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Abstract

The Expanded Program on Immunization Sampling Method (known simply as EPI

sampling) is a two-stage sampling procedure originally intended for quick estimation

of disease prevalence in large geographical regions. The method was developed in the

1970s and all the subsequent assessments of its performance have been conducted

by simulation. In her master’s thesis, Reyes (2016) studied in detail the second-

stage sampling of the method by developing formulas for the exact calculation of

the household inclusion probabilities when sectors are used to identify the initial

household to generate the EPI samples. The inclusion probabilities were used in

turn to obtain exact mean, bias, variance and mean square error of any estimator

of disease prevalence in the population. Thus, no extensive simulations are required

and the results are exact rather than just estimates.

This thesis is an extension of Reyes’ (2016) work. The extension is two-fold;

(a) employing strips rather than sectors because they narrow the geographic area

for field workers and to use strips to select the first household for the EPI sample

at the secondary stage, and (b) carrying out an analysis on simulated population

and sampling plans, using both stages of the EPI method. Analyzing the simulated

populations showed that equal weight estimator that samples primary units with
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replacement with probability proportional to size (EW1) should be used when the

target characteristic is thought to be spread randomly throughout the population,

and the Horvitz-Thompson estimator that samples primary units systematically with

replacement (HTSYS) should be used when the disease is believed to spread from

a central location or through pocketing. Comparing the strip and sector sampling

methods at the secondary stage using their effective areas leads to a comparative

basis in which the inclusion probabilities are identical for both methods.
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Abbreviations

The number following the entries refers to the section in which the notation is intro-

duced.

General Abbreviations

PSU Primary sampling unit, 1.1

EPI Expanded Program on Immunization, 1.1

EW Equal weight, 4.2

HT Horvitz-Thompson, 4.2

MSE Mean square error, 4.1

PPS Probability proportional to size, 1.1

PSU Primary sampling unit, 1.1

WHO World Health Organization, 1.1

SSU Secondary sampling unit, 1.1

WOR Without replacement, 2.2

WR With replacement, 2.2

SRS Simple random sample, 3

SE Standard error, 4
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HTSYS Horvitz-Thompson estimator that systematically samples PSUs, 4.2

HTWR Horvitz-Thompson estimator that samples PSUs with replacement us-

ing probability proportional to size, 4.2

HTSRS Horvitz-Thompson estimator where the constant ai = M
Nm

, 4.2

NASG National Administration of Surveying, Mapping and Geoinformation,

5.3.1

PDF Probability density function, 3.2.1

GPS Global Positioning Systems, 5.3

GIS Geographic Information Systems, 5.3

API Application Program Interface, 5.3
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Notation

The number following the entries refers to the section in which the notation was

introduced.

Primary Sampling

m Number of PSUs sampled from the population, 2.1.1

M Number of PSUs in the population, 2.1.1

i Index used to label PSUs, 2.1.1

Ni Number of SSUs in the ith PSU, 2.1.1

N Number of SSUs in the population, 2.1.1

r Number of primary samples to group at least m PSUs using systematic

sampling, 2.1.1

k Number of PSUs remaining to be systematically sampled into m groups,

2.1.1

q Maximum number of additional PSUs that can be systematically added

onto existing systematic samples of size m, 2.1.1

s(m) Arbitrary sample of m PSUs, 2.1.4

S(m) All possible samples of m PSUs, 2.1.4
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αi Inclusion probability of PSU i being included in a sample of size m, 2.1.4

t Index used to identify the selection stage when sampling m PSUs, 2.2.1

`t The PSU selected when sampling m PSUs at the tth stage, 2.2.1

pi Proportion of SSUs from town i relative to the entire population, 2.2.3

αik Joint inclusion probability of including town i and k in the primary sam-

ple, 4.1

Secondary Sampling

Hi Set of all SSUs in PSU i, 3.1

xj x-coordinate of the location of household j from some fixed town i, 3.1

yj y-coordinate of the location of household j from some fixed town i, 3.1

rj Distance of household j from some fixed town’s center, 3.1

θj Angle of household j relative to the initial arm from some fixed town’s

center, 3.1

α The size of a strip’s base in some random direction, 3.1

hj Household j from some fixed town, 3.1

D Some household’s distance relative to the town center,3.1.1

θj,1 Smallest direction of a strip that captures household j from some

town,3.1.1

θj,2 Largest direction of a strip that captures household j from some

town,3.1.1

Θ Random variable representing the set of non-empty directions θ can take

on for some strip, 3.2.1

Ei Empty sub-interval for some strip in some town, 3.2.1
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L(·) Length of a union of sets, 3.2.1

ni Number of SSUs sampled from PSU i, 3.2.2

s′ni Some EPI sample of of size ni from town i, 3.2.2

S ′(ni) All EPI samples of of size ni from town i, 3.2.2

βij Inclusion probability of obtaining household j from town i, given town i

was already sampled. 3.2.2

βi,jl Joint inclusion probability of including household j and l in the secondary

sample, given town i is sampled. 4.1

πij Inclusion probability of household j from town i, 4.2

Parameters and Estimators

δ Proportion of the population who are vaccinated against some disease, 4

δ̂ Estimator of the population proportion who are vaccinated against some

disease, 4

δ̂ Estimator of the proportion who are vaccinated against some disease in

town i, 4

p Proportion of diseased individuals in the population, 4

µ Proportion of disease affecting the population, 4

τ Total number of individuals who carry the disease within a targeted

population, 4

µ̂ Estimator for the proportion of disease affecting the population, 4

τ̂ Estimator for the total number of individuals who carry the disease

within a targeted population, 4.1
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µ̂EW Equal weight estimator for the prevalence of disease in the population,

4.2

µ̂HT Horvitz-Thomspon estimator for the prevalence of disease in the popu-

lation, 4.2

φ Mean parameter for a Pareto distribution, 5.2.1

ψ Dispersion parameter for a Pareto distribution, 5.2.1

Other Notations

Astrip,α Effective area of a strip with base α, 5.3.2

γ Span or arc of the sector sampling method, 5.3.2

Asect,γ Effective area of a sector with span γ, 5.3.2
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Chapter 1

EPI Sampling

1.1 Background Information

Measles, tetanus and polio are just few of the numerous diseases that have infected

and killed many infants around the world. To appropriately measure immunization

coverage and fight such diseases, many survey designs have been formulated since

the 1970s. One of the most rapid assessments of vaccination coverage was developed

by the Expanded Program on Immunization (EPI), a World Health Organization

(WHO) program. The EPI developed a cluster sampling design, which is not only

simple to use, but became very familiar to developing countries during the 1980s

(Brogan et al., 1994).

Originally, the EPI cluster survey design was motivated by the work of Serfling

and Sherman (1965), who constructed vaccination surveys to be carried out by local

health authorities within the United States. Eradication of all common diseases from

infants and children was the prime goal underlying the development and application

1
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of the EPI cluster survey, which will be referred to as the EPI method throughout

this paper (Brogan et al., 1994).

Execution of the EPI method is a two-stage process. At the primary stage, the

EPI sampling procedure suggests selecting primary sampling units (PSUs), towns or

villages, with probability proportional to size (PPS). In this context, the EPI method

could be categorized as a PPS cluster sample (Lemeshow and Robinson, 1985). The

secondary stage consists of selecting secondary sampling units (SSUs), which are

typically households in applications of the EPI method. According to Lemeshow

and Robinson (1985) and Henderson and Sundaresan (1982), initiating a sample at

the secondary stage for the EPI method begins by first selecting a household at

random from a selected PSU.

The EPI coverage survey manual developed by the WHO states in detail how to

select a household from a selected town. If a household list is available, then it serves

as a sampling frame. After assigning a number to each household in the sampling

frame, a number is selected at random and the corresponding household is chosen as

the first household to visit. All subsequent households surveyed are selected using

physical distances from the previous house’s front door to all remaining household’s

front doors. This process is repeated until the desired sample size is obtained. On

the other hand, if no household list is available, the EPI method at the secondary

level is initiated by first selecting a central location in the sampled town. A random

direction from the centre of the town is chosen, by spinning a pen or bottle, and all

households along that path reaching the edge of the town are recorded. To select

an initial household using this alternate procedure, a household is chosen at random

from those that were identified along the path. Subsequent houses are selected using

2
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the aforementioned procedure. If there are no eligible participants in the household

for the survey, the surveyor must simply move onto the next closest household.

Using only eligible candidates, the process is repeated until the desired sample size

is obtained (WHO, 2008).

Many papers have conducted thorough simulations regarding the required sample

sizes of PSUs and SSUs that must be collected using the EPI method to obtain

adequate precision in the ensuing inferences. According to Brogan et al. (1994),

30 PSUs and 7 SSUs are typically recommended for quick and cost-efficient results.

More information on the EPI method and its history could be found in detail in

Reyes’ (2016) paper titled, “An Analysis of Equally Weighted and Inverse Probability

Weighted Observations in the Expanded Program on Immunization (EPI).”

1.2 Approaches to the EPI Method

Over the past five decades, the EPI method has been vital in estimating vaccina-

tion coverage, relief operations, nutritional surveys and health care delivery (Reyes,

2016). However, the EPI method has been used in cases where organizations and

governments did not comprehend the statistical and analytical aspects of the method

correctly. In consequence, many of the results obtained by such groups resulted in

inaccurate conclusions. In an attempt to resolve such issues, the traditional EPI

method was modified, creating more complex and expensive methods of assessments

(Bostoen and Chalabi, 2006).

One main problem with the EPI method is that it tends to give a higher prob-

ability of picking households that are closer to the center of the town (Bostoen and

3
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S

Random
Direction

Town
Center

Road

Starting Household

Eligible Participant

Households
in Path

1

2 3 4
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6 7 8
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11

Household
Selection Path

Legend

90◦
N

EW

270◦

Household

Figure 1.1: Selection of 7 households if a household list is unavailable, according to
the EPI method. It can be seen some households are visited, but do not contain
eligible participants which results in omission. These households are skipped and
the next nearest neighbour is located for the survey, until a sample of 7 eligible
candidates is obtained.
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Chalabi, 2006). See Chapter 3 for additional details. To increase accuracy and pre-

cision of the EPI method, Brogan et al. (1994) suggested a number of modifications:

continuing to use PPS sampling to select PSUs, calculating the probability of pick-

ing households at the secondary stage and performing a weighted analysis to get an

estimate for the vaccination coverage, or any other statistic in general.

In her thesis, Reyes (2016) conducted a detailed analysis of the EPI method at the

secondary stage for binary characteristics such as vaccination coverage. Her analysis

was two-fold, as it analyzed results from past studies of the EPI method at the

secondary stage and made significant advancements at this secondary stage. More

specifically, she studied methodological characteristics of the secondary stage of the

EPI method by employing the use of an arc or sector to select the initial household, as

opposed to the original method devised by the EPI to select households. To continue

her work, this paper will explore a two-stage analysis of the EPI method, emphasizing

not only the second stage but the primary stage of selecting towns with PPS as well.

Simulation of town data will use the work of Reyes (2016), where she constructed

a number of towns with varying household spatial and disease prevalence patterns.

At the primary stage, this paper focuses on sampling techniques using PPS such as

systematic sampling, and sampling with and without replacement. Furthermore, it

will discuss the statistical theory behind using a strip or path which has not yet been

developed. Additionally, it will explore a method of collecting household positioning

on a map when this information is not readily available, through the use of Google

Maps. Finally, a number of two-stage weighted assessments are undertaken using

the methods and simulated data described above.

5



Chapter 2

First-Stage Sampling: Selecting

the Towns with Probability

Proportional to Size

According to the WHO (2008), PSUs have been selected using systematic sampling.

To date, not many sampling techniques have been performed at the primary stage.

One of the main focuses of this thesis is to explore alternative sampling schemes

at the primary stage. Subsequently, several methods have been explored in detail.

Since this thesis explores exact inclusion probabilities, many alternative sampling

methods, such as Lahiri’s method, were not studied and reported because of their

complex sampling structures. The consequence of using some of these methods will

be explored in the case studies that follow in Chapter 4.

6
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2.1 The Systematic Sampling Method

2.1.1 The Method

To select PSUs with PPS, Henderson et al. (1973), Lemeshow and Robinson (1985)

and Bennett et al. (1991) use a systematic sampling procedure. These methods could

be extended to produce a general systematic sampling approach. Suppose there are

M clusters or towns for some population and a sample of size m is desired, where

0 < m ≤ M . Corresponding to each PSU i, for i ∈ {1, . . . ,M}, is the size Ni with

N =
∑M

i=1 Ni being the total size of the population. Proceeding with the systematic

sampling method, two lists of size N must be constructed. The first list contains a

sequence of integers starting from 1 to N and the second list is composed of PSUs in

the population where the PSUs are repeated correspondingly to their respective sizes

Ni for all i ∈ {1, . . . ,M}. A depiction of the first and second list are represented in

Figures 2.1 and 2.2 respectively.∣∣∣∣1, . . . , N1

∣∣∣∣N1 + 1, . . . , N1 +N2

∣∣∣∣ . . . ∣∣∣∣M−1∑
i=1

Ni + 1, . . . , N

∣∣∣∣
Figure 2.1: List of integers from 1 to N .

︸ ︷︷ ︸
N

N1︷ ︸︸ ︷
1, . . . , 1,

N2︷ ︸︸ ︷
2, . . . , 2, . . .

NM︷ ︸︸ ︷
,M, . . . ,M

Figure 2.2: List of size N , with M PSUs repeated proportionally to their respective
sizes.

When an integer is selected from the first list from 1 to N , it is treated as an

identifier used to find the corresponding element in the second list. Let r be the

7
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number of primary samples to group at least m PSUs, such that r = max{t ∈ Z|t ≤
N
m
}. This may lead to some PSUs not being grouped into the r samples. Thus, for

some non-negative integer k, such that 0 ≤ k ≤ m − 1, the remaining PSUs can be

systematically grouped. Consequently, the following result is obtained

N = mr + k. (2.1)

The reason there are r groups of at least size m is because when k > 0, there

are PSUs that have yet to be included into samples. Hence, the maximum size of

additional PSUs that can be added systematically onto existing samples of size m

are:f

q = min
{
s ∈ Z|s ≥ k

r

}

This implies that there are:

1. r ·
(
q − k

r

)
samples of size m+ q − 1

2. r ·
(
1−

(
q − k

r

))
samples of size m+ q

If each of the samples above were summed by their respective sizes, it would lead

to the following result

(m+ q − 1)

(
r

(
q − k

r

))
+ (m+ q)

(
r

(
1−

(
q − k

r

)))
=(m+ q)r

(
q − k

r

)
− r

(
q − k

r

)
+ (m+ q)r − (m+ q)r

(
q − k

r

)
=− rq + k +mr + qr = mr + k = N.

8
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The procedure is initiated by constructing the aforementioned lists of size N .

Once constructed, a number i between 1 and r is selected randomly from the first

list. Next, every rth number is selected after picking i from the first list. If an rth

multiple leads to a number greater than N , reject it and stop further sampling. Once

this is done and samples have been constructed, assign the corresponding towns from

the second list.

2.1.2 Systematic Sampling Example

Suppose N = 30, M = 10 and samples of size 8 are required. Assume the information

required to construct the systematic samples of the population is as in Table 2.1.

Table 2.1: A population with N = 30 households divided into M = 10 towns.

