et al. 1996) and a hexamer from Sulfolobus aci
docaldarius (6IPPase, a thermophile:Leppanen et al. 1999). The hexamer is formed 
from a trimer of the dimeric unit. 

Both the active site and the catalytic mechanism are well-conserved across the 
dimeric and hexameric forms. Both structures contain the Inorganic pyrophos
phatase fold, which consists of a twisted five-stranded barrel. The eukaryotic IP
Pases are generally longer due to extentions on both terminii. This is the case with 
our two structures as well: the fungal dimer is 287 amino acids in length, and the 
archaeal hexamer is only 174 residues long. Some of these extra residues make up 
the dimer interface, which is smaller in the hexameric protein. The truncation of 
the hexameric form also means that some of the active site residues participate in 
the dimer interface, but they do not in the eukaryotic dimer. The hexameric forms 



62 MSc Thesis - F. Raftis McMaster- Biology 

generally have a more flexible active site, but that is not the case for the Sulfolobus 
hexamer. Both forms require divalent cations, but the dimer binds two Mn2+ per 
subunit, and the hexamer binds a single Mg2+ per subunit. In the hexamer, this ion 
may be lost at low temperatures, causing the enzyme to deactivate (Leppanen et al. 
1999). 

Purine Nucleoside Phosphorylase 

Purine nucleoside phosphorylase (PNP) is part of the purine salvage pathway. It 
converts purine ribonucleosides into the free base and ribose-1-phosphate. The 
enzyme can either be trimeric or hexameric. The two forms are encoded by two 
different genes, and have different substrate specificities and response to inhibitors 
(Mao et al. 1997). We use a trimeric form from Bos taurus (3PNP:de Azevedo WF 
et al. 2003), and a hexameric form from Escherichia coli (6PNP:Mao et al. 1997). 
Representatives of the hexameric form are found in bacteria, archaea, and some 
eukaryotes, though these are not featured in our tree (Fig. 2.4). The trimeric form 
is found over the same phylogenetic range. The amino acid similarity is not high 
between the two forms (13.89% identity), but the PRSS score between our two 
structures is significant at the 99.9% level (P(score) = 0.00078). Similarly, the 
overall topology of the monomer and the active site location are shared between the 
two forms, but the actual residues in the active site are very different (Mao et al. 
1997). The subunit interfaces are also quite different. Though some of the same 
positions are involved, the trimer has a disc-like, cyclical arrangement of subunits, 
and the hexamer is a disc formed from a trimer of dimers (Fig. 2.8a and 2.8b ). In 
the hexamer, the active site is located at the dimer interface, but the trimer interface 
has shifted slightly so that this is not the case. 

There are also some functional differences between the two forms, despite the 
structural similarity of the monomers. The hexameric active site is larger and more 
accessible than the trimer. It will also accept a greater variety of substrates. Both 
forms take a (2'-deoxy)purine ribonucleoside. The hexamer will take both adenine 
and guanine/ hypoxanthine, but the trimeric form will only take guanine or hypox
anthine, and the hexamer will also accept substrate with modified ribose groups. 
The greater substrate specificity protects the trimer from inhibitors that affect the 
hexamer, such as formycin A (Mao et al. 1997). 
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2.3 Methods 

Candidate proteins were initially found by searching the entire PDB database for 
proteins with the same Enzyme Commission (EC) number but differing numbers 
of protein subunits. Differences were first detected by the number of chains in a 
PDB file, or by the quaternary structure as provided in the BIOMOLECULE entry. 
Each of these candidate proteins were then manually inspected. In order to sur
vive the next round of screening, proteins required confirmation of different quater
nary structures through either available literature, or supporting Assumed Biolog
ical Molecule coordinates. Heteromeric proteins were rejected. Where the option 
was available, structures binding an inhibitor were chosen in order to more closely 
capture the active conformation of the protein. The protein sequences were then 
tested for homology using PRSS (Pearson 2000). A P-value of less than 0.10 (90% 
confidence level) was required for the assumption of homology. 

Each structure surviving these requirements were BLAST' ed for similar se
quences, using a maximum E-value of 1 o-30• All of the unique sequences obtained 
for each protein were grouped and aligned using ClustalW (Chenna et al. 2003). 
Puzzle (v 5.0) (Schmidt et al. 2002) was used on a neighbor-joining tree to esti
mate the r distribution parameter a (exact, 8 r categories+ 1 invariant, WAG 2000 
model). The alignment was then bootstrapped (100 replicates), and distance matri
ces for each replicate were obtained with Protdist (Felsenstein 1989) (ITT model, 
r +invariant). Neighbor-joining trees were obtained for each replicate. These trees 
were then evaulated by proml (phylip 3.6b (Felsenstein 1989), 6 categories). The 
tree with the highest likelihood was chosen for further analysis. Any branch lengths 
longer than 1.5 were pruned to avoid excessive multiple hits due to long branches, 
with an exception allowed for the branch that joined the two subtrees. The trees 
were sub-divided on long branches on the assumption that all sequences in the sub
trees had the same quaternary structure as the structure sequence within the cluster. 
This assumption was tested whenever possible by checking the quaternary structure 
of other structures found in each subtree. The process of alignment and bootstrap
ping was repeated on the subtrees, and these trees were used in a likelihood method 
(Fitch 1971) to estimate the number of replacements at each site in the protein. The 
likelihood counts were normalized on a scale from 0-999 and used in the temper
ature column of the PDB file for visual inspection of replacement rates. The rate 
estimates were also used for a variety of statistical anaylses. 
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2.3.1 Identifying Residues Involved in the Protein-Protein Inter
face 

Residues were assumed to be involved in a protein-protein interface if they were 
within 5.2A of any atom on a different protein chain. The distance of 5.2A repre
sents the length of two hydrogen bonds to the oxygen atom of a water molecule. 
Distances were calculated from the PDB files for each protein structure. 

The sequences of all the available structures for a protein were aligned with 
ClustalW, and the sites involved in interfaces were compared across the different 
quaternary structures. Sites in the homologs were classifed accoring to participa
tion in interfaces. The sites were classified as: Not participating in an interface 
(NINT); Participating in an interface both in its own structure and aligned with a 
position in the homolog which participates in an interface (BINT); Participating in 
an interface in its own structure, but not aligned to a residue in an interface in the 
homolog (MINT); Not participating in an interface in its own structure, but aligned 
to a residue which particpates in an interface in the homolog (YINT). 

2.3.2 Statistical Analyses 

The rate estimates from the subtree of each homolog were used in a series of 
ANOVAs to explore the relationships between replacement rates and interface cat
egories. Other structural and functional constraints and various interactions were 
also considered for comparison. The degree of solvent exposure at a site is strongly 
correlated with the replacement rate. Any effect that the interface membership may 
have on replacement rates may not be independent of these effects. The Kyte
Doolittle hydropathy of each residue is similar to the solvent exposure in these 
respects. The solvent exposure was determined with DSSP (Kabsch and Sander 
1983), and normalized by the value for the fully-extended Gly-X-Gly tripeptide 
(Shrake and Rupley 1973). ANOVAs were also used to explore how the percentage 
of each amino acid at an alignment position is affected by interface membership. 
We also took the average values of the normalized replacement rate, composition 
of the same amino acid at the corresponding site, and solvent exposure at each site, 
weighted by the proportion of the specific amino acid at the site for direct compar
ison between interface categories. 



MSc Thesis - F. Raftis McMaster- Biology 65 

2.4 Results 

2.4.1 Phylogenetic Trees 

The quality of the underlying phylogenies (Figures 2.1-2.4, Table 2.2) will affect 
the reliability of the rate estimates which underlie subsequent analyses. Dean et al. 
(2002) listed a number of criteria which phylogenies must meet to be suitable for 
analysis. These are as follows: 1) A phylogeny with mean of at least 1.5 replace
ments per site; 2) The tree includes at least five sequences; 3) All sequences are less 
than 99% identical; 4) Each sequence shares at least 40% identity with a sequence 
of known structure; 5) No branch is longer than 0.3 (the mean number of replace
ments per site); 6) No more than 30% of the branches are longer than 0.2. For 
this study, we also required that the quaternary structure be consistent within each 
subtree. The first three criteria ensure that the data set is large enough to be robust, 
and the fourth ensures that sequences are similar enough to avoid large differences 
in protein structure. The last two minimize the number of multiple replacements at 
each protein site, which would lead to underestimating the replacement rate. 

The phenomenon we investigate in this study is somewhat unusual, and very 
few enzymes were initial candidates. It was necessary to increase the long branch 
cutoff (criteria 5) to 1.5. All trees meet criteria 1, 2, 3, and 4 by construction. 
Additionally, initially choosing the enzymes by EC number further ensures similar 
function between the two proteins. Most trees meet criteria 6. The 2IPPase tree 
marginally exceeds 30% of branches over 0.2. 

