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CHAPTER 1· 

INTRODUCTION 

Basic studies of control systems frequently make 

it desirable to represent a complex system by a low order 

model. The design, analysis and optimization of systems 

can commonly be accomplished with greater ease if some 

model which approximates the system is derived. This situa­

tion is much more evident in modern control systems because 

of their increasingly comprehensive nature and complexity. 

Processes such as nuclear reactors, high speed rolling mills, 

jet aircraft controllers, as well as spacecraft systems 

usually specify fine tolerances of operational limits. 

This emphasizes the problem of optimization which cannot, 

in many cases, be practically applied to complex systems. 

This need for a low order approximation of a complex 

system has resulted in several reduction techniques which 

have been conceived by different approaches to the reduc­

tion problem. Since these techniques are basically different, 

some assessment as to the quality of models that they will 

produce is necessary. 

The quality of a low order model can be judged by 

comparing the characteristics of the actual system with 

those of the model. These characteristics are usually 
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obtained from the response of the system to a step input. 

Features of the step response which characterize a system 

include the initial slope, rise time, peak value, time of 

peak value, settling time and the steady state value. 

While all the features of a high order system cannot be 

maintained in a reduced model, it is generally desirable 

to duplicate, as closely as possible, the overall response 

of the actual system with emphasis sometimes being placed 

on one or other region of the response curve. 

From the various reduction techniques examineds,6,7,B,ll 

three methods that appeared the most rewarding were selected 

for analysis and application to a high order sys-tem. In 

order that a fair comparison of the methods could be made, 

a realistic system, which would not be particularly suited 

for reduction by any one method or another, was required. 

A proposed design for an aircraft was selected as the test 

system, since the transfer function of the system contained 

an even distribution of the poles in the s-plane. 

The reduction methods were applied to the test 

system and in each case a second order model was derived, 

for the purpose of consistency. Each model was then tested 

with a step input and response curves were obtained for 

different periods of time so that the model could be 

assessed over both the transient and steady state portions 

of the response. A comparison of the reduction techniques 

was made with a view to application, limitations and 



3 

accuracy. 

It became evident during the comparlson above, that 

another approach to the reduction problem might well yield 

a more suitable model. A method was developed on the basis 

of this approach which gave the expected results along with 

the added attractions of ease in application and requirement 

of very little information about the complex system. In 

fact, much less knowledge of the system was required for this 

new method than for any of the methods previously examined. 

The material contained in the ·following chapters 

follows the order of the preceding discussion. The principle 

and application of the three selected reduction techniques 

is discussed in Chapter 2. Chapter 3 deals with the test 

system which was chosen and its various characteristics. 

The reduction methods are then applied to the test system 

in Chapter 4 to obtain three second order models. A 

comparison of the three methods is made in Chapter S.which 

serves to introduce the new approach to system reduction 

which is proposed in Chapter 6. A method of reduction 

based on this approach is developed for various systems 

and then applied to the test system. The conclusions of 

this work are then drawn in Chapter 7. 



'CHAPTER 2 

METHODS GF.REDUCTTON 

2.0 Introduction 

Three methods of reducing high order linear systems 

were selected because these approaches to the reduction 

problem appeared to be the most promising. Each method ls 

based on a different concept, and it is these concepts 

along with the methods of application that will be 

discussed in this chapter. The methods are examined in 

turn, beginning in each case with a brief description 

of the principle involved and then a detailed explanation 

of the application is given. 

In order to simplify matters, the three reduction 

methods are designated as follows: 

Method 1 - Reduction by the continued fraction 

expansion of the transfer function. 5 


Method 2 - Retention of dominant eigenvalues 

from the high order system in a low 

order system~6,7 


Method 3 - A geometrical approach to the problem 
of system order reduction.s 

- I+ ­
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2.1 Method 1 

Method 1 is based upon the expansion of the trans­

fer function of a high order system into a continued fraction 

which is then truncated according to the order desired for 

the reduced system. This truncated continued fraction is 

the transfer function which represents the low order model 

of the original system. The principle of the method is 

an expansion about the poles at the origin. 

The method is applied by arranging both the numerator 

and denominator polynomials of the system transfer function 

in ascending powers of s. The transfer function is then 

expanded into the following continued fraction form: 

C(s) l 

R(s) = H

1
+ 1 


H2+H + 1 1 
s a H 4+• 

s 

By considering the final value theorem, it is clear 

that the quotients are in the order of decreasing significance 

of their contributions to the response value as steady 

state is approached. Equivalently, as the number of quotients 

is increased, so higher frequencies are accounted for. 

This model does not retain the actual dominant 

poles of the original system, but rather shifts the poles, 
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so that they are able to duplicate more closely the response 

of the original system. 

The order of the reduced system is determined by 

the number of quotients obtained in the expansion. An nth 

order reduced system requires that 2n quotients be obtained, 

and the continued fraction may be truncated at this point. 

Having obtained the required number of quotients, the 

truncated continued fraction is converted back to the 

regular transfer function form and this expression repre­

sents the transfer function of the reduced system. 

The continued fraction expansion can be interpreted 

in a physical sense as a reconstruction of the block 

diagram for the system. The new block diagram, however, 

consists of nested pairs of feedforward and feedback paths, 

as shown in Figure 2.1. Truncation of the continued 

fraction corresponds to the removal of the inner pairs of 

paths. The number. of nested pairs remaining represents 

the size of the reduced system. The formation of these 

blocks is terminated when the desired order for the 

reduced system is reached. Figure 2.2 shows the nested 

pairs that are required for a second order reduced model 

of a larger system. 

2.2 Method 2 

The principle of this method is to neglect the 
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....____-~----------- _ ____j 

Figure 2.1 Block diagram corresponding to a 
continued fraction expansion 

+ + 

Figure 2.2 Block diagram corresponding to a 
truncated fraction expansion. 
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eigenvalues of the original system which.are farthest from 

the jw axis of the s-plane and retain only the dominant 

eigenvalues in the reduced system. Relationships from the 

time solution of the original system equations are used to 

develop a reduced system which maintains both the correct 

proportion of the eigenvectors and the desired eigenvalues. 

In a further paper 7 the author suggests an additional step 

in the reduction process which will improve the steady 

state response of the model. The following detailed outline 

of the method will show how the reduction is actually 

accomplished. 

In an nth order·system, which is·to be represented 

by an tth order model, the first t eigenvalues (assuming 

that they are ordered according to their distance from the 

jw axis of the s-plane) are first determined. Then, t vari­

ables xr, Xs, Xp···· are selected for the reduced system, 

such that they form large percentages of the first t origi­

nal eigenvectors. Mathematically this requirement assures 

that the determinant of the matrix made up of the reduced 

eigenvectors is not singular; or physically, the requlre­

ment means that quantities chosen to represent the system 

are as different as possible. 

The problem now, of finding a reduced system which 

has the first t eigenvalues selected from the original 

system and the correct eigenvectors with respect to these 
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eigenvalues is overcome by considering the time solution 

of the equation. The nth order original system may be 

expressed in the form 

x = Ax + Bu(t) ••.•. (2.2-1) 

and the tth order reduced system as 

x = A*x + B*u(t) 

For simplicity, assume that initial conditions are zero, 

the input is a unit step function and the eigenvalues of 

A are real and distinct. 

Then, the solution for Eqn. (2.2-1) can be written 

as 

t 
x = I ~(t-•)Bu(,)d• 

0 

where ~(t) is the transition matrix of the system. In this 

case, 

where A = the diagonal matrix·of eigenvalues 

and r = the modal matrix, composed of the eigenvectors 

of A (arranged in the order of corresponding 

eigenvalues). 
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1 2i.e. r = xl x1 

1 2 
x2 x2 

xl x2 
n n 

Then, by denoting 

r-1 q,l ~2= 1 1 

~1 ~2
2 2 

n 
--x1 

n 
--x2 

n --xn 

n 
--~ 1 

--~n
2. 

the time solution of Eqn. 

1 
x1 

1 

x1 

A.ltx2 x2. 
(~1b= -l+e 

1 1A.1 

1 
xn 

(2.2-1) can be written as 

+ ~2b +--+ cf>nb ) +-­
1 2 1 n 

+ ~ 2b +--+ ~ I1b ) 
n 2 n n 

••••• (2.2-2) 
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Now, if only the first ~ time constants of Eqn. (2.2-2) 

are retained, the time solution becomes 

x1 x2xl xf1 1 

x1 + x2 +--+ X~x2 = e:.1 2 e:.2 2 e:~ 2 

X~X 

where 

A.•t 
. ~ 1 2 

••••• (2.2-3) 

e: • = -l+e (~.b + ~-b +--+ 4J!_lb )
~ A.· ~ 1 ~ 2 1. n 

~ 

In.addition, if only the~ variables Xr, Xs, Xp, ... 

are retained, the equations become 

x1 X~x2xr rrr 

X~x2X~ +--+ e:~+ e:Xs = e:.1 sss 2 

X~x2x1Xp ppp 

l: 
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or 

-1 

e: 
1 

xl r x2 r xi r xr 

e: 
2 

= xl 
s 

x2 
s 

XR. 
s xs 

x1 
p 

x2 
p 

XR. 
p xp 

e:R. 

.. •.•••• (2.2-4) 

The equations for the remaining variables can be expressed 

as 

xl xiX - - ­1 1 1 

X x1 - - - xi 
2 2 2 

1 iX X - - - X
r-1 r-1r-1 

e:1 e:1 

1 R.- e:2xr+1 xr+1. - - xr+1 e:2 
= = A1 

. 
XS-1 

1 XS-1 
iXS-1 

e:i e:i 

1 R.X X X
s+1 s+l s+1 

xiX nn 
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Now, if the R. variables xr, xs' Xp • • • of 

a1 a2 an*1 1 1 1 x1 

a1 a2 an X=*2 2 2 2 2 

= A* +A*!I. !1.- 1 
0 1 1 0 

.or, xr xr 

= A* xs where A~~ :: A* + A*!l. !1.-1*s 0 1 1 0 

Xp xp 
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This is the required A* matrix for the reduced system, 

which will have the same eigenvalues and vectors as the 

first i eigenvalues and vectors of the A matrix from the 

original system. Since A* has the same eigenvalues and 

vectors as the matrix A in the original system, the reduc­

tion procedure can be somewhat simplified. The matrix A* 

can be more easily determined as 

where U is an i x i matrix consisting of elements of the
1 

1st i dominant eigenvectors of A which correspond to the 

retained variables xr' xs' xp .... ,and i is ani xi 

diagonal matrix consisting of the i dominant eigenvalues 

of A. 

