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SCOPE AND CONTENTSa The very sophisticated control
systems of today are built around computers. It is felt
that an improved form of cost function in vector or matrix
form is needed to fully and most easily utilize the
computer's advantages. After defining a vector cost function
té , the problem of adapting and learning simplifies to
the solution of a partial difference equation. Total system
properties are easily defined as matrix arrays which are
"learned" in an adapting and "learning®" control loop.

The relative merits of open and closed loop adaptive
systems were investigated. The Nth order adaptive
control system was finally chosen to be closed loop after
developing two criterion equations in two unknowns which,
if satisfied guaranteed improved system sensitivity with the
closed loop configuration.

Finally, several simple examples are given in
experiment form to demonstrate the applicability of the
proposed control system techniques.
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PREFACE

. The basic function of the control engineer is
to make a system perform in some specified way. Usually the
specifications are stated mathematically and the total or
overall performance of the system measured in a mathematical
expression called a cost function. Minimization of this
cost function is the aim of the optimal control system.

Only too frequently, however, the control engineer
is met with the problems of the very complicated system, the
system whose transfer function or whose parameters can
only be guessed, or the system whose optimal control cannot
be found. To this add the problem of including system
sensitivity as a criterion -in the cost function and one has
the beginning of the control engineer's problems.

Not satisfied with the optimal control (if it can
be found or reasonably guessed) it may be desirable or even
necessary to think in terms of an adaptive controller, a
sophistication of optimal control which undertakes to change
the controllers to offset changes in plant parameters.

Notwithstanding the great difficulties, many partial
solutions have been made or proposed. Basically two
philosophies have evolved. 1In one a plant model and plant
identification are required together with the ability to
predict plant parameter changes. The other is more direct,
requiring the prediction of the system's output at the
next time interval., Hill climbing is one of the more
significant theories using the direct approach.

The ultimate in control systems today is the learning
and adapting system. In one sense it is a system which
learns how to adapt its controllefs to give the optimal
output at all times. In a broader sense a learning system
must, in addition, be able to develop its own cost function.
The"lﬂlt'h Order Self Adapting System" discussed in the text
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of this thesis does the former and has thus been called
'self adapting!' rather than 'learning and adapting?,
although it does learn how to adapt itself.

The major and only aim of this thesis is to provide
a general method for minimizing the cost function. In
attempting to do so it becomes first evident that a modified
form of cost function is necessary and then clear that
many of the problems of optimization are neatly solved by
a simple form of learning. The particular cost function
chosen is in vector form and is particularly defined in
" order to easily and naturally include sensitivity.
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PART I THEORETICAL



I DEFINITION OF THE PROBLEM

Consider the following system with ©Q = > R

—°% L

where § oe is a two
R 0O dimensional array of
I ( i.,&\E — operators, including
s . both the control mechanism
- and the plant

I
"

o

in which S (RO D4) is to be minimized *. To optimize
the system with W given it is necessary to devise a
suitable controller such that S..® gives the optimal
output (2” and I¥ the_optiﬁal cost function.

An adaptive system is desirable when a number of
parameters & or <L of gne are prone to change or
when the system is in some manner noise contaminated.

The adaptive system minimizes the change in 3 from I
by changing the controllers (see block diagram on next page).
It is the essence of the self adapting system that some
rationale be acquired in the adéptor to generate the suitable
controller changes. In general this will be shown to

involve the learning of three matricesz' and the prediction
of what can be called the plant cost velocity vector.

Chapter II will deal with the derivation of a
suitable cost function for learning or self adapting

1- D (+) 2 the desired output; Y | the input;
and J= \ H(\R\ t)+)&* , the cost function.

R, 2. These matrices are s/ ¥ ¢ b /)3( and
=/ 3% where c is the forward loop control vector,
+ the feedback loop control vector, and G a

ger1v?d vector cost function (to be dealt with in detail
ater



systems while Chapter III will outline the mathematics of

an algorithm suitable for computer solution.

o

forward path
controller plant
Cop (s Poe (=)

feedback path
controller

F..(£)

figure la.

Y
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ITI DERIVATION OF A SUITABLE COST FUNCTION

This chapter is devoted to deriving a vector cost
function suitable for the computer algorithm of Chapter IV
and sufficiently general to cover almost all control problems.

1. The Vector Cost Function §
The scalar cost function 3 does not hold as
much information about the system as desirable. First it
is a scalar quantity and second it is only available as a
parameter at the final time ¥¢ . Thus 3  in this
form is not of much use as a performance indicator in a
system in which parameter changes are always taking place.
To obviate these shortcomings it is possible to

redefine J so that it has a value for all times Y .

1

-\.
T = (g o o v e
ta
With 7 so defined the quantities 3 , )
d" T /44™ are available (provided the derivatives of W
are continuous) and thus a vector I can be formed.

+
;:[S‘\TI\_XB‘ R A 4 XN_X
where J = Jwy 1 J_ = A::‘ Ty atT
ax™ -y ]
The equivalent problem is now to minimize _S\(*(‘3

by judicious adapting at intervals aT apart. The
only way available is to minimigze

1. H is constrained to be positive.



'Q‘Q'r ( ’31-;\ A’T

. . . . A = \
H i+ ( which is proportional to J, (—_-_-_ 3, A'\\\
*}’o 4 ') A"'

which in some cases does not necessarily minimize 5\(‘\}(\

*.
<
3\(*4\ = g H 4t (—:__ T‘ the original cost function 5.
4, \

That is,minimizing 3, %) does not necessarily minimize

h) but merely drives the system along the path of
steepest descent towards a local minimum in the 3,
surface. This possibility motivates the following theorem.

Theorem I

If constraints allow 3;\'” to be zero for all
Y ¢ (‘rb\ T then |l T11H) \  will remain at one of
possibly many equivalent minima. Being zero, this will
be a global minimum of which there will be more than one
if there is more than one way to obtain J, = o.

+eAat
Note that Jo.= 3, a% = QT Hd+

Realizing that O = S & _ 3,(4) can be written as J, ()
where 4 is a generalized vector composed of R
D » + _ and the parameters of § qqo -
Similarly J, (=3, lft\ and all other derivatives of :\-\
can be written as functions of W and its derivatives.
Picturing the 3J,() surface as a function of w |
that is . ()  the shape of the I, ("))
minimal‘ become very important. Clearly if AW is the

1o 4“(H\ in this case the ) that gives the
minimum Y (+\ .




maximum change from &&* in time &t then figure (2a)
shows the ideal minimum to be preiered to that of
figure (2b) which in turn is better than that of figure (2c).

Jd
2 auw - /
1 |
LY | M
|
| w
w* -
figure Z2a.
J
|
| v
lu* -
figure 2b.
J\
1
| ®
u%

figure 2C.




Since w does change it is not only important
to direct J, to a global minimum but also important to
consider the shape of that minimum particularly in the
A v neighbourhood. It is here that the concept of a
vector cost function I becomes useful since it is the
higher derivatives of '3; that indicate the shape of the
3y surface.

This is quickly illustrated by considering two con-

secutive J](g\ diagranms.
B N o
3' (1"‘) 4+ - — — — ——T/ 1= +‘
I (Y +— — = 1

!‘ w1 ! ulia)

b
figure 3a.,
Suppose Y4 (4 +at) = «w (+2.) as above,
Clearly since § is additive J,(¥,)) is as shown above
cand 3, d% is then the same as 47, (du &u 1.,

For te = +, +a&t , the 'T\L“0§$hape may change
slightly. The J, minimum will be §,(+,) from figure
3a. at perhaps a slightly different W™ value W (¥3).
Now the best one can hope for is that gng¢=:+) will
approach w™ (43} .

3‘ ) += +,~

“ 'dhe AP ww e e e
ERALAERIA I l
| !
R CATI S C S
w(ra)
figure 3b.

l'This is restated in precise mathematical form in
Chapter III, Section 1.



Clearly while a first order adapting system might
continually attempt to set @ (%, +a+=u (+ Y, a higher
order adapting system would in addition attempt to alter
the local shape of the T, {4\ surface towards the ideal
as_exemplified in figure 2a . Mathematically this
merely requires the minimization of the norm of the vector

T rather than the component 3, alone. An"N*P order
Self Adapting System™ will minimize the norm of an N

dimensional X vectort®.

1. Such a method will not in general select at each
step the W value which gives the smallest I(»> contend-

ing that the risk be too high . . . . that is, Toat
and 3, at*/z are considered as well as ¥, in contri=-

buting to I ) . A suitable analogy is in the problem
of two tightrope walkers racing each other across a chasm
on a windy day. They must use ropes of the same material
and both must walk at the same speed along whichever rope
they choose. If they fall a certain amount of time is
automatically lost climbing up a safety rope. Minimizing
I, would entail taking the smallest diameter, which
being the lightest, dips down the least. Minimizing
TN one would select the rope wide enough so that
a change in the wind would at most give a & = which
would leave the racer still on the rope. In selecting
the rope, one barters time for safety or equivalently the

shape of the minimum (higher derivatives of I ) for
the actual minimum value ¥, .
§
- — — —
rope 1 rope 2 - rope N
w4

The particular rope chosen would depend on A the
reaction time of the racers and the expected maximum &«
which could occur in that time.



2. The Vector Cost Function &

Let us first consider dealing with a first order
adaptive system in which 7T, (+\ is to be minimized. Since
J.= 3 LR, B 0 1Y or TJ. () is generally the
integral of an integrand which is always positive, it is
convenient and desirable to replace 7, by a vector G,
whose norm |[G' I\ varies in a manner similar to the
integrand W (v} .

Where J, (% S1~¥\Aj') was once minimized at
constant time intervafg, it is essentially equivalent to
minimize [} G'Il at the same time intervals. There are
several advantages. Only the same components of 3t need
be measured but there is ™ times the information in the

Q;\ cost indicator (if 6- is an »  vector).
For example, given that 7T = S (P\ + (o - D\ Yd+
is to be minimized, for a first order self adapting system

S S U N RNCES

\
~then G might be selected as

L 0.-D, |

Here as in many other cases & ' is best chosen such that

Ne'\ =K so that minimizing W &'V is identical

to sending I\(ﬁ\ to a local minimum (also a global

minimum provided the conditions of Theorem I are met).
Having thus introduced the vector &  superscript
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' . . . " A
one, G , 1t remains only to define &

2}
T - & At/ ~
4 ¢t
and thus G 1like 1 is defined as

1R
]

where the higher orders of g}ﬁ\ , like .. correspond
to the shape of the minimum (or more descriptively the
triskt?t).

