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Gaining insight into the pressworking properties of 

laminated sheet metal is the aim of this work. One of the 

deformation processes in which the difference in behaviour 

between single and laminated sheet metal is most distinct and 

possibly the easiest to analyze is that of pure plastic bending. 

A bending theory, initially proposed by Crafoord, is further 

developed to analyze the pure bending of laminated metals. The 

bending behaviour of single and laminated nonstrain hardening 

and strain hardening sheets, with and without Bauschinger effect, 

is treated extensively from a theoretical point of view. 

Stretch forming, bending and deep drawing tests on 

laminated sheets are also performed experimentally. It is found 

that the orientation of the laminated sheet during the deformation 

process has a significant influence on the bending behaviour and 

the deep drawability of laminated sheet. The change in deep 

drawability can be qualitatively predicted from the bending 

behaviour. 
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CHAPTER 1 


INTRODUCTION 

The reasons for the use of laminated materials, a 

description in some detail of the most important laminates used 

today and their mode of manufacture, will be given first in this 

introduction. A brief survey of the state of the art of plasti ­

cally deforming laminated materials follows. Finally, the scope 

of this thesis will be explained. 

1.1. Laminated ComEosites; Definition, Use and Manufacture 

1.1.1. Why Composite Materials are Used 

The demands on materials imposed by engineering applica­

tions can be very diverse. Some sought after properties of 

materials are listed below. 

1. Mechanical Properties 

high strength to weight ratio 

high ductility 

good formability 

weldability 

fracture toughness 

fatigue behaviour 

creep behaviour 

2. Thermal Properties 

thermal insulation 

excellent heat transfer characteristics 

1 
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high or low coefficient of thermal expansion 

effects of temperature on mechanical properties 

(e.g., high temperature creep) 

melting point 

3~ Electrical Properties 

electrical insulation 

excellent electrical conductivity 

magnetic properties (e.g., permeability) 

4. 	 Chemical Properties 

corrosion resistance 

5. 	 Nuclear Properties 

effects of radiation on the material 

nuclear cross section for specific nuclear 

reactions 

6. 	 Tribological Properties 

wear resistance 

abrasion resistance 

surface hardness 

surface roughness 

7. 	 Aesthetic Properties 

color 

surface appearance (e.g., for decorative purposes) 

8. Cost 

availability (scarce or abundant) 

production cost 
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It is virtually impossible to meet all the above needs 

simultaneously (if this is ever required). In some applica­

tions~ the material needs only a few of the above properties~ 

and requirements can be easily met by a wide variety of 

traditional materials. In other applications, the demands are 

more severe and/or more diverse~ and can be met by improving 

materials. A great deal of research has gone into these methods 

of improvement. In metals~ for instance, change in properties 

can be obtained by mechanical working, heat treatment and the 

use of alloy elements. Plastics can be improved by developments 

in organic chemistry. 

However, demands ~or some applications can not be met 

by simple single-component materials acting alone. It becomes 

necessary to combine several materials into a composite to which 

each constituent not only contributes its share, but whose 

combined action transcends the sum of the individual properties, 

and provides new performance unattainable by the constituents 

alone. This combination of materials can be done in different 

ways. One way is to distribute the properties of both materials 

evenly over the composite. This can be done with powder metallurgy, 

the dispersion of particles in a matrix (fillers in plastics),. 

or the use of reinforcing fibres (whiskers in metals, glass­

fibres in plastics). But this even distribution of material 

properties over the whole composite is not always necessary or 

desirable. For some applications, the best solution is to have 

non-uniform material properties. The juxtaposition of materials, 
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taking full advantage of the properties of the composing single 

materials and of the properties of the whole composite, is 

realized in laminated materials. Examples include structural 

sandwicpes and thermostat metals. Section 1.1.2. will treat 

the 	laminated materials in detail. 

The above shows that materials can be classified as 

follows. 

1. 	 Single Component Materials 

A. 	 Traditional materials (wood, metal) 

B. 	 Improved traditional materials 

2. 	 Composite Materials 

A. 	 Laminates of single component materials 

B. 	 Totally integrated composites (e.g., whiskers in 

a softer matrix) 

1.1.2. Laminated Composites 

The use of laminated materials is very old. The 

Egyptians used laminated wood, the Romans used plywood for 

furniture, and swordmakers made arms from laminated steel. 

Present-day applications of laminated composites are far ranging. 

The remainder of this section is intended to show the 

reader who is not familiar with this field what types of laminates 

do exist, where they are used and how they are manufactured. 

Most of the material presented in this section will be found 

in the work by Dietz [1]. 

Since laminate types are very numerous, classifying.them 

is not straightforward. An attempt has been made to classify 
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them as laminates composed of non-metallic elements, laminates 

that exist, or can exist, of metals and non-metals, and metallic 

laminates. It is stressed however, that this classification 

is not rigid, and deviation from it occurs. 

1.1.2.1. Non-Metallic Laminates 

A. 	 Plywood is a panel consisting of an odd number of 

plies of wood veneer with the grain of alternate 

plates at right angles. These plies are bonded together 

under hydraulic pressure with water resistant or water­

proof adhesives. Plywood is used in furniture, but its 

main use is in residential construction. 

B. 	 Structural glued laminated timber consists of assemblies 

of suitably selected and prepared wood laminations 

securely bonded with adhesives. The grain of all 

laminations is approximately parallel longitudinally. 

Glued laminated members can be fabricated in almost any 

length, size, or structural shape. They are used for 

beams, columns, arches and domes. 

C. 	 High £ressure plastic laminates are made from a layup 

of sheets of paper, cloth, asbestos, synthetic fiber 

or glass in sandwich construction, each bonded with a 

suitable resin. They are pressed between metal pressure 

plates at required temperature and pressure till 

polymerization is finished. Originally, they replaced 

mica as an insulator, and their main use is still as 

a quality electrical insulator. Some are also used for 

decorative purposes. 
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D. 	 Glass c~m£osites or laminates consist of two or more 

layers of glass bonded to one or more layers of plastic 

material to produce a composite structure. They are 

used to improve the safety characteristics of glass, 

as in automobile windshields; to produce resistance 

to penetration by missiles, as in bullet-resisting 

glass; or to achieve special optical properties, as 

in light filters. Another form of glass 'laminate' 

are insulating-glass windows, consisting of multiple 

layers of glass separated by air cells to provide thermal 

insulation. 

1.1.2.2. Non-Metallic, Metallic Laminates 

A. 	 Structural sandwiches are constructions comprising a 

combination of alternating dissimilar simple or composite 

materials, assembled and intimately fixed in relation 

to each other so as to use the properties of each to 

specific structural advantage for the whole assembly. 

They are a special form of laminated composite in which 

thin, strong, stiff, hard and relatively heavy facings 

are combined with thick, relatively soft, light and 

weaker cores to provide a light-weight composite much 

stronger and stiffer in most respects than the sum of 

the individual stiffness and strengths. Thin strips 

of metal are easily bent and a block of plastic foam 

is easily broken, but when the metal strips are bonded 

to opposite faces of the plastic foam the resulting 
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sandwich structure resists bending and requires a 

heavy load to break it. 

Applications of sandwich construction include aircraft 

wings, helicopter rotor blades, aircraft fuselage 

primary structure. Less exotic applications involve 

the 	use of structural building panels in industrial 

building construction. 

B. 	 Glassed steel is a family of laminates, each member of 

which consists of a glass structure (which may vary in 

formulation and number of layers) applied and then 

fused by high-temperature firing to a base metal, 

usually mild steel. Unlike most other laminates, glassed 

steel is formed into its desired size and shape before 

the laminate, in this case glass, is applied to the 

base metal. This type of laminate can be ta.ilored to 

its use by the selection of glass formulation and base 

metal. 

Coatings of amorphous glass, inert and smooth, are used 

in making corrosion-resistant process equipment for 

chemical, petrochemical, pharmaceutical, plastic, 

brewery and biochemical process industries. 

Coatings of crystallised glass are also used for corrosion 

resistance, but provide in addition abrasion resistance, 

impact resistance, thermal shock, and even electrical 

insulation. 
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1.1.2.3 Metallic Laminates 

A. 	 Laminates in which the surface is essentially only 

a protective coating, like plated, galvanised and 

similarly thinly coated metals. 

B. 	 A type of lamination is the provision of a hard, 

wear resists~t layer on metal parts by fusion welding. 

The surface overlay deposited may be required for wear 

resistance, corrosion resistance, heat resistance. 

This hard facing of metal parts is widespread where the 

above specifications must be met. (e.g., rolling 

mill guides, engine valves, forming dies, plowshares, 

etc. ) • 

C. 	 A similar type of laminate is the one formed by flame 

or plasma s~raying of metal or ceramic to a substrate. 

These laminates are used for wear and abrasion resist ­

ance (carbide spraying), corrosion protection (anodic 

or cathodic coatings), electrical conduction (copper 

spraying) or electrical insulation (aluminum oxide 

spray), high temperature applications (spray of 

refractory materials). 

D. 	 Another important class of laminates are the thermostat 

metals. A thermostat metal is a composite material, 

usually in the form of sheet or strip, comprising two 

or more materials of any appropriate nature, metallic 

or otherwise, which, by virtue of the different 

coefficients of thermal expansion of the components, 

tends to alter its curvature when its temperature is 
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changed. Thermostat metals can be used in a variety 

of ways when a change in temperature can be used to 

control, regulate, compensate, indicate and the like. 

Four main processes are used to create a bond between 

components. 

1. 	 Casting the lower-melting alloy on the solid higher 

melting one. 

2. 	 Joining the components directly by heat and static 

pressure in a press. 

3. 	 Joining the components directly by heat and the dynamic 

pressure of a hot-rolling mill. 

4. 	 Joining the components directly by dynamic pressure 

alone at room temperature (cold rolling). 

E. 	 Aluminum alloy laminates are laminates of two or more 

aluminum alloys of different compositions metallurgically 

bonded (mostly sheet products). The core alloy is 

chosen to have the required mechanical characteristics, 

such as high strength, or formability or ductility. 

1. 	 When the coating alloy is chosen for the anodic pro­

tection it gives to the core alloy, the laminate is 

known as Alclad. Alclad is extensively used in aircraft 

design, tube sheets for condensers and heat exchangers, 

van containers for shipboard and highway transport, 

high quality industrial siding and roofing panels. 
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2. 	 When the coating alloy has a melting point appreci­

ably lower than that of the core, and good fluidity 

in the liquid state, the sheet is known as brazing 

sheet. This can be used for construction of extremely 

lightweight, high-strength sandwich panels (same type 

as the ones in section 1.1.2.2.A) 

3. 	 In specific applications, when resistance per se 

against chemical solutions is ~equired, a corrosion 

resistant coating is selected as cladding. This lam­

inate is used in the chemical industry. 

4. 	 Finally, there is a group of clad sheet products hav­

ing a pleasing uniform appearance after etching and 

finished anodic coatings. This sheet type is known as 

clad reflector sheet, and is used in reflectors and 

sidings of buildings. 

F. 	 Stainless-steel-clad metals include stainless-clad 

steel, stainless-clad aluminum and stainless-clad 


copper. 


1. 	 Stainless-clad steels are used for the corrosion 

resistance of the stainless steel cladding and the good 

heat transfer characteristics of the core. Stainless­

clad steel is used in processing industries and for 

pressure vessels. In double clad, it is extensively 

used for cooking utensils. 

2. 	 In stainless-clad aluminum, the cleanability, stain­

resistance, strength and toughness of stainless steel 

is combined with the lightness and excellent heat-transfer 
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characteristics of aluminum. This indicates why this 

material is very widely used in the manufacture 

of 	cooking utensils, the more since it has good draw­

ability. The electrical properties of aluminum, 

combined with the properties of stainless steel, make 

it 	a candidate for use in the electrical field. 

3. 	 Stainless-clad copper shows similar characteristics to 

stainless-clad aluminum, and is also used for cooking 

utensils and in the electrical field. 

G. 	 Nonferrous-clad steels include a wide variety, such 

as nickel-clad steel, Monel-clad steel, Inconel­

clad steel, copper-clad steel, cupro-nickel­

clad steel, aluminum-clad steel. Nickel 

clad steel is used for equipment handling hot concentra­

ted caustic in alkali, rayon, soap and process industries. 

It is also used for pressure vessels and chemical tanks. 

Monel-clad steel is used for heat-transfer equipment 

that has to be resistant to sodium chloride. Inconel­

clad steel has uses similar to the previous clads, 

with the advantage that it can be used in oxidizing 

and reducing environments. In copper-clad steels, the 

strength imparted by the backing steel allows the 

corrosion resistant properties of copper to be utilized 

at temperatures and pressures far exceeding those where 

solid copper can be used. In addition to this, advantage 

can be taken of the excellent heat transfer properties 

of the copper. Hence, its use in heat exchangers, 
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kettles and the like is not surprising. Aluminum clad 

high carbon steel is used in the manufacture of heavy 

current conductors. The steel provides the strength, 

and the aluminum the good electrical conductivity. 

H. 	 Laminates for the nuclear industry , in which uranium 

fuel is cladded with aluminum, stainless steel, Zircaloy. 

1.1.3. Manufacture of Metallic Laminates 

Metallic laminates can be produced in a lot of different 

ways. Where the manufacturi~g method will be described in 

detail, bonding of stainless steel to carbon steel will be used 

as example. 

A. 	 Fusion welding 

B. 	 Flame or plasma spraying 

C. 	 Casting the lower-melting alloy on the solid higher 

melting one. One can weld two stainless steel plates 

together at the edges, after inserting a parting 

compound, such as chromium oxide, between the two to 

prevent bonding between the stainless steel plates, 

and place the plates in an ingot mold. Molton steel 

is then cast around these plates. The ingot is then 

hot rolled to convenient thickness, the welded areas 

of the stainless steel plates are cut away, and the 

result is two simple clad plates. Double clad, that 

is stainless clad on either side of the carbon steel 

core, can be produced by placing stain~ess steel pro­

perly in the mold and pouring molten steel between them. 
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D. 	 Another way to produce stainless clad carbon steel 

is one in which a mixture for producing stainless steel, 

consisting of ferroalloys and other metals, is placed 

on the carbon steel slab, and the mixture as well as 

the steel slab are melted by electric arcs. A mold 

is used around the upright carbon steel slab to retain 

molten metal until solidification occurs. After that, 

the stainless steel-carbon slab can be· further processed. 

E. 	 The most commonly used method is the pack assembly. 

Carbon steel slabs and stainless steel plates are 

suitably packed together, and the edges of the pack are 

welded together. Welding tends to minimize the oxida­

tion of the surfaces to be bonded and keeps the various 

components in proper register during further processing. 

After welding, the assembly is heated and hot rolled 

sufficiently to achieve a bond. The welded edges can 

then be removed, and the clad plates can be further 

processed. 

Because of the high chromium content of stainless steel, 

there is a strong tendency for chromium oxide to form 

on the surface. This oxide is a severe deterrent to 

bonding. In an attempt to prevent this chromium oxide 

formation, several techniques have been developed and 

described in patents. One of them is to plate or coat 

the stainless steel surface to. be bonded with iron or 

nickel. Another solution is to evacuate the pack to 

a low residual pressure after welding to remove essenti ­
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ally all oxidizing atmosphere. To achieve optimum 

bonding, all surfaces to be bonded have to be as clean 

and 	as oxide-free as possible. The assembly must also 

be at the proper temperature for hot rolling. 

The 	 rolling step has to give a sufficient reduction to 

bring the surfacesto be bonded in intimate contact, and 

to break up any oxide film that eventually may have 

formed. Similar pack assembly hot or cold rolling is 

also applied for a lot of other types of laminated 

metal sheet. Table 1.1 gives the amount of reduction 

required for successful bonding for different laminates. 

F. 	 The vacuum brazing technique can be used to bond stain­

less steel to carbon steel. Brazing alloy is placed 

on the surfaces to be bonded. The assembly is welded 

all around the edges, evacuated and heated under vacuum 

to achieve bonding. No reduction is required to achieve 

bonding, and the plates used can already have their 

final thicknesses. 

G. 	 Explosive welding can also be used to achieve bonding. 

The clad metal is held at a controlled distance from 

the base metal and the explosive charge is detonated. 

This brings the surfaces to be bonded into intimate 

contact and bonding is achieved. 

H. 	 All the above methods provide metallurgical bonding. 

Nonmetallurgical bonding can be achieved by using 

adhesives to bond the materials. 
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TABLE 1.1 

Minimum Reduction Required to 
Produce a Bond in Roll Bo~ding 

% REDUCTION COMMENTS RE.FERENCEMETALS USED 

45 Agers (2)Copper 

IIAluminium 40 

Copper and 
Aluminium Donelan (3)65 

Rollason (4) 
duce any bond­
ing 

40 Minimum to pro­

To give 100%70 " 
bonding 

Small work rol~ ·2 " 
in vacuum 

Krivonosov 
Steel 
Niobium to 30-40 10-15% per pass 

et al (5) 

Refractory or . 
Reactive metal 
Combinations Rolled in inert Bianchi (6) 

atmosphere 
5-40 
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I. 	 Laminated bar or tube type products can also be 

produced by other processes, such as extrusion. 

There may be other processes used to produce laminates 

of which the author is not aware. It is hoped that 

this description has helped the reader to realize 

the importance of laminated materials. 

1.2. 	 State of the Art of the Plastic 
Deformation of Laminated Metals 

It was outlined in section 1.1.3. that several methods 

of plastic deformation, such as rolling and extrusion, are used 

to provide a metallurgical bond by pressure welding between 

dissimilar metals to manufacture laminates. A lot of research 

has therefore gone into this laminate producing process. 

Laminated rods, tubes and cans can be formed by the 

extrusion of dissimilar metals. This type of process has 

successfully been developed for the production of nuclear fuel 

elements, see Internal Atomic Energy Authority [7]. In recent 

years, the extrusion of dissimilar metals has been extended into 

more general fields of application. The interested reader is 

referred to work done at Batelle Memorial Institute [8], Nuclear 

Metals Inc. [9], and Cleveland Crane and Engineering (10], and 

to Whitfield [11]. A summary of the mechanical and metallurgical 

factors involved in co-extrusion of dissimilar metals is given 

by Loewenstein and Tuffin [12]. It is interesting to note that 

it was even suggested to extrude simultaneously through a 

single die two billets of different materials held in separate 
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containers, to form bimetallic strip. See Darling [13], and 

Alexander and Whitlock [14]. 

Rolling of dissimilar metals is used to produce a 

laminated sheet by pressure welding• But the interest in rolling 

dissimilar metals was also generated by the fact that a high 

strength material, while rolled in a loose pack, i.e., the high 

strength metal is simply put between sheets or slabs of softer 

metal, can be more easily deformed than when rolled as a single 

sheet. This loose pack rolling is used in the rolling of 

stainless steel and titanium. Hence, work has been carried out 

on rolling dissimilar metals, both for non-bonded and bonded 

packs. ·More information on the rolling of laminates can be 

found in Arkulis [15], Arnold and Whitton [16], Pomp and 

Lueg [17]. It may be useful to point out that rolling is the 

process for which the most work describing the plastic deforma­

tion of laminated materials has been done. 

In most cases, the laminated material is not produced 

in its final shape in the bonding process. Hence, mechanical 

working to changethe geometry is necessary. The same processes 

as used for single materials can be used. The fact that the 

material is laminated can have an effect on how well these 

processes can be carried out. It was mentioned before that loose 

pack rolling of soft cladded high strength materials is easier 

than the rolling of the single strong material. This is an 

example in which the cladding makes the deformation process 

easier to perform. This however is·not always the case. An 
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example is the drawing of copper coated steel wires. Failure 

of the wire can occur, although an unclad steel wire of the same 

size can be drawn without difficulty. These two examples make 

it clear that it is necessary to analyze the mechanics of 

the plastic deformation of laminated materials to gain insight 

into the deformation patterns, and to understand why certain 

processes are easier to perform with laminated materials, while 

others are more difficult .. 

One of the techniques applied to analyze laminate 

plastic deformation is to assume that the different laminates 

undergo equal straining. An equivalent flow stress, determined 

by the traditional law of mixtures, can then be determined as a 

function of the separate yield stresses and the volume fraction 

of the layers in the composite. The composite is then treated 

as a single metal witha flow stress the equivalent flow stress. 

The plastic behaviour of laminates in tension, compression, 

rolling, drawing and extrusion has been described using this 

equivalent flow stress. See Weinstein and Pawelski [18], 

Atkins and Weinstein [19], Arkulis [15]. The equal strain 

hypothesis for all layers requires, since all the material 

deforms plastically, that the stresses in the different materials are 

different (since they have different yield stresses). The differ~nt 

behaviour of laminated and single materials in the two examples 

above, rolling of loose pack and wiredrawing of copper coated 

steel, can be accounted for by this difference in stresses in 

the different laminates. 
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Hawkins and Wright [20], [21] mention a different 

hypothesis, namely that the stress in the different components 

is equal. Since the different materials have different 

yield strength, the strains in the different components will 

generally be different, so that the different materials must 

be free to deform independently from each other. They indicate 

that in practice, the behaviour of a laminated composite will 

always lie betweenthe behaviour found by using the equal strain 

hypothesis, and the one found by using equal stress. For fully 

bonded laminated materials, no relative movement at the laminate 

interface will be allowed, and the equal strain hypothesis 

seems therefore more appropriate than the equal stress hypothesis. 

More involved analysis of plastic deformation of 

laminated composites has been made by slip line analysis for 

plane strain processes. See Brovman and Yudin [22], who indicate 

how plane strain compression, rolling, drawing and extrusion 

of laminated materials can be analyzed, and Arcisz [23], who 

analyses the cutting of bimetallic strip by smooth rigid punches. 

Not much information is available with regard to the 

pressforming properties of clad materials. Substantial improve­

ment in drawability, over conventional steel sheet, have been 

reported for tin, - see Duckett et al [24] - and zinc, - see 

Nelson [25], coated steel. The improvement in drawability seems 

to be attributed to the coating metal acting as a solid-state 

lubricant or as an aid in retaining the lubricating oil film. 
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Rathbone [26] did stretch forming on mild steel­

stainless steel laminates, and found deeper penetrations when 

the thick component (mild steel) was the outer one. But he 

did not indicate if the deeper penetrations were obtained 

because the outer component was the thicker one, or because 

it was mild steel rather than stainless steel. 

Some more information became available with the w~rk 

of Hawkins and Wright [20], [21], who investigated the press­

formability of copper-mild steel laminated sheets. They found 

that the stretch formability of a copper-steel bimetal is 

dependent on the ductility of the outer component, and not on 

the ductility of the composite as a whole, see Fig. 1.1. They 

also found that the thickness strains over the punch nose in 

deep drawn cups of copper-steel bimetal was greater when the 

outer component was copper, see Fig. 1.2, and that the degree 

of thinning increased with percent copper, see Fig. 1.3. 

Hawkins and Wright also calculated the punch loads for deep 

drawing and stretch forming using the equal strain hypothesis, 

and their calculated values were in close agreement with their 

experimental values. 

1.3. Scope of this Work 

This work will investigate the behaviour of laminated 

metal sheets in metalworking operations. The pressworking of 

sheet consists basically of two operations, stretch forming 

and deep drawing. Stretch forming of laminated sheet will be 
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investigated with the use of the hydrostatic bulge test. 

Deep drawing is a more complex operation than stretching, as 

shown by the stress system on a segment of a deep drawn cup 

shown in Fig. 1.4. Deep drawing tests in bimetals will be 

done to compare the results with those obtained by Hawkins 

and Wright. When deep drawing a cup, bending and unbending 

of the material takes place. The author felt that whichever 

laminate is on the outside of the deep drawn cup could be of 

importance in this bending and unbending~ A big portion of 

this work will therefore be devoted to an analysis of the bend­

ing of laminated sheet. 



CHAPTER 2 


EXPERIMENTAL STRETCHING OF LAMINATED 

SHEET BY THE BULGE TEST 


2.1. Materials Used in the Experiments 

Four different laminates were used. They are des­

cribed in Table 2. All laminates were delivered in coils. ·one 

of the coils, laminate D, was probably the endzone of a 

sheet and was not perfectly bonded. Thus it was possible to 

separate the stainless steel from the aluminum for part of the 

coil. These sheets will be called D-SS and D-AL. A replacement 

coil for D was ordered, and this coil was labeled DD. The 

rel~tive thickness of each laminate in the sheets was determined 

by preparing metallographic specimens of cross-sections of 

the sheet, and measuring the relative thickness under a measur­

ing microscope. The metallographic specimens were etched with 

Keller's etch in an attempt to identify the different aluminum 

laminates. Photo micrographs are shown in 

Fig. 2.1. The distinction between the two aluminum laminates 

was clear for material B only. In materials C, D and DD no 

clear boundary or change in structure is visible. 

Tensile tests on the different sheets were performed 

using the tensile test specimen of Fig. 2.2. Specimens were 

0 0 0cut out under 0 , 45 and 90 to the rolling direction, and 

tested in an Instron Tensile Testing Instrument using a .5 in/min 

crosshead speed and an extensometer with .5 in. gauge length and 

22 
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Table 2.1 

COMPOSITION OF THE LAMINATED SHEETS 

Sheet Composition Percentage of 
Laminate 

% 

Nominal Sheet 
Thickness 

10- 3 in 

Real Sheet 
Thickness 

10- 3 in 

B 

434 

C22 

5052 

ss 
AL* 

AL 

core 

40.4 

4.2 

55.4 

22.5 .23.3 

c 
201 

C22 

5052 

ss 
AL 

AL 

39.7 

core} 60 , 3 22.5 23.0 

D 

304 

C22 

3003 

ss 
AL 

AL 

18.0 

core J82. 0 51 54.0 

D-SS 3 04 ss 100 - 9.85 

D-AL 
C22 

3003 

AL 

AL 
100 -

45.9 

DD 

304 

C22 

3003 

ss 
AL 

AL 

17.7 

core 582. 3 51 53.3 

E 
430 

C22 

Zinc 

ss 
AL core 

29.7 

67.5 

2.8 

50 51.0 

!!I:0C22 AL is llOC AL with 1.5% to Si.* 
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50 percent maximum elongation for determination of the load-

elongation curve. For every test, valu•s of the .2 percent 

yield strength, the ultimate tensile strength and the uniform 

elongation were determined. A set of about ten points in the 

plastic region of every stress-strain curve were taken to 

determine the parameters A, £ 
0 

and n in the stress-strain 

relation 

- na = A (E + E)
0 

Between two and six tests were performed for every sheet in the 

different directions. The averages ~these tests were used 

to calculate the values given in Table 2.2, and to determine 

the stress-strain curves given in Fig •. 2.3 to Fig. 2.9. The 

above given stress-strain relation fits very well the experi­

mental stress-strain curves for sheets B, C and D-SS. However, 

the suggested stress-strain curve does not provide a good fit 

for the test data of materials D-AL, E, D and DD. Fig. 2.7 

and 2.9 give the suggested stress-strain curve and some experi­

mental curves for sheets D-AL, and E. It is clear that the 

suggested stress-strain curve is not suited to describe the 

experimental data. The strain values obtained in. the tensile 

tests of materials D-AL and E are very low, as can be verified 

in Table 2.2. For such small elongations, the elastic and 

plastic strains are of the same order of magnitude. Since the 

suggested stress-strain curve has no terms to account for 

elastic behaviour, the fit of that curve is poor for materials 



Table 2.2. Tensile Properties of 
the Laminated Sheets 

Sheet Composi­
tion given in 
Table 2.1) 

-

Angle of Tensile 
Axis with Roll­
ing Direction. 

0 

Yield Stress 

10 3 psi 

Ultimate 
Tensile 
Strength 

* 

10 3psi 

Percentage 
Uniform 
Elongation 

** 

% 

Stress-Strain Curve 
Parameters 

- - n a = A (e: + e:)
0 

A e: n 
0 

10 3psi - -

0 46.0 54.0 10 76.6 .0083 . 1 1 1 
45 46.2 54.2 8.6 72.5 .0017 .083 

B 90 47.0 55.9 10 76.6 .0035 .095 
average 46.4 54.7 9.5 75.2 .0045 .096 

0 - 70.7 39 141 .0946 .426 
45 - 68.7 40 136 .0875 .410 

c 90 - 67.9 37 137 .149 .503 
average - . 69.1 39 138 .111 .447 

i 

*** 0 28.6 39.9 39.7 1.2 20 57.7 .581 .766 I 
D 45 28.6 37.9 37.7 1.5 15 46.4 .777 .869 

90 28.6 39.0 38.5 1.4 1.5 44.7 .846 .961 
average 28.6 38.9 36.6 1. 37., 17 49.6 .735 .865 

0 7 7. 1 109 34 224 .0953 .447 
45 73.6 104 38 196 .0533 .341 

D-SS 90 73.3 104 35 215 .126 .503 
average 74.7 106 36 212 .0916 .430 

**** 0 24.8 28.7 1.10 224 0. .419 
D-AL 45 25.1 28.0 1. 03 203 o. .418 

90 25.8 28.6 .96 219 0. .409 
average 25.3 28.4 1. 03 215 o. .415 

• Ncont1nued VI 



Table 2.2. Continued 

Sheet Composi­
tion given in 
Table 2. 1) 

-

Angle of Tensile 
Axis with Roll ­
ing Direction 

0 

' 

Yield Stress 

310 psi 

Ultimate 
Tensile 
Strength 

* 

310 psi 

Percentage 
Uniform 
Elongation 

** 

% 

Stress-Strain Curve 
Parameters 

a = A (E 
0 

-+ E) 
n 

A E n 
0 

10 3psi - -

** * 0 32.7 36.4 38.0 . 7 30 69.3 .223 .475 
DD 45 31.2 34.7 35.7 • 8 30 66.1 .239 .476 

90 33.3 34.7 35.7 . 6 30 64.6 .209 .449 
average 32.4 35.4 36.4 . 7 30 66.7 .224 .467 

0 56.8 60.5 1. 26 173 0. .218 
**** 52.9 58.245 2481. 36 .3010.E 90 60.1 63.5 1616.71 0. .639 

average 60.856.6 1.11 - --
-- -- ----	-~ 

* .. The first value given in this column for sheet D or DD is the stress, i.e., load divided 
by original area, corresponding to the first maximum in the load-elongation curve. The 
second value gives the stress corresponding to the second maximum. 

* •.•... 	 The first value given in this column for sheet D or DD is the percentage elongation cor­
responding to the first maximum in the load-elongation curve. The second value gives the 
elongation corresponding to the second maximum. 

***•. 	 The stress-strain parameters for sheets D and DD given in this table relate to zone 3 of 

the stress-strain curve, as explained in the text and in Fig. 2.5 and 2.8. 


****•. 	 The fit of the power-law with the stress-strain curve for sheets D-AL and E is poor. Since 
the strain attainable in the tensile tests was very low, the elastic and plastic strain 
are of the same order of magnitude. This explains the poor fit~ 

N 
0'1 
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D-AL and E. The suggested stress-strain curve does not provide 

a perfect fit for the experimental curves of materials D and 

DD for a different reason. Sheets D and DD have a load-elongation 

curve with two maximums. The load goes through a first maximum 

at a small strain, the load then decreases, starts to increase 

again, and reaches the second maximum at a high strain. Final 

necking and fracture follow. The first maximum load is the 

biggest one for sheet D, and hence, this first maximum determines 

the ultimate tensile strength for this material. For sheet DD, 

the second maximum is the larger one. An example of the load­

elongation curve of a specimen of sheet D is given in Fig. 2.10. 

Note that the first maximum in the load of tensile specimen D 

occurs between 1. and 1.25 percent elongation. The maximum 

elongation of the aluminum part of sheets D, D-AL, for a 

specimen in the rolling direction has an average value of 1.1 

percent, as indicated in Table 2.2. It is therefore thought 

that the first maximum in the tensile tests on materials D 

and DD is related to the fact that the aluminum has reached 

its maximum load carrying ability. Since the aluminum is 

supported by the stainless steel, any increase in load must be 

absorbed by the stainless steel. It is possible that, when 

the aluminum is maximally loaded, the decrease in cross sectional 

area due to further elongation has a greater effect on the total 

load than the effect of the strainhardening of the stainless steel. 

Hence, the load goes through a maximum. However, real localized 

necking does not occur. For further elongation, the strain­

hardening of the stainless steel becomes the more important 
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influence, and the load starts to increase. The new maximum 

the load will reach, and at which necking starts, is dependent 

on the stainless steel properties. The stress-strain curve 

of the specimen of sheet D, whose load-elongation curve is 

featured in Fig. 2.10, is given in Fig. 2.5. Its stress-strain 

curve consists of three zones. In zone 1, the stress-strain 

curve is very steep. This is the elastic zone. For zone 2, 

the curve decreases in slope and becomes horizontal. The 

beginning of this horizontal part coincides with the first 

maximum in the load-elongation curve, and the horizontal part 

itself with the decrease in load after this first maximum. 

In zone 3, the stress-strain curve increases almost linearly 

with increasing strain. The stress-strain curve in zone 3 can 

be represented by 

- - n 
a = A (E + E)

0 

. 
The values for A, E and n given in Table 2.2 for materials 

0 

D and DD determine the stress-strain curve in zone 3 for these 

materials. 

It may be pointed out that in all the tensile tests 

of laminated sheets, curling of the testpieces along the 

longitudinal tensile axis (thus in transverse direction of the 

testpiece) was observed during the tests. An example is 

shown in Fig. 2.11. This has also been reported by Hawkins and 

Wright [20], and they attribute this curling to different R-values 
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for the different laminates. Since the R-value is the ratio 

between width and thickness strain, a difference in R-values 

between the laminates will cause a different width strain 

for the same elongations. This causes stresses in the width 

direction of the tested specimen, which can be relieved by 

curling of the testpiece. When the laminated testspecimens 

fracture, the laminated layers unload elastically. The difference 

in their modulus of elasticity causes the testpiece to bend 

along the transverse direction during this unloading. Although 

no investigation in this curling and elastic bending was carried 

out, it is important to know that the same effect applies when 

pressforming laminated sheets. Warping of the formed sheets 

can occur, especially for asymmetric shapes. 

It was indicated that part of sheet D was defectively 

bonded. A tensile test specimen of that defective material is 

shown in Fig. 2.12. At fracture, the bond between the different 

laminates becomes loose, and the laminates necked under different 

angles to the longitudinal axis. 

2 . 2 . Biaxial Stretching of Laminated Sheet 

It was pointed out in Chapter 1, section 1.2, that 

Hawkins and Wright [20], [21] have found that the stretch­

formability of a copper-steel bimetal is bigger when the copper 

is on the outside than when the steel is, see Fig. 1.1. It is 

interesting to check if their claim, that the stretch-formability 

is only dependent on the ductility of the outer component, 

is valid for the laminates that we have available. They performed 
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stretching by the Erichsen-test. The stretching tests carried 

out on our laminates were performed by the hydrostatic bulging 

of circular and elliptical diaphragms. All sheets contain 

a stainless steel laminate on one side. Tests were done with 

the stainless steel either on the outside or on the inside of 

the bulge, to see if this made a difference in stretch-formability. 

Balanced biaxial stressing by bulging circular diaphragms was 

carried out for all sheets available, and will be treated in 

section 2.2.1. A forming limit diagram for the sheet DD was 

determined by bulging elliptical diaphragms, and this is dis­

cussed in section 2.2.2. 

2.2.1. Balanced Biaxial Stretching 

During the hydrostatic bulging of a circular dia­

phragm of an isotropic material, the material in the pole is 

subject to an equal biaxial stress system. The bulge test 

allows to determine a stress-strain curve of the material for 

strains that are bigger than the ones that can be obtained in 

a tensile test, since the point of instability, i.e., the 

onset of necking, occurs at a higher strain. Analysis of the 

deformation process in the circular bulge test has been 

performed by Hill [27] and Mellor [28]. 

The biaxial test equipment used is shown in Fig. 2.13, 

and is described by Albertin [29]. The deformation history 

during a circular bulge test is determined by recording the 

hydrostatic pressure, the radius of curvature at the pole and 

th& strain at the pole. The two latter ones are measured by 
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a combined spherometer and extensometer, originally described 

in Johnson et al [30]. During the tests of circular diaphragms 

of laminated sheet with the stainless steel to the outside of 

the bulge, it was noted that the sharp points of the extensometer, 

which normally should follow the deformation of the bulge, 

slipped on the very smooth stainless steel surface. To be able 

to measure the strains without the extensometer, square grids 

of .098 in spacing were printed on the specimens using a 

photoresist technique. The grid spacing at the pole after deforma­

tion determines the maximum strain the sheet has undergone. It 

was tried to use a replica technique, as described by Van Minh 

et al [31], since it is easier and more accurate to measure the 

deformed grid spacing on a replica than on the bulged specimens. 

Attempts to produce good replicas were unsuccessful and hence, 

the strain measurements were done by placing the~bulged 

specimens under a measuring microscope. 

Circular bulge tests were performed on sheets B, C, 

D and DD. Figs. 2.14, 2.15, 2.16 and 2.17 show the representative 

strain at the pole, the radius of curvature at the pole and 

the pressure for the failure of the specimens of sheets B, C, D, · 

and DD respectively. The first three specimens in these figures 

are diaphragms tested with the stainless steel to the ouside of the 

bulge and the last three specimens are tested with the stainless 

steel to the inside. For s~ome specimens, the strain at t"he pole at 

fractuze could not be determined accurately. This accounts for the 
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missing points on the graphs. A compa~ison, for every sheet, of the 

results of the specimens with stainless steel to the outsid~ or to 

the inside, shows that, if there is a difference in the maximum 

stretching deformation between the two cases, then that diff~rence 

is of the same order of magnitude as the differences between 

the different specimens for the same case. The results in Figs. 

2.14, 2.15, 2.16 and 2.17 do not allow to conclude that there is a 

difference between tests with one laminate to the inside or to 

the outside, and as such, cannot be used to confirm the 

results of Hawkins and Wright. To determine if there is a 

difference in stretch forming behaviour with one laminate to the 

outside or the inside of the sheet, should require an extensive 

series of tests for materials B, C, D and DD. Since the bulge 

tests themselves require a large amount of work, since the amount 

of laminated material available was limited, and since the 

results thus far obtained show no significant difference in 

behaviour, no further tests on the stretch forming of the 

sheets B, C and D were performed. 

Attempts were made to bulge circular specimens of sheet 

E, but the material always fractured at the edge of the specimens 

near or in the clamping ring. The material could not sustain 

the bending that occurs near the rim when the specimen starts 

to bulge. 

2.2.2. ForminB Limit Di.agram 

The circular bulge test allows a sheet to be stressed 

at the pole in balanced biaxial tension. When elliptical instead 
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of circular diaphragms are used, the stress at the pole is 

still biaxial tension, but the principal stresses are not equal. 

By changing the ratio between the major and minor axis of the 

elliptical diaphragms, different stress ratios and hence 

different strain ratios, can be obtained at the pole of the 

bulge. The forming limit, i.e., the maximum allowable strain 

in rolling and transverse direction of the sheet, can be 

determined for different strain ratios. The data so collected 

form the forming limit curve for that sheet material. Fig. 2.18 

shows a typical forming limit curve, and different laboratory 

tests to determine different points on the curve. 

A part of the forming limit curve for sheet DD was 

determined using the elliptical dies, shown in Fig. 2.19, 

having aspect ratios 4:3, 2:1 and 4:1, and the circular die, 

Fig. 2.13. A detailed description can be found in Yousif et al. 

[32] and Albertin [29]. The strains in rolling and transverse 

direction were determined by using the method described in 

section 2.2.1. For every die, tests were done with the major 

axis in both rolling and transverse directions. All tests were 

performed twice with stainless steel to the inside of the bulge, 

and twice to the outside. The results of these tests are 

featured in Fig. 2.20. For the specimens in region 1 the major 

axis of the elliptical dies was , parallel to the rolling direction, 

and in region 2 the major axis was parallel to the transverse 

direction of the sheet. The specimeffitested in the 4:1, and one 

in the 2:1 aspect ratio die, failed prematurely at the rim of the 
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diaphragm. These points are represented on the graph, but 

do not really belong to the forming limit curve. 

The tests in region 1 seem to indicate that the stainless 

steel to the inside of the bulge gives higher strains. In 

region 2, it is however less certain if there is a difference 

between stainless steel on the inside or outside. Hence, 

another variable is introduced, since the rolling direction 

has been reversed with respect to maximum strain axis. 

It is clear in Fig. 2.20 that higher strains can be obtained 

when the rolling direction is parallel to the major strain 

axis (region2, i.e., rolling direction along minor txis of 

elliptical dies). In a sheet with planar isotropy (or fully 

isotropic) the behaviour in region 1 or 2 should be the same. 

Since the maximum strain attainable at the pole is different 

for regions 1 and 2, the sheet must be planar anisotropic. This 

is not surprising, since during the rolling of even monometal 

sheet som& form of anisotropy is produced. 

Although higher strains seem to be obtained when the 

aluminum is on the outside of the bulge when the rolling direction 

is parallel to the minor strain axis (region 1), it is less certain 

if there is a difference in region 2. The number of tests per­

formed, two for every configuration, is not sufficient to draw 

valid conclusions from this graph.· No more of material DD 

could be used for determination of the forming limit curve, 

since the remaining material was needed for other experiments. 
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2.2.3. Conclusion 

The results found in sections 2.2.1. and 2.2.2. on the 

stretching forming of laminated sheet do not allow to draw 

any firm conclusions regarding the influence of the outside 

laminate on the stretch forming operation. More tests than 

were performed for this thesis are necessary to see how big 

the influence of the outside laminate on the stretch forming 

of laminated sheet really is. 

In bending, however, where the outside surface is 

loaded in tension and the inside one in compression, it can be 

expected that, if the sheet is laminated, the relative position 

of the laminates in the sheet will have an influence on the 

bending of the sheet. Since bending and unbending occurs in 

deep drawing operations, an understanding of the bending of 

laminated sheet could help to understand the deep drawing 

behaviour of laminates. Hence, the next chapters will deal 

with plastic bending. Experiments on the deep drawing of 

laminated sheet will be treated after an insight into.the 

plastic bending of laminates has been obtained. 



CHAPTER 3 

GENERAL THEORY OF PLASTIC SHEET BENDING 

This chapter provides a general theory of plastic 

sheet bending following the earlier work of Crafoord [33]. The 

essential features of the theory are given, along with the 

basic assumptions used in developing the theory. 

3.1. Basic Assumptions 

3 • 1 . 1 • Homogeneous Material 

This means that the material is considered to be free 

from defects, such as inclusions, cavities, and the material 

properties must be uniform from point to point. 

When considering laminated sheet, we allow for different 

properties of the different laminates, but every laminate must 

be homogeneous. 

This also implies that the bonding between different 

laminates is such that it can sustain the deformations without 

failure of the bond. No voids between the different laminates 

are allowed, since we will suppose that points in different 

laminates that are infinitesimally close, will undergo exactly 

the same deformation. 

3.1.2. Isotropic Material 

This assumption is quite common in the analysis of 

plastic deformation of materials. It is expected, however, 

36 
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that clad sheet metal, produced by cold roll-bonding, will 

have a certain degree of planar anisotropy. It could be worth­

while to analyze the plastic plane .strain bending of anisotropic 

sheet, and compare it with the bending of an isotropic material, 

but this is not included in the present study. 

In the bending of laminated sheet, the different lam­

inates will have a different plastic stress-strain behaviour, 

but each laminate is considered to be isotropic. Thus ortho­

tropic laminates, like fibres embedded in a metal matrix, are 

excluded. 

3.1.3. Pure Bending As·sunrp·t·ion~ 

Pure bending signifies that there are no resultant 

normal or radial forces on the radial cross sections of the 

bend, and that there are no external forces, neither tangential 

nor radial, acting on the inner or outer surfaces of the bent 

sheet. This type of bend can be carried out by the four point 

bend test. See Fig. 3.1, and Crafoord [33], Horrocks and 

Johnson [34] •. 

Crafoord [35] has pointed out that the industrial 

bending carried out in vee-formed tools can justifiably be 

assumed to be pure bending, since the shear stresses are only 

a small fraction of the other stresses in the bent material. 

That industrial bending methods can be readily approximated 

by pure bending was also pointed out by other authors, see for 

example Onat and Shield [36], Drucker [37], Hodge [38]. 
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.3.1.4 Plane Strai;t As.sumption 

Bending a strip with a width of the same order of 

magnitude as the thickness, results in plane stress bending 

since there is no significant stress in the width direction. 

In this case the bent strip shows anticlastic curvature. See 

Horrocks and Johnson [34]. 

For a sheet whose width is many times its thickness, 

the central sections of the sheet are prevented to deform in 

the width direction, the anticlastic deformation is restrained 

in the central sections, and a state of plane strain exists in 

these sections. Strictly speaking, a state of plane strain 

does not exist at the edge of the sheet. 

However, when the ratio of sheet width to thickness 

is big enough, this different deformation pattern at the edge 

of the sheet can be neglected, and the entire sheet is considered 

to deform in plane strain. 

3.1.5. Radial Sections in the Bend Remain Plane 

This is the traditional Bernoulli hypothesis, and 

applies since the shearing stresses are neglected. However, 

this assumption is only valid in the zone of pure ?ending. In 

the four point bend test, for example, Figs. 3.1 and 3.2, the 

zones between the outside points are not subjected to pure bend­

ing, and the hypothesis does not apply there. 

3.1.6. Incomp-ressihle Mat·e·r·i::al 

This assumption is frequently used in the study of 

metalworking processes, and sufficient data exists to support 
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the assumption. 

3.1.7. Rigid-Plastic Mat&rial 

The elastic behaviour of the material is neglected in 

the pure plastic bending model to hold the th·eory as simple 

as possible. 

This implies that the theory cannot describe the 

bending in its early stages, where the material is mainly elastic. 

It also means that the theory cannot give any information on 

spring-back, since this phenomenon is caused by the elasticity 

of the material. 

It is thought, however, that in the case of severe 

bending the influence of the elastic properties of the material 

is small compared to the large plastic deformations. 

The analysis for the pure bending of an elastic­

perfectly plastic material (mono-metal) has been made by Shaffer 

and House [39], [40]. The elastic-perfectly plastic behaviour 

of bimetal thermostats has been published by Mahrenhcltz and 

Johnson [41]. 

The purely elastic behaviour of laminated sheets has 

been given by Ashton, Halpin and Petit [42], Ashton and Whitney­

[43], Calcote [44], Astm-Stp 450 [45]. The inter&sted reader 

is also referred to the Journal of Composite Materials where 

the purely elastic behaviour of laminates is featured. 
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3.2. 	 Essential Features of tre Pure Plane 
Strain Plastic Bending Theory 

3.2.1. Equilibrium Equation 

Fig. 3.3 represents an infinitesimal element in the 

bending zone. Due to the symmetry of the deformed element, 

the principal stresses act in the radial, tangential and width 

directions. The sections of the element are therefore shear 

stress-free. The symmetry of the element requires that the 

tangential stress a• be independent of the angular position • 

of the section. 

The equilibrium equation is therefore 

(3.2.1) 

3.2.2. Yield Condition for Plane Strain 

It is assumed that the material follows the Von Mises 

yield criterion and the Levi-Mises flow rule. Since there 

are no shear stresses, the principal directions of stress and 

strain coincide, and will be indicated by the indices 1, 2 

and 3, so that cr ~ a ~ a • The effective stress is given1 2 3 

by 

1a = 
fi 

Since the material is rigid-plastic, the strain and strain 

increments are the plastic strain and plastic strain increments. 

The effective strain increment is therefore 
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d E = v~ (d El 2 + d E2 2 + d £3 2 ) 

For plane strain conditions, with straining prevented in the 

2 direction, 

With the Levi-Mises flow rule, with o being the hydrostaticm 

pressure, this yields 

Since the constancy of volume requires 

Then 

And hence, 

(3.2.2.) 


It is assumed that the yield condition can be described 

by a relationship between the equivalent stress and the integral 

of the equivalent strain increments. 

-cr = H c Jd €) 
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Under plane strain conditions, the Von Mises yield criterion 

can be reduced to 

Where 

crl ~ cri ) cr3 

And 

Hence, 

= 2._ H ( Jd €) 	 (3.2.3.) 
13 

which is the yield criterion for plane strain. 

3.2.3. 	 Tan~ential St!ain and Unelongated Layer 

Assume that is the distance between two parallel10 

crosssections of the sheet when it is flat. After bending, 

these two sections remain plane and are radial sections with 

included angle ~· A flat layer in the original sheet assumes 

the form of a cylinder. The tangential strain of this layer is 

= ln r~ (3.2.4)
10 

During the bending of the sheet there will be a 

particular layer whose length, for a given angle of ~~ is 

unchanged and measures 1 • This layer is known as the unelongated
0 
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layer and specifying its radius as r it follows that 

0 

(3.2.5) 

The tensile strain for an arbitrary ·layer is therefore 

(3.2.6) 

Defining rm as the radius of the central layer, ri 

the radius of the inside layer and r the radius of the outside 
y 

layer, then 

(3.2.7 ) 

· Therefore· 

c~ = ln r/r + ln r /r (3.2.8)
'~' m m o 

Since plastic bending occurs under constant volume, 

= cp -
cp 

(r -r.) (r +r.)2 2 y 1 y 1 

cp t r 
m 

With (3.2.5 ) ' this becomes 

r
t = 0 (3.2.9 ~ rto m 

Hence 

tor 
Ecjl = ln + ln - ( 3. 2. 10, ) r t m 
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3.2.4. The Neutral Layer 

The neutral layer in plane strain bending is usually 

defined as the layer in which the tangential stress o~ changes 

from compressive to tensile when we cross that layer from the 

inside of the bend to the outside. See Fig. 3.4. However, 

Crafoord [33] has indicat~d that o~ can be compressive to the 

outside of the neutral laye~ which makes the previous defini­

tion invalid. The present investigation also shows that, in 

the bending of laminated sheet, we .can have different radii in 

one bend where o~ changes sign. This can be illustrated with 

Fig. 3.5, in which the radial and tangential stress distribution 

across the sheet thickness is given for a sheet consisting of 

three laminates bent to a relative curvature K = 1. The two 

cladding laminates have four times the yield strength of tho 

core laminates. The percentages of the different laminates in 

the sheet is twenty percent for the cladding on the inside of the 

bend, forty percent for the soft core, and forty percent for 

the clad on the outside of the bent sheet. The stress distribu­

tions of Fig. 3.5 were determined using the techniques des­

cribed in Chapter 4 and Appendix V. Fig. 3.5 shows that o~ 

changes three times in sign across the sheet thickness. Once 

in the inside clad laminate, at the neutral radius, once at 

the laminate boundary radius inside clad-core, and once for a 

radius in the core laminate. 

It seems therefore appropriate to review the definition 

of the neutral layer. 
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For plane strain conditions, 

where cr is the hydrostatic pressure. The deviatoric stresses m 

are then 

cr ' = 2 
1 

( cr <I> - cr r)
<I> 

1 cr ' = 2 ( cr :r - cr )r 4> 

cr ' = 0 z 

so that 

' =-a ' act> r 

when crcp > crr' thus crcp' positive, then the yield criterion 

(3.2.3 ) becomes 

2 (3.2.3A) 

13 

when crcp < crr, thus cr~ ' negative, then 

2 ( 3. 2. 3 B)H ( Jd e)
13 

This leads to the following definition of the neutral layer 

in plastic bending. 

'The layer (surface), for which the deviatoric tang­

ential stress changes sign in pure plastic plain strain bending, 

is called the neutral layer (surface). Its radius is the neutral 



radius." This implies that the material on the outside of 

the neutral surface is subject to a stress system with a 

tensile deviatoric tangential stzess and a compressive 

deviatoric radial stress. The material on the inside of the 

neutral surface undergoes a compressive deviatoric tangential 

stress, and a tensile deviatoric radial stress. 

Since plastic behaviour is independent of hydrostatic 

pressure, and the principal directions of stress and strain 

coincide, d E~ has the same sign as cr~. In addition to this, 

d E~ has to vary continuously across the sheet thickness, 

(compatibility of deformations), so that de~= 0 when cr~ 

changes sign. Hence, the last definition of the neutral surface 

is completely equivalent to the following one : 

"The layer (surface), for which the tangential strain increment 

d E~ is zero, is called the neutral layer (surface)". 

It is obvious that, when the yield condition (3.2.3A) 

or (3.2.3B) is substituted in equilibrium equation (3.2.1 ), the 

equilibrium equation is different, depending on which side of 

the neutral layer the material for which the equation is valid 

is situated. For materials to the outside of the neutral surface 

in the bend, the equilibrium condition becomes 

d cr 
r 2 

r --err = (3.2.1A)
13 

whereas, for materials to the inside, the equilibrium requires 

that 
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(3.2.1B)= - _]__ H ( Jd €) for 
13 

3.2.5. The Movement of Individ~!l Layers 

During the plastic bending of a sheet the unelongated 

layer moves through the thickness of the sheet. Thus there 

is a region in the sheet which has first undergone compressive 

straining followed by tensile straining. Consequently for 

strain hardening materials (with or without Bauschinger effect), 

it is necessary to follow the straining path of the individual 

layers. Essentially this means that the strains for each layer 

have to be compounded and that the current tangential strain, 

i.e., E~ = ln r/r , is not sufficient in itself to determine the
0 

stress state. The analysis becomes even more involved when 

dealing with laminated materials but the method still involves 

following the straining path of individual layers through the 

thickness of the sheet. 

When bending a mono-metal, it is convenient to character­

ize every material layer by a scalar A , where 0 -' A " 1. A. 

being the volume fraction of material ~mbraced by a particular 

layer and the inside surface of the strip. Thus during the 

bending of a strip, defining A = 0 implies that the layer 

coinciding with the inside surface of the bend is being considered, 

and similarly A = 1 fixes the layer at the outside surface. 

This volume fraction A does not change during bending, and there­

fore defines the material layer completely. 
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Considering a layer with volume fraction A which 

assumes a radius r ·after bending, it can be found, using the 

definition of A, that 

(3.2.11) 

Hence, 

(3.2.12A) 


Considering the bending of laminates, a material 

boundary can also be characterised by a scalar ~ indicating the 

volume fraction of material contained by this boundary and the 

inside surface of the bent sheet. These ~-values remain constant 

during bending, and behave exactly in the same way as the A-

values for material layers. For instance, the radius rb of 

the material boundary characterized by volume fraction~~ is 

(3.2.12B) 


3.2.6. 	 Introduction of Dimensionless Parameters· 

{1.) Proksa [46] introduced the ratio between the, 
y·l/1.\ 

actual sheet thickness and the central layer radius as a 

dimensionless quantity to measure· the' amount of bending'. This 

quantity is called the relative curvature, 

(3.2.13) 
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Its value can vary between 0 and 2. The value 0 applies when 

the sheet is flat, i.e., r =co. The value 2 applies when m 

r. = 0, since then r = r = t. Its value is 1 when r. 
]. 

= t/2, 
l. m -f 2 

since then rm = t. 

(2.) Proksa [46] also introduced the ratio between 

the current sheet thickness and the original sheet thickness. 

This ratio is called the relative sheet thickness. 

(3.2.14) 

' 

Introduction of n gives for the tangential-straih 

e:~ = ln r/rn .. ln n (3.2.15) 

.(3.) It is important to know the position of the 

neutral layer during the bending process. Crafoord [33] 

introduces the ratio between the neutral layer radius and the 

unelongated layer radius to get a dimensionless indication of 

the neutral layer position. 

(3.2.16) 

It will be shown in section 3.2.8 that the values of K, n, andp 

are sufficient to describe the bending process. The reader 

who wishes to know how the bent geometry is expressed in 

function of dimensionless parameters, is referred to Appendix I. 