By a similar approach, the B matrix from the original 

system can be reduced to a simpler form, obtained according 

to the equations following: 
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xl x2 x.R. 
r r r 

1 R,x2where r* = xs xss 

1 2 .R. 
Xp Xp Xp 

-1n 
xl bl 

n
and r- 1 B = the first .R. rows of x! x~ b2x2 

After selecting the first .R. dominant eigenvalues and the 

.R. variables to be retained in the reduced system, the 

matrices A* and B* are evaluated by using the relationships 

above. 

The modification suggested by the author in a 

later paper 7 , (which improves the steady state response of 

the model) is described as a matrix transformation. 

Consider the reduced system as previously defined, with only 

a single input. The new model is proposed in the form 

z = DA*D- 1 z + DB*u 
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where z is ant-vector consisting of the t-vectors xr, xs, xp··· 

and D is a diagonal matrix defined as 

D = 

where dj = [A- 1Blj* 

[A*-lB*]j 

j = 1,2,--t. 

= 1 

and [A*-lB*]· is the jth element of the i vector A*-lB*
J 

and [A-lB].~ is the element of then vector A-lB which 
]" 

corresponds to the jth state retained in the simplified 

system. The reduced model is equivalent to the following 

system: 

X = A*x + B*u 

z = Dx 

In summary then, after selecting the eigenvalues 

and state variables for the reduced system, the matrices 

A*, B* and Dare determined in order to arrive at the 

s~mplified model. 
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2.3 Method 3 

Anderson presents a method of system reduction 

based on a geometrical consideration of the reduction problem 

as developed from the theory of linear vector spaces. A 

simplified explanation of this method will be given first, 

to show the idea behind Anderson's technique. 

The state space equations for the given high order 

system are solved at regular time intervals up to some limit 

at which only insignificant response changes occur. These 

solutions are then substituted in the state space equations 

which represent the unknown low order system and the para­

meters are evaluated which will give these solutions. A 

best value for these parameters is based on a 'least squares 

fit' between the solutions of the two sets of state space 

equations. Thus, given all the information about a high 

order system, a low order model is developed which is based 

on the requirement that it match the response of the high 

order system, in a least squares sense, over a given time 

interval. 

The way in which the reduction is actually accom­

plished may be better explained by examining the problem 

from a geometrical point of view and then using the theory 

of linear vector spaces to obtain the desired results. 

A linear, time-invariant dynamic system may be 
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described by the vector equation 

. 
z = Fz + Gu 

and ';L = Hz •..•. (2.3-1) 

where z is an n-vector of state variables, u is an m-vector 

of inputs and "i.. is a p-vector of outputs. If none of the 

elements of the vector ';L is a linear combination of the 

others, Eqn. (2.3-1) can be represented as 

X = Ax + Bu ...•. (2.3-2) 

in which the first p elements of the vector x are the 

elements of the vector "i..· 

If the inputs ~ are held constant between successive 

measurements, Eqn. (2.3-2) can be solved to obtain the 

state transition equation 

X Kk+l)i) = ~(T)x(kT) + b.(T)u(kT) ..... (2.3-3) 

in which 'i' is the sampling period 

~(T) is the transition matrix 

b.(T) is the driving matrix 

co 

and ~(T) = E AkTk 
k=o ~. 

and b.(T) = 
co 

E AkTk+l.B 
k=o (k+l)! 

The reduction problem is now to replace Equations 
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(2.3-2) or (2.3-3) . by a low order system. For an rth 

order system with q inputs, Eqn. (2. 3-2) can be written as 

. 
xl all a12 alr . 
x2 a21 a22 a2r 

= 

. 
X a a a

rl r2 rrr 

xl 

x2 

X 
r 

+ 


bll blq ul 

b21 

uq 

b
rl . . b 

rq 
. .••. (2.3-4) 

Let t be the desired order of the reduced 

system and m be the number of retained inputs. 

I' 

In Eqn. (2.3-4), if u is held constant between 

sampling instants, the variables x and x can be evaluated 

at n instants with time intervals of T seconds. 

Now, each of the low order state space equations 

can be represented similarly to the first equation at every 

sampling instant. The first line of Eqn. (2.3-4) can thus 

be written at each of the n sampling instants to give the 

following set of equations: 
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+ C X 	 t --- tc X ; Wc 1x 11 2 12 t 1~ 1 

where 	 wT = [x Co) x <T) x CkT) J1 1 1 

c = [all a12 .. alt bll . . blmJ 

T [x 1 (o) x 1 (T) --- X (kT)]xll = 	 1 

xT = 	[xR.(o) xR.(T) --- XR. (kT)] •••.. ( 2. 3-5)
-1 R. 

and 	 R. = order of the reduced system 

m = number of inputs to the system 

T = sampling interval 

n = k+l 	= number of sampling instances. 

The exact values for Wand x 1 , -- ~R. can be~2 
obtained from the solution of the equations describing the 


actual system, and the problem then is to solve the linear 


Eqns. (2.3-5) for the coefficients c 1 , c 2 , --- cR.. In 


general, this is not possible, since numbers for c , c , cR.

1 2 

cannot be found which will satisfy all the equations of the 

system. 

As an approximation, however, coefficients 
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c 1 , c 2 , --- ci may be searched for that will minimize the 

sum of the squared errors between the actual values of the 

R.H.S. of Eqns. (2.3-5) and the values obtained when 

suitable coefficients are used. This problem can be 

readily solved when it is interpreted geometrically 

Let X1 , X2 , ---Xi be the i vectors 

X J 
n1 

and = [w w --- w ] 
1 2 n 

where i = reduced system order 

n = number of sampling instances. 

Then, for the coefficients .which could be selected, 

some values D1 , D --- Dn will result in the R.H.S. of2 

Eqns. (2.3-5). In vector notation, 

D = c X + c X +---+ c X
1-1 2-2 i-i 

and the problem is to choose coefficients c , c 
2 

, ci
1 

so that the inner product <W-D,W-D> is minimized. If the 

vectors X1 ,X 2 , ---Xi are considered to form a subspace 
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L(X ,X ,---,X,)spanned by the vectors X ,X ,---,X
1 

, then
1 2 1 2 

the orthogonal projection of the vector W on that subspace 

is the vector in L which is closest t6 W. This can be 

seen by expanding the vector Was the sum &+·h, where~ 

is in the subspace L and h is orthogonal to this space. 

The inner product to be minimized becomes 

as both g and D lie in the subspace L and h is orthogonal 

to it. The inner product is clearly minimized when D 

is equal to £, the projection of W on the subspace L. 

The coefficients c ,c ,---,c must therefore be
1 2 1 

chosen in such a way that D is the projection of the vector 

Won the subspace L spanned by the vectors·x X --- X . 
1' 2' ' ' 

If we express the vector W as £ + h, and minimize 

the error by letting D = £, then W = D + h. 

But, 

Then, using the requirements for orthogonality between the 

subspace L and h, we have 
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<h,x > = <(W-D),~1 > = <W,x > - c <x ,x > c <x ,x > =0
--1 - -1 1 -1 -1 R. -1 -R. 

The required coefficients c ,c ,---,cR. are then
1 2 

obtained by solving these equations using Cramer's rule. 

Since the solution to this problem exists and is unique 1 0, 

the Grammian from the above equation is non-zero. 

The coefficients in Eqn. (2.3-5) will thus give 

the smallest deviation (in a least squares sense) from the 

actual values for the right hand side of this equation. 

' The elements of the A and B matrices for the reduced system 

are, of course, these coefficient values so that the reduced 

system is now determined. 

The three selected methods of reduction have been 

discussed in detail as to their application. It remains 

now to find a suitable system to which these methods may 

be applied. The next chapter deals fully with the choice of 

such a system. 



CHAPTER 3. 

THE TEST SYSTEM 

3.0 Introduction 

This chapter is concerned with the 'test system' 

which was selected as an example of a high order system. 

Characteristics of this system which are required in later 

chapters, will be outlined here and the methods used to 

find certain of the characteristics will be discussed. 

For the sake of reality and validity, it was 

decided that an authentic system model containing a 

reasonable number of complex poles, fairly distributed 

in the s-plane, should be selected. 

Reduction techniques invariably neglect (to some 

extent) the poles of the system which are located far from 

the origin since these poles represent small time constants 

and their effects are relatively short-lived. Some authors 

have taken examples in which there are two sets of poles, 

one near the jw-axis, and the other far away from it. This 

is not very realistic. To avoid biassed results, then, a 

transfer function with poles distributed over the entire 

left-half plane was preferred. 

- 24 ­
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3 .1 Description o·f the Test System 

The system chosen1 is one of the designs studied 

for the current super-sonic transport aircraft. Figure 

3.1 shows the block diagram of the system with variable 

parameters Kl, K2, -r, ?; and wn. To obtain reasonable pole­

zero locations, the following parameter values were 

selected (consistent with design description and maintaining 

stability) : 

Kl = 0.2 

K2 :: 1.0 

w = 2.5 [r/s]
n1 

T· = 12.1 

r;; = 0.707 

3.2 	 S~stem Representation in the s-:ela:ne. 

With these parameter values, the transfer function 

of the test system becomes 

•
C(s) 	 375000(s + 0.0833) 
R[S) = 87 + 83.635s6 + 4097.~035s5 + 70341.905s4 

+ 853703.3s3 + 281427ls2 + 3310875s + 281250 

The 	characteristic equation of the system is given by 

F(s) = Denominator of Transfer Function(s) 

Originally, the roots of the characteristic. 



(SERVO) (ACTUATOR) (AIRCRAFT) 


.. > H +' !: I 1( ( R ) 2500 1 
·~ s2 + 60s + 2500 .ls + 

(s + 2) 2 


(s+.l)(s+lO) 


(FILTER) 

I-- Kl~t'S + 1) 
1 s (2r;;)s + 12 

:::--2" + --
wnl wnl 
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equation were obtained by solving the polynomial using the 

Newton-Raphson technique on a CDC6400 computer. Errors 

resulted, however, due to 'rounding-off' within t~e computer 

and a more successful approach is described in the next 

section. 

3. 3 State Space System Represent·ation 

From the transfer function, the state space 

equations were developed (see Appendix A.l) in the form 

x = Ax + Bu .•... (3.3-1) 

c =Hx •.••. (3.3-2) 

It is assumed throughout, that the variables x, y, u, and c 

are understood to be functions of time, and for simplicity 

(t) is omitted from the state space equations. Now, the 

eigenvalues of A will be the required roots of the character­

istic equation. Using the iterative method of Eberlein3, 

these eigenvalues were obtained to a satisfactory degree 

of accuracy on the computer (see Appendix A.2). 

