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Abstract 

Two separate but related projects make up the work of this thesis. The 

growing amount of sequence data available in public databases provides an 

opportunity to compare species in new ways. It can be shown that there is a 

systematic change in amino acid composition in a dataset of sequences from 69 

species possessing a range of optimal growth temperatures. By creating a 

phylogenetic tree of all available Archaea, pairs may be selected that contain a 

relatively closely related mesophile and (hyper)thermophile. In addition, pairs 

may be selected from Bacteria to include psychrophiles as well as other 

thermophiles. An evolutionary model is derived here that detects amino acid 

asymmetries in these species pairs beyond what might be expected to be caused 

by differences in GC content. This amino acid asymmetry can then be plausibly 

explained by temperature adaptation occurring in these species since they 

diverged from a common ancestor. 

In the second part, similarity searches using molecular sequences are 

drawn as networks, where open reading frames in one species may be linked to a 

corresponding sequence in another species if the similarity search score is above a 

given threshold. This process is similar to that used to identify orthologous 

sequences for use in evolutionary models. When drawn as a network of distinct 

clusters of similarity, patterns emerge that can be spurious or have some 

biological relevance. This work identifies the need to develop better methods of 

analyzing these network clusters. 
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Chapter 1 

Introduction 

1.1 Genomes of Prokaryotes 

The work described in this thesis explores the evolution of extremophile 

prokaryotes through :he development of a phylogenetic model that makes use of 

protein sequences from candidate organisms. The availability of these sequences 

is due to the completion of various genome sequencing projects and the 

techniques used to infer data from the completed genomes. An example of the 

growth in the number of completed genomes is provided along with an example 

of a method used to derive protein sequence information from them. The 

motivation behind comparative genomics is discussed briefly and the Archaea, 

which include many examples of extremophile species, are introduced. Finally, a 

description of extremophily and its practical applications is provided as well as a 

brief outline of the specific problem being addressed and how it is approached in 

this work. 

The genome of an organism consists of the entire complement of genetic 

material in that organism. This includes both coding and non-coding DNA on 

chromosomes and extra-chromosomal elements. Prokaryotic chromosomes are 

double-stranded and typically circular, though linear chromosomes are known for 
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some species (Madigan et al 2003, pg 177). They feature defined origins of 

replication, where the process of DNA replication begins during cell division, and 

are considered gene-dense compared to eukaryotic organisms since most of the 

sequence is comprised of coding regions separated by typically <10% non-coding 

DNA consisting of binding sites, spacers, remnants of past functional DNA and 

regulatory elements (Madigan et al. 2003, pg 178-9). Chromosome sizes are 

defmed in terms of base-pairs (bp), referring to the number of paired DNA bases 

in the length of the chromosome. According to the current list of completed 

prokaryotic genomes available from the NCBI microbial genome database, the 

average length of bacterial and archaeal genomes is 3.58 million bp (MB) with the 

smallest being 0.16 MB (Candidatus Carsonella ruddii PV) and the largest 

currently being 13.03 MB (Sorangium cellulosum 'So ce 56') 

(http://www.ncbi.nlm.nih.gov/genomesllproks.cgi Accessed July 2008). 

The major technique used to produce this sequence information is the chain 

termination method developed by Sanger et al. (1977). In this method, a mixture 

of 2'-deoxy- and 2',3'-dideoxyribonucleotides are used in a DNA synthesis 

reaction such that synthesis is terminated when a nucleotide lacking a 3' hydroxyl 

end is incorporated at a small fraction of sites. Over the entire course of the 

reaction random termination of the DNA synthesis reaction produces DNA 

fragments that differ in length by one base pair. By separating the reactions for 

the four bases and using a small amount of the respective labeled 3'­

deoxyribonucleotide, the DNA sequence can be 'read' by observing the order of 
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DNA fragments proceeding from smallest to largest on an electrophoretogram 

after the DNA fragments are separated by electrophoresis. Refmements to this 

technique include the development of fluorescent! y labeled 

dideoxyribonucleotides as chain terminators to ease reading and eliminate the 

need to use isotopes for labelling, and thermostable polymerases and the 

polymerase chain reaction (Mullis et al. 1986; Prober et al. 1987; Saiki et al. 

1988). Enhanced length of read was achieved through the use of capillary 

electrophoresis, allowing the production of longer sequences per reaction, to 

minimize the number of reactions required for the same length of read 

(Madabhushi et al. 1998). 

The Whole-genome shotgun method was used to produce the first complete 

genome of a free-living organism, Haemophilus influenza Rd (Fleischmann et al. 

1995). In this method a large number of mechanically sheared DNA fragments 

between 1.6 and 2.0 kb were created from Haemophilus genomic DNA, the size 

chosen to minimize the number of complete genes present in each fragment. 

These fragments Wfre then digested with the Sma I restriction enzyme and 

inserted into suitable cloning vectors to make a library of single-insert containing 

plasmids to be propagated in E. coli cells deficient in recombination and 

restriction to preserv,~ the randomness of the fragments. This is essential because 

the theory of shotgtm sequencing follows a Poisson distribution of randomly 

generated bases of a given coverage factor to determine the percentage of the 

bases unsequenced. The authors' goal of 6x coverage of the 1.83 MB genome 
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follows from the calculation that 5x coverage would theoretically result in 0.67% 

of bases left unsequenced. 16 240 forward sequencing and 7 744 reverse 

sequencing reactions were successfully performed to generate 11 631 485 bases 

of data. These data were eventually assembled into 140 contiguous assembly 

fragments, or contigs, using 30 hours of computation by identifying overlapping 

sequences in the reads produced by individual sequencing reactions. These 

contigs were then ordered by designing primers for the ends of each contig to be 

used in four strategies to identify adjacent contigs and close gaps. One strategy 

used Southern analysis using labeled primer oligonucleotides hybridizing to 

common restriction fragments followed by targeted PCR reactions. 6-frame 

translations of contig sequences were used to query a peptide database to identify 

contig ends matching a given peptide, and therefore provisionally adjacent 

contigs. The construction of two A phage libraries of Haemophilus genomic DNA 

containing inserts of 15 to 20 kb in size were probed with contig oligonucleotides 

and sequenced to determine adjacent contigs in the A insert. Finally, PCR 

reactions and sequencing were used to confirm each gap identified between 

adjacent contigs by the other methods, and to completely close the other gaps. 

The use of the different strategies are necessary because contigs containing 

regions of repeat sequences, like the rRNA operons, are difficult to assemble due 

to the relatively small size of individual reads. Complete genome sequences 

obtained by techniques similar to this are a major source of new data and the 

number of complete genomes being made available is increasing every year. 
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1.2 Data Explosio111 

The sequences derived from the various sequencing projects provide the 

massive amount of data deposited into the public databases over the last 15 years. 

Currently, as of July 2008, the National Center for Biotechnology Information 

lists 728 complete mi~robial genomes, 676 of which are bacterial and 52 archaeal 

(http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi). Specifically, the growth in the 

number of complete microbial genomes has been exponential, as can be seen in 

Figure 1.1. 

Landmark microbial genomes include the very first, Haemophilus influenzae 

(Fleischmann et al 1995), the ubiquitous model organism Escherichia coli 

(Blattner et al. 1997), the human pathogen Mycobacterium tuberculosis (Cole et 

al. 1998), and the first Archaea Methanocaldococcus jannashcii (Bult et al. 1996). 

Though the generation of raw DNA sequences provides the basic sequence 

data and general information like GC/ AT content and size, more information 

about the species can be determined through the identification of open reading 

frames (ORFs) to determine the presence of individual genes in each genome. 
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Figure 1.1 -Number of completed microbial genomes per year. Open bars-

Bacteria, Solid bars - Archaea. 

One of the most common software packages for identifying these ORFs is 

Glimmer (Salzberg et al. 1997). Glimmer uses interpolated Markov models 

(IMMs), which allow switching between different order Markov models 

depending on weighting and evidence criteria rather than relying on a fixed-order 

Markov model like those used in other software such as GeneMark (Borodovsky 

et al. 1995). This depends on the assumption that in-frame coding sequences 

contain patterns detectably different from those in out-of-frame or non-coding 

sequences. Where a fixed-order model, for example 5th order, will predict the base 

at a given position given the identity of bases observed in the preceding 5 bases 
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for every site in the training set, the IMM models used in Glimmer are weighted 

differently based on the available frequency of observed k-mers (sequence 

fragments of length k) (Salzberg et al. 1997). Because the chance of observing 

every possible combination of k bases decreases exponentially as k increases, the 

authors note there are cases where an insufficient number of k-mers are available 

in the training data to accurately predict the base following a given k-mer. In such 

cases the order of the model can be raised or lowered depending on the available 

evidence in the training set in order to use the order in each case with the 

maximum available evidence. Models for each of the 6 frames as well as a model 

for non-coding DNA are trained and used to score regions of the genome by 

calculating the linear combination of probabilities for all kth order IMMs 

(Salzberg et al. 1997). An ORF is identified as a region with a score above a given 

threshold for one of the 6 frames, and a corresponding low score for non-coding 

DNA model. Where overlapping ORFs are predicted, the longest ORF with the 

highest score is judged to be correct, and cases with unclear results are left for 

manual examination. (Salzberg et al. 1997). 

Translated conceptual ORFs provide the protein sequence data necessary for 

detailed analysis and comparison between species. The genes encoded by these 

ORFs may be grouped into clusters, like the Clusters of Orthologous Groups 

(COGs) based on what function they provide the species, such as housekeeping 

functions like DNA replication and repair, gene expression proteins, signaling, the 

components of metabolic pathways, structural elements, motility proteins, 
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membrane functions, sporulation, virulence and antibiotic resistance factors 

(Tatusov et al. 1997, Tatusov et al. 2003). Some of these genes will be necessary 

for the organism to live in its particular environment, and some will be particular 

to a related group of organisms. 

1.3 Comparative Genomics 

As the availability of completed genomes increases, the ability to produce 

comparisons between species to answer biological questions likewise increases. 

Prior to the era of complete genome sequencing, growth of functional knowledge 

about genes was achieved as new sequences and individual experimental data 

were made available through the public databases. Newly obtained sequences are 

checked for similarity against those already deposited for clues regarding 

structure, function and evolution, as in the case of Methanocaldococcus 

jannaschii and nearly every newly obtained genome sequence (Bult et al. 1996). 

A library of tools and methods were developed, among them the various BLAST 

algorithms, which allow searching through the databases quickly and efficiently 

based on measures of similarity (Altschul et al. 1990). Various versions of the 

BLAST algorithm have been implemented for applications requiring raw DNA, 

translated DNA or protein queries against DNA, translated DNA or protein 

databases and have incorporated the creation of position-specific-scoring matrices 

for iterated BLAST searches to identify sequences matching specific patterns 
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(Altschul et al. 1997). The ability to identify sequences similar to one another 

within and between species is a crucial first step towards more complex analyses. 

In addition to the basic tools used to interact with different databases, the 

development of various other analytical techniques was initiated to make use of 

the inflowing data. Comparisons of the composition of DNA and proteins 

between different species were performed to quantify the differences between 

species and used to determine species signatures (for example, see Di Giulio 

2000). Evolutionary models, introduced in chapter 2 and developed in chapter 3 

of this thesis, are used to examine the effects of selection in the time since two 

species diverged from one another. The goal of other models is to describe the 

general nature and mechanisms of molecular evolution. One subject of chapter 2 

is the construction of phylogenies to better clarify the history and evolutionary 

relationships between species, and the reasons these techniques sometimes do not 

produce clear answers. 

