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CHAPTER 1

INTRODUCTION

Basic studies of control systems frequently make
it desirable to represent a complex system’by a low order
model. The design, analysis and optimization of systems
can commonly be accomplished with greater ease if some
model which approximates the system is derived. This situa-
tion is much more evident in modern control systems because
of their increasingly comprehensive nature and complexity.
Processes such as nuclear reactors, high speed rolling mills,
jet aircraft controllers, as well as spacecraft systems
usually specify fine tolerances of operational limits.
Tﬁis emphasizes the problem of optimization which cannot,

in many cases, be practically applied to complex systems.

This need for a low order approximation of a complex
system has resulted in several reduction techniques which
have been conceived by different approaches to the reduc-
tion problem. Since these techniques are basically different,
some assessment as to the quality of models that they will

produce 1s necessary.

The quality of a low order model can be judged by
comparing the characteristics of the actual system with

those of the model. These characteristics are usually

-1 -



obtained from the response of the system to a step input.
Features of the step response which characterize a system
include the initial slope, rise time, peak value, time of
peak value, settling time and the steady state value.
While all the features of a high order system cannot be
maintained in a reduced model, it is generally desirable
to duplicate, as closely as possible, the overall response
of the actual system with emphasis sometimes being placed

on one or other region of the response curve.

From the various reduction techniques examined3:;6,7,8,11
three methods that appeared the most rewarding were selected
for analysis and application to a high order system. In
order that a falr comparison of the methods could be made,

a realistic system, which would not be particularly suited
for reduction by any one method or another, was required.

A proposed design for an aircraft was selected as the test
system, since the transfer function of the system contained

an even distribution of the poles in the s-plane.

The reduction methods were applied to the test
system and in each case a second order model was derived,
for the purpose of consistency. Each model was then tested
with a step input and response curves were obtained for
different periods of time so that the model could be
assessed over both the transient and steady state portions
of the response. A comparison of the reduction techniques

was made with a view to application, limitations and



accuracy.

It became evident during the comparison above, that
another approach to the reduction problem might well yield
a more suitable model. A method was developed on the basis
of this approach which gave the expected results along with
the added attractions of ease in application and requirement
of very little information about the complex system. In
fact, much less knowledge of the system was required for this

new method than for any of the methods previously examined.

The material contained in the ‘following chapters
follows the order of the preceding discussion. The principle
and application of the three selected reduction techﬁiques‘
is discussed in Chapter 2. Chapter 3 deals with the test
system which was chosen and its various characteristics.
The reduction methods are then applied to the test system
in Chapter 4 to obtain three second order models. A
comparison of the three methods is made in Chapter 5. which
serves to introduce the new approach to system reduction
which is proposed in Chapter 6. A method of reduction
based on this approach is developed for various systems
and then applied to the test system. The conclusions of

this work are then drawn in Chapter 7.



CHAPTER 2

" METHODS OF REDUCTION

2.0 Introduction

Three methods of reducing high order linear systems
were selected because these approaches to the reduction
problem appeared to be the most promising. Each method is
based on a different concept, and it is these concepts
along with the methods of application that will be
discussed in this chapter. The methods are examined in
turn, beginning in each case with a brief description
of the principle involved and then a detailed explanation

of the application is given.

In order to simplify matters, the three reduction
methods are designated as follows:
Method 1 - Reduction by the continued fraction
expansion of the transfer function.3
Method 2 - Retention of dominant eigenvalues
from the high order system in a low

order system.®s7

Method 3 - A geometrical approach to the problem
of system order reduction.?8



2.1 Method 1

Method 1 is based upon the expansion of the trans-
fer function of a high order system into a continued fraction
which is then truncated according to the order desired for
the reduced system.- This truncated continued fraction is
the transfer function which represents the low order model
of the original system. The principle of the method is

an expansion about the poles at the origin.

The method is applied by arranging both the numerator
and denominator polynomials of the system transfer function
in ascending powers of s. The transfer function is then

expanded into the following continued fraction form:

C(s) 1
R(s) * H,* T
H,+ 1
s H3+ 1
: H|++.

By considering the final value theorem, it is clear
that the quotients are in the order of decreasing significance
of their contributions to the response value as steady
state is approached. Equivalently, as the number of quotients

1s increased, so higher frequencies are accounted for.

This model does not retain the actual dominant

poles of the original system., but rather shifts the poles,



so that they are able to duplicate more closely the response

of the original system.

The order of the reduced system is determined by
the number of quotients obtained in the expansion. An nth
order reduced system requires that 2n quotients be obtained,
and the continued fraction may be truncated at this point.
Having obtained the required number of quotients, the
truncated continued fraction is converted back to the
regular transfer function form and this expression repre-

sents the transfer function of the reduced systemn.

The continued fraction expansion can be interpreted
in a physical sense as a reconstruction of the block
diagram for the system. The new block diagram, however,
consists of nested pairs of feedforward and feedback paths,
as shown in Figure 2.1. Truncation of the continued
fraction corresponds to the removal of the inner pairs of
paths. The number of nested pairs remaining represents
the size of the reduced system. The formation of these
blocks is terminated when the desired order for the
reduced system is reached. Figure 2.2 shows the nested
pairs that are required for a second order reduced model

of a larger system.
2.2 Method 2

The principle of this method is to neglect the
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eigenvalues of the original system which are farthest from
the jw axis of the s-plane and retain only the dominant
eigenvalues in the reduced system. Relationships from the
time solution of the original system equations are used to
develop a reduced system which maintains both the correct
proportion of the eigenvectors and the desired eigenvalues.
In a further paper’ the author suggesté an additional step
in the reduction process which will improve the steady

state response of the model. The following detailed outline
of the method will show how the reduction is actually

accomplished.

In an nth order system, which is to be represented
by an 2th order model, the first & eigenvalues (assuming
that they are ordered according to their distance from the
jw axis of the s-plane) are first determined; Then, & vari-
ables x,, Xg, RP.... are selected for the reduced system,
such that they form large percentages of the first 2 origi-
nal eigenvectors. rMafhematically this requiremént assures
that the determinant of the matrix made up of the reduced
eigenvectors is not singular; or physically, the require-
ment means that quantities chosen to represent the system

are as different as possible.

The problem now, of finding a reduced system which
has the first & eigenvalues selected from the original

system and the correct eigenvectors with respect to these



eigenvalues 1s overcome by considering the time solution
of the equation. The nth order original system may be

expressed in the form

X = Ax + Bu(t) eees.(2.2-1)
and the 2th order reduced system as

X = A%*x + B*u(t)

For simplicity, assume that initial conditions are zero,
the input is a unit step function and the eigenvalues of

A are real and distinct.

Then, the solution for Eqn. (2.2-1) can be written
as
t
X = S ¢(t-1)Bulr)dr
o

where 9(t) is the transition matrix of the system. In this

case,

e(t-1) = rexplA(t-t)Ir~!

where A the diagonal matrix of eigenvalues
and I = the modal matrix, composed of the eigenvectors
of A (arranged in the order of corresponding

eigenvalues).
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Y n.il n 2 nn

Xn nna.t(202—2)




11

Now, if only the first & time constants of Eqn. (2.2-2)

are retained, the time solution becomes

] 1| (o2 ] ]
X, X3 x x%
= 1+ 2 | 4ot 2
X, e;1%; €y %2 €o %2
x x1 x2 L?z ceee.(2.2-3)
where
At 2 n
. = -1+ 1 + 2 +oet oF
€3 l+e (q:lbl ¢lb2 9¥b )

Aj

In addition, if only the % variables x,, Xg, Xps oo
are retained, the equations become

[~ 7] 1] [~ 5 7]

Xp X7 X7 f;%
Xs | 7 £, xé + €, xé te=t ey xé
*p %p %5 Xp
R E A B




or

X} %3
Xg X5
1 .2

x! x
P P
-1| ¥g

Aqy

x
P

L-'.

-1 -
-= X5 |%p
- Xé‘ Xs
- Xl (%
:_J _:a

eeeea(2.2-1)

The equations for the remaining variables can be expressed

as

12



are kept, then

-

X

or,
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; -—a
X a; 4 1 1%
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o 1 n
| %n | | @n @n an || *n |
Fér 25 oP - M ral 52 L1 ar+1
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Xp
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A*|xg where A A AlAle
X
P

13



1y

This is the required A* matrix for the reduced system,
which will have the same eigenva;ues and vectors as the
first & eigenvalues and vectors of the A matrix from the
original system. Since A* has the same eigenvalues and
vectors as the matrix A in the original system, the reduc-
tion procedure can be somewhat simplified. The matrix A%

can be more easily determined as
A% = U A yT?

where U, is an 2 x & matrix consisting of elements of the
1st & dominant eigenvectors of A which correspond to the

retained variables Koy Xgo X eeens and £ 1s an 2 x 2%

P
diagonal matrix consisting of the % dominant eigenvalues

of A.

By a similar approach, the B matrix from the original
system can be reduced to a simpler form, obtained according

to the equations following:



and

After selecting the first & dominant eigenvalues and the

2 variables to be retained in the reduced system, the

where T#® =|x

r

B* = r*[r-1p]

-1

B = the first £ rows of

15

matrices A* and B%* are evaluated by using the relationships

above.

later paper’, (which improves the steady state response of

the model) is described as a matrix transformation.