The subtrees were chosen on the basis of a long branch between them (to en
sure consistent quaternary structure of subtrees), so the distribution of taxa among 
them could not be changed. As a result, some trees have a very unbalanced num
ber of taxa in the subtrees and total tree length (particularly TIM). There are also 
large differences in the branch length per species (approximately, the speed of the 
molecular clock) for TIM and ADH. The branch length per species is greater for 
the larger protein in TIM and ADH. The mean number of replacements also varies, 
particularly in TIM, PNP, and IPPase, but the mean roughly follows the overall size 
of the tree (total branch length). However, the mean is large enough to ensure a 
robust data set in most cases. 
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Tree Length/ Sequence Corrected %Branches 
Length Species Species length Mean Variance over0.2 

2TIM 48.26 228 0.2117 252 58.09 1504.55 17.66 
4TIM 9.71 20 0.4854 226 15.90 125.98 29.79 

2ADH 26.82 257 0.1044 374 27.04 418.59 19.03 
4ADH 43.75 177 0.2472 360 20.40 225.40 5.09 

21PP 8.21 28 0.2932 287 4.19 8.29 32.08 
6IPP 21.95 74 0.2966 174 24.16 300.12 19.29 

3PNP 20.74 99 0.2095 254 46.81 647.47 15.90 
6PNP 16.74 74 0.2263 289 5.93 17.95 19.31 

Table 2.2: Features of the phylogenetic trees for the enzymes used in this study. 

2.4.2 Rate Colourings 

The replacement rates for each subtree were normalized to a scale of 0-999 and used 
in the temperature column of the PDB file to visually explore how the rates vary by 
position in the three-dimensional structure of the protein. The residues involved in 
the interfaces for each protein are shown below. 

TIM is one of the three enzymes in this study that has a fairly simple change in 
quaternary structure. The tetramer is a dimer of the dimeric form (Figures 2.5a and 
2.5b ), and only three residues that are involved in the dimer interface are exclusive 
to the interface of the dimeric form. The dimer interface (comprised of 35 residues) 
is more extensive than the tetrameric interface (22 residues). The residues involved 
in the dimer interface appear fairly structurally conserved among both forms, and 
show a similar distribution of rates (Figures 2.5c and 2.5d). However, the residues 
of the tetramer interface show some rearrangement between the two forms, and 
a different rate distribution (Figures 2.5e and 2.5f). The tetrameric form is from 
a hyperthermophile, which may explain the apparent compression of the residues 
in the tetramer interface for the tetrameric form. These residues are slightly more 
conserved in 4TIM, which may indicate constraint from involvement in an interface. 
Additionally, the residues involved in the tetrameric interface are on the surface of 
the dimeric form, which could be expected to reduce the constraint on these sites 
even further. 

ADH is similar to TIM in that the larger form is a hyperthermophilic, and a 
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simple dimer of dimers (Figures 2.6a and 2.6b ). Only six residues are involved in 
the dimeric interface of 2ADH that are not used in 4ADH. The dimer and tetramer 
interfaces are of similar sizes, with 35 residues in the dimer interface common to 
both forms, and 39 residues in the tetrameric interface. The dimeric interface shows 
a bit of tertiary structure change between the two forms, and a very slight decrease 
in overall conservation for 4ADH (Figures 2.6c and 2.6d). The tetrameric interface 
is more structurally condensed for 4ADH (as it is for 4TIM), but it shows no obvi
ous differences in conservation compared to 2ADH (Figures 2.6e and 2.6f). These 
residues are exposed in 2ADH, so it is likely that there is some other difference 
in constraint for the more conserved residues of the 4TIM tetramer interface. The 
difference may be due to the more extensive subtree of 4ADH relative to that of 
4TIM. The subtree for 4TIM is restricted to archaea, whereas the subtree for 4ADH 
covers a more extensive phylogenetic range, comparable to that of 2ADH. It is pos
sible that there is an accompanying broader set of constraints acting on the tetramer 
interface residues of 4ADH. 

IPPase is another enzyme for which the two structures are fairly close phyloge
netically and where the larger homolog is built up from the smaller. 6IPPase is made 
of a trimer of 2IPPase. The dimer interface is much smaller than the hexamer inter
face, at only 14 residues common between forms and an extra three that are unique 
to 2IPPase. The hexameric interface uses 40 residues, some of which are relatively 
buried in 2IPPase (Figures 2. 7 a and 2. 7b ). Both sets of interface residues are gener
ally more conserved in 2IPPase, though there is a pattern in the hexamer interface 
residues that is consistent with the solvent exposure of those residues (the more con
served ones are also buried). For 6IPPase, the dimeric interface is marginally more 
conserved than the hexameric interface, and the hexamer residues may have expe
rienced more structural change than the dimeric interface residues (Figures 2.7c, 
2.7d, 2.7e and 2.7f). The overall greater rates in 6IPPase may also be due to the 
broader phylogenetic range that the hexamer subtree spans (Fig. 2.3). 

PNP has a more complicated structural relationship between the two forms. 
Though there is some overlap in the specific residues used ( 41 are common to both 
forms) they are used differently, and the trimeric form has more unique residues 
involved (39 versus 10 unique residues for the hexamer). 3PNP has a single type 
of asymmetric interface (Fig. 2.8a), whereas 6PNP has two different symmetric 
interfaces, one which forms a dimer, and one that joins three dimers radially to form 
a hexamer (Fig. 2.8b). Figure 2.8c-f shows the relative positions of the residues 
involved in each interface on the monomers. The monomers are positioned with 
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the rotational axis of the protein pointing down. The trimer interface residues are 
shifted to one side of the monomer relative to the hexameric interface. (Figures 
2.8g and 2.8t) show the monomers rotated 90 degrees towards the viewer, with the 
rotational axis of the protein facing forwards. There is a clear difference in the rate 
distribution between the two forms. The trimer interface (Fig. 2.8g) is generally 
conserved, with the residues that are unique to the hexamer interface evolving more 
quickly. The hexamer interface has one interface that is clearly conserved, and 
one that is evolving much more quickly (Fig. 2.8h). 6IPPase and 3IPPase cover 
similar phylogenetic ranges (Fig. 2.4), but the active site of 6IPPase is located at the 
conserved dimeric interface. The active site of 3IPPase is not located at an interface. 
This difference likely explains why there is a discrepancy in rates between the two 
interfaces of 6IPPase, but not why its trimeric interface is evolving so much more 
quickly. 

2.4.3 Statistical Analyses 

To test whether interface membership had an effect on the evolutionary rates at a 
protein site, the replacement rate was modelled as a product of interface member
ship and other factors already known to affect rates. We explored the relationships 
between replacement rates, interface categories, and other structural factors (sol
vent exposure and hydropathy) in a series of ANOVAs and correlations. In the most 
general anaylsis, the rates are modelled as a product of these factors and various in
teractions of the factors. We also treated residues separately by interface class to see 
if any of the factors had different effects in interfaces. Since specific amino acids 
may play more or less important roles in interfaces, we also modelled the percent
age of each amino acid at each position in the alignment as a function of interface 
membership, rates, structural factors, and corresponding values at the aligned site 
in the other structure. Finally, we compared the averages of the replacement rates, 
conservation of the specific amino acid across structures, and the solvent exposure 
for each amino acid, weighted by the composition of that amino acid at the align
ment position. 

Initially, the mean replacement rates and solvent exposures were compared for 
each interface category to see if general differences existed between the sites in each 
group. The means for each category are given in Table 2.3. The replacement rates 
were normalized for each protein such that the average site had ten replacements, 
and the solvent exposures were normalized by the maximal exposure of that amino 
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mean% mean 
exposure rate 

NINT 20.86 9.93 
YINT 24.90 11.87 
BINT 13.31 9.50 
MINT 18.61 9.47 

Table 2.3: Mean solvent exposure and normalized replacement rate for the four 
interface categories. 

acid in a chain flanked by two Gly residues. MINT and BINT sites are generally on 
the surface of the protein, but should be relatively shielded from solvent by contact 
with other interface residues. YINT sites, however, are aligned with MINT sites and 
so should also be on a protein surface. These sites are not shielded in an interface, 
and so might be expected to be more exposed in general. This pattern is reflected in 
the average solvent exposure values. YINT sites have the greatest overall exposure, 
with NINT sites being slightly less exposed (but presumably with greater variation 
among sites). The MINT sites are more shielded than the NINT sites, but the BINT 
sites are even more drastically shielded. This differences between MINT and BINT 
sites may be due to a greater maturity of BINT sites, as the BINT sites have likely 
been shielded by their interface inclusion for a longer time. There is a general 
correlation between the degree of solvent exposure of a residue and the replacement 
rate at that site, so the average replacement rates might be expected to follow the 
same pattern. The same general ranking between categories is observed, but there 
is a greater difference between YINT and NINT sites than there is between NINT 
and MINT I BINT sites. There is virtually no difference between the average rate 
for MINT and BINT sites. This result might suggest that the overall degree of 
constraint is similar for residues participating in an interface. Conversely, the sites 
that are aligned to interface sites and which are not participating in an interface are 
relatively unconstrained, which may be due to their expected location on protein 
surfaces. Additionally, since MINT sites are more exposed than BINT sites but are 
similarly conserved, the depressed replacement rate is probably not solely due to 
the increased burial of the interface residues. 