By choice of @f , Step-wise minimization of
W&\ is equivalent to step-wise minimization of
W g “ . Note however that for each component of
Jn , there is a vector G~ in G . Also note
that this growth of output information from T¥= CHa4
to ‘§i is accomplished with no additional measuring leads
and requires only & (+ =A%) be remembered in order to
calculate the higher orders of & = at =t

a—

3. The Vector Cost Function L .
Consider &' the first component of G just
as G was the first component of & .
For the meantime &3  will be defined by defining

its first component vector. That is

o A G \ _ G\ %f

— — —

\ \
where @i is the global optimum G having taken into

—

account the constraints. In the cases where there are no
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constraints Q'qk will generally be zero or some easily

determined constant. Vhere there are detrimental constraints
G' " will often be difficult to calculate. However the

motivation for introducing and dealing with Eﬁ« as

defined above is this . . . . Minimizing ©' by driving

it to any of its local minima drives the system to one of
possibly many equivalent global minima. And it is this
minimization which can be done by computer with the algorithn
outlined in Chapter III, and in Part II of this thesis.
Rather than solve the problem of constraints the
vector cost function L merely presents the problem in
a different form. One must provide a means of calculating
Q‘ ™ . In the most difficult case this involves calculating
the best possible (optimum) trajectory that the system could
take under the conditions of the constraints. In such cases
where O ( £ the optimal trajectory) involves a |
complicated precalculation, some of the advantages of the
self adaptive system cannot be utilized and the self
adaptive system works only as an adaptor. However, even so,
the calculation of the‘optimal controller is unnecessary
as the self adaptive control loop, as it adapts, provides
the optimum controller.
Note that

G+, 0.2 R\

N —

)

Il
6
—
~+
o
X
)
%
—

where R~ is the best possible input out of the possible
X values. (Note that if WY were fixed to W ,
R™ would then be Re o)

Thus Y.' can alternately be defined as
- G'non.R) - G'(t.0% B K"
= [N N e - N N =~

[:-‘\.:~ G_-‘("" Q‘Q%\ E\\
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Obviously E;‘%'is zero (actually this has been
achieved through definition) which is a global minimum for
o . Since G'" is a global minimum of G’
then G'= © for all t puarantees a global minimum for
the system as a wholel

Where Nth order self adapting is desired E}\ must
be extended to vector L where

A o 7]
T é '

A

.
o
.
. . ’
L]
.

—
—— —
———

i

and

L™ = & G770 aty/
it m—\

1l

The computer algorithm of Chapter III and Part II
will minimize || 5 (H|\.

,. The Desired Trajectory D
It is essential in the approach that will be taken
to the porposed control system that a desired output must
be at all times either known or calculable.

D(+) & the desired output. If D is to
be calculated as some function of the present tstate?,
this 'state! must also be measurable or uniquely calculable
from some physical quantities of the system. Let the
required physical quantities for recalculating © be
denoted as 4%

It may not be immediately apparent what the
implications of D (v}_,‘\‘\ are in practice. However if we
' regard D as an optimal trajectory of certain (or all)

states of O  and realize that in general O = D then
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it is obvious that as frequently as we measure ) and
D a new R(t) may be required. Since © and D

will be later evaluated at intervals & apart, we define
the set of functions

1ol =% 20,0
a1

such that .-t =

L) [
»

Trying to geometrically picture )'z Q,’,% we can set up some
sort of closed conical type bounding surface with apex at

D, (+) . An example of the necessity of such a set

? _b‘»&Z’l is the rendezvous problem in which a ship at
veetor QO (+) xD:W)\ at time + =t  immediately
requires the setting of a new optimal trajectory from point
©(+t.) rather than point D.({)= (j'\h\ with perhaps a new
interception point and a new interception time. Note that
our setting of a new D eliminates some of the unnecessary

motion normal to D , presumably saving fuel.

-y

Example 1 Fixed End Point, No Detrimental Constraints
(that is, Q™= )

—

O—-Q‘L-\n\)
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Example 2 Partially Fixed End Point, No Detrimental

Constraints
gl(+j§::TM“NK-~\‘NM“"“*-£%&§§“- Locus of
\ ) B¢ (+f;'.>
\V D.,, t}.“‘(‘\‘g’ \
\QL*‘L"NB

If we regard O~ D as error then our recal-
culation of D is an essential optimizing step and hence
the necessity that the function Q13§\¥) be known is
restrictive. Fortunately in many problems Q. &) is
easily obtained. For example:

(1) regulator problems,

(2) minimum energy problems with D. recalculable

in time AT

(3) problems with an entirely predetermined ©

H

given, and
(4) any problem in which D can be found and
in which D, in time &Y can be recalculated.

Sample Problems
(1) Regulator ... with plant input R ; minimize

T
J = S (Q- §§L 4t obviously B =R  (and Q" as well)
Q

and thus D¢ is measurable at all times by measuring Yg .
(2) A parachutist jumps from a plane at a certain
point X, to land in a target area on the ground X¢ .
He has calculated where to jump ( X ¢ by knowing certain
laws of physics. He carries a small compressed air cylinder



15

which is all he can use to guide his path. He is to minimize
the amount of compressed air he uses up to land at ‘&g .

(3) Production from a constant number of machines
is to be maximized.

(4) A constant speed vehicle is to cross a body of
water with random currents minimizing the square of the
time taken and the integral of the electric current squared
used to drive the motor which turns the rudder.

Note that in the examples ©W\ is readily avail-
able even though in problems (2) and (4) D changes.
In problems (1) and (2) and (4) = Q5(+) = TN
while in problem (3), QQ* is significantly different
from D due to constraints. In problems (2) and (4) a
global minimum cannot be assured since O™ (and thus

G *(*‘\Q\Q R\ and CJ‘ ( *\Q_\Q* gj ) must be predicted.

5. Optimal and Suboptimal Alternative Solutions
Virtually in every problem the desired output is
known or can be simply calculated. It is because of its
inherent availability as opposed to the constraint
complicated ©O™(t\ that trajectories, which are possibly

suboptimal, will be tolerated as two of four alternative
solutions.

Alternative 1

Where there are no constraints or where these
. . (0 SN .
constraints are such that & is readily calculable, set

T = & -g* (R=5-1)

In this case one can expect a global minimum cost function.

Alternative 2

Where there are constraints, find in some way QX‘ .
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Then set
- QKT\QD

0
-
j
[eR)

(t+2* D R\ (2-5-2)

LOTRY (2-5-3)

—

or Eé. = @,k Y (Q

In this case one can again expect a global minimum cost
function.
Alternative 3

Where there are constraints but‘ QQ% is deemed
too difficult to find, set

L= G(r,2 2 R) (2-5-4)
In this case one can expect only some sort of local minimum
as Q attempts to follow D at each step minimizing
H Syl

Alternative L

It may often be the case that the effect of some
of the constraints may be simple to calculate or that
certain portions of the She trajectory may be available.

In this case i may be set as (4a) and (hb) respectively.
(ha)

D' R \ (2-5=5)

(modifying © to D' to satisfy the
simple constraints)

L= G (1,0, BR\=-6&(+, 2" D +) (2-5-6)

%
(for such T that O is available)

In this case one can only expect some sort of a
locally minimum cost function. Intuitively, Alternative 4
appears to be better than Alternative 3.
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6. Summary

A vector cost function T (+) was developed which
was in integral form. One equivalent cost function was
formed from the integrand with each dimension of
providing several dimensions in G . Both Jf{&) and

G (¥)  had drawbacks in that they could only go to local
minima. A theorem was stated by Which a local minimum
could be recognized as a global minimum.

To generalize the solution to the problems with
non-trivial constraints a vector cost function was
defined with the advantage that its local minima were also
global minima. However, recognizing that many such W
cost functions could not be calculated four alternative
solutions were proposed. In two of these the difficulty in
finding such L functions was avoided by accepting a
possibly non-optimal solution. In these © was taken
to be &  and thus the local minimum of G accepted
as a compromise.
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III N°P ORDER SELF ADAPTING CONTROL LOOP LOGIC

Chapter III will develop the equations to be used
in the Nth order self adapting control logic.

In addition the relationship between sensitivity
and adaptivity will be developed to an extent where two
sets of system matrices {_}‘L and S'{ can be defined.

It will also be shown that in general, feedback is
advantageous and can be effectively used to shape the

T, (@) R G4\ or 22\23 minima.

1. Adaptive Systems and Sensitivity

Consider minimizing the function T ' (w(+\)
in order to send T (f) or ¥  to its global minimum.
Assume that at time t W) and all of its time derivatives
are available. ©Since the system is to adapt at intervals
Y apart, Y.' will be expanded in a Taylor series
in time.

Thus

\ ey 2
L at) = W+ Glavar « Genat o0 (3-1-1)
.

Clearly [IEQCH+Aﬁ\“ is minimized when the norm
of the R_. H.S. is minimized. If ﬁ“‘}“‘ X7 o\ A
is recognized as = defined in Chapﬁég II, Section 3,
then equation (3-l-1) above can be written as simply

T (heat) = Tl o TEE W I (3-1-2)

It is obvious that minimizing |J1Gi N\ will thus

18
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h order self

minimize®* || © (* ~ &%) {| . Thus the N°
adapting system in minimizing || G -\ [} actually
minimizes the first N terms of a Taylor expansion of
E,‘ t+2X (and thus the first N terms of the Taylor
expansion of T, (t+ot) ),

If < is defined as the vector of changing plant
parameters then o'W +~aX) can be developed as a Taylor

series in the two variables “ and <t . Thus

—

b

B ¢aat) = T (rear, g +ax)

T ¥ = A
. ) 4 \
+§ "f__[.s‘ A§E+ bl— NN +é)-£°. %‘t&}
+ X , e‘\'C. (3_1_3)

\
If at U’, % \ , L= Es o then it is guaranteed by
G =9 that the time derivatives of 2 at %

—

are zero whence equation (3-1-3) above can be written

\ 2 -\
G (2 van ot :E\ .\.})YA‘ I \;Ad_:-\— e\‘c‘(B'l'l’f)
- -0 ' B e et =
which merely expresses mathematically that L;l‘ ++ a1y

drifts away from |-y * only through the change of the

plant parameters « 2+ in the time interval (+ . 1—+A‘r> .

‘ 1. This can be proven as follows by noting that
HE'Y <« WG iy is an identity (triangle inequality).
2

* It is important to realize that this is true
only if no new adaptive measures have taken place in
(¥ , ¥2+ax) .