1.4 Archaea 

The Archaea were proposed as a natural domain of life separate from Bacteria 

by Woese et al. (1978, 1990). Physiological differences between Archaea and 

Bacteria include the presence of ether-linked membrane lipids and lack of typical 

bacterial peptidoglyc~m cell walls (Woese et al. 1978). Differences were also 

identified in the 5S rRNA structure and tRNA sequences such that Woese et al. 

note specific portions archaeal rRNA is as different from Bacteria as Bacteria are 
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from eukaryotes (1978). Though other superficial differences, such as Archaea 

being originally discovered in so-called 'extreme' habitats, were used to support 

the concept of the three domains of life, dissenting opinions were proposed based 

on other molecular evidence. Signature sequences, conserved insertion/deletion 

patterns, in conserved proteins such as elongation factors, ribosomal proteins and 

amino-acyl tRNA synthetases were used to argue that the evolutionary 

relationship between the Gram-positive and Gram-negative Bacteria and the 

Archaea was not clear when compared to the relationships proposed by rRNA 

phylogenies (Gupta 1998). Nevertheless, the three domain classification is the 

more generally accepted system today. 

Within the Archaea are two main groups, the Crenarchaeota and 

Euryarchaeota. A recent phylogeny based on 31 proteins and the analysis of the 

distribution of group-specific proteins reinforces the classification of the major 

groups within the Archaea (Gao and Gupta 2007). Specifically, the phylogeny 

shows the expected separation between Crenarchaeotes and Euryarchaeotes and, 

within the Euryarchaeotes, a possible polyphyletic history of methanogenesis as 

so-called class I and class II methanogens form separate groups apart from the 

non-methanogenic Euryarchaeota (Gao and Gupta 2007). 

There also exists evidence to suggest a possible third group of Archaea, the 

Korarchaeota, of which the first genome of an organism termed "Candidatus 

(Ca.) Korarchaeum cryptofilum" has been completely sequenced very recently 
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(Elkins et al. 2008). Analysis of this composite genome produced via the whole­

genome shotgun method, along with previous analysis of small subunit RNA 

obtained from environmental samples, suggest the proposed group Korarchaeota 

are deep-branching in the tree of Archaea, and may possess features of the earliest 

Archaea (Barns et al. 1996, Elkins et al. 2008). 

The sequencing of a hyperthermophilic symbiotic archaeon, Nanoarchaeum 

equitans, along with its uncertain placement in the archaeal phylogeny led to the 

proposal of a fourth group of Archaea, the Nanoarchaeota (Huber et al. 2002, 

Waters et al. 2003). However, the degenerate nature of the Nanoarchaeum 

equitans genome at only 0.48 MB, coupled with high suspected evolutionary and 

lateral gene transfer rates, has been used to suggest that it is a highly derived 

Euryarchaeote rather than a member of a new kingdom of Archaea (Brochier et al. 

2005). 

1.5 Extremophiles 

Regardless of the position the Archaea are placed in the tree of life, one of the 

characteristics that make them interesting as a group is the relatively large number 

of extremophiles counted among them. The classification of organisms as 

extremophilic depends on the nature of the environments they inhabit. Early on, 

the discovery of Archaea almost exclusively in extreme habitats meant that 

possessing such a Lfestyle was considered a defming trait for these species 

(Woese et al. 1978). Since then, the discovery of other extremophiles in other 
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domains of life has become more common, though they remain dominantly 

prokaryotic. 

Microbial extremophily has been studied as a rich source of basic and applied 

science. Since the description of Thermus aquaticus in 1969 (Brock and Freeze 

1969), much effort has been made to describe the nature of extremophilic 

adaptations. The recognition of thermostable enzymes challenged what was 

understood of the basic principles of protein folding and stability with the promise 

of future of protein engineering applications (Argos et al. 1979). More 

immediately came the utilization of so-called 'extremozymes' as catalysts in new 

areas of biotechnology, most famously the use of a thermostable polymerase in 

the development of the ubiquitous polymerase chain reaction (Mullis et al. 1986; 

Saiki et al. 1988). 

In addition to the various degrees of temperature dependence including 

thermophily (optimal growth temperature between 60 and 80°C, 

hyperthermophily (optimal growth temperature above 80°C) and psychrophily 

(optimal growth temperature below 15°C), extremophily includes acidophily and 

alkaliphily (requiring a pH below 3 or above 9 respectively). Barophily, also 

known as piezophily in some references, refers to requiring habitats under high 

gas or liquid pressure. Halophily, or more generally osmophily, refers to requiring 

2M NaCl to live or some other high osmolyte concentration respectively. 

Xerophilic organisms are those living under dry or desiccating conditions. Some 
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authors feel it is important to remember that the definition of 'extreme' is relative 

to a human conception of 'normal' (Rothschild 2001 ). Bearing this in mind, 

preference of organisms for abundant or total lack of oxygen, a requirement of 

carbon dioxide known as capnophily, or other extreme metabolic requirements 

may also be described as a type of extremophily. As a group, the Archaea exhibit 

many types of these extremophilic lifestyles and are often polyextremophiles. 

1.6 Aims of This Thesis 

The basic problem of how life has adapted to various 'extreme' conditions has 

eluded explanation. I: is well known that the proteins of mesophiles are not stable 

at the extreme high aad low temperatures in which other organisms are capable of 

living. This thesis primarily focuses on temperature adaptation that has occurred 

in thermophile and psychrophilic prokaryotes at the level of protein sequence. The 

comparison of sequences from either (hyper)thermophiles or psychrophiles to 

closely related meso:?hiles through the use of a phylogenetic model depends on 

the ability to choose valid pairs of species to compare. In Chapter 2 common 

methods for the construction of phylogenetic trees are described, and an example 

of how they were u:;ed to build an up-to-date tree of the Archaea is provided. 

After including every available completely sequenced Archaeal species at that 

time on a tree, pairs of closely related Archaea were identified for later analysis 

such that the optimal growth temperature difference in each pair was maximized. 

The chapter also describes the development of models of sequence evolution 
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beginning with a simple DNA model to the symmetric codon-based model 

employed as a starting point in chapter 3. Chapter 3 reviews the evidence for the 

existence of systematic differences in the protein composition of mesophiles 

versus extreme temperature organisms and an asymmetric model of sequence 

evolution that can incorporate these differences is derived. The asymmetric model 

is shown to be significantly better than the symmetric model at describing the 

evolution that has occurred between the mesophile-extremophile pairs selected. 

Finally, in chapter 4 the problem of identifying protein orthologues is revisited. 

The use of a common database search tool is illustrated via network graphs where 

links are drawn between query and search hits based on a common statistic. All­

against-all local protein sequence searches are performed between two archaeal 

genomes and clusters are identified that represent 'units of similarity' as identified 

by the search algorithm. Applications of drawing the search results are discussed 

along with the interpretations of errors. 

14 
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Chapter 2 

Phylogeneti•! Methods and Model Building 

2.1 Evolutionary Models 

In this chapter some of the most common methods used to produce 

phylogenetic trees are described. Two methods make use of evolutionary models, 

and some simple examples are introduced. Following a previous work that 

employed these phylogenetic methods, an up-to-date tree for the Archaea is 

produced and the selection of pairs to be used in chapter 3 is described. The 

development of codon-based models is discussed. The motivation for this is that 

analysis of extremophile protein adaptation will require the selection of relevant 

pairs of species and a model that allows the frequencies of amino acids to vary 

between those species. 

The purpose of evolutionary models is to describe evolution by creating 

mathematical terms that capture features of changing molecular sequences. The 

models differ in tem1s of complexity, which can be measured by the number of 

parameters required by each model and also the type of sequence information to 

which the models are fitted. Quantitative models of sequence evolution are 

important because they allow measurement of evolutionary distances or otherwise 

scoring changes between sequences which may then be used for scoring the 
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quality of sequence alignments and as the basis for building phylogenetic trees. 

Models are necessary because simply counting the observed number of changes 

between two sequences will always underestimate the true amount of evolution 

that has occurred. This is because mutations in sequences are assumed to occur at 

a given rate at random sites. As the amount of time increases there is an 

increasing chance that more than one mutation will have occurred at a single site 

though only the current state of the sequence is known. Models are used to 

estimate the actual amount of evolution that has occurred by fitting parameters to 

the observed sequence information. To introduce the topic of substitution models, 

the simplest case of the Jukes-Cantor model will be used (Higgs and Attwood 

2005 pg. 60). 

The Jukes-Cantor model describes the evolution of DNA sequences and 

makes use of a single parameter to describe the rates of substitution between 

nucleotides at a given site. A single rate parameter means the rate of substitution 

between bases is the same regardless of the identity of the bases. This may be 

expressed in the form of a 4x4 matrix where each element rij describes the 

substitution rate from any of the four bases, i, to any the four bases, j. The 

diagonal elements are the negative sums of the off-diagonal elements in each row 

such that each element rii represents the negative sum of the rate of substitution 

for the base i to any other base j f:. i and the rates across the row sum to zero. 

Because the models describe the probability of observing substitutions in a 
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continuous time t, the rows of the rate matrix rij must sum to zero to satisfy the 

equation (Higgs and Attwood 2005 pg. 62): 

(1) 

Given an appropriate rate matrix the probability of observing a 

substitution from a state i to j in a time t may be calculated in a standard way. The 

details of each model come from which features are incorporated into the 

substitution rate matdx for each type of substitution. For example, instead of 

using a single rate parameter to describe the substitution rates between all 

nucleotides, transitions may be differentiated from transversions by using one 

parameter for each, denoted a and p, which are allowed to take different values. 

This specific example is called the Kimura two-parameter model (K2P) (Higgs 

and Attwod 2005 pg. 63; Kimura 1980). By increasing the number of parameters 

to distinguish between different types of substitutions the models gain 

complexity. Another common feature is to incorporate the different relative 

frequencies of each base, commonly denoted 1t, since intuitively the rate of 

substitution from om: nucleotide to another depends on how often the nucleotides 

occur in a real sequence. 

A model is said to be time reversible if it satisfies the condition that the 

frequency of base i multiplied by the rate of substitution from i to j is equal to the 

frequency of base j multiplied by the rate of substitution fromj to i, or 
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(2) 

This assumes the frequencies of bases remain constant and that evolutionary rates 

in the forward direction are equal to the rates in the reverse direction (Higgs and 

Attwood 2005, pg. 63). This property is important for phylogenetic methods, 

some of which require an evolutionary model in order to construct phylogenetic 

trees. 

2.2 Phylogenetic Methods 

As suggested in chapter 1.3 determining whether or not a set of species are 

evolutionarily related, and to what degree, is an important step in comparative 

genomics. Often the types of questions regarding the biology of a set of species 

that may be asked are dictated by the relationships of these species. Molecular 

phylogenetics is the extension of the theory of building trees by using observable 

shared phenotypic traits to describe evolutionary relationships between species to 

using the features of molecular sequences. 

Part of the work embodied in this thesis included building a model to 

describe the evolution between pairs of related species that differ significantly by 

optimal growth temperature. Choosing the most relevant pairs required a method 

to determine the evolutionary closeness of a large group of species. The Archaea, 

as discussed in chapters 1.4 and 1.5, make an excellent group to investigate since 

they are a diverse group of organisms representing a wide range of lifestyles for 

18 



MSc Thesis - Nicholas Waglechner McMaster- Biochemistry and Biomedical Sciences 

which more and more data are becoming available. Creating a phylogeny of the 

Archaea was therefore a useful starting point for this work. 

Different tree-building methods are typically used because different 

methods of constructing trees result in different outcomes. The choice of method 

also determines wh~.t type of input is required and whether the tree being 

produced will be rooted with a defmed ancestor, representing the earliest point of 

divergence between species, or otherwise unrooted. 