The replacement rate at a protein site is affected by factors such as the solvent 
exposure and the hydropathy of the current residue. In order to establish to what 
degree the rate is affected by the constraints imposed by interface membership, we 
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Factor 2TIM 4TIM 2ADH 4ADH 2IPP 61PP 3PNP 6PNP Total 

accl <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 8 
rate2 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.153 0.007 7 

hydro] 0.051 0.277 <0.001 0.117 0.012 0.225 0.096 0.353 4 

YINT 0.060 0.301 0.659 0.489 0.705 0.073 0.006 0.383 3 
BINT 0.010 0.017 0.367 0.025 0.529 0.807 0.474 0.048 4 
MINT 0.490 0.299 0.691 0.046 0.055 0.429 0.007 0.035 4 

Table 2.4: P-values for the ANOVA of replacement rates. accl is the solvent ac
cessibility of the site, rate2 is the replacement rate at the corresponding site in the 
other member of the enzyme pair, hydro] is the hydropathy of the residue at the 
site. 

modelled the replacement rate with an ANOVA. We initially used a simple model, 
consisting of the replacement rate at the aligned site in the corresponding protein, 
the solvent exposure and hydropathy of the site, as well as a binary variable repre
senting inclusion in the YINT, BINT, or MINT interface categories. The P-values 
for these factors are shown in Table 2.4. We used the 90% confidence level as a 
general cut-off for these analyses. The first ANOVA confirms that the solvent ex
posure has a strong effect on the replacement rate for all proteins in this study. The 
replacement rate at the corresponding site is the next most commonly significant 
term, with 7 of 8 significant cases. This suggests that overall, similar constraints 
are acting on each site across the two subtrees. The hydropathy was only significant 
for 4 of 8 cases, all of which are the smaller members of the protein pairs. For the 
interface categories, YINT is a significant influence on the rates for 3 enzymes, and 
both MINT and BINT are significant for 4 enzymes. Each category tended to be 
significant for different enzymes, though both BINT and MINT are significant for 
4ADH and 6PNP. 

The initial ANOVA was repeated with a number of interaction terms added to 
investigate whether the effect of the interface categories on rates is influenced by 
the solvent exposure or hydropathy of the sites. The P-values for each term are 
shown in Table 2.5. The solvent accessibility is significant for only 5 enzymes, 
but this is likely because some of the variation in rates that the accessibility term 
was accounting for previously has been shared with the interaction terms. The in
teractions of the interface categories with the solvent exposure accounts for three 
significant cases, though two of these are in enzymes for which the solvent expo
sure is still significant. In general, the interaction of the solvent exposure with the 
interface categories does not account for more of the rate variation, suggesting that 
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2TIM 4TIM 2ADH 4ADH 2IPP 6IPP 3PNP 6PNP Total 

rate2 <O.OOI <O.OOI <O.OOI <O.OOI <O.OOI <O.OOI 0.073 0.064 8 
accl <O.OOI 0.228 0.846 0.004 <O.OOI 0.002 0.806 0.028 5 
hydro] 0.047 0.97I 0.542 0.226 0.120 0.697 0.69I 0.165 I 

YINT 0.328 0.999 0.557 0.367 0.247 0.37I 0.244 0.904 0 
BINT 0.013 0.090 0.807 0.058 0.39I 0.293 0.472 0.064 4 
MINT 0.204 0.735 0.397 0.082 0.968 O.I60 0.933 0.056 2 

Y*acc2 0.972 0.010 0.405 0.908 0.622 0.534 0.8I5 0.99I I 
M*accl 0.23I 0.73I 0.32I 0.803 O.I37 0.472 O.I64 0.847 0 
B*al*a2 0.001 0.602 0.23I 0.7I2 0.062 0.457 0.462 0.718 2 
Y*hydro2 0.505 0.843 0.753 0.235 0.530 0.088 0.992 0.446 I 
M*hydrol 0.2I9 0.70I 0.950 0.885 0.885 0.503 0.9I9 0.408 0 
B*hl*h2 0.620 0.6II 0.044 0.068 0.709 0.079 0.803 0.716 3 

Table 2.5: The P-values for ANOVA of factors influencing sitewise replacement 
rates, including interactions between terms. acc2 and hydro2 are the solvent ex-
posure and hydropathy of the aligned site in the other member of the protein pair, 
respectively. 

the effect that interface membership has on replacement rates is largely indepen
dent of the degree of burial of the residues. The hydropathy is significant for only 
a single enzyme with the interaction terms added, though the interaction of BINT 
sites with the hydropathy across both sites is significant for three enzymes (2ADH, 
4ADH, 6IPPase ). Two of these are enzymes for which the solitary BINT term was 
not significant. The BINT category is the only category which did not lose signif
icance with the inclusion of interface categories. The YINT category is no longer 
significant alone, though it regains significance for 4TIM in concert with the sol
vent exposure at that site. The MINT term loses significance for two enzymes, and 
gains nothing from interaction with the accessibility or hydropathy terms. 

Since the number of sites in each interface category is relatively low compared 
to the total number of sites, it is possible that the power of the first replacement 
AN OVA was low for interface-based rate differences, particularly when considering 
the interactions with solvent accessibility and hydropathy. In order to detect more 
clearly if interface membership changes the effect that solvent accessibility and hy
dropathy have on replacement rate sites, we divided the sites by interface category 
(NINT, YINT, BINT, and MINT) and performed separate ANOVAs for each. The 
P-values for these ANOVAs are given in (Table 2.6). We modelled the rates as a 
factor of the rate at the corresponding site, the solvent exposure, the hydropathy, 
and the interaction of the solvent accessibility and that of the corresponding site. 
The interface categories are all smaller data sets than the non-interface category, 
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rate2 accl al*a2 hydro] Total 

2TIM >0.001 >0.001 >0.001 0.230 3 
M n/a n/a n/a n/a 
y 0.949 >0.001 0.563 0.012 2 
B 0.009 0.003 0.048 0.108 3 

4TIM >0.001 >0.001 0.004 0.663 3 
M 0.364 0.373 0.779 0.867 0 
y n/a n/a n/a n/a 
B 0.002 0.241 0.760 0.003 3 

2ADH >0.001 >0.001 0.279 >0.001 3 
M 0.550 0.397 0.253 0.106 0 
y 0.037 >0.001 0.096 0.230 3 
B 0.035 0.085 0.824 0.798 3 

4ADH >0.001 >0.001 0.389 0.167 2 
M 0.052 0.140 0.649 0.744 1 
y 0.618 0.641 0.612 0.696 0 
B 0.036 0.283 0.925 0.397 1 

2IPP >0.001 >0.001 0.003 0.055 4 
M n/a n/a n/a n/a 
y 0.604 0.097 0.868 0.719 1 
B 0.963 0.177 0.494 0.396 0 

6IPP >0.001 >0.001 0.958 0.139 2 
M 0.396 0.091 0.555 0.898 1 
y n/a n/a n/a n/a 
B 0.891 0.970 0.810 0.901 0 

3PNP 0.010 >0.001 0.045 0.797 3 
M 0.816 0.214 0.285 0.698 0 
y 0.466 >0.001 0.323 0.004 2 
B 0.290 0.001 0.230 0.017 2 

6PNP 0.012 >0.001 0.239 0.601 2 
M 0.794 0.445 0.140 0.271 0 
y 0.849 0.460 0.711 0.282 0 
B 0.984 0.226 0.926 0.502 0 

NINT(8) 8 8 4 2 22 
MINT(6) 1 1 0 0 2 
YINT(6) 1 4 1 2 8 
BINT(8) 4 3 1 2 10 

Table 2.6: P-values for replacement rate ANOVA, with separate analyses for each 
interface category. 
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so the power of each analysis is reduced. However, the interface categories are all 
approximately the same size, so comparisons can readily be made between them. 
For the sites that are not involved in any interface, the corresponding rate and the 
solvent exposure are strong determinants of the rate. In the previous analysis of all 
sites, the corresponding rate was not a significant factor for PNP, though it is sig
nificant when only the non-interface sites are considered. This suggests that there 
is a stronger disjunction in replacement rates between the interface sites for this 
enzyme. While the replacement rate at the corresponding site is only significant for 
4 of 8 sets of BINT sites (ADH and TIM), it is only significant for a single enzyme 
for both MINT and YINT sites. This result is hardly surprising, as the BINT sites 
share the constraint of participating in an interface, whereas the MINT and YINT 
sites do not share this constraint across proteins. The solvent accessibility is sig
nificant for 4 of 6 YINT cases, and 3 of 8 BINT cases, suggesting that the rates 
of YINT sites are still largely affected by the exposure of the residue, and BINT 
sites are only to a moderate degree. The solvent exposure is significant for only 
one MINT site, indicating that the rates at these sites are largely independent of the 
degree of solvent exposure. The same pattern for MINT sites carries through to 
the hydropathy and the interaction of the solvent accessibilities of both sites. The 
interaction of the solvent exposure at both sites was only significant for half of the 
sets of NINT sites, and for only a single enzyme for YINT and BINT sites. The 
hydropathy term did not display a pattern that differed for interface residues as the 
solvent exposure did, having two significant cases for each of the NINT, YINT, and 
BINT sites. Overall, this ANOVA suggests that the unique interfaces (MINT sites) 
are less likely to have replacement rates affected by typical indicators of constraint 
as compared to the common interfaces (BINT sites). 

The factors that differed most strongly in explanatory power between interface 
and non-interface sites were the solvent accessibility of each residue, and the rate 
at the corresponding site. To explore this change in more detail, we performed a 
number of correlations, with sites grouped by interface categories. 

