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Abstract 


One of the most difficult and interesting aspects of the physics of collapse and outflow 

formation, as well as the evolution of the protostellar disk, is the role of hydromagnetic 

forces. However, magnetic fields are only coupled to the charged species present in 

poorly ionized molecular clouds. Ambipolar diffusion-the process by which magnetic 

fields "slip" in poorly ionized gas-strongly affects the initial cloud as well as the final 

observable structure through collisional heating. Also, as the gas becomes opaque to 

cosmic rays, the ionized structure of the accreting gas may become more complex, 

leading to a neutral 'dead zone' in a layered accretion disk (vital in determining planet 

masses in planet formation theories (Matsumura & Pudritz, 2005)). We omit possible 

effects of ionizing radiation in these early stages of formation. 

In this thesis, we perform fully 3D simulations (using the FLASH AMR code) and 

have implemented ambipolar diffusion in the MHD module of the code in addition 

to a broad treatment of cooling (Banerjee et al., 2006). This has allowed us to track 

the ionized gas and magnetic fields properly from the beginning of collapse down 

to the onset of outflows. We find that high accretion rates persist on the order 

1of 10-3 M0 yr- (where the core mass has reached about 0.1 M0 ) due to efficient 

extraction of angular momentum through magnetic processes. Magnetic braking is 

reduced by about 3/4 in the initial collapse relative to an ideal collapse of same 

initial conditions. This, with a reduction in magnetic pressure in the disk, leads to 
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an increased rate of fragmentation. One of the major new results of this work is 

the discovery that outflows from disks still occur even in the presence of ambipolar 

diffusion. Surprisingly, they are initiated even earlier than outflows from idealized, 

completely ionized disks. They are generated by a magnetic tower mechanism at 

central densities of 1012 cm-3 , as effective ram pressure on the wound up toroidal 

field is reduced, allowing it to push away from the disk earlier. 

We have also shown that the formation of a dead zone in these early stages is 

dependent on shielding of cosmic rays, in the absence of which a decoupled zone in 

the disk midplane forms. This region, where the accreting gas is effectively decoupled 

from the magnetic field, extends 10 AU in radius and (2-3) AU in height from the 

midplane. The global magnetic field threading such a complex accretion disk shows a 

dragged out structure, as coupled surface layers of the disk pull in the field. The disk 

is puffy due to drift heating and the initial stages of the outflow pushing out into the 

ambient medium. However, overall magnetic field build-up is still efficient, as values 

of the magnetic field in the disk are only reduced by half. 
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Preface 

Chapter 4 of this thesis was prepared as a paper, and will be submitted for publication 

in the Astrophysical Journal. Contained in this chapter is a short introduction sum­

marizing the material covered in depth in the earlier chapters. The computational 

method and numerical tests behind our work in Chapter 4 have yielded interest­

ing new results which we plan to publish as a companion paper to Chapter 4 in the 

Monthly Notices of the Royal Astronomical Society (MNRAS). The latter is contained 

in chapter 3 as a numerical review of our methods. These chapters are intended to 

serve as a complete and detailed explanation of the theoretical and numerical aspects 

of this research. 
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Chapter 1 

Introduction 

My first big astrophysics conference was in French Alps, in a small tourist town called 

Chamonix. The subject was Structure Formation in the Universe, and it gathered the 

premier theorists, numericists and observers in the fields of galaxy, star and planet 

formation as well as in cosmology. What amazed me as a young graduate student 

in this gathering of giants (besides the view!) was the immense interest in this little 

known physical process called ambipolar diffusion. It seemed to find its way into 

many talks, particularly in what one would consider to further develop their work. I 

was presenting a poster on the very subject (on applications to star formation) and 

I was put on the spot, often without having to badger anyone. 

In astrophysics we use all the tools available to us. Complex theories abound, from 

quantum mechanical effects opening observational windows (e.g. 21 em radiation) to 

relativistic monsters offering theoretical mysteries (e.g. black holes). In a sense 

ambipolar diffusion is simple as it relates to simple physics we all know and love: 

Ohm's Law. When we have a gas that is as partially ionized such as the interstellar 

medium (ISM)-where ions have number densities around 1'Lions ~ w-7 nH--electric 

currents must pass through a heavy resistor (the neutral gas) to get anywhere. In 
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turn, the ions and electrons will impart, through collisions (which can be modeled as 

a frictional force), magnetic effects such as the Lorentz force upon the neutral species. 

A unique quality of this ambipolar circuit is that collisional frequencies between ion 

and neutral particles are fairly small. Neutral matter can diffuse through field lines, 

or vice versa, but at the cost of frictional heating. Ion-neutral drifting in this sense is 

named ambipolar diffusion by astronomers. It was first used to describe the effective 

diffusion of magnetic flux in magnetically supported clouds, leading to their eventual 

collapse (Mestel & Spitzer, 1956; Spitzer, 1978). These clouds were theorized to exist 

at the time, though ideas of turbulence, combined with current observations, has 

transformed our ideas of star formation (§2.3.1). 

To study the gas in astrophysical problems we start from very simple approximations­

a hydrodynamic (HD) gas that moves in response to gravity-and evolve to a more 

complex behaviour involving magnetic fields, which we call magnetohydrodynamics 

(MHD). Theoretically, MHD equations are difficult equations to get anything out 

of (as they are highly non-linear), especially when we're talking about the complex 

movements of gas in a star-forming environment. In such a case, it is common to use 

numerical techniques to predict the patterns we may observe in nature, or more im­

portantly, to understand the important physical processes at work. Often, we begin 

with a cloud of particles which is perfectly coupled to the gas: a material with an 

infinite conductivity. This allows us to probe the effects of magnetic fields and under­

stand interesting areas of research from a "first-approximation" standpoint. In this 

fashion the magnetorotational instability (MRl) in accretion disks has been discov­

ered (Balbus & Hawley, 1991), the principal source of protoplanetary disk viscosity. 

This occurs naturally in a differentially rotating, weakly magnetic flow (given certain 

restrictions). Also, we have found that collapsing clouds can lose large amounts of 
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angular momentum through magnetic effects, and even produce large outflows and 

jets before the central protostar has turned on (Banerjee & Pudritz, 2006). Magnetic 

effects are particularly interesting in star-forming environments. 

Once we understand the possible physical phenomena of magnetic fields, it is 

necessary to see if they persist under non-ideal MHD conditions. There are many 

non-ideal aspects of the physics in addition to ambipolar diffusion, such as Ohmic 

dissipation and Hall electromotive forces, each with its own role in different stages of 

a star's evolution. 

Ohmic resistivity and Hall electromotive forces occur in non-ideal plasmas when 

collisional times are short and ions and neutrals are well coupled (this occurs for 

3large densities such as n > 1010 cm- (Nakano et al., 2002; Tassis & Mouschovias, 

2007b). This corresponds approximately with the transition from the optically thin 

regime to the optically thick regime (Bate et al., 1995)). The neutrals act like a 

stiff resistor which will slow down the electrical currents of ions while dissipating the 

field. When the ions (positive charges) and the electrons (negative charges) decouple, 

the Hall terms become important. The corresponding stage in the star's evolution is 

late Class 0 or Class I, where a Keplerian accretion disk has formed around an early 

protostar. 

The first stages of a star's evolution involve the turbulent formation of an initial 

molecular core or filament of mass on the order of a few to several hundred M0 . 

This process occurs on short timescales of 2 Myr, in agreement with observations of 

star formation timescales (Allen et al., 2007; Mac Low & Klessen, 2004; Elmegreen 

& Scalo, 2004). Sharply discontinuous shocked structures in a turbulent environment 

may be smoothed out through ambipolar diffusion if the conditions are right (these are 

called C-shocks (Wardle, 1991b, §2.3.3, §3.3.2)). Although many cores will proceed 
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to collapse on short timescales of 104 yr, any magnetically stable clumps that form 

will loose their support through ambipolar diffusion (Krasnopolsky & Gammie, 2005), 

accelerated by the turbulence (Zweibel, 2002). Subsequent features of collapse are a 

rotationally and magnetically supported non-Keplerian pseudo-disk, along with disk 

instabilities, magnetically driven bipolar outflows and highly collimated jets. This 

stage is the pre-Class 0 stage in a star's evolution, just before protostar has formed. 

During this stage densities range from n ~ (102 -104
) cm-3 to much higher densities 

3of n ~ (1012 - 1018) cm- • There are many problems arising from this latter stage 

which are still not fully understood. 

Our goal in this thesis is to study the initial collapse of a star forming molecular 

cloud using very precise microphysics relevant to the problem, particularly ambipolar 

diffusion. We establish the theoretical background in Chapter 2. Previously estab­

lished physics are discussed in §3.2.2 and include realistic cooling, rotation and ideal 

gravito-magnetohydrodynamics in a 3D environment. For this study our initial con­

ditions are that of a Bonnor-Ebert Sphere (§3.2.1). The principal questions we seek 

to answer are: 

• Do high accretion rates seen in previous collapse simulations persist if we intro­

duce a finite conductivity (§2.3.1)? 

• 	How are important, magnetically driven phenomena affected by this decreased 

coupling of the gas to the field? This touches on a number of important prob­

lems: 

-	 Magnetic Braking: Ideal magnetic braking has a very strong effect in 

slowing the rotation of molecular clouds (§2.3.2). It is also responsible for 

aligning the field with the rotation axis (Machida et al., 2006). To what 
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degree is braking reduced by ambipolar diffusion in the collapse? 

- Angular Momentum Transport: In the collapsing, rotating cloud a 

large toroidal field is quickly established and redistributes angular mo­

mentum (Banerjee & Pudritz, 2006). This is responsible for aiding high 

accretion. If this field is reduced through diffusion, to what degree is the 

angular momentum distribution affected? 

- Large Fossil Fields: We have observed large fossil fields of about 3 G 

through meteoritic samples of our solar system at 1 AU (Levy & Sonett, 

1978). Ideal collapses show this build-up is possible (Banerjee & Pudritz, 

2006). Can these large fields still be built up in face of ambipolar diffusion 

in the disk? 

- Outflows: We know that large scale outflows from the disk form early 

on in an ideal collapse, before the protostar has even formed (Banerjee & 

Pudritz, 2007; Machida et al., 2007). We observe a large magnetic tower 

(Lynden-Bell, 2003) pushing material away from the disk in magnetized 

bubbles. Will these outflows still form early on in a non-ideal collapse? 

• 	Fragmentation is known to be significantly affected by magnetic fields. There 

are strong effects seen through the addition of ambipolar diffusion (Hosking & 

Whitworth, 2004a; Price & Bate, 2007) though the principal cause is in contest; 

is it because magnetic braking is significantly decreased, or is it due to the lack 

of magnetic pressure in the disk? 

• 	Finally, does a sort of proto-dead zone form early in the collapse where MRl 

turbulence is severely damped (§2.3.4)? Or perhaps more of a decoupled zone 

where magnetic fields are only dragged in through actively coupled layers? 
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This thesis addresses these questions and describes our progress and results in the 

following chapters. In §2.3 we review current and relevant work involving ambipo­

lar diffusion. We introduce the theory along with customized caveats important to 

our particular analysis and implementation in §2.1 and §2.2. In Chapter 3 we will 

outline our numerical methods. This chapter features new and interesting numerical 

aspects and results pertaining to ambipolar diffusion which we will later submit to 

the Monthly Notices of the Royal Astronomical Society (MNRAS) for publication. A 

paper (to be submitted in the Astrophysical Journal) is presented in Chapter 4, and 

features our new results. We ignore chemical and other non-ideal MHD effects which 

could be important. This is discussed in Chapter 5 along with future work that can 

be undertaken now that these first steps have been established. 
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Chapter 2 

Non-Ideal Magnetohydrodynamic 


(MHD) Theory in Star Formation 


In this chapter, we review the important theoretical aspects in the realistic collapse 

of a molecular cloud. We outline the important physical equations relevant to a very 

general treatment of ambipolar diffusion in §2.1. We briefly discuss the consequences 

of chemistry in §2.1.1. Approximations that arise from this are developed in §2.2, 

focusing on the single-fluid approximation in §2.2.1. We discuss the role of ambipolar 

diffusion as a true diffusion, and solve the corresponding timestep in §2.2.2. Section 

2.3 reviews the current state of simulations-emphasizing modern developments­

for a variety of physical situations applicable to a collapsing molecular cloud. This 

includes collapse (§2.3.1), fragmentation and magnetic braking (§2.3.2), C-shocks 

(§2.3.3) and finally the development of early dead zones during pre-Class 0 collapse 

(§2.3.4). 
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2.1 Theory of Ambipolar Diffusion 

Consider a gas composed of both ions (subscript i) and neutrals (subscript n). The 

magnetohydrodynamic (MHD) equations for this two-component system, in which 

only the ions couple to the field, are1, 

apn (at + V · PnUn) = 0 (2.1) 

ap· 
_t + V · (p·u·) = 0 (2.2)at t t 

a(PnUn) ( )at + V · PnUnUn + Pn = -png - f 1 (2.3) 

B2a(piui) ( 1 ) 1at + V · Piuiui +I{ + - - -BB = -pig+ f 1 - -B (V ·B) , (2.4)
2flo flo flo 

where p represents density, u is a velocity, P is a pressure, B is the magnetic field, g 

is the gravitational acceleration and f 1 is the frictional force density from ion-neutral 

collisions (Spitzer, 1978), 

1 
(2.5) 

where f3AD = 1.
4 and the drift velocity ud is defined as, 

J.tO'YADPiPn 

(2.6) 

1 3The constant "YAD = ~~~ = 3.28x1013 g- cm s-1 represents the coupling of the 

neutrals and ions. Ions are considered to be typically HCO+ or Na+ which have similar 

3 1masses (about 29.0 a.m.u.) and collision rates with H2 ( < uv >ni= 1.7x 10-9 cm- s­

(McDaniel & Mason, 1973)). The value of 1.4 in f3Ao arises from the fact that we 

1Please note that we have developed these equations such that V • B =I 0 due to the 
fact that our numerical scheme does not conserve this strict physical law, although keeping 
values below truncation-level error. Adding these terms will ensure numerical stability for 
the code. More discussion can be found in §3.1.1. 
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have about 10% He per H atom in our gas (Hosking & Whitworth, 2004b; Fiedler 

& Mouschovias, 1993). Helium is heavier than H2 , and thus changes the collisional 

dynamics of the neutral gas. 

Equations (2.1) and (2.2) are the continuity equations of the neutrals and ions re­

spectively, expressing conservation of mass. Equations (2.3) and (2.4) are expressions 

of conservation of momentum. Note that while the ions undergo direct magnetohy­

drodynamic (MHD) forces, the neutrals do so only by collisions with the ions through 

the friction term in the hydrodynamic (HD) momentum equation (2.3). 

The induction equation-coupled to the ions-is, 

(2.7) 

This defines the evolution of the magnetic field. 

Expressing conservation of energy we find the rest of our initial equations, 

(2.8) 

8 
ffti + V · [ ui (Ei +~ + ~:) + : (Ui · B) B] =Ui · f f + PiY • Ui 

0 (2.9) 
- _.!_ (ui ·B) (V ·B),

Ito 
where we see the neutrals are again HD and the ions are MHD. The energy densities 

are respectively defined as: 

1 2 1 
En= 2,PnUn + 'Y _ 1Pn (2.10) 

1 2 1 1 2 (2.11)Ei = 2,PiUi + 'Y - 1~ + 2~to B ' 

where 1 is the adiabatic index of the gas (we consider equal indexes for both gases). 
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2.1.1 Ionization Considerations 

We can simplify these equations by noting that the ionization fraction in molecular 

clouds and protoplanetary disks is very low, Pi~ Pn· This can help eliminate many 

of the ion equations (see §2.2.1). Although we will always be left with Pi in the f3AD 

term which determines the strength of the ambipolar diffusion (less ion density means 

stronger diffusion). 

The ion density is often expressed as a function of neutral density. One very simple 

expression, which is often used (Fiedler & Mouschovias, 1993; Hosking & Whitworth, 

2004a) is: 

- K n k K' ( n )-2 (2.12)n n 
ni- ( 105 cm-3 ) + 103 cm-3 ' 

3where n is a number density, K = 3 x 10-3 cm-3 , k =~and K' = 4.64 x w-4 cm- . 

Doing this will allow one to eliminate entirely the need to track the ion density in 

the single fluid approximation. The second term dies off quickly in the higher density 

regime, at which point we're left with the common ni ex nJ;/2 relation. 

This expression arises by approximating the results of ionization equilibrium 

calculations (Elmegreen, 1979; Nakano, 1979) where the sole form of ionization is 

through cosmic rays (where the cited authors assume a cosmic ray ionization rate 

of (0 = 6.9 x 10-17 s-1). Cosmic rays can only penetrate so deep into a molecular 

cloud. A more realistic ionization rate acts more like ( = (0 exp [-:E/(96 g cm-2)] 

(Umebayashi & Nakano, 1981). Stable molecular clouds have average column den­

sities on the order of 0.01 g cm-2 , so they feel a constant ionization rate. However, 

column densities of 100 g cm-2 can quickly evolve in collapsing clouds on the order 

of a free-fall time (Banerjee et al., 2004), so we expect cosmic ray shielding to be 

important inside pseudodisks formed in pre-Class 0 objects. Furthermore, the con­

stants in Equation (2.12) are dependent on (0 which is very hard to precisely measure 
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and may even depend on where you are in the galaxy (Dalgarno, 2006). In molecu­

lar clouds, the ionization rates are observed by measuring chemical abundances and 

using physical models with chemical networks. The values found tend to lie in the 

range of (1 - 5) x 10-17 s-1 (Dalgarno, 2006). These values have high uncertainties 

due to a wide range of physical and chemical models used. Values of 1 x 10-16 s-1 

have been predicted close to massive stars due to their strong stellar winds (Dalgarno, 

2006). These larger values are also predicted by chemical models that emphasize the 

importance of dust grains and the large polycyclic aromatic hydrocarbons (PAHs) 

known to exist in the denser regions molecular cores. We are not considering ioniz­

ing radiation, such as x-rays from nearby stars, as the star forming environments we 

consider are quite young. 

The second term in (2.12) is often neglected for basic calculations (Safier et al., 

1997; Ciolek & Basu, 2006). This will greatly underestimate the ionization at lower 

densities, thereby overestimating the effect of ambipolar diffusion in such regions2 • 

More importantly, the ion density of molecular ions tends to go constant past nn > 

1010 3cm- (see Figure 2.1). To complicate things one step further, positively and 

negatively charged grains become the most abundant source of ionized particles for 

nn > 1010 cm-3 (Tassis & Mouschovias, 2007b; Desch & Mouschovias, 2001; Nakano 

et al., 2002). This occurs during the later stages of pre-Class 0 collapse. 

The overall application of this ionization formula in a code is relatively simple, but 

may become more complicated once grains become important. A first reasonable step 

in dealing with ambipolar diffusion in highly time-dependent and 3D calculations is 

to take (2.12) as the ionization (Kudoh et al., 2007; Ciolek & Basu, 2006; Hosking & 

Whitworth, 2004a; Safier et al., 1997; Fiedler & Mouschovias, 1993). Further work on 

2Though Ciolek & Basu (2006) turn off ambipolar diffusion in the low density limit. 
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Figure 2.1: The evolution of charged species in the collapse simulation of Nakano 
et aL (2002). The evolution of grains are the dashed lines and all abundances are 
relative to nH. The authors assume (0 = 1 x 10-17 s-1 • We can see the high abundance 
of ions such as m + (charged molecules) and M+ (charged metals) following a nions ex 
nU2 distribution up to high densities of about (1012 - 1013) cm-3• Note the change 

1010 cm-3of charged grain abundance at about nH = , where they quickly become 
the principle charge carrier. A very similar result is found by Tassis & Mouschovias 
(2007b). 
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implementing the complications introduced by charged grains can later be developed 

and readily implemented. 