One method of tree estimation is maximum parsimony. The principle of 

parsimony states that since observable changes in a molecular sequence should be 

expected to be rare the most plausible, or parsimonious, way of arranging species 

on a tree should be the one that minimizes the number of required changes. This 

criterion is not limited to molecular sequences as the defmition of what constitutes 

a change can be any character, not necessarily the molecular identity of a base or 

amino acid at a given position in a sequence. There are no other parameters 

required for the cons cruction of a maximum parsimony tree other than the number 

of changes counted between species (Higgs and Attwood 2005, pg. 177). A 

heuristic tree-search algorithm will attempt to search through the large possible 

number of unrooted trees until the tree with the fewest number of required 

changes is found (Higgs and Attwood 2005 pg. 177). A criticism of the 

maximum parsimony method is the problem of long-branch attraction, where 
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species with a large total number of changes relative to other species may be 

incorrectly grouped together (Wagele and Mayer 2007). 

The neighbour-joining, or NJ, method is a distance matrix method, where 

all the species to be included on the tree are used to create a matrix of distances 

calculated from molecular sequences using some type of quantitative system 

(Higgs and Attwood 2005 pg. 166). For a simple example the distance between 

the same gene from any two species could be defmed as the number of observed 

changes between their sequences. More complex types of evolutionary models 

could also be adapted through the use of a scoring system to generate a distance 

matrix. Once the distances are calculated, the two species with the smallest 

distance are joined together by creating a new node that becomes part of the tree, 

then the distances for the two species to the node are calculated, the distances of 

all the other species to the node are calculated, and finally the process is started 

over with the two closest joined neighbor species considered a single entity in the 

distance matrix (Higgs and Attwood 2005 pg. 167). As species are joined, the 

distance matrix becomes smaller and the algorithm is repeated until all species are 

joined on the tree. The NJ method produces unrooted additive trees, which are 

trees where the distance between two nodes is equal to the sum of the length of 

the branches between those nodes on the tree (Higgs and Attwood 2005 pg. 166). 

Since the distances between nodes is initially supplied by the distance matrix, and 

calculated distances between real sequences are not additive, the NJ method 

produces the tree of closest approximation to additive distances using the real 

20 



MSc Thesis- Nicholas \IVaglechner McMaster- Biochemistry and Biomedical Sciences 

data. The closer the real data are to being additive, the closer the tree produced by 

the NJ method is to the ideal additive tree (Higgs and Attwood 2005 pg. 166). 

The fmal method to be described is maximum likelihood (ML). This is the 

most complicated type of tree construction method since it requires an 

evolutionary model to judge the relatedness of species. The statistical models used 

to calculate relatedness are often substitution models that estimate the rates of 

substitutions between different elements of a sequence, which may be nucleotides, 

codons, or amino acids. For a given model with its associated parameters and a 

pair of species, the model describes the expected type and number of 

substitutions, and can be used to calculate the probability that the actual sequence 

data is observed (Higgs and Attwood 2005 pg. 173). When considering all data 

from all pairs of species to be included, the probability that the sequences are 

related according to a candidate tree with a specified topology and branch lengths 

may be calculated and the probabilities of different candidate trees may be 

compared to determine the most likely tree. This is another method that requires 

searching through many possible trees in so-called 'tree space' to fmd the best 

tree or trees, since there may be many candidates with similar probability. The 

method may be used to evaluate the probabilities of a limited set of specified tree 

topologies to determine, for example, the optimal tree when portions of the tree 

are known to have a reliable branching pattern and portions where there is 

ambiguity. When parts of a phylogeny are well known the number of candidate 
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trees to be searched may be reduced by assuming such parts are fixed, speeding 

up the overall search. 

Bootstrapping may be applied to all three methods as a way to determine 

the level of support for the trees produced. Bootstrapping is used to overcome the 

effect of noise in the sequences on the fmal outcome of each tree by randomly 

sampling the dataset with replacement. The columns in the sequence alignments 

required to produce trees in each method are considered to be independent 

observations of the same site for each species. Each bootstrap iteration produces a 

dataset with the same length as the original but consisting of randomly sampled 

columns from the alignment with replacement such that some columns may be 

sampled many times, only once, or not at all. The data in some columns may not 

vary from species to species and therefore contains information about the 

phylogeny of the species. Some columns are extremely variable and represent 

noise in the sequence that obscures phylogenetic information. The information in 

different columns may produce different tree topologies. The method of sampling 

the data via bootstrapping results in the production of many trees, usually 100 or 

more, and provides information about how many times the most frequent 

topology was observed for every node and therefore which nodes are well­

supported by the data and which are more ambiguous (Higgs and Attwood 2005 

pg. 169). 
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In the case of the archaeal tree produced by Gao and Gupta (2007) the 

three different methods produced very similar topologies. To repeat this method, 

briefly, starting from the original dataset kindly provided by Beile Gao, additional 

sequences for the newly available species were identified through PSI-BLAST 

searches of public databases (Altschul et al. 1997) and added to the dataset. 

Alignments of these proteins were produced using the program ClustalW with 

default parameters (Chenna et al. 2003), and the TRANALIGN program of the 

EMBOSS package (Rice et al. 2000) was used to produce DNA alignments using 

the aligned protein coding regions. When repeating the phylogenetic work the NJ 

method was used, because of a computational speed advantage, to produce a 

phylogenetic tree bootstrapped 100 times using concatenated sequences stripped 

of poorly aligned regions of the same 31 proteins used previously. A total of 47 

Archaea were included in this analysis, 18 more than before. Since that time five 

more complete gencmes have been produced but have not been added to the 

dataset. The new tree possessed the same overall topology as the tree of the 

previous authors with the additional 18 species, and is shown in Figure 2.1. This 

tree was used to select pairs of species for further analysis. Pairs were selected 

such that relatively close neighbor species on the tree would represent related 

organisms where one member was an extremophile and the other a mesophile 

while being similar in other respects such as genome size and GC content. N. 

equitans was chosen as out-group only for the purpose of drawing the tree 

because of its uncertain placement and relatively long branch length. 
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Three pairs, referred to as A1, A2 and A3 were selected from the archaeal 

tree such that they differed in optimal growth temperature by 50, 28 and 23°C 

respectively, and represent thermophile pairs. Information regarding these pairs, 

and all other pairs to be discussed below, may be found in Table 3.1, while 

optimal growth temperature values with references and genomic GC content for 

all species used in this work may be found in Table 3.10. 

Unfortunately, there were no acceptable cases where a mesophile and 

acidophile could be paired nor a mesophile and barophile. This is due to both the 

relatively small number of complete genomes available in the Archaea and the 

diversity of organisms they represent, and to lack of reliable information 

regarding the natural habitats of each organism. It is difficult to learn from the 

literature whether an organism isolated from the deep ocean is an obligate 

barophile or merely baro-tolerant. Information regarding optimal culture 

conditions obtained from various microbial culture collections is unfortunately 

vague regarding pressure requirements. For example, while M. jannaschii is 

reported to grow at up to more than 200 atm, the American Type Culture 

Collection (ATCC) specifies a minimum and maximum temperature and media 

requirement but no required pressure (Bult 1996, ATCC http://www.atcc.org/ M. 

jannaschii ATCC #43067). 
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Figure 2.1 - Tree ·()f the Archaea. Neighbour-Joining phylogenetic tree using 
47 Archaeal species with Nanoarchaeum equitans used as outgroup. Node values 
indicate bootstrap support. 
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2.3 A General Symmetric Codon Model 

The model used as a starting point for detecting asymmetric amino acid 

evolution between species pairs in chapter 3 was derived from a codon model 

used previously (Higgs et al2007). This is referred to as the symmetric (S) model. 

There are numerous advantages for using codon-based models over either DNA 

or protein sequence models. 

DNA models only require a 4x4 matrix and are therefore relatively small 

however the effect of natural selection on protein function is disregarded. Since 

protein function is based on structure and the structure of a protein depends on its 

amino acid sequence, when the amino acid sequence is not taken into account by 

DNA models this valuable information is lost. Similarly with protein-based 

models, only effects directly acting the amino acid sequence may be accounted 

for in the model and other information is not utilized. Effectively, only non­

synonymous DNA substitutions are used by these types of models. Codon-based 

models are a compromise that can incorporate effects of selection on DNA and 

protein sequence simultaneously, albeit at the expense of requiring many more 

parameters than other types of models. The substitution matrix making use of 

every codon would be 64x64, or 4096 elements, significantly more than either the 

4x4 or 20x20 DNA and amino acid models respectively. The size of the 

substitution rate matrix determines how difficult these models are to compute and 

also what format the sequence data needs to be tabulated in before it can be used 
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as input. A symmetric codon-based model is derived below. This model is to be 

applied to a pair of species, labeled A and B, to describe the evolution of their 

respective sequences in the time since these species diverged. The species pairs 

for the Archaea were ;::hosen as described in chapter 2.1. Once model S is defmed, 

along with the method to calculate maximum likelihood and the calculation of 

Akaike's Information Criterion (AIC) used for model discrimination, asymmetric 

terms may be added to the model, to be described in chapter 3. 

2nd position 

u c A G 

F(UUY) S (UCY) Y(UAY) C (UGY) y 
u 

L(UUR) S (UCR) W(UGG) R 

L(CUY) P(CCY) H(CAY) R(CGY) y 
c 

= L(CUR) P(CCR) Q (CAR) R(CGR) R eM 
= a 
~ .... 

'~ 8. I (AUY) T(ACY) N(AAY) S (AGY) 
I (AUA) y = '!il A = ~ = 
M(AUG) T(ACR) K(AAR) R(AGR) 

R 

V(GUY) A(GCY) D(GAY) G(GGY) y 
G 

V (GUR) A(GCR) E(GAR) G(GGR) R 

Table 2.1 - List of codon states. 32 Codon states used in all models with the 
amino acid each encodes. Stop codons are not included. 
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In modelS codons are simplified into 32 states such that each is translated 

by a unique tRNA, disregarding stop codons. Most states include the codons of a 

given amino acid that differ by either a purine or pyrimidine in the third position. 

For example the phenylalanine codons TTC and TTU are included together under 

the codon state TTY. Single codons are represented by their actual codons, while 

four codon blocks are represented by their pyrimidine or purine ending codons. 

Table 2.1 summarizes the codon states used. 

The model and its parameters are used to estimate relative substitution 

rates in the 32x32 matrix rij between codon states i and j. In model S each rij 

element can be described for non-synonymous substitutions as: 

(3) 

Alternatively, each rij element for synonymous substitutions is described 

as: 

(4) 

for all i =f. j. The parameters 1tj are measured from the dataset and represent the 

estimated equilibrium frequency of codon state j. The rij matrices for both species 

are normalized to an equilibrium rate of one by defining the diagonal elements rii 

to be equal to the negative sum of the remaining elements of each row, as with the 

Jukes-Cantor model described previously. Each element is divided by the 

negative sum over each state i of the product of the equilibrium frequency of state 
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i and the diagonal element rii. This is necessary to calculate the substitution 

probabilities Pij(t), where the parameter tis evolutionary time expressed in units 

of codon substitutiom. 

The ~at parameters are introduced for each rij element to classify 

substitutions into different categories, therefore allowing different categories of 

substitutions to occur at different rates. Non-synonymous substitutions requiring 1 

2 or 3 base changes h!tween codon states i and j are accounted for by <Xu, where n 

= 1, 2 or 3 respectively. Similarly, synonymous substitutions requiring 2 or 3 

substitutions are accounted for by the a.s and CX6 parameters. It is expected that 

synonymous substitutions involving one base change will occur most often and 

therefore <X4 is defmed to be equal to one. Consequently a.,, a.z, a.3, a.s, and CX6 are 

expected to occur les~ frequently, and therefore be less than one. This is unlike 

other codon state substitution models, for example the model described by Lio et 

al. (1998), where substitutions requiring more than a single base change are 

explicitly forbidden and the rate set to zero. 