Town Index Town Size
1 1 2 N1 = 2
2 3 4 5 6 N2 = 4
3 7 8 9 10 11 N3 = 5
4 12 13 14 15 N4 = 4
5 16 17 N5 = 2
6 18 19 20 N6 = 3
7 21 22 N7 = 2
8 23 24 25 26 N8 = 4
9 27 N9 = 1
10 28 29 30 N10 = 3

Using the methodology developed in Section 2.1.1, there can be r = max{t ∈

Z|t ≤ N
m

= 3.75} = 3 groups formed. With this, k = N −mr = 6 remaining PSUs

still need to be systematically grouped into the 3 samples. Systematically sampling

the remaining 6 PSUs produces an addition of q = min{s ∈ Z|s ≥ k
r

= 6
3
} = 2 PSUs

per sample, at most. Thus, there are r(q − k
r
) = 0 samples of size m + q − 1 = 9

9
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and r(1 − (q − k
r
)) = 2 samples of size m + q = 10. Now that information about

the samples has been identified, Section 2.1.1 can be used to perform systematic

sampling proportional to size. Begin by selecting a number from the first list from

1 to r = 3. Once selected, add r to each possible starting element and attach the

result to its respective sample until an rth multiple leads to a number greater than

N . Carrying this procedure through results in the samples of the form

r = 3;



m = 8︷ ︸︸ ︷
1 4 7 10 13 16 19 22

q = 2︷ ︸︸ ︷
25 28

2 5 8 11 14 17 20 23 26 29

3 6 9 12 15 18 21 24 27 30

Clearly, these samples pertain to the first list that was created. To create samples

that correspond to the PSUs, simply take each element in the sample which serves

as an index to the town it corresponds with. This simple index search results in

obtaining the following samples of PSUs:

Table 2.2: Systematic Samples constructed with N = 30, M = 10 and m = 8

Sample 1 1 2 3 3 4 5 6 7 8 10
Sample 2 1 2 3 3 4 5 6 8 8 10
Sample 3 2 2 3 4 4 6 7 8 9 10

2.1.3 Inclusion Probabilities

Clearly, there are r non-overlapping samples formed using the described method.

Since the systematic sampling procedure is initiated using a uniform distribution,

each sample is equally likely to be selected. Consequently, the probability of selecting

10
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any sample of size m, say s(m), using systematic sampling is 1
r
. Let αi be probability

that town i is included in the primary sample and let S(m) be the set which contains

all possible primary samples of size m under the assigned sampling scheme. Hence

αi =
∑

s(m)∈S(m)

P (s(m))1(i ∈ s(m)) =
∑

s(m)∈S(m)

1

r
1(i ∈ s(m)), (2.2)

where 1(i ∈ s(m)) =


1, if PSU i is included in the sample s(m);

0, otherwise.

If a PSU’s size is greater than or equal to r, it must be included in every sample at

least once. On the other hand, if a PSU’s size is less than r, it appears proportional

to its size relative to r. Thus, Equation (2.3) could be generalized to the following

result

αi =


1, Ni ≥ r;

Ni
r
, Ni < r

=
min(Ni, r)

r
. (2.3)

Alternatively, if Ni ≤ r for all i ∈ {1, . . . ,M},

αi =
Ni

r
=
N

r

Ni

N
=

(
mr + k

r

)
Ni

N
= m

Ni

N
+
k

r

Ni

N
. (2.4)
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2.2 Sampling WOR using PPS

Perhaps two of the most elementary sampling techniques that are simple to im-

plement are sampling with replacement (WR) and sampling without replacement

(WOR). Sampling without replacement refers to a sampling process which does not

allow objects or elements to appear more than once within a sample. Similarly, sam-

pling with replacement refers to sampling processes which allow objects or elements

to appear more than once in a sample. Sampling WOR produces a subset of samples

that are possible under sampling WR, however the sample probabilities generally

vary even if they produce the exact same samples.

2.2.1 The Method

Recall, for any PSU or town i, its size is defined by the number of households that are

captured in its region, which was denoted byNi. Thus, the total size of the population

is simply the sum of the town’s or PSU’s sizes which is
∑M

i=1Ni = N . To sample

without replacement with probability proportional to size, begin by constructing a

list of size N composed of PSUs being repeated equally to their respective sizes.

Refer to Figure 2.2 for an example of the mentioned list. Once this list is acquired,

randomly select one element from this list. Once selected, record that particular

PSU, and remove all elements in the list that correspond to that PSU. Repeat this

process until a sample size of 0 < m ≤M is obtained.

Thus, one algorithm to obtain a sample of size m WOR with PPS is the following

1. Construct a list of size N composed of all PSUs replicated to their respective

sizes.

12
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2. Let t be an index to identify the element being selected for the sample of PSUs.

So the tth PSU selected is recorded as `t. Randomly select and record a PSU

from the list generated in Step 1. After the selected town or PSU `1, add it to

the sample s and remove all PSUs that are equal to i from the list.

3. In general, from the original list, there are N −
∑t

i=1N`i PSUs to select in the

second stage of sampling PSUs for any given stage t.

4. Repeating steps 2 and 3 produces the required sample s(m).

Example using Sampling WOR with PPS

To illustrate how to sample WOR with PPS, suppose a sample of size m = 3 is

desired from the information provided in Table 2.1. Begin by constructing the list

of size N composed of PSUs replicated proportionally to their sizes. Thus, a list of

the following structure is produced:

︸ ︷︷ ︸
N = 30

N1 = 2︷ ︸︸ ︷
1, . . . , 1,

N2 = 4︷ ︸︸ ︷
2, . . . , 2, . . .

N10 = 3︷ ︸︸ ︷
, 10, . . . , 10

Figure 2.3: PSU list of size N = 30, according to Table 2.1.

According to this list, a possible sample of size m = 3 is presented in Table 2.4.

Analyzing Table 2.4 shows that using the described algorithm in 2.3.1, a possible

sample WOR with PPS is s(3) = {1, 3, 9}.

13
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Table 2.3: Sampling m = 3 towns, according to the information in Table 2.1.

Stage Selected Town Town Size Remaining Towns Remaining elements in List

t = 1 `1 = 1 N1 = 2 M − t = 9 N −
∑1

i=1N`i = 34

t = 2 `2 = 3 N3 = 5 M − t = 8 N −
∑2

i=1N`i = 29

t = 3 `3 = 9 N9 = 1 M − t = 7 N −
∑3

i=1N`i = 28

2.2.2 Another Approach to Sampling WOR using PPS

An alternative method to generate samples WOR using PPS is to continuously pick

PSUs with probability proportional to size, until a sample size of m different towns

is obtained. A clear implication of this technique is that the algorithm may pick

a number of PSUs that is at least m. However, the algorithm does not stop un-

til m different PSUs are obtained. If there happens to be one very large PSU size

relative to all the other PSUs, this algorithm may produce an issue regarding com-

putational time due to the potentially unduly large number of repetitions. Although

this method selects PSUs with replacement, the final sample recorded is a sample

without replacement.

Thus, the probability that PSU i is selected at any stage of the sampling process

is Ni
N

.

1. Create a list of size N , repeating town i Ni times for i ∈ {1, . . . ,M}.

2. Randomly select a PSU from the list generated in step 1 and add it to the

sample s(m).

3. Randomly select another PSU from the list in step 1. If the PSU or town is
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already in the sample, discard it and sample again. Once a different PSU is

obtained, add it to the sample s(m).

4. Repeat the process above until m different PSUs are selected.

2.2.3 Additional Notes: Expected Number of Draws

Throughout this paper, all the samples generated under their assigned sampling

scheme have a known sample size. With this technique the desired sample size is

known, but the question of how many draws it would take to obtain that particular

size m arises naturally. This leads to a famous problem called the Coupon Collector

Problem. As stated by Ferrante and Frigo (2014) the classic coupon collector problem

assumes that there are M coupons, all with an equally likely probability of selection,

which give some prize. The coupon collector problem then asks, how many coupons

would have to be sampled to obtain all M prizes? In other words, what is the

expected number of coupons needed to be purchased to obtain M unique prizes?

In Ferrante and Frigo (2014), they extend this problem by asking how many

coupons would be required to obtain a subset of prizes, say m, where the probability

of obtaining the coupons are unequally likely. In terms of the alternate method to

sample WOR using PPS, this problem could be interpreted as, “How many PSUs

must be sampled repeatedly so that m ≤M different PSUs are obtained, given they

have unequal probabilities of selection?”

Let pi = Ni
N

be the probability of drawing PSU i in any given draw, such that∑M
i=1 pi = N1+...+NM

N
= 1. Let X1 denote the random number of draws needed to

obtain the first PSU. It is trivial to see that X1 = 1 since any selection in the first
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draw results in picking a unique PSU. Let X2 denote the additional draws needed

from the first to obtain a PSU that is not equal to the first draw. In general, let Xi

denote the number of draws needed to go from the (i − 1)th draw to the ith unique

draw in the sample s∗. Thus, the number of random draws needed to obtain m ≤M

different PSUs is

XM(m) = X1 +X2 + . . .+Xm =
m∑
i=1

Xi.

If pi1,i2,...,ik = 1− pi1 − pi2 − . . .− pik , then according to Ferrante and Frigo (2014)

the expected number of draws needed to obtain the kth unique draw after (k − 1)

unique draws is

E(Xk) =
k∑

i1 6=i2 6=...≤ik−1=1

pi1 · pi2 · . . . · pik−1

p(i1) · p(i1,i2) · . . . · p(i1,...,ik−1)

. (2.5)

In general, if there are M PSUs and a sample of m ≤ M is desired, the expected

draws to obtain a sample of size m with unequal probabilities of selecting each PSU

is,

E(XM(m)) = E

(
m∑
i=1

Xi

)

= 1 +
m∑
i1

pi1
p(i1)

+ . . .+
m∑

i1 6=i2 6=...≤im−1=1

pi1 · pi2 · . . . · pim−1

p(i1) · p(i1,i2) · . . . · p(i1,...,im−1)

.

(2.6)

In terms of application, this formula has nothing to do with the assessment of the

EPI method. However, if there are a few large towns and many small towns, then the
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application of this procedure helps researchers estimate the number of PSUs needed

to obtain a sample of m unique PSUs.

2.2.4 Inclusion Probabilities

With both methods described in Sections 2.3.1 and 2.3.2, there are inclusion probabil-

ities that could be calculated. As shown in Equation (2.2), the inclusion probability

that some town i is included in the sample is the sum of all sample probabilities

that contain town i. However, the number of samples that could be produced sam-

pling WOR using PPS is MPm. For a large enough population with many towns

and a moderate sample size, the number of samples is simply too large to process.

Nonetheless, the calculations for the sample probabilities are still possible under this

sampling scheme. Suppose a sample of size m is required and the m PSUs included in

the sample in order are `1, `2, . . . , `m. Then, the probability of obtaining an arbitrary

sample WOR with PPS s(m) is

P (s(m)) =

(
N`1

N

)
·
(

N`2

N −N`1

)
·
(

N`3

N −N`1 −N`2

)
· . . . ·

(
N`m

N −
∑m−1

i=1 N`i

)

=
N`1

N

m∏
i=2

N`i

N −
∑i−1

j=1N`j

(2.7)

Although Equation (2.8) is compact, iteratively going through each sample and

computing sample probabilities would be an excessive task for any computer for

a large enough M and moderate size m. Therefore to reduce this computational

strain, another approach must be created to obtain the inclusion probabilities for

sampling WOR using PPS. Again, suppose the objective is to compute the inclusion
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probability of some town i for samples of size m. Thus,

αi = P (town i is included in s(m))

=P (town i is selected in 1st draw ∪ . . .∪ town i is selected in the mth draw)

=P (town i is selected in 1st draw) + . . .+ P (town i is selected in the mth draw)

(2.8)

=
Ni

N
+

M∑
k1=1
k1 6=i

Nk1

N

Ni

N −Nk1

+
M∑
k1=1
k1 6=i

M∑
k2=1

k2 6={i,k1}

Nk1

N

Nk2

N −Nk1

Ni

N −Nk1 −Nk2

+ · · ·

+
M∑
k1=1
k1 6=i

M∑
k2=1

k2 6={i,k1}

· · ·
M∑

km−1=1
km−1 6={i,k1,...,km−2}

Nk1

N

Nk2

N −Nk1

× . . .× Ni

N −Nk1 − . . .−Nkm−1

.

(2.9)

Note, Equation (2.9) is a result of events being mutually exhaustive. To validate

Equation (2.9), it can be used to show that the sum of the inclusion probabilities

when sampling WOR using PPS satisfies Equation (2.5) (see Appendix A.1)

To validate this equation, Equation (2.5) can be used. Equation (2.10) is a general

formula to directly compute inclusion probabilities when sampling WOR using PPS.

However, there are cases which produce compact formulas for inclusion probabilities

that are not time consuming to calculate.
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2.2.5 Special Cases

m = 2

Suppose m = 2. This would mean that some town i could appear in the sample in

either the first draw or the second draw. Thus,

αi =P (town i is included in s(2))

=P (town i is selected in the 1st draw) + P (town i is selected in the 2nd draw)

=
Ni

N
+

M∑
k1=1
k1 6=i

Nk1

N

Ni

N −Nk1

=
Ni

N
+

M∑
k1=1
k1 6=i

Ni

N

Nk1

N −Nk1

=
Ni

N

1 +
M∑
k1=1
k1 6=i

Nk1

N −Nk1


(2.10)

m = 3

Much like the case ofm = 2, a compact form could be found for inclusion probabilities

sampling WOR with PPS for samples of size m = 3. Thus,

αi =P (town i is included in s(3))

=P (town i is selected in the 1st draw ∪ . . .∪ town i is selected in the 3rd draw)

=P (town i is selected in 1st draw) + . . .+ P (town i is selected in the 3rd draw)

=
Ni

N
+

M∑
k1=1
k1 6=i

Nk1

N

Ni

N −Nk1

+
M∑
k1=1
k1 6=i

M∑
k2=1

k2 6={i,k1}

Nk1

N

Nk2

N −Nk1

Ni

N −Nk1 −Nk2

=
Ni

N
+

M∑
k1=1
k1 6=i

Ni

N

Nk1

N −Nk1

+
M∑
k1=1
k1 6=i

M∑
k2=1

k2 6={i,k1}

Ni

N

Nk1

N −Nk1

Nk2

N −Nk1 −Nk2
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=
Ni

N

1 +
M∑
k1=1
k1 6=i

Nk1

N −Nk1

+
M∑
k1=1
k1 6=i

Nk1

N −Nk1

M∑
k2=1

k2 6={i,k1}

Nk2

N −Nk1 −Nk2

 (2.11)

=
Ni

N

1 +
M∑
k1=1
k1 6=i

Nk1

N −Nk1

1 +
M∑
k2=1

k2 6={i,k1}

Nk2

N −Nk1 −Nk2


 (2.12)

Clearly it is seen that Equation (2.13) is not simple; however, it is the most basic

expression that is obtainable for m = 3. A major piece of information is obtained

when computing the inclusion probabilities for m = 3. Specifically in Equation

(2.13), there is a pattern. When looking for town i to be included in the sample after

the jth draw (the (j + 1)th draw), it is simply the product of all draws leading up to

the jth draw, times the probability of the (j + 1)th draw. This piece of information

is vital in the proof of the next case. Furthermore if m = 4, the last sum of the

inclusion probability will compose of a triple sum. For m = 5, the last sum will

contain a quadruple sum. In general, for any size m, the last sum will be an (m−1)-

tuple sum. For future works, it may be possible to condense Equation (2.10) using

some recursion formula that relates to the idea of the tuple sums.

2.2.6 Equal sized towns

Say across all towns in a population, the sizes were equal. Thus, Nk = Q, for

k ∈ {1, 2, . . . ,M}. Consequently,
∑M

k=1Nk =
∑M

k=1Q = MQ. In this case, it can

be proven that the inclusion probability for selecting town i in a sample of size m is

m
M

. In other words, it can be stated that sampling equal sized towns of size m WOR

using PPS results in the inclusion probabilities of all PSUs to be αi = m
M

. This result
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is shown by a proof of induction (see Appendix A.1).