2.2 Approximation Techniques 

In this Section we first outline a simple approximation technique applied to the equa­

tions of 2.1, and then go on to examine further techniques which are important to 

develop for later study. We pause in §2.2.2 to discuss the relevance of the label am­

bipolar diffusion and the consequences it implies in terms of computational timesteps. 

Using two fluids gives one the ability to model more complicated chemistry and there 

exist methods using multiple fluids that allow the timestep to be increased under 

certain circumstances; this is discussed in §2.2.3 

2.2.1 Carrying Out the Single Fluid Approximation 

Our goal in the Section is to make equations (2.1), (2.3), (2.7) and (2.8) look like 

MHD equations for the neutrals plus some other terms. We note that molecular 

clouds are dense and poorly ionized. This implies that Pi ~ Pn which we can use to 

effectively eliminate the ion equations of motion, saving half the calculations. The 

ion equations of motion will reduce to give us a relation for the drift velocity which 

will mediate the intensity of ambipolar diffusion upon the neutrals. This intrinsically 

assumes a chemistry which does not conserve ion mass explicitly (§2.1.1), but rather 

the gas density as a whole. Two fluid approaches conserve ion mass, but must intro­

duce chemistry equations with the appropriate mass transfer to properly approximate 

the ionization (as discussed in §2.1.1)3 • This would consist of a well chosen list of 

3There are significant differences between conserved ion mass distributions and ionization 
dependent distributions. For example, see §3.3.2 for how C-shock equations differ between 

13 




equilibrium equations detailing reactions of important ionized species such as Na+ or 

charged grains4 • 

Reducing the equations, we find that the gravitational and pressure forces for 

the ions are negligible with respect to the magnetic force f m = J X B (where J = 

...!.... V X B). Also, the momentum of the ions will be negligible in comparison to that 
P,O 

of the neutral species. Thus we can neglect (2.2) in comparison to (2.1). Also, (2.4) 

leaves us the equality: 

J, = -fm = -J X B, (2.13) 

from which we can derive: 

ud = /hn(V X B) x B (2.14) 

Ui = Un + /hn(V X B) X B. (2.15) 

Substituting (2.15) into (2.7) we can solve to get (simplifying V · (uB- Bu) = 

-Vx(uxB)), 

aBat =V X (un x B)- (V · B)un + V x (/hn [(V X B) x B] x B) 
(2.16) 

- (V · B) [,8An (V X B) X B] , 

where the neutrals look to be ideally coupled to the magnetic field save for the two 

last terms which describe the ambipolar diffusion of the field. 

Similarly, in the energy equation of the neutrals (2.8) we substitute into the fric­

different treatments of ion density. 
4The recombination rate of chemical species is very quick in molecular clouds, so species 

can be considered in equilibrium with their ambient environment. 
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tional force (2.13). We recover, 

0~n + V · [un (En+ Pn + ~:) + : (un ·B) B] + V · [fhnB2 (J X B)]
0 

= PnY • Un- -
1 

( Un • B) (V • B) + J-Lof3AD II J X Bll2 


J-Lo 


- f3An [B · (J X B)](V ·B), 

(2.17) 

where the last term on the LHS and the last two terms of the RHS are ambipolar 

diffusion terms. Heating of the fluid occurs through the dissipation of the field. The 

rest looks like the MHD energy equation for the neutral species; the total energy of 

the fluid is changed by the magnetic field as it undergoes motion in the gravitational 

field. 

Let's summarize, making anything with a subscript n unscripted (i.e. representing 

the gas as a whole). The following is the classic form, where fluxes lie in a divergence 

on the LHS and sources are placed on the RHS: 

~ + v. (pu) = 0 (2.18) 

20 
(pu) + V. (puu + P + B - .!_BB) = -pg- .!_B (V ·B) (2.19)m ~ J-Lo J-Lo 

8B7ft+ V · (uB- Bu) + V · (p,of3An [(J X B) B- B (J X B)]) 
(2.20) 

=- (V ·B) u- (V ·B) [J-Lof3An(J X B)] 

0 20: + V · [u ( E + P + ~: ) + : ( u • B) B] + V · [f3ADB (J X B)J 
0 

= pg • u- .!.._ (u ·B) (V ·B)+ Jlof3AD 11 J x Bll2 (2.21)
flo 


- f3AD [B · (J X B)] (V ·B). 
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2.2.2 Diffusion and Ambipolar Diffusion: Typical Timesteps 

Note the apparent discrepancy: ambipolar is not just a diffusion of the field. Ohmic 

diffusion, for instance, will add V x (ryV X B) to the LHS of the induction equation, 

where TJ is the Ohmic diffusivity. The corresponding ambipolar diffusivity is given as 

(Zweibel, 2002), 

(2.22) 

where 'fJAD has units of cm2 s-1 • This can be used to re-evaluate the ambipolar 

diffusion induction term as (Brandenburg & Zweibel, 1994), 

V X (TJADV X B- Jlo{hn(J • B)B) (2.23) 

on the LHS. Clearly the second term demonstrates the deviation of ambipolar diffusion 

from a purely diffusive process. 

In fact, it is easy to imagine situations in which J · B =/= 0, such as disk accretion 

in a collapsing core. It would then not be surprising that the extra non-diffusive term 

becomes important as field lines are strongly oriented against the accretion flow, 

which caries a charged current. Nonetheless, we use a diffusive method to describe 

the typical timescale in order to satisfy the Courant condition (Mac Low et al., 1995), 

(~x)2
TAn=To--, (2.24) 

T}AD 

where the factor of T0 is a fudge factor (we use T0 = 0.0333 in our simulations) and 

~x is a typical length scale (see §3.2.5). Longer timescales or slower speeds tend to 

allow sharp gradients in the field to form which lead to instabilities generated by the 

ambipolar diffusion terms. This creates unphysical states (such as negative densities). 
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2.2.3 Two Fluids and the Heavy Ion Approximation 


Another method to evaluate a partially ionized plasma that is becoming more common 

is to simply evaluate the equations of the two fluids (eqns (2.1)-(2.9)) separately (Li 

et al., 2006). In this case the ions will limit the timestep due to their high Alfven 

velocities (low densities). In situations where the ionization fraction is small (such 

as molecular clouds), it is possible to implement a technique which increases the 

overall timestep 10-100 times while properly tracking the ion density. This heavy ion 

approximation is a current development and involves simply increasing the ion density 

(and decreasing corresponding factors in f3AD keeping it unchanged) thus increasing 

the timestep. It must be done in very specific conditions, and a series of C-shock 

tests have shown how well this theoretical variation performs (Li et al., 2006, see 

corresponding tests of our code in §3.3.2). 

One other way that is used to avoid the very short diffusion timesteps described 

in §2.2.2, is to only run the induction equation through the diffusive step while using 

an MHD timestep for everything else (O'Sullivan & Downes, 2006, so-called super 

time-stepping). Of course it will take many integrations of the induction equation 

in order to complete one timestep, and this method will not necessarily reduce the 

computational time required to evolve the fluid by a significant amount. 
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2.3 	 A Review of Developments in Ideal and Non-

Ideal Star Formation 

2.3.1 	 Collapse 

Star formation is a rather complicated process that includes a zoo of microphysics, 

as well as having a very wide range of scales. The birth places of stars can be on 

the order of 10 pc while a stellar radius is on the order of 0.001 AU (a difference of 

about 9 orders of magnitude in length) with densities ranging from 100 particles per 

cm-3 to average stellar densities of about 1 g cm-3 (a difference of about 22 orders of 

magnitude in density). In addition to significant magnetic fields, we also find compli­

cated cooling mechanisms from the seemingly infinite list of chemical species involved, 

not to mention non-symmetric turbulent motions. From a theoretical standpoint, the 

goal is to understand what is happening, but more importantly, what physical pro­

cess is making it happen. To approach this problem, theorists have made a variety of 

simplifying assumptions, building up more detailed physical processes along the way. 

In the 1950s the picture of star formation was very unclear to say the least; 

everything was spherical and actual molecular clouds were only to be discovered 20 

years later. The main idea was that a very large cloud of gas would condense if dense 

enough, and as densities became larger, it would fragment due to the Jeans instability 

(the so-called gravitational condensation picture). The corresponding length scale 

that needed to be reached for fragmentation to occur is called the Jeans length: 

15kT 
(2.25)

47rGmp' 

where T is the temperature, p is the density and m is the mass per gas particle. During 

this process the gas is optically thin to molecular radiation (principally from H2) 
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which keeps the gas isothermal; fragmentation presumably stops as the gas becomes 

optically thick. In this fashion a whole cluster of stars can form. Equation (2.25) will 

become an important length scale numerical schemes must resolve (see §3.1). 

As magnetic fields are introduced into the problem the cloud gains a new support 

mechanism. Also in the 1950s, large galactic fields were postulated. From this, it 

was concluded that the magnetic support of a cloud could set an enormous lower 

limit on the mass a cloud needed in order to condense. Mestel & Spitzer (1956) 

showed that if clouds are well coupled to a large scale magnetic field of around 1 p,G, 

then only sufficiently massive clouds (around 500 M0 in their example) can collapse. 

They noted however that magnetic support would still only be temporary. Coupling 

between the gas of a core decreases suddenly due to dust grains absorbing most of 

the charge carriers. Matter will then begin to move somewhat against the field lines 

in a magnetically supported cloud of gas, allowing it to condense and fragment. This 

was the first astronomical application of ambipolar diffusion. 

The timescale of this process was found to be quite long in static cloud mod­

els; simulations by Fiedler & Mouschovias (1993) demonstrate an ambipolar diffusion 

timescale on the order of 10-20 Myr. Seminal work by Larson (1981) examined the 

filamentary nature of observed molecular clouds and the role of turbulence. Interstel­

lar turbulence breaks up such quasi-stable clouds on short timescales of about 2 Myr, 

producing conflicting mechanisms in star formation theory due to contrary timescales 

of formation. Also, the timescale of ambipolar diffusion regulated star formation is 

also in conflict with observations of formation timescales for star clusters, such as the 

ONC where the bulk of star formation is over within 2 Myr (Hillenbrand, 1997). 

Because of this, the older astrophysical literature often treats ambipolar diffusion 

as a star formation mechanism that is counter to turbulent star formation models. 
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However, more recent work has shown that ambipolar diffusion can also be important 

in a turbulent medium by spreading out magnetic field structure (Zweibel, 2002). 

Furthermore, an increased diffusion rate in a turbulent medium allows the quasi­

static collapse due to ambipolar diffusion even as turbulent fragmentation takes place 

(Krasnopolsky & Gammie, 2005). 

Prior to the discovery of important turbulent velocities in molecular clouds, work 

continued on the collapse of isolated cloud cores. Larson (1969) and Penston (1969) 

did simple non-rotating collapse simulations of uniformly dense spheres. They found 

increasing flat topped density profiles followed by a p ex: r-2 decline (Figure 2.3) in 

addition to mass accretion rates of (30- 50) c'f.so/G (Hunter, 1977), where Ciso is the 

isothermal sound speed. More recent work using complex 2D and 3D codes reproduces 

this profile in the isothermal regime (Banerjee et al., 2004), also in the presence of 

magnetic fields (Machida et al., 2007; Banerjee & Pudritz, 2006) and with a more 

realistic treatment of the chemistry (Desch & Mouschovias, 2001). When cooling 

becomes inefficient the profile steepens significantly with respect to r-2 , ending the 

self-similar nature of the collapse (Banerjee et al., 2004). 

Much of the modern simulation work starts with either a thin disk approximation 

(Tassis & Mouschovias, 2007b; Ciolek & Basu, 2006; Nakano et al., 2002; Desch & 

Mouschovias, 2001; Fiedler & Mouschovias, 1993) studying the quasi-static collapse 

problem and/or chemical species evolution, or using spheres in pressure equilibrium 

with an ambient environment, namely a Bonnor-Ebert sphere (Bonnor, 1956; Ebert, 

1955)5• Work following the latter initial conditions-pioneered by work from Foster 

& Chevalier (1993)-has investigated many different aspects of the microphysics of 

collapse, such as cooling (Banerjee et al., 2004), oblique magnetic field braking and 

5The later citation is often associated with Bonnar-Ebert spheres, though it is in German. 
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alignment (Machida et al., 2006), angular momentum transport through bars and 

magnetic fields (Banerjee & Pudritz, 2006), as well as the generation of early outflows 

and highly collimated jets (Banerjee & Pudritz, 2006; Machida et al., 2007, see Figure 

2.2) which act to transport significant amounts of angular momentum and drive high 

accretion rates of M = (20- 100) c3 jG. 

Ambipolar diffusion is a significant absence from the latter models as it affects pro­

cesses such as magnetic support, braking, fragmentation, angular momentum trans­

port and outflow generation during the early phases of a star's formation. Currently, 

authors have included ambipolar diffusion in the study of fragmentation (see §2.3.2), 

but we are only beginning to look to non-ideal MHD to further solidify our knowledge 

of the collapse (Machida et al., 2007). 

Competing work by Shu (1977), consisting of an isothermal self-similar solution 

occurring after point-mass formation, argued against the work of Larson (1969) and 

Penston ( 1969). It assumed a non-self-similar, but quasi-static collapse to protostar 

formation (much like the old ambipolar diffusion picture mentioned above). This is 

followed by an inside-out expansion wave collapse that gradually consumes the outer 

reaches of the gaseous envelope. The outer envelope has a p ex: r-2 profile while the 

312inner collapsing region behaves more like p oc r- (see Figure 2.4). Mass accretion 

rates are much smaller, on the order of 0.96 c~80jG. 

The attraction of an analytic self-similar solution to this complicated problem led 

to further development, particularly with respect to ambipolar diffusion. Interesting 

effects of ambipolar diffusion on the self-similar solutions include an outward propa­

gating C-schock (Wardle, 1990, §2.3.3) and lower accretion rates around 0.6 c~80/G 

(Krasnopolsky & Konigl, 2002; Li, 1999; Safier et al., 1997). Work by by Krasnopol­

sky & Konigl (2002) also incorporated rotation, using a thin disk approximation to 
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F igure 2.2: Wound up magnetic field lines on the scale of the disk in a Class 0 ob­
ject , from numerical simulations by Banerjee & Pudritz (2006). This magnetic tower 
(Lynden-Bell, 2003) has initiated a large scale outflow from the disk. In addition, a 
highly collimated bipolar disk wind is formed, even before the protostar has turned 
on! Collapse simulations have come a long way since Larson (1969) and Penston 
(1969). It is now commonplace to use 3D grids with very high refinement , magne­
tohydrodynamics (MHD), realistic cooling and other complex microphysics. This is 
leading to concrete predictions and exciting discoveries in star formation. 
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Figure 2.3: The collapse profile of Larson (1969). Time differences are every 1013 s, 
and units are all CGS. Note the flat-topped inner structure followed by the r-2 outer 
profile. The collapse appears self-similar in nature. 
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Figure 2.4: The collapse profile of a singular isothermal sphere from Shu (1977). 
Different curves are marked as occurring at different times defined by the given num­
ber multiplied by 1012 s (units are all in CGS). Note the inner more flat r-312 slope 
and the outer r-2 slope and how this contrasts to Figure 2.3. This profile presumes 
a point mass at r = 0. 
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simplify the dimensionality of the problem. 

The clear difference of the accretion rate by 1-2 orders of magnitude between 

Larson-Penston and Shu models provides a direct observational test. It may be the 

case that the two processes coexist throughout a star's formation history; an outside-in 

collapse with high accretion rates followed by an inside-out shock rebounding once the 

star has formed. Even under turbulent conditions (Banerjee et al., 2006), a Larson­

Penston type collapse will still occur, resulting in high accretion rates (that may be 

able to overcome radiation pressure from a massive protostar) and fragmentation into 

multiple stars. However, the isothermal sphere of Shu (1977) cannot model such un­

symmetric states as posed by turbulence, nor multiple stars as would be caused by 

fragmentation. It continuously maintains a single star at the center of the cloud and 

turbulence would destroy the symmetry of the problem that permits a solution. 

Going forward, the most important questions during the collapse are: can a par­

tially coupled field reproduce the effects seen in ideally coupled collapses (such as 

outflows, fragmentation, etc ... )? Can we have high enough accretion rates from grav­

itational collapse in which we can form massive stars, or do we need other larger 

scale physics (such as mergers)? If ambipolar diffusion carries away magnetic flux, 

do we still have enough field strength to produce the effects we've seen in previous 

simulations and through observations; can we build up large fossil fields in stars? 

2.3.2 Fragmentation and Magnetic Braking During Collapse 

Multi-star systems are prevalent in the Universe. Observations of binaries in our 

solar neighborhood show that the ratio of stellar systems consisting of multiple stars 

to the total number of systems is anywhere from 0.3-0.6 (McKee & Ostriker, 2007, and 

references therein). The hierarchical idea-wherein a core fragments during collapse­
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provides a very intuitive model for binary formation. The actual physics involved 

is still under investigation, but it is readily observed in collapse simulations that 

instabilities such as bars or rings form due to rotation and often fragment into smaller 

pieces (Banerjee & Pudritz, 2006; Banerjee et al., 2004; Matsumoto & Hanawa, 2003). 

This is provided the core is given an adequate initial rotation, such that Ottr ~ 0.1. 

Lesser rotations simply form disks and collapse in this fashion. 

In Banerjee & Pudritz (2006) it was observed that magnetic fields stabilized this 

fragmentation by reducing the rotation of the initial core as well as by stabilizing 

the disk that eventually forms. Magnetic fields generally provide pressure support 

during collapse, reducing fragmentation (Price & Bate, 2007). Ambipolar diffusion 

plays a role in mediating the fragmentation by reducing magnetic braking effects 

(Hosking & Whitworth, 2004a, Figure 2.5) but it is unclear how magnetic pressure 

support is affected. Fragmentation using a proper treatment of ambipolar diffusion 

has only been studied using a smoothed particle hydrodynamics (SPH) code (Hosking 

& Whitworth, 2004a), which does not handle the V · B very well. A non-SPH code 

analysis would provide a helpful comparison while providing further insight into the 

problem. 

Magnetic braking was studied analytically and numerically in quasi-static thin 

disks (Basu & Mouschovias, 1994) and in idealized magnetic rotors (Mouschovias 

& Paleologou, 1986, 1980). The magnetic rotor is an idealized thin cylinder of a 

stiff material that rotates with respect to an ambient low density environment, and 

thus provides us a non-collapsing view of magnetic braking. General results often 

quoted by this group suggest that magnetic braking effects are only mildly affected 

"by a few percent" through the introduction of ambipolar diffusion in quasi-static 

collapse calculations (Basu & Mouschovias, 1994; Mouschovias & Paleologou, 1986). 
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Figure 2.5: Fragmentation of collapsing molecular clouds from Hosking & Whit­
worth (2004a) in which the infalling material has fragmented into several objects. 
Hosking & Whitworth (2004a) use an SPH code which utilizes ambipolar diffusion 
to study fragmentation during collapse of molecular clouds. They claim to be the 
first such work to have studied fragmentation with a proper treatment of ambipolar 
diffusion in 3D. Note that the picture has been edited; the numerical values have been 
redrawn for clarity. 
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In this manner the role of rotation has been argued to be reduced in thin-disk collapse 

models. 