The exponential term exp( -d{i,J)/D) for non-synonymous substitutions 

describes a decreasing function of the weighted distance d(i,J) between the amino 

acids encoded by codon states i andj. This is important because the identity of the 

amino acid encoded by the codon at a given site may be related to one of its 

physical or chemical properties. Sites where an amino acid with a certain property 

is preferred will resul1: in selection for amino acids with similar properties after a 
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mutation. Nine scales of physico-chemical properties of amino acids were 

transformed to have a mean of zero and variance of one to describe a 9-

dimensional property space. The properties include volume, bulkiness, polarity, 

isoelectric point, hydrophobicity, hydrophobicity (alternate scale), water 

accessible surface area, fraction of surface area lost when folded, and the Woese 

polar requirement scale (Higgs and Attwood 2003 pg. 24; Higgs et al. 2007, and 

references therein). The d(i,j) function is the weighted Euclidean distance 

between amino acids encoded by states i and j in this space, under the constraint 

that the weights must sum to one. This may be written as: 

1 
9 2 

d(i,j) = (~ w•(Pik- PJk)
2

) (5) 

where k denotes the kth property of the amino acid encoded by codon states i and 

j. The weighted distance was previously shown to improve fit of the model 

starting from equal weights before optimization, at the cost of 8 additional 

parameters (Higgs et al. 2007). The parameter D controls the shape of the 

decreasing function. Once the model is fitted, the weighting of the different 

properties may provide insight as to which properties are more important than 

others 

Hereafter, the terms described above to calculate rij will be referred 

collectively as Model 0. ModelS (symmetric) will be Model 0 with the addition 

of the K(i,j) term described as follows. We expect transitions to occur more often 
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than transversions and therefore defme a parameter K which represents the 

transition/transversion ratio and should always be greater than 1. K(iJ) is a 

function equal to~. where n = 0, 1, or 2 for substitutions from codon state ito j 

requiring 0, 1 or 2 transitions respectively. 

The substitution rate matrix from the symmetric models can be used to 

calculate the substitution probabilities in time t since the sequences diverged as: 

(6) 

The relative substitution rate matrix is multiplied by a time factor measured in 

units of codon substitutions. The log-likelihood may be calculated as follows: 

(7) 

where 1tk, the frequency of state k in the ancestor, is estimated as the average 

frequency observed ir. species A or B. The term in parentheses is the sum over all 

codon states k at a site in the ancestral sequence of the probability of being 

substituted to state i in species A and to state j in species B in a time t. The log­

likelihood is then the product of the number of times each i to j substitution is 

observed in the dataset and the log of the term described above, summed over all 

values of i andj. 

Maximum likelihood is determined through a hill-climbing routine, 

evaluating the likelihood of the model starting with default initial parameters and 
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proceeding through a defmed number of iterations. Following each iteration a 

randomly chosen parameter is increased or decreased by a small amount and the 

new likelihood is determined. Only changes that increase the likelihood are 

accepted. 50 000 iterations are used to achieve convergence in the parameters. 

Each model was repeatedly fitted 2 to 4 times, using different random seeds for 

each repetition. 

The need to distinguish between models cannot be based on likelihood 

alone, as two models with a different number of parameters may possess the same 

likelihood. The best model is considered to be the one with the highest likelihood 

requiring the least number of free parameters. As in the previous work, Akaike' s 

Information Criterion (AIC) is used to choose between models (Higgs et al. 

2007). The AIC gives a score based on the maximum likelihood obtained for a 

given model penalized by the number of degrees of freedom in the parameters 

used by that model. This allows selection of a model that provides the best 

likelihood with the least complexity (extra parameters) to avoid fitting noise. This 

is calculated as 

AIC = 2(-lnL + K) (8) 

where L is the maximum likelihood and K is the degrees of freedom in the 

parameters. The model to which all more complex models will be compared is 

Model S which possesses a total of 4 7 degrees of freedom ( dof) in its parameters. 
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Chapter 3 

Asymmetric Evolution of Prokaryotic Extremophiles 

3.1 Introduction 

Prokaryotic organisms have adapted to live in a very wide range of 

temperatures covering the full range from below 0 to just beyond 100 °C. Many of 

the proteins of typical mesophile organisms are not stable at extreme 

temperatures. Therefore, adaptation to extreme temperatures requires the 

evolution of unusual protein sequences. Several studies have identified significant 

statistical differences between sequences from mesophile and thermophile 

organisms (Haney et al. 1999; McDonald et al. 1999; McDonald et al. 2001). Di 

Giulio (2000) introduced a simple Thermophily Index that is a weighted sum of 

the frequencies of the amino acids in a sequence. He showed that this index 

correlates very strongly with the optimum growth temperature (OGT) of the 

organisms. Recently Zeldovich et al. (2007) have considered all possible subsets 

of amino acids to determine subsets whose frequencies strongly correlate with 

OGT. The high level of correlation of these simple indices with OGT suggests 

that there are selective forces on protein structure and function that act in similar 

ways in different thermophilic species. However, structural approaches have put 

forth many competing hypotheses for mechanisms of thermal adaptation. 

Simulated melting of proteins has been used to suggest greater entropic 
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stabilization at higher temperatures from lysine versus arginine due to the effect 

of the number of rotameric states accessible by each amino acid in the native state 

(Berezovsky et al. 2005). The examination of structures has also suggested that 

there may be multiple different effects at work in different situations, such as 

compactness increasing with temperature adaptation, or suggesting that small 

numbers of strong interactions between residues are responsible for thermal 

stability in some proteins (Berezovsky and Shakhnovich 2005). Comparisons 

between structures of a given set of mesophilic, thermophilic and psychrophilic 

variants of a single protein have been performed to examine denaturation and 

constraints in flexibility and rigidity (Bae and Phillips Jr. 2004). This has been 

extended to identifying substitution patterns in various environments in the 3D 

structure of proteins (Mizuguchi et al. 2007). Sequence-based methods have been 

used to look beyond substitutions towards specific patterns in the coupling of 

pairs of amino acids (Liang et al. 2005). 

Although temperature adaptation is the most widely studied, adaptation of 

protein sequences to other factors has also been investigated. In the same way as 

for the thermophily index, indices have also been established to measure 

adaptation to high pressure (Di Giulio 2005a), acid pH (Di Giulio 2005b) and 

anaerobic versus aerobic conditions (Archetti and Di Giulio, 2007). In addition to 

the basic understanding of mechanisms of adaptation, which may allow directed 

engineering of functional proteins under extreme temperatures, this knowledge is 

important to understanding the evolution of current life in extreme conditions, and 
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to reveal useful information about conditions that existed at the time of the origin 

of life and the establishment of the genetic code. 

In order to draw conclusions of this type, however, it is necessary to be 

sure that the variations in amino acids that are seen among different genomes are 

really the result of selection for the environmental condition in question, rather 

than some other factor that is specific to the species being compared. The aim of 

this project is to introduce models for protein sequence evolution that can be used 

to analyze sequences from pairs of related species that live in different 

environments, such a:; a mesophile and a thermophile. The method begins with an 

evolutionary model that is symmetric with respect to the two lineages, previously 

described in Chapter 2.3. In this model the expected numbers of substitutions 

between any two amino acids are equal in the forward and reverse directions, and 

the frequencies of the amino acids are constant in time. Asymmetric terms are 

then added to the model that allow forward and reverse substitution rates between 

two amino acids to differ. A systematic increase or decrease in frequency of an 

amino acid may then occur in one lineage with respect to the other. By comparing 

likelihoods of the data with the asymmetric and symmetric models, it is possible 

to ask whether the asymmetric terms are statistically significant and to identify the 

most important asymmetries in rates. 

This method builds on that of Higgs et al. (2007), who used it to compare 

pairs of paralogous genes in Saccharomyces cerevisiae that have high and low 

expression levels. In that case, it was possible to distinguish between asymmetries 
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that arise due to selection for translational efficiency, translational robustness, and 

minimization of protein cost via reducing the use of metabolically expensive 

amino acids, all of which are expected to be stronger in highly expressed genes. A 

key advantage of the model is that it allows more than one asymmetric effect to 

be present at the same time and separates out the different effects. In the case of 

the mesophile/thermophile comparison the goal is to detect systematic selection 

on amino acid frequency arising from a need for the structural stability of 

proteins. However, an important confounding factor is that the GC content of the 

genome differs among species and this also causes changes in amino acid 

frequencies. The models used here allow for biased mutation rates that change the 

GC content and also for selective effects on amino acid usage. 

3.2 Data Selection 

Table 3.1 lists the pairs chosen for analysis in this work, including OGT 

for species A and B and the equilibrium GC content as measured by <1> value 

derived from observed GC content at four-fold degenerate sites in the sequences 

used. The archaeal pairs were chosen based on the criteria outlined in Chapter 2.1. 

Lacking a comparable bacterial phylogeny, selection of bacterial pairs was 

performed using taxonomy, via the NCBI taxonomy browser web server 

(http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi). A list of 

candidate psychrophilic and (hyper)thermophilic bacterial species with 

completely sequenced genomes was created in May 2007, and subsequently 
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narrowed down by the removal redundant related species. For example, if two or 

more thermophiles in the same genus were present only one representative 

organism was chosen based on the ability to find a corresponding mesophile. 

Pairs were made by finding an organism within one or at most two higher levels 

of taxonomy with the goal of fmding the closest pair possible. The sequences of 

the 31 proteins above were identified through PSI-BLAST searches of public 

databases for each species, downloaded for use in this work, and aligned as 

described in chapter 2.1. The thermophile (TB) and psychrophile (PB) pairs along 

with OGT values and <1> measurements for each are included in Table 3.1. The 

bacterial species used in this work along with OGT values with references and 

genomic GC content are also included in Table 3.10. 

