CONTINUOUS FIXED FILM BIOLOGICAL

NITRIFICATION AND DENITRIFICATION OF WASTEWATER

Ву

Richard W. Wilson, B.Sc.

A Project Report Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Engineering

> McMaster University January, 1975

MASTER OF ENGINEERING (1975) (Chemical Engineering)

TITLE : Continuous Fixed-Film Biological Nitrification and Denitrification of Wastewater
AUTHOR : Richard W. Wilson, B.Sc. (Queen's University)
SUPERVISOR : Dr. K.L. Murphy
NUMBER OF PAGES : xi, 253

ABSTRACT:

This work examines the feasibility of continuous biological nitrification and denitrification for nitrogen removal from municipal wastewater. Pilot plant studies were conducted using a rotating biological contactor (RBC) for nitrification and upflow packed columns for denitrification. Of primary interest were the effects of temperature on the systems.

It was found that an Arrhenius model adequately described nitrification rates measured over a range of temperatures from 7° C to 25° C. Direct comparison of the Arrhenius Activation Energies determined for the RBC and a two stage activated sludge system with intermediate clarification showed that nitrification in the RBC was less temperature sensitive than in the activated sludge process. At 10° C, roughly 20 mg/hr·m² (0.10 lb/day·l000 ft²) of ammonia as nitrogen was removed from the system. The rate of denitrification in the packed column reactors displayed great variability. The temperature dependency of the data could not be characterized by an Arrhenius model or any other simple relationship. Although significant nitrate removal was observed at all temperatures between 5° C and 25° C, severe short circuiting due to solids accumulation tended to limit minimum nitrate effluent concentrations to 1 or 2 mg NO₃-N/L.

120

ACKNOWLEDGEMENTS

I wish to express my appreciation to Dr. K.L. Murphy for his guidance throughout the research and preparation of this work.

I would also like to thank other individuals who contributed time and effort towards the completion of this work.

To employees of the Environmental Protection Service, Canada Centre for Inland Waters, particularly Dr. B. Jank for his assistance as Head of Research for Biological Processes, Mr. K. Conn and his staff for their analytical support and Mr. B. Monaghan for his help with pilot plant operation and technical problems.

To Mr. P. Sutton for his valuable counsel concerning all phases of the project.

To Mr. L. Yasuchenko whose aid was invaluable in pilot plant operation and sample preparation.

Acknowledgement is also made to McMaster University for their financial assistance to myself and to the Environmental Protection Service for their financial support of the project.

-iv-

TABLE OF CONTENTS

		Page
ABSTRACT		ii
ACKNOWLEDGEM	IENT S	iv
LIST OF TABL	ES	viii
LIST OF FIGU	RES	ix
INTRODUCTION		1
LITERATURE R	EVIEW	5
NITRO BIOSP	GEN, ITS PRESENCE AND ROLE IN THE HERE	5
JUSTI WASTE	FICATION FOR CONTROLLING NITROGENOUS S	7
	Eutrophication Oxygen Sag NH3 Toxicity NO3 Toxicity Cl2 Demand for Disinfection	8 11 11 13 13
BIOLO THEOR	GICAL NITRIFICATION-DENITRIFICATION	14
	Nitrification Denitrification	14 17
KINET	ICS AND REACTION RATES	21
	Basic Kinetics Effects of Carbon Concentration	21 22
	Oxygen Limitation in Nitrification pH Effects Temperature Effects Fixed Film Growth	23 23 24 29
TYPES	OF REACTORS	35
	Activated Sludge The Rotating Biological Contactor Anaerobic Filters	35 37 42

EQUIPMENT AND PROCEDURES	Page 47	
Pilot Plant Set-up and Reactor	47	
Specifications Start-Up Experimental Design Feed Characteristics RBC Cperation and Sampling Denitrification Column Operation and		
Sample Preparation and Analyses	66	
RESULTS AND DISCUSSION	68	
NITRIFICATION	68	
Hydraulic Characterization Nitrogen Balances Alkalinity Consumption Nitrification Rates Arrhenius Temperature Dependency Heat Transfer Characteristics	68 70 75 78 85 92	
DENITRIFICATION		
Column Flow Characteristics Nitrogen Balances Nitrate Plus Nitrite Removal Rates Effects of Packing Surface Temperature Effects General Performance	98 101 106 113 116 121	
CONCLUSIONS	124	
RECOMMENDATIONS	127	
ABBREVIATIONS AND SYMBOLS	129	
REFERENCES	131	
APPENDIX A Reactor Operating Data Plus Analytical Results	137	
APPENDIX B Analytical Methods	166	
APPENDIX C Computer Programmes	176	
APPENDIX D Nitrogen Balance Data	194	

APPENDIX	Е	Calcula Metho	tions ds	and f	Statist	cical		<u>Page</u> 202
APPENDIX	F	Tracer	Study	Tech	niques	and	Results	209

.

,

۲

•

,

TABLE NO.		Page
1.	TEMPERATURE COEFFICIENTS FOR DENITRIFICATION	27
2.	TEMPERATURE COEFFICIENTS FOR NITRIFICATION	28
3.	EXPERIMENTAL DESIGN	55
4.	ROTATING BIOLOGICAL CONTACTOR, NITROGEN BALANCE TABULATION, TOTAL NITROGEN	72
5.	ALKALINITY CONSUMPTION IN THE RBC	77
6.	RBC DATA, CALCULATION OF DIMENSIONLESS RATES AND DIMENSIONLESS EFFLUENT TKN, ZERO ORDER MODEL	80
7.	RBC DATA, CALCULATION OF DIMENSIONLESS RATES AND DIMENSIONLESS INFLUENT TKN, ZERO ORDER MODEL	83
8.	NITRIFICATION RESULTS	86
9.	RBC NITRIFICATION RATES	93
10.	COLUMN DENITRIFICATION RESULTS	114
11.	EFFECTS OF PACKING SURFACE	115
12.	EFFECT OF PACKING SURFACE WITH RATES ADJUSTED TO ACTUAL DETENTION TIME	117
13.	NITRATE PLUS NITRITE REMOVAL RATE COMPARISON	122
D-1	DENITRIFICATION: COLUMN F ₁ NITROGEN BALANCES	197
D -2	DENITRIFICATION: COLUMN F ₂ NITROGEN BALANCES	199
E-1	CALCULATION OF RBC TKN REMOVAL RATES BASED ON O ORDER KINETICS	203
E-2	CALCULATION OF TKN REMOVAL RATES FOR THE RBC BASED ON 1st ORDER KINETICS	204
E-3	HEAT FLUX IN THE RBC	208

4

.

.

LIST OF FIGURES

FIG.	NO.		Page
1.		THE PRESENCE OF NITROGEN IN ITS SEVEN VALENCE STATES	6
2.	A.	MASS BALANCE FOR OVERALL DENITRIFI- CATION	19
	в.	ASSIMILATION AND DISSIMILATION PATHWAYS AND INTERMEDIATES	19
3.		DIFFUSION PROCESSES IN FIXED FILM NITRIFICATION	31
4.		DIFFUSION PROCESSES IN FIXED FILM DENITRIFICATION	32
5.		TEMPERATURE SENSITIVITY OF FIXED FILM REACTORS	34
6.		THREE STAGE FLOW SCHEME FOR NITROGEN REMOVAL	36
7.		FULL NITRIFICATION-DENITRIFICATION PILOT PLANT FLOW DIAGRAM	48
8.		PACKED BED DENITRIFICATION COLUMN F	50
9.		ROTATING BIOLOGICAL CONTACTOR, SCHEMATIC OF PLANT E	52
10.		PROBABILITY DISTRIBUTION FOR UNFILTERED BOD ₅ INFLUENT TO THE RBC	57
11.		PROBABILITY DISTRIBUTION FOR UNFILTERED COD INFLUENT TO THE RBC	58
12.		PROBABILITY DISTRIBUTION OF SUSPENDED SOLIDS INFLUENT TO RBC	59
13.		PROBABILITY DISTRIBUTION FOR SOLUBLE TKN INFLUENT TO THE RBC	60
14.		PROBABILITY DISTRIBUTION OF UNFILTERED COD INFLUENT TO COLUMNS	62
15.		PROBABILITY DISTRIBUTION OF SUSPENDED SOLIDS INFLUENT TO COLUMNS	63

.

.

FIG. NO.		Page
16.	RBC FLOW CHARACTERISTICS BY DYE TRACER ANALYSIS	69
17.	PROFILE OF SOLUBLE NITROGEN COMPOUNDS IN THE RBC	74
18.	NITRIFICATION RATE VERSUS SOLUBLE TKN FOR THE ROTATING BIOLOGICAL CONTACTOR	81
19.	NITRIFICATION RATE VERSUS CONCENTRATION DEPENDENCY FOR THE ROTATING BIOLOGICAL CONTACTOR	84
20.	TEMPERATURE DEPENDENCY OF UNIT NITRIFICATION RATE FOR THE ROTATING BIOLOGICAL CONTACTOR	88
21.	TEMPERATURE DEPENDENCY OF UNIT NITRIFICATION RATE FOR THE TWO STAGE ACTIVATED SLUDGE SYSTEM WITH INTER- MEDIATE CLARIFICATION	90
22.	ACTIVATED SLUDGE VERSUS RBC NITRIFI- CATION TEMPERATURE DEPENDENCY	91
23.	HEAT TRANSFER COEFFICIENT FOR THE RBC	96
24.	HEAT TRANSFER IN THE RBC	97
25.	COLUMN F1 FLOW CHARACTERISTICS BY DYE TRACER ANALYSIS.CHANGE IN FLOW WITH TIME	100
26.	COLUMN F _l FLOW CHARACTERISTICS BY DYE TRACER ANALYSIS. EFFECTS OF UPFLOW BACKWASHING	102
27.	ACTUAL MEAN COLUMN RESIDENCE TIMES VERSUS DAYS FROM STARTUP	103
2833.	NO3-N PLUS NO2-N CONCENTRATION PROFILES IN THE PACKED COLUMNS	107-112
34.	TEMPERATURE DEPENDENCY OF UNIT DENITRI- FICATION RATES. RATES BASED ON ESTIMATED MEAN HYDRAULIC DETENTION TIMES	118
35.	TEMPERATURE DEPENDENCY OF UNIT DENITRI- FICATION RATES. RATES BASED ON THEORETICAL PACKED BED DETENTION TIME	120

FIG. NO.		Page
B-1	SCHEMATIC FLOW DIAGRAM OF FISHER MODEL 29 GAS PARTITIONER	174
в-2	SAMPLE OUTPUT FOR DISSOLVED GAS ANALYSES	175
D-1	SAMPLE COLLECTION FOR NITROGEN BALANCES	201

. .

•

. .

. .

.

r

INTRODUCTION

For almost two hundred years, nitrogen and its compounds have been of great interest to scientists in many different fields. Only during the past twenty to thirty years, however, has man developed a full awareness of the effects and behaviour of nitrogenous materials in aquatic environments. For the first fifty years of this century, the field of pollution and environmental control dealt almost exclusively with three goals. These goals were to treat municipal sewage by eliminating suspended matter, to remove carbonaceous substances which exerted a 5 day biochemical oxygen demand (BOD) and to reduce the numbers of pathogenic organisms. Then, in the early 1950's, the environmental pressures caused by massive industrialization and changes in agricultural practices in Europe and North America finally caused a major expansion of the historical concepts of pollution assessment and abatement. Phenomena such as eutrophication, toxicity along with noise, air and thermal pollution were recognized as having significant environmental impact. Today, there is general acknowledgement that nitrogen in many of its different forms can be a major pollutant. In fact, roughly fifty percent of the states in the U.S. now have established some form of nitrogen control standards (Barth and Smith, 1973).

-1-

The major problem areas associated with nitrogenous compounds include:

- high oxygen demand exerted by ammonia present in sewage and agricultural drainage,
- eutrophication of lakes resulting from nitrogen excesses,
- 3. NH₂ toxicity to fish,
- greatly increased chlorine requirements and contact time due to ammonia present in normal secondary effluents, and
- 5. NO₂ toxicity in drinking water.

Although technically there are many processes capable of removing nitrogen from wastewater, biological nitrification-denitrification is currently preferred for the treatment of municipal sewage. This is essentially a two-step process. The major portion of the nitrogen entering treatment plants is in the ammonia form. Although urea is present in large quantities in human waste, it hydrolizes rapidly to ammonia. Most of the remaining nitrogen is contained in organic compounds but these release ammonia as a result of their decomposition by heterotrophic bacteria which are present in the organic removal stage of standard activated sludge plants. In the first stage of biological nitrification/denitrification, autotrophic bacteria oxidize the ammonia present to nitrate. In the

-2-

second stage, heterotrophic bacteria in the absence of oxygen are able to utilize the nitrates present in two ways. In assimilatory denitrification, nitrate is reduced to ammonia which is then used for cell synthesis. Nitrogen removal from the system in this case is accomplished by sludge wasting. Dissimilatory denitrification involves the use of nitrate by the bacteria as a hydrogen acceptor during the redox reactions associated with cell metabolism. The nitrate is reduced to elemental nitrogen which is released to the atmosphere as a gas.

For the nitrification/denitrification process to be applicable to cold climates, it must be demonstrated that relatively efficient removals of ammonia and nitrate nitrogen can be obtained at operating temperatures approaching 5° C. This research program was designed to evaluate the effects of temperature on fixed film nitrification and denitrification reactors.

A rotating biological contactor or RBC was employed in parallel with an activated sludge plant for the nitrification study. Essentially, the RBC system consists of plastic media, which is about 45% submerged in a trough-like tank, rotated on a horizontal shaft. Biological growth becomes attached to the plastic media and is alternately contacted with air and wastewater as the shaft is slowly turned. Raw waste enters at one end of the tank and treated waste leaves at the other end. Under suitable conditions, populations of both heterotrophic organic carbon consuming

-3-

bacteria and autotrophic nitrifiers can be established within the biomass.

Eight foot (2.44 m) high and 12 inch (30.5 cm) diameter upflow packed columns were used for the denitrification study. Two identical columns were constructed each of which was packed with a different size of similar plastic media. Nitrified secondary effluent was fed to the units and this created conditions such that heterotrophic denitrifying bacteria could become established on the surface of the packing. These were run in parallel with a stirred tank denitrification reactor.

A summary of the main objectives of this research is as follows:

- to investigate the effects of temperature on the operating efficiencies of fixed film nitrification and denitrification systems,
- 2. to directly compare the temperature sensitivities of nitrification in an RBC and nitrification in a two-stage activated sludge nitrification system with intermediate clarification,
- 3. to directly compare the temperature sensitivity of columnar denitrification and denitrification in a suspended growth stirred tank reactor, and
- 4. to supplement existing knowledge concerning the effect of available packing surface area on the rate of denitrification.

:

LITERATURE REVIEW

Nitrogen, Its Presence and Role in the Biosphere

Nitrogen is an essential element in living matter. It forms the bulk of "atmospheric gases and because of its seven available valence states, it is found in hundreds of different compounds, both organic and inorganic, that exhibit widely varying chemical and physical properties. It is for these reasons that many people consider nitrogen as the most interesting of all elements. Nitrogen is very closely associated with life itself for it is only in the biosphere that the element is found in any significant quantity and in so many different forms.

A summary of the numerous types of nitrogen compounds that are present in nature is depicted in Figure 1. Many authors have previously discussed the physical, chemical and biochemical factors which account for the dynamic distribution of these compounds in our environment. Of key importance in these discussions of the "Nitrogen Cycle" has been the role of the aquatic environment. Natural processes provide for the continuous addition and removal of nitrogen compounds from the earth's water bodies. Animal wastes and dead plant matter contribute large quantities of ammonia and organic nitrogen to rivers and lakes. Certain forms of aquatic organisms, notably blue-green algae, fix atmospheric nitrogen directly into organic forms. Nitrates and nitrites

-5-

-6-

are formed in nature by electrical discharges in the atmosphere as well as through the actions of certain plant related bacteria. These oxidized nitrogen forms also find their way into rivers and lakes through direct precipitation or transport in the ground water. Limnologists and marine biologists point out that the synthesis of organic nitrogen compounds from inorganic ammonia occurs almost exclusively as a result of growth and reproduction of aquatic and marine plants and micro-organisms. Practically all higher forms of plant and animal life derive their organic nitrogen directly or indirectly from these micro-organisms. Bacterial denitrification of nitrates and nitrites to gaseous nitrogen, evaporation of free ammonia or other volatile nitrogen species and settling of non-readily degradable nitrogenous organic residues are all processes by which nitrogen can leave the hydrosphere. These latter processes tend to permit the establishment of an equilibrium between the nitrogen entering and the nitrogen leaving the world's rivers, lakes and oceans.

Justification for Controlling Nitrogenous Wastes

Through recent decades, man's activities have had a greater and greater effect on nitrogen equilibria. For example, Ferguson (1968) estimated that in the U.S., man was directly or indirectly responsible for 46 to 79 percent of the total quantity of nitrogen entering waterways.

-7-

Municipal sewage, runoff from feedlots and other animal producing land, and runoff from farmland that utilizes ammonia and nitrate fertilizer account for the bulk of this nitrogen contribution. Nor is this extra nitrogen load distributed evenly throughout the environment. Feedlot runoff and municipal sewage effluent provide a relatively finite number of point sources of concentrated nitrogen. An average total nitrogen concentration of close to 40 mg/l āš N quoted by the American Chemical Society (1969) for secondary municipal effluents is many times higher than normal levels found in receiving waters. It is not surprising then that a number of serious problems specifically related to excess nitrogen availability have been recognized and have aroused genuine concern within recent years.

1. <u>EUTROPHICATION.</u> The process of eutrophication can be defined as an acceleration of the biological productivity of a body of water due to an increased availability of essential nutrients. This tends to hasten the natural aging process of a lake by increasing the quantity of settleable material which then provides a more rapid filling of the basin through sedimentation. The lake eventually becomes extinct. Today, anything that shortens the life of a body of water or interferes with its use and enjoyment is socially unacceptable. For instance, one characteristic of many eutrophicated bodies of

-8-

water is the formation of nuisance amounts of algae. This can create clogging of water purification equipment, it can necessitate costly pretreatment of water for industrial use and generally will reduce the aesthetic quality of recreational areas. Anoxic zones in lakes can also be caused as a result of eutrophication. This occurs when dead algae and other micro-organisms accumulate so rapidly that dissolved oxygen is used up during the decay process faster than it can be replenished. This brings about reductions or shifts in fish populations.

The concept of nutrient limitation allows an insight into the causes of eutrophic conditions within a lake. In the early nineteenth century, the eminent German scientist, Justus von Liebig, first proposed the idea of the limiting or growth-determining nutrient in his Law of the Minimum. A contemporary statement of this law as it affects eutrophication has been presented by Gibson (1971). Briefly, Gibson proposed that a factor is not limiting growth if, when it is increased in concentration, no effect on growth is observed. It is now generally agreed that either phosphorus, nitrogen, or carbon are the nutrients which are most likely to be in limiting concentrations for growth of aquatic phytoplankton. Also, since these elements are required in far greater quantities than other

-9-

essential nutrients, it would seem that the availability of these would be the easiest to regulate. Some studies have indicated that carbon may limit eutrophication in soft water areas (Kerr, 1970). Massey (1971) pointed out that the majority of nutrient limitation studies conducted indicate phosphorus to be the growth limiting factor. As a result of this evidence, many people believe that nitrogen removal from wastewater will have no beneficial effects. However, a few studies such as that of Shapiro (1965) have shown that in certain areas where phosphate levels are relatively high, nitrogen can indeed be limiting growth. Massey also cited a study by Yoshimura in 1932 where it was shown that phosphorus was limiting at one time of year and nitrogen at another time. Therefore, there are at least a number of specific cases in which nitrogen removal from effluents would seem to be justified. Still some people argue that effective nitrogen controls would not be possible through treatment of wastewater, particularly because some aquatic species, notably blue-green algae, are known to be able to fix atmospheric nitrogen. This attitude infers that nitrogen can never be limiting. An argument of this nature however, is not valid because nitrogen fixation requires a fairly intensive outlay of energy, and nitrogen fixers that can utilize more

-10-

readily available nitrogen sources will undoubtedly grow more quickly than those which are forced to fix all of their required nitrogen from the atmosphere.

- 2. OXYGEN SAG. It has long been recognized that ammonia present in wastewater can be oxidized to nitrate by nitrifying bacteria with the consumption of 4.57 parts of oxygen for every part of ammonia nitrogen changed to nitrate. Nitrifying bacteria however, have a long generation time and historically, it was considered inefficient to design treatment plants to provide for ammonia oxidation. It was also thought that the rate of nitrate formation in receiving waters could be sufficiently slow so as to avoid any significant oxygen Two recent studies cited by Sawyer (1973) sags. indicate that this is not necessarily the case and that significant oxygen sags can be caused by ammonia oxidation, especially in slow shallow rivers. This is a very important discovery since there is generally about 20 mg/l of ammonia as N in effluents from conventional secondary treatment plants and this represents an oxygen demand approaching 100 mg/1.
- 3. <u>NH₃ TOXICITY.</u> Even very low levels of free molecular ammonia are known to be toxic to fish. The harmful effects of ammonia on fish are related chiefly to the pH value and the temperature value due to the fact

-11-

that only the un-ionized fraction of ammonia is more toxic. This un-ionized portion increases with rising pH value, and with rising temperature. Some research has indicated that free ammonia becomes more toxic as temperature is decreased from 10°C. (European Inland Fisheries Advisory Commission Working Party on Water Quality Criteria for European Freshwater Fish, 1973). In this range, therefore, the effect of increasing toxicity with decreasing temperature tends to cancel the effect of the decrease in the percentage of un-ionized ammonia.

Laboratory experiments of relatively short duration have demonstrated that the lethal concentration of ammonia (un-ionized) for a variety of fish species lies in the range 0.2-2.0 mg NH₃/1, with trout being the most sensitive and carp being the most resistant. Although concentrations of un-ionized ammonia below 0.2 mg NH₃/1 may not kill a significant proportion of a fish population, significant tissue damage has been observed with prolonged exposure at concentrations lower than 0.025 mg NH₃/1. Concentrations of total ammonia which contain this amount of the un-ionized portion vary from 19.6 mg/1 (pH 7.0, 5°C) to 0.12 mg/1 (pH 8.5, 30°C).

-12-

- NO, TOXICITY. 4. High nitrate levels in water consumed both by infants and by ruminant livestock are known to have toxic effects. The stomachs of both reduce nitrate to nitrite which in infants causes methemoglobinemia (blue babies). The Ontario Ministry of the Environment has assigned a limit of 10 mg/l as N for nitrate in drinking water. Although most water sources at present contain substantially less than this quantity of nitrate, the situation could change should areas that reuse the same water several times not adopt nitrogen removal regulations. A case in point would be sections of Minnesota and Manitoba that rely on the Red River for water. By the time the river empties into Lake Winnipeg, the water has been used several times by man. Nitrate levels from farm runoff and sewage effluents could conceivably reach hazardous levels. The munitions industry is another example in which high effluent nitrate concentrations in the wastewaters could cause problems if suitable treatment is not employed.
- 5. <u>Cl₂ DEMAND FOR DISINFECTION</u>. The quantity of chlorine required for water purification and sewage effluent disinfection to produce a free chlorine residual varies directly with the concentration of ammonia as well as other reduced materials in the water. Before a free chlorine residual appears, all of the

-13-

ammonia is oxidized to free nitrogen gas and nitrogen trichloride in a series of reactions. It takes roughly 3.8 parts of chlorine to oxidize one part of ammonia nitrogen. If large ammonia concentrations are present when the disinfection step is reached in a treatment plant, large quantities of costly chlorine will be required. From economic considerations, it may make sense to remove ammonia from sewage if disinfection is a requirement.

BIOLOGICAL NITRIFICATION/DENITRIFICATION THEORY

Nitrification

Nitrification is the process by which micro-organisms oxidize ammonia to nitrite and then to nitrate as a means of providing energy for growth and other metabolic functions. Painter (1970) mentioned that research to date has identified two main genera of autotrophic bacteria which are known to oxidize ammonia to nitrite, namely, Nitrosomonas and Nitro-Two other genera, Nitrobacter and Nitrocystis, sococcus. have been shown capable of forming nitrate from nitrite. Although Painter (1970) also mentioned that a large number of heterotrophic bacteria have been identified as nitrifiers, heterotrophic nitrification appears to be much less important than autotrophic nitrification. Many of the heterotrophic species have been found in soil samples only and it is not known whether they could also adapt to the environment of an activated sludge treatment plant. Autotrophic

-14-

nitrifying bacteria are probably much more efficient than heterotrophic forms in ammonia conversion because all of the energy used by these organisms is derived from the energy liberated during ammonia oxidation. Heterotrophs obtain only part of their energy requirements from nitrification, the major portion coming from organic substrate oxidation. Therefore, in discussing nitrification, only nitrifying autotrophs will be considered.