In some cases it is easier to use, notp, but another 
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dimensionless parameter instead to indicate the neutral layer 

position. The introduction of the volume fraction ~ to identify 

individual material layers, can also be used to define the 

current position of the neutral layer in the material. When the 

~-value of the material layer which is currently the neutral 

layer is used to define the neutral layer by putting 

~ = ~ n 

Then the values of K, n and ~ are also sufficient to describe n 

the bending process. In fact, there are two ways to define the 

dimensionless position of the neutral layer, using p or ~n· 

The use of ~n gives us a very good insight into what is happening 

to the materials in the neighbourho~of the neutral layer. When 

~ decreases during bending, it means that material, previouslyn 

in compression (o~ < or), becomes loaded in tension (o~ > or). 

When ~ increases during the bending process (possible for n 

laminated sheet), material previously loaded in tension becomes 

loaded in compression. 

3.2.7. Change in Sheet Thickness 

In Section 3.2.4. it is shown that the neutral layer 

is the layer in the bend for which the tangential strain increment 

d e~ equals zero. 

Since 

= ln r /r = ln pn o 
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Then 

= ~ = 0 (3.2.17)p 

The neutral layer does not change its length, and consists of 

the same material for an infinitesimal increase in bending. 

Therefore, the value of A , the volume fraction of material 
n 

contained by the neutral layer on the inside of the bend, remains 


unchanged for that infinitesimal increase in bending. 


Therefore, 


d A = 0 n 

When (3.2.17) and (3.2.18) is expressed as a function of K, n, p, 

they give the sheet thickness relation 

2 
K1--;rdn - 1) (3.2.19)= dK 2 2 

n P 

The detailed derivation of this results is given in Appendix 

1-2 A -K/2
dn 1 n [ n ] (3.2.20)dK = - 2 K K 2

(1--) +2 A K2 . n 
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In Appendix II is also shown that this can be expressed as 

dn 1 
r. r 

= C 1 y _ l) n (3.2.21)dK - I 2 K 

rn 


when this relation is expressed in terms of the current sheet 

thickness, t, and the bend angle ~ between two radial cross-

sections, it gives 

dt 1 
t = - 2 (1 - (3.2.22) 
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3.2.8. General 	Method of Solution 

The pure bending problem theory gives us really two 

differential equations 

(1) Equilibrium equation 

(3 • 2 • 1) 


1 
= - 2 

(2) 	 Sheet thickness equation 


2

K1­ 4.!..n.~ = - ( -- 1) 	 (3.2.19)dK 2 K 2 	 2 pn 

or 

(3.2.20) 

and the yield condition 

2 ( Jd E)- cr = - H for r ~ 	 (3.2.3A)a~ 	 rnr f3 

- a = - _l_H ( Jd E) for r ~ r ~·. 2. 3B)a <I> r 13 n 

Substitution of (3.2.3A) and (3.2.3B) in (3.2.1) gives 

d ~r 2 (. J= H d £) for r 	 (3.2.1A)r "'""'"CI'r 	 ~ rn 
13 

d or 
r- = - ..l_H (J d E) for r ~ rn (3.2.18)dr , 13 
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When we know the behaviour of n and P or n and A as a function n 

of K, we are able to calculate all the strains, stresses 

and moments for a complete solution. This is clear when it 

is realized that by knowing K, n, P or K, n, ~ we can 

calculate all the radii (see Appendix I), therefore all the 

strains, etc. 

The problem is thus to solve the sheet thickness 

equation (3.2.19) or (3.2.20). We know the starting condition 

for this differential equation. It is the unbent condition, 

for which 

K = 0 


n = 1 


and the starting values for P or An are determined by the 

equilibrium (no resultant normal stress on a radial section) 

when the yield stress for zero strain works on the section 

(radial stresses are zero). The problem is then to integrate 

a function with one independent and two dependent variables, 

and this is one dependent variable too, much for immediate 

solution. The independent variable is K, and the dependent 

variables are n and P or An· The second dependent variable, 

P or An, can be determined by using the equilibrium equation, 

and really defines the position of the neutral layer. This 

equilibrium equation is itself a differential equation, which 

can be integrated along the sheet thickness. Integration can 

be carried out to r, or, with transformation from r to A, to A. 
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This equilibrium equation is subject to the following boundary 

conditions. 

1. 	 Since the inside surface of the bend is a free surface, 

the radial stress there is zero. 

= 0 for r = r. or A = 0 
1 

2. This applies also at the outer surface of the bend. 

= 0 for r = or A = 1 

3. 	 Equilibrium can only be satisfied when the radial stress 

is continuous. ~his means that 

3A. 	 on every· material boundary (for laminated sheet), 

the 	radial stress in one material must be the same 

as in the other material. 

3B. 	 in the neutral layer, there is only one value 

for 	the radial stress. 

We can now integrate the equilibrium equation (3.2.1A) from 

the inside surface of the bend, with known boundary conditions, 

for increasing values of r or A. (Condition 1). If, during 

this integration, we move from one laminate to.the adjoining 

one by crossing the material boundary, we use condition 3A: 

the radial stress at the outside of one laminate must be the 

same as the radial stress at the inside of the adjoining laminate. 

The equilibrium equation can also be integrated starting from the 
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outside surface of the bend, equation (3.2.1B ), using start ­

ing condition 2, and when a material boundary is crossed, 

(condition 3A), the radial stress at the inside of one laminate 

is the same as the one at the outside of the adjoining one. 

Condition 3B makes it now possible to find the position of the 

neutral layer. The radial stress, found by integrating the 

equilibrium equation from the inside of the bent sheet, has to 

be identical with the one found by integrating from the outer 

surface, when the layer considered is the neutral layer (or 

the radius is the neutral radius). 

In the easiest cases, the integration of the equilibrium 

equation can be done analytically, and the neutral layer position 

can be found by solving an equation, derived from condition 

3B by an iterative procedure, for p In such a case, p is 

known in function of K and n, and the sheet thickness equation 

can be integrated to K without any difficulty~ 

In more difficult cases, like a strainhardening material 

without Bauschinger effect, when the effective stress is depend­

ent on the current strain and the previous material history 

(due to reversals of stress system when the neutral layer passes 

through the material), the integration of the equilibrium 

equation must be done numerically, and the position of the 

neutral layer ~n is found iteratively by finding the value 

for ~ for which the radial stresses, by integrating from the 

inside or the outside of the bend, are the same. Once An is 
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known in function of K and n, we just integrate the sheet 

thickness Telation to K. 

3. 2. 9. Radial and Tangential Stresses and Bending Mome·nt 

The radial stresses follow out of the integration of 

the equilibrium equation with the boundary conditions given 

in section 3.2.6. The tangential stresses follow out of 

a~ = a T +-
2 H ( fijI d £~!) (3.2.23A)f 2 


13 

with 

T ~ r n 

and 

= a H ( (3.2.23B)a~ r 
2 

2.. ld ··llJ
13 /3 

with 

r ~ r n 

The bending moment can be found by calculating 

M =I. 
r 

y 

a~ r dr -
-

2 21 1 r -r. 
y 1.

2 
0 

a~ d ;l. ( 3 .• 2. 24) 

1. 

3.3. Conclusion of this Chapter 

This chapter has provided an outline to the method 

of solution for the plane strain bending of rigid-plastic 

materials. The numerical technique developed is capable of 
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evaluating the change in sheet thickness and the magnitude 

of the required bending moment during continuous bending of 

the sheet. 

The simplest case to which the theory can be applied 

is that of bending a non-hardening mono-metal and this is 

treated in Chapter 4, section 4.1. The method is then extended 

for non-strainhardening bi-metals (section 4.2) and tri-metals 

(section 4.3.). The bending of strainhardening sheet is more 

involved, and is treated in Chapter 5. A comparison is made 

between the bending of a strainhardening material without 

Bauschinger effect, and a material with a Bauschinger effect 

in a simplified form, as suggested by Crafoord [33]. An attempt 

to explain the instability in bending of materials with an upper 

yield point (such as mild steel) is given, followed by the 

behaviour of strainhardening laminated sheet in bending. 

Although the general method of approach, outlined in 

section 3.2.6., is valid for all the above mentioned cases, 

each case has some distinct features which can simplify or 

complicate the solution method. Computer programs for all the 

cases have been developed. The programs for complicated cases 

involve a different approach than the ones for simpler cases, 

however, they are general in the sense that th~y can be used to 

solve for the less complicated cases. This way, the validity 

and accuracy of the numerical methods can be checked. Of course, 

this is done at the expense of central processing unit time and 

memory requirements. The results are presented in the following 

chapters, and the programs in Appendices. 



CHAPTER 4 


PLASTIC PLAIN STRAIN BENDING OF NONSTRAIN­
HARDENING LAMINATED SHEET 

The bending of a single nonstrainhardening strip occurs 

under constant bending moment without change in strip thick­

ness. 

However, when bending a sheet, composed of nonstrain­

hardening laminates of different yield strength, neither the 

bending moment nor the thickness remain constant. It is interest­

ing to note that a thickening of the sheet can occur, and that 

a decrease in bending moment results in instability of the bend­

ing, causing localised bending. 

The bending of a nonstrainhardening single sheet, here­

after referred to as monometal, will be treated first to 

show the different features of plastic plain strain bending, 

followed by a treatment of the bending of sheets composed of 

two and three nonstrainhardening laminates. These will be 

referred to as bi- and trimetals respectively. 

4.1. Plastic Bending of a Nonstrainhardening Monometal 

Hill [47] has pointed out that the plane strain bend­

ing of an ideally plastic material occurs without change in 

sheet thickness and under constant bending moment. This result 

can be analytically arrived at by using the bending theory ex­

pounded in Chapter 3, and is featured in Appendix III. 

59 
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The distribution of radial and tangential stress across 

the thickness of the bent sheet is shown in Fig. 4.1 for 

different values of the relative curvature K. The radial 

stress is zero at the inside and outside radius, as required by 

the boundary conditions. The radial stress reaches its maximum 

compressive value at the neutral layer radius. It is a~s.o._ 

seen that the radial stress is very small compared to the 

tangential stress in the early stages of the bending process 

(small values of K ) .• This shows clearly why in a lot of simplified 

bending theories the radial stress is assumed to be zero. The 

jump of the tangential stress at the neutral radius is caused 

by the non-elastic material. An elastic-plastic material should 

have a continuous tangential stress. The reader is referred to 

Shaffer and House [39], [40], for the treatment of the plane 

strain bending of an elastic-perfectly plastic monometal. 

Fig. 4.2 shows how ten originally equidistant fibres 

in the sheet move across the thickness of the bent sheet during 

bending. It is clear that a layer of material, of finite 

thickness, towards the outside of the bend becomes thinner dur­

ing bending~ while the reverse happens for a layer towards 

the inside of the bend. The unelongated fiber always coincides 

with the central fibre but the neutral layer moves towards the 

inside of the bend. This inside movement of the neutral layer 

has for result that some fibres will become shorter during 

the initial stages of the process, - when they are situated 

to the inside of the bend with regard to the current neutral fibre, 



but will start to elongate as soon as the neutral fibre crosses 

them. However, the global effect of these thickening and 

thinning layers on the sheet thickness is nil. The sheet 

retains its original thickness. 

It is shown in Appendix III that the ratio of the 

volume of material contained between the neutral surface and 

the inside surface of the bend to the total sheet volume, given 

by An' is a linear function of the relative curvature K. The 

same applies for A , the volume fraction of material contained
0 

to the inside of the unelongated surface. See Fig. 4.2BIS. 

Fig. 4.3 shows the tangential strain to which ten 

originally equidistant fibres are subjected during the bending. 

All fibres with A > 0.5 are only subjected to an ever increasing 

tensile tang~ntial strain E$. But fibres with A< 0.5 are first 

subjected to a compressive E$ causing the fibre to shorten. 

When they coincide with the neutral layer~ as shown in section 

3.2.4., E$ reaches a minimum. When the sheet is bent further 

E$ starts to increase. d E$ is now positive, and the fibre 

elongates. The tangential strain of the neutral layer E•n 

is a function of the relative· curvature K and is a curve going 

through the minima of the E.-K curves for different fibres. E•n 

is therefore the minimum value E$ has ever reached for a fibre 

through which the neutral layer has passed. E~n indicates thus 

the maximum compressive tangential strain such a fibre has under­

gone. 
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These results can be analytically derived by using the 

results of Appendix III and the formulas of Appendix I. The 

results in this section, although known for many years, have 

been repeated to remove any doubts as to what is happening 

during the bending of a rigid nonstrainhardening monometal, 

and to compare them with the bending of laminated sheet. The 

known analytic solution for this case is also used to check the 

accuracy of numerical methods developed to solve the bending 

of more complicated sheets. 

4.2. Plastic Bending of Nonstrainhardening Bimetal Sheet 

4.2.1. Introduction 

The general theory of sheet bending can be applied 

to calculate the bending of nonstrainhardening bimetal sheet. 

How this is done is featured in detail in Appendix IV. Since 

no full analytic solution was found, a FORTRAN program for use 

on a digital computer is provided as well. 

The essence of the treatment in Appendix IV is that 

the dependent variable p in the sheet thickness relation can 

dn 1 n (3.2.19)dK = - 2 K 

oe expressed as a function of K and n, so that (3.3.19) reduces 

to the form 

dn f (K,n)(fj( = 
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which can be numerically integrated. However, the function 

f (K,n) depends upon which side of the laminate boundary 

the neutral layer is currently located. When the original 

neutral layer is situated in the outside laminate, then it is 

possible that the neutral surface moves across the material 

surface during the bending. A different expression for the 

sheet thickness relation applies before and after the neutral 

layer crosses the laminate boundary. 

Sections 4.2.2. and 4.2.3. will feature two examples 

of the bending of laminated sheet. Both examples consider a 

laminated sheet with two laminates having the same thickness 

before bending, and with one laminate having twice the yield 

strength of the other one. The examples differ in that in 

section 4.2.2. the strongest laminate will be situated at the 

outside surface of the bend, whereas in section 4.2.3. the 

strongest laminate will be at the inside. After insight into 

the bending of a nonstrainhardening bimetal has been gained 

by these two examples, the influence of the relative thickness 

of the two laminates will be discussed in section 4.2.4 and 

the influence of the yield strength ratio in section 4.2.5. 

The laminate at the inside of the bend will be called 

laminate 1, and has a yield strength A1 . The outside laminate 

is laminate 2 with yield strength A2 . Furthermore, as defined 

in Appendix IV 
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2 
(ll = - Al

13 

2 
(l2 = - A2

13 

The position of the laminate boundary is defined by~~ which is 

the ratio between the original thickness of the inside 

laminate to the total original sheet thickness. 

4.2.2. Example 1 

In this example, the two laminates have the same 

original thickness and the yield strength of the outside 

laminate is twice the one for the inside. laminate. 

Fig.· 4.4. illustrates that the thickness of the sheet 

increases during the bending ~ increases for increasing ~~ and 

that the bending moment is rising. This is completely different 

from the bending of a nonstrainhardening monometal, which occurs 

under constant thickness and constant bending moment. The 

fact, that an increase in thickness during the bending occurs 

is very significant. 

The relative sheet thickness n and the bending moment 

M have a flexure point for K = 0.70. This is the value of K 

for which the neutral layer coincides with the laminate boundary. 

This happens when the volume fraction embraced by the neutral 

surface and the inside surface of the bent sheet is the same 

as the volume fraction embraced by the laminate boundary surface 
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and the inside surface of the bent sheet. 

Hence, 

A = l.l = 0.50 n 

The neutral layer crosses the material boundary at that stage 

in the bending, and the sheet thickness :differential equation 

forK < 0.70 and K> 0.70 is different. This explains the 

change in second derivative of the relative sheet thickness 

n and the bending moment M at this point. This change in sheet 

thickness relation is caused by the change in analytical expression 

for the ratio between the neutral layer radius and the unelongated 

layer radius, p. That p and An show a change in slope at 

that point, is not surprising. The unelongated layer position 

given by A in Fig. 4.4. shows no change in slope at that point.
0 

This can be explained by the fact that A is only dependent
0 

on K and n- see equation (I.l3), and n has no change in 

slope. 

An and Ao seem to be linear functions of K. This is 

similar to their linearity in the case of a nonstrainhardening 

monometal (see Fig. 4.2BIS). Examining .. this reiult, an analytical 

solution to the problem might appear tenable and investigation 

of this might be worthwhile. The author attempted a numerical 

solution by ~hoice feeling an analytical solution would be 

tedious. 

Note also in Fig. 4.2BIS that A is bigger for all K n 

values in this case than in ~he bending of a nonstrainhardening 

monometal. 
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How ten originally equidistant fibres move during the 

bending is shown in Fig. 4.5. The outside laminate thins, and 

the inside laminate thickens during the bending. Hence, in 

the bent sheet, the inside weak laminate is thicker than the 

outside strong laminate. Thus, since the whole sheet thickens 

the thickening of the inside laminate is greater than the 

thinning of the outside laminate. 

The tangential strain e$ for theseequidistant fibres 

as a function of K is shown in Fig. 4.6. As for the monometal, 

the line e$n-K connects the minima of the e$-K curves for 

different A values. Note that the e$n-K curve has a change in 

slope when the neutral layer crosses the laminate boundary. 

When Fig. 4.6 is compared with Fig. 4.3, it is very clear that 

all the fibres, for all K values, undergo less (in the algebraic 

sense) tenSile tangential straining for this bimetal than for 

the monometal. This means that the outside layers will thin 

less than for a monometal, and that the inside layers will 

thicken more. This can also clearly be seen by comparing Fig, 

4.5 with Fig. 4.2. This is consistent with the thickening up 

of the sheet during bending, and is, in fact, directly related 

to the thickening up of the sheet. Since 

1 ( K 2e $ = 1n ( 1-2 ) + 2 AK] - 1n n (I. 9)2 

the tangential strain of the fibre A is composed of two 

components. First, the strain which the fibre would undergo when 
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the sheet should not change its thickness, which is E$ of {J.9) 

with n=l and which is the same as for the bending of a non­

strainhardening monometal, pictured in Fig. 4.3. The second 

part of E$ is 

- ln n 

and is fully composed of the change in relative thickness of 

the sheet. The E - K curve can therefore be derived from
$ 

Fig. 4.3 if the n-K curve for the bending of the sheet is 

known. Equation (1.9) can be interpreted as saying that, when 

the sheet thickness is bigger than the original one, all the 

fibres have undergone less (in the algebraic sense) tensile 

tangential straining than in the case of a nonstrainhardening 

monometal. Also, that, when n < 1, all- the fibres have ·under­

gone more (in the algebraic sense) tensile tangential strain­

ing than in the nonstrainhardening monometal case. This 

observation is completely general and completely independent 

of the type of sheet. This will apply to all the cases which 

are further dealt with in the present work. 

4.2.3. 	 Example 2 

A =2, A2=1, p=.S. 1 

This bimetal sheet is the same one as 'in example 1 

(section 4.2.2), the only difference is that the sheet is bent 

with the strong laminate at the inside surface of the bend. The 

behaviour during bending in this case is completely different 

from example 1. The figures illustrating this are Figs. '4.8, 4.9 

·. 
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4.10 and 4.11. The most important feature is that during the 

bending the bending moment decreases. (M/t 2 - K-curve in 
0 

Fig, 4.8). This is caused by the fact that the thickness 

decreases (n decreases). Comparing Fig. 4.10 with Fig. 4.3 

for a nonstrainhardening monometal shows that all the layers 

for all K values undergo more (in the algebraic sense) tensile 

tangential straining than in the monometal. All the layers 

thin therefore more than in the monometal bending, which resul t,s 

in a decrease in sheet thickness. Although a solution for the 

plain strain bending has been established, this solution will 

not be observed should we bend such a sheet. Since the bending 

moment monotonicallydecreases for increasing values of the 

relative curvature, the pure uniform bending is an unstable 

process. 

A general treatment of in~tability phenomena is outside 

the scope of this thesis. The point that is being made here 

is a relatively simple one, namely that the bending moment 

decreases from the onset of the process, and in this sense the 

process is unstable. This is the same concept as defining the 

point of instability in a tensile test as the point of maximum 

load. 

What would happen in practice in the plane strain 

bending of a laminate unstable in the above sense is that pure 

bending would not take place as predicted, but a localized kink 

in the sheet would occur. This has been observed in some experi­

ments performed as part of this thesis and reported in Chapter 6. 

This localised kinking h~also been reported in private communication 
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with Mr. John Hiam (Dofasco) who attempted to bend a low carbon 

steel which exhibited a pronounced upper and lower yield point. 

The same phenomenon was observed by Horrocks and Johnson [34]. 

This type of instability is discussed at greater length in 

Chapter 5. 

4.2.4. 	 Influence of the Relative Thickness 
of the Two Laminates 

The value for ~. the ratio between the original inside 

laminate thickness to the original thickness of the whole sheet, 

will be changed between 0 and 1. The values for the yield stresses 

will be A = 2, A = 1 or the reverse, A = 1, = 2.1 2 1 A2 

In Fig. 4.12, the ~-values on the right side represent 

the sheet with the strong layer on the outside, whereas the 

~-values on the left represent laminated sheet with the strong 

layer on the inside of the bent sheet. The two ways a single 

laminated sheet can be bent are represented by ~-values whose 

sum is one, and who are symmetrical around the vertical centre 

line of the graph. The graph shows the relative sheet thickness 

n and the neutral layer position 1 as a function of ~ for 
n 

different K-values. The sheets with the strong laminate on the 

outside thicken up during bending. The same sheets bent when 

the strong laminate is on the inside, i.e., the sheet is simply 

reversed, always thin. Laminated sheets with ~-values near 

0 or 1 show a smaller change in thickness than sheets with 

intermediate~· This could be expected, since for ~ = 0 or 1, 

the sheet is a nonstrainhardening monometal, which bends without 
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change in thickness. Consider the laminates represented on the 

right side in Fig. 4.12. It is not possible to indicate which 

sheet composition is going to thicken most, since the maximum 

of the n-P curve is different for different values of the 

relative curvature K, and shifts to decreasing p for increasing 

K • 

Fig. 4.13 features the bending moment (reduced to 

the original sheet thickness) M/t 2 as a function of p for 
0 

different values of K. The bending moment increases for increasing 

K for the sheets with the strong laminate on the outside. When 

the strang material is on the inside of the bend, the moment 

decreases and uniform bending is unstable. When the left side 

of Fig. 4.13 is turned to the right along the central axis, this 

results in Fig. 4.14, which shows the continuity between the 

bending to one side or to the other. The M-~ curves for 

constant K have a flexure point when the neutral layer coincides 

with the laminate boundary. The reason for this is again that 

the sheet thickness relation changes when the neutral layer 

crosses the laminate boundary. 

The bending moment as a function of K for different p 

values is plotted in Fig. 4.15. This graph affirms that all the 

bimetal sheets with the strong_laminate at the butside are stable, 

but. when reversed, are unstable. It is also possible to reduce 

the bending moment to the current sheet thickness, that is 

M/t2. This value is not proportional to the real bending moment 

for the sheet, since 
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t = t n 
0 

changes as a. function of K. But the plot of M/t2 as a function 

of K for different p in Fig. 4.15 shows very clearly the 

influence of the neutral layer crossing the material boundary. 

It is seen that M/t2 can decrease for increasing K when the 

strong laminate is on the outside. This means, since M/ t2 · 
0 

is monotonicallyincreasing, that this increase in real bendin~ 

moment is caused by the increase in sheet thickness. Analogously 

for the sheet bent the other way, M/t2 can increase for increas­

ing K' but since M/ t 2 decreases this must be caused by decreas­
0 

ing sheet thickness. However, the M/t2 graph indicates that 

the change in total sheet thickness is not solely responsible 

for the behaviour of M. Different influences on M are at work, 

namely the change in sheet thickness, the thickening of the 

inside laminate and the thinning of the outside laminate, and 

the shift of the neutral layer during the bending. 

The bending of the laminated sheet changes the relative 

thicknesses of the two composing laminates. This is featured 

in Fig. 4.17. The outside laminate always thins, and the 

inside one always increases in thickness. The relative change 

in thickness is dependent on p and K. This effect can be 

important. Say that a strong, but thin cladding is applied on 

a weak inside material (thus p close to 1). Fig. 4.17 shows 

that the strong, thin cladding can undergo a considerable 

thinning when on the outside of the bent sheet. This can be importan 
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when the clad layer is provided for corrosion resistance. 

The effect on the load carrying capacity of the bent sheet can 

also be serious although the thinning of the strong clad is 

compensated by the thickening of the thick inside laminate, 

Nevertheless. it will be shown in Chapter 6 that this thinning 

and thickening of laminates changes the load carrying capacity 

of the sheet and has a serious influence on the deep drawing 

behaviour of laminated sheet. 

It is possible to plot bending· moment and thickness 

change in function of K and vin a single graph. Fig. 4.18. 

This graph illustrates again the continuity between the bending 

of a sheet one way or the other. It is repeated that the bend­

ing with the strong laminate on the inside is unstable, and 

that the given solution is only valid for uniform bending. This 

solution gives therefore only an indication of how the bending 

will proceed in such a case. 

4.2.5. Influence of the Yield Strength Ratio 

When A /A = 1, the two laminates are identical~ The1 2 

sheet is in fact a monometal, and bends under constant thickness 

and constant bending moment. Section 4.2.4. has shown that 

for A1/A 2 = 2, the sheet thickens up and the bending moment 

increases. If the sheet is bent the other way around, A /A = 1/2,1 2 

the sheet thins and the bending is unsta~le. It may be 

anticipated that, for A /A > 1, ~he bigger A /A
2 

, the more the1 2 1

sheet will thicken and the bending moment increase. Also, that, 



73 


for A ;A < 1, the smaller A1/A2 , the more thinning will occur1 2 

and the more the bending moment will decrease. Some preliminary 

trial runs for A /A = 1/4, 3/4, 4, 4/3 and ~ = .5 confirmed1 2 

this. 

4.2.6 Conclusion 

Uniform bending of a nonstrainhardening bimetal sheet 

with the strong laminate on the outside of the bend occurs 

with an increase in sheet thickness. However, the strong out­

side laminate thins during the process. 

The uniform bending of a nonstrainhardening bimetal 

sheet with the weak laminate on the outside is not possible 

due to decrease in bending moment and thickness. Instead, 

localised bending takes place. 

4.3. Plastic Bending of Nonstrainhardening Trimetal Sheet 

4.3.1. Introduction 

The same solution method as for bimetal sheet can be 

used for multilaminated sheet. In that case, the sheet thickness 

relation changes every time the neutral layer crosses a laminate 

boundary. This is due to the fact that the analytical expression 

for P is different. However, if the sheet thickne$ relation 

(3.2.20) is used 

1 - 2 A - K/2dn 1= n [ n ] (3.2.20)
dK - 2 K 2K A + (1-~) 2 

n 2 
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and the value of A as a function of K and n is determined in 
n 

a numerical way, the change in sheet thickness relation is not 

explicitly present in the solution method. This different 

approach 	to solve the bending of laminated nonstrainhardening 

sheet is 	featured in Appendix V. 

Although the technique that is developed has the cap­

ability of solving all multilaminated nonstrainhardening bending 

problems, an analysis has only been made for two types of tri ­

metals, Both types are similar in the sense that the inside and 

the outside clad of a sheet are the same material. In the 

first type, the cladding has a yield strength twice as big as 

the one for the core laminate. For the second type, the core 

has a yield strength of twice the cladding yield strength. For 

both types, the influence of the percentage inside clad, the 

percentage core and the percentage outside clad on the bending 

will be studied. Two examples of the type with the soft core 

will be featured in section 4.3.2, and the influence of the 

relative composition of the sheet will be explained in section 

4.3.3. Section 4.3.4. will feature two examples of the sheet 

with the strong core, and section 4.3.5 explains the influence 

of the relative percentages of the different ~aminates. Finally, 

section 4.3.5. will give some conclusive remarks on the trimetal 

bending. 

4.3.2. 	 Examples of Soft Core Trimetal 

The composition of the nonstrainhardening trimetals used 
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as examples in this section are given in Table 4.1. 

1. Example 1 Sheet 2-1-2 (40-40-20) 

Fig. 4.19 shows that the material will thin during 

bending, and that the bending moment decreases for increasing 

relative curvature. It can therefore be concluded that uniform 

bending of this sheet will be unstable. 

2. Example 2 Sheet 2-1-2 (20-40-40) 

Fig. 4.20 indicates that the sheet will thicken up for 

values of the relative curvature less than .48, and that the 

sheet will start to thin if the bending is carried further. 

The bending moment increases for increasing K-values up to ~ = .48, 

reaches a maximum at that value, and decreases when K increases 

above .48. This indicates that the uniform bending ~an be 

carried out up to a relative curvature .48. If the sheet must 

be bent further, uniform bending is unsta~le, and localised 

bending occurs. Fig. 4.21 gives the radial and tangential 

stress distribution across the sheet thickness for different 

K-values. 

In these two examples, bending of the sheet to one side 

is always unstable, whereas bending the same sheet to other side 

is only stable up to a certain value of the relative curvature. 

Section 4.3.3. will show if this behaviour is general for this 

type of trimetal. 

4.3.3. 	 Influence of ~elative Laminate Thickness~s 
on ~he Bending of 2-1-2 Trimetal 

The different sheet compositions have been plotted 



Table 4.1. Sheet Compositions of Examples 
in Section 4.1.Z. 

Example 

1 


2 


Sheet 

2-1-2 

(40-40-20) 

2-1-2 

~~ ....._ .. 

Laminate 
Position 
in Bend 

inside clad 


core 


outside clad 


inside clad 

core 

outside clad 

Laminate 

Number 


i 


1 


2 


3 


1 


2 


3 


Yield 

Strength 

of Lamin­
ate i 


2 


1 


2 


2 


1 


2 


Volume 
Percentage 
of Laminate 

i 


40 


40 


20 


20 


40 


40 


j.l-Values 

11 il 

0. 

0.4 

0.8 

0 . 

0.2 

0.6 

11 i2 

0.4 I 

i 


0.8 
I 


1.0 

0.2 

0.6 

1.0 



Table 4.2. Sheet Compositions of Examples 
in Sectio~ 4.3.4. 

Example Sheet 
Laminate 
Position 
in Bend 

Laminate 
Number 

i 

Yield 
Strength 
of Lamin-

Volume 
Percentage 
of Laminate ll-Values 

ate i i llil lliz 

1 1-2-1 

(40;..40-20) 

inside clad 

core 

outside clad 

1 

2 

3 

1 

2 

1 

40 

40 

20 

0. 

0.4 

0.8 

0.4 

0.8 

1.0 

2 

1-2-1 

(20-40.:.40) 

' 

inside clad 

core 

outside clad 

1 

2 

3 

1 

2 

1 

.. 
20 

40 

40 

~ -~ --~ 

0. 

0.2 

0.6 

0.2 

0.6 

1.0 

---­
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in a triangular co-ordinate system, see Fig. 4.22. Every point 

in the triangle represents a sheet composition. The percent­

ages of inside, core and outside laminate will be measured by 

the distance of the point to the three sides of the triangle. 

Of course, the sum of all percentages is equal to hundred. 

All compositions with the same percentage core lie on 

a horizontal line. All composites with the same ratio of 

percentage inside clad to percentage outside clad lie on a 

straight line going through the top of the triangle. Symmetrical 

trimetals, i.e., with same percentage inside and outside clad, 

are situated on a vertical going through the top of the triangle. 

If point E represents a certain composition, then point F, the 

point symmetrical to E with regard to the symmetrical trimetal 

line, represents the same sheet but bent to the other side. 

The three corners of the triangle represent monometals while 

each side of this triangle represents a bimetal. 

Fig. 4.23 gives the influence of the sheet composition 

on the stability of the uniform bending of 2-1-2 sheet. The 

base line of the triangle represents a nonstrainhardening monometal~ 

Since thesebends under constant bending moment, these laminates 

are really on the limit of stability. The right side of the 

triangle represents a 2-1 bimetal, the strong laminate on the 

inside of the bend. Section 4.2.4 has shown us that these sheets 

are always unstable in uniform bending. The left side of the 

triangle represents the 1-2 bimetals, strong laminate is the 

outside one. These sheets bend always stable, as indicated in 
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section 4.2.4. The three corners of the composition triangle 

represent monometals, and are therefore on the limit of stability. 

The bending behaviour for a whole array of compositions inside 

the triangle has been calculated with the computer program 

given in Appendix V, and this gives the following results. 

1. The bencling of symmetrical 2-1-2 trimetals is always 

unstable. 

2. The bending of 2-1-2 trimetals with more inside clad 

than outside clad is always unstable (right half of the 

triangle in Fig. 4.23).,
L 

3, 2-1-2 trimetals with more outside clad than inside clad 

can be uniformly ~ent up to a certain value for the 

relative curvature. This value is dependent on the 

sheet composition. Once the bending is carried out 

further, a kink in the sheet will develop since uniform 

bending is unstable. Points in the triangle whose 

maximum bending moment occurs for the same values of 

relative curvature,-can be connected with a line which 

can be called 'line of limit of stability for that 

K-value'. All points to the centre of the triangle 

with regard to a line of limit of stability cannot be 

uniformly bent up to that K-value. All points to the 

outside of the triangle (thus to the left of that line 

of limit of stability) undergo stable bending when 

bent to that K-value. These lines of limit of stability 
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can also be plotted in function of the ratio between 

percentage inside clad to percentage outside clad, 

see Fig. 4.24. It is obvious that the point of 

instability for different material compositions is mostly 

dependent on that ratio, and only to a slight extent 

dependent on the percentage core. This means, see 

Fig. 4.24, that the degree of uniform stable bending 

is mainly determined by the ratio of inside to outside 

percentage cladding. When the ratio is small, the 

bend can be carried out in a stable manner up to high 

values of the relative curvature. When that ratio 

increases, but stays smaller than one, the bend is still 

stable, but only up to a value of the relative curvature 

that decreases with increasing ratio. When the ratio 

reaches zero, - the sheet is now a symmetrical 2-1-2 

trimetal-, that Value Of K for maximum bending moment 

reaches zero, and uniform bending is unstable from the 

beginning on. ·All compositions for which that ratio 

equals or is bigger than one, are essentially unstable. 

Figs. 4.25, 4.26 and 4.27 give the change in sheet 

thickness for different 2-1-2 sheets for K = .25, .SO, and 

1.00 respectively. As expected, the monometals do not show any 

change in sheet thickness. Composites with only a few per­

centage core material thicken or thin less than sheets with a 

sizeable amount of core. The sheets represented on the left 

triangle side, 2-1 bimetals, become thicker during the bending, 



and the composition with maximum increase in thickness is 

different for different relative curvature, as was pointed 

out in section 4.2.4. The lines of limit of stability are 

also indicated in Fig. 4.25, 4.26 and 4.27. For sheets in the 

left half of the triangle, the sheet compositions lying on the 

limit of stability line reached their maximum thickness and 

will become unstable when bent further. 

4.3.4. Examples of Strong Core Trimetal 

The composition of the nonstrainhardening trimetals 

used as examples in this section are given in Table 4.2. 

1. Example 1 Sheet 1-2-1 (40-40-20) 

Fig. 4.28 indicates that the bending is stable (increas­

ing bending moment) and that the sheet increases in thickness 

during the process. Note the flexure point in the moment and 

the relative sheet thickness when the neutral layer crosses a 

laminate boundary. 

2. 	 Example 2 Sheet 1-2-1 (20-40-40) 

Fig. 4.29 gives the solution for the bending of this 

sheet. We see that the bending moment first decreases, goes 

through a minimum and then increases above the original moment. 

The same applies for the relative sheet thickness. How can this 

be physically interpreted? If we make the assumption that local 

bending could be described by the theory for uniform bending, 

then the following is plausible. When we try to bend the sheet, 

a local bend appears on a material inhomogeneity. The sheet bends 
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locally till the K-value for minimum bending moment is reached. 

Further bending in that place requires an increase in bending 

moment, so that the local bend can both spread through the 

rest of the sheet, and further increase its relative curvature 

at the same time. This process goes on, till the sheet has 

reached a uniform curvature given by the K-value where the 

bending moment reaches its original value. If the bending is 

carried further, it will proceed uniform in a stable fashion. 

Of course, this explanation is based on very speculative 

assumptio~ namely that local bending can be described as uniform 

bending. For the moment, it is the best assumption that can be 

made, and the above gives at least an indication of what could 

happen in reality. The same phenomenon exists in the elastic 

bending of rectangular plates with cambered cross sections as 

reported by Bellow and Semeniuk [48]. However, the "kink-through", 

i.e., the sudden increase in bending angle, occurs in their 

plates when the material is completely elastic, and since the 

elastic deformations are small, uniform and localised bending 

can be described the same way. In p~asticity, the difference 

between local and uniform bending is important since the 

deformations are large. 

These two ex amp 1es show how the s.ame sheet of a 1-2-1 

trimetal is fully stable when bent to one side, while bent 

to the other side there is an original unstable "snap-through", 

followed by stable bending. Section 4.3.5 will show if this 

is general for 1-2-1 nonstrainhardening trimetal sheet. 
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4.3.5. 	 Influence of Relative Laminate Thickness 
on the Bending of 1-2-1 Trimetal 

Fig. 4.30 shows all the different compositions of the 

1-2-1 trimetal. The base of the triangle and the top represent 

monometals, and bend therefore on the limit of stability 

~onstant bending momen~. The left side of the triangle repres­

ents 2-1 bimetals, and section 4.2.4 has shown that these can 

be bent uniformly. The right side of the triangle represents 1-2 

bimetals, and these are fully unstable, i.e., bending moment 

is monotonicallydecreasing for increasing relative curvature. 

Investigation of an array of different trimetal sheet compositions 

has revealed that. 

1. 	 The bending of symmetrical 1-2-1 trimetals is always 

stable. 

2. 	 The bending of 1-2-1 trimetals in the right half of 

the composition triangle is always stable. In other 

words, 1-2-1 trimetals with more inside cladding than 

outside cladding bend uniformly. 

3. 	 1-2-1 trimetals with more outside clad than inside clad, 

hence in the left half of the triangle, show a 

decreasing bending moment, that reaches a minimum, and 

then starts to increase. 

If our assumed explanation is correct, this should indicate 

that a local bend appears in the sheet, that this localised 

bend spreads through the entire sheet, and that from then ·an 

the bending goes on in a stable, uniform way. 
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In the left side of the triangle, the sheet composi­

tions for which the bending moment reaches its minimum for 

the same value of K are connected by a "line of limit of 

instability". It is remarkable that these lines are the same 

as the "lines for limit of stability" in Fig. 4.23 for the 

2-1-2 sheet. Fig. 4.23 could be used for the 1-2-1 sheet if 

we change everywhere the words stable by unstable and unstable 

by stable. Stable bending in the right half in Fig. 4.30 for 

the 1-2-1 sheet, corresponds to unstable bending in the right 

half in Fig. 4.23 for 2-1-2 sheet. Minimum in bending moment 

at a certain K-value for a certain sheet composition in 1-2-1 

sheet corresponds to maximum in bending moment for the same 

composition at the same K-value for the 2-1-2 sheet. 

The change in sheet thickness in function of the 

material composition for different K-values is featured in 

Fig. 4.31, 4.32 and 4.33. Interpretation is left to the reader, 

and is similar to the interpretation of Figs. 4.25, 4.26 and 

4.27. 

4.3.6. Concluding Rema~ks 

The bending of the 1-2-1 and 2-1-2 trimetals has 

introduced two new types of bending behaviour, namely stable 

bending followed by unstable bending - this bending type shows 

a maximum in the bending moment, and unstable bending followed 

by stable bending - this type shows a minimum in bending moment. 

The most interesting feature really is that this complicated 

phenomena already occurs for bending of nonstrainhardening 

laminated sheet. 
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4.4. 	 Conclusions for the Bending of 
Nonstrainhardening Sheets 

The application of the general theory of sheet bend­

ing, featured in Chapter 3, on the bending of laminated 

nonstrainhardening sheet, has given new insights into the 

bending process. The results of this investigation are 

1. 	 Nonstrainhardening monametal bends under constant 

thickness and constant bending moment. 

2. 	 Nonstrainhardening bimetal with strong laminate on 

the outside of the bend sheet deforms under an increas­

ing bending moment and thickens up. 

3. 	 Nonstrainhardening bimetal with weak laminate at the 

outside of the bend thins and shows localised bending 

due to a decreasing bending moment. 

4. 	 Nonstrainhardening trimetals can deform under four 

different modes, namely 

A. 	 Fully stable 

B. 	 Fully unstable 

C. 	 Stable followed by unstable 

D. 	 Unstable followed by stable 

It was known that strainhardening sheets can bend under 

mode 4.C., and that bending of a material with 'upper yield 

point is unstable. But it has not been shown before that these 

behaviour patterns in bending can be found in nonstrainharden­

ing laminated sheets. The different bending modes are caused 

by the introduction of a nonuniform yield strength across the 

sheet. A careful analysis of all the examples treated in this 
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chapter shows that, at the start of the bending process, the 

sheet thickens up when the original neutral layer is situated 

to the outside of the central layer, remains at constant thick­

ness when the neutral layer and central layers coincide, and 

thins when the neutral layer lies to the inside of the central 

dn . . . layer. In other words, this means that dK lS pOSltlVe, 

zero or negative when K = 0 for A greater:· than, equal to 
n 

or less than 0,50 respectivelyw It is shown in Appendix VI 

that this is general in sheet bending. Hence, by determining 

the neutral layer position of the flat sheet, one knows, 

without further analysis, how the sheet thickness will change 

in the beginning of the bending. The influence of this 

original neutral layer position on the original change 

in sheet thickness explains why the same nonstrainhardening lam­

inate, when bent to one side, is stable and is unstable when 

bent to the other side. If in one case A > .SO, the sheet n 

originally thickens, and since, for an infinitesimal small 

bend, the neutral layer position doesn't change, the radial 

stress is still negligible and the material is nonstrainharden­

ing, the bending moment increases and the bending is originally 

stable. However, when the same sheet is bent the other way, 

An < .SO, the sheet thins originally, the bending moment decreases 

due to the decrease in sheet thickness, and the bend is unstable. 

This chapter shows that the different bending modes 

can be caused by the introduction of a nonuniform yield strength 

across the sheet. The same will happen when a strainhardening 

material is bent. The inside and outside layers will strainharden 
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more than the centre layers due to bigger deformations on 

the inside and outside radii. This makes the sheet similar to 

a 2-1-2 trimetal. Since the neutral layer moves to the inside 

of the bend, the outer "2" layer will be thicker than the 

inside "2" layer, and the bending will be of the type stable­

unstable. This is just an example of the type of extrapolation 

that could be made from the results on nonstrainhardening 

laminated sheet, and will be j.ustified in Chapter 5, 



CHAPTER 5 


PLASTIC BENDING OF STRAINHARDENING SHEET 

The previous chapter has given an extensive survey 

of the behaviour in plane strain bending of rigid-plastic, 

nonstrainhardening single and laminated sheets. Real metals 

however have no yield stress that is independent of strain. 

It is therefore useful to investigate how the strainhardening 

of a material will influence its bending behaviour. The bend­

ing of a monometal sheet, consisting of a strainhardening 

material without any Bauschinger effect, will be treated in 

section 5.1. Real materials can show a Bauschinger effect, and 

the influence of a simplified Bauschinger effect as suggested 

by Crafoord [33] on the bending of strainhardening monometal 

sheet will be investigated in section 5.2. Some materials, 

like mild steel, show an upper and lower yield point. The bend­

ing of these materials will be simulated by calculating the 

behaviour of a strain-softening material in bending in section 

5.3. Since the ultimate aim of this work is to give insight into 

the forming properties of laminated materials, the bending of 

laminated strainhardening sheets will be treated in section 

5.4. 

5.1. 	 Bending of Strainhardening Monometal Sheet 
without Bauschinger effect 

5.1.1. Introduction 

The bending of such a sheet can still be described by the 

theory presented in Chapter 3 .. Since the material has no 
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Bauschinger effect, the effective yield stress of a layer in the 

bent sheet is dependent on the effective strain only, and not 

dependent on the strain path to which the layer has been 

subjected during the bending. 

It was shown before that for nonstrainhardening 

materials the neutral layer moves to the inside of the sheet 

during bending. This will also be shown to be the case for 

the bending of a strainhardening monometal. This inside 

movement of the neutral layer, plus the movement of the layers 

to the outside of the bent sheet due to constant volume 

considerations, have for result that some layers in the sheet 

will first be loaded in compressive straining - when they 

are situated on the inside of the neutral layer - and later 

on in tensile straining. For these layers, the effective 

strain ~~ needed to calculate the effective stress, cannot be 

determined by the value of the tangential strain alone. 

Determination of e involves the use of the layer strain for 

which the strain direction reversal occurred. How this is 

done exactly, is shown in detail in Appendix VII. Since the 

calculation of £ involves the knowledge of the straining path 

of individual layers, which are defined by their A-Value, i.e., 

the ratio of the material volume embraced by the layer and the 

inside surface of the bent sheet to the total sheet volume, it 

is quite permissible to describe the bending in terms of K, 

and A ,
n 

so that sheet thickness equation (3.2.20) will be 

integrated. 

dn 1 .!l (3.2.20)dK = - 2 K 
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The second dependent variable, X , is found by
n 

integrating the equilibrium equation over the sheet thickness. 

This involves the knowledge of ;, hence of ~. and since the 

value of e is not analytically known for layers that have 

undergone strain direction reversal, but must be determined 

separately, and numerically, for every layer, the equilibrium 

equation for these layers must be integrated numerically. This 

makes the solution method far more "computer time" consuming than 

the solutions for nonstrainhardening materials. The method 

of solution is described in detail in Appendix VII. The pro­

gram presented there can use two different types of stress-

strain curves, and can calculate the behaviour of laminated 

strainhardening sheet. Calculations for a single sheet of 

strainhardening material can be done by supposing the sheet 

is composed of two identical laminates.· The stress-strain 

curves that the program can use are 

type 1 

type 2 

5.1.2. Exam:e_le 

To illustrate the bending of a strainhardening mono-

metal without Bauschinger effect, the solution.for a sheet with 

stress-strain curve 

C1 = A (B + £) n 

A = 1 

B = .01 

n = • 5 
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will be given in some detail. 

Fig. 5.1 shows the relative sheet thickness 	n, the 

2neutral layer position A and the bending moment M/t in n o 

function of the relative curvature K for the bending of this 

material. The same figure also gives in dotted line the same 

variables for the bending of a nonstrainhardening monometal, 

with a = constant = ABn. This gives the same yield stress 

for zero strain for both materials. It is clear from Fig. 5.1 

that: 

1. 	 The relative sheet thickness n decreases when the 

strainhardening material is bent. For a nonstrain­

hardening material the thickness remains constant. 

2. 	 The neutral layei A is always more to the inside of 
n 

the sheet for a strainhardening material than for a 

nonstrainhardening one. 

3. 	 The bending moment for the strainhardening material 

increases first, reaches a maximum, and then decreases 

further on. This means that the pure bending of the 

strainhardening material becomes unstable once the K-

value for which the maximum bending moment occurs is 

reached. By comparison, the bending moment for the 

nonstrainhardening material is constant. This maximum 

in bending moment for strainhardening materials can 

be explained as follows. Two effects influence the 

bending moment at the same time. One is the increase 

in tangential stresses, caused by strainhardening, and 

the other one is the thinning of the sheet. In the 
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early stages of the bending process, the strainharden­

ing influence is most important, and the bending is 

stable. When the thinning of the sheet becomes as 

important as the strainhardening, a maximum in the 

bending moment occurs, and the bend becomes unstable. 

Fig. 5.2 shows, on the right side, how two originally 

equidistant layers are situated in the sheet after bending to 

a relative curvature K = 1. The left side of the figure shows 

the tangential strain e $ and the value :2fi-e, proportional to 

the equivalent strain, across the sheet thickness. The cross­

13­hatched zone between !e$ l and :z e lines shows the equivalent in 

tangential strain of the strain that cannot be calculated by 

the tangential strain. It is evident that, whereas at the 

unelongated layer the tangential strain is zero, the equivalent 

strain is different from zero, since that layer has undergone 

a compressive-tensile cycle with zero final tangential strain. 

Fig. 5.2 shows also the equivalent yield stress across the 

-sheet thickness. It is clear that e is greater on the inside 

surface of the sheet than on the outside, and the same applies 

for the effective yield stress cr. Fig. 5.3 shows the radial 

and tangential stress distribution across the sheet thickness. 

This can be compared with the stress distributions for a non­

strainhardening monometal, Fig. 4.1. The minimum of cr~ in 

Fig. 5.3 in the neighborhood of the unelongated layer is of 

course caused by the minimum of cr at the , unelongated layer 

(Fig. 5.2). 
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5.1.3. 	 Influence of the Stress Strain Curve Parameters 

Calculations on the bending of sheets have been per­

formed 	using the following stress-strain curve 

- - na = A (B 	 + e) 

with parameters 

A B n 

1 • 1 • 5 

1 .01 • 5 

1 .001 • 5 

1 • 1 .2 

1 .01 .2 

1 .001 . 2 

The value of A was not changed because this value 

is only a scaling factor determining the absolute magnitude of the 

2stresses 	and the bendingmoment. Values of n, A , M/t
n o 

in function of K for the materials with n = .5 are given in 

Fig. 5,4 	and 5.5, and for the material with n = .2 in Figs. 

5.6 and 5.7. The dotted line in the A - K graphs of Figs. 5.4 
n 

and 5.6 represent the neutral layerposition for a nonstrainharden­

ing monometal. It is seen that in all cases the neutral layer 

moves more to the inside than for the nonstrainhardening case. 

However, it can be seen that A moves more to the inside for a n 

higher value of the strainhardening index n or for a lower 

value of 	the material prestrain B. This is logical, since the 
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lower n, or the bigger B, the closer the stress-strain curve 

comes to a straight horizontal line a = constant. The graph also 

indicate that the relative sheet thickness decreases more 

for higher n or 1ower B. The same result app 1ies here. The 

more the stress-strain curve deviates from the nonstrainharden­

-ing horizontal line a = constant, the more the sheet thins for the 

same value of K. 

Comparison of the bending moments shows that the bend­

ing moment is bigger for low n values or high values of B. 

This could be expected, since the stress-strain curve for 

n = .2 lies above the one for n = .5, and the stress strain 

curve moves to the left, and therefore up for the same €, for 

increasing B. 

The K-value for maximum bending moment, and therefore 

the limit of stability, becomes smaller for decreasing values 

of the strainhardening index n. The influence of B on KM 
max 

could not be established, due to the limited accuracy of the 

moment calculation (see Appendix IX). 

It was explained that the bending moment i~ influenced 

by the strainhardening and the sheet thickness. Lower values for 

n cause less sheet thinning, and less strainhardening. But the 

results seem to indicate that the effect of less strainharden­

ing is the more important one, so that instability occurs 

earlier in the bending process. 

Table 5.1 gives the maximum compressive radial stress 

(this one occurs at the neutral layer radius) for the bending of 

different sheets for different K-values. It is seen that the 



TABLE 5.1 

MAXIMUM COMPRESSIVE RADIAL STRESS 

Stress-Strain Curve 

a = A 
- n(B + e:) 

Parameters 
I a Ir max 

Iori= 
r = r n 

A B n 
' 

K = .1 K = • 2 K = . 5 K = l. 0 
. 

1. • 1 .5 .0204 .0455 .1443 .4062 

1 • • 01 . 5 .0109 .0291 .1126 .3570 

1. .001 .5 .0094 .0267 .1087 .3565 

1 • • 1 .2 .0377 .0790 .2178 .5224 

1. • 01 • 2 .0293 .0652 .1951 .4941 

1. .001 • 2 .0273 .0631 .1925 .4915 

' 

I 

I 

t.o 
~ 
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maximum value of the radial stress increases with increasing 

K-values, with increasing B and with decreasing n. This could 

be expected, since the stress-strain. curve gives, for the 

same e, higher a values for increase in B or decrease in n. 

5.2. 	 Bending of Strainhardening Monometal Sheet with 
Simplified _Bauschinger effect according to Crafoord 

5.2.1. Introduetion 

As pointed out in the previous section, the layers 

in a bent sheet between the original neutral layer and the 

current neutral layer undergo a reversal in straining. They 

were originally subjected to compressive tangential strain­

ing, and are subsequently loaded in tension. Bauschinger [SO], 

[51] reported in 1881 that the yield point in tension or compression 

is lowered after plastic deformation in the opposite direction. 

A plausible, but qualitative, explanation for the Bauschinger 

effect is that the deformation within the material is not homo­

geneous. This could be due to the variously oriented crystals 

in the material or internal stresses between dislocations. In 

a process like bending, nonhomogeneous deformation is also 

caused by the nature of the process itself, causing stress 

differences between various points of a piece of material. 

Whatever the cause of this nonhomogeneous deformation, when 

the material after deformation in one straining direction is 

unloaded, internal stresses will remain present. When the 

material is then loaded in the same straining direction, the 

material will yield at the same stress level as before the loading 

was applied. But, if the material is loaded in the opposite 
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direction, the presence of the residual stresses will cause high 

stresses in certain parts of the material, and yielding 

will occur at an apparently reduced stress. This decrease 

in yield strength after reversal of straining direction is 

called the Bauschinger effect. 

Fig. 5.8 shows the relationship between stress and 

final strain for brass sheet which has been subjected to 

varying pre-compression, and is the result of experiments 

performed by Crafoord [33]. The same figure also shows the same 

relationship if it was assumed the material doesn't have any 

Bauschinger effect. The same stresses can be plotted against 

the effective strain for various pre-strain, as in Fig. 5.9. 

It can be seen that the Bauschinger curves are of the form 

given in Fig. 5.10. Be is a constant decrease in yield stress,1 

function of the compressive prestrain, while the decrease Be 2 

decreases very rapidly with increasing strains. Of course, 

the stress strain curve is quite complicated. Crafoord 

suggested to approximate the Bauschinger curves by the following 

stress strain curve. After strai~ reversal, the yield stress 

is assumed to be constant and equal to the yield stress for 

zero effective strain until the final strain is zero. After 

that, the yield stress increases at the same rate as in the 

original stress-strain curve for zero prestrain. This curve 

suggested by Crafoord is plotted in function of final strain· 

in Fig. 5.11, and the difference with the ones for no 

Bauschinger effectand real Bauschinger effect is very clear. 
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The value of the Crafoord way of accounting for the Bauschinger 

effect is that it is simple to analyze the bending of sheet 

with such a stress-strain curve. How this is done is explained 

in Appendix VIII. 

5.2.2. ExAmple 

To illustrate the bending of a strainhardening material 

with Bauschinger effect according to Crafoord's model, the 

solution for a sheet with stress-strain curve 

- - n 
0 = A (B + £) 

A = 1 

B = .01 

n = • 5 

will be given. 

Fig. 5.12 gives the solution for a sheet with these 

stress-strain curve parameters with Bauschinger effect, and 

also without Bauschinger effect. It is clear that the sheet 

with Bauschinger effect thins more, h~ a lower bending moment, 

and has a neutral layer position closer to the inside of the 

bent sheet than for a sheet without Bauschinger effect. The 

sheet with Bauschinger effect becomes unstable earlier in the 

bending process than the one without. This could be attributed 

to the fact that the first one thins more. 