In total, thre1! archaeal and six bacterial pairs were chosen where one 

member is a mesophile and the other a (hyper)thermophile. Five bacterial pairs 

were chosen where one member was a mesophile and the other a psychrophile. In 

addition, two more archaeal pairs were chosen, labeled C 1 and C2, such that their 

OGT values were the same. C1 are two species of Methanococcus with OGT of 

37°C. C2 consists of a pair of Pyrobaculum species with OGT of 95°C. Both pairs 

are likewise listed in Table 3.1 and individual species along with OGT references 

are included in Table 3.10. The inclusion of these pairs was an attempt to test the 

assumption of the method when the members of a pair do not differ in terms of 

thermal lifestyle. 
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Pair Species A TA <I> A Species B TB <l>s 

A1 Methanococcus maripaludis S2 35 0.16 Methanocaldococcus jannaschii DSM 2661 85 0.12 

A2 Methanosphaera stadtmanae DSM 3091 37 0.06 Methanothermobacter thermautotrophicus str. Delta H 65 0.49 

A3 Ferroplasma acidarmanus Ferl 37 0.35 Picrophilus torridus DSM 9790 60 0.32 

TBl Clostridium difficile 630 37 0.05 Clostridium thermocellum ATCC 27405 55 0.38 

TB2 Bacillus halodurans C-125 30 0.38 Thermoanaerobobacter tengcongensis MB4 75 0.32 

TB3 Desulfitobacterium hafniense Y51 38 0.56 Carboxydothermus hydrogenoformans Z-2901 67 0.54 

TB4 Deinococcus radiodurans R1 30 0.91 Thermus thermophilus HB8 85 0.95 

TB5 Oceanobacillus iheyensis HTE831 28 0.18 Geobacillus thermodenitrijicans NG80-2 65 0.64 

TB6 Frankia sp. Cci3 28 0.90 Acidothermus celluloyticus llB 55 0.87 

PB1 Shewanella loihica PV -4 22 0.37 Colwellia psychrerythraea 34H 8 0.19 

PB2 Acinetobacter sp. ADP1 37 0.27 Psychrobacter arcticus 273-4 22 0.32 

PB3 Desulfovibrio desulfuricans G20 37 0.69 Desulfotalea psychrophila LSv54 10 0.32 

PB4 Vibrio cholerae OJ biovar eltor str. NJ6961 37 0.36 Photobacterium profundum SS9 15 0.21 

PBS Marinobacter aquaeolei VT8 30 0.64 Psychromonas ingrahamii 37 5 0.27 

C1 Methanococcus vannielii SB 37 0.35 Methanococcus aeolicus Nankai-3 37 0.35 

C2 Pyrobaculum arsenaticum DSM 13514 95 0.66 Pyrobaculum islandicum DSM 4184 95 0.46 

Table 3.1 - List of species pairs. Pairs of related species with optimal growth temperature and GC content at fourfold­
degenerate sites. Species A is a mesophile and species B is an extremophile in each case. A = Archaea; TB = thermophilic 
Bacteria; PB = psychrophilic Bacteria; C =control (equal growth temperatures). 
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3.3 Thermophily lndices 

In this section the evidence that amino acid frequencies vary 

systematically with the OGT of the organism will be reviewed, and it will be 

shown that simple thermophily indices can be used as predictors of OGT. In 

general, these indices will be of the form: 

h = LCafai (9) 
a 

where /i is the value of the index in species i, lai is the frequency of amino acid a 

in species i (normalized so that the frequencies sum to 1 in each species), and Ca 

is a coefficient detennining the importance of amino acid a to the index value. Ca 

is high for amino acids that increase in frequency in thermophiles and and low for 

those that decrease. The index is a useful predictor of OGT if there is a high 

correlation between li and Ti (the OGT of species i). 

The scale of Di Giulio (2000) was derived from sequences of 

Methanococcus and Bacillus. It uses coefficients in the range 1 to 20. However, 

the range is not important because a linear transformation of these coefficients 

does not change the correlation. Therefore, to facilitate comparison with other 

scales discussed below, the coefficients of the Di Giulio scale were shifted so that 

the mean is zero and the standard deviation is 1 (shifted values shown in Table 

3.2). Using these coefficients /i was calculated for each genome in the data set. 
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There is a strong positive correlation with Ti, as shown in Figure 3.1 (Pearson 

correlation coefficient R = 0.775). 
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Figure 3.1 · Thermophily Index - Di Giulio and slope scale. Each point 
represents the TI calculated from amino acid frequencies obtained from all 
predicted open reading frames for each species plotted against OGT for that 
species. Solid squares - TI calculated using the normalized scale of DiGiulio 
(see text) R = 0.775. Open squares- TI calculated using the normalized slopes 
of amino acid frequencies versus OGT (see text) R = 0.901. 

A linear regression was performed using each amino acid frequency fai 

against Ti. Another useful thermophily index can be obtained using the slopes of 

these regression lines. The mean value of the slope (averaged over the 20 amino 
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acids) is already conBtrained to be zero because the frequencies of the 20 amino 

acids sum to 1 for ev,~ry species. The slopes were normalized so that the standard 

deviation was 1 (see Table 3.2) and used as the Ca coefficients. The plot of /i 

versus Ti with these coefficients is also shown in Figure 3.1. The correlation is 

slightly higher (R = 0.901). 

Table 3.2 - Amino acid scales and aroaerties 
Normalized 

a.a. Tla IVYWRELb Ternart 
F -0.05 0 -1 
L 0.63 1 0 
I 0.97 1 0 

M -0.68 0 0 
v 0.49 1 1 
s -1.85 0 -1 
p 1.31 0 1 
T -1.07 0 -1 
A 0.10 0 -1 
y 0.83 1 1 
H -0.24 0 0 
a -1.02 0 -1 
N -1.60 0 -1 
K -0.10 0 0 
D -0.88 0 -1 
E 0.15 1 0 
c 0.63 0 -1 
w 1.51 1 1 
R 1.75 1 0 
G -0.88 0 -1 

a - normalized Thermop 1ily Index scale from Di Giulio 2000 
b,c - IVYWREL and ternary model from Zeldovich et al. 2007 

sloped 
-0.08 
0.99 
0.35 
-0.40 
1.62 
-1.13 
0.50 
-1.26 
-0.58 
0.97 
-0.52 
-1.64 
-1.05 
1.08 
-1.35 
1.27 
-0.36 
0.19 
1.38 
0.03 

mean 
freq.e {%) 

4.49 
11.13 
8.22 
2.76 
8.59 
6.62 
4.79 
5.77 
9.10 
4.09 
2.08 
3.14 
4.37 
6.72 
6.01 
8.15 
1.07 
1.22 
6.07 
8.23 

d - slopes of amino acid frt quency against OGT in the data set, normalized to mean zero and variance I. 
e - mean frequency of amino acids in all genomes in the data set. 
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Zeldovich et al. (2007) considered binary models in which each 

coefficient is 0 or 1, and ternary models in which each coefficient is 0, 1 or -1. 

Using a data set similar to the one used here, they found that the binary model that 

has the highest correlation with OGT has Ca = 1 for the amino acids IVYWREL. 

The best ternary model has Ca = 1 for VYWP and Ca = -1 for CFAGTSNQDH. 

Using these coefficients with the data set from this work, the correlation 

coefficients are R = 0.945 for the best binary model and R = 0.934 for the best 

ternary model. The plot of /i versus Ti using these two sets of coefficients is 

shown in Figure 3.2. 
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Figure 3.2 - Therrlltophily Index - alternate scales. Each point represents the 
TI calculated from amino acid frequencies obtained from all predicted open 
reading frames for each species plotted against OGT for that species. Open 
squares - TI calculated using the Ternary model scale of Zeldovich et al. (2007) 
R = 0.934. Solid squares - TI calculated using the IVYWREL scale of 
Zeldovich et al. (2007) R = 0.945. 

3.4 Definition of Asymmetric Models 

Asymmetric terms for amino acid and GC composition are introduced to 

the previously described model S as follows. The symmetric rij matrix must be 

calculated as in Chapter 2.3, with added terms for species A and B. The A and B 

species are defined such that A is the mesophile and B is either the thermophile or 

psychrophile being considered, depending on the pair. Amino acid asymmetry is 
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described as rij proportional to (1 ± Ez8Zij) where the sign is positive for the r8 ij 

matrix and negative for the r\ matrix, Ez is a parameter used as a scaling factor 

and 8zij is the difference in value of coefficients (Zj - Zi) for the non-synonymous 

substitution from codon state i to j on a given scale. This work uses a fixed scale 

derived from DiGiulio's original index (DiGiulio 2000), or free scales allowed to 

vary given the two constraints that the values must have a mean of zero and a 

variance of 1 at the cost of 18 additional parameter degrees of freedom to the 

model. When a fixed scale is being used, Ez is allowed to be negative to 

accommodate the psychrophile pairs since the values in Di Giulio's scale 

described above are positive for increasing thermophily. This convention is 

retained when obtaining a scale as a set of free parameters, since species A is 

designated the mesophile and the positive sign is used for calculating the species 

B substitution matrix r8 ij· 

A term is needed to account for asymmetry in GC content which has been 

identified as a potential bias in species pairs with a large difference in GC content. 

Similarly to the asymmetric amino acid term above, the term (1 ± Eac8GCij) is 

introduced where Eac is a parameter used as a scaling factor and 8GC is the 

difference (GCj- GCi) between the number of G or C bases in codon states i and 

j. Using the convention above, the sign is positive when calculating r\, and 

negative r\ however the Eac value is allowed to be negative since either species 
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may have the greater GC content. When both effects are considered, we collect 

the terms as 

(10) 

for species A and 

(11) 

for species B. Because the asymmetric substitution rate matrices are now 

different, the substitution probability matrices are calculated separately. P\ = 

exp(t·r\) and P\ = exp(t·r\) describe the matrices P\ and P\ which denote the 

probabilities of going from codon state i to j for either of two species A and B in 

time t. We estimate the parameter 1tk, the ancestral frequency of codon state k with 

the assumption that it is the average frequency of state kin species A and B. The 

pair frequencies /ij pn:dicted by the model can be calculated as 

hj = L TCkPt;,(t)P:;(t) 
k 

(12) 

The pair frequencies describe the probability of codon state k in the 

ancestor of species A and B to be substituted to state i in species A and state j in 

species Bin a timet since divergence, measured in units of codon substitutions. 

The log-likelihood lnL given an aligned sequence and a model is 

calculated as: 
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(13) 

where nij is the matrix describing the observed number of substitutions from 

codon states i and j in the aligned sequences and fi.j are the pair frequencies as 

above. 

Model F (Fixed Z-Scale) is defmed as Model S with the addition of a term 

using a free Ez parameter and a fixed Z-scale using the normalized scale of Di 

Giulio. Model V (Variable Z-scale) is Model F with the addition of allowing a 

free Z-scale and 18 additional parameters. Model GC is Model S with only the 

addition of an asymmetric GC parameter, Eac, as above. Model FGC is Model GC 

with the addition of a fixed Z-scale as in Model F. Model VGC is the same as 

Model FGC except the Z-scale is permitted to vary freely as in Model V. A 

summary of these models with a description and degrees of freedom ( dof) for 

each is provided in Table 3.3. 

Table 3.3 -Description of models 

Model 
s 
F 
v 

GC 
FGC 
VGC 

Description 
Basic symmetric model 

ModelS+ fixed asymmetric amino acid scale 
Model V + variable asymmetric amino acid scale 

Model S + asymmetric GC 
Model F + asymmetric GC 
Model V + asymmetric GC 

46 

Degrees 
of 

freedom 

47 
48 
66 
48 
49 
67 
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3.5 Asymmetry in Selected Pairs 

Using the dataset of 31 concatenated proteins disregarding gaps and stop 

codons, codon substitutions for the described states were counted and entered into 

an appropriate nij matrix for each species pair. All models were fitted to these 

data. The values obtained for parameters in symmetric model S, for selected pairs, 

are provided in Table 3.4 and 3.5. These values are typical for each pair of species 

(data not shown). 

Taking the AIC of model S to be a reference, we calculate the MIC as: 

JlAIC = (AICmodelx- AICmodels) (14) 

where model X is the model under consideration. The MIC values for the fitted 

models are provided in Table 3.6. Lower values of MIC mean better 

performance of the model being compared to model S. 