As a matter of fact, it was noticed through simulations that the behavior of

inclusion probabilities for large M with relatively equal sized towns is close to the

inclusion probabilities obtained in the case of equal sized towns while sampling WOR

with PPS.

2.3 Sampling with Replacement using PPS

2.3.1 The Method

Another classic sampling scheme is sampling with replacement. The major advantage

of sampling WR using PPS is that it is very tractable. The most impressive feature

it brings forth to the EPI sample is how straightforward it is to compute inclusion

probabilities using this particular method. Much like sampling WOR using PPS,

constructing all possible samples is no easy task, as many computers would fail to

generate all possible samples under such a scheme for a substantially large number

of towns. To be more precise, the total number of samples that could be constructed

of size m for some population with M towns is Mm. Logically, every PSU has a

chance to appear at each draw of the sample. This gives chance to each PSU to be

selected m times repeatedly for a sample of size m.

Although generating all samples is difficult for a large sample size and number

of PSUs, generating a particular sample WR using PPS is however simple. The

following steps describe the algorithm:

1. Create a list of size N , repeating each town in the list proportional to its size.
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2. Randomly select a PSU from the list constructed in step 1. Once selected, add

that particular PSU to the sample s(m).

3. Repeat step 2. until a sample of size m is obtained.

Example using Sampling WR with PPS

To show how to produce a sample WR using PPS, Table 2.1 will be used again.

Suppose a sample of size m = 4 is desired. As in the example of sampling WOR with

PPS, begin by constructing a list of size N composed of PSUs replicated according

to their sizes (refer to Figure 2.3 for the generated list). Using the same notation

as in Section 2.3.1, a possible sample produced WR with PPS is presented in the

following table.

Table 2.4: Sampling m = 4 towns WR using PPS, according to information in Table
2.1.

Stage Selected Town Town Size

t = 1 `1 = 1 N1 = 2

t = 2 `2 = 3 N3 = 5

t = 3 `3 = 9 N9 = 1

t = 4 `4 = 3 N3 = 5

So, according to Table 2.5, a possible sample WR using PPS is s(4) = {1, 3, 9, 3}

for the data described in Table 2.1.
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2.3.2 Inclusion Probabilities

Although sample probabilities are difficult to compute because all possible samples

are too many to store and process in the average computer, individually they still

have a closed form. Suppose a sample s(m) is desired and the m PSUs included in

the sample in order are `1, `2, . . . , `m. Then, the probability of obtaining an arbitrary

sample s(m) WR using PPS is

P (s(m)) =
N`1

N
· N`2

N
× . . .× N`m

N

=
1

Nm
×

m∏
i=1

N`i (2.13)

Again, the number of samples is extremely large for large M and at least mod-

erate sized m. It may not be feasible to spend time generating all possible samples

and computing each sample’s probability of selection to obtain inclusion probabili-

ties. Alternatively, a more direct method to compute inclusion probabilities is used.

Consider a sample of size m collected using sampling WR with PPS. Thus town i

has a probability of Ni
N

of being included in the sample for any given selection stage.

The probability that town i is not chosen is 1 − Ni
N

= N−Ni
N

. This implies that the

probability that town i is not chosen in a sample of size m is
(
N−Ni
N

)m
. As a result,

the probability of town i being included in a sample of size m is

αi = 1−
(
N −Ni

N

)m
, (2.14)

for all i ∈ {1, . . . ,M}
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2.3.3 Connections between systematic sampling, sampling

WOR and WR with PPS

There are implications when sampling without replacement. Specifically, Lohr (2009)

states that when sampling m PSUs without replacement using PPS, the inclusion

probabilities must satisfy the following result

M∑
i=1

αi = m. (2.15)

With this result, a special case could be looked at under systematic sampling

where there is a connection between systematic sampling with PPS and sampling

WOR with PPS. Consider the case when k = 0 and Ni ≤ r for all i ∈ {1, . . . ,M}.

In consequence, N = mr and

αi =
Ni

r
=
m

m

Ni

r
= m

Ni

N

∴
M∑
i=1

αi =
M∑
i=1

m
Ni

N
=
m

N

M∑
i=1

Ni = m.

Intuitively, this statement is sensible because each PSU will either appear in all

samples or a subset of them and there will be no PSUs left unaccounted for in the

process (k = 0). Conclusively, if m PSUs are to be systematically sampled when

k = 0 and Ni ≤ r for all i, then this is the equivalent to sampling WOR using

PPS. Regarding the samples themselves when systematically sampling under the

mentioned conditions, only a subset of the samples are produced from the samples

that would be possible WOR using PPS. To clarify, if all samples of size m for some

population N = mr under the systematic sampling procedure, say Sm,SS, and under
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sampling WOR with PPS, say Sm,WOR, are generated then Sm,SS ⊆ Sm,WOR.

In the case where Ni > r for some i ∈ {1, . . . ,M}, those PSUs must be included

in at least one sample more than once. Similarly, when sampling WR using PPS,

PSUs could appear in a sample more than once. Consequently, when systematically

sampling m PSUs and some PSU i has size Ni > r, it produces at least one sample

which contains those particular PSUs more than once. These particular samples

which contain PSUs included more than once would then be a subset of the possible

samples that could be constructed by sampling WR using PPS. Again, if all possible

samples of size m for some population N = mr + k under systematic sampling

and under sampling with replacement using PPS, say Sm,WR, are considered, then

Sm,SS ⊂ Sm,WR. Note, it is not possible for Sm,SS = Sm,WR because the case where

some PSU i is included in a systematic sample more than once, it eliminates the

possibility of there being some other sample(s) that do not include that PSU i. Under

a different variation of the systematic sampling procedure, it might be possible.

Although systematic sampling could produce samples which are the same as

sampling WOR and WR using PPS, the inclusion probabilities are not the same

in general. For example, when PSU i has size Ni > r, its inclusion probability is

αi = 1. Compared to sampling with replacement, this is not the same because the

inclusion probabilities when sampling WR with PPS can never be 1 exactly. This

will be shown in greater detail in later sections.
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Chapter 3

Second-Stage Sampling: Selecting

Households Using the EPI Method

Chapter 2 explored a variety of techniques to sample with probability proportional to

size. The core data needed to compose EPI samples at the primary stage using PPS

sampling techniques require PSU sizes, which can be constructed using the number

of SSUs within specific PSUs. In context of the EPI method, households with eligible

candidates for a particular survey are typically the SSUs.

As such, household data plays an equally vital role in the construction of samples

at the secondary stage of sampling within the PSUs. In her paper, Reyes (2016) ex-

plored in great detail the various implications of the methods used to sample at the

secondary stage in previous studies of the EPI method. Depending on the method

used to collect samples at the secondary stage, a variety of samples and sample prob-

abilities are possible. According to Reyes (2016), a simple random sample (SRS) of

households from a particular town or village gives equal weight to all household(s) in
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the town. On the other hand, the EPI method selects the nearest unsampled house-

hold(s) from the last sampled household, producing unequal sample probabilities in

general.

3.1 Strip Sampling

As previously mentioned, the EPI method tends to give higher probabilities of picking

the first household to those that are near the center of the town or village. To address

this problem, Reyes (2016) explored a method known as arc or sector sampling. Aside

from the detailed analysis of this alternate method, there has yet to be any released

literature exploring the statistical aspects of the original sampling method at the

secondary stage for the EPI method, as proposed by the World Health Organization

(2008). The work that follows will expand and modify this traditional approach.

For simplicity, consider an arbitrary town i, for i ∈ {1, . . . ,M}, which is composed

of households Hi ∈ {1, . . . , Ni}. Since each household location could be mapped onto

a two-dimensional Cartesian plane, they could all be represented by their Cartesian

coordinates (xj, yj). Each household’s Cartesian coordinate could also be trans-

formed to produce a polar coordinate, such that

(xj, yj)→ (rj, θj)

rj =
√
x2
j + y2

j

θj = tan−1

(
yj
xj

)
,

where rj and θj represent the radius from the origin and the angle from the initial
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arm (positive x-axis), respectively.

According to the WHO (2008), after a direction has been randomly selected from

the center of the town by either software or simply spinning a bottle, the surveyor

must walk in that direction and record all households until the edge of the town has

been reached. This description is vague because it does not clearly indicate what

households in proximity to the surveyor should be recorded. More specifically, if 2

or more surveyors were asked to walk along a particular path from the center of the

town, it is likely that at least one would have a different set of households recorded

in their collection compared to the other surveyors.

To develop a more specific method of recording households along a certain path

or direction of a town, strips will be used. These particular strips would be composed

of 4 sides, of which 3 are essential, and the strips will rotate from directions in [0, 2π)

about the midpoint of the width of the strip. More precisely, the width of the strip

would take on some value α ∈ (0, 2 maxi∈{1,...,Ni} ri] and be perpendicular to the initial

spin or direction. The lengths of the strip would both be oriented in the direction of

the initial spin, go towards the edge of the town and be perpendicular to the width

of the strip. In application, the algorithm needed to perform strip sampling is:

1. Specify the width of the strip, α.

2. Randomly select a direction θ from [0, 2π) using a uniform distribution. Pro-

duce the corresponding strip with width α from the origin in the direction θ. If

the strip is empty (contains no households), repeat this step until a non-empty

strip is obtained.
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3. Record all households in the non-empty strip and randomly select one house-

hold. Execute the nearest neighbor algorithm as mentioned by the WHO (2008)

and collect a sample of n households.
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Figure 3.1: Illustration of an EPI sample of size 3 at the secondary stage using a
strip of width α = 4 and θ = 5.473 for a town with 100 households. Arrows were
used to show the sequence of households selected in the nearest neighbour process.

Strip sampling is geometrically complex when finding the directions of θ that bound

some household j, say hj. The key concept to grasp is that there are three lines that

construct the strip and utilizing them leads to finding the directions that capture hj.

When analyzed correctly, the process is easier to comprehend and constructing any

strip sample probabilities at the secondary stage is facilitated.
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3.1.1 Household directions with radii greater than α
2

Within the width of every strip, a circle with radius α
2

can be drawn about the origin

or center of the town. In this case, the two sides of the strip are perpendicular to this

arbitrary circle at the two vertices. This would imply that any household hj can be

found lying on the side of two strips with unique directions of θ and form two right

angle triangles to the origin of the town and each of the vertices independently. Since

this spatial arrangement creates a right angle triangle, the sides α/2 and D, distance

from the origin to the household form a third side, say L, using the Pythagorean

theorem. A visual depiction of this method is provided in Figure 3.2.

D

L

α
2

hj

B

O

θ

Figure 3.2: Constructing a right angle triangle with household hj found on the edge
of some strip with direction θ, intersecting at one of the vertices, B.

The coordinates of the origin are fixed at (0, 0) and the coordinates of household
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hj are also fixed at some point say (xj, yj). Thus,

D =
√

(xj − 0)2 + (yj − 0)2.

Using the Pythagorean Theorem,

L =

√
D2 −

(α
2

)2

.

The aim of this procedure is to find the coordinates associated with the vertices,

say B1 and B2, so that the corresponding direction to these coordinates, say θB1 and

θB2 respectively, could be used to find the directions that some household hj is found

in (see Figure 3.3). The relationship between the direction of these coordinates and

the bounds is that they are perpendicular to the bounds. Once the directions θB1

and θB2 are obtained, simply adding or subtracting π
2

would give the bounds for the

strip that capture some household hj.

Begin by letting the unknown coordinates associated with either points B1 or B2

be (x, y). Using the fact that the squared distance from the origin to point B1 or B2

must be (α/2)2, one equation is constructed to obtain x and y. Another equation

is formed using the fact that the squared distance between points hj and B1 or B2

must be L as shown in Figure 3.3. With this, a system of two equations is obtained

with two unknowns x and y.

x2 + y2 =
(α

2

)2

(3.1)

(x− xj)2 + (y − yj)2 = L2 (3.2)
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D

L

α
2α

2

hj

B1

O
B2

Figure 3.3: An illustration showing the relationship with some household hj having
rj > α/2, and the vertices B1 and B2.

Upon expanding Equation (3.1) and subtracting it from Equation (3.2), the fol-

lowing results are obtained:

x2 − 2xjx+ x2
j + y2 − 2yjy + y2

j − x2 − y2 = L2 −
(α

2

)2

−2xjx+ x2
j − 2yjy + y2

j = D2 − 2
(α

2

)2

2yjy = −2xjx+

(
x2
j + y2

j −D2 + 2
(α

2

)2
)

y = −xj
yj
x+

x2
j + y2

j −D2 + 2
(
α
2

)2

2yj

y = c2x+ c1,

where c1 =
x2j+y

2
j−D2+2(α2 )

2

2yj
and c2 = −xj

yj
.
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Substituting y = c2x+ c1 into Equation (3.2) yields

x2 + (c2x+ c1)2 =
(α

2

)2

x2 + c2
2x

2 + 2c1c2x+ c2
1 −

(α
2

)2

= 0

(1 + c2
2)x2 + (2c1c2)x+

(
c2

1

(α
2

)2
)

= 0

∴ x =

−2c1c2 ±
√

(2c1c2)2 − 4(1 + c2
2)
(
c2

1

(
α
2

)2
)

2(1 + c2
2)

(3.3)

It is clear why two different coordinates are produced mathematically; one set of

coordinates corresponding to B1 and the other to B2. However, there is a resulting

complication from this procedure. The bounds for those households that lie on the

x-axis cannot be evaluated because both c1 and c2 contain denominators of yj, which

would equal 0 on the x-axis. To avoid this issue, a vertical shift either up or down by

some small value could be continuously applied to all households, until no household

is found on the x-axis.

The coordinates found, say (x1, y1) and (x2, y2), are utilized to compute θ values

that form a set capturing hj. Spatially, the bounds can be systematically calculated

depending on whether households have y-coordinates that lie either above or below

the x-axis. Let θj,1 and θj,2 represent the lower and upper bound of the directions for

the strip of width α that capture some household j. If the y-coordinate of household

j is greater than 0, θj,1 and θj,2 is found by letting:

1. x
(1)
j = min(x1, x2) and y

(1)
j be the corresponding coordinate.

Thus, θj,1 = tan−1

(
y
(1)
j

x
(1)
j

)
− π

2
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2. x
(2)
j = max(x1, x2) and y

(2)
j be the corresponding coordinate.

Thus, θj,2 = tan−1

(
y
(2)
j

x
(2)
j

)
+ π

2

If the y-coordinate of household j is less than 0, θj,1 and θj,2 are found by letting:

1. x
(1)
j = max(x1, x2) and y

(1)
j be the corresponding coordinate.

Thus, θj,1 = tan−1

(
y
(1)
j

x
(1)
j

)
− π

2

2. x
(2)
j = min(x1, x2) and y

(2)
j be the corresponding coordinate.

Thus, θj,2 = tan−1

(
y
(2)
j

x
(2)
j

)
+ π

2

So for any household hj that has radius rj >
α
2
, the method above can be used to

give the range of directions that capture it, which are θ ∈ [θj,1, θj,2] using a strip with

width α.

3.1.2 Households with radii less than or equal to α
2

It is important to distinguish households that have radii exceeding α/2 relative to the

origin because the method used to compute the directions θ that bound households

with radii less than or equal to α
2

varies. Specifically, for any hj with a radius

rj ≤ α
2

from the origin, it is not the sides of the strip that will be used to find

the bounds, but rather the base of the strip. Suppose the corresponding direction

of hj relative to the positive x-axis is θhj . From θj, the strip can rotate about the

origin up to 90◦ counterclockwise and clockwise, while still containing household hj.

