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' systems of today are built around computers. It is felt 
that an improved form of cost function in vector or matrix 
form is needed to fully and most easily utilize the 
computer's advantages. After defining a vector cost function 
~ , the problem of adapting and learning simplifies to 

the solution of a partial difference equation. Total system 
properties are easily defined as matrix arrays "Vthich are 
"learned" in an adapting and "learning" control loop. 

The relative merits of open and closed loop adaptive 
systems were investigated. The Nth order adaptive 
control system was finally chosen to be closed loop after 
developing two criterion equations in two unknowns which, 
if satisfied guaranteed improved system sensitivity with the 
closed loop configuration. 

Finally, several simple examples are given in 
experiment form to demonstrate the applicability of the 
proposed control system techniques. 
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PREFACE 

The basic function of the control engineer is 
to make a system perform in some specified "fray. Usually the 
specifications are stated mathematically and the total or 
overall performance of the system measured in a mathematical 
expression called a cost function. Minimization of this 
cost function is the aim of the optimal control system. 

Only too fr.equently, however, the control engineer 
is met with the problems of the very complicated system, the 
system whose transfer function or whose parameters can 
only be guessed, or the system whose optimal control cannot 
be found. To this add the problem of including system 
sensitivity as a criterion·in the cost function and one has 
the beginning of the control engineer's problems. 

Not satisfied with the optimal control (if it can 
be found or reasonably guessed) it may be desirable or even 
necessary to think in terms of an adaptive controller, a 
sophistication of optimal control which undertakes to change 
the controllers to offset changes in plant parameters. 

Notwithstanding the great difficulties, many partial 
solutions have been made or proposed. Basically two 
philosophies have evolved. In one a plan~ model and plant 
identification are required together with the ability to 
predict plant parameter changes. The other is more direct, 
requiring the prediction of the system's output at the 
next time interval. Hill climbing is one of the more 
significant theories using the direct approach. 

The ultimate in control systems today is the learning 
and adapting system. In one sense it is a system which 
learns how to adap~ its controllers to give the optimal 
output at all times. In a broader sense a learning system 
must, in addition, be able to develop its own cost function. 
The"Nth Order Self Adapting System" discussed in the text 
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of this thesis does the former and has thus been called 
'self adapting' rather than 'learning and adapting', 
although it does learn how to adapt itself. 

The major and only aim of this thesis is to provide 
a general method for minimizing the cost function. In 
attempting to do so it becomes first evident that a modified 
form of cost function is necessary and then clear that 
many of the problems of optimization are neatly solved by 
a simple form of learning. The particular cost function 
chosen is in vector form and is particularly defined in 

· order to easily and naturally include sensitivity • 

.. 
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I DEFINITION OF THE PROBLEM 

Consider the follm'ling system with 0 ~ ~ o.,., R 

0 
where ~a~ is a two 
dimensional arr,ay of 
operators, including R -t~ t-!.~~) 

-Of" 

----~ ' 
both the control mechanism 
and the plant 

in \vhich -s-('3,,Q)~.t) is to be minimized1 •. To optimize 
the system with R given it is necessary to devise a 
suitable controller such that ~~~~ gives the optimal 
output Q w. and ~ \;:' the optimal cost function. 

An adaptive system is desirable when a number of 
parameters ~ or c..~ of ~ (l ~ are prone to change or 
when the system is in some manner noise contaminated. 

~~ 

The adaptive system minimizes the change in ~ from ~ 

by changing the controllers (see block diagram on next page). 
It is the essence of the self adapting system that some 
rationale be acquired in the adaptor to generate the suitable 
controller changes. In general this will be shown to 
involve the learning of three matrices2 • and the prediction 
of what can be called the plant cost velocity vector. 

Chapter II will deal ~ith the derivation of a 
suitable cost function for learning or self adapting 

1 • b ( T\ A the desired output; R , the input; 

and J'-:::. \:: \-\ ( ~) Q" \;?,t) d-\- , · the cost function. 

C. 
2 • These matrices are ~~ / ~ S , ~~) ~ ~ and 

.) - I ~ ~ where ~ is the forv1ard loop control vector, 
+ the feedback loop control vector, and ~ a 

derived vector cost function {to be dealt with in detail 
later). 
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systems while Chapter III will outline the mathematics of 
an algorithm suitable for computer solution. 

R forward. path 
controller plant 

feedback path 
L-------------~controller 

£igure la. 
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II DERIVATION OF A SUITABLE COST FUNCTION 

This chapter is devoted to deriving a vector cost 
function suitable for the computer algorithm of Chapter IV 
and sufficiently general to cover almost all control problems. 

1. The Vector Cost Function J 
The scalar cost function ~ does not hold as 

much information about the system as desirable. First it 
is a scalar quantity and second it is only available as a 
parameter at the final time t~ . Thus ~ in this 
form is not of much use as a performance indicator in a 
system in which parameter changes are always taking place. 

To obviate these shortcomings it is possible to 
redefine J" so that it has a value for all times i . 

~~ 1 
;rc+\ == ~ \-\(B ,\;).,a.,-\-) J.t-

+~;~o . 
With "J so defined the quantities J , 

d"" J I d"t"" are available {provided the derivatives of 
are continuous) and thus a vector I can be formed. 

~ l "S, 
T 

'S \ '!"2. "\ 1'l,. \ dN~ 

where 

The equivalent problem is now to minimize 
by judicious adapting at intervals b i" apart. 
only way available is to minimize 

~- H is constrained to be positive. 

4 

,. 
"J 

\-\ 
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1-o "t- ( \T l) b.\ 

\ H .\ t- ( ·which is proportional to Jz_ \L:l. i, 6.. "\ )) 

t-0 _. ·~ AT 

which in some cases does not necessarily minimize 

( _ 1" \ the orie;inal cost function ) • 

-'"o 

That is,minimizing ~~~~' does not necessarily minimize 
~ but merely drives the system along the path of 

steepest descent towards a local minimum in the ~' 
surface. This possibility motivates the following theorem. 

Theorem I 
If constraints allow J~\t) to be zero for all 

-T- f. ( \- b '\ 1-+ "). then ll :r' \ i) \\ will remain at one of 
possibly many equivalent minima. Being zero, this will 
be a global minimum of which there will be more than one 
if there is more than one way to obtain le.. =.. a. 

++-t:.. T 

Note that \ \-\cit 
t 

Realizing that 0 .,_ ~Q" '$ , ~ ~"\) can be written as J\ \.'.:!\ 
where \J.. is a generalized vector composed o1' R 
D , + and. the parameters of § .0 ~ • 

Similarly :r~ t ==- ~, A-\) and all other derivatives of J, 
can be written as functions of ~ and its derivatives. 

Picturing the 1, lt) surface as a function of u. \ 
that is , 1,( 1.:.\.l'\)) the shape of the J, ( ~ ~\._\) ') 
minima1 • become v~ry important. Clearly if A~ is the 

1 · ~-<. (t-\ in this case the Y. \.+') that gives the 
minimum · ':!).:;.\ • 
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* maximum change from Y: in time A -t then .figure ( 2a) 
shows the ideal minimum to be prefered to that o.f 
figure (2b) which in turn is better than that of figure (2c). 

'J 
\ 

~~ 

.figure 2a. 

figure 2b. 

figure 2c. 

v.. -



Since 
to direct J, 

~ does change it is not only important 
to a global minimum but also important to 

consider the shape of that minimum particularly in the 
A u neighbourhood. It is here that the concept of a 

vector cost function ~ becomes useful since it is the 
higher derivatives of ~ that indicate the shape of the 
~. surface. 

This is quickly illustrated by considering two con
secutive 

J", 
~J. (t"l.) 

J, ( t,) 

J1 ( ~ \ diagrams. 

I ~ 
'd- (t~) 

figure 3a. 

Suppose ~ ( +, +41-) -::.. ~ ( t~) as above. 
Clearly since J is additive l,l~~\ is as shown above 

. and jl dt is then the same as c! 1, { d_~ 6\..t 1 •• 
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For i-7... ':;:: +, + 6.-\- , the :r, l4) :;>hape may change 
slightly. The "J, minimum \'lill be 1 , ( +~) from figure 
3a. at perhaps a slightly different u" value u.,ll\ t t1j.'). 
Now the best one can hope for is that ~ (-t.._+ A..-t ) will 
approach ~ "f Ct'\) • 

~, t + -::: a.. 

v.. -
~~tt~) 

figure 3b. 

1 ·This is restated in precise mathematical form in 
Chapter III, Section 1. 



Clearly while a first order adapting system might 
continually attempt to set I,!. ( -1-...., +- c.+- ) -=- '-i,. (-\-...._ ~ ~, a higher 
order adapting system would in addition attempt to alter 
the local shape of the 0, l~\ surface towards the ideal 

as exemplified in figure 2a Mathematically this 
merely requires the minimization of the norm 

J rather than the component ~\ alone. 

of the vector 
An"Nth Order 

Self Adapting Systemn vtill minimize the norm 
dimensional j vector1 •• 

of an N 

1 • Such a method will not in general select at each 
step the ~ value which gives the smallest ::r,l "t-) • contend-
ing that the risk be too high • • • • that is, :r, A. T 
and ~ h~~~~ are considered as well as 1 ~, in contri-
buting to ~~\ • A suitable analogy is in the problem 
of two tightrope v:rtlkers racing each other across a chasm 
on a windy day. They must use ropes of the same material 
and both must walk at the same speed along whichever rope 
they choose. If they fall a certain amount of tim~ is 
automatically lost climbing up a safety rope. Minimizing 
~, would entail taking the smallest diameter, which 

being the lightest, dips dovm the least. Minimizing 
I I !. \\ one would select the rope wide enough so that 

a change in the wind would at most give a 6.. ~ "Vlhi ch 
would leave the racer still on the rope. In selecting 
the rope, one barters time for safety or equivalently the 
shape of the minimum (higher derivatives of ~ ) for 
the actual minimum value ~, • 

~ 
~~--------------~r--

rope 1 rope 2 rope N 

The particular rope chosen "Vlould depend on t:. + the 
reaction time of the racers and the expected maximum ~~ 
which could occur in that time. 



2. The Vector Cost FunctiQn_ C7 
Let us first consider dealing with a first order 

adaptive system in which ~. (+\ is to be minimized. Since 
J, -::. :L l ~-. ~ ... <2 , -\) or T, \ ~ \ is generally the 
integral of an integrand which is always positive, it is 
convenient and desirable to replace J, by a vector G, 
whose norm It' G' 1\ varies in a manner similar to the 
integrand ~ (~) • 

Where J", (~ ~ 1 
t\ A..\ ) was once minimized at 

1-o 
constant time intervals, it is essentially equivalent to 
minimize II G' l\ at the same time intervals. There are 
several advantages. Only the same components of \\ need 
be measured but there is ~ times the information in the 

/" ' ·G' ~ cost indicator (if is an ~ vector). 
For example, given that 'J ==- s:~ l~<. 4- lQ- ~ \7. ) ~-t 

is to be minimized, for a first order self adapting system 

r.._' then \J 

-

might be selected as 

o :....D ..... ~ 

G-
\ . 

Here as in many other cases is best chosen such that 
J\ G' t\ ~ 1-\ so that minimizing H G-' \\ is identical 
to sending J, ~i) to a local minimum (also a global 
minimum provided the conditions of Theorem I are met). 

Having thus introduced the vector <T superscript 
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one, G-' , it remains only to define <;;-""-+\ 

G""+' d G-'h A-\- I "'h -.1 t 
and thus G like 1 is defined as 

I G' l 
G~ 

G - • 
' 

l ~N l 
G...... \ 

where the higher orders of , like ~~ correspond 
to the shape of the minimum (or more descriptively the 
'risk'). 