The eigenvectors of A, which are required later, 

were also obtained and appear in.Appendix A.2. The roots 

of the characteristic equation represent the poles of the 

system and the pole-zero pattern is displayed in Figure 3.2. 
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3.4 Solution of the State Space Equations 

State space equations in the form of equation 

(3.3-1) have the solution 

At t -A~ 
x(t) = e [x(o) + f e Bu(~)d~] ...•• (3.4-1)

0 

This equation can be solved by direct integration and then 

substitution of the various required values for t. Another 

approach to the solution of this equation, which is 

particularly adaptable to machine computation, is outlined 

in Appendix B. Using the series expansion for the exponen~ 

tial terms and then an iterative procedure, which requires 

solving the equation for a very small interval (~T<<t), x 

is calculated with continuously updated values for ~(0). 

Direct evaluation of x(t) for any significant time 

t involves round-off errors in the computer giving unsatis­

factory results. In addition to improved accuracy, the 

method outlined above also lends itself well to the 

generation of data cards for plotting the system response. 

A graph of the system response is, of course, a natural 

conclusion to the problem. 

A general computer program for the solution of 

equations in the form of equation (3.3-1) is also included 

in Appendix B. 
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3.5 Response to a Step Input 

Using the method outlined above, the response to 

a unit step input is plotted in figures 3.3 and 3·.4 for 

5 second and 20 second time bases, respectively. 

Features of the response which will be used later 

are: 

1. (10-90)% Rise Time = 1 second. 

2. Steady State Value= 0.11111 (verified by calculation). 

3. Initial Slope = 0.0 (obtained by the initial value 

theorem). 

I.J.. Maximum overshoot - 0.120689 (obtained from the plotted 

response). 

5. Time to reach the first maximum (tp) = 2.9 sec. 

(obtained from the plotted response). 



31 


+'
;:j 
p. 
~ 

H 

p. 
Q) 

+' 
(/) 

(\j 

0 
+' 

a 
Q) 

+' 
(J) 

-() >. 
(/) 

Q) +' 
(J) (J) 
~ Q) 
.fJ E:-i 

Q) 

..G 
+' 
4-! 
0 

Q) 
(J) 

~ 
0 
p. 
(J) 
Q) 
~ 

('I) 

('I) 

Q) 
H 
;:j 
00 

·r-1 
J:4 

~~·---J----~--~---~--~~---L--~--~"~--~~~~----~--~--~----~--~0 
.-I .-I •fJ 0 0 

'-J 

() 



32 

C)
C) 
~ 

~ 
~ 
~ 
~ 
H 

~ 
~ 
~ 
m 
m 
~ 
0 

~ 
~ 
~ 
w 
~ 
a) 

~ 
m 
~ 
~ 

~ 

-o ~ 
~ ~-
m ~ 
~ 

~ ~ 
0 

~ 
w 
~ 
0 
~ 
ID 
~ 
~ 

=t 

~ 

~ 
H 
~ 
~ 

•rl 
~ 

~---L----~--~----~--~----~--~----~--~----~--~----~------------~C) 



CHAPTER 4 


APPLICATION OF THE 	 VARIOUS METHODS OF REDUCTION TO THE 

TEST SYSTEM 

4- • 0 General 

This chapter deals with the application of each 

of the reduction methods which have been described in 

Chapter 3. The methods will be applied in order and in 

each case the test system is reduced to a second order 

model. The response of each to a step input is shown and 

comments are made on the closeness of fit to the actual 

response. Further comments on these responses and the 

various reduction methods are given in the following chapter. 

4.1 The Application of Method 1 to the Test System 

The application of Method 1 involves a repeated 

sequence of operations which are relatively easy to 

program for the computer. A computer program which applies 

this method to a general high order system was therefore 

prepared and is shown in Appendix C. The following reduced 

transfer function resulted from the continued fraction 

expansion of the test system transfer function. 

C(s) 0.1299s 	+ 0.01105 
s 2RrST = + 1.14644s + 0.09941 

- 33 ­
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In state space representation, the reduced system equations 

are 

*= jo .o 1. 0 Jx + jOJu
L-. 09941 -1.14644 L1 

c = Go1105 .129~x· 

A step input was applied to the system using the 

computer program in Appendix B.2, and the response was 

evaluated. This response is shown for a twenty second 

time interval in Figure 4.1. 

It is apparent in this graph that the response has 

a finite initial slope which is not present in the actual 

response. There is also a considerably shorter rise time, 

and the peak response occurs sooner than in the actual 

response. From approximately 3.5 seconds to steady state, 

however, the two response curves fit with increasing 

closeness. 

4.2 The Application of Method 2 to the Test System 

In order to obtain a second order model using this 

method, the .two most dominant eigenvalues of the test system 

must first be selected. In this case, however, the second 

most dominant eigenvalue is part of a complex pair, and 

there are not, in fact, two simple dominant eigenvalues in 

the system. However, the most dominant root is located 
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very near to the zero of the system, so that the p~ir of 

complex poles located nearest to the jw-axis could reason­

ably be selected to represent the system. Now, two state 

variables from the test system must also be selected to be 

retained in the model. The author requires that the state 

variables be chosen so that the determinant of the reduced 

modal matrix be as large as possible. For this reason, 

x and x from the test system were retained in the reduced
1 7 

system. Various operations were performed in order to 

proceed from this point to the reduced system. The numeri­

cal results of these operations are shown in Appendix D.l 

which gives a step by step progression from the reduced 

system matrices back to the test system matrices. 

The application of this method is rather involved 

and some problems were encountered when the method was 

applied to the system. It was decided that a single com­

puter program to perform the reduction process would be 

impractical because of the size and required running time. 

However, these operations, when performed individually, 

involved round-off errors, occasional human errors, and 

were generally awkward and tedious. One problem was the 

invasion of a complex matrix for which the determinants 

of ersion and imaginary parts were zero. This was overcome 

by a useful technique outlined in Appendix D.2. 

From Appendix D.l then, the second order model of 

the test system is given as 
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X = j-3.907092 1 . 2 9 xl0-~ x + j-.050525 Ju 
l.:-346 30 89.0 -.141673J 437819.1L 

C = X 
1 

The system was subjected to a step input and the 

response for a twenty second interval is graphed in 

Figure 4.2. 

The reduced system response closely approximates 

the actual response from approximately 16 seconds to 

steady state. Although the rise time is reasonably close, 

the maximum overshoot, settling time, and initial slope 

leave much to be desired. 

4.3 The Application of Method 3 to the Test System 

The application of this method is relatively 

simple using a digital computer to accomplish several 

matrix operations which are easily combined in one program. 

The means by which this method was applied to the test 

system is outlined in Appendix E.l and the computer program 

used is given in Appendix E.2. 

The author suggests that the total time interval 

over which response values are calculated should consider­

ably exceed the longest time constant in the unreduced 

system. The longest time constant in the test system is 
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approximately 10 seconds, and response samples were taken 

every 0.04 seconds over a total interval of 20 seconds 

to comply with the above. 

The resulting second order model, as evaluated in 

Appendix E.l is 

= [0.0 Jx + fO·o Jux 1. 0 

-2.687909 -1.902574 l_g.30961 
C = X

1 

The response of this model to a step input is shown in 

Figure 4.3. The initial part of the transient response 

closely approximates that of the actual response and the 

overall comparison for a twenty second interval is quite 

accurate. Indeed, the error between these curves at the 

sampling instants (for the time involved) is minimized, 

although the actual area between the curves may not be. 

A sizeable steady-state error is evident in the response, 

however, as well as an undesirably high overshoot. 

Three different models have been obtained to 

represent the test system by appling the various reduction 

techniques. The next chapter will compare these methods 

and their usefulness. 
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CHAPTER 5 

COMPARISON OF REDUCTION METHODS 

5.0 General 

The various responses of the reduced systems are 

compared with the actual response in this chapter. An 

appraisal is made which weighs the advantages and dis­

advantages of the methods based on the accuracy of the re­

duced systems, their relative ease of application and their 

limitations. 

The different responses of the reduced systems 

varied considerably in their accuracy, and in the appraisal 

some emphasis has been put on the transient response because 

of its importance. Indeed, the desire to reduce a high 

order system in order to evaluate an approximate optimal 

control for a continuous process suggests that the system 

will be changing frequently. In practice, high speed 

systems such as airplanes, paper mills and steel mills 

require controllers which will spend much time in transient 

states, making corrections quickly, but with strict limits 

on overshoot and oscillations. It is therefore necessary 

that the transient response of the reduced model duplicates 

that of the actual system as closely as possible, maintain­

ing certain other criteria. 

- 41 ­
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5.1 Comparison of Accuracy 

Figures 5.1 to 5.9 show the step response of the 

different reduced systems compared to that of the actual 

system, over various time intervals. Figures 5.1 to 5.3 

show the accuracy of each reducing method during the 

transient part of the response while Figures 5.4 to 5.6 

show the actual and reduced system responses over a 

100 second interval. 

The transient response of the system reduced by 

Method 3 most closely fits the actual response, although 

the reduced system gives a considerably higher overshoot. 

There is also an undershoot in the response which is not 

in the actual response, and a steady state error is 

evident. 

The system reduced by Method 1 has a step response 

which very closely fits the actual from approximately 4.5 

seconds to steady state. The initial slope of the response, 

which is actually zero, has not been maintained by the 

reduced model, and the maximum overshoot as well as the 

time of maximum overshoot are considerably altered. 

The response of the system reduced by Method 2, 

while agreeing closely at steady state, is a relatively 

poor fit through the transient time. The initial slope of 

the model's response is negative, resulting in a period of 

negative response which, although short in duration and 
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small in size, is undesirable. 

Figures 5.7 to 5.9 provide a composite picture 

of the responses for three increasing time intervals. 

It is interesting to note that some compromise between 

the systems reduced by.Methods 1 and 3 could conceivably 

result in a system which would have a response closer 

to that of the actual system during the transient period 

with little or no error at steady state. This is very 

desirable, since many control systems operate mainly in 

the transient state. 

5. 2 Comparison vtith a View to Applic·ations 

The easiest of the three methods to both apply 

and conceive is certainly Method 1. The concept of the 

equivalent transfer function, consisting of nested paths 

in both novel and lucid. The continued partial fraction 

is easily obtained using a digital computer and with minimal 

effort this method can even be applied by hand computations. 

Once having obtained the continued fraction, the low order 

system can be represented by either its transfer function 

or state space equations quite readily. The entire opera­

tion can be accomplished by a single generalized computer 

program requiring only a few seconds running time. Further, 

Method 1 requires no knowledge of the pole locations and 

because of its nature, does not rely on the existence of 

a few dominant poles in the system to obtain satisfactory 
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resu~ts. The method does not, however, perform any error 

minimization which is commonly desirable. 