In general, the replacement rate and solvent accessibility at a site are strongly 
correlated (Table 2.7). For the NINT sites, this relationship is supported. The cor
relation is significant at the 90% level for all sets of NINT residues, and the correla
tion is fairly strong (r = 0.4348). Fewer cases are significant for all of the interface 
categories. However, the decrease in number of significant cases is not notewor
thy, because the cases where the YINT and MINT correlations are not significant 
are those where each set of residues is very small, and the power of the analysis 
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MINT YINT BINT NINT 

2TIM 0.5326 0.6096* 0.4532* 0.4287* 
0.6425 0.0026 0.0063 >0.0001 

4TIM 0.2745 -0.7148 0.2742 0.2965* 
0.2164 0.4930 0.1110 0.0001 

2ADH -0.0470 0.5673* 0.4827* 0.5265* 
0.9296 0.0002 0.0033 >0.0001 

4ADH 0.4806* 0.4274 0.3092* 0.4686* 
0.0020 0.3979 0.0707 >0.0001 

2IPP -0.9970* 0.4149* 0.5501 * 0.3943* 
0.0493 0.0078 0.0415 >0.0001 

6IPP 0.4661 * 0.2311 0.1199 0.4509* 
0.0024 0.8516 0.6831 >0.0001 

3PNP -0.3350 0.6788* 0.3568* 0.4134* 
0.3440 >0.0001 0.0238 >0.0001 

6PNP 0.3751 * 0.2574 0.3082* 0.4998* 
0.0203 0.4727 0.0500 >0.0001 

mean 
ofsig 0.0812 0.5677 0.4100 0.4348 

Table 2.7: Correlation of replacement rate and solvent accessibility, and P-value of 
correlation. The correlations that are significant at the 90% level are starred. 
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is too low. The average strength of the correlation is lower for BINT sites (r = 
0.4100). The significant correlation for 21PPase is based on only three sites, so it is 
unlikely that this correlation is meaningful. With this value removed, the average 
correlation coefficient for the MINT sites is 0.4406, which is also similar to that of 
NINT sites. The average correlation coefficient for YINT sites is higher than that of 
the NINT sites, at 0.5677. As with the accessibility term in the previous ANOVA, 
YINT residues are more likely to be on the surface, and the greater overall exposure 
leading to a stronger relationship. There is clearly a difference in the relationship 
between replacement rates and solvent accessibility for the two forms of IPPase. 
The NINT sites give the most realistic estimate the general relationship between 
replacement rates and solvent accessibility in each protein. It is interesting to note 
that the correlation coefficient for the NINT sites often varies quite a bit between 
homologs, particularly TIM. The correlation for BINT sites is not significant for 
two enzymes (4TIM, 6IPPase), though the correlation is significant and stronger 
than average for the smaller partners of both of these enzymes. This suggests a 
possible change in constraint across structures for these two enzymes, despite the 
shared requirement of forming a stable interface. Both of these enzymes are from 
thermophiles, so the change in constraint may be due to the special requirements 
of thermostable interfaces. This explanation is supported for 4TIM, for which the 
correlation is also insignificant. 6IPPase, however, has a significant correlation for 
its unique interface sites, which suggests that the thermostability demands are not 
the cause of the disjunction between replacement rates and solvent accessibility for 
its BINT sites. Overall, the expected relationship between the replacement rate and 
the solvent exposure is supported for both types of interfaces. The relationship is 
even stronger for YINT sites, likely because they have a higher overall degree of 
solvent exposure, and replacement rates offering more data for correlation than sites 
where both sets of values are lower. 

The replacement rate at the corresponding site was a strong determinant of re
placement rates in the ANOVAs, though it was less likely to be significant for the 
interface sites than for the NINT sites. This effect was stronger for the MINT and 
YINT sites than for the BINT sites, suggesting that the constraints had changed 
across homologs for these sites. To investigate this in more detail, we correlated 
the rates across sites by interface category (Table 2.8). The pattern seen in the 
ANOVA is very pronounced here. The correlation is significant and fairly strong 
for all NINT sites (average r = 0.4033), significant for only half of the BINT cases, 
and only one MINT case (YINT sites were not included because they are redundant 
where sites are compared across homologs). Where the BINT cases are signifi-
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MINT BINT NINT 

2TIM 0.9619 0.5599* 0.2839* 
0.1762 0.0005 0.0003 

4TIM 0.1852 
0.4092 

2ADH -0.2202 0.4598* 0.5460* 
0.6750 0.0054 >0.0001 

4ADH 0.3707* 
0.0202 

2IPP -0.7410 0.1322 0.5157* 
0.4687 0.6524 >0.0001 

6IPP 0.1881 
0.2452 

3PNP 0.0761 -0.0846 0.2674* 
0.8345 0.6037 0.0010 

6PNP 0.2496 
0.1307 

Table 2.8: P-values for correlation of rate with rate at corresponding site. 
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MINT YINT BINT NINT 

2TIM -0.9449 -0.3742* -0.1738 -0.4871 * 
0.2123 0.0863 0.3180 >0.0001 

4TIM -0.6565* -0.9921 * -0.2496 -0.6033* 
0.0009 0.0803 0.1482 >0.0001 

2ADH -0.4251 -0.2555 -0.5053* -0.4838* 
0.4007 0.1164 0.0020 >0.0001 

4ADH -0.2674* -0.6065 -0.4813* -0.5513* 
0.0998 0.2018 0.0034 >0.0001 

2IPP 0.4046 -0.3943* -0.1761 -0.4813* 
0.7348 0.0118 0.5470 >0.0001 

6IPP -0.4807* 0.0778 -0.6582* -0.4597* 
0.0017 0.9504 0.0105 >0.0001 

3PNP -0.3910 -0.4614* -0.4438* -0.4924* 
0.2639 0.0031 0.0041 >0.0001 

6PNP -0.2550 -0.0282 -0.3189* -0.5485* 
0.1223 0.9384 0.0421 >0.0001 

mean 
of sig -0.4682 -0.5555 -0.4815 -0.5134 

Table 2.9: P-values for correlation of hydropathy and solvent accessibility at each 
site. 

cantly correlated, the value is fairly strong (TIM, r = 0.5599, and ADH, r = 0.4598). 
These two enzymes also have the most similar shared interface. For the single case 
where the rates between MINT sites are correlated, the strength of the correlation is 
low relative to those of NINT and BINT sites (r = 0.3707). The previous correlation 
between replacement rates and solvent accessibility suggested that there were dif
ferences in constraint between the BINT sites of TIM and IPPase. There was more 
evidence for a thermostability-based difference for TIM than for IPPase. The corre
lation between rates at BINT sites is significant for TIM, but not for IPPase, which 
further suggests some other difference in constraint between the shared interface 
sites of this enzyme. 
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The ANOVA results for the hydropathy were ambiguous. It had an equal (but 
low) propensity to be a significant cause of variation in replacement rates for NINT, 
YINT, and BINT sites. It also followed different patterns than the solvent acces
sibility term. It might be expected that the hydropathy and solvent accessibility 
have similar effects on the replacement rates, as both terms generally describe the 
interactions of the residue with water. We correlated the solvent accessibility and 
the hydropathy of each residue, divided by interface categories to explore patterns 
between these two factors more closely (Table 2.9). As with the other factors, the 
correlations are always significant for the NINT sites. The correlation is less likely 
to be significant for the BINT sites (5 of 8), the YINT sites ( 4 of 8), and even less so 
for the MINT sites (3 of 8). Again, four of the MINT and YINT sets are too small to 
have sufficient power for a significant correlation to be likely. Among the significant 
correlations, the average values follow a pattern similar to that of the correlations 
between replacement rate and solvent accessibility. All of the correlations are nega
tive here, as the hydrophilic values of the hydropathy scale are negative. The YINT 
sites have the strongest average correlation (r = -0.5555), followed by NINT sites 
(r = -0.5134), then BINT and MINT sites (-0.4815 and -0.4682 respectively). This 
suggests that MINT and BINT sites are more likely to violate the simple assump
tion that more hydrophilic residues will be more exposed to solvent, as would occur 
if charged residues are used to form salt bridges at buried interfaces between sub
units. IPPase has an atypical pattern for its BINT sites, in that there is a significant 
correlation between hydropathy and solvent accessibility for the hexamer, but not 
for the dimer. This effect is more pronounced considering that the YINT sites of 
2IPPase and the aligned MINT sites of 6IPPase have similar and significant corre
lation coefficients. This suggests that the two forms of IPPase make different use 
of the residues that are involved in a common interface, to a greater degree than the 
other enzymes do. 