By choice of G , step-wise minimization of 
\\ G- \\ is equivalent to step-wise minimization of 

\\ ~ \\ Note however that for each component of ~ 
J"""' , there is a vector G ~ in G • Also note 

that this growth of output information from 1;-;:. ~ \-\ <)-\ 

10 

to ~ is accomplished with no additional meas~ring leads 
and requires only G- ( t -A.\") be remembered in order to 
calculate the higher orders of G-""" at t ::. t " 

3. The Vector Cost Function ~ 
,-I G Consider ~ the first component of just 

G-
\ 

as was the first component of ~ • 
For the meantime CJ will be defined by defining 

its first component vector. That is 

G-' 

I ~ \ 

where G' is the global optimum ~ having taken into 
account the constraints. In the cases where there are no 



G •¥ 
constraints will eenerally be zero or some easily 
determined constant. Where there are detrimental constraints 
~·- will often be difficult to calculate. However the 

motivation for introducing and dealing with G' as 
,.-I 

defined above is this • • • ·~M=i=n=i~m~i=z=i=n~g~~~=---b~y ___ d_r_i_v_i_n_g 
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it to any of its local minima drives the system to one of 
possibly many equivalent global minima. And it is this 
minimization vThich can be done by computer vri th the algorithm 

' outlined in Chapter III, and in Part II of this thesis. 
Rather than solve the problem of constraints th~ 

vector cost function ~ merely presents the problem in 
a different form. One must provide a means of calculating 

/' I ~ 
~ • In the most difficult case this involves calculating 

the best possible (optimum) trajectory that the system could 
take under the conditions of the constraints. In such cases 

O le- ( A ) where _ the optimal trajectory involves a 
complicated precalculation, some of the advantages of the 
self adaptive system cannot be utilized and the self 
adaptive system works only as an adaptor. However, even so, 
the calculation of the optimal controller is unnecessary 
as the self adaptive control loop, as it adapts, provides 
the optimum controller. 

Note that 

G'~(;-") Q,D ,R \-=:. G\ \ t,O~,\), ~~ \ 

~
~ 

where is the best possible input out of the possible 
~ values. (Note that if '3. were fixed to '3 ~ , 
R~ 

would then be ~ o • ) 

Thus ~' can alternately be defined as 

t"''::. 'r ' """" \ w <? \t, <2,\l,\3) G ( t,Q~ Q ~~ 1 

or c'-



'""' Obviously C is zero (actually this has been 
achieved through definition) which is a global minimum for 
II C..' II . Since G!'.... is a global minimum of G' 

- I 
then C :.. o for all t guarantees a global minimum for 
the S:£stem as a wholel 

Where Nth order self adapting is desired ~\ must 
be extended to vector r::; where 

r ~I ,l r G' l -\ 

' C At' . 
c , 

- l ~-1 :~;;' • 

t.t-1 
•l-\ 

J At 
and J t N-1 (N-t\~ 

G~ - d t; ~-1 
A.t I --At ""- \ 

The computer algorithm of Chapter III and Part II 

will minimize 1\ '; ( +1 \\. 

4. The Desired Trajectory \) <. \-) 
It is essential in the approach that will be taken 

to the porposed control system that a desired output must 
be at all times either known or calculable. 

~ { t) 6.. the desired output. If D is to 
be calculated as some function of the present 'state', 

12 

this 'state' must also be measurable or uniquely calculable 
from some physical quantities of the system. Let the 
required physical quanti ties for recalculating \) be 
denoted as d(.-\-\ • 

It may not be immediately apparent what the 
implications of ~ l ~ \"'\-) are in practice. However i:f \'fe 

regard D as an optimal trajectory of certain (or all) 
states of C) and realize that in general 0 ~ ~ then 
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it is obvious that as frequently as we measure 
Q. a new D ( i- \ may be required. Since 

D 

0 
and 

and D 
will be later evaluated at intervals 4i' 
the set of functions 

--
such that 

apart, we define 

Trying to geometrically picture ~ D:, ~ we can set up some 
sort of closed conical type bounding surface with apex at 

D «) ( +) • An example of the necessity of such a set 
1 b \. ~ is the rendezvous problem in which a ship at 
vector 0 \ "'"'-l ~ D~ \..+-t..\ at. time + ::: +-..:. immediately 
requires the setting of a new optimal trajectory from point 
Q ( t~ \ rather than point D.( 1·)~ C)\. -r:' with perhaps a new 

-~- " - ~\ 
interception point and a new interception time. Note that 
our setting of a new Q~ eliminates some of the unnecessary 
motion normal to Q~-' , presumably saving fuel. 

Example 1 Fixed End Point, No Detrimental Constraints 
(that is, 0")4,::. Q_ ) 

a, 
-v 

t). 
-1.+1 
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Example 2 Partially Fixed End Point, No Detrimental 
Constraints 

9.(+~ 
~ 

--
~~----~D2•+~• ________ , 

Locus of 

~c C +-~t) 

If we regard Q ~ Q_ as error then our recal
culation of D is an essential optimizing step and hence 
the necessity that the function ~ ( 4_, 1-) be known is 
restrictive. Fortunately in many problems QL \\-\ is 
easily obtained. For example: 

(1) regulator problems, 
(2) minimum energy problems with D' _.., recalculable 

in time A-t- , 
( 3) problems '\I'Tith an entirely predetermined D 

given, and 
(4) any problem in which D~ can be found and 

in which 0· in time ~ t can be recalculated. _ .. 
SamEle Problems 

(1) Regulator ••• with plant input R minimize -
J ~-r ~ 0-:::.. R ~ 

~ (_q_-~) ~t- obviously (and CJ as l'Tell) 
Q 

and thus D· _ ... is measurable at all times by measuring ~ 
(2} A parachutist jumps from a plane at a certain 

point ?f.. to land in a target area on the ground ~~ • 
He has calculated where to jump [ ~.) by knowing certain 
laws of physics. He carries a small compressed air cylinder 

• 
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which is all he can use to guide his path. He is to minimize 

the amount of compressed air he uses up to land at ~ + • 
(3) Production from a constant number of machines 

is to be maximized. 
(4) A constant speed vehicle is to cross a body of 

water with random currents minimizing the square of the 
time taken and the integral of the electric current squared 
used to drive the motor which turns the rudder. 

' Note that in the examples ~~~\ is readily avail-
able even though in problems (2) and (4) DL changes. 
In problems (1) and (2) and (4) ot<+> ;__ br.\Y) 
while in problem ( 3) , 0¥ is significantly different 
f~om Q due to constraints. In problems (2) and (4) a 
global minimum cannot be assured since 0"" (and thus 

~' .,.. ( +, ~,"=> ... ~'\and G' ( -\- ,\J, 0~ R.) ) must be predicted. 

5. Optimal and Suboptimal Alternative Solu~ions 
Virtually in every problem the desired output is 

known or can be simply calculated. It is because of its 
inherent availability as opposed to the constraint 
complicated 0!1,4(-t\ that trajectories, w11ich are possibly 
suboptimal, will be tolerated as two of four alternative 
solutions. 
Alternative 1 

Where there are no constraints or where these 
constraints are sucn that · §-'""" is readily calculable, set 

(2-5-1) 

In this case one can expect a global minimum cost function. 

Alternative 2 

Where there are constraints, find in some way 0~ • 



Then set 

l;; :. G \ -r , Q 'Q , ~) - (2 ( t Q *" D ,B.\ 
or C -

(2-5-2.) 

(2-5-3) 

In this case one can again expect a global minimum cost 
function. 
Alternative 3 

0 '1<, 

Where there are constraints but 
too difficult to find, set 

is deemed 

(2-5-4) 
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In this case one can expect only some sort of local minimum 
as Q attempts to follow D at each step minimizing 

II ~t+){\. 
Alternative lt 

It may often be the case that the effect of some 
of the constraints may be simple to calculate or that 
certain portions of the 0""" trajectory may be available. 
In this case ~ may be set as (4a} and (4b} respectively. 
{ 4a) 

( 4b) 

D' 
"'\ - '\ 

(modifying D D \ 
to 

simple constraints) 

(2-5-5) 

to satisfy the 

'G:::: c; (t\Q,b,R_\-&(l-'\Q-4'\\2.,+) (2-5-6) 

(for such '\- 0 ~ 

that is available} 

In this case one can only expect some sort of a 
locally minimum cost function. Intuitively, Alternative 4 
appears to be better than Alternative 3. 



6. Summary 
A vector cost function ~(T) was developed which 

was in integral form. One equivalent cost function \'Tas 
formed from the integrand with each dimension of I 
providing several dimensions in G- • Both "'J" ("'\--) and 
~(+) had drawbacks in that they could only go to local 

minima. A theorem was stated by vlhich a local minimum 
could be recognized as a global minimum. 

To generalize the solution to the problems with 
non-trivial constraints a vector cost function ~ was 
defined with the advantage that its local minima were also 
global minima. However, recognizing that many such ~ 

cost functions could not be calculated four alternative 
solutions were proposed. In two of these 
finding such 'kt functions was avoided 
possibly non-optimal solution. In these 
to be ~ and thus the local minimum of 
as a compromise. 

the difficulty in 
by accepting a 

G \'vas taken 
Cr accepted 



III Nth ORDER SELF ADAPTING CONTROL LOOP LOGIC 

Chapter III will develop the equations to be used 
in the Nth order self adapting control logic. 

In addition the relationship between sensitivity 
and adaptivity will be developed to an extent where two 
sets of system matr,ices ~'.:.. and ~\ can be defined. 

It will also be shown that in general, feedback is 
advantageous and can be effectively used to shape the 

J • l ~ \ ~~ (~ \ or ~' \'-!:) minima. 

1. Adaptive Systems and Sensitivity 
Consider minimizing the function ~ 1 l'0- ( t\ \ 

in order to send -:r 1 (+..\) or ~ to its global minimum. 
Assume that at time t- ") ~'<...+\ and all of its time derivatives 
are available. Since the system is to adapt at intervals 

At '-' b apart, w will e expanded in a Taylor series 
in time. 

Thus 
.. \ <. 

+ c ("\') A.-t- + ... (3-l-l) 
--- -

Clearly II ~1 ('\-+h.t\\\ is minimized when the norm 
J""-1 ~' -...-\ of the R _ \-\. ~.. is minimized. If _ - 6.:\ (~-\ \\ 
~'"--\ ~ 

~-is recognized as ~ defined in Chapter II, Section 3, 
then equation (3-1-1) above can be written as simply 

(3-1-2) 

It is obvious that minimizing will thus 

.18 



minimize1 • II ~' ( + '" t:.. I'\ II . Thus the Nth order self 

adapting system in minimizing 1/ L; t\- \ II actually 
minimizes the first N terms of a Taylor expansion of 

C' +-\- .t.. '. (and thus the first N terms of the Taylor 

expansion of J', ( t- +- ~ + \ ) . 

19 

If r::l- is defined as 

parameters then C 1 lt- "'t- c."\'\ can 

series in the two variables 

the vector of 

be developed 

and + . 

changing plant 

as a Taylor 

Thus 

G'(t::~ \ ~ ~ 
~ 'C I c' 

A-t 1 = - ~el.. -+ ~-- --
~ ~ -~-\-

i--c' Aol..c.. ~"i~ 0.~6..+ 
~c..~\ A.t'" } + -- - -\- -~~~T ~~ ~""\ ~-\-~ ~ 

(3-1-3) 

( r- '-- ,, y... If at \ t l ~ ) , ~ u then it is guaranteed by 

G (+\ ; ~ that the time derivatives of ~ at T 
are zero whence equation {3-1-3) above can be written 

G' t ~ +~ \ +-t- ~-\-\ =- ';' -\- ~~' t:..,d- ""Jz.r; b.~,_+ et-c. {3-1-h) 
<lot ~~"L "(!:... \ 

which merely expresses mathematically that t; \++AT\ 
drifts away from 1; ' '*" only through the change of the 

plant parameters ~ 2 • in the time interval { 1- , t- + ~ "\ ') • 

1 • This can be proven as follows by noting that 
II t' \\ ~ \\ ~ l \ is an identity (triangle inequality). 

2. It is important to realize that this is true 
only if no new adaptive measures have taken place in 
(t' "\--\-t:.."\-). 