Fig. 5.13 shows the positions of ten originally equi­

distant layers in the sheet bemto K = 1. It also shows the distribu­

fi
tion of € and a across the sheet thickness. The

2 

zone between the neutral layer and the unelongated layer has a 
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constant yield stress value, as required by the stress-strain 

curve used here. This low value of cr in that region is 

responsible for the faster thinning of the sheet than with a 

no Bauschinger strainhardening material. Fig. 5.14 shows the radial 

and tangential stress distribution across the sheet thickness. The 

parameters crr and cr. both show a discontinuity in derivative 

at the unelongated layer. This is due to the discontinuity 

of the stress-strain curve for the layer with strain reversal 

which has currently a zero tangent~al strain. Fig. 5.14 also 

shows that the tangential stress can be negative for layers 

to the outside of the neutral layer. In the case shown here, 

acp even doesn't change sign at the neutral layer. This shows 

very clearly why a new definition of neutral layer was introduced 

in Chapter 3, section 3.2.4. 

5.2.3. Influence of Stress Strain Parameters 

The same stress strain curves as used for section 

5.1.3, with the only difference of the introduction of the 

Bauschinger effect, will be used here. The results are 

presented in Figs. 5.15 to 5.18. 

It is seen that the influence of B and n on n-K, 

A.n- K and M-K curves is the same. It can be noted, however, 

that a change in B brings a bigger change for the material with 

Bauschinger effect than for the one without. This can be 

explained by the fact that the flat portion of the stress strain 

curve, used in the case of strain reversal, is given by 

a - o = A Bn • A decrease in B here brings not only the strain­
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hardening part of the curve down but also the flat portion. 

This increases the effect of lo~ values due to reversal of 

stress, and hence causes relatively more thinning than in the 

case of a material without Bauschinger effect. 

These results are based on the Crafoord model for the 

Bauschinger effect. It is virtually impossible to check these 

results out in practice. First, the real Bauschinger effect does 

not follow the simplified Crafoord model, and second, how 

can one get materials with same stress strain curve, but one 

with, and one without Bauschinger effect? 

5.3. Bending of Strainsoftening Monometal Sheet 

Horrocks and Johnson [34] found during their experiments 

on mild steel (a material with a pronounced upper yield point) 

that pure bending could not be carried out. A kink in the 

mild steel plates developed, and bending occurred locally. 

It was also reported by John Hiam, Dominion Foundries and Steel, 

in private communication, that they had problems with kinking 

in uncoiling mild steel sheet. This problem can be overcome 

by performing the uncoiling process by feeding the sheet through 

a series of unbending rolls. Since programs for calculating 

bending behaviour in sheets were developed in this thesis, it 

was interesting to know if this kinking, i.e., unstability in 

bending, could be predicted by this bending theory. 

The behaviour in bepding of a sheet with stress strain 

curve 

~ n 
o = A + B E 



g,g 

with 	 A = 2 

B = -1 

n = •5 

was determined with the program developed in Appendix VII. 

The stress strain curve was chosen to give an approximation 

for a material with upper yield point. The results simulate 

only the early bending behaviour of mild steel since mild 

steel also shows strainharderiing, which was not included in 

the model stress strain curve used. The bending behaviour 

of the simulated material is given in Fig. 5.19. It is seen 

that the bending moment decreases for increasing values of 

relative curvature K. This explains the instability in pure 

bending of such a sheet. Note also that the sheet thickness 

increases and that the neutral layer is more to the outside 

surface of the sheet than in the case of a nonstrainhardening 

material. It can be concluded that the effect of strainsoftening 

on the bending behaviour is the reverse of the influence of 

strainhardening. 

Fig. 5.20 shows the stress distribution across the 

sheet thickness for the bending of a strainsoftening sheet. 

It is seen that Ia -a I= -a decreases to the in-or outside 
~ r 

-surface of the sheet, This is as expected, since a decreases for 

increasing strain €. The "bump" in o~ near the unelongated 

layer is caused by the strain reversal o£ layers in the centre 

zone of the sheet, and the fact that it was assumed there is 

no Bauschinger effect. This "bump" is in the opposite direction 

as the one for strainhardening sheet, shown in Fig. 5.3. 
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It was shown in this section that the effect of an 

upper yield point in a material, which was approximated by a 

strainsoftening stress-~train curve, on the bending of a sheet 

is to make the bending unstable. 

5.4. Bending of Laminated 
Sheet ip the Absence 

Strainhardening 
of Bauschinger Effect 

The bending behaviour of such sheets can be calculated 

using the computer program presented in Appendix VII. To 

illustrate some features present in the bending of these 

materials, that were not present in the bending of nonstrain­

hardening laminates presented in Chapter 4, or in the bending 

of strainhardening monometals, presented previously in this 

chapter, the bending behaviour of a laminated sheet consisting 

o£ two laminates of equal original thickness will be reported. 

One laminate will be nonstrainhardening and will be further 

referred 	to as NSH. Using the strain stress curve 

this can 	be very successfully approximated with 

A = 1 

B = 1 

n = 10-lO 

The original yield stress of this laminate is then cr (E=O) = 1. 

The other laminate is strainhardening and will be referred to 

as SH. The same stress strain curve type is used, this time 

with 
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A = 5 


B = • 01 


n = .5 


The original yield stress of the strainhardening laminate is 

- - • 5 then a (E=O) = 5(.01) = .5. The stress strain curves of 

both laminates are shown in Fig. 5.21. It is clear that for 

low strains, the nonstrainhardening laminate is the strongest. 

For high strains, the strainhardening laminate is the strongest. 

Fig. 5.22 shows the n-K and A -K curves for the bending
n 

of the same sh~et, once with the strainhardening laminate on 

the outside (NSH-SH sheet), and once with the strainhardening 

laminate on the inside of the sheet (SH-NSH sheet). It is 

seen that, for the SH-NSH sheet, the neutral layer at the 

beginning of the bending process is situated to the out~ide of 

the central layer (A > .5). It is shown in Appendix VI n 

that this means that, originally, the sheet thickness will 

increase. That this occurs indeed, is shown in the n-K graph. 

Further on in the bending, the .inside strainhardening laminate 

becomes stronger than the NSH laminate. As sem in Chapter 4, 

this will cause the sheet to thin. This is seen to occur, and 

the neutral layer will now be closer to the inside of the bend 

as in a NSH monometal. The strainhardening of· inside laminate 

and the thinning of the whole sheet have both their influence 

on the bending moment, Fig. 5.23, which shows a maximum. Originally, 

the strainhardening has the ~iggest influence, and, later on, 

the thinning of the sheet will be the dominant factor. The 



102 


same sheet bend the other way (the NSH-SH sheet) has its 

original neutral layer position to the inside of the central 

layer at the commencement of bending. Hence, A < .5 and 
n 

Appendix VI shows that the sheet will originally thin, as 

indeed it does, see Fig. 5.22. The strainhardening of the SH 

laminate will cause the neutral layer to move more to the 

outside surface of the sheet. The neutral layer in nonstrain­

hardening laminates and strainhardening monometals moves 

always to the inside surface of the bent sheet. The possibility 

of the neutral layer moving to the outside surface of the 

bent sheet is ~ feature that is peculiar to the bending of 

laminated strainhardening sheets. Where the bending progresses, 

the neutral layer will have a maximum in its movement to the 

outside, and will, from then on, move to the inside surface of 

the sheet. The sheet soon has its strongest laminate on the 

outside, and the sheet will thicken up. Since the sheet 

strainhardens and thickens, the bending moment will monotonically 

increase, as shown in Fig.. 5.23. 

The fact that the neutral layer can move to the outside 

of the sheet during part of the bending process is significant 

in another respect. Layers, originally subjected to tensile 

straining, can be overtaken by the neutral lay~r and be loaded 

in compression. Later on, when the neutral layer moves back 

to the inside of the sheet, the same layer undergoes a second 

strain direction reversal. Fig. 5.24 shows the tangential stress 

for different layers in the NSH-SH sheet. Layer A = .5, for 

example, has first increasing E$' then decreasing E$' and then 



increasing e~ again. This means that the layer goes subsequently 

through tension, compression, tension. Since for this sheet, 

Fig. 5.22, the original neutral layer is situated at A = .375, 

and the 	 maximum position of A occurs for A = .525, all the 
n 

layers with .375 < A < .525 have two stress reversals (if the 

sheet is bent further thanK= 1.07). Of course, the classical 

compression-tension loading is still present for other layers. 

The possibility of this double stress reversal is typical for 

the 	bending of strainhardening laminated sheets. 

An example of the bending of a sheet consisting of two 

strainhardening laminates will be presented in Chapter 6. It 

is thought that a more general presentation on the bending of 

laminated strainhardening sheet is only of limited value, 

since the important bending phenomena have been covered, and 

since the number of free choice parameters is too big. 

5.5. 	 Conclusions 

The application of the general bending theory to 

materials with a strain dependent yield stress has shown the 

following. 

1. 	 The bending of a strainhardening monometal sheet 

without Bauschinger effect occurs under decreasing 

sheet thickness. The bending moment increases in the 

beginning and reaches a maximum. Further bending is 

unstable. 

2. 	 The bending of a strainhardening monometal with Bauschinger 

effect is similar to that without. The sheet will thin 

more for the same relative curvature, and the point 
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of instability in bending will be reached earlier. 

3. 	 A material with upper yield point, such as mild 

steel, can be simulated by a strainsoftening material. 

The bending of a strainsoftening material is unstable 

from the beginning of the process. This explains 

the bending instability of mild steel. 

4. 	 It was shown that during bending some layers are 

subjected to a compressive-tensile stress cycle. 

In laminated strainhardening sheets, however, tensile 

compressive and tensile-compressive-tensile stress 

cycles are possible, since the neutral layer can move 

to the outside surface of the sheet during the bending 

of these sheets, 

The treatment of Chapters 3, 4 and 5 has given an 

insight into the plastic bending of single and laminated 

materials. This insight will be used to explain the actual 

behaviour of laminated sheets in bending and deep drawing 

experiments, which will be presented in the following chapter. 



CHAPTER 6 


BENDING AND DEEP DRAWING EXPERIMENTS 

ON LAMINATED SHEET 


6.1. Bending of Lamin!t~d Sheet·Metal 

6.1.1. Experimental Procedtrre 

It was indicated in Chapter 3, Figs. 3.1 and 3.2, 

how pure bending could be carried out using the four point bend 

test. This test set-up ensures that the bending moment in th~ 

test section between the two middle ~oints' or rollers is 

constant, and that no transverse forces act on the test section. 

Theoretically, this test method should be excellent. The 

laminated sheet metal available for testing is rather thin. 

Hence, in order to get a high relative curvature ( K = ~ ), 
rm 

the radius of the bend must be small, and since the sheet is 

thin, the test section will be small. Hence, the distance 

between the rollers of a four point bending rig must be small. 

Development of a rig of such a small size was expected to 

cause some problems, and it was thought not to be worthwhile, 

since only a few tests would be carried out. Bending methods 

used in industry could not be used either, since they do not 

result in pure bending. A method used by Crafoord [33] comes tlose 

to realizing pure bending, and is simpler than the four-point 

bend test. The testing principle is shown in Fig. 6.1. The 

sheet strip is clamped between a fixed and a movable jaw 

fitted with a long lever. When a tranverse load _is applied at the 
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end of the lever, a constant transverse force acts along the 

strip to be tested, while the bending moment varies linearly 

along the strip. When the lever is long enough, the transverse 

force is small and the bending moment practically constant 

along the test strip. A testing rig, consisting of two jaws, 

which can clamp strips 2 in wide for a depth of 3/4 in, and 

a lever of 40 in length, fitted to one of the jaws, were used 

in the experiments. The sheet to be tested is thin (t ::::.050 in),
0 

and the jaws are heavy. When the sheet is tested as shown in 

Fig. 6.1, with the width directions of the sheet horizontal, 

then the movable jaw itself forms a big load on the test 

specimen, due to gravitational forces. The transverse load is 

not situated at the end of the lever, but at the edge of the 

sheet to be tested, so that this load causes a nonuniform 

bending moment and a significant transverse force along the 

test strip. The test set up was hence rotated over 90 0 along 

its longitudinal axis, so that the width direction of the sheet 

is vertical. The weight of the movable jaw loads the sheet 

now in the width direction. This load can be removed by supporting 

the movable clamp. 

It was determined that the maximum relative curvature 

of sheets with original thickness = .050 in, when bent in thet 0 

fixture described above could be obtained when the original 

length of the test section was t = .36 in. Specimens of 
0 

sheets D, D-SS and D-AL with this test section length and a 

width of 1 in were tested in the rig. After bending, the 

specimens were cut in half in their longitudinal direction, the 
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sections polished, and the change in thickness of the whole 

sheet and of the different laminates determined under a travelling 

microscope. The specimens were cut in half since the end 

aspects of the bent strip cannot be used for thiekness measure­

ments, since deformation therein is not plain strain (the end 

aspects show anticlastic curvature). The inside and outside 

bending surfaces were plotted on graph paper, and the 

average radius determined graphically. Since the sheet thickness 

is already known,.the value of the relative curvature 

can be determined. 

Only a limited number of tests were performed, due to 

the lengthy procedure and the small accuracy attainable in the 

measurements. The difficulties encountered with the above bending 

rig, e.g., the weight of the jaws~ and the clamping of the 

sheet in the jaws, suggest that it might be worthwhile to develop 

a four point bending rig for testing thin sheets. 

6.1.2. Be~ding of Sheet D: Theor~tical a~d Experimental 

The pure bending of laminated sheet D could be 

computed since the stress-strain curves for the aluminum and 

stainless steel laminates are known. Using the program BENDING 

described in Appendix VII, and the stress-strain curve 

with the values of A, B and n for the laminates D-SS and D-AL 

given in Table 2.2, and width p = .18 when the stainless steel 
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is on the inside of the test sheet, while ~ = .82 when the 

steel is on the outside, gives the bending behaviour for sheet 

D shown in Fig. 6.2. The stress-strain curve parameters for 

D-SS and D-AL are approximately the same, except that parameter 

B for D-AL is zero. Hence, the sheet bends almost like a 

strain hardening monometal except in the beginning, when the 

aluminum is supposed to have no strength (B = 0). It is 

seen in Fig. 6.2, that she&D would bend stable, since the 

bending moment increases for increasing_K, irrespective of the 

laminate that is on the outside of the bend. 

It was explained in Chapter 2 with Fig. 2.7 that the 

stress-strain curve parameters for D-AL in Table 6.2 give a 

poor fit to the experimental stress-strain curve. Fig. 2.7 

shows that the stress values become nea~ly constant in the 

last phases of the tensile tests as D-AL. However, the 'best fit' 

stress-strain curve of type ~ = A (B + ~)n does not l~vel 

off for higher strains, and extrapolation of the yield stress 

in the aluminum, using this stress-strain curve, fo~ higher 

strain values gives erroneous results. Hence, the bend~ng 

behaviour for sheet D given in Fig. 6.2 will not be true, except 

for small values of K. 

The stress-strain curve for sheet D-AL was then 

-replaced by a nonstrain hardening curve a = 29000 psi. (This 

was realised in the program BENDING by using the curve 

~=A (B + €)n with A= 29000, B = 1 and n = lo- 10 )~ 
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The bending behaviour of sheet D, with the aluminum laminate 

nonstrainhardening and the stainless steel laminate unchanged, 

is given in Fig. 6.3 and 6.4. When the stainless steel is on 

the outside of the bent sheet, the sheet thickens, and the 

bend is stable. When the aluminum is on the outside, the sheet 

thins, and the bend is unstable. Note however that, in the last 

case, the bending moment decreases only slightly for small 

K-values. Note also that the An - K curve in this curve 

shows a discontinuity in slope when A = .18, i.e., when the 
n 

second layer crosses the laminate boundary. Similar behaviour 

was found in nonstrainhardeni~laminated sheets (Chapter 4). 

Fig. 6.5 shows the relative laminate thickness as a function 

of K. As for nonstrainhardening bimetals, the outside laminate 

thins, and the inside laminate thickens. Note however that the 

increase in stainless steel laminate thickness, when it is on 

the inside of the bend, reaches a maximum. Once K > 1.5, the de­

crease in total sheet thickness causes even the inside stainless 

steel laminate to decrease in thickness. Such behaviour was not 

encountered for nonstrain hardening bimetals (Fig. 4.17)• 

When Figs 6.2 and 6.5 are compared, it can be seen that 

the choice of stress-strain curve for the aluminum laminate has 

a big influence on the bending behaviour of sheet D. It follows 

from Fig. 2.7 that the aluminum can be considered strain harden­

ing for very small strains, and must be considered nonstrain 

hardening for larger strains. It is therefore thought that Fig. 

6.2 describes the bending of sheet D in the very beginning, and 

that Fig. 6.3, 6.4 and 6.5 apply when the bending is more advanced. 
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The limit of applicability of Fig. 6.2 should be reached 

when the strain is the most strained aluminum layer reaches 

approximately .01, the value of £ for which the strains in 

the aluminum levels off. Assuming constant sheet thickness, 

it can be derived from Fig. 4.3 that this occurs when 

K ~ .025. Further bending of the sheet will deviate from the 

solutions given by Fig. 6.2, and will come close to the 

solution suggested by Fig. 6.3, 6.4. For large values of 

K, it is suggested that solution Fig. 6.1, 6.4 will hold. 

Experimental bending of sheet D yielded the following 

results. It was found that, when the sheet was bent with the 

stainless steel as the outside laminate, the bending was stable 

and uniform, the sheet thickness increased, and the stainless 

steel laminate became thinner while the aluminum one became 

thicker. The results of a few tests are shown in Fig. 6.6, 

and the graph shows that, in general, the experimental behaviour 

agrees with the bending solution given derived for nonstrain 

hardening aluminum. 

When the sheet D was bent with the aluminum on the 

outside of the bend, bending was uniform (and stable) at the 

beginning and the sheet became thinner. This agrees with the 

behaviour of sheet D when the aluminum is considered strain­

hardening (see Fig. 6.6). However, once a uniform relative 

curvature of K = .08 was reached, kinking occurred, and the 

bending proceeded locally. This can be explained as follows. 

In the beginning of the bend, the aluminum strainhardens, so 
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that, even with decreasing sheet thickness, the bending moment 

rises (see Fig. 6.2). However, once K ~ .025 is reached, the 

most severely strained aluminum layers do not harden any more, 

and have a constant yield stress. Then bending proceeds, the 

zone of nonstrainhardening aluminum increases, and hence the 

increase in bending moment becomes smaller than suggested by 

Fig. 6.2. Since the solution for the bending of sheet D with 

nonstrainhardening aluminum indicates only a slight decreasing 

bending moment for low K-values, the transition between the 

two solutions is not abrupt. However, around K ~ .08, the moment 

reaches a maximum, and decreases thereafter, as suggested by 

Fig. 6.4. The strain in the aluminum outside layer reaches then 

.04, or four times the value for which the zone of constant stress 

in the aluminum starts. That the bending is now unstable is 

logical, since the inside stainless steel is the strongest 

laminate (and can even strainharden), while the outside weak 

aluminum has reached its maximum stress. 

A few bending experiments on sheeG D-SS and D-AL 

were performed. The bending of the strainhardening stainless 

steel occurred uniform and stable, with decrease in sheet thickness. 

This behaviour agrees with what is known of the bending of strain­

hardening monometals, as featured in Chapter 5. · Instability 

did not occur, since the beriding rig did not allow testin~ up 

to the high K-values for which a maximum in bending moment 

exists. The bending of the aluminum was peculiar. The 

aluminum sheet could be bent uniformly up to a small value of K, 

after which a kink in the sheet developed and the bending proceeded 
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locally. A possible explanation is that initially the aluminum 

strainhardens with small strains, but can be considered as non­

strainhardening for values above .01. It can then be approxi­

mated by a 2-1-2 trimetal (Chapter 4), with the inside "2" 

laminate thicker than the outside "2" laminate, since the 

strains are higher at the inside surface of the bend, as indicated 

in Fig. 4.3. Such a trimetal always bends unstable, as seen in 

Fig. 4.23. Hence, in the beginning of the process, the aluminum 

is strainhardening, and bending is therefore stable. But when 

the outside layers reach the strain for which they become non­

strainhardening, the sheet starts to resemble a 2-1-2 trimetal 

with more inside clad than outside clad, and the bending will 

become unstable. 

6.1.3 Conclusions 

It was shown that the bending theory developed is 

able to describe the bending of laminated sheet, and that the 

results of theory and experiment agree in general. However, it 

was made clear that one must be careful when using stress­

strain curves to describe laminate behaviour, since the choice 

of the wrong curve will give .a wrong solution to the bending 

of laminated sheet. It was also found that the stress-strain 

curves used, the power laws 

or a = A + B E n 
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or the nonstrainhardening case, 

-a = constant., 

are not sufficient to describe the stress-strain behaviour of 

the aluminum. A stress-strain curve with marked hardening for 

small strains, but practically no hardening at higher strains 

should be used to describe the aluminum. This can be realised 

by using a Voce stress-strain curve 

- 'E!e c 

where a indicates a constant stress which would be obtained 
co 

with large strains, o corresponds to the tensile stress of the 
5 

material, and e is a constant expressed as a characteristic 
c 

strain. It is suggested that the program BENDING (that cal­

culates the bending of laminated strainhardening sheet) will be 

adapted to be able to solve the bending of laminates with 

the Voce stress-strain curve. 

6.2 DeeE Drawing Experiments on Lam.!_nated Sheet 

It was shown in Section 6.1 that whichever laminate 

is on the outside of the bend has an influence on the pure 

bending behaviour of non symmetrical laminated sheet. Bending 

also occurs in deep drawing., and although this bending is not 

pure plain strain bending, the insight gained in the pure 

bending of laminated sheet will be of help in understanding the 
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deep drawing behaviour. 

6.2.1. Experimental Procedure 

Deep drawing experiments were performed on a Hille 

20/40 Universal Sheet Metal Testing Machine. A schematic 

test set up is shown in Fig. 6.7. Circular specimens of 2.5, 

3, 3.5 and 4 in. diameter were machined out of material E, 

D and DD. Four specimens of each size for the different materials 

were tested, two with the stainless steel on the outside of the 

deep drawn cup, and two with the stainless steel on the inside. 

The blanks were lubricated on both sides with Molyslip, the 

clampi~load used was 22000 lbs, and the punch speed approximately 

15 ins/min. A circular grid of lines with a pitch of 0.05 in. 

was photographically printed on the side of the specimens which 

became the outside of the drawn cups. The deep drawing load 

versus punch travel was recorded for all specimens. The calibra­

tion curves for the load were not available, hence the load 

values will be indicated in millivolt. The load values will 

only be used for comparative purposes, thus the calibration is 

not of prime importance. Thickness measurements were performed 

before and after deep drawing. The thickness of the drawn cups 

was measured on the intersection of two perpendicular radial 

lines with circular grid lines with radii 0.5 to 1.25 in. in the 

undefor~ed grid system. These measurements gave the cup 

thickness over the punch nose and the punch radius. Cups of 

sheet DD were sectioned in half, the cross sections polished, and 

the thickness of the aluminum and stainless steel laminates 
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measured under a travelling microscope. 

6.2.2. Results of Deep Drawing Experiments 

1. Tests on Sheet E 

No specimens of sheet E with the stainless steel on 

the outside of the cup could be successfully drawn without 

fracture. Fracture occurred in the rolling direction of the 

sheet, on both sides of the punch nose. However measurements 

were taken on the cups drawn from blanks 2.5 in diameter, even 

though fracture occurred, and this allowed some assessment to 

be made of the thickness variation over the punch nose and 

radius. 

Specimens of sheet E with the stainless steel on the 

inside of the cup 'could be drawn from blan~ with 2.5 or 3 in 

diameter. Larger blanks failed, again with fracture in the 

rolling direction. The maximum drawing loads of the tested 

specimens are given in Table 6.1. A comparison between them 

is not possible, since all specimens with stainless steel on 

the outside of the cup fractured. Thickness measurements on 

the drawn cups fro• bla~size 2.5 in diameter are reported in 

Fig. 6.8. It is clear that the specimens with stainless steel 

on the inside of the cup show a thinning where they are bent 

over the punch radius, whereas the ones with stainless steel 

on the outside become thicker. However, these last ones failed. 

Material E does.not seem to be suitable to study the 

deep drawing behaviour of laminated sheet, since its formability 

is limited. The maximum elongation in the tensile test was very 
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low, stretching with the bulge test could not be performed, and 

cup drawing was not very successful either. 

2. Tests on Sheets D and DD 

Deep drawn cups with stainless steel on the inside 

of the cup will further be designated as SS IN, while cups 

with stainless steel on the outside will be indicated as SS 

OUT. For example, a specimen from a blank of 3.5 in diameter 

with stainless steel on the inside of the cup, will be 

indicated as ~ 3.5 SS IN. 

The maximum deep drawing loads for cups of materials 

D and DD are given in Table 6.1 and Fig. 6.9. The maximum 

deep drawing load for the ~ 2.5 SS IN case seems to be higher 

than for the ~ 2.5 SS OUT case, while the reverse is true for 

~ 3.5 blanks, i.e., the maximum load is higher for~ 3.5 SS OUT 

than for ~ 3.5 SS IN. The difference in maximum loads for the ~ 

3 blanks seem to be inclusive, while the comparison for the 

¢ 4 blanks cannot be made, since all ¢ 4 SS OUT specimens failed, 

while the ¢ 4 SS IN specimens could be successfully drawn. 

Punch load versus punch travel for two cups of material DD from 

¢ 2.5 in blanks is featured in Fig. 6.10 while curves for 

¢ 3.5 in blanksof material Dare given in Fig. 6.11. Figs. 6.10 

and 6.11 show that the total punch travel to draw a cup is 

longer for the SS IN case than for the SS OUT: This means that 

the SS IN cups have a greater cup height. These figures also 

illustrate the point that for small blanks , bigger loads were 
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required for SS IN than for SS OUT, while the reverse is true 

for bigger blanks. 

Thickness measurements on the ~ 2.5 in blanks of sheets 

D and DD are featured in Figs. 6.12 and 6.13. For both materials, 

the cups with SS IN thin around the punch radius, while the 

cups with SS OUT thicken. Thinning of the sheet in the cup 

wall occurs for both cases. Thickness measurements taken with 

a ball-ended micrometer around the punch radius of cups of 

material DD are shown in Fig. 6.14. As was indicated before, 

the sheet around the punch radius thins in the ~ 2.5 SS IN case, 

while it thickens in the ~ 2.5 SS OUT case. ·This local thinning 

of the sheet in the ~ 2.5 SS IN case explains why the cup height 

is greater, as can be seen in Fig. 6.10 (the bigger the punch 

travel the deeper the draw). Fig. 6.14 indicates that, with 

increasing blank size, the sheet around the punch radius 

becomes progressively thinner. This holds for both SS IN and 

SS OUT. However, the influence of increasing blank size is far 

greater for the SS OUT case than for the SS IN case. Note 

however, that even for the ~ 3.5 SS OUT blank the decrease in 

sheet thickness around the radius is less than for ~ 3.5 SS IN. 

The result of this is that the ~ 3.5 SS IN cup is deeper than 

the ~ 3.5 SS OUT cup, as can be seen in Fig. 6.~1. The influence 

of increasing blank size on the SS OUT cups will ultimately 

make the sheet thickness of these cups around the punch radius 

so thin that failure along these thinned zones will occur, as it 

does for the ~ 4 SS OUT blanks. 
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Thickness measurements of sectioned cups of sheet 

DD under a measuring microscope are featured in Figs. 6.15 

and 6.16. It is clear that the change in relative thickness 

of the aluminum laminate for both cases, SS IN or SS OUT, shows the 

same trends as the change in thickness of the whole sheet 

around the punch radius. This is not surprising, since the aluminum 

laminate makes up 82 percent of the sheet. Fig. 6.15 indicates 

that in the SS OUT case the stainless steel laminate becomes 

thinner for all blank sizes and that the thinning of the 

stainless steel is more severe than the thinning of the whole 

sheet. This means that, over the punch radius, regardless of 

the thinning or thickening of the whole sheet, the percentage 

stainless steel in the sheet at the place, expressed as stainless 

steel thickness to total sheet thickness, becomes lower than 

the original 18 percent. Fig. 6.16 indicates that in the SS IN 

case the stainless steel laminate thickens over the punch radius, 

although the whole sheet thins. Hence, the ratio of steel 

thickness to total sheet thickness at that place becomes bigger 

than 0.18. 

The interpretation of these experimental deep drawing 

results will be given in Section 6.2.3. The insight into the 

bending process previously gained will allow a clearer picture 

of the deep drawing behaviour of laminated sheet to be drawn. 

6.2.3. 	 Qualitative Description of the Deep Drawing 
Behaviour of Laminated Bimetal Sheet 

In what follows the author has attempted to provide 

an explanation of the experimental observations made when deep drawi 
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laminated sheet. While acknowledging that the arguments are 

not always rigorous some attempt has been made to provide a 

qualitative account of the deep drawing behaviour using some 

of the results from the pure bending work. 

Consider the deep drawing of a blank with a diameter 

only slightly bigger than the punch diameter, so that the blank 

diameter is smaller than the inside diameter of the clamping 

ring. Different stages in the process are shown in Fig. 6.17. 

It is clear that the deformation of element A of the blank 

consists mainly of bending, whereas the deformation of element 

B is restricted to drawing in. To maintain constancy of volume, 

element B of the blank will thicken during this radial drawing. 

As an example, a blank of sheet D will be used to 

illustrate the drawing of a bimetal sheet. First, consider the 

deep drawing of a cup with the stainless steel on the outside 

of the cup ( SS OUT). When element B draws in radially, it 

also rotates. (This is not bending!). The final radius of the 

SS laminate·will be bigger than for the AL laminate (since SS 

is on the outside). Hence, due to constancy of volume, the 

AL laminate will thicken up more than the SS laminate, so that 

the percentage of the SS laminate, expressed as thickness ratio, 

will be smaller in element B after deep drawing than before. 

Element A deforms in.bending. Since the strong SS laminate is 

on the outside, element A will become thicker. But the SS 

laminate will thin and the AL laminate will thicken, as indicated 

by the bending of sheet D with SS OUT in Fig. 6.5. 
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When a cup is drawn with stainless steel on the inside (SS IN), 

element B will thicken. But this time, since the final radius 

of the stainless steel is smaller than the one for the aluminum, 

the SS will thicken more than the AL laminate. Element A is 

deformed in bending, and since the stainless steel is on the 

inside, the sheet at A will thin, the AL laminate will thin, 

but the SS laminate will thicken as follows out of Fig. 6.5. 

It can be verified that this behaviour is the same as the one 

found experimentally for the ~ 2.5 in bl~nks. Furthermore, when 

the SS IN and SS OUT cases are compared, it can be concluded 

that the SS becomes thicker, everywhere when the sheet is 

deformed in the SS IN case, whereas the SS becomes thinner 

at the punch radius (element A) for SS OUT. This could account 

for the fact that the maximum punch load is slightly larger in 

the SS IN case than for SS OUT for the ~ 2.5 in blanks since the 

SS is the strongest laminate and gives the most resistance to 

deformation. 

Let us now consider the deep drawing of a blank with 

a diameter murih bigger than the punch diameter, so that part 

of the blank will be clamped between clamping ring and die before 

and during the deep drawing process, see Fig. 6.17. When the 

drawing is only carried out as far as indicated.by the last 

graph of Fig. 6.17, element D will be subjected to radial draw­

ing in only. During this drawing in, element D will become 

thicker (constancy of volume), and both SS and AL laminates will 

thicken in the same proportion, since it makes no difference 

http:indicated.by
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during drawing of element D which element is·on the side of 

the die or on the side of the clamping ring. Element C will 

thicken, as described for element D, between stages I and II. 

Between stages II and III, element C will be simultaneously 

subjected to bending, radial drawing in and stretching. 

Element B will undergo radial drawing in, bending and stretching 

between I and II, and drawing in, debending and stretching 

between II and III. Finally, element A will be subjected to 

bending and stretching. 

When a cup is drawn with stainless steel on the outside 

(SS OUT) the different sheet elements will deform as follows. 

Element D is subjected to pure drawing in, as mentioned before. 

The same applies for element C between stages I and II. Between 

stages II and III, element C is subjected to bending. The SS 

laminate is on the inside of the bend for element C, so that 

element C would thin, the SS thickens and the AL thins, if 

bending was the only deformation undergone by element C. Radial 

drawing in will cause element .c to thicken, so that the final 

change in thickness of element C is uncertain (two opposite 

effects). However, the bending of element C will increase the 

percentage SS (as thickness ratio in the sheet) above the 

original one in the sheet. Since SS is the strong laminate, this 

will cause the load for deep drawing to become bigger than when 

this relative thickening of SS should not happen. Element A is 

bent with SS in the outside of the bend, so that SS will thin, 

AL thicken, and total element A will thicken. However, due to 
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the drawing in of the blank, element A is also stretched. Since 

the SS percentage in element C has increased, the drawing load 

is higher, and element A will be stretched more. Our experiments 

indicated that the stretching was the more important factor, 

hence element A thins. It is the stainless steel in element 

A that has to take most of the drawing load. The SS at 

element A will thin for two reasons. Firstly, due to bending 

of element A, and secondly, due to stretching of element A, 

caused by an increasing drawing load for drawing in of the blank, 

itself caused by an increase in SS percentage at element C as 

a·result of bending of element C. 

When a blank is drawn wi~h stainless steel on the 

insde (SS IN), deformation proceeds as follows. Element C 

will be drawn in more as in the previous case, but during bending 

of element C, the SS laminate is the outside one in the bend. 

Hence, the SS will thin, and the total sheet thickens due to 

bending. Hence, the SS percentage, as thickness ratio, 

will decrease in element C. This will cause a decrease in 

drawing load as compared to the case where this SS percentage 

should not decrease. The bending of element A results in the 

thickening of the SS, and the thinning of the whole sheet~ 

Since the drawing load is less than usual, the stretching at 

element A will be less. Hence the sheet at element A will thin 

more than predicted by bending alone, but, since the SS laminate 

has thickened, the sheet at element A is really stronger than the 

original sheet. 
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When SS IN and 	SS OUT are compared, it is found that, 

1. 	 SS OUT: SS percentage in element C increases 

increase in drawing load 

SS percentage in element A decreases 

SS in element A thins 

2. SS IN: 	 SS percentage in element C decreases 

decrease in drawing load 

SS percentage in element A increases 

SS in element A thickens (or thins slightly) 

Since the SS laminate in element A has to transmit the drawing 

load, it is clear that the SS OUT blanks will fail for smaller 

diameter blanks than the SS IN blanks. This is due to two 

effects. Firstly, for SS OUT, the drawing load is bigger than 

for SS IN, and secondly, for SS OUT, the SS laminate in element 

A is thinner than in the SS IN case. Hence, failure in SS OUT 

will occur first. This finding agrees with what was found 

experimentally. 

6.2.4. 	 Comparison of our Deep Drawing Results with 
Ex£eriments Performed by othei Authors 

Hawkins and Wright [20], [21] have performed deep 

drawing tests on copper-mild steel laminated sheet. Some of 

their results have been briefly reported in Chapter 1, Section 

1.2. They found, Figs. 1.2 and 1.3 that the amount of the 

thinning over the punch nose in their deep drawn cups was 

greater when the outer component was the softer one. This agrees 

with the present experiments on aluminum-stainless steel laminated 

sheet, see Fig. 6.14. 
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They also indicated that they found lowe~ cup heights 

when the stronger steel component was the outer one. The 

same observation was made in this work, where the cup height 

is lower when the stainless steel is the outer component of 

the stainless steel-aluminum sheet, see Figs. 6.10 and 6.11 

(greater punch travel means greater cup height). 

Hawkins and Wright [20] also found experimentally 

that the limiting drawing ratios of laminated sheet was dependent 

on the tool geometry. They mentioned especially the ratio 

of punch profile radius to sheet thickness. It is shown in 

Section 6.2.3 that bending over the punch radius and bending 

over the die radius has an influence on the drawability of 

bimetal sheet. Since the 'severity' of these bends can be 

characterised by the relative curvature values of these bends, 

i.e., the ratio of sheet thickness to punch profile radius 

and the ratio of sheet thickness to die profile radius, it is 

easily understood that the bigger these ratios are, the bigger 

the difference in drawability between blanks of the same size 

but with a different laminate on the outside of the cup, will 

be. 

6.2.5. Con~lusions on Deep Drawing Experiments. 

It is found that during the deep drawing of a bimetal 

sheet the deep drawing performance is dependent upon which 

material is to the outside of the drawn cup. The limiting 

drawing ratio is bigger when the soft laminate is on the outside 
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of the cup. Two effects seem to be important. Firstly, the 

bending over the punch radius can decrease or increase the 

thickness of the strong material, depending on which laminate 

is on the outside of the cup. Secondly, the bending over the 

die radius will influence the relative thickness of the strong 

laminate over the die radius, and this will increase or decrease 

the drawing load. The thinning of the strong layer at the 

punch radius occurs for the same draw as the increase in deep 

drawing load, and vice versa. Hence, both effects have the 

same influence on the limiting drawing ratio. The magnitude 

of both effects will depend on the relative curvature of the 

bend over the punch radius and die radius, so that tool geometry 

will have an influence on the drawability. 
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CHAPTER 7 


CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

The preceding chapters have demonstrated, both theor­

etically and experimentally, that the behaviour of laminated 

materials under certain forming processes is strongly influenced 

by the respective strengths of the various laminates and the 

orientation of the laminated sheet in the forming process. 

Of the deformation processes considered here the 

influence of the orientation of the laminated sheet is most 

marked in the deep drawing and pure bending process. 

Although deformation processes consisting only of 

pure bending are rare it is felt that the work presented here 

will provide some insight into more complicated deformation 

processes involving laminated materials. 

Further conclusions which are generally, but not 

entirely, restricted to the actual materials tested in this present 

investigation are listed below. 

1. 	 The load-elongation curve of laminated sheet tensile 

specimens can have more than one maximum, although the 

single composing materials have only one maximum in 

their load-elongation curve. 

2. 	 The investigations carried out on the stretch-

forming of asymmetric laminated sheets seem to indicate 

that slightly higher strains are attainable when the 

weak laminate is on the outside surface. The amount 
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of testing performed is not sufficient to draw any 

firm 	conclusions. 

3 . 	 The original neutral layer position A at the commence­
n 

ment of bending determines if the sheet will thicken 

or thin at the start of the bending process. 

4. 	 The bending of laminated non strain hardening sheets 

can occur under increas1ng or decreasing sheet thick­

ness and uniform bending can be unstable. 

5. 	 The sheet thickness decr~ases and the bending moment 

reaches a maximum during the bending of strainhardening 

single sheets without Bauschinger effect. The sheet 

thickness decreases more and the bending moment reaches 

its maximum later in the process when the strain 

hardening index increases. 

6. 	 The influence of the Bauschinger effect on the bending 

of single strain hardening sheet is to increase the 

amount of thinning and to make the bend unstable 

earlier in the deformation process •. 

7. 	 During the bending of single sheets, the neutral layer 

moves to the inside surface of the bend, so that 

centre layers will bi successively loaded in compression-

t~nsion. During the bending of laminated strain harden­

ing sheets however, the neutral layer can move to the 

outside surface of the bend, so that centre layers can 

also be loaded in a tension-compression and tension-

compression-tension cycle. 
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8. 	 In the deep drawing tests on asymmetric laminated 

sheets, greater cup height and greater drawability 

were obtained when cups were formed so that the softer 

laminate was on the outer surface of the cups. 

The present investigation provides a theoretical 

analysis of the pure bending deformation process. Ii is possible 

to extrapolate results obtained by pure bending theory to more 

complicated deformation processes to gain insight into the 

mechanics of these processes. But to~edict, quantitatively, 

the deformation of laminated sheets in these processes, further 

development of the bending theory is necessary. Concurrently, 

more experimental work has to be done on deforming laminated 

materials. Topics that need further investigation are listed 

below. 

1. 	 The bending theory should be applied to analyze the 

repeated bending and debending of the same sheet. 

2. 	 The pure bending theory should be extended to solve 

the problem of plane strain bending under superimposed 

tensile stress. 

3. 	 Extension of the bending theory to bending under 

superimposed biaxial tensile stress should make it 

possible to predict the behaviour of laminated sheet 

in the hydrostatic bulge test. 

4. 	 More experiments on laminated sheet using the hydro­

static bulge test are necessary. 

5. 	 A detailed analysis of the simultaneous asymmetric draw­

ing in and bending as occurs in the deep drawing of 
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of circular blanks over the die radius could give 

quantitative information on the deep drawing behaviour 

of laminated sheet. 

6. 	 Further experimental research into the deep drawing 

of laminated sheet is necessary. In particular, to 

investigate the effects of tool geometry, with more 

attention being paid to the ratio of punch profile 

to sheet thickness and the ratio of die profile radius 

to sheet thickness .. It is also suggested that laminate 

thickness measurements to taken over the die radius of 

partially drawn cups. 

7. 	 The pure bending theory should be extended to cover 

the bending of elastic-plastic materials of arbitrary 

stress-strain curve, so that spring-back and residual 

stresses in deformed laminated materials can be 

evaluated. 
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APPENDIX I 

A SET OF RELATIONS BETWEEN DIMENSIONLESS PARAMETERS 
AND THE GEOMETRY OF THE BEND 

Definitions and Trivial Formulas 

t = r - r. (I.l)
y 1 

r = (r + r.)/2 (3. 2. 7)
m y 1 

K = t/r (3.2.13)
m 

n = t/t (3.2.14)
0 

p = r /r (3.2.16)n o 


2 2 2 2
A = (r - r. )/(r - r. ) (3.2.11)
1 y 1 

e:cp = R.n r/r = R.n r/r - R.n n (3.2.6)
0 m (3.2.15) 

Geometry of Bend in Function of K n, p 

n t 
r = --0 (I. 2)
m K 


IC 
r. = r (1 - -) (I. 3)
1 m 2 

+ -) (I .4) ry = rm(1 
K 

2 

= (I. 5)ro rm n 

r = r n p (I .6)
n m 

t n t (I. 7)= 
0 



A layer with the volume function_ A. has as current radius 

A2 


(3.2.12A) 


or r = rm V(1 - ~) + 2 A K (I. 8) 

The tangential strain for that layer is 

2 
E<l> = ~ in [ (1 - ~) + 2 A K] - in n (I .9) 

'· 

These relations show that the dimensionless parameters K, n, p are 

sufficient to describe the geometry and the strains in the current bend. 

The current values of K , n and p, together with yield conditions and 

equilibrium equation, contain sufficient information to describe fully 

the current bend. 

Geometry of Bend in Function of K, n, . A 
n 

Out of the definition for the volume fraction A for the neutral n 

layers, given in Section 3. 2. 6 and equation (3. 2 .11) follows that 

r. 2) (!.10)
1 

Using (I.2) to (I.6), this becomes 

2 
n2 P 2 - (1 - ..5

A = jJ 
n (I.ll)2'K 

The same can be done for the unelongated layer. The volume fraction . A0 

of the layer that is currently unelongated, is 
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2 2 2 ") 

A = (ro - r. )/ (r ri .. ) (I.l2)
0 1 y 

and hence 

22 (1 - K)
A = T) - 2 

0 (I.13)
2K 

(I.ll) yields 

2 
KT) 2 -!~,2 = (1 - -) + 2 A K (!.14)
2 n 

Therefore, 

2v(lr = r --)K 
+ 2 A K (I. 6 .BIS)

n m 2 n 

It is easily seen that, by replacing formula (!.6) by (I.6.BIS), the 

current bend can as well be fully described by K, l1, . An as by' K, 11, p • 
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APPENDIX II 

DERIVATION OF CHANGE IN SHEET-THICKNESS FORMULAS 

It was explained in Section 3.2.7 that 

d p = 0 (3.2.17) 

(3.2.18)d " n = 0 

for an infinitesimally small increase in bending. 

Using the differential of (I.l4) yeilds 

2n rf dn + 2p n
2 

d P = -(1 - ;) d K + 2K d I. n + 2 I. n dK 

Substituting /.n with (I.ll) and using (3.2.17) yields 

K 2 

2n2 p2 dn = ~': [- K(l - ..KJ + n2 p2 - (1 - -) l 


n K 2 2 

and hence 

~e21 ­
dn 1 n [ f _
11 (3.2.19)dK = - 2 K 2 

n P 

which is the sheet thickness relation in functions of K, n, P. 

Using (I .14), dn/ dK can be expressed in function of K, n, A • . n 

1 - 2 A - IC/2
dn _ 1 K!l [ nd K = 2 --------:-21 (3.2.20) 

_IC
2 K A + (1 - 2J n 
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The use of (I.3), (I.4) and (I.6) transforms (3.2.19) into 

r.rdn _ 1 !l[ 1 y - 1] (3.2.21)dK = - 2 K. 2 
r 
n 

It is also possible to express the sheet thickness relation in terms of 

the current sheet thickness t, the radii r., r , r, and the bend angle~
1 y n 

between two radial cross sections. 

Differentiation of (3.2.14) and (3.2.13) results in 

dn dt (II.l)n=t 

and 

dr
d K dt m 
-= -- (II.2)

K t r 
.m 

When tn is the length of the neutral layer between radial cross sections 

including an angle ~, and t 
0 

the distance between these cross sections is 

the inlet condition, then 

d.PSince =- = 0 (3. 2 .17)p 

t·-r d(trJ = o (II. 3) 
n. 

Using (I. 6) and 
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R.. = r cp
n n 

yields for (II.3) 

d(n p r cp) = o m 


dr 

or dn + dp_ + ___1!!. + dcp = 0 n p rm cp 

Since (3.2.17) also implies that 

dg = 0 

and using (II.l), this results in 

dt + drm + dcp = 0 (II.4)t r cpm 

Substituting (II.l), (!!.2) and (II.4) in (3.2.21) results finally in 

2 

dt = ..., 12 dt [1 - 3L_] (3.2.22)
t ~ r.r 

1 y 
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APPENDIX III 

BENDING OF A RIGID-PLASTIC, NON STRAIN HARDENING MONOMETAL SHEET 

The results of this derivation can be found in Hill [46]. The yield 

condition for such a material is 

a = H(J de:) ::Y = constant 

where a is the yield stress in uniaxial tension. Combination of yield 

condition for plane strain and equilibrium (formuias (3.2.1A) and (3.2.1B)) 

results for this material in 

do 
r _____£ = _2_ y for r ~ r ~ r

dr· {3 n . y (III.l) 

dar 2 
rcr::~---y for r. ~ r ~ r (III. 2) 

~ n nr(3 

Integration of (III.l) to r, with boundary condition 

gives 

2a =­r'/3 
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Integration of (III.2) to r, with boundary condition 

gives 

2 r · 
""- -y ~ - for r. ~ r ~ r 

1 n\["3 rin 

The radius of the neutral layer r is as yet unknown. The continuity of 
n 

a at r = r requires however that r n 

rn2 y Q. ­

'[3 n r. 
1 

Hence, 

Substituting this value for r in the sheet thickness relation (3.2.21)
n 

gives 

dn -- = 0dK 

Since n "" 1 for K = 0, n = 1 for all values of K. Therefore, t = t and 
0 

the thickness is constant during the bending process. The dimensionless 

neutral layer position p can be found by substituting ~~ = 0 and n = 1 

in sheet thickness relation (3.2.19), which yields 

(III. 3) 
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Using (3.2.23A) and (3.2.23B) yieldsfor the hoop stresses 

a 2 r 
~ = -Y (1 + R. -) for r ~ r ~ r 

,,-:;:- n r n y
l"' y 

a'P = __2_ y (l + .~ !..__) for r. ~ r ~ r 
1 n'[3 rin 

Hence, the bending moment becomes 

The bending moment is therefore constant during bending. If Tresca's 

yield condition instead of Von Mises' s had been used, with k the maximum 
.J 

shear stress of 	the material, the bending moment would have been 

2 
M = 2k !__

4 

Using (!.5) shows 	that the unelongated layer is the same as the central 

layer 

r := r o m 

The 	 tangential strain when a layer is the neutral layer e, .is 
n 

r 1 l-
E = in r n := R;n 	P = 2 R.n (l - 4) 
~n o 

The volume fraction /.for the neutral layer is (use (!.11) and (III.3)) 
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A = .!_ (1 - K)
n 2 2 

Hence, ), is a linear ftmction of K , with ) = 1/2 for K == 0 and An = 0 n · n 

for K = 2. The volume fraction ). for the tmelongated layer is (use (!.13)) 

1 KA = 2 (l - 4)0 

A is also linear in K, with ), == 1/2 for K = 0 and ) = 1/4 for K = 2. 
0 0 0 
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BENDING OF A RIGID-PLASTIC, NON STRAIN HARDENING BIMETAL SHEET 


IV.l Description of the Two Laminates 

Laminate 1 will be on the inside of the bent sheet, and laminate 

2 will be at the outside. A and A2 are the respective yield strengths1 

in uniaxialtension for the laminates. Since both materials are non­

strainhardening. the effective yield stress is 

When we define 

2 a. 	 = --A 

2 2
lJ3 

the yield criterion (3.2.3A) becomes, with rb the radius of the laminate 

b01.mdary. 

(11 1 and r ~ r ~ r 	 (IV.1.1A)- a = a.1 for r ':rbr n y<I> 

02 - a2 = a.2 for r ~ rb or ), ~It ~1 	 (IV .1. 2A)r n<I> 

and (3.2.3B) becomes 
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(IV.l.lB)and r .. " r " r:r n 

2 2 or 0 ~ ). ~ ). n (IV.1.2B)a 4> -a r = - Cl2 for r .~ r b 

The equilibrium condition (3.2.1A) becomes 

(IV.l. 3A) 

and r:. ~ r ~ r 
n y 

(IV.1.4A) 

while (3.2.1B) becomes 

(IV.1. 3B) 

and r. 'r -' r :r n 

d 2 ar 
r err = - Cl2 for r .~ r b (IV.1.4B) 

Laminate 1 has an original thickness t , and laminate i, t 2 0
• 

10 

The original sheet thickness is therefore 

When we define 
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then 1J indicates the volume fraction of material contained by the boundary 

surface between the two laminates and the inside surface of thebent sheet. 

Thes·e 1J- value remains constant during the bending (see Section 3.2.5). 

Therefore, when we know the inside and the outside radius of the bend, we 

know also the radius of the laminate boundaryrb , since 

(3.2.12B) 


IV.2 Initial Conditions 

The initial conditions for the integration of the sheet thickness 

equation are known, namely 

K = 0 

n = 1 

p = 1 

Furthermore, the position of the neutral layer, given by A , can be . n 

calculated at the start of the bending process. When the originally flat 


sheet is bent an infinitesimally small amount, the radial stress can be 


assumed to be zero. The tangential stress is then, according to (IV .l.lA) 


to (IV.1. 2B), 


1 
= alaq, for A < v 

and },~ ). 
ncl- for }. >= 0.2 1-'cp 
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1 = - (l for A < vC1<P 1 
and. A ~. A n 

for. A> v 

The position of the neutral layer can be found by requiring that the 

resultant normal stress on a radial cross section be zero. Figure IV.l 

shows that , if 

(l 1-' = (l2 (1 - 1J )1 . 

then 

A = ll n 

When 

(ll lJ > (l (1 - lJ ) 

the neutral layer is in lamihate 1, and Figure IV.2 shows that 

A 
n 

lJ+­
2 

Whereas, when 

the neutral layer is in laminate 2, and it can be calculated with Figure 

IV. 3 that 
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1 ~I:X ::I-+-­
n 2 2 

The values of An for different combinations of l-' and CX/ct.2 are plotted in 

Figure IV.4. It is interesting to note that an arbitrary bimetal sheet, for 

example point A in Fig. IV.4, with a 1 /a 2 = 2 and P = .2, is point 

symmetrical to the centre point a 1/cx 2=1 and p= .S of the graph, with 

the same laminate bended to the other side, which is point B with 

A0= 	.8. Point A lies in the zone for which 

'\ 0 
n 

hence, for point B, 1\ < p.
n 

It is also very useful to know the original bending moment. 

For the in fin i t e s i m a 11 y s m a 11 bend , 

AdA. 

Hence, when· \ < lJ , see Figure IV. 2, 

Analogously, when \t > l-', it can be fotmd with the help of Figure IV.3, 

that 
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Since the original position of the neutral layer, A , is known, the . n 

bending moment M is determined by the above formulas. 

IV.3 Solution Method 

The method of approa·ch is explained in Section 3.2.8. The 

variables K, n and p will be used to describe the bending behaviour. Hence, 

the sheet thickness equation 

2 
K 

dn 1 n 1 - 4 (3.2.19)CiK=-z-ICC 2 2 -l) 

n P 


will be integrated to K, The initial conditions are given in the previous 

section. The second dependent variable p will be determined by inte­

grating (IV.l.3A) to (IV.l.4B) along the sheet thickness. Since the 

neutral layer can occur either in laminate 1 or laminate 2, two cases 

have to be considered. 

IV. 3.1 The Neutral Layer Occurs in Laminate 1 (rn ~ rb) 

The combined equilibrium and yield conditions that apply are 

these 

(IV.l. 3B) 

d 1 
or 

r -- = for r ~ r ~ r.b· · (IV .1. 3A)
d.r a1 n 

(IV .1.4A) 
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Integration of (IV.l.3B), with boundary condition 

(ar1) = 0 

r = r. 


1 

yields 

1 n _r
CJ = - (l JV r. ~ r ~ r (IV. 3.1)r 1 n r. 1 n 

1 

The radial stress at the neutral layer is therefore 

rn 
= - (ll R. (IV. 3. 2) n r. 

1 

Integration of (IV.1.4A), with boundary condition 

(a:) = 0 

r = r 
y 

yields 

CJ2 = (l2 
R. !.._ rb ~r ~r (IV. 3. 3)r nr yy 

The radial stress at the laminate boundary is 

Integration of (IV.l.3A), will boundary condition 



gives 
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(IV. 3.4) 


The radial stress at the neutral layer is then also 

(IV.3.5) 

Since the radial stress must be continuous, (IV.3.2) and (IV.3.5) must 

be identical. Hence, 

r r rn 
R. n R. b Jl..al - + a2 n -r a - al ·n rn r .

b y 1 

This relation defines the neutral layer radius, and can be expressed as a func­

tion of_ K, n,p with the use of (!.3), (!.4), (!.6) and (3.2.128). 

2al R. n Cn p) - a2 .tn (1 + i) - al .t.n (1 - ~) 
(IV.3.6) 

1 1<.2 
+ (ci2- al) 2R.n [(1- 2) + 21JK] = 0 

Equation (IV.3.6) defines p in function of K and n. It is this value for 

pwhich must be substituted in the sheet thickness relation (3.2.19) to 

solve n to K. (IV. 3.6) can also be written 

R,; (1 - K) + <l2 Jl., (1 + ~ 
n 2 a n 2

1 
2 

R. n [ (1 - ·fl + 2 lJ K] 

so that 
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(IV.3.7) 

Substitution in (3.2.19) leads to 

(IV.3.8) 


where Xl is a function of K only. 

Equation (IV.3.8) can be successfully integrated to K, with 

starting point K = 0, n = 1. The position of the neutral layer, defined 
'· 

by p can always be found with equation (IV.3.7). The values of ri' ry' 

r , r , rb can be expressed in function of K, n, p using the formulas n o 

provided in Appendix I. The radial stress across the sheet thickness 

are given by (IV. 3.1), (IV. 3. 3) and (IV. 3.4). The tangential stresses are 

r. ~ r < r 
1 n 

(IV.3.9)rn < r < r b 

t < r ~ rb y. 

Using 

yields 
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2 
r r r 

- a. n (1 + R. _E. + R. __!!.) (IV.3.10)1 -2- n rb n ri 

IV. 3. 2 The Neutral Layer Occurs in Laminate 2 (r ~ r )
n 

The combined equilibrium and yield conditions that apply in this 

case are 

d 1 
or 


r ([;" = - a. 
 (IV.l. 3B)
1 

d 2 
or 

r-= - a. ·r ~ r ~ r (IV .1.4B)
dr 1 b -.: - n 

d 2 
or 

r-= r ~ r ~ r (IV.1.4A)a.2dr · n y 

Integration uf (IV.l. 3B) with boundary condition 

(ar1) = 0 

r = r. 


l. 

yields 

a rl = - a.l R. !_ (1 v. 3.11)n r. 
l. 