More recent studies have used a critical Bonnor-Ebert sphere (§3.2.1) for initial 

conditions. In this fashion, Machida et al. (2006) show the alignment of the magnetic 

field with the axis of rotation after it is initially mis-aligned. They find magnetic brak­

ing of oblique components of the magnetic field significantly stronger than components 

aligned with the rotation (matching earlier work on magnetic rotors by Mouschovias 

& Paleologou ( 1980)). Their results suggest however, that if rotation is strong enough, 

aligned components will be damped, leaving a purely oblique field generated by MRI 

(§2.3.4). The criterion for this to happen is n > Ocrit = 0.39B0G112c;1 , where n is 

the rotational frequency, Bo is the initial field and c8 the isothermal sound speed. 

For a comparison, parameters used by Banerjee & Pudritz (2007) in their study of 

the magnetic collapse of a Bonnor-Ebert sphere are borderline to these values. These 

effects have not been studied with the inclusion of ambipolar diffusion. 

The key question is, how strongly does ambipolar diffusion dampen magnetic 

braking? On one side we see authors studying fragmentation who claim a significant 

reduction (Hosking & Whitworth, 2004a), while authors studying quasi-static collapse 

claiming negligible reduction (Basu & Mouschovias, 1994). A more quantitative anal­

ysis may prove useful in resolving this issue as magnetic braking is very important in 

the early stages of collapse. 

It is difficult to quantify magnetic braking through the decrease of rotation in a 

collapse. Gas will spin faster as it is accreted, conserving angular momentum. Also, 

there exist efficient processes in the collapse which redistribute angular momentum, 

further changing rotation profiles. In the magnetic rotor, a toroidal magnetic field is 
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wound up by the rotating disk such that: 

(2.26) 

, on the edge of the disk (Mouschovias & Paleologou, 1986), where the toroidal field 

component is Bcp, the cylindrical radial distance is r, the density is p and the rotational 

frequency is n. From this, we note that magnetic braking extracts rotational energy 

20 2(Erot ex r ) and transforms it into toroidal magnetic field energy in the envelope 

(Etoroidal ex B~). The efficiency of this process depends on the height from the disk 

squared. In this way we can relate the Alfven waves of an outward propagating 

toroidal field, generated in 3D simulations (Banerjee & Pudritz, 2006), to actual 

work done on the cloud through magnetic braking. This gives us an effective method 

to measure braking in a quantitative way during a collapse (§4.3.1). 

2.3.3 C-shocks 

Shocks are a common occurrence in astrophysics, arising for instance from cloud col­

lisions in a turbulent medium, from supernovae explosions, from collapsing gas that 

quickly becomes optically thick or from outflows pushing through ambient gas. An­

alytically, these discontinuous transitions in un-conserved variables (such as velocity 

or density) are permitted as solutions to the HD or MHD conservation laws. It is 

important to understand how these structures differ when introducing other physical 

processes into the mix, such as ambipolar diffusion. 

In magnetic flows we can observationally identify shocks as sharp structures in 

magnetic and hydrodynamic quantities like density, magnetic field, temperature and 

velocity. However, it is only the charged species in a flow that experience magnetically 

driven shocks. In a weakly ionized plasma the neutral particles can pass through a 
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shocked ion front and smoothly make the same flow transition in a continuous manner 

(we call this a C-shock). The criterion for this to occur is that the shock velocity, 

V 8 , be much less than the ion Alfven speed, VAi (Draine, 1980). Physically, this 

means that compression information travels faster along the field lines than in the 

gas, allowing the field to begin a flow transition sooner than other flow variables (i.e. 

density). We call this a magnetic precursor. The neutral species experience the shock 

through frictional contact with the ions. We would thus expect to see these smooth 

shock transitions in low density ( < (109 - 1010) cm-3) environments, such as sites 

undergoing star formation, but not in the hot ionized medium where ionization is 

nearly complete and the coupling is strong. Also, shock velocities are expected to be 

less than about 50 km s-1 in order for C-shocks to occur (Draine, 1980). 

C-shocks were studied via analytic models by Wardle, (Wardle, 1991a,b, 1990) 

with a varying field to shock front orientation, using isothermal and non-isothermal 

models and including radiative cooling and frictional drift heating. The main purpose 

was to study an interesting instability in C-shock fronts ( Wardle instability). This 

instability occurs along C-shocks where there is a strong magnetic pressure gradient 

and frictional force. The field will buckle under the stress, channeling a flow of gas 

through the shock. It has been proposed as a method in which fragile H2 molecules 

could survive harsh conditions, wherein the mean field strength is strong and shocks 

are more likely to be unstable (such as Orion-KL; see Figure 2.6). Numerical methods 

have furthered the study of C-shocks to full2D, two-fluid MHD models, studying their 

time-dependent evolution (Smith & Mac Low, 1997) and the Wardle instability in 3D 

MHD (Mac Low & Smith, 1997, see Figure 2.6). These studies are the first to have 

ambipolar diffusion in a full 3D MHD code. 

Numerical methods have shown that stable C-shocks prove a rather important 
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test for codes implementing ambipolar diffusion as they have analytic solutions (Li 

et al., 2006; O'Sullivan & Downes, 2006; Mac Low et al., 1995). Test cases are hard 

to develop for ambipolar diffusion as the equations consist of difficult second order 

terms. A more qualitative test can be obtained by matching previous computations 

(such as the quasi-static collapse of Fiedler & Mouschovias (1993); §3.3.1), although 

it cannot produce percentage error, or perform a convergence test. The physical 

equations and numerical solutions for C-shocks will be discussed further in §3.3.2. 

2.3.4 Dead Zones and Accretion Disks 

Accretion disks around young stars are formed in rotating collapses (Machida et al., 

2007; Banerjee & Pudritz, 2006; Banerjee et al., 2006; Krasnopolsky & Konigl, 2002; 

Safier et al., 1997). In both Larson-Penston and Shu type models, the disc is often 

identified by a shock at a distance of about 20-100 AU from the central region. In 

pre-Class 0 states, the disk is never fully rotationally supported, often kept supported 

by a combination of magnetic, rotational and thermal pressure gradients. At these 

densities, ambipolar diffusion in the disk will be significantly strong enough that 

frictional drift heating (see §2.1) will become important. This is an important point to 

understand as the disk plays a central role in transporting angular momentum away 

from the collapsing protostar through disk instabilities (bars, rings) and magnetic 

effects (mainly magnetic braking, outflows and magnetic torques Banerjee & Pudritz, 

2006). The disk is also the birthplace of planets, and its viscous structure is controlled 

primarily through magnetic turbulence (the magnetorotational instability (MRI)). 

This viscosity, or the lack of it, is important to a planet's formation and migration 

(Matsumura et al., 2007). 

For MRI to operate in the pre-Class 0 core or disk we require a weak field and 
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Figure 2.6: Two dimensional images of ion density in an unstable C-shock, demon­
strating the evolution of the Wardle instability (Mac Low & Smith, 1997). Ion density 
is conserved, and this seems to allow the long filaments of gas to break the shock bar­
rier (if ion density is constant, say due to ionizing and other chemical processes, the 
instability is damped) . In this paper the authors also present results of the first 3D 
MHD simulations involving ambipolar diffusion that we are aware of. They use the 
ZEUS-MP code with modifications from Mac Low et al. (1995). Initial conditions for 
the shock are perturbed to allow the instability to form. For definitions of tflow and 
Lshock see §3.3.2. 
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a rotational frequency that decreases with radius. The latter condition is quantified 

by requiring dOldR < 0, where R is the cylindrical radius and n is the rotational 

frequency. This will certainly be satisfied in a collapsing, rotating cloud in the pre­

Class 0 phase as collapsing material naturally spins up. Studies of local MRI in 

accretion disks suggest the former condition is satisfied if the magnetic field is sub­

thermal (Balbus, 2003). We quantify this condition by requiring c8 > VA, where 

~ = 'YeffectivePIp is the local sound speed, "!effective is the effective adiabatic index 

of the ideal gas, P is the pressure p is the density, VA = B I(4np)112 is the local 

Alfv€m velocity and B is the magnitude of the magnetic field. This is satisfied at the 

very early stages of collapse. For example, in reproducing magnetic runs of Banerjee 

& Pudritz (2007), we find c8 = (1.55- 2.55)vA (where the uncertainty comes from 

estimating "/effective)· We expect these values to be larger in a non-ideal run as the 

field will not build up as efficiently, decreasing B. Rotational frequencies in the disk 

reach values of n = 1.0 x (10-12 - w-10) s-1 over a respective range of distances of 

r = (1.0 x 1014 - 1.0 x 1016 ) em (taken from our simulations performed in §4 of the 

high mass model). These correspond to rotation times of (30-3000) yr, where collapse 

times (once dynamic collapse begins) is about 104 yr. This then allows enough time 

for MRI to develop, as it grows on timescales that go as the rotation time. We con­

clude that MRI could indeed operate in a pre-Class 0 object given these constraints. 

The Dead Zone is defined in the literature as being a region in an accretion 

disk in which the growth rate for the magnetorotational instability (MRI) is much 

smaller than the rotational time of the disk (Gammie, 1996). The growth rate is 

damped by resistive MHD effects-Ohmic dissipation, hall electromotive forces, and 

ambipolar diffusion-such that the overall diffusion speed ( diffusivity over some scale 

L, Vdiffusion = rJIL; for definition of diffusivity see §2.2.2) is faster than the transport 
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speed of the turbulence VA (Cammie, 1996). For an accretion disk, the lengthscale L 

that makes sense is the disk height H (MRI was initially seen as an axial effect in the 

disk due to simplified field geometries (Kunz & Balbus, 2004)). The choice made by 

Cammie (1996) for defining a Reynolds number is thus straightforward: 

Re = vAH (2.27) 
'fJ 

for Ohmic dissipation, which can be used to quantify dead zones in an accretion disk. 

When Re < 1, diffusion wins and MRI cannot propagate (though Fleming & Stone 

( 2003) have shown some mixing can occur between active and dead layers). Equation 

(2.27) has been modified in several more convenient forms through the numerical 

study of MRI in differentially rotating accretion disks (Fleming et al., 2000). For 

example, 

R ' ~ (2.28)e = r]O.' 

where n is the rotational frequency of the disk and C8 is the local sound speed. 

Numerical simulations have shown that require Re' < 104 to break sustained MRI 

turbulence and allow a dead zone to persist (Fleming & Stone, 2003). Since we are 

interested more in ambipolar diffusion than Ohmic dissipation as used in the above 

studies, we naively replace rJ with 'fJAD to compare effects. When we use the single 

312 / B 2 112fluid approximation for 'fJAD we find that Re' ex: p ~ p (using the relation 

0B ex: p ·5 ). From this we'd then expect the largest value of Re' to lie in the densest 

parts of the disk (the midplane). Using typical values from a collapse (see Chapter 4) 

the maximum value we find is about 102
, meaning the whole cloud is "dead" under 

this analysis. Even though we clearly expect decoupled regions in the disk midplane 

it is apparently more MRI active than the rest of the cloud! 

Recent work by Kunz & Balbus (2004) show that the conditions in which MRI 
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persists in an ambipolar diffusion dominated disk are different than originally dis­

cussed by Gammie (1996). These authors demonstrate analytically that the ratio 

of neutral-ion collisional time (Tni = 1/'YADPi) to rotational time (n-1
) is the key 

parameter to follow. They find that for D/bADPi) > 1 the growth rate of MRI is 

severely damped. Analysis of ambipolar diffusion regulated dead zones has never 

been investigated during collapse (MRI studies alone are rare. Machida et al. (2006) 

talk of MRI during the pre-Class 0 stage.). Do dead zones gain their initial structure 

during collapse? 

Column densities of a few 100 g cm-2 are quickly achieved during numerical 

runs (Banerjee & Pudritz, 2006). Dead zones with only ambipolar diffusion require 

D/'YADPi > 1, which is automatically obtained if Pi exponentially drops to 0. Shield­

ing of cosmic rays (cosmic rays penetrate only to column densities of about 96 g 

cm-2 (Umebayashi & Nakano, 1981, §2.1.1)) may be vital for any final analysis, as 

the dead zone would certainly be created if there is absolutely no coupling in the disk 

midplane. In simple chemical models we often see Pi ex /;/2, which makes dead zone 

creation quite difficult, but not clearly impossible. This will be an interesting avenue 

for future work to explore, however we can already predict proto-" dead zones" in 

pre-Class 0 objects starting at column densities of about 100 g cm-2, assuming that 

the source of ionization is cosmic rays. Do they occur at lower column densities? 

Even without a dead zone we still expect layered accretion (where accretion is 

stronger in disk layers than in the midplane) and dragging in of magnetic field lines 

by more ionized disk layers (where the field is left behind in the disk midplane). There 

is a central region of the accretion disk which is not well coupled to the magnetic field, 

seen to start at about 20 AU (shown in simulations by Desch & Mouschovias (2001)). 

Note that in such an decoupled region the diffusion speed, Vdiffusion, over the disk is 
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faster than the dragging in of magnetic flux. We quantify this by defining a new 

"Reynolds number", 

VinfanL
ReAD = , (2.29) 

'f/AD 

which describes the diffusive coupling of the field to the gas. This is the Reynold's 

number for ambipolar diffusion, slightly different from Equation (2.27). The typical 

length scale Lis taken to be the radius of the disk, (e.g. 2.0x1014 em from (Banerjee 

& Pudritz, 2007)). For Vdiffusion > Vinfalb diffusion is too quick for the gas to drag the 

field forward, and flux is left behind (at the cost of frictional heating). Field lines 

would then appear as if they were being dragged in by disk layers, but left behind in 

the midplane. Note that this does not mean that we have a dead zone as we can still 

have VA > Vdiffusion > Vinfalb where the diffusion speed of the field is faster than the 

infall speed, but not faster than the propagation of MHD turbulence. 

As ambipolar diffusion is not purely a diffusion (§2.2.2), we may need to consider 

a more physical condition in which to declare a decoupled region. We take an idea 

from C-shock theory, 

(2.30) 

where a is some parameter we must measure, and VAi = Bf(47rpi)112 is the Alfven 

velocity of the ions. It is interesting to compare Equations (2.29) and (2.30). Compar­

ing these two terms will tell us the relative importance of diffusive and non-diffusive 

effects of ambipolar diffusion. However, the latter condition is sufficient in defining 

a decoupled zone for a purely diffusive, or strongly non-diffusive state. We expect 

non-diffusive states in an accretion disk, where currents are strongly oriented against 

field lines and J · B =f. 0. 

The decoupled zone fits very nicely into the picture we have of layered accretion6 

6 The idea originally from Gammie (1996) involved a Keplerian disk; thus the midplane 
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along coupled layers where (2.29) or (2.30) should be orders of magnitude smaller than 

in the disk plane. Coupled layers will lose more angular momentum than the midplane 

through magnetic effects (such as braking and magnetic torque) and this should drive 

layered accretion in a pre-Class 0 object. This point remains uninvestigated through 

numerical simulations. 

Do we provide the initial conditions of dead zones during the pre-Class 0, initial 

collapse phase? It is very important to elucidate the initial conditions a dead zone 

may have, as it has been shown to have important consequences in planet formation 

models treating migration (Matsumura & Pudritz, 2005), helping to determine final 

planet masses and stopping planets from entering their parent star. Such a dead 

zone would be different than is commonly discussed as it is governed by ambipolar 

diffusion rather than Ohmic dissipation. The former is important at higher densities 

than considered in pre-Class 0 collapse (Desch & Mouschovias, 2001). We have argued 

that such an early dead zone is possible for surface densities greater than 100 g cm-2, 

but dependent entirely on shielding of cosmic rays. Is this a correct statement, or 

does the chemistry play a strong role at lower surface densities? Also, when the star 

turns on, what effect will it have on this proto-dead zone? Can it persist? 

When the next generation of telescopes are operational (e.g. ALMA), we can 

expect observations to begin challenging such predictions, and predictions of planet 

formation. 

would not accrete at all as it is rotationally supported. Active layers would accrete as they 
lose angular momentum. 
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Chapter 3 

Numerical Methods 

To perform numerical studies of the physical questions raised in Chapter 1 and Chap­

ter 2 we use FLASH2.5 (Fryxell et al., 2000). FLASH provides us the ability to use 

magnetohydrodynamics in three dimensions while employing adaptive mesh resolu­

tion (AMR). Its computational scheme allows very accurate capturing of shocks. We 

will discuss this further in §3.1. We have performed extensive testing of our code 

(§3.3), including a new test that we hope will be employed as a standard test for 

ambipolar diffusion codes which include non-isothermal effects (§3.3.2). 

3.1 The FLASH2.5 Code 

The FLASH code (Fryxell et al., 2000) employs a wide range of hydrodynamic (HD) 

and magnetohydrodynamic (MHD) physics. It has been well tested and has become 

quite popular in the astrophysical community. Its principal advantage is that it can 

perform AMR, as this saves considerable computational time while maintaining a high 

level of refinement. A secondary, though important advantage for astrophysicists, is 

that it does a very good job in capturing shocks. 

38 




Adaptive mesh refinement in FLASH looks at a specific set of characteristics of 

a cell in the computational region and correspondingly marks its parent block for 

refinement, de-refinement or a stay. A block of cells consists of 8n cells, where n is the 

dimensionality of the simulation. If it is marked for refinement, a block is split into 

a set of new blocks such that the spacing between each original cell is halved. A cell 

represents the smallest spatial extensions in a simulation and holds hydrodynamic 

values. Any block has neighbors differing in refinement by at most 1. 

In this way AMR allows one to have a large number of highly refined cells around 

a small scale disk on the order of 1013 cm-3 and a small number of large cells refining 

3the collapsed cloud on the scale of 1019 cm- . This will save computational time in 

decreasing the number of total cells while maintaining adequate refinement for the 

problem. 

The refinement criteria for FLASH have been adjusted somewhat in previous work 

by Banerjee et al. (2004). It was shown by Truelove et al. (1997) that one needs to 

refine the Jeans length, 

(3.1)AJ = (;;!)' 
by at least four cells in an AMR code, where C8 is the isothermal sound speed, G 

is Newton's constant and p is the local density. If this is not satisfied artificial 

fragmentation induced by the numerical grid will result. Banerjee et al. (2004) setup 

the refinement criteria such that a variable fraction of cells will resolve the Jeans 

length. In our production runs we use 8 - 24 cells per Jeans length, guaranteeing 

artificial fragmentation will be avoided. 

The ideal MHD equations, alongside the optional resistive and viscous terms1 are 

1The resistive MHD terms were added by Timur J. Linde and collaborators (private 
communication), and are as of yet untested. We found a minor yet significant typo in the 
code while checking it against its theoretical basis. This typo has since been corrected in 
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implemented in FLASH. These include viscosity, heat conductivity, hyper-resistivity, 

hall electromotive forces and Ohmic dissipation. We write the MHD equations im­

plemented in FLASH including the latter two effects as they are magnetic processes 

and served as models of our implementation of ambipolar diffusion. Note the V Bo 

terms and recall similar MHD equations with ambipolar diffusion derived in §2.2.1 

(equations (2.18-2.20)): 

: + v . (pv) = 0 (3.2) 

apv + V. (pvv + P + ~B2 - BB) = pg- B (V ·B) (3.3)at 2 

8B 
at + V (vB- Bv)- V· (7Johmic V ·B)= - V x (7JohmicJ)- v (V ·B)o 

- V· [7Jhaii (BJ- JB)] 

(3.4) 

~~ +Vo [v(E+P+~B2) -B(voB)l =pg+V·[Bx(7JohmicJ)] 

+ V · (7Jhan [B2 J- (JoB) B]) 

- (v B) (V · B) ,o 

(3.5) 

where p is the density, v is the velocity, t is time, B is the magnetic field, J = V X B 

is the current density, P is the pressure, g is the gravitational field, E is the energy, 

7JOhmic is the Ohmic diffusivity (resistivity) and 7Jhaii is the hall diffusivity. We use 

dimensionless units (§3.2.4), so J-Lo is 1. We ignore these non-ideal effects (setting 

current distributions of FLASH2.5. 