By comparing (3-1-1) and (3-1-4) 

~""' \;. \ ~ d ""-\ G' b-:1" ..... .t>..;:!:: \,;;}- --. > '0 - (3-1-5) 
~cf.... "'"' """"\ .ti~ -;:::-\ 

• .. 
This can be compared with the geometric interpretation of 
figures 3a and 3b in Chapter II, Section I which led to the 
equivalent expression 

"""'\ . 
It is at this point the sensitivity matrices S' 

-::::...._ 
can be defined ' . • • • looking at equation (3-1-5) 
define the Nth oroer system 

S' .!:::::. ~"" ~\ l i-) _ ..... -
~co(. """' 

For completeness define 

\ 

11 S' ll ~~ - .......... 

,..._, ~' I ~~ and s""' =-""' 

sensitivity matrix as 

the double bars under a 
quantity denotes a two 
dimensional array 

Now introduce the parameters c. the set of 
controller parameters. These, like ~ , appear in the 
net system operator 1~~ (Chapter I, page ) and 
therefore, like ~ , are a part of the generalized 
coordinate vector I.A. {Chapter II, page 2. ) • In an 
adaptive system these must be calculated so as to cancel 
out the effects of ~~"" b.~.....,_\ in ~~ ~ \- +- ~-\ \ • In - "")\ 

writing ~ ~' one cannot merely write -
~"' 

- ~ \:' d ~ -\ ~ d-\ 

{3-1-6) --d.+ 
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Certainly the preceeding equation is correct. However, as 
a consequence of the finite time between adaptive decisions 
one is forced to use the following difference equation 

(3-1-7) 

1:.:, 

If \ I ' h A.~' b S \. ~ , <::. ,) -= ~ t en must e set 
to o also. This can be accomplished only by 

(3-1-S) 

The Nth order self adaptive system attempts to satisfy 

equation { 3-1-S) for <. -= ' , '"L \ • - • N. 
\ Here it is useful to define the system s 

adaptivity matrix ~' 
-:::. t 

A'. 
-=-t.. 

, +\.. 
(.. 

Introducing the symbols A.' 
'=" 

and S \ 
~~ into equation 

{3-1-$} one obtains 
. 

A~ 
. 

~ .' I... c... 

1:::...""" e::..c 
- c. ==~ 

(3-1-9) 

to work \rlth equation (3-l-S} 
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Unfortunately it is awkward 
or ( 3-1-9) except for L. = \ 
L = \ alone, however, gives 
Fortunately the difficulty is 

• Satisfying t3-l-$) for 
only the first order adaptor. 
avoided merely by extending 

h '-_' to c-_ t e sensi ti vi ty 0 .;) 

-r-_ ' ~ were extended to ! 
..,. <2:.' just as ~, , and 

~ and ~ respectively. 



Thus in defining 

'S - ~~ --~d-. -
and 

A ~1:::. 
::. 

::: <-.s. 
for ~ =- [-c' L~ ____ cN\l 

- ":> - "\. J 
one can assure Nth,order insensitivity and Nth order 
adaptivity by 

(3-1-10) 
::. 

That equation (3-1-10) and equation (3-1-9) are indeed 
equivalent can be seen by merely noting that 

implies that 

~--6._ ~ ~=-\\<...---~ 

but the 
• t'... 
l term of equation (3-1-7) can be recognized 

as ~ '; "\'\ whence 
, 

1\ ', (.. \ \, 

'to;.-::.\ "£. s.. 6,.~ - b.c:.. - - - ~ 
::. 1.. - " ' 

Hence for 'G. and N vector and ~:::- Q then 
-::. o implies ~' (1-~ ~ "'\') - 0 

to the N +- I s -r term of its Taylor expansion! 

2. The Effect of Feedback 
It is the purpose of this section to investigate 

the effect of feedback on the cost function ~' • The 

Z2 
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inclusion of a feedback path with operation matrix f~~ 

(Chapter I, page l ) will be justified on the basis of an 
improved system sensitivity ~ and better adaptivity. 

For simplicity the subscripts I= and N F will 
be used to denote the feedback and no feedback cases 
respectively. 

Recall the block diagram on page 3 of Chapter! 
which is the closed loop control. 

. 

R 
~Of' t\ .. r ..... 

-'~" I 

0 

t: =-or 

By inspection 

(3-2-1) 

Where exists 

-\ 

~ \_ ~ +- ~()~~~\'~C)\'> J ~Q ~ ~~ p R 

whence can alternately be defined 

( 3-2.-2} 

Recall that the sensitivity matrix ~ is defined as 
4!; / >r ~ {Chapter III, page 2.. ~ ) • Since L depends on 

<:J.. only through 0 ~ ~ can be expanded as - ' ~'.!:... 
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--
Since d w I~ a is independent of the type of feed

back used, it is useful to define matrix ~ 

f'J\ ~ ~~ -- \0 (3-2-3) 

whence cs. ": (\.,\, ~0 

- 4d... 

To find d.D / .\ '!:_ it is necessary to take the 
derivative of equation (3-2-1) with respect to ~ 

L ~ "'" ~a~Sa\" ~a~1 0 C2f ~~ + ~~~ ~'~Yo~() 
\'!--

• 

- -a ~Qo~ \_u~ ~ (3-2-4) 
I -

~~ 

Manipulating (3-2-4) in order to use (3-2-1) to remove 0 

one finds finally that _, 
s-0 \) rn~} ll-\- !:.,~so~ ~Q~j \~~ 

d~ 

(3-2-5) 

·~ I where ~~~ ~~ might be regarded as the fundamental expres-
sion of the plant sensitivity alone1 •• 

1 • Note that c)~ol" I~~ (which might be called 
the plant sensitivity) in some cases is calculable if ~ 
is measurable. However such a definition of sensitivity is 
too limiting - first in that it is fixed, secondly in that 
it is not the system sensitivity (though related to it), 
thirdly because it yields no information whether or not 
feedback is to be preferred (and if so what type of feed
back operator) and fourthly because in the adaptive system 
it is not ~ !:_ .. t- I .\ ~ which is required but ~ !:"'" I~~ ~..A.. 
where A~ is not known but must be predicted (--one 
may as well then predict ~~<>~I~~ A..~ in its entirety 
as predict A~ " both being a vector of the same dimension). 
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In the open loop case consirlcr the following block 
diagram. 

j ~. 11--0 
.___ __ 

\ 

Since 0 must still equal ~ o~ 'R. , ~ .,~ cannot 
in general equal ~ "t> of the closed loop case and so is 
primed. 

\ 

Differentiating Q -= ~o~ S:ot-- R. {3-2-6) 

one quickly finds 

j Q ~ d ~'" <;~f' R 
~(>1.,· ~ -

- d"f:: 

(3-2-7) 

I 

Using equation (3-2-1) to replace ~o~ 

by ~o~ at length, one obtains 
in (3-2-6) 

-
( 3-2-$) 

Define now L 

L A (3-2-9) 

With the combined difficulties of operator mathe
matics and the rules of matrix multiplication, the best 
that can be done with equations ( 3-2-5) and (.3-2-8) is the 
follo,'Ving. 1 • 

(3-2-10) 
M 

1 • These few equations contain a wealth of infor
mation and are certainly worth a study in more detail than 
\'lill be gone into here. 
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or if can be defined, then 

(3-2-11) 

Of more immediate interest and more easily under-
stood is the relationship between the first order 

I I 

S and S 
= "'~ ::: ~ 

sensitivities • Recall that 

whence 
I I I -\ I 

~N~ = ~ ~- [\ + ~af' ~V~ ~~?1 ~ ~I ~ ~~ ( 3-2-12) 

I cl 
S =- 0 - /~ o<- relates the effect on the cost 
::. -

function G' and ultimately the effect on the original 
cost function. of changes in the plant parameters ~ • 

If G' was selected as alternative one or two, 
(Chapter II, page 15 ) then ~I will relate to b.:!::: 
the change in 'J ( ;r::. r+ H Jt) from a global minimum. 

"r._ 

G1 

was chosen as alternatives three or four, then 

If 
s' 

will rei ate to A~ the change in the integrand of "J -

that is, H - from a local minimum. 
S \ s What is lost in using instead of is a 

little accuracy synonomous with truncating a Taylor series 
in A~ after the first two terms. However, for the 
purposes of this section -- comparing open loop and closed 
loop systems -- such an approximation is a simplification 
which will not in the least bias the conclusion1 • of this 
thesis and which will allow a little more light to be shed 
on the subj~ct. The reason is simply that t)' A. ~ L' / ~ D 

"', 1 • The higher order sensitivities ~ .... bNF/~~ ..... and 
~ ~~~~~~ are related by similar expressions but involve 
higher powers of L ~ + !;oi> ~.,~.»f.." j . 



is liable to be a square matrix with a unique inverse 

whereas tj ::. d~ f d ~ is liable to be a rectangular array. 
Returning to equation (3-2-12) note £irst that the 

bracket can be multiplied out leaving 

' 
~F (3-2-13) 

I -1 - ,-\ 

which in the term ~ ~ gP ~ "\' t•" b ~ 
shows clearly that 'the relative sensitivity depends on the 

I 

cost function (through ~ ), on the plant sensitivity 
itself (through k ) , as v;ell as on the presence or 

absence of feedback (through ~t ~ ot> fo" ) . 
While it would be nice to say that the relative 

sensitivity was due mainly to e .. p s"',. f.,t- it must be 
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pointed out that it is only in cases where l~' ~' \ l ra~ sc-.~ Fe.~) 
is non-rotationa11 • that ~' ~-' B,(> S.~>r ~~ ~ "-'\'-' 

--
can be set equal to ~~(' ~~f" f" «~ \" • 

Where [ .r ' •- ,-, "\ 
.... + ~ ~- fop Sl)~ F .. ~ k ~ J 

operating on ~~ yields a matrix sensitivity ~N~ 

whose norm2 •, l/ ~ NF 1/ , is greater than I I ~ ~ f I then 
feedback is to be desired. This inequality can be often 
obtained by proper selection of ~op and .f .. " which 
are arbitrary to a certain extent. To ensure that feedback 
is desirable the following two equations must be satisfied. 

R (3-2-14) 

< (3-2-15) 

1 • Non-rotational for the sake of this paper will 
be defined as: ~ ~ is non-rotational iff . ~ ~ _ ~ J::>-. 

-- - = • 



Since these are merely two equations in the two 
unknowns ~.p and FQP there are only the unstated 
physical realizability conditions and the few systems 
where ~ and ~~ are such that equations (3-2-14) 
and (3-2-15) above are inconsistent where nothing can be 
gained by using a closed loop control. Even in such cases 
the open loop can be treated as a special form of closed 
loop in which ~(> 9 -=: £ • 

The following example is intended to illustrate the 
comparison between ~ ~=" and ~ ""~ for an extremely simple 
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case in v-;hich lj' M' ~' L and L-1 are available '":.. , = -
and in \'lhich fo~" ~oe and f<lf> are one by one 
arrays of constant operators. f o~ and ~ .. i" vlill be 
chosen to satisfy (3-2-14) and (3-2-15), with the 
resultant choice of negative feedback for an inherently 
less sensitive system. 

Example 
Given a plant with parameter vector t1- ::. L q.. 1T 

with given gain ~-= V--0. and J =- s:.:'" (,_~ ~- () \ ""t. ~"" 
design the system least sensitive to changes in ~ • 
First select G..' = ~ ~ - 0 ·~ ~' K = 9.. 

thus ~\ - >.R -Q -
and ~\ '=- ~~· \ ~\ ~Q -\ ~Q - ..::=:: -= - .l.~ \ d.. <!:>~ \0 

Hence . ~\ -=-\ and M'-' = -\ -
With the following closed loop control 

.lGJ I~ 
- [£]..----' 0 



Furthermore 

- '1.. 
Thus 

Whence 

~ t 1_ _,_ ~\ ~-' ~'\';.~\'I'{> ~ ~, _, l 
= ~J ~ f:t ~a~f4~ J ~ \_ 
~ ~ + 0.. C. t 1 ~ \F 

I 

With the one dimensional sensi ti vi ty ~ is 1 x I and 

thus {3-2-13) becomes '5 =.. l' +- <1-.. c -\.-) s 
~~ ~ 

Clearly, provided tA. <- ~ ;::> ~ or oJ.... c..-\. <_ - "2... 

• 
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II~~/!<.\\~\-\~\\ . The conditional equations,(3-2-14} 
and {3-2-15), can be seen to have simplified to selecting 

c and ~ to satisfy1 • 

lt + "''-~ t > \ (3-2-16) 

and 
(3-2-17} 

and perhaps the additional constraints ( c \ , \ + \ ~ lo 

For example with A=- 10 and ~,:::4.,c the problem's 

solution calls for c: -= 1 () and + =- - o 9 s-
which maximizes l SN\'="\ (\"S ~ \ and keeps D "'- ~"£> t_:: -=- ')... ~ • 

Thus with I c \ ) t ~ \ ~ 1 ~ '::I ~ =- 1 ~::~ , and the 
nominal value of cJ.... = z..o , equations ( 3-2-14) and ( 3-2-15} 

yield a closed loop system with a gain of to with '/~c 

the sensitivity of the required open loop system. 