The processes of bacterial ammonia oxidation can be represented by the following equations:

$$NH_{4}^{+} + 3/2 O_{2} \xrightarrow{\text{Nitrosomonas}} NO_{2}^{-} + 2H^{+} + H_{2}O \qquad (1)$$

$$NO_{2}^{-} + 1/2 O_{2} \xrightarrow{\text{Nitrobacter}} NO_{3}^{-} \qquad (2)$$

McCarty (1970) suggested $C_5H_7O_2N$ as an acceptable empirical cell formula for nitrifying bacteria. As a result, the assimilation reaction can be represented as:

$$5CO_2 + NH_4^+ + 2H_2O \longrightarrow C_5H_7O_2N + 5O_2 + H^+$$
 (3)

By using reported values of actual cell yields the following overall mass balances combining nitrification and assimilation were proposed by Haug and McCarty (1971).

$$\frac{\text{Nitrosomonas}}{\text{C}_{5}\text{H}_{7}^{\text{O}}\text{2}^{\text{N}+54} \text{ NO}_{2}^{-}+52\text{H}_{2}^{\text{O}+109\text{H}^{+}}}$$
(4)

-15-

Nitrobacter 400 NO₂⁻ + 5CO₂ + NH₄⁺ + 195 O₂ + 2H₂O

$$\longrightarrow$$
 C₅H₇O₂N + 400 NO₃⁻ + H⁺ (5)

It is significant to note that on the basis of equations(4) and (5),20 mg of ammonia nitrogen would produce only 3 mg of <u>Nitrosomonas</u> and roughly 0.5 mg of <u>Nitrobacter</u>. These yields are much lower than normally observed with heterotrophic aerobes. Also, the hydrogen ions formed during nitrification combine with bicarbonate and carbonate ions in solution to produce carbon dioxide and water. This decreases alkalinity by 7.2 mg as $CaCO_3$ for every 1 mg ammonia nitrogen oxidized. Since the water in a number of areas in North America has a natural alkalinity less than 100 mg/l as $CaCO_3$, there may not always be sufficient natural buffering capacity in wastewater to permit the use of biological nitrification.

Stoichiometrically equation(1) and equation(2) show that 4.57 mg of oxygen are required to oxidize 1.0 mg of ammonia to nitrate. When the contribution of the carbon dioxide used in assimilation is taken into consideration, this value is reduced to 3.9 mg of oxygen.

Oxidation of ammonia provides less energy than the oxidation of most organic substrates used by heterotrophic bacteria. Because of this, a large amount of ammonia must be converted to supply sufficient energy for the assimilation of one bacterial cell. This is the reason for the low cell yield exhibited by nitrifying bacteria. Another facet of

-16-

nitrifiers is their long generation time. As a result of this, relatively long sludge residence times are necessary to allow the establishment of nitrifying populations in biological systems. In mixed cultures, the presence of high concentrations of organic substrates tends to reduce the percentage of nitrifiers because of competition from the more rapidly generating heterotrophs.

Denitrification

Denitrification can be accomplished in two distinct ways by micro-organisms. First of all, assimilative nitrate reduction can be defined as the overall process whereby nitrate-N is reduced to ammonia with the subsequent formation of nitrogenous cell constituents. Secondly, dissimilative nitrate reduction or respiration is the process in which nitrate is used as the terminal hydrogen acceptor instead of molecular oxygen during the oxidation of organic substrates. This results in the reduction of the oxidation state of the nitrogen from plus three in the nitrate form to zero as liberated gaseous nitrogen.

A wide variety of common facultative bacteria are known to accomplish denitrification. Examples reported by Delwiche (1956) include <u>Pseudomonas sp</u>, <u>Bacillus sp</u>, <u>Micrococcus sp</u>, <u>Achromobacter sp</u> and <u>Spirillum sp</u>. The reason why such a large number of bacteria are able to utilize nitrate respiration as well as oxygen respiration is that the same series of reversible enzymatic reactions

-17-

employed in transferring electrons from organic substrates to molecular oxygen is also used when electrons are transferred to nitrate. This specific enzymatic pathway is called the electron transport chain. Only a different terminal enzyme, nitrate reductase, is required for nitrate respiration and this is formed by the bacteria in an oxygen free environment. Therefore, it is generally agreed that denitrification cannot occur in the presence of oxygen. Although some workers (Myers, 1955; Schmidt, 1962) have reported the occurrence of denitrification under aerobic conditions, this could have been caused by bacteria acting in anaerobic regions within flocs.

Denitrifying bacteria can oxidize the same range of organic substances through nitrate respiration as through oxygen respiration with the exception of compounds such as aromatics which require oxygenases. These enzymes can only be manufactured in the presence of oxygen. Research conducted by McCarty (1969) has shown that methanol is an effective: and economical substrate for denitrification. Using the same technique described for deriving the overall mass balance for nitrification McCarty (1973) presented a mass balance for denitrification using methanol as substrate. The equations involved are shown in Figure 2 together with a scheme for the pathways that nitrate follows, including the intermediate compounds involved, during both assimilative and dissimilative denitrification. Painter (1970) concluded that the basic system represented in part

-18-

FIGURE 2

A. MASS BALANCE FOR OVERALL DENITRIFICATION

(McCarty 1973)

Energy Generating Reactions

Step 1

 $NO_3^- + 1/3$ CH₃OH --> $NO_2^- + 1/3$ CO₂ + 2/3 H₂O

Step 2

B. ASSIMILATION AND DISSIMILATION PATHWAYS AND INTERMEDIATES (Painter 1970)

Redox State of N +5 +3 +2 +1 0 -1 -3 $NO_3 \longrightarrow NO_2 \longrightarrow NO \longrightarrow (NOH) \longrightarrow NH_2OH \longrightarrow NH_4^+$ $N_2O_2 N_2O$

----- Non Enzymatic

_____ Enzymatic

B of figure 2, which was first proposed by Fewson and Nicholas (1961), although not completely confirmed, is most likely correct.

On the basis of the overall denitrification balance of Figure 2, it can be seen that the reduction of 20 mg of NO_3 -N would require 50 mg of CH_3OH or 0.94 mg of methanol as carbon per mg of NO_3 -N. The 20 mg of NO_3 -N would also result in the production of 10.5 mg of biomass that would contain 0.84 mg or about 6 percent of the total nitrogen removed. To facilitate estimation of methanol requirements and sludge production in a normal denitrifying reactor, McCarty (1973) presents the following formulae:

Methanol Requirements

$$C_m = 2.47 \text{ NO}_3 - N + 1.53 \text{ NO}_2 - N + 0.87 \text{ D.O.}$$
 (6)

Biomass Production

 $C_{\rm B} = 0.53 \text{ NO}_3 - \text{N} + 0.32 \text{ NO}_2 - \text{N} + 0.19 \text{ D.O.}$ (7)

where: C_m is the required methanol in mg/l, C_B is the biomass production in mg/l, NO₃-N is the nitrate nitrogen in mg/l, NO₂-N is the nitrite nitrogen in mg/l, and D.O. is the dissolved oxygen concentration entering the system in the feed in mg/l.

These expressions are basically derived from research on actual methanol consumption conducted by McCarty (1969). Other research is also cited as confirming McCarty's work

-20-

(Smith et al, 1972; Stensel, Loehr and Lawrence, 1973).

Finally, it should also be noted that hydrogen ions are consumed during denitrification at a rate of 3.0 mg of alkalinity as CaCO₃ per mg of NO₃-N. This will partially compensate for the alkalinity removed during nitrification.

KINETICS AND REACTION RATES

Basic Kinetics

Many researchers have investigated the kinetics of nitrification and denitrification during the last ten to fifteen years. To date, the Monod kinetic model has been used most often to describe experimental data.

$$R = \frac{\mu S}{K_s + S}$$
(8)

where:

- R = mass of substrate removed per mass of biological solids per unit time,
- S = substrate concentration in the system
 (NO₃-N for denitrification, NH4 -N for
 nitrification),
- µ = rate constant corresponding to the maximum substrate removal rate,

Recent discussions of the literature by Sutton on nitrification kinetics (1974) and denitrification kinetics (1973) indicate that for mixed culture activated sludge

-21-

systems, the rates of ammonia and nitrate removal can generally be approximated by a simpler model which is zero order with respect to substrate concentration. This conclusion is largely based on the fact that the Monod K_s values. derived by many researchers for nitrification and denitrification are in the 0.2 mg/l to 2.0 mg/l range. Therefore, under most practical reaction conditions, the effect of K becomes insignificant and the Monod model reduces directly to a "zero order" expression with respect to substrate concentration. In at least one case (Requa and Schroeder, 1973) the "zero order" approximation has been shown as valid for a fixed film denitrification reactor as well. Nevertheless, the rates of substrate diffusion into and out of biological films may play a much more important role in determining the apparent rate of reaction for fixed film processes than for dispersed growth processes. Therefore, in the absence of more data, care must be taken in adopting "zero order" kinetics for nitrification and denitrification in non-dispersed growth systems.

Effects of Carbon Concentration on Denitrification

Although there is general agreement that the dissolved carbon concentration influences the rate of denitrification, Dawson and Murphy (1972) have shown that as the carbon to nitrate ratio is increased, an increase in the unit denitrification rate occurs only until the theoretical carbon to nitrate ratio predicted for nitrate

-22-

reduction and organism growth is reached. Consequently, in operating a denitrifying reactor, to avoid rate limitations due to carbon availability, it is only necessary to assure that a stoichiometric quantity of carbon substrate is present.

Oxygen Limitation in Nitrification

Painter (1970) quoted work by Schoberl and Engël (1964) which showed that oxygen did not become limiting for ammonia oxidation by <u>Nitrosomonas</u> until a concentration of 0.9 mg/l was reached. For mixed culture systems, Johnson and Schroepfer (1964) mentioned that 0.5 mg/l was found by Downing and Bagley (1961) to be the limiting dissolved oxygen level for nitrification. Somewhat higher limiting oxygen concentrations have been reported for nitrite oxidations by <u>Nitrobacter</u> but this is of less practical interest for sewage treatment since ammonia oxidation to either nitrite or nitrate is equally acceptable if denitrification is to follow.

pH Effects

Nitrification and denitrification have been reported to operate in the broad range of pH between 5.0 and 10.0. Generally, optimum conditions for nitrification have been found to exist between pH 8.0 and 9.0. Denitrification seems to proceed best at the slightly higher hydrogen ion concentrations associated with pH values of 7.0 to 8.0.

-23-

Significant, however, is the fact that much of the work conducted in the past was with pure cultures and usually little or no consideration was given to the effects of long term acclimation.

Temperature Effects

For many reactions, both chemical and biochemical, the rate expression can be written as the product of a temperature dependent term and a basic kinetic term, or:

Rate = func (temperature) · func (basic kinetics) (9)

Consequently, in biological sewage treatment design, knowledge of kinetics alone is insufficient as most treatment facilities experience annual temperature fluctuations.

All micro-organisms exhibit the same basic temperature versus activity relationship. At low temperatures, reaction rates are low. Rates increase more and more quickly as the temperature is raised until a maximum is reached. Usually the optimum temperature range for a specific species is quite narrow. As temperature is raised beyond the optimum the activity of the micro-organisms falls off quickly and continues to decrease until all activity ceases. This rapid deterioration is thought to be caused by temperature inhibition of the manufacture of certain key enzymes which are essential in catalyzing specific cell reactions. Although all bacteria follow this general temperature-activity relation, the optimum temperatures of the various genera vary significantly. Definitions are not

-24-

precise but the following three groups of bacteria; psychrophilic, mesophilic and thermophilic, can be defined as having optimum growth rates under 20 degrees C, between 20 and 50 degrees C and over 50 degrees C respectively. Nitrifying bacteria and the chief denitrifying bacteria are mesophilic with peak activities generally between 25 and 35 degrees. Therefore, for all temperature conditions of normal raw sewage (5 to 25 degrees C in cold and temperature climates) nitrification should exhibit increasing reaction rates with increasing temperature.

An empirical relationship commonly employed to describe the effect of temperature on simple chemical systems and on the increasing activity phase of biochemical reactions was suggested by Arrhenius in 1889 (Laidler, 1965).

$$K = Ae^{-E/RT}$$
(10)

where:

K is the reaction velocity,
A is a constant (frequency factor),
E is the activation energy (cal/gm mole),
R is the gas constant (1.987 cal/gm mole ^OK),
and

T is the absolute temperature (^{O}K) .

It is important to understand that the activation energy E increases as the temperature sensitivity of a given system increases. Therefore, a reaction rate which is shown to fit the Arrhenius expression varies more with changing temperature if its energy of activation is 20,000 cal/gm

-25-
mole that if it were 2000 cal/gm mole. Systems that tend to minimize temperature sensitivities are less susceptable to large fluctuations in operating efficiency as the temperature changes and are therefore preferred.

In the analysis of rate data, several rearrangements of the basic Arrhenius equation have been used during the past. These include:

$$K_{T} = K_{O} \theta^{(T-T_{O})} \text{ Streeter and Phelps, (1925)}$$

$$K_{T} = K_{O} e^{\theta^{(T-T_{O})}} \text{McCarty, (1973)}$$

$$Q_{10} = \frac{K_{T}}{K_{T-10}} \text{ Fair, Geyer, and Okun, (1968)}$$

where:

 K_{T} is the reaction rate at temperature T, K_{O} is the reaction rate at temperature T_O, K_{T-10} is the reaction rate at temperature T-10,

- Q₁₀ is a measure of the increase in reaction rate caused by a 10 degree rise in operating temperatures, and
- θ is the thermal coefficient (related to the activation energy).

A summary of temperature coefficients as calculated by Sutton (1973) for published denitrification data is given in Table 1. Table 2 provides a similar tabulation of nitrification coefficients. It is worth noting that in the case of both nitrification and denitrification the average Q_{10} values are slightly greater than 2.0. This is compatible

-26-

Table 1

Temperature Coefficients For Denitrification

(Data from Sutton, 1973)

.

.

REFERENCE	SYSTEM	TEMPERATURE RANGE ^O C	K=Ae ^{E/RT} E	$K_{T} = K_{20} e^{\theta'(T-20)}$	$K_{T} = K_{20} \qquad \theta (T-20) \\ \theta $	Q ₁₀ VALUES
Dawson (1971) Lab Scale	Batch <u>P. Denitrificans</u>	3÷27 10-20	16,800	0.11 0.10.	1.12 1.10	3.0
Stensel (1971) Lab Scale	Batch Activated Sludge SRT=2 days	15-25	10,000	0.06	1.06	1.74
	Activated Sludge	10-20	19,500	0.12	1.13	3.3
	Continuous Activated Sludge	20-30				-0.5
Mulbarger et al, (1971) Pilot Plant	Activated Sludge SRT=7.6 days	10-20	19,000	0.14	1.15	3.3
Johnson, Vania (1971 Pilot Plant) Activated Sludge	10-20				2
Wuhrmann, Mechsner (1965) Lab Scale	Batch Activated Sludge	10-20				2.6
Sutton (1973) Pilot Plant	Continuous + Batch Activated Sludge 1. SRT=3 days	5-25	15,300	0.089	1.093	~2.4
	2. SRT=6 days	5-25	15,900	0.093	1.097	~2.4
	Continuous Packed Columns	5-25	11,090	0.067	1.07	~2.0

-27-

Table 2 Temperature Coefficients For Nitrification

•

REFERENCES	SYSTEM	TEMPERATURE RANGE ^O C	K=Ae ^{-E/RT} E	K _T =K ₂₀ e ^{θ'} (T-20) θ'	$K_{T} = K_{20} \theta (T - 20)$	Q ₁₀ VALUES
Blue Plains Data Jan.72 - Sept.73 Cited by Brown and Caldwell (1974)	Batch Activated Sludge	16-27	12,200	0.074	1.08	2.1
Mulbarger (1971)	Batch Activated Sludge	8-23	10,800	0.065	1.07	1.9
Pretorius (1974)	Continuous Rotating Biological Contactor	5-30	3,654	0.02	1.02	1.25
Downing et al (1964)	Activated Sludge	5-15	20,400	0.12	1.13	3.3

with the general rule of thumb that a ten degree C temperature rise for a biological system will double the reaction rate. Of specific interest in the nitrification results is the very low Q10 reported by Pretorius (1974) for his RBC apparatus. Although, it may well be that nitrification in an RBC exhibits some difference in temperature sensitivity compared to nitrification in the activated sludge process, the activation energy found by Pretorius is nevertheless very much smaller than any value previously quoted in the literature. In fact, Pretorius ' Q10 value of 1.25 is almost identical to the Q_{10} value of 1.30 reported by Kehrberger et al (1964) for diffusion limited glucose utilization in a BOD bottle. Diffusional limitations on the transport of oxygen or substrate may well have had a major effect on the nitrification rates observed by Pretorius since his disc rotational speed was set to give a tip velocity of only 29 ft/min (8.8 m/min). This is barely half the value recommended by Antonie (1970) for optimum nitrification. The literature quoted in Table 1 and Table 2 also shows that significant nitrification and denitrification can occur at temperatures as low as 5 to 10 degrees C. This furnishes important support for the idea that biological nitrogen removal is viable in cold climates.

Fixed Film versus Dispersed Growth

There are basic environmental differences between

-29-

organisms in dispersed growth reactors and those which form stable films on solid surfaces such as those in packed columns and RBC's. Probably the most significant difference between these two types of systems involves the percentage of active organism surface area in direct contact with the nutrient rich liquid phase. In kinetic studies of dispersed systems, the simplifying assumption that all active organisms have equal contact opportunity with nutrients is usually understood. This assumption however, can never be made for fixed film systems as nutrient and oxygen concentration gradients through the film directly affect contact opportunities. It is, therefore, logical to speculate that diffusion of oxygen, nutrients and metabolic wastes between a film's surface and the interior plays an important role in determining overall substrate removal rates. In fact, both Torpey (1972) and Pretorius (1974) have shown that nitrification rates increase significantly in rotating biological contactors when oxygen enriched or pure oxygen atmospheres are used instead of air. This would suggest that the higher driving force for oxygen diffusion between the atmosphere and the biological film produces higher rates of mass transport and hence, increased rates of nitrification. Similar behaviour has not been observed for high oxygen concentrations in dispersed growth systems. Figure 3 and Figure 4 show many of the diffusional processes which could be of importance in film nitrification and denitrification.

-30-

FIGURE 3

DIFFUSION PROCESSES IN FIXED FILM NITRIFICATION

DIFFUSION PROCESSES IN FIXED FILM DENITRIFICATION

Several authors (Grieves, 1972, Haug and McCarty, 1971) have included the effects of substrate diffusion successfully into mathematical models for nitrification in biological In the case of the model presented by Haug and films. McCarty, it was predicted that fixed film nitrification was less temperature sensitive than the usual dispersed growth process. The basis for this argument came from the assumption that certain portions within a film can remain inactive in ammonia oxidation for extended periods of time while still remaining viable. At each temperature, a characteristic substrate gradient would be established within the film. The depth of the gradient would be dependent upon the diffusive flux of substrate into the film from the liquid phase and the degree of biological activity at that temperature. Theoretically, an active mass of micro-organisms could then be determined by multiplying the total film surface area by the film density and then by the depth of the substrate gradient into the film. As the temperature of the system is decreased, biological activity reduces rapidly. There is also a slight reduction in diffusive flux; however, diffusive transport does not decrease as rapidly with falling temperature as biological activity. This provides for deeper penetration of the NH_4^+ and O_2 gradients into the film (see Figure 5) at low temperatures. Consequently, even though the ammonia removal per mass of organisms per time decreases as the temperature is lowered, the mass of active nitrifiers increases because significant ammonia concentrations reach deeper into the film. These two phenomena

-33-

FIGURE 5

TEMPERATURE SENSITIVITY OF FIXED FILM REACTORS

HIGH TEMPERATURE

Si = CONC. OF SUBSTRATE (APPROX = 0) WHERE NITRIFICATION CEASES

would tend to cancel one another resulting in a slower change in ammonia removal rate with temperature than in dispersed phase systems. This model can also be generalized to include such things as denitrification and BOD removal. In some systems, the oxygen gradient may be limiting the "active mass" rather than the substrate gradient. Pretorius (1974) with his Q_{10} value of 1.25 provides some support to this theory of reduced temperature sensitivity for fixed film systems. As was previously discussed, however, unnecessary diffusion limitations may be partially or entirely responsible for the very low temperature sensitivity found for his system.

TYPES OF REACTORS

Activated Sludge

Many different modifications of the basic activated sludge process have been made in an attempt to provide stable and efficient biological nitrogen removal. Mulbarger (1971), who investigated a number of process alternatives, obtained the most consistent and dependable performance using the three stage sludge system with methanol (Figure 6). The first stage consists of an aeration tank and clarifier operated at a relatively short average solids retention time. Its main function is to provide BOD₅removal. A second aeration tank and clarifier are then operated at a much larger sludge age to allow sufficient time for the slow growing nitrifiers to become established. Nitrified secondary effluent then enters

-35-

FIGURE 6

THREE STAGE FLOW SCHEME FOR NITROGEN REMOVAL (MULBARGER, 1971)

the stirred denitrification tank in the third stage. Since most organic carbon has been removed in the first two stages, methanol is added to the system to provide substrate for the denitrifiers. A small flash aeration tank after the stirred tank serves to remove any residual amounts of methanol and strips any nitrogen gas from the bacterial floc. This provides an effluent with a low residual oxygen demand and tends to prevent rising sludge problems in the final clarifier.

Although the three stage sludge system is known to function well, it tends to be costly. Therefore, research into other means of biological nitrification and denitrification has been prompted by a desire to find less expensive and simpler processes which still allow efficient removals.

The Rotating Biological Contactor (RBC)

The RBC consists of a series of closely spaced discs anchored to a shaft which is supported just above the surface of the waste in a semicircular bottomed rectangular tank. The shaft rotates with a velocity generally between 2 and 6 rpm (peripheral velocity about 60 ft/min), thus alternately exposing the biological slime growing on the disc surfaces to the waste and then to the atmosphere. The motion of the discs through the liquid promotes good mixing and efficient nutrient contact and transport from the waste into the slime. Borchardt (1971) calculated for one of his RBC units treating municipal wastes that the amount of volatile solids contained in the attached films would have been equivalent to an acti-

-37-

vated sludge tank containing 40,000 to 60,000 mg/L of suspended volatile solids. This may account partially for the high efficiencies reported for these systems.

The rotating disc process grew from the development of the trickling filter. According to Steels (1974), the basic concept that slimes present on solid media in contact with sewage and air could aid in the overall efficiency of treatment had its origins from work conducted by Travis in England and the U.S. at the turn of the century. Also, Steels (1974) mentioned that the first rotating cylindrical filter was designed and built by Weigard circa 1900. This consisted of a wooden cylinder with slatted walls that was filled with brushwood, partially submerged in the waste and slowly rotated. The design was supposedly inspired by the desire to reduce treatment power consumption. Although this system worked satisfactorily, as a roughing process, problems were encountered with sludge accumulation in the filter resulting in short circuiting and the development of anaerobic zones.

In 1929, Buswell reported the invention of the "Biologic Wheel" by A.J. Maltby (Grieves, 1972). The basic design consisted of a series of paddle wheels with 12 or more steel blades per wheel which were rotated by sewage flow. Treatment results were good for detention times of 4 to 6 hours. No commercial applications for this were reported.

The RBC acquired its present form as a result of considerable research initiated by Hans Hartmann and Franz Popel at the Technical University of Stuttgart in 1955 (EPS

-38-

Report, 1973). The first commercial installation of a modern RBC plant was made in 1959. Today hundreds of plants are in operation primarily in Western Europe. One of the most important design features of RBC development during the past fifteen years has been the replacement of asbestos with plastic for disc construction. This has greatly reduced the weight and aided the manageability of the shafts. Power requirements have also been reduced significantly due to the lighter plastic media.

The main advantages which have been quoted widely for the RBC compared to standard activated sludge treatment are as follows.

- The RBC has a simple design which allows easy installation in any location and a minimum of operator control and maintenance.
- 2. Only a small amount of energy is required to rotate the shaft of the RBC providing excellent BOD and ammonia removal efficiencies per kilowatt hour.
- 3. Overloading the system will not cause solids washout and plant failure.
- 4. It is thought that shock loadings of adverse pH and toxic materials have less effect on the fixed film of the RBC than in the "dispersed" bacteria in activated sludge.
- 5. Because protective hoods are generally required over each RBC, potential odour problems could be easily controlled.