The modification suggested by the author in a

Consider the reduced system as previously defined, with only

a single input.

z = DA*D"'z + DB*u

The new model is proposed in the form
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where z is an %-vector consisting of the f2-vectors Xps Xgs Xpeoo

and D is a diagonal matrix defined as

B ]
d)
d,
D = .
i 9 |
where dj = [A"IB]j* if [A*—IB*]j £ 0
[A*-lB*Jj
3= 1,2,--%.
=1 if [A*—lB*Jj = 0

and [A*‘IB*]j is the jth element of the & vector A*~1lp#
and [A“lB]j* is the element of the n vector A-1B which
corresponds to the jth state retained in the simplified

system. The reduced model is equivalent to the following

system:

e
u

A%x + B%y

z = Dx

In summary then, after selecting the eigenvalues
and state variables for the reduced system, the matrices

A%, B* and D are determined in order to arrive at the

simplified model.
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2.3 Method 3

Anderson presents a method of system reduction
based on a geometrical consideration of the reduction problem
as developed from the theory of linear vector spaces. A
simplified explanation of this method will be given first,

to show the idea behind Anderson's technique.

The state space equations for the given high order
system are solved at regular time intervals up to some limit
at which only insignificant response changes occur. These
solutions are then substituted in the state space equations
‘which represent the unknown low order system and the para-
meters are evaluated which will give these solutions. A
best value for these parameters is based on a 'least squares
fit' between the solutions of the two sets of state space
equations. Thus, given all the information about a high
order system, a low order model is developed which is based
on the requirement that it match the response of the high
order system, in a least squares sense, over a given time

interval.

The way in which the reduction is actually accom-
plished may be better explained by examining the problem
from a geometrical point of view and then using the theory

of linear vector spaces to obtain the desired results.

A linear, time-invariant dynamic system may be
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described by the vector equation

n

z = Fz + Gu

HZ ..---(2.3—1)

and y

n

where z is an n-vector of state variables, u is an m-vector
of inputs and y is a p-vector of outputs. If none of the
elements of the vector y is a linear combination of the

others, Egqn. (2.3-1) can be represented as

;{=A)_{.+BE- oooo-(2-3"’2)

in which the first p elements of the vector x are the

elements of the vector y.

If the inputs u are held constant between successive
measurements, Eqn. (2.3-2) can be solved to obtain the

state transition equation

x [(k+1)T) = o(TIx(KT) + A(T)u(kT) cee..(2.3-3)
in which T is the sampling period

¢(T) is the transition matrix

A(T) is the driving matrix

and o(T) = £ AkTk
k=o kI

and ACT) = 3 AkTk+1 B
kK=o (k+I)1

The reduction problem is now to replace Equations



(2.3-2) or (2.3-3) by a low order system.

For an rth

order system with q inputs, Eqn.(2.3-2) can be written as

X
%,

4

41

ri

alz o

a22 )

a
r2

a

I‘PJ

—

p—

b

b

11

21

blq

eeee.(2.3-4)

Let % be the desired order of the reduced

system and m be the number of retained inputs.

In Eqn. (2.3-4), if u is held constant between

sampling instants, the variables g and x can be evaluated

at n instants with time intervals of T seconds.

Now, each of the low order state space equations

19

can be represented similarly to the first equation at every

sampling instant.

The first line of Eqn.

(2.3-4) can thus

be written at each of the n sampling instants to give the

following set of equations:



20

0
o
+
0
<
+
!
1
1
+
0
w
"
=

0
]
+
!
1
1
-+
0
»
T}
=,

where W' = [x (0) il(T) --= %, (kT)]

¢ =1la;, a,, .. 2, b, .. b, 1

X0, = [xC0) %, (T) === x,(KT)]

= [x,(0) %, (T) ==~ x,(kT)] eeee.(2.3-5)

and %2 = order of the reduced system
m = number of inputs to the system

T

sampling interval

n = k+1 = number of sampling instances.

The exact values for W and X,» X, -= X, can be

obtained from the solution of the equations describing the
actual system, and the problem then is to solve the linear

Eqns. (2.3-5) for the coefficients ¢;, c,5 --- ¢c;. 1In

general, this is not possible, since numbers for c,, C --- ¢y

2’
cannot be found which will satisfy all the equations of the

system.

As an approximation, however, coefficients



C,s C,, === Cy Mmay be searched for that will minimize the
sum of the squared errors between the actual values of the
R.H.S. of Egqns. (2.3-5) and the values obtained when
suitable coefficients are used. This problem can be

readily solved when it is interpreted geometrically

Let X5 52, - Kl be the & vectors
T = -——
X Lx)) %5, 1
T = _——
Z2 [Xlz %22 anj
T . —_——
.59 ) Xned
and Wl = W w === w ]
2 n

- 1

where £ = reduced system order

n = number of sampling instances.

Then, for the coefficients which could be selected

some values D,, D, --- Dn will result in the R.H.S. of

2
Eans. (2.3-5). In vector notation,

= + tem——t
D= ecx, * e L)

and the problem is to choose coefficients C,» C,5 === C

272 L

so that the inner product <W-D,W-D> is minimized. If the

vectors X,,X,, --- X, are considered to form a subspace

21

b
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L(Kl,gz,——-,gz)spanned by the vectors Xl’Xz"'"’Xz’ then
the orthogonal projection of the vector W on that subspace
is the vector in L which is closest to W. This can be
seen by expanding the vector W as the sum g+h, where g

is in the subspace L and h is orthogonal to this space.

The inner product to be minimized becomes

<(gth-D), (g+h-D)>

= <g.8> - 2<g,D> * <h,h> + <D,D>

as both g and D lie in the subspace L and h is orthogonal
to it. The inner product is clearly minimized when D

is equal to g, the projection of W on the subspace L.

The coefficients c 5C,,-——,c, must therefore be
chosen in such a way that D is the projection of the vector

W on the subspace L spanned by the vectors‘Xl,Xz,—-—,Xl.

If we express the vector W as g + h, and minimize

the error by letting D = g, then W = D + h.

But, D=cx, +cx, t---tc x

1-1 22 L=

Then, using the requirements for orthogonality between the

subspace L and h, we have
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< > e < > =
221 ’El. CE .}.(.1 ’_}Eg 0

L] ° L] - . .
e . . . . .
° 3 . . . .

<§J§£> <(WTQ)9§&> <WJ§£> - C <Ky ,K> =..- cz<§&,§&> =0

The required coefficients C sC,,-—=>C, are then
obtained by solving these equations using Cramer's rule.
Since the solution to this problem exists and is uniquel?,

the Grammian from the above equation is non-zero.

The coefficients in Egn. (2.3-5) will thus give
the smallest deviation (in a least squares sense) from the
actual values for the right hand side of this equation.
The elements of the A and B matrices for the reduced system
are, of course, these coefficient values so that the reduced

system is now determined.

The three selected methods of reduction have been
discussed in detail as to their application. It remains
now to find a suitable system to which these methods may
be applied. The next chapter deals fully with the choice of

such a system.



CHAPTER 3.

THE TEST SYSTEM

3.0 Introduction

This chapter is concerned with the 'test system!'
which was selected as an example of a high order system.
Characteristics of this system which are required in later
chapters, will be outlined here and the methods used to

find certain of the characteristics will be discussed.

For the sake of reality and validity, it was
decided that an authentic system model containing a
reasonable number of complex poles, fairly distributed

in the s-plane, should be selected.

Reduction techniques invariably neglect (to some
extent) the poles of the system which are located far from
the origin since these poles represent small time consfants
and their effects are relatively short-lived. Some authors
have taken examples in which there are two sets of poles,
cne near the jw-axis, and the other far away from it. This
is not very realistic. To avoid.biassed results, then, a
transfer function with poles distributed over the entire

left-half plane was preferred.

- 24 -
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3.1 Description of the Test System

The system chosen! is one of the designs studied
for the current super-sonic transport aircraft. Figure
3.1 shows the block diagram of the system with variable
parameters K1, K2, 1, ¢ and Wp e To obtain reasonable pole-
zero locations, the following parameter values were

selected (consistent with design description and maintaining

stability):

Ki = 0.2

K2 = 1.0

® = 2.5 [r/s]

nl

"L‘l = 12

r = 0.707

3.2 System Representation in the s-plane.

With these parameter values, the transfer function

of the test system becomes

c(s) _ 375000(s + 0.0833)
R(s) = 57 ¥ 83.63580 # 5097.403555 + 70341.905s"

+-853703.3s3 + 2814271s2 + 3310875s + 281250
The characteristic equation of the system is given by
F(s) = Denominator of Transfer Function(s)

Originally, the roots of the characteristic.
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equation were obtained by solving the polynomial using the
Newton-Raphson technique on a CDC6400 computer. Errors
resulted, however, due to 'rounding-off' within the computer
and a more successful approach is described in the next

section.