The chief advantage of Method 2 is that it can be 

used to reduce systems with multiple inputs. This is, 

in itself, an attractive feature, but the application of 

the method is a relatively involved process. 

Firstly, the eigenvalues and eigenvectors of the 

system are required, as well as the modal matrix and its 

inverse. Next, the state variables to be retained in the 

reduced system must be decided upon. They are required 

to be as different physically from each other as possible, 

but the physical significance of state variables may be 

difficult to interpret. One may, however, overcome this 

difficulty by deciding to retain those state variables 

which are measurable. Many matrix operations are then 

required before the reduced system is obtained. The method 

can be implemented by a single computer program but the 

program would be long and require considerable running time. 

In addition, the steady state value of the reduced system 

response is not guaranteed to be correct. 

Method 3 has several important advantages. The 

error between the actual and reduced system responses is 

minimized in a least squares sense. Further, these errors 

can be weighted in certain regions of the response where 

it is desired to have a 'closer fit'. 
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The A matrix from the state space equations of the 

original system can be altered (by interchanging rows and 

columns) so that specific state variables (measurable ones) 

will be the ones retained in the reduced system. In 

addition, no knowledge of the poles is required and the 

method is particularly adaptable to computer application. 

The steady state value of the reduced system response 

is not guaranteed to be exact, however, and it may be 

necessary to use a great many samples of the response from 

the original system in order to arrive at a satisfactory 

low order model. 

5.3 Comparison O"f Limitations 

The only serious limitation of Method 1 lS the 

requirement that there be only one input to the system. 

This is unfortunate since many of the advanced control 

systems, for which reduced models are desirable, contain 

multiple inputs. In such cases, one may be specified a 

transfer function matrix, the respective.elements of which 

may be reduced using this method. 

Method 2 retains the dominant eigenvalues of the 

high order system in the low order model, so that in a 

sense, this method is limited to systems which do, in fact, 

have this characteristic of dominance. A high order system 

with poles located close together could be better approxi­

mated by a low order system if the poles of the reduced 
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system were shifted to compensate for the change in system_ 

order. 

Method 3 has few actual limitations; the author 

mentions an unsuccessful first attempt to reduce a system 

satisfactorily, 8 but this was overcome by weighting the 

actual response in a certain region in order to improve the 

reduced system response. The method might be impractical 

to use on a system with poles very near to the jw axis, 

since the time interval over which the samples of the response 

are required becomes very large. It might also be undesir­

able to have a reduced model which does not guarantee a 

close fit to the step response at steady state. 

Method 3 minimizes the difference between the two 

curves at the various times of measurement. Since the 

transient part of the response has a relatively high slope, 

small perpendicular distances between the curves over this 

portion of the curve will have large response (vertical) 

differences, so that this region is inherently emphasized 

by the reduction method. This is a very desirable feature, 

but it could be somewhat advantageous to have some control 

over the range in the response curve where errors are 

allowed to occur. 

All the methods suffer from the basic limitation 

that the exact system transfer function or vector differen­

tial equation must be known beforehand. A more realistic 
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approach would be the development of the simplified system 

model directly from the step-response of the system, which 

may often be obtained experimentally in a very simple manner. 



CHAPTER 6 

A NEW APPROACH TO THE REDUCTION PROBLEM 

6. 0 Introduction 

One problem frequently encountered with control 

systems is that of identification. This is a very real 

problem in that it is seldom possible to formulate exact 

transfer functions or vector differential equations for 

real systems. Systems are therefore •estimated', and this 

is commonly done on the basis of the response of the 

system to a step input. As mentioned at the close of 

Chapter 4, it would be desirable, then, to fashion the 

reduced model of a system directly from the step response 

of the actual system, rather than building the reduced 

system from an estimated transfer function. A new concept 

in system.reduction which bypasses this estimation problem 

will be presented after the following discussion of general 

control system characteristics. The actual input to which 

an operating control system will be subjected to is usually 

unknown. Some standard test signals have therefore been 

developed, and among these, the step input is the most 

widely used by control engineers. The step input is a 

convenient signal to describe mathematically; it is easily 

applied to a system, and the response to this input gives 

- 57 ­
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a great deal of information which has come to be regarded 

as the control characteristics of a system. It is common­

place then, for designers to specify certain of the step 

response characteristics for a given system. The character­

istics most often specified include initial slope, rise 

time, maximum overshoot and time of maximum overshoot (which 

are all transient characteristics), as well as settling 

time and steady state response. 

A close examination of Figure 5.7 shows that the 

response of each reduced system would satisfy only a few 

(if any) of the actual response characteristics, but none 

of the reduction methods allow the selection of specific 

response characteristics. 

It appears that some compromise between the systems 

reduced by Method 1 and Method 3 could result in a more 

accurate overall response, and it is with this thought 

that a new approach to the problem has been taken. Rather 

than manipulating the system parameters to achieve reduc­

tion, a second order system is proposed which will have a 

step response consistent with some desired criteria. That 

is, given the step response of a high order system, a second 

order model may be constructed whose response will have 

certain of the desired characteristics of the actual response. 
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6.1 Second Order Model Variations 

Second order models may be of four different 

types: 

1) Two Real Poles And a Zero 

2) A Pair of Complex Poles and a Zero 

3) Two Real Poles without a Zero, and 

4) A Pair of Complex Poles without a Zero. 

In the first two cases, the step response will have a 

non-zero initial slope, whereas in the last two cases, 

the initial slope of the response will be zero.~With 

these four models, both underdamped and overdamped systems 

can be approximated. 

Each of the four systems are_ general within their 

range and thus have a certain number of variables, or 

degrees of freedom, which are accounted for by the number 

of response characteristics required to be met. These 

models, their equations and ranges of application are 

discussed next. 

6.2 A Second Order Model with Two Real Poles 

This model is used when the initial slope of the 

response is zero and there is no overshoot. The transfer 

function for the system is of the form 

C(s) K 

R(s) = (s + d.)(s +.B) 
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A typical response for the system is shown below in 

Figure 6.1. 

c(t) 

A 

2 
;::A ------.., Slope s 

I 

0 

0 ttl 

Figure 6.1: Step Response of a Second Order 
System with Two Red Poles. 

The expressions for the step response and its slope are, 

-at -etc(t) = K K .e + K .e 
af3 -a~(~f3---a~) f3(e-a) 

de= K .(e-at- e-Bt) IBI > Ia:l 
dt e-a 

These equations contain three variables which will 

allow the specification of three response characteristics. 

The steady state value (A), the time (t ) at which c(t) = ~' 
1 

and the slope (s) at t 1 may well be selected and the follow­

ing relationships are then established. 
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A = K 
a~ ••.•. ( 6. 2-2) 

-at -et
A ::: K K .(~e 1 ae 1)-
2 a~ at3(13-a) 


( -at 1 e-stl)
s = K • e ­
S-a 


By substitution, these equations are found: 

a. 	 = 1 ln 2Aa 
t;:" Aa-28 •••.. (6.2-3) 

(1 	 e-at 1 ).1 .ln 2Aa = s 
2 Aa-28 A ••••• (6.2-4)t	 1 

Equation (6.2-4) is used to find a numerically. S is then 

obtained from Eqn. (6.2-3), and K from Eqn. (6.2-2). 

6.3 A Second Order Model with Complex Poles 

This model is used when the initial slope of the 

response is zero and there is an overshoot. The transfer 

function for the system is of the form 

C(s) = K 

RfS) (s+a)2 + s2 ••.•• (6.3-1) 


A typical step response for the system is shown ln Figure 6.2 
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c(t) _M_ 

Figure 6.2 Step Response of a Second Order System 
with Complex Poles 

The expressions for the step response and its slope are, 

At-------/-~---~~~~----"~~====~ 

t 

de = 
dt 

Again, these equations contain three variables and 

the required response characteristics here might well be 

the steady state value (A), the maximum response value (M), 

and the time of maximum response (t 1 ). 

At ·the peak, tan(St 1 + 
. 
tan 

-1 
~) = ~ 
a a 

Then = II and s = IItl 
s ••••• ( 6. 3-2)~ 

Also, A = K ••••. (6.3-3) 
a2 + sz 
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and a = 1 ln A 
~ M-A 	 •.... (6.3-4) 

By determining S from·Eqn. (6.3-2) and a from 

Eqn. (6.3-4), K can be obtained from Eqn. (6.3-3). 

6.4 	 A Second Order· Model containing One Zero 
and Two ReaT PoTes . 

This type of model is used when the initial slope 

of the step response is not zero. The model may also 

accommodate a small overshoot in the response, but no 

undershoot. 

The system will have a transfer function of the 

form 

T(s) 
(s+a)(s+S) .•... (6.4-1) 

Now, the expressions for the response and slope of response 

to a step input become 

c(t) - K5 + KC~~s).e-at K(S-o).e-St 
aS a(S-a) SCS-a) 

de = ·_ K('a·-·5) .e-at + K(S-8) .e-St 

dt -(8-a) (S-a) 


Is I > Ia I 

The characteristics shown in Figure 6.2 may be used here, 

along with the specified initial slope of the response to 

give the following relationships. 
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At peak 	time Ct
1 
), 

At steady state, 

A = Ko 
aS ••••• (6.4-2) 

at t = 0, 

••••• (6.4-3) 


Then, by substitutions, we have 

s = Lln r K-A~ J 
@CM-A[j 	 ••••. (6.4-4)t 1 

and, 

JA + (M-A). eat!] ln [K-Aa] = Kt 1L 	 ~(M-A)j ••••• (6.4-5) 

In Eqn. (6.4-3), K is evaluated as the initial slope of the 

response. A numerical value for a is determined from 

Eqn. (6.4-5); then B is obtained from Eqn. (6.4-4) and 

o from Eqn. (6.4-2). 

6.5 	 A Second Order Model containing One Zero and 
Complex Poles. 

This system is also used when the initial slope of 
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the response is not zero, but the system also covers the 

range of responses which have large overshoots as well as 

some undershoots. 

The transfer function for the system takes on the 

form 

T(s) = K(s+o) 
(s+a)2 + a2 ••••• (6.5-1) 

The step 	response and its slope are expressed as 

Kls 2+(o-a) 2 .e-~t.Sin(6t+$) 
6/aZ+6z 

where 

-1
$ = tan 	 ! 


a 


From the characteristics shown in Figure 6.2 and 'the 

specified initial slope of the response, the following 

expressions are derived. 