Largely due to the advantages listed above, North American interest in the RBC has been gaining rapidly during the past four to five years. Nevertheless, there are still

-39-

relatively few commercially installed units on this side of the Atlantic. It is expected that the economy to be realized in constructing an RBC unit over a conventional activated sludge plant would be best achieved in small to medium sized plants. In the larger activated sludge plants, a great deal of added volume can be obtained with only a modest amount of additional concrete. Costs are much more linear with respect to sewage volumes with RBC treatment.

Considerable experience has been gained in the treatment of municipal sewage by RBC reactors. The three most important operating parameters are detention time, disc surface area and temperature.

A pilot study by Torpey et al (1972) using municipal wastewater showed that 30 minutes of contact time was generally sufficient for up to 90 percent BOD removal. This produced effluent BOD's in the 15 mg/l range. For treatment beyond this point, much longer residence times were necessary. Data presented by Antonie (1970) indicated that ammonia removal to an effluent concentration of 2.0 mg/ ℓ NH⁺₄-N or less can be achieved in systems with hydraulic loadings of about 1 U.S. gal/ft²/day (40 l/m²/day). In Antonie's systems, this would mean hydraulic detention times of roughly 90 minutes or surface loadings between 0.15 and 0.20 $\#NH_{4}^{+}-N/$ 1000 ft² day (0.3-0.4 mg $NH_{A}^{+}-N/m^{2}\cdot hr$). Lue-Hing et al (1974) successfully operated a pilot scale RBC at detention times of 1.5 to 12.0 days to produce essentially complete nitrification in a high ammonia content lagoon supernatant

-40-

 $(740-830 \text{ mg } \text{NH}_4^+-\text{N/l}).$

Since the amount of biological film increases in direct proportion to the disc area, most RBC systems are designed to provide the maximum surface practical.

To date little comprehensive data are readily available concerning the effect of temperature on RBC operation. No direct comparison between the RBC and activated sludge temperature sensitivities has been published. The work that is presently available shows the predictable result that BOD and ammonia removal rates decline with decreasing temperature, but these rate decreases are not usually quantified. The major exception here is the work of Pretorius (1974) which has already been discussed.

Currently, there are two differing opinions concerning the effect of ammonia concentration on the rate of nitrification in the RBC for municipal wastewater. Torpey (1972) concluded that nitrification was zero order with respect to ammonia concentration. On the other hand, Antonie (1974 A) proposed that ammonia does exert a concentration effect although this effect is not specifically first order. Although Antonie's use of results from five separate RBC pilot plants provides a wider range of data than was cited by Torpey, it did not negate Torpey's findings. Also, each of Antonie's pilot units was divided into four equal sized compartments and it is inferred from his article that Antonie made the assumption that the hydraulic nature of each RBC was equivalent to four ideal stirred tanks in

-41-

series. This assumption may not have been valid since there was no mention that the assumption was substantiated by tracer analysis. Therefore, the apparent kinetics of ammonia removal is still uncertain.

Anaerobic Filters

The anaerobic filter offers an alternative to stirred tank denitrification. Here stationary media is submerged and organisms which become attached to the media affect nitrate reduction in the presence of a carbon source. As with the RBC, a large mass of micro-organisms can be supported within the reactor without experiencing the problem of washout due to overloading. Logically, packed beds that are designed and operated to give long hydraulic detention and maximum contact area between bacteria and sewage would exhibit the highest nitrate removals. This infers that a balance must be made between large voidage and high surface area per cubic foot when choosing the best filter media.

A number of investigations of packed bed denitrification have been carried out since the original work of Bringmann and Kühn in the early 1960's. However, to date, few general design criteria have been established for this form of treatment. The systems that have been studied so far can be classified into two broad categories, small media systems (less than 1 inch nominal diameter packing) and larger media systems (packing diameters equal to or greater than 1 inch).

-42-

With the small packing, although nitrate removals appear to be efficient, rapid solids accumulation causes large pressure drops and necessitates frequent backwashing. English (1974), in his recent work with simultaneous COD polishing and denitrification in a 0.3 MGD (US) activated carbon plant, found that, even with backwashing twice daily, first stage head losses averaged 30 to 50 psi (2.1 to 3.5 kg/sq cm). High and variable operating pressures create operating complexities and added equipment costs for processes. Back-wash disposal also becomes an increasing problem.

In the larger packing category, head losses have not been a problem. Unfortunately, removal efficiencies also tend to be much lower based on empty bed residence. It is thought that packings such as very large aggregate (2 inches) and Dow Surf-pac (a special synthetic trickling filter media) have too much void volume and insufficient surface area to allow the build-up of a large mass of active denitrifiers (Jones, 1971). Although English (1974) includes in his report a rough cost estimate for providing denitrification for a 10 MGD (US) plant, it is not stated whether this would be more economical than the much simpler stirred tank process.

A novel approach to packed bed denitrification has recently been reported by Jeris and Flood (1974). Their system involves passing nitrified secondary effluent through a sand filled column at a rate sufficiently high to expand the bed. Preliminary results have shown almost complete

-43-

removal of roughly 20 mg/1 nitrate nitrogen with an empty bed detention time as low as 7.2 minutes. To date, no mention has been made of the nature and degree of operating problems for this system. A process such as this, however, may eventually become attractive should the results of extended continuous operation show no decline in removal efficiency and no solids accumulation and pressure drop problems.

Relatively little work on denitrification by submerged filters has included study of temperature on removal rates. Investigations by Sutton (1973) over a temperature range of 5 to 25 degrees C and using 0.5 inch and 0.375 inch Berl Saddle packing produced nitrate reduction rates which fit the Arrhenius temperature dependency model. Here an activation energy of 11,090 cal/mole was reported. This was slightly lower than activation energies found by Sutton for stirred tank systems. In the same study, by comparing rates obtained with the two different packings, it was shown that packing surface area was directly related to nitrate Important however, is the fact that removal efficiency. between the two packings evaluated there was only a 25 per cent difference in surface area per unit volume. This probably increased the likelihood of correlation. Sutton also found that backwashing was required for his systems once in every four or five days caused by slow but persistent increases in head loss.

Recently Riemer (1974) has experimented with two

-44-

13 ft. (4.0 m) PVC columns, one packed with crushed granite (2-5 mm) and the other with quartz pebbles (2-5 mm), over a temperature range of 9 to 19 degrees C. Removal rates for nitrate were found to fit the following retardant type kinetic model:

$$\frac{C_{o}-C}{C_{o}} = 1 - e^{-r} \left(\frac{v}{Q C_{o}}\right)$$
(11)

where:
$$C = NO_3 - N$$
 concentration,
 $C_0 = NO_3 - N$ concentration in the feed,
 $r =$ removal rate of $NO_3 - N$,
 $V =$ empty bed volume, and
 $Q =$ flow rate.

The Arrhenius model was also adequate in describing the -rate versus temperature dependency of Riemer's systems. Resulting activation energies fell between 13,700 and 22,000 cal/mole (Q_{10} 's from 2.3 to 3.8). These compare closely to the values for stirred tank systems (Table 1).

It is significant to mention that neither of the above authors has accounted for deterioration in column efficiencies due to solids accumulation and changing hydraulic detention time in the column at the time of each run for rate calculations. Up to the present, all rates in column denitrification studies have been determined using empty bed residence or the theoretical packed bed residence (e.g. no growth on packing). This does not adequately

-45-

reflect the changing nature of column operation. The changes in actual residence times for submerged filters operated continuously for extended periods of time can be easily followed by conducting periodic tracer studies.

EQUIPMENT AND PROCEDURES

Pilot Plant Setup and Reactor Specifications

The equipment used for this research is part of a larger 7200 IGPD (32.7 m³/day) capacity pilot plant facility located at the Canada Centre for Inland Waters in Burlington, Ontario and which was constructed specifically for the study of biological nitrogen removal. Figure 7 provides a schematic diagram of the entire nitrification/denitrification plant. Screened raw wastewater is received from the Burlington Skyway Water Pollution Control Plant and enters a temperature controller unit. The wastewater can then be fed simultaneously to three separate nitrifying reactors; two different activated sludge systems and the RBC. Nitrified secondary effluent from Reactors A and B enters a second temperature controller from which the two different denitrifying systems are fed. Of primary concern in this study was the operation of the rotating biological contactor (RBC) and the packed columns.

The RBC used for the nitrification part of this work was an Autotrol Bio-Surf 1.5 ft (0.5 meter)Pilot Plant, Serial No. 7407. Feed was introduced at the head of the unit by a rotating scoop device and flow was parallel to the central shaft through a series of four separate compartments. A total of thirty-six discs provided 250 sq. ft (23.2 m²) of

-47-

FIGURE 7

FULL NITRIFICATION DENITRIFICATION PILOT PLANT FLOW DIAGRAM

surface area. Rotation of the discs was fixed at 13 rpm which resulted in a disc tip velocity of 1.1 ft/sec (0.34 m/sec). Hydraulic loadings of approximately 0.18 IGPM (0.8 l/min) and 0.35 IGPM (1.59 l/min) were used during the course of the research. Although the measured liquid volume of the reactor varied a small amount depending on the hydraulic flow, the tank capacity was essentially 28.2 Imp gallons (1281).

Variable speed positive displacement pumps delivered nitrified secondary effluent to the two upflow packed bed denitrification columns. Each column was an 8 ft (2.44 m) high PVC cylinder with a 12 inch (0.30 m) diameter. As is shown in Figure 8, a series of six equally spaced sample ports and six backwash inlets were located vertically on separate sides of the columns. All of the backwash inlets were connected to a line which could be fitted to the end of a garden hose when backwashing was required. Two pressure gauges were mounted on each column to allow detection of any pressure gradients formed due to media plugging by microorganisms. Column Fl was packed using 5 cubic ft (0-15 cubic m) of 1 inch (2.54 cm) outer diameter and length Norton polypropylene Pall Rings. A similar volume of 2 inch (5.08 cm) rings was used in F2. This provided 315 sq. ft. (29.3 m^2) of packing surface area with roughly 90 percent void space in Fl and 155 sq. ft. (14.4 m²) of packing surface with 92% void space in F2. The choice of Pall Rings as the packing media was influenced by the desire to have a high void fraction in the columns to help avoid development of large

-49-

FIGURE 8

PACKED BED DENITRIFICATION COLUMN F1 SCHEMATIC

pressure gradients during continuous operation while at the same time trying to maintain as large an available surface area as possible. Measured packed bed liquid volumes before growth were 34.8 Imp gal (158 \pounds) and 35.9 Imp gal (163 \pounds) for F1 and F2 respectively. A constant feed rate of 0.5 IGPM (2.27 \pounds/min) was applied to each column throughout the test programme. Therefore, the theoretical packed bed residence time was generally about 70 minutes for both F1 and F2.

Start-Up

The RBC was started up two months prior to the initiation of the experimental programme. This permitted the early establishment of a stable biofilm on the disc surfaces. Three weeks before commencing the experimental runs, the feed rate to the unit was set at 0.18 IGPM (0.82 &/min) providing low surface loading for nitrification. High heat transfer efficiency between the rotating discs and the surrounding air made it difficult to maintain low operating temperatures. Therefore, prior to the first run, the RBC was insulated with one half inch (1.27 cm) styrofoam on the sides and bottom and a specially designed hood containing a standard 5000 BTU (1260 kcal) air conditioner was installed over the discs. Figure 9 shows the final arrangement.

The two denitrifying columns were identical in design, the component parts of which were manufactured by private contractors. Assembly of the columns, packing and leak testing

-51-

FIGURE 9

1

ROTATING BIOLOGICAL CONTRACTOR

SCHEMATIC OF PLANT E

were all done just prior to start-up. Start-up procedure involved filling each reactor about one third full of actively denitrifying sludge from the clarifier underflow of Plant C. To this was added sufficient water to fill both columns and enough potassium nitrate and methanol solution to provide 35 mg/l of NO₂-N and 50 mg/l of methanol as Both units were then left to undergo a batch type carbon. action overnight after which time continuous feed rates of 0.25 IGPM (1.1 L/min) of nitrified effluent from Plants A and B were started. Methanol was added continuously to this feed in sufficient quantity to maintain a minimum methanol as carbon to nitrate nitrogen ratio of 1:1. Two days later, the feed rates were increased to 0.5 IGPM. A spike of 20 mg/L of NO3-N plus extra methanol was instituted for two days a week after start-up to aid rapid development of denitrifying films especially on the upper sections of the packing. Visual observation of film development was not possible as the columns were not made of transparent material. Nevertheless, analysis of early effluent samples showed that significant denitrification was established very rapidly immediately following start-up. Because of the rapid acclimation, experimental runs started after two weeks of operation for F1 and after three weeks for One half inch (1.27 cm) styrofoam insulation was also F2. placed around the columns. This essentially eliminated any temperature gradients within the reactors.

-53-

Experimental Design

After acclimation, the effects of temperature on the rates of nitrification and denitrification in the RBC and the columns were investigated. A complete design over five levels of temperature from 5 degrees C to 25 degrees C and for one hydraulic loading was conducted with the denitrification reactors. The runs are listed in Table 3. By operating the two reactors under identical conditions of feed and temperature, it was possible to determine the effect of the packing surface area on the rate of denitrification.

It was intended to study nitrification in the RBC over two hydraulic loadings and the five temperature levels chosen for the denitrification work. Difficulties in attaining and maintaining the lower temperatures resulted in additional runs at other temperature levels. However, as can be seen from Table 3, almost the entire temperature range desired was covered and sufficient repeats were done to allow estimation of pure error. To avoid systematic unknown errors affecting the results, the runs for the RBC and the columns were randomized as much as was practical.

A series of dye tracer studies was also run on each of the three reactors to allow characterization of the hydraulic flow patterns throughout the duration of the study.

Operation of plants A,B, and C (see Figure 2) was supervised by different personnel in a separate project established to study nitrification and denitrification by activated sludge techniques. It was intended that data

-54-

Table No. 3

Experimental Design

RBC REACTOR				COLUMN REACTORS (F1 + F2)			
Temperature ^o C	Hydraulic Loading	Date	Run No.	Temperature ^o C	Date	Run No.	
7 7 7 7 7 7	High High Low Low	27/08 29/08 12/07 08/10 10/10	R16 R17 R8 R20 R21	5 5 5 5 5	29/06 - 05/07 10/07 01/10 03/10	C2 C3 C4 C16 C17	
10 10 ⁽ 1 10 10 12	Low Low Low High High	18/06 20/06 10/07 20/08 22/08	R1 R2 R7 R14 R15	10 10 15 15	29/08 27/09 20/06 18/07	C11 C15 C1 C5	
13.5 15 15	Low Low Low	22,00 05/07 26/06 28/06	R6 R3 R4	21 21 21 21	20708 25/07 06/08 03/08	C10 C6 C7 C8	
15 20 (1 20 20	Low Low Low Low	02/07 25 <u>7</u> 07 30/07 08/08	R5 R9 R10 R11	21 21 25 25	15/08 19/09 06/09 12/09	C9 C14 C12 C13	
20 21.5 25 25	High High Low Low	15/08 13/08 10/09 12/09	R13 R12 R18 R19	25 25	28/10 07/11	C18 C19	
25 25	Low	25/10 06/11	R22 R23				

(1 Only grab samples are available for R9 and R2.

generated from plants B and C be compared with results from the RBC and the columns. Specifically:

- 1. Plant B, operated as a two stage activated sludge plant to remove BOD and to carry on nitrification with a 7 day mean sludge age, provided rate data for comparison with the RBC results. Most of the runs used for comparison were conducted at the same time, using the same feed and operating temperature as the RBC runs.
- 2. Plant C provided similar comparative data for the denitrification reactors. A relatively constant high sludge age was maintained in C and runs were conducted in a similar range of temperatures and with similar feed as for Fl and F2.

Feed Characteristics

Plants A and B and the RBC were continuously fed with normal screened municipal wastewater. The median values observed for influent BOD₅, COD, suspended solids and TKN are tabulated below. Probability distributions of these parameters are given in Figures 10, 11, 12, and 13.

	Median Concentration
	(mg/l)
Unfiltered BOD ₅	120
Unfiltered COD	575
Suspended Solids	260
Filtered TKN	22

-56-

-57-

-58-

PERCENT OF OBSERVATIONS EQUAL TO OR LESS THAN STATED VALUE

Occasional upsets at the treatment plant supplying the wastewater resulted in the appearance of mixed liquor activated sludge in the pilot plant's feed for short periods of time. This, of course, caused dramatic increases in influent suspended solids. Normally, as soon as such a problem was noticed the feed was turned off and the pilot plants were run on recycle until the feed problems were solved. The distribution of TKN values of the wastewater shown in Figure 13 does not include the effects of ammonium chloride additions made to the feed on rate days. Ammonia spikes were often necessary during runs to provide residual ammonia in the effluents of Plants A and B.

The feed for the columns and Plant C can be classified as nitrified secondary effluent. Suspended solids and COD distributions are plotted in Figures 14 and 15. The median influent concentrations of unfiltered COD and suspended solids are 60 mg/l and 34 mg/l respectively. COD contributed as a result of methanol addition is not included in Figure 14. Combined nitrate and nitrite nitrogen concentrations varied over a wide range depending upon:

- whether supplemental ammonia was being used for Plants A and B,
- 2. the degree of nitrification provided in Plant A and B at a given temperature, and
- 3. whether supplemental nitrate was being added directly to the second cooler.

-61-

-63-

During rate determining days, the influent nitrate plus nitrite nitrogen concentration was generally in the 15 mg/ ℓ to 45 mg/ ℓ range with a median value of 28 mg/ ℓ . In a few cases, concentrations exceeded this range.

RBC Operation and Sampling

Once the unit was started, very little maintenance was required to keep the RBC operating efficiently during the five month experimental period. No shut downs for cleaning purposes were necessary. Except for two brief periods when the rate of film sloughing noticeably exceeded the rate of growth, the RBC maintained a relatively thick smooth brown biomass on 90 to 100 percent of the visible disc area. Occasionally the feed scoop at the head of the unit was rinsed with a garden hose when it was noticed that the feed rate was decreasing due to biomass accumulation within the scoop channel. As was previously mentioned, some difficulty was encountered in adjusting the system temperature to the prescribed levels. Although the temperature of the feed could generally be set near the desired value, heat transfer occurring between the disc surfaces and the air often caused an unacceptable temperature rise through the system at the lower temperatures. The addition of the hood and air conditioner greatly reduced the problem as the air within the hood could normally be maintained between 10 and 15 degrees C, thus greatly reducing the heat transfer driving force. Temperatures within the nitrification unit were recorded daily. Other system and feed characteristics such as suspended solids,

-64-

alkalinity, pH, flow and dissolved oxygen were measured at varying intervals throughout the test period.

The experimental design was arranged such that two runs could be conducted each week. Run temperatures were set each Friday with a maximum of 10 degrees C change from the previous week. Allowing four days for acclimation, experimental runs were then made on Tuesdays and Thursdays. Refrigerated twenty-four hour composite samplers were used to collect effluent and raw feed at one hour intervals during each run. This was the same procedure followed for Plant B. Normally, one raw feed composite sample served as Plant A, Plant B and Plant E influent. The effluent and raw feed were then prepared for submission to the Analytical Section of the Wastewater Technology Centre for COD, BOD, TOC, TKN, $NO_3 - N$, $NO_2 - N$ and NH_4^+ determinations. On Thursdays, a set of grab samples was also taken from each of the four RBC compartments as well as from the influent and effluent. Analysis of these samples provided information on the gradients within the RBC of the various nitrogen compounds present.

In many instances, ammonium chloride/carbonate or bicarbonate was mixed in with the wastewater in cooler No. 1 ahead of the RBC during rate days to assure that a TKN residual would remain in the effluent composite.

-65-

Denitrification Column Operation and Sampling

Day to day operation of the denitrification columns involved occasional monitoring of feed temperature, column pressure gradients, flow rates, pH and nitrate levels. No problem was encountered in maintaining desired temperatures. Methanol was continuously added to the feed line such that the minimum C:N ratio entering the system was l:l.

An experimental run for the columns consisted of continuous operation of the reactors for one week at a constant temperature. Temperature changes between runs were usually made on Fridays with no more than a 10 degree C change being made in any given week. After six days of acclimation, grab samples were taken of the feed, from port 2, from port 4 and of the effluent of each column. These were prepared and either refrigerated or submitted immediately for COD, TOC, NO_3 -N, NO_2 -N, TKN and NH_4 -N analyses. Some samples were frozen for future methanol determination. This procedure was similar to that followed for sampling and operating of Plant C.

Daily operating data and analytical results for the RBC as well as the columns are tabulated in Appendix A.

Sample Preparation and Analyses

Samples for TOC and methanol analysis were prepared by filtration through 0.45 micron Sartorius filters followed by acidification to approximately a pH of 2 with concentrated hydrochloric acid. Unfiltered TKN and COD samples were

-66-

acidified with concentrated sulphuric acid. Preparation of NO_3 -N, NO_2 -N, filtered TKN, NH_4 -N and COD samples was accomplished by filtration through 0.45 micron Gelman glass fiber filters. All samples were stored at 5-10 degrees C in polyethylene bottles while awaiting analysis except for methanol and BOD samples which were frozen.

The specific analytical procedures utilized are listed and described in Appendix B.

Nitrification

Hydraulic Characterization:

Two separate dye studies were conducted, one at each hydraulic loading used during the nitrification research. These studies involved the monitoring of reactor effluent dye concentration after a slug of Rhodamine WT dye had been added to the feed inlet. Both runs produced essentially identical response curves indicating that variation of the hydraulic detention in the RBC has no effect on the flow characteristics. Also, the fact that the mean dye residence time found in each study was the same as the theoretical residence time showed that there were no stagnant zones or dead spaces in the reactor. Attempts were made to fit a dispersion model (Timpany, 1966) and an equal tanks in series model (Levenspiel, 1967) to the experimental data. Physically, the RBC consisted of four compartments in series as was shown in Figure 9. Consequently, it was anticipated that the flow in the unit would be described adequately by a system of four consecutive equal stirred tanks (CSTR's). This was not the case. Figure 16 shows that the flow was in fact represented best by a 2 CSTR model. This indicates that significant backmixing was occurring between adjacent compartments in the RBC. It should be noted that in both cases, only 88 percent dye recovery was achieved. Absorption into the biological film in the reactor may account for the majority of this discrepancy.

-68-

-69-

A brief summary of the procedures used in conducting the dye studies and in analyzing the results is presented in Appendix F. Computer analysis was done with Programme #1 in Appendix C.

Nitrogen Balances:

In its simplest form, a nitrogen balance for the RBC can be expressed as a standard mass balance in the following manner.