The varying relationship between the hydropathy and solvent exposure of 
residues suggests that there may be some constraints on interface residues that are 
more specific than general hydrophobic or hydrophilic effects. To further investi
gate the specific useage patterns of the various amino acids in common and unique 
interfaces, we carried out another ANOVA on the composition of each amino acid 
at alignment positions for each subtree. The ANOVA explored which structural fac
tors and interface categories affected the composition of each amino acid at protein 
sites. For the factors that were generally relevant, weighted averages were obtained 
by each amino acid and interface category to examine category-based differences. 
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In the first ANOVA, the percentage of each amino acid at a site was modelled as 
a product of the replacement rate, solvent exposure, percentage of that amino acid 
at the corresponding site, and interface membership. Table 2.10 shows the number 
of enzymes (of 8) which had a P-value less than 0.10 for each factor. The factors 
all varied in their explanatory power by specific amino acid type more than they 
did by factor. This is not surprising, as some of the rarer amino acids would not 
have enough data to show clear trends. However, even among the more abundant 
amino acids there is variation in the relevance of the various factors. A factor was 
considered generally relevant for an amino acid if it was significant for at least 3 of 
8 cases. The factor that is most frequently significant is the amino acid at the cor
responding site, followed by the solvent exposure and the replacement rate at the 
site. The proportion of the corresponding amino acid is more generally significant 
for Val, Phe, Met, Gly, and Lys, while it is barely significant for Trp and Tyr. These 
amino acids are relatively scarce (Table 2.11), though Met, His, and Gin are less 
abundant than Tyr but are more commonly affected by the accompanying composi
tion. The solvent exposure follows a reasonably predictable pattern of influence that 
generally follows the hydropathy of the amino acids. The amino acids at either end 
of the scale are generally more affected by the solvent exposure. Arg is a notable 
exception to this pattern. The replacement rate affected only a few amino acids 
strongly; Gly, lle, and Gin. Gly tends to occupy the most slowly-evolving sites, and 
Gin is generally found at the fastest ones (Table 2.14). In comparison, the inter
face membership factors are generally much weaker sources of variation in amino 
acid composition. The interface category which is generally the most relevant is the 
BINT sites. However, there are slightly more BINT sites than YINT or MINT sites, 
so this increase may simply represent an increase in the power of the ANOVA. The 
amino acids that are generally most affected by interface status are Met, Arg, Asn, 
Lys, and Val. However, Val is only generally affected by BINT membership, and 
this represents a decrease in the composition (Table 2.11 ). While most amino acid 
compositions are much more generally influenced by the non-interface factors, a 
few are comparably or more influenced by the interface factors. These include Trp, 
Tyr, Arg, Met, Asn, and His. 

The ANOVA indicated that the effects of the interface status of residues did not 
play a very strong role in specific amino acid composition. However, the number 
of sites included in an interface are generally low relative to the entire protein, and 
certain interface categories did have a minor effect on the proportion of certain 
amino acids. The compositions of each amino acid by interface category are given 
in Table 2.11 (Fig. 2.9). The ANOVA found the compositions of Met, Arg, Asn, 
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v L F c M A G T s w y p H E Q D N K R 160 

rate] 5 4 3 0 3 2 1 7 2 3 1 0 3 2 1 5 2 2 4 2 52 
accl 8 8 7 3 4 2 5 6 0 3 1 0 3 1 7 4 8 3 8 1 82 
AA2 6 8 5 8 4 8 7 8 6 4 0 2 6 6 6 4 6 6 8 4 112 

MINT 1 1 0 0 0 2 0 2 0 0 2 2 2 2 0 2 0 1 3 4 24 
YINT 0 1 0 0 0 3 1 2 0 0 1 0 1 1 2 2 2 3 2 3 24 
BINT 5 0 3 1 0 2 1 2 1 2 2 0 2 1 3 2 0 30 

Table 2.10: Number of enzymes (of 8) that had a P-value < 0.10 for each factor in 
ANOVAs modelling % composition of each amino acid. AA2 is the composition of 
the same amino acid at the corresponding site. 

and Lys to be influenced by interface membership, as well as Trp, Try, and His to 
a lesser degree. The composition of Met is greatly elevated in BINT sites. Asn 
is more abundant in YINT, BINT, and MINT sites than in NINT sites, particularly 
for the latter two. Arg is very abundant in MINT and YINT sites. Lys, however, 
is not over-represented in YINT or MINT sites, but is under-represented in BINT 
sites. The values in Fig. 2.9 show other patterns that were not found significant by 
the ANOVA but still seem noteworthy. YINT sites are generally low in the more 
hydrophobic residues, and somewhat more abundant in the hydrophilic residues, 
which is what would be expected for surface residues. BINT and MINT sites are 
both less abundant in De and Val compared to NINT sites, and both have elevated 
proportions of Tyr, Pro, His, and Asn. Phe is most abundant in BINT sites, and 
is slightly elevated in MINT sites. Both also have marginally more Trp, though 
the proportion of this amino acid is generally very low. This suggests a general 
preference for amino acids with an aromatic character in both types of interfaces. 
The BINT and MINT sites seem to have different preferences for charged residues, 
however. While both sets of sites are relatively low in Glu, BINT sites are much 
lower in Lys, Asp, and particularly Arg, which are abundant in MINT sites. BINT 
sites also show a preference for Met, Thr, and Ser that is not shared by MINT sites. 
Both MINT and BINT sites have relatively low proportions of Ala, though this is a 
typically common amino acid which may just be avoided in favour of amino acids 
that are more specifically useful in interface formation. 

It was shown above that BINT and particularly MINT sites have a weaker re
lationship between the hydropathy and solvent exposure of a residue compared to 
NINT sites, whereas YINT sites had a stronger relationship. This relationship is 
shown by individual amino acid in (Table 2.12, Fig. 2.1 0). The stronger correlation 
between the hydropathy and solvent exposure of YINT sites is likely due to the 
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% Composition 

I v L F c M A G T s 
All 7.13 9.47 7.69 3.46 1.76 2.39 9.78 9.16 4.97 4.91 
N 8.00 10.80 7.99 3.13 1.99 2.04 10.42 9.40 5.04 4.73 
y 3.66 6.83 5.02 2.75 1.86 1.38 11.13 10.50 3.92 4.75 
B 5.90 5.22 8.12 5.44 0.76 5.06 6.89 9.07 6.01 6.10 
M 5.07 7.26 7.20 3.98 1.21 2.27 7.44 5.97 3.81 4.85 

w y p H E Q D N K R 

All 0.93 2.78 4.57 2.34 7.05 2.44 5.43 3.68 6.27 3.78 
N 0.84 2.30 4.27 1.86 7.27 2.26 5.29 3.19 6.44 2.74 
y 0.95 2.83 4.61 1.90 8.12 4.25 6.18 4.07 7.12 8.17 
B 1.25 4.27 5.63 4.14 5.87 2.70 4.56 4.97 4.59 3.44 
M 1.19 4.53 5.54 4.07 5.93 1.75 7.28 5.46 6.48 8.72 

Table 2.11: Composition of each amino acid by interface category. 

Solvent exposure 

I v L F c M A G T s 
All 7.71 8.83 10.36 9.63 8.47 12.87 14.53 22.75 19.58 22.62 
N 7.22 7.81 10.08 8.92 8.24 16.24 14.17 24.35 20.62 24.77 
y 13.22 13.38 15.11 7.92 10.81 13.76 20.09 20.61 31.90 30.13 
B 6.56 10.12 7.54 13.36 5.14 5.63 12.30 18.15 8.21 12.97 
M 12.34 16.18 14.56 7.68 11.32 11.31 13.69 15.81 22.73 16.05 

w y p H E Q D N K R 

All 11.25 11.48 23.91 22.72 35.61 31.65 32.48 26.73 38.83 25.72 
N 13.94 12.53 24.40 27.11 38.49 35.63 35.08 32.31 41.48 28.16 
y 7.80 10.59 38.49 29.79 37.31 32.41 29.62 23.57 42.18 26.19 
B 6.28 12.19 15.56 12.95 20.83 15.31 19.27 11.64 24.40 21.22 
M 5.90 6.41 21.60 17.56 25.69 24.81 31.57 22.46 28.34 21.46 

Table 2.12: Mean solvent exposure of sites weighted by% composition of amino 
acid at each protein site. 
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% Composition of amino acid at corresponding site 

I v L F c M A G T s 
All 18.18 22.13 15.76 10.78 29.91 11.46 19.17 44.50 12.44 9.71 
N 20.99 23.97 15.32 13.78 30.11 9.23 22.20 46.77 12.51 10.47 
y 6.50 13.60 17.04 1.71 32.91 1.26 8.86 23.80 5.07 5.19 
B 9.28 16.56 19.82 8.74 0.80 21.34 8.79 48.07 18.21 11.09 
M 4.72 12.88 11.95 1.19 50.98 0.76 13.30 42.12 5.25 5.10 

w y p H E Q D N K R 

All 1.80 13.40 21.84 16.30 19.59 8.21 23.44 13.12 19.65 10.70 
N 2.68 15.68 25.65 20.12 21.25 5.89 28.28 12.44 21.76 4.94 
y 0.42 23.12 22.54 1.33 10.05 1.48 14.09 14.53 8.07 18.07 
B 0.14 1.67 7.40 21.26 20.62 27.82 12.46 16.37 24.75 16.81 
M 0.33 14.51 18.85 0.63 13.72 3.62 12.01 10.90 8.89 15.54 

Table 2.13: Composition of same amino acid at corresponding site, weighted by% 

composition of amino acid at each protein site. 