By comparing (3-1-l1) and (3-1-L)

-~ \ » 1 \ ™
& Liae T U 4G A M o> o (3-1-5)
A\ -\ Ht™ w\

This can be compared with the geometric interpretation of
figures 3a and 3b in Chapter II, Section I which led to the
equivalent expression

AV T, Lw i) ath

4w’ \ ™ -\
\
It is at this point the sensitivity matrices %zM
can be defined .. . . . looking at equation (3-1-5)
define the Nth order system sensitivity matrix as
\ we\ the double bars under a
gi« = ;_!E; kﬁﬂ quantity denotes a two
= 3«7 dimensional array
For completeness define
\ t
AN \ \
and S. = %im 4/ S
Now introduce the parameters C the set of
controller parameters. These, like % , appear in the

net system operator <§§9 (Chapter I, page ) and
therefore, like & , are a part of the generalized
coordinate vector W (Chapter II, page 2 ). In an
adaptive system these must be calculated so as to cancel
out the effects of §___‘« ‘%’;—":\ in @ (r+ex\. In

writing 4 G one cannot merely write

PR AYL\ da QS;\ ic

R P (3-1-6)
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Certainly the preceeding equation is correct. However, as
a consequence of the finite time between adaptive decisions
one is forced to use the following difference equation

T (g+ax JE A ) T E_’\k"&\é\

=z % s S G ac® %x% (3-1-7)
W £
LT

2L M Lo\

\
If o (= < 3 = o then AL must be set
to o also. This can be accomplished only by

. o -
« \ < N o
S h au” o= - 1% . Ac (3-1-8)
}‘1\.\ , de b
The Nth order self adaptive system attempts to satisfy

equation (3-1-8) for (= ', v - -- N.

X RSN
Here it is useful to define the system‘s ¢

adaptivity matrix A

Al' 2 ;: (;_\

=t 1
"

-

\
Introducing the symbols é; and El into equation
(3-1-8) one obtains
0 \ .
S, as” o= - Al ac (3-1-9)
= - =t

Unfortunately it is awkward to work with equation (3-1-8)
or (3-1-9) except for ( =\ . Satisfying (3-1-8) for

¢ =\ alone, however, gives only the first order adaptor.
Fortunately the difficulty is avoided merely by extending
the sensitivity é‘ to S Justas I, , G' and

E;' were extended to ¥ , & and Y respectively.

— ——



Thus in defining

S - 3%
3¢
and
A = 1=
= és__
for N7y Y
- ) 2
t—\} - [_E N ; ~ - - " Y":-‘ ‘l
th . s th
one can assure N~ sorder insensitivity and N order
adaptivity by
NN (3-1-10)

S A = T

—

That equation (3-1-10) and equation (3-1-9) are indeed
equivalent can be seen by merely noting that

a2 1} =2 ]] SaxsAacli=¢

implies that
AE'\:Q %’V\:.\\'Z.-'-“N

but the C*k term of equation (3-1-7) can be recognized

“»,
as A W whence

\ . \ ¢

S, a bc Ni=1.» - - - N

P
- —

1%

x>
o~

- L A

-

Hence for ' and N  vector and =9 then

S A + A as = o implies W' Or+bAT) = 2
to the N 4+ 1°F term of its Taylor expansion!

2. The Effect of Feedback
It is the purpose of this section to investigate
the effect of feedback on the cost function The
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inclusion of a feedback path with operation matrix Eiv
(Chapter I, page 1 ) will be justified on the basis of an
improved system sensitivity 2 and better adaptivity.

For simplicity the subscripts and N¥  will
be used to denote the feedback and no feedback cases
respectively.

Recall the block diagram on page 3 - of Chapterl
which is the closed loop control.

»

Coe

~

0

op

10
10

n
-]
g}

By inspection

R (3-2-1)

-\
Q = %of E = X’:*-— :OQC._._:_°€‘ \;_Qp] Tage QQP R

whence EL,P can alternately be defined
TP - 2-2)
Eov = E = M =08 Cs°? E"’\"l v Eﬂp C__;o? (3-2-

Recall that the sensitivity matrix é’ is defined as
AE//&& (Chapter III, page 2% ). Since L,

oL only through ®) \ ﬂ:__e

depends on

can be expanded as
A ¢



2L

S = 3L = % 1o
) 3 © ds

Since 9% /\OQ is independent of the type of feed-
back used, it is useful to define matrix W™\

Mo& AD
) N . (3-2-3)
whence S = M, YO
= T3
To find 20 /)4 it is necessary to take the
derivative of equation (3-2-1) with respect to <

-— L4

2
LI+ P Eoe | }’Q/Li + af;" C:WEQQ ©
7_—: BEQ(«? Q“Q g (3'2"14-)

Manipulating (3-2-4) in order to use (3-2-1) to remove O
one finds finally that

t—:. -Q? oepap]“ ¥‘> C"’(’ r?} L:[ + \_:0: ) =
3k
= Eo? R (3-2-5)

where ég*’/a,,\ might be regarded as the fundamental expres-
sion of the plant sensitivity alonel‘

L+ Note that SP.. /3 (which might be called
the plant sensitivity) 1n some cases is calculable if <
is measurable. However such a definition of sensitivity is
too limiting = first in that it is fixed, secondly in that
it is not the system sensitivity (though related to it),
thirdly because it yields no information whether or not
feedback is to be preferred (and if so what type of feed-
back operator) and fourthly because in the adaptive system
it is not 22F.¢/ da which is required but Y ®.e /44 A
where A% is not known but must be predicted (—one
may as well then predict dXog/3s A in its entirety

as predict a4+ . both being a vector of the same dimension).



In the open loop case consider the following block
diagram.,

R : 0
C—';.P!' 39
AS
Since ©  must still equal S-:ﬂe R , Ce cannot
in general equal gop of the closed loop case and so is
primed. N
Differentiating O = E%Q:u‘\% (3-2-06)
one quickly finds
49z 3G C R (3-2-7)
A 3 &
Using equation (3-2-1) to replace QL@» in (3-2-6)
by QQQ at length, one obtains
-\ -
[ e Cobe] [1+ B Gorld] 22ue=Fe R
% = - ) 3 -
- (3-2-8)
Define now L
L 2 Be CorBe| [T+EBeCenke (3-2-9)
- "‘S‘; - - £ = = =

With the combined difficulties of operator mathe-
matics and the rules of matrix multiplication, the best

that can be done with equations (3=2-5) and {(3-2-8) is the
following.l'

5. =M1;:‘[ + °pg°? Ewl \_-____—_BQ

< NE =

n
n

(3-2-~10)

N
H

M 40,

1. These few equations contain a wealth of infor-

mation and are certainly worth a study in more detail than
will be gone into here.

25
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or if M can be defined, then
—- =\ ~1
T TME LETRGGEALY S (3-2-11)

Of more immediate interest and more easily under-
stood is the relationship between the first order

sensitivities éu‘: and §“__ . Recall that
RS A =N ) O [ P VRS
- R 30 b = X%

whence

She = M U TLamLgBIL M S (3-2-12)

!
U

S = }’E“/éo_g relates the effect on the cost
function [ and ultimately the effect on the original
cost function. of changes in the plant parameters « .

If &' was selected as alternative one or two,
(Chapter II, page 15 ) then é_' will relate to &%

the change in J (7= S:ffHé‘\”) from a global minimum, If

\ L]
G was chosen as alternatives three or four, then S__

will relate to A% the change in the integrand of J —
that is, H —— from a local minimum.

What is lost in using S' instead of S is a
little accuracy synonomous with truncating a Taylor series
in A A after the first two terms. However, for the
purposes of this section — comparing open loop and closed
loop systems — such an approximation is a simplification
which will not in the least bias the conclusionl‘ of this
thesis and which will allow a little more light to be shed

on the subject. The reason is simply that M'Z 3T /)0

L. The higher order sensitivities °* Lee /347 and

V:Ep/ée‘_‘“ are related by similar expressions but involve
higher powers of 1I+R. CeeF,D -
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is liable to be a square matrix with a unique inverse
whereas M=3%L /da is liable to be a rectangular array.

Returning to equation (3~2-12) note first that the
bracket can be multiplied out leaving

W

Ny T =z = =

1 - N '
S ~[T o ML R G E LW ] S (3-2-13)

-~ — !
which in the term M'L™ 12 C.e Ewe L 4

shows clearly that the relative sensitivity depends on the
cost function (through '\__{_\‘ ), on the plant sensitivity
itself (through E ), as well as on the presence or
absence of feedback (through R Cee Foy ).

wWhile it would be nice to say that the relative

sensitivity was due mainly to R, C., K, it must be
pointed out that it is only in cases where (M L\ Cay FQP)
1. \ s

is non-rotational that l\A‘I:j Pe Cop F..{.—\:

can be set equal to ¥©, Cep F

¢ = ToQ .
' vV
Where [ + M L__. Pop Cop Fup b M )
operating on Ee yields a matrix sen81t1v1ty §Nr
whose norm™*, // S e // , 1s greater than N Sl then

feedback is to be desired. This inequality can be often
obtained by proper selection of Gop and E.¢ which
are arbitrary to a certain extent. To ensure that feedback
is desirable the following two equations must be satisfied.

Q = E*‘e ( Cee, e, E’P\ R (3-2-14)
hsell < 1l s ! (3-2-15)
T.

Non-rotational for the sake of this paper will
be defined as: &4 8 is non-rotational iff AR = § A
20 ‘

I ﬁ\_“é élALS
b\)
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Since these are merely two equations in the two
unknowns $.. and F.e there are only the unstated
physical realizability conditions and the few systems
where L and M are such that equations (3-2-1l)
and (3-2-15) above are inconsistent where nothing can be
gained by using a closed loop control. Even in such cases
the open loop can be treated as a special form of closed
loop in which He Q@ = =

The following example is intended to illustrate the

comparison between 3. and §Np for an extremely simple
. . A - .

case in which M' | ™M ' | L and Y' are available

and in which &£, , Cop and Fop are one by one

arrays of constant operators. Fe¢ and $ap will be

chosen to satisfy (3-2-14) and (3-2-15), with the

resultant choice of negative feedback for an inherently
less sensitive system.

Example

Given a plant with parameter vector & = L« 1
with given gain A=+, and T-= S::’ (WR-0\* & ’
design the system least sensitive to changes in A
First select G' = AR -0 « &'". o

3 -.

thus Y_\," = AR —

a”
3
&4

Q
to {9 N

-—

)
{

-—

and S' = §§5
b—

Hence ,g§‘ =-\ and MY = -\

With the following closed loop control

< J.