Letting θj,1 = θhj − π
2

and θj,2 = θhj + π
2
, the bounds capturing some household hj

are θ ∈ [θj,1, θj,2]. Consequently, the range of the directions that capture household

hj with rj ≤ α
2

is π. Spatially, this implies that households with radii exceeding α
2
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from the origin have a range of directions that capture them being strictly less than

π. In general, the farther the household is from the origin, the smaller the range of

directions that capture it.

hj

θhj

θhj + π
2

θhj − π
2

O

π

Figure 3.4: An illustration showing the relationship with some household hj having
rj ≤ α/2. It is clearly observed that the strip with base α can rotate from the
direction θhj − π

2
to θhj + π

2
while ensuring that hj is contained in that particular

strip.

3.2 Computation of Household Inclusion Proba-

bilities using Strip Sampling

Naturally from a sampling point of view, a quantity of general interest is the inclusion

probability of every household hj using strip sampling. It is important to note that

since the EPI method is a two-stage sampling method, the households selected at
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the secondary stage depend on which towns were selected at the primary stage.

To compute the household inclusion probabilities, two probabilities are needed: the

probability of selecting the first household and the probabilities of obtaining the rest

of the sample members at the secondary stage.

3.2.1 Probability of Selecting the First Household.

One of the intricate components needed to calculate the probability of selecting some

household j first, P (hj), using strip sampling for a fixed base α, is the process in

finding all empty strips. An empty strip could be defined as a strip of base α which

contains no household and a non-empty strip could be defined as a strip of base α

which contains at least one household. Let Θ be a random variable representing the

set of directions θ for a strip with fixed base α, which are non-empty.

After computing the lower and upper bounds that capture each household, they

could be stored in two vectors v1 and v2 respectively. Specifically, v1 = {θ1,1, θ2,1, . . . ,

θNi,1} and v2 = {θ1,2, θ2,2, . . . , θNi,2}. Under the assumption that two or more house-

holds cannot be assigned the same Cartesian coordinates, vectors v1 and v2 must

contain unique pairs of values for those households with radii greater than α/2. In

contrast, households with radii less than α/2 could have the exact same bounds only

if their directions θ from the origin of the town are identical.

The main purpose for these vectors, v1 and v2, is that they are used to produce the

sets that contain empty strips. However, an issue that arises is that some households

may have polar coordinates that lie in quadrants 1 and 4. Consequently, their lower

and upper bounds may be beneath 0 radians and exceed 2π radians, respectively,

due to the procedure for how bounds are computed as seen in 3.1.1 and 3.1.2. For
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this reason, 2π should be added to each element in v1 and each element in v2 should

be subtracted by 2π. Two new vectors that account for this could be defined as

v∗1 = {v1, v1 + 2π} and v∗2 = {v2, v2 − 2π}. A method to compute the sets which

contain empty strips, for some fixed base α, is given in the following algorithm:

1. For some household hj, generate a strip with direction θ = θj,2 so that the

strip’s directions is the upper bound which captures household j.

2. Identify all households in the strip, excluding those that have an upper bound

of θj,2. If there are no other households, an empty strip is produced in the sets

of theta values from

θ ∈ [θj,2,min(v∗1 > θj,2)] .

Otherwise, no empty strips are produced.

3. Repeat steps 1-2 for each household in the town.

These empty sub-intervals (say K of them) would be non-overlapping and can be

denoted by E1, . . . , EK . Therefore, the set of directions that produce non-empty

strips can be defined as

Θ = [0, 2π)−
K⋃
k=1

Ek

= [0, 2π) ∩

(
K⋃
k=1

Ek

)C

. (3.4)

Since empty directions are discarded, the effective sampling set for θ which produce
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non-empty strips for some width α is Θ and will have length

L(D) = 2π −
K∑
k=1

L(Ek), (3.5)

where L(·) is a function that computes the length of some set(s) of intervals. For

dense towns or cities like Toronto, the town center is mostly found at the center of

a populated area. Thus, it is very unlikely to observe empty strips and L(D) for

such a town will most likely be 2π. On the other hand, towns that are populated

in a specific area away from the sea or large power plants have a greater chance in

displaying empty strips. In a real world setting, each town has an associated town

center. On the other hand for simulated towns, we can define the town center to be

the point given by the average of the households coordinates.

Since the initial direction for θ is randomly uniformly selected, its appropriate

probability density function (PDF) for sampling θ is

f(θ) =


1

L(Θ)
, if θ ∈ D;

0, otherwise.

(3.6)

For any household hj, P (hj) can be expressed as

P (hj) = E(g(θ, hj)) (3.7)

=

∫
Θ

g(θ, hj)f(θ)dθ

=

∫
Θ

1

L(Θ)
g(θ, hj)dθ, (3.8)
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where

g(θ, hj) =


1

n(θ,α)
, if strip(θ, α) contains household hj ;

0, otherwise;

(3.9)

and n(θ, α) represents the number of households contained in a strip of width α, in

the direction θ. Clearly, only directions that contain hj are needed to be considered.

This reduces the integral to compute P (hj) in Equation (3.7) from the entire set Θ

to the interval [θ1,j, θ2,j].

Much like in the sector sampling method discussed by Reyes (2016), there will

be a subinterval (θ∗ − b, θ∗ + b), for some b ∈ R+
0 , so that the group of households

contained in the strips with width α in this subinterval are all the exact same. This

allows strips with directions in the interval [θj,1, θj,2] to be observed as the union

of non-overlapping subintervals C1, C2, . . . , CA, such that [θj,1, θj,2] =
⋃A
a=1Ca, for

which the households contained in the strip(θ, α) will be the same for every direction

in Ca. In particular, n(θ, α) will be constant in Ca. Accordingly, Equation (3.7)

could be thought of as a finite sum of non-overlapping subintervals C1, C2, . . . , CA.

Letting θCa be any direction in the subinterval Ca,

P (hj) =

∫
Θ

1

L(Θ)
g(θ, hj)dθ

=

∫
Θ

1

L(Θ)

1

n(θ, α)
dθ

=

∫ θj,2

θj,1

1

L(Θ)

1

n(θ, α)
dθ

=
1

L(D)

A∑
a=1

L(Ca)

n(θCa , α)
. (3.10)
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3.2.2 Generating EPI Samples

Using the strip method at the second stage of the EPI method, a non-empty strip of

width α from the town center is generated, and then the first household is randomly

selected within the non-empty strip. From the remaining households, the second

household selected is the one which is physically closest to the first household. In

general, for q ≥ 2, the qth household is sampled from the Ni − q + 1 remaining

households from town i, which is physically closest to the (q − 1)th household that

was previously sampled. As mentioned before, if there is more than one household

that is physically closest from the previously sampled household, then one household

is randomly selected. This process is repeated in town i until a sample of size ni is

obtained. For simplicity, define the process of selecting the initial household using

a non-empty strip of width α and selecting subsequent nearest neighbors as an EPI

path.

If all households were distributed such that only one household is the nearest

neighbor to any other household, the number of samples that could be generated

along all EPI paths must be equal to Ni. In general, let S ′(ni) denote all possible

EPI samples of size ni for town i and let s′ni denote one sample of households along

a particular EPI path in the order the households were selected. Let the vector

hi,q = (h(1), h(2), . . . , h(q)) denote a sample of q households along some EPI path and

h(j) be the jth household included in the sample. Note, h(j) is usually not the same

as hj. The probability that hi,q is selected is

P (hi,q) =P ((h(1), h(2), . . . , h(q))

=P (h(q)|(h(1), h(2), . . . , h(q−1)))× P ((h(1), h(2), . . . , h(q−1)))
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=P (h(q)|(h(1), h(2), . . . , h(q−1)))× P (h(q−1)|(h(1), h(2), . . . , h(q−2)))×

× P ((h(1), h(2), . . . , h(q−2)))

...

=P (h(q)|(h(1), h(2), . . . , h(q−1)))× P (h(q−1)|(h(1), h(2), . . . , h(q−2)))×

× . . .× P (h(2)|h(1))× P (h(1))

=P ((h(2), h(3), . . . , h(q))|h(1))× P (h(1)). (3.11)

Let gi,q = {k ∈ Hi|k /∈ hi,q} be the remaining households in town i, after the

first q have been selected. After q − 1 households have been sampled, a function to

find the qth household using the nearest neighbor approach is,

arg min
u∈gi,q−1

du,h(q−1)
= arg min

u∈gi,q−1

√
(xu − xh(q−1)

)2 + (yu − yh(q−1)
)2. (3.12)

Recall, there are cases where households are equidistant from each other, as ob-

served in many residential areas. Performing the nearest neighbor algorithm, the

number of households closest to h(q−1) from the set of households gi,q−1 is denoted

by n(h(q−1), gi,q−1). Thus, the probability that household h(q) is included in the

sample, given that households h(1), h(2), . . . , h(q−1) are included in the sample is given

by

P (h(q)|(h(1), h(2), . . . , h(q−1))) =


1

n(h(q−1),gi,q−1)
, if hq ∈ gi,q−1;

0, otherwise.

(3.13)
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After finding all EPI paths of size ni for Ni starting households, s′(ni), the prob-

ability of obtaining s′(ni), P (s′(ni)), can be computed using Equation (3.10). The

resulting inclusion probability of hj, using a strip of width α within some town i,

is simply the sum of all EPI samples in town i that contain hj. More generally,

denote βij as the inclusion probability of obtaining household j from town i in the

secondary sample, given that town i was included in the primary sample. This can

be expressed by

βij =
∑

s′
(ni)
∈S′

(ni)

P (s′(ni))1(j ∈ s′(ni)), (3.14)

where

1(j ∈ s′(ni)) =


1, if household j from town i is included in the secondary

sample, given that town i is included in the primary sample;

0, , otherwise.
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Figure 3.5: Tree diagrams showing all possible EPI samples of size n = 4 that can be
created at the secondary stage for some town i with Ni = 113, given that household
51 is selected first. As an example, the probability of obtaining households 91, 69 and
105, given that household 51 was selected first, is P ((91, 69, 105)|51) = 1
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8
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Chapter 4

Two-Stage Sampling and

Statistical Analysis

There are various problems associated with the EPI method, particularly within the

secondary stage as mentioned in Chapter 1. For this reason, many articles exploring

the EPI method do not examine both the first and second stage. However, a two-

stage analysis may lead to tractable results.

In the work of Lemeshow and Robinson (1985), an estimator for the proportion

of the population vaccinated was developed, along with the standard error of the

estimator. Let δ be the true proportion of the population vaccinated and n be the

number of children sampled from each of the sampled towns. Then according to

Lemeshow and Robinson (1985),

δ̂ =
∑
i∈sm

∑
j∈s′n

yij
mn
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SE(δ̂) =

[
1

m(m− 1)

∑
i∈sm

(δ̂i − δ̂)2

] 1
2

,

where δ̂i is the estimator for the proportion of the population vaccinated in town i

and

yij =


1, if household j from town i has a vaccinated eligble participant;

0, if household j from town i has a non-vaccinated eligble participant.

(4.1)

The advantage of using this expression is that it is easily calculable compared to

traditional cluster sampling formulas. However, this estimator could be generalized

so that it accounts for the probability of including specific households from towns

and even towns themselves.

For the studies that follow, assume that every household contains an eligible

participant. Further assume that only binary observations, yij, with outcomes 0 or

1 are collected and studied from the eligible participants. Let the prevalence, which

is the proportion of diseased individuals in the population, and the population total

of diseased individuals be given respectively by

µ =
1

N

M∑
i=1

Ni∑
j=1

yij (4.2)

τ =
M∑
i=1

Ni∑
j=1

yij (4.3)

= Nµ.
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Due to the fact that the population parameters are proportional to one another by

a constant N , once a group of statistics have been derived for one of the parameter

estimates, the statistics for the other parameter’s estimates are simple to produce.

That is, once a group of statistics are derived for estimators for prevalence, another

group of statistics can be found for estimators of the population total of diseased

individuals. The next set of derivations focus on finding the expected value and

variance for any linear estimator of µ. To begin, let the general linear estimator for

the population proportion of diseased individuals be defined as

µ̂ =
∑
i∈s(m)

∑
j∈s′

(ni)

aibijyij (4.4)

=
M∑
i=1

Ni∑
j=1

aibijyijUiVij, (4.5)

where ai and bij are constants and

Ui =


1, if town i is included in the primary sample;

0, otherwise;

(4.6)

Vij =


1, if household j from town i is included in the secondary sample, given

that town i is included in the primary sample;

0, otherwise.

(4.7)

Note, Equation (4.4) implies that the number of households sampled from each sam-

pled town can vary and does not need to be of constant size n.
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4.1 Expected Value and Variance

Two statistics of general interest using the EPI method are the bias and the mean

square error of estimators. However, the bias is a function of the expected value of

the estimator and the mean square error is a function of the bias and variance of the

estimator. For this reason, formulas to calculate the expected value and variance of

the estimator in Equation (4.5) are critical.

Suppose that X and Y are two random variables with the joint probability density

function, PDF, f(x, y). Let h(x, y) denote another joint PDF of X and Y . Then,

E(h(X, Y )) =

∫ ∫
h(x, y)f(x, y)dxdy

=

∫ (∫
h(x, y)f(x, y)dy

)
dx

=

∫ (∫
h(x, y)

f(x, y)

f(x)
f(x)dy

)
dx

=

∫ (∫
h(x, y)f(y|x)dy

)
f(x)dx

=

∫
E(h(X, Y )|X)f(x)dx

= E[E(h(X, Y )|X)]. (4.8)

In the computation for the formulas involving the expected value and the variance

of the two-stage estimator found in Equation (4.5), Equation (4.8) is very important.

This leads to a simpler way of computing the expected value of µ̂ in Equation (4.5)

by taking the double expectation which is conditional on the random variable Ui.
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Thus,

E(µ̂) = E (E(µ̂|Ui))

= E

(
E

(
M∑
i=1

Ni∑
j=1

aibijyijUiVij|Ui

))

= E

(
M∑
i=1

aiUi

Ni∑
j=1

E(bijyijVij|Ui)

)

= E

(
M∑
i=1

aiUi

Ni∑
j=1

bijyijE(Vij|Ui)

)

=
M∑
i=1

aiE(Ui)

Ni∑
j=1

bijyijE(E(Vij|Ui))

=
M∑
i=1

aiE(Ui)

Ni∑
j=1

bijyijE(Vij). (4.9)

Above, the two expectations needed to be calculated are E(Ui) and E(Vij). How-

ever, both equations contain binary random variables. Let ui be a realization of the

random variable Ui, such that ui = {0, 1}. Thus,

E(Ui) =
1∑

ui=0

uiP (Ui = ui)

= 1 · P (town i is included in the primary sample) + 0

= αi (4.10)

In a similar manner, let vij be the realization of the random variable Vij, such
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that vij = {0, 1}. So,

E(Vij) =
1∑

vij=0

vijP (Vij = vij)

= βij (4.11)

Using Equations (4.10) and (4.11), Equation (4.9) reduces to

E(µ̂) =
M∑
i=1

aiE(Ui)

Ni∑
j=1

bijyijE(Vij)

=
M∑
i=1

Ni∑
j=1

αiβijaibijyij (4.12)

A useful intermediate quantity that will be used to calculate the variance is

E(µ̂|Ui) =
M∑
i=1

Ni∑
j=1

aibijyijUiβij.