3.3 State Space System Representation

From the transfer function, the state space

equations were developed (see Appendix A.l) in the form

2"(_ A§_+ Bl.l_ -0000(303"‘1)

C=HX 0-000(303"2)

It is assumed throughout, that the variables x, y, u, and c
are understood to be functions of time, and for simplicity
(t) is omitted from the state space equations. Now, the
eigenvalues of A will be the required roots of the character-
istie equation. Using the iterative method of Eberlein3,
these eigenvalues were obtained to a satisfactory degree

of accuracy on the computer (see Appendix A.2).

The eigenvectors of A, which are required later,
were also obtained and appear in'AppendixlA.Z. The roots
of the characteristic equation represent the poles of the

system and the pole-zero pattern is displayed in Figure 3.2.



Pole-Zero Map for the Test System
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Figure 3.2 Pole-Zero Pattern for the Test System.
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3.4 Solution of the State Space Equations

State space equations in the form of equation
(3.3-1) have the solution
At t -Ax
x(t) = e [x(0) * Of e Bu(t)del .....(3.4-1)
This equation can be solved by direct integration and then
substitution of the various required values for t. Another
approach to the solution of this equation, which is
particularly adaptable to machine computation, is outlined
in Appendix B. Using the series expansion for the exponen-
tial terms and then an iterative procedure, which requires
solving the equation for a very small interval (AT<<t), x

is calculated with continuously updated values for x(0).

Direct evaluation of x(t) for any significant time
t involves round-off errors in the computer giving unsatis-
factory results. In addition to improved accuracy, the
method outlined above also lends itself well to the
generation of data cards for plotting the system response.
A graph of the system response is, of course, a natural

conclusion to the problem.

A general computer program for the solution of
equations in the form of equation (3.3-1) is also included

in Appendix B.
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3.5 Response to a Step Input

Using the method outlined above, the response to
a unit step input is plotted in figures 3.3 and 3.4 for

5 second and 20 second time bases, respectively.

Features of the response which will be used later

are:

1. (10-90)% Rise Time = 1 second.

2. Steady State Value = 0.11111 (verified by calculation).

3. Initial Slope = 0.0 (obtained by the initial value
theorem).

4, Maximum overshoot = 0.120689 (obtained from the plotted
response).

5. Time to reach the first maximum (tp) = 2.9 sec.

(obtained from the plotted response).
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CHAPTER &4

APPLICATION OF THE VARIOUS METHODS OF REDUCTION TO THE

TEST SYSTEM
L.o General

This chapter deals with the application of each
of the reduction methods which have been described in
Chapter 3. The methods will be applied in order and in
each case the tést system is reduced to a second order
model. The response of each to a step input is shown and
comments are made on the closeness of fit to the actual
response. Further comments on these responses and the

various reduction methods are given in the following chapter.

4.1 The Application of Method 1 to the Test System

The application of Method 1 involves a repeated
sequence of operations which are relatively easy to
program for the computer. A computer progfam which applies
this method to a general high order system was therefore
prepared and is shown in Appendix C. The following reduced
transfer function resulted from the continued fraction
expansion of the test system transfer function.

C(s) _ 0.1299s + 0.01105
R(s) ~ s? + 1,1ubu44s + 0.09941

- 33 -
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In state space representation, the reduced system equations

6.0 1.0 x + [0fu
~.09941 -1.1u6u44 1

[Lo1105 .1299)x

are

[
1]

0
i

A step input was applied to the system using the
computer program in Appendix B.2, and the response was
evaluated. This response is shown for a twenty second

time interval in Figure 4.1.

It is apparent in this graph that the response has
a finite initial slope which is not present in the actual
response. There is also a considerably shorter rise time,
and the peak response occurs sooner than in the actual
response. From approximately 3.5 seconds to steady state,
however, the two response curves fit with increasing

closeness.

4.2 The Application of Method 2 to the Test System

In order to obtain a second order model using this
method, the two most dominant eigenvalues of the test system
must first be selected. In this case, however, the second
most dominant eigenvalue is part of a complex pair, and
there are not, in fact, two simple dominant eigenvalues in

the system. However, the most dominant root is located



,

T POYIS woay TOPOW @y} jo asuodsey dezg T°'# sandTg

35

0°0¢ (0°8)3 0

1 T i t 1 i H t

)

et

50°

ST®



36

very near to the zero of the system, so that the pair of
complex poles located nearest +to the jw-axis could reason-
ably be selected to represent the system. ©Now, Fwo state
variables from the test system must also be selected to be
retained in the model. The author requires that the state
variables be chosen so that the determinant of the reduced
modal matrix be as large as possible. For this reason,

X, and x., from the test system were retained in the reduced
system. Various operations were performed in order to
proceed from this point to the reduced system. The numeri-
cal results of these operations are shown in Appendix D.1

which gives a step by step progression from the reduced

system matrices back to the test system matrices.

The application of this method is rather involved
and some problems were encountered when the method was
applied to the system. It was decided that a single com-
puter program to perform the reduction process would be
impractical because of the size and required running time.
However, these operations, when performed individually,
involved round-off errors, occasional human errors, and
were generally awkward and tedious. One problem was the
invasion of a complex matrix for which the determinants
of ersion and imaginary parts were zero. This was overcome

by a useful technique outlined in Appendix D.2.

From Appendix D.l then, the second order model of

the test system is given as
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(E
1

-3.907092 1.29x10'i}§_+ ~.050525 |u
-3463089.0 -.1416739 437819.7

The system was subjected to a step input and the

response for a twenty second interval is graphed in

Figure 4.2,

The reduced system response closely approximates
the actual response from approximately 16 seconds to
steady state. Although the rise time 1s reasonably close,
the maximum overshoot, settling time, and initial slope

leave much to be desired.

4.3 The Application of Method 3 to the Test System

The application of this method is relatively
simple using a digital computer to accomplish several
matrix operations which are easily combined in one program.
The means by which this method was applied to the test
system is outlined in Appendix E.1 and the computer program

used is given in Appendix E.2.

The author suggests that the total time interval
over which response values are calculated should consider-
ably exceed the longest time constant in the unreduced

system. The longest time constant in the test system is
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Figure 4.2 Step Response of the Model from Method 2



approximately 10 seconds, and response samples were taken

every 0.04 seconds over a total interval of 20 seconds

to comply. with the above.

The resulting second order model, as evaluated in

Appendix E.1 is

0.0 1.0 x + [0.0 u
~2.687909 -1.90257Y4 0.30961

C—Xl

The response of this model to a step input is shown in

.3_,(

Figure 4.3. The initial part of the transient response
closely approximates that of the actual response and the
overall comparison for a twenty second interval is quite
accurate. Indeed, the error between these curves at the
sampling instants (for the time involved) is minimized,
although the actual area between the curves may not be.
A sizeable steady-state error is evident in the response,

however, as well as an undesirably high overshoot.

Three different models have been obtained to

39

represent the test system by appling the various reduction

techniques. The next chapter will compare these methods

and their usefulness.
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CHAPTER 5

COMPARISON OF REDUCTION METHODS
5.0 General

The various responseé of the reduced systems are
compared with the actual response in this chapter. An
appraisal is made which weighs the advantages and dis-
advantages of the methods Based on the accuracy of the re-
duced systems, their relative ease of application and their

limitations.

The different responses of the reduced systems
varied considerably in their accuracy, and in the appraisal
some emphasis has been put on the transient response because
of its importance. Indeed, the desire to reduce a high
order system in order to evaluate an approximate optimal
control for a continuous process suggests that the system
will be changing frequently. In practice, high speed
systems such as airplanes, paper mills and steel mills
require controllers which will spend much time in transient
states, making corrections quickly, but with strict limits
on overshoot and oscillations. It is therefore necessary
that the transient response of the reduced model duplicates
that of the actual system as closely as possible, maintain-

ing certain other criteria.

- 41 -



42

5.1 Comparison of Accuracy

Figures é.l to 5.9 show the step response of the
different reduced systems compared to that of the actual
system, over various time intervals. ‘Figures 5.1 to 5.3
show the accuracy of each reducing method during the
transient part of the response while Figures 5.4 to 5.6
show the actual and reduced system responses over a

100 second interval.

The transient response of the system reduced by
Method 3 most closely fits the actual response, although
the reduced system gives a considerably higher overshoot.
There is also an undershoot in the response which is not
in the actual response, and a steady state error is

evident.

The system reduced by Method 1 has a step response
which very closely fits the actual from approximately 4.5
seconds to steady state. The initial slope of the response,
which is actually zero, has not been maintained by the
reduced model, and the maximum overshoot as well as the

time of maximum overshoot are considerably altered.

The response of the system reduced by Method 2,
while agreeing closely at steady state, is a relatively
poor fit through the transient time. The initial slope of
the model's response is negative, resulting in a period of

negative response which, although short in duration and
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small in size, is undesirable.

Figures 5.7 to 5.9 provide a composite picture
of the responses for three increasing time intervals.
It is interesting to note that some compromise between
the systems reduced by Methods 1 and 3 could conceivably
result in a system which would have a response closer
to that of the actual system during the transient period
with little or no error at steady state. This is very
desirable, since many control systems operate mainly in

the transient state.