At peak time (t )
1 

Then, 

-1 = tan 	 _6_ 
a-o •••.. (6.5-1) 
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At 	t = 0, 

de 

dt = K •••.• (6.5-2) 


At 	steady state, 

•••.. (6.5-3) 

and, 

+ 	KleZ + (5~a)z.e-atl 
2 92a	 + ..... (6.5-4) 

Equations (6.5-2) and (6.5-3) may be substituted in the 

other two equations so that only two variables are involved 

in each. These equations are transcendental, however, 

and determination of the two variables must be done 
. 

graphically. This task is relatively easy to tackle, if 

some forethought is given to the possible range of values 

for a and e. The use of a digital computer makes the 

problem of finding the values of a and a which satisfy 

Eqns. (6.5-1) and (6.5-4) less tedious, and once a and a 

are determined, o is obtained from Eqn. (6.5-3). 

6.6 	 Application of the New Reduction Approach to the 
Test System 

The step response of the test system shown in 

Figure 2.3 has an initial slope of zero and an overshoot. 

To simulate this response, then, a second order system 
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with complex poles was required. From the response 

characteristics available, the steady state value, 

peak response, and peak time were selected as the criteria 

for a reduced system to meet. These characteristics were 

evaluated as follows. 

Steady state value = 0.111111 

Peak response value = 0.120689 

Time of peak response = 2.900 seconds 

From Eqn. (6.3-2) we have, 

Then, by Eqn. (6.3-4), 

a = 1 lri( . . .TlTlTl ) 
~ .120689 - .111111 

= 0.845198 

Finally, from Eqn. (6.3-3), 

K = .111111(.714359 + 1.173556) 

= 0.209768 

The second order system transfer function is then 

T(s) = 0.209768 
s2 + 1.690396s + 1.887915 

or, in state space form, the equation for the reduced 
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system is 

X= [0.0 1. 0 l x + jOJu 
-1.887915 -1 • 6 9 o3 9 ~ L1 

c = ~209768 o.q]x 

6.7 	 Comparison of the Actual Response with the 
Reduced System Response 

The actual and reduced system responses are shown 

in Figures 6.3, 6.4 and 6.5 for intervals of 5, 20 and 100 

seconds, respectively. It is evident from these graphs 

that the specified characteristics have been met, as 

desired. It should be noted here, that some change in the 

specifications (such as the establishment of tolerances) 

could result in a response with less overall error, and 

the system can be easily altered according to the designer's 

judgment. 



.15 

----------Actual Response 

------Response of New 
Model. 

,10 

c(t) 

,05 

t(sec) 5,00 
m 
w 

Figure 6,3 Response Comparison using the New Reduction Technique 

0 



.15 

.10 

.05 

Actual Response 

Response of New Model 

0 tC.sec) .'1. 20.0 
-...3 
0 

F~gure 6,4 Response Comp~rison using the New Reduction Technique 



.15 r 


Response of New Model 
.10 

c(t) 

.05 

0 t(sec)0 100,0 

-...JFigure 6.5 Response Comparison using the New Reduction Technique I-' 



CHAPTER 7 


CONCLUSIONS 

Three methods of high order system reduction have 

been applied to a test system and in each case a second 

order model was derived. These models were then tested 

with a step input and their responses were compared to the 

actual response. The state space equations and transfer 

functions for the three second order models appear in 

Table I. Each method has certain advantages a~d limitations. 

Method I is simple in concept and application, but is 

limited to single input systems. Method 2 can be applied 

to systems with multiple inputs, but the application is 

involved and tedious. Method 3 features a minimization of 

step response error and is easily applied, but does not 

guarantee an accurate steady state value. The third method 

is the most attractive one, since it involves error minimiza­

tion, but there are some areas of improvement which would 

be desirable. 

Firstly, the step response of a reduced system should 

ultimately approach that of the actual system. There will 

be some period in the response during which errors must 

occur because of system order reduction, but some guarantee 

- 72 ­
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TABLE I 

METHOD 1 

State Space Equations 

x = jo.o 1.0 Jx +jolu 
L-.09941 -1.14644 L~ 

c = [.01105 .1299]x 

Transfer Function 

C(s) 0.1299s + .01105 
R(s) = s2 + 1.14644s + .09941 

A. 1 = -1.04822 

A. 2 = -0.09822 

Pole Locations 

METHOD 2 

State Space Equations 

x = [o.o 1.0 lx + [ 

1 

olu 
-5.029956 -4.11259~ J 

c = [.557628 -.050525]x 



74 TABLE I (Continued) 

Transfer Function 

C(s) -.050525s + .557628 
=RCSY s2 + 4.112593s + 5.029955 

Pole Locations 

AI = -2.0562965 + j.8953215 

= -2.0562965 j.8953215A2 

METHOD 3 


State Space Equations 

x = [ 0 • 0 1 • 0 Jx + [Ol u 

-2.687909 -1.902574 J 
c = [.30961 .3096l]x 

Transfer Function 

C(s) .3096l(s+1) 

R(s) = s2 + 1.902574s + 2.687909 


Pole Locations 

AI = -1.344 + j.316 


A2 = -1.344- j.al6 




75 TABLE I (Continued) 

NEW METHOD 
State Space Equations 

~ = [ o . o 1. o lx + [ ol u 
-1.887915 -1.69039~ 1J 

c = [.209768 O.O]x 

Transfer Function 

C(s) .209768 
RIST = s2 + 1.690396s + 1.887915 

Pole Locations 

A1 	 = -.845198 + jl.083307 

= -.845198 jl.083307A2 
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of a very close steady state approximation should exist. 

Also, since there will be errors in the response curve, it 

would be preferable to have some choice as to where these 

errors occur. 

The method proposed in Chapter 5, while simple in its 

application, offers a good deal of latitude in the fashioning 

of a low order model after the step response of a high order 

system. The problem of system identification is avoided since 

only thestep response of the system is required. This can 

normally be obtained to a sufficient degree of accuracy 

with relative ease. Areas of the actual response can be 

emphasized in the model at the discretion of the designer. 

For instance, in some systems it might be desirable to 

duplicate the transient portion of the response very closely, 

wi~h little regard to settling time. In another system, 

the settling time could be the most important feature to 

approximate. 

The new method not only allows an emphasis to be 

placed on different areas of the response, but because of 

its simplicity, it can be altered quickly to obtain a range 

of possible models which can be assessed by comparing the 

step responses. The transfer function for the model 

obtained using this method is shown in Table I. 

In Chapter 5 this reduction concept is applied in 

order to arrive at a second order model for comparison 
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purposes. The concept is easily extended, however, to 

higher order models by specifying more of the desired 

response characteristics. For each increase in system 

order one more characteristic may be specified so that 

there will be the same number of equations as there are 

variables. 

A second order model is frequently used because of 

its simplicity, especially in connection with optimal 

control theory. Too often this size of model does not 

contain step response characteristics which are accurate 

in some desired area. If this model is then used to arrive 

at an 'approximate' optimal control policy for the large 

system, the control policy may be considerably far from the 

optimum. By specifying certain of the model characteristics 

then, a 'approximate' optimal control may be derived which 

is consistent with the actual performance of the system. 

This method of system reduction, with its simplicity, 

var~ability as to emphasis, and accuracy should make it 

useful in the design, analysis and optimal control areas 

of system engineering. 



APPENDIX A 

STATE SPACE EQUATIONS FOR THE TEST SYSTEM 

A.l From the block diagram of the test system in 


Figure 3.1, along with the chosen values for the variables, 


the transfer function of the system is calculated in 


Chapter 3.2 as T(s) = C(s) 

RCsT 

If we let Y(s) 
RIST = 1 

Denominator of T(s) 

then C(s)RrsT = 375000sY + 31250Y 

By defining 

we can formulate the state space equations2 as 

8 ­
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xl 0 1 0 0 

0 0 1 0x2 
. 

0 0 0 1x3 . 
0 0 0 0x4 = . 
0 0 0 0xs 

. 
0 0 0 0x6 

. 
-al -a2 -a3 -a4x7 

where 

al 

a2 

a3 

a4 

as 

a6 

a7 

0 0 0 xl 0 

0 0 0 x2 0 

0 0 0 x3 0 

1 0 0 x4 + 0 R 

0 1 0 xs 0 

0 0 1 x6 0 

-as -a6 -a7 x7 1 

= 281250. 

:: 3310875. 

= 2814271. 

= 853703.3 

= 70341.905 

= 4097.4038 

= 83.635 

and the output relationship given by~s 

c = [31250 
375000] GJ 

The above equations are, then, in the standard form 

x = Ax + Bu 

c = Hx 

There are various techniques 2 for reducing these 

equations to the simple form 
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x = Ax + Eu 

where c = x 
1 

• In effect, the B matrix from the original 

equations is changed to compensate for the derivatives 

of the driving function, which are present. 

In order to apply one of the reduction techniques, 

this simplified form of the state space equation is 

required, so that the equations are restated as 

X = Ax + Eu 

where 

ET = [0 0 0 0 0 375000. -31331875.] 

and now 

A. 2 Evaluation of the System Eigenvalues and 
Eigenvectors 

( 

As mentioned in Chapter 3, it was necessary to 

solve for the eigenvalues of A, rather than finding the 

roots of the polynomial F(s), to obtain the accuracy 

desired. 

The rounding off of numbers within the computer 

has a less significant effect on eigenvalues determined 

by matrix methods, than on roots determined by various non-

matrix methods. This is increasingly evident for higher 

or.der equations. 

Jacobi's method 4 for determining eigenvalues is 
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probably the most common of the matrix methods. It involves 

rotating the co-ordinate axes of the system until the off 

diagonal elements are reduced to zero. The remaining 

diagonal elements are then the eigenvalues. This is 

easily accomplished in one step for the second order 

system, but many more steps are required for more complex 

systems. 

In higher ordered systems, the axes are rotated 

so as to reduce the largest off diagonal elements to zero. 

As this is done, however, previously zero-valued elements 

may take on non-zero values. The values are always reducing, 

so that with enough rotations the off diagonal elements 

may be reduced to some satisfactory tolerance. Jacobi's 

method has the limitation that the matrix to which the 

technique is applied must be symmetric. Eberlein 

modifies this method so that an arbitrary matrix may also 

be reduced to the stage where the eigenvalues appear on the 

main diagonal. In a combination of integrated steps the 

matrix undergoes two-dimensional transformations which 

firstly make the matrix arbitrarily close to normal, and 

then reduce off diagonal elements to steadily decreasing 

values. 