The radial stress at the laminate boundary is 
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r 
=-a R.: _Q_

1 n r. 
1 

Integration of (IV.1.4B) with boundary condition 

"" (<J 1) 
r r=r 

b 

gives 

2 r n ~ a =-a2R. ----alJt.·r n r n r.
b 1 

The radial stress at the neutral radius is therefore 

rn rb 
=- a2 ~ r.--al R,_­n b n r. 

1 

Integration of (IV.1.4A) with boundary condition 

gives 

Hence, the radial stress at the neutral layer is also 

(IV.3.12) 

(IV. 3.13) 

(IV.3.14) 

(IV. 3.15) 

Since (IV.3.13) and (IV.3.14) are identical, 
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r r 
a R. _!!_=-a .R n 

2 n r - 2 n r 
y b 

Substituting rn, ri, ry and rbi..n function of K and n yields 

or 

a KR. Cn2 P2) R. + _..!_ t· (1 - -)X2 = = (1 + ~) 2n n a n2 

. 2al1+-
2 

(1 - -) .R [(1 -
2
K) + 2 ll K] . 


a2 n 


Hence, 

2 2 
n p == exp (X2) (IV. 3.16) 

The sheet thickness equation becomes then 

2 
1 ~ JS.._

4
dn 1 n ( - 1) 

(IV.3.17)dK =- 2 K: exp(X2) 

This can be solved by numerical integration. The radial stresses are 

given by (IV.3.11), (IV.3.12) and (IV.3.14). The tangential stresses are 



1 
exl (1 + R. .!_)a 4> = ­ n r. 

1 

rb 
a2 - ( 1 + R. .!_) - Cl R. (IV . .3.18) 

4> - - ex2 n rb 1 n r. 
1 

a2 = ex2 (1 + R. .!_)n r4> y 

and the bending moment is 

r 2 r r 
n n - ex -2- (1 + R. -+ R. __!!. } (IV . .3.19) 

2 n r n rby 


2 
r rb 
- (l ...E_ R. 

1 2 · n r. 
1 

IV.4 Integration of Sheet Thickness Equation 

It was indicated in Section IV.3 how the second dependent vari ­

able Pin the sheet thickness equation (.3.2.19) can be expressed- in 

function of K and n. According to where the original neutral layer is 

situated, equation (3.2.19) is reduced to equation (IV.3.8) or (IV.3.17). 

\\'hen the original neutral layer is situated in laminate 1 ( ')..~ < 1J), we 

integrate (IV.3.8) for increasing values of K. When the original neutral 

layer is situated in laminate 2 (\tO > lJ), the procedure to follow is 

a little more complicated. During the bending of nonstrain hardening 

bimetals, the neutral layer moves to the inside of the bent sheet for 

increasing K-values, and can therefore cross the material boundary, when 
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it was originally situated in laminate 2. This crossing occurs when 

A = )..' , which, according to (I .11), means that 
n 

22 2 K n P = Cl - 2) + 2 lJ K 

It can be verified that the respective equations of Sections IV.3.1 and 

IV.3.2 become identical for this value of n P and rn =rb The procedure 

to follow for integrating the sheet thickness equation when the original 

neutral layer is situated in laminate 2, is the following one. Integrate 

(IV.3.17), with initial conditions K = 0 and n = 1, for increasing K 

until. ). n "" l.' , and integrate then further equation (IV. 3. 8) with as 

initial conditions the values for K and n for which ). = )..' • 
n 

The integration of the sheet thickness equation is done numerically, 

and can be performed by a wide variety of numerical integration techniques. 

The Runge-Kutta method has been chosen because this method is easy to 

program (it is a single step method and does not involve any derivatives). 

The equation to integrate is 

dn
dK = f ( IC ,n) 

The starting point is n 0 = 1, K = 0. Compute0 
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k 

Then 

Use now K h and n k as new starting points for the next integration0 + 0 + 

step. Etc ...••. 

IV.S Program BINSH 

A FORTRAN program has been developed to perform all the necessary 

calculations to describe the plane strain bending of nonstrain hardening 

bimetal sheet. The accuracy of the program, with regard to the step size 

for the numerical integration, is covered in Appendix IX. 
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APPENDIX V 

BENDING OF A RIGID-PLASTIC, NONSTRAINHARDENING LAMINATED SHEET 

V.l Introduction 

The same approach as the one used for the nonstrainhardening 

bimetal sheet, as featured in Appendix IV, can be used for multi-

laminated sheet. Instead of finding p and n as a function of K as done 

in Appendix IV, the relation between ) , n and K will here be used. 
n 

This is partly ~one for the ease of the movement from one laminate to the 

next during the integration of the radial stress across the thickness of 

the sheet, and will also be used in the bending of strainhardening 

laminated sheet. This 'laminate-jumping' can here be explained and shown 

in its simplest form, without the complications that occurwhen the 

laminates are strainhardening. The fact that the /. -value will be . n 

determined in a numerical way by integrating the radial stress across 

the sheet thickness, and replaces the analytical calculations of p used 

in Appendix IV, removes the problem of the change in sheet thickness 

equation when the neutral layer crosses a laminate boundary, a problem 

that was encountered in Appendix IV when the original neutral layer did 

not occur in the inside laminate. The removal of this sheet thickness 

changeover is the main reason for the numerical determination of ). used 
n 

here, and featured in the next sections. 

V.2 	 Description of the Laminates 

The sheet is composed of n laminates. The laminates are numbered 

from the inside to the outside of the bent sheet. Hence, laminate 1 is t•he 

one on the inner surface, and laminate n the one on the outer 

surface of the bend. The yield strength in uniaxial tension of 
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laminate i is A.,
1 

o. = A. 
1 1 

so that 

ex. =~A. 
1 3 1 

The yield condition for laminate i is, using (3.2.3A) and (3.2.3B), 

CJi - a.i = (li r <r ' (V.2.1A)cp r n 

iCJi - CJ = -Cl· r <r (V. 2 .lB)p r 1 n 

The equilibrium equation (3.2.1A) and (3.2.1B) for 1 aminate i is then 

dCJi 
r r--= (l, r ~r (V. 2. 2A)dr 1 n 

dCJi 
r r--= ... Cl. r ~r (V. 2. 2B)dr 1 .n 

The boundary surface between laminate i and j = i + 1 will be 

identified by the volume fraction of material embraced by that surface and 

the inside surface of the bend. Thts volume fraction is a constant, and 

will be indicated as 

~ i2 = }: jl 
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The inside surface of the bent sheet is represented by 

1-'u=o 

and the outside surface by 

= 1 

f.' i1 represents the surface of laminate i to the inside of the bend, and 

1-i2 represents the one to the outside. 

V.3 Initial Conditions 

The initial conditions for the integration of the sheet thickness 

equation are 

K = 0 

n = 1 

and the exact position of the neutral layer, 1 , at the commencement of . n 

bending. The same assumptions for finding the original. 1 are made as 
n 

in Section IV.2, namely, that the flat sheet is bent an infinitesimally 

small amount, so that the radial stresses are negligible. The tangential 

stress in laminate i is then 
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The resultant normal stress is first calculated in the hypothesis that 

the neutral layer should coincide with a material boundary. Define 

n 

1: eli ( l-' i2 - v il) 

i = 1 


j - 1 

p. = p - 2 1: eli ( J..: i2 - l- il) for j = 2' . . . ' n + 1
J 1 

i = 1 

where p 1 is the resultant normal force on the sheet should the neutral 

surface coincide with the inside surface of the sheet, and where pj 

(j = 2, ... ; n + 1) is the normal force when )n should coincide with 

laminate boundary l-' j 1. The true position of ). requires that the 
n 

resultant normal force be zero. 

If for a value of k (k = 2, . . 0, then ), = V kl is the 
n 

original neutral layer position. 

If all pk F 0 (k = 2, ... , n), it can be noted that p1 > 0 and 

·p < 0, and that pk {k = 1, . , n + 1) is monotonously increasing 
..n + 1 

for increasing k. Hence, check for which value of k 

but (k = 1, • • . , n) 

The neutral layer occurs then in laminate k, and the exact position can be 

found by linear interpolation. 
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or 

(pk 11 k2 -pk + 1 ~kl)
A = n 

pk- pk + 1 

This procedure determines the original position of the neutral layer in 

the infinitesimally bent·sheet. 

The original bending moment can now easily be determined since 

the original tangential stresses ·and the neutral layer position are know1 

For the infinitesimally small bend, 

.01 
ocj> rdr = t~ f

The neutral layer occurs in layer k, thus V kl < :>. n < l1 k2' and hence 

min Cv·i2' An) 
k 

M (-a.) Ad)l:-z= 1to i = 1 

lJil 

lJ i2 
n 

+ l: a.. )d)
J.· 

i = k 
max ( l-' il J. An) 
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Therefore, 

k -a..M E (__2:_2) [(min(l-'. 2 , A )) 2 
2J2= 1 · n - 1-

. 
t il 

0 i = 1 

n 
a.. 2 2 

+ -1 fi.: i 2 - (max( 1- il, An)) ] 

i = k 

min (x, y) = x if X <y 

= y if X > y 

max (x, y) = x if X > y 

= y if X < y 

V.4 Solution Method . 

The general method of approach is explained in Section 3.2.8. 

The variables K, n and ;>.. are used to describe the bending. The sheet . n 

thickness relation that will be integrated is 

1 - 2 A - K/2 
~~ = ~ ~ ~ [--_..;;.;;n__---=2] ,(3.2.20) 

2K ;>.. n + (1 - ~) 

The initial conditions are given in Section V.3. The second dependent 

variable A will be determined by integrating the equilibrium--yield
n 

condition equations (V.2.2A) and (V.2.2B). In the further treatment, the 

symbol ril will stand for the radius of the inside boundary surface of 
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laminate i, and so will ri2 stand for its outside boundary surface radius. 

Hence, r 11 indicates the inside surface of the whole sheet, and rn2 the 

outside sheet surface. Thus 

= r. 
1 

The radial stress in laminate i by integrating (V.2.2A) is found 

in the following way. The radial stress at the outside boundary surface 

of laminate i is 

iand is, for the moment, still unknown. The the radial stress crr for a 

radius r in laminate i is (integrate (V.2.2A) for decreasing r, starting 

When i = r is the outside surface of the sheet, and since= n, rn2 y 

(an) = 0, cri is known. r r r = rn2 

When i f:. n, the continuity of radial stress requires that 
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Hence, if 

r = r. 
1 + 1, 1 

can be calculated, cri is known. 
r 

r = r. 
l. + 1, 1 

is found by integration of (V.2.2A) in laminate (i + 1), with as boundary 

condition 

r = r.
1 + 1,2 

If (i + 1) is the outside laminate, 

(cr~ + ~) = 0 

r = r. 


l. + 1, 2 

iand cr r is known. If i + 1 ~ n, we proceed to the next laminate, i + 2, 

etc. . .. till we reach the outside laminate, for which 
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Back substitution of the values 

for j = i, . . . ' n 

determines the values of~- This laminate-jumping to find the requiredr 

boundary conditions for the integration of (V.2.2A) to find the radial 

stress at radius r in laminate i, can be shortly written as, 

n max(r, rj 1)cri R,= E a.. r .J n rj 2 
j = 1 (V.4.1A) 

ril ~ r ~ ri2 andr ~rn 

Laminate-jumping for the integration of (V.2.2B), with boundary condition 

(cr1) = 0 at inside of sheet, leads to 
r 

r = rll 

i min(r, r.2)cri R, J= E (-a..)r nJ rjl
j = 1 (V.4.1B) 

These formulas for the radial stress can be expressed in function of the 

lJ -values, K and n. This yields 
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2 K 2n a.. max ([(1 - ~) + 2 ) K], [(1 - 2) + 21J . K])·
i 2 1

i: _l_t [ J ]0 r A= 2 n 2
K

j = 1 (1 - -) +21Jj 2 K2 

(V .4. 2A) 

for 1J •1 ,< A~ ]...: . 2 and A~ A 
1 · 1 · · n 

and 

2 2i KK)-a.. min{[(l - + 2 A K], [(1 - -) + 2J.;. K])i 2 2 2(_J_) i [ .J ]crr..A= L: 22 n 
j = 1 (1 K) + 2 ll j 2K2 

(V.4.2B) 

for 1-' •1 ~ ) ~ ].: . 2 and A ' A
1 · 1 . n 

For clarity, the procedure followed above is in essence the one 

described in Section (3.2.8). The equilibrium equation is integrated 

from the outside surface of the bend to the first interlaminate boundary, 

and the value of the radial stress is determined. This way, we 'jumped' 

one laminate. Using this radial stress at that boundary as initial value, 

the equilibrium equation that applies for the laminate on the inside of that 

boundary is integrated to the next interlaminate boundary. This procedure 

is repeated until the laminate, in which the radius, for which the radial 

stress has to be calculated, is reached. For that laminate, the integra­

tion is carried out from the outside laminate radius to that radius. This 

explains the use of the maximum symbol in equations (V.4.1A) and (V.4.2A). 

In a similar way, integration can be carried out starting from the inside 

surface of the bend. This leads to formulas (V.4.1B) and (V.4.2B). 
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Using formulas (V.4.2A) and (V.4.2B), two values for the radial 

stress of a fibre, defined by the volume fraction A , can be found. Of 

course, only one of these is the exact one. When A is situated to the 

outside of the neutral fibre, (V.4.2A) will give the exact value. Other­

wise, or\ will be determined by (V. 4. 2B). But for the neutral fibre, 

A= /. , and the radial stress found by integrating the equilibrium equa­
n 

tion for increasing or decreasing r must be the same. Hence, the fibre 

for which (V.4.2A) and (V.4.2B) give exactly the same radial stress, is 

the neutral fibre. The A -value of that fibre is the sought after value 

of ). . The search for A , the .A -value for which the difference between 
n n · 

the two possible radial stresses is zero, is carried out with an iterative 

technique known as 'Regula Falsi', and this technique is described in 

FROBERG, [49], p 22. 

Once A is known, sheet thickness equation (3. 2. 20) can be. 
n 

numerically integrated using the 'Runge-Kutta' technique, described in 

Section IV.4. The switch in sheet thickness equation, which was required 

in the approach used in Appendix IV when the neutral layer crossed a 

material boundary, is automatically taken care of in the approach suggested 

in this section, since the A value in function of K and n is really
n 

determined in a numerical way, instead of an analytical one. The removal 

of this sheet thickness relation switch, which should become frequent in 

the case of multilaminated materials, is one of the reasons for the 

development of the solution method described in this Appendix. 

V. 5 Stress Distribution and Bending Moment 

The radial stress in function of K, n and ). is provided by (V. 4. 2A) 

when A~ ).nand by (V.4.2B) when ). ').n. The tangential.stress is given 

by 
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i i ).> ).cr4>;. = a.. 
l. + crr A n 

and l-'·1< A< lJ.2l. . l. 

cr~ 
i 
A= -a.. 

l. + crr). 
i ). <) 

n 

The bending moment at the commencement of bending (K = 0) is given in 

Section V.3. Using 

-- JryM cr(j) rdr 

r. 
1. 

gives, when k is the laminate in which the neutral layer is situated, 

min(riZ' r )n 

k 

M = r (-a..
l. 

+ 
i 

crr ~ rdr 

i = 1 
ril 

ri2 
n 

i(a.. rdr+ r + crr ~ .l 
i = k 

max(ril, r )n 

Since crr\ is given by (V.4.2A) or (V.4.2B), the bending moment M is 

determined. 

V.6 Program TRINSH 

A FORTRAN program using the techniques described in this Appendix 

has been developed to calculate the plain strain bending of nonstrainhardening 
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multilaminated sheet. The accuracy of the program is discussed in 

Appendix IX. 
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APPENDIX VI 

INFLUENCE OF THE ORIGINAL NEUTRAL LAYER POSITION ON THE 
CHANGE IN RELATIVE SHEET THICKNESS AT THE 

COMMENCEMENT OF THE BENDING PROCESS 

For a flat sheet, K = O, n = 1, p= 1 and An has a 

value which can be determined by the method described in 

Appendix IV, Section IV.2 or Appendix V, Section V.3. All the 

boundary ~onditions for the sheet thickness differential 

equation 

1 - 2A n - K/2 
dn 1 (3.2.20)= - ndK 2 

(1 - ~)2+ 2A K2 n 

cdn)
dK 

are therefore known. The change in relative sheet thickness 

at the beginning of the bending process is given by 

K = 0 

This value gives the slope of then- K curve for K = 0. It 

is clear that, when An > .so, the slope is positive, so that the 

sheet thickens at the commencement of the bending. Similarly, when 

An < .so, the sl~pe of then - K curve for K = 0 is negative, 

so that the sheet thins. When A 50 the 1 (dn)n = · ' s ope dK K = 0, 

so that no change in thickness occurs at the beginning of the 
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bending. The behaviour described above has been found to be 

true for all the calculations performed and would indicate that 

the position of the neutral layer A will determine, at least 
n 

at the onset of the process, how the sheet thickness will 

alter. 
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APPENDIX VII 

BENDING OF LAMINATED SHEET, CO~~OSED OF RIGID-PLASTIC, 
STRAINHARDENING MATERIALS WITHOUT BAUSCHINGER EFFECT 

VII.l 	 Determination of the Effective Strain of an Arbitrary Layer in the 
Bent Sheet 

The material has a stress-strain curve 

If the material should have a Bauschinger effect, the function H CJdE) 

should not be unique for the same values of E =jd'E. The equivalent 

stress cr is influenced by the straining path that is necessary to attain 

the effective strain E in that case. Indeed, a value of 'E reached by 

unidirectional straining should give rise to a different cr that the ones 

found for the same values of 'E, but reached through a straining path that 

contains at least one straining reversal. However, since it is assumed 

that the material shows no Bauschinger effect, the equivalent yield stress 

cr is solely dependent on the magnitude of 'E, ·and not on the straining path 

that was followed to reach that equivalent strain. 

The equivalent strain increment was defined in Section 3.2.8, and 

equation (3.2.2) indicates that 

so that it is fully determined when the tangential strain increment-is 
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known. The tangential strain for any layer in the sheet is given by 

= R, r (3.2.6)Ecfl n r 
0 

2 
or = .!..t [(1 - K) + ~), K] - R,n n (!.9)Ecfl 2 n 2 

For the layer in the sheet that has been subjected to a continuous length 

increase, the straining has been unidirectional,and, since 

- 2 

dE = dEep
' 3 


2 2
-E =. J-dE =(3 JdE cp =r· Ecp 

- 2 rHence E =- R, ­p n r 0 

The effective strain for these layers can thus be determined quite 

easily. Layers in the sheet that are monotonously subjected to tangen­

tial compression, have 

dE = -~dEp<P 

so that 

2 r
E=--R,­(3 
n r 0 

The determination of 'E is not that simple for layers that have undergone 
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one or more reversals in tangential straining. This arises from the fact 

that the current value of le:~l for such a layer will always be less than 

the effective strain e:. The value of£ can be determined if the straining 

path of the layer is known. In fact, it is sufficient to know the tangen­

tial strains at which strain reversals occurred. We will handle this in 

detail with some examples to avoid any confusion. 

Figure VII.l plots the yield condition for plane strain 

-= a for r > rn 

= - a for r < r n 

as a function of the equivalent tangentialstrain, which we will define as 

- (;-_
E =- e: 
~ 2 

so that 

It is clear that for point A, which has gone through unidirectional tangen­

tial straining, 

and that for point B, gone throughunidirectional compressive straining, 
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Figure VII.2 shows the straining path of a layer that has first undergone 

compressive straining, down to a strain E¢c' followed by a strain reversal. 

tangentialstraining was carried out to point C, tangentialstrain is still 

compressive,· and further to D, with tensile tangential strain. It can be 

verified that 

Figure VII.3 shows the straining path of a layer, first strained in tension 

up to a strain of E¢t' and then strained in compression to point E, with 

the tangential strain sti 11 positive, and further to point F, with the 

tangent'ail strain compressive. It is clear that, 

Figure VII.4 shows .the path for a layer first strained in tension up to 

E¢t, then in compression till the tangentail strain decreased to E¢ c! and 

then again in tension until the finaltangentialstrain reached E~ (point G). 

Although this is more difficult to follow, it can be shown that 
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Going through the above examples, it can be seen that the current tangential 

strain £~ for a layer gives a contribution £~ to the equivalent tangential 

strain when that layer is situated to the outside of the neutral layer. 

Similarly, when the layer is situated to the inside of the neutral layer, 

the contribution of the tangential strain Eel> to the equivalent tangential 

strain is - £~. Note that £~being positive or negative is irrelevant, 

only the position of the layer compared to the neutral layer position is 

important. The above examples also show that a tangential strain t:~t in 

the layer when the straining is reversed from tensile to compressive, 

gives a contribution+ 2t:~t to the equivalenttangential strain. Similarly, 

a tangential strain t:<f>c is the layer when the straining is revered from 

compressive to tensile gives a contribution - 2t:¢c· Note that the signs 

of t:cj>t and t:cj>c themselves have no influence. It can be concluded that 

I: 

i 


in which t:cj>ti is the tangentialstrain at the ith strain reversal from 

tensile to compressive, in which En . is the tangential strain at the jth
'tc J 

strain reversal from compressive to tensile, and in which sgn b ~ - a r) 

equals + 1 when a cj> > a r and equals -1 when act> <a r· The equivalent 

strain for a layer that has undergone strain reversal is therefore, 
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E~ can still be expressed with (3.2.6) or (I.9), but a convenient way to 

express E~ti. and E~cj must be found. It is sufficient to remember that a 

layer can only undergo a reversal of stress when it coincides with the 

neutral layer. The tangential strain of that layer is at that stage in the 
rn 

bending equal to R.n r = R.n p. Hence, 
0 

2 
E =- 12 L 

'/3 i 

where p . is the p-value of the bent sheet when the layer coincides with
t1 

the neutral layer and goes for the ith time from tensile to compressive 

straining. Similarly, p . is the p-value when the layer goes for the jth
CJ 

time from compressive to tensile straining. Every layer in the bent sheet 

is defined by its volume fraction ~ • A layer coincides with the neutral 

layer when ) = A • Figure VII. 5 indicates how, by knowing the A - K 
· n · · n 

and p - K curve of the previous defor~mation process, all the values of 

pti and pcj can be found for an arbitrary layer A • Take the layer 

indicated by ) in figure VII. 5. At the commencement of bending, the layer 

is situated to the outside of the neutral layer. As bending proceeds, 

the neutral layer moves up in the bent sheet (this behaviour is possible 

in laminated strainhardening sheet as explained in Chapter 5). The neutral 

layer crosses the layer. ). at point A. The straining in layer. Ais then 

reversed from tensile to compressive. The corresponding K-value is given 

by A•. Moving to the (p - K) plot, K value for K gives the value A" 

for p. This p values gives a contribution ~ 2 R. . PA". to the equivalent strain.'/3 n . 
During further bending, A crosses. ). a second time, at point B. The corres­. . . n 

pending p-value is Ps,n and SillCe. Achanges this time from ·COmpressive to tensile 

- 2straining, the contribution to E is - 2t p "· Further bending up to thef3 n B 

current K-value doesn't show any strain reversals. Layer Ais therefore 
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currently in tensile straining, and its tangential strain gives 

a contribution + -
2 Ecp to e:. The eijuivalent strain for layer ) is then 

(3 
2 

- 2 + .!_ R, [(1 - K)E = 2 n 2r 
In general, 

2 	 2
II pt. K 
. 1 (1 	 - -) + 2 ). K

2 
E = 3.....R, [ 	 1 

2 
] 


II P .
f3 n 	 n 
• CJ
J 

(II means product). 

It was indicated in this section how the equivalent strain for· 

all layers in·the bent sheet can be found. For layers that have under­

gone monotonous straining, it is straightforward. For all the layers 

which have ever coincided with the neutral layer,. it involves determining 

the p-values for which this happened together with recording how the 

straining changed, from compression to tension or the reverse. In actual 

computer calculations, this effective strain determination makes it 

necessary to store the values of . ) n and p in computer memory. Since 

only discrete values for K, ) and p can be stored, the actual determina­
n 

tion of the exact p-values needed in the calculations of E for an 

arbitrary layer. ) is done by using a second order approximation to the 

( /. - K) and (p - K) curves in the immediate neighbourhood of the . n 


required value. 


VII.2 Description of Laminates 

The sheet is composed of n laminates. The same convention for 

the numbering of laminates is used as in Appendix V, Section V.2. The 
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boundary surfaces between laminates are similarly defined by the volume 

fraction of material embraced by the surface and the inside surface of the 

bend. The inside surface of laminate i is characterised by lJ i1, the out­

side by 1.· iZ. A corresponding notation will be used for the laminate 

boundary radii during bending, which are respectively ril and ri2. The 

inside and outside radii of the bent sheet are then r 11 and rn2. 

The stress-strain curve in uniaxial tension will be characterised 

by three parameters, A., B. and n.. Two types of stress-strain curves 
l. l. l. 

will be considered, type 1, 

n.
-i = A. + B. "£ :ta = 

l. l. 

and type 2, 

-i 
a = 

VII.3 	 Yield Condition and Equilibrium Equation 

The general yield condition for laminate i is 

i i 2 -i 
acp - a 	 = -a r <.r ~ rn2r (3 n 

and ril 	<r < ri2 
i i 2 -i 

acp -	 = --a r <rar 	 r 11 ~ np 

Radial equilibrium for the plane strain case can be expressed as 
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d cri 
r 2 -i r--=-cr 

dr '[3 

The sheet thickness can be divided into four zones, see figure 

VI I. 6. The material in zone I is subjected to monotonous tangential 

tension, zone II to monotonous tangentialcompression. Zone III consists 

of layers that have undergone at least one strain reversal, and are 

currently situated to the outside of the neutral layer. Zone IV layer& 

have also undergone at least one strain reversal, and are current to the 

inside of the neutral layer. Of course, all these zones will not always 

be present in the bent sheet. At .the commencement. of bending, only~.zones 

I and II exist, see figure VII.7. When tho neutral layer has moved 

monotonously to the inside of the sheet, only zones I, II and III exist, 

as indicated in Figure VII.8. Bending laminatedsheet, it is possible that 

the neutral layer moves first to the outside of the bend, as in Figure 

VII.9. Only zones I, II and IV exist then. When the neutral layer starts 

to move to the inside, we come to the case of Figure VII.6, with the 

four zones. The outermost position that the neutral layer has ever been 

in the previous bending process will be indicated by the maximum value 

A has ever reached, and noted as ) • The same applies for the inner­. n . max 

most position of the neutral layer, noted as /, . • With this A-value · nun 


corresponds current radii values rmax and rmin· Hence, the division in 


zones is as follows 
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zone I Amax ' A ~ 1 

zone II ~ r ~ r. 
ID.l.n 

zone III An~ A~). r 
· max n 

zone IV 

The yield condition in the different zones is different, due to the 

different method of calculation of £, the equivalent strain. 

n.1 
VII.3.1 Stress-Strain Curve Type 1: H~ (E) = Ai + Bi E 

The yield condition for laminate i is 

zone I 

zone II 

zone III a~ - a =~A. +~B. (2. E t ptk - 2
'*' r'{31'{31 k n 

n. 
zone IV a~ - a = - ~A. - ~ B. c.L (2 E in ptk - 2 E t p . - e:~)) 1 

'*' r '{3 1 '(3 1 {3 k j n J '*' 

2Substituting a. =---A 
1 iV3 
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gives for the yield condition 

ni 
zone I (J - (J = Cl. +S . (R, !._)

lj> r ~ ~ n r 
0 

n. 
zone II - (J - Cl. - f3 • {-t !._) 1 

(Jet> = r ~ 1 n r 
0 

L t P • 
j n cJ 

(VII. 3 .1) 
n 

+ t !._) i 
n r 

0 

zone IV crcp - crr = - Cl. - s. (2
1 1 

The combined yield condition-equilibrium equation can be found by sub­

stituting 

d (J 
r= r-­dr 

in the above equations. 

n 
VII.3.2 Stress-Strain Curve Type 2: H~ (£) = Ai (Bi + €) i 

The yield condition for laminate i is 

2 2 n. 
zone I - cr = - A. (B. + - EA-.) 1 cr A-. 

'I' 'I'rVs 1 1.../3 

zone II crA-. - cr = - ~A. (B. - ~ E ) 1 
'I' r ...r31 1../'3cp 
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2 2 ni 
zone I II 0'.l- - 0' = - A. (B. + - (2 I: R-n Ptk - 2 I: R-n PCl. + e: .l-)) 

't' r{31 1'{3 k j 't' 

Substituting 

f3a. 
1 

= - 2 B. 
1 

gives for the yield condition 

n.. 
zone I 0' a.. (a. + R, .!:.._) 1

0'¢' - = r 1 1 n r 
0 

n. 
1 zone II 0'¢1 - 0' = - a.. ca. - R, !.._) 

r 1 1 n r 
0 

zone III cr.l- - r:1 = a.. Ca. + 2 I: R- Ptk - 2 I: R-n PcJ· 
'~' r 1 1 k n j 

(VII. 3. 2.) 

Substituting 
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d crr 
= r-­dr 

in the yield condition gives the combined yield condition-equilibrium 

equations. 

VII.4 Initial Conditions 

The initial conditions for the integration of the sheet thick­

ness equation are 

K = 0 

n = 1 

and the exact position of the neutral layer, A , at the beginning of . n 

bending. This original neutral layer position can be determined by 

using the method described in Appendix V, Section V.3. All formula 

i ­used there remain valid for a stress-strain curve of type 1, H (E)1 
-n. . i (-) ( E)ni,= A. + B . E 1. For a stress-strain curve of type 2, H2 E = A. B. + 

1 1 1 1 

·n
the symbol a. in the formulas of Section V.3 must be replaced by a.B. i. 

1 1 1 

The original bending moment is also given by the formulas of Section V.3, 

unchanged for stress-strain curve type 1, changed as indicated above for 

~ stress-strain curve of type 2. 

VII.S Solution Method 

The general method of approach is explained in Section 3.2.8. 

The variables K, n and . An are used to describe the bending process. The 

sheet thickness equation to be integrated is 
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dn 1 n (3.2.20)dK=-2i< 

The initial conditions are given in Section VII.4. The second dependent 

variable ). will be determined in function of K and n by integrating the . n 

equilibrium equations across the sheet thickness. 

The solution will be given for a case when all the four zones, 

as described in Section VII.3, are present in the sheet. If some of them 

are absent, the analysis is slightly simplified. The analysis for these 

simpler cases isnot given here, but it is obvious how to proceed in these 

cases. 

The current position of the neutral layer is given by A , the . n 

maximum position of the neutral layer in the previous bending is given 

by A , and the .minimum. position by ~ . . :A , A • and A indicate 
· max · mJ.n · n · mJ.n · max · 

the boundaries between the four zones. The neutral layer occurs currently 

in laminate i • so that 
n 

The minimum neutral layer position occurs in laminate i . , so thatmJ.n 

< A •lJi mnminl 

The maximum neutral layer position is situated in laminate imax, so that 

'1-!n <A <1J11 
)l,maxl max )l,max2 
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VII.S .1 Solution for Stress-Strain Curve Type 1: 

Integration of the equilibrium equation, as given in Section 

VII.3.1, in zone I, with as initial boundary condition 

= 0 

and application of the laminate jumping as explained in Section V.4, 

yields 

n max(r 
1

, r) 

(J ii = r a R, P 

l' p n rp2 
p = i 


n + 1 
n Bp max(r 1 , r) p 

+ r ~-"--:-1 (R, p ) (VII .5.1)n + n r 
p 0 

p = i 

n 

= ip 

The value of the radial stress at the inside boundary of zone I is then 

R, I n 

(cr max ) 
 = r r 


p = R,
max 
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+ 

p 

n 

E 

t= max 

B 
p 

n + p 
1[(in 

max(r 1,
p 
r 

0 

n 
rmax) 

p 

) 

+ 1 

n + 1 

ct n 

r p
E)Jr (VII.S. 2) 

0 

Integration of the equilibrium condition in zone II, with initial boundary 

condition 

= 0 

gives in a similar way 

i min(r 2, r) 
0
iii L: a Q, . E= ­r p n r·pl

p = 1 


i 
 n + 1 
r 1 pE BE _E.!_) (VII .5. 3)(- t n + 1 n r p = 1 p 0 

n + 1i pmin(r 2,r)BE 
+ E (- t· E )

n + 1 n r 
p 0 

p = 1 

The value of the radial stress at the outside boundary of zone II is then 

. R. •l'IU.nR. I min (r 2, r . )p m1n- ·Carmin ) = - a iE p n r = r . rp1
m1n p .. 1 
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R, • n + 1
m1n . r p

S E m1n ...r 2 , rmin) 
+ I: (- R, E ) 

n + 1 n r 
p 0 

p = 1 

R, • n + 1 
mn S r P 
I: E c t E) (VII.S.4)n + 1 - n r 

p 0 
p = 1 

The radial stress at the boundary between zones I and III, and the zones 

II and IV can be analytically calculated with equations (VII.5.2) and 

(VII.5.4). All the radii can be expressed in function of K and n using 

the formulas provided in Appendix I. The current position of the neutral 

layer, A , or p, is not needed to calculate these radial stresses. To . n 

find the current A -value, the equilibrium has still to be integrated. n 

over zones III and IV. The equilibrium equations for laminate i in these 

zones can be expressed as follows 

n. 
'III dr 1 dr zone III d cl a.. -+ s. [2 I: R, 2 I: R, + R, !.._] 
r = 1 r 1 n ptk - n P cj n r -rk j 0 

(VII.S.S) 

n. 
'IV dr 1 dr zone IV d cl = - a.. -- B. [2 I: R, ptk - 2 I: R, P cj - R, !..] ­r 1 r 1 n n n r rk j 0 

(VII .5.6) 

These equations cannot be analytically integrated, since the strains at 

the points of strain reversals are different for different layers, and are 

not analytically known. Hence, integration of the equilibrium equations 
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is performed numerically, using the Runge-Kutta method. The starting 

condition for the integration of (VII.S.S) is the radial stress at 

r = rmax' given by equation (VII.5.2). Integration is performed for 

decreasing values of the layer radius r. When crossing a material 

boundary, the starting condition for the new equilibrium equation is 

provided by the radial stress at the boundary. The starting condition 

for the integration of (VII.5.6) is given by equation (VII.5.4). 

Integration is done for increasing values of the layer radius r. The 

position of the neutral layer is found by determining for which layer the 

radial stress computed by integration in zone III or zone IV is identical. 

Once .A as a function of K, n and the previous bending behaviour is . n 


found, the integration of the sheet-thickness equation (3.2.20) can be 


performed, so that n, A and p as a function of K are known. 

n 

n.
-1VII.5.2 Solution Method for Stress-Strain Curve Type 2: H~(£) = A. (B. + £)

1 1"" 

The same method as described in Section VII.S.l is used. The most 

important formulas follow here. Integration in zone I leads to 

n + 1 n a. max(r 
1

, r) p
ii p p 

crr = ~ ( ~ + R.n )n + 1 r 
p 0 

p = i 

(VII .5. 7) 

n + 1 
pn a. r 

E E cs + t E)n + 1 p n r 
p 0 

p = i 
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n + 1 
.Q, I n a max(r 1, rmax) 

p 

(crrmax ) = L: E ( f3 + t E )
n + 1 p n r 

r = r p 0
.Q,max p = max 

(VII.5.8) 

n + 1 n p
Cl r 
E cs + R- E)L: n + 1 p n r p 0

.Q,p = max 

Integration in zone II leads to 

n + 1
i p

Cl min(r 2, r)·n 
cr~ = L: n 

E 
+ 1 caP - t n 

E 
r ) 

p 0 p = 1 

(VII.S.9) 
n + 1 pi a r 

L: E (8 R, -E.!.)-n + 1 p n r p 0 
p = 1 

.Q, • n + 1 
t . II 

m~n a min(r 2, p
rmin)

(crrmn ) = L: E cs - R, E )n + 1 p n r 
r = r . p 0 mn p = 1 

R, • n + 1 mn p
Cl r 

L: E R, -.£.!..) (VII.5.10)n + 1 CBP n r p 0 
p "' 1 

(VII.5.8) and (VII.5.10) are the boundary conditions to start integration 

in zone III and IV. The equilibrium condition in these zones is 

zone III d ~III = a (a. + 2
i 1 

r 

http:VII.5.10
http:VII.5.10
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n. 
1 

+ t E._) dr (VII. 5 .11) 
n r r 

0 

d criiV = zone IV - a. (S. + 2 r t 2 rptk - tn Pcjr l. l. nk j 

n. 
r 1 dr - t -) - (VII. 5 .12)n r r 

0 

The value of ). is found by numerically integrating (VII. 5 .11) and 
n 

(VII.S.l2), and determining for what layer the radial stress found by the 

two integrations coincides. Integration of sheet thickenss equation is 

straightforward, since ). n is known. 

VII.6 Stress Distribution and Bending Moment 

The values of the radial stress in zones I or II can be analytically 

determined by formulas (VII.S.l) and (VII.S.3) or (VII.S.7) and (VII.S.9). 

The radial stress in zones III or IV must be determined by numerical 

integration of (VII.S.S) and (VII.S.6) or (VII.S.ll) and (VII.S.l2). The 

tangential stress follows out of (VII.3.1) or (VII.3.2) and requires the 

knowledge of the radial stress and the previous deformation behaviour (to 

calculate the equivalent strain). The bending moment can be determined 

when the tangential stress distribution across the sheet is known. 

2 2 r - r. y 1 
cr cp rdr = 2 

Numerical calculation of 

l 

Jo cr cp dr 

http:VII.S.l2
http:VII.S.ll
http:VII.S.l2
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is straightforward. However, it was found that the calculation accuracy 

was very bad for small values of K, i.e., large radii of curvature r. 

Calculation. of the moment around the neutral layer instead of around the 

centre of curvature solved the problem. It can be shown, by differentia­

ting (3.2.11), that 

2 2 r - r. 

rdr = d A ( Y 

2 
1

) 


When we call z = r - r , z. = r: r , z = r - r then 
n 1 1 n y y n 

cr4> zdzM ·r
1 

dz ... dr 

zdz 

Hence 

r 2 - r. Y2 Jz r 
M = ( y 2 1) cr <P (1 - ~) d A 

z. 
1 

in which r and r are expressed in function of ). • 
n 

VII.7 Program BENDING 

A FORTRAN program to calculate the plane strain bending of 

laminated strainhardening sheet without Bauschinger effect, is liste~ 

below. Comments on the accuracy of this program can be found in Appendix 

IX. 
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APPENDIX VIII 

BENDING OF A RIGID-PLASTIC STRAINHARDENING SHEET, 
WITH BAUSCHINGER EFFECT AS SUGGESTED BY CRAFOORD 

The rationale for the introduction of this simplified Bauschinger 

effect is given in CRAFOORD [33] and is also treated in Chapter 5. The 

solution method for a sheet with that behaviour follows the general 

solution method outlined in Chapter 3. 

VIU.l Stress-Strain Curve and Effective Yield Stress 

As explained in Chapter 5, the stress-strain curve for layers to 

the inside of the neutral layer (zone II in figure 5.11) or to the outside 

of the unelongated layer (zone I) is 

cr = H(e:) r. ~ r ~ r zone II 
1 n 

C! = H(e:) r ~ r ~ r zone I 
0 y 

and for layers that are situated between neutral and unelongated layers 

(zone III), 

zone IIIcr = H(e: = 0) 

This was applied to two different types of strainhardening curves. 

type 1: (VIII.l.l) 
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n 
type 2: 	 H2 (E) = A(B + E) (VIII.1.2) 

The effective yield stress for the different zones is then 

type 1: 	 zone 


zone 
:I} 
a= A+ B~ 

zone III 0' = A 

n 
type 2: 	 zone = A(B + E) 

zone :J 0' 

zone III -
<1 = ABn 

VIII.2 	 Yield Condition and Equilibrium Equation 

The general yield condition is 

r < r 	 ~ r (3. 2. 3A)
n 	 y 

r. ~r <:: r 	 (3.2.3B)
1 	 n 

and the radial equilibrium equation for plane strain is 

d 0r 2 	 ­
r--=-cr 	 (3.2.1A)'[3 	 rn ' r 'rydr 

0d r 	 2 ­
(3.2.1B)r ---ar-- = - - cr

f 
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VIII.2.1 Stress Strain Curve Type 1: H (E) = A + B-ne:-1 

The yield condition becomes 

2 2 -n zone I CJ¢ - crr =-A +-Be: r ~r ~r 

'{3 \[3 0 y 

2 (VIII. 2.1)zone Ill CJcp - crr =-A r n 
<r ~r

0\{3 
2 2 -n zone II --A --BE r. ~r <rcrcp - crr = 

\{3 '{3 1 n 

(3.2.2) and (3.2.6) together yield 

2 2 r zone I E=-E =-i - r ~r ~r n r 0 y'{3¢\[3 0 

(VIII. 2. 2) 

2 2 r zone II e: :; - -E = -- i - r. 'r ~ rn1'[3¢ \{3 n ro 

E in zone III is not needed, since the yield condition in zone III, is 

independent of £. This is a great simplification in comparison with a 

strainhardening material without this simplified Bauschinger effect. In 

such a material the value of £ for the layers that have undergone a strain 

reversal is difficult to determine. It will be seen that since cr is 

assumed to be independent of £ in zone II I the resulting analysis is very 

much simplified. Substitution of the values for the effective strain £ 

for zones I and II in (VII.2.1) leads to 

zone I 
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zone II r < r ~ r (VIII. 2. 3) n o 

r. ~ r < r 
1 n 

Substituting 
I 

2 a.= -A 
\[3 (VIII. 2 .4) 

+ 1 

in (VIII.2.3) simplifies these expressions to 

n 
zone I a a =a.+ a(R. !._) r ~ r ~ rcp - r n r 0 y

0 

zone II (VIII. 2. 5) 

r n 
= - a. -s c-.t --) r. ~ r < r n r 1 n 

0 

The combined yield condition-equilibrium equations (3.2.1A) and (3.2.18) 

are for this case 

d a n 
zone I r drr = a.-+ S(i E-).n r 

0 

d a 
zone III r ~rr = a r ~ r ~ r (VIII. 2 .6)n o 

d a r nrzone II r~='!' a -a (-R. -) r. ~ r ~ r nr 1 n 
0 
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VIII.2.2 Stress Stra.in Curve Type 2: H2(£') = A(B + "E)n 

The yield condition is 

zone I r ~ r ~ r
0 y 

. = ~ ABn (VIII. 2. 7)zone III a¢ - ar r < r ~ r 
'{3 n o 

2 -n zone II a<j>- ai: =-- A(B +E) r. ~ r < r 
\[3 1 n 

Using (VIII.2.2) and substituting 

2 2 n 2 n + 1 
a = -A(-) = A(-) 

\[3 \[3 \[!" 
(VIII. 2. 8) 

a =\f3B
2 

zone I 

in (VIII.2.7) gives 

r ~ r ~ r
0 y 

n (VIII. 2. 9)zone II I .a.p - a r = eve r < r ~ r n o 

n 
, _r:-~ 

= - a. ca - "' J r. ~ r < rn r 1 n
0 

The combined yield condition-equilibrium equations are then 

d a n,r r 
zone I r -dr = ace + t -)n r 

0 

1 
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d (J 

zone III r r - a8n r ~ r ~ r (VIII. 2 .10)""""dr - . n o 

d (J n 
zone II r = - a.ce - t !_) r. ~ r ~ rr '""""dr n r l. n 

0 

VIII.3 Initial Conditions 

The initial conditions for the integration of the sheet thick­

ness equation are known, namely 

K = 0 

'· 

n = 1 

p = 1 

Since the tensile and compressive stress-strain·curves are identical, 

the neutral layer at the beginning of the bending coincides with the 

central layer. Thus 

The tangential stress at the commencement of bending is, for stress-strain 

curve of type 1, 

= +a A> A 
n 

cr cp = -a A< A 
n 

and, hence, the original bending moment is 
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t2 excr rdr a >. d J. = cp cp· 0 4M =I~ = t~I: 
1 

For a stress-strain curve of type 2, th~ tangential stress at the beginn­

ing of the bending is 

A> A 
n 

A> A 
n 

and the original bending moment is 

VIII.4 Solution Method 

The general method of approach explained in Section 3.2.8 is 

used here. The variables K, n and p are used to characterise the bend. 

The sheet thickness equation to integrate is 

2 

·l -: 4

K 


dn 1) (3.2.19)dK ::; ( 2 2 
n P 

The second dependent variable p will be determined by integrating 

(VIII.2.6) or (VIII.2.10) along the sheet thickness~ and requiring that 

the radial stress at the neutral layer be unique. Formulas will be given 

for the two stress strain curves used. 

http:VIII.2.10
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VIII.4.1 Solution With Stress-Strain Curve Type 1: H1 (E) =A + B~ 

The combined yield condition-equilibrium equations that apply 

are equations (VIII.2.6). Integration of the equation that applies in 

zone I, with boundary condition 

gives 

n + 1 ' 

r = ex R, !._ + e (R, !._) 


crr n r n + 1 n r 
y 0 

(VIII.4.1) 

r n + 1 
B 1 (t .1.)

n + n r 
0 

The radial stress at the unelongated layer is 

n + 1 
r B r

( I) = ex R, .....£. - --- (t _r.)crr n r n + 1 n r 
r = r y 0 

0 

Integration of equation (VIII.2.6) applicable in zone III, with boundary 

condition 

yields 

n + 1 
.a­ (VIII.4.2)

n + 1 
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The radial stress at the neutral layer is 

n + 1 r 
= a R, n (VIII .4. 3)n r y 

Integration of equation (VIII.2.6) in zone II, with boundary condition 

results in 

n + 1 

=-ai !._+ 8 (-i !_) 


n ri n + 1 n r
0 

(VIII.4 .4) 
n + 1 

a r. 

----~--:-- ( R, 2)
n + 1 - n r 

0 

The radial stress at the neutral layer is then also given by 

n + 1 {VIII.4.5) 
a r. 
~ (.t2) 

n + 1 - n r 
0 

Since the radial stress at the neutral layer is continuous, (VIII.4.3) 

and (VIII.4.5) must have the same value, so that 

r n + 1 r n + 1 
rn a 

8 1 (i ...l.) = -a i - + ~ ( i ~)n + n r n ri n + 1 - n r
0 0 
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n + 1 
(3 r. 

(- Q. 2:.)
n + 1 n r 

0 

or 

n + 1 r r r. 	 r n 	 l. f3_L_2r.x Q. (l t (l Q. - - (Q. 1)
·n r n r n + 1 n r n ro 	 0 00 

(VIII.4.6) 

n + 1 	 n + 1 r 	 r.s 	 13
(- Q. .2!.) + (- Q. -2:.) = 0 n + 1 n r n + 1 n r 

0 	 0 

r 
Substituting p = .2!., and expressing all radii as a function of K, n, p

r 
0 

with the formulas (1.3), (1.4), (1.5) and (1.6), brings (V1II.4.6) in 

the following form. 

K K n + 1 1 1 +­f3 	 - 2 2]2<l i p - (- i p) - (l [i + 	Q. 
n n + 1 n 	 n n n n 

(VIII .4. 7) 
n + 1 n + 1 

K 	 K
1 	 1 +­

+ 
f3 [ (- i ( - 2)) - (Q. ( 2)) ]= 0 n + 1 n n 	 n n 

Equation (VI11.4.7) can be written as g(n, K, 	 p) = 0. Sheet thickness 

dnequation (3.2.19) is of the form f(n, K, p) = dK' These two equations 

are sufficient to determine n and p is function of K. For every value 

of nand K, pis implicitly given by (VI!I.4.7), and could be determined 

by solving (V1II.4.7) using an iterative procedure. It was decided, 

however, to convert the system (3.2.19), (VI1I.4.7) to a system of two 

first order differential equations. This is done by differentiating 

(VIII.4.7) to K. This gives 
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dg(n, K, 
dK 

p) 
= 0 = [2a + B(- i 

n 
p) n i:- :P 

p K 

+ 
aK 

K2 
2(1- -)

4 

+ 

2(1 

s 
K2 

- -)
2 

( ­ R, 
n 

1 
K n 

- 2) 
n 

B 
--~ 
2(1 + K2) 

(i 
n 

1 
K n 

+­
2)n 

+ .!. dn 2a + B(- i n dK 	 n 

K n 
1 +­

2)+ B(i
n n 

~~ can now be expressed as a function of :~, n, K, -P· The sys.t.~m".of two 

differential equations of first order that has to be solved is 

K2 
1-4 

( 2 2 - 1) 	 (3.2.19) 
n P 

dp - p h Cn, K, p) (VIII.4. 8) 
dK 	= 2 0:+ B(-R. p)n 

n 

with 

K n 
O:K B 1 

- 2)h(n, K, p) = + (- R,
2 2 - K n nK

2 -2 
K n 

1 +­B 2)(i2 + K n n 

http:sys.t.~m".of
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2a. + ac- R. n 

K n 
1 +­

+ S(R. 	 2)
n n 

This system of two differential equations (3.2.19) and (VIII.4.8) will 

be solved using a Runge-Kutta numerical integration technique. 

Say that the system to solve is 

dy ­dx- F(x, y, z) 

dz
dx = G(x, y, z) 

Take as starting point x, y, z and has step size for integration to x. 

Compute then the following values 

= hF (x, y, 	z)k1 

R. = hG (x, 	y, z)1 


1 1 1
k2 = hF (x + 	~~ y + 'T<l, z + ¥1) 


1 1 1

R. = hG (x y + 'T<l' z + 2tl)2 + 	~· 


1 1 1
k = hF (x + 	~~ y + 'T<2, z + ¥2).3 

1 1 1 

.2.3 = hG (x + ~~ y + 21<2' z + ¥2) 


k4 = hF (x + 	h, y + k3, z + .2.3) 
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1 
K = 6 (kl + 2k2 + 2k 3 + k4) 

Then the new calculated point is x + h~ y + k~ z + t. This point is 

used as starting point for the next integration step, etc ..... This 

technique can be applied to the system (3.2.19)~ (VIII.4.8) by putting 

K = x, 11 = y, p = z. The initial conditions are known, namely K = 0, 

T) = 1 and p = 1. 

- -nVIII.4.2 Solution with Stress-Strain Curve Type 2: H (E) = A(B +E)
2 

The derivation is exactly of the same type as the one used for 

the stress-strain curve type 1 given in Section VIII.4 ..1. Only .the most 

important equations will be given. The equations to integrate are 

(VIII.2.10). Integration in the different zones yields 

· n + 1 n + 1 ~ rv. ~ ca n !_)crr 
. I 

= n + 1 ~ + Nn r n + 1 ((3 + tn ~) (VIII.4. 9) 
0 0 

n + 1 

= 

r 
~ t a+ t -Y..) (VIII.4.10)

n + 1 n r 
0 

n + 1r. 
ex ((3 - t 2..) (VIII. 4.11)n + 1 n r 

0 

The radial stress at the neutral layer is continuous~ hence 

http:VIII.4.10
http:VIII.2.10
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or 

n + 1 
n rrt a n + 1 _ a ry

0 =as t - + n + 1 j.J n + 1 ((3 + 1n ~)n ro o 

r n + 1 n + 1r. 
a ca - t ....!!.) a ((3 - t .2:.)

n + 1 n r n + 1 n r 
0 0 

Expressing all radii in function of K, n, p yields 

n + 1 
0 = g(n, K, p) = - aBn tn P + n ~ 1 lB - in P) 

K n + 1 
1 +­

2) 
n 

Differentiation of this expression to K, and expression of ~~ in function 

of dndK' K, n, pleads to the differential equation (VIII.4.12). The 

system of two differential equations, (3.2.19) and (VIII.4.12) is solved 

in a similar way as the system arrived at in Section VIII.4.1. The system of 

differential equationsis 

(3.2.19) 


dp p h(n, K, p) (VIII. 4 .12)dK = n n
S + (S - tn p) 

http:VIII.4.12
http:VIII.4.12
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with 

2K n K1 +- 1 ­
. 2) 1 1 4h(n, K, p) = (13 + R, +- ( - 1)]n n [2 + K 2K n2P2 

n K2 
1 -

K 
2) 1 1 1 - 4 

+ (13 - R, +- ( - 1)][K 2Kn n - 2 n2P2 

VIII.S Stress Distributions and Bending Moment 

- -nVIII.S.l Stress-Strain Curve Type 1: Hl (E) =A + BE 

The radial stresses across the sheet thickness are given by 

(VIII.4.1), (VIII.4.2) and (VIII.4.4). All the radii in these formulas 

can be easily expressed in function of K, n, p, which are known after 

solving a system of two differential equations, as indicated in Section 

VIII.4. The tangentialstresses across the sheet thickness are then also 

known .. They are 

n 
I I .0 (.t !._1zone I aq,=ar+a+j.J nr"' 

0 

(VIII.S.l)=a;n + a n o zone III a ~II r < r ~ r 

II II n 
zone II a"' = cr - Cl - f3 ( -.t !_) r. ~ r < r 

~ r n r ~ n
0 

The bending moment can be determined by 

(VIII .5. 2) 
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It can be seen that this equation will contain terms of the type 

When n is an integer number, these integrals can be solved by partial 

integration. But since n, the strainhardening index, is a material 

constant, n is in general not an integer~ In that case, partial integra­

tion results in an infinite series. For that reason, the bending moment 

is calculated numerically. The integral of o¢ r) across the sheet 

thickness is calculated by dividing the distance between inner and outer 

sheet radius in about a hundred equal intervals, calculating the tangential 

stress at the end points of these intervals and applying the trapezium rule 

This yields the bending moment, M. 

VIII.5.2 Stress-Strain Curve Type 2: H2(£) =A(B + E)n 

The radial stresses across the sheet thickness are given by 

(VIII .4. 9), (VIII. 4 .10) and (VIII .4 .li). The tangential stresses are 

n 
zone I I I + a c· a + R. E-) r ~ r ~ rcr¢=crc 1-J nr 0 y


0 


(VIII .5. 3)zone IIIcr~II =cr!II + ~n r < r ~ r n o 

II nII zone II - a (a - R. !_) r < r(J'q> r.~= err '"' n r 1 n 
0 

The bending moment can again be determined by equation (VIII.5.2). The 

same remark as made in Section VIII.5.2 applies here, and numerical cal­

culations of the bending moment is required. 
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VIII.6 Program MONOSH 

The following program performs all the calculations required for 

the solution of the bending of a rigid-plastic strainhardening sheet, 

with Bauschinger effect as suggested by Crafoord. The accuracy of .the 

program will be discussed in Appendix IX. 
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APPENDIX IX 

ACCURACY OF COMPUTER PROGRAMS 

A rigorous analytic solution for the pure bending of a rigid­

plastic material is> up to now> only known for the bending of a rigid­

nonstrainhardening monometal. The solution for that case is treated in 

Appendix III. As a first check on the accuracy of the different computing 

methods used in the programs BINSH, TRINSH, BENDING and ~40NOSH, the 

bending of a single nonstrainhardening sheet was calculated. The results 

of these calculations are shown in Table IX.l. It is seen that all 

programs give a correct solution to this bending problem with a high 

degree of accuracy. The only values that devi ate substantially from the 

correct ones are the bending moments calculated by the program MONOSH. 