40 


http:2.18-2.20


r]Ohmic = 1Jhall = 0), though we note that they will be of interest i.n further work 

(Chapter 5). 

In the above equations we call anything that can be put into a divergence a flux 

term as it describes the redistribution rate of the parameter in the time derivative. 

An example of a flux is the Ohmic dissipation term on the right hand side of equation 

(3.4); Ohmic dissipation depends on field gradients (J terms) and tends to make the 

field more uniform. It does not the generate or dissipate B. Anything that is not a 

flux (save for the time derivative) we call a source term as it describes the generation 

and destruction rate of the parameter in the time derivative. Anything that heats 

or cools is an example of a source in equation (3.5), such as the gravitational term 

which describes heating due to collapse. 

Because the code does not strictly conserve V • B = 0 (§3.1.1) we can symmetrize 

the ideal MHD equations above (ignoring non-ideal terms). This allows for a unique 

solution to the Riemann Problem across cell boundaries (e.g. Powell et al. (1999)). 

A Riemann Problem consists of solving the conservative laws across cell bound­

aries (i.e. a one step initial condition). The Riemann problem in MHD was outlined 

by Sergei K. Godunov (Godunov, 1959), and solvers following his work are often at­

tributed as being a Godunov scheme. Riemann solvers are computationally expensive 

so approximate solvers are developed which do a very good job, but make sense nu­

merically. The so-called 8-wave solver described by Powell et al. (1999), and used in 

FLASH, is such a scheme. The eighth wave describes the propagation of V • B. 

In the FLASH module, solutions following this approximation are split. This 

means that the MHD equations are solved in sweeps of each direction, for each 

timestep. A sweep involves evolving the equations along x, y and z components 

separately (sources are also split up into three terms). This affects how averaging 

41 




over the sweep direction is done (see §3.2). We describe in §3.2.3 the implementation 

and splitting of ambipolar diffusion fluxes and sources derived in §2.2.1. 

One further aspect of FLASH that needs only minor attention is the materials 

package. FLASH has a built in set of modules that handle multiple species of particles, 

atoms or molecules (designed for solar nuclear reaction networks, but applicable to 

whatever chemistry you wish to implement). For our purposes however, we simply 

use it to set the molecular masses that we require in varying test problems and in the 

main runs. Our main runs, describing the collapse of Bonnor-Ebert spheres (§3.2.1), 

contain a chemistry of H2 , H, and Z (metals), where H2 dominates, but where H can 

form through dissociation of H2 (see §3.2.2). 

3.1.1 V · B Considerations 

The MHD module in FLASH employs a somewhat controversial scheme that does 

not explicitly constrain V · B = 0, based on Powell et al. (1999)2• The V · B terms 

are left in all of our equations to emphasize this fact: V · B is not explicitly zero in 

FLASH, but constrained below truncation-level error after each timestep (Powell et al., 

1999). Considering these terms during a timestep is thus important in guaranteeing 

the stability of any computational scheme applied to FLASH's MHD module. We find 

it helps decrease V · B by a couple orders of magnitude in our main runs, however 

it may not be important in more steady flows. Note that we are also using a method 

employed in FLASH which eliminates V · B as it's created through a simple diffusive 

method (described below). 

The evolution of V ·Bin our isothermal C-shock test (§3.3.2) evolves very much 

2The code has been well tested and, despite the controversy, is widely used in numerical 
simulations as one of the "go to" codes for AMR-based MHD simulations. 
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the same with or without these extra terms (there is only a minor advantage of 

having such terms in the code). As the shock reaches a steady state, the average 

value remains constant. We note that this former case involves small integration 

times of a few hours and a steady state, whereas the collapse performed in Chapter 

Chapter 4 is continually evolving over integration times of a few days. In a general 

sense it may be advisable to only use these terms if V · B becomes an issue (as in 

the collapse calculations performed in Chapter 4). Otherwise, skipping the lines of 

code pertaining to these terms could save important computing time. 

Including V · B terms makes the MHD equations symmetrizable, allowing for a 

Godunov scheme to be employed (as discussed in §3.1). The advantage of this method 

permits one to use the 8-wave, approximate Riemann solver employed by Powell et al. 

(1999). This method provides very accurate shock capturing, which is important for 

practically any astrophysical problem (in particular our molecular core collapse). The 

principal disadvantage is that significant values of V · B lead to incorrect physics. 

This is corrected by constraining such values below numerical truncation-level values 

(via the diffusive method in FLASH). Even if values are small, we are left with the 

physical dissatisfaction of having V · B =/:. 0, though we note all numerical values are 

only approximately correct. 

Comparisons following seven different codes, including the above method used in 

FLASH, show that the 8-wave solver can generate incorrect shock jump conditions 

(incorrect J-shocks) due to the erroneous generation of V · B (T6th, 2000). For this 

reason FLASH also employs a simple diffusive cleaning mechanism which destroys the 

generation of V · B at the rate in which it is created by numerical diffusion of the 

field. This is a numerically inexpensive routine which generally works very well. An 

optional cleaning method which projects the numerical solution of B to a 0 divergence 
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state is also available if necessary, though computationally more expensive. This latter 

method has been shown to be very effective in keeping V • B below truncation-level 

error (T6th, 2000). We use the diffusive method in all of our simulations. 

Smooth Particle Hydrodynamic (SPH) MHD codes are also known to typically 

have problems with V · B = 0. We compared our V · B with that of Hosking 

& Whitworth (2004a)-which performs a similar numerical simulation to ours-and 

demonstrate the effectiveness of our scheme (though it is hard to interpret the in­

dividual importance of these numbers). We find a maximal value at the end of our 

w-15simulation (Chapter 4) of IV. Blmax = 1.11 X G cm-I, in comparison to the 

1maximal values of 102 G cm- (and average values of 5.0 G cm-1) of (Hosking & 

Whitworth, 2004a, they use SI units.)! Note that our values come from very large 

integration times of a few days (real time), and about 2 Myr (simulation time). Note 

that we use the diffusive cleaning method employed in FLASH, while (Hosking & 

Whitworth, 2004a) use there own unique developed cleaning method. We conclude 

that, relative to an SPH calculation, we rigorously maintain zero divergence of the 

field. 

A more recent AMR MHD code developed by Stone & Gardiner (2005) (ATHENA) 

has improved the Godunov scheme by conserving V · B = 0 through constrained 

transport ( CT) methods. The very popular static grid code ZEUS also employs CT. 

Although we have presented results that show we can contain V · B terms, we may 

wish to look at such a code in the future to completely enforce this strict physical 

law. 
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3.2 Implementation of New Physics into FLASH 

3.2.1 Initial and Boundary conditions 

The density distribution of a cloud of gas in a near-critical hydrostatic equilibrium 

with a more uniform inter-cloud medium can be analytically solved and is commonly 

called a Bonnor-Ebert (B-E) sphere (Bonnor, 1956; Ebert, 1955). The popularity 

of B-E spheres is due in part to their similarity to a Larson-Penston type profile; a 

flat inner density profile matched continuously with a p ex r-2 outer profile. The 

characteristics of a B-E sphere seem aesthetically favourable as an initial condition 

for star formation. 

However, it is the observational (Alves et al., 2001), as well as the computational 

evidence (Tilley & Pudritz, 2004) that has supported the use of B-E spheres as an 

accurate initial condition to star formation. The mapping of the density profile of the 

Barnard 68 (B68) molecular cloud core through dust extinction of background stars 

is shown in Figure 3.1. There is a near exact correlation of B68's profile to the fitted 

profile of a B-E sphere. Many cores have since been observed to share such a profile. 

Even formation of molecular clouds through hydrodynamic turbulence seems to form 

B-E spheres (Tilley & Pudritz, 2004), among other profiles. Thus we note that while 

a proper 3-D turbulent core from such simulations may prove a true realistic initial 

condition (such as was done in the work by Banerjee et al. (2006)), the Bonnor-Ebert 

sphere provides a very accurate first step to studying core collapse. 

The analytical solution of a B-E sphere's density profile reduces to a differential 

equation of the gravitational potential in terms of the spherical radius. This equation 
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Figure 3.1: Visual extinction profile of Barnard 68 (from Alves et al. (2001) ). The 
visual extinction is direct ly proportional to the column density along the line of sight. 
Barnard 68 is not completely spherical, so the red points indicate the observed profile 
excluding non-spherical features, while the black open points refer to the cloud as a 
whole. The solid line represents the best fit B-E sphere profile and it is clear that the 
fit is very good. 
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is the Lane-Emden equation, 

__!__~ (c2d¢) = -¢ (3.6)~2~ "' ~ e ' 

where~= rjr0 , r0 = c8 jy'47rGpo is a characteristic length scale, C8 is the isothermal 

sound speed, p0 is the central density, p(~) = p0 e-¢(e) is the density profile, and¢(~) 

is equal to the gravitational potential plus a constant. The variable¢(~) satisfies the 

boundary conditions, 

¢(0) = : (0) = 0. (3.7) 

Solutions with ~ > ~c ~ 6.5 are unstable to collapse and solution profiles must 

be interpolated from stable solutions. The module in the setup which calculates the 

density profile is carried over from previous work (Banerjee et al., 2004). 

Our initial setup consists of a B-E sphere in hydrostatic equilibrium with an 

external medium. The density profile of the sphere is given a 10% over-density and 

a m = 2 perturbation (p = Pl3E[l.O + 0.1 sin (20)]) to ensure collapse. We use a 

large box with periodic boundary conditions, such that the box is large enough to 

ignore "rebounding" effects that may occur. In turn we give the B-E sphere a bit 

of a spin, in line with observations that suggest B68 has a rotational energy a few 

percent of it's gravitational energy. A small initial field is given such that the core 

remains supercritical to collapse. We employ two models, a low mass model matching 

characteristics of B68, and a high mass model which matches characteristics of high 

mass clouds observed by Chini et al. (2004). The parameters are given in Table 3.1. 

The magnetic field is distributed such that the parameter {3 = P/(B2 j81r) is 

constant, where P =pel; is the ideal pressure. The non-ideal version of the high-mass 

model is given ~ the rotation of the ideal run to better match the final rotational 

characteristics during collapse (braking is less efficient in the non-ideal run §4.3.1). 
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Table 3.1: The parameters for our collapse runs. Note that the high-mass model for 
our non-ideal run is given! the rotation of the ideal run, SO f2HM AD = 8.27X 10-15 s-1• 

model Po [g cm-3] C8 [km s­ 1] Csext [km S-1) f3 Bmax [JtG] n [s-1] 

high-mass 3.35 x w-21 0.408 1.289 76.0 1.36 1.10 x w-14 

low-mass 9.81 x w-19 2.458 7.774 84.0 14.0 1.89 x w-13 

The low mass run has shown a stronger tendency to generate outflows and to fragment 

(Banerjee & Pudritz, 2006), thus we keep the rotations the same in this case to better 

study the effects of braking. 

3.2.2 Building on Added Physics 

Our collapse simulations contain cooling rates taken from previously developed models 

(Banerjee et al., 2004, 2006). These models have developed methods in which to 

incorporate the cooling due to collisional excitation of molecules such as H2 , H, 0, 

CO, 0 2, HCl, C and 0 (Banerjee et al., 2004). Effects of dust-gas interactions were 

incorporated by Banerjee et al. (2006) along with H2 dissociation at high temperatures 

and a radiative diffusion approximation in the optically thick limit. This provides a 

more realistic method with which to account for the sudden change in the equation 

of state in a collapsing cloud, when cooling becomes inefficient. Many authors use a 

variable equation of state which jumps from isothermal to adiabatic (or something 

similar) at a given density (Tassis & Mouschovias, 2007a; Machida et al., 2006). Also, 

it forbids the analysis of effects like drift heating and energy distribution by diffusion 

by eliminating the energy equation. 
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3.2.3 Implementation of Ambipolar Diffusion 


To put the equatioDB in code form we will have to first separate sources and fluxes, 

and then add these to the FLUX and SOURCE arrays during the sweeping process 

of MHD-SWEEP.F90 in FLASH2.5. This module performs the sweeps, calls the in­

terpolation of the data for ideal terms and calls fluxes and sources for a given sweep 

direction (including non-ideal data). After this, it evolves the MHD equatioDB. In cod­

ing the ambipolar diffusion terms we follow closely how the resistive fluxes are applied 

(see MHD-ADD_RESISTIVE_FLUXES.F90 in FLASH2.5). They use a central difference 

method to discretize derivatives (V X B terms) at cell centers. This should be an 

effective method as the ambipolar diffusion terms, like the Ohmic dissipation terms, 

are parabolic in nature. They won't require the highly involved interpolation the 

rest of the MHD equations undergo to be accurate (the ideal MHD equatioDB are 

hyperbolic). 

To illustrate the central differencing technique, we evaluate an imaginary flux term 

of the form 

A· ·kB· ·k) dD· ·k D· ·kF = Z,J, z,J, + z,J, + ~, (3.8)( C.Z,J,·k dx·Z,J,·k dy·Z,J,·k 

where i,j, and k locate a given cell in the current block and A, B, C, D, x andy 

are evaluated at cell centers. The x and y coordinates are represented by Xi,j,k and 

YiJ,k respectively (we omit the z coordinate for simplicity). Let the sweep direction 

be the x direction, and averaged terms be represented by a line over the character. 

Our averaging technique is as follows3 , 

A = 0.5 (Ai,j,k + Ai-I,j,k), (3.9) 
3N ote that we have also used a similar averaging technique which averages final terms 

as a whole, rather than basic values (like Bx, f3AD or in this imaginary case, A). We find 
no significant difference between the two. However, the one presented here more closely 
resembles that which is already employed in the FLASH code. 
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where B and C are found in a similar fashion. Derivatives in line with the sweep 

follow: 

~.J, ~ ,J,dD (D· ·k- D·-1 ·k) (3.10)
dx= x··k-x·-1·k · ~.J, ~ ,J, 

Derivatives that are against the sweep follow this form: 

dD = 0. ((Di,j+l,k- Di,j-l,k) + (Di-l,Hl,k- Di-l,j-I,k)).5 (3.11)
dy YiJ+l,k - Yi,j-l,k 

Thus our final flux term will have the form: 

F = (AB) dD dD (3.12)- + d + d .C X y 

Now we will evaluate the ambipolar diffusion flux terms and put them in a form 

that makes sense for computation. In the code we have applied the above averaging 

technique. Please note our matrix notation for flux terms corresponding to B. We 

have chosen to make each column correspond to Bx, By and Bz from left to right. 

Rows for flux and source vectors or matrices correspond to the direction of the sweep; 

x direction, y direction and z direction from top to bottom. For example, during a 

sweep in the x direction the flux terms only receive additions from the first component 

in the corresponding vector. 

For simplicity we define the vector, 

A= -f3AnB X [B X (V X B)] 

Bx(Byjy + Bzjz)- jx(B; + B;) (3.13) 
= -f3AD By(Bxjx + Bzjz)- jy(B; + B;) 

Bz(Bxjx + Byjy)- jz(B; + B;) 

where j = V X B. 
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We find that the flux vectors for the magnetic field components are, 

0 -Ax (3.14) 

Similarly we define the vector, 

a= (j X B) 

jyBz- izBy 
(3.15) 

izBx- ixBz 

for the source. The sources for (2.20) are coded as follows (only terms with a f3AD 

need to be added, others are already taken care for): 

(3.16) 


where I have split up the source into a vector for each direction for simplicity (following 

my notation outlined above). 

The energy flux works out to, 

(3.17) 

The ambipolar diffusion heating term works out to, 

(3.18) 
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where again I've chosen how to split up the source. 

Finally, the V · B source term works out to, 

(Bxax)(V • B) 

(3.19) 

(Bzaz)(V • B) 

where I've chosen to split the source term up partly to save coding and match the 

usage of a's components in Equation (3.16). The energy equations in this form are 

quite efficient, relying on the calculation of only one component of a for each sweep. 

SE += -fhn (Byay)(V ·B) 

3.2.4 Units, Constants and Dimensionality 

One advantage of FLASH is that the dimensionless constants are all 1.0, save the 

constant for the magnetic field. The four principle scaling constants are (Powell 

et al., 1999): 

aoo = 1.0 [ems] 

Poo = [-LJ1.0 
cm3 

(3.20) 
L = 1.0 [em] 

from which most variables can be made dimensionless through combinations of these 

constants. 

a

Important examples are the magnetic field, B' = (aoo..jPooJ.-Lo)-1B and J3A.n = 

00 p00L - 1J.-Lof3AD· Otherwise, all other variables are quite straightforward. One can 

imagine equations (2.18-2.20) the same, but drop all J.-Lo terms to 1. 
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3.2.5 Timesteps 

The timestep is taken from equation (2.24) and written as: 

(~x)2
TAn=To-­

'f/AD 
(3.21) 

_ rrt [(xi,j,k - Xi-1,j,k) 
2 

] 
- .LQ 2 ' 

f3AD B 
1where T0 is typically chosen as or 1~0 in our runs (the latter factor is used in 30 

Mac Low et al. (1995)). We find little difference between the two while anything 

larger tends to quickly create un-physical states such as negative densities and sharp 

magnetic field gradients. 

The ~x represents the coordinate of the sweep, so it would be ~z if the sweep 

was in the z direction. The smallest such timestep in a sweep is given to the timestep 

chooser which multiplies the smallest timestep from all processes by a CFL factor of 

typically 0.8. The ambipolar diffusion timestep is small and usually dominates over 

other timesteps (such as from the cooling or hydrodynamic processes). 

3.3 Testing the Code 

To test the code we have performed first a qualitative check in §3.3.1 and a more 

detailed check in §3.3.2 which we believe includes the first quantitative test in practice 

of an ambipolar diffusion code with a non-isothermal energy equation. Our hope is 

that this test is applied for future codes developed with ambipolar diffusion. 

3.3.1 Quasi-Static Collapse 

This test involves matching qualitatively the characteristics (such as timescales and 

curve features) of a quasi-static collapse of a thermally critical but otherwise magnet­
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ically sub-critical, non-rotating core. This calculation was first performed by Fiedler 

& Mouschovias (1993). Its history as use for a test code for ambipolar diffusion is 

sporadic, appearing in Safier et al. (1997) (an analytical model) and more recently in 

SPH models by Hosking & Whitworth (2004b). 

For comparison, we use the parameters of model 1 from Fiedler & Mouschovias 

(1993). These are presented in Table 3.2. The model we use is somewhat different 

than Fiedler & Mouschovias (1993), however it produces a thin quasi-static disk of 

the same characteristics. In this sense it is studying the same problem, the timescale 

between thin disk formation and dynamic collapse. The difference in models is due 

to the unique way in which the problem was initially setup in Fiedler & Mouschovias 

(1993), using a small cylinder (described below) with periodic boundary conditions 

on all surfaces (our setup in FLASH is cartesian). Our model consists of a sphere 

of uniform density and radius Rtest in thermal equilibrium with an external medium 

of low density (Pambient = 0.1Pcore)· The setup is shown schematically in Figure 3.2. 