The research work leading to the above method was 

partially sponsored by a computer company so that the 

method is particularly adapted to machine computation. 
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The eigenvalues (or roots) for the test system 

were obtained using Eberlein's method, which is a standard 

subroutine built into the computer library, and these 

eigenvalues are as follows. 

= -.09193240A.l 

A.2.,3 	 = -2.02438.3 ± j.9646465 

= -7.672749 ± jl3.44463A.4,5 

= -32.07440 ± j38.85934A.6 7 
' 

These roots were tested in the equations and found 

to be correct to seven decimal places which was deemed 

sufficient accuracy for practical applications of the 

reduction methods requiring these roots. 

The modal matrix, which is also required later, 

consists of the eigenvectors arranged in columns. Since 

the A matrix is in the normal form, the eigenvectors are 

easily determined from the eigenvalues as 

x':f = [1 A. 1• A.~ ••• A.?J 
-1 	 l l 

where Xi is the eigenvector corresponding to the ith 

eigenvalue (A i). 
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The eigenvectors, calculated from the eigenvalues in the 

same order, as shown below 

1.0 


-9.19324 X 10- 2 


8.451567 X lQ-3 

xl = -7.769728 X 10- 4 


7.142898 X 10- 5 


-6.566638 X lQ-6 


6.036868 X 10- 7 


1.0 

-2.024383 ± j.9646465X = -2' 3 


3.167583 + j3.905628 

-2.644851 ± jl0.96208 

-
-5.220345 + j24.74280 

34.43603 ± j45.05312 

-
-113.1721 + j57.98616 

1.0 


-7.672749 + jl3.44463 


-1.218870 X 10 2 ± j2.063146 X 10 2 


3.709032 X 10 3 ± j5.572618 X 103
x4,s 
--2.770925 X 10 4 + j5.029414 X 10 4 


-4.63580 X 10 5 ± j7.58435 X 105 


1..375381 X 10 7 ± j4.133803 X 10 5 
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X = -6,7 

1.0 

-3.207440 X 10 ± j3.885934 X 10 

-
-4.812811 X 102 + j2.492780 X 10 3 

1.123046 X 10 5 ± j6.125217 X 10 4 

-5.982322 X 10 6 ± j2.399456 X 10 6 

-
9.863811 X 10 7 + j3.094302 X 10 8 

8.860495 X 10 9 ± j1.375780 X 10 10 



APPENDIX B 


SOLUTION OF THE STATE SPACE EQUATIONS USING A DIGITAL 


COMPUTER 


B.l 	 Method of Solution 

The solution of the equations 

~(t) = Ax(t) + B~(t) 

is 

A ( t -	 t Q ) ( ) eAtx(t) = e .. ·~ to + 

If t 0 is taken to be zero, which is not unduly 

restrictive, the solution becomes 

eAt t -AT ~x(t) = [x(O) + 0 I e B~ (T) d-r 

In order to use a digital computer to solve the 

state space equations, the solution must first be expressed 

in a discrete form, since the computing process is not con­

tinuous. This solution is easily obtained if the driving 

function, or input, is held constant between the sampling 

intervals, or if the input can be suitably approximated by 

a series of step functions which can be considered constant 

between the sampling intervals. 

The input used here is a step function, so that the 

solution of the state space equations can be represented 

equivalently in its discrete form as 

- 85 ­
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AT[_ T -Ao: l 
x(k+l)T = e @(kT) + 0 ! e Bu(kT)d::J . 

• • . . • (B.l-1) 

where T = sampling interval 

and k = sampling instant 

Now, eAT can be represented in an infinite series form as 

eAT= (I+ AT+ (AT) 2 + (AT) 3 + ... ) 
2r """"3! 

••... (B.l-2) 

Also, 

e-AT = (I - AT + (AT) 2 (AT) 3 + ••• )
-;-y­

2. -ar- ..... (B.l-3) 

If Eqn. (B.l-1) is integrated between the limits 

shown and Eqn. (B.l-3) substituted in the resulting 

equation, the solution becomes 

x(k+l)T = eAT ~(kT) + [I - AT + (AT) - ... ]Bu~
~ 2T. 31. 

.•..• (B.l-4) 

With the series substitution for eAT in Eqn. (B.l-4), the 

solution is in a form that lends itself to machine computa­

tion. 

Each serles in this expression must be truncated 
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at some point, but each series is uniformly convergent, 

so that assessment of the value of additional terms need 

only be made and a suitable criterion applied for 

truncation. 

Increasing the value of·T requires taking a greatly 

increasing number of terms in the series in order to 

obtain reasonable accuracy. However, if a very small value 

of T is selected, then each series converges quickly and a 

high degree of accuracy can be demanded. Having obtained 

the solution at this time T, the process can be repeated 

using the same accurate values for the series and merely 

updating the initial conditions. The final solution is, in 

fact, arrived at by taking many small steps and, since this 

iterative procedure does not require continual evaluation 

of the series, minimal computer time is required. 

A general computer program for the solution of 

equations in the form x = Ax + B~, using the technique 

above, is included in Appendix B.2. This program was used 

for obtaining the responses of the test system and all the 

reduced models of this system. A time interval of 0.01 

seconds was found to provide. close agreement (five figure 

accuracy) between the program output and actual values 

calculated for a sample system. 

The following terms are applied to various parts of 

the solution for use in the computer program. 
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ANS - (I + AT + (AT) + .. . ) 

2r 


DMA - (I - AT + (AT) - . • . ) T 

2T 3r 


DBM - [DMA][Bu] 

DBX - X(O) + DBM 

SOLN - [ANS][DBX] 

The values of ANS and DMA are calculated in 

subroutines EXPAT and DSTEP, respectively. 

It should be noted here that the step function used 

in this example may be substituted with any linear driving 

function by changing the integration in Eqn. (B.l-1) and 

thus revising the subroutine DSTEP (which yields DMA) in 

the program. The convergence requirements for each series 

is that successive terms in the expansion be less than 

.0001% of the preceding term. 
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APPENDIX t:5.2 

COi'..:P U TE::R PfWG R/1.ivl F·o;~ SOLUT I UN OF ST1\ TE SP ;\C c [GU<'\ T IONS 

'LJSli'iG l\ DIGITIIL ((J,'-'tPUTEf~ 

C THIS IS i·i/\IN P:~OGf~;\i•i FOi-< STr-\Tc SPi\(t SOU·!· CF Llht:l\f~ 

C DIFFC:f~Ei'!Tlr\L [-_()l.J;\TIONS tJY r\ SEl~[l:.S r'1ETHOD 
C E 0 U /\ T I 0 1\l S i\ f~ F. 0 F F 0'< ;.; [)X I DT :::: (!;} X+ ( H l U , C= ( H l X 
C TRANSITION ~ATRIX IS SOLV£U ~U~ti~ICALLY USING A S~ALL TI~E(DT'• 
C INITIAL C0~0ITIO~S A~E CONTI~UALLY UPUATlD USING OUfPUT JATA. 
C X=L\!ITI!\L CCt·JlJITIOi'-!S· T=TI.·iE LKf<t,·it:I'HS<SEC'. TTL•:=TOTAL Tl."~E 

C H IS OUTPUT MAfRIX· 
C i<.OUNT IS HH=: CESF~r=:D TihC. lJ\jTI::i<Vfll.S FO!-< d-HTTt:;-1 OUTPUT. 
C K 0 L ,\! TR I S THE () E S I I< r=: D T L'lc H-..:T t R V /, L FCf< P U ~-: 0-i t:: lJ 0 l) T P U T • 
C r\U:·•iHI~ IS THE f'iU.'•1Fl:.R OF i<cSPOi·~SC: PCJLUS PlH-!CrlCU OUr. 
c 

D I i/E;'-.JS I ON !\ ( 2 5, 2 5 l , Li ( 2 5 l , X ( 2 S l , Dii:-~ ( 2 5 l , l)oX ( 2 :S l ,t-1 ( 2 5) 
Dir:;EJ'JSIOf'--t f>.NS<25,25l ,[)ii)\t25,25l ,Pi\T(2:),2Sl 
D I i··1 Er·l S I 0 r-i Y ( 5 C 0 l , T I :-~1 ( 5 C () J 

c 
C f<EAD TI.,:E Ii'iCI\l~il,f:.:'-iT, TOTAL TU<E, :'ii>.TI~IX Size::, ;,;-w CUU~-.n::~s. 

c 
READ ( ':), lU l i'i, T, TT Hi ,KOLJN r ,kCWHf~ ,:,:Ui·',f3R 
DO 3 I =1 , 1\! 

3 RE.AD(5,lll (/\(+,J) ,J=l,Nl 
REAU(5,11l (U(Il ,I=l,Nl 
Rf. I\ D ( 5 , 1 1 l ( X ( I l , I =1 , N J 

Rt:AlJ ( 5, 11 l ( H ( I J , I= 1 , :--1 J 

c 
C ECHO PRINT INPUT UATA. 
c 

WRITE(6,22lN,T,TTI~,KOUNT,KOUNTR 

\'-ff~ IT E ( 6, 2 4 l 
D018I=l,N 

1 8 ~,; f~ I T E ( 6 , 2 G l ( /:... ( I , J l , J = 1 , N l 
'.•if~ITt:(6,~6l 

1 9 
G019I=1,N 
v: R I r c ( 6 , 2 1 l I , tJ ( I l , I , X ( I l , 1 , H ( I J 

\•IR IT E ( 6 , 2 7 l 
L=l 
(1.-'=1 
K=l 
TS=T 
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c 
C FIND INTEGRAL (EXP.­ ATl*U 
c 

CALL DSTEP(A,T,N,DMA,DEI 
IF(DE.GT.5Qu.) GO TO 30U 

c 
C FIND EXP.AT 
c 

CALL EXPAT(A,T,N,ANS,Dl 
IF(D.GT.500.l GO TO 3J0 

c 
C WRITE NUMUER OF ITERATIO~S FOR CUNV~RGENCE OF AbOVE SERI~S. 

c 

c 
C WRITE INTEGRAL CEXP.-ATI*U 
c 

~·! R IT E ( 6 , 2 9 l 
DO l01I=T,N 
\o.J R I T E ( 6 , 2 ·o l ( D i·1/\ ( I , J l ,J =1 , i·J l 

lul cor-n I NUE 
c 
C WRITE EXP.AT 
c 

\<IR IT E ( 6, 2 01 l 
DO 10 2 I= 1,1\: 
~·:r~ I T E ( 6 , 2 C l ( M~ S ( I ' J l ' J =1 , f'l l 

102 	 CO\IT I NUE 
lt:R IT E ( 6, 2 u 2 I 

c 
C MULTIPLY OMA MATRIX HY U C0LU~N 
c 

DO 16I=l'N 
DEHI,( I l =0. 0 
DO 16J=1,N 

16 	 our;; (I l =lJGi-.~ (I l +OW\ (I ,J J -l(·i3 ( J' 
c 
C ADU O~M COLU~N TO X(0 1 VlCTOR 
c 

17 DO l?I=l,N 
12 D8X(IJ=DcH·i(ll+XCil 

·c 
C MULTIPLY EXPAT AY DHX COLUMN 
c 

DO 13I=l,N 
X<Il=v.O 
DO 13J=l,N 

13 X<Il=XCil+Af'-lS(I,JJ-)(-DUX(Jl 
c 
C CALCULATE RESPONSE 
c 



91 


C=o.o 

DO 5 I= l, N . 