In that program, the bending moment is calculated numerically around the 

centre of curvature of the bend. The moment is arrived at by taking the 

difference of two quantities determined by numerical integration, thus the 

error of the difference is likely to exceed the error of the individual 

integrals. When the moment is calculated around the neutral layer, the 

moment is the sum of the two integrals , and these increase in relative 

error does not occur. Improvement of the moment calculations in MONOSH 

can be arrived at by using the same technique as used in BENDING (see 

Appendix VII). 

The bending of a nonstrainhardening bimetal was calculated with 

programs BINSH, TRINSH and BENDING. The influence of the steps i ze of 

the relative curvature, K, when calculating the sheet thickness variation 
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was checked for program BINSH. while programs TRINSH and BENDING were 

used to evaluate the sheet thickness of the same bimetal with a single 

step sizeuf 0.01. The results of these computations are shown in 

Table IX.2. It is seen that the accuracy of the computations increases 

with decreasing step size. The accuracy for program BINSH with a step 

size 0 -f 0. 01 is sufficient for graphical representation of the bending 

behaviour. and hence this step size was used for the results presented 

in Chapter 4 on the bending of nonstrainhardening bimetals. It is also 

clear that programs TRINSH and BENDING give essentially the same 

bending behaviour as BINSH for thJs case. 

The bending of a nonstrainhardening trimetal was computed with 

TRINSH and BENDING, and the results are presented in Table IX.3. The step 

size 0.01 for the relative curvature, K, was used for the results pre­

sented in Chapter 4 on the bending of trime"tals, and is seen from Table 

IX.3 to be sufficiently small for graphical presentation of results. 

Table IX.3 also shows that the difference between the results given by 

programs BENDING and TRINSH increases for higher values of the relative 

curvature K. This is due to the fact that BENDING requires smaller step 

sizes than the other programs to give accurate results, as will be 

explained further. 

Except for the nonstrainhardening monometal, the results of program 

MONOSH cannot be checked with other programs. The influence of the step 

size for the relative curvature K on the results of strainhardening sheets 

with Crafoord Bauschinger effect can be seen in Table IX.4 and IX.S. It 

can be concluded that program MONOSH gives satisfactory results for even 

large step 5 i ze. This cannot be said from the other programs. This is 

probably due to the inherent simplicity and elegance of the computing 
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method, which is much singler than in TRINSH or BENDING. 

Finally, the influence of the step s i z efor the relative curva­

ture K on the results for the bending of a~rainhardening bimetal is 

featured in Table IX.6. As can be seen, small step sizes are required 

to get results with some accuracy. In addition to that, every step 

consumes much more computer time comparea to the other programs. Therefore, 

a large amount of computer time must be used due to the method used to 

find the effective strain for layers in the sheet which have undergone a 

stress reversal. Furthermore, for those layers, the radial equilibrium 

equation has to be integrated numerically. It follows that the bigger the 

zone with stress reversal in the sheet, the more computer time consuming 

on integration step becomes. The small accuracy for big integra~ion step 

sizes is also caused by the inethqd for effective strain Galculation. A 

small error in neutral layer position in the first integration steps will 

be retained in further calculations of the deformation process, causing 

an oscillation superimposed on the real values of the variables. 

When the integration stepsize is not small, the amplitude of this 

oscillation can be bigger than the change in the variable value between 

different steps, so that results only can be determined by taking averages 

over different integration steps. This oscillation effect in the /. - K 
n 

curve can be reduced to a negligeable amount by decreasing the step size 

However, this is only feasible to a certain extent since the computation 

time required increases very drastically. The author has tried to compro­

mise by changing the integration step during the computations. At the 

commencement of the bending process, small steps are used, and these are 

gradually increased when K increases. (The exact scheme used is given as 

note to Table IX.6). This variable stepsize scheme has the advantage that 
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the early bending behaviour is computed fairly accurate, while the 

results forK-values above 1.0 are rather inaccurate (! 20 percent). The 

bending behaviour for high K-values is only of theoretical interest, 

since it is very difficult to achieve bends of this severity inpractice. 

Furthermore, these bends will not be uniform (see Crafoord ~3]). The 

results given in Chapters 5 and 6 are calculated using the variable step 

size integration scheme, and the big step size used for K > 1.0 explains 

why the bending moment is not very accurately known for these values of 

relative curvature. 
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TABLE IX.l 
~ 

BENDING OF A NONSTRAINHARDENING MONOMETAL 
CALCULATED BY DIFFERENT PROGRAMS* 

ComputingComputed Values Method 
K 

p .AT) M/t 2 
n 0 (Program) 

.998 749 2181 . 4 75 .288 675 1 analytical 
BIJ\;SH1.000 000 000 .998 749 218 .475 coo 0 .288 675 1 

1.000 000 0 .998 749 2 .474 999 4 TRH,SH.288 689 6 . 10 .999 974 r: 
.J .998 770 6 .288 571 9.474 959 4 BENDING 

1.000 000 .998 749 .475 000 .274 250 MONOSH 

.968 245 8371 .375 analytical.288 675 1 
1. 000 000 .968 245 837 .375 000 0 .288 675 1 BINSH 

• 50 .999 999 7 .968 244 4 . 3 74 996 7 TRINSH.288 690 3 
.999 841 1 .968 331 6 .374 868 1 .288 168 7 BENDING 

1.000 000 .968 246 .375 000 .274 474 MONOSH 

1 .866 025 404 ;288 675 1.250 analytical 
1. 000 000 000 .866 025 404 .250 000 0 .288 675 1 BINSH 

.866 017 2.999 998 5 .249 991 7 • 288 693 3 TRINSH 
• 24 9 963 0.999 610 2 .866 320 3 BENDING.287 503 0 

1. 000 000 .866 025 .250 000 .278 369 MONOSH 

.661 437 821 .1251 .288 675 1 analytical 
1. 000 000 .661 437 828 .125 000 0 .288 675 1 BINSH 

1. 50 • 999 994 1 .661 394 2 .124 979 0 .288 704 0 TRINSH 
BENDING-- --

1. 000 000 0 .661 438 .125 000 MONOSH.283 451 

* 	 Step size for the relative curvature in the integrations 
of the sheet thickness equa!:ion is • 01. 
The effective yield stress CJ is one. 
In programs BENDING and MONOSH, this is realised with 
the stress strain curve 

-	 € )1o-1oa = 1 (1 + 

. 
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TABLE IX.2 

BENDING OF A NONSTRAINHARDENING BIMETAL* 

K 

. 10 

1.010 
1.011 
1.012 
1.012 
1.012 
1.012 

1.012 
1.012 

TJ 

704 
759 
286 
603 
708 
793 

599 
588 

338 
354 
862 
366 
868 
269 

4 
9 

Computed Values 

p .A n 

1.001 237 181 .607 
1. 000 193 137 

.999 671 931 

.999 359 469 

.999 255 358 

.999 172 085 

.999 363 3 .607 

.999 308 6 .607 

762 
II 

II 

II 

II 

II 

761 
094 

2 

9 
8 

M/t 2 
0 

.406 

.407 

.407 

.408 

.408 

.408 

.408 

.408 

658 
507 
932 
187 
272 
340 

198 
510 

0 
5 
5 
6 
7 
7 

3 
7 

Step 
size 

b.K 

. 1 

.OS 
.025 
.Ul 
.005 
.001 

. 01 

. 01 

Computing 
Method 

BINSH 
II 

II 

II 

II 

II 

TRINSH 
BENDING 

. 50 

1.068 
1.069 
1. 069 
1.070 
1.070 
1. 070 

1. 070 
1.070 

280 
395 
952 
287 
399 
488 

267 
210 

294 
410 
967 
502 
013 
222 

8 
3 

.981 

.980 

.979 

.979 

.979 

.979 

.979 

.979 

355 187 
331 876 
821 020 
514 763 
412 719 
331 100 

532 1 
209 8 

.536 

.536 

.535 

563 
II 

II 

II 

" 
" 
562 
721 

7 

2 
2 

.466 

.467 

.467 

.467 

.468 

.468 

.467 

.468 

154 
128 
615 
908 
005 
083 

907 
250 

8 
5 
7 
2 
7 
7 

4 
2 

. 1 
• 05 
.025 
.01 
.005 
.001 

.01 

. 0 1 

BINSH 
II 

II 

II 

" 
" 

TRINSH 
BENDING 

1. 00 

1. 50 

1.148 
1.149 
1.150 
1.150 
1.150 

1.150 
1.150 

1. 213 
1. 214 
1. 215 
1.215 
1.215 

1. 215 
1.213 

222 
431 
036 
395 
515 
-
392 
167 

290 
567 
206 
586 
713 
-
610 
890 

561 
612 
146 
733 
859 

4 
8 

233 
798 
590 
555 
488 

6 
1 

.873 620 230 

.872 701 296 

.872 242 547 

.871 969 904 

.871 878 861 
-

.871 959 1 

.869 566 6 

.645 042 522 

.644 364 023 

.644 025 303 
~643 823 995 
.643 756 773 

-
.643 756 9 
.638 073 7 

.378 

.378 

.375 

.183 

.183 

.179 

115 
II 

II 

" 
II 

-
099 
147 

333 
" 
II 

II 

II 

-
298 
143 

3 

8 
4 

3 

9 
3 

.. 566 
.567 
.567 
.568 
.568 

.568 

.566 

.642 

.643 

.644 

.644 

.644 

.644 

.637 
----­

147 
340 
937 
292 
411 
-
336 
933 

148 
501 
178 
581 
715 
-
685 
036 

8 
7 
7 
9 
6 

8 
1 

1 
1 
2 
1 
7 

0 
8 

. 1 

.OS 

.025 

.01 

.005 

.001 

.01 

.01 

. 1 

.OS 

.025 

.01 

.005 

.001 

.01 

.025 

BINSH 
II 

II 

II 

" 
II 

TRINSH 
BENDING 

BINSH 
II 

II 

II 

II 

II 

TRINSH 
BENDING 

*1-2 
the 

bimetal, wi~h ll = 0.50, A1 = 1, 
stress stra~n curve used 1s cr = 

A2 = 2. In 
A ( B + e)n 

p:ogram BENDING, -lO 
w1th B = l, n = 10 

and A = 1 for laminate 1 on the inside of the bent sheet, and A = 2 
for laminate 2. 
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TABLE IX.3 

BENDING OF A NONSTRAINHARDENING TRIMETAL* 

IC n 

Computed Values 

A. n p M/t 
2 
0 

Step 
size 
!J.K 

Computing 
method 

1.007 489 4 .999 258 5 .555 150 6 .527 960 9 . 1 TRINSH 
1. 008 245 1 .998 523 9 .555 297 1 .525 315 0 .05 II 

1.008 622 7 .998 153 8 .555 334 3 .524 835 3 .025 II 

. 10 1.008 849 0 .997 930 9 .555 344 8 .524 824 0 .01 II 

1.008 924 4 .937 856 5 .555 346 3 .524 867 0 .005 II 

1. 008 984 7 .997 796 9 .555 346 8 .524 918 4 .ooi II 

1.008 893 7 .997 800 0 .554 464 0 .522 701 4 .01 BENDING 

1.022 748 6 .964 436 7 .416 172 7 .557 646 2 • 1 TRINSH 
1.023 289 3 .964 178 2 .416 806 4 .554 405 4 .OS II 

1.023 550 R .963 995 8 .416 967 7 .553 713 3 .025 II 

.40 1. 02 3 704 4 
1. 023 754 9 

.963 869 2 .417 013 4 

.963 824 2 .417 019 9 
.553 603 2 
.553 618 2 

.01 

.005 
II 

II 

1.023 795 2 .963 787 1 .417 022 0 .553 649 0 .001 II 

1.023 481 6 .963 960 4 .416 713 9 .550 387 2 . 0 1 BENDING 

1. 011 731 2 .851 436 8 .238 783 4 .536 171 7 • 1 TRINSH 
r. 012 011 8 .852 365 2 .240 043 9 .532 736 1 • OS II 

1. 012 094 9 .852 582 3 .240 366 6 .531 880 3 .025 II 

.80 1. 012 135 2 .852 632 3 .240 458 2 .531 651 6 • 01 II 

1.012 145 9 .852 635 5 .240 471 4 .531 623 7 .005 II 

- - - .001 II 

1. 001 629 1 .852 269 0 .239 596 6 .526 705 3 . 01 BENDING 

.939 712 4 .615 239 0 .090 584 9 .422 297 9 . 1 TRINSH 

.939 816 6 .617 599 7 .091 466 5 .420 002 0 .os ,, 

.940 312 8 .617 930 9 .091 705 7 .419 794 9 .025 •• 
1. 50 .940 443 3 .618 038 9 .091 776 3 .419 719 3 .01 " 

.940 459 2 .618 056 9 .019 786 7 .419 705 2 .005 •• 
- - - '"': • 007 ,, 

~.·:' 

.937 735 4 .612 350 9 .089 077 4 .406 4•16 5 .25 BENDING 

* 2-1-2 TRIMETAL, with .20 and .60ll21 = ll 31 = 
- nIn BENDING, the 0tress-strain curve cr = A (B +E) is used, with 

B = 1 and n = Io- 1 , and A = 2 for laminates 1 and 3, and A = 1 
for laminate 2. 

/ 

. 
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TABLE IX.4 

BENDING OF STRAIN HARDENING MONOMETAL WITH 
CRAFOORD BAUSCHINGER EFFECT AND STRESS STRAIN 
CURVE a = 1 (0.01 + e)o.5 

(PROGRAM MONOSH) . 

Computed Values ' Step 
p M/t2 sizeX 
n o·K n 

!J.K 

.998 959 
 .999 306 
 .470 167 
 . 1 

.998 119 
 .463 566
.999 484 
 .05-

.999 514 
 .998 060 .463 281 
 .025-. 10 
 .999 516 
 .998 055 .463 258 
 .01.060 4062 


.999 517 
 .998 055 .463 256 
 .005-

.999 517 
 .463 256
.998 055 .001-....... 


.967 654
.988 482 
 .343 637 
 . 1 
-
.988 575 
 .967 528 
 .343 552 
 .OS-.40 
 .988 582 
 .967 517 
 .343 543 
 .025-

.1 08 546 
 .01.988 583 
 .967 517 
 .343 542 

.005.988 583 
 .967 517 
 .343 542 
 -
.001.988 583 
 .967 517 
 .343 542 
 -

.873 685 
 .206 295
.950 806 
 . 1 
-

.873 618
.950 869 
 .206 285 
 .OS-
.80 
 .950 875 
 .873 612 
 .206 284 
 .025-

.950 875 
 .873 611 
 .206 284 
 .140793 
 .01 
.873 611 
 .206 284 
 .005.950 875 
 -
. 873 611 
 .001.950 875 
 -. 206 . 284 


.042 856 2 
 . 1 
.799 544 
 .546 704 
 -
.05.546 694 
 . 042 859 3
.799 578 
 -1. 50 
 .042 859 5 
 .025.546 692
.799 581 
 -

.546 692 
 .042 859 5 
 .138206 
 .01.799 582 

.001.799 582 
 .546 692 
 .042 859 5 
 -
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TABLE IX.5 

BENDING OF STRAINHARDENING MONOMETAL 
WITH CRAFOORD BAUSCH!NGER EFFgc0 ~ND 
STRESS-STRAIN CURVE a = 1 + le • 

(PROGRAM MONOSH) 

K 

. 10 

n 

.999 852 

.999 886 

.999 893 

.999 894 

.999 894 

.999 895 

Computed 

p 

.998 631 

.998 606 

.998 600 

.998 598 

.998 598 

.998 598 

Values 

A._n 

.472 342 

.472 432 

.472 440 

. 4 72 440 

.472 440 

.472 440 

M/t2. 
'_n_ 

-
-
-

.326 924 
-
-

Step 
size 

f>K 

. 1 

.OS 

.025 

. 01 

.005 

.001 

.40 

.996 

.997 

.997 

.997 

.997 

.997 

974 
019 
027 
028 
028 
028 

.975 

.975 

.975 

.975 

.975 

.975 

856 
812 
805 
803 
803 
803 

.383 

.383 

.383 

.383 

.383 

.383 

174 
177. 
176 
176 
175 
175 

-
-
-

.377 
-
-

821 

. 1 

.05 

.025 

.01 

.005 

.001 

.80 

.984 

.984 

.984 

.984 

.984 

.984 

325 
369 
376 
377 
378 
378 

.897 

.897 

.897 

.897 

.897 

.897 

207 
165 
157 
156 
156 
156 

.262 

.262 

.262 

.262 

.262 

.262 

464 
461 
461 
460 
460 
460 

-
-
-

.411 
-
-

756 

• 1 
.05 
.025 
. 01 
.005 
.001 

1. 50 

.920 367 

.920 405 

.920 410 

.920 411 

.920 412 
-

.584 132 

.584 110 

.584 106 

.584 105 

.584 105 
-

• 075 5103 
. 07 5 5108 
• 075 5107 
.075 5107 
.075 5107 

-

-
-
-

.402896 
-
-

.1 

.05 

.025 

.01 

.005 

.001 



A89 
TABLE IX.6 

BENDING OF STRAINHARDENING 
BIMETAL* (PROGRAM BENDING) 

K 

. 05 

.10 

.20 

.so 

1. 00 

1. so 

n 

1.004 926 
1.003 387 
1. 003 874 
1. 003 974 
1. 004 294 
1.004 274 

1. 004 123 
1.003 696 
1.004 260 
1.004 473 
1. 004 592 
1. 004 834 

1.001 092 
1.003 220 
1.003 681 
1. 003 775 
1. 003 953 
1.004 176 

.992 490 

.994 270 

.994 901 

.995 028 

.995 097 

.960 950 

.964 638 

.965 675 

.964 740 

.915 213 

.909 669 

Comnuted Values 

p An 

4 .997 988 2 .551 929 5 
3 .995 885 0 .478 922 5 
4 .997 205 6 .515 144 9 
7 .996 752 9 .508 047 7 
6 .996 651 8 .512 399 2 
7 .996 7S9 7 .514 169 8 

9 .993 738 8 .465 892 0 
9 .991 869 1 .442 959 0 
6 .994 346 1 .473 336 1 
9 .994 356 7 .475 560 3 
5 .994 161 5 .474 780 5 
8 .993 958 1 .475 144 1 

9 .986 603 8 .413 789 5 
9 .986 920 9 .425 743 2 
6 .987 646 9 .431 605 0 
6 .987 578 6 .431 725 2 
3 .988 037 7 .434 880 8 
3 .988 089 3 .436 230 8 

3 .951 919 3 .330 091 6 
7 .952 282 9 .333 981 3 
6 .951 185 8 .333 052 3 
5 .951 055 5 .333 035 4 
3 .954 228 7 .339 146 1 

5 .818 165 1 .184 068 0 
9 .825 166 4 .191 798 2 
4 .829 087 2 .19S 503 s 
6 .837 778 6 .201 625 2 

7 .587 838 9 .075 647 4 
3 .555 537 1 .064 294 6 

M/t 
2 
0 

.149 607 9 

.150 787 3 

.150 848 6 

.150 973 9 

.1S1 492 7 

.151 492 7 

.178 928 6 

.178 685 1 

.179 771 8 

.179 829 5 

.179 892 3 

.180 285 2 

.216 322 4 

.218 293 6 

.218 783 9 

.218 814 2 

.219.·034 0 

.319 365 5 

.285 593 6 

.287 418 5 

.287 617 0 

.287 687 7 

.288 845 1 

.331 061 1 

.338 137 8 

.340 923 3 

.343 702 0 

.339 888 6 

.317 581 0 

' 
Step 
size** 
flK 

.OS 

.02S 

.01 

.005 

.001 
VAR ' 

• 1 
.05 
.02S 
.01 
.oos 
VAR 

. 1 

.OS 

.025 

.01 

.oos 
VAR 

. 1 

.OS ' 

.02S 

.01 
VAR 

.1 

.OS 

.025 
VAR 

' 
.OS 
VAR 

* The 

A 

A 

The 

-stress strain curve used is (J = A (B 

= 1. 8' B = 10-10, n = .36 for inside 

-+e) n with 

laminate 1. 

= 2. 0' B = .09, n = • 43 for outside laminate 2 • 

laminate boundary is defined by ll 21 = .82. 

. 

' 
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Table IX.6 (continued) 

** A constant stepsixe is used if a numerical value is given. 

A variable stepsize is used when VAR is indicated in the column. 

The following stepsize scheme was used • 

~K = 	• 0005 0 < K < .002 

.0010 .002 < K < .01 

. 002 5 • 01 < K < .02 

.0050 . 02 < K < .os 

.010 .OS < K < • 10 

.02S .10 < K < .so 

.OS .so < K <1.00 

. 10 1. 00 < K <2.0 
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VARIATION OF ERICHSEN VALUE 
'v/ITH PER CENT COPPER AND . 
SHEET THICKNESS FOR THE 

ROLL BONDED COPPER- MILD 

STEEL 

from 

- 13•E 
e-

-

·0 

> 12 

BIMETALS 
Hawkins and WrigfJt [ 201 

..,..., 
v , 0 

/.'/ 
~~ 6. , .. 

, 
v t 

~-y-r--r_-
'11\.. /

)/, 
-~ I--. 

-. . 

9 •r~s::~--ac V -- ~---....-.---?-"Faau__,.,..."" 

0 20 40 60 so 100 

0/o Copp c r 

fig I. I o ·Co-ppu on outside. 

• Stul on outside. 

A Ito R~siJits on cop?e.r or steel compon~nb .respectively. 

v ,.. Results correcttd to a.8Jm.'m•s ( 0·072 ins) 



THICKNESS SURVEYS ON CUPS DRA'v../N FROM 65 mm 
DIAMETER BLANKS 

from Hawkins and \rlrignt [ 201 

so%copp~r- so%st~~~ bimetal zs%-so%-25% trim~tal 

Copper oh outside - -- Steel - Cu -Stu:I 

,... 
~ 

ro 

- -­ S\cel on outside 

Punch nose 
radrus 

--­ Cu - Stcci-Cu 

.Punch nose 
• radius0._, 0 , ~ 

c·­0....... 
"' ,.. 
: -ro 
c 
.¥ 
u-­.c 
1­

:-3 

I 
fig 1.2 

Dls\anc:c: ·from f'Oic of cup. 

>t 



VARIATION OF THICKNESS STRAIN 
OVER THE PUNCH NOSE 'WITH 
PER CENT COPPER 

from Hawkins and \rlrignt f 201 


..25 

.. 
"0 
z 

(on outsid()) o' · 
A: 20 
u Coppa r up wa r·d 1 /o,.,c: 
::. 0 
a. ­c 

'- 0 
 ~~/)·." ·- 15> ~ 
0 u ~ · Stacl upwards 

~s~ .c 'V ron outs1dcE'-)··-
0 « . :) 

'- 10 
.... ­
.... _v I' 

25 

20 

15 

ro 

- ~ ' 
.,..~ v· 

r:. 
5.¥ 5 

u·-A: ... 
o~--~----~--~-----.,----~o

0 2 0 4 0 . 6 0 8 0 I00 
P~r Cent Copper 

d () ep drawing of roll bond~ 

copp()r- mild stPel bimetals fig 1.3 



STRESSES ACTING 

OF A CUP DURING 


. 	 A.I'PLI£0 
HOLOtR· 

·11\0NfNG,,. 

tWAll TWSION 

I 
t 

SHUT 
I'~USUilE 

tENDING 

ON A SEGMENT 

DEEP DRA 'vv'ING 


• 

Al'PlfED I)RAWitiG 
naus 

fig I. 4 




PHOTOMICROGRAPHS OF 
LAMINATED MATERIALS 

material 

8 

0.05 in 

material 

c 

20/SS I C22AL 5052AL 005 in 

material 

D 

30455/ C22AL 3003AL 0.01 in 


·~ f
£: ~ t "' ...--t.:-"-"',_,. 

1 

DO 

I I 

30455/ C22AL .3003AL 0.01 in 

material 

E 

43055/ C22AL /ZINC 001 in 

fig 2.1 
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STRESS STRAIN CURVE 
MATERIAL a· 

-3 (J 
10 psi 

60 

50 

str~ss strain curVE'S40 
7i IIIII A (8 +lJ~TI 

.30 	 --- rolling dir~ction 0° 
---·- transv~rsE' '' 90° 
-------- 45 ° 
--av~rage

20 

/0 

0 ------~--~--------~--~-------~ 
o o.o2 ao4 o.o 6 o.oB a1o r 
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C 

' STR£55 STRAIN CURVE 
MATERIAL 

71 

10 psi 

/00 

80 

40 

str~ss strain curv~s 

U=A(B+?)n 

--­ 0° rollinq dir~ction
0 ... 

-·-·- 90 transvE'rs• • 
·--------- 4 5° 

av£lragE'20 

00 £Ql 0~2 0.3 

fig 2.4 



.-3U STRESS STRAIN CLIRVE 


:I 
. ~I 

I 

/CT psi 
MATERIAL D60 

-~---::::!J 
.~· ...--~----- ' -~ ....::::::;:-~._._ ~ 

~--~__ _._. . -­40 I . ~~..;..._~--__..., •••••••••-- ­
r .........,~""""' ••••·••••·····•• 


1 I _........-- -------	
•
r-··r·-··· 

..,._ ........ ~xp~rim~nta I curvE' tor ttastsp«imE''D
I 
in rolling d ir~ctionI 

I I 

I I str~ss strain curvE' for zone 3 


20 ~~ '"zONE 3 -;-· 7i =A (e~£)n 


---- TOlling dir~ction
't ZONE2 
Q0 

0 . 

--·- 90 transv~rsta " 
--------- 45°ON~ 1 avE-ragE' 

0~--~----~----~----~----~------~--~~
0 	 0.1 0.2 0 . .3 e 

fig 2.5 
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D 

stress strain curvE' 

a =A (B+€) n 
a ngl€- of te-nsile czxis 
witn rolling direction 

---- 00 
----­ 90° 
-----------­ 45° 

averagea 

a ro 3 ps; STRESS STRAIN CURVE 
MATERIAL D -AL40 

30 
a a 

20 

exp~rimE'ntal 

o

curve 

0 ooo10 
<><><> 90~ 
a £Ia 45 

0 
0 QOOS Q0/0 0.015 ( 

fig 2.7 



STRESS STRAIN CURVE
-(J 

MATERIAL DD3 .
10 PSI 

so 

40 

o o f?Xpe-riihe-ntal curvE? for t~stsp~cim€in 
in rolling dir~ction 

stre-ss strain curvE? 
a = A (B-tE}n · 
angl(a of tE?nsil~ axis 

T '• • f 

rolling dir~ct iQn 
. ___;,__ 

---·-·­10 ---------~·----· 
" 

0 0 

90° 
4 5° 
avE'ragE' 

for zon~ 3 

wlt6 

00 0.1 	 ·az 0.3 £ 

fig 2.8 



STRESS STRAIN CURVE 

MATERIAL E 


60 

40 

a 

stress strain cu. rvP 
7J a. A (B-t€)n 

experimental 
curv~ 

angle of tensilP axis 
witf1 rolling direC'tion 

____, 0 0 

0 ------90 
--------·---­ 45° 

0 ------------~------------L------------L--
0 0.005 0.010 0.0/ST 

fig 2.9 



TYPICAL LOAD-ELONGATION CURVE lN TENSILE 

TESTS OF MATERIAL D 

toad 

lb 

~----------------------------~~--------------------------------

./000 

s~cond load maximum 
800 


first ·load maximum 

600 


400 
 ' ~ . ' 

200 


0 ------------------~----~----~----~----~~ 0 10 20 30 pf:'rcf:'ntag~ 


~longatfon

fig 2.10 
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INFLUENCE OF SHEET ORIENTATION 

ON CIRCULAR BULGE TEST RESULTS 


MATERIAL B MATERIAL C 

o stainless steel on outsicl~ of bulge 
a ,, , " insid ~ .. ,.-

)E~·f 
0 

a 
0 a a 

o a 
QZ 0.46 a 

o a 
0 

Q4Z~~~~~--~-­

Et thickness strain at pol~ at failure 
e effective II II II II U 

R R
in·..,. 

4.8 
0 


0 
 a 
a a 

4.4 3.6 
o o a0 a a 

0 

~2~~~~~~~-­

R radius of curvature c:t pole c:zt failu. re 
p 

p 
psi psi 
600 0 

0 
o a 

a 
a 1000 

a a o o o a 

aoo----~~-------­

P IHJdrau.lic pr~ssu.re at failure 

fig 2.14 • .·fig 2.15 
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INFLUENCE OF SHEET ORIENTATION 
ON CIRCULAR BULGE TEST RESULTS 

MATERIAL D MATERIAL DO 

o stainl~ss st~~~ on ou.tsid~ of bulge­
._ D II II 11 insid~ II II 

IEtl = E 
a 

Q62 a0 
0 0 

0 

0QSB 

QSG~~~~~--~~ 

_sf"'ain ,_at ..poll!!' ,..at _fr.nctJArJ~ 
" 

R 
in 

.3__4 
0 

0 0 a D a 

3.0 	 3.0 
R radius of curvatur~ at pol~ at failure 

ppsi p 	 psi 
1200 1200 

•0 

• 	 0 a D a• 0 00 0 

1000 1000 
p nydrau.lic pr~ssur~ at failu.r~ 

fig 2.16 	 fig 2.17 



FORMING LIMIT DIAGRAM AND A TTA/NABLE 
STRAIN PATHS 'vi/TH DIFFERENT LABORATORY TESTS 

ea 

Simple ·tension. ,... Elliptical bulges .,Plane torsion Circular bulge 

e, 

fig 2.18 
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Fi.qure 2·19 Various ellinUcal dies used ~n buloe testina 



FOUR POINT BEND TEST 


bending metfJod 

u U. 

transverse forcP 


bending moment 


fig 3.1 

p 

geometry of fou.r 
point bend test 
loading rig and 
specimPn 

fig 3.2 




STRESSES ON AN ELEMENT 
IN :rHE BENDING ZONE 

according to Hill 

fig 3.3 




STRESS DISTRIBUTION IN BENDING 

NON STRAINHARDEN!NG MONOMETAL 
FOR RELATIVE CURVATURE IC· l 

effective yield 
stress 71::£ 

• 


fig 3.4 
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STRESS DISTRIBUTION IN BENDING 
NON STRAINHARDENING 
4-l-4 (20-40-40) TRIM£TAL 
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-2. 
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J: 
.2 -4(/) . 
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0 -6. 
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0 0 0
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I I 

I• 
I 
I 
I 

_.. 

I 
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I 
I 
I
• 

d.rr. ra IUS
I 

r,- radius of tne inside­
surfoce of tne bend 

rn neutral surface radius 

2! radius of laminate boundary 
su r[ace between inside 
clad and core­

'3t radius of laminate boundary 
surface core-outsid~ clad 

ry radius of outside 
surface of tile bend 

fig 3.5 
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, STRESSDISTRIBUTION IN BENDING 

NONSTRAINHARDENING MONOMETAL 
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I' 
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s: 
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fig 4.1 




BENDING MOMENT AND LAYER POSITION 
1/'J BENDING NON STRAIN HARDENING 

MONOMETAL 0: =- I 

Mjt; 

03~--------------------

as lO lS 2.0 K 

(r-t;)jt0 71 A­
lO ....,_______;;:::...,______ lO outsid~ 

0.9 la~r 
0.8 
0.7 

. 
une-longat~d 
lalJ~'f 

n('!ufral 
layer 

inside­
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4.2 

0.60.8 
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0.4 
0.3 

-~------ A=A 
0.2o 

0.4 
0.1 

0.2 

0 
0 ~~~~~~--~----~~ 

0 0.5 lO 1.5 2.0 I( 

fig 



NEUTRAL LAYER POSITION IN BENDING NON STRAIN 
HARDENING MONO-AND. BIMETALS 

An 
1.0 

1-2 (50-50) bim~tal0.8 
strong laminat~ on ou.tsid~ 

0.6 
2-1 (50-50) bime-tal 

strong laminat() on inside­

0.4 ...... , 
'-....... 

--- ..... 

n~u.tral lay~r coincid~s 

laminatf boundary 
wltll 

Q2 

0 ~--------------------~ 
0 0.5 LO 1.5 2.0 I( 

fig 4.28/S 
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STRAINPROCESS IN BENDING­
NONSTRAINHARDENING 

MONOMETAL 
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1.0 
0.9 
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0.7 
0.6 
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0.3 

" \ 
\ 

\ 
\ 
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\ 
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fig 4.3 



BENDING OF NON STRAIN HARDENING 
1-2 50-50 BIMETAL : PARAMETERS 

0.7 

-
0.6 

--- neu.tra l layer coincides wit~ 
0.5 laminate boundary {K=O.?O) 

0.4 

insid~ 
laminat~a; -II 0 ---- ...._ I .. --- t ,p 
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0.6 ~-- I•-.._0A· 	 \'-..... 

...... , ---- \ 
\ 

0.4 

0.2 

05 1.0 15 2.0 J( 

fig· 4.4 



BENDING MOMENT AND LAYER POSITION 

IN BENDING NON STRAIN HARDENING 

1-2 (50--50) 8/lv!ETAL 
M/.2
/to 0.7 

0.6 

o.s n~u.tra I lay~r coincid~s witfl 
;

lam inat~ boundary {K =Q?O) 

Q4 
L-L-...L-..L--L-.L......L.-+-'-~~..:-~-...J.........I.--'-~...J.........L~~ K A. :r 


......---.~:.:.:·'1. 0 outside 
0. 9 lay~r 
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'2=2 O. 4 boundary0.8 

A.=A.0 un~longated 
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0.6 0.2 

0.4 
insid~ 

laminate 
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STRAIN PROCESS IN BENDING 
NONSTRAINHARDENING 

1-2 BIMETAL 
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fig 4.6 



STRESS DISTRIBUTION IN BENDING 

NON 


u(j), t1r 
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ST RAINHARDENING 
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I 
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fig 4.7 . 



BENDING OF NON STRAIN HARDENING 
2-1 (50-50) BIMETAL : PARAMETERS 

insid~ laminatt­-a, =2 

outsid~ laminatt­0.4 
~=1 

0.3 

0 OS 1.0 IS 2.0 I( 


1.0 

0.8 
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0.4-· 

0.2 

. fig 4.8 




BENDING MOMENT AND LAYER POSITION 
IN BENDING NON STRAIN HARDENING 

2-1 (50-50) BIMETAL 

0.3 

0 0.5 1.0 1.5 2.0 IC 
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fig 4.9 
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STRAIN PROCESS IN BENDING 
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fig 4.10 
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STRESS DISTRIBUTION IN BENDING 
NON STRAINHARDENING 
2-1 (S0-50) BIMETAL 

0 

-I. 

discontinuity of aq, 
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·i . I· .
!jl rn(K-0.1) · 
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fig 4.11 




RELATIVE SHEET THICKNESS AND NEUTRAL LAYER 
POSITION IN BENDING NON STRAIN HARDENING 

2-1 AND 1-2 BIMETALS 
strong laminat~ strong laminatfl 

l2 

11 

Q8 

Q6 

An 

Q4 
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1.5 ----...... 
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BENDING MOMENT FOR NON STRAIN HARDENING 
2-1 . AND 1-2 BIMETALS 

'%2to 
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BENDING MOMENT FOR 
NON STRA/l\fi-IARDENING 
2-1 AND 1-2 BIMETALS 

effective yield stress~ 
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fig 4.14 



RAT/0 OF BENDING MOMENT TO SQ...UAR£ OF ORIGINAL 

SHEET THICKNESS FOR NON STRAIN HARDENING 

2-1 AND - 1-2 BIMETALS 
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RATIO OF BENDING MOMENT TO SQUARE OF CURRENT 

SHEET THICKNESS FOR NON STRAIN HARDENING 
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BENDING OF A STRAIN HARDENING MONOMETAL 
INFLUENCE OF PRESTRAIN ON NEUTRAL LAYER 

, POSITION AND R£LA TIVE SHEET THICKNESS 
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BENDING OF A STRAIN HARDENING MONOMETAL 
INFLUENCE OF PRESTRAIN ON NEUTRAL LAYER 
POSITION AND RELATIVE SHEET THICKNESS 
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BENDING OF A STRAIN HARDENING MONOMETAL 
INFLUENCE OF PRESTRAIN ON BENDING MOMENT 
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BAUSCHINGER CURVES FOR BRASS 
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TRUE STRESS AS A FUNCTION OF EFFECTIVE 
STRAIN FOR BRASS .'vv'ITH VARIOUS PRE-STRAINS 
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OF 5 TRAIN HARDENING MONOMETAL WITH 
CRAFOORD BAUSCHINGER EFFECT 
INFLUENCE OF PRESTRAIN ON NEUTRAL LAYER 
POSITION AND RELATIVE SHEET THICKNESS 

stress strain curve .,An 
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fig 5.15 



BENDING OF STRAINHARDENING MONOMETAL 
WITH CRAFOORD BAUSCHINGER EFFECT 
INFLUENCE OF PRESTRAIN ON BENDING MOMENT 
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fig 5.16 



BENDING OF STRAIN HARDENING MONOMETAL WITH 

·	CRAFOORD BAUSCHINGER EFFECT 
INFLUENCE OF PRESTRAIN ON NEUTRAL LAYER 
POSITION AND RELATIVE SHEET THICKNESS 

An 11
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BENDING OF STRAIN SOFTEN/ NG 
MONOMETAL 
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STRESS STRAIN CURVES 
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INFLUENCE OF SHEET ORIENTATION ON 
BEAlDING OF s·rRA/N HARDENING 
BIMETAL 
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STRAIN PROCESS IN BENDING 

STRAINHARDENING BIMETAL 
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BEND TEST 'vi/TH A FIXED AND 
MOVABLE .JA'vl 
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fig 6.1 
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BENDING OF MATERIAL D 
(AL STRAIN HARDENING) 
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NEUTRAL LAYER POSITION AND RELATIVE SHEET 
THICKNESS IN BENDING MATER.IAL D 
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RELATIVE LAMINATE THICKNESSES IN BENDING 
MATERIAL D ( AL NON STRAIN HARDENING) 

--- stain l£lss st£l£ll autsid~ 
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BENDING EXPERIMENTS ON 


MATERIAL D 
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GEOMETRY OF DEEP DRA 'v/ING TEST 

Swift 50 mm 
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INFLUENCE OF SHEET ORIENTATION ON THE RELATIVE 
THICKNESS OF DEEP DRAWN CUPS OF MATERIAL ·E 
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INFLUENCE OF SHEET ORIENTATION ON THE PUNCH 
LOAD 'WHEN DEEP DRAWING CUPS OF MATERIAL D 

BLANK DIAMETER 3.5 IN 
""' 

pu.nc!J load (mV) 

stainless steel on Inside 
of cup 
stainless steel on outside 
of cup 

/ 

5 

4 

3 

2 

I 

0 ~----~------------------~~--------__.
puncfl travel 

fig 6.11 
I 



INFLUENCE OF SHEET ORIENTATION ON THE RELATIVE 
THICKNESS OF DEEP DRAWI'J CUPS OF MATERIAL D 

BLANK DIAMETER .2.5 IN 
j 

st'alnl~ss st('~l on outsld~ stainl~ss st~~~ on insld~ 

of cup of cup 

~ n 
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0 fig 6./2
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INFLUENCE OF SHEET ORIENTATION ON THE RELATIVE 
THICKNESS OF DEEP DRA\r/N CUPS OF MATERIAL DD 

BLANK DIAMETER 2.5 IN 
J 
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of cup of cup 

11 1} 
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fig 6./3Q9 0.9 




INFLUENCE OF SHEET. ORIENTATION ON THE 
RELATIVE THICKNESS OF DEEP DRA'WN 
CUPS OF MATERIAL DD 

stainl~ss st~E'I on 	 7] stainless ste ~I onTJ 	
0 

outsid~. of cup 0 	 inside of cup
/.I 	 1.1 

lO 
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b IJ~ 
\ I 	 fig 6.14 
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REL_ATIVE LAMINATE THICKNESSES. IN DEEP DRAWN 
CUPS OF MATERIAL DD WITH STAINLESS STEEL 
ON OUTSIDE OF CUPS 

relative stainless steel 1JAL reiativle aturrinum 1] relativE' Ia minated 
laminate tf1ickness 1 lamcndte tf11ckness sneet tf1ickness 
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0 0// 
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RELATIVE LAMINATE THICKNESSES IN DEEP DRA'viN 
CUPS OF MATERIAL DD WITH STAINLESS STEEL 
~ON INSIDE OF C_UPS 
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ORIGINAL NEUTRAL LAYER 

POSITION A~ FOR BENDING 

OF A BIMETAL 
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,.... --------------- 1\. _ -- a--------- H U 

C INPUT DATA • A 9 
C TO THE ORIGINAL THICKNESS OF THE STRIP • A 10 
C OK THE STEPSIZE FOR THE NUMERICAL INTEGRATION OF THE A 11 
C RELATIVE A 12 
C SHEET THICKNESS DIFFERENTIAL EQUATION. A 13 
C A YIELD STRENGTH OF THE INSIDE LAMINATE A 14 
C C YIELD STRENGTH OF THE OUTSIDE LAMINATE A 15 
G MU VOLUM: FRACTION OF INSIDE LAMINATE A 1& 
C A 17 
C ETA RELATIVE SHEET THICKNESS = RATIO OF CURRENT SHEET A 18 
C THICKNES A 19 
C TO ORIGINAL SHEET THICKNESS A 20 
C RHO RATIO OF CURRENT NEUTRAL LAYER RADIUS TO CURRENT A 21 
C UNELONGATED LAYER RADIUS A 22 
C LN CURRENT VALUE OF LAMBDA OF THE NEUTRAL LAYER A 23 
f" In f"1JOOC'"I<IT IIIII IIC'" nc- I 1\YOf'll\ nc- TUC' llt..IC'"I f'IUI'"'IITC'"f'l I 1\VC'"O II ?1,
V LV U V ,t,LOI 'f f • M._U L.:.-------o-1 - -\,;,-f"\f _l_u-o-~T ---- - --- - · - l,--u.,..---.-"L,.;-u----\,;a-,..,--r\,;.; -J,--­.-T H.~ v l"'f\,;\i. -V ~~ 

C RM THE CURRENT AVERAGE RADIUS OF THE BEND STRIP A 25 
C RI THE CURRENT INSIDE RADIUS A 26 
C RY THE CURRENT OUTS I DE RADIUS A 27 
C RB RADIUS OF LA~INATE BOUNDARY A 28 
C RN CURRENT NEUTRAL LAYER RADIUS A 29 
C RO CURRENT UNELONGATED LAYER RADIUS A 30 
C XMOM CURRENT BENDING MOMENT DIVIDED BY THE SQUARE OF THE A 31 
f" n 0 T I"' T M 1\ I <:' U C' 1:' T T U T f" VI< I C' C' <:' 1\ "l ?vr' .L u- ~ lTM"L--....,-, rL_\.._1 t t t ..1. v "'""- V..J -- ,., -- v c_ 

C YMOM CU~RNT BENDING MOMENT DIVIDED BY THE SQUARE OF THE A 33 
C CURRENT SHEET THICKNESS A 34 
C KAPPAT VALUE OF RELATIVE CURVATURE WHEN NEUTRAL LAYER COINCIDES A 35 
C WITH LAMINATE BOUNDARY A 36 
C A 37 

REAL KAPPA K1,K2,K3,KAPPAT,LO,LN,MU A 38 
DIMENSION TA<20) TBC20>, XM(20), YM<20) A 39 
f'ITUC'"I<IC" Tl'\~1 C"n.f l?.f t C"O? l?.f \ C"O r::: l ?.f 11 <:'0-4 nl ?-4 \ II J, n 
U-L- nt:.- f'tJ -~- UI'f ..J'"'J.. _\ _ C-4- 1 y - ..Jf\'- ''-.L.I J J"- -.,., -, ~.L - ., J ..J"..LU'- L..l..l -- - I"'\ .,.\I
DIMENSION ST1C21) ST2C21), ST5<21> ST10<21) A 41 
COMMON /STATE/ KAPPA,ETA,RHO,LO,LN,RI,RY,RN,RO,RM,RB,ICASE A 42 
COMMON /SSCURV/ ALFA GAMMA MU A 43
DETA<KAPPA,ETA~ALFA~~AMMA,MU,ICASE>=-.5•ETA/KAPPA•C<1.-.25•KAPPA•• A 44 
12)/ETARH02CKAPPA,AL~A GAMMA,MU ICASE)-1.> A 45 

RHOOiKAPPA,ETA,ALFA,GlMMA,MU,IfASEl=SQRT<ETARH02(KAPPA,ALFA,GAMMA, A 46 
i~~~fCe~E~~~~TA nnr:::1 ~ ~r 

oAtA A~c~qu11:;2:;:5ot A 49 
ALFA=2.1SQRTC:3.)•A · A 50 
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,.." .. -"""·~- .,.."_.,.., __ ... ~~~~'-"' _ 1\ r:'...t 
GAII I IA C:e/;)G(KI \0el 'CI H 7.L

C A 52 
C STA RTING POI NT FOR THE INTEGRATION IS THE UNBEND CONDITION • A 53 
C A 54 

KAPPA=O. A 55 
ETA=1. A 56 
RH0=1. A 57 

C A 58 
C CAlCULATION OF TtiE ORIGINAL NEUTRAL LAYER • A 59 
C A 60 

TEST=A•MU-C•C1.-MU, A 61 
IF CTESn 1,2,3 A 62 

1 LN=.5+MU/2.-A~Mu•.5/C A 63
GO TO 4 A 64 

2 LN=MU A 65 
GO TO 4 A 66 

3 LN=~U/2, tG * (1, t1lJ >* • 5/ A A 67
4 LO=LN A 68 

IF CMU.LT.LN> ICASE=1 A 69 
IF (MU • GE• L 0 > I CA SE=3 A 7 0 
WRITE C6,20) A 71 
WRITE C6,21) A,C.tMU,LO,ICASE A 72 
GO TO C5,6,6) I!.iASE A 73 

5 ~~ee~T~TR~~~c~~~~l~AMMA,MU> ~ ;~ 
t11\LtL \UJt:OC: .I I'RffM1 M ,_,

6 WRITE (6 1 23) A 76 
WRITE ·f6,24) KAPPA,ETA,RHO,ICASE,LO,LN A 77 
N=2./0K-1. A 78 

C A 79 
C INTEGRATION USING RUNGE-KUTTA METHOD • A 80 
C STEPSIZE FOR KAPPA IS OK • A 81 
C A 82 

n,., .,. ~ ,._.,. t..l ______ __ __ ________ A______ __o~

!F ·a. [a:t)' Go To 1 ----- ii 84 
OE1=DK•OETACKAPPA,ETA,ALFA,GAMMA,MU,ICASE> A 85 
GO TO 8 A 86 

7 0£1=0. A 87 
8 K1=KAPPA+OK/2e A 88 

G0 T0 C9 1 0 1 0 ) I CASE A 89 
9 IF (Ki.Gf. KAPPAh ICASE=2 A 90 
19 E1=ETAtDE1/2e A 91

OE2=0K•OETA(K1,E1,ALFA,GAMMA,MU,ICASE> A 92 
K2=K1 A 93 
E2=ETA+OE2/2. A 94 
DE3=DK•DETACK2, E2,ALFA,GAMMA,MU,ICASE1 A 95
K3=KAPPA+DK A 96 
GO TO <11, 12 12> !CASE A 97 

11 IF (K3.GT. KAPPAT~ ICASE=2 A 98 
~~ ~~- ~ TA~n~~ A aa 

DE4=0K•DETACK3,E3,ALFA,GAMMA,MU,ICASE) A 100 

http:CMU.LT.LN
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•C A 102 
C NEW VALUES FOR KAPPA,ETA,RHO • A 103 
C A 104 

KAPPA=KAPPA+DK A 105 
ETA=ETA•DE A 106 
RHO=RHOOCKAPPA,ETA,ALFA,GAMMA,MU,ICASE> A 107 

C A 108 
f' t"l\.1 f"''lolll 1\TTnt..t n.r:- r~nur-TnTI"J\1 C"TTIIJ\TTnt..t c-1"\t") TU~ l"llnn~t..lT \11\.1 llr""" nr- 1\ .... nn 
V ~-V\Tl.:~---rulv-VJ U~tLt i,LUML lJLtV~I't tOt' 1ttL: VVI'f'L:I,I VI"\LVL: Ut M ""'UJ 

C KAPPA A 110 
C A 111 

LO=CETA·H2-C1.-KAPPA•.5>••2)/t2.•KAPPA) A 112 
GO TO U4, 13 14> !CASE A 113 

13 IF CLO.LE.MUr IC!SE=3 A 114 
14 LN=<RH0••2•ETA••2-<1.-KAPPA•.5>••2)/{2.•KAPPA) A 115 

RI=<1.-KAPPA•.5>•ETA•TO/KAPPA A 116 
OV-t~ LVIIr1011¥ C\¥r='TII¥Tr'\1VIInnll II .... "7 
f'-r--"""'-.L----.-~---r~ e Jl L: f 1"\ I VI''"' --,--...-------------------------~--r-r-r 

RN=RHO•ETA••2•TO/KAPPA A 118 
RM=ETA•TO/KAPPA A 119 
RO=ETA••2•TO/KAPPA A 120 
RB=ETA•TO/KAPPA•SQRT<C1.-KAPPA•.5>••2+2.•MU•KAPPA> A 121 
RATIO= <RB-RI> /(RV-RI> A 122 
CALL MOM2 ( XMOM> A 12 3 
XMOM=XMOM/(T0••2) A 124 
YMOM=XMOMI<ETA 4 *2) A 125 
XI=! A 126 
X=XI/5. A 127 
Y=XI/10. A 128 
JX=X A 129 
JY=Y A 130 
J=JX•5 A 131 
JJ=JY•10 A 132 
TC fT Ct"' I\ l.lnTTC 'It:. .,~, II f' Ull II .. ,_, 
~-~~-~-1;.:\JCIVI ''''~ ~ L: 'Ufc:;:LJ M,U7 1 1V H ;LVV

IF CI.EQ.J) WRITE (6 23> . A 134 
WRITE <6,24) KAPPA,EtA,RHO,ICASE,LO,LN,RI,RY,RN,RO,RB,RATIO A 135 
WRITE (6,25) XMOM,YMOM A 136 

C A 137 
C WE DETERMINE THE STRESSDISTRIBUTION WHEN KAPPA IS .1 OR .2 OR .s A 138 
C OR 1. A 139 
C A 140 

TC ffVI\0011 f:T noaa\ lltdn fl/11001\ IT o4nn.t\~ f"l\11 C'TOCC'C'., IC'O.f C'To4\ II o41.o4 
rl ---~- n~-l"'{T~·CIJWe V JJ:Jient'fUe ,,,,.,,I ,., ..... lWW;a;UQ':L'II UM ...... ....,.I,L;OUOJL \UI, .... ,OIZI H :L"*T:oL 

IF (( K A P P A • G T • • 19 9 9 > • A N D .t K A P P A • L T • • 2 0 0 1)) C A L L ST RES S 2 ( S R 2 , S T 2) A 14 2 
IF CCKAPPA.GT •• 4999>.AND. CKAPPA.LT •• 5001)) CALL STRESS2 CSR5,ST5) A 143 
IF ((KAPPA.GT •• 9999>.AND.<KAPPA.LT.1.0001)) CALL STRESS2 <SR10,ST1 A 144 

10) A 145 
C A 146 
C WE PLOT THE RELATIVE POSITIONS OF ORIGINALLY EQUIDISTANT LAYERS A 147 
C WHEN KAPPA IS A MULTIPLE OF .1 • A 148 
f"__ ______________ __ __ ___ _ II o4 I. n 
v 

IF <I.EQ.JJ) GO TO 15 A 150 

http:KAPPA.GT
http:CKAPPA.LT
http:CCKAPPA.GT


A 152 
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15 TACJY>=RB-RI 
TB(JY>=RY-RB A 153
XM(JY>=XMOM A 154 
YM{JY>=YMOM A 155 
PNUL=O. A 156 
Pt=RM•SQRT((1.-KAPPA•.s,••2+2.•.t•KAPPA)-RI A 157 
P2=RM•SQRT<<t.-KAPPA•.s>••2+2.•.2•KAPPA>-RI A 158 
P3-RM~SQRT<<1.-KAPPA*,5) 44 2t2,•,34 KAPPA>-RI A 159 
P4=RM•SQRT<f1.-KAPPA•.s>••2+2.•.4•KAPPA>-RI A 160 
P5=RH•SQRTCC1.-KAPPA•.5>••2+2.•.s•KAPPA>-RI A 161 
P6=RM•SQRTC<1.-KAPPA•.Sl••2+2.•.6•KAPPAl-RI A 162 
P7=RM•SQRT<<t.-KAPPA•.5J••2+2.•.7•KAPPA>-RI A 163 
P8=RM•SQRT<f1.-KAPPA•.s>••2+2.•.a•KAPPA>-RI A 164 
P9=RM•SQRT<<1.-KAPPA•.s>••2+2.•.9•KAPPA)-RI A 165 
P10=ETA•TO A 166 
01"1-01"1-0T ______ _ A _ -1~"7T---..;, , ,V 1" -----· --- ----- -- -- ·---- - -- ,.., .. '-'f 

PN=RN-RI A 168 
PB=RB- RI A 16 9
CALL PLOTPT <KAPPA,PNUL,10) A 170 
CALL PLOTPT <KAPPA Pi 11> A 171
CAlL P L 0 T P T CKAPPA : P 2: 12) A 17 2 
CALL PLOTPT (KAPPA,P3,13) A 173 
CALL PLOTPT CKAPPA,P4,14) A 174 
f' Ill I 0 I I"\ T rt T IV II DO II 01:: -4 1::\ A -1 7 J::
V M-..- ~.-- ~v- -----r-------yo'---ron l -_,-, --. - , - --- - .. T _.,- --1 --- TT -,-~-,- , 

CALL P L 0 T P T ( I< APP A P 6 16l A 17 6 
CALL PLOTPT <KAPPA!P7:17) A 177 
CALL PLOTPT CKAPPA 7 P8,18) A 178 
CALL PLOTPT CKAPPA,P9 19) A 179 
CALL PLOTPT CI<APPA,Pt6.t2 0} A 180
CALL PLOTPT CKAPPA,PO,..s5> A 181 
CALL P L OTP T tKAPPA, PN, 34) A 18 2 
f'/\11 01 1"\TOT IV/\001\ OD ??\ II -IA.7 

16 CONTINUE A 184
CALL OUTPLT A 185 
KAPPA=O. A 186 
ETAA=1. A 187 
ETAB=1. A 188 
DK=.1 A 189
TAO=MU•TO A 190 
TB0-(1, MU)*TO A 191 
CALL PLOTPT <KAPPA,TA0,2U A 192 
CALL PLOTPT (KAPPA,TB0,22) A 193 
WRITE {6,27> A 194 
WRITE (6 1 26> KAPPA,TAO,TBO,ETAA, ETAB A 195 
00 17 1=1 19 A 196
KAPPA=KAPPA+ OK A 197 
ETAA=TA<I>ITAO A 198 
C'TI\0-TOfT\ .ITDn A -100 
L. ' ,.., -u- ' u ' ..L. 1 , • '..J 1J f""""' • ., .,

WRITE (6,26) I<APPA,TA(!),TB(!) ,ETAA,ETAB A 20 0 
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81EE ~~8f~f t~~~~l:lAffi:~~J I ~8~ 
El~~ ~~8f~f ~~~C~I:~ftft:~~~ t ~8~ 
88h~I~b~TPT <KAPPA,0.,10) ~ ~8~17 
CALL OUTPLT A 207 

C A 208 
r"' n1 nT T U~ ~ T~ ~C"'C" n TC'T~ -T niJTTn.._J T .t..l TU ~ r') ~l.tn r"'U~~T 1\ ~n n v ·--- I I... VI 1· rlC - J -- t - f'. C _J _J _U _..l.~ J " "..I.OVJ --:.L- \J J "'f --- ~ 1...- Jn~ Ot:..l"fU --- ;.:, -TT.::::-~·.-------- --------...-.,...,..-...,. 