The a. parameters were defmed to explicitly account for the possibility of 

multiple base substitutions in a single time step, which has been shown in recent 

work to be a real feature of sequence evolution, though it was not attempted to 

show this is an improvement over a model that forbids multiple substitutions in 

this work (Kosiol et al. 2007, Higgs et al. 2007). 
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Table 3.4 - Amino acid weight parameters 

Pair w1 w2 w3 w4 w5 w6 wl wB w9 

A1 0.000 0.272 0.000 0.076 0.094 0.000 0.291 0.127 0.141 

A2 0.000 0.279 0.000 0.052 0.191 0.000 0.238 0.172 0.068 

A3 0.000 0.249 0.000 0.039 0.128 0.000 0.297 0.197 0.090 

Yeast 0.000 0.151 0.000 0.021 0.226 0.000 0.265 0.184 0.154 

Table 3.5 - Parameters of model S 

Pair t a1 a3 a5 a6 K 0 

A1 0.930 0.040 0.014 0.005 0.579 0.080 1.496 0.661 

A2 1.060 0.044 0.013 0.014 0.465 0.097 1.512 0.652 

A3 0.785 0.042 0.017 0.008 0.708 0.037 1.474 0.661 

Yeast 0.735 0.085 0.041 0.045 0.375 0.118 1.593 0.901 

Table 3.4 shows physico-chemical property weight parameters: w1 - volume; w2 - bulkiness; w3 -polarity; 
w4 - isoelectric point; w5 - hydrophicity; w6 - hydrophobicity (alternate scale); w7 - water accessible surface 
area; w8 - fraction of area lost when folded; w9 - polar requirement. 

Table 3.5 contains the maximum-likelihood parameters for Model S for the three archaeal pairs in and the 
paralogous genes from yeast (taken from Higgs et al. 2007). Table 3.4 shows t- time in codon state changes 

per codon; a - rate parameters for each substitution category; TC- transition/transversion ratio: D - amino 
acid distance parameter. 

The parameter K behaves as expected, converging to a value greater than 1 

in all cases. Allowing multiple substitutions required taking into account multiple 

transitions and transversions, and it was determined that the K(i,J) term in Model 

S is an improvement over Model 0 in every case (data not shown). This offers 

some additional support for the inclusion of multiple substitutions via the a. 

parameters. 
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Model Al A2 A3 TBl TB2 TB3 TB4 TB5 TB6 PBl PB2 PB3 PB4 PBS Cl C2 

s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 nn nn nn nn nn nn nn 0.0 nn 
VoV VoV v.v v.v VoV v.v v.v v.v 

F -224.8 -135.9 -24.1 -18.5 -30.0 -36.8 -254.3 -94.2 -21.3 -7.7 -13.3 -5.9 -0.2 -1.5 -3.1 2.0 

v -287.0 -323.6 -13.3 5.1 -75.8 -59.0 -346.7 -95.1 -29.2 -13.2 -28.0 -14.8 -1.8 -55.8 -83.6 7.7 

GC -62.6 -490.9 2.0 -57.8 2.0 2.0 2.2 -59.0 2.0 2.0 2.0 2.1 2.0 2.0 -10.2 -26.2 

FGC -321.4 -557.2 -22.9 -68.1 -28.0 -34.8 -252.1 -125.3 -19.3 -5.7 -11.3 -3.9 1.8 0.6 -13.5 -24.3 

VGC -392.6 -674.4 -11.7 -156.3 -73.6 -56.9 -344.5 -115.0 -27.2 -11.2 -28.5 -12.7 0.2 -53.6 -115.9 -11.8 

~T 50 28 23 18 45 29 55 37 27 -14 -15 -27 -22 -25 0 0 

~<I> -0.04 0.43 -0.03 0.33 -0.05 -0.01 0.05 0.46 -0.03 -0.18 0.05 -0.37 -0.15 -0.37 0.00 -0.20 

Table 3.6 -AAIC values for fitted models relative to model S. The best fitting model in each case is in bold. Values of the 

difference in optimal growth temperature (.~T =Ta-T A) and the difference in GC content at fourfold-degenerate sites (~<I>= <l>s­
<I>A) are also shown for comparison. 
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With a few exceptions, one of either Model V or Model VGC is regularly 

shown to have the largest AAIC and therefore describe the data best among the 

models considered. Cases where either of these models is not preferred can be 

explained by the strength of the asymmetric effect and the measured <1> values 

from the DNA sequences of each species. In the absence of a strong asymmetric 

effect, the model with the least number of parameters dominates, explaining why 

model F is preferred for pair A3 (Table 3.6). In addition, models incorporating the 

GC term (Model GC, FGC and VGC) may dominate when the difference between 

<1> of each species is large. The performance of each model depends on the strength 

of the asymmetry and strength of the GC effect. It is important to note that the GC 

models are not nested within Model V. When the GC effect is orthogonal to the 

asymmetric amino acid effect, the effects in Model VGC can be observed as 

approximately the sum of the GC or asymmetric effects in Model GC and F or V, 

which is true for most cases (see Table 3.6). When the GC effect is present, it is 

sometimes additive when combined with the asymmetric effect in Model VGC, or 

degenerate. Cases where the GC effect is strong may be predicted by looking at 

the magnitude of the difference between measured <1> of the species in each pair 

(~<!>. see Table 3.6). Cases where there is a large gain in AAIC for Models GC 

versus ModelS areAl, A2, TBl, and TB5, and for all but Al, there is a greater 

than 30% difference in GC content as measured by <I> (A21~<1>1 = 0.4319, TBl 1~<1>1 

= 0.3287, TB5 1~<1>1 = 0.4606). It should be noted that even if a pair has a large 
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lil<l>l, the GC effect may not necessarily be strong or preferred when fitting 

models. 

3.6 Discussion 

The parametexs of ModelS, listed in Table 3.5, are reasonably consistent. 

The t parameter is unique for each pair, describing roughly the distance between 

species in the pair. The D parameter describing the shape of the decreasing 

function of amino acid distance is remarkably consistent for all pairs (Table 3.5), 

and for all models (data not shown). Though the exact values vary slightly, the 

weight parameters for each amino acid property follow some general patterns 

(Table 3.4). The parameters WI, W3 and W6, corresponding to the properties of 

volume, polarity and hydrophobicity (alternate scale), seem to tend towards zero 

in almost all models (data not shown). The highest weightings appear to be for w2 

and w7, corresponding to bulkiness and water accessible surface area. It was 

expected that substitution rates would be related to specific physico-chemical 

properties since it is with respect to these properties that natural selection can act 

in the context of the protein. 

Discussion irt the literature regarding which properties are required for 

temperature adaptation are varied. Some explanation is provided by authors who 

have observed a trend to compactness for thermophilic proteins (Berezovsky and 

Shakhnovich 2005). Similarly, there is discussion over polarity being less 

important overall and hydrophobicity being only more important to the inner 
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cores of proteins where amino acids can contribute to overall compactness 

(Berezovsky et al. 2005, Mizguchi et al. 2007). Also, solvent exposed surface area 

may be an important factor for flexibility which has been discussed much in the 

context of thermal adaptation (Zavodszky et al. 1998, Bae and Phillips Jr. 2004). 

Unfortunately, the parameters only describe relative weighting and as such 

provide little insight into the importance of each of these properties to specific 

types of adaptation. Also, the method treats each site of the input sequences 

equally, though there have been attempts by others to classify sites based on 

where they occur in the structure of a protein (Berezovsky et al. 2007, Mizguchi 

et al. 2007). Opinion in the literature seems to agree that physico-chemical 

properties of amino acids are important but in this work the method is unable to 

unambiguously show the importance of specific properties especially when some 

of the properties are correlated with each other such as volume and bulkiness. 

To address the potential problem of multiple properties correlating with 

one another and therefore being redundant, models were modified to 

systematically exclude one of the nine properties at a time and fitted to pair Al. 

Changes in property weights versus models using all properties should then 

provide information regarding the potential correlation between properties. 

Results of these runs are provided in Table 3.7. The properties Volume, Polarity 

and alternate Hydrophobicity scale tend to zero in ModelS. When each of these 

properties is systematically removed one by one, the MIC values indicate they 

were contributing nothing to Model S except an unnecessary parameter. 
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Al Vol. Bulk. Pol. pi Hydl Hyd2 H20-SA SA-Fold WPR 

Vol. 0.000 0.000 0.192 0.000 0.000 0.000 0.000 0.246 0.000 0.000 

Bulk. 0.272 -0.002 -0.272 0.000 -0.043 0.020 0.000 0.007 0.005 0.023 

Pol. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 

pi 0.076 0.000 -0.020 0.000 -0.076 -0.004 0.000 0.005 0.011 0.022 

Hydl 0.094 0.000 0.119 0.000 -0.065 -0.094 0.000 0.045 0.089 0.050 

Hyd2 0.000 0.000 0.000 0.000 o.uuu (),()()() 0.000 0.000 1'\ """ " """ u.uuu v.vvv 

H20-SA 0.291 0.001 -0.001 0.000 0.044 0.010 0.000 -0.291 0.002 0.004 

SA-Fold 0.127 0.000 -0.027 0.000 0.040 0.051 0.000 -0.012 -0.127 0.023 

WPR 0.141 0.000 0.008 0.000 0.101 0.016 0.000 0.001 0.019 -0.141 

MIC 0.00 -1.97 153.51 -2.00 86.40 6.65 -1.97 53.21 20.66 36.02 

Table 3.7- Changes in property weights after removal of single properties. Amino acid property weights (w1 through w9) 

are reported for Model S in column Al. Each following column shows the change in property weights when the property 
heading each column was removed from the model. MIC is also reported for the resulting model fit. Vol.- volume, Bulk.­
bulkiness, Pol.- polarity, pi- isoelectric point, Hydl- hydrophobicity scale, Hyd2- hydrophobicity scale (alternate), H20-
SA - water accessible surface area, SA-fold. -surface area lost in folded state, WPR. -polar requirement. (See text). 

AI A2 A3 Cl C2 TBI TB2 TB3 TB4 TB5 TB6 PBI PB2 PB3 PB4 PB5 
ModelS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

DiG -224.78 -135.90 -24.15 -3.05 1.99 -18.45 -30.04 -36.84 -254.28 -94.22 -21.26 -7.68 -13.26 -5.89 -0.21 -1.48 

IVYWREL -75.13 -62.34 -18.59 -1.71 1.55 -1.56 -7.28 -18.12 -134.80 -18.19 -II .54 -6.15 -5.81 1.99 2.00 0.15 

Slope -49.89 -33.05 -7.93 0.65 0.98 -2.07 -25.99 -42.86 -233.85 -31.52 -8.74 -2.00 -12.80 2.05 -0.52 -4.24 

Table 3.8- MIC values for model Fusing alternate scales- Scales as in Table 3.2 (see text) for pairs listed in each 

column, MIC calculated versus model S. 
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Alternatively, when a property with a relatively high weight is removed 

like bulkiness, or water accessible surface area, property weight is distributed in 

some cases to properties that received no weight before. This provides insight into 

which properties are contributing similar information to the model. 

With regard to the scales used by Model F it is informative to see which 

scale performs best when supplied as a fixed amino acid asymmetry scale. Table 

3.8 shows MIC values for three runs of model F using Di Giulio's scale, the 

normalized slope scale and the IVYWREL scale. DiGiulio's scale performs best 

in 12 of 16 pairs, while the normalized amino acid slope scale is best in the 

remaining 4. It should be noted that in two of the four pairs where Di Giulio's 

scale was not best it must be concluded that no fixed scale is a significant 

improvement over model S. Despite the fact that Di Giulio's scale is the best 

performing fixed scale overall in model F, it is the weakest when used to calculate 

the TI relationship, while the IVYWREL scale which performs best when 

calculating TI is the worst scale supplied to model F. This suggests that any scale 

derived from model fitting parameters will not necessarily show a good 

correlation when used to calculate Tl. 

This is confirmed when model derived scales from the best variable model 

(V or VGC) are used as coefficients to calculate Tl. Table 3.9 shows the 

correlation coefficients of these TI versus OGT plots. Only scales derived from 

fitting the data of 3 of 9 thermophile pairs have TI versus OGT correlation 
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coefficients greater thm 0.80, while none of the scales derived from psychrophile 

pairs have correlation coefficients greater than ±0.30. 