NITROGEN ENTERING - NITROGEN LEAVING = NITROGEN THE RBC - THE RBC = ACCUMULATION

For this particular system, the major nitrogen forms which must be accounted for are:

- 1. soluble NO_3 2. soluble NO_2 3. soluble NH^+
- 4. nitrogen in soluble organic compounds
- 5. nitrogen in suspended organic solids
- 6. dissolved N₂

Unfortunately, there was no point in monitoring the levels of dissolved nitrogen gas in the influent and effluent of the RBC since there was no way in which the nitrogen entering and leaving the system via the atmosphere could be measured. Nevertheless, a balance on the remaining nitrogen forms should be possible as long as no organic fixation of

-70-

. .

nitrogen gas occurs and none of the other nitrogen species is transformed to nitrogen gas. The latter would only occur in the event of biological denitrification. In that case, there would be an apparent net loss of nitrogen from the system. For each experimental run on the RBC for which 24 hour composite feed and effluent samples were available a tabulation was made of soluble NO_3^- , soluble NO_2^- and unfiltered TKN levels in the two streams. The TKN analyses account for the ammonia present as well as most of the nitrogen present in the soluble and suspended organic compounds. For the five months in which the RBC was operated, the amount of film on the disc surfaces seemed to remain. relatively constant and there was no build-up of sludge at the bottom of the tank. Therefore, the average value for the accumulation term in the nitrogen mass balance is assumed to be zero. The balances for each run are shown in Table 4. It can be seen from the last column that in almost every run more nitrogen seemed to enter the system than leave it. In fact, an average of close to 7 mg N/ ℓ or 15% of the total nitrogen entering is unaccounted for in the effluent. This can be explained most easily if denitrification was indeed taking place in the system particularly deep in the biofilm where oxygen deficient zones were likely to be present. The only other plausible explanation would be that the effluent composite sampler was undersampling suspended solids, particularly with respect to the large floc particles sloughed from the discs. A tabulation of the available composite

-71-

TABLE 4

ROTATING BIOLOGICAL CONTRACTOR

NITROGEN BALANCE TABULATION FROM 24 HOUR COMPOSITE SAMPLE ANALYSES

A: TOTAL NITROGEN

									DIFF
RUN	NITR	OGEN IN	(mg/1)		NIT	ROGEN OU	JT (mg/)	1)	(IN-OUT)
	TKN	NO3	NO2	TOTAL	TKN	NO3	NO ₂	TOTAL	
	(UNFIL)				(UNFIL)				
Rl	26.8	0.5	0.1	27.4	15.3	8.0	1.0	24.3	3.1
R3	36.0	0.5	0.1 ;	36.6	12.6	10.5	4.8	27.9	9.5
R4	43.3	3.0	0.0	46.3	19.6	7.5	5.0	32.1	14.2
R5	40.8	1.0	0.2	42.0	17.4	10.5	2.5	30.4	11.6
R6	43.1	0.3	0.1	43.7	32.5	8.0	1.0	41.5	2.2
R7	27.4	1.3	0.4	29.1	15.6	5.7	0.8	22.1	7.0
R8	27.6	0.2	0.1	27.9	18.9	3.5	0.6	23.0	4.9
R10	52.6	0.5	0.1	53.2	35.9	12.3	7.5	49.7	3.5
R11	65.9	0.7	0.2	66.8	49.6	9.5	1.3	60.4	6.4
R12	39.2	1.0	0.5	40.7	23.7	7.3	3.8	34.8	5.9
R13	46.2	0.7	0.2	47.1	33.8	5.3	3.0	42.1	5.0
R14	33.6	0.2	0.1	33.9	28.2	0.6	1.2	30.0	3.9
R15	49.3	1.8	0.1	51.2	48.1	0.7	0.7	49.5	1.7
R16	31.2	0.9	0.1	32.2	32.1	1.0	0.3	33.4	-1.2
R17	42.0	0.3	0.1	42.4	39.4	1.1	0.2	40.7	1.7
R18	62.3	0.1	0.8	63.2	52.7	1.3	2.4	56.4	6.8
-R19	65.5	0.0	0.1	65.6	40.8	2.4	7.1	50.3	15.3
R20	69.6	0.0	0.4	70.0	36.3	11.0	1.0	48.3	21.7
R21	38.3	0.0	0.0	38.0	42.3	0.3	1.9	44.5	-6.5
R22	37.0	0.0	0.4	37.1	37.0	0.2	1.5	38.7	-1.6
R23	61.0	0.5	0.0	61.5	39.8	7.0	1.0	47.8	13.7
R24	72.9	0.7	0.0	73.6	41.2	10.3	2.9	54.4	19.2
				46.8				40.0	6.8 15%

-72-

.

۰.

suspended solids data shows an average raw feed level of 303 mg/l while the effluent level is only 293 mg/l. Because of the large variations from day to day in solids levels, these two average values are not significantly different statistically. Nonetheless, it could be reasonably expected that the suspended solids level leaving a reactor such as the RBC would be somewhat higher than the level entering as solids are continuously sloughed from the discs adding to the suspended material already present. The quantity of additional solids would depend on the micro-organism yield from BOD_r removal and nitrification. With an average soluble BOD_{5} removal of roughly 30 mg/l and nitrate plus nitrite formation of 10 mg/l, a net production of 15 mg/l of biomass could be easily rationalized. Theoretically, therefore, the effluent solids for the RBC might have been 25 mg/L higher than what the actual data shows. This would explain perhaps 3 mg/l of the 7 mg/l nitrogen imbalance. A profile of the relative composition of soluble nitrogen in the RBC is presented in Figure 17.

To provide a rough comparison of the RBC operation to that of an activated sludge plant, several influent and effluent nitrogen tabulations were made on Plant B. Average results for eleven days operation of plant B, chosen randomly during the same operational period in which the RBC was run, show that an average of 8 percent of the measured influent nitrogen cannot be accounted for through effluent analysis. Balances for individual days ranged from a nitrogen gain of + 12 percent to a loss of 24 percent. Parameters included in the balance calculations were influent and effluent

```
-73-
```

PROFILE OF SOLUBLE NITROGEN COMPOUNDS IN THE RBC (GRAB SAMPLES TAKEN 25/7)

 NO_3 -N, NO_2 -N and unfiltered TKN along with unfiltered TKN leaving the system through sludge wasting.

Alkalinity Consumption

From equation (4) in the literature review, it can be shown that 7.1 mg of alkalinity as CaCO, should be consumed for every mg of ammonia nitrogen utilized by nitrifying bacteria. This includes the nitrogen that is used in assimilation as well as the nitrogen which is oxidized. Equation (4) also shows a very low yield for nitrifiers, hence almost all of the ammonia is converted directly to nitrite and nitrate. The result is that 7.2 mg of alkalinity as CaCO, are consumed per mg of nitrate or nitrite nitrogen formed. When considering the actual amount of alkalinity consumed during the RBC operation, it must be remembered that other processes besides nitrification were occurring, specifically BOD₅ removal. The average removal of soluble BOD5 from the system during the experimental period was estimated to be 30 mg/l. Assuming a yield of 0.5, this would result in the production of 15 mg/l of biomass. Between 1.5 and 2.0 mg/l of this biomass would be nitrogen. The process of assimilation has no effect on alkalinity. Therefore, for this particular system, the ratio of alkalinity consumed per mg of ammonia nitrogen consumed should be less than 7.1. The actual ratio will vary depending upon the relative importance of BOD removal in a given run.

These "consumption ratios" for alkalinity also

-75-

depend on whether or not denitrification is occurring simultaneously with nitrification. For instance, if in the RBC 2 mg of nitrate nitrogen are formed, the alkalinity consumed would be 14.4 mg. Assume then that of the 2 mg of nitrate nitrogen formed 1 mg is denitrified. From the overall balance in Figure 2 of the literature review, it can be determined that 3.6 mg of alkalinity as CaCO, will be reformed as a result of 1 mg of NO3-N being denitrified. The net result is that for an apparent formation of 1 mg of NO3-N a total of 10.8 mg of CaCO, (14.4 mg-3.6 mg) would be utilized. This shows that if nitrification and denitrification are both present in a biological system, the ratio of alkalinity used to NO3-N + NO2-N formed should be larger than 7.2. At the same time, the alkalinity to ammonia nitrogen ratio will decrease from 7.1 since in the preceding example 2 mg of NH_4^+ -N were utilized to only 10.8 mg of - alkalinity as CaCO2. The ratio in this case is 5.4.

Table 5 lists alkalinity consumption data for 14 separate 24 hour composite samples from the RBC. The last values of the last two columns show that on the average 2.0 mg of alkalinity were removed from the RBC for every mg of NH_4^+ -N removed and that 5.9 mg were removed for every mg of nitrite and nitrate nitrogen produced. The second value in particular is very unexpected as it was pointed out in the above discussion that the ratio of alkalinity as CaCO₃ to NO₃-N + NO₂-N should be equal to or greater than 7.2. No reasonable explanation for this result was

-76-

TABLE 5

DATE	Δ SOL NH ⁺ ₄ -N mg/1	Δ NO ₂ +NO ₃ -N mg/1	Δ ALKALINITY mg/1 as CaCO ₃	$\frac{\Delta \text{ ALKALINITY}}{\Delta \text{ NH}_{4}^{2}-N}$	$\frac{\Delta \text{ ALKALINITY}}{\Delta \text{ NO}_2 + \text{NO}_3 - \text{N}}$
06/09	10.0	2.8	13.7	1.4	4.9
10/09	23.2	9.4	35.7	1.5	3.8
12/09	28.0	10.7	69.4	2.5	6.5
16/09	20.0	6.0	43.9	2.2	7.3
17/09	15.0	7.2	36.2	2.4	5.0
18/09	11.4	5.9	34.1	3.0	5.8
19/09	15.0	3.6	22.4	1.5	6.2
24/09	12.0	3.2	18.3	1.5	5.7
25/09	18.0	5.5	34.2	1.9	6.2
26/09	17.0	30.1	23.4	1.4	.8
08/10	7.5	2.2	13.2	1.8	6.0
10/10	8.0	1.6	21.2	2.7	13.3
25/10	20.0	7.5	50.0	2.5	6.7
06/11	22.5	12.5	53.0	2.4	4.2
AVERAGE	VALUES			2.0	5.9

ALKALINITY CONSUMPTION IN THE RBC

.

.

found although the value of 5.9 mg CaCO₃ per mg NO₃-N found in this study is similar to the value of 6.1 reported by Mulbarger (1970) in his work with nitrifying activated sludge systems. Certainly this data does not support the hypothesis that denitrification was also present in the RBC.

Nitrification Rates

For the purposes of this work, the rate of nitrification was defined as the rate of soluble TKN removal from solution. Removal rates were calculated using a "zero order" kinetic model. First, however, it was necessary to demonstrate that the experimental data in fact displayed no TKN concentration dependency. Two different approaches were used to investigate this problem. First of all, nitrification rates were determined for each experimental run using a simple first order kinetic model coupled with a two equal tanks in series hydraulic model. The tracer studies have previously shown the hydraulic model to be adequate.. Levenspiel (1967) gives the following mathematical expression for solution of first order reactions in tanks in series.

$$\frac{Cm}{C_{o}} = \begin{bmatrix} 1 \\ 1+K_{c} \\ t_{m} \end{bmatrix}^{m}$$

(12)

where: C is the influent soluble TKN concentration into the first tank in mg/l,

 C_m is the TKN concentration in the m th tank in series in mg/l,

 \bar{t} is the average detention time in each tank in hr,

- m is the total number of tanks, and
- K is the rate constant at a given temperature in hr⁻¹.

When m=2, this equation is rearranged in the following manner to allow the determination of the rate constant K.

$$K = \frac{1}{\overline{t}_2} \left[\left(\frac{C_0}{C_2} \right)^2 - 1 \right]$$
(13)

If the effluent TKN concentration of the RBC is assumed to be the same as C_2 , then the rate of nitrification can be calculated for the second hypothetical tank in the model where:

Rate =
$$\frac{K \cdot C_2 \cdot V_{\frac{1}{2}}}{A_{\frac{1}{2}}}$$
 (14)

In this case $V_{\frac{1}{2}}$ and $A_{\frac{1}{2}}$ are one half of the total REC volume and surface area respectively. This allows the removal rates to be expressed as mg TKN/hr m². The data calculated using the above technique is listed in Table 6. As can be seen from this table, the rates were then transformed into dimensionless quantities by taking all of the values at a given temperature and dividing each by the average rate for that temperature. A similar transformation was made of the soluble effluent TKN concentrations. The dimensionless rates were then plotted against the dimensionless concentrations in Figure 18. This form of presentation allows the comparison of rate versus concentration data with temperature effects blocked out. Logically, if TKN concentration did

TABLE 6

RBC DATA

CALCULATION OF DIMENSIONLESS RATES AND DIMENSIONLESS EFFLUENT TKN

RUN	TEMPERATURE	EFFL	UENT SOL. TKN	REMOVAL RATES		
	°C	mg/1	DIMENSIONLESS	mg/hr m ²	DIMENSIONLESS	
R16	7	18.9	1.00	13.8	1.12	
R17	7	23.3	1.23	7.7	.63	
R8	7	12.7	.67	14.8	1.20	
R20	7	20.8	1.10	11.3	.92	
R21	7	18.9	1.00	14.1	1.14	
AVERAG	E	18.9	1.00	12.3	1.00	
R1	10	10.4	.81	16.2	.84	
R7	10	9.9	.77	18.2	.94	
R1 4	10	18.2	1.42	23.8	1.23	
AVERAG	E	12.8	1.00	19.4	1.00	
R3	15	12.5	.88	24.6	.93	
R4	15	17.4	1.22	27.7	1.04	
R5	15	13.1	.91	27.5	1.03	
AVERAG	E	14.3	1.00	26.6	1.00	
R10	20	25.4	1.04	40.3	.98	
R11	20	21.4	.88	34.4	83	
R13	20	26.3	1.08	49.5	1.19	
AVERAG	E	24.4	1.00	41.4	1.00	
R18	25	25.5	.94	46.6	1.00	
R19	25	25.0	.93	51.5	1.10	
R22	25	23.7	.88	46.2	.99	
R23	25	33.8	1.25	43.0	.92	
AVERAG	E	27.0	1.00	46.8	1.00	

1ST ORDER MODEL

NITRIFICATION RATE VERSUS SOLUBLE TKN. ROTATING BIOLOGICAL CONTACTOR

PLOT OF: DIMENSIONLESS SOL. TKN REMOVAL RATE VERSUS DIMENSIONLESS TKN IN 2 nd STAGE OF 2 CSTR'S IN SERIES

۶

have an effect on the reaction rate, the higher rates in Figure 18 should be associated with the higher concentrations. This is not the case. From the scatter of the data, there is no reason to believe that any significant correlation exists between these two variables.

The second procedure used to investigate concentration effects was to repeat the above analysis using a "zero order" assumption for nitrification kinetics. If the overall removal is independent of TKN concentration, there is no need of a suitable hydraulic model of the reactor since conversion is only a function of detention time and surface area. The following expression was used to generate the rate data listed in Table 7.

Rate = K =
$$\frac{(C_0 - C) \cdot Q}{A}$$
 (15)

where:	$C_{o} = influent soluble TKN$	mg/l
	C = effluent soluble TKN	mg/l
	Q = hydraulic loading	l/hr
	A = surface area of discs	m ²
	K = rate	mg/hr m ²

In order to ascertain if the calculated rate data varied with concentration, the values were plotted against influent concentrations in a dimensionless format. The resulting plot (Figure 19) shows the same behaviour as Figure 18. Therefore, once again there is no indication that concentration of soluble TKN influences nitrification in the RBC.

In light of the above, it was concluded that TKN

-82-

TABLE 7

RBC DATA

CALCULATION OF DIMENSIONLESS RATES AND DIMENSIONLESS INFLUENT TKN

ZERO ORDER MODEL

<u>RUN T</u>	<u>emperature</u> oc	INFLUENT mg/1	TKN DIMENSIONLESS	REMOVAL mg/hr m ²	RATES DIMENSIONLESS	-
R16	7	22.7	.92	14.7	1.08	
R17	7	25.4	1.03	8.3	.61	
R8	7	20.6	.83	17.0	1.25	
R20	7	27.5	1.11	12.1	.90	
R21	7	27.5	1.11	15.7	1.15	
AVERAGE	VALUES	24.7	1.0	13.6	1.0	
R1	10	19.4	.91	19.3	.86	
R7	10	20.2	.95	22.1	.99	
R14	10	24.3	1.14	26.0	1.16	
AVERAGE	VALUES	21.3	1.0	22.5	1.0	
R3	15	26.6	.90	30.6	.94	
R4	15	33.2	1.12	33.2	1.02	
R5	15	28.9	.98	34.2	1.05	
AVERAGE	VALUES	29.6	1.0	32.6	1.0	······
R10	-20	47.7	1711	48.3	1.0	
RII -	20)	41.1	.96	41.3	.85	
R13	20	39.8	.93	55.5	1.15	• • •
AVERAGE	VALUES	42.9	1.0	48.4	1.0	
R18	25	48.7	.91	55.7	.96	
R19	25	56.2	1.05	64.3	1.11	
R22	2.5	49.5	.93	56.7	.98	
R23	25	59.4	1.11	54.2	. 94	<u> </u>
AVERAGE	VALUES	53.5	1.0	57.8	1.0	

NITRIFICATION RATE VS. CONCENTRATION DEPENDENCY FOR THE ROTATING BIOLOGICAL CONTACTOR

PLOT OF : DIMENSIONLESS NITRIFICATION UNIT RATE VERSUS DIMENSIONLESS INFLUENT TKN

-84-

removal in the RBC could be described satisfactorily by a "zero order" kinetic expression. This conclusion, of course, is only valid within the TKN concentration range studied. In this research, 10 mg/l of filtered TKN was the lower concentration limit measured during rate days. Table 8 provides the nitrification rates calculated from the RBC data observed in this study.

Arrhenius Temperature Dependency

Of prime importance in this study was the effect of temperature on the rate of nitrification. Although using soluble TKN removal as a definition of nitrification is not technically accurate, it is appropriate for wastewater treatment since the main reason for promoting nitrification is to remove TKN. As was mentioned previously, the activation energy in the Arrhenius equation is a measure of the temperature sensitivity of a system. Using a log transformation, a linearized form of the Arrhenius equation was fitted to the RBC data. The linearized form of the model was developed from a reparameterized version of the original Arrhenius expression:

$$K = K^* e^{-E/R} \left(\frac{1}{T} - \frac{1}{T_o}\right)$$
 (16)

where: $K^* = Ae^{-E/RT}o$ (17) $T_o = median temperature in {}^{O}K$

-85-

TABLE 8

RUN	<u>TEMPERATURE</u> °C	MITRIFICATION RATE mg SOLUBLE TKN/m ² hr
R16	7	14.7
R17	7	8.3
R8	7	17.0
R20	· 7	12.1
R21	7	15.7
R1	10	19.3
R7	10	22.1
R14	10	26.0
R15	12	15.2
R6	13.5	17.5
R3	15	30.6
R4	15	33.2
R5	15	34.2
R10	20	48.3
R11	20	41.3
R13.	20	55.5
R12	21.5	65.8
R18	25	55.7
R19	25	64.3
R22	25	56.7
R23	25	54.2

Evaluation of K* and E in this reparameterized form minimizes the interaction between A and E which makes the standard Arrhenius equation a very difficult non-linear expression to fit (Himmelblau, 1970). The log transformation used for linearization produced the following simplified equation:

$$\ln K = -\frac{E}{R} \left(\frac{1}{T} - \frac{1}{T}\right) + \ln K^*$$
 (18)

or

y = a x + b (19)

where: $y = \ln K$ a = -E/R

 $b = \ln K^*$

The results from this analysis for the RBC are shown in Figure 20. An F test at α =95% using the model and residual sums of squares along with the pure error estimate obtained from repeat runs indicated no lack of fit. Between 10[°]C and 20[°]C, the Q₁₀ for this system was found to be 2.36.

A similar analysis was undertaken for data that was obtained from the two stage activated sludge process (Plant B). The results are directly comparable to those of the RBC because of the following:

- 1. The same raw feed was used for both plants.
- 2. The majority of the experimental runs for the two systems were conducted simultaneously and at similar temperatures.
- 3. Rate determinations were all based on 24 hour influent and effluent composite samples.

-87-

TEMPERATURE DEPENDENCY OF UNIT NITRIFICATION RATE.ROTATING BIOLOGICAL CONTACTOR

 Only runs from plant B in which the sludge ages were between 6 and 8 days were used for comparison with the RBC.

Figure 21 shows the rates obtained for the activated sludge unit along with the fitted Arrhenius constants. Once again, analysis of variance showed no lack of fit. The Q_{10} for this system between 10° C and 20° C was found to be 3.42. A graphical comparison of the temperature sensitivities of the two nitrifying processes can be seen in Figure 22. The results show that the variation with temperature in the rate of nitrification is less in the RBC than in the two stage activated sludge plant. To a confidence level of 95% the RBC activation energy is smaller than that of the activated sludge system.

Before the nitrification results of this study are compared to the results of other nitrification research, it must be remembered that the RBC and Plant B provided simultaneous BOD removal and nitrification. Most pilot plant nitrification work published to date reports on the rate of nitrification observed for wastewaters which had already been treated for BOD removal. The nitrification rates observed in this research might well be expected to be somewhat lower than rates reported elsewhere simply because there was undoubtedly competion for space within the disc films between the nitrifying bacteria and the heterotrophs.

Several TKN removal rates for the RBC were calculated using the fitted Arrhenius expression. These are shown in

-89-

TEMPERATURE DEPENDENCY OF UNIT NITRIFICATION RATE

TWO STAGE ACTIVATED SLUDGE SYSTEM WITH INTERMEDIATE CLARIFICATION (7 DAY SLUDGE AGE)

ACTIVATED SLUDGE VERSUS RBC NITRIFICATION TEMPERATURE DEPENDENCY

Table 9 along with similar rates calculated from data presented by other researchers. Results presented by Antonie (1974B) Torpey (1972) and Pretorius (1974) presumably represent the upper limit for nitrification rates since their research was conducted with wastewater which was previously treated for BOD. A review of the operating data which was cited by Ahlberg and Kwong (1974) for various municipal RBC plants tends to substantiate this since the higher ammonia removals generally seemed to occur in systems with low BOD loadings. Only a part of the data included in Ahlberg and Kwong's report is presented in Table 9.

Heat Transfer Characteristics

Early in the research programme, it was recognized that the RBC was an efficient heat transfer unit in that it was impossible to maintain operating temperatures below 10 to 15°C when the ambient air temperature was above 20°C. Insulation placed around the sides and on the bottom of the unit had no noticeable effect. Only after the hood and air conditioner were installed could the wastewater be kept at the lower temperatures. The heat transfer properties of RBC's are very important to understand when consideration is being given to their use in cold climates. Consequently, an attempt was made to determine an approximate heat transfer coefficient for the RBC using the following model:

$$Q = K \cdot A \cdot \Delta T$$
 (20)

TABLE 9

RBC NITRIFICATION RATES

WORK	TEMPERATURE		RATE	NOTES		
	°c	mg/m ² hr #/Day 1000		0 Ft ²		
THIS STUDY	25 15 7	65.4 28.6 14.0	.32 1. .14 .07	Simultaneous BOD + TKN removal		
PRETORIUS (1974)	25 15 10	66.7 54.6 47 .9	.33 1. .27 .24 2.	Treatment of secondary effluent Disc peripheral velocity at 29 ft/min.		
TORPEY et al (1972)	16-26	<u>_</u> 68	.34 1. 2.	 Most of the sewage BOD was removed in RBC units prior to the units in which nitrification was measured. Nitrification defined as NO₃-N Formation 		
ANTONIE (1974)(B)	▶15	a) 40 b) 120	.20 1. .60 a) b) 2.	Antonie proposes an NH ⁺ ₄ conc. dependency on the removal rate. effluent NH ⁺ ₄ -N at 2.0 mg/ effluent NH ⁺ ₄ -N at 10.0 ' Treatment of secondary effluent		
* KAPPELROEDEK W.GERM.	-	24	.12 1. 2.	Simultaneous BOD + NH4 removal Disc peripheral velo- city at 36 ft/min		
* SPALT W.GERM.	-	24	.12 1. 2.	Simultaneous BOD + NH4 removal Disc peripheral velocity at 31 ft/min		
* JAMAICA WPCP NEW YORK	-	18	.09 1. 2.	Simultaneous BOD + TKN removal Disc peripheral velocity at 94 ft/min		

* Rates calculated from data cited by Ahlberg and Kwong (1974). where Q = heat flux into sewage kcal/hr K = transfer coefficient kcal/m² hr ^oC

- ΔT = difference between average sewage temperature and the ambient air temperature in °C
- A = total disc surface area.

In the above expression, the heat flux was estimated by taking the difference between the influent and effluent wastewater temperature and multiplying this by the flow rate and the wastewater specific heat (1 kcal/kilogram/^OC). To determine the average driving force, air temperatures were recorded at three locations within the hood and liquid temperatures at four locations. These were then averaged. Since the proposed model does not include a term to account for the varying effects of evaporative cooling, the heat balances conducted on the RBC were only done when the air conditioner cooling unit was on. This tended to saturate the air above the discs in the RBC thus minimizing any driving force that would cause evaporation. Another factor affecting the efficiency of heat transfer is the speed of the rotating discs relative to the air. This was kept constant at all times since the rotation of the discs was always 13 rpm and the low speed fan of the air conditioner was always used. Nevertheless, it is probable that the forced convection of air in the hood from the fan caused transfer efficiency in the unit to be increased to a level somewhat higher than normal.

-94-

The results of twenty heat balances which met the conditions mentioned above are plotted in Figure 23. Linear regression analysis of the data shows a high correlation between the flux and driving force indicating that the model proposed has considerable merit. The constant term of -2.1 kcal/hr m² could be explained perhaps by small cooling effects caused by evaporation since it was unlikely that all evaporation was eliminated. The heat transfer coefficient calculated by regression was 2.1 kcal/m² hr ^OC. If this is a valid approximation of the actual heat transfer capabilities of such units, cold weather operation could conceivably result in severe icing problems. At the very least, sewage temperatures could be reduced to such low values that the efficiency of the biological process would be very small. This is particularly true if long detention times are used such as would be necessary for nitrification. Using the transfer coefficient calculated here and a similar RBC, it can be shown that an ambient temperature of 0°F (-17.8°C) would cool raw feed from 8.5°C to the freezing point given a one hour detention time. Figure 24 is presented to indicate the expected drop in sewage temperatures per hour of hydraulic detention for various temperature driving forces. RBC's with similar volume to surface ratio's (in this case 5.5 $1/m^2$) could be expected to behave in a similar fashion.