C STRESSES FOR KAPPA=.1 ARE PLOTTED WITH THE SYMBOL 1 • A 210 
C STRESSES FOR KAPPA=.2 ARE PLOTTED WITH THE SYMBOL 2 • A 211 
C STRESSES FOR KAPPA= • 5 ARE PLOT TEO WITH THE SYMBOL 5 • A 212 
C STRESSES FOR KAPPA=1. ARE PLOTTED WITH THE SYMBOL $ • A 213 
C A 214 

DO 18 I=1,21 A 215 
X=I-1 A 216 
V-VI?n A ?~7"-,....,s...uw - --------------­

CALL PLOTPT CX,SR1ti>,11> A 218 
CALL P l 0 T P T CX , ST 1 t I> , 11> A 21 9 
CALL PLOTPT <X,SR2<I>,12> A 220 
CALL P L 0 T P T (X , ST 2 CIl , 12) A 2 21 
CALL PLOTPT CX,SR5ti>,15) A 222 
CALL P L 0 T P T CX , ST 5 ( I> 1 15) A 2 2 3 
CALL PLOTPT CX,SR10 C!J ,20) A 224 
I' A 1 I 0 I n T n T I V C"T ~ n I T \ ? n '\ A ? ? C::
VH ~ L--- --.- -~ I l 7\ ';;:,---r-.,.--g----"'\"---~--r----,~---ur-:7--------------------------,...---.:~ 

18 CONTINUE 
. 

A 226 
CALL OUTPL T A 227 

C A 228 
C P L 0 T T HE B EN 0 I N G M 0 MEN T • A 2 2 9 
C XM=MOMENT PER UNIT WIDTH I SQUARE OF ORIGINAL SHEET THICKNESS • A 230 
C XH IS PLOTTED WITH THE SYMBOL M • A 231 
C YH = MOMENT PER UNIT WITH I SQUARE OF CURRENT SHEET THICKNESS • A 232 
I' VM TC' 01 nT T~n !.ITT U TUr:' C'VUOnl 1.1 A ?'!P '7 
V I l l J....J r\,.Vl fL-U · n:.L - 1 11 111\-. .JllfUV\.____ n -- . -­

c A 234 
KAPPA=O. A 235 
DK=.1 A 236 
DO 19 !=1 19 A 237
KAPPA=KAP~AtDK A 238 
CALL PLOTPT CKAPPA,XMCI>,33) A 239 
CALL P L 0 T P T < K AP P A., YMCI > , 4 3 > A 2 4 0 

.. n f"nl.tTTutt~ I\ ,.,i.... 

.--:J---v----,;;;r-,..,- ~ -~T...--.::T.-------------------------------------..--...,.......-y-


CALL PLOTPT C0.,0.,10) A 242 
CALL PLOTPT C2.,0.y10) A 243 
CALL OUTPL T A 244 
STOP A 245 

C A 246 
20 FOR"''AT C1H1,"'BINSH BINSH BINSH BINSH BINSH •,1 A 247 

1 > A 24 8 
21 FOR~1AT (111 ,•AE•yE13.5y/y1H ,•c-•,E13.5,1,1H ,•MU••,E13.5,/y111 ,•L A 2'+9 

10=•,E13.5,1,1H ,•ICASE=•,I2,/) A 250 
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23 FOR~AT <1H :~KAPPA~:8~~iETA,,1ox,•RH0• 1 8X,•ICASE•,• L0•,7x,•LN•,9x A 252 
1,•RI•T9X,•RY•,9X, •RN•, YX,•RO•, 9X,•RB•,YX,•RATIO•,I> A 253 

24 FORMA C1H ,3F13.9,I2,8F11.7,1) A 254 
25 FOR'1AT <1H ,•XMOM=•,F13.7,5X,•YMOM=•,F13.7) A 255 
26 FORMAT C1H ,5E11.3) A 256 
27 FOR'1 AT (1H , •l<APP A•, 6X, •T A •, 9X, • TB •, 9 X, • ET AA •, 7X, •ET A B•, I,) A 257 

END A 258­

FUNCTION ETARH02 CKAPPA,ALFA,GAMMA,MU,ICASE> B 1 
REAL KAPPA,MU B 2 

c B 3 
C FUNCTION ETARH02 CALCULATES CETA•RH0)••2 FOR THE BENDING OF A B 4 
C BIMETAL B 5 
C STRIP COMPOSED OF NONS TRA INHA RDENI NG LAMINAE • B 6 
f" ~Tllnun., TC" Tl"'' or:- IIC"~n t.ITTU TU~ MI\Tt.l 00/'\f'D/\M DTII.IC'U D 7 

t.J ""'tJV C: I M t"' IV~ L OJ I U UL: V r1 ~ t t~r1,;,.-,--~-,--------, ,,----o--o-f'\,--pi\JT--- ~.,~;.T-,:-,.;rr~--------------.::T-----, 

c B 8 
GO TO <1,2,2>, !CASE B 9 

1 X=ALOGC1.+.5•KAPPA)tALFA/GAMMA•ALOGC1.-.5•KAPPA>+<1.-ALFA/GAHMA>•. B 10 
15•ALOGCC1.-.5•KAPPA>••2+2.•MU•KAPPA) B 11 

GO TO 3 B 12
2 X=GAMMA/ALFA•ALOG<1.+.5•KAPPA> +ALOGC1.-.5•KAPPA>+<1.-GAMMA/ALFA>•. B 13 

15•ALOGCC1.-.5•KAPPA>••2+2.•MU•KAPPA> B 14 
r-n Tn 7 D "'k 

3 ETARH02=EXP(X) 8 16 
RETURN B 17 
END B 18­

FUNCTION TRANS CALFA,GAMMA,MU~ C 1 
REAL MU C 2 
FCX)-(1, X*,5l**{2,*ALFA/tALFAtGAMHA))*(1,+X*,5)**(2,*GAMMA/(ALFA+ C 3 

1 GAMMA> ) - U.- x• • 5) •• 2-2. •HU•X . C 4
DCX>=-ALFA/CALFA+GAMMA>•<t.-x•.5>••CCALFA-GAMMA)/CALFA+GAMMA>>•C1. C 5 

1+X•.5>••<2.•GAMMA/CALFA+GAMMA) )tGAMHA/CALFA+GAMMA>•Ct.+.5•X>••<CGA C 6 
2MMA-ALFAli<ALFA+GAHMA>>•C1.-X•.5>••<2.•ALFA/CALFA+GAMMA))+(1.-X•.5 C 7 
3>-2.•MU C 8 c c 9 

C FUNCTION TRANS DETERMINES THE VALUE OF THE RELATIVE C 10 
f" f"llOIJliTIIO~ 1:'1"\l'll I.IUTI"'U TUC UCILTI'li .IIL_ I JI.VcO .. f"/'\TII.II"'Tnc _~ __ WT .T . U TUC__ f" -t"' 
V --- "UVf'\.:V -~-· -V~L.--1 - ---u - >\.. -- - - nf l .L VII t 111- 1'"41-V I ' '"'- 1...,., I 1-1'- VV.LI,V.LU\- 'oJ n.L t If t 11'- V .L .L 

C LAMINATE BOUNDARY LAYER. C 12
C TRANS IS USED BY BINSH C 13 
c c 14 

X=1.5 C 15
00 1 !=1 50 c 16 
X1=X-F<XftDCX) C 17 
IF CX1.LT.O.l X1=1. , C 18 
IF <Xi,GE, 2. l Xi-1, 9999 C 19 
IF <X-Xi.LT •• 000001> GO TO 2 C 20 



--

----------------------
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-,..-~ 

CONTINUE 
TRANS = X1 
RETURN 
END 
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I"' _,.. .. 

~ -~--- ~--------- --- -- v 1:. .J. 

SUB~OU TINE S IGMAR 2 <R, SR> 
n~A• vl\.nol\ t n ·~• Ull 

COMMON ..lSTATE} I.;KA PPA-, ETA~RHO' L o, LN 'RI 'RY ,RN, RO' RM, RB' !CASE 
COMMON /SSCU~V/ ALFA,GAMMA,MU 

SUBROUTINE SIGMAR2 CALCULATES THE RADIAL STRESS FOR THE BENDING OF 
A BIMETAL STRIP COMPOSED OF NONSTRAINHARDENING LAMINAE • 
SIGMAR2 IS TO BE USED WITH THE MAIN PROGRAM BI NSH • 

T7n~,.,.- 7 ----·- -- -------- - --- -- ---- ----- ---- -- - -- ----------- ­~c-crT~ 

GO TO C1,2,2> !CASE 

IF <R.GE.RNl fzONE=1 

IF <R• LE• RB> I ZON E=2 

GO TO C3,4 5) !ZONE 

IF <R.GE.RB> !zoNE=1 

IF <R.LE.RN> IZONE=2 

GO TO <3 4, 6 > , IZ ONE 

C'D-riH.Ct.AIIllllf'\f':IOIOV'\ 
VP•,-QMi fi - IM- -~ - \-VV, t""\. 7"-11 --

GO TO 7 

SR=-ALFA•ALOGCR/RI> 

GO TO 7 

SR=-ALFA•ALOG<RB/RI>-GAMMA•ALOGtRIRB> 

GO TO 7 

SR=ALF A•AL OG <RIRB > +GAMMA•ALOG< RB/RY> 

RETURN 


SUBROUTINE SIGMAT2 <R,SR,ST> 
REAL KAPPA LO,LN MU 

C 22 

C 23 

C 24 

C 25­

D 1 

n ~ 

-15 - -3 

D 4 

D 5 

0 6 

D 7 

D 8 

D 9 

n -t n 

v ----- .~.,- v 

D 19 

D 20 

D 21 

D 22 

D 23 

D 24 

D 25 


E 1 

E 2 


-- ------~------ .-v 

D 11 

D 12 

D 1 3 

D 14 

0 15 

D 16 

D 17 

n -Ill 

COMMON /STATE/ K!PPA,ETA,RHO,LO,LN,RI,RY,RN,RO,RM,RB,ICASE E 3 

COMMON /SSCURV/ ALFA,GAMMA,MU E 4 


E 5 

C'IIOOf'\IITTt.ll"" C'Tr'UIIT., 1"111 1"111 1\T.,-C' TUC' Tllt.lrC't.ITTI\1 <:'TO.,-<:'<:' C'f'\D TUI:' C' C. 

..----~0 V t :L I' C 'J IV I I M I (;: V "" .. V VLO M I L0 OJ I t I L I Ml ~ V L. 1 'f f .0L ""lOa u--T"~-...,-----~T-~-.,.-rn-------.------= 


C BENDING OF 
C A BIMETAL STRIP COM POSED OF NONSTRAINHAROENING LAMINAE • 
C SIGMAT2 IS TO BE USED WITH THE MAIN PROGRAM BINSH • 
C 

CALL SIGMAR2 CR,SR> 

IZONE=3 


.. ~~ 1~ ~~'~l.~>t-7A8~~~
..1.. :.1.1 -- -, - f\..-- \7 -~,;;.. --. - '"'l't I - ~-- L.Vl.,- ~--- ,L 

IF <R. LE.RB> IZONE=2 

E 7 

E 8 

E 9 

E 10 

E 11 

E 12 


~ ~~ 
E 15 


http:C'IIOOf'\IITTt.ll


1 
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,..._ .. _ ,,., ' ,..,. 1"""7.1"\.tl.t­

2 rF cR.GE!Re}'fz6NE~i
IF <R.LE.RN) IZONE=2
GO TO <3,4t6>, !ZONE 

3 ST=SR+GAMMA 
GO TO 7 

4 ST=SR-ALFA 
GO TO 7 

5 ST=SR- GAH ~1 A
GO TO 7 

6 ST=SR~ALFA 
7 RETURN 

END 


SUBROUTINE STRESS2 <SRN,STN>

REAL KAPPA LO LN HU
DIM ENS ION SRN l21J STN ( 21 > 
COMMON /STAT E/ KA~PA,ETA,RHO,LO,LN,RI,RY,RN,RO,RH,RB,ICASE
COMMON ISSCURV/ ALFA,GAMMA,MU

C 
C SUBROUTINE STRESS2 CALCULATES THE STRESSES FOR THE BENDING 
C BIMETAL 
C STRIP COMPOS ED OF 
f' c- ·TOI"'C"C""'> TC" Tn 01"' 
U ""''I'L<JJL: J:U IV U L 

C 
OR= <RY-RI> 12 0. 

NONSTRAINHARDENING 
IIC"r:'"n t.ITTU TUr:'" UIITJ.I 
VOJCU n~--Jtl--- ,- -lfl,.;.--f - :T J""\".L_ l, --

R=RI 
DO 1 I=1,21
CAtL SIGMAT2 
R=R+DR 
CONTINUE 
OI"'TIIOI\1 

END 

<R,SRN<D,STN<I>l 

LAMINAE 
OOnt:OII.t.t 
rt,VVI'-Mft 

• 

OT_I.tC'U ______________________r__ __.t__ft 
U.Ll,-Jtl. I ..1.\1 

F 11 
F 12 
F 13 
F 14 
F 15 
F 16 
F 17 

___________________________C'___<!___Il' 

SUBROUTINE MOM2 <XMOMJ
REAL KAPPA LO,LN MU 
COMMON /STATE/ KAPPA,ETA,RHO,LO,LN,RI,RY,RN,RO,RM,RB,ICASE 

,... 
COMMON /SSCURV/ ALFA,GAMMA,MU 

OF A 


,.. .Ill.,_

E 17 

E 18
E 19 
E 20 
E 21 
E 22 
E 23 
E 24
E 25 
E 26 
E 27 
E 28­

F 1 

F 2

F 3 

F 4 

F 5 

F 6 
F 7 
F 8 
F 9 

•vF 19­

G 1
G 2 
G 3 
G 4 
..: r-----.;;;;, ------_, 

C SUBROUTINE MOH2 CALCULATES THE BENDING MOMENT PER UNIT WIDTH FOR A G 6 
C BIMETAL STRIP CO~POSED OF NONSTRAINHARDENING LAMINAE • G 7 
C MOM2 IS TO BE USED WITH THE MAIN PROGRAM BINSH • G 8 
C G 9 

GO TO C1, 2, 2) , IC AS E G 10 
1 XMOM=GAMMAI4.•C RY"'"'2+RB"'"'2)+ALFA/4.•<RI442-RB4 "'2>-ALFA/2. 4 CRN"'"'2) 4 G 11 

1 A L 0 G ( R B I R I >-GAMMA I 2 • • ( R N"' • 2 ) "' ( 1 • +A L0 G ( R N /R Y > +A LOG t R N I RB}) G 1 2 
rn Tn 7 r:. -t ~ 

2 xMO M=GAMMAI4.•<RY"'"'2-Rs••2> +ALFAI4.•tRr••2+RB"' .. 2>-GAMMAt2.•-cR-N••2)-- G--14 
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1 PROGRAM TRINSH AND SUBROUTINES PAGE 

PROGRAM TRINSHtiNPUT,OUTPUT,PUNCH,TAPE5=INPUT,TAPE6=0UTPUT,TAPE7=P A 1
1UNCH) A 2 

INTEGER PROGRAM A 3 
REAL KAPPA~KAPPA1,KAPPA2,KAPPA3,LN,LO,LNNEW,MU,LETA A 4
DIMENSION P{3) A 5 
DIMENSION BEP$(4) A 6 
R!tl~~~!~N ~!~tt.!.~~>,T!!~~~~' LETA{3) ~ !
oiMENsioNsR1'c21r:-,-sR2<21->;'sRs121>, sR1o<2t> ------ ----------- A9 
DIMENSION ST1(21>, ST2(21), ST5(21>, ST10{21> A 10 
DIMENSION XM<20>, YMC20) A 11 
COMMON /SSCURV/ NLT ALFA<3> MU<3 2) TO A 12
COMMON /STATE/ KAPPA,ETA,RH~,LN,~I,RN,RY,RB(4) A 13 

C A 14 
C PROGRAM TRINSH ON 09/10/72 • A 15 
,... nonr-ni\M TOTt.IC"U nr-TI'"'OMTII.II'"'C" Tur- OI'"'U/\UTr'\110 Tll.l Ottor OIIITII.I C"TOIITI\.1 II .. L 
V II, VV I ,I"\11 l':;&;: l 'hJII U~ll: " IT~1~-~~-------u-1:,.1TM¥0LVVI,-~f'·--~ -VP\. -~-~---.;;-~..Jti,MiOOLn P'1 <LV 

C BENDING A 17 
C OF A LAMINATED STRIP COMPOSED OF NLT NONSTRAINHARDENING LAMINAE • A 18 
C A 19 
C TRI NSH USES OETA,FINOLN,RADSTR,RSTRES,SIGMAT8,STRESS8,MOM8. A 20 
C A 21
C INPUT DATA • A 22 
C NL T TH E NUMBER OF LAYERS IN THE STRIP • A 23 
,... 11./T\ TC" TUI:'" l:'l:'"ri:',...TTilr VTrl n C"TOI:'C"C" l:'"r'\0 TUr I II.VI:'"O T II -:JI,V ,....,.LI ----- .1.- -..1 --l,U.... -- L: -1 -- 1 1-V _l _.LY\,. I.L\... - \,;;U ..J - li "\.: L,.- ...;J<J ____ l VI" llll,.,. f.:MIL.'"' _____.I.__.---------.,..-- -.::-.... 

C WE COUNT THE LAYERS FROM THE INSIDE OF THE BEND • A 25 
C MUCI,1> IS THE INNERMOST LAMBDA VALUE FOR LAYER I • A 26 
C MUCI,2> IS THE OUTERMOST LAMBDA VALUE FOR LAYER I • A 27 
C TO IS THE STRIP THICKNESS • A 28 
C OK IS THE STEPSIZE FOR THE NUMERICAL INTEGRATION OF A 29 
C THE SHEET THICKNESS DIFFERENTIAL EQUATION • A 30 
C A 31 
,... C'T/1 OC'IIITTifl:" C"UI:"r _T _ TUTI"'V_I\.IC' _C"C"- 0/I.TTf\ f\C' _ /"IIOOI:"t..IT C"UCC'T II "'l? 
V l- 1"" l"'\, \_ 1-MIJ..YL- ...JJI(,...t,...l lll,.I.VI,I'f L..VV- ,,,... •• V VI VVf'I'L- 1 "41 'lt,,ll\..,1.-f --------.,..,--- vo;;

C THICKNES . A 33 
C TO ORIGINAL SHEET THICKNESS A 34 
C RHO RATIO OF CURRENT NEUTRAL LAYER RADIUS TO CURRENT A 35 
C UNELONGATEO LAYER RADIUS A 36 
C LN CU RRENT VALUE OF LAMBDA OF THE NEUTRAL LAYER A 37 
C LO CURRENT VALUE OF LAMBDA OF THE UNELONGATED LAYER A 38 
C RM TH E CURRENT AVERAGE RADIUS OF THE BEND STRIP A 39 
f' OT TU~ ,...1100~1\.IT T~IC"Tnr- OllnTIIC' II f,n 
1J 1\0L I I IL VV I' t '"""'""' ~11.....,~\JL ''"'00LV'<J H =tV

C RY TH E CURRENT OUTSIDE RADIUS A 41 
C RB(I) THE CURRENT RADIUS OF THE OUTSIDE SURFACE OF LAMINATE I A 42 
C <EVENTUALLY MINUS R!) A 43 
C RN CURFENT NEUTRAL LAYER RADIUS A 44 
C RO CU RRE NT UNELONGATED LAYER RADIUS A 45 
C LETA{!) CURRENT RELATIVE THICKNESS OF LAMINATE I f I.E. THE A 46 
C RATIO OF CURRENT LAMINATE THICKNESS TO ORIG NAL LAMINATE A 47 

______ro_ _ _ TU T f' VUl""C'C' II /, 0 
v --,..-.TT~CT...-.--;;::.-=--------------------------..-~..-u-------------

c XMOM CU ~RENT BENDING MOMENT DIVIDED BY THE SQUARE OF THE A 49 
C ORIGINAL SHEET THICKNESS A 50 

http:lll,.I.VI,I'fL..VV
http:TUTI"'V_I\.IC


2 PROGRAM TRINSH AND SUBROUTINES PAGE 

c c 
DATA 
DATA
DATA 
DATA 
MUC1,1>=0. 
n n T ~• a Tt.1ucr.:.t;2 ~ ~t:1u i- ,1> - --- --- - - - -----­

CURRENT SHEET THICKNESS 

PROGRAM/7HTRINSH I 
T0 D K I 1. , • 01 I
NLf,A<1>,A<2>pAC3)13,4.,1.,4.1
MUC2,1> ,MU<3,1)1.20,.60/ 

.. -.., r- _________ 
1 CONTINUE 

MU (NL T , 2) = 1. 
DO 2 I=1,NLT
LETA{I>=1.
TTOCI>=<MU<I,2>-HUCI,1>>•TO
ALFACI>=2./SQRT<3.>•AC!l 

C 
C STARTING POINT FOR INTEGRATION 
C 

KAPPA=O. 
ETA=1. 
RH0=1. 

C 

IS THE UNBEND CONDITION • 


A 52 
A 53 
A 54 
A 55
A 56 
A 57 
A 58 
1\ c:: nA 6 o 

A 61 

A 6 2 
A 63 
A 64 
A 65 
A 66 


A 68 

A 69 

A 70 

A 71 

A 7 2 

A 73 

A 74 


f' f'lll 1\TTf'\l.t f'\t= TUr= I 1\Vt=Of'/11 f'\CT("T"I/11 "It= liTO/\ I II 7C:
V - --- -- V-M-L.-VV~~-I'JT""-------c:TT·------.-I·TL:,.--------ui'~T'1'-~~~~I"\-.::"'"--r-'"-.o'"'"""T1L: -..----r-=....,..,i,,..--,.------------ ­
C A 76 

SIGMALC1>=0. A 77 
DO 3 I =1, NL T A 7 8 
J=It1 A 79 
SIGMAL <Jl=SIGMALC I> tALFA<I>• CMUCI, 2>-MU CI, 1) > A 80 

3 CONTINUE A 81 
TEST{1)=SIGMAL<NLT+1) A 62 
00 4 I=1 7 NLT A 83 
J=It1 A 84 
TEST<J>=TESTC1)-SIGMALCJ)•2. A 85 
IF CTEST<Jl .EQ.O. > GO TO 5 A 86 
W=TEST<J>•TEST<J-1) A 87 
IF <W.LT.O.> GO TO 6 A 88 

4 CONTINUE A 89 
5 LN=MUCJ,1) A 90 

f"f'. Tf'\ "'7 II n -4 
'CT~TV I -------------------- --------------------------......---::>-:r 

6 

7 
C 
C 
C 

LN=CTESTCJ-1l•MUCJ-1,2>-TEST<J>•MU<J-1,1))/(TESTtJ-1)-TESTtJ)) A 92 
GO TO 7 A 9 3 
LO=LN A 94 

A 95 
CALCULATION OF T~E INITIAL BENDING MOMENT • A 96 

A 97 
SIGN=-1. A 98 

XMOM=O. A 100 

http:MU<3,1)1.20,.60
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A t 
,2>.GT.LNl.AND.tM.EQ.0)) GO TO 8 	 A 102 

XMOM=ALFACK)I2.~SIGN~CMUCK,2)~~2-MUCK,1>~~2>+XMOM 	 A 103 
GO TO 9 	 A 104 

8 XMOM=ALFACK)I2.•SIGN•CLN••2-MU<K,1>••z>•XMOM 	 A 105 
SIGN=•1• 	 A 106 
M=1 	 A 107 
XMOM=ALFA(K)I~.•SIGN~CMUCK,2>••2-LN44 2l+XMOM A 10 8 

YMOM=X MOM
XM<1>=XMOM
YMC1)=YMOM
WRITE {6,24>
DO 10 I=1,NLT
J= O 

C WRITE<7,701>J 

1;--6-9
10 
11 

112 
113
114 
115 

6 

10 CONTINUE . A 118 
WRITE C6,26) TO,DK A 119 
WRITE C6,27) 	 A 120 
INDEX=1 	 A 121
WRITE <6,28) INDEX,NLT,KAPPA,ETA,RHO,LN,LO,XMOM,YMOM, CLETACK),K=1, A 122 

1NLT> 	 A 123 
C WRITEC7,702>INDEX,NLT,KAPPA,ETA,LN,RHO,XMOM 	 A 124 

XN=Ci.IDK)/1 0. 	 A 125 
IF CXN.LT.1.> XN=1. 	 A 126
N=1999 	 A 127 
IF CDK.GT •• 001> N=2.1DK-1. 	 A 128

C 	 A 129 
C INTEGRATION USING RUNGE-KUTTA METHOD • STEPSIZE FOR KAPPA IS OK • A 130
C 	 A 131 

DO 16 I=1,N 	 A 132 
T 1:" I T 1:" n -4 ' r n Tn -4 -4 	 ft. of 7 ":l 

DE1~oKioETA<KAPPA,ETA,LN> 	 Ai34 
GO TO 12 	 A 135 

11 OE1=0. 	 A 136 
12 KAPPA1=KAPPA•OK/2. 	 A 137 

ETA1=ETA•DE112. 	 A 138 
CALL FINOLN CKAPPA1,ETA1,LN,LNNEW> 	 A 139 
DE2=DK•OETA(KAPPA1,ETA1,LNNEWl 	 A 140 
KAPPA2 - KAPPA1 	 A 141 
ETA2=ETA•DE212. 	 A 142
CALL FINOLN CKAPPA2,ETA2,LN,LNNEW> 	 A 143 
DE3=0K 4 DETAtKAPPA2,ETA2,LNNEW> 	 A 144 
KAPPA3=KAPPA2 	 A 145 
ETA3=ETA•DE3 	 A 146
CALL FINDLN CKAPPA3,ETA3,LN,LNNEW> 	 A 147 
DE4=DK 4 DETA(KAPPA3,ETA3,LNNEW) A 148 

C A 150 



PROGRAM TRINSH AND SUBROUTINES PAGE 4 
r- ~tr-l.f tiAIItr-roo r-nn uAnnA r-TA tLt nun A .. ~ ..v -- !'It: n -v~~Vt:J-r-v"- - 1'\-H r r H ,-t:.- 1 H - l;:-1'1 '"_n_v-_____ -- -- --- - ---- --------- .,... "':1"' 
C A 1S2 

KAPPA=KAPPA•DK A 1S3 
ETA=ETA+OE A 154 
CALL FINDLN lKAPPA,ETA,LN,LNNEW) A iSS 
LN=LNNEW A 1S6 
RHO=SQRT<t1.-.s~KAPPA>~~2+2.~KAPPA•LNl/ETA A 1S7 

C A 158 

C A 160 
RM=ETA~TO/KAPPA A 161 
RI=~M~11.-KAPPA4.S) A 162 
RY=RM4 <1.+KAPPA 4 .5} A 163 
RN=RM~RH04 ETA A 164 
RD=RM 4 ETA A 16S 
LO=CETA~4 2-<1.-KAPPA~.s>~~2)/(2.~KAPPA> A 166 
00~~\-DT n ~'~ 
~~~~~--------------------------------------------------------------~~~ 

BEPS<i>=ALOGCRI/RD> A 168 
DO 13 K=1,NLT A 169 
M=K+i A 170 

4RB(M>=RM4SQRTCt1.-KAPPA~.s>••2+2.•MU(K,2l KAPPA> A 171 
BEPSCM>=ALOGCRBtM)/RO) A 172 
T<K>=RB<M>-RB<K> A 173 
PCK>=RBCM>-RI A 174 
II:'TftfV\-TfV\ITTt'\fV\ ft ~.,1:: 
~1~~~~~~~~~----------------------------------------------------~-=~ 

13 CONTINUE A 176 
R1=RM 4 SQRT ( <1.-KAPPA~.s> ~~2+2. ~.i~KAPPA> A 177 

4R2=RM~SQRT ( <1.-KAPPA~.s>•~2+2. .24 KAPPA) A 178 
R3=RM 4 SQRT ( <1.-KAPPA~. 5>••2+2. •. 3•KAPPA> A 179 
R4=RM~SQRT<C1.-KAPPA~.s>•~2+2e 4 e44 KAPPA) A 180 
RS=RM~SQRT<C1.-KAPPA4.5)~•2+2.~.s~KAPPA> A 181 
R6=RM4 SQRT((1.-KAPPA~.s>••2+2.•.6•KAPPA) A 182 
R? ~M4SQRT<<1.-KAPPA•.s>••2+2w4w74 KAPPA> A 183 
R8=RM•SQRTll1.-KAPPA~.s>•~2+2.~.8•KAPPA) A 184 
R9=RM~SQRT<<1.-KAPPA~.5)~•2+2.•.9~KAPPA) A 185 
P1=R1- RI A 18 6 
P2=R2- RI A 18 7 
P3=R3-RI A 188 
P4=R4-RI A 189 
PS=RS-RI A 190 
P6 R6 RI A 191 
P7=R7-RI A 192 
P8=R8-RI A 193 
P9=R9-RI A 194 
PO=RO-RI A 195 
PN=RN-RI A 196 
EI=ALOG<RI/RO> A 197 
Ei=ALOGCR1/RO> A 198 
1:''>-ntnr:tO'>/Ot"'\ 11 ~aa 
._--~--Mt..;V · v - ,-, ,- t... . 7 -T'\."-G7-----------------------------------------------,...--~,-., 

E3=ALOG(R3/RO> A 200 



PROGRAM TRINSH AND SUBROUTINES PAGE 5 
rJ.-Alnrlnt. 1nn' ____ A _ __ _""l_l\4 
t:"t-~~r~~-r~u r - - H c. u .L 

E5=ALOGCR5/RO> A 202 

E6=ALOGCR6/ROl A 203 

E7=ALOGCR7/RO> A 204 

E8=ALOGCR8/RO> A 2U5 

E9=ALOGCR9/RO> A 206 

EY=ALOGCRY/ROl A 207 

EPSN=ALOGCRN/ROl A 208 


I" A ~n n-----.:;..,--7 
C CALCULATION OF THE BENDING MOMENT • A 210 

C A 211 


CALL MOH8 CXMCH> A 212 

XMO M=XHOM/CT0••2> A 213 

YMOM=XHOM/CETA••2> A 214 


C A 215 

C WE DETERMINE THE RADIAL AND TANGENTIAL STRESS DISTRIBUTION WHEN A 216 


-.------- .­
C A 218 


IF ( CKAPPA.GT •• 0999) .AND. CKAPPA.LT • .1001)) CALL STRESSB CSR1,ST1> A 219 

IF ( ( K A P P A • G T • • 19 9 9 > • A N D • f K A P P A • L T • • 2 0 0 1)) CAL L S T RES S 8 ( S R 2 , S T 2 > A 2 2 0 

IF HKAPPA.GT •• 4999).ANO. CKAPPA.LT •• 5001}} CALL STRESS8 <SR5 ST5) A 221 

IF <CKAPPA.GT •• 9999>.ANO.CKAPPA.LT.1.0001)) CALL STRESS8 CSR!O,ST1 A 222 


10> A 223 

XI=I A 224 


Y=XI/XN A 226 

JX=X A 227 

JY=Y A 228 

J=JX•5 A 229 
 .. 
JJ=JY•10 A 230 

IF CI. EQ.J) WRITE C6,29) A 231 

IF <I.EQ.J) WRITE t6,27) A 232 

Ttdl"'I~V- T .._.. II ?""2 "'l 
=~~~~~----------------------------------------------------------------~~~ 

WRITE <6,28> INOEX,NLT,KAPPA,ETA,RHO,LN,LO,XMOM,YHOH, CLETA<K>,K=1, A 234 

1NL T> A 235 


WRITE C6,19l P1,P2,P3,P4,P5,P6,P7,P8,P9,CP(Kl,K=1,NLT) A 236 

WRITE <6,20) PN,PO A 237 

WRITE (6,21) Eiz.E1yE2,E3,E4,E5,E6,E7,E8,E9,EY A 238 

WRITE <6,22} <BtPSCK>,K=1,NLT> ,EY A 239 

WRITE C6,23) EPSN A 240 


r" l.fi"'>TT~f"'7 "'7n?\Ttdl"'lrll ~liT VIIDI"'>II ~Til IU OUI"'> VUf\U ____________ II ?J,-4 


v !J?... <I:E:o~J:Ji '"(; ctro"i4~-. .. , .... "" .. "'"'~n;rr.- A 242 

GO TO 16 A 243 


14 CONTINUE A 244 

XM{JY+1>=XMOM A 245 

YHCJY+1>=VHOM A 246 

00 15 K=1,NLT A 247 

J=K~9 A 248 

RB ( K) RB ( K) - RI A 2 4 9 

CALL PLOTPT CKAPPA,RBCK),J} A 250 


http:CKAPPA.GT
http:CKAPPA.LT
http:HKAPPA.GT
http:CKAPPA.LT
http:CKAPPA.GT


PROGRAM TRINSH AND SUBROUTINES PAGE 6 

CALL PLOTPT (KAPPA,ETA,25) A 252 
RN=RN-RI A 253 
CALL PLOTPT <KAPPA,RN 34} A 254 
CALL PLOTPT <KAP:JA,RH6,38) A 255 

16 CONTINUE A 256 
CALL OUTPLT A 257 

C A 258 
,... r"'111 nT TIJ .,- ("'1-T ,n-r-~~ nTC"TMTniiTTnu Tid TU~ nr-"-1n C'Ut"*r-T A ")l':'n
V rLOt IIJL JII\O C ~J ULJII\OLUVI~U1-. ~1\4 tllL: --O-t:-l'f-~~~-.---------------------- --- K- ~:JJ 

C STRESSES FOR KAPPA=.1 ARE PLOTTED WITH THE SYMBOL 1 • A 260 
C STRESSES FOR KAP 0 A=.2 ARE PLOTTED WITH THE SYMBOL 2 • A 261 
C STRESSES FOR KAPPA=.? ARE PLOTTED WITH THE SYMBOL 5 • A 262 
C STRESSES FOR KAPPA=1. ARE PLOTTED WITH THE SYMBOL $ • A 263 
C A 264 

00 17 I=1,21 A 265 
X=I-1 A 266 

CALL PLOTPT <X,SR1<Il 7 11) A 268 
CALL PLOTPT <X,ST1(I>,11> A 269 
CALL PLOTPT ()<,SR2ti>,12> A 270 
CALL PLOTPT <X,ST2(I> 7 12) A 271 
CALL PLOTP T <X,SR5 (!), 15> A 272 
CALL PLOTPT (X,ST5<I> 15) A 273 
CALL PLOTPT CX,SR10 <If ,20> A 274 
1"1111 01 nTDT tv C"T-tntT\ ?n'l ____________________________ A __ 77_k. 
v-M~- ~--l ~-v--T"T -----. \1\7 .._,.- ,.-g-,.-, - , -- t... V I ~ '-' -' 

17 CONTINUE A 276 
CALL OUTPLT A 277 

C A 278 
C PLOT THE BENDING MOMENT • A 279 
C XM=MOMENT PE~ UNIT WIDTH I SQUAR E OF ORIGINAL SHEET THICKNESS • A 280 
C XM IS PLOT TED WITH THE SYMBOL M • A 281 
C YM = MOMENT PER UNIT WITH I SQUARE OF CURRENT SHEET THICKNESS • A 282 
f"' Vt.A TC" no nT T ,rn I.ITT U TU~ C"VUOno 1.1 II ?tl "l 
U 1 l l .L..J rLV1 -,L-V · n.I:.-- t - -~, --- ' 111 1... ~· ffU V'- n e " '-VV

C A 284 
KAPPA=O. A 285 
DK=.1 A 286 
00 18 I=1 20 A 287 
CALL PLOT~T <KAPPA,XMCil,33) A 288 
CALL PLOTPT (KAPPA,VM<I>,43> A 289 
KAPPA= KAPPA +OK A 29 0 

-1 tl f"'ni\IT Tl\lllr' ________________________________________ /\__ _':)_0~
.J.,:U UVl'f 1 - :L T...----v-L.: ,., '- J .._ 

CALL PLOTPT <0.,0.,10) A 292 
CALL OUTPL T A 293 
STOP A 294 

C A 295 
19 FOR1AT <1H ,• LAYER MOVEMENT •,9F10.7,1,1H ,• BOUNDARY MOVEM ENT A 296 

1 •, 9F 10. 7 , 1, > A 2 9 7 
20 FOR1AT (1H ,•NEUTRAL LAYER AND UNELONGATEO LAYER MOVEMENT•,6X,2F10 A 298 

"' 7 , ' 11 ?a a 
21 "'f-oRMAT <1H ,•LAYER HOOP STRAIN •,11Fi0.7> ----- -A-366 



- ------------ -

7PROGRAM TRINSH AND SUBROUTINES PAGE 

23 FOR'1AT <1H !-w-NEUTRAT'uvffi-HoOP.l.sr~ArN--- · •,F1o. 7> A 302 
24 FORMAT UH1 1 "' I •,• A!I> .w.,.w. MU<I,1> •, A 303 

1"' MU <l, 2} ..,. , II ) A 3 0 4 
25 FORMAT (1H ,I5,3E20.8.l/l ~ A 305 
26 FORMAT UH ,sx,.•TO = ,El5.5l.•D1< = •,E15.5tll,) A 306 
27 FOR'1AT <1H ,•INDEX NLT KAI-'PA •,• ETA RHO •,• LN A 307 

1 LO XMOM YMOM LETA<I>,I,1,NLT •,II,) A 308 
,.,o r-nnuAT 14U ')Tr ... ~~ .. n ..., 11 ' A .,no
CO t OI, I JAI \~If 7 t:J::J,:LC:t J:UI I J' I , _I ------------- ,., ---vv - ;;~ 

29 FORMAT <1H , I> A 310 
END A 311­

FUNCTION DETA tKAPPA,ETA,LN> B 1 
REAL KAPPA,LN B 2 c B 3 

f' ~llldf"'TTn"l n~TII n~T~OMT"I~C' TU~ n~OTIIIITTII~ nt:" TU.r _ OCL.I\_T _T . IIr___C'UCCT _ _ C _. ___ .L. 
V I Vf'fVI:oLVt'f U~t.., t:J ""'" l ..... t \lt;&..- Prt;.;.- ,_,--------.--- -,L;.-----IJ"-L.,:I';;;.&;.--YM _l _.LV\..: - Vl tilL... 1"\1-\..nt .I.Y\- -.JI'~'-' \..1 "'"T 

C THICKNESS TO KAPPA • KAPPA,ETA,AND LN ARE GIVEN VALUES • B 5 
C DETA IS USED BY TRINSH B 6 c B 7 

DETA=-.5•ETA•<1.-2.•LN-.5"'KAPPA)I(t1.-.S•KAPPA>••2•2.•LN"'KAPPA) B 8 
RETURN B 9
END B 10­

SUBROUTINE FINDLN <KAPPA,,ETA,LNOLD,LNNEW>
REAL KAPPA,LNNEW1 LNOLD,Mu
LOGICAL TENS,COMI-'
COMMON ISSCURVI NLT,ALFA<3>,MUC3,2),T0c 

C SUBROUTINE FINDLN FINDS THE POSITION OF THE NEUTRAL LAYER LNNEW ,
C FOR GIVEN VALUES OF KAPPA AND ETA • 
I" l~lt'\ln T<"' A nnr-llTniiC' Ur"'IITnllt 11\Vr"'l'> nnC'TTTn"l 1\t.ln TC' IIC'~n 1\C' IIV LI .. OL;U ~..., R 11'\L:V OLOV<...J ~~~t::J"\T~~-------.---o-'"'L lLVI...-----po!fT.,--LT-- L - W ___V..JL _U __ "'_.;;.J __ M ________ 

C STARTING VALUE • . 
C LNNEW IS THE POSITION OF THE NEUTRAL LAYER WE HAVE TO 
C DETERMINE 
C WHERE THE RADIAL STRESS , CALCULATED BY INTEGRATING THE 
C EQUILIBRIUM
C EQUATION FROM THE INNERMOST LAYER OF THE BEND EQUQLS THE RADIAL
X ~~~E~~ .. ~ ..X~U~9 ..§! ,IN!,~~RATING FROM THE OUTERMOST LAYER , WE HAVE 
V IIIC: 1'4CUf f,HL LMtL'\0 Lf\11 • - - -- ------- ------- ­

C THIS INTEGRATION FROM THE INNERMOST LAYER ON IS DONE BY FUNCTION 
C RADSTR WITH LOGICAL ARGUMENT COMP(TANGENTIAL STRESS IS 
C COMPRE SSIV El 
C THIS INTEGRATION FROM THE OUTERMOST LAYER ON IS DONE BY FUNCTION 
C RADSTR WITH LCGICAL ARGUMENT TENS (TANGENTIAL STRESS IS TENSILE) • c ­
C FINDLN IS US ED BY TRINSH 

u-______ V 

C 9 
C 10 
C 11 
C 12 
C 13 
C 14 
~ _t~ 

C
C 
C 
C c 
C 
C 
I" 

1 
2 
3 
4 
5 
6 
7 
0 

v - - .~-- v 

C 17
C 18 
C 19 
C 20 
C 21 c 22 
C 23 

TENS=. TRUE. c 25 
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COHP .FALSE. C 26
XO=LNOLD C 27 
SO=RAOSTRCKAPPA,ETA,XO,TENS>-RAOSTR<KAPPA,ETA,XO,COMP> C 28 
X1=X0-1.E-06 C 29 
S1=RADSTRCKAPPA,ETA,X1,TENSl-RADSTRCKAPPA,ETA,X1,COMP) C 30 
DO 1 I =1 50 C 31
IF CS1. E6.SOJ GO TO 3 C 32 
X2=X1-S1•(X1-XOJ/(S1-S0) C 33 
t",_nnnC"TntvAnnl\ ~TI\ v~ T.-UC""\_nAn~TntvAnnA r-TA v~ r'"I""''IUn\. r- "71. 

IF- '(s2~LT;t:E.:.t5f'Go"r{)'2'""'' ""'u "' '""'A'r"''""'AJ"qvullrl C 35 
XO=X1 C 36 
SO=S1 C 37 
X1=X2 C 38 
S1=S2 C 39 

1 CONTINUE C 40 
2 LNNEW=X2 C 41 

~n Tn ~ ~ L~ 
~~~~----------------------------------------------------------~~~ 

3 LNNEW=CX1+XOJ/2. C 43 
4 CONTINUE C 44 

RETURN C 45 
END C 46­

FUNCTION RAOSTR CKAPPA,ETA,LAMOA,TENS> 0 1 
O~JII VJI00/1 I llt.Ain/1 Ull n ~ 
P\. ~MI... P\Ml t l"'lli 't...H. J fOMJ H V 

LOGICAL TENS 0 3
COMMON /SSCU RV/ NLT,ALFAC3>,MUC3,2),T0 D 4 

c D 5 
C FUNCTION RAOSTR CALCULATES THE RADIAL STRESS FOR THE LAYER LAMOA 0 6 
C BY INTEGRATING T~E EQUILIBRIUM EQUATION • 0 7 
C KAPPA AND ETA ARE GIVEN VALUES • 0 8 
C WHEN TENS=. TRUE. , THE TANGENTIAL STRESS IS TENSILE , AND THE D 9 
I' on11~1n11 OV l"nt.lnTTTnU TC' Cl' OllnT/11 C'TO~C"C' TC' "7""0n AT niiT""OUnC'T I 1\V""O n <4 n
V UUV1'4UM~I VVI'fU.I.J~Vl._. • ..;> ..D J"'.. MU.LM.I- ...;;J fl'-~~~ J.:..;:J '-~~V ,..-, VVtL, f,nV~t \. -R--1L:T'\.- U 

C (LAMBDA=1.) • . D 11 
C WHEN TENS= •FALSE. , THE TANGENTIAL STRESS IS COMPRESSIVE f ANO THE 0 12 
C BOUNDARY CONDITION IS$ RADIAL STRESS IS ZERO AT I~NERMOS LAYER 0 13 
C {LAMBDA=O.> • D 14 
C THE INTEGRATION MOVES FROM ONE MATERIAL BOUNDARY TO THE NEXT AS D 15 
C MANY TI MES ES NEEDED TO REACH LA MDA FROM THE BOUNDARY CONDITION. 0 16 
c D 17 
vI" 0/1 nC'T n TC' IIC'~ I" DV TOTU C'U n <I 0- - ------l"\..~mr--r=------n-=-r---r:---rrr~--rrT...-:-rrr-------------------------.:r--:r-= 

c D 19 
BS= O • 0 20
IF CT E NS > G 0 T 0 4 0 2 1 
BL=O. D 22 
DO 2 I=1 7 NLT D 23 
X=MUCI,2J D 24 
IF <X.LT.LAMOA} GO TO 1 0 25 
~n Tn 7 n ?~ vv ~v v -------------------------=-~~ 

1 SMU=RSTRESCKAPPA,ETA,MUCI,2>,I,TENS,8L,8S) D 27 
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nt-UII,T "'t\ 1"\ "'0 
OL.- •TOTL-,-c;T --~-~------ -~~----~ ~-----~~-- ~ ------~~ ----~--~~-- -------- ---nr---r-n-

BS=SMU
2 CONTINUE 
3 RAOSTR=RSTRES<KAPPA,ETA,LAMDA,I,TENS,BL,BS)

GO TO 8 
4 BL=1. 

DO 6 I=1,NLT 
J=NLT-I~1 

~FHV~~~f!LAMDA) GO TO 5 
GO TO 7 

5 SMU=RSTREStKAPPA,ETA,MU<J,1l,J,TENS,BL,BSJ
Bl=MUCJ,1)
BS=SMU 

6 CONTINUE 
7 RADSTR=RSTRESCKAPPA,ETA,LAMDA,J,TENS,BL,BS> 

8 CONTINUE 
RETURN 
END 


FUNCTION RSTRES <KAPPA,ETA,LAMDA,MAT,TENS,BL,BS)

REAL KAPPA,LA~OA,MU 
I nr T r' A I T r:' ld C'VV.L V"""' I- ,I,;;; l"f J_ - --- --------------------------------------------------------=-­~ 

COMMON /SSCURV/ NLT,ALFA<3J,MU<3,2l,TO 
C 
C FUNCTION RSTRES GIVES THE VALUE OF 
C LAMDA IN MATERIAL MAT 1. SUBJECT TO 
g ~~~~ALg~~0 ~r~LARER~~~J~=s~LUES • 
C WHEN TENS=. TRUE. , THE TANGENTIAL 
I" uur-t..t Tt-'-.1~- rl\lrr Tur- TAurr-t..tTTI\1 
U f111LI'f ILI'tl\J-el RL'"'LI J lffL IAI'fVCI'ff~RLC 
C RSTRES IS USED BY TRINSH 
C 

SIGN=-1.
IF CTENS> SIGN=+1. 

i•BL•KAPPA))
Oi:'TOr:-C'-I"'nl\lC'To._C'Tri\I ..W.Air:"AIIIAAT\¥111r'.J' l'l-.J-vv i..-Jl ..--v.J.,,:n...- ""'l..' " -'''"-'"-' -,.,~,;. -

12~2. •L AMDA •KAPPA>)
RETURN 
END 

THE RADIAL STRESS FOR LAYER 

BOUNDARY 


STRESS IS 

~Tnr-C'l~ TC" 
JII'C""';;J LOJ 

CONDITIONS BL AND B~ • 

TENSILE • 
f"nunnr-C"-'C'lT\Ir"'" 

UUIIII\OC"""""""~VC ¥ 
. 

CONST=BS-SIGN•ALFACMAT>•ALOGCETA•TO/KAPPA•SQRT<<1.-.5•KAPPAl••2+2. 
nr-tr:-TA.W.TniVI\001\.W.C'noTff.ol ­
v'-7--,-L..-, - ,., - -- tvr ,,,.,, , --~ wu''' ''•• 

SUBROUTINE SIGMAT 8 <R, SR, ST, MAT> 
REAL LAMDA,KAPPA,LN,MU
LOGICAL TENS 
COMMON /STATE/ KAPPA,ETA,RHO,LN,RI,RN,RY,RBC4) 

D 29
D 30 
D 31 
D 32 
D 33 
D 34 
D 35 
8 ~~ 
D 38 
D 39 
D 40 
D 41
D 42 
D 43 


D 45 

D 46 

D 47­

E 1 

E 2 
r:" 7----.::T 

C::.W.VI\0011\.W.¥• ., ,,,.., t ,.,, 

E 4 
E 5 
E 6 
E 7 
~ ~ 
E 10 
r- .,..,. 
t: ~~E 12 
E 13 
E 14 
E 15
E 16 
E 17 
E 18 
r:" .o!O 
LO: ,...,

E 20 
E 21 
E 22­

F 1 
F 2 
F 3 
F 4 

http:nr-tr:-TA.W.TniVI\001\.W.C'noTff.ol


- - -------- ------ --

________ 

----- ----------

____________ 

1 

C 
C 
C 
C 
C 
C 

1 

2 


C 
C 
C 


C 

C 
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COt1t10N /SSCURV/ NLT,ALFA(3l,11U(J,2>,TO F 5 


SUBROUTINE SIGMAT8 DETERMINES THE 
TANGENTIAL STRESS SR IN THE LAYER 

SIGHAT8 IS USED BY TRINSH 

TENS=.TRUE. 
T~ tn 1 T nt..l\ Trt..tC'- ~J\1 C"'r­
.LJ \1,1 L f e I ' 1'1 .I t Lt \h...J- e I M~ ....Jio...e 

LAMDA=CR••2-RI••2)/CRY••2-RI••2) 
SR=~AOSTRCKAPPA,ETA,LAMDA,TENS>
SIGN=-1. 
IF <TENS> SIGN=+1. 
IF CMAT.NE.O> GO TO 2 

MAT=1 
e~M~t~=~tNLT 
!FT'(LAMDA.GT.X> MAT=I 
CONTINUE
ST=SR+SIGN•ALFACMAT> 
RETURN
END 

C"IIOni"''IITTO.I~ C"T~r'C"C"Q
-;.:;JV -t:JT,\:;nJ - -, -L- J'"fC-- ..;r-,--f'\,- t:; -OJ~ V 


REAL KAPPA LN MU 
DIMENSION SRN t 21) ! 