1· Note that I It-o~... c_-\ b \ can be satisfied by 
c(, c.+ < -2- which corresponds to positive feedback. In 
such cases, provided equation (3-3-2) can also be satisfied, 
even positive feedback is preferable to the open loop system. 



To sum up this section, feedback systems are 
preferable to open loop systems provided the controllers 
Fa~ and ~~~ can be selected to satisfy 

\ I 

\\ ~ ~ \\ <_ \ \ $ NF \\ 

0 ::. S;." p ( ~0\l' t~c:- '~\'") R 

s." (> 
~ ~ allowed set of Sor \ (3-2-18) 

[.,~ (: ~ allowed set of 1=· 
-=-""~ ~ 

Furthermore the general block diagram of the self 
adapting system should be a feedback one in that the open 

loop is the special case • • • • f.,. P Q """' ':? • 

In so far as adaptivity is concerned note only that 
a reduced l 1 ~ ' I\ implies a reduced ~' A d-... and a 
correspondingly reduced 6' ~ mirrored in a practical 
sense in a smaller adaptive change Ac and a smaller 
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Taylor series truncation error in A~' , that is, a smaller 
difference between infinite order adapting and Nth order 
adapting! 

In terms of the geometric interpretation the 
(""":. I meaning of a smaller ~ is clearly a smaller value of 

e-1;' I.£.~ • That is, the slope of the 4' (t:i '\ minima have 
been reduced in the directions to 

3. The General Adaptor Equation 
Having defined ~ and ~ and introduced 

the "k<-,.~) control surface it is a simple matter to write 
down the exact {continuous) adaptor equation. That is 

J..G - i-~ c\~ + ~w .d. c. t- \G ~~ -1- ~~ l~ - -~~ .\c. ~-f c)\:) 

-\- ~~ ~~ 4- ~'8 ~t {3-3-1) - -~~ ~~ 

with G (_t--t-.to-1-) == ~\t} '1- ~G 
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Due to the finite adaptor logic decision time, 

must be written as A~ below 

A. ~ _ ~~ b.:!- + J ~ ~ '-- + ~ ~ l>. ~ +- ~ ~ A. b ~ ~ ~ A~ 
~s - ~s ""'" ~\_, ~ 

4-~~ ~-\- (3-3-2) 
and ~ \-\- + ~-\- \ -::::. 1:; \\--\ + t::.. 'W ~,_ ( 3-3-3) 
Note that this is only a first order Taylor approximation 

to u . However for ~-= l C 1
, ~ 2 > ____ ~ ~ 1' , 

it is equivalent to an Nth order Taylor approxi~tion to ~ • 

And it is C' v-1h'ich is related to the integrand of the 

original cost function ~ Hence equations (3-3-2) 
and {3-3-3) above will be called the Nth order adaptor 

equations as these provide for Nth order adapting of ~ 
in the function C ( '=-) • 

Consider separately the terms of (3-3-2). Clearly 

~ ~) ~c:J... ~ ~ can only be predicted since t::..~ is -unknown. On the other hand ~ ~ b.. c and t:.. R are at 

our disposal and the reaction of ~ to each of these can 

be separately found by setting 6.3, ., !::::..<. ~" 1::::.. K and 

measuring l:l..U • With G = ~ ( \3 .. o. ~ --~ \ 
given then ~ ~ J ch 'l::::. is given and if ~ G 1 ~"\' '~ 
then ~~I ~ "\-- is also obtainable from L ( ~ Q ~ '\-) • 

It can be seen then that the Nth order -;,~l,f-"" 
adapting system implies a first order adapting of the derived 

vector cost function t:l • The method involves: -
1. prediction of ~~I~'!:- 1:,.~ , 

2. updating the matrices 'erG/~~, ~C.~~~ and~~/~~, 
3. calculation of ~a;_) 6 ~ and v-1here applicable 

~ ~ I .\ -t from the given function ~ , and 

4. setting 4.-C; and ~<:... or where R is not 

necessarily fixed setting A~ t:>..C:.. and 
~R • 

Putting equations (3-3-2) and (3-3-3) together and 
defining ~ t::l /~ ~ ~ ck .b. % then the self adapting system 

minimizes {/ G ( -\- "\- ~--\-.) \\ by trying to set C.(+,_ b.:\\:::. ~ 



as below • . . . 
~ l++b..T\:::. Ca_\-1'\ + A~ 

~ (i-) +- B -+- ~\;; A.~ +- ~- ~ ~~ 
..\c.. IT 

+ ~"G ~~ -\- ";:)~A~ ~ ~ ~\- - (3-3-4) 
.,) t::. ~ B. 6-\-

• • • • by setting and and/or 
One of many possible implementations is shown in 

the following section. 
To sum up this section, the adaptor 

requires: 1. measurement of G and R 
2. prediction of 8 

updating (learning) of ~I:. 
3. ~~ ' 

and 4. setting of be. and/or A.{. 

to minimize II ~ l +-t- b.'\-) \ \ 

algorithm1 • 
and l:J 

~~ and 
\,'G. 

.c!.,J; <t.= 
and/or .c...R. 

• 
The heart of the algorithm is the adaptor equation 
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"y (t- .._~ "\-- \ - 1::4 l '\- \ + ~\4 b~ + ~ A, C... + ~GAR 
--=:. 
~~ 

c)c_ ).~ 
-

+- B -\- ~~ 4~ +- ~w b.-\ (3-3-4) -- ~..,. ~'==' 

4. A computer Algorithm for ~lamenting_ 
the General Adaptor Equation 

The adaptive system that was chosen has six 
different loops. In each the function G and R are 
measured, ~ calculated, and ~ predicted. In each 

1 • A specific way in which each of these can be 
done is outlined in the next section and given in detail 
in the actual computer program~bf Part II. 



the adaptive controller changes1 • ~ S:. c.- and 
are calculated. The loops differ in the actual 
in £_ and ~ that take place, AS:-..._ 

Loop 1. 
Learn ~ ~ I d. ~ 

s·et\ A.+ and Ac to l::J 

that is .~:.._S-...._ and D.~~ =- ~ 

A\: - (), 

2 changes • 

and A~ _....._ 

This allows the adaptor to relate the change in 
from the expected value < \,; > to be related to • 
Each time the adaptor cycles through loop 1., the ~ +~ 

row of JG /'cl R is updated. The particular equation to 
be used is 
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... \<.~ = \ b.; '- < 'G ~ '> \ - I 13; - <" ~ '7 I ( L <. _ z c, • > ) 
1 G~ - ( Gt. > l-+ \ ~ .. _ z. ~;.. 't \ 

;._ ~ I '<. ) . . . N ( 3-4-1) 

where 
matrix 

~~) /'¢ ~ is the new value of the ~t"'row of the 

and 
and 

Loop 2. 

~ 9 I ~ R 

expected value of Quantity 
average value of Quantity 

Adapt A\ then A c.. 

set A C' 'll'- to ~';:.. t~ 

1 I ' • Subscript ~ denotes adaptive. 

A -
A 

2 • Subscript 'A' on A.~ and A.<::.. denotes 
actual changes that are to be made in ~ and ~ 

the 
• 
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This means that the controller adapts completely to 
minimize I/ ~ (-t"'" Cl... i- \ (\ • 

Loop 3. 
Learn 

At'(' ::. Q ~ ~S:. ~ = ~+\..,component of .c:,.<:-"t. 

This allows the adaptor to relate the changes in ~ 
from the expected value to be related to ~C~ and allows 

~ 
column of ~ 'G to be updated. the 

~£. 

- I c '- - < c "'t \- \ ~~ -'\B <-? \ ( G~ - ( C;./ ) 

} C ~ -\ L.:.)} + ( .Bi _' 'iS:~ { \ 

(3-4-2) 

Loop 4. 
Adapts A.!:::. then A.~ -

set A£ 'f' -=- A ~ ..._ and then 

Again the system is adapted. 

Loop 5. 
Learn ) r; I ~ £. 

A_5: 'l -=- ~ ) A£.'("::. S +h component of AS:_...._ 

This allows the adaptor to relate the change in ~ 
from the expected value to be related to A~ .. and ..... \ 

allows the l t\. column of _.S to be updated. 

~.f. 
--"t"---

= \t:.c- <C..:)\- \~,-<B:/\ (G;_-<.G,)) 
I 'G'- - <... 'G ~ ) \ ~ \ s~ - <. '5~) \ 

(3-4-3) 
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Loop 6. 
Adapt then h.c: -

Set and then 

Again the adaptive loop is adapting. 

The adaptor recycles the loops each time incrementing 

~ , adapting at. intervals of 2. t::.. ""\ , and updating 
the entire matrices ~ B I ~ R , J~ I~~ and 6 'C.l I~ -t at 
intervals of the order of ~ N A.-\ seconds. 

With parameter changes with a period of b N A-\-
or more the learned matrices, if stable, can be expected to 
be very accurate. Where ~ changes with a period less 
than -" N A. "t these matrices, where stable, can be expected 
to have an accuracy better than \6. '6- \ /\ tJ.. \ leading to a 

- '2. 
second order error in t:l {of the order of b.:!:: ) • 

This results in the following block diagram. 

controller 
reset 
leads ,l-o 

r --· 
I calculate measure 

I 
-L_ -learn and adapt block 

I 
I 

'measure 
leads 

plant 'v 
controller _... 

'I\ Po(" 

, - ~Q~ -

0 

controller 

f,~ • 



The 1learning' and adapting block can be expanded 
into the following block diagram. 

Learn and Adapt Loops 

Learn 
Adapt 
Learn 
Adapt 
Learn ci~ I ~ ~ 
Aaap-c 

~reset controller leads 

Common 

Store 

Measure 

36 

I 

I 

I 
_I 
0 

The controller section marked common, including 
storage, prediction, and responsible for the various required 
calculations and measurements is a problem in two ways. 
First the method of prediction vrhich best suits a system is 
dependent on the way in which varies. Second, with 
any computer, there is often both a time factor and a memory 
factor in dealing Hith a large number of stored events. A 
simple method of predicting B and a - z. ~ '?' which 
is a compromise between statistically varying A values ·· 
and regular time variation ~ values and which in 

addition eliminates the storage problem, is the following: 



+ ~\> AC... "\-- e:+c.. (3-4-4) 
ii. £: Bl"'t) A 

13 (+') A 
- K 

~~ 

'B~\- <.~ ("\--")'> 

K -\ 
K 

<. 8 (t+6..t)) = !S_:_\ B (+-\ 
K 

where K is an integer >,. \ 
iii. E R(:t\ 

- ¥-. 
K-\ 

\<... 

t~(+) I K 

(3-4-5) 

+ E\5.(+\/K 
(3-4-6) 
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With the above definitions the 

{3-4-1), {3-4-2} and (3-4-3) becomes 
R. \-\. S. of equations 

8~lt-) \ - \ E.B'-( 1-)v-. \ 

8~ L T-) \ -t- \ t:. B, \.+\ \ 
"' K 

Note that equations (3-4-4}, {3-4-5) and (3-h-6) require 

only the storage of h ( -t) ~ ~ t "'\-) > ) E" g (-t) , c:e, ~ ""\"- ') "'-
~(+) ') < B l i-) > and Bl ;- \ K. • Thus the memory " 

problem and minipulation problem have been eliminated. 
Note as well the introduction of the integer 

parameter K v1hi ch is used in such a manner as to 
weight the contributions of recent values of ~ ( + l and 
E B t "i-\ more heavily. In systems 1.1i th slowly varying 
~ it is clearly best to use K= \ . Essentially 

what this does is to set 

< ~ ~"'"A.-T\? -=- ~ L""\ .;- -6. l"\") ~""\; 
(where B ( +-\ ~-t = E ~ (_'\)). 