C=H C I l .,:-x ( I l +C 


5 	 CO:'-!T I NUE 
IF(L.EQ.KClJiHRl GO TO l 


8 IF(K.EQ.KOUNTJ GO TO 2 

4 T=TS+T 


L=L+l 

K=K+1 

IF(T.GT.Tfl~l GO fO 4GU 


,GO TO 17 

c 
C STORE DATi; POINTS /\T DESlR[tJ Ii'HEI~VALS• 

c 
1 	 Y <;.;, l =C 


T I f!i ( ;.; ) =T 

L =L-KGUi'l T!~ 


;':1=,\\+ l 

GO TO 8 


c 
C \l!f~ITE OUTPUT 1\T UESII-:C.u Ii·~H.i\V.\LS 

c 
2 	 ~·; H I T C: ( 6 , 2 3 l T 


WRITEC6,2~~~ (!,XII J,I=1,NJ 

I'J r~ I T F: ( 6 , 2 C 3 l C 

r< =K -KOUN T 

GO TO L~ 


c 
C PWKH Dtd A PO L'H S FO~ GIV\PH I NG • 
c 

4-...,j 1'ilHTl(7,2~)51 ('{(,'·-\) ,;l:::l"'~u;ldjRI 
~,; R I T t: ( 7 , 2 (j 6 l ( T I ;;, ( ,:; l , r-.: =l , f\ lJii, oR I 

c 
C READ FORMATS 
c 

lD FOR~AT<I10,2Fl0.4,3IlOl 


11 FOR~AT!7Fl0.6l 


c 
C i:il< IT E FOi~i.,.iA T S 
c 

20 FORVATilX,lOE13.6l 
21 F0Rf!,ATC1UX,l~Jl3,I2,2H= ,E1J,6,lUX,lHX,I2,5H(0l= ,E:13.6,1CX,l~JH,I2,2 

lH= ,El3.6) 
?.2 FOf~>1ATCHJ1,1UX,l3Hi·:I\TRIX uii-i.= ,rz,5X,'JHDELTt. T= ,F6aL~,L~HSEC., 

15X, 12HTO T/il T P.1E= F9. '•, t•H.SEC., 5X, 61 lKOUf'lT =, l'f, 5X '7HKOUi·HR ='I t~l I) 
2 3 F C R f.'; ;\T ( 1 X ,JH T = , F 8 • 3 , 3 H S ::: C l 
24 FORfl.f\f(~SX,CHif\ f//\TRIXIl 
26 FUHf•1A T (I I I I I 8X, l4riCOI-JT:\OL v'[CfUi~, lOX, li~H 1NIT I ,\L VI\ LUES, lUX' 13!-IOUTP 

1U T i•i A T R I X ) 

27 FOI~i/1i\ T ( 1111, l5X, l8HCLJTPUT UlFUl~r:ii\T I ON l 


http:FORVATilX,lOE13.6l
http:FOi~i.,.iA
http:FOR~AT!7Fl0.6l
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28 FORMAT(I1UX,20HEXPAT SERIES lTLR.= ,F6.Q,5X, 
12 G H D S T E P S E rH E S I T [[~ • = , F 6 • 0 J 

2 9 F 0 r~ rvi J.\ T ( I I I 5 0 X , 1 9 H 1 I'H E G f·U\ L ( L X f) • - J\ T I ·X· U I l 
2Ul FOR~AT(III53X,l3HEXP.AT MATRIX/I 
2 U 2 F0 Ri"'i ;\ T ( 1 tH , ~ uX , 3 4 H S 0 L U T I G i·~ 0 1- lJ I F Fi::.r~ C: I'H I A L E G U i\ T I 0 h S I I I J 

203 FURMAT<lUX,1~HRESPONSE= ,Fl5.611J 
204 FORMAT(1X,6(2HX(,I2,3Hl= ,E13.6ll 
205 FOR~AT(6El3.6l 
206 FORMAT(11F7.3l 
300 STOP 

END 

http:FORMAT(11F7.3l
http:FOR~AT(6El3.6l
http:FOR~AT(III53X,l3HEXP.AT
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SUAROUTINE EXPAT(A,T,N,ANS,Dl 
C THIS SU~ROL:TI~~r: Cf\LCUU\TES EXP/\T dY SERIES ;V,[THO;) TO A COilVERGEf\CE 
C OF .0u01 PERClNT, ~ITH A LI~IT OF 500 ITERATIONS. 
C T=TIME IN SECONDS/N=DI~ENSION OF ~UUARE A MATRIX 
c 

Dlr-1ENSION ANS(25,25l ,S(25,25J ,/\(2~:,231 ,C(2:?,25J ,PI·<TU5,25 1 

c 
C BUILD IUENTITY MATRIX 
c 

D0341=l,N 
D034J=l,N 
IF(I.EQ.J)S(~,Jl=l.O 

lF(I.EQ.Jl GO TO 34 
S(I,Jl=O.O 

34 CONTINUE 
c 
C TP.:·::: FIRST SUr" IN SERIES 
c 

D033I=l,:t 
D03?J=l'N'­
PRT(I,Jl=SII,Jl 

3 3 1\ N S { I , ,Jl =S .< I , J l 
c 
C SET UP GENER\L TER~ FOR CO~FFT. P 
c 

D=l.O 
P=l.O 

30 P=(T/lJl*P 
c 
C CALCULAT~ ~EXT TERM IN SERIES 
c 

DOLt-0I=l,N 
DO'+ OJ= 1 'f\l 
C{l,JJ=O.O 
D040K=J.,N 

40 C(I,JJ=C(I,Jl+A(I,K)*SCK,Jl 
c 
C CHECK FOR CONVERGENCE 
c 

D042I=l,N 
D042J=l,N 
TOL=·OOOOUl*PRT(I,Jl 
CUTE=A8SIC{I,Jl*Pl 
lF(CUTE.GTeTOLl GO TO 35 

42 CONTI f'lUE 
GO TO 100 

c 
C ADD T H I S T E R i'>l T 0 P F-~ EV I 0 LJ S 0 N E S 
c 
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35 	 D041I=l,N 

D041J=l,N 

ANSCI,JJ=CCI,Jl*P+ANS(I,Jl 

PRTCI,Jl=AUSCCCI,Jl*PJ 


41 	 SCI,Jl=CCI,J) 

D=D+l.O 

lf(D.GT.500.) GO TO 43 

GO TO 30 


4 3 	 \-J R I T E C 6 , 4 5 l 
45 FORMATC1X,26HA MATRIX HAS NOT CONVERGEJJ 

100 RETURN 
END 

\ 
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SUBROUTINE DSTEPCA,r,N,DMA,DEl 
C THIS SUf3R. C.L\LCULATES INTC:l1RAL CEXP-AT*UJ bY A SERIES, TO A 
C CONVERGENCE OF .0001 P~RClNT' WlTrl A LIMIT OF 500 ITERATIONS. 
C U=UNIT STEP 1/P. N=DlM~NSlON OF MATRIX· T=TIME 1N SlC. 
c 

c 
C BUILD I*T MAT-IX 
c 

D054I=l,N 
D054J=1,N 
IFCI.EQ.JlS(J,Jl=T 
IFCI.EO.Jl GO TO 54 
SCI,J)=O.O 

54 CONTI f<UE 
c 
C TAKE FIRST SU~ IN SERIES 
c 

D053I=l,r...; 
D053J= 1, N', 
PRTC I ,Jl=SC I ,Jl 

53 Dt-~A C I , J l =S C I , J l 
c 
C SET UP GENERAL TER~ FOR COEFFT. P 
c 

DE=2.U 
P=l.O 

50 P=-l.O*P*CT/DEl 
c 
C CALCULATE NEXT TER~ IN SERI~S 

c 
0060 I= 1, t-1 
DO 60J=1,N 
CCI,Jl=CJ.O 
D060K=l,N 

60 ((I,Jl=CC I,Jl+ACJ,Kl*S(K,Jl 
c 
C CHECK FOR CONVERGEI\!CE 
c 

0062 I= 1, i. 
Uv62J=1,N 
TOL=.CJCOOOl*PRTCI,Jl 
CUTE=ABSCC(I,Jl*Pl 
IFCCUTE.GT.TOLl GO TO 55 

62 CONTINUE 
GO TO 20~J 

c 
C ADD THIS TERM TO PREVIOUS ONES 
c 
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55 D061I=l,N 
0061 J= 1 ':\! 