Many Rotating Biological Contactors are presently in use with only hoods to protect the discs from the elements. Existing units, however, are generally located in areas that do not experience long periods of severe cold. The economics

-95-

FIGURE 23 HEAT TRANSFER COEFFICIENT FOR THE RBC

LINEAR REGRESSION FOR Y = aX + b

-97-
of RBC use compared to activated sludge treatment in such regions as western and northern Canada may be significantly hindered should it be necessary to provide semi-heated enclosures for this type of system during winter operation. Little published information is available on the heat losses experienced by the standard activated sludge process. Experience to date, however, has shown that this form of treatment can operate relatively efficiently in even the coldest of climates.

Rate and heat transfer calculations and methods of data analysis for this section are included in Appendix E. Computer programmes for calculating confidence limits and providing linear regression are shown in Appendix C.

Denitrification

Column Flow Characteristics:

A series of tracer studies was run on each of the packed columns in order to gain information on the degree of short circuiting, the changing nature of the flow pattern as a result of solids accumulation and the effects of backwashing. None of this information could be obtained from visual examination as the PVC used in the column construction was not transparent. Furthermore, solids buildup in the reactors were not characterized by increases in operating pressures. Pressure gauges located at two positions on each column never registered any greater value than could be accounted for by the static head. This continued over a six

-98-

month operational period. Although the lack of pressure buildup was a definite operational advantage compared to the pressure problems recorded from other denitrification studies in which smaller packing media was used (English 1974, Sutton, 1973), it was difficult to determine when and if backwashing was required.

Figure 25 contains the results of three tracer studies run on column Fl. During the first day of operation when growth on the packing was minimal the hydraulic pattern approached that of plug flow and little or no short circuiting was present. This rapidly changed as the 14th and 24th days of continuous operation were reached. Dye studies after one month of running revealed large stagnant zones. This is more typical of conventional rock media trickling filters. Therefore, not only does the average detention time in the column decrease but also the nature of the flow changes. This is bound to affect the efficiency of nitrate removal. Similar results were obtained from studies conducted on column F2.

After the first 73 days of uninterrupted running, dye studies indicated that stagnant zones accounted for about 65 percent of the volumes of each column. This meant that the average contact time between sewage and column packing was only 35 percent of the theoretical packed bed detention time (e.g. columns filled with packing but with no growth). At this point, backwashing was attempted. Tracer studies run subsequent to the backwashings showed that even high backwash

-99-

flows for extended periods of time had little effect on the time of the dye peak and in particular the amount of dead space. Figure 26 shows two tracer studies, one run before and the other run after backwashing. Even a rate of 13 $Igal/ft^2$ min (620 $1/m^2$ min) over a period of 16 hours had little effect. This would indicate that columns containing media similar to the 1 inch and 2 inch rings used in this study cannot be effectively backwashed without expanding the bed. Bed expansion for this type of media would require an impractical rate and quantity of backwash water.

Figure 27 shows the actual column detention times as estimated over the entire experimental program from the tracer response results. It would appear from the results of the last two studies that a final leveling off in actual detention time does not occur until about one tenth of the theoretical value is reached.

Appendix F describes the procedures used for and lists the results of the tracer studies.

Nitrogen Balances:

A series of nitrogen balances were attempted for each column by measuring NH_4 -N, NO_2 -N, NO_3 -N, soluble and suspended organic nitrogen and dissolved plus gaseous N_2 . Procedures followed and the results are in Appendix D. Averaging the data from four consecutive days in which balances were attempted for F2 indicated a net loss of 19 percent of the system's nitrogen between the influent and effluent. A

-101-

COLUMN F1 FLOW CHARACTERISTICS BY DYE TRACER ANALYSIS EFFECTS OF UPFLOW BACKWASHING

ACTUAL MEAN COLUMN RESIDENCE TIMES VERSUS DAYS FROM 1 st STARTUP

RESIDENCE TIME EXPRESSED AS FRACTION OF THEORETICAL PACKED BED VALUE

TIMES OF EXPERIMENTAL RUNS

similar averaging of three sets of data for Fl showed a loss of 15 percent. These values represent a loss of 6 to 7 mg/L of nitrogen for the columns. Some of this apparent discrepancy between the nitrogen entering and leaving the columns can be explained by the accumulation of organic nitrogen in the system. A number of separate processes could have contributed to this buildup. These include:

- production of bacteria through assimilatory denitrification,
- production of methane bacteria from methanol (significant quantities of methane were found in all gas analyses conducted,
- 3. trapping of solids present in the feed, and
- production of bacteria through aerobic respiration which was permitted by the presence of dissolved oxygen in the feed.

Calculations involving the theoretical accumulation of nitrogen through biomass production within the columns show that a maximum of 2 to 3 mg/l of the previously mentioned nitrogen discrepancy could be accounted for. These calculations, however, do not include the possibility of luxury uptake of nitrogen by the micro-organisms as the standard empirical formula of $C_5H_7NO_2$ was employed. In addition, some experimental error was inevitable in conducting these balances, particularly in the determination of gas flows. It is possible that the error associated with the gas rate measurements was as high as 20 percent. This was largely due to the sporadic and widely varying nature of

-104-

gas evolution that was always observed even during reasonably steady state feed conditions. An error of this magnitude for any given balance could also account for roughly 3 mg/l of nitrogen.

Sutton (1973) using a similar method for nitrogen balances for his packed bed denitrification columns obtained results which were not much different than those reported here. Sutton found that his best balances occurred when the column operating temperatures were low (5-10°C) at which -time the quantity of nitrogen gas in the effluent represented only a couple percent of the total nitrogen present. The balances attempted by Sutton at 15°C and 25°C all indicated an apparent nitrogen loss of 10 to 15%. Under these conditions the evolved nitrogen gas was about 5 to 10% of the total nitrogen input. The balances attempted in the current study were done at 20°C and the gaseous nitrogen in the effluent represented on the average 20 to 30 percent of the nitrogen entering the reactors. It would appear then, that difficulty in conducting successful nitrogen balances on packed column reactors increases as the relative importance of the nitrogen gas evolved increases. Perhaps better methods of gas metering must be found before better results can be expected.

-105-

Nitrate and Nitrite Removal Rates:

The data from the denitrification experimental runs are plotted in Figures 28 through 33. Each graph shows the nitrate plus nitrite nitrogen profile through the columns for a given run. The analytical results which displayed erratic behaviour and showed no particular pattern have not been included in these figures. Of the data that does follow a recognizable profile most can be adequately described by a linear model. From a total of 34 separate runs, only two can be said to exhibit distinctly nonlinear behavior. Several other profiles were fitted with a constant slope although some indication of curvature could be inferred.

It would seem, therefore, that the apparent nitrate plus nitrite removal rate in the columns can be described by a model that is zero order with respect to concentration. The term "apparent rate" is used here to emphasize that the observed nitrate removals were influenced by the flow patterns within the columns as well as by the kinetic response of bacterial cells. In reactors such as packed columns, it is generally impractical to separate these two effects during data analysis. A large part of this difficulty is caused by the fact that columns are never in true steady state as solids are produced and retained continuously. Nor are the flows and solids levels homogenous within each unit as heavier biomass accumulations are usually found at lower levels.

For each run in which a constant removal rate was

-106-

⁻¹⁰⁷⁻

determined, an estimate was also made of the actual hydraulic detention time in the system. This was done with the aid of Figure 27. Given this information, denitrification rates were calculated and were expressed as mg NO_3 -N + NO_2 -N removed per liter of theoretical reactor void volume per hour of contact. These are listed in Table 10.

Effects of Packing Surface:

Both columns were started at the same time and in a similar manner. A common feed source was used to supply influent to the units at the same temperature and flow. Sampling for rate determinations was done simultaneously on each system. During the first 94 days of operation, before Fl was cleaned, the amount of "dead"space in the columns were roughly the same as can be seen from Figure 27. The size of packing media, therefore, constituted the only significant difference between the columns during this period. Results from ten paired runs conducted in this section of the research are listed in Table 11. The rates indicated come directly from the slopes of the respective plots in Figures 28 to 33 and these are expressed as mg NO3-N + NO2-N/1 m. The ratio of the available surface area in Column Fl to that in Column F2 is 2:1. Consequently, the ratio of nitrate removal should also be 2:1 if the removal is directly proportional to the available packing area. This is not the case. In fact, most of the paired runs give ratios close to 1 indicating a complete lack of surface area dependency. Only the first two sets of runs seem to support the

-113-

TABLE 10. COLUMN DENITRIFICATION RATES:

NITRATE PLUS NITRITE NITROGEN REMOVED PER LITER OF REACTOR

VOID VOLUME PER HOUR

TEMPERATURE	RUN	RATE		
		<u>F1</u>	<u>F2</u>	
		mg NO ₃ -N + NO ₂ -N/1·hr	mg $NO_3 - N + NO_2 - N/1 \cdot hr$	
5°C	C2	29.5	, 22.0	
	C3	32.5	22.0	
	C4	10.5	10.0	
	C16	27.0	61.0	
	C17	38.0	28.5	
10 [°] C	C15	68.0	161	
15 [°] C	C1	33.0		
	C5	23.5	25.0	
	C10	50.5	48.5	
21 [°] C	C6	39.0	39.0	
	C7	42.0	41.8	
	C8		52.8	
	C9	53.0	58.5	
	C14	57.0	120	
25 [°] C	C12	201	144	
	C18	263		
	C19	254	·	

•

TABLE 11. EFFECTS OF PACKING SURFACE:

RATES EXPRESSED AS NO₃-N + NO₂ -N REMOVED PER

LITER OF VOID VOLUME PER HOUR

AVAILABLE SURFACE AREA: COLUMN F1 29.3 M² COLUMN F2 14.8 M²

RUN	TEMPERATURE	$NO_3 - N + NO_2$	RATE F1 RATE F2	
°c	Fl mg/l·m	F2 mg/l·m		
C2	5	10.3	6.2	1.64
С3	5	10.3	6.00	1.72
C4	5	3.3	2.6	1.26
C5	15	6.4	6.0	1.07
C 6	21	9.4	9.6	.98
C7	21	8.5	8.3	1.02
C9	21	10.2	10.5	.97
C10	15	7.4	8.1	.91
C12	25	18.0	17.5	1.03
	AVERAGE RA	TIO		1.17

variance = .091; df = 8; $tv, \alpha = 1.86$

confidence limits: 1.17 - .19
(1 tailed t-test)

hypothesis that surface area is significant. It is possible that this may be the case when growth and solids accumulation in the columns is small. As has already been mentioned, however, even vigorous backwashing is unable to maintain this condition.

The nitrate plus nitrite removal rates in Table 11 do not include the effects of small differences in the actual hydraulic residence time between Fl and F2. Table 12 presents a similar analysis of the same data except that the denitrification rates were calculated from Table 10. Here the actual hydraulic detentions have been considered. Results using this procedure also indicate that for this system, surface area has little or no effect.

Temperature Effects

The denitrification rate data from Table 10 is plotted in Figure 34. Unfortunately, the large degree of variation in the data plus the presence of a few unexpectedly high removal rates makes it very difficult to draw definite conclusions concerning temperature sensitivity. The Arrhenius Model does not fit the data adequately. No explanation was found that could account for the very high denitrifying rates calculated for the columns at 10 degrees. The runs at 25 degrees, however, were done when the columns were more heavily plugged with solids. Since this means that the actual hydraulic detention times were small (between 10% and 20% of the theoretical value) even a relatively small change in nitrate concentration between the influent and effluent

-116-

TABLE 12. EFFECT OF PACKING SURFACE:

INCLUDING EFFECTS OF ACTUAL DETENTION TIME: RATES EXPRESSED AS NO₃-N + NO₂-N REMOVAL PER LITER

OF REACTOR VOID VOLUME PER HOUR

RUN	TEMPERATURE	$NO_3 - N + NO_2 -$	N REMOVAL RATES	RATE F1 RATE F2
	°c	F1 mg/l•hr	F2 mg/1·hr	
C2	5	29.5	22.0	1.34
C3	5	32.5	22.0	1.48
C4	5	10.5	10.0	1.05
C5	15	23.5	25.0	.94
C6	21	39.0	39.0	1.00
G7 ⁻	21	42.0	41.8	1.00
C9	21	53.0	58.5	.91
G10	15	50.5	48.5	1.04
C12	25	201	144	1.40
	AVERAGE			1.13

.

.....

variance = .047; df - 8; $t_v, \alpha = 1.86$

confidence limits: 1.13 + .14 (1 tailed t-test)

.

DENITRIFICATION RATE VERSUS TEMPERATURE. RATES BASED ON ACTUAL LIQUID DETENTION TIME

could result in very high calculated denitrification rates. Most researchers in the past have used theoretical detention times, either empty bed or packed bed, when expressing biological reaction rates in packed columns. Therefore, to serve as a comparison to Figure 34, the denitrification rates were recalculated using the theoretical packed bed residence The results are shown in Figure 35. Although a large time. degree of scatter is still present, there does seem to be a recognizable pattern of increased reaction rate with increased temperature if the 10°C runs are ignored. It is also evident by a comparison of Figures 34 and 35 that use of the estimated true residence time to partially compensate for the non steady state nature of column operation does nothing to reduce the variation of the data as would be expected. If anything, the variation seems to be increased. This indicates that factors in addition to detention time and temperature affect the columns! denitrifying efficiencies. It would be natural to suspect a concentration dependency, however, upon careful examination of the data, no such correlation was found.

Due to the inconclusiveness of the column results, no attempt was made to compare the temperature sensitivity of the stirred tank denitrification system with that of the column reactors.

-119-

DENITRIFICATION RATE VERSUS TEMPERATURE . RATES BASED ON THEORETICAL PACKED BED DETENTION TIME

General Performance:

Although nitrate removal from the columns proved to be somewhat erratic and unpredictable because of the unsteady state nature of the process, the system, nevertheless, did denitrify significant quantities of nitrate and nitrite at all temperature levels and with minimum maintenance. In order to provide a clearer perspective of the denitrifying capabilities of the two column reactors used in this study, it is possible to compare the current results with results quoted by Sutton (1973). Sutton's denitrification columns utilized a feed that was very similar to the feed used for F1 and F2. Table 13 shows the separate results for F1 and F2 as well as results from Sutton's columns which were packed with .375 inch (.95 cm) and .5 inch (1.27 cm) Intalox Saddles. Nitrate removal rates are all expressed in terms of grams of NO3-N plus NO2-N removed per cubic meter of packing per hour. This was done so that all of the rate data would be expressed in comparable units. This also provides a view of the "volumetric" efficiency of these column reactors. The results listed in Table 13 show guite clearly that the two columns of this study with their larger packing media were over twice as efficient "volumetrically" than were Sutton's column reactors.

Of major interest for municipal denitrifying systems is the question of whether or not low enough effluent nitrate plus nitrite concentrations can be attained. In this study, it was noticed that effluent levels of nitrate plus nitrite

-121-

TABLE 13

NITRATE PLUS NITRITE REMOVAL RATE COMPARISON

RATES EXPRESSED AS GRAMS OF NO₃-N + NO₂-N REMOVED

PER CUBIC METER OF PACKING PER HOUR-AVERAGE RATES FOR EACH TEMPERATURE USED

.

TEMPERATURE	THIS WORK		SUTTON (1973)	
	1 in Pall Rings	2 in Pall Rings	.375 in Intalox Saddles	.5 in Intalox Saddles
°C	gm/m ³ .hr	gm/m ³ .hr	gm/m ³ •hr	gm/m ³ •hr
5	15.6	9: 2 ,	5.1	4.0
10	41.0	26.8	6.6	5.3
15	18.5	14.8	5.1	4.0
20	29.4	21.6	14.4	11.4
25	35.9	39.8	16.6	13.2
LOADING -	.64 gal/ft 31 1/m ² m	2 min in	3.1, 1.6 g 151, 76 1	al/ft ² min /m ² min

~

nitrogen were rarely if ever below 1.5 mg/L even when influent concentrations were low. This could be explained by a system that exhibited significant bypass flow. In such processes, complete treatment is impossible. For instance, if 10 percent of a particular feed containing 20 mg NO₃-N/1 bypasses the biologically active zones in a reactor, there will always be a minimum of 10 percent of the initial concentration or 2 mg NO3-N/1 in the effluent. This will always be the case no matter how rapidly the bacteria are able to denitrify. It has already been shown that severe short circuiting occurred in the columns and it is reasonable to hypothesize that the equivalent of partial bypass flow was affecting removal efficiencies. If this were the case, anaerobic columns of the nature used in this study could never be expected to compete with stirred tanks for municipal wastewater denitrification since there would always be significant nitrate residuals. Applications for columns may be found, however, as roughing. processes for high strength nitrate wastes when effluent concentrations are not as important.

CONCLUSIONS

- The Rotating Biological Contactor is a simple, reliable and effective system, under all temperature conditions studied for, BOD₅ removal and nitrification with municipal wastewater.
- 2. The fact that nitrification in the RBC was shown to be less temperature dependent than nitrification in a two stage activated sludge process provides an important advantage for the RBC when consideration is being given to the design of treatment facilities for areas in which sewage temperatures exhibit large annual fluctuations.
- 3. In cold climates, sewage cooling as a result of heat transfer between the RBC disc surfaces and the atmosphere could significantly reduce biological activity and may even cause unit icing problems. To minimize this problem covers should be placed over all units and in some extreme cases, the desirability of installing the RBC's in a partially heated building should be evaluated.
- 4. Denitrification of municipal waste water using columns with media similar to the packings used in this study is not as reliable as the stirred tank process for the

-124-

4. following reasons:

- a) Consistent nitrate removal efficiencies cannot be maintained since continuous solids accumulations and increased short circuiting prohibits the establishment of a steady state operation in the columns.
- b) Conventional backwashing is not effective and even if it were, it would be difficult to determine when backwashings were necessary.
- c) Short circuiting and the likelihood of some bypass flow makes it almost impossible to achieve effluent nitrate concentrations below 1.5-2.0 mg/l as NO3-N.
- 5. The use of actual hydraulic residence times for calculating reaction rates in packed columns seems no more adequate in providing meaningful characterization of the denitrification process than when theoretical packed bed residence times are used.
- 6. Although denitrifying efficiencies varied somewhat unpredictably in the columns, the two units did remove significant quantities of nitrate from the wastewater at all temperature. In fact, because the nitrate removals were generally high in terms of NO₃-N removed per volume of packing per time, these types of columns may be suitable for treating higher strength nitrate

-125-

 wastes as a roughing process where effluent nitrate concentrations may not be as important as the total mass of nitrate removed.

.

.

RECOMMENDATIONS

- An attempt should be made to determine conclusively whether or not simultaneous nitrification-denitrification occurs in the films of the RBC.
- 2. An RBC system modified such that the disc surfaces remain completely submerged at all times should be investigated for denitrification effectiveness.
- 3. Further work should be initiated to investigate heat transfer from RBC's during cold weather. This should include a survey of the operations of existing pilot and full scale systems during cold weather as well as research to directly compare heat transfer from an activated sludge plant in cold weather with heat transfer from an RBC.
- 4. Any future pilot plant denitrification studies for municipal wastewater with packed columns should be directed toward systems which have shown significant promise such as with the fluidized bed process of Jeris and Flood (1974).

5. A number of runs should be conducted with the RBC under conditions such that effluent soluble TKN is varied between 0 mg/l and 10 mg/l in order to gain more data concerning the possibility of a concentration dependency on the rate of nitrification.

ABBREVIATIONS AND SYMBOLS

RBC	:	Rotating Biological Contactor
Fl	:	packed column containing l" polypropylene Norton Poll Rings
F2	:	packed column containing 2" polypropylene Norton Poll Rings
CSTR	:	continuous stirred tank reactor
L.	:	liter
hr	:	hour
m, m ²	:	meter, square meter
fl, fl ²	- .	foot, square foot
RPM	:	revolutions per minute
min		minute
mg	:	milligram
#/day-1000 ft ²	:	pounds per day per thousand square feet
IGPD	:	Imperial gallons per day
IGPM	:	Imperial gallons per minute
MLVSS	:-	mixed liquor volatile suspended solids in milligrams per liter
mg/l	:	milligrams per liter
cal/mole	:	calories per gram mole
kcal/mole	:	kilocalories per gram mole
°c	:	degrees Centigrade
o _F	:	degrees Fahrenheit
Σ	:	the sum of
Imp gal	:	Imperial gallons
BTU	:	British thermal unit
gm/m ³ hr	:	grams per cubic meter per hour

.

_

mg/m-hr : milligrams per meter of column height
 per hour
BTU : British Thermal Unit

REFERENCES

Ahlberg, N.R., Kwong, T.S., "Process Evaluation of a Rotating Biological Contactor for Municipal Wastewater Treatment", Ministry of the Environment, Ontario, Research Paper W2041, (1974).

American Chemical Society, <u>Cleaning Our Environment The</u> <u>Chemical Basis for Action</u>, <u>A report by the Subcommittee</u> on <u>Environmental Improvement</u>, <u>Committee</u> on <u>Chemistry</u> and <u>Public Affairs</u>, <u>Washington</u>, D.C., 106, (1969).

Antonie, R.L., "Nitrification of Activated Sludge Effluents: Bio-surf Process", <u>Water and Sewage Works Jour.</u>, <u>121</u>, 44-47, (1974A).

Antonie, R.L., "Application of the Bio-Disc Process to Treatment of Domestic Waste Water". Paper presented at the 43rd Annual Conf. of the Water Pollution Control Fed., Boston, (1970).

Antonie, R.L., "Evaluation of a Rotating Disk Wastewater Treatment Plant", Jour. Wat. Poll. Cont. Fed., <u>46</u>, 498-511 (1974B).

Barth, E., Smith, J., "Control of Nitrogen in Waste Water Effluents", presented at the EPA Technology Transfer Design Seminar, Atlanta, Georgia, May, (1973).

-

Bishop, Fred, Personal communication to D.S. Parker, Environmental Protection Agency, Washington, D.C., April, 1974.

Borchardt, J.A., "Biological Waste Treatment Using Rotating Discs", <u>Biological Waste Treatment</u> (Edited by Canale) Wiley Interscience, New York, 131-140, (1971).

Brown and Coldwell Consulting Engineers, "Case Histories of Nitrification and Denitrification Facilities", Prepared for the EPA Technology Transfer Design Seminar for Wastewater Treatment Facilities, Orlando, Florida, May 7-9, (1974).

Dawson, R.N., "Batch Studies on the Biological Denitrification of Wastewater", Ph.D. Thesis, McMaster University, (1971).

Dawson, R.N., Murphy, K.L., "Factors Affecting Biological Denitrification of Wastewater", <u>Advances in Water Pollution</u> Research, Jerusalem, 671, (1972).

Delwiche, C.C., "Denitrification". "<u>A Symposium on</u> <u>Inorganic Nitrogen Metabolism</u>". (Edited by McElroy and Glass), John Hopkins Press, 233, (1956). Downing, A.L., Hopwood, A.P., "Some Observations on the Kinetics of Nitrifying Activated Sludge Plants", <u>Schweiz</u> Zeits. <u>Hydrol.</u>, <u>26</u>, 271-288, (1964).

Duddles, G.A., Richardson, S.E., Barth, E., "Plastic Medium Trickling Filters for Biological Nitrogen Control", <u>Jour.</u> Water Poll. Control Fed., <u>46</u>, 937-946, (1974).

English, J.N., Carry, C.W., Masse, A.N., Pitkin, J.B., Dryden, F.D., "Denitrification in Granular Carbon and Sand Columns", Jour. Water Poll. Control Fed., <u>46</u>, 28-42, (1974).

European Inland Fisheries Advisory Commission Working Party on Water Quality Criteria for European Freshwater Fish, Status Report, (1973).

Beak Consultants Ltd., "An Evaluation of European Experience with the Rotating Biological Contactor", EPS Report 4-WP-73-4, 71, Oct. (1973).

Fair, G.M., Geyer, J.C., Okun, D.A., "Water and Wastewater Engineering, Volume 2, Water Purification and Wastewater Treatment and Disposal", John Wiley and Sons Inc., New York, 28-45, (1968).

Ferguson, F.A., "A Nonmyophic Approach to the Problem of Excess Algae Growths," Environmental Science and Technology, 2, 188-195 (1968).

Fewson, C.A., Nicholas, D.J.D., "Nitrate Reductase from Pseudomonas Aeroginosa", <u>Biochim. Biophys. Acta</u>, <u>49</u>, 335-349, (1961).

Fox, M.E., "Rapid Gas Chromatographic Method for Determination of Residual Methanol in Sewage", Environmental Science and Technology, 7, 838-840, (1973).

Gibson, C.E., "Nutrient Limitation", Jour. Water Poll. Control Fed., 43, 2436-2440, (1971).