Where K > \ 

< ~ t+1 ~+-\ / =::. Bt-1-\K + 

3 (+) 

" 
( where 

Looking at expressions (3-4-5) and (3-4-6) 
~ ~ ~ has the effect of a non infinite memory average in 
which events at t- - T are weighted in the averages ~ ~ 

and ~ K by a factor ¥ ) 

'( I K~\ J T;A-t 

Clearly J< values > \ will be best suited1 • to 
random systems vlith changing values of ~ • 

For totally random \1-... the self adaptive system 
can only give the optimum comtroller for the predicted value 

of .J... (_ ~ ==- ~ \< J . 
This completes the outline of the Nth order self 

adapting control logic. It must be pointed out that while 
the elements of storage, prediction, learning, measuring 
and calculating are necessary there are many ways of , 
including them to perform the same overall function. The 
actual implementation of these functions shown in the 
block diagram and outlined roughly in the text is hoped to 
be close to optimal in so far as accuracy, general 
applicability, and computer decision time are concerned. 

Part II, to follow, is intended to demonstrate the 
applicability in practice as well as in theory. 

1 • The self adaptive controller is relatively 
less and less effective as the frequency of A~ 
increases. 



5. Summary 

A general sensitivity in matrix form has been 
defined for the purpose of this thesis. It has been sho~m 
that the control system should be closed loop provided 
that the conditions of equation.(3-2-18) can be met. The 
control logic has therefore been developed to accomplish 
Nth order self adapting for a closed loop system with 
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feedback path controller 

~ bp 

f,P and forward path controller, 

It must be pointed out that there has only been 
heuristic argument for the actual implementation of the 
essentials learning, adapting, and predicting as represented 

in equations (3-4-1), (3-4-2), (3-4-3), (3-4-4), (3-4-5) 
and (3-4-6). Others, with as much justification, might 
decide to refine the equations given1 • or develop entirely 
different ones to suit special known properties of the 
variation of ~~ in their particular system. If the 
computer memory is given or assumed infinite a best 
prediction method can be found as a function of the type of 
statistics that Aot:... obeys. Most of these methods can 
be found in texts or papers dealing with prediction. 

1 • and to be used in Part II, Chapters IV and V. 



FART II EXPERIMENTAL 
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IV ADAPTIVE SYSTEMS AND FEEDBACK 

Chapter IV demonstrates the desirability of adaptive 
systems and in particular adaptive systems with feedback. 
The experiments were performed on an analog computer using 
the author as the 'learning' and adapting loop. 

1. Experiment l 
Description 

Experiment 1, deals with the system described in 
Chapter III, Section 2. A plant with nominal transfer 
function ~f=~o is to be regulated in such a way as to 
minimize - J :,_ ~+-~. ( )...R- o\~ Jt • 
A will be taken a~'t\ 10 and R will be taken as 1 

The open loop nominal optimal controller is simply 
Cl:::: 

c':: '/a.. ""- <:>p 

R=t c I 
c.' ~f' ::::. t:>£.. 

a.:_'>-
':::.. -::::. ar 

c' ::. o,c:;: "' 
; 

- ~t) o:._ 

I 

For the first order adaptive system it is obvious ~~~ 
I 

should be varied such that ~<>~ _f
4

f' = 1 a • That is 
c~-... b.. c.' -=- - c 

1 
b..,~.... . But this is just the first order 

adapter equation2 • developed in Chapter III, Section 1. 
(See any of equations (3-1-8), (3-l-9) or (3-l-10).) 

l 

In table 1, page 4 3 , are listed the Y values 
normalized to a 10 second interval for: 

1 • In this 
G I ::. A.R - 0 - .._ -- . 

I d \~ problem <;! ::::. >.- R - ~ an ~ ==-a whence 

With R =- 1.. ") ~ ~ '/ ~ rf: :: <;_ ~"' and 

• Thus ( 3-1-10) becomes eJ.. ~ c 1 :. c.' .n. rf..... • 
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C
\ 

la Open loop system with -=- "'f 

optimal value . 'S" 

42 

fixed at the nominal 

lb Open loop system with ~~!}~ adapted to minimize 

1\T:;. \\ (=fto- o\<:··). 
2a Closed loop system with .fa. of> and fo~ 

fixed at the nominal optimal values..., ro and .o9s-. 
2b Closed loop system with \;··~ fixed at its 

optimal value and F. adapted to minimize = Op 

II 'Q.// • ' 
The optimal closed loop controller as found by 

equation (3-2-18) gives C ::.c. = 10 , its maximum value, 
': c.\" 

and F ::::: .t at • o as • 
. ,,:";> I 

- I -
R =- I c "" c.. e'op =- r:J... D I ::: <>t - 0 

-

-
c.. ::. 10 I><.._ -::= (() 

F 
::. 0~ - \' 

~ 6. .o,s 
The values for the above system were 

measured for ~ "'Y' .=, ~:::> and fof = .c ~s- which is the optimal 
controller for the nominal value of o'\. -=- Z..t> • 

The system was then adapted. Equation (3-2-18) 

indicated that ~or should be kept at its maximum 

value and l\ t:; \\ minimized by changing :f .. t • 

Conclusions 
There were really tvm objectives to performing the

text experiment. In table l, two distinct comparissons 
can be made in order to demonstrate: 

1. that the adaptive controller is significantly 

better than the nominally optimal controller, at 

least for a low frequency change in , and 



2. that the closed loop optimal control yields 
significantly smaller "J" values than the 
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open loop roughly by a factor1 • of ( 1 +- o.. ~ <...)a. • 

Data 

la Open Loop N-ominal Optimal 2.8 

lb Open Loop Adaptive .04 

2a Closed Loop Nominal 9ptima1 .14 

2b Closed Loop Adaptive .0014 

table 1. 

.., 
2. Experiment 2 

Description 

Experiment 2 was essentially the same as Experiment 1. 
The difference lay in the plant which varied in the following 
manner ••• 

plant 

p .=. 
,Pf' 

10 
~ + al,. 

where ::. 

1 • The quantity ( \ -t- eJ-.. c..-\ \ <;:... (related to 
. [_ f -\- ~..,p \:"~'.,f:P] of equa~ion ( 3-2-18) ) is squared as J 
~s proport~onal to the ~ntegral of ~ squared. 



Experiment 2 used two values of b. d( ( +) 

( i) A o(... l-t-'\ - • 2. ""\ t\ t I?~ T\ 

( ii) A "" ( t) -= square wave with amplitude 0. 2 
and frequency of 1.0 radians per second. 

Conclusions 
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The results, tabulated in table 2, lead to the same 
conclusion as those in table l. The order of the plant has 
not led to any difficulties. On the contrary the plant acts 

' 
as a filter to its own high frequency parameter changes and 
enables the system to adapt reasonably well to a square 
wave parameter variation. 

Data 

r-------r--------- ----------,-----------. 1 ( +,~\~ 
A.t;~...(t) Case Jo::j(O-rc.R.)~.a-

:b 
• 2..A I . 

. ?-JV I. 

.~Sl_l. 

·~ \, 

. Z.J\; I. 

. 'C...J'v L 

.3Jl_l. 

.g-\__1, 

-· -- -- '"• "'--"""". "" •'" '" ··-·· 

Open Loop Nominal Optimal 

Open L9PP Adaptive 

Open Loop Nominal Optimal 

Open Loop Adaptive 

Closed Loop Nominal Optimal 

Closed Loop Adaptive 

Closed Loop Nominal Optimal 

Closed Loop Adaptive 

table 2. 

2.5 

.05 

10.2 

1.2 

.14 

.0015 

1.1 

.13 

1. tr n 
.. 2. J\; 1. o indicates sine wave with fractional 

amplitude ( of ~ ) equal to .2 and radian frequency of 
w ::::.. \,O. n .a. _fl_l.o n indicates square wave with amplitude 
• a o<.. and radian frequency w :. '. o • 
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~ Summary 
From Experiments 1 and 2, it could be concluded 

that adaptive systems (the examples were first order adaptive) 

were superior to nominally optimal systems. Furthermore 
both systems showed improved behaviour in the closed loop 

configurations. It was also interesting to note that a 

square wave variation in ~ could be better adapted 
to than might have been expected. 

' 



V COMPUTER IMPLEMENTATION OF THE GENERAL ADAPTOR EQUATION 

A. plant~which is given below)was chosen to test the 
theory of Part I for the case of first order self adapting. 

A number of different tests are made on this plant 

R fixed, R varying, open and closed loop adaptive, 
open and closed loop nominal optimal. For each case the 
appropriate system matrices must be learned. The full power 
of the Nth order self adapting system is shown in the way 
that the system starts out from extremely bad initial 
controllers, 'learns' the matrices c)~/~c , ~G / ~ .t. and 
J ~ / ~ R , drives the controllers to th;ir optim;l values 
and then adapts to changes in either ~ R or D 
Note, too, that this will be accomplished knowing nothing 
about the plant except that it has two inputs and two 

outputs 1 For this particular plant, with R fixed, it 

will be found that once the appropriate matrices are learned 
that the entire learn and adapt loop may be replaced by a 

passive network of only four potentiometers and two adders! 

1. Statement of the Problem 

Given, a plant with input C and output P 

Pll=lOO. 

C(l)-t 

C(2)---+-l 

P2l=-l.+.5 sin 5.5t 
SPll=lO .+2 sin l.O t 
SP21=20. 

Pll 
s+SPll 

P2l 

s+SP2l 

Pl2 -+----P(l) 
s+SP12 

P22 

s+SP22 +---P(2) 

Pl2=l+. 5 sin 3.0.t 
P22=100. 
SP12=20. 
SP22=10+2 sin 2.0 t 
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Required, that J~ ('\P-\;l)·(f-l;:>)H be 

minimized \'lhere D, = 3 and ''Dz.-:: S • 
The entire problem was simulated and solved on 

an IBM 7040 computer. 

2. Computer Simulation 

The computer simulation of the plant vTith its 
controllers, and the learning and adapting loop, can be 
considered separat~ly. 

The following block diagram and computer flow 
chart can be used to define the symbols used in the 
computer programs and to identify the blocks in the 
computer program. 

Control System Block Diagram 

R(l) CC(l) 0 'c ( 1) \ 
-

Plant 

R(2) 0 CC(2) C(2) 
-

I 

- F(l) FF(l) 0 £11) 

F(2) 0 FF(2) P(2) 

47 
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Statement 
Numbers 

100 
to 
150 

900 
to 
999 

Flow Chart of Control System Simulation 

Genera 
R(I) a 

new 
aramet 

Value 
of 

' 

c t'at. n 
~ler 
:I)>~ 

= ) 

te 
nd 

or 
(. 
•) 

. 

.. 

read in 
initial 

:Values, set 
control 
integers 

E(I)= 
R(I)-F(I) 

E(I) 

F brward Path 
~on troller 
p ( I) =CC ( I) i.' 

E(I) 

C(I) 
enr~orce 

constraints 
on plant 
inputs 

C(I) 

Plant 
P(I)= 

t.C(I) 

P(I) 

ML=ML+l 
~F· ML=lO GO 

TO LEARN 
AND ADAPT 

J.OOP 

~F L=LMAX 
GO TO 

END 

l END 

limited 

MI)=lO' ___ .. 
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Statement 
Numbers 

0 
to 
99 

150 
to 
199 

400 
to 
499 

500 
to 
599 

700 
to 
799 

700 
to 
799 



a' I-' 

ILN = ILN + ~ GO TO 200 
(!) <Tl 

Ill 
ML = 0 H) ~ 

0 ::s 

2500-~ 2T00--=2T9 2200-2299 9 s:: 
::s Ill 

change one update the change one update the change no update the 
p..::S 

MC column 
p.. ~ 

forward forward MF column controller MR. column ~ ...... ::J 

of ()~/~~ 
I-' ::s Ill <Tl 

path path oGIA' elements; d~/ 0 p.. 

of -J+ of =:: ;J:> Ill 1-':l 
controller controller - ~R 'O'"'CJ 0 

element adapt any elementr adapt any adapt any 0 '0 cT I-' 

required ::Y ([) I-' 

required required Ill ::s I-' 0 

CC ( r.1c) 1 controller FF(MF) ~ p.. 0 =:: 
controller controller ct ...... 0 ...... 

elements elements elements X '1:l ::s 
0 • Otl 
1-':l H ... f-J• 
ct t-3 (I) 

ILN~5 I I~ '0 ::Y 
Ill <Tl PJ 

(1Q 
t"-1 <Tl () 1-':l 
ro 0 I-' 
p, Cf' 3 0 
~ --..J~=:: 

calculate adaptive ::s . (I) () 

changes in FF(I) ll> cT ::J 

and/or CC(I) ::s (1) Ill 
p.. 'i 

and/or R(I) () ct 
;J:> 0 
n. 3 0 
IU '0 1-':l 

c 
Commorn Block J 1000 - 1999 

ct ct 
L <Tl ::J 

~ (1) 

estimate GMIN(I), the expected ~ 
't1 () 

~ 0 

value of G ( -f-+&.t) 0 3 
OQ '0 

I ~ s:: 
Ill ct 

predict B(I) 3 (I) 

~ 
() 

ll> 
::s 

measure and store G(I) 
I 

ML=O 
+:-
\,() 
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}. Tests and Results 
There were ten tests performed on the plant given 

in Section 1 of this chapter. The first four of these were 
done with the input B fixed and D , the desired output 
a constant. 