Normalized replacement rate 

I v L F c M A G T s 
All 10.12 10.00 9.67 8.80 6.67 9.56 10.13 5.30 10.77 11.22 
N 9.84 9.76 9.23 8.29 6.07 9.96 9.83 5.29 10.60 10.96 
y 13.12 11.36 12.86 11.06 9.41 12.73 12.24 6.44 12.57 14.86 
B 11.12 12.12 10.89 9.17 11.55 7.84 10.14 4.36 10.60 10.83 
M 9.98 9.49 9.50 9.88 6.11 10.57 10.59 5.57 11.34 10.66 

w y p H E Q D N K R 

All 5.99 8.23 7.99 9.53 12.24 14.13 10.85 11.12 14.10 10.87 
N 5.96 8.15 7.80 10.03 12.64 14.65 10.70 12.22 14.04 12.01 
y 5.40 9.46 11.42 12.00 14.64 14.41 11.54 10.87 17.17 10.12 
B 6.45 8.82 7.72 8.42 8.43 10.67 11.49 8.10 13.58 11.09 
M 5.91 6.92 6.78 8.13 10.64 15.88 10.58 10.08 11.78 8.36 

Table 2.14: Replacement rate at each site, weighted by % composition of amino 

acid at that site. Replacement rates are normalized to an average of 10 replacements 

per site. 
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higher proportions of hydrophilic amino acids like Glu, Gin, Asp, Asn, and Arg rel
ative to NINT sites, even though these residues do not have greater solvent exposure 
on average. The weaker relationship between hydropathy and solvent exposure for 
MINT and BINT sites can be seen in this graph, with more pronounced differences 
in the more hydrophilic amino acids. Residues at BINT sites are generally more 
buried than they are for any other category. Hydrophilic residues at MINT sites are 
generally more buried than they are at NINT sites, though not to the same extent 
that BINT sites are. The only amino acid for which BINT sites were more exposed 
is Phe, which is also relatively abundant for BINT sites. This pattern of exposure 
suggests that the BINT interfaces are generally more hydrophobic than the MINT 
interfaces. The charged and hydrophilic residues that are used are more likely to be 
buried, possibly as salt bridges in BINT sites. 

While relative abundance of the various amino acids is informative, it does not 
indicate differences in constraint as much as measures of conservation do. We used 
two different measures of conservation. The first is the proportion of the same 
amino acid at the corresponding site in the homologous protein, which indicates 
how well that specific amino acid is conserved across the two subtrees. The sec
ond is the weighted mean replacement rate for that amino acid, which is taken only 
over the native subtree. This indicates how conserved positions rich in the specific 
amino acid tend to be, though this can differ across subtrees. When looking for 
amino acids that play important roles in maintenance of BINT interfaces, it would 
be expected that these amino acids would be at generally slowly-evolving posi
tions, and also that they would be conserved across subtrees as they are expected to 
be under similar constraints in both structures. Amino acids that are important to 
MINT sites, however, should be conserved in their native subtree, but not necessar
ily across subtrees, as the functional constraints on these positions are expected to 
differ. The weighted means averages by amino acid are shown for these two mea
sures in (Tables 2.13 and 2.14, Figures 2.11 and 2.12). The replacement rates were 
normalized for each site prior to taking the weighted average by setting the mean 
number of replacements at each site equal to 10. 

For BINT sites, the amino acids Met, Gly, Thr, Gin, Asn, Lys are more con
served across structures relative to the other interface categories. Of those, Met, 
Gly, Gin, and Asn are also at slowly-evolving sites. His and Glu are also at slower 
sites, and are as conserved across structures as they are for NINT sites. The amino 
acids Met, Phe, Thr, Ser, Tyr, Pro, His, and Asn were more abundant at BINT sites. 
Of these, Met, His, and Asn are conserved and slowly-evolving, indicating that 
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they are fairly important in shared interfaces. Thr, Ser, 1)rr, and Pro have compara
ble rates to those of NINT sites. While Thr and Ser are reasonably conserved across 
structures, Try and Pro are poorly conserved for BINT sites. This suggests that Thr 
and Ser may play minor roles in BINT interfaces, while Try and Pro are either less 
important, or are used differently for each structure. The remaining amino acids 
that are conserved or slowly-evolving at BINT sites are Gly, Gin, Glu, and Lys. 
Gly and Gin were of moderate abundance in BINT sites, while Glu and Lys were 
under-represented. This suggests that they may play important roles, though Glu 
and Lys may be restricted in quantity. 

For MINT sites, 1)rr, His, Glu, Asn, Lys, and particularly Arg-rich sites are 
evolving more slowly compared to NINT sites. Sites rich in Glu and Asn are even 
slower for BINT sites, but Arg and 1)rr are slower for MINT sites. None of these 
amino acids except Arg are also conserved across structures. However, this does not 
indicate anything about the utility of these residues at MINT sites, as the constraints 
are expected to differ across subtrees for these sites. 1)rr, His, Asn, and Arg were 
also more abundant in MINT sites. As with the BINT sites, the proportion of Glu 
was relatively low in MINT sites, though this does not necessarily mean that Glu 
does not play a role in MINT sites. Pro was also more abundant in MINT sites, 
but it displays no greater conservation relative to NINT sites (though it is generally 
conserved). Asp was also somewhat elevated in MINT sites, but similarly showed 
no rate difference relative to MINT sites. 

When determining which amino acids play important roles in maintaining in
terfaces, abundance alone is not a sufficient indicator. Metrics of conservation can 
indicate which sites are under constraint, and thus important, as opposed to those 
amino acids which are merely tolerated. The unique nature of interfaces may also 
result in some atypical uses of various amino acids. For these reasons, we consid
ered four different metrics in looking for amino acid preferences of common and 
unique interfaces: The average percent composition of each amino acid for the four 
interface categories; The average degree of solvent exposure for each amino acid; 
The average normalized replacement rate for the subtree; The percent composition 
of the same amino acid at the corresponding site in the partner subtree. The per
cent compositions were taken over the full alignment for each subtree, so they more 
accurately reflect the large-scale preferences and reduce any bias that the specific 
structures may have introduced. The other metrics were also weighted by the com
position of the amino acid under consideration. Taken together, these measures 
show some commonalities and some differences in the use of various amino acids 
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in the different interfaces. A generally important amino acid could be expected 
to have a relatively elevated composition, be occupying slowly-evolving sites, be 
conserved across subtrees for BINT sites, and atypical in its exposure to solvent 
(which may indicate burial in an interface). Two amino acids, His and Asn, gen
erally meet these criteria for both BINT and MINT sites. Met is clearly preferred 
in BINT sites, as is Gin and Thr, but to a lesser degree (they are conserved but not 
particularly abundant). Arg is an important residue for MINT sites, along with Tyr 
and Lys. BINT sites display conservation and relative burial of Glu, though it is 
diminished in both BINT and MINT sites. Phe and Ser were somewhat enriched in 
BINT sites, though neither were unusually conserved. For BINT sites, Cys seems 
particularly unimportant, being diminished and generally unconserved. lie and Val 
seem similarly unimportant for both BINT and MINT sites. 

There was a concern that the heavy thermophile membership of our dataset 
would lead to a strong bias in amino acid composition that was due to thermosta
bilitity constraints rather than interface constraints. However, such a bias would 
be mediated by the following: 1) Not all of the species in the subtree of the ther
mophilic structures are thermophiles; 2) The BINT category would be equally rep
resented by mesophiles and thermophiles even if the subtree for the thermophilic 
structure consisted entirely of thermophiles. To estimate the degree of potential 
bias, we took the average compositions of each amino acid for only the thermophilic 
structures and their mesophilic homologs (Table 2.15). There are 101 thermophilic 
MINT sites, 84 of each mesophilic and thermophilic BINT sites, and 12 mesophilic 
MINT sites. The compositions of the mesophilic and thermophilic BINT groups are 
similar, which is the strongest argument against a systematic thermophilic bias. In 
particular, the residues which are more abundant in MINT than in BINT sites (Val, 
Tyr, Asp, Asn, Lys, Arg) are not universally favoured by the thermophilic MINT 
and BINT sites. There are only 12 mesophilic MINT sites, but Arg is much more 
abundant in the mesophilic MINT sites than in the thermophilic MINT sites. Ther
mophiles are expected to prefer charged residues Glu, Lys, Asn, and Arg (Bogin 
et al. 2002), and have relatively less Ser, Thr, and Gin (Haney et al. 1999). While 
Glu is more abundant in the thermophilic interfaces, the other three are not, nor are 
Ser, Thr, and Gin relatively depleted. 
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I v L F c M A G T s 
Me soB 5.92 4.53 8.14 6.26 0.57 4.17 6.04 9.78 5.57 5.88 
ThermoB 6.68 7.21 10.57 3.98 0.86 2.35 6.85 8.05 6.04 5.60 

MesoM 5.16 7.20 3.19 2.13 0.33 0.63 1.08 3.27 3.33 1.48 
ThermoM 4.18 6.42 8.58 3.58 1.63 2.81 8.73 5.99 3.32 4.46 

w y p H E Q D N K R 

Me soB 2.94 2.98 4.52 4.41 5.87 2.62 3.45 5.34 7.16 3.82 
ThermoB 0.24 4.70 6.43 5.73 6.53 3.90 2.87 3.83 3.84 3.73 

MesoM 8.23 3.85 9.27 8.29 0.64 0.68 7.30 2.54 8.75 22.73 
ThermoM 0.66 4.54 5.28 2.89 6.14 1.95 7.37 6.31 7.12 8.05 

Table 2.15: % compositions of each amino acid, partitioned by interface category 
(BINT or MINT) and thermophilic structures or mesophilic homologs thereof. 