The model of Fiedler & Mouschovias (1993) used a uniform cylinder of density Pcore, 

radius Rtest and height above the midplane Z = Rtest, otherwise using the same 

parameters. Both have periodic boundary conditions, thus the former will have less 

of an ambient source of material in which to accrete due to a smaller box size. Also, 

our initial setup will collapse much quicker into the quasi-static state as it is highly 

unstable. The setup of Fiedler & Mouschovias (1993) is only slightly thermally critical 

to fragmentation. 

The sphere quickly collapses along the field lines into a quasi-static disk (which 

matches the description of the thin disk model described in §2.3.1). The evolution 

of the central density is shown in Figure 3.3. The initial rise in density is due to the 

rebounding after the initial infall, as described by Fiedler & Mouschovias (1993). Gas 
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Table 3.2: The parameters used in the quasi-static collapse test run. Note that 
the ionization is that described in §2.1. 1, with f.tmoi = 2.33. The sound speed then 
corresponds to a temperature of 10 K. The box dimensions extend from -3.24 pc to 
+3.24 pc. 

0.751 300.0 1 30.0 1 30.0 1 1.8891 


Figure 3.2: Setup of the first test problem , the quasi-static collapse. Our setup 
of the quasi-static collapse is a bit different than the one presented by Fiedler & 
Mouschovias (1993). The key parameters are shown. The whole box is kept at 10 K 
throughout the collapse. 
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piles into the disk while magnetic pressure is pushing it out. When the disk reaches 

the quasi-stable equilibrium-where gravitational forces are balanced by magnetic 

forces-the infalling gas takes a while to respond, continuing to accrete a bit. more 

matter onto the disk. Magnetic pressure forces then drive out the excess matter and 

the disk settles into a quasi-equilibrium. Note that the cited authors reach this char­

acteristic peak at 6 Myr, while we reach it at 2 Myr. The perfectly magnetized case 

will evolve only marginally after this, accreting material from the ambient medium. 

It is clear then that the non-ideal disk is accreting mass internally as well as from the 

ambient medium as its central density evolves at a higher rate than that of the ideal 

case. 

Eventually, freefall occurs in the non-ideal model. Fiedler & Mouschovias (1993) 

have a freefall collapse that begins at about 16 Myr while ours begins at about 12 

Myr. The discrepancy is solved by observing that each freefall state occurs 10 Myr 

after the rebounding "bump" occurs and the quasi-static disk is formed. In this sense 

our models agree on the timescale of ambipolar diffusion. 

The evolution of the central magnetic field with density in Figure 3.3 gives a 

clearer agreement with Fiedler & Mouschovias (1993) as it is independent of time, 

and more a reflection of the physics at work. Our curve has the right qualitative 

features: a constant field followed by a positive power law. The power law begins at 

roughly (2- 4) x 104 in agreement with Fiedler & Mouschovias (1993). 

We have correctly found the timescale of collapse described by Fiedler & Mouschovias 

(1993), matching all qualitative features of the quasi-static collapse. We conclude that 

we have passed this initial test. 
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Fig ure 3 .3: Results from the first test run showing the evolution density and mag­
netic field initiated from our quasi-static collapse setup. The central density evolution 
is shown above and the evolution of the central magnetic field is shown below. The 
ambipolar diffusion run is shown in the red (solid) line and the ideal run is shown in 
the black (dashed) line. 
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3.3.2 C-Shocks 

We recall from §2.3.3 that C-shocks are continuous transitions of hydrodynamic vari­

ables mediated by ambipolar diffusion. Without ambipolar diffusion such flow tran­

sitions are very discontinuous and are classified as J-shocks. C-shocks have quickly 

become a common test case for ambipolar diffusion codes due to recent interest that 

has sprung up in a variety of subjects, particular turbulence models (see section §2.3.3 

for a more physical discussion; Li et al., 2006; O'Sullivan & Downes, 2006; Faile, 2003; 

Mac Low & Smith, 1997; Smith & Mac Low, 1997; Mac Low et al., 1995). Tests for 

ambipolar diffusion, with a given analytic solution, are very hard to generate due to 

the complex nature of the equations. The C-shock has provided a very convenient 

test case for the papers mentioned, all of which are isothermal. As astrophysical 

problems generally involve shocks, we will eventually require non-isothermal simu­

lations in which to better study them. A test for such simulations which includes 

the effects of drift heating and energy dissipation does not exist to our knowledge. 

However, further development of the idea of C-shocks can be expanded to include 

effects of having a proper treatment of energy evolution. We present the first such 

test of a non-isothermal ambipolar diffusion energy code that we are aware of in the 

literature, in the hopes it will be used as a standard test in the future. Alongside this 

we perform an isothermal C-shock test to independently test the induction equation. 

Basic Setup 

In Figure 3.4 the basic idea of a C-shock is illustrated in our initial setup, such that 

the field B is initially oblique to the normal of the shock front by an angle 88 • The 

discontinuity will be transformed into a more continuous transition as the neutrals 

sift through the ions and feel the magnetic forces only through friction (see §2.3.3). 
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Table 3.3: The initial conditions for the C-shock test. The value of /AD is 1.0, and 
3the ion density is kept constant at Pi = 10-5 cm- . The temperature is adjusted 

to 10 K by setting the molecular mass appropriately, given that the sound speed 
is c 8 = 0.1 em s-1. The initial field deflection is 08 = Jr/4 and Bx = B 0 cos(Bs) = 

.J4if cos (Bs) is a constant. Non-isothermal post-shock states are only slightly different 
than isothermal ones (save pressure). 

Pn [g cm­ 3] Pn [dyne cm­ 2
] Vx [em s­ 1] Vy [em s­ 1] By [G] 

left 

rightiso 

rightnon-iso 

1.000 

8.045 

7.982 

0.0100 

0.0804 

0.2246 

V8 = 5.000 

0.621 

0.626 

0.000 

0.840 

0.836 

2.507 

23.553 

23.463 

The dimensionality of the problem is two, so we run the simulation in permutated 

orientations of x, y and z to fully test our code. However each run involves a 3D tube. 

The boundary conditions are inflow at the left x boundary and outflow at the right 

x boundary, while periodic conditions are used for every other boundary. 

The C-shock analytical solutions are based on work from the 80's and 90's (Wardle, 

1991a,b, 1990; Draine, 1986), where the first paper deals with the oblique shocks we 

present here. The equations presented therein offer a working analytical solution to 

a steady state, isothermal, two-fluid C-shock, mediated by ambipolar diffusion. 

We have found some inconsistencies with the how the energy equation was reduced 

to give a differential equation for the pressure. This seems to have been the subject 

of contention in the past, despite a paper devoted to settling the theoretical impasse 

(Draine, 1986). We note that in addition to missing terms in the pressure relation, 

only drift heating is considered and not the redistribution of energy by ambipolar 

diffusion (see §2.1). We include the full effects of ambipolar diffusion on the energy 

equation, in addition to providing proper solutions to the problem outlined below. 

We keep the notation used in the papers mentioned for consistency. 
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Figure 3.4: Our initial setup of the second test problem, the C-shock. The left, pre­
shock state is 4 L shock in length while the right , post-shock state is 8 L shock in length. 
The y and z lengths are both (1 - 2) Lshock in length, depending on the resolution. 
After a while the shock will smooth out the discontinuity and settle to form a stable 
C-shock. 
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Also note that since we use a single fluid code, we must make a choice on how 

to treat the ion density evolution. A simple choice would be to keep it constant 

(Pi = Pio)· To account for this involves adjusting a term in the analytical solution, 

and we outline how this is done below (as well as how to change the equations to ion 

mass-conserving form). 

We take the initial values of Mac Low et al. (1995) as their shocks show long 

transitions, indicating strong ambipolar diffusion. Running these through the analytic 

solutions we find the values of the post shock front. Our initial setup consists of a 

left state with these pre-shock values and a right state with the post-shock values 

(Figure 3.4 and Table 3.3). We evolve the shock tube and allow it to settle to its final 

configuration, which we compare to analytical values. 

The analytic solutions we derived consist of a coupled set of two first order ordinary 

differential equations in parameters p and b. The equations are, given a steady shock 

as discussed above: 

1- "fTnP) dp _ "/ADPio [( 1 "( Sn + sinOs) (Gn- An) ]- - - +--p- r + -'------C- (3.22)( ("1- 1)rn dz V8 Tn "(- 1 b "/ADPioPn0 V'; 

db = "/ADPio A2 (!:.) , (3.23)
dz V8 b 

where, 

1 
(3.24) 

(3.25) 
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(3.26) 

(3.27) 

and 'Y is the adiabatic index of the neutral gas, "(AD is the collisional constant between 

ions and neutrals described in §2.1, Pno and Pio are the initial density states of the 

ions and neutrals respectively, V 8 is the initial speed of the gas towards the shock, 

A= V8 /VA is the Alfven number of the initial state and VA = B0/ JLhrpn0 is the Alfven 

velocity. The velocity compression of the neutral and ionized gases are described by 

the parameters ri = V8 /vi., and Tn = V8 /Vn.,· The dimensionless pressure is p = 

Pn/ (Pnov;), and the dimensionless field (in the y-direction) is b = By/B0 , where 

B0 is the total initial field magnitude. The deflection of the field is quantified by 

sn = (vnyBx) / (v8 Bo), as the deflected field will accelerate a velocity in they direction 

as it moves through the gas. The x-component of the field stays constant due to the 

symmetry in the problem, and in our runs the ionization is kept constant (though its 

velocity shocks strongly). The parameter r defines what type of chemistry is used or 

if ion mass is simply conserved. The value given above is for a constant ion density. 

For ion mass conservation (as in Wardle (1991a)) the value is r = (ri- rn)· For a 

general chemistry, r = f(x) (1- rnfri) (such that one can derive Pi= f(x)pi0 , where 

f(x) is some function in the x direction which may include variables such as rn)· 

Drift heating is governed by the parameter: 

2 (3.28) 
2 r ( 2 2)= "/ADPn0 Pi0 V 8 -b b + cosBs ,2Tn 

and An is the cooling rate. The analytical solutions prove to be rather difficult to solve 

without cooling (via a simple Runge-Kutta 4 technique). By including a cooling rate 
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as done in Wardle (1991a), solutions can be obtained that are significantly different 

than un-heated shocks yet realistically integratable. We take a simplified cooling rate 

that approximates those of Lepp & Shull (1983), relevant to molecular clouds: 

An= { An0 [(!ADPio)/(p5vs)]p3 [erg S-
1

] (p >Po) 
(3.29) 

0 (otherwise), 

where p0 is the initial dimensionless pressure and Ana is a fudge factor. We found 

Ana = 5 x 10-5 provides good analytical graphs at a reasonable computational cost. 

The lengthscale of the shock is given as Lshock = .J2vAtftow, where tftow = 1/({AD Pia) 

is the timescale for the shock. We use these parameters in our simulation setup, hav­

ing a box 12 x (1-2) X (1-2) Lshock in dimensions (depending on resolution), and 

printing plot files every 0.1 tftow (for a total of 300 files). The evolution consists of 

a large outward propagating density enhancement which is ejected from the box as 

the flow settles to form a C-shock. Note that while this density wave is in the box 

timesteps are smaller, by about an order of magnitude. Because of this, a longer box 

means longer computation times. 

Note that our solution for the pressure derivative in equation (3.22) is significantly 

different than that derived in Draine (1986) and used in Wardle (1991a). Even without 

our addition of energy dissipation we find a different equation4 . We compare our 

solution to that of Wardle (1991a) in Figure 3.5 for an adiabatic index of 1 = 1.1 

and using the values presented in Table 3.3. The significant difference between the 

results is quickly apparent. See typical isothermal values of pressure in Table (3.3) to 

understand the scope of the numbers in this figure. Other quantities have only minor 

4 Note that while Draine (1986) has used physical arguments to explain away magnetic 
terms in the energy equation, our derivation follows mathematically from first principles. 
This may be a source of error. This discrepancy will not affect the isothermal solution, thus 
it's widespread success in testing other codes. 
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Figure 3.5: Pressure profiles comparing our analytic solut ion to that of Draine 
(1986) and Wardle (1991a). A significant difference is apparent. 

differences. 

Numerical Results 

In the following subsection we present comparisons of isothermal and non-isothermal 

C-shock simulations relative to analytical solutions. The error is calculated as in Mac 

Low et al. (1995): 

07 100 IQanalytic - Qnumerical I 
10 error= . (3.30) 

max (Qanalytic) 

We employ very poor resolutions in simulations; our low resolution has cell sizes of 

(1/2) L shock while our 'high ' resolution run resolves (1/4) L shock (though in 3D). This 

is enough to show the high accuracy of our models (giving similar errors to that of 

Mac Low et al. (1995) with half the resolution) and demonstrate a clear convergence, 

thus confirming our implementation of the induction equation. Our results are in 
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F igure 3 .6: Density profiles comparing simulations of isothermal C-shocks with 
analytical solutions at different resolutions. Accuracy is high and convergence is 
evident. Pressure distributions are identical (though scaled) for the isothermal case. 

Figures (3.6)- (3. 9). Recall that we are using very poor resolutions in t hese tests. 

Finally we present the results of the non-isothermal run , testing our energy terms. 

For these simulations we use an adiabatic index of "f = 1.1 . These simulations also 

show high accuracy and a clear convergence (the right end of the box is explained 

below). Our results are seen in Figures (3.10)-(3.14). 

We note that the shocked pressure structure is very long, and would be inefficient 

to encapsulate in a much larger simulation box. We maintain the same box size , 

but only attain a partially stable, non-isothermal C-shock. It is seen to slowly push 

out of the right boundary (the isothermal C-shock is stable). For this reason shocked 

values beyond the discontinuity at 5 L shock do not fully attain the correct values. T his 

explains the large tail of increasing errors which do not show convergence. Right state 
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Figure 3.7: Magnetic field profiles comparing simulations of isothermal C-shocks 
with analytical solutions at different resolutions. 
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Figure 3.8: X-component velocity profiles, comparing simulations of isothermal C­
shocks with analyt ical solutions at different resolutions. 

66 



0.9 .--~--.--~-.--~---.--~-.---~-----.--~-----, 

0.8 

0.7 

0.6 
'(/) 0.5 
E 
£ 0.4 

>>. 0.3 

0.2 
analytic solution

0.1 high-res 
0 f--H30EKJO€ '""' low-res • 

2.5 high-res 
low-res2 

1.5 ' 
' 1 1/ 1\ 

' 
0.~ ~:.::.: ···~ ···--== ,''..:,· ··= -=·--~~==~-......~=--__)---·~--'-~.,c···==::::J---== - r=- --±= ---

0 2 4 6 8 10 12 

X I Lshock 

Figure 3.9: Y-component velocity profiles, comparing simulations of isothermal C­
shocks with analytical solutions at different resolutions. 

values are seen to generally decrease with flow time. To emphasize this we show in 

Figure (3.15) two different fits for the density at the same resolution , but for different 

t imes when t he shock appears est ablished (the simulations are both t ranslated to a 

'best-fit ' posit ion on the graph, in reali ty the later curve is displaced from the earlier 

curve t owards t he right boundary) . This shows how error increases with t ime in the 

post-shock region due to our not correctly encapsulating the pressure shock. 

Furt her work needs to be done on t his test to perfect it for quick testing procedures . 

However , it is clear from the above tests that our code performs admirably in all facets. 
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F igure 3.10: Pressure profiles comparing simulations of non-isothermal C-shocks 
with analytical solutions at different resolutions. Accuracy is high and convergence 
is evident. Temperature distributions are similar (though scaled ). 
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Figure 3.11: Density profiles comparing simulations of non-isothermal C-shocks 
with analytical solutions at different resolutions. 
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Figure 3.12: Magnetic field profiles comparing simulations of non-isothermal C­
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Figure 3.13: X-Component velocity profiles, comparing simulations of non­
isothermal C-shocks with analytical solutions at different resolutions . 
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Figure 3.14: Y-Component velocity profiles, comparing simulations of non­
isothermal C-shocks with analytical solutions at different resolutions. 
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Chapter 4 

Results: The Collapse of 

Magnetized, Rotating 

Bonnor-Ebert Spheres with 

Ambipolar Diffusion 

4.1 Introduction 

Over the past decade numerical simulations have revealed a variety of very important 

physical processes at play during the collapse of a molecular cloud core from realistic 

initial conditions. These processes help us understand the key issues associated with 

the evolution of a pre-Class 0 object, such as how rotation is effectively lost through 

magnetic braking, how multiple stars form through fragmentation, why outflows and 

jets begin so early and how all these effects help drive very high accretion able to 

overcome radiation pressure from a massive internal protostar. The introduction of 
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magnetic fields into these models has been a necessary physical ingredient in most 

phenomena, or else having a significant effect on others. In most computations to 

date, however, the magnetic field is coupled perfectly with the gas as a whole, where 

in fact real molecular clouds have only a small fraction of charged species. In dense 

star forming regions ions and electrons have abundances on the order of x ~ 10-7, 

where x represents the number of ions per H atom (including those in molecular 

H2). Realistic conditions provide only partial magnetic support to most of the gas, 

allowing neutral components to sift through their coupled counterparts at the cost of 

collisional friction. 

This physical process is called ambipolar diffusion and has been studied in a 

large variety of astrophysical contexts very much relevant to star formation, since 

the work of Mestel & Spitzer (1956). In this early study, a cloud of gas gradually 

loses magnetic support through the straightening of its field lines. Numerical simula­

tions which stemmed from this idea suggested clouds form in magnetically supported 

environments and require ambipolar diffusion as a mechanism in which to lose this 

support and collapse (Tassis & Mouschovias, 2007b; Ciolek & Basu, 2006; Desch & 

Mouschovias, 2001; Basu & Mouschovias, 1994; Fiedler & Mouschovias, 1993), de­

spite long formation timescales of (10-20) Myr in contrast with observations. Sharply 

discontinuous shocks were seen to become more continuous transitions ( C-shocks) un­

der the addition of ambipolar diffusion and susceptible to a unique instability (Mac 

Low & Smith, 1997; Smith & Mac Low, 1997; Mac Low et al., 1995; Wardle, 1991a,b, 

1990; Draine, 1986). Ambipolar diffusion has also been seen as important in damping 

the magnetorotational instability (MRI; Kunz & Balbus, 2004), in the fragmentation 

of cloud cores during collapse (Hosking & Whitworth, 2004a) and even in turbulence 

models of molecular clouds (O'Sullivan & Downes, 2006; Zweibel, 2002). These stud­
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ies formed an early basis for numerical techniques using ambipolar diffusion, from 

which point we proceed. 

Many authors have studied the collapse of supercritical clouds both analytically 

(Hunter, 1977; Larson, 1969; Penston, 1969) and through numerical simulations in­

volving increasingly complex physics and multiple dimensions (Machida et al., 2007; 

Banerjee & Pudritz, 2006; Banerjee et al., 2004; Foster & Chevalier, 1993). In these 

collapses it was revealed that magnetic fields in combination with rotation help drive 

early rotating disk-winds during the collapse phase. Rotating disks wind up a toroidal 

magnetic field which then acts to torque down the disk. In turn, magnetic field lines 

attached to the ambient, non-rotating medium are wound up, extracting angular 

momentum from the rotating cloud through a process called magnetic braking. 