From the standard definition of the variance,

V ar(µ̂) = E
[
(µ̂− E(µ̂))2

]
= E

[
((µ̂− E(µ̂|Ui)) + (E(µ̂|Ui)− E(µ̂)))2

]
= E

[
(B1 +B2)2

]
= E(B2

1) + 2E(B1B2) + E(B2
2), (4.13)
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where

B1 = µ̂− E(µ̂|Ui)

=
M∑
i=1

Ni∑
j=1

aibijyijUi(Vij − βij) (4.14)

B2 = E(µ̂|Ui)− E(µ̂)

=
M∑
i=1

Ni∑
j=1

aibijyijβij(Ui − αi). (4.15)

Analyzing each term in Equation (4.13), a simpler expression could be produced.

Let Di =
∑Ni

j=1 bijyij(Vij − βij) and note U2
i = Ui. Analyzing the first term yields

E(B2
1) = E

[ M∑
i=1

Ni∑
j=1

aiUiDi

]2


= E

(
M∑
i=1

a2
iUiD

2
i + 2

∑∑
i<k

aiUiDiakUkDk

)

=
M∑
i=1

a2
iE(UiD

2
i ) + 2

∑∑
i<k

aiakE(UiUkDiDk). (4.16)

Computing the expectations of Equation (4.16) separately,

E(UiD
2
i ) =E[E(UiD

2
i |Ui)]

=E[E(UiD
2
i |Ui)]

=E[UiE(D2
i |Ui)]

=E

[
Ui

(
E

(
Ni∑
j=1

(b2
ijy

2
ij(Vij − βij)2)|Ui

)
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+2
∑∑

j<l

E(bijyijbilyil(Vij − βij)(Vil − βil)|Ui)

)]

=E

[
Ui

(
Ni∑
j=1

(b2
ijy

2
ijE((Vij − βij)2)|Ui)

+2
∑∑

j<l

bijyijbilyilE((Vij − βij)(Vil − βil)|Ui)

)]

=E

[
Ui

(
Ni∑
j=1

b2
ijy

2
ijβij(1− βij) + 2

∑∑
j<l

bijyijbilyil(βi,jl − βijβil)

)]

=αi

(
Ni∑
j=1

b2
ijy

2
ijβij(1− βij) + 2

∑∑
j<l

bijyijbilyil(βi,jl − βijβil)

)
, (4.17)

where βi,jl is defined as the joint inclusion probability of including hj and hl from

town i in the secondary sample, given that town i was selected in the primary sample.

It can be expressed by

βi,jl =
∑

s′
(ni)
∈S′

(ni)

P (s′(ni))1({j, l} ∈ s′(ni)), (4.18)

where

1({j, l} ∈ s′(ni)) =



1, if household’s j and l from town i are both included in

the secondary sample, given that town i is in the primary

sample;

0, otherwise.

Similarly, the expectation for the second term of Equation (4.16) could be reduced
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to

E(UiUkDiDk) = E(E(UiUkDiDk|Ui))

= E(UiUkE(DiDk|Ui))

= E[UiUkE(Di|Ui)E(Dk|Ui)]

= 0, (4.19)

since Di and Dk are independent, and E(Dk|Ui) = 0. Substituting Equations (4.17)

and (4.19) into Equation (4.16),

E(B2
1) =

M∑
i=1

a2
iαi

Ni∑
j=1

b2
ijy

2
ijβij(1− βij) + 2

M∑
i=1

a2
iαi
∑∑

j<l

bijyijbilyil(βi,jl − βijβil).

(4.20)

The second term in Equation (4.13) is the simplest of the three to analyze. Dis-

regarding the constant and finding the expected value of this term with respect to

Ui yields

E(B1B2) = E[E(B1B2|Ui)]

= E (E [(µ̂− E(µ̂|Ui)) · (E(µ̂|Ui)− E(µ̂))|Ui])

= E(E [(µ̂− E(µ̂|Ui))||Ui]) · (E(µ̂|Ui)− E(µ̂))

= [E(µ̂||Ui)− E(µ̂|Ui)] · (E(µ̂|Ui)− E(µ̂))

= 0 (4.21)
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The third and final term in Equation (4.13) only contains one random variable

which is Ui. It allows for a simpler interpretation because there is no need to take a

conditional expected value, as was required in Equation (4.18). Nonetheless, follow-

ing a similar analysis,

E(B2
2) =E

( M∑
i=1

ai(Ui − αi)
Ni∑
j=1

bijyijβij

)2


=E

( M∑
i=1

aiCi(Ui − αi)

)2


=E

[
M∑
i=1

a2
i (Ci)

2(Ui − αi)2

+2
∑∑

i<k

aiakCiCk(Ui − αi)(Uk − αk)

]

=
M∑
i=1

a2
i (Ci)

2E[(Ui − αi)2]

+ 2
∑∑

i<k

aiakCiCkE[(Ui − αi)(Uk − αk)]

=
M∑
i=1

a2
i (Ci)

2αi(1− αi)

+ 2
∑∑

i<k

aiakCiCk(αik − αiαk), (4.22)

where αik is the joint inclusion probability of including town i and town k in the

primary sample, and Ci =
∑Ni

j=1 bijyijβij. Much like Equation (4.18), αik can be

expressed by

αik =
∑

s(m)∈S(m)

P (s(m))1({i, k} ∈ s(m)), (4.23)
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where

1({i, k} ∈ s(m))


1 , if both towns i and k are included in the primary sample

0 , otherwise

.

Using the reduced expressions for the three terms in Equation (4.13), a formula for

the variance of the two-stage estimator is

V ar(µ̂) =
M∑
i=1

a2
iαi

Ni∑
j=1

b2
ijy

2
ijβij(1− βij) + 2

M∑
i=1

a2
iαi
∑∑

j<l

bijyijbilyil(βi,jl − βijβil)

+
M∑
i=1

a2
i (Ci)

2αi(1− αi) + 2
∑∑

i<k

aiakCiCk(αik − αiαk). (4.24)

Recall, the expected value and variance for the estimator of τ is simply going to

be a function directly proportional to Equations (4.12) and (4.24) by the constant

N . Specifically,

τ̂ = Nµ̂

E(τ̂) = NE(µ̂)

V ar(τ̂) = N2V ar(µ̂)

Under the EPI sampling method, a constant number of households are selected

from each sampled town. This implies there will be n households sampled from each

selected town, where 1 ≤ n ≤ mini∈{1,...,M}Ni. Traditionally, the EPI method sam-

ples 7 or 30 households from each sampled town, as suggested by the WHO (2008).

Commonly, the parameter of interest in rapid assessment surveys using the EPI is
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vaccination coverage and prevalence. For this exact reason, this thesis will emphasize

assessing the accuracy and precision of several estimators for µ. The statistical asso-

ciations of these assessments are the bias and mean square error (MSE), respectively.

The equations for the bias and MSE are

Bias(µ̂) = E(µ̂)− µ; (4.25)

MSE(µ̂) = V ar(µ̂) +Bias(µ̂)2. (4.26)

4.2 Types of estimators for µ

There are a number of estimators that could be produced for µ depending on the

constants ai and bij, as well as the sampling methods used at both the primary

and secondary stages. This paper will explore two general estimators, which can

produce several other estimators depending on the sampling methods performed

at the primary and secondary stages respectively. As proposed by Lemeshow and

Robinson (1985), one possible estimator for µ is to give each household and town an

equal weight (EW) at their respective levels of sampling. To be more precise,

µ̂EW =
∑
i∈s(m)

1

m

∑
j∈s′

(n)

1

n
yij

=
M∑
i=1

Ni∑
j=1

1

m

1

n
UiVijyij (4.27)

Equation (4.27) shows that an EW estimator for µ is a case where the constants

ai = 1
m

and bij = 1
n

in Equation (4.5). Although the constants for the EW have been
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defined, the inclusion probabilities at the town and household levels will depend

on the method of sampling. Consequently, there are still many possible variations

for the EW estimator µ̂EW leading to various estimates for the expected value and

variance.

The second general estimator that will be studied is the Horvitz-Thompson (HT)

estimator. It is a weighted average that uses the reciprocal of the inclusion proba-

bilities of elements in the sample. It can be represented by

µ̂HT =
1

N

∑
i∈s(m)

∑
j∈s′

(n)

yij
πij

=
1

N

M∑
i=1

Ni∑
j=1

1

αi

1

βij
UiVijyij, (4.28)

where ai = 1
Nαi

, bij = 1
βij

and

πij =P (Household j from town i is included in the sample)

=P (Household j from town i is included in the sample, given town i is included)

× P (Town i is included in the sample)

= βijαi.

For details on the HT estimator, see Lohr (2009). A unique characteristic of

the HT estimator is that it is always unbiased when the method of sampling used

to define the constants ai and bij are the same as the method of collecting samples

at the primary and secondary stage. As an example, say the constants ai and bij

are the reciprocal of the inclusion probabilities using systematic sampling and strip
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sampling, respectively. If systematic sampling and strip sampling were used to collect

the samples at the primary and secondary stage, then it is trivial to see that this

particular HT estimator is unbiased.

Sampling WOR using PPS will not be used when developing estimators for µ due

to computational constraints. Specifically, when looking at V ar(µ̂), aik are needed

and calculating aik is not trivial when sampling WOR with PPS. Moreover, the

number of samples of size m ≥ 2 containing PSUs i and k could be generalized and

given by the following equation

MPm −
(

(M−2)Pm + 2×
(

(M−2)P(m−1) ×
(
m

1

)))
. (4.29)

In lay terms, Equation (4.29) represents the number of ways that all samples of

size m could be produced WOR, excluding those samples that do not contain both

PSUs i and k or contain only PSU i or only PSU k. For illustration, say there

were 30 towns and 15 were meant to be sampled WOR with PPS. Then, there are

approximately 4.8961× 1019 samples of size 15 that contain PSUs i and k, for i 6= k.

Since there are no elegant closed form equations to compute aik while sampling

WOR with PPS, Equation (4.23) must be used. This brings forth a computational

disadvantage because computing these large number of sample probabilities is no

simple task, even for computers. For reasons mentioned, sampling WOR using PPS

will not be considered when constructing estimators for µ.

Accordingly, the only primary sampling methods that can be used from Chapter

2 to create estimators for µ are systematic sampling and sampling WR using PPS.

Systematic sampling is used because there is an exact method to compute inclusion
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probabilities of each PSU. Accordingly, computing joint inclusion probabilities is

easy and efficient to implement using computer software. Sampling WR using PPS

is used for the exact same reasons; however, it has another advantage of having an

equation for joint inclusion probabilities. Specifically, when sampling WR with PPS,

the joint inclusion probability of obtaining towns i and k in a sample of size m using

the inclusion-exclusion principle is

αik = αi + αk −
[
1−

(
1− Ni +Nk

N

)m]
, (4.30)

for all i 6= k. Furthermore, only the strip method will be used at the secondary stage

of sampling. If other sampling methods were introduced at the secondary stage,

which could occur, it would only make the study harder to process and analyze.

To distinguish the inclusion probabilities that could be produced, let αi,SY S and

αi,WR be the inclusion probabilities generated for town i ∈ {1, . . . ,M} using system-

atic sampling and sampling WR with PPS respectively. Clearly, there are numerous

estimators that can be explored. To organize and present the possible estimators,

Table 4.1 has been constructed:

Table 4.1: Estimators for µ, depending on constants ai and bij and the primary
sampling method.

(a) Sampling PSUs systematically.

Estimator ai bij

µ̂EW1

1
m

1
n

µ̂HTSRS1

M
N ·m

1
βij

µ̂HTSY S
1

N ·αi,SY S
1
βij

(b) Sampling PSUs WR with PPS.

Estimator ai bij

µ̂EW2

1
m

1
n

µ̂HTSRS2

M
N ·m

1
βij

µ̂HTWR
1

N ·αi,WR

1
βij
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Chapter 5

Estimations on Simulated

Populations

In the previous chapters, inclusion probabilities have been developed for both primary

and secondary stages of the EPI method so that they can be utilized to evaluate

estimators for the population prevalence µ. Another component needed to study

the modified EPI method proposed in this paper and the estimators in Table 4.1 is

population data.

Past studies on the EPI method obtained data for their analyses through a variety

of ways. Some researchers performed the EPI method in actual field work and were

able to collect real population data. For example, Bennett et al. (1994) and Katz

et al. (1997) conducted studies on the EPI method in 30 selected communities in

Uganda and 40 randomly selected communities in Nepal, respectively. More recent

studies performed by Reyes (2016) generated populations using computer simulations

to study the secondary stage of the EPI method.
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To do something less traditional to previous works, a new method to simulate

populations using the Google Maps API will be introduced. The aim is to appeal and

promote future researchers of the EPI method to focus on this simulation method

and study the EPI in a more realistic setting, when real world data is not readily

accessible.

5.1 Simulating Populations

5.1.1 Generating Households

One particular way of studying the EPI method is to generate a variety of populations

with unique spatial characteristics. In her thesis, Reyes (2016) generated a variety

of two dimensional towns with different spatial structures using the work of Bolker

(2008). The origin of the Cartesian plane, (0, 0), was assigned as the town’s center

and the simulated towns were created so that no household could be randomly placed

at this particular point. The simulated towns are all contained in some rectangular

region which helps control the density of towns. For some arbitrary town i, Ni

households were generated with the following four general spatial patterns:

1. Random Pattern - (runi). Households were generated using a bivariate uni-

form distribution and mapped to a two dimensional plane with respect to the

dimensions of the town. A special case arises when the length of the dimen-

sions of the town are the same, which produces a square town with randomly

uniformly placed households.

2. Grid Pattern - (grid). Households were divided into regularly spaced rows and
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columns, such that roughly Ni households could be mapped onto the town.

Subsequently, adjacent houses were all equidistant from any other adjacent

houses.

3. Aggregated Pattern - (aggr). Households were distributed into k groups, such

that the sum of the number of households across all groups was Ni. Each group

had some focal point, and households were dispersed around it.

4. Circular Gradient Pattern - (circ). Much like the aggregated pattern, the cir-

cular gradient pattern contains houses which are dispersed around a single focal

point. However, the concentration of households could be controlled by a rate

parameter λ. This allowed the production of towns which were densely packed

towards the center, and others that were more spread.

Each of the patterns mentioned above are spatial characteristics observed in real

world distributions of houses. In many countries, houses are typically built in rows

to reduce costs allocated to building them and to optimize the area used for housing.

For this reason, the grid pattern is a reasonable representation for this particular

dispersal of houses. The random pattern was used to mimic households found on the

countryside, which look randomly scattered with no particular pattern. To represent

houses in suburban areas, which are typically composed of communities within a

community, the aggregated pattern was used. More exactly, this pattern is used to

represent groups of households that are generally clustered together and physical

barriers are usually responsible for dividing the particular communities; like roads,

highways, large industrial facilities, etc. Finally, to study communities that typically

concentrate more around the center of the town, like a downtown geographical region,
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the circular gradient pattern was used. For visual aid, Figure 5.1 displays the spatial

distributions described above. Note, a package from R called ggplot2 will be used to

produce the visualizations of each spatial and disease patterns, as well as assessments.
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Figure 5.1: Illustration of the four simulated spatial patterns that 196 households in
an arbitrary town can take on, projected onto a Cartesian plane.

From Figure 5.1, it can be seen that runi and aggr spatial patterns are dispersed,

such that there is, on average, one nearest neighbour to every household in the town.

When looking at the grid and circ patterns, there are clearly many households that

have more than one nearest neighbour. The effect of these spatial patterns on the
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calculations of variance for the estimators displayed on Table 4.1 are quite significant.