That is, R = [ R ( l )] = [ l] 
R( 2) 2 and Q = l ~~ ~~] = [ ! J 

For these f-our cases and 
were zero and the learn and adapt loop had only to learn the 

matrices ~ C / ~ 5:. and/or ~ C / J £ Three cases 
were adaptive. The fourth was merely nominal optimal, that 
is, the controllers were set to the optimal value for the 
average 

Test l 

R 

[~] 

(a) 

value of o<. - • 
The results of tests one to four are as follows. 

Closed Loop; learn ~'G/d.£_ and ~f=/l-£ 
adapt c 

- jqsJ J 

c 

l= L t) 
=-Of -

~ 

~Gj ~~ = [ -.$315 
-12.36 

.lG I.\£ =t7.512 
• 3087 

and t 
0 -

r:~~\ 

D-::.. -

$.463 J at t = .4 sec. 
5.127 

-.0$69] at t = .4 sec • 
-23.25 

MILLS MEMORIAL LIBRARY 
McMASTER UNiVERSITY 



(b) typical values of c and .f were 

c. . [ "s] ) f. :::. [• ~ \ l 
.'2..~ 

(c) J (t=5 sec) = .015227 
J (t=l sec) = .015211 

J= j (Q.-Q) 2 dt = .000016 

Test 2 Closed Loop; learn ) G / J £ ; 
adapt only f 

That is the forward loop controller was fixed at 
£. ::. [ s , s J T and the system adapted by using only the 
feedback path controller variable t . 

R s 0 

- 0 s 

R-- [~] 
c . (<) 
::_ "{' -

f (I) ~ 

0 +ta.) 

{a) 

(b) typical f values were 
{c) J (t=5 sec) = 3.1586 

J (t=l sec) = 3.1586 

J' = 5 (Q- ~ )2 dt < 
Test 2 Open Loop; learn ~ G I ~s. 

adapt c 

0 -
PC~) 
- ... !' 

Q~[ 

7.590] at t = -~ 
-36.16 

.00005 
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In the open 
need be learned { if 
system is adapted by 

loop configuration only ~ 1d / ~£ 
t:J. R is known to be zero) and the 
changing c. • 

R 
~ <>t- ( ~) 

IC(>) 0 I i p (~) 
0 

o c(a) - o.y 

R ~[ ~ J Q ~I_~ 1 -

~G /"d~ - [ 1.031 
-.0180 

(a) 

(b) typical c. value was 

(c) J (t=5 sec} = 8.1635 
J (t=3 sec) = 7.9703 

.0842] 
1. 534 

f 
= [ :!] 

s 
J;_~ dt(Q- D )2 

= .1932 
3 

at t= 2.8 sec 

Test 4 Closed Loop Nominal Optimal; S:. and ~ fixed 
c. and .It_ were fixed at values found to be 

about the average of some of the values in Test 1. 

R 

R::. [ \ - a. ] 

(a} No 

(b) c 

s 0 

0 ~ 

~or 

learning. 

fixed at [ ~ J 

~/~) 

. ~ \ 0 

0 .1,.'3 

fixed at 

Q 

D-=-- [~] 
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( c} J (t=5 sec) - .046049 
(t=l sec) = .013324 

J= ~~ ( Q - ~ )2 dt = .032725 
\ 

Note that by comparing tests 1 and 4 the adaptive 
system yields about a 2000 times lower cost function. 

Tests 5, 6, and 7 are closed loop adaptive~ 
closed loop nominal optimal>and open loop respectively. 
R the input is allowed to fluctuate in addition to the 
plant parameters ~ 

Test 5 Closed Loop; 

- '5' 0 

-I' 'il 0 

c 
~ "r 

• 

learn ~ ~I ~B and a \2 I'd -!. 
adapt -t- and keep c... fixed at 

' . t s s]' 
Q 

;.('>(~ '> 

. ~ \ 0 

0 . a..~ 

f.\" 
R = [ L + .30 sine .04 t] ~ ::. l ~ ] - 2.+ .01~ .01 'tT 

(a) ~~ !~¥$ = [3.103 .01671 at t = 9.6 sec 
-.0873 .0365 

~~I~£ = [-10.29 -.1459] at t = 9.6 sec 
-1.265 -27.51 
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(b) 

(c) J (t=lO.) = 10.9107 
J (t=6.0) = 10.9104 

f \0 

J= J 
~ 

( Q - D ) 2 dt = • 0003 
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Test 6 Closed Loop Nominal Optimal; no learning or adapting 

R 

1: •SJ 
I ,.~\ () 

l 0 ,q 

R = [ 1 + • 3 sin • 04 t ] 
2 + • 01 JL . o \ rr 

(a) 

(b) 

No learning 

[ ~] c fixed at ...l 

(c) J (t=lO) = .52054 
J (t=6) = .19764 

P(~\ 
o::Of>-

F .. - p 

S
\0 

J= 6 ( Q - Q ) 2 dt = • 32290 

0 -

which is about 1000 times the J of T.est 5, the 
adaptive counterpart. 

Test 7 Open Loop; learn ~ ~ / R and ) ~ /~ ~ adapt c. • 

R IC(•) 0 I P..~,_ )I 0 

0 C-(4\ 

(.. 
-:::. 1:>? 



R = [ l + • 3 sine • 04 t ] D ~ [ ~ ] 2 + .01S\__ .01 "W 

(a) 

(b) 

(c) 

~·~ I ~ fiS -[.689 
11.09 

~ ~ I ~ ~ = ( • 8124 
1.461 

J (t=lO sec) = .81796 
J (t=6 sec) = .81130 

J= ~ 10 
(~ - D ). 2 dt 

EJ 

.0042] 
• 0851 

.0065 l 
2.106 

= .00666 

at t = 8.3 sec . 

at t = 8.3 sec. 

Tests 8, 9, and 10 are identical to tests 5, 6, 
and 7, except that in addition to varying R and ~ 

D is varied as well. 

Test 8 Closed Loop; 

R 
5 0 

_, 
c 5 

S:op 

learn 
adapt 

+{t) 

0 

. 
' c fixed. 

0 
~pl~\ 

0 

+(~) 
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R = [1. + .3 
- 2. + .01 

sine .04 tl 
.01 

D = [ 3 - exp ( - • 01 t ) ] 
8 + .8 sine .03 t 
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(a) ~~~~IS = [ 2. 535 -.00571 at t = 3.5 sec. 
39.74 -.3992 

~~I~£ = [ -6.772 .1698 ] 
-38.17 -23.03 

(b) s -=. [ ; l ) 
+ • [ .3134] 
- .2295 

(c) J (t = 6 sec) = 11.8110 
J {t = 2 sec) = 11.8080 

. 2 
( ~ - ~ ) dt = .0030 

Test 9 Closed Loop Nominal Optimal; no learning or adapting. 

R o s 0 

- ~cl'lal;:\ .. 5 

. 3 I <::> 

0 -2.~ 

(a) no learning 
(b) c fixed at[5], f fixed at [ .3l34] 

5 .2295 

(c) J (t=lO sec) = 3.9017 
J (t=6 sec) = 2.4562 

J ~ ~\0 ( Q - Q ) 2 dt = . 1.4455 
~ 
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Test 10 Open Loop; learn ~ 1;. I ~ 13 and dj2 /'d~ adapt .£. • 

l d·) ~I !~p(~)J ~ 

R () c. (.z.) 
0 -

c 
-::. () ~ 

R as in Test $ D as in Test $ 

{a) dG I J ~ _I 2.499 .0048] at t = 3. 5 sea·. 
-3.901 .0097 

~G I~ !_ - [1.174 .1091 l at t = 3.5 sec. 
-.6705 1.859 

(b) £ ""v [:~ ] 
(c) J ( t = 7 sec = 4.2656 

J ( t = 3 sec = 4.2641 

J ~ ~~ (~-D )2 dt = .0015 
'3 



Table of Results of Experim .. ~_nt 3. Tests l to 10 
--~-· 

Test Varying Cost 
Quantities Function J 

Ad t• eNormalized 
ap. ~ "'f to 4 

Quant~t~es Second 
Interval 

~' --~ ·-··-

1. Closed Loop Self Adapting ~ c. .\' - \ - .000016 

2. Closed Loop Sel'f Adapting c::::: f .00005 

3. Open Loop Self Adapting o<.. 
' £ .. 3e64 

4. Closed Loop Nominal Optimal ..... none .032725 

5. Closed Loop Self Adaptive ~ E £ .0003 

6. Closed Loop Nominal Optimal cA. R none .3229 - .. -
7. Open Loop Self Adaptive ~, B c .00666 

8. Closed Loop Self Adaptive ~ ,~,~ f .0030 

9. Closed Loop Nominal Optimal ~XR D 
-~-.,-

none 1.4455 

10. Open Loop Self Adaptive cJ- RD -' - '- c. .0015 

table 3. 

Tests l to 10 of Experiment 3 bear out the statements 
made, namely: 

l. that the closed loop system, being less 
sensitive yields lovTer cost functions than the 
open loop system, 

and 2. that the adaptive system is very much better 
than the nominal optimal system. 

However, in performing this experiment it became 



clear that another problem, that of stability, became of 

major importance. The next section deals chiefly with 

the causes and effects of instability. 

4. The Problem of Stability 
Stability became a problem of importance with the 

advent of the feedback control system. In the Nth order 

self adapting system, there is not one but three major 

feedback paths. Tne first is the normal feedback through 
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~at"\~) • The second and third are through the learn and 
adapt loop. Oscillations may occur in three different ways. 
Firstly there is the usual type of instability, where the 
feedback operator is such that the system's gain approaches 
infinity. Secondly one may find the adaptor loop driving 
~ and ~ in a limit cycle of period ~A T 

Thirdly one may find that a propagation of the noise error 

always present to some extent in B occurs causing the 
learn matrices to either oscilate or diverge from the 

true values. 
It is felt that the stability of learning and 

adapting systems is of fundamental importance and deserves 

a thorough investigation. 
In Experiment 3, instability, present with high gains 

in the adaptor loop, could be suppressed by putting a reason-
able limit on the quantities e:. t and t:::.. c. • These, 

limits prevented the system from entering regions of instability 
in ~ space1 • from which only accidental recovery 
appeared possible. On the other hand these limits were 
large enough to permit complete adaption so that their job 

was to keep the system stable during the first .1 seconds in 
which the first learning was occuring. 

1. 
space is defined in Chapter II, Section 1. 



It must be pointed out that the adaptor equation 

(equation (3-3-4) ) was used to successively approximate 
each of the matrices which must be learned. Unfortunately 
there is no quarantee that the matrices will converge 
uniformly or otherwise to their true values. On the other 
hand if the system does adapt, then one can be assured that 
one has the true learn matrices and can be confident that 
higher order self adapting, better prediction, or faster 
operation ( ~T sm~ller) will improve the performance 
even more. 

The following diagram and equations represent a 

first look at the form of equations involved. 