F 6 

RADIAL STRESS SR AND THE F 7 

MAT , FOR A RADIUS R • F 8 


COMMON /STATE/ KAPPA,ETA,RHO,LN1.RI,RN,RY,RBC4)
COMMON /SSCURV/ NLT,ALFAC3),MUC.3,2l,TO 

SUBROUTINE STRESS8 DETERMINES THE RADIAL AND TANGENTIAL 

IC'~O.I C"TO.Il 

'V"-l'<f' .J 1 I '<( 1 


STN (21) 

DISTRIBUTION IN THE CURRENT BEND • 

STRESS8 IS USED BY TRINSH 

DR=tRY-RD/2 0. 
R=RI 
DO 1 I =1 , 21 

MAT=O
CALL SIGMAT8 CR,SRNCI>,STN<I>,MAn 
n-n.~_nn --- -- --------- --- ------------------·-· 

F 9 

F 10 

F 11 

F 12 

r -4 "2 ---. -~-V 

F 14 

F 15 

F 16 

F 17 

F 18 

F 19 

~ ~9 
F 22 

F 23

F 24 

F 25

F 26­

______c_______ -1 
V • 

G 2 

G 3 

G 4 

G 5 

G 6 


"~ 

CONTINUE G 18 

WRITE C6f4) KAPPA G 19 

DR= CRY- R ) /1 00• G 2 0
R=RI G. 21 

DO 2 I=1 7 101 G 22

MAT=O G 23 

RR=R-RI G 24 

1"'111 I C'Tf:MI\Til ID c:.'D C'T MI\T\ C.__ ':)!:;

wRirE"16','3; VR ;RR: sR;st""· · c; 2& 


STRESS- G 7 

G 8 


G 10 

G 11 

G 12 

G 13 

G 1 4 

G 15

G 16 


---- ----- -- - ------ r: -- - <4 - .-v· . 7 



I 
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6 21 
2 

c 
3 FOR"'AT C1H ,•R = •,F12.7,• CR-RI> = •,F10.7,• SR = •,E15.7,• ST = 

1•,E15. 7,> 
4 FORMAT C1H1,•RADIAL AND TANGENTIAL STRESS DISTRIBUTION FOR KAPPA= 

28 
29 
30 
31 
32 
33 
3'+ 

6------3 
5 G 36

G 37­

SUBROUTINE MOM8 CXMOM) H 1
REAL KAPPA~MU 1 LN H 2
LOGICAL TENS,l.iOMP H 3 

4 
5 c 6 

c THE CURRENT MOMENT XMOM • 7 
8c c 9 

c 10 
TENS=. TRUE. 1 

XMOM=O. H 13
M=O H 14 
DO 6 I=1,NLT H 15 
X=MUCI 2) H 16 
IF CX.~T.LN> GO TO 2 H 17
R2=RB<I+1) H 18 

1 R1=RBCI> H 19 
C'D<I-D/\nC'TD/V/\0011 C"TI\ MllfT <1\ l"nMO' U ?n 

xMoM~XHoM+cR2••2!Ri•'2>i2!:c~FA<I>12.+SR1>+ALFA<I>•R2••212.•ALoG H 21 
1CR1/R2> H 22 

IF CM.EQ.1> GO TO 4 H 23 
GO TO 6 H 24 

2 IF CM. EQ. 0 > GO TO 3 H 2 5 
R1=RB<I> H 26 
GO TO 5 H 27 

7 D?-DM U ?0v -- -l'-~ ---"",,---------------------------------------.-.----.:::-<:T 

M=1 H 29
GO TO 1 H 30 

4 R1=RN H 31 
5 R2=R8C I+1) H 32 

~~~~~~~~~!~~~~e~!~Iel~~~~!~~~l~~~l)t2.+SR2l+ALFA<l>•R1••212.•ALOG< ~ ~~ 
1R2/~1) H 35 

6 CONTINUE H 37 

http:CX.~T.LN


(\J
 

T
i 

w
 

l!) 

ex: 
Q

 

(/) 

w
 

z ..... 
1

­
:::> 

~
 

(l) 

:::> 
(/) 

C
l 

z <X
 

:X
: 

(/) 

z H
 
~
 

1
­

0
'' ,., 
:X: 

C
l 

z w
 



---

1PROGRAM MONOSH AND SUBROUTINES PAGE 

PROGRAM MONOSHfi~PUT,OUTPUT,PUNCH,TAPE5=INPUT,TAPEo=OUTPUT,TAPE7=P
1UNCH)

C 
C PROGRAM MONOSH CALCULATES THE BEHAVIOUR IN PURE PLAIN STRAIN 
C BENDING 
C A MONOMETAL STRIP • THE MATE RIAL IS STRAINHARDENING , AND THE 
C BAUSCH 
C EFFECT 
C 
C MONOSH 
C 
C 
C INPUT 
C NSS 
C 
C 
C 
C 
C A1B,EN
C To 
C OK 

IS INCLUDED IN CRAFOORDtS FASHION , 


USES OETA,ORHO,STRESS1,SIGMAR1,SIGMAT1,MOM1,INT1, 


DATA • 
NU MBFR OF THE STRESS STRAIN CURVE • 

NSS=t GIVES A CURVE OF THE TYPE 
EFFECTIVE STRESS= A t 8 * CEFFECTIVE STRAIN)*•EN • 

NSS=2 GIVES A CURVE OF THE TYPE 
EFFECTIVE STRESS =A • <EFFECTIVE STRAIN+ 8 >••EN • 

ARE THE COEFFICIENTS OF THE CHOSEN STRESS STRAIN CURVE 
TH E ORIGINAL THICKNESS OF THE STRIP • 
THE STEPSIZE FOR THE NUMERICAL INTEGRATION OF THE 

C RELATIVE 
C SHEET-THICKNESS DIFFERENTIAL EQUQTION • 
,.. 

C ALFA,BETA, EN COEFFICIENTS OF THE MODIFIED STRESS STRAIN CURVE 
C ETA RELATIVE SHEET THICKNESS = RATIO OF CURRENT SHEET 
C THICKN E S 
C TO ORIGINAL SHEET THICKN ESS 
C RHO RATIO OF CURRENT NEUTRAL LAYER RADIUS TO CURRENT 
C UNELONGATED LAYER RADIUS 
C LN CURRENT VALUE OF LAMBDA OF THE NEUTRAL LAYER 
"" 1 1"'\ "11nnr-a.1? lll\111~ f"\r' I AUnnl\ n,,- TUr- lt._I~J t"\t..trAT~t'\ _ _! _ AV~_n_____________

'V LU CIV "'Lt\lt VALUL Of L~l,-01:1 -M: -u.--- -- , -r~--VT~-I;.- L- -VI'f\.JMJJ:U LHI~r<.. 

C RM THE CURRENT AVERAGE RADIUS OF THE BEND STRIP 
C RI TH E CURRENT INSIDE RADIUS 
C RY THE CURRENT OUTSIDE RADIUS 
C RN CU RRENT NEUTRAL LAYER RADIUS 
C RO CURRENT UNELONGATED LAYER RADIUS 
C XMO M CU RRENT BENDING MOMENT 
C ORIGINAL SHEET THICKNESS 
G YMOH CURRNT BENDING MOMENT 
C CURRENT SHEET THICKNESS 
C 

INTEGER PROGRA M 
REAL KAPPA,KAtLO,LN~K1tK2,K3
DIMENSION XMC~O> YM ·C2u> 

DIVIDED BY THE SQUARE OF THE 

DIVIDED BY THE SQUARE OF THE 

DIMENSION SR1(21f, SR2t21>, SR5(21>, SR10(21>
DIMENSION ST1C21> ST2C21), ST5<21) ST10(21)
l"i'H.IUI"\U IC'TI\T"'I Vl\1-,nll "'Til OUt'\ If'\ IU bT OV OM Of\ OM 

g~~~ o~R6~~~g ~¥~~~~~~~t~A:aE:¥A;£N'"" ' '' ~'"' ,.,.. , ,\U, " " 

A
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 

1
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

II ---''--" ... '-"T 
A 25 
A 26 
A 2 7 
A 28 
A 29 
A 30 
A 31 
A ___~"'---------
M V~ 

A 33 
A 34 
A 35 
A 36 
A 37 
A 38 
A 39 
A ~9 
A 41 
A 42 
A 43 
A 44 
A 45 
A 46 
A 47 
II _ l,Q. 

~ -~~ 
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nft~A t.lr'\IU.. I,...IIII'\1 	 1\ ~ ..o :A-,~-rrrul'llJTI7-'.J7 ____ - -- -	 H ;,; .1. 

DATA OK/.01/ A 52 
DATA NSS,A,8,ENI2,1.,.01,.5/ A 53 
DATA T0/1.1 A 54 
GO TO t1 2> NSS A 55 

1 ALFA=2.1SQRt<3.>¥A A 56 
8 ETA= < 2 • IS QR T < 3 • > > • • <EN t-1 • > • 8 A 5 7 
GO TO 3 A 58 

2 ALFA=<2./SQRT(3.) ) 4 •<ENH.) 4 A A 59 
8ETA=SQRT( 3. )/2.•8 A 60 
GO TO 3 A 61 

3 CONTINUE A 62 
c A 63 
c STARTING POI NT FOR THE INTEGRATION IS THE UNBEND CONDITION • A 64 
c A 65 

KAPPA=O. A 66 
~TII-o4 	 fl L"7 
~""' - ----------- -- ---------------	 --- -------- - ------M ----\.rr 

RH0=1. A 68 
LO=. 5 A 6 9 
LN=.5 A 70 
INDEX= 0 A 71 
IF <NPUNCH.NE . O> WRITE <7 7 10> I NDEX,PROGRAM,NSS,DK,A,B,EN A 72 
WRITE t6,14) A,B, EN A 73 
WRITE <6,13> A 74 
WDTT~ 	 IC.. .. .,\ vfiDO II ~Til OUn In I t.l fl "7C:: 
" ·'"' .:.~.. - , - \.... - - -yu-y~~-.,.--~ ---r ----,.,--, - -L.-r-""--7- "T'-vy~;;- vJ -- ~.,;.- , ., --	 - " , -_, 

INDEX=1 A 76 
IF <NPUNCH.NE.O> WRITE <7 7 11> INDEX,NSS,KAPPA,ETA,LN,RHO A 77 
XN=<1.10K)/1 0 . A 78 
IF <XN.LT.1.> XN=1• A 79 
N=2.1DK-1. A 80 

C A 81 
C INTEGRATION USING RUNGE-KUTTA METHOD • A 82 
I' 	 <"' T r- n <"' T .., r- ~ no v fl nn 11 T <"' n v 11 a -z 
V 	 ...,f[;.. r ..;JLL~ I V I' J'\"Mf-1 ,... --- ,4.j LJ" • - "" VV 

C A 84 
DO 7 I=1,N A 85 
IF (! • EQ • 1 ) G 0 TO 4 A 8 6 
DE1=DK•DETA(KAPPA,ETA,RHO> A 87 
OR1=DK•ORHOCKAPPA,ETA,RHO> A 88 
GO TO 5 A 89 

4 0£1=0. A 9 0 

5 	 K1=KAPPA+OKI2. A 92 
E1=ETA+OE112. A 93 
R1=RHO+DR112. A 94 
IF <R1.GT.1. > R1=1. A 95 
DE2=DK•OETA<K1,E1,R1> A 96 
DR2=0K 4 DRHOCK1, E1,R1> 	 A 97 
K2=K1 	 A 98 

aa 
,...,- - -

~.,-~Tfl~n~?l?LL - I,;_ .--~ - - -- \;,,-~-~ - --, -- ~---.-------- -- --------------------- ---------------- - -- A 
------ ~_, 

R2=RHO +DR2/2. 	 A 10 0 

http:NPUNCH.NE
http:A-,~-rrrul'llJTI7-'.J7
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IF (RZ.GT.1.) R2-1. A 101 
DE3=DK""DETACK2,E2,R2) A 102 
DR3=DK""DRHOCK2,E2,R2> A 103 
K3=KAPPA+OK A 10'+ 
E3= ETA+OE3 A 105 
R3=RHO+DR3 A 106 
IF <R3.GT.1. > R3=1. A 107 
DE4=DK""0ETA(K3,E3,R3> A 108 
n~l.-nvKnnuntv~ r-"7 1"'\'7\ A .enn 

5~;75~1~~:~d~~:~:lB~~+DE'+>t6. i fii 
DR=CDR1+2.•0R2+2.""DR3tDRit)l6. A 111 

C A 112 
C NEW VALUES FOR KAPPA,ETA,RHO • A 113 
C A 114

KAPPA=KAPPA+DK A 115 
ETA=ETAtDE A 116 
RHO-RHO•D~ A 117 
IF <RHO.GT.i.) RHO=i. A 118

C A 119 
C CALCULATION OF GEOMETRICAL SITUATION FOR THE CURRENT VALUE OF A 120 
C KAPPA A 121
C A 122 

LO=<ETA""""2-C1.-KAPPA•.5>••2)/(2.""KAPPA) A 123 
LN=CRH0••2•ETA••2-<1.-KAPPA•.5>••2)/(2.•KAPPA) A 124 
RI=(1.-KAPPA*.5)*ETA 4 TOIKAPPA A 125 
RY=<i.+KAPPA•.S>•ETA•TO/KAPPA A 126
RN=RHO•ETA••z•TO/KAPPA A 127 
RM=ETA•TO/KAPPA A 128 
RO=ETA""•2•TO/KAPPA A 129 
INOEX=I+1 A 130 
IF CNPUNCH.N E.O> WRITE (7,11) INDEX,NSS,KAPPA,ETA,LN,RHO A 131 
XI=I A 132 
V-VTI~ ft ~77,....-" ~, _, • - ---- -----------------------------------------------------------,..-----:~:-<:T"<T 

Y=XI/XN
JX=X 
JY=Y 
J=JX""5 
JJ=JY""10
IF CI.EQ.J)
IF CI.EQ.J> 

WRITE (6,14) A,B,EN
WRITE (6,13> 

A 134 
A 135 
A 136 
A 137 
A 138
A 139 
A 140 

. .c A 142 
c WE DETERMINE THE STRESSDISTRIBUTION WHEN KAPPA IS .1 OR .2 OR .s A 143 
c OR A 144 
c A 145 

IF CCKAPPA.GT •• 0999l.AND. CKAPPA.LT •• 1001» CALL STRESS! CSR1 7 ST1) A 146
IF C<KAPPA.GT •• 1999l.AND.CKAPPA.LT •• 2001)) CALL STRESS! <SR2,ST 2> A 147 
IF CCKAPPA.GT •• 4999l.AND. CKAPPA.LT •• 5001)) CALL STRESS1 CSR5,ST5> A 146 
IF C<KAPPA,GT,,'3999l,AND, <KAPPA,LT,i,OOOH> GALL STRESS1 <SR19 7 ST1 A 149

1 0) A 150 

http:CKAPPA.LT
http:CCKAPPA.GT
http:1999l.AND.CKAPPA.LT
http:C<KAPPA.GT
http:CKAPPA.LT
http:CCKAPPA.GT


--- -- ----- ---- - -- ---

4 PROGRAM MONOSH AND SUBROUTINES PAGE 

C WE PLOT THE RELATIVE POSITIONS OF ORIGINALLY EQUIDISTANT LAYERS 
C WHEN KAPPA IS A MULTIPLE OF .1 •
C 

IF CI.EQ.JJ) GO TO 6 

GO TO 7 


6 PO=RO-RI 
PN=RN-RI 
I"Al I 1...111"\UA. IVUI"'\U' 
VH~LO 1 10\ IL \7\ 1 101 1 1 


XMOM=XMOMI CT0~ 4 2) 

YMOM=XMOM/CETA~•2>

WRITE <6,15) XMOM,YMOM
XM{JY>=XMOM
VM1JY>=YMOM 
P1=RM 4 SQRTCC1.-KAPPA 4 .5) 44 2+2. 4 .14 KAPPA>-RI 
P2=RM4 SQRT<<1.-KAPPA 4.5l~ 4 2+2. 4 .24 KAPPA)-RI 
P3=~M*SQRT((1.-KAPPA*e5)**2•2•*•3•KAPPA) RI 
P4=RM•SQRTC<1.-KAPPA•.5>••2t2.•.4•KAPPA)-RI
P5=RM 4 SQRTC(1.-KAPPA4 .5) 44 2+2.•.s•KAPPA>-RI 
P6=RM~SQRTC<1.-KAPPA4.5) 44 2+2.•.6•KAPPA>-RI 
P7=RM 4 SQRTCC1.-KAPPA•.5>••2+2.•.7•KAPPA>-RI
P8=RM•SQRT<C1.-KAPPA•.5>••2+2. 4 .84 KAPPAl-RI 
P9=RM 4 SQRTCC1.-KAPPA•.5>••2+2. 4 .94 KAPPA>-RI 
CALL P L 0 T P T C K A PP A , 0 • , 1 0 > 
1"1111 n1 1'\TI"liT IVIInnll n ...... \ur'\LOL I LV1 1 I \t,Mit MJI ::oL74:.ao;1 ------- -------------- ----­

CALL PLOTPT CKAPPA,P2,12>
CALL PLOTPT CKAP:)A,P3,13)
CALL PLOTPT <KAPPA,P4,14>
CALL PLOTPT CKAPPA,P5,15>
CALL PLOTPT CKAPPA,P6,16)
CALL PLOTPT <KAPPA,P7,17)
CALL PLOTPT CKAPPA,P8,18)
1"111 I nonTnT IVIII"H'lll On .. n\ 

CAtt Ptotf:,t i't<ArPA:E:f!;25>
CALL PLOTPT CKAPPA,RH0,38)
CALL PLOTPT CKAPPA,P0,35)
CALL PLOTPT CKAPPA,PN,34)

7 CONTINUE 
CALL PLOTPT C0.,0.,10)
CALL PLOTPT C0.,1.,25) 


CALL PLOTPT <0.).5;34)

CALL OUTPLT 

C 
C PLOT THE STRESS DISTRIBUTION IN THE BEND SHEET • 
C STRESSES FOR KAPPA=.1 ARE PLOTTED WITH THE SYMBOL 1 • 
C STRESSES FOR KAPPA=.2 ARE PLOTTED WITH THE SYMBOL 2 • 
C STRESSES FOR KAPPA=.5 ARE PLOTTED WITH THE SYMBOL 5 • 
C STRESSES FOR KAPPA-1. ARE PLOTTED WITH THE SYMBOL ! • 
C 

A 152 

A 153

A 154 

A 155 

A 156 

A 157 

A 158 

It 4.Cn.H .LJJ 

A 160 

A 161 

A 162 

A 163 

A 164 

A 165 

A 166 

A 167

A 168 

A 169 

A 170 

A 171 

A 172 

A 173 

A 17 4 

II -47&:::" ·.a..r _, 

A 176

A 177 

A 178 

A 179 

A 180 

A 181 

A 182 

II -411."2' 

A 184 

A 185 

A 186 

A 187 

A 188 

A 189 

A 190 


A 192 

A 193 

A 194 

A 195 

A 196 

A 197 

A 198 

A 199 

A 200 


http:CI.EQ.JJ
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PROGRAM MONOSH AND SUBROUTINES PAGE 5 

00 8 I-1,21 A 201 
X=I-1 A 202 
X=X/20. A 203 
CALL PLOTPT <X,SR1ti>,11) A 2~4 
CALL PLOTPT CX,ST1CI>,11l A 205 
CALL PLOTPT {) 1 SR2CI>,12> A 206 
CALL PLOTPT CX,ST2{!),12> A 207 
CALL PLOTPT <X,~g~(I>,15) A 208 

CALL PLOTPT CXjSR10<I>,20) A 210 
CALL PLOTPT CX,ST10<I>,20) A 211 

8 CONTINUE A 212 
CALl 0 UTPL T A 213 

C A 214 
C PLOT THE BENDING MOMENT • A 215 
C XM=MOMENT PER UNIT WIDTH I SQUARE OF ORIGINAL SHEET THICKNESS • A 216 
C' -~~-- VM TC' OJ r'\T T~n LITT U TUI:' C'VMOr'\1 M II ?-4 '7v "' 1 .a. ..J ---- ' - --v --~ --~ c,-------,--,~-.------.-.~,------;:mrm:n::-----rT----.--------------------,..,---,==-.-

C YM = MOMENT PER UNIT WITH I SQUARE OF CURRENT SHEET THICKNESS • A 218 
C YM IS PLOTTED ~ITH THE SYMBOL W • A 219 
C A 220 

KAPPA=O. -- A 221 
DK=.1 A 222 
~2P~A~KiP~2•DK ~ ~~~ 
1"1111 Olr'\TDT IVIIDDII VMlT'\ '1''7\ II??" 
VM -~~ - 1 -~~~--~~~~~~~~----------------------~-=~ 

CALL PLOTPT CKAPPA,YM<I>,43l A 226 
9 CONTINUE A 227 

CALL PLOTPT C0.,0.,10) A 228 
CALL PLOTPT <2.,0.,10) A 229 
CALL OUTPL T A 230 
STOP A 231 

C A 232 
_-l _ft C"r'\OMIIT IT'1' 117 T"7 t:.V 1:'7 C.. ?1:'-4? /, 1:'-tn 7\ II ?"7'7

it FORMAT {2f~;3I;,-F~3E13.6) A 234 
12 FORMAT <1H , 10t.13. 5 ,n A 235 
13 FORMAT (1H ,•KAPPA•,8X,•ETA•,tOXt•RH0•,10X,•L0•,11X,•LN•,11X,•RI•, A 236 

111X,•RN•,ttX ~Ro•,11X,•RY•,11X ·~M•,I) A 237 
14 FORMAT CiH ,!A =•,E13.5,1,1H .lls =•!E13.5z.I,1H ,•EN=•,E13.5,/) A 238 
15 FORMAT <1H ,•XMOM=•,Et3.5,5X, YMOM= ,E13.~) A 239 

END A 240­

FUNCTION OETA CKAPPA,ETA,RHO) 8 1
REAL KAPPA 8 2 

c B 3 c DETA DETERMINES THE DIFFERENTIAL OF ETA 8 4 
c OETA IS US EO BY MONOSH B 5 
c B 6 

DETA .5*ETAIKAPPA*((1.-.29"'KAPPA••2)/(ETA••2•RH0••2>-1.) B 7 
RETURN B 8 



P~OGRAM MONOSH AND SUBROUTINES PAGE 6 
t-t..ln n nC.I'IU ______ 0 -:~-

FUNCTION DRHO <KAPPA,ETA,RHO> C 1 
REAL KAPPA C 2 
COMMON /SSCU ~V/ NSS,ALFA,BETA,EN C 3 

c c 4 
C DRHO CALCULATES THE DIFFERRENTIAL OF RHO C 5 
r- nouf'\ TC"' IIC"rn ov ... n~1nC""u f' t:... 

~ -~v--;..:;r- QJ - t:. ·u u f f-, -v,.,--v -vr1_____________ --v ---------u 

c 
GO TO (1, 2 >, NSS 

1 DRHO=-RHOI<2.•ALFA~BETA•<-ALOGCRHO>>••EN>•CALFA•KAPPA/(2.-KAPPA••2
1.•.5)+BETA•<-ALOGC<1.-KAPPA•.5>1ETA>>••EN/C2.-KAPPA>-BETA/C2.+KAPP
2A>•<ALOG((1.+.5•KAPPAl/ETA>>••EN+DETA<KAPPA,ETA,RHOl/ETA•<2.•ALFA+
3BETA•<-ALOG<<1.-.5•KAPPAl/ETA> >••EN+BETA•<ALOG<U.+.5"'KAPPA> /ETA>>
4••ENl)

rn Tn ., 
uv 'v v 

2 DE=DETACKAPPA ETA,RHO>
DRHO=RHO/tBETA••EN+CBETA-ALOG<RHO>>••EN>•<<BETA+ALOG<1.+.5"'KAPPA>­

1ALOGCETA>>•• EN"'C1.1<2.+KAPPA>-DEIETA) +(BETA-ALOG(1.-.5"'KAPPA>+ALOG
2<ETAl>••EN•<1./CKAPPA-2.l-DE/ETAl)

GO TO 3 
3 CONTINUE 

RETURN 
~~n'- ''u -- --------------­

SUBROUTINE STRESS1 CSRN,STN>
REAL KAPPA LO LN 
DIMENSION §RNl21> STNC21> 
COMMON /STATE/ KA~PA 1 ETA,RHO,LO,LN,RI,RY,RN,RO,RMCOMMON /SSCU RV/ NSS,ALFA,BETA,EN

f' 

c 7 
C 8 
C 9 
C 10
C 11 
C 12 
C 13 
f' -4 J. 
v ~~ 

C 15 
C 16 
C 17 
C 18 
C 19 
C 20 
C 21 
f' ??­
v ---- - - ~..-

D 1 
D 2 
D 3 
0 4 
D 5 
n ~ 

o----------------------------------------------------------------------~--~ 

C SUBROUTIN E STRESS1 CALCULATES THE STRESSES FOR THE BENDING OF A ST D 7 
C HARDENING MONOMETAL CBAUSCHINGER EFFECT INCLUDED IN CRAFOORDtS D 8 
C FASHI D 9 
C STRESS1 IS TO BE USED WITH THE MAIN PROGRAM MONOSH • D 10 
c D 11 

DR=CRY-Ril/2 0. D 12
R=RI D 13 
I.I~TT.,- I~ '> \ n -4 I, 
nn.-.-.-~-----~--.----------------------------------------

DO 1 I=1 7 21 D 15 
CALL SIGMAT1 CR,SRN <D ,STNCI)) D 16 
Z=R-RI D 17 
STRAIN =ALOG ( ~/RO> D 18 
X=STNCI>-SRNCI> D 19
X=ABSCX) D 20 
WRI TE (6 , 3 > Z, SRN!I > , STN <I ) , STRAIN , X D 2 1 
R­

1 CONTINUE D 23 



----- --

9 

PROG~AM MONOSH AND SUBROUTINES PAGE 7 
-r-Yt •-a.l 1'*\ 1"'11 f 

------,,-----~--t 

c 0 25 
2 FORMAT <1H1,• R-RI .., .., SR .., .., D 26 

1 ST .., , ... STRAIN ' ... ,... EFFECTIVE YIELD ~TRESS•,! D 27 
2/ , D 28 

3 FORMAT <1H ,5E2 0.10> D 29 
END D 30­

SUBROUTINE SIGMAR1 <R,SR>
REAL KAPPA,LO,LN
COMMON /STATE/ KAPPArETA,RHO,LO,LN,RI,RY,RN,RO,RM
COMMON /SSCURV/ NSS,ALFA,BETA,EN

C 
C PROGRAM TO CALCULATE THE RADIAL STRESS IN A STRAINHARDENING 
C MONOMETA 
r' 101\IIC"r'UTUI"'C"O C"C"~C"r'T T~ll"lllnc-n T~l r'OIIC'f'lf'IDn+C" 1:'1\C"UTt"'ll.l\
V \UHV<JVII~I•UC I\0 LOI I .... VI :L I 't'Va.VULO:D OLI'I Vl ,l"\t------o~~------.-----,..r-\Jli.I."Vt'f-, - . 

C SIGMAR1 IS TO BE USED WITH PROGRAM MONOSH •
C 

IZONE=3 
IF <R. GE.RO> IZ0'-4E=1 
IF <R.LE.RN> IZONE=2 
GO TO <1,5, NSS 

1 GO TO <2,3,4), !ZONE 
2 SR ALFA*ALOGCR/R¥>+-BETA/CENt1.)*((ALOGCR/Rot>••(EN+1.>

1))..,•CEN+1.l>
GO TO 9 

3 SR=-ALFA•ALOG(R/RI)t8ETA/(EN+1.>..,C<-ALOG<RIRO>>..,..,<ENt1.>-<-ALOGCRI
1/RO>>..,..,<EN+1.l)

GO TO 9
4 SR=ALFA..,ALOG<RIRY)-BETAI<EN+-1. )• <ALOG<RY/RO> >•..,<EN+1. > 

GO TO 9 
r:: f'f'l Tn IC.. 7 0' T71"\~IC" - ------- -- ­-:;r-----.::TU~-.:r--..--.:TT<--..-.CTT'.----c~CTTT..::::---------------------- ------

6 SR=ALFA/CEN+-1.>•< CBETA+ALOG(R/RO)) •..,<EN+1.>-<BETA+ALOGtRY/R0))..,..,{E
1N+1.>> 

GO TO 9 
7 SR=QLFA/CEN+1.)..,({8ETA-ALOG<RIR0))..,..,(EN+1.>-(BETA-ALOG(RI/R0))..,..,{E

1 N+ 1.) > 
GO TO 9 

8 SR=ALFA..,BETA•..,EN•ALOG<RIROltALFA/(ENt1.>..,<BETA..,..,<EN+1.>-<BETAtALOG
' '.,. t n v J n /"\ .a a t r !.I_.__ ..,. \ \ 

GO TO 9 
CONTINUE 
RETURN 
END 


SUBROUTINE SIGMAT1 <R,SR,ST)

01:' Ill V II 00 II _ I n I ld 

COMMON /STATE/ KAPPA,ETA,RHO,LO,LN,RI,RY,RN,RO,RM 

CALOGCRY/RO 

E 1 
E 2 
E 3 
E 4 
E 5 
E 6 
E 7 
1:' A 
\- V 

E 9
E 10 
E 11 
E 12 
E 13 
E 14 
E 15 
E 16
E 17 
E 18 
E 19 
E 20 
E 21 
E 22 
E 23 
1:' ~ L. 
~- L - l 

-----~.., --

E 33 
E 34 
E 35 
E 36­

F 1 
I= ? 

-- ·- ·-· F 3 

E 25 
E 26 
E 27 
E 28 
E 2 9 
E 30
E 31 
r "2' ~,.,,--L,.­



PROGRAM MONOSH AND SUBROUTINES PAGE 8 
f"'rrf"\U tut n td IC"C"""I"t ln \11 h.tC"" C" 11.1 ~ A nr-TI\ r-._1 r- I. 
VU ' IIIU!'f 7JJOV\VI 11...,;:J,MLIM,UC.1RJLI"I I "T 

c F 5 
c PROGRAM TO CALCULATE THE TANGENTIAL STRESS IN A STRAINHARDENING F 6 
c MONO F 7 
c CBAUSC HINGER EFFECT INCLUDED IN CRAFOORDtS FASHION). F 8 c SIGMAT1 IS TO BE USED WITH PROGRAM MONOSH • F 9 c F 10

CALL SIGMAR1 CR,SR) F 11 
T-,n~•~ - ., ~ .. ,.,
0L LV I 'fC:­

IF CR. GE. ROl IZONE=1 F 13 
IF CR. LE.RNl IZONE=2 F 14 
GO TO C1,5>, NSS F 15 

1 GO TO (2 3,4l !ZONE F 16 
2 ST=SR+-AL~A+-B E fA•tALOGCR/RO>>••EN F 17

GO TO 9 F 18 
3 ST=SR-ALFA-BETA•C-ALOGCR/RO>>••EN F 19 

r:n Tn o c ?nST=SR+-ALFA ---- - ------- --- F 214 
GO TO 9 F 22 

5 GO TO C6,7,8l, IZONE F 23 
6 ST=SR+ALFA•CBETA+-ALOGCR/RO>>••EN F 24 

GO TO 9 F 25 
7 ST=SR-ALFA•(BETA-ALOGCR/RO>>••EN F 26 

GO TO 9 F 27 
II C' T- C' D .t.. II I 1:' II .W. Dr::' T II .lf.JIJ 1:' AI C ? IIv ---- ~""Wl"--r~-~--.----,..,----------u ,... 1 n L;1..-----------------------------r- --c=-tt" 

GO TO 9 F 29 
9 CONTINUE F 30 

RETURN F 31 
END F 32­

SUBROUTINE MOM1 CXMOM) G 1 
DC Ill V II DO II I f'l I t.l 1': ? 

coMMoN '"'/sr ATE /"'i<liPPA ,E-rA, RHD-;-Lo, LN, Rr, Rv ,RN, Ro, RM G 3 
COMM~N /SSCURV/ NSS,ALFA,BETA,EN G 4 

C G 5 
C SUBROUTINE MOH1 CALCULATES THE BENDING MOMENT OF A STRAINHARDENING G 6 
C MONOMETAL STRIP (BAUSCHINGER EFFECT INCLUDED IN CRAFOORDtS G 7
C FASHION>. G 8 
C MOM1 IS TO BE USED WITH PROGRAM MONOSH • G 9 
~ r: ~~ v ---- ------ ----- ---------------------.:r---:r-u-

XMOM=O. G 11
CALL INT1 CR.I,RN,XMOM> G 12 
CALL I NT 1 ( R N , R 0, X M 0 M > G 1 3 
CALL INTi CRO,RY,XMOMl G 14
RETURN G 15 
END G 16­

SUB~OUTINE I NTi {R1,R2,XMOMl H 1 



PROGRAM MONOSH AND SUB ROUTINES PAGE 9 
nr-AI vAnnA tn .... u ~ 

COMtbN "/sr A¥ £iLKAPP ArETA, RHOt Lo, l", RI' RY ,RN, RO' RM
COMMON /SSCURV/ NSS,ALFA,BETA,EN 

C 
C SUBROUTINE INTi CALCULATES THE MOMENT OF THE TANGENTIAL STRESS 
C BETWE 
C Ri ANO R2 • 
C INTi IS USED IN MOMi • 
,..v ·· --- ---------- -------------------------- ------------- --- - ----------------------------- -­

~3
H 4 
H 5 
H 6 
H 7 
H 8 
H 9 
u .1 n--- ,, -­ ~--v 

D=( R2-R1)/CRY-RI>•100. H ii 
N=O H i2 
IF CN. L T.iO> N=iO H i3 
X=N H i4 
NN=N-i H 15 
DR=CR2-R1)/X H i6 
R=R1 H 17 
f'/\1 I C' Tr:M/1 T.. 10 C'O _ C'T\ ___ ________ _ Ll______.. A 

i~5~=iA5~;~t·~~5~7~;·· ~ i~ 
00 1 I=1,NN H 20 
R=R~DR H 2i 
CALL SIGMAT1 CRtSR,ST} H 22 
XMOM=XMOM+ST•R•uR H 23 

1 CONTINUE H 24 
R=R2 H 25 
,..Ill I C'TrUII T.l 10 C'O C'T\ U ?L 
xt1ot:;~xt1ot1~sr·R•7iR/2 ':" _____ -- H- -2-7 u ______ 

RETURN H 28
END H 29­



PROGRAM BENDING AND SUBROUTINES PAGE 1 
PROGRAM BENOING<INPUT,OUTPUT,PUNCIItT~~~~~~HU+T~PHU+T~ -~~~~~~~~~~~~-,+T•A~P+E7~-~&A~~i

1 PUNCH> A 2 
INTEGER PROGPAM 
REAL KAPPA,KAPPA1,KAPPA2,KAPPA3,L0 7 LN,MU,LMIN 7 LMAX,LETA
REAL KZONE 
DIMENSION AC4>, 8<4>, TC4>, TT0(4), LETA<4>, SIGMA0<4>
DIM ENS ION BE PS (5) 

8i~~~~i8~ ~~~~~ii;' SR~1~i~R~~~~~' SR10(~
DIMENSION P(4)
DIMENSION ST1 f21>, ST2 (21) 7 ST5f21>, ST10(21)
DIMENSION R1C21) 7 R2C21>, R5<21>, R10C21> 
DIMENSION XMC20>, YMC20) 

g~~~~~I9~s8~~8~E~~~:N~~~~E~f\4>, BETAC4l 1 ENC4> 1 MU<4t2> ,To 
~~~~Q~ ~~~~~~'~I~9~~~~M~~~~~~~,~~~~~~~O~>,REMKH0<2o0)
VV l l l fV f .. I iJ I l' ;;.J I t' l 

C 
C PROGRAM BENDING 
C 
C 
C PROGRAM BENDING 
C PLASTIC BENDING 
C DIFFERENT TYPES 
C HOWE: IJ E: R 7 I T IS AS S U ME:D TH-E---M-A-+-£-R-I--A-b-H-A-£-N.O--B-A-Y-$b-Hl-NG-E:-R--e- -+-• AE:t---Ft---F~ECb-T .------~~~----(2~$
C 
C BENDING USES DETAfSTORE 7 SHIFT 7 ST RESS61 POL21STRlSTRAIN,DZ,
C INTMOM,NUMINT,ANA NT,BENMOM,INTUP,INTuO,FINULN,uSIGMA. 
C 
C INPUT 
C NLT 
C NSS 
C 
C 
C 
C 

C 
C 
C TO 
C OK 
C RELATIVE 
C 
g ~H1!'~~ 

I '\ ... L:\JI 7 ~~-u-.,----- --,----~---f --,--.L-~-y - 1 -- J ,, 

••• VERSION 24 SEPT 1972 ••• 

CALCULATES THE BEHAVIOUR IN PURE PLAIN STRAIN 
OF A LAMINATED STRIP • 
OF STRESSSTRAINCURVES CAN BE USED • 

DATA • 
NU MBER OF LAMINAE IN 
NU MBER OF THE STRESS 

NSS-1 GIVES A CURVE OF 
EFFECTIVE STRESS 

NSS=2 GIVES A CURVE OF 

THE STRIP • 
STRAIN CURVE • 
THE TYPE 
= A + B • <EFFECTIVE STRAIN> ..,..·EN • 
THE TYPE 

C ACI>LB<I> 1 EN<I> ARE THE COEFFICIENTS OF THE CHOSEN 
C STRE~S-ST~AI N 

EFFECTIVE STRESS= A • (EFFECTIVE STRAIN+ B >••E~ • 

C SIGM~O<I> ST ~ESS SUPPORTED BY LAYER I WITHOUT ~NY DEFORMATION 
C ALFA<I>,BETA<I>,EN<I> COEFFICIENTS OF THE MODIFIED 
~ ~TO~~~-~TOATM 

CURVE TYPE FOR LAYER I • WE COUNT THE LAYERS FRO 
THE INSIDE OF THE BEND • 

TH E ORIGINAL THICKNESS OF THE STRIP • 
TH E STEPSIZE FOR THE NUMERICAL INTEGRATION OF THE 

SH EET-THICKNESS DIFFERENTIAL EQUQTION • 
t= ~~g= ~=tH~ ~g~ ~~~~~~Es~5~~~~E 0~FLe~~~~l~EII 

A 3 
A 4 
A 5 
A 6
A 7 

8 
A
A 10 
A 11 
A 12 
A 13 

= }~ 
A 16 
A 18 
A 19 
A 20 
A 21 
A 22 
A 23 
A 24 

~~~~~~~~~~~-
A 26 
A 27
A 28 
A 29 
A 30 
A 31 
A 32 
A 33 
A 34 
A 35 
A 36 
A 37 
A 38 
A 39 
A 40 
A 41 
A 42 
A 43 
A 44 
= ~~ 
A 47 
A 48 
A LQ 

C CURV E FOR MATERIAL I --- A-- SO 
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G ETA RELATIVE SHEET THIGKN~ = RATIO OF-GURRE~~EEEE+T--------~A~~5~1r------------------------
C THICKNES A 52 
C TO ORIGINAL SHEET THICKNESS A 53 
C RHO RATIO OF CURRENT NEUTRAL LAYER RADIUS TO CURRENT A 54 
C UNELONGATED LAYER RADIUS A 55
C LN CURRENT VALUE OF LAMBDA OF THE NEUTRAL LAYER A 56 
C LO CURRENT VALUE OF LAMBDA OF THE UNELONGATED LAYER A 57 
C LMAX THE MAXIMUM VALUE LN HAS EVER ATTAINED IN THE PREVIOUS A 58 
~ n~~noM~TTnu oon~~~ ~ ~a 
-o------------------.::n::-r-.::r>".,.,-,m:-o-r.---o~~=------------------------------------------ .;r;~ 

C LMIN THE MINIMUM VALUE LN HAS EVER OBTAINED IN THE PREVIOUS A 60
C DEFORMATION PROCESS A 61 
C RM THE CURRENT AVERAGE RADIUS OF THE BEND STRIP A 62 
C RI THE CURRENT INSIDE RADIUS A 63 
C RY THE CURRENT OUTSIDE RADIUS A 64 
C RB<I> THE CURRENT RADIUS OF THE OUTSIDE SURFACE OF LAMINATE I A &5 
C tEVENTUALLY MINUS RI> A 66 
C R~l CURRENT NEUTRAL LAYER RADIU-S A 67 
C RO CURRENT UNELONGATED LAYER RADIUS A 68 
C LETAti> CURRENT RELATIVE THICKNESS OF lAMINATE I 1 I.E. THE A 69
C RATIO OF CURRENT LAMINATE THICKNESS TO ORIGiNAL LAMINATE A 70 
C THICKNESS A 71 
C XMOM CURRENT BENDING MOMENT DIVIDED BY THE SQUARE OF THE A 72 
C ORIGINAL SHEET THICKNESS A 73 
C YMOM CURRNT BENDING MOMENT DIVIDED BY THE SQUARE OF THE A 74 
r riiDDJ:"I\IT ~~I='I='T T~Trltl\ll='~ C::: f1 ?c:;c A 76~H~------ ---- ­

C A 77 
C NPUNCH = 0 NO PJNCHED OUTPUT A 78 
C NPUNCH t 0 PUNCHED OUTPUT A 79 
C NCHtO STEPSIZE IN INTEGRATION REMAINS CONSTANT AND IS OK A 80 
C NCH=O INTEGRATION STEPSIZE IS FUNCTION OF KAPPA, AND IS GIVEN A 81 
C BY OKZONE AND KZONE. A 82 
C NEXT1 t 0 DETAIL EO INFORMATIO~I OF---t..AYER M~---UlS---A-N-O'------kL~A-+Y~E-f'<R,----------+>.A--~8~3-----------------------
C STRAINS A 84 
C IS GIVEN A 85 
C NEXT1 = 0 NO DETAILED INFORMATION OF LAYER MOVEMENTS OR STRAINS A 86 
C NEXT2 t 0 STRESS DISTRIBUTIONS ACROSS THE SHEET THICKNESS ARE A 87
C GIVEN A 88 
C NEXT2 = 0 NO STRESS DISTRIBUTIONS GIVEN A 8 9 
C NEXT3 1 0 PLOT 3F BENDING MOMENT GIVEN A 90 
r 1\II:"VT':I: -- n 1\tn Dl nT nl=' MnMI='I\IT .IL __O-tc ~~~ - ---- ---- ------ - A 9 2 •r=n•

DATA PROGRAM/7HBENDING/ A 93 
DATA NPUNC H/0/ A 94 
DATA NEXT1,NEXT2,NEXT3/1,1,1/ A 95
DATA NCH/0/ A 96 
DATA DKZONEC1),0KZONEC2) ,OKZONEC3) ,DKZONEt4)/e1p05,.025,.01/ A 97 
DATA DKZONE(5),0KZONECG>,DKZONE<7>1.005,.0025,.u01/ A 98 
nAT/\ nlt7f'IMI:"fJn I_AAAI'\/ _ _ _ __ __ _ f. ru-s------------­

oAtA i< zoNE 1:iT~ id5NET2---,----;-i<zoNE-r-3->, KZ oNE< 4> 11.,. s, .1,. ost A 16 6 

http:DKZONEt4)/e1p05,.025,.01
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~TA KZONE<5l ,KZONE (6) ,KZONE(7l,KZONE(8)/,02,,e~0~2~,~o~,+I~~~~~~A~1~0~1~~~~~~~~~~~~~ 
DATA DK/.01/ 

8~l~ ~i~r~§1t1?~~~ir7:~9 1. 1.E-10/
DATA A12),8(2),ENC2)/2.12,.692,.430/
DATA MUC2,1)1.82/
MU(1,1>=0. 
~S,l-i:~~~~6(r,1>

1 CONTINUE 
MU(NLT,2>=1.
DO 2 I=1, N L T 
LETACI>=1. 
TTOCil=<MU<I,2)-~U<I,1>>•TO

2 CONTINUE 
GO TO <3,5 >, NSS 


ALFACI>=2./SQRTC3.>•ACI>

BETACI>=<2./SQRT(3.>>••CEN(Il+1.>•B<I>
SIGMAO<I>=ALFA<I> 

4 CONTINUE 
GO TO 7 

5 DO 6 I=1 7 NLT 
ALFA<I>=t2./SQRTt3.>>••CENCI> t1.>•ACI)
CCTAfT\-~nDTf7 \/?¥CIT\ 

A 102 

~ i8~
A 105 
A 106 
A 107 
~ 18~ 
A 110 
A 111 
A 112 
A 113
A 114 
A 115 
A 116 


A 118 

A 119 

A 120 

A 121 

A 122 

A 123 

A 124 

A ~?~ 

s!GMAoti);ALFA<I>•sETA<I>••ENti> A 126 
6 CONTINUE A 127 

GO TO 7 A 128 
7 CONTINUE A 129 
c A 130 c STARTING POINT FOR INTEGRATION IS THE UNBEND CONDITION • A 131 c A 132 

VAODA-n A ~77 
.,.,~--.-....--..,,--~~~~~~~~~~~~~~~~~~~~~~~~~~~~---jo~-~rQ 

ETA=1. A 134 
RH0=1. A 13 5 c A 136 

c CALCULATION OF THE ORIGINAL NEUTRAL LAYER • A 137 c A 138
SIGMAL<1>=0. A 139 
DO 8 I=1,NLT A 140 

SIGMAL(Jl=SIGMAL<I>•S!GMAO<I>•<MU<I,2>-MU<I,1>> A 142 
8 CONTINUE A 143 

TEST{1l=SIGMALCNLT+1) A 144 
DO 9 I=1 7 NLT A 145 
J=It1 A 146 
TESTCJ>=TEST<1>-SIGMALCJ>•2. A 147
IF CTEST<J>.EO.O.l GO TO 10 A 148 
W-TEST<J)•TESTtJ-1) A 149 
IF <W.LT.O.l GO TO 11 A 150 

http:MUC2,1)1.82
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10 LN=HUCJ 1 1> A 152 
GO TO 1~ A 153 

11 LN=CTESTCJ-1l•MU{J-1,2>-TESTCJ)•HU{J-1,1))/(TESTCJ-1>-TESTCJ)) A 154 
GO TO 12 A 155 

1 LO=LN A 156 
LMAX=LN+1.E-10 A 157 
LMI~=LN-1,E-10 A 158 
t"lltl ~TnOt:' fiMOUn_~\ II ~kC<>""""' .., 'v • <oo '"""'""v' •• ------------------ ------ A-160 c 

c CALCULATION OF THE INITIAL BENDING MOMENT , A 161 
c A 162 

SIGN=-1, A 163 
H=O A 164 
XMOH=O, A 165 
00 14 K=1,NLT A 166 
Tl=' (fMIIIIL?\_f:T_I M"'_IHJn_ULI='ILn"'\ r:n Tn -1't lJ. -1&;.7

xi-1oM;:;s IGN~ sr GMAo1 i<> i2~·· h1u<r<;TI"2=MuTi<-;-i> ·•2>-t.-xt16M A 168 
GO TO 14 A 169 

13 XMOH=SIGN•SIGMAO(K)/2,•CLN••2-MUCK,1)••2)+XMOM A 170 
SIGN=+1, A 171 
M=1 A 172 
XMOM=SIGN•SIGMAO(Kl/2,•CMU(K,2>••2-LN••2>+XMOH A 173 

14 CONTINUE A 174 
VMnM:YMnM ---- -- - ,.--.lJ. --1 
~~~~~--------------------

XM(i,=XMOM A 176 
YM(1)=YHOM A 177 
WRITE C6,39l A 178 
DO 16 I=1,NLT A 179 
J=O A 180 
IF CNPUNCH,EQ,Q) GO TO 15 A 181 
WRITE <7,45) J,PROGRAH,NSS,NLT,I,DK,A<I>,B<I>,EN<I>,MU(I,1>,MUCI,2 A 182 

15 CONTINUE A 184 
WRITE (6,44) A 185 
WRITE (6,40) I,ACI> ,B<I>,EN(!) ,MU<I,1> ,MU{I,2> A 186 

16 CONTINUE A 187 
WRITE <6 44) A 188 
WRITE t6!41) TO,DK A 189 
WRITE t 6, 4 4) A 19 0 

WRITE t6143l INDEX,NSS,NLT,KAPPA,ETA,RHO,LN,LO,LMIN,LHAX,XMOM,YMOM A 192 
1t<LETACKJ,K=1,NLT> A 193

IF CNPUNCH,EQ,Ol GO TO 17 A 194 
WRITE {7 7 46> INDEX,NSS,NLT,KAPPA,ETA,LN,LMIN,LMAX,RHO A 195 

17 CONTINUE A 196 
c A 197 
c A 198 

XN-Ci,/DK)/10, A 199 
IF C X N , L T, 1 , > XN= 1. A 2 0 0 
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A 
IF COK.GT •• 0 01> N=2.1DK-1. A 202 c A 203 

C INTEGRATION USING RUNGE-KUTTA METHOD • STEPSIZE FOR KAPPA IS OK • A 20Lt c A 205 
DO 29 I=1 N A 206 
IF CNCH.NE.O> GO TO 19 A 207 
DO 18 JK=1,8 A 20 8 

A 209
IF CKAPPA.GE.KZONE(IK» DK=DKZON E<IK> A 210 

18 CONTINUE A 211 
19 CONTINUE A 212 

IF (!. EQ.1) GO TO 20 A 213 
CALL FINDL N CK APP A, ETA, LN 7 XLN) A 21Lt
DE1=DK•OETA<KAPPA,ETA,XLNJ A 21·5 
GO TO 21 A 216 

21 KAPPA1=KAPPA+DKI2. 
ETA1=ETA+DE112. 
CALL FINDLN CKAPPA1,ETA1,LN,XLN) A 220 
DE2=DK•DETA<KAPPA1 7 ETA1,XLN> A 221 
KAPPA2=KAPPA1 A 222 
ETA2=ETA+DE212. A 223 
CALL FINDLN CKAPPA2,ETA2,LN,XLN> A 224 
nr::--:r~nll'llfni:'TIIfll'IIOO/\? . !:'T/\? _ VII\1\ fl ??C:
'-" ·L..v-"" ' ' ""' ~ - , -- r"'' -- , - . ,~-1 ,---...,-~r~-,...,..., - "'-------,-~-... -T7 ;T-----.

KAPPA3=KAPPA+DK A 226 
ETA3=ETA+DE3 A 227 
CALL FINOLN <KAPPA3,ETA3,LN,XLN) A 228 
DELt=OK•OETA<KAPPA3,ETA3 1 XLN> A 229 
OE=CDE1+DE4116.+CDE2t-OE-s>l3. A 230 

C A 231 
C NEW VALUES FOR KAPPA,ETA,RHO,LN • A 232 

A 218 
A 219 

KAPPA=KAPPAt-OK A 23Lt 
ETA=ETA+OE A 235 
CALL FINDLN CKAPPA,ETA,LN,XLN) A 236 
LN=XLN A 237 
RHO=SQRT<C1.-.S•KAPPA>••2+2.•KAPPA•LN>IETA A 238 
J=I+i A 239 
CALL STORE CLt-.,RHO,J) A 2Lt0 

C GEOMETRICAL CONFIGURATION OF THE CURRENT BEND • A 2Lt2 
C A 2Lt3

RM=ETA•TO/KAPPA A 24Lt 
RI=RH•<1.-KAPPA•.51 A 245 
RY=RH•<1.+KA PPA•.5> A 2Lt6 
RN=RH•ETA•RHO A 247 
RO=RH•ETA A 2Lt8 
I n,.,.-ti:'TII.IIf?-f'l . -ll'IIDDflllf_C::\.1/f?\1/?_ ..,_ll'/10011'\ II ?J,a
Rsiir;-fii- '"' · ~ ·-~~ · .. · A 25 o 

http:RI=RH�<1.-KAPPA�.51


PROGRAM BENDING AND SUBROUTINES PAGE 6 
DC'DC" 1-4 '-Ill nL fDT.<On\ II ?C:<f 
U '- l •.Y' -.;J;.- .I - M .... V V ' ''- .;L, I"' V I - -- - - ""- --t.,;--..7-.,1; 

DO 22 K=1,NLT A 252 
M=K+1 A· 253 
RB(MJ=RM•SQRTC{1.-KAPPA•.5>••2+2.•MUtK,2l 4 KAPPA> A 254 
BEPSCM>=ALOGCRBCMJ/RO> A 255 
TCKJ=RBCM>-RBCKl A 256 
PCKJ=~BCM>-RI A 257 
LETA<K>=TCKl/TTO(K~ A 258 

IF CNE X T 1. EQ • 0 ) G 0 T 0 2 3 A 2 6 0 
R1=RM 4 SQRT <<1.-KAPPA 4 .5) 44 2t2. •.t•KAPPA) A 261 
R2=RM 4 SQRT<C1.-KAPPA 4 .5) 44 2+2. 4 .24 KAPPA) A 262 
R3=RM•SQRTCC1.-KAPPA•.5>••2+2.•.3•KAPPA> A 263 
R4=RM•SORTCC1.-KAPPA 4 .5) 44 2+2. 4 .4'KAPPA> A 264 
R5=RM 4 SQRTC<1.-KAPPA 4 .5)• 4 2t2 .• •.s•KAPPA> A 26·5 
R6=RM•SQRT C Ct.-KAPPA•. 5) 4 •2+2. •.6•KAPPA> A 266 
R7-~M•SQRTCC1.-KAPPA4.5)''2•2.•.7•K~~------------------------------~~~--------------------------
R.8=RM•SQRT CH.-KAPPA•. 5> 4 '2+2. •.8•KAPPA> A 268 
R9=RM•SQRT C Ct.-KAPPA•. 5) ••2+2. •. 94 KAPPA> A 269 
P1=R1- RI A 27 0 
P2=R2- RI A 271 
P3=R3- RI A 27 2 
P4=R4-RI A 273 
P5=R5- RI A 27 4 
Pk,Ok- OT 

Pl=R7- RI 
P8=R8- RI 
P9=R9- RI 
PO=RO- RI 
PN=RN-RI 
EI=ALOGCRI/RO>
E1=ALOGCR1/RO>
E2-IH.OG(R2/R0)
E3=ALOGCR3/R0)
E4=ALOGCR4/R0)
E5=tiLOGCR5/RO>
E6=ALO-GCR6/RO>
E7=ALOGCR7/RO>
E8=ALOGCR8/RO>
E9=ALOGCR9/RO> 

EPSN=ALOG(RN/ROJ
23 CONTINUE 
C 

A 27 6 
A 27 7 
A 27 8 
A 27 9 
A 280 
A 281 
A 282 
A 283 
A 284 
A 285 
A 286 
A 287 
A 288 
A 289 
A 290 


A 292 

A 293 

A 294 


C CALCULATION OF T~E BENDING MOMENT • A 295 
C A 296 

CALL BENMOM CKAPPA,ETA,LN,RM,RI,RY,XMOM) A 297 
XMOM=XMOM/CT0 4 '2> A 298 
YMOM-XMOM/(ETA••2) A 299 

C A 300 



------------- --------

-------------------------------------

24 

25 
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G WE DETERMINE TtiE RAOIAL AN9 TANGENTIAL 
C KAPPA IS .1 OR .2 OR .5 OR 1. • 
~ 

IF CNE X T 2 • E Q • 0> G0 T0 2 4 

IF CCKAPPA.GT .. 0999>.AND.<KAPPA.LT •• 1001)) 


1 f~R~t~~~~~:~t~!1999>.AND. CKAPPA.LT •• 2001>) 

ijFR1~~~~~~!Et~!4999>.AND. (KAPPA.LT .. 5091)) 
1 f~R1t~:~~~:~f~!9999>.AND. CKAPPA.LT.1.0001))
1 1 ST10,RI,KAPPA,ETA) 
~ONTINUE 
XI=I 

X=XI/5.