To be more precise, the computational time it takes to calculate these estimators for

spatial patterns that are composed of many households with more than one nearest

neighbour are typically high.
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Figure 5.2: A visualization of 200 households generated using a variety of spatial
patterns, illustrating the relationship between the EPI sample size n and the number
of EPI samples at the secondary stage.

Evidently, it can be seen in Figure 5.2 that when the spatial patterns take on the

grid and circ patterns, the number of EPI samples increases rapdily in a roughly

proportional fashion. A much slower proportional increase (with slope equal to 1)

is observed when the spatial patterns take on a aggr and runi pattern. For this

reason, the sample of households at the secondary stage should not exceed 30 because

for larger sample sizes, the grid and aggr spatial patterns present computational
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difficulties.

5.1.2 Generating Disease Status

Once households have been generated, the next step to complete the simulation

of populations for the study of disease prevalence is to assign disease statuses to

each of the N households in the M simulated towns. For the study on disease

prevalence, each household has four variables: the town the household belongs to, the

xij-coordinate, yij-coordinate and zij which is a binary disease status. If a particular

member of household j from town i is eligible for the survey and has the disease

zij = 1, and if they do not carry the disease zij = 0. For simplicity, it is assumed

that every household has exactly one eligible candidate for the survey.

Let the prevalence in town i be denoted by pi and the prevalence for the entire

population be denoted by p. It will be assumed that the prevalence across all towns

will be equal and so the population prevalence is simply p. To assign disease status

to each household, a Bernoulli random variable Zij was used and the probability that

a household had a candidate with the disease characteristic depends on the disease

dispersion pattern (Reyes, 2016). For this reason, Reyes (2016) developed ten disease

dispersion patterns that could be implemented to the households in each town, again

using the work of Bolker (2008). Only three of these patterns will be studied in this

thesis and the mathematical details motivating these patterns are found in Reyes

(2016). These three patterns are:

1. Random - rand . Given some prevalence level p, each household is equally likely,

with probability p, to have the disease characteristic. Larger towns had preva-

lence closer to p and it was unlikely to generate a town with prevalence exactly
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equal to p.

2. Pocketing - pckt . Pocketing is a particular disease pattern when groups of

households in close proximity in a town exhibit the characteristic of interest.

After selecting the number of pockets k, k households are selected using SRS

as focal points. Roughly Ni×p
k
− 1 households nearest to each focal point are

selected such that the prevalence for a particular town is approximately p.

3. Circular Gradient - cigr . Much like the circular gradient spatial pattern, house-

holds closer to the town center were given higher probabilities of carrying the

disease with respect to some prevalence rate p.

Although there were many disease patterns to choose from, they were narrowed

down to the three general patterns described above because of how easy they are to

observe in real world disease patterns. For instance, many diseases have no particular

pattern and appear randomly dispersed throughout a specific population in a geo-

graphical region. To mimic this, the random pattern was used. On the other hand,

other diseases are spread through physical contact and more often than not, contact

is frequently made between neighboring households. Consequently, pocketing was

used to display this phenomenon. In addition, when focal points for the pocketing

pattern are in close proximity to one another, it creates one very large pocket. For

generalization, large pocketing was not specifically analyzed as a pattern on its own.

The circular gradient diseased pattern was used to model diseases that generally

start at some focal point, say the center of the town, and tend to decrease moving

towards the boundaries of the town. A graphical representation of these three disease

patterns implemented within the four spatial patterns is displayed in Figure 5.3.
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Figure 5.3: A visual representation of the 3 disease patterns that could occur in
each of the 4 spatial patterns. Each town had prevalence fixed at p = 0.3 and 200
households.
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5.2 Evaluating Estimators

5.2.1 Sampling Plans

Aside from spatial and disease patterns used to construct a population, there are a

handful of other parameters: the dimensions and prevalence associated to each town,

total number of towns, number of towns sampled, number of households sampled and

the base of the strip used when executing strip sampling at the secondary stage.

Going from the primary to the secondary level, the first parameter of interest is

generating town sizes. To generate town sizes, a Pareto distribution was used and

according to the Pareto distribution mentioned in the package of R called rmutil, its

distribution is of the form:

f(u) =
ψ
(

1 + u
φ(ψ−1)

)−1(ψ+1)

φ(ψ − 1)
, (5.1)

where u > 0, φ > 0 is the mean parameter and ψ > 0 is the dispersion (Lindsey,

2017). Since it is a heavy lower tailed distribution, it allows random sampling of

values that are more concentrated to the lower tail and less on the upper tail. This

feature in application allows the simulation of many small towns and few large towns,

as is observed in the real world. Typically, town sizes of 150–500 were desired and to

generate towns of this size a Pareto distribution with φ = 70 and ψ = 100 were used.

After sampling M random numbers using the Pareto distribution with the defined

parameters, 150 was added onto each sampled value to ensure the minimum town

size was 150 and sizes were truncated to a maximum of 500.

Using the Pareto distribution, M = 50 towns were simulated and m = 30 are
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sampled. Thirty towns were sampled because past studies on the EPI method carried

out by Bennett et al. (1994) and Lemeshow and Robinson (1985) have also studied

samples of this size, and thirty towns are a recommended sample size in the EPI

Manual made by the World Health Organization (2008). The dimensions of the

towns also have an impact in the study of the estimators, particularly the inclusion

probabilities in the secondary stage. As an example, say each of the town coordinates

were scaled by a factor of two and the width of the strip is correspondingly adjusted,

the statistical analysis will produce identical results. For this reason, it is assumed

that each simulated town will be on a 200 × 200 unit grid, regardless of town size,

spatial and disease patterns or prevalence. Regarding prevalence, there are three

levels of interest to study which are p = {0.05, 0.2, 0.5}. Using prevalences aside

from the previously mentioned set is redundant because evaluation of the estimators

showed that choosing a prevalence of p and 1 − p, for p ∈ [0, 1], displayed similar

estimator properties. Three levels of sample sizes at the secondary level were chosen

for the study, which are ni = {7, 15, 30} for i ∈ {1, . . . ,M}.

To reduce the complexity surrounding simulation plans, it is assumed that each

town will have the same spatial and disease patterns as well as prevalence. Overall,

there are 4 × 3 × 3 × 3 = 108 population and sampling settings to explore for each

of the six estimators from Table 4.1. If any more factors were considered in the

sampling or population plans, the time it would take to process and evaluate these

additional simulations would increase proportionally, as shown in Figure 5.2. This

meant that the strip with base of size α had to be fixed at one size across the 108

population and sampling plans, which was α = 5. A separate study was conducted

which analyzed the effect the strip’s base size had on the six estimators when the

68



M.Sc. Thesis - Atinder Bharaj McMaster - Mathematics and Statistics

sampling plan was fixed; selecting n = 7 households at the secondary stage and fixing

the prevalence in each town to p = 0.5. The spatial and disease patterns were still

explored at their individual levels in this additional study of the estimators.

5.2.2 Simulation Results

Looking at the distributions of the six proposed estimators under the 108 population

and sampling plans, a variety of explorations were carried out. To get a general sense

of the assessments of each estimator; summary statistics composed of the minimum,

mean and maximum for the bias, variance and MSE were composed in Table 5.1.

Table 5.1: Selected summary statistics for the six proposed estimators from Table
4.1 across 108 population and sampling plans.

Bias Variance MSE

EW1
Min -0.05037024 3.8962× 10−5 4.03767× 10−5

Mean 0.03768258 0.001375174 0.006226359
Max 0.241144 0.00681462 0.06161801

EW2
Min -0.1600543 3.91008× 10−5 0.0001570143

Mean -0.03321236 0.001519019 0.005698995
Max 0.1333843 0.005975984 0.03127708

HTSRS1
Min -0.0001479867 1.82212× 10−5 1.823091× 10−5

Mean 0.004488671 0.004045496 0.004135083
Max 0.03219728 0.02346345 0.02346543

HTSRS2
Min -0.1236864 2.44383× 10−5 0.0001528813

Mean -0.05918547 0.003397898 0.008861097
Max -0.01067905 0.01865071 0.03326457

HTSYS
Min 0 1.32055× 10−5 1.32055× 10−5

Mean 0 0.00383001 0.00383001
Max 0 0.02321568 0.02321568

HTWR
Min 0 4.0787× 10−5 4.0787× 10−5

Mean 0 0.005717246 0.005717246
Max 0 0.03231401 0.03231401

It can be gathered from Table 5.1 that estimators EW1 and EW2 have the most

69



M.Sc. Thesis - Atinder Bharaj McMaster - Mathematics and Statistics

spread in bias. Furthermore, the largest spread in the MSE and largest bias based

off the 108 population and sampling plans comes from the EW1 estimator. However,

the smallest average and smallest MSE comes from the HTSYS estimator. Observing

the HT estimators, it can be seen that under the correct sampling plans the HTSYS

and HTWR estimators are indeed unbiased estimators. Consequently, the MSE of

these estimators is simply their variance estimates.

To get a visualization of these estimators’ spread, relative frequency histograms

were constructed for the bias and MSE with respect to the disease patterns and

prevalence values as shown in Figures 5.4 and 5.5. The heavy dispersion observed

in the EW1 and EW2 estimators is mainly attributed by the populations that fol-

low a central gradient spatial pattern. Comparatively looking at the spread in bias

with respect to the prevalence levels shows that the EW2 and HTSRS2 estimators

are divided into three groups corresponding to disease prevalence. The general trend

within these groups is that the lower the prevalence, the smaller the average bias pro-

duced by the EW2 and HTSRS2 estimators. In general, as the prevalence values get

closer to 0.5, the spread in bias generally increases across all estimators. Moreover,

as the prevalence diverges from p = 0.5 the estimators appear to be more unbiased.

Another assessment that could be visually diagnosed is the MSE. Several his-

tograms were studied with respect to a variety of factors from the population and

sampling plans, but the prevalence depicted more insightful information regarding

the MSE for each estimator. Much like in Figure 5.4b), Figure 5.5 shows three groups

formed in the histograms of the EW2 and HTSRS2 estimators with respect to the

prevalence values. A recurring pattern observed in Figure 5.5 is that as the preva-

lence approaches 0.5, the average MSE corresponding with each estimator increases.
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(a) Histograms for bias across 4 of the 6 estimators grouped by disease patterns under the
remaining 36 population and sampling plans.
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Figure 5.4: Bias for the biased estimators proposed in Table 4.1 with respect to Dis-
ease Pattern and Prevalence. Note, the bias for the HTSYS and HTWR estimators
were trivial to display since they are unbiased under their sampling methods.
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However, the EW1 estimator tends to have larger MSE measurements associated

with prevalence values farther away from p = 0.5.
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Figure 5.5: A histogram displaying the spread of the MSE across the 6 estimators
with respect to the disease prevalence.

Although Table 5.1, Figure 5.4 and 5.5 conclude a variety of results, boxplots of

each estimator were produced with respect to two factors in Figures 5.7-5.8 to extract

more detailed results regarding the simulations. Studying disease patterns that were

simulated using the rand pattern, it is clear that the EW1 estimator produces very

little bias and the EW2 estimator produces a large spread in bias that underesti-

mated the true prevalence of disease. Interestingly, the HTSRS2 estimator produced

the most consistent spread in bias measurements when spatial and disease patterns
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varied, and it always underestimated the true prevalence. A possible justification for

this characteristic of the HTSRS2 estimator is its inclusion probabilities’ relationship

with its defined constant ai terms. Fixing the spatial patterns and looking at the

disease patterns individually, the bias measurements of the HTSRS1 estimator was

almost identical across the various disease patterns and deviated very little from the

true prevalence.

Conclusions drawn from the plots displaying the spread of the MSE and bias

measurements across the six estimators mimicked one another when the spatial and

disease patterns were observed simultaneously. When the disease was spread ran-

domly, the EW1 estimator produced the smallest spread in MSE values even though

the HTSYS estimator was unbiased. The HTSRS1 and HYSYS estimators produced

almost identical spread in MSE measurements, although the HTSYS estimator was

unbiased. This may have been attributed to the fact that the primary sampling

method used in both estimators was systematic sampling. Even though the HT-

SRS2 and HTWR estimators both sampled towns WR using PPS, they did not have

a similar spread in their bias or MSE measurements.

When studying the estimators with respect to simulated spatial patterns and

prevalence levels, the EW estimators’ measurements for the bias and MSE were

spread throughout each of the individual factor pairings with many extreme mea-

surements. However, the biased HT estimators showed extremely little spread. The

HTSRS1 and HTSYS estimators again produce an almost identical spread of MSE

measurements. For fixed prevalence values, a change in spatial patterns caused a very

minor change in spread of MSE measurements across each estimator respectively.
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(b) Boxplots for the MSE of the 6 estimators grouped by spatial and disease patterns.

Figure 5.6: Bias and MSE for the estimators proposed in Table 4.1 with respect to
spatial and disease patterns.
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When the population was simulated using p = 0.5 and all spatial patterns exclud-

ing the grid pattern, the EW1 estimator’s spread in MSE measurements produced

a median of approximately 0.005. This would imply that around 50% of the data in

this particular setting had MSE measurements that were less than or equal to 0.005,

indicating the dispersion from the true prevalence was extremely small. A possible

justification for this finding is that some measurements in this setting had disease

patterns that followed the rand pattern, in which case the EW1 has been found to

record small MSE measurements.

The spread in bias measurements does not change significantly when the preva-

lence level is fixed and the secondary sample size n increases. However, when the

prevalence level is fixed and n increases, the spread in MSE measurements for all es-

timators decreases considerably. Intuitively, this makes sense because as the sample

size increases, a more precise estimate for prevalence can be obtained.

A study on the effect of the strip’s base of size α was analyzed across the four spa-

tial and three disease patterns, after fixing the prevalence at p = 0.5 and secondary

sample size at n = 7. The sizes of the base studied were α ={0.01,0.1,0.5,1,2,5,10,25}

and a visualization of the study is shown in Figure 5.9. When households are dis-

tributed using the runi spatial pattern across all simulated towns, the HTSRS1

estimator is shown to produce consistent biased measurements regardless of the size

α. Under any other spatial pattern, the HTSRS1 estimator’s bias measurements are

all very close to 0 for any size α.

When the households are distributed in a circular gradient pattern and the spread

of disease is either pocketed or in a central gradient pattern, the EW2 estimator

produced smaller bias measurements relative to the EW1 estimator for all size α
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(b) Boxplots for the MSE of the 6 estimators grouped by spatial and disease patterns.

Figure 5.7: Bias and MSE for the estimators proposed in Table 4.1 with respect to
spatial patterns and prevalence levels.
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(b) Boxplots for the MSE of the 6 estimators grouped by spatial and disease patterns.

Figure 5.8: Bias and MSE for the estimators proposed in Table 4.1 with respect to
household sample size and prevalence levels.
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(b) Boxplots for the average MSE of the 6 estimators grouped by spatial and disease
patterns.

Figure 5.9: Average bias and MSE for the estimators proposed in Table 4.1 with
respect to household sample size and prevalence levels.

78



M.Sc. Thesis - Atinder Bharaj McMaster - Mathematics and Statistics

studied. In these exact same settings, the EW2 estimator is observed to produce the

smallest MSE measurements compared to the other five estimators across all base

sizes. Much like previous conclusions drawn when the disease is spread randomly,

the EW1 estimator produces accurate estimates (small bias) which are very precise

(very small MSE). Households that are distributed under the aggregated gradient

pattern with pocketed disease patterns show that the EW estimators displayed a

monotonic decrease in bias when α increased; the EW1 estimator producing less

biased measurements compared to the EW2 estimator.