\)~(_~') 
- t>{' 

B 
c;_ C>.? v~ \ ~f (~>I ,r_ 

0 
_, 

I 
Af 
~ I 

I 
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First note that 
array operating on 0 

~+o~ is defined by that operator 
which yields the correct A~ 

that is 

Now note that the form of 
known to proceed further. 

and must be 



VI HIGHER ORDER ADAPTIVE SYSTENS 

For Nth order adapting it is necessary not only to 

minimize \\G 1 1\ , but also II L' \\, i..~\,<... W. This can only; 
be accomplished if the derivatives of the output can be 

controlled independently. 
'\, 1 21T 

For example·, for second order adapting, C:::LG ... ~ • 

But \;...:!.. , being proportional to the t'ime derivative of 

the output, introduces a dependence of t; on the first 
r-' derivatives of the system~ outputs. To vary w and 

~ ~ then requires controllers which can independently 

change the outputs and their first derivatives. The least 
component controller is a matrix of first order operators 
rather than a matrix of constants as in the example of 
Chapter V. The smallest array which can possibly give 
second order adaption of an N\ output plant is the 
following: 

ic '.c~s.+ 1 
N\'+\ 

0 

0 0 

L 0 

These a. M controller variables ~ c.....,\ are what one 
would expect since C.' is an tv\ vector as is G "L • 

~ C/~ ~ is then a 2.. M by 2... f'l\ matrix. ~ , a vector 
of ~ ~ dimensions, is thus controlled by a ~ ~ 

variable controller ~Q~ 
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VII CONCLUSIONS 

This chapter contains a sumary of the entire thesis 

followed by a list of conclusions which can be made on the 

basis of the arguments presented. 
The usual integral form of cost function is 

' abandoned in favor of a generalized vector cost function 
G which allows Nth order adapting at intervals 6t 

apart and which')if 1\G\l be minimized)guarantees the 
system reading a locally minimum cost function J . The 
vector cost function G is defined) G. - §~ 1 • such 
that minimizing the norm of ~ takes the system to a 
globally minimum J value. Note that there are as many 

. controller variables as there are dimensions of [; and 
that the order of the operators in the operator arrays 

<;- o (> and f..r need be at least of order N in an 
Nth order self adaptive system2 •• Further note that in 

general since G (and thus ~ are formed from quantities 

in H ( H the integrand of 'J" ) that no new variables 
need be measured to .find G • 

V'Jith vector cost function ~ defined, it is possible 
to write a difference equation for A~ • Through the 

way in which G has been defined it is possible to have 

an Nth order self adaptive system vrhile merely using the 

first term in the Taylor expansion for 6 t3 • This expression 
for 4 G has been called the ngeneral adaptor equation" 
and the partial derivatives (matrices, being partials of a 

1 ~ ~~ · ~ and methods of finding ~ are discussed 
in Chapter II, Sections 3 and 5. Note also that if the 
conditions of Theorum I, Chapter II, Section 1 are met 
then G.. '14 -::::. g_ • 

2 • See Chapter VI. 
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vector with respect to another vector) in the equation have 
been called sensitivities or more commonly "learned matrices" 
due to the fact that they must be learned while the system 
is in operation. The quantity ;} '!::>I J ~ LJ..-cl is predicted and the 
system driven to and kept at G -=- o by changing the 
controller parameters c and/or ~ 

In Chapter III, Section 2, d l;:J / d r6. is discussed 

as the sensitivity of the system and equation (3-2-18) 
' 

developed to differentiate between closed loop and open 
loop adaptive systems on the basis of improved sensitivity. 
The experiments of Part II bear out the prediction that 
closed loop systems are less sensitive. 

The experiments of PART II prove too that the 

self adaptive system is feasible and useful as indicated 

by the results in Tables 1, 2, and 3. Difficulties 
initially encountered indicated, however, the serious 

problem of stability of multiloop systems particularly with 

high gain and inherent time delays. 

The problem of instability was encountered in 
Experiment 3 of Chapter V when the learned matriceswere 

the initial sets of random numbers and the system entered 
unstable ~ space before these random arrays could be 
corrected. The problem was overcome by limiting the gain; 
that is 1\6£11 <. 4.s:._ maximum and 1/A~ ll<. A~ maximum. If 

this method gets no results it is likely that one can fall 
back on an open loop system of self adapting which, if 
combined with limited adaptor gains, will almost certainly 
be stable. 



List of Conclusions 

l. 

change A..,..( 

adapting. 

Neither the plant ~~P nor the plant parameter 
need be known to utilize Nth order self 

2. Noise and even totally random 4 J values 

can be handled. The high frequency noise components which 
' 
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appear at 0 are smoothed and predicted as their average 
value. However the low frequency or band limited components 
are accurately predicted and their effect nullified by the 

adaptor. 

3. Often it will be found that the learned martices 

are virtually constant in which case the entire learn and 
adapt loop may be replaced by a network of at most K 
active elements where 1<. is the number of dimensions in 
G • This fact is extremely important because it releases 

the digital computer. 

4. If there are no detrimental constraints ( the 
conditions of Theorem I are met)or~ one is satisfied with 

a locally minimum J value}the calculations which are 
required to be done manually are nonexistant or at worst 
trivial. 

5. The Nth order self adaptive system in addition 

to adapting to changes in A~ is able to adapt to changes 

in IS .., the generalized input vector') and '\:;?, the desired 
output. 

6. The controllers and/or the plant may be nonlinear. 
The only limitation in this respect is that [; be piecewise 
continuous at least and continuous if at all possible. 
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7. With a slight modification the plant and/or 

the controllers may have a time delay provided the time 
delay is measurable or is known in some fashion. The system 

·in its present form is able however to adapt to plants which 
have a time delay -~- <. '- AT • 

the self 

and/or 

8. Even if the plant parameters do not vary 
adapting system will adapt to change in 0 
R • 

c I F 9. Selecting the forms for -:::.<> f" and or = o~ 
the adaptor loop will drive them to their best values. 
Removing the adaptor loop them leaves the controllers at 

their nominal optimal values -- values which might have been 
otherwise impossible to obtain. A whole range of optimal 
control problems and optimal filter problems are open to 
a solution free from manual calculation and more accurate 
as well in that the actual plant, not some model of it, may 

be used. 

10. The vector cost function ~ has been defined 
in such a manner that the first omitted term in the Taylor 

series expansion of ~' (+ + ~ t) is multiplied by a factor 
of At N I N l . This indicates the level of accuracy which 

the Nth order self adapting system operates at. However 

there is no point in using a system of order L. where 
At '- / I- l is any smaller than the expected error in the 

predicted quantity B B - ~ ~ I~<:J.. A.~ plus other 
system noise}. 

11. No extra measurements need be introduced to find 
L than were necessary for finding J' and H . 
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12. One can simply and naturally include the 
overall system sensitivity as a criterion in the cost function 
by merely using N 7 I , that is, a higher than first order 
self adapting system. This apparently providential 
by-product is linked with the generalization of the 
vector cost function from first order to higher order self 
adapting which in turn is done to obtain any prespecified 
degree of accuracy in the cost function. 
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APPENDIX ·~ 

The computer program of Experiment 3, Test .10 

follows. 
It is included as an aid for those who might wish 

to design more sophisticated Nth order self adaptive 
systems. The program is built of various blocks and while 
the program is admittedly not particularly efficient,the 
blocks themselves can be considered basic. However as a 
first program it passes the most important test. -- that 
is, it works. 
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$JOB WATFOR 003511 TEMPLE 
$IBJOB NODECK 
$IBFTC TEST10 
C 00 TO 99 INPUT SECTION 
C DIMENSIONS 

MC=1 
ML=O 
MR=1 
MF=1 
DIMENSION GG<5l tRRR<5l 
DIMENSION DGD<5l 
DIMENSION DGCFC5l 
DIMENSION DGRC5ltDGT<5ltDGFC5ltDGCC5) tPGPTC5l 
DIMENSION CC5) tCC<5ltDLC<5ltDLFC5) tPGPD<5•5l 
DIMENSION FC5ltFFC5)tPC5ltEC5ltR(5) 
DIMENSION BIGCC5ltSMALLCC5) 
DIMENSION G<5ltBC5ltPGPRC5t5ltPGPF<5•5ltPGPCC5t5l 
DIMENSION DLRC5ltDLDC5l•D<5ltZKC5ltGMIN(5) 
DIMENSION EBC5l tPGTC5l 
DIMENSION DELTB<5l 
DIMENSION DVFC5ltZC5l 
DIMENSION DVCC5l 
DIMENSION CCUC5ltCCMC5ltFFUC5ltFFMC5l 
DIMENSION AC25t25ltAAC25t25l 

C INITIAL VALUES AND CONSTRAINTS 
READC5t1) SP11tSP12tSP21tSP22tP11,P12tP21,P22 
READC5t2l CCCMCiltl=1t2)tCCCCiltl=1t2ltCCCUCiltl=1t2l 
READC5t2l CFFMCiltl=1t2)tCFFClltl=1t2)tCFFUCilt1=1•2l 
READ< 5 '3 l C C PGPR C I 'J l , J= 1 '2 l ' I= 1 '2 l • C C PGPF C I , J l 'J = 1 '2 l , I= 1 '2 l , 

1 ( C PGPC C I , J l , J = 1, 2 l ' I= 1 t 2 l ' C < PGPD C I , J l , J = 1, 2 l , I= 1 , 2 l 
READC5t4l CRCil,I=lt2ltCZKCilti=1t2l 
READ ( 5 t 5 l C B I GC ( I l 'I= 1 t 2 l 'C SMALL( C I ) , I= 1, 2 l 

1 FORMAT<8F10e4l 
2 FORMAT(6Fl2.4l 
3 FORMATC4F20e8l 
4 FORMATC2F20.8l 
5 FORMATC4F20.8) 
C ' DISCRETIONAL ' CONSTANTS 

READ<5tlOlMEXPtLMAX,ZNtDELT tDELT1 
10 FORMATC2110t3F20e8) 

20 

DO 20 I= 1, 2 
GGCil=O. 
PCI)=Ue 
RRRCil=O• 
G(J):::O. 

DGDCil=O• 
PGPTCI)==O. 
GMINCil=O. 
DC I l=RC I l*ZKC I l 
FCil=O• 
PGTCil=O. 
DLRC I >=O• 
DELTBCI)=O• 
DLF<I l=O• 

DLC<Il=O• 

15 
WRITEC6t15l 
FORMATC54H 
WRITEC6t16l 
FORMATC54H 

COST FUNCTION VECTOR COST PREDICTED 
,. 

16 .01 SEC. INT•LS FUNCTION 'G' ERROR 'B' 



WRITEC6d7) 
17 FORMATC1H0) 

ILN=5 
L=1 

ZL=L 
ZS=O• 
ZZS=1. 
ZJ=O. 
D1P1=0• 
D1P2=0• 
C1=0. 
C2=0• 
PCU=3. 
PGPRC2t2)=0. 
PC2l=4. 
PGPFCltl)=-4. 
PGPFC2t2l=-9• 
GO TO 150 
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C 100 TO 199 BLOCK 
C SIMULATION OF FEEDBACK PATH CONTROLLER TRANSFER FUNCTION COPERATOR 
C MATRIX F 1 0P• l• 
100 CONTINUE 

DO 101 1=1•2 
10 1 F C I l = FF C I ) *PC I l 
150 CONTINUE 

DO 199 I=lt2 
199 E( I l=R( I )-FC I l 

GO TO 400 
C 400 TO 500 BLOCK 
C SIMULATION OF THE FORWARD PATH CONTROLLER TRANSFER FUNCTION C OPERATO 
C MATRIX C•OP' l 
400 CONTINUE 

DO 401 I =1 t 2 
401 CCI )=CCC I l*RC I) 

GO TO 500 
C 500 TO 599 BLOCK 
C LIMITING IMPOSED ON THE PLANT UNPUT •CCI)' • 

500 CONTINUE 
DO 501 I=1t2 
IFCCCileGT.BIGCCil lCCil=BIGCCil 
IFCCCileLT.SMALLCCillCCil=SMALLCCI) 

501 CONTINUE 
GO TO 700 

C 700 TO 799 BLOCK •P'OP'' 
C PLANT TRANSFER FUNCTION 
700 CONTINUE 

DlC1=CCC1l-Cll/DELT 
Cl=C C ll 
DlC2=CCC2l-C2l/DELT 
C2=CC2) 
D2Pl =P11*SP12*CC1) +P1l*D1C1 +Pl2*SP1l*CC2) +Pl2*D1C2 

1 -CSPll+SP12l*D1P1 -SP1l*SP12*PC1l 
D1P1=D2Pl*DELT+D1Pl 
PC1l=D1P1*DELT+PC1l 
D2P2= P22*SP21*CC2l +P22*D1C2 +P2l*SP22*CCll +P2l*DlC1 