Grieves, C., "Dynamic and Steady State Models for the Rotating Biological Disc Contactor", Ph.D. Thesis, Clemson University, (1972).

Haug, R.T., McCarty, P.L., "Nitrification with the Submerged Filter", <u>Tech. Report 149</u>, Dept. of Civil Engineering, Stanford University, Aug., (1971).

Himmelblau D.M., "Process Analysis by Statistical Methods", John Wiley and Sons Inc., 194, (1970).

Huang, C.S., Hopson, N.E., "Nitrification Rate in Biological Processes", <u>Jour. Envir. Eng. Div.</u>, Proceedings of the American Soc. of Civil Engineers, <u>100</u>, 409-422, April, (1974).

Jeris, J.S., Flood, F.J., "Plant Gets New Process - Biological Denitrification is Employed in Nassau County Wastewater Reclamation Plant", <u>Water and Waste Engineering</u>, <u>50</u>, 45-48, (1974).

Johnson, W.K., Schroepfer, G.J., Nitrogen Removal by Nitrification and Denitrification", <u>Jour. of the Water Poll.Control</u> Fed., 36, 1016-1036, (1964).

Jones, A., "Denitrification by Anaerobic Filters and Ponds-Phase II", <u>Bioengineering Aspect of Agricultural Drainage</u>, San Joaquin Project, Environmental Protection Agency, 13030 UBH 6/71-14, June, (1971).

Kehrberger, G.J., Norman, J.D., Schroeder, E.D., Busch, A.W., "BOD Progression in Soluble Substrates - VII Temperature Effects", <u>Proceedings of the 19th Ind. Waste Conf.</u>, Purdue, Series 117, 953-964, (1964).

Kerr, P.C., Brockway, D.L., Paris, D.F., "The Interrelation of Carbon and Phosphorus in Regulating Heterotrophic and Autotrophic Populations in an Aquatic Ecosystem", Proceedings of the 25th Industrial Waste Conf., Purdue, 112 -140, (1970).

Laidler, K.J., "Chemical Kinetics", McGraw-Hill, 2nd Ed. (1965).

Levenspiel, O., "Chemical Reaction Engineering", John Wiley and Sons Inc., 5th Ed., 242-302, (1967).
Lue-Hing, C., Obayashi, A.W., Zenz, D.R., Washington, B., Sawyer, B.M., "Nitrification of a High Ammonia Content Sludge Supernatant by Use of Rotating Discs", Paper presented at the 29th Annual Industrial Waste Conf., Purdue, (1974).

Massey, A., Robinson, J., "A Review of Factors Limiting the Growth of Nuisance Algae", <u>Water and Sewage Works Jour.</u>, 118, 352-355, (1971).

McCarty, P.L., Beck, L., St. Amant, P.J., "Biological Denitrification of Wastewater by Addition of Organic Materials", Proceedings 24th Industrial Waste Conf., Purdue, 1271-1285, (1969).

McCarty, P.L., "Stoichiometry of Biological Reactions", Short Course on Biological Waste Treatment, Manhattan College, (1970).

McCarty, P.L., "Nitrification-Denitrification by Biological Treatment", Correspondence Conference on Denitrification of Municipal Wastes, University of Massachussetts, (1973).

Mulbarger, M.C., "Nitrification and Denitrification in Activated Sludge Systems", <u>Jour. Water Poll. Cont. Fed.,43</u>, 2059-2070, (1971).

Myers, J., Matsen, F.A., "Kinetic Characteristics of Warburg Manometry", Arch. Biochem.and Biophys., 55, 373-388, (1955).

Painter, H.A., "A Review of Literature on Inorganic Nitrogen Metabolism in Microorganisms", <u>Water Research</u>, Pergamon Press, <u>4</u>, 391-450, (1970).

Pretorius, W.A., "Nitrification on the Rotating Disc Unit", Paper presented at the 7th Int. Conf. of Water Poll. Res., Paris, (1974).

Requa, D.A., Schroeder, E.D., "Kinetics of Packed Bed Denitrification", Jour. Water Poll. Cont. Fed., <u>45</u>, 1696-1707, (1973). Riemer, M., "Denitrification in Anaerobic Filters", Private Communication to Dr. K.L. Murphy, Denmark, (1974).

Sawyer, C.N., "Sources of Nitrogen in the Water Resource and its Role in Eutrophication", Proceedings of the Correspondence Conference on the Denitrification of Municipal Wastes", University of Massachussetts, April, (1973).

Schmidt, B., Kampf, W.D., "Uber den Einfluss des Saverstagge auf die Denitrifikabonsleistung von <u>Pseudomonos fluorescens</u>", <u>Arch. Hrg. Bakt., 146</u>, 171-182, (1962).

Shapiro, J., Ribeiro, R., "Algae Growth and Sewage Effluent in the Potomac Estuary", Jour. Water Poll. Cont. Fed., <u>37</u>, 1034-1043, (1965).

Smith, J.M., Marse, A.N., "Nitrogen Removal from Municipal Wastewater by Columnar Denitrification", Report FWQA, U.S.A., (1970).

Steels, I.H., "Design Basis for Rotating Disc Processes", Effluent and Water Treatment Jour., 431-445, (1974).

Streeter, H.W., Phelps, E.B., "A Study of the Pollution and Natural Purification of the Ohio: III. Factors Concerned in the Phenomena of Oxidation and Reaeration", U.S. Public Health Bulletin, 146, FEB, (1925).

Sutton, P.M., "Continuous Biological Denitrification of Wastewater", Masters Thesis, Dept. of Chem. Eng., McMaster University, (1973).

Sutton, P.M., Murphy, K.L., Jank, B.E., Monaghan, B.A., "Biological Nitrogen Removal - The Efficacy of the Nitrification Step", Paper presented at the 47th Annual Conf. Water Poll. Cont., Fed., Denver, Oct., (1974).

Sword, B.R., "Denitrification by Anaerobic Filters and Ponds", <u>Bio-Engineering Aspects of Agricultural Drainage</u>, San Joaquin Project, Environmental Protection Agency, 13030, UBH, April, (1971).

Timpany, P.L., "Variations of Axial Mixing in an Aeration Tank", Master's Thesis, Dept. of Civil Eng., McMaster University, (1966). Torpey, W., Heukelekian, H., Kaplovsky, A.J., Epstein, R., "Effects of Exposing Slimes on Rotating Discs to Atmospheres Enriched with Oxygen", <u>Advances in Water Pollution Research</u>, Pergamon Press, London, 405-418, (1972).

Tamblyn, T.A., Sword, B.R., "The Anaerobic Filter for the Denitrification of Agricultural Subsurface Drainage", Proceedings of the 24th Ind. Waste Conf., Purdue University, 1135-1150, (1969).

Wild, H.E., Sawyer, C.N., McMahon, T.C., "Factors Affecting Nitrification Kinetics", Jour. Water Poll. Cont. Fed., 43, 1845-1854, (1971).

APPENDIX A

-

.

.

REACTOR OPERATING DATA PLUS

ANALYTICAL RESULTS

The abbreviations and symbols used in Appendix A can be summarized in four general sections. These are Column Operation, RBC Operation, Sample Designation and Analytical Results.

Column Operation

SOLIDS	:	suspended solids in milligrams per liter
FLOW	•	column feed rat es in imperial gallons per minute
HACH NH3N	:	ammonia N as determined by the portable HACH method and expressed in milligrams per liter
HACH NO3N NO2N	:	nitrate plus nitrite N as determined by the portable HACH method and expressed in milligrams per liter
EFF TEMP	•	feed temperature in degrees centigrade measured in Cooler 2
рН	:	logarithm of the reciprocal hydrogen ion con- centration
Cooler DO	:	the dissolved oxygen concentration in Cooler 2 expressed in milligrams per liter
Rotating Bio	<u>510</u>	ogical Contactor Operation
ALK	:	alkalinity expressed as milligrams of calcium carbonate per liter
30 MIN SET	:	volume in milliliters occupied by settled solids in a one liter IMHOFF cone after thirty minutes of settling
TEMP	:	temperature in degrees centigrade
DO	:	dissolved oxygen in milligrams per liter

- ATM TEMP : average of three separate readings for the air temperature above the rotating discs inside the RBC hood. Temperature is in degrees centigrade
- ---C : any numerical value followed immediately by a "c" signified that the analysis was done on a 24 hour composite sample. All composite samples refer to the RBC raw feed or the effluent

Sample Designation

IE	: grab influent sample to the RBC
EEl	: grab sample taken from the first compartment after the feed in the RBC.
EE2	: grab sample taken from the second compartment after the feed in the RBC
EE3	: grab sample taken from the third compartment in the RBC
EE4	: grab sample taken from the fourth compartment in the RBC
EEDR	: grab final effluent from the RBC
RF-C	: 24 hour composite feed sample to the RBC
EEDR-C	: 24 hour composite effluent sample from the RBC
GAM	: grab sample taken before noon
GPM	: grab sample taken in the afternoon
IClbe	: grab sample influent to reactor Cl, column Fl, and column F2 before the addition of methanol. Samples were taken from cooler 2

- IC1AF : grab sample influent to reactor C1, column F1 and F2 after methanol addition
- IF1, IF2 : grab samples of column influents taken from valves located on the feed lines just prior to the feed entering the reactors
- EF1-2, EF2-2: grab samples taken from the second ports from the bottom of F1 and F2 respectively
- EF1-4, EF2-4: grab samples taken from the fourth ports from the bottom of F1 and F2 respectively
- EF1, EF2 : final effluents from columns F1 and F2

Analytical Results

- BOD₅ : 5 day biochemical oxygen demand in mg/1
- COD : chemical oxygen demand in mg/l
- TKN : total kjeldahl nitrogen in mg/L
- TOC : total soluble organic carbon in mg/l
- METH : methanol in mg/l
- NH3N : ammonia as nitrogen in mg/l
- NO2N : nitrite as nitrogen in mg/l
- NO3N : nitrate as nitrogen in mg/l

BIODISC OPERATION

DATE	SAMPLE	SOLIDS	FLOW	ALK	РН	30	HACH	TEMP	DO	ATM	
AY MO	N					SET	NH3N NO3N			TETIP	

THE BIODISC WAS FIRST STARTED UP IN MID APRIL HOWEVER, FLOW THROUGH THE SYSTEM WAS HIGH ALLOWING LITTLE OR NO NITRIFICATION

				·····		······		
04 06	IE		1260			5.8		
	LLDK		2270					
-86-85	-IE		- 4760 -					-22.9-
	EEDR		330C	•182	· ·			
10 06	IE ·		•		38.0 0.0	8.2	3.8	27.0
•	EE1		· · ·			13.3	4.7	
	EE2				•	14.8	4.6	
				<u></u>		-16-2-	4.9 -	
	5500			1 9 0		1/•5	4•1	
						<u></u>		
-11 06	IE			·		8.9	2.7-	22.1
	EE1					10.8	5.3	
	- EE 2					-11.5 -	-5.5	
	EE3					12.3	5.5	
	-EE4					13.9	-5.2	
	EEDR		268	•17」	19.5			
12 56	ΞI	232	234		25.0 1.2	9.2		21.4
	<u>-661</u>					-11-2-		·····
	EE 2			•		11.9	•	
	- <u>EE3</u>					-12.6		
	5500	351	200	4 7 7	17 E 0 E	13.1	5•1	
	~६⊊₩ ≪	-6.74		• 1 1 6				·
13 06	TE	- 598-				93	-3-8-	24.0
	EE1		210C			11.3	5.9	
	-EE 2					-11.9-	6.0	
	EE3					12.5	5.9	
	EE4					13.1	-5-7-	
	EEDR	216	236	.185	21.5 11.0			
14 06	IE	146	232		· · · · · · · · · · · · · · · · · · ·	8.0	5.5	22.0
	EE1		<u> </u>			10.5	- 6.3	
	EE2					11.4	6.8	
	<u> </u>			<u> </u>		12.2	-6-4	
	EE4		4 7 0	4.05		12.7	6.4	
	-teux-	-114	<u> </u>	-+105				
THE H	00_00	NTAIN	ING A 5	COD BTU C	ONDITIONER WAS INSTALLED.			
17 06	- <u>IE</u>	322				<u> </u>	-5.6	23.0
	11 11					8.8	5.2	
	- 666					10.5		
	FF4					10.7	5.7	
	EEDR	166	202	.185	9.0			

					BI	ODISC	OPERAT	ION					
DATE	 	SAMPLE	SOL1	<u></u>	FLOW	ALK	РН	30	Н	ACH	TEMP	DO	
DAY MO	ON	<u></u>						SET	NH3N	NO3N			
18 (06	IE	240	230				· ·			9.0	5.6	21.3
		EE1		2640				<u> </u>		<u> </u>	10.1	5.9	<u> </u>
		EE2									10.7	5.6	
-		EE3 FE4					• • ·				<u> </u>	5.9	
		EEDR	136	150 198C	•18	3	.	6	• 0	•••			 ,
19 (06	IE 551	128	128					<u></u>		8.7	5.6	23.5
		FFZ					,	<u></u>	. <u></u>		10.1	-5.7	
		EE3									10.3	5.6	
		EE4									10.6		
		EEDR	156	160	•17/	8		6	• ប			-	,
20 (06	IE	112	120						<u> </u>	9.1	3.3	22.5
M		EEI		186	,		<u></u>			· · · · · · · · · · · · · · · · · · ·	9.3	6.2	
		EE2		162							. 9. 7	6.2	
<u></u>		EE3		188			-				10.1	6.3	
		EE4		112		- J		5	- C		10.3	6.4	
21 (a 6	TE	197	478	• • • •	3			•- ?		1.5.0		24.0-
د ه	J L 	EEDR	126	-128-	19			5	•.5	, <u></u>	14.5	<u> </u>	<u> </u>
24 (06 06	EEDR TE	<u></u>		•18	1							
i - -	<u>ب</u> ن	EE1									14.8	2.9	
		EE2		,				·	. <u></u>		14.6	4.0	···
		EES 			<u> </u>						14+0	5•4	· -
		EEDR			.18	32		16	.0		\$3**	201	• -
STA	RT]	[NG 26	/06 TH	HE ATM	TEMP	ERATUR	REFE	RS TO	THE	HOOD T	IEMFERAT	URE.	
26 (06	IE	238	230							17.8	2.	9
		EE1 FF2	<u></u>	1/00		-					16.6	— ч. 4.	5
		-EE3							<u> . . </u>				э 6 — — —
		EE4									15.8	5.	2
		EEDR	236	250 2760	•18 [/]	4			• 0		<u> </u>	<u></u>	
27 96	6-7	IE							. <u></u>				4 13.
		EE1									15.1	5.	5
		-EE2	<u></u>				······································		<u> </u>		15.0 45.0		77
		LL3 - FE4	·		<u> </u>			<u>_</u>			17.0 		<i>1</i>
		la la ∶n										- -	_
28 (66 -	-IE	-222	-204-						5		-2.5	-14.0
_	_	EE1	1860	186						1	15.2	4.7	_
		-EE2		100			,	·	. <u></u>		45.3	4+2	
		EES FF4		134							15.5	4 • c 	
		EEDR	200	184	.17	' 8		7	• 5		• • •	.	
		·······	3 34 0					-142-				······································	

1				BIO	DISC	OPERATIO	ON				
DATE	SAMPLE	SOLI	DS	FLOW .	ALK	PH	30 HTN	HACH	TEMP	DO	
DAY MO	N						SET	NH3N NO3N			
020	7 IE	210	272			7.2		•	15.0	3.2	17.5
	EE1	-280C-		· · ·		· · · · · · ·				4.1	······································
	EE2								15.3	4.3	
				······		· · · · · · · · · · · · · · · · · · ·		<u> </u>			
	EE4								15.5	4.5	
	EEDR	144	-118			7-2	7	-5	•	•	<u> </u>
		265C							•	•	
- 63 0	7-15			, ⁻	-118		··· <i>··</i>			3.4	18.0
	EE1								14.8	4.5	
			· · · · · · · · · · · · · · · · · · ·					·		-4.5	
	EE3								15.6	4.8	,
	<u>FF4</u>									4 . 8	
	EEDR				55	.				••••	•
THE	FEED WA	S OFF	FOR	FOUR HO	URS C	DN 04/07	•				
05:0	7 IE	344	376			-			13.6	4.2	14.0
	<u> </u>	-268C								5 - 6	

05:07	IE	344	376		-				13.6	4.2	14.0
	EE1	-268C-							-13.6	-5-6	
	EE2						·		13.6	6.0	
	- EE 3			<u> </u>	<u>-</u>				13.6	6.0	·
	EE4								13.6	. 5 • 8	
	EEDR	302-	-358 -				-16.0-		• •		
		278C		•	•				•	•	_
08 67	<u> </u>				·	<u> </u>		14.8 0.0		-6.7	10.5
	EE1								8.2	6.9	
	-EE2	<u> </u>			<u> </u>	<u> </u>	· ·		8-8	6.3	· · · · · · · · · · · · · · · · · · ·
	EE3								9.2	6.3	
	<u> </u>								<u> </u>	-6.5	· · · · · ·
	EEDR			.18 0			5.2	2.3-8.0	• -	• • •	÷ .
09 07	IE	<u> </u>		···		<u> </u>			4.5	-4-5	······································
	EE1								7.5	5.4	
	<u> </u>					· · · · ·	<u> </u>	<u> </u>		-5.7	<u>. </u>
	EE3								8.8	5.6	-
	- EE 4	****						مميع المتحدثين ويعتد	9-2-	-5-6	
<u> </u>	- IĒ	-246								-5-1	12.0
	EE1	192C							5.0	5.1	
· · · · · · · · · · · · · · · · · · ·	-EE2			·				·····	<u> </u>	-5-2	
	EE3							•	19.4	5.2	
	524					<u> </u>			-13.7	-5.0	
	EEDR	236	226	.183			9.5				
44 - 7								···· ··· ··· ··· ··· ···			40 0
11 07					119.	[• 7			5.0	4.4	12.0
									1.0	2.1	
		<u></u>	·····								
	5500			4 0 7	с.	77	7 0		C e /	2+1	
	- <u>CCU</u> K-										
12 67	TE	284	268								
<u>+ -</u>	EE1	1920	200			· · · · · · · · · · · · · · ·			5.7	3.6	12.3
	EE 2								6.7	6.0	<u> </u>
	FF3								7-3	5.4	
	FFL								8.1	5.7	
	FFNQ	108	166	.183			3-0		8-6	5.6	
1000 - 10 - 10		165.0									
							140				

				BIOD	DISC (PEI	RATIO	N					
DATE	SAMPLE	SOLI	DS F	LOW	ALK		РН	30	·H	ACH	TEMP	DO	ATM
AY MON		· · · · · · · · · · · · · · · · · · ·						SET.	NH3N	NO3N			
ON JUI IRON,I QUANT	LY 12 LEAD AN	THE RA	W REED PER.TH	TURNE	EL AN Als Pf	ORI	NAGE Ent W	COLC	NOT	AE AN Thoug	ALYSIS SI HT TO BE	ICWED	HIGH OXIC
NO RA	TES WE	RE MEA	SURED	FOR TI	IE WEE	K	OF 15	707	TO 1	9707			
16 07	IE EEDR		······································						55 28	•U •7	16.0		
17 07	IE										13.3	2.5	;
<u></u>	EE1 FF2										14.9	3.1	
•	EE3										15.7	3.6	
	EE4										16.1	4.2	•
19 87	IE										13.6	2.2	15.0
······································	EE1										13.6	3.8	
	EE2	<u> </u>		. <u> </u>	<u>-</u>						13.6	<u>5</u> •0	
	EE4										13.4	4.4	+
MEASUI	REMENTS	156	N AT T	HREE	.0CAT 1 .9CAT 1 .947	ION	FUR- S. 7.5	<u> </u>	-27	15 I	14.3 14.1	3.1 4.2	13.3
	EE2 EE3								<u></u>			4. 3 4.7	;
	EE4 FEDR	227	204	.172	£2.	.2	7.55	- 8	.0 16		13.2	4.4	
THE	NIT TE!	IPERAT	URE WA	S CHAN	NGED DAY.	ro ;	29 DE	GRE	ES TU	ESDAY	MORNING	HENC	E NO
23 - 87	IE	218	211	<u>.</u>	114	0	7.65				19.2	1.4	21.3
· •	EE2					_						-2.7	, ,
	EE3										18.9	3.0)
	EE4 EEDR	275	275	.187	79.	. 9	7.65	10.	. 0	a Manadada ayaa ahaa ahaa ahaa ahaa ahaa ahaa			}
24 ū7	IE	210	204		113	.2	7.65				19.3		22.3
	EE1 FF2							<u> </u>	·		<u>19.4</u> 19.4		
	- <u>EE3</u>							_ <u></u>					<u> </u>
	EE4			•							19.4		
	-6608	392-	-365		- 82	1-	7.65	;				•••	······
25 <u></u> 3 7	IE	233-	227 -		t		7.65	;	<u> </u>		19.2	2.2	22.7
	EE1	2440	332								19.8	3.0	2
	EE2			<u> </u>		· • • • • • • • • • • • • • • • • • • •		<u> </u>				2.1	, 2
	<u>EE4</u>		203								<u> </u>		, .
	EEDR	270	270										
· · · · · · · · · · · · · · · · · · ·		3560		• 181		-	·····.	13.	• 5		. <u></u>		
				-1			-	144-	•				

				810	DISC	CPERATI	CN				
DATE	SAMPLE	SOLI	DS	FLOW	ALK	РН	30 MTN	HACH	TEMP	EO	ATM
AY MO	N						SET	NH3N NO3N			
-26 t	7 -1E EE1	170	166			7.6	5	<u> </u>	20.2 20.4		-22.7-
	EE2 FE3	<u> </u>		·····		<u> </u>	<u> </u>			-2.7 3.4	
								•		-3.2	
	EEDR	336	231			7.6	5				
29 01	7 IE	128	122			7.6			19.7	2.6	23.0
	EE2							· · · ·	20.4	3.0	
							<u> </u>			3•3 3•4	
	EEDR-	<u> 198 -</u>	-185	171		7.7	6	.5			
<u>-39 0</u>	7-15	-239-	215								-21-8-
	EE1	2720							20.1		
	<u> </u>				•			<u> </u>	<u> </u>	·	
	<u> </u>								20.1		
.	EEDR	227 2340	220	.184		7.5	10	.5			
<u>-31-0</u>	7 <u>IE</u>	164		· «						2.8	-21.3-
	EE1								19.6	4.9	
	EE3			<u> </u>					<u> </u>	5.2 5.3	
	<u> </u>	403	4.04							5-6	
	EEUR	182	194			[•5		·····			-
MIXE	D LIQUO	RINR	AW RE	ED MOS	TOF	THE NIG	HT				
020	8 IE	201	188	-		- 7.6	5		20.0	4.6	23.3
	<u> </u>							يوجد الشاري ورميج	20.0	5-2	
	<u>EE3</u>							<u></u>			
	EE4							_	20.0	5.7	
	EEOR	-267	3.5	<u>+188</u>		7.+7.		• 0	<u> </u>		
6-6-6-	<u>8 IE</u>	5660			<u></u>				20.7	-2+4	24.7
	EE1								20.5	4 • 1	
		······		<u> </u>					20.8		
	<u> </u>								<u> </u>	5+4	
	EEDR	6170		•186							
07 GI	B IE EE1	382	442	· · · · · · · · · · · · · · · · · · ·		7.2			23.2	3.9	22.5
	EE2								19.9	4.7	
								<u> </u>	<u> </u>	<u>-4+4</u> 5-2	···
	EEDR	-362	-452	<u>+:89</u>		7_2		•5	·····		<u></u>
	9 T E	Q.I. I	000				c		.	~ ~	00 '
	EE1	-					J	<u> </u>	20.1		
	EE2								2.0.6	4.2	······
							-145				