Despite increasing α, the HT estimators did not display significant change in their

bias measurements across any spatial or disease patterns. The MSE of the HT esti-

mators monotonically increased with respect to α when the households were spread

using the aggr pattern and pocketing was used to simulate the disease pattern. Con-

versely, the MSE peaked at a base length of 10 under the random and central gradient

disease patterns when households were spread using the aggr pattern. At a base of

size α = 0.5, the MSE measurements for the HT estimators were maximized under

the circular gradient pattern and then steadily decreased as α increased. Finally, the

HTSYS estimator is seen to produce the very small MSE measurements when the

disease was spread using the cigr pattern and the households were dispersed using

the runi and grid patterns.
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5.3 Internet Resources: Google Maps Geocoding

API

In the previous section, an analysis on the six estimators from Table 4.1 was per-

formed under a variety of spatial patterns. However, the towns were created based

off simulations and are arguably not perfectly representative of household patterns in

the real world. Census unit population information or household inventories is gener-

ally not available for public use. However, it is beneficial to assess the EPI method.

As expressed by Reyes (2016), a number of surveys were executed in challenging

conditions that used Global Positions Systems (GPS) and Geographic Information

Systems (GIS) to support the selection of households at the secondary stage.

The shift to using GIS and GPS tools to create a sampling plan has been carried

out in Iraq and sub-Sahara Africa (Galway et al., 2012; Pearson et al., 2015). In these

studies, household coordinates were recorded manually by embedding placemarkers

on tools like Google Earth Pro and used afterwards as a sampling frame to perform

surveys. Other surveys in Haiti, for example, had census unit population information

provided by government organizations to study malnutrition rates in remote areas

Wampler et al. (2013).

Two immediate concerns with the mentioned methods are that: (1) government

census information is not generally available for the public and usually requires a

lengthy process to access, and (2) it would often take a fair amount of time to record

households by hand on tools like Google Earth Pro. An alternative method is to

extract real household coordinates by using the Google Maps application program

interface (API) and Google Maps Geocoding API function, which allows users to
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find addresses and convert them into latitude and longitude coordinates.

5.3.1 Generating a Spatial Sampling Frame

In pursuit of obtaining an EPI sample and using it for estimations in a study, all

relevant household coordinates first need to be located to form a sampling frame.

Working with the Google Maps API, it is possible to extract relatively new infor-

mation about a geographical area and tabulate household information using some

programming language. This provides the ability to quickly obtain household infor-

mation and assess the EPI method for some survey regarding a target characteristic.

Due to the fact that this technique is experimental and being introduced as

a novel method of studying the EPI method, the applications are rather limited.

Specifically, the information that can be extracted from the Google Maps API is

limited by Google who implement API keys that place a restriction on the amount

of information that can be recorded and processed. For some Google account, a user

can access 12 API keys each allowing 2,500 queries. After this limit, a service fee

is charged of $0.50/1000 queries up to a maximum of 100,000 additional queries per

day (Google, 2017). With that being said, a study on actual cities is not feasible and

instead this method will be used to study inclusion probabilities of households for a

particular geographical region.

The Google Maps API allows various techniques to extract information that has

been recorded on its server. One particular method that will be explored in this paper

is to generate household addresses using Google Maps API and then inputting a batch

job into the Google Maps Geocoding API to convert the addresses into latitude and

longitude coordinates. Initiating this process begins by defining a central address,
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which can be an existing household. Although selecting an existing household as a

geographic center produces an unorthodox layout for the EPI method, at times of an

immediate crisis it may prove to be more quick and affordable to target households in

a specific region using some known focal point. Afterwards, the data can be rescaled

to shift any household at the center of the collected cluster.

Using the Google Maps Geocoding API, the focal address is converted to its (x, y)

coordinates and a circle is produced from the geographic center with radius r. Within

this geographical circle centered around the focal address, all household addresses

located within its radius could be mapped, recorded, and inputted as batch jobs for

the Google Maps Geocoding API to extract coordinates. Under the assumption that

Ni households are required for the sampling frame, the radius will grow incrementally

by some small value such that new households will be constantly introduced until a

geographic region of size Ni is obtained. The algorithm to execute this method is:

1. Select a starting address and let the radius be κ = 0.0000001 units. Input the

starting address through the Google Maps Geocoding API to retrieve a latitude

and longitude. If the starting address is a household, record the address along

with its latitude and longitude. Otherwise, proceed to the next step.

2. Locate all addresses within the circle of radius κ, centered at the starting

address.

3. If new addresses are located, record and input the addresses through the Google

Maps Geocoding API. Tabulate the addresses, latitudes and longitudes of each

new observation recorded. If no new addresses are located, proceed to the next

step. Note, Google sometimes clusters a group of households as one address
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and they should be completely ignored and discarded if located.

4. Increase the radius of the circle incrementally by 0.0000001 after each iteration

of step 3.

5. Repeat steps 3 and 4 until a sample size of Ni is obtained.

Figure 5.10: Demonstration of extracting household coordinates using Google Maps
API from a residential area in Hamilton, Ontario, Canada. The household identified
with a red icon was used to initialize the Google Maps API procedure. All locations
marked with a yellow icon are the subsequent households collected.

Note, the size of the radius could be increased or decreased depending on prior knowl-

edge of the households in a particular region. Typically, neighbouring households
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have latitude and longitude coordinates which are nearly indistinguishable. The

radius provided in the algorithm should be suitable to capture each sequentially.

With this progression forward in mapping real household coordinates to study the

EPI method, many challenges have yet to be met. One of the more common prob-

lems using this procedure is that the sampling frame must be cleaned to account for

some unexpected data; like apartments, stores, factories and other non-residential

structures and locations which get recorded in the process. Some addresses are incor-

rectly marked on Google Maps or simply do not exist, producing inaccurate house-

hold information. Due to many countries’ laws and regulations, Google is unable to

accurately address mapping information problems in their systems and applications.

For example, China requires special authorization for individuals seeking geographic

information in China (NASG, 2002).

5.3.2 Study on Real Household Coordinate Inclusion Prob-

abilities Using the Strip and Sector Method

Even with the ability to obtain household address information using the Google Maps

API, the limitations mentioned prevent two stage studies of the EPI method as done

in sections 5.1 and 5.2. To reiterate, the Google Maps API procedure restricts the

population size that can be acquired within any city because of the query limit and

the computational time. In fact, it would take a minimum of 6 hours to extract

information from 10,000 or more households. If disease patterns were simulated on

real household data, it would produce results that are partially realistic because

many assumptions still need to be held. The strongest assumption being that every
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(a) Two household addresses incorrectly
mapped to the corner of their respective
streets.

(b) Non-residential addresses mixed in
the collection process.

(c) Collection of a non-existent address.

Figure 5.11: Common issues using the Google Maps API to obtain household ad-
dresses.

household has an eligible candidate who can be used to study the characteristic of

interest.

Another aspect of the EPI method that could be analyzed in depth are the

household inclusion probabilities. In her thesis, Reyes (2016) explored a method

of sampling households called arc or sector sampling, which targets a sector of a

geographic region relative to the town center with span γ ∈ (0, 2π]. Strips and

sectors are distinct methods of sampling at the household level, but fundamentally
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their procedures are similar. They both begin at the center of the town and initiate

through the means of a random direction. Using sector sampling, households along

the same path or direction relative to the town center have the same probability of

being selected first for the household picked; whereas in strip sampling they generally

do not.

Since the strip method uses a base of size α and the sector method uses an arc of

span γ, a possible setting to compare the two sampling methods is by finding the base

and span which produces the same effective area of a strip and sector respectively on

a geographic location. The process used to find the effective area of a strip and sector

begins by first selecting a geographic region and generating Ni address coordinates

using the Google Maps API. After the data has been cleaned to account for non-

residential addresses and a household list has been generated, the house farthest from

the geographic region’s center is marked and denoted as r∗ = maxi∈Ni{ri}. All strips

and sectors generated in this geographic region will thereafter start at the geographic

center and move outward a maximum distance of r∗.

The area covered using the sector method will effectively capture any household

that lies within its radius r∗, but the strip method produces two corner areas that

lie outside r∗. Since this area is redundant and can not capture any households,

it should be removed from the rectangular strips to produce areas that effectively

capture households. Looking at Figure 5.12, the area needed to generate a strip

that effectively captures households is shaded in blue and green. In other words, the

effective area of the strip is the area of the sector of span ζ and radius r∗, and the

two triangular regions of base α
2

and height d =
√

(r∗)2 −
(
α
2

)2
. The explicit formula

for the effective area of the strip of base α, Astrip,α, is
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Figure 5.12: The effective area of a strip of base α. The area in red will not capture
any households since all households will be less than or equal to r∗ units from the
origin. Consequently, it is not needed for the strip and should be removed when
calculating the effective area of the strip.

Astrip,α = 2×
d× α

2

2
+ π(r∗)2 × ζ

2π

=
d× α

2
+

(r∗)2

2
× ζ

=
d× α

2
+

(r∗)2

2
× 2× sin−1

( α

2r∗

)
=
d× α

2
+ (r∗)2 × sin−1

( α

2r∗

)
. (5.2)

The effective area of a sector with span γ, Asect,γ, must be equal to Astrip,α so that

the methods are comparable. The corresponding formula for γ would then be:

γ =
2× Astrip,α

(r∗)2
. (5.3)

An implication of using area as a basis of comparison is that γ is restricted to the

set (0, π] because it is impossible to produce an effective area greater than π · (r∗)2
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using strips of base α ∈ (0, 2 maxi∈{1,...,Ni} ri].

Figure 5.13: Google Earth aerial view of 303 residential households from a neigh-
bourhood in Winnipeg, Manitoba, Canada. The household used to initialize the
collection of this information from this geographical region is identified with a red
pin, and all subsequent households collected using the Google Maps API procedure
have been identified by yellow pins.

To carry out a study comparing the two methods, 303 household coordinates were

extracted from a suburban residential area in Winnipeg, Manitoba, Canada using the

Google Maps API procedure. Since the coordinates look almost indistinguishable on

a two dimensional surface using their latitudes and longitudes, they were rescaled and

shifted allowing simpler selections of base α. For the study, α ={129.9844, 259.9688,
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389.9533, 519.9377, 649.9221, 779.9065} were selected to compute the inclusion prob-

abilities on the transformed coordinates of the Winnipeg data, as seen in Figure 5.13.

Correspondingly, the arc span for the sector which produces the identical effective ar-

eas relative to a strip of base α were γ={0.6635673, 1.3082132, 1.9132230, 2.4532633,

2.8915062, 3.1415927}, respectively. Under the strip and sector sampling methods,

the inclusion probabilities were based off sample sizes of n = {7, 15, 30, 60, 90}.

Analyzing the density plot in Figure 5.14 of the neighbourhood from Winnipeg,

it is observed that for n = {7, 15, 30, 60} and γ={0.6635673, 1.3082132, 1.9132230,

2.4532633} the sector method produces smaller variations in inclusion probabilities

relative to the strip method. When n = 120, the strip and sector methods have iden-

tical spreads in inclusion probabilities. This occurrence arises because households

in dense areas appear more often in smaller sized samples, whereas larger sample

sizes will include households that are not located in dense clusters leading to greater

inclusion probabilities. As the sample size increases or the base size and arc span

increase proportionately, the inclusion probabilities for both methods are approxi-

mately uniform in distribution. It is to be expected as the sample size approaches the

town size, the household inclusion probabilities should become more uniform because

more households are being included in the sample. In the most extreme case where

all households are included in every sample, every household must have an inclusion

probability of 1 regardless of the secondary sampling method used.

Another interesting deduction from the study of the neighbourhood in Winnipeg

is that when the base of the strip approaches 2r∗, implying that γ = π, the inclusion

probabilities under both methods of sampling are identical. This has to do with the

fact that when strips of size 2r∗ are used, every household is captured in a span of π.
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Figure 5.14: Density plot of the inclusion probabilities using the strip and sector sam-
pling methods on 303 households from a neighbourhood from Winnipeg, Manitoba,
Canada.
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A span of π for every household also corresponds to the sector method of sampling

where γ = π. In general, the household inclusion probabilities of a strip with base

α approaching 2r∗ become more identical to those respective household inclusion

probabilities obtained using a sector with span π.
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Figure 5.15: Connected scatter plot showing the number of EPI samples relative
to the EPI sample size n from the data set acquired using the Google Maps API
procedure in neighbourhood from Winnipeg Manitoba, Canada.

It can be seen that real households are generally spread in a pattern which is a

combination of the grid and circ spatial patterns, as seen in Figure 5.10 and 5.13.

Since extracting households using the Google Maps API produces some inaccurate

information regarding the mapping of households, it is currently difficult to obtain

a precise understanding of the spread of households using the procedure. It does

however give a very rough understanding of the relationship between the size of the
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EPI samples at the household level and the number of samples produced at each

respective level, for a given geographical area. Looking at Figure 5.15, it is seen

that there are multiple nearest neighbours leading more than 303 possible EPI path

samples. As n gets larger, the number of possible EPI samples increases roughly

linearly. This cannot be generalized because every neighbourhood sampled will vary

from region to region depending on the geographic area of study around the globe.

92



Chapter 6

Summary, Discussion and Future

Directions

The methodological aspects and application of the EPI method produce insightful

results and advantages. The traditional approach can be applied quickly with very

little cost and no sampling frame; the only information required being the sizes of

each town. With the modifications proposed in this paper, a sampling frame is

required to extract the household inclusion probabilities for the HT estimators, but

not required for the EW estimators.

Utilizing the Google Maps API allows for the construction of sampling frames

reflective of the real world, which could be used to study and get a better under-

standing of the EPI method’s application. However, challenges in processing larger

data still exist. Depending on the spatial distribution of households, the number of

EPI samples could be extremely large with respect to the sample size required for

research.
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6.1 Summary and Discussion

A major emphasis of this thesis went to assessing the EPI method with respect to

both of its stages. At the primary level, a variety of common techniques were applied

and the associated statistics were explored to obtain exact figures. The conventional

method of performing systematic sampling, as explained in the EPI manual, was

generalized to account for non-integer sampling intervals. Formulating the inclusion

probabilities lead to a closed form equation, as seen in Equation (2.4).

Sampling WOR and WR using PPS were two methods researched, however study-

ing the EPI method while sampling at the primary stage WOR using PPS was much

more difficult to implement. The was mainly attributed to the fact that when there

are many towns included in the sampling frame, it is far too time consuming to

compute the inclusion and joint inclusion probabilities. A possible solution to this

problem is to use SHARCNet, a network of high performance computers, to process

the inclusion and joint inclusion probabilities as separate jobs and later using the

output in the assessment phase of the EPI method. On the other hand, sampling WR

using PPS was far simpler to integrate as part of the EPI method’s assessment be-

cause manipulating the inclusion probability formulas lead to closed form equations

of the inclusion and joint inclusion probabilities that were quick to process.

Employing strips at the secondary stage of sampling was another equally im-

portant concept used to study the EPI method. Much like sectors, strips reduce

possible bias produced by surveyors collecting data going towards the edge of the

town in some random direction relative to the center of a town. The most crucial

difference between strips and sectors is that strips tend to sample those households
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that are closer to the center of the town. It was established that for strips with base

sizes α = 2·r∗, a sector with span γ = π will compute identical inclusion probabilities

for each household individually. Finally, since strips are more geometrically complex

compared to sectors, extracting inclusion probabilities using strips is on average two

to three times longer than using sectors.

Performing an exact assessment of the EPI method lead to generalized statistics

for any two stage sampling technique, conditional that inclusion and joint inclusion

probabilities are accessible for both stages. One of the original studies on the EPI

method lead to the use of the EW estimator, as shown by Lemeshow and Robinson

(1985). Aiming to construct an unbiased estimator guided the research towards the

discovery and implementation of the well known HT estimator. Systematic sampling

and sampling WR using PPS were the only two primary sampling techniques that

were feasible with respect to computational time and had methodology to produce

exact inclusion probabilities. Consequently, they were used to construct a family of

two EW and four HT estimators.