£ °

R

~ ¥

g
n
4.1

i

°e
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Furthermore
§E~P = ké - ‘L
Thus AR a2
-1
A [+
L I A T M N (RN
* 1 ¢ f
Whence
-\ \_.\
Sue =i¥*t\f\\l: PipCop Frg b M ~\S‘
= = = = = = = = ¥
= ¢ Cae F \
&:-* :f: Pfél ng
= E + act 1 Sk
With the one dimensional sensitivity é‘ is 1 X% L and
thus (3-2-13) becomes S, = +s*cd)s_ .
Clearly, provided Ak > o or wed { -= R

[ 8= 11 < | &, \\ . The conditional equations,(3-2-14)
and (3-2-15), can be seen to have simplified to selecting

c and § to satisfyl‘
{ [ 4 & a»Q l > A\ (3-2-16)
and
: o= 3-2~17
d\(./((-\-.d\cQ\ \ ( )

and perhaps the additional constraints |c| \\~C\ 4 lo
For example with A=i1a and =20 the problem's
solution calls for <=10 and £- ~095%5
which maximizes ]S\ /|5 _\| and keeps -5, 8 = 2R
©

Thus with |<;\) NPT XA= 19 and the
nominal value of o = 2o , equations (3-2-14) and (3-2-15)
yield a closed loop system with a gain of /o with 1 /z

the sensitivity of the required open loop system.

L. Note that | 1+ &>\ can be satisfied by
wed < -2 which corresponds to positive feedback. 1In
such cases, provided equation (3-3-2) can also be satisfied,
even positive feedback is preferable to the open loop system.
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To sum up this section, feedback systems are
preferable to open loop systems provided the controllers
oo and C., can be selected to satisfy

NS & 1Sy

'0

= “P( OF‘,\\v‘*v\ 8
¢ % allowed set of ¢, I (3-2-18)

<

Foo e § allowed set of T, %

Furthermore the general block diagram of the self
adapting system should be a feedback one in that the open

loop is the special case . . . . X . Q = = .
In so far as adaptivity is concerned note only that
a reduced 131\ implies a reduced ig INES and a

correspondingly reduced éi‘gg. mirrored in a practical

sense in a smaller adaptive change &< and a smaller

Taylor series truncation error in &aT’ , that is, a smaller
difference between infinite order adapting and Nth order
adapting!

In terms of the geometric interpretation the

meaning of a smaller §' is clearly a smaller value of
R TN That is, the slope of the Ts'(u) minima have
been reduced in the % directions to $' .

3. The General Adaptor Equation
Having defined Y and w and introduced
the X3(2) control surface it is a simple matter to write
down the exact (continuous) adaptor equation. That is

L= Yl dx 4+ 3B de + AD g+ 3D An
‘e e (T !
w AR AR+ 3% Lt

= (3-3-1)
IR A%

with L (r+at)

n
A
3
-‘.
>
T
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Due to the finite adaptor logic decision time,

a%, 4 must be written as Al below
al= 3B ax 4 L ag 4 30 af + 30 AR A2 AR
S e A 3< Al av
and W+ AR\ = T\ + AL N (3-2-3)
Note that this is only a first order Taylor approximation
! 2 =~ ~
to W, However fortl%zig_\gx., S 1 .

it is equivalent to an N order Taylor approximation to T_;_ .
And it is L’  which is related to the integrand of the
original cost function J | . Hence equations (3-3-2)
and (3-3-3) above will be called the NU
equations as these provide for Nth
in the function & («wy .

order adaptor
order adapting of «

Consider separately the terms of (3-3-2). Clearly
ét_\./ki A< can only be predicted since aw is
unknown. On the otherhand a§$ , aec and aR are at
our disposal and the reaction of T4  to each of these can
be separately found by setting éig\ A< oy z;%i and
measuring a%s© . With L = (3\9.\3_ \"(\“
given then 3% /4D is given and if 3T /3% X0
then oW/ &% is also obtainable from L. (R Q. . v -
It can be seen then that the Nth order~;élf X
adapting system implies a first order adapting of the derived
vector cost function Eé « The method involves:
1. prediction of >G /e A%,
2. updating the matrices ¥%/(R, L /4L and,ﬁﬂé/;&,
3. calculation of W /AD  and where applicable
ST /Ay from the given function <. , and

L. setting Ag and A< or where K is not
necessarily fixed setting .Af}
s R

Putting equations (3-3-2) and (3-3-3) together and
defining %5/ , 54 2 B  then the self adapting system

minimizes (/ o (%« a\) \\ by trying to set [ (+irat\=o

y &< and

—_—



as below . « . .

W+t = T+ Ay

« + « « by setting A_‘g‘ and Ac  and/or A%
One of many possible implementations is shown in
the following section.

To sum up this section, the adaptor algorithml'

requires: 1. measurement of T and R and
2. prediction of B ,

3. updating (learning) of ‘: R ?g% and <

and L. setting of =oc¢ andfor a £ and/or a ®

to minimize || © (++at) \\

i
n -

|

o
o

L

The heart of the algorithm is the adaptor equation

CAU"-&—A'\'\ = I;\_u—\ 4+ é‘:& erQ A é_E:_‘ aHc E;‘AQ

L., A gomputer Algorithm for Implementing
the General Adaptor Equation
The adaptive system that was chosen has six
different loops. In each the function © and K& are
measured, K calculated, and R predicted.

1. A specific way in which each of these can be
done is outlined in the next section and given in detail
in the actual computer program o6f Part II.

In each

32



the adaptive controller changesl' ac and a @ o

are calculated. The loops differ in t;e actual changesz'
in ¢ and 9; that take place, & ¢, and A._S:J‘ .
Loop 1.

Learn 3L /W
set &+ and a&ac to o
that is A_QJL and HC, =

This allows the adaptor to relate the change in =
from the expected value < T > to be related to & S
Each time the adaptor cycles through loop 1., the § ™™

row of 95 /3R  is updated. The particular equation to
be used is

A; .R, NG 2 S\ - Be-dRY | (L/—<E—>>

? Ry . - —_—
15 CBes V== e v\

L:‘.[‘g’ y v N (3"14""1)
where 3Ly /4 R  is the new value of the f\“row of the
matrix 5/ dR
and <A expected value of Quantity A
and A average value of Quantity A
Loop 2.

Adapt AS then &<
set A (_3_,“ to A g__w»\
then Ao to &Ca

1.

Subscript ‘e’ denotes adaptive.
* Subscript A' on AL and A<  denotes the
actual changes that are to be made in § and <



This means that the controller adapts completely to

minimize !/ G (+4 atM/l .
Loop 3.
Learn 04 /d¢
alazo Y BCc= f\\ component of &Sa

This allows the adaptor to relate the changes in U

—

3L

from the expected value to be related to ACG_:\ and allows

the |t column of 5_‘::—_ to be updated.
rc

Yl ac, = W (E,‘)\-—\BC—QBL> \ {E, _<E>)

—

Ses G <L+ B<Ey)|
4='»'~’~~"-N‘ (3-4=2)

Loop 4.

o Adapts &< then A__g

set. 4f, = A,g.._ and then LHoa = B<q

Again the system is adapted.
Loop 5.
Learn L /8§
AC, =0 af = 5”‘component of A_g_a\
This allows the adaptor to relate the change in &

from the expected value to be related to Ag*"x and
allows the { Yt column of ¢¥ to be updated.

if
i__%__o A-CS =G - <557\—\B;*<Bz7\
d Y.
3 lt‘{"“\‘:c>\‘*‘\8;*<%;§\

(Da -G cﬂ

L::l\ a\ .. - h] (3'“‘3)
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Adapt & & then &<

Set AE‘,\ - b‘____x;a\ and then A<

T

P
[~
?

Again the adaptive loop is adapting.

The adaptor recycles the loops each time incrementing

-

3 , adapting at, intervals of 2 a% , and updating
the entire matrices 9% /3R 3L /yc¢ and 3T /3£ at
intervals of the order of & N a<x seconds.

With parameter changes with a period of & Nat¥
or more the learned matrices, if stable, can be expected to
be very accurate. Where = changes with a period less
than € N AT these matrices, where stable, can be expected
to have an accuracy better than \a %\ /\i;\ leading to a
second order error in Y (of the order of 453:2 ).

This results in the following block diagram.

] |

| calculate measure
controller|
reset
leads [
: ‘measure
learn and adapt block {eads
v
B controller plant < 0O
Y P4 -~
- P,
Cow =°F
controllerx

F . .

= \Q




36

The 'learning' and adapting block can be expanded
into the following block diagram.

Common
r“WmeHMMwH_MW
Learn and Adapt Loops Calculate
Af&\A"chxg
Learn oG /3% — ete.
Adapt ' !
Adapt —
Learn &% / &% “’"‘“%
Adapt Store
Measure
v ‘reset controller leads L .
> Q

The controller section marked common, including
storage, prediction, and responsible for the various required
calculations and measurements is a problem in two ways.
First the method of prediction which best suits a system is
dependent on the way in which # varies. Second, with
any computer, there is often both a time factor and a memory
factor in dealing with a large number of stored events. A
simple method of predicting B and & —<%7 which
is a compromise between statistically varying & values
and regular time variation & values and which in
addition eliminates the storage problem; is the following:
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i, TEy- L hmS & B

ChLFaatyy = LW + A%y
= L) =~ < Rrsat¥)y w30 AR
IR
N =
M (3-k-1)

e

. ggln 2 BE - <R (2>

BN 2 K=oV Blr-at) + B (1) /X
A

< B (+4at)y = K=U B(+) + EBM® /K

K

where K is an integer > |\ (3-4-5)

. Er(y\ & K-\ EER (+-ay\ *+ EBRM/K
T K e - K

L (3-4-6)
With the above definitions the WR,{\.S. of equations
(3-4-1), (3-4-2) and (3-4-3) becomes '
] 8NV —JEB. (D) &.
LB ) g\
W

Note that equations (3-4-L4), (3-4-5) and (3-4-6) require
only the storage of Li (%) (< T (+)Y>, ES (), ER (%)
B (+) N < B (> and E—G——\K . Thus the memory AN
problem and minipulation problem have been eliminated.
Note as well the introduction of the integer

parameter K which is used in such a manner as to
weight the contributions of recent values of B(+) and
E®R (+) more heavily. In systems with slowly varying

A it is clearly best to use X =\ . Essentially
what this does is to set

< B (raat) > = BEY 4+ B WG AY
(where 5 (¥ 6% = ER (M),
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Where K >\

P

< B At > = B (N “~ gb’\(‘b_\h

X

( where 3_3__(+\KE~: E& )

Looking at expressions (3-4-5) and (3-4-6)
K % o has the effect of a non infinite memory average in
which events at t+-T are weighted in the averages &

R S
and Eﬁgﬁ\ by a factor ¥ N
_ JroL] et
B K
Clearly K values > | will be best suited™* to

random systems with changing values of A .