5.2 Comparison with a View to Applications

The easiest of the three methods to both apply
and conceive is certainly Method 1. The concept of the
equivalent transfer function, consisting of nested paths
in both novel and lucid. The continued partial fraction
is easily obtained using a digital computer and with minimal
effort this method can even be applied by hand computations.
Once having obtained the continued fraction, the low order
system can be represented by either its transfer function
or state space equations quite readily. The entire opera-
tion can be accomplished by a single generalized computer
program requiring only a few seconds running time. Further,
Method 1 requires no knowledge of the pole locations and
because of its nature, does not rely on the existence of

a few dominant poles in the system to obtain satisfactory
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results. The method does not, however, perform any error

minimization which is commonly desirable.

The chief advantage of Method 2 is that it can be
used to reduce systems with multiple inputs. This is,
in itself, an attractive feature, but the application of

the method is a relatively involved process.

Firstly, the eigenvalues and eigenvectors of the
system are required, as well as the modal matrix and its
inverse. Next, the state variables to be retained in the
reduced system must be decided upon. They are required
to be as different physically from each other as possible,
but the physical significance of state variables may be
difficult to interpret. One may, however, overcome this
difficulty by deciding to retain those state variables
which are measurable. Many matrix operations are then
required before the reduced system 1s obtained. The method
can be implemented by a single computer program but the
program would be long and require considerable running time.
In addition, the steady state.value of the reduced system

response is not guaranteed to be correct.

Method 3 has several important advantages. The
error between the actual and reduced system responses is
minimized in a least squares sense. Further, these errors
can be weighted in certain regions of the response where

it is desired to have a 'closer fit!'.
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The A matrix from the state space equations of the
original system can be altered (by interchanging rows and
columns) so that specific state variables (measurable ones)
will be fhe ones retained in the reduced system. In
addition, no knowledge of the poles is required and the

method is particularly adaptable to computer application.

The steady state valﬁe of the reduced system response
is not guaranteed to be exact, however, and it may be
necessary to use a great many samples of the response from
the original system in order to arrive at a satisfactory

low order model.

5.3 Comparison of Limitations

The only serious limitation of Method 1 is the
requirement that there be only one input to the system.
This is unfortunate since many of the advanced control
systems, for which reduced models are desirable, contain
multiple inputs. In such cases, one may be specified a
transfer function matrix, the respective elements of which

may be reduced using this method.

Method 2 retains the dominant eigenvalues of the
high order system in the low order model, so that in a
sense, this method is limited to systems which do, in fact,
have this characteristic of dominance. A high order system
with poles located close together could be better approxi-

mated by a low order system if the poles of the reduced
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system were shifted to compensate for the change in system

order.

Method 3 has few actual limitations; the author
mentions an unsuccessful first attempt to reduce a system
satisfactorily,® but this was overcome by weighting the
actual response in a certain region in order to improve the
reduced system response. The method might be impractical
to use on a system with poles very near to the jw axis,
since the time interval over which the samples of the response
are required becomes very large. It might also be undesir-
able to have a reduced model which does not guarantee a

close fit to the step response at steady state.

Method 3 minimizes the difference between the two
curves at the various times of measurement. Since the
transient part of the résponse has a relatively high slope,
small perpendicular distances between the curves over this
portion of the curve will have large response (vertical)
differences, so that this region is inherently emphasized
by the reduction method. This is a very desirable feature,
but it could be somewhat advantageous to have some control
over the range in the response curve where errors are

allowed to occur.

All the methods suffer from the basic limitation
that the exact system transfer function or vector differen-

tial equation must be known beforehand. A more realistic
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approach would be the development of the simplified system
model directly from the step-response of the system, which

may often be obtained experimentally in a very simple manner.



CHAPTER 6

A NEW APPROACH TO THE REDUCTION PROBLEM

6.0 Introduction

One problem frequently encountered with control
systems 1s that of identification. This is a very real
problem in that it is seldom possible to formulate exact
transfer functions or vector differential equations for
real systems. Systems are therefore 'estimated', and this
is commonly done on the basis of the response of the
system to a step input. As mentioned at the close of
Chapter U4, it would be desirable, then, to fashion the
reduced model of a system directly from the step response
of the actual system, rather than building the reduced
system from an estimated transfer function. A new concept
in system. reduction which bypasses this estimation problem
will be presented after the following discussion of general
control system characteristics. The actual input to which
an operating control system will be subjected to is usually
unknown. Some standard test'signals have therefore been
developed, and among these, the step input is the most
widely used by control engineers. The step input is a
cénvenient signal to describe mathematically; it is easily

applied to a system, and the response to this input gives

- 57 -
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a great deal of information which has come to be regarded

as the control characteristics of a system. It is common-
place then, for designers to specify certain of the step
response characteristics for a given system. The character-
istics most often specified include initial slope, rise
time, maximum overshoot and time of maximum overshoot (which
are all transient characteristics), as well as settling

time and steady state response.

A close examination of Figure 5.7 shows that the
response of each reduced system would satisfy only a few
(if any) of the actual response characteristics, but none
of the reduction methods allow the selection of specific

response characteristics.

It appears that some compromise between the systems
reduced by Method 1 and Method 3 could result in a more
accurate overall response, and it is with this thought
that a new approach to the problem has been taken. Rather
than manipulating the system parameters to achieve reduc-
tion, a second order system is proposed which will have a
step response consistent with some desired criteria. That
is, given the step response of a high order system, a second
order model may be constructed whose response will have

certain of the desired characteristics of the actual response.



6.1 Second Order Model Variations

Second order models may be of four different

types:

1) Two Real Poles And a Zero

2) A Pair of Complex Poles and a Zero

3) Two Real Poles without a Zero, and

4) A Pair of Complex Poles without a Zero.
In the first two cases, the step response will have a
non-zero initial slope, whereas in the last two cases,
the initial slope of the response will be zero.' With
these four models, both underdamped and overdamped systems

can be approximated.

Each of the four systems are general within their
range and thus have a certain number of variables, or
degrees of freedom, which are accounted for by the number
of response characteristics required to be met. These
models, their equations and ranges of application are

discussed next.

6.2 A Second Order Model with Two Real Poles

This model is used when the initial slope of the
response 1s zero and there is no overshoot. The transfer
function for the system is of the form

C(s) _ K
R(s) = (s + a)(s + 8)

59
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A typical response for the system is shown below in

Figure 6.1.
i
c(t)
A_ ————————————————
%,_._ e, Slope = S
|
l
0 |
0 t, t
. Figure 6.1: Step Response of a Second Crder
System with Two Red Poles.

The expressions for the step response and its slope are,

c(t) = _K _ K .e°t + K .e Bt
ag al(B-a g(g-a)
de = K .(e7% - 7B 18] > |a]

dt B-a
These equations contain three variables which will

allow the specification of three response characteristics,
_ A
= 5

The steady state value (A), the time (tl) at which c(t)
and the slope (s) at t, may well be selected and the follow-

ing relationships are then established.
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A= K
GB 00000(602—2)
A= K _ K .(Be”atl - ae—Btl)
2 aB aB(B-a)
S = K .(e—atl - emstl)
B—a
By substitution, these equations are found:
B =1 In 2A
tl Aa-zs 000--(6.2-3)
(1 - e®%1).1 .1n 240 =S
2 t AU.'-ZS A o-.oo(6-2-Ll')

1

.Equation (6.2-4) is used to find o numerically. @8 is then

obtained from Eqn. (6.2-3), and K from Eqn. (6.2-2).

6.3 A Second Order Model with Complex Poles

This model is used when the initial slope of the
response 1s zero and there is an overshoot. The transfer
function for the system is of the form

C(s) = K
R(s) (s+a)2 + B2 veees(6.3-1)

A typical step response for the system is shown in Figure 6.2
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1 t

Figure 6.2 Step Response of a Second Order System
with Complex Poles

The expressions for the step response and its slope are,

e(t) = _K K .e" %t sin(st + tan~1g)

a2+g2 8YVaZ+g7

de = _X__.e"®T[aSin(st + tan"lg) - 8Cos(st + tan g)]
dt  8/a?+82 o e

Again, these equations contain three variables and
the required response characteristics here might well be
the steady state value (A), the maximum response value (M),

and the time of maximum response (t).

At the peak, tan(gt, +'tan-1§) = 8
o [+
Then t, = 1 and B = II_
B tl o.o.o(6-3_2)
AlSO, A = K .oooo(6c3"'3)
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and a = 1n A

1 M_A .....(6.3"”‘)'

ri"l—'

By determining 8 from Eqn. (6.3-2) and o from

Eqn. (6.3-4), K can be obtained from Eqn. (6.3-3).

6.4 A Second Order Model containing One Zero
and Two Real Poles.

This type of model is used when the initial slope
of the step response 1s not zero. The model may also
accommodate a small overshoot in the response, but no

undershoot.