1 -CSP22+SP21l*D1P2 -SP22*SP21*PC2l 
DlP2=D2P2*DELT+DlP2 

PC2l=D1P2*DELT+PC2l 



701 

ML = ML+1 
DO 701 I=1t~ 
DGTC I l=PC I l-DC I l-GGC I l 
PGPT<Il=DGTCil/DELT 
GG ( I > =P ( I l -D ( I l 
IFCML.EQ.10lGO TO 1000 
GO TO 100 

C 1000 TO 1999 BLOCK 
C MEASURE AND PREDICT SECTION 
1000 CONTINUE 

ML=O 
DO 1008 I=1t2 
DGCFCil=O• 
DO 1008 J=l•2 

1008 DGCFCil=DGCF<Il+PGPFCitJl*DLF(J)+PGPCCitJl*DLCCJl 
DO 1001 I=1t2 

C MEASURE G<Il 
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IFCL.LTelOOlRRRCil=O. 
DGC ( I l =P ( I l -DC I l -G ( I l 
DGRC I l=PC I l-D( I l-G( I l 
DGF < I l =P ( I l -D ( I l -G ( I l 
GCil =PCil-DCil 

-PGT (I l *DELT1 -RRR C I l -DGD( I l 
-PGTCil *DELTl -DGCFCil -DGDCll 
-PGTCil *DELTl -RRRCil -DGDCil 

1001 B C I l =G C I l -GM IN ( I l 
DO 1005 1=1•2 
PGT C I l =PGPT ( I l 

1005 GMINCil=GCil 
GO TO 800 

C 800 TO 899 BLOCK 

+PGPT<Il*DELT1 

C PRINTED OUTPUT SECTION 
800 CONTINUE 

801 
DO 801 1=1t2 

ZJ=ZJ+GCil**2*DELT1 
IFCLeGTeLMAXlGO TO 5000 
DO 803 I=1t2 
WRITEC6t802l LtZJtGCiltBCil 

802 
803 

FORMATC1H t9Xtl4t3XtE12.6t3XtE12e6t3XtE12e6l 
CONTINUE 
GO TO 900 

C 2100 TO 2199 BLOCK 
C UPDATE PARTIAL G(ll PARTIAL C(J) 
2100 CONTINUE 

IFCILN.NEe1lGO TO 2200 
IFCABSCDLC(MClleLTe1e/10.**MEXP)G0 TO 2110 

DO 2101 J=1t2 
2101 PGPCCJtMCl=DGC(J)/DLCCMCl 

WRITEC6t2104) 
2104 FORMATC1H0t15Xt45H PGPT 

2105 
2106 
2110 

DO 2106 1=1•2 
WRITEC6t2105l PGPTCil 
FORMATC13XtE12.6tlOXtE12e6t3XtE12e6 
CONTINUE 
MC=MC+1 
IFCMC.GT.2lMC=l 
GO TO 2700 

C 2200 TO 2299 
C UPDATE PARTIAL GCil PARTIAL FCJl 
2200 CONTINUE 

IFCILN.NE.3lGO TO 2300 

PGPC 

,(PGPCCitJl•J=1t2l 



IF<ABS<DLF<MFlleLTe1e/10.**MEXPlGO TO 2210 
DO 2201 J=1t2 

2201 PGPFCJtMFl=DGFCJl/DLF<MFl 
WRITEC6t2204l 

2204 FORMAT<lHOt15Xt45H PGPT 

2205 
2206 
2210 

DO 2206 1=1•2 
WRITE<6•2205l PGPTCil 
FORMATC13XtE12e6t10XtE12e6t3XtE12e6 
CONTINUE 
MF=MF+1 
lF(MF.GT.2lMF=l 
GO TO 2800 

C 2500 TO 2599 BLOCK 

PGPF 

?2 

,(PGPF< ltJl ,J=1•2l 

C CHANGE SINGLE FORWARD PATH CONTROLLER ELEMENT IN ORDER TO EVALUATE 
C THE COLUMN VECTOR PGPCCitMCl 
2500 CONTINUE 

IFCILN.NE.OlGO TO 
GO TO 2700 

2501 CONTINUE 
DO 2505 1=1•2 
DLFCil=O. 

2505 DLC<Il=O. 
DLCCMCl=DVCCMCl 
DO 2508 1=1•2 

2600 

IFCDLC< I l .LT. <-.15) lDLCC I l=-.15 
IF<DLC<lleGT •• 15lDLC<I>=•15 

2508 CONTINUE 
DO 2510 1=1•2 
ZCil=O. 
DO 2509 J=1•2 

2509 ZC I l=ZC I )+PGPC( I ,J)*DLC(J) 
2510 GMIN< I l=GMIN< I )+Z( I) 

GO TO 200 
C 2600 TO 2699 BLOCK 
C ILN = 4 BLOCK DLFCil AND DLC<Il =0. TO UPDATE PGPR(J,MR) 
2600 CONTINUE 

DO 2605 I=1•2 
DLF< I l=Oe 

2605 DLCCil=O. 
GO TO 200 

C 2300 TO 2399 
C UPDATE PARTIAL G(l) PARTIAL R(J) 
2300 CONTINUE 

IFCL.LT.100lGO TO 2400 
IF CILNeNEe5lGO TO 2400 
IF<ABSCDLRCMRl l.LTe1e/10.**MEXPl GO TO 2310 
DO 2301 J=1•2 

2301 PGPR(J,MRl=DGRCJl/DLRCMRl 
WRITE<6•2450l((PGPR<I,J),J=1•2>•I=1•2l 

2450 FORMATC60X,2E12e6l 
2310 MR=MR+1 

IF<MReGTe2lMR=1 
GO TO 2800 

C 2400 TO 2499 BLOCK 
C CHANGE SINGLE FEEDBACK PATH CONTROLLER ELEMENT IN ORDER TO EVALUATE 
C THE COLUMN VECTOR PGPF(I,MFl 
2400 CONTINUE 

IFCILN.NE.2lGO TO 2500 



GO TO 2800 
2401 CONTINUE 

DO 2405 1=1•2 
DLC(I)=O. 

2405 DLF(I)=O. 
DLFCMFl=DVFCMFl 
DO 2410 1=1•2 
ZC ll=O. 
DO 2409 J=1•2 

2409 ZCil=ZCI)+PGPFCitJl*DLFCJl 
2410 GMIN(I)=GMINCil+ZCil 

GO TO 200 
C 200 TO 299 BLOCK 
C SET THE CONTROLLERS TO THE NEW OPORATOR MATRICES 
200 CONTINUE 

L=L+1 
ILN=ILN+l 
IFCILN.EQ.6liLN=O 

IFCILN.EOe2liLN=4 
DO 201 I =1 t 2 

IFCDLCCileLT.C-.15llDLCCil=-·15 
IFCDLCCileGTee15lDLCCil=e15 

201 CCC I >=CCC I l+DLCC I l 
WRITEC6t222)CPCiltl=lt2) 

222 FORMAT C1HOtl9Xt4HFCil,3X,El2•6t3XtE12•6 
GO TO 100 

C 2700 TO 2799 BLOCK 
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C CALCULATE THE ADAPTING CHANGE IN CCCil TO GIVE GCT+DELTl=O• OR ITS 
C MINIMUM VALUE 
2700 CONTINUE 

DO 2701 I=lt2 
DO 2701 J=lt2 

2701 ACitJ)=PGPCCitJl 
A1=A<lt1) 
DET=ACltll*AC2t2l-AClt2)*AC2t1l 
ACltll=AC2t2l/DET 
AC2t2l=A1/DET 
AC1t2)=-AC1t2l/DET 
AC2t1l=-AC2tll/DET 
DO 2705 I=lt2 
DVCCil=O• 
DO 2705 J=lt2 

2705 DVC< I l=DVCC I l-A< I tJl*GMIN<Jl 
DO 2710 I=1t2 
IF< CDVC< I )+CCC I) leGT.CCU< I l lDVC< I l=CCU< I )-CCC I) 
IFC CDVCC I l+CCC Ill .LT.CCM< I) lDVCC I l=CCMC I >-CCC I) 

2710 CONTINUE 
IFCILN.EQ.O)GO TO 2501 
DO 2712 I=1t2 
IFCDVCCI).GT.e15lDVC<Il=•15 
IF<DVCC I leLT.<-.15) lDVC( I l=-.15 

2712 CONTINUE 
DO 2715 I=lt2 
ZCll=O. 
DO 2714 J=lt2 

2714 ZCil=Z(l)+PGPC(I,Jl*DVCCJl 
DLC< I l=DVCC I l 

2715 GMIN< I >=GMIN< I l+Z< I l 
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GO TO 200 

C 2800 TO 2899 BLOCK 
C CALCULATE THE ADAPTING CHANGE IN FF(Il TO GIVE G<T+DE Tl A MINIMUM 
2800 CONTINUE 

GO TO 2700 
C 900 TO 999 BLOCK 
C STATIC CALCULATIONS AND SIGNAL CALCULATIONS. 
900 CONTINUE 

ZL=L 
IF<ZSeLT.lOOe)GO TO 990 
ZS=O. 
ZZS=ZZS*(-lal 

990 ZS=ZS+l. 
903 Rl= la+a3*SIN<a04*ZL*DELT1) 

R2= 2.+ .Ol*ZZS 
DLR(2)=R2-R(2l 
DLR<l)=Rl-R(l) 

R<ll=Rl 
R(2l=R2 
DO 905 1=1,2 
RRR<I l=O. 
DO 905 J=1'2 

905 RRR(Il=RRR(I)+PGPR(J,Jl*DLR(J) 
SP11=10a+2a*SIN<ZL*DELT1l 
SP22= 10a+2a*SIN<2•*ZL*DELTll 
P12=la+a5*SIN<3a*ZL*DELTll 
P21=-1a+a5*SIN(5a5*ZL*DELT1l 

Dl=3a-EXP<-<.01*ZL)) 
D2=8a+a8*SIN<ZL*a03 
DLD<1>=Dl-D(l) 
DLD(2l=D2-D(2) 
DGD(1>=-DLD(1) 
DGD(2l=-DLD(2) 
D<U=D1 
D<2l=D2 

GO TO 2100 
5000 CONTINUE 

END 
$ENTRY 
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-10000. -10000. .5 
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4 10000 20. 
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.5 10000· 
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-200. 
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APPENDIX II 

Definition of Basic Symbols 

Vector Quantities 

A single line or bar under a quantity denotes it as a 
vector or one dimensional array. 

R the system''s inputs 

D the system's outputs 

the system's desired outputs 

the vector of nonconstant plant parameters 
I 

the vector of parameters of the forward loop 

+ , the vector of parameters of the feedback loop 
controller 

j G~ vector cost functions - ... -,-

Other important vector quantities are the following: 
B the predicted vector = ~ 'J/J ~ A.~+ noise 

d ~ I~+ the explicit variation of wit·h time 

Matrix Quantities 
that array of operators which represents the 
transfer function of the entire system, 

that is.... 0 ':. ~·~ R 
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controller 
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~ with or without integral number subscripts, denotes 
the sensitivity of the vector cost function with 
respect to changes in plant parameters 

s ::. 

Other important matrix quantities are the following 

~~ /~'!: '~~!.>£, ~~~~=' ~LJ/~S? \ ~~~~~ 

All of these denote the various sensitivities of the vector 
cost function1 tl to important system variables. 

Scalar Quantities 

T the original copt function often in the form 
J = s \-\ dt 

t-\ the integrand, often of one sign only, of J. 

tAT 
' 

time quantities 

Miscellaneous 
¥ means "for all" 

\\Q)\ If quantity is a vector, say ll ~ \l , then 
~~~II=-~·~ 
If quantity is a matrix, say ll ~ \\ , then 

11~1\ = ~I x~~\ 
'op' The subscript 'opt on an array means that the 

quanti ties .in that array may in general be operators. 



APPENDIX' III 

References 

Though no references were used in preparation and 
though none have since been found that are directly applicable 
it is felt that the following may be helpful. The two books 
deal· with adaptive systems of different kinds. The paper 
referred to is one,which supports the direct philosophy 
of adaptive control and may be helpful on that 'account. 

Eveleigh, 1967, "Adaptive Control and Optimization 
Techniques", (McGraw Hill). 

Mishkin and Braun, 1961, "Adaptive Control Systems" 
(McGraw Hill) 

Zaborsky, ·J., and Humphrey, W. L., 1964, "Control Without 
Model or Plant Identification", I.E.E.E• Transactions 
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