For totally random %A the self adaptive system
can only give the optimum comtroller for the predicted value
of « (& =1+¥,).

This completes the outline of the Nth order self
adapting control logic. It must be pointed out that while
the elements of storage, prediction, learning, measuring
. and calculating are necessary there are many ways of
including them to perform the same overall function. The
actual implementation of these functions shown in the
block diagram and outlined roughly in the text is hoped to
be close to optimal in so far as accuracy, general
applicability, and computer decision time are concerned.

Part II, to follow, is intended to demonstrate the
applicability in practice as well as in theory.

L. The self adaptive controller is relatively

less and less effective as the frequency of 4. X
increases.
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5. Summary

A general sensitivity in.matrix form has been
defined for the purpose of this thesis. It has been shown
that the control system should be closed loop provided
that the conditions of equation.(3-2-18) can be met. The
control logic has therefore been developed to accomplish

Nth order self adapting for a closed loop system with
feedback path controller E.. and forward path controller,
§;<>P ¢ ’

It must be pointed out that there has only been
heuristic argument for the actual implementation of the
essentials learning, adapting, and predicting as represented
in equations (3-4-1), (3-4-2), (3-4-3), (3-4-4), (3-4-5)
and (3-4-6). Others, with as much justification, might
decide to refine the equations givenl‘ or develop entirely
different ones to suit special known properties of the
variation of A% in their particular system. If the
computer memory is given or assumed infinite a best
prediction method can be found as a function of the type of
statistics that &<X obeys. Most of these methods can
be found in texts or papers dealing with prediction.

1. and to be used in Part II, Chapters IV and V.
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40



IV ADAPTIVE SYSTEMS AND FEEDBACK

Chapter IV demonstrates the desirability of adaptive
systems and in particular adaptive systems with feedback.
The experiments were performed on an analog computer using
the author as the 'learning' and adapting loop.

£

l. Experiment 1

kDescription
Experiment 1, deals with the system described in

Chapter III, Section 2. A plant with nominal transfer

function R, =20 is tg be.regulated in such a way as to

minimize J = S POANR-OYT AT .

N will be taken aghio and R will be taken as 1 .
The open loop nominal optimal controller is simply

C :C:l/a.

\

For the first order adaptive system it is obvious se

should be varied such that g§; E;P=;1Q . That is
A ac' = -<'aw ., But this is just the first order
adapter equationz' developed in Chapter III, Section 1.
(See any of equations (3-1-8), (3-1-9) or (3-1-10).)

In table 1, page +3 , are listed the J values
normalized to a 10 second interval for.

\lo

L In this problem G'= AR - Qland G' o whence

‘B'= 2R -0 . with R=1 , 3L'/ve=¢ Cee and
JW. /dc = & . Thus (3-1-10) becomes o Ac'=c'n & -

L1
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la Open loop system with g;, fixed at the nominal
optimal value Y

lb Open loop system with <;L? adapted to minimize
NSl (o= 0V=Y).

2a Closed loop system with L. and

o7

¢
o and .0qs.

-}

fixed at the nominal optimal values,
2b Closed loop system with Cee fixed at its
optimal value and fiP adapted to minimize

-7/

The optimal closed loop controller as found by
equation (3-2-18) gives Q;;.C = |o , its maximum value,
and 5;:-; at .qu . —

}\g—_—.uo
g—_" gser— < ’ -F:"P-:’g\ Q = o
- C = 1o x = 1Q
Eoe‘_“g
pr:‘_\...Ot}S

The J values for the above system were
measured for C._, ='> and Fue =.oqs wvhich is the optimal
controller for the nominal value of =« = 2o,

The system was then adapted. Equation (3-2-18)

indicated that Coe should be kept at its maximum
value and [\ |\ minimized by changing E., .
Conclusions

There were really two objectives to performing the’
text experiment. In table 1, two distinct comparissons
can be made in order to demonstrate:
1. that the adaptive controller is significantly
better than the nominally optimal controller, at

least for a low frequency change in & , and
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2. that the closed loop optimal control yields
significantly smaller 0 values than the
open loop roughly by a factorl' of (l+ i-gc,\Z .

Data
' : e )
Case J- S (Q-1RY 4t
+, o

la Open Loop Nominal Optimal 2.8
1b Open Loop Adaptive Ok

. . 14
2a Closed Loop Nominal Pptimal
2b. Closed Loop Adaptive .0014

table 1.

2. Experiment 2

Description

Experiment 2 was essentially the same as Experiment 1.
The difference lay in the plant which varied in the following
manner. . .

plant
P o= o where & = | o+ A x(t)
=t S 4+ o
1. . =
The quantity (1« At ) (related to

fr~ PoeSaef. ] of equation (3-2-18) ) is squared as J
is proportional to the integral of r, squared.
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Experiment 2 used two values of A« (1)
(i) a ™t = (2 sin T/amw

(ii) Ax.g(fﬁ = square wave with amplitude 0.2
and frequency of 1.0 radians per second.

Conclusions

The results, tabulated in table 2, lead to the same
conclusion as those in table 1. The order of the plant has
not led to any difficulties. On the contrary the plant acts
as a filter to its own high frequency parameter changes and
enables the system to adapt reasonably well to a square
wave parameter variation.

Data
1 1 fie10

A o« (1) Case I- S*(o ~ieRY™ 4t
L2 N Open Lodéwﬁgaiﬁ;1MOptimal 2.5
TR Open Loop Adaptive .05
25 Open Loop Nominal Optimal 10.2
AN Open Loop Adapti;é 1.2
R-JAVEE ' Closed Loop Nominal Optimal <14
2y - Closed Loop Adaptive .0015
2. Closed Loop Nominal Optimal 1.1
20 Closed Loop Adaptive ) .13

table 2.

1. LA, . . ; .
2/ 1.0  indicates sine wave with fractional

amplitude ( of « ) equal to .2 and radian frequency of

. w = 1wo. " 2 [_to" indicates square wave with amplitude
.2 o« and radian frequency w =1i.0 .

v
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3. Summary

From Experiments 1 and 2, it could be concluded
that adaptive systems (the examples were first order adaptive)
were superior to nominally optimal systems. Furthermore
both systems showed improved behaviour in the closed loop
configurations. It was also interesting to note that a
square wave variation in could be better adapted
to than might have been expected.




V COMPUTER IMPLEMENTATION OF THE GENERAL ADAPTOR EQUATION

A plant,which is given below was chosen to test the
theory of Part I for the case of first order self adapting.
A number of different tests are made on this plant —

R fixed, R  varying, open and closed loop adaptive,
open and closed loop nominal optimal. For each case the
appropriate system hatriées must be learned. The full power
of the Nth order self adapting system is shown in the way
that the system starts out from extremely bad initial |
controllers, 'learns'! the matrices AE‘/AC ,”;. /2 £ and
éEe//g;{ , drives the controllers to their optimal values
and then adapts to changes‘in’either %« , R or ©
Note, too, that this will be accomplished knowing nothing
about the plant except that it has two inputs and two
outputs! For this particular plant, with R  fixed, it
will be found that once the appropriate matrices are learned
that the entire learn and adapt loop may be replaced by a

passive network of only four potentiometers and two adders!

l. Statement of the Problem
Given, a plant with input C and output P

—

[
6(1) P11 P12 (1)
s+SP11 S+SP12
P21 P22
C(z) T s+5P21 s+SP22 P(2)
P11=100. P12=1+.5 sin 3.0t
P21l=-1.+.5 sin 5.5t P22=100.
SP11=10.+2 sinl.0 t SP12=20.
SP21=20. SPR2=10+2 sin 2.0 t

L6
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3
Required, that 3 = S:QE—D)(E*Q\A% be
minimized where D,= 3 and 'D,= g .
The entire problem was simulated and solved on
an IBM 7040 computer.

2. Computer Simulation
The computer simulation of the plant with its

controllers, and the learning and adapting loop, can be
considered separately.

The following block diagram and computer flow
chart can be used to define the symbols used in the

computer programs and to identify the blocks in the
computer program.

Control System Block Diagram

R(l)—‘ CC(1) 0 V‘C(l)\' P
Plant
RS_J-) Ve 0 CC(2) 0(2) ,1 P
F(2) | o FF(2) P(2)




Flow Chart of Control System Simulation
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Numbers
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Parameter
999 Values
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Controller
C(I)=CC(I)x*
E(I)

C(T)

enforce
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on plant
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limited

Plant
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[F ML=10 GO
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IF L=LMAX
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END

l END
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JLN = JLN + ; GO TO 200

ML =0
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calculate adaptive
changes in FF(I)
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and/or R(I)
2700 _=_2899
Common Block 1000 - 1999
estimate GMIN(I), the expected

value

of L (++at)

predict B(I)

|

measure and store

[

G(I)

1

ML=0
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3. Tests and Results
There were ten tests performed on the plant given
in Section 1 of this chapter. The first four of these were
done with the input K  fixed and D , the desired output
a constant.

That is, R = {R(l)J =[1J and D = {D(l)}=[3:]
R(2) 2 D(2) 8

For these flour cases 4D and A R
were zero and the learn and adapt loop had only to learn the
matrices 3L /3¢ and/or T /4f . Three cases

were adaptive. The fourth was merely nominal optimal, that
is, the controllers were set to the optimal value for the
average value of o .

The results of tests one to four are as follows.

Test 1  Closed Loop; learn 3L /3¢ and 3G/ 3E ;

adapt ¢ and t
R O
- C(<) P LAY
- Sep <
3
T =y
(3] Sl
F ()
0‘?
¢
(a) B/de o[B8 Lt o e,
-12.36 . 5.127
Ly _[-7.0512 -+ 0869 at T = .4 sec.
.3087 -23.25

MILLS MEMORIAL LIBRARY
McMASTER UNIVERSITY



(b) typical values of ¢ and f were

5 : -3
% :[S] > -E: [2\3}
J (t=5 sec) = .015227
J (t=1 sec) = 015211

J= 5 (0-D )% dt = .0000L6

-—

b}

Test 2 Closed Loop; learn 35 /3f ;
adapt only ¥
That is the forward loop controller was fixed at
c = {;5‘ 5 ]T- and the system adapted by using only the
feedback path controller variable & .