The system will have a transfer function of the

form

T(s) = _ K(s+§)
(5Ha) (5+B)  eeeen (6.4-1)

Now, the expressions for the response and slope of response

to a step input become

c(t) = K§ + K(a=§).e" %% - K(g-5).e7 BT

aB a(B~0a) B(Bg~-a)
de = _K(a-=§).e™°F + K(g-8).e7 Bt
dt {B-a) (B~a)

l8l > |of

The characteristics shown in Figure 6.2 may be used here,
along with the specified initial slope of the response to

give the following relationships.
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At peak time (t,),

(a-8)e %l = (g-s)e BT1

M= K§ + K. F&eﬁ).e"atl - (B—G).e'stj
aB B—o g8

At steady state,

A= Ks
QB ooooo (60“’"2)
at t = 0,
de = K
dt t=0 000'0(60”'-3)

Then, by substitutions, we have

=1l 1ln —Aa
t, a(M—A) cesss(B.U=1)

and,

A+ (M-A).e®t171n [ K-Aa |
S (M-A) cereo(B.4-5)

In Eqn. (6.4-3), K is evaluated as the initial slope of the
response. A numerical value for a is determined from

Eqn. (6.4-5); then B is obtained from Eqn. (6.4-4) and

§ from Egn. (6.4-2).

6.5 A Second Order Model containing One Zero and
Complex Poles.

This system 1s also used when the initial slope of
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the response is not zero, but the system also covers the
range of responses which have large overshoots as well as

some undershoots.

The transfer function for the system takes on the

form

T(s) = K(s+§)
(s+a)2 + g2 ceees(6.5-1)

The step response and its slope are expressed as

c(t) = K& _ K/EZE(E=q)Z.e”*T.Sin(pt+s)
22187 " 8/atrel =

de = K/BZ ¥ (5-w)Z.e*t[-aSin(pt+s) + BCos(Bt+e)]
dt B8/ o + B2

where

¢ = tan’lg _ tan™t g
a

From the characteristics shown in Figure 6.2 and the
specified initial slope of the response, the following

expressions are derived.
At peak time (tl)

tan(Bt,+¢) = 8

Q

Then,

d-5 000-0(605-1)



At t = 0,

de '

a—-E— K 000-0(605‘2)
At steady state,

A= - K§

a+ B C...l(605-3)
and,
e(t;) = _ K& '  + K/EBZT GG-a)Z.e %M
aZ ¥ B2 wZ + B2 cee..(B6.5-1)

Equations (6.5-2) and (6.5-3) may be substituted in the
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other two equations so that only two variables are involved

in each. These equations are transcendental, however,
and determination of the two variables must be done
graphically. This task is relatively easy to tackle, if
some forethought is given to the possible range of values
for o and 8. The use of a digital computer makes the
problem of finding the values of o and B which satisfy
Egqns. (6.5-1) and (6.5-4) less tedious, and once o and B
are determined, § is obtained from Eqn. (6.5-3).

6.6 Application of the New Reduction Approach to the
‘ Test System

The step response of the test system shown in
Figure 2.3 has an initial slope of zero and an overshoot.

To simulate this response, then, a second order system
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with complex poles was required. From the response
characteristics available, the steady state value,

peak response, and peak time were selected as the cfiteriav
for a reduced system to meet. These characteristics were

evaluated as follows.

Steady state value = (0.111111
Peak response value = 0.120689

Time of peak response = 2.900 seconds
From Egqn. (6.3-2) we have,

g = _10 = 1.083308

Then, by Eqn. (6.3-u),

1 InC 11111 )
7.9 ~.T20689 - L1ITI1T

Q
]

0.845198

Finally, from Egn. (6,3-3),

K= .111111(.714359 + 1.173556)

0.209768

The second order system transfer function is then

T(s) = 0.209768
s% + 1.690396s + 1.887915

or, in state space form, the equation for the reduced
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system is

x = [ 0.0 1.0 x + [0]u
-1.887915 -1.690396 1
c = [209768 0.0]x
6.7 Comparison of the Actual Response with the

Reduced System Response

The actual and reduced system responses are shown
in Figures 6.3, 6.4 and 6.5 for intervals of 5, 20 and 100
seconds, respectively. It is evident from these graphs
that the specified characteristics have been met, as
desired. It should be noted here, that some change in the
specifications (such as the establishment of tolerances)
could result in a response with less overall error, and
the system can be easily altered according to the designer's

judgment.
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Figure 6.3 Response Comparison using the New Reduction Technique
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CHAPTER 7

CONCLUSIONS

Three methods of high order system reduction have
been applied to a test system and in each case a second
order model was derived. These models were then tested
with a step input and their fesponses were compared to the
actual response. The state space equations and transfer
functions for the three second order models appear in
Table I. Each method has certain advantages and limitations.
Method I is simple in concept and application, but is
limited to single input systems. Method 2 can be applied
to systems with multiple inputs, but the application is
involved and tedious. Method 3 features a minimization of
step response error and is easily applied, but does not
guarantée an accurate steady state value. The third method
is the most attractive one, since it involves error minimiza-
tion, but there are some areas of improvement which would

be desirable.

Firstly, the step response of a reduced system should
ultimately approach that of the actual system. There will
be some period in the response during which errors must

occur because of system order reduction, but some guarantee
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METHOD 1

State Space Equations

0.0 1.0 x +[é u
~.09941 ~-1.1464L 1

1%
"

¢ = [.01105 .1299]§
Transfer Function
C(s) 0.1299s + ,.01105

R(s) - s2 + 1.1lhobu4lts + .09941

Pole Locations

ll = -1.04822
METHOD 2
State Space Equations
x = [ 0.0 1.0 x + [0]u
-5.029956 ~4.112593 1
c = [.557628 -.0505251x




TABLE I (Continued)
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Transfer Function

C(s) _ -.050525s + .557628
R(s) ~ 82 + 4.,112593s + 5.029956

Pole Locations

>
"

1 -2.0562965 + j.8953215

>
1]

2 -2.0562965 - j.8953215

METHOD 3

State Space Equations

0.0 1.0 x *+ | 0fu
-2.687809 -1.902574 1

(Eald
"

c = [.30961 .30961]x
Transfer Function
c(s) _ .30961(s+1)

R(s) -~ s2 + 1.902574s + 2.687909

Pole Locations

>
1

, = -1.344 + 3,318

>
[}]

, = -1.3u4 - 3.316




TABLE I (Continued)
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NEW METHOD .
State Space Equations
x = | 0.0 1.0 x+ [0}u
-1.887915 -1.690396 1
c = [.209768 0.01x
Transfer Function
C(s) .209768

R(s)Y -~ 52 ¥ 1.690396s + 1.887915

Pole Locations

>
1]

-.845198 + 31.083307

>
1"

2 -.845198 -~ j1.083307
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\

of a very close stéady state approximation should exist.
Also, since there will be errors in the response curve, it
would be preferable to have some choice as to where these
errors occur.

The method proposed in Chapter 5, while simple in its
application, offers a good deal of latitude in the fashioning
of a low order model after the step response of a high order
system. The problem of system identification is avoided since
only thestep response of the system is required. This can
normally be obtained to a sufficient degree of accuracy
with relative ease. Areas of the actual response can be
emphasized in the model at the discretion of the designer.
For instance, in some systems it might be desirable to
duplicate the transient portion of the response very closely,
with little regard to settling time. In another system,
the settling time could be the most important feature to
approximéte.

The new method not only allows an emphasis to be
placed on different areas of the response, but because of
its simplicity, it can be altered quickly to obtain a range
of possible models which can be assessed by comparing the
step responses. The transfer function for the model
obtained using this method is shown in Table I.

In Chapter 5 this reduction concept is applied in

order to arrive at a second order model for comparison
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purposes. The concept is easily extended, however, to
higher order models by specifying more of the desired

response characteristics. For each increase in system
order one more characteristic may be specified so that
there will be the same number of equations as there are

variables.

A second order model is frequently used because of
its simplicity, especially in connection with optimal
control theory. Too often this size of model does not
contain step response characteristics which are accurate
in some desired area. If this model is then used to arrive
at an 'approximate' optimal control policy for the large
system, the control policy may be considerably far from the
optimum. By specifying certain of the model characteristics
then, a 'approximate' optimal control may be derived which

is consistent with the actual performance of the system.

This method of system reduction, with its simplicity,
variability as to emphasis, and accuracy should make it
useful in the design, analysis and optimal control areas

of system engineering.



APPENDIX A

STATE SPACE EQUATIONS FOR THE TEST SYSTEM

A.l From the block diagram of the test system in
Figure 3.1, along with the chosen values for the variables,
the transfer function of the system is calculated in
Chapter 3.2 as T(s) = C(s)

R(s)

If we let Y(s) 1
R(s) -~ Denominator of T(s)

then %((%)7 375000sY + 31250Y

By defining

X, =y
Xy =%, 77
x7=X6

we can formulate the state space equations? as

- 78 -



x31/ [0 1 0 0o 0o o o07][x] [0]
X, 0 0 1 0 0 0 0 X, 0
X, 0 0 0 1 0 0 0 X3 0
X, | = 0 0 0 0 1 0 0 X, + i 0IR
X, 0 0 0 0 0 1 0 Xs 0
Xg 0 0 0 0 0 0 1 X, 0
—x74 _—al -a, =-a; -a, -ag -ag —aa _XZJ ﬂl_
where
a, = 281250.
a, = 3310875.
a, = 2814271.
a, = 853703.3
ag = 70341.905
ag = 4097.4038
a7 = 83.635

and the output relationship is given by

¢ = [31250 375000] X,

X
2

The above equations are, then, in the standard form

X = Ax + Bu

Hx

c

There are various techniques? for reducing these

equations to the simple form

79
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X = Ax + Eu

where ¢ = x In effect, the B matrix from the original

o
equations is changed to compensate for the derivatives

of the driving function, which are present.