			-	BIO	DISC	CPERAT 1	ION					<u></u>
DATE	SAMPLE	SOLI	DS	FLOW	ALK	РН	30		HACH	TENF	00	ATM
AY MON							SET	NH	3N N03N			
	EE3									19.8	4.2	
	EE4 EEDR	213	218	.178		7.4	5 38	.0	7.5	19.7	4 • 3	
HEAVY	SOLID	S WERE	NOTI	CED IN	THE	RAW REE	D ON	08	/08			<u>*</u>
09 08	IE					7.5	55			19.7	3.0	21.8
	EE1		·····							20.2	4.1	
	EE2							•		20.5	3.7	·
	EE3									20.5	4.1	ા
	EEDR			.176			5 65	•				·
			DTNC	WAS POI				- 4 0	<u>/n</u>			•
	TURAUL	LO LUA	DING	MA2 KU	UGGLT	DUUDLE		T U .	100			
12 08	IE	173				8.0	15	·····		20.7	28	24.3
	EE1	······								21.2	3.9	,
	EEZ FF3									22.0	4.1	
	EE4										-4.9	
	EEDR	181	143	•327		7.8	5	.5	•5			
A LIM	E GREE	N FEED	ENTE	ERED TH	E PLA	T ON 1	2/08	FO	R A HALF	HOUR		
13 8	IE	1760				7.1				20.9	3.1	. 24.5
	EE1		<u> </u>								4.2	· · · · · · · · · · · · · · · · · · ·
	EE2									21.3	4.2	
	EEL EEL									21.8	5.4	
	EEDR	1920		.349		7.5	5					·
												ء
14-08		· · · · · · · · · · · · · · · · · · ·				6.8				20.9	3.9	21.5
·	EE1 -889			· · · · · · · · · · · · · · · · · · ·					فيفقدون ويعترف		-4•1	1
	EE3									19.9	4.7	,
	EE4			• - • • •	-		_				4.4	
	EEDR			•353		7.1	.5 11	• 0				
15 88	IE	125	133			6.8	5			29.0	3.7	20.8
		1840				-		••••••••			- 4.6	
	EE2 -FF3		.		<u></u>					20.0	4.0)
	EE4			5						± . • • .		•
- 	EEDR	1 43 2160	142	.349		7.3	4,	•5				
16 08	<u>-1</u> E			<u></u> _								-15-2-
	EE1									9.2	6.5	5
	EE2			·····					<u> </u>		- 6 • 8	
·	FF4							<u></u>		C•D⊥ <u>11</u>	۲ • 4 	• •
	EEDR			•356		· · · · · · · · · · · · · · · · · · ·	12	•5				· · ·
20 08	IE	231	196		120	.4 7.5	55			7.8	4.6	5 15.0
	-EE1	1920								8.8	6.7	·
	EE 2									5.5 0_0	/•2 7	
						-14	6-			2.0	1.01	,

BIODISC OPERATION

ATE	SAMPLE	SOLI	IDS I	FLOW	ALK	F	РН	3û	H	ACH	TEMP	DO	ATM
Y MO	N							SET	NH3N	NO3N			
	EE4										10.3	7.0	
<u></u>	EEDR	166	156-	- 362	101	•	7.65	5 6	• ប	<u></u>	<u></u>		
	0 TE	2246	4.00		4.00			-		•	~ .	~ •	
21 0	0-12	172	102	ça,	100	-0-	1-645		·		0.4	- 0.1	12.0
	EE1						¢				9.1	1.2	
	<u>EE2</u>			<u> </u>					······································		9.5	7.4	
	EE3										9.8	7.3	
	EE4			. 317	62	. 8	7.55					7.1	
			<u> </u>		· -2 6				• <u>2</u>				
22 0	8 IE	171	158										
		2640	- 344-				8.1			·····	19.6	- 4 . 4	12.5
	EE2		266								11.2	5.8	
	<u> </u>		270									6.3	
	EE4										11.8	6.1	
		-214	-230-	•383			7.5	-13.	• 0			- 6.1	
		2/10									. <u> </u>		
THE	HACH TE	ST INC	DICATE	D-A RI	S.E. CF	2 F	PPM 1	EN NO	03+NO	2 BETH	EEN INF	-AND	EFF -
0 N 2	4/-68										w.		·
MIXE	D FIGNO	R-ENTE	ERED T	HE SYS	T E M - OI	N-2(5/68-						. ÷
27)	8 IE	276	-266								5.4	3.8	11.3
	EE1	444C									6.1	6.1	
	EE2												
	EE3		•								7.1	6.8	
	EF4								·		7_7	6_5	
	EEDR	340	320	• 328	81	• 6C	7.50	13.	.5				
		-3690-							<u> </u>				
SOME	PROBLE	MS IN	MAINT	AINING	-A CO1	NST/	ANT L	-0W F	FEED	TEMPER	ATURE		
													• .
28 - Ç	<u>8 IE</u>											<u></u>	-12-7-
	EE1										5.2	7.0	
	EE-2						<u> </u>				6.0	7.0	·
	EE3										6.5	7.1	
	<u> </u>					<u></u>					7-1		
	EEDR			.321				31.	Ū		•	•	
					94	•4 C -	6.80	}					
29 [8 IE	726C	308		114	•	7.3			2.	3 4.3	3.7	9.8
	<u> </u>		404					····				<u> </u>	
	EE2		389								6.3	8.0	
·.	<u> </u>	·	416			·····							
	EE4										7.0	8.0	
	EEDR	3920	432		111	·	7.7	27	<u> </u>	1	.6		
					106	- 6C	7.50		••				
36 8	8 TE					• • • •		•		•	5.5	3.7	16.3
••••	EE4										£ 1.	7 /	2040
	EE2										67	07	
				• • • • • • • • • • • • • • • • • • •							C+/ -		
											1.1	0.5	
				.347				16	- 0		/	8+5	
					·····							-	
04 0	9 IE	195	188				7.0				27.1	1.6	24.5
	EE1						_				25.8	2.4	
								-147	/-				

)ATE	S	AMPLE	SOLI	DS	FLOW	ALK	PH	30	н	ACH	TEMP	00	ATM
	<u></u>					······································		SET	NH3N	NU2N NO3N			IEMP
		EE2							4°	*	25.6	2.6	ۍ
		EE3								-		2.9	4
		EE4			-				<u>د</u>	(. 	25.5	2.9	
		EEUK		_	307		7.1		• 5			:	
05	39 -	IE				140.8	8.2						
		EEDR				111.2	7.8	15					
06 (09	IE	400C	276		146.9	7.3	6		**	24.9	0.6	24.7
		EEI	<u></u>	·		129.50	7.4	C			25.0	1.8	· ·
		EE2									25.0	2.5	
		EE3	·							<u>-</u>	24.9	3.4	·····
		EE4								` •	25.0	3.2	
		EEDR	388C	260	.314	123.4	7.3	5	3 • 0				
			<u></u>			115.80	1.3	U	···	.به مرونین مشکر می	;		•
THE	FL	AW WO	SREDU	CED	BECAUSE	IT WAS	FEAR	2EÐ_1	THAT : N	O NITE		ON WA	S
TAK	ING	FLAC	EAT 5	DEG	REES	474 6	7 4			·			21. 0
	U 9 .	115 	4720			134+0-	/ • 4	.			20.1	<u> </u>	24.8
		モニン				111020	/ / 4 4				23.5	3.1	
										 .		2.8	
		FFL									25.2	3.3	
		EEDR	3140		.204	77.4	7.3	6	3.0				
					• • • •	75.50	7.3	C					
12	09	IE	384C			111.20	7-2	C			- 25.7	1.2	25.0
		EE1									25.1	2.3	
		EEE2				··					25.0	2.8	
		EE3									25.3	3.1	
		EE4				,					25.1	3.3	
		EEDR	3740		.175	41.80	; 7.2	2C	<u></u>			······································	
16	99	IE				125.50	7.8	C			23.5		12-8
	<u></u>	EEDR	4280		.185	81.60	7.5	C					
	~ ~	Ŧc						· · · ·					A 7 - C
1/ 8	59					445 70	1.5				20-0		13.0
		EE1 EE2			. <u> </u>	119.30	, 			<u> </u>	1/03		
		EEZ									15.6		
		EF4							- <u></u>				
		EEDR	3680		.185	79.10	7.5	SC .					
18	<u> 9</u>	IF				114.20	7.4	C C			20-3		9.6
· · ·		EE1	. .	<u>-</u>						·			
		EE 2									15.7		
		EE3			<u> </u>		<u> </u>						
		EE4									13.8		
		EEDR	3120		.170	89.10	7.5	• C					<u> </u>
19	39 -	15	<u> </u>			112.70	7.4				28.0		
		EE1				_					16.7		
	<u> </u>	EE2											
		EE3									14.5	•	
		EE4											
		EEDR			.187	90.30	; 7.4	+C					

BIODISC OPERATION

-148-

			BIO	DISC CP	ERATI	ON				<u>.</u>	
DATE	SAMPLE	SOLIDS	FLOW	ALK	РН	30 	н	ACH	TEMP	CO	ATM
AY MO)N					SET	NH3N	NO3N			
200	9 IE								24.0		12.0
	EE2				1				20.2		
	EE4	<u></u>					<u> </u>		16.4		
	ELUK		•201								
-23 û	9 IE			122.4	C 7.6	C					
	EEDR		•155	95.9	C 7.6	C					
24 0	9 IE			98.4	C 7.4	C			19.9		
	EEDR		.205	80.1	C-7.5	C	· · · · · · · · · · · · · · · · · · ·		- 13.5		· · · · · ·
-25-0	9-IE		· · · · ·	132.1	C 7. 7	C			· <u>····</u> ·······························		
	EEDR			97.9	C 7.6	C					
26 0	9 IE			113.2	C 74	C					
	EEDR			<u>- 89.8</u>	C 7.5	C					
	0 IE										
	EEDR								6.5		
68 1	.0 I E		<u> </u>	108.2	C				7.5		
	EEDR		•155	<u>\$5.0</u>	C				8.9		
	0 IE				G						
	EEDR		•155	85.8	С				8.0		
18 1	.0 IE								21.0	•	
<u>.,</u>	EEDR		•166			<u> </u>	<u> </u>	<u></u>			<u> </u>
MIXE	D LIQUOR	ENTERED	THE PLA	NI-FOR-	A LON	<u>G. PE</u>	RIOD	DURING	S NIGHT	0F-0	CT <u>19</u>
25-1	<u>9–IE–––</u>			193.3	ç						في وروي كافر مراجع
	EEDR		•187	143.0	С				26.0		
ũ6 1	.1 IE			168.0	С				25.0		
	<u>EED</u>				C			<u> </u>	23•3		····
			<u>. </u>	<u></u>			<u> </u>	<u></u>			
				·····							
	<u> </u>						<u> </u>				
	<u>+ `.</u>		·	<u> </u>		<u> </u>					••••••••••••••••••••••••••••••••••••••
			······································	·····						·····	

.

		ANALY	515		· <u>, </u>			
SAMPLE	UNFIL	TEREC		F	ILTERE	D		•
DESIGNATIO Day mon	N COD BOD	TKN	CCD	BOD TO	DC NH3N	NC2N	N03N	TKN
		· · · · · · · · · · · · · · · · · · ·						
ANALYTICAL DATA	FOR THE BIC	DISC						
TEMPERATURE CONT	RCL IN THE	BICCISC WA	S UNS/	TISFAC	TORY P	RICR	10 JU	NE 15
30 05TE GAM	183 52	19.7	37	18	18.9	0.6	6.7	18.9
30 05EE1 GAM					12.0	1.8	18.2	12.0
30 05EE2 GAM			·	-	9.0	2.1	22.9	9.0
30 05EE3 GAM					5.7	2.6	28.4	5.7
30 05EEDR GAM	125 34	7.5	27	6	3.1	2.0	29.4	<u> </u>
A. 060E-0	710 117	27 E	97	70 7		0.7		40.4
04 06EEDR-C	JIU III	15.3	39	52 3 4	6.9	2.2	22.8	6.9
US USIE GAM	-, 4: ,. <u>, , , , , , , , , , , , , , , , , ,</u>				29 25.2	1.6	2.1	25+4
06 06EE2 GAM				1	9 20.2	2.6	26.4	21.0
UG UGEE3 GAM		······			5 16.3	4.2	35.8	16.3
06 06EE4 GAM	·····			1	2 14.1	5.1	46.9	14.6
06 G6EEDR GAM			·	1	13-6	5+2	48.8	13.6
06 06RF-C	415 116	27.6	74	30 2	29 18.5	0.3	2.2	18.5
06 UGEEDR-C		16.4	42	6 1	2 11.4	2.6	24.4	11.4
47 BETE COM				-	7 70 9			7 - 1
13 06FF1 GPM					8 27.3	1.5	3.6	27.4
13 06EE2 GPM				1	3 24.9	2.1	8.7	25+4
13 D6EE3 GPM				1	13 20.6	2.9	9.1	20.6
13 06EE4 GPM				1	2 18.2	3.3	10.2	18.2
13 U bee ur gem				ا پ	18.7	5.e 41	11.0	1.9.0
13 06RF-C	342 116	27.6	74	30 2	9 18.5	0.3	2.2	18.5
13 06EEDR-C		31.6	39	5 1	11 16.6	2.1	7.1	16.6
THE HOOD PLUS AT		FP WERE TN	4 I I A T 2	TO FOP	THE DI	PPOSE	0F	
TEMPERATURE CONT	ROL							
18 068E-C	283 79	25.8		21 3	21 19.6	1.1		19.1
18 06EEDR-C	200 . 7	15.3	31	4 1	L3 10.4	1.0	8.0	10.4
NO COMPOSITE FOR	THE BICDIS	C CN JUNE	20 DUE	E TC M	LFUNCT	ICN OF	- SAMI	PLER.
20 06TE CAM							2 1	47 (
20 06EE1 GAM	·····	<u> </u>			13 13 0	8.6	3.9	10.0
20 D6EE2 GAM				1	L1 10.1	1.0	4.8.	10.1
20 UGEE3 GAM					1 8.1	1.2	6.6	8.1
20 06EE4 GAM	<u></u>			1	13 7.2	1.5	9.0	7.2
LU DOELUK GAM				3		1.U	0.5	7•1
RATE DAY FOR B W	ILL NOT BE	USED FCR J	UNE 21	DUE	TO FEED	PRCBI	EMS.	
26 06RF-C	312 92	36-0	54	16 7	26.6	0_1		26.6
26 D6EEDR-C		12.6	25	3 3	L3 12.5	4.0	11.5	12.5
	······································		·				<u> </u>	

ANALYSIS

					· · · · · · · · · · · · · · · · · · ·			ANAL	.12/	13						
	SA	MPLE			UNFI	LTE	RED					FI		D		
CAY	MON	IGNA	TICN	COD	BOD			IKN	1	COD	BOC	TOC	NH 3N	NC2N	N03N	TKN
В	IODISC G	RAB	SAMPL	ES	TAKEN	AT	10	TO	15	MINI	UTE	INTE	RVALS	STAR	TING	АТ ТН
F	EED END	JUN	E 28													
2	8 U61E 9 06FF1	GAM			<u></u>	<u></u>				62		<u>3</u> U 22	33.0	<u> </u>	1.5	33.0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 00CC1 8 06FE2	GAM	r <b></b> -										-20-1			-20.1
2	8 06EE3	GAM	l							45		13	15.9	7.5	8.0	15.9
2	8 UGEEDR	GAM								45		16	13.3	9.0	19.5	13.3
- 2	B GERF-C			398	134			43.	3	104		- 35	33.2	U.U	3.0	33.2
· 2	8 DGEEDR	-C		<u> </u>	** ·			19.6	<u>.</u>	47	7	18	17.4	5.0	7.5	17.4
0	2 07RF-C			349	151	•		- 48.t	3	100	34	30	28.9	0.2	1.0	28.9
Ū	2 D7EEDR	-C			<u> </u>			17.1	+	33	5	15	13.1	2.5	10.5	13.1
<del></del>	5-071E	GPM	_			a taka yar	anta internetia					-23	31.4	<u> </u>	<u> </u>	32.5
0	5 07EE1	GPM	1									20	30.1	0.9	4.4	30.1
Û	5 07EE2	GPM										15	31.5	1.5	6.5	31.5
0	5 07EE3	GPM	r.									16	24.0	1.5	. 8.0	24.6
0	5 07EEDR	GPM		<u></u>	a.u.							-12	19.0	1.5	9.5	19.0
Û	5 PTRE-C			432	-175			43.	r	-71			31.4			314
Ō	5 07EEDR	-C						32.5	;	46	7	30	23.5	1.0	8 • Ū	23.5
1	0 07RF-C			352	176		. :	27.1	÷	93	38	40	20.2	0.4	1.3	20.2
1	0 07EEDR	-0						15.6	5	- 46	<del></del> 8	- 38	8.7	0.8	5.7	<del>9.</del> 9
<b>T</b>		<del>**-?</del>		<del>1-22</del>	WFRF	<del>M T</del> -	<del>&lt;<ti< del=""></ti<></del>	<del>46-1</del>	<del>≈••</del> ••+	M TH	<del>6-+</del> 9	<del>-157</del>	самра	<del>~**</del> =		
Ă	YELLOW-	ORAN	GE FE	EED	WHICH	WA	SFI	AIRI		HIGH	IN	CCPP	ER.IR	ON AN	DLEA	D WAS
<u> </u>	OTICED F	OR A	BOUT	ONE	HOUR	-00	RIN	G Tł	IE	12/0	7 RA	TE D	AY . NO	INHT	EITIO	N IS
E	XPECTED	AS A	RESU	JL T-	OF TH	EM	ETAI	_S F	'RE	SENT	•					
1	2 07FR-C			335	25		:	27.1	5	97	36	44	20.6	0.1	ũ.2	20.6
1	2 J7EEDR	-0		<b>W</b>	<del></del>			18.5	<u>}</u>	- 55	<u>ç</u>		12.6	Û.Ê	3.5	-12.7
1	2 87IE	GPM	<u> </u>							143		<del>- 6 î.</del>	-26.8	<del>- û . 2</del>	<del>- 3 • 8</del>	26.8
1	2 07EE1	GPM	i							76		33	19.1	0.3	1.7	19.2
1	2 07EE2	GAM	1							- 67	<u> </u>	- 28	17.4	0.4	2.1	17.5
1	2 07EE3	GAM	i -							55		22	12.3	0.6	3.3	12.5
	2 U7EEDR	GAM	<u></u>						Peri-	- 50			11.3	<u> </u>	4.2	11.3
N	O RATES	WERE	TAKE	<del>:N-F</del>	OR TH	<del>E ¥</del>	<del>EEK</del>	-0F-	<del>-13</del> ,	<del>/ 0,7 - :</del>	<del>T0 1</del>	<del>9/87</del>	AS S	<del>CHEDU</del>	<del>LED.</del>	
N	O RAW RE	<del>ed c</del>	OMPOS	SITE	WAS	TAK	<del>58-1</del>	FCR	-25	<del>/87</del> -						
N	OTICEABK	E SL	OUGHI	[NG	FROM	THE	DIS	SC S	SUR	FACE	WAS	SEE	N DUR	ING T	HIS P	ERIOD
A	ND OF DR	AINI	NG TI	HE D	ISC F	ne OR	CAL	JER/	ATI	ON P	URPO	SES	TWICE	IN O	NE WE	EK.
2	5 A7TF	GAN						27.(		84		27	21.9		1.6	21.9
	5 07EE1	GAM								- 63	······	-17	-13.1	6.7		14.6
2	5 07EE2	GAM	i							54		14	9.1	9.0	2.6	11.2
2	<del>5-07EE3</del> -	-GAM					ر بر			50					4.5	7.5
2	5 07EEDR	GAM	)					18.4	4	54		12	3.5	1.6	6.3	4.7
3	0 07RF-C			205	<b>10</b> 2		1	51.	3	92	37	33	40.5	6.0	2.5	47.7
	<del>-U-J7EEDR</del>	<del>-6</del>		· · · · ·		<u> </u>		<del>33.í</del>	2	43	<del>5</del>		-24-9	0.6	<del>1.8</del>	-25.4

					<u> </u>	LYSI	5						
	5	AMPLE		UNFI	LTERED				FII	TERE	D		
	DE	SIGNATION	1			-		0					
DAY	MON		<u> </u>	BOD	I K N	<u> </u>	00	BOU	TOC	NH3N	NC2N	NO3N	TKN
RA	TE DAY	ON AUG 1	ISF	POSTE	D DLE TC	HEAV	YIN	IFLUX	OF	MIXE	DLIG	UCR	
UN	LY INE	FIRST 14	+ HRS	OF CI	DMPOSITE	FEED		) EFF	LUE	NT WEI	RE USI	<u>EC GN</u>	06/1
06	08RF-	·C	786	136	60.	Ģ	170	34	76	34.0	0.1	0.6	39.6
06	08EED	IR-C	572		35.	9	26	4	28	4.8	1.5	12.3	6.0
	CATE	C A M			E L	7	76						77 1.
00 08	UBIE 08EE1	GAM Gam			04•	5	30 32		63 37	57.U 29.6	1.1	2.1	51.4
08	08EE2	GAM			<del></del>		36	<u></u>	32	25.5	1.5	6.8	25.5
80	08EE3	GAM					36		29	22.0	1.8	8.8	22.5
08	08EED	R GAM	_		48.	0	36		31	18.5	1.9	11.0	19.4
NO	SAMPL	F FROM B	SYST	M IS	AVAILAEL	F FO	R CO	MPAF	TSON	WIT	H THE	BIOD	TSC.
CO	MPOSIT	E DUE TO	SAMPI	ERM	ALFUNCTIC	JN				• • • • • •	• • • • • •	. برد به بل النا 	1000
~ ~						-				· · ·			
80	08RF-	<u>C</u>	751_	167	65.	9	36	47	41	41.1	<u>0.2</u>	<u> </u>	41.1
ųο	- 80EEU	K-0		-	430	Ċ	30-	C	42	21+4	1.3	7.7	21.4
13	08RF-	·C	208	- 49	35.	2	32_	15.	23.	34.0	0.5	1.0	34.3
13	08EED	R-C			23.	7	28	4	26	17.5	3.8	7.3	18.3
15	D OTE				".C	C	1. 1		ι. ο	70 E	ā G	n <b>a</b>	1.7 9
<u> </u>	UOIE 08EE1		<u> </u>	<u> </u>	430	<u>y</u>	<u>41</u> 29	<u> </u>	<u> 40</u> <u>33</u>	30.2	1.6	1.7	41.2
15	08EE2						25		33	30.5	2.2	3.1	38.2
15	G8EE3	· ····- · · · · · · · · · · · · · · · ·					29		25	30.0	3.0	5.2	34.1
15	08EED	R	<u> </u>	<u> </u>	35.	0	25		24	28.5	3.2	6.6	31.9
15	0 8RD-	.C	262	72	46.	2	41	24	24	-38.5	0.2	0.7	
15	DBEED	R-C	<u> </u>		33.	8	37	5	23	22.0	3.0	5.3	26=3
							·						
20	08RF-	C	332	108	.55	E	78	36	30	22.5	<b>U.1</b>	0.2	24.3
20	UBEEU	R-0		•••••••••	20.	2	42	14-	11	1/.0	1.2	Jeb	10.2
22	08IE	GAM			33.	1	54		23	26.0	6.6	6.9	33.7
22	<b>J8EE1</b>	GAM					45		17	22.5	9.6	0.0	29.5
22	08EE2	GAM					45		15	25.5	3.7	0.5	27.4
22	UBEES DAFFE	GAM			32.	2	45 41		15	23.5	1.4	1 . L	20.1
<u> </u>				····		<u>.</u>		<u></u>		2299			<u> </u>
22	08RF-	C	340	185	49.	3	45	32	29	36.0	8.1	1.8	37.6
22	USEED	R-C	·····		48.	1	58	15	37	28.5	9.7	J •7	34.2
- 27	-	.r				- <b></b>	67			10.5		<u></u>	22.7
27	GBEED		232	134	32.	1	42	12	59	17.5	0.1	1.0	18.9
29	08IE	GAM			35.	6	45	18	51	23.0	0.5	u.e	26.1
29	USEE1	GAM					37	11	48	20.5	0.5	J.6	22.9
23	UDEEZ	GAM					-37-	<u>-11</u>	32	20.0	<u> </u>	1.1	10.8
29	08EED	R GAM			34.	1	29	7	39	18.0	6.7	1.3	19.2
				<u> </u>							<u> </u>	<u></u>	<u> </u>
29	08RF-	C	467	184	42.	<u>C</u>	53	27	27	21.5	2.1	<u> </u>	25.4
29	COLED	R-0			35.	4	45	13	23	21.5	J • Z	1.1	23.3