R 0
= ‘ 5 o P(ay
= o s Tep
R:[‘ ] E"? (e D=
- e FOY o
o £(2)
Fo (%)
(a) e/ s f = |=9.331 7.590 at t = .4
~-.1939 ~36.16
(b) typical f  values were
(c) J (t=5 sec) = 3.1586
J (t=1 sec) = 3.1586
J =j (0- D)% dat < .00005

Test 3 Open Loop; 1learn o5 /’32
adapt ¢
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In the open loop configuration only Ls / dc
need be learned ( if a R 1s known to be zero) and the
system is adapted by changing ¢

Copl &)
R cH) o ]
P
o c¢(2) Zop )
‘ , 13
(a) 325//35 - 1.031 -0842 at t= 2.8 sec
(b) typical ¢ value'was c = [‘3]
oL
(c) J (t=5 sec) = 8.1635
J (t=3 sec) = 7.9703
5
-\ et o-p? - e
3
Test L Closed Loop Nominal Optimal; & and §  fixed
c and Y were fixed at values found to be
about the average of some of the values in Test 1.
R S ° Q
gfétb
o ) -
c. :
8:[‘] zop = , Q__[s]
2| 3
° .23
Top

(a) No learning.

_ < . . 3134
(b) < fixed at [ ] ; T fixed at 2995
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{c) Jd (t=5 sec) = .04L6OLY
.013324

ct
I
=
4]
(0]
(¢]
it

J= g (Q -D )7 dt = .032725

Note that by comparing tests 1 and L4 the adaptive
system yields about a 2000 times lower cost function.

Tests 5, 6, and 7 are closed loop adaptive,
closed loop nominal optimal,and open loop respectively.

R the input is allowed to fluctuate in addition to the
plant parameters <+« .

Test 5 Closed Loop; learn 3B/ %R ang 3G /3%
adapt f; and keep & fixed at

] [s.sW 5
- S [} =
Pel(ed
Z . < -
c
= op .3\ ©
o 23
Lo
R=[1.+ .30 sine .Ok 1-,] 5 - [3]
& = 3
2.+ .01 1 i 01m
(a) 3L /IR = 3.103 -0167 ] at t = 9.6 sec
_—00873 00365
yG /¥ o [-10.29 =159 0¢ ¢ = 9.6 sec
_~l.265 -27.51




oL

T

t =0 3134 ,.2295]

Closed Loop Nominal Optimal; no learning or adapting

6 ——
which is

adaptive counterpart.

Q

°
15

<

R £ fixed at [

(b) ¢« =L s.5)] .
(c) J (t=10.) = 10.9107
J (t=6.0) = 10.9104
\o 5
J= S (0-D )° dt = .0003
¢
Test 6
Coe
R T .
° S 3 o -
S
=
[1 + .3 sin .0L t
2+ .01_| | .0V |
(a) No learning
(b) < fixed at { ?]
(c) J (t=10) = .52054
J (t=6) = .19764
\0
3= ( ©- D )2 gt = .32290

3134
.2 295

about 1000 times the J of Test 5, the

‘Test 7 Open Loop; learn Y /R and YL /3¢ adapt ¢
R " ®)
= vy FZ(.;\ ol
o () &

<
‘LQP



.3 sine

/AR

_1.689
11.09

_ {.8124
1.461

J (t=10 sec)

J (t=6 sec)

S\IO (9—

&

J= D

y2

04 t

1+
2 + .01 .01l «w

.81796
.81130

dt

25

| oeel3]
-0042 at t = 8.3 sec.
.0851

-0065 at t = 8.3 sec.
2.106

= ,00666

Tests 8, 9, and 10 are identical to tests 5, 6,

R

2., + .01

|

.Ol

and 7, except that in addition to varying R and « ,
D is varied as well.
Test 8 Closed Loop; learn 3L/ 3R B /3 f
adapt f , & fixed.
R 5 o | Q
= P (%)
o g = F
Cop
Hy o
o L{2)
:OP
l. + .3 sine .04 t 3 - exp (-.01 t)

o

e

8 + .8 sine .03 t

|



AL /3R _[2.535 -.0057
| 39.74  -.3992
SO /3 E [ -6.772  .1698
-38.17 -23.03
(b) C = 5 . ¥= 03131"
) 5 ’ - | 2295
(¢) J (t = 6 sec) = 11.8110
J (t =2 sec) = 11.8080
6 .
J- S (o -~D ) dt = .0030
2
Test 9 Closed Loop Nominal Optimal; no learning or adapting.
S ) 1
E - N 5 E’(‘
.3 o
o .23
R D
(a) no learning

= ] at t = 3.5 sec.

G

¢ fixed at|?|, F fixed at | -313k
5 «2295

J (t=10 sec) = 3.9017
J (t=6 sec) = 2.4562

1 Q
J = g (0 -D )? dt = 1.4455
q
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Test 10 Open Loop;

Dy

(a)

(b)

(c)

17

as

10

57

learn 3B /3R ang 3G/¥¢ ; adapt ¢ .

-(;(a") o (43
< =g
° ) = o
. L
= O¢
in Test 8 D as in Test 8
WL/ AR = 2.k99 -0048 at t = 3.5 sec,
-3.901  .0097
S /HY =117k -1091 at t = 3.5 sec.
--06705 11859
~ |3
s
(t =7 sec ) = L.2656
( t =3 sec ) = L.264]1
7 2
= (2 -© ) dt = .0015
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Table of Results of Experiment 3., Tests 1 to 10

Test Varying Cost
Quantities Function J
AdaptiveNorgillfed
Quantities Second
Interval
L. Closed Loop Self Adapting ot e £ .000016
2. Closed Loop Self Adapting o + .00005
3. Open Loop Self Adapting 2 c 3864
L., Closed Loop Nominal Optimal * none .032725
5. Closed Loop Self Adaptive % R £ .0003
6. Closed Loop Nominal Optimal a R none .3229
7. Open Loop Self Adaptive « R c . 00666
8. Closed Loop Self Adaptive « R D $ .0030
9. Closed Loop Nominal Optimal |« R D | none |l.4455
10. Open Loop Self Adaptive « R D c .0015

table 3.

Tests 1 to 10 of Experiment 3 bear out the statements
made, namely:
1. that the closed loop system, being less
sensitive yields lower cost functions than the
open loop systen,
and 2. that the adaptive system is very much better
than the nominal optimal system.

However, in performing this experiment it became
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clear that another problem, that of stability, became of
ma jor importance. The next section deals chiefly with
the causes and effects of instability.

L. The Problem of Stability

Stability became a problem of importance with the
advent of the feedback control system. In the Nth order
self adapting system, there is not one but three major
feedback paths. The first is the normal feedback through
F.e&) . The second and third are through the learn and
adapt loop. Oscillations may occur in three different ways.
Firstly there is the usual type of instability, where the
feedback operator is such that the system's gain approaches
infinity. Secondly one may find the adaptor loop driving
= and & in a limit cycle of period -2 &6 T |
Thirdly one may find that a propagation of the noise error
always present to some extent in B occurs causing the
learn matrices to either oscilate or diverge from the
true values.

It is felt that the stability of learning and
adapting systems is of fundamental importance and deserves
a thorough investigation.

In Experiment 3, instability, present with high gains
in the adaptor loop, could be suppressed by putting a reason-
able limit on the quantities at and &< . These,
limits prevented the system from entering regions of instability
* from which only accidental recovery
appeared possible. On the other hand these limits were
large enough to permit complete adaption so that their job
was to keep the system stable during the first .1l seconds in
which the first learning was occuring.

in & spacel

1. w space is defined in Chapter II, Section 1.
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It must be pointed out that the adaptor equation
(equation (3-3-4) ) was used to successively approximate
each of the matrices which must be learned. Unfortunately
there is no quarantee that the matrices will converge
uniformly or otherwise to their true values. On the other
hand if the system does adapt, then one can be assured that
one has the true learn matrices and can be confident that
higher order self adapting, better prediction, or faster
operation ( o ¥+ sméller) will improve the performance
even more.

The following diagram and equations represent a
first look at the form of equations involved.

Kol
KL
R o
—5 ] Geel®D ’ ce (2 —
ot
v
Eoe (i~ 2%

First note that K4°P is defined by that operator

array operating on © which yields the correct lkﬁ

that is &% = Ke, ©
whence
2o G B-EL B4 K, 2) Q) = ©

Now note that the form of Ege» and L  must be
known to proceed further.



VI HIGHER ORDER ADAPTIVE SYSTENS

For Nth order adapting it is necessary not only to

minimize “E;‘H , but also l[C; \,¢t=\v=2.N. This can only
be accomplished if the derivatives of the output can be
controlled independently.
For example, for second order adapting, EJKEQ B-l

But ;;a. , being proportional to the time derivative of
the output, introduces a dependence of L on the first
derivatives of the system® outputs. To vary o' and

ﬁ;z then requires controllers which can independently
'change the outputs and their first derivatives. The least
component controller is a matrix of first order operators
rather than a matrix of constants as in the example of
Chapter V. The smallest array which can possibly give

second order adaption of an M  output plant is the
following:

T o o
CA;-\ﬂS,-l- t .
C S © Crar2S+} |
!

These 2 M controller variables %t:Mﬂz are what one
would expect since Ei‘ is an M vector as is E .
: 23/83 is then a 2M by =M matrix. T , a vector
of 2 M dimensions, is thus controlled by a 2 M

variable controller wa> .
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VII CONCLUSIONS

This chapter contains a sumary of the entire thesis
followed by a list of conclusions which can be made on the
basis of the arguments presented.

The usual integral form of cost function is
abandoned in favor of a generalized vector cost function

G which allows N®P order adapting at intervals &t
apart and which if ‘\@\l be minimized, guarantees the
system reading a locally minimum cost function 3 . The
vector cost function L= is defined, G - CZ” 1.

——

such
that minimizing the norm of U takes the system to a
globally minimum J value. Note that there are as many
. controller variables as there are dimensions of &  and

that the order of the operators in the operator arrays

C ap and F.. need be at least of order N in an
Nt‘h order self adaptive systemz'. Further note that in

general since G (and thus Y& ) are formed from quantities
in H ( H the integrand of J ) that no new variables
need be measured to find = .