In order to apply one of the reduction techniques,
this simplified form of the state space equation is

required, so that the equations are restated as

X = Ax + Eu

where
ET = [0 0 0 0 0 375000. -31331875.]
and now c = X
A.2 Evaluation of the System Eigenvalues and
Eigenvectors

As mentioned in Chapter 3, it was necessary to
solve for the eigenvalues of A, rather than finding the
roots of the polynomial F(s), to obtain the accuracy

desired.

The rounding off of numbers within the computer
has a less significant effect on eigenvalues determined
by matrix methods, than on roots determined by various non-
matrix methods. This is increasingly evident for higher

order equations.

Jacobi's method"* for determining eigenvalues is
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probably the most common of the matrix methods. It involves
rotating the co-ordinate axes of the system until the off
diagonal elements are reduced to zero. The remaining
diagonal elements are then the eigenvalues. This is

easily accomplished in one step for the second order

system, but many more steps are required for more complex

systems. .

In higher ordered systems, the axes are rotated
so as to reduce the largest off diagonal elements to zero.
As this is done, however, previously zero-valued elements
may take on non-zero values. The values are always reducing,
so that with enough rotations the off diagonal elemenfs
may be reduced to some satisfactory tolerance. Jacobi's
method has the limitation that the matrix to which the
technique is applied must be symmetric. Eberlein
modifies this method so that an arbitrary matrix may also
be reduced to the stage where the eigenvalues appear on the
main diagonal. In a combination of integrated steps the
matrix undergoes two-dimensional transformations which
firstly make the matrix arbitrarily close to normal, and
then reduce off diagonal elements to steadily decreasing

values.

The research work leading to the above method was
partially sponsored by a computer company so that the

method is particularly adapted to machine computation.
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The eigenvalues (or roots) for the test system
were obtained using Eberlein's method, which is a standard
subroutine buililt into the computer library, and these

eigenvalues are as follows.

A, = -.09193240
\y,3 = -2.024383 * 3.96LE4ES
A = -7.672749 + j13.44463

455
A = -32.07440 + j38.8593Y
6,7

These roots were tested in the equations and found
to be correct to seven decimal places which was deemed
sufficient accuracy for practical applications of the

reduction methods requiring these roots.

The modal matrix, which is also required later,
consists of the eigenvectors arranged in columns. Since
the A matrix is in the normal form, the eigenvectors are
easily determined from the eigenvalues as

T
Xz = [1 a: A2 ... A7]
=L T i

where X; is the eigenvector corresponding to the ith

eigenvalue (1;).



The eigenvectors, calculated from the eigenvalues in the

same order, as shown below

1.0
-9.19324 x 10-2
8.451567 x 10-3
x; = |-7.769728 x 10-*%
7.142898 x 10-3
~-6.566638 x 10-6

| 6.036868 x 10-7

1.0

-2.024383

I+

Xp,3 * . 9646465

+ |

3.167583 j3.905628

~2.644851 + j10.96208

I+

+1

-5.220345 j24.74280

34.43603

I+

j45.05312

| -113.1721 + j57.98616 |

[ —

1.0

-7.672749 + J13.44463

14-

-1.218870 x 102 * j2.063146 x 102

I+

x 3.709032 x 103 + 35.572618 x 103
-2,770925 x 10" ¥ §5.02941u4 x 10%

-4.63580 x 1073

I+

j7.58435 x 10°

I+

1.375381 x 107 £ j4.133803 x 103



1.0
~3.207440
-4.812811
1.123046
-5.982322

9.863811

| 8.860u95

10
102
103
1068

107

109

1+ +1 I+

I+

-+

73.885934
32.492780
§6.125217
§2.399456
js.oéusoz
31.375780

10

103
10"
106
108

1010

8k



APPENDIX B

SOLUTION OF THE STATE SPACE EQUATIONS USING A DIGITAL

CCMPUTER

B.l Method of Solution

The solution of the equations
X(t) = ax(t) + Bu(t)

is

t _

s e ATpu(r)ar
%

= At - ty) At

x(t) -x(t;) + e

1f t, is taken to be zero, which is not unduly

restrictive, the solution becomes
x(t) = &t [5(0) + o/t e-ATBy_(r)d;J

In order to use a digital computer to solve the
state space equations, the solution must first be expressed
in a discrete form, since the cbmputing process is not con-
tinuous. This solution is easily obtained if the driving
function, or input, is held constant between the sampling
intervals, or if the input can be suitably approximated by
a series of step functions which can be considered constant

between the sampling intervals.

The input used here is a step function, so that the
solution of the state space equations can be represented

equivalently in its discrete form as

- 85 -
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T ]
XUHDT = e [gkm + e ATBg_(kT)dJ

cee..(B.1-1)

where T = sampling interval

1

and k sampling instant

Al . e s .
Now, e T can be represented in an infinite series form as
AT
e

= (I + AT + (AT)2 + (AT)3 + ...)
21 3!

e..-o(Bol—z)
Also,

e = (I - AT + (AT)2 - (AT)3 + ...)
2T 31 veeeao(B.1-3)

If Eqn. (B.1-1) is integrated between the limits
shown and Eqn. (B.1l-3) substituted in the resulting
equation, the solution becomes

AT
x(k+1)T = e |x(kT) + [I - AT + (AT) - ...]BuT

= 21 31
s e e ® ‘(B.l—LI')

With the series substitution for eAT

in Eqn. (B.1-4), the
solution is in a form thaf lends itself to machine computa-

tion.

Each series in this expression must be truncated
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at some point, but each series is uniformly convergent,
so that assessment of the value of additional terms need
only be made and a suitable criterion applied for

truncation.

Increasing the value of ' T requires taking a greatly
increasing number of terms in the series in order to
obtain reasonable accuracy. However, if a very small value
of T is selected, then each series converges quickly and a
high degree of accuracy can be demanded. Having obtained
the solution at this time T, the process can be repeated
using the same accurate values for the series and merely
updating the initial conditions. The final solution is, in
fact, arrived at by taking many small steps and, since this
iterative procedure does not require continual evaluation

of the series, minimal computer time is required.

A general computer program for the solution of
equations in the form g = Ax + Bu, using the technique
above, is included in Appendix B.2. This program was used
for obtaining the responses of the test system and all the
reduced models of this system. A time interval of 0.01
seconds was found to provide close agréement (five figure
accuracy) between the program output and actual values

calculated for a sample system.

The following terms are applied to various parts of

the solution for use in the computer program.
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ANS = (I + AT + (AT) + ...)
21
DMA = (I - AT + (AT) - ...)T
2T 31
DBM = [DMAI[Bu]
DBX = X(0) + DBM
SOLN = [ANS][DBX]

The values of ANS and DMA are calculated in

subroutines EXPAT and DSTEP, respectively.

It should be noted here that the step function used
in this example may be substituted with any linear driving
function by changing the integration in Eqn. (B.1l-1) and
thus revising the subroutine DSTEP (which yields DMA) in
the program. The convergence requirements for each series
is that successive terms in the expansion be less than

.0001% of the preceding term.
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APPENDIX B.2

COMPUTER PROGRAM FOR SOLUTIUN OF STATE SPACE EGQGUATIONS
USING & DIGITAL COMPUTER
THIS IS HAIN PRUGRAM FOR STATE SPACE SCLN. OF LINEAR

DIFFERENTIAL EQUATIONS vY A SERIES #“ETHOD
EQUATIONS ARE OF FORM  DX/0T=(A)X+(BIU, C=(HIX

TRAMSITION MATRIX IS SCLVEDLD KUMERICALLY USING A SHALL TIME(DT/.
NITIAL CONOITIUNS ARE CONTINUALLY UPULATED USING OQUTPUT UATA.
X=INITIAL CONDITIOMSe T=TIsE ITNCRECENTS(SEC! s TTLH=TOTAL TIME

H IS OQUTPUT MATRIX.

KCUNT IS THE CESIRED TIMme INTERVALS FOR wWRITTEM OUTPUT.
KGUNTR 1S THE DESIRED Tldk IRTERVAL FOR PUNCHEL OUTPUT.
NUMBR IS THE NUMBER OF RzSPONSE POINTS PUMCHzD CSUT.

DIMENSION A(25925) sB(25) X251 sD6MI25) 50X (23) ,H(25)
CIMENSICHN ANS(25-25) sDitA(25,25) sPRT(25525)
CIMEMNSICHN Y(5C0)sTI(500!

READ TIlmE INCREMENTs TUTAL TIMmEZs SATRIX SIZEs ARD CUUNTERS.

READ(5 s 10N T TTIH»KOUNT s KGUNTR 9 NUMER
DO31=1,N

READ(Ss11)(Al+sd) sd=1sN]
READ(S 1118 (I)sI=1sN]
READ(S511) (X (1) sT1=1sn¢
READ(S5s11)(H{I)sI=14N!

ECHO PRINT INPUT DATA.

WRITE(O6s22INs T TTINM9KOQUNT SKCUNTR
WRITE(6+24)

DOL8I=1sN

WRITE(592C) {ACIsJ) s J=1sN)

WRITE (65261

LU19I=1,4N
WRITE(S: 2118 (1) sl sxX{I)alsH(D)
WRITE(E:27)

L=1

.