2.5 Discussion 

Constraints that affect the evolutionary rate at protein sites vary both by site (Dean 
and Golding 2000; Dean et al. 2002; Robinson et al. 2003; Saunders and Baker 
2002; Shi, Blundell and Mizuguchi 2001; Mizuguchi and Blundell 2000; Busta
mante, Townsend and Hartl 2000; Goldman, Thome and Jones 1998; Thompson 
and Goldstein 1996a) and over time at a specific protein site (Lopez, Casane and 
Philippe 2002; Susko et al. 2002; Yang, Swanson and Vacquier 2000; Gaucher et al. 
2002; Knudsen et al. 2003; Gu 2003). The causes of these site-specific rate changes 
may be due to fairly obvious changes in the environment or function of the protein 
(Golding and Dean 1998; Susko et al. 2002; Yang, Swanson and Vacquier 2000; 
Gaucher et al. 2002; Gu 2003), or new structural constraints imposed by changes in 
neighbouring residues (Lopez, Casane and Philippe 2002; Knudsen and Miyamoto 
2001). Previous work (Dean and Golding 2000; Dean et al. 2002) showed that half 
of the causal sitewise rate variation in a variety of proteins could be explained by a 
linear model that used general structural terms (solvent accessibility, distance from 
an active site, identity of Gly or Pro residues). In the previous chapter, we tried 
to detect general changes in constraint across two halves of a phylogeny by com
paring the performance of this model when structural parameters were provided 
by structures from each subtree. We found a weak relative effect, but the model 
generally performed better at the larger scale where more of the rate variation was 
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deterministic. The enzymes used in the previous study did not universally display 
any drastic functional differences, so whatever local phylogenetic signals that did 
exist were likely weak. Here we use a data set with known functional differences 
between subtrees to see if changes in the relationship between sitewise replacement 
rates and structural factors are more obvious when a stronger change in constraint is 
present. Our data set consists of four enzyme pairs that have changed their quater
nary structure at some point. We compare how the rate and structure relationships 
change across sites which have and have not experienced a change in constraint 
with respect to interface participation. We further describe some of the differences 
between the interfaces which are common to both structures in a homologous pair 
and those interfaces which are unique to one structure. 

Overall, there were differences in the replacement rate, solvent accessibility, and 
amino acid compositions and the relationships between these factors between the 
various interface categories. The protein sites were partitioned into four categories. 
NINT sites are those which do not participate in any interface. BINT sites are those 
which participate in an interface in both members of the enzyme pair. MINT sites 
are those which only participate in an interface for one member, and YINT sites are 
those which are aligned to the MINT sites in the homologous structure. Generally, 
one might expect differences in constraints between the sites which are actively 
participating in an interface (BINT and MINT) and those which are not (NINT and 
YINT). However, MINT and YINT sites are homologous, and so may be expected 
to share some similarities. Since MINT sites are only forming functional interfaces 
in one subtree, they might be expected to show some differences from BINT sites 
as well. We found generally that MINT sites are similar to BINT sites, but with 
some key differences. 

We found a lower average replacement rate for BINT and MINT sites as com
pared to NINT sites, and a higher than average rate for YINT sites. The higher rate 
of YINT sites is likely due to their greater average solvent exposure. YINT sites are 
more exposed to solvent, and so are likely experiencing reduced constraint because 
they would be maintaining fewer specific contacts. This reduced constraint would 
lead to an elevated replacement rate. MINT sites were more buried on average than 
NINT sites, but BINT sites were even further buried. This suggests that the con
servation of MINT sites is not solely due to the expected effects of burial. It also 
suggests that the MINT sites may have been surface residues more recently. MINT 
sites had a weaker and less often significant correlation between the solvent expo
sure and the hydropathy of the residue at a site, which further supports more recent 
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solvent exposure for these residues. Alternately, the weaker correlation suggests 
an atypical use of charged residues in unique interfaces, likely in the formation of 
buried salt bridges. 

Interface membership did have an effect on replacement rates, though it was 
not as strong as the effects of solvent accessibility or the replacement rate at the 
aligned site in the homologous structure. This effect was not stronger for MINT 
or YINT sites when considered with the solvent accessibility or the hydropathy of 
the residues at the site, though BINT sites gained some explanatory power when 
coupled with the hydropathies of the residues at both sites. The solvent exposure 
was less likely to have an effect on the replacement rate of MINT sites than of 
YINT or BINT sites. The replacement rate at the homologous site was more often a 
significant determinant of replacement rates for BINT sites than for MINT or YINT 
sites. Generally, there was a greater difference between the replacement rates of 
MINT and YINT sites than between BINT or NINT sites, and this difference was 
not due to differences in solvent exposure between these sites in the homologous 
structures. 

The compositions and use patterns of specific amino acids are also somewhat 
affected by interface category. BINT and MINT sites shared a common preference 
for His and Asn, which were both more buried on average than they were in NINT 
or YINT sites, though both were even more buried in BINT sites. BINT sites pre
ferred Met and Thr, while Gin and Glu were not abundant but were conserved and 
buried relative to other interface categories. MINT sites expressed a strong prefer
ence for Arg, as well as for Tyr and Lys. These amino acids were also relatively 
buried, but not as drastically as the amino acids preferred by BINT sites. Despite 
the fact that BINT and MINT sites are more buried overall, the representation of 
the more hydrophobic amino acids was relatively low. Though both types of inter
faces made relatively high use of moderately polar amino acids (Tyr, Pro, His), the 
most important roles in these interfaces seem to be played by the polar and charged 
residues. 

The greater conservation of interface residues has been demonstrated at length 
(Elcock and McCammon 2001; Landgraf, Xenarios and Eisenberg 2001; Glaser 
et al. 2003; Halperin, Wolfson and Nussinov 2004; Ma et al. 2003; Hu et al. 2000; 
Teichmann 2002), so our finding of slower rates in sites which participate in inter
faces is not surprising. What is noteworthy is the differences between the solvent 
exposure and residue hydropathies, and their relationships to the replacement rates 
between the BINT and MINT interface categories. The differences in amino acid 
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compositions may be stochastic, as the data set is not large. However, the com
positions are taken over full phylogenetic trees rather than just pairs of sequences, 
which provides a more robust sample. All of the enzymes studied have obligate 
subunit associations, so no pressure to maintain transient stability and tolerance of 
exposure to solvent currently exists for the MINT interfaces. Three of our enzyme 
pairs contain one member from a thermophilic species, which could introduce bias, 
but this effect is mediated in several ways. Though it is impossible to know in most 
cases which quaternary structure is ancestral, it is likely that the higher-order one is 
more recent. It follows that the MINT sites have spent less time participating in an 
interface relative to BINT sites, and the observed differences are a reflection of this 
novelty. 

Interfaces can vary widely in their specific physical features (Larsen, Olson 
and Goodsell 1998), though there are some generalities. Ofran and Rost (2003b) 
found that interfaces could be identified by sequence alone if they were treated as 
belonging to a number of different functional categories based on symmetry and 
duration of contact. This suggests that some sets of amino acids are preferred for 
specific roles. Though hydrophobicity alone is not a reliable indicator of interface 
residues (Jones and Thornton 1997; Liang et al. 2004), larger interfaces tend to 
be richer in hydrophobic residues than smaller interfaces are (Glaser et al. 2001). 
Interfaces have been commonly described as having a general structure of a core 
of conserved strongly-binding amino acids, surrounded by a ring of less critical 
and more hydrophobic residues that exclude solvent from the interface (Bogan and 
Thorn 1998; Hu et al. 2000; Ma et al. 2003; Halperin, Wolfson and Nussinov 
2004). The strongly-binding hot spot residues are limited in density in an interface, 
as the strong contacts rigidify the interface and limit the flexibility of the enzyme 
(Hu et al. 2000; Ma et al. 2003). The conserved hot spot residues also have a greater 
packing density around them, which further contributes to the rigidity of these sites 
(Halperin, Wolfson and Nussinov 2004). The multiple and weaker hydrophobic 
contacts offer greater flexibility, but must be present in greater numbers to maintain 
the stability of the interface (Goodsell and Olson 2000). Though interfaces are 
generally more conserved than other surface residues, they are not as conserved as 
active sites (Glaser et al. 2003; Elcock and McCammon 2001; Landgraf, Xenarios 
and Eisenberg 2001). The difficulty in predicting interfaces indicates that there are 
a variety of ways to form them, so some degree of flux can be expected. Larger 
interfaces would generally take a longer to evolve, and the replacements that are 
successful in the context of an existing stable interface are likely different from 
those that are successful in stablizing a new interface. The conserved hot spot 
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residues tend to be more polar (Bogan and Thorn 1998; Hu et al. 2000), and may 
already be present on the surface of a protein. Once several of these strong contacts 
are established and the nearby environment becomes shielded from the solvent, 
hydrophobic replacements are more likely to be successful. 