DMA(I,Jl=C(I,Jl*P+DMA(I,J} 

PRT(l,Jl=ARS(C(I,Jl*P} 

SCI,Jl=C(!,Jl 

61 (01'\iT I NUE 
DE=DE+l.O 

IFC~E.GT.50U.l GO TO 63 

GO TO 50 

6 3 ~vR IT E C6, 6 5 l 
65 FORMAT(lX,26HD ~ATRIX HAS NOT CO~VERGEDl 

200 RETURN 
END 
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APPENDIX C 


APPLICATION OF ~ETHOD 1 USING A DIGITAL COMPUTER 

C THIS PROGRAM FORMS THE CONTINUED FR~CTION EXPANSIUN OF A TRANSFER 
C FUNCTION• IF NUr<EI~J\TOi-< IS uF S;··IALLEt\ Oi-!lJLI~ THAN Ct:.f\0.·11Ni\TUI~, FILL 
C OUT TO SAME OROER WITH ZERO COEFFTS •• THE NUMERATOR COEFFTS. AR~ 
C READ IN ASCENDING ORDER TO FOR~ T~ VECTOR. THE 0ENOMINATOR 
C ~OEFFTS. ARE READ IN ASCEKUING ORCER TO FOR~·TD VECTOR. 
C N=NO. OF COEFFTS. IN 0ENOMI~ATOR. M= ORDER OF REDUCED SYSTEM 
c 

DI~ENSION TNC25J,TD(25l,RUJIV(25l,RE~(25' 
c 
C READ ORCER OF PRESE~l SYSTEM AND ORJER OF lJESIREU SYSTEM· 
c 

READ(5,1>.\.> N,:·A. 
R~AD(5,lll<TNCIJ,I=l,Nl 

READ(5,111 CTD(IJ,I=l,Nl 
c 
C WRITE ORDER OF SYSTE~ AND DESIRED ORDER. 
c 

c 
C \'iR IT E COE F F T S. Of t<UI•1UV\ TCf-< J\1\C Dc.NOi·~ I i~AT01~. 

c 
~·!RITE ( 6, 2 3 I 
DO 71=1,/\! 
K=I-1 

7 WRITt(6,211K,TN<I l ,K,TDCIJ 
WRIT::(6,24l 

c 
C INITIAL)ZE COUNTERS. 
C L=RUNNING ORDER OF TRANSFER FUNCTION. 
C KOUNT=RUNNI~G ORDER OF REDUCED SYSTEM. 
c 

KOUNT=J 
L=N 

c 
C i 1 : I S I S D I V I S I 0 N ':d T H 5 Mvl t ~) 0 \·: E R 5 0 F S • 
( 

6 Hl=TD<ll/TN<ll 
DO li=l,L 
RUD IV ( I l =H 1 ~TN ( I I 

.REMlll=TD(ll-RUDIV(ll 
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c 
c FORM NEW FRACTION 
c 

1 TDCil=TNCil 
c SHIFT FOR LOST TERI'-1 /\ND PUT IN NU:VlEF<ATOR· 
c 

J=L-1 
DO 2I=l,J 

2 TNC I l=REi'l;( I+ll 
c 
c THIS IS DIVISION WITH UNLIKE POWERS OF S• 
c 

H2=TO(ll/Tf\(ll 
DO 3I=1,J 

3 RUD!V(Il=H2*TNC!l 
RUDIVCLl=v.O 
DO 41=1,L 

4 REMCil=TDCil-RUDIVCil 
c 
c 
c 

DO 51=1,J 
TOCil=TN(IJ 

c 
c SHIFT ANG PUT IN NUMERATOR. 
c 

5 TNC I l=RU.~( !+1 l 
L=L-1 
'1JR IT E ( 6' 2 2 J H1, H2 
KOUNT=KOJNT+l 
IFCKOUNT.EQ.~) GO TO lOu 
GO TO 6 

c 
C READ FORMATS 
c 

1 0 F 0 R t-·~ A T ( 2 I 5 l 
11 FORMATC5Fl5.5l 

c 
C WRITE FORMATS 
c 

20 FOR~ATClHl,lOX,25~JORDER OF EXISTING SYSTLM=,I2,10X,24HORDER OF UES 
1IRED SYSTEM=,I2///l 

2 1 F 0 R r.; .'\ T ( 2 ( 2 8 X , 2 H S ( , I2 , 3 H l = , F 1 5 • 5 J J 
2~ FORMAT(?8X,Fl5.S,28X,Fl5.5l 
23 FORMATC2UX,22HNUMERATOR COEFFICIENT~,2oX,23riDENOMINATOR COCFFICI~N 

lTS/) 
24 FORMAT(lH1,22X,l4HEVEN UUOT!~NTS,22X,16HOUOTIENTS OVER 5/l 

lJO STOP 
END 
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. APPENDIX D 

THE APPLICATION OF METHOD 2 

D.l Formulation of the Reduced Matrices 

The various matrices which were evaluated during the 

application of this method are given below. These matrices 

are in the author's notation and follow a sequence which 

leads from the reduced system back to the test system. 

DA*n-I = c3.907092 1.29 X l0-6] 

-3463089. -.1416739 

DB* = [.05052537 J 
437819.7343 

D = ro.9002 o.o l 
l9.o -11597.8891~ 

= j-.1233025J 

L32. 3334zJ 

-.111014 

0.0 

o.o 

0.0 

0.0 

375000. 
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A* ::: 	 j-3.907092 -.016635811 

Lz69.0063 -.1416739J 

u 1 = [ 1.0 +jo.o 1.0 +jo.o l 
-113.1721 -j57.98616 -113.1721 +j57.9861~ 

A = r:z.024383 +j.9646465 o l1 

L 0 -2.024383 -j.964646~ 

B* = 	j-.0561393] 

l-37. 7499J 

Matrices U, A, and B are recorded in Appendices A.l and A.2· 

D.2 	 Inversion of a Complex Matrix with Singular Real and 
Imaginary Parts 

If (A + jB) is non singular, there exists a unique 

matrix (C + jD) such that 

(A + jB)- 1 = C + jD 

or, (A+ jB)(C + jD) = I, i.e., AC BD = I 
BC + AD = 0 

and (C +.jD)(A + jB) =I, i.e., CA DB = I 

CB + DA = 0 

Now, if we let E and 

McMASTER UNIVERSITY LI8HAI"ft 
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Then, EF I= [ AC-BD AD+BJ 

-BC-AD -BD+AC 

=G:J = 

and FE = = I[ CA-DB CB+DJ 

-DA-CB -DB+CA 

Thus F = 

Since the existence and uniqueness of C and D is guaranteed 

if (A + jB) is non-singular, the existence of F is also 

guaranteed. 

Hence, E possesses a unique inverse F, and is therefore, 

non-singular. 



APPENDIX E 

THE APPLICATION OF METHOD 3 

E.l Formulation of the Reduced Matrices 

Anderson applies his method to a continuous system 

model which can also be represented by discrete-time 

equations.9 The test system used here can also be 

described by discrete time equations with an input which 

does not vary between sampling instances. Then, given x(O) 

and the sequence u(kT), k = 0,1,---~, the state of the 

test system at the sampling instances can be computed for 

all t > 0. Twas chosen to be .01 seconds for convenience, 

and ~ = 500 to satisfy the total time interval requirements. 

With the reduced system described by the equations 

the required matrices for the second order case are defined 

as [A B ] = BTM(MTM)-1
*1!1 m 1 

- 102 ­
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and 

u(O) 

u(T)M = 

Using the computer program in Appendix E.2, the required 

matrices are determined as 

~ = [0.0 1.0 l 

-2.687909 -1.90257:J 


and Bm = jo. o l 
La. 30961gJ 
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APPENDIX E.2 

DIGITAL COMPUTER PR0GRA~ FUR APPLICATION OF METHOD 3 

C THIS PROGRA~ APPLIES METHOU N0.3 TO AN ARBITRARY SYSTl~~ 


C N= NOe CF RESPO~SE POINTS tVALUATED. T= TIME INTERVAL BETWEEN 

C RESPONSE POINTS. L= DESIRED ORDER OF SYSTEM. K= L + NO. OF INPUTS. 

c 

D H 1 ENS I 0 f'l fd·~ ( 50 u , 3 J , J\ rH ( 3 , 5 J 0 J , t3 T ( 2 ' 5 v 0 J , ;; ( 1 0 ' 1 u J ' N 1 ( 1 U ' 1 0 1 

UIMENSION PROU(3,3l,AMb~(3~3J 

READ(5,10JN,T'L'K 
WRITE(6,20l N'T'L'K 
DO 1I=1,N 
R E t, D ( 5 , 1 1 J ( •\ r1 < I , J J , J =1 , K J 

1 	 corn I NUE ;. 

DO 2I=1,N 

lH ( 1, I l =M'l ( I , 2 i 

t:i T ( 2 , I ) =Aivi ( I , 3 ) 

Aivl ( I ·, 3 J =1 • 

/, i"i T ( 1 , I > =/\ ~-i ( I , 1 ) 

M·n (2, I J =MI. (I, 2 J 

AJv'TC3d l=.Af/( I ,3) 


2 	 CONTINL'E 
~-:RITE(6,26> 

DO 3I=l,K 

()O 4J=l,K 

A(I,Jl=U.O 

DO 4~'i= 1, N 

A ( I , J > =A;'H ( I , ~1 > -~:- i\ ,'v1 c:'·1 , J J + ;, ( I , J J 


4 CCWT I NllF 

It-! R I T E ( 6 , 2 1 J C/\ C I , J l , J =1 , K J 


3 	 CONTINUE 

NNN=lO 

NN=:<. 

ZEf~O=l.E-10 


CALL INVMAT(A,NNN,~N,ZERO,IERR,N1l 


IF<IERR.EQ.Ol GO TO 5 

\..;RITE ( 6 , 2 2 l IE R R 

GO TO 100 


5 	 WRITEC6,23l 

DO 6I=l,NN 

~: I~ I T E ( 6 ' 2 l I ( A ( I , J ) ' J =1 , N i'~ l 


6 'CONTINUE 
~'iRIT[(6,24l 

http:IF<IERR.EQ.Ol
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DO 7I=l,L 
DO 8J=l,K 

PROD(!,Jl=O.o 

DO 8i,1=1,N 

PROD(I,Jl=BTC+,Nl*AMCM,Jl+PRCD(I,Jl 


8 CONTINUE 
It/R IT E ( 6 , 2 1 l ( P-0 D ( I , J > ,J=1 , K > 

7 CONT li'·IUE 
\AJR IT E < 6, 2 5 l 
DO 9I=l,L 

DO 30J=l,K 

AMBMCI,Jl=O.O 

DO 30M=l,K 

AMBM(I,JJ=PRODCI,~l*A(M,JJ+AV8~(I,Jl 

3n cor--n I NlJE 
\•! R I T E ( 6 , 2 1 l ( ,t\ ~~ fV"' ( I ,J l d = 1 , K l 

9 CONTif\UE 
c 
C READ FOR~~TS 
c 

10 FOR~ATCllO,Fl0.4,2IlOJ 
11 FOR~ATC3Elj.6) 

c 
C WRITE FOR~ATS 
c 

20 FOR~ATC1Hl,2JX,7H(K+llT=,I3,5X,2HT=,F5.3'5X,2HR=,I3,5X,4HR+~=,I?/l 
21 For<I<A T ( ( 7 (?X, E13.6 J ) I I I I 

22 FOf<i•1/\l(//5X,22Hir\VcRSIOi~ f.£\ILS, IERF<=,I2l 
23 FOR~ATC:Hl,lOX,l~H(~TMl INVERSE/!} 
2LI FOR>1i\TCI/J.''.:X,l3HC8Pil PRG)UCTI/l 
25 FCRf.'ATC/Il·)X,l8Hli·lb:··1 OUTPUT i'·'.l\TRIXI/l 
26 FOR~!J\ T(Ill :.:x, 13H C ~·iH:1 l PI~ODIJCT I I J 

100 STOP 
END 
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