— X =
[ (20
I s
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16

17
12

13

FIND INTEGRAL (EXP.-ATI)*U

CALL DSTEP(ASTsiNsDMALDE)
IF(DE«GT«500e«) GO TO 304

FIND EXP<AT

CALL EXPAT(AsTsNsANSSD)
IF(DeGT«50Ge) GO TC 300

WRITE NUMBER OF ITERATIONS FOR CONVERGENCE OF ABOVE SERIES.

WRITE(6528)LsDE
WRITE INTEGRAL (EXPe—-ATIU

WRITE (6529)
DO 1011=1,N

WRITE (65200 (DMA(TsJ) sJ=1 M)
CONT I NUE

WRITE EXPe.AT

WRITE(65201)

DO 102I=14N

WRITE(6:2C) {ANS{IsJ) s J=1sM)
CONTINUE

WRITE(65202)

MULTIPLY OMA MATRIX bY B COLUMN
DO 16I=1,N

DBHM(1)=0.0

DO 16J=1sN
DBM(I)=DBM(I)+DMALT »J I *d (J)

ADL DbM COLUMN TG X(0O! VECTOR

DO 121=1sN
DBX(I)=DaM(II+X(I)

MULTIPLY EXPAT BY DBX COLUMN
DO 13I=1sN

X{I}=U.0

DO 13J=1¢N
XCI)=X(I)+ANS(ToJ)*DBX(J)

CALCULATE RESPONSE

90
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C=0.0
DO 51=1sN
C=H({L)y=X({I)+C
5 CONTINUE
IF(LeEQsXCUNTR) GO TC 1
8 IF(KEQ.KOUNT) GO TO 2
& T=T5+T
L=L+1
K=K+1
[F(T«GT-TTLlM) GO TO 4CU
yGO TO 17

STORE DATA POINTS AT DESIRED TNTERVALSS

1 Y{#)=C
TI(s)y=T
L=L-XKGUNTR
M=N+1
GO 10 8

WRITE CUTPUT AT DESIREU INTERVALS

2 WRITE(6,23)7
WRITE(6s2CA) (T sA (1) sI=1ain)
WRITE(652C3) C
K =K ~<OQUNT
GO T0O 4

PUNCH DATA POINTS FCOR GRAPHINGS

Gol WRITE(Ts2850 (Y (M) sit=1 s NUMBR!

WRITE(Ts 2061 (TIM M) o= s NUMBR!
READ FORMATS

10 FORMAT(I10,2F10.4,3110)
11 FORFAT(T7F10.6)

WRITE FORMATS

20 FORMAT(1X510E13.6)

21 FORMAT(1UXs1HBsI1252H= 5E13.6+10Xs1HX12+5H(0)=

1H= sE13.6)

22 FORMAT(1HL s TUXsI3HMATRIX DIMe= »1295XQHOELTA T=
15X 12HTOTAL TIME= FOufistHSECe 15X s 6HKOUNT =514 55X s THROUNTR=s14//)
23 FCRMAT(1Xs3HT= sF842,52HSEC)

24 FORMAT (95X 8HA MATRIX/)

26 FURMAT(////78Xs16rCONTROL VECTORs LOX s TAHINITIAL VALUESsLUX s 13HOUTP

LUT MATRIX)
27 FORMAT (1H1515X s LEHCUTPUT [HFORAATION)

91
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36 el s 4LHEBECa s


http:FORVATilX,lOE13.6l
http:FOi~i.,.iA
http:FOR~AT!7Fl0.6l

28

29

22Ul
202
203
204
205
206
300
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FORMAT (/10X s2CHEXPAT SERIES 1TLRe= 3sF64055X,

12CHDSTEP SERIES ITERe= sF640)

FORMAT(///50X s LIHINTEGRAL(EXP«=AT I%U/)
FORMAT(///53X s I3HEXP AT MATRIX/!
FORMAT(L1H1 950X 934HSOLUTIUN OF DIFFreRENTIAL EQUATIORS///1
FORMAT (10X » LUHRESPONSE= sF1546//)
FORMAT(1Xs6(2HX(s1243H)= ,E1346))

FORMAT(EE1346)

FORMAT(11F7.3)

STOP

END


http:FORMAT(11F7.3l
http:FOR~AT(6El3.6l
http:FOR~AT(III53X,l3HEXP.AT
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SUBROUTINE EXPAT(AsTsMNsANSsD)

THIS SUBROUTINE CALCULATES EXPAT 8Y SERIES METHOOD TO A COHVERGENCE
OF +UUUl PERCENTs WITH A LIMIT OF 500 ITERATIONS.

T=TIME IN SECONDS/N=DIMENSION OF SQUARE A MATRIX

DIMENSICON ANS(259251 550259250 3A(2592575C{253257sPRT (25425
BUILD IDENTITY MATRIX

- DO34I=1sN
DOZ24J=1sN
IF(IeEQeJIS{IvU)=1e0
IF(leEQeJ) GG TO 34
S(IsJ})=0.0
34 CONTINUE

TA = FIRST SuUM IN SERIES
D033I=1sN
DO23J=1 ¢ N
PRT(IsJ)}=5(1,U)

33 ANS(IsU)=S5(1,J)

SET UP GENERAL TEKK FOR COcFFTe. P

1w u
—~

T VO
- o e

0
0
30 /D) P
CALCULATE NEXT TERM IN SERIES

DO4GI=19N
DO4GJ=1sN
C(IsJ)=0UsC
DO4CK=1sN
40 Cl1sJ)=ClIsJ)+ALTsKI*S5(KsJ)

CHECK FOR CONVERGENCE

DO42T=1,N

DO42J=1sN

TOL=¢00J0C1*PRT(I5J)

CUTE=ABS(C(IJ)*P)

IF(CUTE«GT.TCL) GO TO 35
42 CONTINUE

GO TO 10<

ADD THIS TERM TO PREVIOUS ONES



35

41

43
45
100

DO411=1sN
DO41J=1sN
ANS(IsJ)=C(IsJ
PRT(IsJ)=ABS(C
S(I,J)=C(I,J)
D=D4+1.0
IF{DeGT«5C0.)
GO 70 30
WRITE(6545)
FORMAT (1Xs26HA
RETURN

_END

J¥P+ANS (T J)
{1,J)%p/

GO TO 43

MATRIX HAS NOT CONVERGED)

94
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SUBROUTINE DSTEP(A»TsNsDMA,DE)

THIS SUBR. CALCULATES INTEGRAL (EXP-AT*U!) BY A SERIESs TO A
CONVERGENCE OF +0001 PERCENTs WITH A LIMIT OF 500 ITERATIONS.
U=UNIT STEP I/Pe N=DIMEZNSION OF MATRIXe T=TIME TN SEC.

DIMENSION DMA(25525) 550255250 3A(25525)5C(25525),PRT(25,25)

(aNaNa]

aNaNal

aNaNa

N NN

54

50

BUILD I*T MAT-IX

DO54I=1sN

DO54J=1sN
IF(IeEQedIS(TU)=T
IF(l.EQ.J) GO TO 54
S(I+J)=Cs0

CONT INUE

TAKE FIRST SUM IN SERIES

DOS3I=1sN
LO53J=1sN
PRT(IsJ)=S{1sJ)
MALT o JY=S(1sJ)

SET UP GENERAL TERM FOR COEFFT.

DE=2.0
P=1.0
P=—1.0%P% (T/DE)

CALCULATE NEXT TERM IN SERIEZS

DO60I=1sN

DO 60J=1,N

ClIsJ)=0.0

DO60OK=1sN
ClIsd)=ClIsJI+A(TsKIXS(KsJ)

CHECK FOR CONVERGENCE
DO621=1s1.

bub2Jd=1sN
TOL=eOGOCOL*PRT(IsJ)

CUTE=ABS(C(IsJ)%P)

62

IF(CUTZ.GTL.TOL) GO TO 55
CONTINUE
GO TO 200

ADD THIS TERM TO PREVIOUS ONES

P



55

61

63
65
200

PO61I1=1sN
LO61J=1,N

DMA(T s ) =C(I s J)¥P+DMA(T5J)

PRT(I:J)=ABS(C(l,J)%P)

S{1,4)=C{IsJ)
COMNTINUE
DE=DE+1.0
IF(DE«GT«5CU.)
GO 7O 50
WRITE(6,65)
FORMAT (1X526HD
RETURN

END

GO TO 63

MATRIX HAS

NOT CONVERGED)
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APPENDIX C
"APPLICATION OF METHOD 1 USING A DIGITAL COMPUTER

THIS PROGRAM FORMS THE CONTINULED FRACTICN EXPANSION OF A TRAMNSFER
FUNCTIONs IF NUMERATOR 1S5 UF SHALLERK ORDER THAN UoROAINATORs FILL

© OQUT TO SAME ORDER WITH ZERO COEFFTSe. THE NUMERATCR COEFFTSe ARE

READ IN ASCENDING ORDzR TO FCRM TN VECTOR. THE DENOMINATOR
COEFFTS. ARE READ IN ASCENDING ORUER TO FORM TD VECTOR.
N=ND. OF COEFFTS. IN UDENOMINATCOR. #= ORDER OF REDUCED SYSTEM

DIMENSIOM TN(25)sTD(25)sRUDIVI25) sREM(25)
READ ORDER OF PRESENT SYSTEM ANV ORCER OF LESIRED SYSTEM.