The six estimators were applied to a variety of spatial and disease patterns which

were studied in Reyes (2016). Population and sampling plans were constructed by

considering a list of factors like the number of towns generated, the sizes of each

town, the dimensions of each town, the number of towns sampled at the primary

stage, the number of households sampled from the sampled towns at the secondary

stage and the prevalence of disease for some geographic region. This produced 108

population and sampling plans which were used to study each of the six estimators.

From the results that were obtained, the HTSYS and HTWR estimators were

unbiased as expected while all other estimators were biased. The largest spread in
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bias and MSE measurements across the 108 sampling and population plans was pro-

duced by the EW family of estimators. The least amount of spread in MSE with

respect to prevalence was seen in the HTSYS and HTSRS1 estimators. As mentioned

before, the HTSRS2 estimator always underestimated the population prevalence and

it distinctly classified the bias and MSE measurements into three groups which cor-

responded to each of the three prevalence values used in the study.

Evaluating each estimator under the three disease patterns concludes that the

EW1 estimator should always be selected when the disease follows a random dis-

persion pattern because it produces very accurate and precise estimates. Although,

fundamentally the HTSYS and HTSRS1 estimators were unique estimators with re-

spect to one another, the MSE evaluations under both showed a nearly identical

spread. Conclusively, it can be stated that the HTSYS estimator should be used

when diseases are spread through a central gradient or pocket pattern because it is

an unbiased estimator that produced the most precise estimates relative to the other

estimators.

It would be unlikely that groups or organizations carrying out the EPI method

in field work would actually know the prevalence before hand, as it would typically

defeat the purpose of doing a survey. As a result, no sensible recommendations could

be made regarding which estimator to use for specific levels of prevalence. However,

the HTSYS estimator is the ideal estimator to use when looking at spatial patterns

and prevalence values simultaneously across the study. As the prevalence approaches

a value of p = 0.5, the spread in the bias and MSE measurements increases across

all estimators. This is a logical occurrence because when the prevalence is close to

p = 0 or p = 1, each estimator typically increased in both accuracy and precision.

96



M.Sc. Thesis - Atinder Bharaj McMaster - Mathematics and Statistics

When the sample size at the secondary stage increased for a fixed prevalence, the

spread in bias and MSE slightly decreased across all estimators.

A separate study on the effect of the strip’s base size at the secondary stage of

sampling across the various spatial and disease patterns was conducted after fixing

the sample size to n = 7 and prevalence to p = 0.5. If households are dispersed

in an aggregated gradient spatial pattern or if the disease is spread randomly, the

EW1 estimator is recommended to be implemented in the sampling design of the

EPI method because it produces very little bias and has the smallest MSE. When

the households were spread in a circular gradient pattern and the disease assumes

a pocketed or circular gradient pattern, then the EW2 estimator should be imple-

mented. Depending on a particular researcher’s goal, they might decide to choose an

estimator that is more accurate versus precise. When the spatial pattern follows the

runi, grid or aggr pattern and the disease is spread through pocketing, the researcher

can either choose the EW estimator to get more precise estimates or the HTSRS1

estimator to get more accurate estimates.

6.2 Future Directions

From an applications stand point, there are a handful of alternative sampling meth-

ods that can be implemented at the primary level of sampling for the EPI method.

Although sampling WOR using PPS could not be studied due to calculation con-

straints, it is possible with the aid of computational databases like SHARCNet to

do so. Many other methods were considered to integrate as part of the primary
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stage of sampling, like Lahiri’s method which is an accept-reject algorithm that typ-

ically samples WR using PPS. Due to the complex sampling structure, these unique

methods present difficulties in obtaining exact inclusion probabilities. One possible

solution to help study these types of methods is to use a Monte Carlo simulation to

obtain close estimates of the inclusion probabilities. Although they will not be exact,

they will give a close understanding of how the methods might affect the assessments

of the EPI method actual field work.

Studying the EPI method using the sector method was not emphasized within this

paper. But, using the comparative setting of effective areas, it is possible to study

the effect of using strips versus sectors at the secondary stage for a variety of two

stage estimators. In Reyes (2016), alternate EPI paths were explored sampling every

kth eligible household from a sampled town. Using the sector sampling method, the

inclusion probabilities for k = {3, 5} produced significantly different results compared

to when k = 1 for small secondary sample sizes of n = {7, 15}. It is unclear how

sampling every kth household would effect the inclusion probabilities when sampling

using the strip, however this is an aspect of the EPI method that can be studied in

future projects.

Introducing non-eligible candidates to the study would greatly improve the repre-

sentation of the EPI method’s results. It is clear that visiting a household that does

not contain an eligible candidate that contributes as a member of the EPI sample

affects the EPI path. This in turn can have a significant impact on the inclusion

probabilities, however it is unclear how it would affect them. Future studies should

integrate the study of households that do not contain eligible candidates to mimic a

real world setting as close as possible.
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Developing the strip method gave rise to another secondary sampling technique,

which is initiated by generating a circle with a random radius from the town center.

After a circle has been generated, a household is randomly selected from within the

defined circle to initiate the nearest neighbour algorithm as traditionally used in the

EPI method. The most notable advantage of this method is that for reasonable radius

values, it can be very cost effective in locating all households within the specified

area as opposed to using a strip or a sector which requires surveyors to go to the

boundary of the town for any base size of arc span.
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Figure 6.1: Illustration of the random radius method selecting a sample of n = 7
households at the secondary stage of the EPI method on a sampled town with 100
households. Arrows were used to show the sequence of households selected in the
process of selecting nearest neighbours.
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A major drawback of the random radius method is that it tends to select house-

holds close to the town center more likely than those further away, much like the strip

method. This implies that the farthest households from the town center are generally

never selected as the initial households for an EPI path. Careful methodology must

be created to ensure that households bordering the edge of the town are given at least

some non-zero probability of initial selection. With regards to computational time,

the method itself has no variable to study making it far faster to process compared

to the sector or strip method. To compare strips, sectors and the random radius

methods, the effective area is still a suitable basis of comparison because a radius

can always be found such that the effective areas across each sampling method are

identical.

With the exponential rate of progress in technology and methodology, it would be

wise to look at techniques to study the EPI method using real world spatial data. The

four spatial patterns studied in this paper are common patterns in specific areas, but

they do not capture the intricate structure of real world household patterns. Using

the Google Maps API is definitely a useful technique in studying the EPI, however

it is challenged with the issue of the amount of data it can capture and how quickly

it can capture it.

In Yuan (2016), buildings and residential households are extracted from aerial

scenes using convolutional networks. This will allow one to accurately isolate geo-

graphic regions aerially, and process the information through the developed convo-

lution network to obtain precise household positioning. A recurring problem, which

also appeared in the Google Maps procedure, is that all non-residential structures
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are recorded using the convolution network. A solution to this problem is to se-

lectively choose aerial imaging so that malls, plazas and other locations containing

non-residential buildings are avoided. Using this alternate method to construct rea-

sonable household information for geographic regions should enable more accurate

and affordable studies of the EPI method.

Figure 6.2: Example of the convolution network developed by Yuan (2016) in a
residential area from Washington, D.C.. Transparent red areas represent the infras-
tructures extracted using the convolution network and the blue pixels indicate the
boundaries (Yuan, 2016).

101



Appendix A

Proofs

A.1 Validating the Inclusion Probabilities for Sam-

pling WOR with PPS

Recall, in Section 2.1.5, it was mentioned by Lohr (2009) that the sum of inclusion

probabilities when sampling WOR must equal m. Thus, the development of Equa-

tions (2.10) and (2.16) could be verified through this result. Both equations could

be shown by induction. Beginning with Equation (2.10) and letting m = 1, the

following result is obtained

M∑
i=1

αi =
M∑
i=1

P (town i is included in s(1))

=
M∑
i=1

Ni

N
=
N1 + . . .+NM

N
= 1
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Before showing the next result, it is important to note that the total size of the

population, N excluding the size of town i Ni is simply the sum of all town sizes,

excluding town i. Thus,

N −Ni =
M∑
j=1

Nj −Ni =
M∑
k1=1
k1 6=i

Nk1

Continuing the induction proof, it is useful to show that Equation (2.6) holds for

sizes of m = 2. Thus,

M∑
i=1

αi =
M∑
i=1

P (town i is included in s(2))

=
M∑
i=1

Ni

N
+

M∑
k1=1
k1 6=i

Nk1

N

Ni

N −Nk1


=

M∑
i=1

Ni

N
+

M∑
i=1

M∑
k1=1
k1 6=i

Nk1

N

Ni

N −Nk1

=1 +
N1

N

N2

N −N1

+
N1

N

N3

N −N1

+ . . .+
N1

N

NM

N −N1

+
N2

N

N1

N −N2

+
N2

N

N3

N −N2

+ . . .+
N2

N

NM

N −N2

+ . . .+
NM

N

N1

N −NM

+
NM

N

N2

N −NM

+ . . .+
NM

N

NM−1

N −NM

=1 +
M∑
i=1

Ni

N

M∑
k1=1
k1 6=i

Nk1

N −Ni

= 1 +
M∑
i=1

Ni

N

M∑
k1=1
k1 6=i

Nk1∑M
k1=1
k1 6=i

Nk1

= 1 +
M∑
i=1

Ni

N

∑M
k1=1
k1 6=i

Nk1∑M
k1=1
k1 6=i

Nk1

=1 +
M∑
i=1

Ni

N
= 1 + 1 = 2

To show the induction step, suppose that for a sample of size m − 1, the following
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holds

M∑
i=1

αi =
Ni

N
+

M∑
k1=1
k1 6=i

Nk1

N

Ni

N −Nk1

+
M∑
k1=1
k1 6=i

M∑
k2=1

k2 6={i,k1}

Nk1

N

Nk2

N −Nk1

Ni

N −Nk1 −Nk2

+ . . .

+
M∑
k1=1
k1 6=i

M∑
k2=1

k2 6={i,k}

· · ·
M∑

km−2=1
km−2 6={i,k1,...,km−2}

Nk1

N

Nk2

N −Nk1

· . . . · Ni

N −Nk1 − . . .−Nkm−2

= m− 1

For samples of size m, the sum of the inclusion probabilities show that

M∑
i=1

αi =
M∑
i=1

([
Ni

N
+

M∑
k1=1
k1 6=i

Nk1

N

Ni

N −Nk1

+
M∑
k1=1
k1 6=i

M∑
k2=1

k2 6={i,k1}

Nk1

N

Nk2

N −Nk1

Ni

N −Nk1 −Nk2

+ . . .

+
M∑
k1=1
k1 6=i

M∑
k2=1

k2 6={i,k}

· · ·
M∑

km−2=1
km−2 6={i,k1,...,km−3}

Nk1

N

Nk2

N −Nk1

· . . . · Ni

N −Nk1 − . . .−Nkm−2

]

+
M∑
k1=1
k1 6=i

M∑
k2=1

k2 6={i,k}

· · ·
M∑

km−1=1
km−1 6={i,k1,...,km−2}

Nk1

N

Nk2

N −Nk1

· . . . · Ni

N −Nk1 − . . .−Nkm−1

)

=m− 1+

M∑
i=1

Ni

N

M∑
k1=1
k1 6=i

Nk1

N −Ni

M∑
k2=1

k2 6={i,k}

Nk2

N −Ni −Nk1

. . .

M∑
km−1=1

km−1 6={i,k1,...,km−2}

Nm−1

N −Ni − . . .−Nkm−2

=m− 1+

M∑
i=1

Ni

N

M∑
k1=1
k1 6=i

Nk1∑M
k1=1
k1 6=i

Nk1

M∑
k2=1

k2 6={i,k}

Nk2∑M
k2=1

k2 6={i,k}
Nk2

. . .
M∑

km−1=1
km−1 6={i,k1,...,km−2}

Nm−1∑M
km−1=1

km−1 6={i,k1,...,km−2}
Nkm−1
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=m− 1 +
M∑
i=1

Ni

N
×

∑M
k1=1
k1 6=i

Nk1∑M
k1=1
k1 6=i

Nk1

×

∑M
k2=1

k2 6={i,k}
Nk2∑M

k2=1
k2 6={i,k}

Nk2

× . . .×

∑M
km−1=1

km−1 6={i,k1,...,km−2}
Nm−1∑M

km−1=1
km−1 6={i,k1,...,km−2}

Nkm−1

=m− 1 + 1 = m

The assertion is proven and it can be stated that Equation (2.10) is a valid formula to

compute inclusion probabilities sampling WOR with PPS because it satisfies Equa-

tion (2.5). This implies that all the special cases while sampling WOR using PPS

must adhere to Equation (2.5) as well.

A.2 Inclusion probabilities for towns of equal size

when sampling WOR using PPS

Suppose m = 1, then

αi =P (town i is included in s(1))

=
Ni

N
=

Q

MQ
=

1

M

Now, suppose m = 2. Using Equation (2.11),

αi =P (town i is included in s(2))

=P (town i is selected in the 1st draw) + P (town i is selected in the 2nd draw)

=
Ni

N

1 +
M∑
k1=1
k1 6=i

Nk1

N −Nk1

 =
Q

MQ

1 +
M∑
k1=1
k1 6=i

Q

MQ−Q

 =
Ni

N

1 +
M∑
k1=1
k1 6=i

Nk1

N −Nk1


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=
1

M

(
1 +

(M − 1)Q

(M − 1)Q

)
, since k1 can take on all values, except i. Therefore k1 has M − 1 choices.

=
1

M
(1 + 1) =

2

M

To show the induction step, suppose that

P (town i is selected up to the (m− 1)th draw) =
m− 1

M
.

Then using Equation (2.10), if a sample of size m is to be collected,

αi =P (town i is included in s(m))

=
Ni

N
+

M∑
k1=1
k1 6=i

Nk1

N

Ni

N −Nk1

+
M∑
k1=1
k1 6=i

M∑
k2=1

k2 6={i,k1}

Nk1

N

Nk2

N −Nk1

Ni

N −Nk1 −Nk2

+ . . .

+
M∑
k1=1
k1 6=i

M∑
k2=1

k2 6={i,k}

· · ·
M∑

km−1=1
km−1 6={i,k1,...,km−2}

Nk1

N

Nk2

N −Nk1

· . . . · Ni

N −Nk1 − . . .−Nkm−1

=
Ni

N

(
1 +

M∑
k1=1
k1 6=i

Nk1

N −Nk1

+
M∑
k1=1
k1 6=i

Nk1

N −Nk1

M∑
k2=1

k2 6={i,k1}

Nk2

N −Nk1 −Nk2

+ . . .

+
M∑
k1=1
k1 6=i

Nk1

N −Nk1

M∑
k2=1

k2 6={i,k}

Nk2

N −Nk1 −Nk2

· · ·
M∑

km−1=1
km−1 6={i,k1,...,km−2}

Nkm−1

N −Nk1 − . . .−Nkm−1

)

=
1

M

(
1 +

(M − 1)Q

(M − 1)Q
+

(M − 1)Q

(M − 1)Q

(M − 2)Q

(MQ−Q−Q)
+ . . .

+
(M − 1)Q

(M − 1)Q

(M − 2)Q

(M −Q−Q)
· . . . · (M − (m− 1))Q

MQ−Q− . . .−Q

)
=

1

M

(
1 + 1 + 1 + . . .+ 1

)
=

1 + (m− 1)

M
=
m

M
.
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