Pair R 

A1 0.346 

A2 0.400 

A3 0.906 

TB1 0.141 

TB2 0.500 

TB3 0.660 

TB4 0.844 

TB5 0.853 

TB6 0.532 

PB1 -0.278 

PB2 -0.295 

PB3 -0.026 

PB4 0.247 

PBS -0.136 

Table 3.9 - Correlation of TI and OGT using model-derived scales - The 
scale from the best fitting variable model (V or VGC) fitted to each pair was 
used to calculate TI correlated against OGT as described in methods (see text) 

When fitting this series of models to data from pairs C 1 and C2, both with 

L\OGT = ooc some ~onflicting results are observed. The preferred model for 

hyperthermophile pair C2 was model GC, L\AIC = -26.185, while MIC for 

model F and model V were both positive. This suggests that the dominating effect 

in this pair is due to GC content and not amino acid asymmetry due to 

temperature adaptation, in agreement with the measurement of <1> for these species 

(<!>P. arsenaticum = 0.663, <!>P. istandicum = 0.459). Positive MIC for models F and V 

means that either a fixed or free Z-scale is worse than no Z-scale at all (modelS), 
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which agrees with the assumption that since the .!lOGT for these two species is 

0°C amino acid asymmetry aside from the GC effect should not be expected. 

Mesophile pair C1 presents a different problem. The model best fitting the 

data is model VGC, AAIC = -115.893, the next best is model V AAIC = -83.582. 

The difference in <1> between these species is effectively zero, and accordingly the 

GC effect is small. It must be concluded that there is an asymmetric effect present 

in these species even though they have the same OGT. Several explanations are 

possible. The criteria for pair selection were chosen so that any asymmetric effect 

observed between species would be most plausibly attributed to difference in 

lifestyle. This does not preclude the presence of an asymmetric effect in the 

absence of a significant difference in OGT. It may also be possible that there are 

relatively few ways for a sequence to be adapted to high temperature and 

relatively many ways for a sequence to be adapted to mesophile temperatures. If 

this is true, there may be fewer constraints on protein sequences from the 

mesophile pair C1 versus the hyperthermophile pair C2, and this may explain the 

unexpected amino acid asymmetry being detected in pair Cl. The variable scale 

used in model V is designed to detect any asymmetry that may be present in the 

data, however the only conclusions that can be made based on the results of 

model fitting in the case of C1 are that the detected asymmetry is not due to 

adaptation to different temperatures and not attributable to differences in GC 

content. 
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Nevertheless, the results indicate that there is indeed detectable amino acid 

asymmetry in the species pairs analyzed here. In most cases this may be plausibly 

attributed to selection for thermal stability, even in cases where there is a 

simultaneous GC content effect. The models derived in this work are capable of 

discriminating between asymmetric GC and amino acid composition effects, 

however the scales derived from parameters used to fit these models are often not 

as good as other empirical sequence-derived scales when trying to correlate 

changes in a simple measurement such as the TI with the OGT values for a large 

group of species. 
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Table 3.10 - List of 69 species used 

Organism OGT (0 C} GC(%)* OGT Ref 

Aeropyrum pernix K1 95 56.3 Zeldovich et al. 2007 

Archaeoglobus fulgidus DSM 4304 83 48.6 Zeldovich et al. 2007 

Caldivirga maquilingensis IC-167 83 43.1 DSMZ 

Cenarchaeum symbiosum 10 57.4 Preston et al. 1996 

Ferroplasma acidarmanus Fer1 37 36.5 Macalady et al. 2004 

Haloarcula marismortui ATCC 43049 37 61.1 Zeldovich et al. 2007 

Halobacterium sp. NRC-1 37 65.9 Zeldovich et al. 2007 

Haloquadratum walsbyi DSM 16790 37 47.9 JCM 

Hyperthermus butylicus DSM 5456 99 53.7 DSMZ 

Metallosphaera sedula DSM 5348 65 46.2 DSMZ 

Methanobrevibacter smithii ATCC 35061 37 31.0 ATCC 

Methanocaldococcus jannaschii DSM 2661 85 31.3 Zeldovich et al. 2007 

Methanococcoides burtonii DSM 6242 23 40.8 Zeldovich et al. 2007 

Methanococcus aeolicus Nankai-3 37 30.0 ATCC 

Methanococcus maripaludis C5 37 33.0 ATCC 

Methanococcus maripaludis C7 37 33.3 ATCC 

Methanococcus maripaludis S2 35 33.1 Zeldovich et al. 2007 

Methanococcus vannielii SB 37 31.3 ATCC 

Methanocorpusculum labreanum Z 37 50.0 ATCC 

Methanoculleus marisnigri JR1 30 62.1 ATCC 

Methanopyrus kandleri AV19 98 61.2 Zeldovich et al. 2007 

Methanosaeta thermophila PT 60 53.5 DSMZ 

Methanosarcina acetivorans C2A 40 42.7 Zeldovich et al. 2007 

Methanosarcina barkeri str. fusaro 35 39.2 Zeldovich et al. 2007 

Methanosarcina mazei Go1 36 41.5 Zeldovich et al. 2007 

Methanosphaera stadtmanae DSM 3091 37 27.6 Zeldovich et al. 2007 

Methanospirillum hungatei JF-1 35 45.1 Zeldovich et al. 2007 

Methanothermobacter thermautotrophicus str. 65 49.5 Zeldovich et al. 2007 

Delta H 

Nanoarchaeum equitans Kin4-M 90 31.6 Huber et al. 2003 

Natronomonas pharaonis DSM 2160 41 63.1 Zeldovich et al. 2007 

Picrophilus torridus DSM 9790 60 36.0 Zeldovich et al. 2007 

Pyrobaculum aerophilum str. 1M2 100 51.4 Zeldovich et al. 2007 

Pyrobaculum arsenaticum DSM 13514 95 55.1 JCM 
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Organism OGT (oC) GC{%)* OGT Ref 

Pyrobaculum calidifontis JCM 11548 90 57.2 JCM 
Pyrobaculum islandicum DSM 4184 95 49.6 JCM 
Pyrococcus abyssi GE5 96 44.7 Zeldovich et al. 2007 

Pyrococcus furiosus DSM 3638 100 40.8 Zeldovich et al. 2007 

Pyrococcus horikoshii OT3 98 41.9 Zeldovich et al. 2007 

Staphylothermus mar.inus F1 90 35.7 ATCC 
Sulfolobus acidocaldarius DSM 639 80 36.7 Zeldovich et al. 2007 

Sulfolobus solfataricus P2 80 35.8 Zeldovich et al. 2007 

Sulfolobus tokodaii str. 7 80 32.8 Zeldovich et al. 2007 

Thermococcus kodakarensis KOD1 95 52.0 Zeldovich et al. 2007 

Thermofilum pendens Hrk 5 88 57.6 DSMZ 

Thermoplasma acidophilum 59 46.0 Zeldovich et al. 2007 

Thermoplasma volcanium GSS 1 60 39.9 Zeldovich et al. 2007 

uncultured methanogenic archaeon RC-1 30 54.6 Ramakrishnan et al. 
2001 

Acidothermus cellulo/yticus 11B 55 66.9 ATCC 
Acinetobacter sp. ADP1 37 40.4 ATCC 
Bacillus halodurans C-125 30 43.7 DSMZ 

Carboxydothermus hydrogenoformans Z-2901 67 42.0 DSMZ 

Clostridium difficile 630 37 29.1 ATCC 
Clostridium thermocellum ATCC 27405 55 39.0 ATCC 
Colwellia psychrerythraea 34H 8 38.0 Zeldovich et al. 2007 

Deinococcus radiodurans R1 30 66.6 Zeldovich et al. 2007 

Desulfitobacterium hafniense Y51 38 47.4 Zeldovich et al. 2007 

Desulfotalea psychrophila LSv54 10 46.6 Zeldovich et al. 2007 

Desulfovibrio desulfuricans G20 37 57.8 Zeldovich et al. 2007 

Frankia sp. Ccl3 28 70.1 Zhang et al. 1984 

Geobacillus thermodenitrificans NG80-2 65 48.9 Feng et al. 2007 

Marinobacter aquaeolei VT8 30 56.9 ATCC 
Oceanobacillus iheyensis HTE831 28 35.7 DSMZ 

Photobacterium proftAndum SS9 15 41.7 DSMZ 

Psychrobacter arcticus 273-4 22 42.8 Zeldovich et al. 2007 

Psychromonas ingrahamii 37 5 40.1 CIP 
Shewanella loihica PV -4 22 53.7 ATCC 
Thermoanaerobacter tengcongensis MB4 75 37.6 Zeldovich et al. 2007 
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Organism OGT {oC) GC{%)" OGT Ref 

Thermus thermophilus HB8 85 69.5 Henne et al. 2004 

Vibrio cholerae 01 biovar eltor str. Nl6961 37 47.5 ATCC 

* GC (%) is genomic GC content available from NCBI Microbial Genome 
Database (http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi Accessed July 2008) 
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Chapter 4 

Network Relationships of Similarity Searches 

4.1 Introduction 

A problem not directly addressed in the data selection portion of chapter 2 

revolves around how orthologous proteins are identified. A protein is orthologous 

in two species if it is present in the ancestor during the speciation event that gave 

rise to the two species in question. In other words, the protein in two related 

species was derived from the same ancestral protein when the species diverged. 

Because ancestral protein sequences are generally not available only 

measurements of similarity may be used to compare two or more modem day 

protein sequences to determine if they are orthologues. 

The small dataset of 31 proteins used for the analysis in chapter 3 were 

identified by Gao and Gupta as conserved and widely distributed proteins (2007). 

Starting with a reasonable expectation that an orthologue for each of these 

proteins should be found in each species queried is not always possible. When a 

new genome is completed a host of new protein sequences may be identified and 

only some of them may show similarity to a protein of known structure and 

function. Often these new protein sequences are labeled 'conserved hypothetical' 

or just 'hypothetical' or 'unknown' depending on whether or not another protein 
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with similar sequence and unknown function has been identified previously. 

Reliably identifying protein orthologues via a method such as BLAST searching, 

as briefly described in chapter 1, can be somewhat difficult when scores for the 

quality of searches fall between the ranges of automatic rejection or acceptance. 

Applications requiring large numbers of orthologous proteins for the 

purpose of detailed comparison between species, such as the development of the 

evolutionary model in chapter 3, would stand to greatly benefit from methods 

designed to use simple tools like BLAST to build such datasets. In this chapter, 

problems with using BLAST for this purpose are illustrated by the application of 

network theory to visualize the results of all-against-all protein-protein BLAST 

searches of every available predicted ORF of one species against another. 

4.2 Data and Methods 

The sequences of predicted open reading frames (ORFs) from 6 

completely sequenced Archaeal genomes were obtained from the GenBank FTP 

site (http://www.ncbi.nlm.nih.gov/Ftp/ accessed August 2007). Sequences from 

extra-chromosomal elements were included with chromosomal sequences. The 

species were chosen such that one member of the pair is a mesophile, and the 

other a thermophile or hyperthermophile as per Table 3.1. The distinction 

between mesophile and thermophile is not important here as this chapter deals 

mainly with the results of BLAST searches and the significance of results rather 

than selection on the sequences though the original intention was to build a larger 
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dataset for a continuation of the work performed in chapter 3. The pairs are: 

mesophile Methanococcus Maripaludis S2, and the hyperthermophile 

Methanocaldococcus jannaschii DSM 2661 (Pair Al), the mesophile 

Methanosphaera stadtmanae DSM 3091, and thermpophile 

Methanotherrnobacter therrnautotrophicus str. Delta H (Pair A2) and mesophile 

Ferroplasma acidam:anus Perl and thermophile Picrophilus torridus DSM 9790 

(Pair A3). 