READ(5510) NsM
READ(5511)(TN(I)sI=1sN)
READ(5511)0(TD(I)sI=1sN)

WRITE ORDER OF SYSTEM AND DESIRED ORDER.
WRITE(6520) Nl
WRITE COEFFTSe OF RUMERATCR ANC DeNOMINATOR.

WRITE(6+23)

DO 7I=1sN

K=1-1
WRITE(EHs21 K sTNII) sl TD(T)
WRITZ (65241

INITIALIZE COUNTERS.
L=RUNNING GRDER OF TRANSFER FUNCTION.
KOUMT=RUNNING ORDER OF REDUCED SYSTEMe

KOUNT =0
L=N

1:1S 1S DIVISION WITH SAME POWERS OF S.
H1=TD(1)/TN(1) )

PO 11=1,L

RUDIV(I)=HI%XTN(I)

REM{IINI=TD(I)-RUDIVI(I)
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FORM NEW FRACTION

1 TD(I)=TN(I)
SHIFT FCR LOST TERM AND PUT IN NUWLRATOR¢

J=L-1
DO 2I=1.J
2 TN(I)=REM(I+1)

THIS 1S DIVISION WITH UNLIKE POWERS OF Se

H2=TD({1l)/TN(1)
DO 31=1sJ
3 RUDIVI(I)=H2%TN(I)
RUDIVILI=UO
DO 41=1,L
4 REM(I)=TD(I)-RUDIVI(I)

FORV. NEW 'FRACTION

DO 51=1sJ
TO(IY=TN(ID)

SHIFT ANU PUT IN NUMERATOR.

A

-

=REM(I+1)

1)
=L-1
ARITE (6922 )H15H2
KOUNT=KOUNT+1
IF(KOURNTLEG.M) GO TO 10U
GO TO 6 :

(
L
I

i el

READ FORMATS

10 FORMAT(2I15)
11 FORMAT(5F15.5)

WRITE FORMATS

20 FORMAT (1H1,10X+25HCRDER GF EXISTING SYSTLh—sIZleX,?4HJPut2 OF LS
1IRED SYSTEM=,12/7//)

21 FORMATI(2(28Xs2HS(51243H) =5F15.5))

22 FORMAT(28XsF15¢5:28XsF15e5)

23 FORMAT(2UXs22HNUMERATOR COEFFICIENTS 20X 23HDENOMINATOR COEFFICIEN
1757) :

24 FORMAT(IH1 22X 14HEVEN QUOT! tATSs 2Xs16HQUOTIENTS OVER S§/)

106 siTcP
END
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" APPENDIX D

THE APPLICATION OF METHOD 2

D.1 Formulation of the Reduced Matrices

The various matrices which were evaluated during the
application of this method are given below. These matrices
are in the author's notation and follow a sequence which

leads from the reduced system back to the test system.

DA*D-1 = [-3,907092 1.29 x 10—5}
-3463089. -.1416729
DB* = [-.05052537
4L37819.7343
D = [0.9002 0.0
0.0 -11597.88912
A®—1B® = | - 1233025
32.33347
[ ~.111014 |
0'0
0.0
A-lB = |0.0
0.0
0.0
375000.




jo-d
e
2

-3.9Q7092 -.0166358?}

269.0063 -,1416739

c
i

>
"

~2.024383 +3.96u46465

B% = | ~.0561393
~37.74995%

Matrices U, A, and B are recorded in Appendices A.

1 +3j0.0 1.0 +30.0
-113.1721 -357.98616 -113.1721 +j57.98616

100

0
-2.024383 -j.9646L65

1l and A.2-
D.2 Inversion of a Complex Matrix with Singular Real and
Imaginary Parts
If (A + jB) is non singular, there exists a unique
matrix (C + jD) such that
(A +3B)"l = c+ 9D
or, (A + jB)(C + jD) = I, i.e., AC - BD = I
BC + AD = 0
and (C + jD)(A + jB) = I, i.e., CA-DB =1
CB+ DA =20

Now, if we let E

[}
)
l> w

o

o

[a W

Lo |

H

- d
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i
n

I

1

Then, EF = | AC-BD AD+BC | 0
| -BC-AD -BD+AC | 01

and TFE = [ CA-DB CB+DA| = T

| -DA-CB -DB+CA |

Thus F E-1

]

Since the existence and uniqueness of C and D is guaranteed
if (A + jB) is non-singular, the existence of F is also

guaranteed.

Hence, E possesses a unique inverse F, and is therefore,

non-singular.



APPENDIX E

THE APPLICATION OF METHOD 3

E.1 Formulation of the Reduced Matrices

Anderson applies his method to a continuous system
model which can also be represented by discrete-time
equations.? The test system used here can also be
described by discrete time equations with an input which
does not vary between sampling instances. Then, given x(0)
and the sequence u(kT), k = 0,1,---%, the state of the
test system at the sampling instances can be computed for
all t > 0. T was chosen to be .0l seconds for convenience,

and 2 = 500 to satisfy the total time interval requirements.
With the reduced system described by the equations

Xm < Xy t Bpu

the required matrices for the second order case are defined
- pT Tymy-1
as [AB,] BIM(M M)

where %, (0) iz(O)_

By = |%,(T) %,(T)

¥, (KT) %, (KT

- 102 -
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and

%, €0)  x,(0) u(0)]

M = xl(T) xz(T) u(T)

L?leT) xz(kT) u(kT)

Using the computer program in Appendix E.2, the required

matrices are determined as

0.0 1.0
-2.687909 -1.902574
and Bm 0.0
0.309610Q

An
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APPENDIX Eo2
DIGITAL COMPUTER PRUGRAM FUR APPLICATION OF METHOD 3

THIS PROGRAM APPLIES METHOD NOe3 TO AN ARBITRARY S5YSTEM.

" N= NO. CF RESPONSE POINTS EVALUATED. T= TIME INTERVAL BETWEEN

RESPONSE POINTS. L= DESIRED ORPDER OF SYSTEMe K= L + NOo. OF INPUTS.

DIMENSION AM(500:3) sAMT(3+530)sBT(29500)sA(10510G)sN1(1Gs10!
DIMENSION PROUD(Z:3)sAMBIM(3s3)
READ(5s10)INsTsl oK

WRITE(652C) NsTal oK

DO 11=1,N ’
READ(5s11)1(ANM(TsJ) sJ=1K)
CONT INUE =

DO 21=1sN

BT(1s1)=AM(12)
BT(2s1)=AM(1+3)

AM(ls3)=1.

AMT{LsI)=AM(Ts1)
AMT(2:1)=AM(]14+2)
AMT(391)=ANM(1+3)

CONTINUE

WRITE(64+26)

DO 3I=1,XK

LO 4U=1,5K

A(I’J)=U‘-O

DC 4M=1sN

A(T o J)=AMT LI JMYRAM(MsJI+A(] )
COMTINUE

WRITE(6s21) (A(TsJ) sJ=1.K)
CONT INULE

MNN=10

NN=X

ZERO=1.E-1C

CALL INVMAT (AsNNNsNMsZEROSIERR,NL)
IFI{IERREQ.0) GD TO 5
WRITE(6+22)IERR

GO TO 100

WRITE(6s23)

- DO 6I=1sNN

WRITE(6:21 0 (A(IsJ)sd=1sNN)

*CONT ITNUE

WRITE(6524)


http:IF<IERR.EQ.Ol

[aNaNa!

a¥aNa!

3n

10
11

20
21
22

2
-

24
25
26
100

DO 7I=1-L
DO 8J=1,+K
PROD(IsJ)}=0.0
DO 8M=1sN

PROD(IsJ) =BT (+,M)*AM(MsJ)+PRCD(ISJ)

CONT INUE

CONT I'MUE
WRITE(6+25)

DO 9I=1sL

DO 30J=1,K
AMBM(15J)=0¢0
DO 30M=1,K

WRITE(6521)(P=0OD(TsJ)sJ=1,K)

AMBMA(15J)Y=PRODIT s M) RA(MsJI+AMBI (T 9J)

CONTINUE

WRITE(6521) (AVMBM(I 5J) sJ=1,K)

CONT INUE :

"READ FORMATS

FORMAT(I10,F10.452110/
FORMAT(2E13.6)

WiR IT F FORMATS

FORMATUIIHLI s2UX o THIK+1IT=913e6Xs2HT=9F5e2395Xs2HR=313:5Xs&riR+N

FORMAT(UT(5XsEL3e0) ) /771
FORMAT (/75X s22HIRNVERSION FAILSs TERR=,I
FORMAT (1H1510X, 13H (MTi¥) INVERSE/ /)

FORMAT(//10Xs138(8TM)

PRCIUCT /)

FCRMAT(//19X s 18HAMEM OUTPUT MATRIX/ /)

FORMAT(//710% 4 13H{MTM)
STOP
END

PRODUCT/ /!

21
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