JX=X 


JJ=O 

IF CI. EQ.J)

IF CI • E Q. J ) 

WRITE <6 1 43l 


PAGE 

STRES~~~~~~W~H~ENN~~~A~3~9~1~~~~~~~~~~~~-

CALL STRESS6 tR1,SRi,ST 

CALL STRESS6 CR2,SR2,ST 

GALL STRESS6-{R5 7 SR5 7 ST 

CALL STRESS6 CR10,SR10 

1 <LETACKJ,K=i NLTl 
fF CN EXT1.EQ.6> GO TO 25 
WRITE C6,34l P1,P2,P3,P4,P5,P6,P7,P8,P9,(P(K),K=1,NLT>
WDTTC 1, _7~\ D~_Dn'"" 7 ...., ---------- ---------- ----- -- --­

WRITE <6,44> 

WRITE ( 6, 4 2}


INOEX,NSS,NLT,KAPPA,ETA,RHO,LN,LO,LMIN,LMAX,XMOM,YMOM 


.,.,.-- ,--...--.-----.-~ J' 

WRITE C6,36) EI~E1,E2,E3,E4,E5,E6,E7,E8,E9,EY 
WRITE t6,37l CBt PS<K>,K=i,NLT> ,EY 
WRITE (6,38> EPSN 
CONTINUE 
IF <NPUNCH.EQ.O> GO TO 26 
WRITE (7,46) INDEX,NSS,NLT,KAPPA,ETA,LN,LMIN,LMAX,RHO 

26 CONTINUE 
TC f T l:"n I I' r:n T n ?7 ....- , - - - -~ - .---.-- - -~'l{~---:r~"L~---

GO TO 29 
27 CONTINUE 

XMCJYt1>=XMOM 
YM(JY+i>=VMOM
DO 28 K=i,NLT
J=Kt9 
RBCK>=RBCK>-RI 
f'fl1 I 01 nTDT fVADOfl DDIV\ f ,\ 
~--.;;----~ ... VI t ~~---.-,...----.,----t,U'\l'J~ 

28 CONTINUE 
CALL PLOTPT <KAPPA,ETA,25)
RN=RN-RI 
GAlL PLOTPT CKAPPA,RN 34> 
CALL PLOTPT CKAPPA,RH0,38)

29 CONTINUE 
CALL OUTPLT 

C PLOT THE STRESS DISTRIBUTION IN THE BEND SHEET • 


"""' '- _, 

A 326 
A 327 
A 328 
A 329 
A 330 
A 331 
A 332 
A "l7 7------------------ ,..,--·-vv· v 

A 334 
A 335 
A 336 
A 337 
A 338 
A 339 
A 340 
fl "ll.-4-------------------- ,... V--'T..L 

A 34 2 
A 343 
A 344 
A 345 
A 346 
A 347 
A 348 

A 350 

7 

A 302 
A 303 
A 3 0 4 
A 305 

: ~8~ 
~ ~g~ 
: ~t~ 
A 312 
A 313 
A 314 
A 3~5 
A 316 

A 318 
A 319 
A 3 2 0 
A 321 
A 322 
A 323 
A 324 
A ~?~ 

-

http:KAPPA.LT
http:CKAPPA.LT
http:0999>.AND.<KAPPA.LT
http:CCKAPPA.GT
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C STRESSES FOR KAPPA=ei ARE PLOTTED WIT~HE-S~~~L~1~.~------------~A~3~541------------------------
C STRESSES FOR KAPPA=.2 ARE PLOTTED WITH THE SYMBOL 2 • A 352 
C STRESSES FOR I<APPA=.5 ARE PLOTTED WITH THE SYMBOL 5 • A 353 
C STRESSES FOR KAPPA=1. ARE PLOTTED WITH THE SYMBOL $ • A 354 
C A 355 

IF CNE XT2. EQ. O> GO TO 31 A 356 
DO 30 I=1,21 A 357 
X=I-1 A 358 

CALL PLOTPT CX,SR1<I>,11) A 360 
CALL PLOTPT <X,ST1 '(!>,11> A 361 
CALL PLOTPT CX,SR2(I),12> A 362 
CALL PLOTPT O,ST2CI>,12) A 363 
CALL PLOTPT CX,SR5C!),15) A 364 
CALL PLOTPT CX,ST5CI> 15) A 365 
CALL PLOTPT CX,SR10 crJ ,20) A 366 
f'flll otnTDT rv_~T-tntT\_~n\ fl ~&:.7 
....,. , , -- ... V I > I .. I\ 7 V I 4 W' " .. I 7 .... W' I --------------- --- ~ 't,JT- J 

30 CONTINUE . A 368 
CALL OUTPL T A 369 

31 CONTINUE A 370 
C A 371 
C PLOT THE 8 ENDING MOMENT • A 37 2 
C XM=MOM ENT PER UN! T WIDTH I SQUARE OF ORIGINAL SHEET THICK NESS • A 37 3 
C XM IS PLOT TEO WITH THE SYMBOL M • A 374 
C YM - MOMENT PER UNIT WITH I SQUARE O~RR£NT SHEE~~~--·----~A~3+7~5-------------------------
C YM IS PLOT TED WITH THE SYMBOL W • A 37 6 
C A 377 

IF CNEXT3.EQ.D) GO TO 33 A 378 
KAPPA= 0. A 37 9 
DDK=.1 A 380 
DO 32 I=1 20 A 381 
CALL PLOTPT CKAPPA,XM{!),33) A 382 
f'flll 01 nTPT fll"fiDPfl_,ftooHT\_L.~\ _____________ fl 1A_~ 
...,,,._~ , .... ..,.. - ,, , ,,,,,,..-~,.., ---yl--- lT -- r~ ---­

KAPPA=KAPPA~O[K A 384 
32 CONTINUE A 385 

CALL PLOTPT <C.,0.,10> A 386 
CALL OUTPL T A 38 7 

33 CONTINUE A 388
C A 389 

STOP A 390 

34 FORMAT C1H ,~ LAYER MOVEMENT ~,9F10.7,1,1H ,~BOUNDARY MOVEMENT A 392 
1 •,9F10.7 7 /,) A 393 

35 FORMAT C1H ,•NEUTRAL LAYER AND UNELONGATED LAYER MOVEMENT•,6X,2F10 A 394 
1.7 I ) A 395 

36 FO~M!T C1H ,•LAYER HOOP STRAIN •,11F10.7) A 396 
37 60R~AT C1H ,•BOUNDARY HOOP STRAIN• 11F10.7) A 397 
38 FOR'1AT C1H ,•NEUTRAL LAYER HOOP STRAIN • F10.7> A 398 
39 FORl1AT C1H1,• I •,•Ati>•,aX,:tB(!):t,8X,•EN(b•,7><,•MU-t-I-,-1>•,5X,•H A 399 

1UCI,2>•,1> A 400 
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r.n cno~o.tiiT '"'u Tt:: c:c"'., t::\ 11 _J.n"' 

~l-~~~t H~ ::r2r~I[2~tt-5 ~A-~~i~-·;E-12EiA') RHO LN .,. : ~8~ 
1 LO LMIN LMAX XMOM YMOM LETA<I>,I=1, NL A 404 
2T •,II,> A 405 

43 FORMAT C1H ,3I3,9F10.7,4FB.5> A 406
44 FOR'1AT (1H I) A 407 
45 FOR'1AT CI3,A7,3I3,F7.6,2E12.4,3F10.7> A 408 
l.t:. cnoMIIT t"7T., ct:. 1. c:c ... ., c..\ 11 t.na 
"TV I U¥,11P"\ I ' '0' ~ ""' J I VW 1"J J ..... OLVW U I ------_________,...~- v-J 

END A 410­

FUNCTION DETA CKAPPA,ETA,LN) 8 1 
REAL KAPPA,LN 8 2 

G 8 -3 
G FUNCTION DETA DETERMINES THE DERIVATIVE OF ETA TO KAPPA. 8 4 
C (SHEET-THICKNESS DIFFERENTIAL EOQATION) B S 
C OETA IS USED WITH BENDING 8 6 c 8 7 

DETA=-.5•ETA•t1.-2.•LN-.5•KAPPA)/((1.-.5•KAPPA>••2+2.•LN•KAPPA> 8 8 
RETURN 8 9
END 8 10­

C:::IIJ:lDniiTT!\1~ C:::TnD~ fVIIILD~n_T) r. 1 
~~~~~~~~~~~~~~----------------------------------------~---~ 

REAL LMIN,LMAX C 2 
COMMON /REMEM/ INDEX,LMIN,LMAX,REMLN{200>,REMRH0<200> C 3 

c c 4 
c SUBROUTINE STOPE STORES THE POSITION OF THE NEUTRAL LAYER IN C 5 
c MEMORY C 6 
c STORE IS USED WITH BENDING . C 7 
c c 8 

DCMII\IfT)-Vf 1\1 r. 0 
REH~tio(i);;RHo ___ - -- - c 16 
INDEX=! C 11 
IF CXLN.LT.LMIN> LMIN=XLN C 12 
IF <XLN.GT.LMAX> LMAX=XLN C 13 
RETURN C 14 
END C 15­

-SUBROUTINE SHIFT tLAM,REMSTR>
REAL LAM LMIN LMAX 
L 0 G I C A L f E N S , ~ OMP STATE 1, STATE 2 
COMMON /REMEM/ !NDEX,LMIN,LMAX,REMLNt200),REMRH0{200)c 

C SUBROUTINE SHIFT DETERMINES HOW MUCH STRAIN A MATERIAL LAYER 
C HAS UNDERGONE IN PREVIOUS DEFORMATION • THIS CAUSES A SHIFT 
C STRESS STRAI'J CURIJE RELATIVE TO THE CURREN--1----S-TRAIN • 
C THIS SHIFT IS NEEDED TO CALCULATE THE EFFECTIVE STRAIN • 

D 1 
D 2 
D 3 
D 4 
D 5 

LA~ D 6 
IN lHE D 7 

0 8 
0 9 



c 
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f' ~UT~T TC'"' ltC"~n UTTU 'n~t..&nT~If'" n ...C ·n 
U JIILI I ~J VJL:U rt~l It ULOI'fULI 

REMSTR=O.
IF <INDEX,LE,2) GO TO 5 
TENS=, TRUE. 
COMP=,FALSE.
STATE1=TENS 
IF CLAM,LT.REMLN(1)l STATE1=COMP 
IF ((LAM. EQ. QEMLN <1}), AND, lREMLN (2) wlEw REH-t-N (1)) }--S-f-A lHE::--:1~:-=-~CnOHMHP
DO 4 I=31INDEX 
STATE2=Tt.NS 
IF CLAM,LT.REMLNCI> > STATE2=COMP 
IF CLAM,EQ,REMLNCI~) GO TO 1 
IF <STATE1.AND,STATE2) GO TO 3
IF ((,NOT.STATE1l .AND, (,NOT,STATE2>l GO TO 3 

RHO=PO~g<h~~,REMLN<I>,REMLN<I-1> ,REMLN<I-2>,REMRHOCI> ,REMRHOCI-1>, 
GO TO 2 

' 

1 STATE2=.NOT,STATE1
RHO=RE MRHO t I)
GO TO 2 

2 CONTINUE 
SIGN=-1. 
IF CST ATE1 l SIGN=+t,
REMSTR-REMSTR•SIGN•2.•nLOG<RHO>
GO TO 3 

3 STA TE1 =STA TE2 
'+ CONTINUE 
5 CONTINUE

IF <REMSTR.LT,Q,) REMSTR=O,
RETURN 
END 

U ..LU 

D 11 
D 12 
0 13 
D itt 
0 15 
D 16 
0 17 

"--------I:l0-41~8------------
0 19 
D 20 
D 21 
0 22 
D 23
D 2·tt 
D 25 

D 2 7 
D 28 
D 29 
0 3:0 
D 31 
D 32 
D 33 
0 34 
0 35 
D 36 
D 37 
0 38 
D 39 
0 40 
0 41­

SUBROUTINE STRESS6 CR,SR,ST,RI,KAPPA,ETA) E 1
REAL KAPPA E 2 
REAL MU E 3 
REAL LMIN,LMAX,L E 4 
DIMENSION RC1l, SRC1> ST<1> E 5 
COMMON /STRSTR/ RR<t26>iSRRC120>,STTC120l,NS E 6 
COMMON IRE ME M/ IN DE X bM N, bMAX REM LN C-2-0-0h-RE-M-R-H-0-C-6--0-0
COMMON /SSCURV/ NSS,NLT,ALFAC4J.,BETA{4) ,EfH4>,MU<4,2) ,TO

c 
c STRESS6 WRIT~S THE STRESSDISTRIBUTION FOR A GIVEN KAPPA • 
c STRESS6 IS USED WITH BENDING 
c 

N=CNS-1)/4 
=~!~iAJ~bJ~A~:~PA 
DO 1 I=1,N 

E 8 

E 9 

E 10
E 11 
E 12
E 13 
~ 1~ 
E 16 

http:STATE2=Tt.NS
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E 
E 
E 

34 
35 
36 

YEFF-STTCI>-SRRCI} E 17 
SIGN=-1. E 18
IF CVEFF.GT.,O.) SIGN=+1. E 19 
X=R~<I>••2/CRM••2> E 20 
L=<X-<1.-.5 4 KAPPA>••2)/(2.,•KAPPA> E 21 
REMSTR=O. E 22
IF ((L.,GT.LMIN).I\NO.CL.LT.LMAX)) CALL SHIFT <L,REMSTR> E 23 
EPSTOT=REMSTR•SIGN•<.5•ALOGCX>-ALOGCETA)) E 24 
00 f T \ - 00 f T '\ - 0 T t:: ____ ? _&;. 
1,1 , \ OL I w ' "' ' \ L I ' '~ ---------- L... f- J

WRITE (6,4) RRU> ,SRRCI>,STTCI>,YEFF,EPSTOT E 26 
1 CONTINUE E 27 

NN=<N-1)/21 E 28 
IF CCNN•21>.NE.<N-1>> NN=NN+1 E 29 
00 2 I=1,N,NN E 30
J=I/NN E 31 
SRCJ>=SRR<I> E 32 

RCJ>=RR(!)
2 CONTINUE 

RETURN 
c E 37 
3 FOR"1AT C1H1,•RAOIAL ANO TANGENTIAL STRESSDISTRIBUTION FOR KAPPA =• E 38 

1,F10.5,1L1H t• R - RI •t• SR •,• ST •,•EFFECTIVE•,• E 39 
2 YIELD SIRES'S AND TOTAL STKAIN•,I,> E 40 

L.. t:'I"''OI-4/IT l4U _ r::t:'4n 7\ 
T --, -~-., , -,..,- --. -- - -, -- ..,. , -... ----7 ;;- r • v w-- , r 

ENO E 42­

FUNCTION POL2 CX , X1,X2,X3 7 V1,Y2,Y3> F 1 
C F 2 
C POL2 GIVES THE SECOND DEGREE POLYNOMIAL APPROXIMATION FOR A CURVE F 3
C GOING THROUGH 3 POINTS F 4 

T<:.' I.JTTU t:'r 01"'11? .., o ll<:.'l:'n •r• ' ' ' Ct:'l\lnTMr:"""""'"""'..,.,,...,----------------------- ------------------------ ------------------------ --- -- _____ j:- ___ r:;c , --gv~c uvL;:o 

IF CX1-X2) 1,4,1 F 7 
1 IF CX1-X3) 2,4,2 F 8 
2 IF (X 2- X3) 3 , 4 3 F 9 
3 POL2=CX-X2)/CX!-K2)•CX-X3)/(X1-X3)•Y1+CX-X1)/(X2-X1>•CX-X3)/CX2-X3 F 10

1)•Y2+<X-X1)/CX3-X1>•<X-X2)/CX3-X2)•Y3 F 11 
GO TO 5 F 12 

/, I.JO T Tt:' I C:.. _ C:.. \ V _ V4 _ V? _ V":Z 
....,.-------.,.,T~-----r-t.,:;-,----.;:;T~---,------r-\----y--T'-J..----,--,"~- , --n-v 

5 RETURN F 14 
c F 15 
6 FORMAT C1H ,•ERROR IN POL2•,sx,•TWO POINTS IDENTICAL ABSCISSAE•,!, F 16 

11H ,•ARGUMENTS•,7CE12.5,3X),//,) F 17 
END F 18­

~IIQOI"''IITTI\IC' ~TO fl -~00-~TT_OM_Iti\.PDII.\ (:. 1 ..., .... ...,,vu•,.. • •~ , ,, 4-7"" "''7""'' 7 ' "'7''' ~ _.. ­_
REAL KAPPA,L G 2 

http:L=<X-<1.-.54
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COMMON /STRSTR/ R (120) ,SRU20) ,SH120> ,N-5­c 
c STR PLACES THE STRESSES IN MEMORY • 
c STR IS USED WITH BENDING 
c 

NS=NS+1 
N=tNS-1>14 
IF ( (N""4). EQ. CNS-U) GO TO 1 

-- - ~ ~ 

G 6 
G 7 
G 8 
G 9 
G 10 

1 SR{N .. 1>=SRR G 12 
ST(N+1 >=STT G 13 
RCN+1>=RM•SQRTC<1.-.5•KAPPA>""""2+2.•L•KAPPA> G 14 

2 CONTINUE G 15 
RETURN G 16 
END G 17­

FUNCTION STRAIN (KAPPA,ETA,L,SIGN>
REAL KAPPA,L
REAL LMIN, LM AX 
COMMON /REMEM/ I~DEX,LMIN,LMAX,REMLN<200>,REMRHOt200> 

c 
c STRAIN CALCULATES THE EFFECTIVE STRAIN • 
c STRAIN IS USEC WITH BENDING 

H 1 
H 2 
H 3 
H 4 
H 5 
H 6 
H 7 

X=C1.-.5•KAPP•>••2+2.•L•KAPPA H 9 
REMSTR=O. H 10 
IF CCL.GT.LMIN>.AND.<L.LT.LHAX>> CALL SHIFT <L,REMSTR> H 11 
STRAIN=REMSTR+SIGN•<.S•ALOG<Xl-ALOG(ETA>J H 12 
RETURN H 13 
END H 14­

FUNCTION DZ <KAPPA,RN,RM,L,DL> I 1
REAL KAPPA, L I 2 

c DZ IS USED WITH BENDING I 3 
DZ=ABS <DU •u.-RN/ (RM•SQRTt C1. -KAPPA•.5>••2+2. •L•KAPPA) )) I 4 
RETURN I 5 
END I 6­

SUBROUTINE INTMOM tKAPPA,ETA,MAT,TENS,BL1,BS1,L1,L2,S2,XMOM,RN) J 1 
LOGICAL MOM,TENS J 2 
REAL KAPPA,L1,L2,L MU J 3 
COMMON /SSCURV/ NS~,NLT,ALFAC4>,BETAC4>,EN<4>,MU{4,2> ,TO J 4 c J 5 

c SUBROUTINE INTMOM VERSION ••. 24 SEPT 1972 ••. J 6 
c J 7 

c INTMOM CALCULATES THE BENDING MOMENT IN THE ZONES FOR WHICH THE J 9 



P~OGRAM BENDING AND SUBROUTINES PAGE 13 
I' C""Tl"")r-~~rC"' ft nr lt.t..tAI VT Tl"'l\ I I \1 Vt..tl'\ 

0 MJ"L. Mt'1M~ It .L.VMt...&...1 "l'f\::7 
 d 1
...JII,t,_...JWL.W

C INTMOM IS USED WITH BENDING 
c 

MOM=. TRUE. 
RM=ETA•TOIKAPPA 
DL=ABS<L2-L1>•400. 
N=DL 
IF <N. LE.2l GO TO 2 


DL= CL2-L1> /XX
l=L1 
CALL STRESS CKAPPA,ETA 1 MAT,TENS~MOM,BL1,BS1,L,SR,T,ST>CALL STR (L~SR 1 ST,RM,KAPPA) 

D=DZtKAPPAl~N~~M,L,DL)

XMOM=X MOM+ :::;T•u/2.
NN=N-1 


L=L+DL 

CALL STRESS (KAPPA1ETA 1 MAT 1 TENS,MOM,BL1,BS1,L,SR,T,ST>
CALL STR (L SR ST,~M,KAPPAJ
D=OZCKAPPA 1RN 1 RM,L,DL> · 
XMOM=XMOMt~T•u 

1 CONTINUE 
L=L 2 

CALL sTRESs CKAPPA~€TA AMATS TENs, MOM ,BL 1,-B-S-!~R-,-l~

CALL STR (L~SR 1sr, M,K PPA 
D=OZCKAPPA 1~Nl~M,L,DU 
XMOM=XMOMt~T•u/2.
GO TO 3 


2 CALL STRESS <KAPPA,ETA,_MAT 2 TENS,MOM,BL1,BS1,L1,SR,T,ST>
CALL STR (L1,SR,ST,RM,KAPPA)
DL=L2-L1 
n-n7 fV It 0011 _ 0~1 _ OM I -4 n1 l 

xMoM~xt1of.1+ s:r·•o/2: ...... ' ...... · ---- -- -­
CALL STRESS CKAPPA,ETA,MAT 2 TENS,MOM,BL1,BS1,L2,SR,T,ST>
CALL STR {L2,SR,ST,RM,KAPPA>
D=DZ<KAPPA1RN 1 RM,L2,DL)
XMOM=XMOM+::iT 4 u/2.

3 CONTINUE
S2=SR . 

J 11 

J 12 

J 13 

J 14 

J 15 

J 16 

J 17 

J 18 

J 19 

J 20 

J 21 

J 22 

J 23 

.J 2"4 
J 25 


J 27 

J 28 

J 29 

J 30 

J 31 

J 32 

J 3 3 


J 35 

J 36 

J 37 

J 3 8 

.J 39 

J 40 

J 41 


I /,?

J 4-3 

J 44 

J 45 

J 46 

J 47 

J 48 

J 49 


END J 51­

SUBROUTINE NUMINT (KAPPA,ETA,MAT,TENS,MOM,LSIGN,BL,BSL,L,SL,T,TS,X K 1 

1MOM,RN> K 2 


REAL KAPPA,L,MU,LAM,LAM2 K 3 

LOGICAL TENS K 4 


COM"10N /SSCURV/ NSS,NLT,ALFAf4>,BETA{4>,EN<4),MUt4,2),T0 K 6 
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1"1"\MMrHI IT II t.l I DT V 7 
VV J - f { f\.7~-, -- , , - ,..,f'fr --- u J -----------------------------..,.-----------. 

C K 8 
C
C 

SUB~OU TINE NUMINf VERSION • •. 2 4 SEPT 197 2 • • • K
K 

9
10 

C
C 
C 
C 
C 
C 

NUMINT DETERMINES RADIAL AND TANGENTIAL STRESSES AND BENDING 
MOMENT 
IN ZONES WHERE THE RADIAL STRESS IS ONLY KNOWN BY ITS DERIVATIVE 
NUMINT IS USED WITH BENDING 
SIGN=-1. 
IF <TENS> SIGN=~1. 
RM=ETA•TO/KAPPA
D=ABSCBL-L>•400. 
N=D 
IF (N. L T • 1 ) N= 1 

• 

K
K 
K 
K 
K 
K 
K 
K 
K 
K 
K 
K 

11
12 
13 
14 
1§
16 
17 
18 
19 
20 
Z1 
2 2 

DLAM=<L-BL)/XX K 24 
DLAM2=DLAMI2. K 25
W=OLAH•LSIGN K 26 
IF ( W. L T • 0 • ) W R IT E (6, 9 > B L , L , Ol AM , L S I G N K 2 7 
LAM=BL K 28 
SL=BSL K 29 
I=C K 30 
T~ - fMnMl r.n Tn t... k' ~1 

1 cAiC ··osl:Gt=1A--ci<AP?A-;ETA ,-t.:-Af.1;-ol.-AM, MAr-;TENs, os1, sL, t< 3 2 
00 3 I=1,N K 33 
LAM2=LAM~OLAM2 K 34 
CALL DSIGHA <KAPPA,ETA,LAM2,DLAM,MAT,TENS,OS2,SU K 35 
OS3=0S2 K 36
LAH=LAM+OLAM K 37 
CALL DSIGMA CKAPPA,ETA 1 LAM,DLAM,MAT,TENS,OS4,SL) K 38 
n<:::rn<:::1.&.n<:::t..."'l n::,_.&.fn<::?.&.n<::~\ I~- v -:to 
sl'=sL;o-s~·~~~ K 4o 
DS1=0S4 K 41 
T=O~/DLAM K 42 
BT=T K 43 
IF CMOM) GO TO 4 K 44 

2 CONTINUE K 45 
3 CONTINUE K 46 

4 GO TO (56) NSS K 48 
5 TS=SL~SIGN"'"ALFA<HAT>~SIGN•BETA<MAT>•ABSCSTRAIN(KAPPA,ETA,LAM,SIGN, K 49 

i>••ENCMAT> K 50
GO TO 7 K 51 

6 TS=SL~SIGN•ALFA<MAT>•ABS<BETACMAT>tSTRAINCKAPPA,ETA,LAM,SIGN>>••EN K 52
1<MAT) K 53 

7 DL=OLAM K 54 
Tl=' c CTH _I='rL _nLn~:~_t·L~tLMUH DL-DlAM2 K 55 
o~oi <RAPPA; RN;RM; [At1;oi:>. K 56 
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vunu-v~nu~T~an v- -----------------------~ 

CALL STR CLAM,SL,TS,RH,KAPPA) K 58 
IF <I. EQ.O) GO TO 1 K 59 
GO TO 2 K 60 

8 CONTINUE K 61 
RETURN K 62 

C K 63 
9 FORMAT C1H ,•ERROR IN INTEGRATION DIRECTION•,3E15.7,I3> K 64 

SUBR.OUTINE ANAINT CKAPPA,ETA,MAT,TENS,HOH,L1,S1,L2,S2,T2,TS2,XHOH, L 1
1RN) L 2

REAL KAPPA,L1,L2 L 3
LOGICAL TENS,MOH L "4 c L 5 

C SUBROUTINE ANAINT VERSION ••• 24 SEPT 19~ b: a c l 7 
C ANAINT PERFO~HS CALCULATIONS IN ZONES WHERE THE RADIAL STRESS IS L 8 
C ANALYTICALLY KNOWN • L 9 
C ANAINT IS USED WITH BENDING L 10 c L 11

IF CHOH> GO TO 1 L 12 
CAll STRESS CKAPPA,ETA,HAT,TENS,MOH,L1,S1,L2,S2,T2,TS2) L 13 

b 1'•1 BL 1=L1 l 15
CALL INTMOH <KAPPA,ETA,HAT,TENS,BL1,S1,L1,L2,S2,XHOH,RN> L 16 

2 CONTINUE L 17 
RETURN L 18 
END L 19­

~IID::>nllTTio.ll:' :OI:'MMnM I VI\DDI\ I:'TII I lo.L Dlo.l _ DT OV _ VM v ·v u · 'v·'OJ--- --y· -:~;: r ·~--------u-~.-...--.- TOT~~.----. ------,.,~-.--,.,----,--- --, - ,--y -- ,,--....----,- - ..-~----,.--,,-"'"----,-"---.-- , 

REAL KAPPA,LN,HU M 2 
LOGICAL HOM H 3 
LOGICAL LLIHDO,LLIHUP M 4 
COMMON /SSCURV/ NSStNLTLALFAC4)LBETAC4),ENC4>,HUC4,2),T0 H 5 
COMMON /STRSTR/ R<1c::O> ~R<120) ~H120) NS M 6 
COMMON /LIMIT/ XLIMDO,SLIMDO,TtiMDO,HLiHDO,LLIMDO,XLIHUP,SLIHUP,TL H 7 

1IHUP,MLIMUP,LLIHUP H 8 
f'nMMnl\l IT II t.ll T M 0 
V'O'"TTl"rvT ----~ 

c H 10 c SUBROUTINE BENMOH VERSION 24 SEPT 1972 H 11 c M 12 c H 13 c BENMOM DETERMINES THE BENDINGMOMENT • H 14 c BENMOH IS USED WITH BENDING H 15 c M 16 

SLIMOO=O. M 18 

http:IID::>nllTTio.ll
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TIT...tnf'\-n M ~_ <IO 

11 ..L 7 

MLIMDO=O M 20 
LLIMDO=.FALSE. M 21 
XLIMUP=1. M 22 
SLIMUP=O. M 23 
TLIMUP=O. M 24 
MLI~UP=NLT M 25 
LLIMUP=.FALSE. M 26 
MI"H..t- T 0111::" 
lfVtl WI Pii;~~ - --

XMOM=O. M 28 
NS=O M 29 
MUP=1 M 30 
A=O. M 31 
M=O M 32 
T=O. M 3-3 
CALL INTUP <KAPPA,ETA,MUP,A,A,M,LN,SN,TN,TSN,MOM,XMOM,RN> M 34 

M=O M 36 
A=O. M 37 
B=1. M 38 
T=O. M 39
CAlL INTOO lKAPPA 1 ETA,MOO,B,A,M,LN,SN,TN,TSN,MOM,XMOM,RN) M 40 
XMOM=CRY••2-RI••2Jf2.•XMOM M 41 
RETURN M 42 

M 43­

SUBROUTINE INTUP CKAPPA,ETA,MAT1,BL1,BS1,MAT2,BL2,BS2,T2,TS2,MOM,X N 1 
1MOM,RN> N 2 

REAL KAPPA,LMIN~LMAX,MU,L1,L2 N 3 
LOGICAL MOM,COMP N 4 
COMMON /SSCURV/ NSS,NLTtALFAl4>;8ETA<4,,EN<4>R~g~4 1 2>,TO N 5 
COMMON /REMEM/ INOEX,bM!N,LMAX,~EMbN(200),REM -2~~--------------~--~------------------------
COMMON /TAN/ T N 7 

c N 8 
c SUB~OUTINE INTUP VERSION ••• 24 SEPT 1972 ••• N 9 
c N 10 
c N 11 
c INTUP PERFORMS INTEGRATIONS IN THE DIRECTION $INSIDE TO OUTSIDE • N 12 
c INTUP IS USED WITH BENDING N 13 

COMP=.FALSE. N 15 
LSIGN=•1 N 16
NSTOP=O N 17 
L1=BL1 N 18
S1=BS1 N 19 
NN=MAT2 N 20 
IF tMAT2.EQ.O) NN=NLT N 21 
IF <MAT2.EQ.O) MAT2-MAT1 N 22 
DO 13 I=MAT1,NN N 23 
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TC fMIIIT ?\-01 ?\ -4 -4 ? 	 11.1 ?.1. 

1 	 t2=Muci;2>' 
GO TO 3 

2 	 L2=BL2 
NSTOP=1 
GO TO 3 

3 	 IF CL2-LMINt 
4 	 CALL ANAINT 

T-T?MAT2=I 
L1=L2 
S1=S2 
GO TO 	 12 

5 	 IF <L1-LMIN> 
6 	 CALL ANAINT 

T=T2 

Li=LMIN 
Si=SLMIN 
GO TO 	 7 

7 	 IF CL2-LMAX> 
8 	 CALL NUMINT 

1> 
T=T2 
MAT?-T 

~"--------.or-""~---------------- N 25 

N 26 
N 27 
N 28 
N 29 

4,4 5 	 N 30 
CKAPPA,ETA,I,COMP,MOM,L1,S1,L2,S2,T2,TS2,XMOM,RN) N 31 

"' ":!? --- N3J 
N 34 
N 35 
N 36 

6 7 7 	 N 37
C~~P~A,ETA,I,COMP,MOM,L1,S1,LMIN,SLMIN,T2,TS2,XMOM,RN> N 38 

N 39 

N 41 
N 42 
N 43 

8 8 9 	 · N 44 
CK1PPA,ETA,I,COMP,MOM,LSIGN,L1 7 S1,L2,S2,T2,TS2,XMOM,RN N 45 

N 46 
N 47 
M LR 

~~~----------------------------------------------------------------.~~ 

L1=L2 	 N 49 
S1=S2 	 N 50 
GO TO 	 12 N 51 

g
10 t~L~L~uA~~~l c~2~~!: ~lA, I,COMP, MOM, LSIGN,L1,S1, LMAX,SLMAX, T2,TS2,XM ~ g~

1 OMt.RN> N 54 
T=t2 	 N 55 
MAT?-T 	 M ~~ 

-T.-- 1"""J t - L.~-..- ----- - - ----- ---------------	 t"f ,_,.._, 

L1=LMAX 	 N 57 
S1=SLMAX 	 N 58 

11 	 CALL ANAINT <KAPPA,ET~,I,COMP,HOM,L1,S1,L2,S2,T2,TS2,XMOM,RN> N 59 
T=T2 	 N 60 
MAT2=I 	 N 61 
L1=L2 	 N 62 
S1=S2 	 N 63 
~n Tn 	 -4? 11.1 ~L 

12 	 IF TNs--roP:-EQ.1)Ga - ro 14 N &5 
13 	 CONTINUE N 66 
14 	 BS2=S2 N 67 

RETURN 	 N 68 
END 	 N 69­

~I I 0 0 nl I T T M C T "' T n n I V A DO A - C T A _ M A T -1 - Q I -4 _ Q ~ -1 - M 1\ T ? _ Q I ? _ Q ~ ? _ T ? _ T ~ ? _ M f'l M - V f'l -41Mot1','R.N j ........ ... ... ~ v . . ,.. . . ...... .. 7 • • , ..... ~ ..... , ~....--.... . ...... • ~ .. -~ 7 .... , .....-.... -.-n~~T"'~2 
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01""'111 VJ\ni")J\ l UT~I I Ul\\1 Mit I -4 I.., --9---3LOGIC A[ ' MQ M	 - .LJ '"'~10 TENS•r~f\TTTV~L

COMMON /SSC~R.V/ NSS,NLT1ALFAC4)18ETA(4) tENt4)!MU<4t2> ,TO 
COMMON /REMEM/ INDEX,LMIN,LMAX,~EMLN<20u>,REM~H0(2U0) 
COMMON /TAN/ T 

c 
c 	 SUBROUTINE INTDO VERSION 24 SEPT 1972 
c 
c INTDO PERFORMS INTEGRATIONS IN THE DIRECTION $ OUTSIDE TO INSIDE • 
c INTDO IS USED WITH BENDING 
c 

TENS=. TRUE. 
LSIGN=-1 
NSTOP= 0 
Li=BL1 
~-1-Q~-1 

!f;NLT +1-M AT1 

NN=NL T +1-M AT 2 

IF C M A T 2. E Q • 0) NN = N L T 

IF <MAT2.EQ.O) MAT2=MAT1 

DO 13 I=II,NLT 

J=NLT-I+1 

IF CBL2-MU CJ,1)) 1,1,2 


-1 	 I ?~Mit r L -1\- -- - · ·-'-7-~GO TO 	 3 

2 	 L2=BL2 


NSTOP=1 

GO TO 3 


3 	 IF CL2-LMAX) 
4 	 CALL ANAINT 


T=T2 

MJIT2-J 

L1=L2 

S1=S2 

GO TO 12 


5 	 IF <LMAX-L 1> 
6 	 CALL ANAINT 

T=T2 
MAT2=J 
t -t .,., t.tll v 


5 4 4

CKAP~A,ETA,J,TENS,MOM,l1,S1,L2,S2,T2,TS2,XMOM,RN) 

6 7 7

CK!P~A,ETA,J,TENS,MOM,Li,Si,LMAX,SLMAX,T2,TS2,XMOM,RN> 

----·-··-··-­~--=-'CT"M"""...-----------------------

Si=SLM AX 
GO TO 7 


7 IF CL2-LMIN> 

8 CALL NUMINT 


1) 
T=T2 
MAT2=J 

9,81 8 

CKAPPA,ETA,J,TENS,MOM,LSIGN,Li,S1,L2,S2,T2,TS2,XMOM,RN 


0 4 

0 5 

0 6 

0 7 

0 8 

0 9 

0 
0 11 

0 12 

0 13 

0 14 

0 15 

0 16 

0 1"7 

0 18 

0 19 

0 

0 21 

0 22 

0 23 

0 24 

0 25 

0 26 


0 28 

0 29 

0 

0 31 

0 32 

0 33 

0 34 


0 36 

0 37 

0 38 

0 39 

0 

0 41 

0 42 

n Lo. ":l- .,. -­
0 44 

0 45 

0 46 

0 47 

0 48 

0 49 

0 


S1=S2 	 0 52 
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9 	 IF CL1-LHIN> 11 7 11 7 10 0 54 
10 	 CALL NUMINT <KAPPA,ETA,J 7 TENS,HOH 7 LSIGN,L1,S1,LMIN,SLMIN,T2,TS2,XM 0 55 

1 OH 1 RN> 	 0 56 
T=l2 	 0 57 
MAT2=J 	 0 58 
L1=LMIN 	 0 59 
S1=SLM IN 	 0 6 0 

11 	 GALL ANAINT (KAPPA, ETA, J 7 TENS, MOM, Li, S1, L2, S2, T--2-, TS2 7 XM04"1M-.-7 -t(R:NN1-t)-----t10- -e6-1:1,--------------- ­
T=T2 	 0 6 2 
MAT2=J 	 0 63 
L1=L2 	 0 64 
S1=S2 	 0 65 
GO TO 	 12 0 66 

12 	 IF CNSTOP.EQ.1) GO TO 14 0 6·7 
13 	 CONTINUE 0 68 

RETURN 0 70 
END 	 0 71­

SUBROUTINE FINDLN (KAPPA 7 ETA LNOLD,LNNEH> 	 P 1 
REAL KAPPA 7 LNNEH,LNOLD 7 MU,LU~,LOO,L1UP,L100,L2UP,L200 	 P 2 
REAL L X , L Y P 3 


REAL L, L1, L 2 

LOG I C A L BUG 
LOGICAL MOM 	 P 7 
LOGICAL LLIMDC LLIMUP 	 P 8 
DIMENSION Lt26J 1 S1<26> 1 S2t26> 	 P 9 
DIME NS I 0 N T 1 ( 2 6' 7 T 2 ( 2 6 1 	 P 1 0 
DIMENSION MXC50) 7 LXC50) 7 SXt50) 7 MY{50) 7 LY(50) 7 SY(50) 	 P 11 
n T M C' II.IC' T n 1\1 TV f C::: n \ _ TV I C::: n '\ 	 0 -4 ? 
lJ .... . , .. ,-~f	 - _ _ _ ~\ J U I J I • \ J --------.---- ­- .,->;;F o.L -.;;J I ,-------r-

DIMENSION LZ (50) P 13 

COMMON /SSCU~V/ NSS 7 NLTfALFAC4>~BETA(4) 6ENC4)~MUf4 6 2> ,TO P 14 


gg=~g~ ~~~~~~: ~~~~~o~~L~~~a:~t~~Eb~~f¥Mbo~E~~~g~~x~lMuP,SLIMUP,TL ~ }~
1IMUP1MLIMUP 1 LLIHUP 	 P 17

COMMUN /OBUG/ BUG 	 P 18 
COMMON ITA N/ T 	 P 19 
DATA LUP,SUP,LOO,SOO,MUP/O.,O. ,~~.~,~0~.~,~1+---------------¥-~~------------
DATA TUP 7 TDOIO.,O.I 	 P 21 

c p 22 
c SUB~OUTINE FINDLN VERSION ••• 24 SEPT 1972 p 23 
c 	 p 24 
c 	 p 25 
c 	 FINDLN .GIVEN KAPPA AND ETA FINDS THE NEUTRAL LAYER POSITION p 26 
c 	 BY USING THE CONTINUITY OF tHE RADIAL STRESS IN THE NEUTRAL LAYER p 27 

P 5
P 6 

FINDLN IS USED WITH BENDING 	 p 29 c 
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BUG=.FALSE. P 31 
1 CONTINUE P 32 

IF CBUG) WRITE <6,19> P 33 
XLIMOO=O. P 34 
SLI~OO=O. P 35 
TLI~OO=O. P 36 
MLIMOO=O P 37 

XLIMUP=1. P 39 
SLI~UP=O. P 40 
TLIMUP=O. P 41 
MLIMUP=NLT P 42 
LLIMUP=.FALSE. P 43 
MOO=NLT P 44 
MOM=.F ALSE. P 45 
T-111P:TIIP 0 J,&..tioa::too-- 4 7p 
L1UP=LUP P 48 
SiUP=SUP P 49 
L100=LOO P 50 
S100=SOO P 51 
MAT1UP=MUP P 52 
MAT100=HOO P 53 
l2 UP -L1 UP I 3 • *-lt'lOl D • 2 • I 3 • P 5 4 
L200=L100/3.+-LNOL0..,2.13. P 55 
!=1 p 56 
MXLI>=MAT1UP P 57 
LX(I)=L1UP P 58 
SX1I>=S1UP P 59 
MYCI>=MAT100 P 60 
LY{!)=L100 P 61 

TX~I)=T1UP P 63 
TYCI>=T100 P 64 

2 MAT2UP=O P 65 
MAT200=0 P 66 
T=T1UP P 67 

c p 68 
CALL INTUP fKAPPA,ETA,MATiUP,LiUP,SiUP,MAT2UP,L2UP,S2UP,T2UP,TS2,M P 69 

'inM_YMnM_OMl 0 7n 

~IF
7 

'(8uGTWRITE <6,20) MAT1UP,L1UP,S1UP,MAT2UP,L2UP,S2UP,T2UP
T=T100 
CALL INTDO CKAPPA,ETA,MAT1DO,L1DO,S1DO,MAT2DO,L200,S200,T200,TS2,M

10M,XMOM RN> 
IF CBUGf WRITE (6 7 20} MAT100,L100,S1001MAT2DO,L2DO,S2DO,T200
Z=1S2UP-S200-T2UP•L2UP+T200..,L200)/{T20u-T2UP>
IF <BUG) WRITE C6,20) I,Z 

P 
P 
P 
P 
P 
P 
P 

71 
72 
73 
74 
75 
76 
77 
7A 

LZU>=Z P 79 

http:L200=L100/3.+-LNOL0..,2.13
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TC':'" 1An~ll.,l1n_l'll"\f'\\ ITA r-~An\ r"r"\TI'\A 

J..-- ,-------,.~---.::TV~ U 1 L L U 0 I e L I e J: e "CO J: U I 0 U I 0 :1.: p 

IF CZ-L2UP) 4,4,3 	 p 81 

3 	 L1UP=L 2UP p 82 
S1UP=S2UP 	 p 83 
MAT1UP=MAT2UP 	 p 84
T1UP=T 2UP 	 p 85 
GO TO 8 p 86 

4 IF CZ-L1UP> 5,5,8 p 87 
P­

KK=1 	 p 89 
DO 7 K=1 I 	 p 90
IF Ct L X ( b • GT • L1U Pl • AND • ( LX CK> • LT. Z) ) GO TO 6 	 p 91
GO TO 	 7 p 92 

6 	 L1UP=L X·CK> p 93
KK=K 	 p 9'4 

7 	 CONTINUE p 95 

MAT1UP=MXCKK> p 97 
T1UP=TX<KK> p 98 
IF <Z.LT.LUP> Z=LUP+1.E-10 	 p 99 
GO TO 	 8 p 100 

8 	 L2UP=L1UPI3.•Z•2.13. p 101 
IF CZ-L2D0) 9,10,10 	 p 102 

9 	 L100=L 200 p 103 

MA T1DO =MAT 200 p 105 
T100=T 200 p 106 
GO TO 	 14 p 107 

10 	 IF CZ-L1DO> ·14,11,11 p 108 
11 	 L100=L DO p 109 

KK=1 	 p 110 
p 111¥~ 11L~C~~;LTwL100)wAN0w(LYCK) wGTwZ~-+T~O-ii-&·--------------------~~~-----------------------

GO TO 	 13 P 113 
12 	 L100=LYCK> P 114 

KK=K 	 P 115 
13 	 CONTINUE P 116 

S1DO=SYCKK> 	 P 117 
MAT1DO=MYtKK> 	 P 118 
T100=TYCKK) 	 P 119 
TE:" 17 	 t:T 1 nn\ 7-1 nn_ ... L"-~ n c ... ?n .... ' , -'- . - ...... --,--.---~-v--,-------L..~---,..,.---- -----.--.~---.....,----------------------.--==-v 

GO TO 	 14 P 121 
14 	 L200=L1DOI3.+Z•2.13. P 122 

IF <I. GE.SOl GO TO 15 	 P 123 
I=I•1 	 P 124
MX<I>=MAT1UP 	 P 125 
LX<I>=L1UP P 126 
SXCI>=S1UP P 127 


LYCI>=L1DO p 129 


http:L200=L1DOI3.+Z�2.13
http:L2UP=L1UPI3.�Z�2.13
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P 139 


16 

17 

18 

c 
'IQ 
... J 

20 
21 
22 

c 
C 
C c 

SY(I)-SiDO
TX(I>=T1UP
TYCI>=T1DO 
GO TO 2 
LNNEW= Z 
WRITE <6,21> 
IF <I.LT.30)
IF CBUG> GD 
BUG-.TRUE. 
GO TO 1 
CONTINUE 
X1=LNOLD-.1 
X2=LNOLD~.1 

I 
GO TO 18 

TO 16 

IF CX1.LT.O.> Xi=O. 

IF CX2.GT.1.1 X2=1. 

DO 17 K=1,I 

IF CLX <K> • GT. Xi) CALL. Pt.OTPT (LX CIO, SX-<--K>, K> 

IF CLY<K>.LT.X2l CALL PLOTPT (LYCK>,SYCKl,K>

WRITE t6,22) K,LZCK),LX(K),SX{K),LY<K>,SY<K>

CONTINUE 

CALL OUTPLT 

CONTINUE 
RETURN 

J:'rlOMIIT 11~ 
j f I I f 4 .. I t""'f' 
FORMAT C1H 
FORMAT C1H 
FORMAT <1H 
END 

_ .. OJ:'TIIOI\l nt:' J:'TI\lnll\1 .. \7 I, ..... I 4# I ... t '4 ..... f f .....~-----r..,-----, 

,I3 2X 2E15.7 I3,2X,3E15.7)
,•FtNOLN"'z."' f=•,I2,• FINDLN•,> 
,I2,3X,10t-10.n 

SUB~OUTINE DSIGMA CKAPPA,ETA,LAM,DLAM,MAT,TENS,OS,SU
OJ:'lU It liPPI'I _MIL I liM 
REAL L 0 -- ­
LOGICAL BUG 
LOGICAL TENS 
LOG I C A L L L I M0 C l L I M UP 
COMMON /SSCU~V} NSS,NLTIALFA<4> 1 BETA 'C4>tEN<4> 1 MU<4 1 2> ,TO 
COMMON /REMEM/ INDEX,LM N,LMAX 1 REMLN(20ul,REM~H0(2U0)
COMMON /LIMIT/ XLIMDO,SLIMOO,TLIMDO,MLIMOO,LLIMDO,XLIMUP,SLIMUP,TL 

1IMUP0MbiMUPGlbiMUP 
COMM N /DBU I BUG 
COMMON /TAN/ T 

DSIGMA ••••••••• VERSION 27 
DSIGMA IS USED WITH BENDING 

SIGN=-1. 
TJ:' ITJ:'I\IC:::\ C:::Tf':M=•1 

OCT 1972 ••••••••••••••••••••••••••••• 

P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
p 
P
• 

P 
P 
P 
P 

Q 
__() ____2
Q 
Q 

Q 

Q 
Q 
Q 
Q 
Q
Q 
Q 
Q 
Q
Q
Q 
Q 

131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
14·4 
145 
146 
147 
148 
149 
150 
151 
152 
153 

155 
156 
157 
158­

1 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
'I A_ n 

K=O - -O--i9 
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IF {BUG> HRITE (5~13) KASIGNPLA*,-9-l-AH,Sl

X=<1.-.5•KAPPA>•• +2.•L M•KA PA 
OS=DLAM•KAPPA•SIGN/X
K=i 
IF CBUG) WRITE Co,13) K,X OS 
IF CLLIMDO.AND.TENS> GO T6 11 
IF CLLIMUP.AND.C.NOT.TENS>> GO TO 11 

1 	 CALL SHIFT <LAM,REMSTR> 

IF CINOEX.EQ.1) RLO=SQRTC(1.-.5•KAPPA>••2+2.•REMLN(i)•KAPPA>
YY=SIGN•<.5•ALOG{X)-ALOGCRL0)}
STRAIN=REMSTR+YY 
K=90 
IF CBUGl WRITE <5,13) K,REMSTR,ETA,RLO,STRAIN,YY
IF CSTRAIN.LE.O.> GO TO 4
GOTO 	 <2,3>, NSS 

2 	 OS-OS• CALFA<MAT>tBETACMAT)•STRAI~I·•~~~T~------------------~----~~~e-------------------------
K=iO 
IF CBUGl WRITE <5,13) K,DS
GO TO 	 12 

3 	 OS=DS•ALFACMAT>•<BETACMAT>+STRAIN) ••EN<MAT> 
K=20
IF CBUG> WRITE C6,13) K,OS
GO TO 	 12 

lo 	 I n-fOI n••?-f-4 -11110011¥ C:\¥·?' I ii? .11110011 
.,.-	 10a v~.,.. v - , .._ • ., ,.., ~ , , • ,., ~ -~~,~ · - L------.--"-----,.,-'-----r--- ,...,

XO=C1.-.5•KAPPA>••2+C2.•LO•KAPPA)
DLO=LO-LAM 
DSO=DL0 4 KAPPA•SIGN/XO
K=40
IF CBUG> W R IT f Co , 13) K, L0, X0, OL 0, 0 SO
GO TO 	 (5 6 > NSS 

5 	 TLI~=KAPPA•~ICN/XO•ALFACMAT>
n~n-n~n•111 1:'11 tMIIT\ 
_,-----~~- --~~...-rM..-.-.---------------

SLIM=SL+OSO 
K=41 
IF <BUG> WRITE Cb,13> K,TLIM,DSO,SLIM
GO TO 	 7 

6 	 TLIM=KAPPA•SIGN/XO•ALFACMAT>•BETACMAT>••ENCMAT>
DSO=OSO•ALFACMAT>•BETACHAT>••ENCHAT> 
SLIM=SL+DSO 
11-1.? 
,,-"""TL...

IF CBUG> WRITE <5,13) K,TLIM,DSO,SLIM
GO TO 	 7 

7 	 CONTINUE 
K=43 
IF CBUG> WRITE C6,13> K
IF <TENS> GO TO 8 
LLIMUP=.TRUE. 
XliMUP-bO 
HLIMUP=MAT 

PAGE 
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25 
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30 
31
32 
33 
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37 
38 
39 
40 
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Q
Q
Q 
Q 
Q 
Q
Q 
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Q
Q 
Q
Q
Q
Q
Q
n 
~ 

Q 
Q 
Q 
Q 
Q 
Q
Q 
Q 
Q 

45 
46 
47 
48 
4 9
50 
51 
C:? 

53 
54 
55 
56 
57 
58 
59 
c.v"n 

61 
62 
63 
64 
65
66 
67 
68 
69 
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TITUII[")-TIT... n 7n 
~ ---- , - u 

SLIMUP=SLIM Q 71 
IF CBUG> WRITE Co,13.) K,XLIMUP,TLIMUP,SLIMUP Q 72 
GO TO 9 Q 73 

8 LLIMDO=, TRUE. Q 7Lt 
XLI~DO=LO Q 75 
MLIMDO=MAT Q 76 
TLI~DO=TLIM Q 77 

IF CBUG) WRITE <6,13> K,XLIMDO,TLIMDO,SLIMDO Q 79 
GO TO 10 g 80 

9 DS=DLAM•TLIMUP•XO/X 81 
K=60 82gIF <BUG) WRITE C6,13> K,DS 83 
GO TO 12 8A 

10 DS=DLAM•TLIMDO•XOIX & 85 

IF C B U G > W R I TE Co , 1 3 > K , D S Q 8 7 
GO TO 12 Q 88 

11 CONTINUE Q 89 
K=80 Q 90 
IF CBUG> WRITE {6, 13> .K Q 91 
IF CTENS.ANO. CLAM.GT,XLIMDOl) GO TO 1 Q 92 
IF ( ( • N 0 T • TENS) • A N 0 • ( L AM • LT. XL IM UP ) ) G0 T0 1 Q 9 3 
LO-CRL0••2-C1.-KAPPA•,5>••2l/t2.•KAPPA> Q 94 
XO=C1,-.5•KAPPA>••2•<2.•LO•KAPPA> Q 95 
IF CBUG) WRITE <6t13) K,LO,XO Q 96 
IF <TENS> GO TO 1U Q 97 
GO TO 9 Q 98 

12 RETURN Q 99 c Q 100 
13 FORMAT C1H ,•RETURN OF DSIGMA•,I3,2X,8E10.3> Q 101 

SUBROUTINE STRESS {KAPPA,ETA,MAT,TENS,MOM,BL,BS,L,SL,T,TS) R 1 
REAL KAPPA,MU,L R 2 
REAL L 0 R 3 
LOGICAL BUG R 4 
LOGICAL MOM R 5 

LOGICAL LLIMOC,LLIMUP R 7 
COMMON /SSCURV/ NSS,NLT 1 ALFAC4> 1 BETA{4l 1 EN<4> 1 MU<4 1 2> ,TO · R 8 
COMMON /REMEM/ INDEX LMlN,LMAX ,t<EMLN( 20u> REMt<HOt2o0) R 9 
COMMON /LIMIT/ XLIMo6,SLIMOO,TLIMOO,MLIMOb,LLIMDO,XLIMUP,SliMUP,TL R 10 

1IMUP,MLIMUP1 LLIMUP R 11 
COMMON /OBUb/ BUG R 12 
COMMON /TAN/ BT R 13 

c R 15 



PROGRAM BENDING AND 

G 	 STRESS,,,,,,,,,VERSION 27 OCT 
C 
C 
C 	 STRESS DETERMINES THE RADIAL 
C THEY ARE ANALYTICALLY KNOWN • 
C 	 STRESS IS USED WITH BENDING 
C 
~ 	 ~~A;~A~~X~~' NSS 

Z=EN<MAT>~1. 
Y=BETA(MAT>IZ
GO TO 3 

2 Y=BETA<MAT> 
Z=EN<MAT>~1. 
X=ALFAtMATl/Z

GO TO 3 


SIGN=-1. 

IF <TENS> SIGN=+1. 

K=30 

IF <BUG) WRITE <6,19> 

RL=RCKAPPA,U 


K,SIGN 

SUBROUTINES 	 PAGE 25 

1972 •••••••~~~~.~.~.~~~ ~~•~•~•~•~•~•~	 1~6~~~~~~~~~~~~~~.~ •~•~•~•~•~~R~~
R 17 
R 18 

AND TANGENTIAL STRESS IN ZONES WHERE 	 R 19 
R 20 
R 21 
R 22
§ ~~ 
~25 
R 26 
R 27 
R 28 
R 29 
R 30 
R 31 

R 33 
R 34 
R 35 
R 36 
R 37 

IF fLLIMDO.ANO.TENS> GO TO 14 R 38 
IF CLLIMUP.AND.C.NOT.TENS)) GO TO 12 R 39 

h 	 CM~~TA.Tf'IIVAOOA 0 hnT 	 ~-- - T -W" 

RBL=RCKAPPA,BL> 

RLO=ETA 

IF CINOEX.EQ.1) RLO=R<KAPPA,REMLNC1)) 

YY=SIGN•ALOGCRL/~LO) 
IF <BUG) WRITE (6~19) K,RL,RM,RBL,YY 
IF CYY.LT.O.l GO lO 7 
GO TO ,(5,6) NSS 

R 41 
R 42 
R 43 
R 44 
R 45 
R Lt6 
R 47 

5 CONST-BS-SIGN•x•ALOG<RM•RBU-Y•<ABS<ALOG<RBL/~)))••z 	 R 48 

SL=CONST+SIGN•X•ALOG<RM•RU+Y•YYHZ 
XX=SIGN•CX+BETA<MAT>•yy••ENCMAT'>
T=KAPPA•XX/CRL••z> 
K=40 
IF <BUG) WRITE <6,19> K,CONST,SL,XX,T 
IF CMOM> TS=SL+XX 
GO TO 18 

C:.. _ 	 f"f'lt.IC'T-QC'_V-¥11\0C'fV._C'Tf::M¥111 f'lf::fOQI 101 f'l\' ,¥¥7
- -	 ' 

R 49 
R 50 
R 51 
R 52 
R 53 
R 54 
R 55 
0 t::C:..1''\.I 	 VVI't >...rl ~- IJ- i.J - T\ - '----,.-orl.J-.;..1 - ,- ~ lr ...r:.&. V l 'f - - - "~- V'J T \, U ~-~ - 1"'·~1* - -v-,-7-1--- ---~------------------- ----------------- -- ----------- J V 

SL=CONST+X• CY+YY> ••z R 57 
XX=SIGN•ALFACMAT> •<Y+YY>••ENCMAT> R 58 
T=KAPPA•XX/CRL••z> R 59 
K=50 R 60 
IF CBUGl WRITE <5,19) K,CONST,SL,XX,T R 61 
IF CMOM> TS=SL+XX R 62 
GO TO 18 R 63• 
IF (TENS.AND.CLO.GT.BL)) GO TO 16 	 R 65 

http:TENS.AND.CLO.GT.BL


I 
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IF (<.NOT. TENS).~ NO, <LOwi:T.BU > G9---TB-1-7------------- ­ R 66 
RO= RCKAPPA ,LO) 	 R 67 
K=60 	 R 68 
IF (BU G > WRITE C6 , 1 9 > K , L 0, R0 	 R 69 

R 70 
8 ggN~~=~~!~~~ N~~~ALOG<RM•RBL>-Y•(ABSCALOGCRBL/RLOJ>>••z 	 R 71 

SL=CONSTtSIGN•X•ALOGtRM•RO> 	 R 72 
XX=SIGN"'X 	 R 73 

R 74 
IF <BUG) WRITE C6,19) K,CONST,SL,XX 	 R 75 
GO TO 10 	 R 76 

9 CONST=BS-X•tABSCV+SIGN•ALOGCRBL/RLO>>>••z 	 R 77 
SL=CONST+X•Y••z 	 R 78 
XX=SIGN•ALFA<MAT> •v••ENCMAT> 	 R 79 
K=65 	 R 8·o 
IF <BUG> WRITE C6,19> K,CONST,SL,XX R 81 

10 T=KAPPA"XX/(RL••2) R 83 
K=66 	 R 84 
IF <BUG) WRITE C6,19) K,T 	 R 85 
IF <TENS> GO TO 11 	 R 86 
XLI MUP=LO 	 R 87 
SLIMUP=SL 	 R 88 
TLI MUP=T 	 R 89 
HbiMUP-MAT 	 R 90 
LLIMUP=.TRUE. 	 R 91 
GO TO 13 	 R 92 

11 XLIMDO=LO 	 R 93 
SLIMOO=SL 	 R 94 
TLIHDO=T 	 R 95 
MLIMDO=MAT 	 R 96 
LLIMDO=.TRUE. R 97 

12 IF C L • L T • X L I M UP> G 0 TO 4 R 9 9 
13 OL=L-XLIMUP 	 R 100 

DS=TLIMUP•DL 	 R 101 
SL=SLIMUP+DS 	 R 102 
T=TLIMUP 	 R 103 
K=8 0 	 R 104 
IF <BUG> WRITE <6,19) K,OL,OS,SL,T 	 R 105 
Tl=' fMnM\ TC:::,-<::1 •T.OI .¥?/k'/10011 	 0 -t n r:..eo tov18 . .., 	 Rto7w .. . . _.. .. . • 

14 IF CL.GT.XLP1DO> GO TO 4 	 R 108 
15 DL=L-XLIMDO 	 R 109 

DS=TLIMDO•OL 	 R 110 
SL=SLIMOOtDS 	 R 111 
T=TLIMDO 	 R 112 
K=9 0 	 R 113 

R 115 

http:LOwi:T.BU
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~n Tn ~a o ~~~ 

16 XLIMDO=BL R 117 
SLIMDO=SL R 118
MLIMDO=MAT R 119 
LLIMDO=.TRUE. R 120 
TLIMDO=BT R 121 
K=120 R 122 
IF <BUG> WRITE <6,19> K,XLIMDO,SLIMDO,TLIMDO R 123 

17 XLIMUP=BL R 125 
SLIMUP=SL R 126 
MLIMUP=MAT R 127 
LLIMUP=.TRUE. R 128 
TLIMUP=BT R 129 
K=130 R 1~0 
IF CBUG> WRITE C6,19) K,XLIMUP,SLIMUP,TLIMUP R 131 

18 CONTINUE R 133
RETURN R 134 c R 135

19 FOR"'1AT UH ,•RETURN OF STRESS•,I3,2X,8E10.3> R 136
END R 137­
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