A BLAST searchable database containing all predicted open reading 

frames was created for each species as per the documentation included with the 

standalone BLAST package (also available from the NCBI FTP referenced 

above). Sequences of one member of each pair were collected in a single file in 

FAST A format and supplied as queries to search against the database of 

sequences of the other member and vice versa. The default parameters for BLAST 

were used, including the Blosum62 scoring matrix, but an Expect-value, or E­

value, cutoff of 10-1 was specified to generate a large list of search 'hits' between 

each pair of species. Practically, the Expect-value is a statistical measure that 

describes the probabEity of observing a match with the same or better score in the 

database being searched (Higgs and Attwood 2005, Chapter 7). The value of 10-1 

is perhaps not a ver)' strict cutoff, but the goal is to identify as many similarity 

matches, or 'hits', as possible. 
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A list of top hits for every species A ORF in species B and vice versa was 

generated. For example in pair A1, M. maripaludis S2 (species A) has a total of 

1722 predicted ORFs which can be numbered from 1 to 1722, while M. 

jannaschii (species B) has 1786 numbered 1 to 1786. A program was written in C 

that accepts the list of 'hits' from species A against B, and B against A to cluster 

ORFs together to form networks based on similarity search results identified by 

BLAST at a specified Expect-value cutoff. The output of the cluster program was 

then used to draw a graph, using the Graph vis suite of programs, showing how the 

ORFs from this pair of species relates to each other in terms of similarity 

(Gansner and North 1999, http://www.graphvis.org/ accessed April2008). 

Every hit identified by BLAST can be represented as a directed link, 

which is a link that starts at one node and points at another node, drawn between 

two nodes where one is a species A ORF, and the other is a species B ORF. A 

cluster is identified as the set of nodes connected by all of their in- and out-links. 

A node can therefore only be part of a single cluster, as every other node pointing 

to a given node, or pointed at by another node will be identified as belonging to 

the same cluster. This is the basic methodology, though the number of links to 

draw to and from each node and the values of cutoffs may be changed in 

subsequent examples. 
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4.3 Results 

The graph showing the network of BLAST hits between M. maripaludis 

S2 and M. jannaschii using an Expect-value cutoff of w-1 is shown in Figure 4.1. 

Of the 1722 predicted ORFs in M. maripaludis, 1548 had 'hits' toM. jannaschii 

ORFs. Of 1786 ORF~ from M. jannaschii, 1524 had similarity 'hits' in the reverse 

direction. ORFs with out-links represent 89.89% for species A, and 85.33% for 

species B. Of the 1524 'hits' from B to A, these represent only 1237 different 

ORFs of the total 1722 in species A, meaning that some nodes received multiple 

in-links. Similarly, of the 1548 'hits' from species A to B, only 1221 are 

represented of the total 1786 ORFs in species B. 

The distribution of cluster sizes is shown in Figure 4.2. A cluster size of 1 

represents an ORF without either an in or an out link, which can be interpreted as 

a sequence unique to its species or at least without any BLAST-identifiable 

similarity to a sequence in the other member of the pair using the specified 

parameters. A cluster size of 2 represents ORFs that either only have a single link 

between them, or ORFs with an in- and out- link and are therefore reciprocal top 

hits of each other. These represent the majority of clusters in Figure 4.1. There are 

still a large number of clusters of size 3, and after that the cluster size decreases 

rapidly. There are 5 clusters larger than 10, two of which are larger than 30. There 

are 1239 clusters in total. 
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Figure 4.1 - Network of top BLAST results (E < 10"1
) for pair Al. _Each node 

represents a predicted ORF from M. maripauldis or M. jannaschii and each link drawn 
represents a top BLAST 'hit' using an expect of E=l0"1 when all predicted open reading 
frames from one species are queried against the other and vice versa. 
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Figure 4.2. - Distribution of cluster sizes in Figure 4.1. Clusters are defined in 
figure 4.1 as the set o:: nodes joined together by a group of in- and out-links. 
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Figure 4.3. - Distribution of -log(E-value) of top 'hits' for pair Al (E < 10"1
). 

All-against-all BLAST results using every predicted open reading frame from the 
genomes of M. maripaludis S2 (n = 1722) and M. jannaschii (n = 1786). Top 'hit' 
results with an E-value < 10-1 are shown. Results plotted as -log(E-value). Cases 
where E-value is effectively 0 are plotted on the x-axis at 'Infinity' 
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Modification to the method of drawing 'hits' can include drawing links for 

every BLAST 'hit' above a given threshold. For example, in the 10-1 E-value 

cutoff case where only the top hit for each query was ultimately used to draw 

links for pair Al there were a total of 18 790 BLAST hits. The vast majority of 

'hits' were discarded when drawing the graph. A network using a 10-10 E-value 

cutoff was produced, shown in Figure 4.4, for the same pair this time drawing 

links for every 'hit' above this threshold resulting in 4522 'hits' being identified. 

This is a comparable to the 10-1 case where 3072 top out-links were identified. 

It was possible to draw the graph without explicitly clustering the nodes 

first, as the drawing software treats each link independently, however without 

clustering it is difficult to manually determine the average cluster size and number 

of clusters. In this case 4522 links need to be drawn between a total of only 3508 

nodes, obviously meaning some nodes will end up being more highly connected 

than others and it might therefore be expected to observe at least one very large 

cluster. This is indeed observed in Figure 4.4, where at least two large highly 

linked clusters make discerning the individual nodes and links they encompass 

almost impossible. In this case, smaller clusters are still interesting because they 

will likely represent units of distinct similarity or uniqueness, while the large 

clusters will require further computation to be separated and analyzed. 
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Figure 4.4. - Network of all BLAST results (E < 10"10
) for pair Al. As in 

figure 4.1 each node represents a predicted open reading frame from the species 
in pair Al, except im.tead of only top 'hits', every link representing a 'hit ' with 
E-value < 10-to is drawn. 
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The comparison of two example clusters from Figure 4.1 and 4.4 is 

illustrative. Figure 4.5 shows the cluster of size n = 18. Each node is labeled with 

the annotation of the ORF it represents and theE-value and percent identity for 

the BLAST result used to draw its outgoing link. Similarly, Figure 4.6 shows a 

cluster from Figure 4.4 of size n = 15. Each node is labeled with its associated 

annotation and length. Because there are multiple in- and out-links drawn, E­

values and percent identity for each link are not provided. 
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Figure 4.5 - Cluster· of size n=18 taken from Figure 4.1. Annotations for each 
ORF are overlaid where available. Links represent top BLAST results. The E­
value for these links is provided along with percent identity for the length of 
match. 
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Figure 4.6 - Cluster of size n=15 taken from Figure 4.4. Each node represents 
an ORF from either species A or B. Annotations for each ORF are overlaid where 
available along with i:he length of each ORF. 
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4.4 Discussion 

Preliminary interpretation of the biological meaning of the clusters must 

be considered with respect to the Expect-value cutoff. TheE-value cutoff of 10-1 

is quite high, and was initially chosen to ensure a balance between meaningful 

links and link number. Too low a cutoff and only the most very similar ORFs will 

be identified as 'hits'. Too high a cutoff and many biologically meaningless links 

may be drawn. Figure 4.3 shows the distribution of -log(E-values) for the list of 

'hits' combined from both species. While there are a large number close to the 

cutoff, there are about as many with an effective E-value of 0, plotted at infmity 

on the x-axis. The majority of 'hits' lie at values larger than 20, suggesting that a 

large number of significant hits may be found with this criterion, judging by E­

value alone. 

With regard to cluster size in Figure 4.2, the majority of clusters are of 

size 2. If two identical sets of ORFs were used in the same procedure, it would be 

expected that every single ORF would have perfect similarity to itself, and only 

clusters of size 2 would be observed representing perfect top 'hits'. Given that the 

species pair was originally chosen based on relative evolutionary closeness the 

large number of size 2 clusters is not surprising. There are relatively few cases 

where a single out-link connects two nodes and this is likely an artifact of the 

BLAST parameters, cutoff value and potentially large difference in length 

between the two ORFs represented in the cluster. Not shown in Figure 4.1 are 
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ORFs with neither ,n- nor out-links. These ORFs can therefore be said to 

represent sequences with no appreciable amount of similarity to any ORF in the 

partner species. This may be because they are either pseudogenes, or otherwise 

unique genes in this pair resulting from a gain/loss event occurring at some point 

since the two species diverged. 

The next step beyond showing that these graphs can be produced and pose 

interesting questions ts to describe a method to analyze the networks produced by 

these procedures. For example, a cluster-by-cluster examination may further 

reveal the quality of th.e matches each link represents. Checking the annotation for 

the predicted ORFs in these clusters might reveal something interesting, where 

annotations are available. Nodes may be drawn on the network to indicate 

whether they have annotations or not, and other information may be overlaid, for 

example if a node contains a protein domain or motif of interest, or whether it 

may be assigned to a particular COG (Tatusov et al. 2003). 

Two examples of this were provided in Figure 4.5 and 4.6. Annotation 

information is overlaid on the cluster structure along with some information 

regarding the BLAST results. In the case of Figure 4.5, most nodes are lacking 

annotation and it is clear that E-values for individual links are quite low except for 

the two central nodes identified as reciprocal top hits withE-values of 0.0. These 

two central nodes are also the largest, both approximately 1000 residues long. 
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With such a low cutoff used (E < 10-1
) the links from nodes to the central large 

sequences are likely due to chance rather than real homology. 

Using a lower cutoff (E < 10-10
), the cluster depicted in Figure 4.6 displays 

much more biological relevance. The cluster can be divided into two portions, the 

upper-right which appears to be related to those ORFs possessing similarity to 

cooC, a nickel-insertion enzyme according to annotation, and the lower-left 

portion which according to annotation for those ORFs appears to be related to 

ATPase-like sequences. In this case, the lengths of all ORFs are shown to be 

relatively similar so there is little chance that these BLAST results are due to 

chance matches from short sequences to larger ones as in Figure 4.5. 

A more immediate need includes the refinement of the clustering 

algorithm for use with nodes possessing multiple out-links as in Figure 4.4. The 

ability to correctly label clusters will allow the ability to sort, count and otherwise 

manipulate these clusters for a more in-depth examination. Other questions to ask 

of networks like that depicted in Figure 4.4 include: Do the shapes of the clusters 

reveal anything about the ORFs counted in the cluster? It is possible to classify 

every cluster based on the number of nodes and links included and the pattern of 

linkage. Different patterns may represent biologically meaningful events. For 

example there are several easily identified clusters in Figure 4.4 consisting of 4 

nodes in the shape of a square where each node is reciprocally connected to its 

neighbours with an in- and out-link. This may possibly be a case where a gene 

74 



MSc Thesis- Nicholas Waglechner McMaster- Biochemistry and Biomedical Sciences 

duplication in the ancestor of these two species occurred before a speciation 

event, so now both daughter species possess the duplicated ORFs and therefore 

might display a pattern of linkage between these ORFs in the square shape as 

described. 

While to date only the first pair Al have been used to produce the first 

graph, graphs for other pairs of species are easily produced. Pending the 

refmement of these methods it would be worthwhile to determine whether or not 

the same types of clusters are observed in multiple pairs of species, and if so, are 

the same orthologues residing in similarly shaped large clusters? 

Network visualization represents a novel way to illustrate the results of 

similarity searches, in this case, those produced by BLAST though any similar 

method would be arn,;;~nable. Given the appropriate criteria for determining which 

ORFs or nodes need be linked, and a robust clustering method, the similarity 

relationships may be sorted and counted and visualized in many different and 

interesting ways. 
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