Our results support this gradual development of an interface that is more hy
drophobic and is stabilized by more hydrophobic contacts than strong hot spots. 
Though the common interfaces were not larger overall than the unique interfaces, 
they were more shielded from solvent. The common interfaces consist of more hy
drophobic residues than the unique interfaces do. The hydrophobic residues (lle, 
Val, Leu, Phe, Cys, and Met) together make up 30.5% of BINT sites, compared to 
26.99% of MINT sites. The hot spot residues which make the strongest energetic 
contributions to interfaces are Trp, Tyr, Arg, Asp, His, and Pro. While NINT sites 
are generally very low in these amino acids (17.3% total), BINT sites are more en
riched (23.29% ), but not to the extent that MINT sites are (31.33% ). The residues 
that are more abundant in BINT sites relative to MINT sites (Met, Gly, Thr, Ser) 
do not form strong hydrogen bonds, but are rather moderately polar and more tol
erant of buried environments than the more hydrophilic residues that are abundant 
in MINT sites (Asp, Asn, Lys, Arg). Hu et al. (2000) found that structurally con
served sites were not always hot spot residues, indicating that residues that are not 
energetically significant may still play important roles. These conserved but non
hot spot residues were His, Asn, Gln, Thr, Ser, Phe, and Met, which are exactly 
those which are conserved or abundant in BINT sites. While His and Asn are also 
abundant and relatively conserved in MINT sites, both of these residues are more 
exposed in MINT sites than they are in BINT sites. Additionally, Tyr and Arg were 
more conserved in MINT sites than they were in BINT sites. This suggests that as 
the interface matures and develops weaker contacts, the hot spots play a less crucial 
role. 

The differences between the MINT and YINT sites demonstrates that differ
ences in constraint do manifest as changes in replacement rate when the functional 
differences are sufficiently pronounced. The relationships between the replacement 
rate and structural factors (solvent exposure and hydropathy of the residue) were 
stronger for those sites not involved in an interface in one subtree, and weaker 
for the sites that were involved in any interface. The specific cause of the con
straint could not be detected by the changes in these relationships, but a disjoint in 
the rate between sites was significant relative to all other sites in the protein. The 
ANOVA was not an ideal method of detecting these differences, as the number of 
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sites participating in interfaces is likely too small to have a significant overall effect 
on the rates. While the pressure for thermostability was generally minimized by 
using phylogenies rather than single sequences, the tree for 4TIM was comprised 
entirely of thermophiles. This additional change in constraint was also detected by 
a breakdown in the relationship between the replacement rate and solvent accessi
bility. This suggests that a variety of strong changes in functional constraint may 
be detected by comparing the strength of this relationship across subtrees. 
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Figure 2.1: Phylogenetic tree for Alcohol Dehydrogenase. The asterisks indicate 
sequences with structures which were used for this study. 
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Figure 2.2: Phylogenetic tree for Triose Phosphate Isomerase. The asterisks indi
cate sequences with structures which were used for this study. 
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Figure 2.3: Phylogenetic tree for Inorganic Pyrophosphatase. The asterisks indicate 
sequences with structures which were used for this study. 



MSc Thesis - F. Raftis McMaster- Biology 95 

hexamers 

Proteobacteria 

Actinobacteria 

} Planctomycetes 

0.4 branch length trimers 

Figure 2.4: Phylogenetic tree for Purine Nucleoside Phosphorylase. The asterisks 
indicate sequences with structures which were used for this study. 
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Figure 2.5 : Schema and rate-coloured structures for Triose Phosphate Isomerase. 
The dimer is shown in (a) and the tetramer is shown in (b). The rate-coloured 
dimeric interface sites are shown for the dimer in (c), and for the tetramer in (d). 
(e) and (f) show the tetramer interface sites, for the dimer and tetramer respectively. 
See figure 2.2 for phylogenies. 
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Figure 2.6: Schema and rate-coloured structures for Alcohol Dehydrogenase. The 
dimer is shown in (a) and the tetramer is shown in (b). The rate-coloured dimeric 
interface sites are shown for the dimer in (c), and for the tetramer in (d). Small 
residues indicate YINT sites for each enzyme. (e) and (f) show the tetramer inter
face sites, for the dimer and tetramer respectively. See figure 2.1 for phylogenies. 
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Figure 2.7: Schema and rate-coloured structures for Inorganic Pyrophosphatase. 
The dimer is shown in (a) and the hexamer is shown in (b). The rate-coloured 
dimeric interface sites are shown for the dimer in (c), and for the hexamer in (d). 
Small residues indicate YINT sites for each enzyme. (e) and (f) show the hexamer 
interface sites, for the dimer and hexamer respectively. See figure 2.3 for phyloge
nies. 
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Figure 2.8: Schema and rate-coloured structures for Purine Nucleoside Phospho
rylase. (a) and (b) show the full trimer and hexamer, respectively. The monomers 
with interface-participating residues are shown in (c) and (e) for the trimer, and (d) 
and (f) for the hexamer, with the rotational axis of the proteins at the bottom. Green 
and orange residues (c, d) show the positions of the residues in both sides of the 
trimer interface sites, and the blue and red residues show the location of sites par
ticipating in the hexameric interfaces (e, f). The rate-coloured interface residues are 
shown for the trimer in (g), and for the hexamer in (h) . In (g) and (h), the rotational 
axis of the proteins is in the horizontal plane of the page, facing the viewer. Smaller 
residues indicate YINT sites. See figure 2.4 for phylogenies. 
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Figure 2.9: Average composition of amino acids by interface category. Blue bars 
indicate NINT sites, green bars are YINT sites, purple bars are BINT sites, and red 
bars are MINT sites. 
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Figure 2.10: Average degree of solvent exposure for each amino acid, weighted by 
the composition of the amino acid at the alignment site. 
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Figure 2.11: Composition of the same amino acid at the aligned site in the corre
sponding subtree, weighted by proportion of amino acid at site. 
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Figure 2.12: Average normalized number of replacements per site, weighted by 
proportion of amino acid at site. The mean number of replacements at a protein site 
has been set to 10. 
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Protein sequences do not evolve at a constant rate across all sites, nor do those 
sites maintain the same rate throughout time. While some of this variation can be 
attributed to the underlying Poisson mutation process, most sites are under some 
degree of constraint, which affects the rate at that site. Additionally, the constraints 
acting on a protein site may change at any point in time. When the causal variation 
in rates is associated with simple physicochemical indicators, it can be largely ex
plained with a linear model. The simple model used in this study includes terms for 
the solvent exposure of each site, the distance of the residue from the active site, the 
hydropathy of the residue, and an amino acid such as glycine or proline which play 
important torsional roles. In a survey of od {3 barrel proteins, Dean et al. (2002) ex
plained half the causal rate variation using a variant of this model. In this work, we 
explored changes in the relationship between replacement rates and general physic
ochemical indicators of constraint between different lineages with differences in the 
degree of rate divergence expected between these lineages. 

In the first chapter, we explored the changes in the NCDs of a number of en
zymes with varying degrees of expected divergence across sub-phylogenies for 
these enzymes. The NCD is calculated from the f 2 value from the multiple re
gression divided by the expected proportion of causal rate variation, and so offers 
an indication of how much variation remains to be explained (as opposed to the 
variation which is stochastic). We found that local adaptation can be detected by 
changes in the NCD. In certain subtrees where the proportion of Poisson rate vari
ation was greater, the NCD was also greater when the native structure was used, 
indicating that the deterministic variation in that subtree was of a simpler nature 
which was more fully explained by the simple model. For the other subtree which 
had more causal rate variation, the NCD was lower and therefore more of the causal 
rate variation was due to factors which were not included in the simple model. This 
result suggests that changes in the NCD can indicate where changes in constraint 
that are not simply due to general structural features occur by the greater propor
tion of unexplained causal variation. Though changes in the NCD were affected 
more strongly by the specific subtree and the evolutionary patterns in that subtree, 
a relative positive effect of the native structure was apparent. A difference-based 
multiple regression model, where changes between structures are emphasized may 
more effectively highlight changes in constraint across the subtrees. 

In the previous work (Dean et al. 2002), the large subunit of RUBISCO was 
found to have a very unusual distribution of replacement rates. We found that this 
pattern was due to its location in the chloroplast genome. The nuclear-encoded 
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small subunit displays a pattern of replacements like that of the other enzymes 
studied. Additionally, the sites in the large subunit with unusually high replacement 
rates displayed a different pattern than rapidly-evolving sites in the small subunit. 
The fast sites in the large subunit typically fluctuated between two amino acids, 
suggesting possible polymorphisms which may be maintained due to the unusual 
population structure of the chloroplast genome. 

In the second chapter, we examined a set of proteins that had changed their 
quaternary structure at some point in the phylogeny. The sites that were involved 
in the new interface were expected to display differences in replacement rates and 
constraint relationships when compared to their homologous sites which were not 
participating in an interface. The new interface sites were more conserved and had 
a weaker relationship between replacement rates and structural factors than the ho
mologous sites did, and displayed more similarity to the interface sites that were 
shared between structures. The new interface sites also differed from the shared in
terface sites in ways which suggest the mechanism by which new interfaces evolve. 
The shared interfaces are more shielded from solvent, and make greater use of small 
hydrophobic residues than of the strong 'hot spot' residues which have strong bind
ing energy, but which also confer rigidity upon the structure. It is thus likely that 
new interfaces are established based on only a few strong contacts. Over time, abun
dant and weak hydrophobic contacts can evolve in the newly-shielded environment, 
leading to a more flexible interface. 

Generally, the relationship between replacement rates and physicochemical in
dicators of constraint does change across lineages in a way that indicates changes 
in this constraint. If replacement rate heterogeneity is viewed naively, so much 
information is present that it is difficult to know which patterns represent unusual 
adaptations and which are more simply explained by general structural factors. The 
analysis used in this work may point to lineage-specific changes in constraint which 
are not simply due to general structural features, and allow researchers to focus their 
attention on outliers which may represent unusual and interesting adaptations. 
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