——

to write a difference equation for all Through the

way in which &5  has been defined it is possible to have

an Nth order self adaptive system while merely using the

first term in the Taylor expansion for & Y3 . This expressionl
for a4 = ~has been called the "general adaptor equation"

and the partial derivatives (matrices, being partials of a

With vector cost function W1 defined, it is possible

1. Q™ and methods of finding <§* are discussed
in Chapter II, Sections 3 and 5. Note also that if the
conditions of Theorum I, Chapter II, Section 1 are met
then G* = o .

2. See Chapter VI.
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vector with respect to another vector) in the equation have
been called sensitivities or more commonly '"learned matrices™
due to the fact that they must be learned while the system
is in operation. The quantity 2%/Jds a9 is predicted and the
system driven to and kept at W = @ Dby changing the
controller parameters <  and/or %. .

In Chapter III, Section 2, ok/d< is discussed
as the sensitivity of the system and equation (3-2-18)
developed to differentiate between closed loop and open
loop adaptive systems on the basis of improved sensitivity.
The experiments of Part Il pear out the prediction that
closed loop systems are less sensitive,

The experiments of PART II prove too that the
self adaptive system is feasible and useful as indicated
by the results in Tables 1, 2, and 3. Difficulties
initially encountered indicated, however, the serious
problem of stability of multiloop systems particularly with
high gain and inherent time delays.

The problem of instability was encountered in )
Experiment 3 of Chapter V when the learned matriceswere
the initial sets of random numbers and the system entered
unstable W space before these random arrays could be
corrected. The problem was overcome by limiting the gainj;
that is {lac !l < A< maximum and fa€ll< af maximum. If
this method gets no results it is likely that one can fall
back on an open loop system of self adapting which, if
combined with limited adaptor gains, will almost certainly
be stable. '
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List of Conclusions

1. Neither the plant I 4
change A< need be known to utilize N®
adapting.

nor the plant parameter
h order self

2. Noise and even totally random <4_¢  values
can be handled. TQe high frequency noise components which
appear at @ are smoothed and predicted as their average
value. However the low frequency or band limited components
are accurately predicted and their effect nullified by the
adaptor. '

3. Often it will be found that the learned martices
are virtually constant in which case the entire learn and
adapt loop may be replaced by a network of at most K
active elements where KK 1is the number of dimensions in
] . This fact is extremely important because it releases
the digital computer.

L. If there are no detrimental constraints ( the
conditions of Theorem I are met)orif one 1is satisfied with
a locally minimum J value the calculations which are
required to be done manually are nonexistant or at worst
trivial.

h order self adaptive system in addition

5. The N°
to adapting to changes in A% 1is able to adapt to changes
in R _ the generalized input vector and O the desired

output.

6. The controllers and/or the plant may be nonlinear.
The only limitation in this respect is that = be piecewise
continuous at least and continuous if at all possible.
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7. With a slight modification the plant and/or
the controllers may have a time delay provided the time
delay is measurable or is known in some fashion. The system
-in its present form is able however to adapt to plants which

have a time delay | << &,

8. Even if the plant parameters do not vary
the self adapting system will adapt to change in D
and/or R ;

9. Selecting the forms for S, and/or Eog
the adaptor loop will drive them to their best values.
Removing the adaptor loop them leaves the controllers at
their nominal optimal values -- values which might have been
otherwise impossible to obtain. A whole range of optimal
control problems and optimal filter problems are open to
a solution free from manual calculation and more accurate
as well in that the actual plant, not some model of it, may
be used.

10. The vector cost function Eg has been defined
in such a manner that the first omitted term in the Taylor
series expansion of ﬂg‘Q&*vA+> is multiplied by a factor
of at™/ NY . This indicates the level of accuracy which
the Nth order self adapting system operates at. However
there is no point in using a system of order L. where
att / l.! is any smaller than the expected error in the
predicted quantity & (B = >0 /A« A< plus other
system noise). |

1l. No extra measurements need be introduced to find
Eg than were necessary for finding J and H .
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12. One can simply and naturally include the
overall system sensitivity as a criterion in the cost function
by merely using N » | , that is, a higher than first order
self adapting system. This apparently providential
by-product is linked with the generalization of the
vector cost function from first order to higher order self
adapting which in turn is done to obtain any prespecified
degree of accuracy in the cost function.

5
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APPENDIX 1

The computer program of Experiment 3, Test .10
follows., ‘

It is included as an aid for those who might wish
to design more sophisticated Nth order self adaptive
systems. The program is built of various blocks and while
the program is admittedly not particularly efficient , the
blocks themselves can be considered basic. However as a
first program it pa%ses the most important test. — that
is, it works.
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$J0OB

WATFOR

$IBJOB
$IBFTC TEST1O0

C

00 10 99

C DIMENSIONS

C INITIAL VALUES

OV PN -

MC=1

ML=0

MR=1

MF=1

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

READ(591)
READ(5+2)
READ(592)
READ(5+3)

READ(5+4)
READ(5+5)

69
003511 TEMPLE
NODECK

INPUT SECTION

GG(5) sRRR(5)
DGD(5)
DGCF (5)
DGR(5)sDGT(5) ¢DGF(5) sDGC(5) sPGPT(5)
C(5) 9CC(5)sDLC(5)sDLF(5) +sPGPD(595)

F(5)sFF(5)9P(5)sE(5)sR(5)
BIGC(5)sSMALLC(5H)
G{5)9B(5)9sPGPR(595) sPGPF(595) s PGPC{595)
DLR({5)4DLD(5)sD(5)9ZK(5)sGMIN(5)
EB(5) sPGT(5)
DELTB(5)
DVF(5)sZ2(5)
DVC(5)
CCU(5) sCCM(B) sFFU(S) s FFM(5)
A{25925)9AA(25925)
AND CONSTRAINTS
SP11eSP129SP21sSP22sP11sP12sP214P22
(CCM(I)91=142)9s(CCUI)sI=192)s(CCU(I)s]l=192)
(FFM({I)sI=192)s (FF(I)sI=192)e{(FFU(I)sI=192)

{(PGPR(I9J)sJd=122)91=1921s((PGPF(1eJ)sJd=192)91I=192),
1((PGPC(IeJ)sd=192)91=192)e((PGPD(I9J)eJ=192)s1=102)

(R(I)sI=192)9(ZK(I)sI=142)
(BIGC(I)sI=192)9(SMALLC(I)sI=1s2)

FORMAT(8F10e4)

FORMAT(6F12e4)
FORMAT(4F208)
FORMAT (2F2048)
FORMAT (4F2048)

DISCRETIONAL ¢

READ(5910

CONSTANTS

IMEXP s LMAXsZNsDELT »DELT1

FORMAT(211093F2048)

DO 20
GG(I)=0.
P{I)=0e
RRR(I)=0.
G(I1=0.
DGD(1)=0,
PGPT(I)=0
GMIN(I)=0

I=1s2

DUINV=R(IV*ZK(I)

F(I)=0e
PGT(1)=0.
DLR(I)=0.

DELTB(I)=0.

DLF(I)=0.

20

15

16

DLC(I}=0e
WRITE(6915)
FORMAT (54H
WRITE(6516)
FORMAT (54H

COST FUNCTION VECTOR COST

©01 SECe INT'LS  FUNCTION 'G?

PREDICTED

ERROR

1Bt
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WRITE(6s17)
17 FORMAT (1HO)
ILN=5
L=1
ZL=L
25=0e
225=1.
2J=0e
D1P1=0,
D1P2=0.
C1=0.
C2=0.
P(1)=3.
PGPR(2+2)=0s
P(2)1=4,.
PGPF(1lel)==~4s
PGPF(2+2)=~9,
GO TO 150
C 100 TO 199 BLOCK
C SIMULATION OF FEEDBACK PATH CONTROLLER TRANSFER FUNCTION {OPERATOR
C MATRIX F'0OP!' )
100 CONTINUE
DO 101 I=1s2
101 F(IY=FF(I)*P(1])
150 CONTINUE
DO 199 I=1+2
199 E(I)=R(IY=F(I)
GO TO 400
C 400 TO 500 BLOCK
C SIMULATION OF THE FORWARD PATH CONTROLLER TRANSFER FUNCTION { OPERATO
C MATRIX C'OP' )
400 CONT INUE
DO 401 I=1»s2
401 C(I)=CC{II*R(I)
GO TO 500
C 500 TO 599 BLOCK
C LIMITING IMPOSED ON THE PLANT UNPUT *'C(I)*
500 CONTINUE
DO 501 I=1s2
IF(C(I)eGT«BIGC(INIC(I)I=BIGC(I)
IF(C(1)eLTeSMALLC(I))IC(I)=SMALLC(I)
501 CONTINUE

GO TO 700
c 700 TO 799 BLOCK "PrOPYY
C PLANT TRANSFER FUNCTION
700 CONTINUE

D1C1=(C(1)-Cl)/DELT

C1=C(1)

D1C2=(C(2)-C2)/DELT

C2=C(2)

D2P1 =P11%SP12%C(1) +P11%D1C1l +P12%SP11#C(2) +P12%D1C2
1 -(SP11+SP12)%D1P1 ~-SP11#SP12%P(1)
D1P1=D2P1*DELT+D1P1
P(1)=D1P1*DELT+P(1)
D2P2= P22%SP21%C(2) +P22¥D1C2 +P21%*5P22*C(1) +P21%*D1C1
1 ~(SP22+SP21)%*D1P2 ~5P22%SP21%P(2)
D1P2=D2P2%DELT+D1P2
P(2)=D1P2*DELT+P(2)
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ML = ML+1
DO 701 1I=1s2
DGT(II=P(1)~-D(I)=GG(])
PGPT(I)=DGT(I)/DELT
701 GG(IY=P(I1)-D(I)
IF(MLeEQe10)GO TO 1000
GO TO 100
C 1000 TO 1999 BLOCK
C MEASURE AND PREDICT SECTION
1000 CONTINUE
ML=0
DO 1008 1I=1s2
DGCF(I1)=0e
DO 1008 JU=1s2
1008 DGCF(I1)=DGCF(I)+PGPF(I1+J)*¥DLF(J)+PGPC(T+J)¥DLC(J)
DO 1001 I=1s2
C MEASURE GI(I)
IF(LelLTe1l00)RRR(I1=0e

DGC(INI=P(1)=-D(I)=G(I) -PGT(I) *DELT1 -RRR(1) =DGDI(I]