The effects of braking are important when one considers the fragmentation of a col­

lapsing cloud during these early stages. Simulations have shown ambipolar diffusion 

reduces this effect and allows more fragmentation to occur (Hosking & Whitworth, 

2004a). Effects of magnetic pressure have been shown to have a more prominent role 

in the fragmentation process by stabilizing the collapsing disk against instabilities 

(Price & Bate, 2007; Banerjee & Pudritz, 2006). The role of ambipolar diffusion may 

be understood to decrease the effects of pressure by suppressing the overall build-up of 

the magnetic field. Large fossil fields of 1 kG have been recently observed in the core 

of the protostellar accretion disk FU Orionis (Donati et al., 2005), in agreement with 

results from ideal MHD collapse simulations of (Banerjee & Pudritz, 2006). From 

this, we don't expect magnetic field build-up to be significantly affected by ambipolar 

diffusion. Rather, while the magnetic field distribution is certainly smaller, we argue 

in §4.3.1 that ambipolar diffusion allows for a diminished effective magnetic support, 

which in turn leads to a greater tendency for instabilities to form in the disk. This 
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drives higher rates of fragmentation. 

By extracting angular momentum it is found that magnetic fields are responsible 

for high accretion rates of around 10-3 M0 yr-1 during the pre-Class 0 collapse. As 

massive protostars are likely to begin nuclear burning while accreting, radiation pres­

sure may play a role in limiting their final mass. Axisymmetric numerical simulations 

have shown that slowly rotating, non-magnetic molecular clouds can form to at most 

42.3 M0 in face of radiation pressure from even the most massive cloud cores (Yorke & 

Sonnhalter, 2002). Accretion rates found in Banerjee et al. (2006) are strong enough 

to overcome radiation pressure from a newly formed massive protostar. In addition, 

outflows carve out magnetically supported bubbles as they advance from the disk. 

These bubbles provide avenues of escape for the radiation from a massive protostar, 

allowing the star to obtain very large masses through gravitational collapse (simula­

tions currently obtain M > 40 M0 , but continue to accrete in a stable configuration; 

Krumholz et al., 2005). If magnetic fields regulate the creation of these outflow cav­

ities, it becomes important to understand how a realistic treatment of collapse with 

non-ideal magnetic coupling affects if and when these early outflows occur. We will 

show in §4.3.4 that, surprisingly, outflows start even earlier if ambipolar diffusion is 

included. 

Ultimately, the driver of angular momentum transport, in which toroidal magnetic 

fields are wound up and outflows are launched, is the pseudodisk which forms early on 

in the collapse. This disk is generally non-Keplerian and is held up by a combination 

of thermal, rotational and magnetic supports. The size of the disk is commonly 

defined by the presence of a sharp shock at a scale of (20 -100) AU, wherein the size 

depends on the cooling model used in the numerical simulation (Banerjee & Pudritz, 

2006; Banerjee et al., 2004). It is also the region in the collapse where ambipolar 
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diffusion is the strongest; ionization fractions decrease with increasing density at a 

rate dependent on the chemistry used and the ionization sources considered. Unable 

to cool efficiently and remain isothermal, the disk should experience a significant 

amount of frictional drift heating. We show that this leads to a 'puffy' disk in §4.3.3. 

Furthermore, the surface layers of the disk will be more coupled to the field than 

the midplane under realistic ionization conditions. We call the effectively decoupled 

disk midplane a decoupled zone and provide a quantitative measure of its extent in 

§4.3.5. This will drive higher accretion rates along surface layers through increased 

transport of angular momentum. This leads to a sort of precursor to the idea of 

layered accretion in a Keplerian accretion disk, as introduced by Gammie (1996). 

Coupled disk layers will furthermore drag in field lines with respect to the decoupled 

midplane. This differs significantly from the ideal picture where the midplane is seen 

to drive magnetic field build-up, producing a 'pinched-in' field structure towards the 

center of the cloud and along the disk midplane (Machida et al., 2007; Banerjee & 

Pudritz, 2006). 

Finally, MRI turbulence in an ambipolar diffusion dominated disk has been shown 

to be significantly damped if the rotational timescale, n-1 ' is shorter than the timescale 

of neutral-ion collisions, Tni = 1/'YADPi (Kunz & Balbus, 2004), where n is the rota­

tional frequency, Pi is the ion density and "/AD = 3.28 x 1013 g-1 cm3 s-1 represents 

the collisional coupling of the ions to the neutrals. A question we pose is whether 

or not a sort of proto-dead zone can form early on in the disk midplane, where MRI 

turbulence is significantly damped due to the lack of coupling of the field to the gas. 

Do we provide the initial conditions of dead zones during the initial collapse? 

It is very important to elucidate the initial conditions a dead zone may have, as it 

has been shown to have important consequences in planet formation models treating 
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migration (Matsumura & Pudritz, 2005), helping to determine final planet masses and 

to stop planets from entering their parent star. Such a dead zone would be different 

as it is governed by ambipolar diffusion rather than Ohmic dissipation, which will be 

important at only the highest densities considered in pre-Class 0 collapse (Desch & 

Mouschovias, 2001). We will discuss this further with the aid of our results in §4.3.5. 

4.2 Numerical Methods 

To perform numerical studies of the physical questions raised in §4.1 we use FLASH2.5 

(Fryxell et al., 2000). FLASH provides us the ability to compute magnetohydro­

dynamics (MHD) in three dimensions while employing adaptive mesh refinement 

(AMR). Its computational scheme, based on the 8-wave Riemann solver of Powell 

et al. (1999) with the addition of a simple yet effective diffusive V · B cleaning tech­

nique, allows very accurate capturing of shocks. 

We build on previous studies of collapsing molecular clouds (Banerjee & Pudritz, 

2007; Banerjee et al., 2006; Banerjee & Pudritz, 2006; Banerjee et al., 2004) from 

which the details of the cooling modules used can be found. Additions to the FLASH 

code include resolving the Jeans length (>.J = ( ~)) by a variable number of grid 

cells in accordance with the Truelove criterion (Truelove et al., 1997, our runs use 

8 or 24 cells per AJ) and various cooling effects. The cooling effects include cooling 

due to collisional excitation of molecules such as H2, H, 0, CO, 02, HCl, C and 

0 (Neufeld & Kaufman, 1993; Neufeld et al., 1995; Banerjee et al., 2004), as well 

as dust-gas interactions (Banerjee et al., 2006) along with H2 dissociation at high 

temperatures (and corresponding formation) and a radiative diffusion approximation 

in the optically thick regime. 
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This provides a more realistic method in which to account for the sudden changes 

in the equation of state of a collapsing cloud core, when cooling becomes inefficient. 

Many authors use a variable equation of state which jumps from isothermal to adia­

batic (or something similar) at a given density (Tassis & Mouschovias, 2007 a; Machida 

et al., 2006). The latter technique forbids the analysis of special energetic effects like 

drift heating, shocks or energy diffusion, by eliminating the energy equation for that 

of a polytropic equation of state. 

4.2.1 Initial Conditions 

Our initial conditions are those of a critical Bonnor-Ebert sphere in pressure equilib­

rium with a warm, low density environment. The details of our setup can be found 

in Banerjee et al. (2004). The sphere is given a small spin such that ruff > 0.2 

112(the freefall time is tff = (37r/32Gp0) , where p0 is the central density.), which has 

been shown to be a supercritical value for fragmentation in hydrodynamic collapses 

(Matsumoto & Hanawa, 2003). 

We simulate the collapse of our low mass model of M = 2.1 M0 (which follows 

characteristics of the observed Bonnor-Ebert sphere Barnard 68 Alves et al., 2001) 

and a high mass model of M = 168 M0 (which follows characteristics of observations 

made on massive disks Chini et al., 2004). The former model has been used in the 

study of early outflow formation in (Banerjee & Pudritz, 2006), while the latter has 

been used in comparing ideally coupled to purely hydrodynamic and purely isothermal 

collapses, producing high accretion rates in all cases (Banerjee & Pudritz, 2007). We 

further this study in comparing the effects of a more realistic coupling through the 

implementation of ambipolar diffusion. The model details are outlined in Table 4.1. 

Magnetic fields are introduced such that the plasma beta, (3 = P/(B2/47r), is 
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Table 4.1: The parameters for our collapse runs. Note that the high-mass model 
for our non-ideal run is given ~ the rotation of the ideal run, so nHM, AD = 8.265 x 
w-15 s-1. 

model Po [g cm­ 3] C8 [km s­ 1
] Csext [km S-1] {3 Bmax [JLG] n [s-1] 

high-mass 3.35 x w­ 21 0.408 1.289 76.0 1.36 1.10 x w-14 

low-mass 9.81 x w­ 19 2.458 7.774 84.0 14.0 1.89 x w-13 

constant and magnetic support does not prevent the cloud from collapsing. The field 

is initially aligned with the rotation axis. This follows work by Machida et al. (2006) 

which suggests oblique field components brake quickly in an ideal collapse, provided 

n > Dcrit = 0.39B0G112c_;-1 , where n is the rotational frequency, B0 is the initial field 

and c8 the isothermal sound speed. If the rotation is not strong enough, an oblique 

field will dominate, maintained by MRI. We note that our parameters are borderline 

to satisfying the condition of an aligned field (this allows us to better study outflows 

and other magnetic effects, yet maintain justification for an aligned field). 

We use the low mass model of B68 more as a study of fragmentation and outflow 

generation and have given ideal and non-ideal models the same initial rotation of 

Dttr = 0.4. The high mass model is used more to study the characteristics of collapse, 

and so we adjust the rotation parameters such that the ideal model has Dttr = 0.4, 

the non-ideal model has Dttr = 0.3, and a corresponding hydrodynamic collapse has 

Dttr = 0.2, to correct for the effects of magnetic braking. 

We use periodic boundary conditions on a box that is more than an order of 

magnitude larger than the radius of the initial B-E sphere. 
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4.2.2 	 Magnetohydrodynamic Equations with Ambipolar Dif­

fusion 

We use a single fluid approximation for our implementation of ambipolar diffusion 

in this initial study. The gain is a reduction in the effective number of fluids in the 

problem to one. Molecular clouds have small ionization rates such that Pi«: Pn, where 

the subscripts i and n indicate properties of ions and neutral species respectively. 

More accurately, we approximate the ion density as( (Hosking & Whitworth, 2004b; 

Fiedler & Mouschovias, 1993)): 

K n 
n k K' ( nn )-2 	 (4.1)

ni = ( 105 cm-3 ) + 103 cm-3 ' 

where n is a number density, K = 3 X w-3 cm-3, k =~and K' = 4.64 X w-4 cm-3 . 

The second term dies off quickly in the higher density regime, at which point we're 

left with the common ni ex: nJ;f2. The relation (4.1) comes from approximating the 

results of ionization equilibrium calculations (Elmegreen, 1979; Nakano, 1979) where 

the sole form of ionization is through cosmic rays (the cited authors assume a cosmic 

ray ionization rate of (o = 6.9 X lQ-17 s-1). 

This approximation can be used to eliminate the magnetohydrodynamic equations 

of the ions (see appendix A in Patel & Pudritz (1994) or Chapter 2 for a derivation 

of the isothermal equations and non-isothermal equations respectively) and provide 

an equation for the drift velocity ud between the two species: 

(4.2) 

where u 	is a velocity, B is the magnetic field and f3AD = 1 
. The constant 

ILO'YADPiPn 

1 3/AD= ~~m!: = 3.28 x 1013 g- cm s-1 represents the coupling of the neutrals and 

1ons. Ions are considered to be typically HCO+ or Na+ which have similar masses 
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3 1(about 29.0 a.m.u.) and collision rates with H2 (< CYV >ni= 1.7 x 10-9 cm- s­

(McDaniel & Mason, 1973)). 

We can derive a set of MHD equations for the neutrals, consisting of frictional 

interaction with the ions, plus some extra arnbipolar diffusion terms: 

~ +v. (pu) = 0 (4.3) 

2 

a(pu) + V. (puu + P + B - .!_BB) = -pg- .!_B (V ·B) (4.4)m ~ ~ ~ 

a: + V · [ u (E +P+ ~:) + : ( u · B) Bl+ V · [fhnB2 
( J x B)J 

0 

= pg · u- .!_ (u ·B) (V ·B)+ J.lof3AD II J X Bll2 (4.5)
J.lo 

- f3An [B · (J X B)] (V ·B) 

8B
7Jt + V · (uB- Bu) + V · (J.lof3An [(J X B) B- B (J X B)]) 

(4.6) 
=- (V ·B) u- (V ·B) [J.lof3An(J X B)], 

where g is the gravitational acceleration, P is pressure, E is energy and J = ..1.. V X B. 
f.£0 

Note that V · B =/= 0 in the scheme of Powell et al. (1999) used in FLASH. These 

these terms must be included to ensure stability. However, values are kept below 

truncation-level error by the scheme and through an additional diffusive cleaning 

method employed in FLASH after each timestep. 

The overall application of this ionization formula in the code is relatively simple, 

but may become more complicated once charged grains become important. The 

effect of grains has been predicted to become important at densities of n = 1010 , from 
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which point a multi-fluid approach may be necessary (Tassis & Mouschovias, 2007b; 

Nakano et al., 2002). A first reasonable step in dealing with ambipolar diffusion in 

highly time-dependent, 3D calculations is to take (4.1) as the ionization (Kudoh et al., 

2007; Ciolek & Basu, 2006; Hosking & Whitworth, 2004a; Safier et al., 1997; Fiedler 

& Mouschovias, 1993). Further work on implementing the complications introduced 

by charged grains can later be developed and readily implemented. 

4.2.3 Timestep 

The Courant condition is satisfied by a diffusive timestep (Mac Low et al., 1995): 

(~x)2
TAn=To--, (4.7) 

'f/AD 

where T0 is a fudge factor (we typically use 1/30 or 1/120), (Llx) represents the 

smallest cell length and the ambipolar diffusivity is 'f/AD = f3AnB 2 (Zweibel, 2002). 

Clearly, the (Llx)2 limitation is a harsh one, especially in an AMR simulation. New 

developments have been seeking to get around this in a two fluid approach (Li et al., 

2006) claiming longer timesteps by factors of 10-100. Ultimately, however, the numer­

ical need to resolve the Jeans mass will limit any simulation studying gravitational 

collapse with ambipolar diffusion to a maximal central density. 

4.2.4 Testing of the Code 

We have thoroughly tested our implementation of ambipolar diffusion in the FLASH 

code through i) qualitative tests of the quasi-static collapse of a magnetically sup­

ported critical cloud (based on numerical simulations done by Fiedler & Mouschovias 

(1993), ii) isothermal C-shocks (Mac Low et al., 1995) and iii) non-isothermal C­

shocks with drift heating (Wardle, 1991a) and energy diffusion. The latter two provide 
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analytic solutions in which we observed accuracy (below 0.5 % for poor resolutions 

of Lshock/4) and convergence when increasing our resolution. The third test was 

properly derived and customized by us in hopes that it become a standard test for 

non-isothermal ambipolar diffusion codes. The details can be found in Chapter 3. 

4.3 	 Results and Discussion 

4.3.1 	 Magnetic Braking, Magnetic Pressure and Fragmenta­

tion 

Rotation poses a large obstacle to star formation due to the vast difference between 

rotational energy in molecular clouds and that observed in stars. Large initial rota­

tional velocities are imparted upon these cores via oblique shocks from their turbulent 

beginnings. This is found to be on the order of Otff > 0.2 for a third of the clouds 

in numerical simulations (Tilley & Pudritz, 2005). Magnetic braking has long been 

known to be very efficient at reducing large rotational velocities in clouds, through an­

alytic (Mouschovias & Paleologou, 1986, 1980) and numerical studies (Machida et al., 

2006; Banerjee & Pudritz, 2006; Hosking & Whitworth, 2004a; Basu & Mouschovias, 

1994). 

The physical process of magnetic braking involves interplay between a rotating 

cloud and the static ambient medium. As the cloud rotates, it drags field lines along 

with it. This transfers angular momentum to the external medium in the form of 

an outward propagating torsional wave at the speed of the Alfven velocity VA = 

Bo/(47rp)112 • By extracting angular momentum these Alfven waves will effectively 

slow the cloud's rotation. 

We compare the braking effects in ideal and non-ideal collapses on our low-mass 
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B68 model, starting with identical initial conditions. It is difficult to measure the 

effect of braking as the gas is collapsing. By conserving angular momentum, infalling 

material naturally rotates faster. Also, there are many physical processes at work 

which are actively redistributing angular momentum within the cloud (see §4.3.2). 

However, the external medium is initially non-rotating and any toroidal field built 

up must be generated purely by magnetic braking. Our method involves measuring 

the largest absolute value of the toroidal field outside the initial cloud radius. The 

maximum value gives a good indication of the strength of the outward propagating 

torsional Alfven waves, and thus the efficiency of the magnetic braking. 

In Figure 4.1 we observe that the maximum IB<PI extracted in the non-ideal case 

is about 3/4 that of the ideal ideal collapse for a given time. From analytic models 

of magnetic rotors undergoing braking due to ambipolar diffusion, we can derive the 

relation: 

2/( ) 1 2 2 1
Etoroidai = B<P 81r = 2pr f2 = I Erotationai, (4.8) 

0 

where r is the cylindrical radius, E indicates an energy density, p is the density of the 

rotor (or our envelope, which we can approximate as constant) and I= I0Mr2 is the 

rotor's moment of inertia (Io is a dimensionless constant). This gives us an indication 

of the efficiency of magnetic braking. It also tells us that 'rotation extracted' is 

proportional to 'toroidal field generated', which completes our analysis of Figure 4.1. 

We conclude that braking of a non-ideal cloud is about 3/4 as strong as ideal 

braking and use this to correct the rotation of our high mass model so the non-ideal 

simulation has 3/4 the rotation of its ideal counterpart. This is a important result 

as it has long been argued that magnetic braking through the addition of ambipolar 

diffusion is only affected by "a few percent" (Basu & Mouschovias, 1994; Mouschovias 

& Paleologou, 1986). These previous studies simulated quasi-static thin disks, so here 
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Figure 4.1: The evolution of the largest value of IB<P I outside 1.9 x 1018 em from 
the center, which is about the initial radius our low-mass B68 model. The ideal 
model (solid red line) is more efficient at generating a toroidal field through magnetic 
braking than the non-ideal model (dashed blue line) by about 4/3. 
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collapse is playing an important role in mediating braking affects. 

Recent studies of fragmentation with ambipolar diffusion have also suggested that 

the effect of decreased magnetic braking is indeed significant, leading to increased 

rates of fragmentation. However, it is magnetic pressure which plays a dominant 

role in supporting the collapsing cloud against instabilities that would otherwise form 

(Price & Bate, 2007; Banerjee & Pudritz, 2006). We present x-y snapshots of the 

B68 model during the later phases of its evolution in Figures 4.2 and 4.3. In the ideal 

case the magnetic pressure is observed to form a ring and then fragment into two 

clumps at a separation of (2-3 AU). The density follows this by forming a bar which 

fragments into 2 clumps. These clumps oscillate between separated and rejoined 

from then on. In the non-ideal case, magnetic pressure support is seen as reduced 

and noticeably fragmented. This allows fragmentation on much larger scales due to a 

strong reduction in effective magnetic pressure (note scale differences in Figures 4.2 

and 4.3 by an order of magnitude). The disk in this case forms a wide ring which 

has fragmented into 2 or 3 clumps at 10 AU separations at the point we end the 

simulation. This is consistent with purely hydrodynamic collapse simulations of B68 

(with these parameters) which suggest instablilities such as rings form on scales of 

200 AU, much larger than their magnetic counterparts which find similar results as 

in Figure 4.2 (Banerjee et al., 2004; Banerjee & Pudritz, 2006). In this case, the 

ambipolar diffusion collapse is seen to lie somewhere between a hydrodynamic and a 

magnetohydrodynamic collapse. 

We conclude that ambipolar diffusion increases significantly the rate of fragmen­

tation of the disk by reducing magnetic pressure support within it. 
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4.3.2 High Accretion Rates Persist 


We show that in the collapse of our high mass model, ambipolar diffusion does not 

affect the high mass accretion rates observed in previous studies (e.g. Banerjee & 

Pudritz, 2007). This is due to the fact that magnetically driven redistribution of 

angular momentum is still effective in a resistive medium. Drift heating is found to 

be apparent in shocked structures as well as in the disk. 

We compare collapse profiles of a hydrodynamic (HD) collapse, an ideal magnetic 

collapse and a magnetic collapse with ambipolar diffusion. For our results we have 

chosen the end state of our ambipolar diffusion run and compared that with states in 

HD and ideal runs which have similar central column densities of about 300 g cm-3 . 

These are not very high values of column densities due to the strong limiting timestep 

of ambipolar diffusion (see §4.2.3). 

Differences in the profiles shown in Figures 4.4-4.6 begin to become apparent 

inside about ( 200-300) AU, the disk envelope. Drift heating has been shown to have 

a strong effect on pressures and temperatures in shocks through analytic solutions 

derived by Wardle (1991a) and in our C-shock test runs which included drift heating 

as well as efficient cooling approximated from Lepp & Shull (1983). It is seen to 

dramatically increase the pressure in the presence of efficient cooling, compared to a 

C-shock where drift heating and cooling are turned off. This extra thermal support 

will cause more bunching up of gas in magnetically driven shocks, as seen in the 

column density profiles in Figure 4.41. In particular, the ambipolar collapse shows 

1All quantities are azimuthally averaged, weighted with density p such that a value 
f(R) = [27ri;(R)]-1 I dzd<f>p(x)f(x), where I;(R) = (27r)-1 I d<f>dzp(x) is the column den­
sity as a function of cylindrical radius R. Note that temperature values taken under this 
averaging are deceptive, as central temperatures in the ambipolar model actually reach 
more than 500 K by the time we end the simulation. This is due to concentrations of 
high temperatures in small regions. However, our method nonetheless captures the general 
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additional heating in the initial shock at about 100 AU. Further heating inside the 

disk occurs due to the intense dragging of field lines along magnetized disk layers, as 

described in §4.3.3. 

We find accretion rates in our ambipolar model of 

1(d:) max = w-3 M0 yr- = 60 c~OG-1 
= 89.5 cfocal c-1

' (4.9) 

where Ciao is the original isothermal sound speed at 18 K and C!ocal = P/ p is a local 

approximation of the thermal sound speed. The magnetized cases have higher ac­

cretion rates than the non-magnetized case. The mass accretion rates have similar 

profiles when plotted in units of the local sound speed. This reflects the fact that the 

gas is supersonic and inflow velocities are sensitive to higher temperatures and the 

Mach number (as discussed in Banerjee & Pudritz (2007)). Figure 4.5 shows the infall 

velocities, showing maximal supersonic infall on the order of 2-3 C!ocai· The ambipolar 

drift heating in this case is providing additional thermal energy to the magnetic shock 

at 100 AU which boosts infall speeds, but the overall local profiles are similar. 

We also note that these are early stages for these types of simulations and accretion 

rates will continue to rise. It is difficult to follow disk evolution very far because of 

the severe limitation of the ambipolar diffusion timestep. The effects of magnetism 

on collapsing magnetized cloud cores, with similar initial profiles as our high mass 

model, found that at central column densities of 5000 g cm-2
, accretion rates had 

reached 10-3 M0 yr-1 (Banerjee & Pudritz, 2007). In our simulation, the ideally 

magnetized collapse has only reached column densities of 300 g cm-2 and accretion 

1rates of 4 x 10-4 M0 yr- . From this we expect mass accretion rates should increase 

through further evolution of the collapse. Note that the ambipolar diffusion collapse 

already shows about twice the mass accretion rate of its ideal counterpart, due to 

trends in this case. 
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Figure 4.4: The column density profiles (above) and temperature profiles (below) 
of the high mass model, comparing hydrodynamic, ideal MHD, and ambipolar MHD 
collapses. One can connect drift heating at 100 AU to the surface density bunching 
there. Profiles to the right of the graph are very nearly identical; the temperatures 
are isothermal and the column density follows a 2: ex r - 1.2 profile. We show that 

0 6the general trend of temperature inside 100 AU is approximately T ex r - · , though 
clearly the heating and cooling produce a complicated profile. 
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decreased support from magnetic pressure. 

In the inner regions of the disk, magnetic coupling has decreased significantly. 

We observe a gradual change of behaviour in the ambipolar collapse which initially 

follows the ideally magnetized profile but deviates at small distances. This effect is 

independent of the choice of thermal sound speed (though less so in the local sound 

speed approximation), and thus stems from a non-thermal cause. As coupling is lost, 

so is magnetic support in the disk midplane and this drives up accretion rates to a 

more hydrodynamic profile. 

Magnetic torques extract angular momentum and create higher accretion rates. 

Figure 4.7 shows the efficiency of this process through profiles of the z-component 

of specific angular momentum, iz = (r X u)z, where r is the radial position and u 

is the velocity. Note that originally the ideal core had 2 and 4/3 times the angular 

momentum of the HD and ambipolar collapses respectively. Also note that the initial 

distribution of angular momentum is that of a solid body and that iz vs M should 

be constant in time if iz is not redistributed within the disk. 

Magnetic torque is efficient enough at extracting angular momentum to drive iz 

below HD values for much of the disk and surrounding envelope. Due to the lack of 

magnetic coupling inside the inner disk of 20 AU, these processes are inefficient for 

the ambipolar collapse. It has a higher angular momentum than the HD case here 

as due to the fact that it started out with more rotation and that only HD processes 

are effective in an decoupled zone. 

Plotting iz with respect to mass is important as it should be constant with time if 

angular momentum is not redistributed in the disk. In the lower graph of Figure 4.7 

we see that iz vs M is not constant with time in all three cases. The principal effect is 

due to the formation of a bar in the disk which naturally extracts angular momentum 

92 




--

R [AU] 
10-1 10° 101 102 

10° 

' en 
E 
2S 

>~ 

10-1 

, ­ ····· ··· ·· 
... , .. ···· 

, ­
: 

.. 
__ _ _ :...·...-:: ­

hydro 
ideal mhd 

non-ideal mhd 

1 
0 

6-
en 

-->~ 

1012 1013 1014 1015 1016 


101 

co 
(.) 

0 
1o0u 

> 

R [em] 

R [AU] 
10-1 10110° 102 

:-.. :-.. :-.. :-.. :-. ­

hydro 
ideal mhd 

non-ideal mhd 

1014 1015 

R [em] 
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as gas collides with it or is drawn to it through gravitational attraction. We have 

taken a snapshot of this distribution in the bottom graph of 4.7 for three different 

times starting at some time t 1 (not necessarily the same for each case). At this point 

we see that the ambipolar starts out lagging behind both the hydro and the ideally 

magnetized collapses. However, after 24 000 yr (t2 ) magnetic process have begun to 

take effect, and more of the ambipolar jz distribution follows with the ideal collapse. 

Another 5000 yr (t3), when the column density has also reached 300 g cm-2 in each 

model, a clear hierarchy is seen with the HD collapse having more angular momentum 

than the other two, and the ambipolar run lying in between. This is to be expected 

as magnetic effects are generally decreased in the non-ideal collapse. We conclude 

that the effects of magnetism are gradually aligning the jz profiles of ideal and non­

ideal collapses. Interior regions of the ambipolar collapse show a more hydrodynamic 

profile as magnetic processes are slower to enact redistribution of jz. However, once 

these processes do take effect, they are very efficient and angular momentum profiles 

share more in common with those of the magnetic case than the hydro case. 

4.3.3 Effects on Disk Shock Structures and Field Lines 

A large scale feature of note is the large scale accretion shock that occurs on scales of 

1000 AU in the vertical direction (see Figures 4.8, 4.9 and 4.10 for the ideal, non-ideal 

and HD case respectively). Accreting gas in the cloud midplane is fed through the 

vertical collapse of the envelope. As gas hits the midplane it clumps up in a shock 

and is forced to make a sudden transition in velocity. This shock can become non­

isothermal as pressure forces from the infalling gas and magnetic fields become strong 

enough to make cooling inefficient in face of accretion and possible drift heating. We 

see in Figure 4.9 how the temperature distribution of the shock in the non-ideal 
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collapse makes a much more continuous transition through the shock before it is 

effectively cooled off in the post-shock region than it dos in the ideal case in Figure 

4.8. This profile is similar to that of a C-shock, rather than the sharp J-shock type 

transition made by the ideal collapse. Flow times at this density ( nshock R::i 105 em - ) 

= 1013are on the order of tflow = 107 sand length scales are on the order of Lshock em. 

We note that in running analytic and numeric tests of C-shocks with drift heating 

that it is not unusual to see gradual changes of pressure and temperature on the 

order of (50-100) Lshock while other variables make sharper transitions on the order 

of (2-10)Lshock (where ambipolar diffusion is strong). Thus it is not surprising that 

we find this feature well developed in a collapse that has a freefall time on the order 

of 1013 s. 

Also, by comparing to the hydrodynamic features on this scale we see the role 

of magnetic pressure is to prop up this large scale shock structure. In Figure 4.8, 

which shows the ideal MHD case, the "disk" is quite thick, while it becomes thinner 

as magnetic support is lost partially in the non-ideal case(Figure 4.9) and even more 

so when there is no magnetic support in the HD case (Figure 4.10). 

Magnetic field build up is an important issue to understand. Measurements by 

Levy & Sonett (1978) note the presence of large fossil fields of about 3 G at 1 AU 

sometime in our solar system's history. Recent measurements by Donati et al. (2005) 

find 1 kG fields in the core of the protostellar accretion disk FU Orionis. This has 

been resolved through ideal MHD calculations of Barnard 68 through which previous 

studies (Banerjee & Pudritz, 2006) show a 3 kG field being built up at 0.05 AU, 

along with the production of a jet and a large scale disk wind. It was unclear if 

the role of ambipolar diffusion in limiting this value. In Figure 4.11, we plot the 

poloidal field profile for the collapse of our high mass model, comparing ideal and 
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Figure 4.8: Large scale vertical accretion shocks at 1000 AU for the ideal collapse of 
our high mass model. Temperature contours separate every 10 K, where the ambient 
isothermal gas is at about 20 K. Logarithmic density pseudocolors are in units of 
g cm-3 . Vectors are velocities and typical sizes of 1.5 km s- 1 are shown in the left 
hand corner. The above ideal collapse can be compared with the non-ideal collapse in 
Figures 4.9 and 4.10. The maximal temperatures are 95 K, 177 K and 140 K for the 
ideal and non-ideal and hydro runs respectively (at these scales) at a central density 
of 1.7 x 1012 g cm- 3 . This graph shows a sharp temperature gradient with a thick 
magnetically supported accretion disk. 
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non-ideal collapses at a common column density of 300 g cm-2 • We find that central 

values of Bz = 0.032 G in the ambipolar collapse are lower by a factor of 1.8 to that 

of the ideal collapse. Also, much of the radial profile is shared by the two models. 

Lagging is seen in the region of (300-2000) AU by the non-ideal collapse. However, 

this is made up in at 100 AU as more gas builds up due to active drift heating. In 

the disk, lack of magnetic coupling begins to affect magnetic field build up. From 

these simulations it does not appear as if ambipolar diffusion is seriously damping 

the build up of magnetic field, so that large fossil fields can still build up through the 

initial collapse. It will be important to follow the evolution of the collapse further to 

understand if this radial trend continues in a near self-similar fashion, as seen in the 

ideal collapse. If so, then we can predict the existence of large fossil fields of about 1 

Gat 1 AU and 100 Gat 0.01 AU (where we have not accounted for steepening of the 

profile seen in later stages of the collapse). We need to follow this collapse to much 

higher densities and include the effects of grains and cosmic ray shielding before we 

can be completely confident that this conclusion is 'real'. 

To further investigate the idea that ambipolar diffusion allows sufficient magnetic 

field transport in a collapse, we plot magnetic field strength versus density in our low 

mass simulation of B68 (which reaches higher central densities, with albeit weaker 

resolution). We fit power laws to the trends and find B ex: n°·47 is followed in our 

non-ideal collapse, recovering a well known astrophysical power law observed over 

many orders of magnitude in density, and predicted through numerical simulations 

studying ambipolar diffusion (e.g. Desch & Mouschovias, 2001). We also recover the 

relation B ex: n°·6 in our ideal collapse, as discussed in (Banerjee & Pudritz, 2006) 

studying the same ideal collapse of B68. The effect of ambipolar diffusion is more 

qualitatively clear in this case, suggesting that the B-n relation is the result of a finite 
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conductivity in collapsing molecular cloud cores. 

We note that the instability present in the disk is a strong bar on the scale of 

100 AU. This structure is nearly identical for ideal and non-ideal cases. We show x-y 

plots of the instability in both case in Figures 4.12 and 4.13 to demonstrate the 3D 

nature of the collapse. For disk plots, we take slices for y = 0. Note that the ideal 

bar is a bit fatter than the non-ideal bar due to increased magnetic support. 

To complete the picture of collapse and to better understand the physical pro­

cesses at work, we take a look at the inner disk through 2D images. Here we are 

comparing magnetized and partially-ionized collapses such that each have the same 

central density Pc = 6.25 x 10-12 g cm-3 = 1.73 x 1012 cm-3 (corresponding to the 

end of our ambipolar collapse). In the ideal disk shown in Figure 4.14 we see that a 

strong mass accretion rate in the disk midplane is effective in building up magnetic 

field, as seen in the pinching of field lines there. This cannot be the case in a disk with 

ambipolar diffusion as coupling is weakest in the midplane (recall x = ni/nn <X n;;112 

through a simple chemical analysis). A more striking result seen in the non-ideal 

disk depicted in Figure 4.15 is that field lines are effectively dragged across actively 

coupled disk layers and left behind in the disk midplane. Also we find that the disk 

shock structure is very puffy, more-so in the vertical direction than the horizontal di­

rection. This corresponds to heating of areas where the dragging is strong. Coupling 

is not strong enough in the layers, however, to prevent a significant increase in the 

gas movement against the field lines as compared to the ideal model. This allows 

gas to flow in layers above the disk shocks and subsequently break through the shock 

fronts nearer to the central regions of the disk. Also note the appearance of small 

outflow motions beginning in the non-ideal disk while the ideal disk will only begin 

this process at a few orders of magnitude higher central densities (see §4.3.4). 
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4.3.4 Earlier Than Expected Outflows 

A surprising feature of the non-ideal collapse is the appearance of outflows that begin 

when central densities are only nc ~ 1012 em - 3 . Outflows in the ideal collapse will 

1014begin orders of magnitude later in central density, at nc ~ cm-3. As magnetic 

coupling is presumed to be an important parameter in which to predict outflow gener­

ation, this comes as a surprise. In Figures 4.14 and 4.15 we see similar central density 

states of ideal and non-ideal collapses and we notice that the non-ideal collapse has 

begun launching outflows from the disk. This is hard to make out as outflow velocity 

vectors are small compared to the layered accretion speeds. We highlight the inner 

disk of the ambipolar collapse in Figure 4.17 so that this feature is more apparent. 

We "cut-out" infalling velocities which are too high to avoid saturating our image. 

What becomes clear after analyzing the images is that layered accretion has cre­

ated a very strong pinching effect, akin to the pinching seen in the ideal collapse. 

By the time outflows start in the ideal collapse, this pinching has become similarly 

pronounced (Figure 4.16). It is this pinching that provides effective pressure am­

plification to support a magnetic tower effect (Lynden-Bell, 2003). In the case of 

magnetized layers and the dragging of field lines inwards, an even stronger pinching 

effect is produced than is seen in the ideal case (at the same central density, Figures 

4.14 and 4.15). Thin disk layers drag field lines as opposed to the whole disk mid­

plane. Also, the pinching phenomena occurs twice, appearing on each layer instead 

of in the midplane. This supports the generation of a magnetic tower outflow. Out­

flows with speeds of 0.25 km s-1 are seen in the non-ideal case at central densities of 

1012n = cm-3 , though in the early stages. Stronger outflow motions of 0.4 km s-

are generated by the ideal collapse but at later times wherein central densities reach 

n = 1015 cm-3 . 
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Figure 4.16: Launch of magnetic tower outflow in the ideal collapse of the high mass 
model. The later evolution of the upper panel of Figure 4.14. We see the launching 
of the magnetic tower through the inflating of vertical disk shocks (temperature con­
tours) , in much the same way outflows were launched from the low mass model in 
Banerjee & Pudritz (2006) . Sharp vertical pressure gradients are apparent following 
the outflow bubble which extends out of the graph to a height of 10 AU (and rising) , 
consistent with the magnetic tower mechanism. Large infall velocities are omitted , 
while small outflow velocities of 0.4 km s- 1 are shown. As central densities evolve 
outflow velocities will reach upwards of 4 km s- 1 (Banerjee & Pudritz , 2007) . The 

1015 central density is n c ~ cm-3 . 
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Figure 4.17: Launch of magnetic tower outflow in the non-ideal collapse of the high 
mass model. A zoomed-in version of the lower panel of Figure 4.15. It encapsulates 
layered accretion , a decoupled midplane, dragged-in field structure along surface lay­
ers , a puffy disk and early outflows under magnetized disk layers in one image. Infall 
velocit ies that are too strong are cut out in order to highlight smaller velocities inside 
the disk. Small outflow velocities on the order of 0.25 km s- 1 are being launched from 
the disk (these are lower than in Figure 4.16 as the potential well is much shallower 
here). Sharp vert ical pressure gradients are apparent following the outflow, consistent 
with the magnetic tower mechanism. 
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In Figures 4.18 and 4.19 we show the pressure of the magnetic tower flow through 

the distribution of the toroidal field components. In the ideal case these components 

are strictly confined through ram pressure, indicating that the magnetic tower has not 

yet launched. In the non-ideal case effective ram pressure on the field is decreased 

due to ambipolar diffusion, and the wound-up disk field is able to push out into 

the ambient medium. This is akin to the ideal magnetic tower mechanism, which 

describes a strong toroidal field build up in the disk, eventually pushing outwards 

with a sharp pressure gradient and remaining collimated due to ram pressure. One 

can relate (spatially) the ambient B¢ along diagonal directions seen in Figure 4.19 

with the small outflow intensity seen in Figure 4.17. It is also interesting to note that 

while a magnetic tower mechanism has been established earlier, the overall toroidal 

field strength of the non-ideal disk is generally weaker than that of the ideal disk. 

Values at about 10 AU are 0.04 Gin the non-ideal disk in comparison to 0.1 Gin the 

ideal disk. 

The question that remains however is, can a collapse with a finite conductivity 

produce a magnetic tower mechanism? Theoretical work by (Lynden-Bell, 2003), 

which described how pressure gradients worked in a magnetic tower, excluded a finite 

conductivity. The toroidal field is wound up in the disk until it can no longer be 

contained. Bubbles dominated by magnetic pressure then push out into the ambient 

medium taking gas with them. Continued rotation of the disk drives the tower ever 

higher while ram pressure confines its collimation. The ideal collapse will eventually 

use this mechanism in generating its outflows (Figure 4.16), and has been recognized 

as a outflow mechanism in previous studies (Banerjee & Pudritz, 2006). 

We show the beginnings of this mechanism in our low mass model (under less 

resolution than our high mass model). Magnetized bubbles have extended into the 
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Figure 4.18: Distribution of B q, in the disk of the ideal collapse of the high mass 
3model. Temperature contours are every 10 K with central densities of 1.7 x 1012 cm- . 