DGR{IN=P(I)-D(1)=G(I) -PGT(I) *DELT1 -DGCF(I) -DGD(I)
DGF(I)=P(1)-D(I)=G(I) -PGT(I) *DELT1 ~-RRR(I) -DGD(I)
G(I) =P(I)-DI(I)
1001 B(I)=G(I)-GMIN(I)
DO 1005 1=1s2
PGT(I)=PGPT(I)
1005 GMIN(I)=G(I) +PGPT(I)*DELT1
GO TO 800
C 800 TO 899 BLOCK
C PRINTED OUTPUT SECTION
800 CONTINUE
DO 801 I=1s2
801 LJ=ZJ+G( 1) **2%DELT]
IF(LeGT«LMAX)GO TO 5000
DO 803 I=1s2
WRITE(69802) LsZJsG(I)sBI(I)
802 FORMAT(1H 99Xs1493XsE12e693X9E12e693X9EL1246)
803 CONTINUE
GO TO 900
Cc 2100 71O 2199 BLOCK
C UPDATE PARTIAL G(I) PARTIAL cth
2100 CONT INUE
IF(ILNeNE«1)GO TO 2200
IF(ABS(DLC(MC) ) el Tele/10s**MEXP)GO TO 2110
DO 2101 J=1»2
2101 PGPC(JsMCI=DGC(J)/DLCIMO)
WRITE(6+2104)
2104 FORMAT(1HO»15Xs45H PGPT PGPC
DO 2106 1=192

WRITE(6+2105) PGPT(I) s (PGPC(IsJ)sJ=192)

2105 FORMAT(13X9E12e6910X9E12e693XsE12e6 )
2106 CONTINUE
2110 MC=MC+1
IF(MCeGTe2IMC=1
GO TO 2700
Cc 2200 TO 2299
C UPDATE PARTIAL G(I) PARTIAL F(J)
2200 CONTINUE
IF(ILNeNE«3)GO TO 2300
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IF(ABS(DLF(MF))eLTele/10e¥*¥*#MEXP)IGO TO 2210

DO 2201 J=1»2
2201 PGPF(JsMF)=DGF(J)/DLF(MF)

WRITE(692204)
2204 FORMAT(1HOs15Xe45H PGPT PGPF
DO 2206 I=192
WRITE(692205) PGPT(1) s (PGPF(19J)ed=192)

2205 FORMAT(13X9E12e6910X9E12e693X9E12e6 )
2206 CONTINUE
2210 MF=MF+1
IF(MFeGTe2)MF=1
GO TO 2800
C 2500 TO 2599 BLOCK
C CHANGE SINGLE FORWARD PATH CONTROLLER ELEMENT IN ORDER TO EVALUATE
C THE COLUMN VECTOR PGPC{IsMC)
2500 CONTINUE
IF(ILNeNE«O)GO TO 2600
GO TO 2700
2501 CONTINUE
DO 2505 1=1s2
DLF(I)=0.
2505 DLC(I)=0.
DLC(MC)=DVC(MCQC)
DO 2508 I=1s2
IF(DLC(I)eLTa(-e1l5))IDLC(I)==0el5
IF(DLC(I)eGTeel5)DLCII)=el5
2508 CONTINUE
DO 2510 I=192
2(1)=0.
DO 2509 J=1s2
2509 Z(I1)1=Z{I1)+PGPC(IsJ)%#DLC(J)
2510 GMIN(I)=GMIN(I)+Z2(1)
GO T0 200
C 2600 TO 2699 BLOCK
C ILN = 4 BLOCK DLF(I) AND DLC(I) =04 TO UPDATE PGPR{JsMR)
2600 CONTINUE
DO 2605 I=1s2
DLF(1)=0.
2605 DLC(11=0.
GO TO 200
C 2300 TO 2399
C UPDATE PARTIAL G(I) PARTIAL R(J)
2300 CONTINUE
IF(LeLTe1l00)GO TO 2400
IF (ILNeNE«5)GO TO 2400
IF(ABS{DLR(MR) ) oL Tele/10e**MEXP) GO TO 2310
DO 2301 J=1s2
2301 PGPR({JsMR)I=DGR(J)/DLR(MR)
WRITE(692450) ({PGPR(IeJ)sJ=192)el=192)
2450 FORMAT(60X92E12e6)
2310 MR=MR+1
IF(MReGTe2)MR=1
GO TO 2800
C 2400 TO 2499 BLOCK
C CHANGE SINGLE FEEDBACK PATH CONTROLLER ELEMENT IN ORDER TO EVALUATE
C THE COLUMN VECTOR PGPF(IsMF)
2400 CONTINUE
IF(ILNeNEe2)GO TO 2500
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GO TO 2800
2401 CONTINUE
DO 2405 I=1+2
DLC(I)=0,
2405 DLF(I)=0.
DLF (MF)=DVF (MF)
DO 2410 I=1s2
2(1)=0,
DO 2409 J=1s2
2409 Z(I1)=Z({1)+PGPF (1 sJ)%*DLF(J)
2410 GMIN(I)=GMIN(I)+Z(1)
GO TO 200
C 200 TO 299 BLOCK
C SET THE CONTROLLERS TO THE NEW OPORATOR MATRICES
200 CONTINUE
L=L+1
ILN=ILN+1 ;
IF(ILNeEQeb&)ILN=0
IF(ILNeEQe2) ILN=4
DO 201 I=1s2
IF(DLC(I)elLTe(-e15))IDLC(I)==-0el5
IF(DLC(I)eGTeel5)DLC(I)=el5

201 CCI)=CC(I)+DLCLT)
WRITE(6+222)(P(I)sI=1+2)
222 FORMAT (1HO 919X s4HF (1) 33X9sE12e693XsE12e6 )
GO TO 100

C 2700 TO 2799 BLOCK
C CALCULATE THE ADAPTING CHANGE IN CC(I) TO GIVE G(T+DELT)=0e OR ITS
C MINIMUM VALUE
2700 CONTINUE
DO 2701 I=1»s2
DO 2701 J=1,2
2701 A(I+J)=PGPC({IsJ)
Al=A(1ls1)
DET=A(191)%A(232)-A(1+2)%*A(2s1)
A(ls1l)=A(2+2)/DET
A(2+2)=A1/DET
A(le2)=~A(1s2)/DET
Al2+1)=—-A(2+1)/DET
DO 2705 I=1y2
DVC{I)=0,
DO 2705 J=1s2
2705 DVC(I)=DVC{I)=A(TeJIXGMIN(J)
DO 2710 I=1s2
IFC(DVC{INI+CCLI) ) aGTeCCUIT)IDVC(TI)=CCU(T)=CC(I)
IFC(DVCUIN+CC(I) ) oL TeCCM(IIDVCUT)I=CCM(I)=CC( )
2710 CONTINUE
IF(ILN.EQeO)GO TO 2501
DO 2712 I=1s2
IF(DVC(I)eGTeel5)DVC(I)=el5
IF(DVC(I)elTel—=e15))DVC(I)==e15
2712 CONTINUE
DO 2715 I=1s2
Z2(1)=0.
DO 2714 J=1s2
2714  Z(I1)=Z(1)+PGPC(14+sJ)*DVC(J)
DLC(I)=DVC(I])
2715 GMIN{(I)I=GMIN(I)+Z(1])



GO 70O 200
C 2800 TO 2899 BLOCK
C CALCULATE THE ADAPTING CHANGE IN FF(I) TO GIVE G(T+DE T)
2800 CONTINUE
GO TO 2700
C 900 7O 999 BLOCK
C STATIC CALCULATIONS AND SIGNAL CALCULATIONS.
900 CONTINUE
ZL=L
IF(Z25eLTel00e)GO TO 990
25=0,
225=2725%(~1s)
990 25725+
903 R1l= le+e3%SIN(04%2ZL*¥DELTL)
R2= 2e+ oOl*ZZS
DLR(2)=R2-R(2)
DLR(1)=R1-R(1)
R{1)=R1
R(2)=R2
DO 905 I=1s2
RRR(I)=0.
DO 905 J=1»s2
905 RRR(INV=RRR(I)+PGPR(I9J)%#DLR{J)
SP11=10e+2e*SIN(ZL*DELTL1)
SP22= 10e+2e*SIN(2%ZL%¥DELTI1)
P12=1e+e5*SIN(3*ZL*¥DELT1)
P21l=~1le+e5*¥SIN{(5e5%ZL*¥DELT1)
D1=34~EXP(—=(,01%ZL))
D2=8e+e8#SIN(ZL*03 )
DLD(1)=D1-D(1)
DLD(2)=D2-D(2)
DGD(1)==DLD(1)
DGD(2)=-DLD(2)
D(1)=D1
D(21=D2
GO TO 2100
5000 CONTINUE
END
$ENTRY
10, 204 20 10, 100 l.
-10000. ~10000. 5 e5 10000«
=100, =-=100e 100.
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-10.
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3. 4.
200 200 -200.,
4 10000 20. «001
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10000.
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APPENDIX II

Definition of Basic Symbols

Vector Quantities

A single line or bar under a quantity denotes it as a
vector or one dimensional array.

B the system®s inputs
o the system's outputs
D the sxgtem's desired outputs
oA the vector of nonconstant plant parameters
/
< the vector of parameters of the forward loop controller
E. . the vector of parameters of the feedback loop

controller
J GG vector cost functions

Other important vector quantities are the following:
R the predicted vector = 3B/Jd 4 as + noise

aT /iy the explicit variation of = Yo  with time

Matrix Quantities

S that array of operators which represents the
- °P transfer function of the entire system,
that is O = S,o R
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ugn

with or without integral number subscripts, denotes
the sensitivity of the vector cost function with
respect to changes in plant parameters

S = hE/Aé-

Other important matrix quantities are the following
ol /3w (OB/IE, Sh/3e  (3L/ID | VLR

All of these denote the various sensitivities of the vector
cost functiom = to important system variables.

Scalar Quantities

¥  the original cost function often in the form
J = S [ T

H the integrand, often of one sign only, of J.

T, at time quantities

Miscellaneous
Y means "for all"

WOW 1 quantity is a vector, say (| % H , then
Hxil = R -X

If quantity is a matrix, say || X\ , then

AN = s | X0

“3

fop! The subscript 'op! on an array means that the
quantities in that array may in general be operators.
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Though no references were used in preparation and
though none have since been found that are directly applicable
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of adaptive control and may be helpful on that account.
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