This graph can be compared to the non-ideal case in Figure 4.19. The toroidal field 
is strictly confined to the disk in the ideal case, while it can slip out in the ambipolar 
diffusion case. 
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Figure 4.19: Distribution of Bq, in the disk of the non-ideal collapse of the high 
mass model. Graph properties are similar to those described in Figure 4.18. Note 
the established magnetic tower outflow through the ejection of toroidal magnetic field 
from the disk into the ambient medium. 
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ambient medium, more so in the ambipolar case. In the corresponding ideal case 

outflows are just beginning. The disks are dramatically different due to the increased 

fragmentation in the non-ideal model. 

4.3.5 On Proto-Dead Zones and Decoupled Zones 

One of our numerical goals was to present data of a self-consistently formed dead 

zone from the natural collapse of a Bonnar-Ebert Sphere. As local thermal velocities 

are greater than Alfven velocities by a factor of 2-3 in our simulations, and angular 

velocity profiles decrease with radius, our collapsing clouds satisfy the weak field and 

the rotational conditions necessary for MRI turbulence to persist. Our simulation 

however won't be able to view the actual MRI turbulence as we observe only a few 

rotations in our simulations. In this case, we rely on the work from other authors 

studying local effects of MRI turbulence in accretion disks to understand how it is 

damped (Kunz & Balbus, 2004; Fleming & Stone, 2003; Balbus & Hawley, 1998). 

Provided the ideal conditions, resistive MHD effects can diffuse field gradients 

faster than the growth conditions for MRI turbulence. This leads to regions in the disk 

(in particular the disk midplane) which are commonly known as dead zones (Gammie, 

1996). Due to the lack of MRI, these zones are void of turbulence-induced viscosity. 

Disk viscosity is important to planet formation models, particularly migration models. 

These models show that the size of the dead zone controls the gap size a planet can 

open in its parent disk, thus controlling it's final mass (Matsumura & Pudritz, 2005). 

It also plays a role in stopping a migrating planet from falling into its parent star. 

In this sense we are interested in any initial conditions a dead zone may have. To 

study this we use a very global model of a collapsing Bonnar-Ebert sphere and our 

results are self-consistent in this sense. This global approach is complimentary to a 
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Figure 4.20: Outflows from t he ideal low mass model collapse are only just begin­
ning , as compared to stronger outflow motions seen in the non-ideal case portrayed in 
Figure 4.21. The pseudocolor is mass density, with temperature contours every 10°.4 
K. We have cutoff velocity vectors larger than 1 km s- 1 as vertical accretion would 
saturate the graph (thus the lack of vectors above and below the disk). This image 
corresponds to the upper image given in the section on fragmentation seen in Figure 
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Figure 4.21: Outflows from the ambipolar low mass model collapse. The pseudocolor 
is mass density, with temperature contours every 10°.4 K. We have cutoff velocity 
vectors larger than 1 km s- 1 as vertical accretion would saturate the graph (thus the 
lack of vectors above and below the disk). This image corresponds to the non-ideal 
fragmentation seen in Figure 4.3 which explains the very distorted disk shape. Gas 
is beginning to separate into two clumps about the center. 
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more efficient method which studies only very local models of disks through many 

rotational periods (e.g., Fleming & Stone, 2003). 

Dead zones due to ambipolar diffusion are different than the classical model in 

which Ohmic diffusion is the dominating form of magnetic field dissipation. This 

makes sense if one is studying a Keplerian disk where densities are high and Ohmic 

terms become more important (Desch & Mouschovias, 2001). Our dead zone would 

be governed by arnbipolar diffusion rather than Ohmic diffusion. Also, rotational 

velocities are sub-Keplerian (at about 0.4 Vkepler during this stage of the collapse). This 

allows the dead zone to still accrete while not being affected directly by the magnetic 

field. However, accretion is very much layered in intensity, as we will discuss later. 

Figures 4.14 and 4.15 shows xz slices of the cloud at the disk level, comparing ideal 

and non-ideal states at ncore = 1.7 x 10-12 cm-3 respectively. As our ionization goes 

as Xion ex n;;1
/ 
2 

, we expect the disk midplane to be more decoupled than its shocked 

layers due to its Gaussian density distribution with height (as shown in Banerjee et al. 

(2004)). The decoupling of the magnetic field is evident in the non-ideal disk as the 

field lines are severely dragged along the ionized shocked layers and left behind in the 

disk midplane. Immediately we have an idea of the dead zone's possible extent. 

Kunz & Balbus (2004) have shown analytically that the growth rate of MRI is 

severely damped for 0/("/ADPi) > 1 in an ambipolar diffusion dominated disk. We plot 

our results in 4.22, showing that MRI can indeed propagate almost anywhere in this 

disk at this early stage and that no dead zone is formed despite the severe magnetic 

decoupling evident in 4.15. We note, however, that as we move into denser regions 

of the collapse, that are far better shielded from cosmic rays, Ohmic dissipation will 

become important. We leave this for future work to consider. 

We note however that if we had included shielding of cosmic rays (cosmic rays 
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Figure 4.22: Logarithmic pseudocolors of 0/r ADPi in the disk of the non-ideal high 

mass model. Temperature contours are every 10 K and magnetic field lines are in 

green for reference to Figure 4.15. This is also the same state as in the non-ideal 

run of Figure 4.22. We note that t he disk is not quite dead all to MRI turbulence 

as studied by Kunz & Balbus (2004) as it is mostly less than 1 and with a very even 

distribution in the disk (thus the lack of colored features). 

118 




3000 

2 

2500 

1 
2000 

,---, 

E 
u 

<t 

0 1500~ 

0 

L___j 

N 

1000 

- 1 

500 

-2 

- 2 - 1 0 2 
x [1 0 14 cm ] 

Figure 4.23: Linear pseudocolors of ReAo in the disk of the non-ideal high mass 
model. Temperature contours are every 10 K and magnetic field lines are in green . 
This is also t he same state as in the non-ideal run of Figure 4.15 . We see the opposite 
of a decoupling zone in the midplane and just under the coupled layers. This graph 
is telling us t hat diffusion in the disk midplane is orders of magnitude high t han 
anywhere else in t he cloud . This would mean that the cloud is most like the ideal 
simulation in t he disk midplane, which it clearly isn 't. 
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penetrate only to column densities of 96 g cm-2 (Umebayashi & Nakano, 1981)), 

the dead zone would have been formed. First, from Figure 4.4 we see that column 

densities of a few hundred g em - 2 are achieved by both runs of the high mass model. 

Dead zones with only ambipolar diffusion require 0./"!ADPi > 1, which is very quickly 

achieved if Pi suddenly drops to very small values. In our case we have Pi ex: p:/2
, 

which makes dead zone creation quite difficult through chemistry alone. This will 

be an interesting avenue for future research, however we predict dead zones in Class 

0 objects at column densities of about 100 g cm-2 and distances of (25-60) AU, by 

following the power-law evolution of our surface density profiles (Figure 4.4). 

Despite the fact that our approximations do not really allow for the appearance of 

a dead zone, we still observe layered accretion and dragging of magnetic field lines by 

well-coupled disk layers. Clearly there is a central region of the accretion disk which 

is not well coupled to the accretion disk, starting at about 20 AU (as suggested by 

Desch & Mouschovias (2001)). The classical approach is to use a diffusive method. 

If the diffusion speed ('TJAD/ L, for some scale length L) over the disk is faster than 

the dragging in of magnetic flux (say the flow velocity, Vfiow), but not faster we can 

explain the decoupling. We quantify this by defining a type of 'Reynolds number', 

VfiowL
ReAn=--, 

'TJAD 

which describes the coupling of the field to the gas. The typical length scale L is 

taken to be the radius of the disk, 2.0x 1014 em. For 'TJAD > VflowL, diffusion is too 

quick for the gas to drag the field forward, and flux is left behind (at the cost of 

frictional heating). We provide a 2D plot of ReAD in the x-z plane (Figure 4.23), 

clearly showing the largest values in the midplane of the disk, with a height of about 

2-3 AU and an extent of about 10 AU. This is opposite of what our intuition is telling 

us: ambipolar diffusion is strongly damped in the disk midplane, more than anywhere 
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else in the collapsing cloud. But this cannot be true, as we clearly observe field lines 

in the disk being left behind2 
• What has gone wrong? 

It is important to note that ambipolar diffusion is not a purely diffusive process. 

One can split Equation ( 4.6) up into diffusive and non-diffusive terms (Brandenburg 

& Zweibel, 1994), 

8B
-+V·(uB-Bu)+V
8t (4.10) 

- V X (rJADV X B- JtofhD(J · B)B), 

where the second last term on the right is the diffusive term and the last term is the 

non-diffusive term. The magnitudes of these two vectors are plotted in Figures 4.24 

and 4.25 and it is evident that they are of equal importance inside the disk. It is also 

apparent that at disk layers influx of magnetic field is about 100 times as strong as 

in the midplane, which explains the lagging of field lines there as due to ambipolar 

diffusion. 

In lieu of this, we require a non-diffusive, and more physical, argument in which 

to classify decoupling. We borrow an idea from C-shock theory which states that 

vs < < VAi = B / ( 47rPi) 112 in order for a C-shock to form (Draine, 1980), where V 8 is 

the shock velocity and VAi is the ion Alfven speed. This would require the infall speed 

be much less than the speed in which compression information travels along the field 

lines. In our case we suggest decoupling occurs for: 

Vftow < avAi, (4.11) 

where a= 10-4·5 from observing Figure 4.26. In the Figure 4.26 we can also observe 

the strongest 'lagging' of field lines corresponding directly with the lowest values of 

2Note that we have tried a number of different combinations of possible parameters for 
Vflow and L, each producing a similar conclusion: diffusion is severely damped in the disk 
midplane. 
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Figure 4.24: Logarithmic pseudocolors of the diffusive ambipolar term in the induc­
tion equation , IV x ('TJAD J / p,0 )1 in the disk of the non-ideal high mass model. Note 
that J = ...!... V X B and plotted units are logaritmic G s-1

. Temperature contours 
11-0 

are every 10 K and magnetic field lines are in green for reference to Figure 4. 15. Note 
maximal values of the logarithmic scale in comparison to Figure 4. 25 and the high 
contrast between disk layer and midplane values . 
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Figure 4.25: Logarithmic pseudocolors of the non-diffusive ambipolar term in the 
induction equation , IV x [J-Lo,8Ao (J · B )boldsymbolB]I in t he disk of t he non-ideal 
high mass model. Note that J = ..l. V X B and plotted units are logarithmic G 

JlO 
s- 1

. Temperature contours are every 10 K and magnetic field lines are in green for 
reference to Figure 4.15. Note maximal values of the logarithmic scale in comparison 
to Figure 4.24 and the high contrast between disk layer and midplane values. 
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this ratio. Slight dragging of the field line in the midplane also corresponds with a 

slight local increase of this ratio. Physically, we can interpret this definition as saying 

that a certain inflow velocity is needed to sufficiently pull in field lines. Finally, we 

observe a decoupled zone which has a radial extent of about 10 AU and a height of 6 

AU, in the disk. 

This all fits very clearly into the picture we have of layered accretion along coupled 

layers where Vflow/VAi is orders of magnitude smaller than in the disk midplane. 

4.4 Conclusions 

We summarize the results we have presented in the previous sections: 

• High mass accretion rates persist, on the order of Mmax = w-3 M0 yr-1. These 

rates are driven to higher values by effective drift heating evident at 100 AU. 

• 	The extraction of angular momentum by magnetic torque is still efficient at 

extracting angular momentum from the non-ideal collapsing cloud, though it 

takes a little longer to carve out the same angular momentum distribution as 

seen in the ideal collapse. This aids in driving high accretion rates. 

• 	The effects of drift heating are seen to make important contributions to the 

collapse on both large scale of 1000 AU(Figure 4.4) and small scales of 10's of 

AU (Figure 4.15). The effects are a large scale C-shock with temperatures that 

are nearly twice as high at 177 K as their ideal counterparts (Figure 4.9), and 

a puffy inner disk disk. 

• 	 Magnetic braking is seen to be 3/4 as effective at extracting rotational energy 

with ambipolar diffusion than without through the collapse of our B68 model. 
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Figure 4.26: Linear pseudocolors of Vf!ow/VA; in the disk of the non-ideal high mass 
model. Temperature contours are every 10 K and magnetic field lines are in green. 
We see the decoupling zone in the midplane and just under the coupled layers such 
that the critical ratio for dragging is observed to be about 10- 4 ·5 . Note how well 
the lagging and dragging of field lines corresponds to low and high values of the 
pseudocolor respectively. Values lower than 10- 5 are cut off. 
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• 	The rate of fragmentation in the disk is increased by ambipolar diffusion due to 

the reduced magnetic pressure support within it. It is seen to approach more 

hydrodynamic results (Banerjee et al., 2004). 

• 	 The build up of magnetic flux is only slightly weaker in the ambipolar collapse 

than in the ideal collapse, with field strengths of 0.032 G reached at the end of 

our simulation. These values are only half as strong as values reached in ideal 

simulation at similar central column densities (300 g cm-2 ). 

• 	 Outflows begin earlier in the ambipolar diffusion collapse as ram pressure is less 

effective at trapping the wound up toroidal field in the disk. The mechanism 

for outflow generation is recognized as a magnetic tower, as in the ideal case. 

Outflow velocities of 0.26 km s-1 are seen in our ambipolar diffusion collapse 

in comparison to velocities of 0.4 km s-1 seen in the corresponding ideal out­

flow. These are early outflows, limited by the small diffusive timestep. As the 

potential well grows, outflows in the ideal case have been seen to rise to 4 km 

s-1 (Banerjee & Pudritz, 2007). 

• A decoupled zone forms in the disk midplane which has a height of 6 AU and 

a radial extent of 10 AU and involves a equal contribution of diffusive and 

non-diffusive ambipolar diffusion. In this zone gas cannot effectively drag in 

magnetic flux, and field lines are seen to lag behind while actively coupled, 

ionized layers drag them in. We have shown the criterion for this zone to be 

formed is that Vflow < w-4
·5vAi. This creates a strong pinching effect that is 

responsible for amplifying the magnetic and aiding the early outflows. 

• 	 The formation of an early dead zone mediated by ambipolar diffusion is possible 

in the early collapse phase, though dependent on shielding of cosmic rays by gas 
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densities in excess of 96 g cm-2 • If we included this effect into our simulation, 

we predict we would obtain a dead zone with a radial extent of (20-60) AU. 

We note that our results are limited by the chemistry that we have implemented. 

Our approximation is only accurate to densities of 1010 cm-3 while we reach maximum 

densities of 1012 cm-3 • In this region the charged grains have been predicted to be the 

principal charge carrier (Tassis & Mouschovias, 2007b; Nakano et al., 2002) and future 

work should include these effects. This may change how the field is built up through 

disk accretion. Also important is the inclusion of cosmic ray shielding for column 

densities that are greater than 96 g cm-2 • This is a vital ingredient for accurately 

capturing the early dead zone that should form in the collapse. 

A final note for future work would be the inclusion of other resistive magnetic 

processes like Ohmic dissipation which has been shown to be important at similarly 

high densities (Desch & Mouschovias, 2001). Although we do not consider these 

effects, this work offers a good first step in that direction, offering key insight into 

the relevant problems at hand. 
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Chapter 5 

Future Work 

The main issues with any approximation of ambipolar diffusion lie in how the chem­

istry is treated. This is the case in our work, where we have used only the simplest 

approximation for the ionization (see §2.1.1). This ni ex n!r/2 law persists only up 

to total gas densities of about 1010 cm-3 , where charged grains become the principal 

charge carrier. A full treatment of this will be necessary in making more decisive 

statements on the results discussed in §4.4. 

This may require a multi-fluid approach which conserves gas species mass indi­

vidually through separate continuity equations. Frictional interaction forces are then 

added to the respective HD or MHD equations of motion for each species. To in­

clude a proper evolution of the charged species, one must include a separate set of 

equations which treat mass transfer and the chemistry. This is effectively accom­

plished by solving the equilibrium equations between known species, and can become 

quite complicated, depending on the detail that one wishes to achieve (e.g. Tassis & 

Mouschovias, 2007b; Nakano et al., 2002). 

The benefit of the multi-fluid approach may also lie in increased timesteps, with 

the "heavy-ion approximation" of Li et al. (2006) claiming shorter timesteps by fac­
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tors of 10-100. We note that this must be weighed against the deficit of including 

chemistry and in calculating effectively twice the number of dynamical equations 

per timestep (or more, depending on the number of species in the gas), in addition 

to added frictional terms. It may prove more efficient to simply approximate the 

in-depth evolution of chemical species in a collapsing cloud from previous work (men­

tioned above), and apply this to the single fluid approximation. This would offer 

a computationally quick and simple method in which the low ionization regime of 

molecular clouds can be treated, though remaining unable to independently track 

charged species' distributions. 

Also important at these high densities are the effects of Ohmic dissipation (Desch 

& Mouschovias, 2001). Machida et al. (2007) has already begun to investigate this 

in pre-Class 0 collapse down to the formation of disk winds and jets, though we 

believe their model of ohmic diffusivity is greatly exaggerated (i.e. it stems from 

the numerical collapse of an ideally coupled cloud). Self-consistent treatments of 

ambipolar diffusion with ohmic dissipation show the latter effect is important only at 

densities higher than 1010 cm-3 (Desch & Mouschovias, 2001). A module in FLASH 

applying Ohmic dissipation in the single fluid approximation has already been written 

(§3.1; though may need to be tested). Although we are interested in the effects of 

Ohmic dissipation on outflows from the disk, it will also play an interesting role in 

mediating the proto-dead zone that will form due to cosmic ray shielding (§4.3.5). 

The shielding of ionizing radiation such as cosmic rays by dense disk layers is a very 

interesting phenomenon to model, as it has been shown to be a necessary ingredient 

into the formation of early dead zones in protoplanetary accretion disks (§4.3.5). The 

ionizing radiation can be approximated as emanating from the z-direction, aligned 

with the global field of the molecular cloud (as cosmic rays are charged particles). 
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Later, more complicated ionizing sources can be applied. The hard part may come in 

determining the column density of a given cell in a numerically inexpensive manner. 

Once this is known the application to the single fluid chemistry approximation is not 

necessarily straightforward. We have an equation for ((E) (section §2.1.1), though 

no clear method on how to translate this to ion density. An effective step function 

of sort can be used here as the decrease in ion density is expected to be exponential 

after column densities reach 96 g cm-3 , where various continuous transitions between 

the steps in the step function can be approximated. 

Extensive testing of code was done with the knowledge that, as a general sub­

module in FLASH, our ambipolar diffusion module can be extended to a virtually 

limitless number of applications, much in the same way the ZEUS ambipolar diffusion 

module developed by Mac Low et al. (1995) was used. Examples extend to any 

multi-dimensional MHD simulation that would benefit from the addition of ambipolar 

diffusion. This includes but is not limited to: MHD compressable turbulence models 

which study the large scale evolution of molecular clouds, local simulations of MRI 

turbulence in accretion disks, magnetic jets simulations which study the launching 

of jets from protoplanetary disks or further applications to the pre-Class 0 collapse 

phase discussed in Chapter 4 (such as using turbulent filamentary initial conditions 

(Banerjee et al., 2006)). We note that for some applications, densities remain below 

1010 cm-3 and even our simple chemical approximation can be carried over. 

There are many interesting avenues now open due to the work presented in this 

thesis. We have used our numerical developments to investigate interesting avenues 

in the pre-Class 0 collapse of a Bonnor-Ebert sphere. We hope that many interesting 

physical discoveries are subsequently made from the work established herein. 
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