TEMPERATURE CHANGED FROM 8 DEGREES TO 25 DEGREES.THEREFORE NC COMPOSIT -152-

## ANALYSIS

•	SA		TTOU	UNFI	LTE	RED				FI	LTERE	D			
)AY	MON	TOWN	COD	800		TKN	C	OD	BOD	TOC	<b>NH3N</b>	NC2N	NO 3N	TKN	
S	AMPLES W	ERE	TAKEN TUE	ESCAY	TO	ALLCW	SUF	FIC	IENT	ACCI	IMAT	IZATI	CN.		
0 (	6 09IE	GPM				70.4	ŧ	41		60	59.0	0.1	0.3	59.0	
<del></del>	<del>5-09221</del> - 5 N9222	GPM						- <del>54</del> 65		- 27	52.0	0.5			
06	5-09EE3-	GPM	· · · · · · · · · · · · · · · · · · ·	i				-30-		<u>-16</u>	46.5	-1.8	-2.7	46.9	
0 6	5 09EEDR	GPM		<u> </u>		51.3	3	33		17	40.5	2.7	4.3	42.5	
0 0	6 09RF-C	_	549	40		62.3	3	100	16	33	47.5	0.1	8.8	47.5	
	5-J9EEDR	-6					·	-58	6	-19	-37.5	1.3	-2.4	39.2	
	<u>. 098F-C</u>			237		65.5	5	100	85		48.7	- 9 - 9		48.7-	
10	09EEDR	-C				40.8	3	33	3	26	25.5	2.4	7.1	25.5	,
12	2 09IE	GAM				71.9	)	53			57.5	0.5	1.1	62.5	_
-1:	2-09551-	-GAM	<u></u>					-29			-32.5	<del>-0.6</del>	- 5.5	-35.8-	··
12	2 U9EE2 2 D9EE3	GAM GAM						29			25.0	1.0	8•4 1 <u>6</u> 9	20.1	
12	2 09EEDR	GAM				32.7	7	45			14.0	1.1	16.0	15.6	
12	2 @9RF-C	<u> </u>	383	100		59.6	5	72	24	38	49.0	0.0	0.4	56.2	5.
-11	2 69EEDR	<del>-C</del>			•		<u>z</u>			-18-	-21.0		11.0	25.6	
	5 09RF-C								·		36.0	8-4	-1.7	-39.1	
16	5 09EEDR	-C									16.0	0.3	7.8	16.1	
17	7 DSRF-C		•						a 7 - a		45.0	8.3	0.3	45.2	
	7 O 9EEDR	-6				<u> </u>					36.8	-5-6	6-9-	-29-2	
- 14	8 89RF-C	·-			,						29.6		0.9	34.4	
18	B 09EEDR	-C									17.6	8.5	6.3	17.6	
14	9 09RF-C										48.5	0.0	<b>ð</b> .5	49.4	
-1.9	9 O9EEDR	-6			<u> </u>						-33-5	<del></del>	6	-35.6	
- 21	4-09RF-C		····· - ···								37.4		<u> </u>	38.2	
24	4 L9EEDR	-0									25.0	0.5	3.6	25.8	
2!	5 19RF-C				_				<u> </u>		47.5	0.0	Ú.Ū	47.5	
2:	5-C9EEDR	<del>-C</del>					,				-29-5	<u> </u>		31.	
26	5 09RF-C										41.6			41.5	
2	6 09EEDR	-C									24.0	0 • 8	29.7	24.0	
						. –									
	<del>5 1816 -</del> 2 40554	<u>—6Ам</u> с л м	, <u> </u>			45+3		- <u>59</u>		······	-36+4			<u>- 31+b</u>	
0.	3 10FF2_	GAM						42 44			10.7 22.E	0.4	3.2	22.0	
0	3 10EE3	GAM					-	43			14.5	0.9	4.3	16.0	
	)—1⊎±tUR	— БДМ	<u>↓</u>			50+{	9				-11.9		4-9	_14+2_	
<del>ا تا</del> ۱ ۵	9 <u>10RF-C</u> 8 10FFDP	-0	<u>274</u> 305			<u> </u>	3 7	-49 38	<u>15</u> я		25-0	<u></u>		27.5	
			J 5 2	······		7600			0			u.e G	<b>.</b>		
11	] 198F-C	- <b>^</b>	234			37.0	]	50 79	154	38	24.5	0.0 a 9		27.5	
	<u> </u>	-u								7-3	<u></u>	C		TC+ 3	

-153-

				ANALY	SIS						
	SAMPLE		UNFILT	ERED			FI	TERE	C		
DAY	UESIGNATION MON	COD	BOD	TKN	COD	BOD	TOC	NH3N	NC2N	NO3N	TKN
		766	164	<b>61</b>	76			79 h	<u> </u>		1.9.5
2	5 10EEDR-C		121	39.8	49	45	22	18.0	7.0	1.0	23.7
0 (	6 11RF-C	392	97	72.9	<b>9</b> 2	31	34	56.0	û.O	0.7	59.4
.01	6 11EEDR-C	279		41.2	<u></u>	-4	15	30.5	2.9	10.3	33.8

......

-

-----

			LACH			COL ED
DESIGN	ATICN	15 PLUN	FALT 	TEMP	JULER PH LL	-00
Y MON		N†	H3N NO3N			
COLUMN F1 A	ND F2 WERE	SEEDED HI	TH DENTRIF	YING S	LUDGE FROM	C1 AND THIS WAS
LEFT AS A B/ STARTED 08/	ATCH SYSTEM J6.	L_EOR_24_H	RS.THEN A.	FEED RI	ATE OF .25	<u>IMP GAL/MIN WAS</u>
10 C6 EF1	· · · · · · · · · · · · · · · · · · ·			18.5	15.2	
10 06 EF2	<u></u>	, <u></u>			15+2	
11 06 EF1	1	6 278		<u> </u>	13.8	
11 66 EF2	<b>د</b>	.6 •32		1/.u	13.8	
12 66 EF1	8	0.52		16.0	14.5	
12 06 EFZ	181	,0		<u>    16+u</u>		<u> </u>
13 06 EF1	161	<u>_4</u>	` ;	- 15.5		
13 06 EF2	18 Z	<u>:</u> 4		15.5	14.5	
14 36 EF1	8	6.45	•	15.5	14.4	
<u>14 06 IF2</u> 14 06 EF2	13	8 .53	<u>4.5</u> 5.5	15.5	14.4	
47 06 EF1	<u>,</u>			15.0	13.9	
17 05 EF2					13.9	· · · · · · · · · · · · · · · · · · ·
18 06 IC1BF 18 06 EF1	<u>    12  1</u> 12  1	<u>.8</u> 14 .50	<u>35_5</u> 8.€	15.5	16.0	
<u>18 66 EF2</u>	181	.6 .52	<u> </u>	16.1		
19 06 IC13E	24 2	<u>26</u>	370	<u> </u>		
20 06 EF1	- 3-6 5	12 •50 19 •52	11.8 17.1	16.0	14.5	
			· · ·		and a second	
21 06 IC18E	166 16	<u>уЕ</u>	······································			
21 00 EF1 21 96 EF2	12 1	.4 1.2			<u></u>	
				5 0	0 E	
25 (6 EF2.				<u> </u>	2.5	
26 56 EF1 26 <u>26 EF2</u>			·	៦ • ម <u>6 • ម</u>	4•ü 4 <u>•û</u>	4 • 0 4 • 0
27 16 IUINE 27 16 EF1	. <u></u>	<u> </u>	<u> </u>	<u> </u>	2.8	<b>E</b> _ û
27 6 EF2		.53	2.3	6.0	2.8	5.0
28 (6 FF1	14 1	- 40		16.0	5.0	<b>7</b> f.
28 6 EF2	14 1	16 •52		<u> </u>	7•u	<u>3. e U</u>
THE COOLER	HAS ACCIDEN	TLY SHUT	EOWN FOR /	IN HOUR	HENCE, THE	RATE
DAY WAS MOV	ED TO 29/06	۱ <b>.</b>		·		
29 36 TC1BE	ED TO 29/06	5 <b>.</b>				

COLUMN OPERATION

DAY         DOT         CON         NORM         TEMP         TEMP         CC           DAY         MON         NH3K         NG3N         CC			FLOW	НАСН	F	FF CC		H COOLEP		
DAY MON         NH3K N03N           29         06         EF2         30         28         6.0         3.5           29         06         EF2         30         28         6.0         3.5           02         07         EF1         6.0         3.5         6.0         3.5           02         07         EF2         7.0         2.5         7         6.0         3.5           THE COLUMNS MERE INSULATED WITH 3/8 INCHE STYROFOAM ON 03/87         6.0         4.0         6.0         6.0         4.0           65         07         EF2-1         5.0         6.0         4.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0 <td>DESIGN</td> <td>ATION</td> <td></td> <td>NO</td> <td>2N - T</td> <td>EMP T</td> <td><u>EHP</u></td> <td><u> </u></td> <td></td>	DESIGN	ATION		NO	2N - T	EMP T	<u>EHP</u>	<u> </u>		
29 06 EF1       80 84       6.0 3.5         29 06 EF2       30 28       6.0 3.5         30 27       6.0 2.5         31 28       6.0 2.5         32 07 EF2       7.0 2.5         THE COLUMNS WERE INSULATED WITH 3/6 INCHE STYROFOAM ON 02/07         65 07 EF1-1       5.0 6.0 4.0         65 07 EF2-1       5.0 6.0 4.0         05 07 EF2-1       104         05 07 EF2       3.0 3.8         06 07 EF2       5.1 4.5         10 07 EF2       5.1 4.5         11 07 EF2       5.1 4.5         12 07 EF1       36 4.5         14 07 EF1       5.1 4.5 </td <td>DAY MON</td> <td></td> <td>NH</td> <td>13 N N O</td> <td>3N</td> <td></td> <td></td> <td></td> <td></td>	DAY MON		NH	13 N N O	3N					
29 - 66 - EF 2       30 - 28       6.0 - 3.5         20 07 EF 2       7.0 - 2.5         THE COLUMNS WERE INSULATED WITH 3/8 INCHE STYROFOAM ON 03/07         05 07 EF 1-1       5.0 - 6.0 - 4.0         05 07 EF 2       184 - 52 - 6.0 - 4.0         05 07 EF 2       184 - 52 - 6.0 - 4.0         SAMPLING ON 05/67 SHOWS THERE IS MINIMAL TEMPERATURE RISE THROUGH         THE COLUMNS EVEN AT LOW TEMPERATURES.         08 07 IC10E       3.4 6.3 - 3.6 - 3.6         08 07 EF 2       .51 4.5 - 1.1 4.5 - 3.6 - 0.0         16 07 EF 1       38 34 .51 - 4.0 - 1.0 - 4.1 - 0.0 - 4.1         10 07 EF 2       .51 5.0 - 3.6 - 0.0 - 0.5 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0	29 06 EF1	80 84				6.0	3.5			
02 07 EF1 $0.0 2.5$ $02 07 EF2$ $7.0 2.5$ THE COLUMNS WERE INSULATED WITH 3/8 INCHE STYROFOAM ON 03/07 $05 07 EF1$ $5.0$ $05 07 EF1$ $5.0$ $05 07 EF2$ $194$ $06 07 EF2$ $515 5.0 3.8 4.5$ $08 07 EF2$ $515 5.0 3.8 4.5$ $08 07 EF2$ $515 5.0 3.8 4.5$ $08 07 EF2$ $515 5.0 3.8 4.5$ $10 07 EF2$ $5.0 3.8 4.5$ $11 07 EF2$ $5.0 2.1 2.7$ $11 07 EF2$ $5.0 2.1 2.7$ $11 2 07 IC13E$ $5.1 1.2 5.1 1.5$ $12 07 IC13E$ $5.1 1.7 5.1 14.5 1.5$ $12 07 IC13E$ $5.1 1.5 1.4 1.3 .0 1.5$ $15 07 IC13E$ $5.5 1 5.1 14.5 11.4 14.2 7.2$ $15 07 EF2$ <td>29 06 EF2</td> <td>30 28-</td> <td></td> <td> ,</td> <td><u> </u></td> <td>6.0</td> <td>3.5</td> <td></td> <td><u> </u></td>	29 06 EF2	30 28-		,	<u> </u>	6.0	3.5		<u> </u>	
D2 07 EF2       7.0       2.5         THE COLUMNS WERE INSULATED WITH 3/8 INCHE STYROFOAM ON 03/07         65 07 EF1-1       5.0         05 07 EF1-1       5.0         05 07 EF2-1         05 07 EF2         05 07 EF2-1         05 07 EF2         05 07 EF2         05 07 EF2         05 07 EF2         05 07 EF1         05 07 EF1         05 07 EF2         0 0 26 40 .51         10 7 EF1         0 2.6 4.0         10 7 EF2										
THE COLUMNS WERE INSULATED WITH 3/8 INCHE STYPOFOAM ON 03/07         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         SAMPLING ON 05/07 SHOMS THERE IS FINIPAL TEMPERATURE RISE THROUGH         THE COLUMNS EVEN AT LOW TEMPERATURES.         SAMPLING ON 05/07 SHOMS THERE IS FINIPAL TEMPERATURE RISE THROUGH         THE COLUMNS EVEN AT LOW TEMPERATURES.         Colspan="2">3.4         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         10.5         1.5         1.5 <td co<="" td=""><td>02 07 EF2</td><td></td><td></td><td></td><td></td><td>7.0</td><td>2.5</td><td></td><td></td></td>	<td>02 07 EF2</td> <td></td> <td></td> <td></td> <td></td> <td>7.0</td> <td>2.5</td> <td></td> <td></td>	02 07 EF2					7.0	2.5		
65       57       EF1-1       35       50       6:0       4:0         05       07       EF2-1       5:0       6:0       4:0         05       07       EF2-1       5:0       6:0       4:0         SAMPLING ON 05/07       SHOWS THERE IS FINIWAL TEMPERATURE RISE THROUGH       THE COLUMNS EVEN AT LOW TEMPERATURES.       3:8       3:8         08       07       EF1       .51       4:5       1:1       4:5       3:6         08       07       EF1       .51       5:0       3:8       3:8       3:8         08       07       EF2       .51       5:0       3:8       3:8       3:8         08       07       EF1       .52       .50       3:6       4:5       3:6         10       07       EF1       .56       2:1       2:7       1:1         11       67       EF1       .56       2:1       2:7       1:1         12       07       EF1       .56       2:1       2:7       1:1         12       07       EF2       .51       2:6       4:0       1:9       1:2         12       07       EF2       .51       2:6       1:9<	THE COLUMNS	S WERE INSULAT	ED WITH	3/8 I	NCHE	STYROF	OAM ON	03/07		
6.5       07       EF1       5.0         05       07       EF2       184       .52       6.0       4.0         SAMPLING ON 05/07       SHOWS THERE IS FINIPAL TEMPERATURE RISE THRCUGH       THE COLUMNS EVEN AT LOW TEMPERATURES.       3.4       6.3       3.8         C8       07       IC19E       3.4       6.3       3.8       3.8         C8       07       EF1       .51       4.5       1.1       4.5       3.6         C8       07       EF2       .51       5.0       3.8       4.5       3.6         C8       07       EF2       .51       5.0       3.8       4.5       3.6         C8       07       EF2       .51       5.0       3.8       4.5       3.6         C9       07       EF2       .51       5.0       2.1       2.7       11         10       07       EF1       38       34       .51       2.1       2.7         11       6.7       EF2       5.1       2.1       2.7       2.1       2.1         12       07       EF2       5.1       1.4       1.9       2.0       1.9       2.0       1.9       2.0       1.9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u></u></td>									<u></u>	
05 07 EF2-1       35       5.0       5.0       4.0         05 07 EF2-1       184       .52       6.0       4.0         SAMPLING ON 05/07 SHOWS THERE IS FINIPAL TEMPERATURE RISE THRCUGH         THE COLUMNS EVEN AT LOW TEMPERATURES.         08 07 EF1       .51       4.5       3.6         08 07 EF2       .51       5.0       3.8       4.5         08 07 EF2       .51       5.0       3.8       4.5       3.6         08 07 EF2       .51       5.0       3.8       4.5       3.6         10 07 EF2       .61       4.5       4.0       1.0       4.1         10 07 EF2       .61       5.1       4.0       1.0       4.1         10 07 EF2       .61       .51       5.0       2.1       2.7         11 07 EF2       .50       2.1       2.7       5.0       2.1         12 07 EF2       .51       2.5       1.0       2.0       1.5         12 07 EF2       .51       2.5       3.7       14.0       13.0         15 07 EF2       .51       2.5       3.7       14.0       13.0         15 07 EF2       .51       2.5       3.7       14.0       13.0	05 07 EF1-1	<u> </u>		•	·	5.0				
05 07 EF2       194       .52       6.6       4.0         SAMPLING ON 05/07 SHOWS THERE IS MINIPAL TEMPERATURE RISE THROUGH THE COLUMNS EVEN AT LOW TEMPERATURES.       3.8       3.8         08 07 IC19E       .54       6.3       3.8         08 07 IC19E       .51       4.5       1.1       4.5       3.6         08 07 EF2       .51       5.0       3.8       4.5       3.0         16 07 EF1       38       34       .51       4.0       1.0       4.1         16 07 EF2       .51       5.0       2.1       2.7       1.1         11 07 EF2       .5.0       2.1       2.7       1.1       1.5         12 07 IC13E       .5.1       .5.1       2.0       1.0       4.1         12 07 EF2       2.6       4.0       1.9       2.0       1.5         15 07 EF2       2.0       16.0       2.0       2.0       1.5       1.5       2.0         15 07 EF2       .51       2.5       3.7       14.0       13.0       1.5       1.5       2.0       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5	05 67 EF2-1	L	• 20			5.0	-+ + U			
SAMPLING ON 05767 SHOWS THERE IS MINIMAL TEMPERATURE RISE THROUGH         THE COLUMNS EVEN AT LOW TEMPERATURES.         Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="		184	.52			6.0	4.0		<u> </u>	
THE COLUMNS EVEN AT LOW TEMPERATURES:         C 8 07 IC1BE       3.4 6.3       3.8         08 07 EF1       .51       4.5       1.1       4.5       3.6         08 07 EF2       .51       5.0       3.8       4.5       3.6         08 07 EF2       .51       5.0       3.8       4.5       3.6         08 07 EF2       .51       5.0       3.8       4.5       3.6         16 07 EF1       38       34       .51       4.0       1.0       4.1         10 07 EF2       3.6       40 .51         12 07 EF1       5.1         12 07 IC19E       5.1         12 07 IC19E       5.1         12 07 IC19E       5.1         12 07 IC19E       5.1         14.4       14.6       2.0         15 07 EF2       2.0         15 07 EF2       2.0         15 07 IC19E       7.1         16 07 IC19E       7.1         16 7 EF2       2.0 </td <td></td> <td></td> <td>THFRE IS</td> <td>S MINT</td> <td>T-TAK</td> <td>EMPERA</td> <td></td> <td></td> <td></td>			THFRE IS	S MINT	T-TAK	EMPERA				
68 07 IC18E       3.4       6.3       3.6         08 07 EF2       .51       4.5       1.1       4.5       3.6         08 07 EF2       .51       5.0       3.8       4.5       3.6         16 07 EF2       .51       5.0       3.8       4.5       3.6         16 07 EF2       .51       5.0       3.8       4.5       3.6         16 07 EF2       .50       40       .51       4.0       1.0       4.1         16 07 EF2       .50       2.1       2.7       .51       2.0       .51       2.7         11 57 EF1       .5.0       2.1       2.7       .51       2.6       4.0       1.9         12 07 IC18E       .51       .51       2.6       4.0       1.9       .51       2.0         15 07 IC18E       .51       3.7       1.5       14.0       13.0       .51       .51       2.0         15 07 EF2       .51       2.5       3.7       14.0       13.0       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51	THE COLUMNS	S EVEN AT LOW	TEMPERAT	IURES.						
12 + 12 + 12 + 14 + 14 + 14 + 14 + 14 +	68 07 TO18			3.4	6.3			3.8		
08 07 EF2       .51 5.0 3.8 4.5 3.0         10 07 EF1       38 34 .51       4.0 1.0 4.1         11 07 EF2       36 40 .51       4.0 1.0 4.1         11 07 EF1       36 40 .51       4.0 1.0 4.1         11 07 EF1       36 40 .51       4.0 1.0 4.1         12 07 EF2       36 40 .51       4.0 1.0 4.1         12 07 EF2       5.0 2.1 2.7         12 07 EF2       5.0 2.1       2.7         12 07 EF2       2.6 4.0 1.9         15 07 EF2       2.6 4.0 1.9         15 07 EF2       2.6 4.0 1.9         15 07 EF2       5.1 2.5 3.7 14.0 13.0         16 07 IC18E       5.1 2.5 3.7 14.0 13.0         16 07 IC18E       7.1         16 07 IC18E       7.1         16 07 EF2       .51 2.5 3.7 14.0 13.0         16 07 IC18E       7.1         17 07 EF1       .51 2.5 1 5.1 14.0 13.0         16 07 EF2       .51 14.4 14.2 7.2         17 07 EF1       .51 5.1 2.7 14.5 11.4         18 07 EF1       78 78 .51       10.5 2.4         19 07 EF2       .51 14.5 11.4         10 07 EF1       .54 2.0         19 07 EF2       14.2 10.2         22 07 EF1       34 36         22 07 EF1       .54 2.0 <td></td> <td>-</td> <td></td> <td>4.5-</td> <td>-1.1-</td> <td>4.5</td> <td></td> <td></td> <td> ``</td>		-		4.5-	-1.1-	4.5			``	
16 07 EF1       38       34       .51       4.0       1.0       4.1         10 07 EF2       36       40       .51       4.0       1.0       4.1         11 07 EF1       5.0       2.1       2.7       2.1       2.7         11 07 EF2       5.0       2.1       2.7       2.1       2.7         11 07 EF2       5.0       2.1       2.7       2.1         12 07 EF2       2.6       4.0       1.9       2.0         15 07 IC18E       5.1       2.6       4.0       1.9         15 07 IC18E       5.1       3.7       1.5       14.0       13.0         16 07 IC18E       5.1       2.5       3.7       14.0       13.0         16 07 IC18E       51       2.5       3.7       14.0       13.0         16 07 IC18E       7.1       14.4       14.2       7.2         17 07 IC18E       15.5       2.3       2.7       14.4       14.2       2.0         17 07 EF1       78       78       51       10.5       2.4       16.6       14.2       16.2       2.2         19 07 EF2       96       96       51       14.2       16.2       2.2	08 07 EF2		•51	5.0	3.8	4.5	3.0			
16 $0.7$ EF2 $36$ $40$ $51$ $4.6$ $1.6$ 11 $5.6$ $2.1$ $2.7$ 11 $5.6$ $2.1$ $2.7$ 12 $0.7$ IC1BE $5.6$ $2.1$ 12 $0.7$ IC1BE $5.6$ $2.1$ 12 $0.7$ IC1BE $5.6$ $2.1$ 12 $0.7$ IC1BE $5.6$ $4.0$ $1.9$ 12 $0.7$ IC1BE $2.6$ $4.0$ $1.9$ 15 $0.7$ IC1BE $2.6$ $4.0$ $1.9$ 15 $0.7$ IC1BE $2.6$ $4.0$ $1.9$ 15 $0.7$ IC1BE $5.1$ $3.7$ $14.6$ $13.0$ 16 $0.7$ IC1BE $7.1$ $14.4$ $14.2$ $7.2$ 16 $0.7$ IC1BE $7.7$ $14.4$ $14.2$ $7.2$ $17$ $0.7$ IC1BE $5.5$ $2.3$ $7.4$ $2.3$ $17$ $0.7$ IF1	10 07 EF1	38 34	.51			4.0	1.0	4.1		
11 57 EF1       5.0       2.1       2.7         11 57 EF2       5.0       2.1       2.7         12 57 IC13E       5.0       2.1       1.9         12 57 IC13E       5.0       4.0       1.9         12 57 EF2       2.6       4.0       1.9         15 57 IC13E       2.0       16.0       2.0         15 57 IC13E       5.1       3.7       1.5       14.0       13.0         15 67 EF2       .51       2.5       3.7       14.0       13.0         16 67 IC13E       7.1       14.4       14.2       7.2         16 7 EF1       15.5       2.3       7.1       14.4       14.2       7.2         17 67 EF1       .51       .51       14.4       14.2       7.2         17 67 EF1       .51       .51       14.4       14.2       7.2         17 67 EF1       .51       .51       11.4       14.2       7.2         16 7 EF1       78       78       .51       10.5       2.4         16 7 EF1       78       78       .51       10.5       2.4         16 7 EF2       .51       .51       14.5       14.2       16.2						<del>4.0</del>	-1.Ú			
11       57       EF2       5.0       2.1         12       07       IC13E       5.1       1.0       4.0       1.9         12       07       EF2       2.6       4.0       1.9         15       07       EF2       2.6       4.0       1.9         15       07       EF2       2.6       4.0       1.9         15       07       EF1       .51       3.7       14.0       13.0         16       07       IC13E       2.0       14.4       14.2       7.2         16       07       EF1       14.4       14.2       7.2         16       07       EF1       14.4       14.2       7.2         16       07       EF1       14.4       14.2       7.2         16       17       EF2       15.5       2.3         17       17       IC13E       15.5       2.3         17       16.7       EF1       .51       5.1       14.4         16       17       EF1       78       78       .51       10.5       2.4         16       17       EF2       96       96       .51       10.5					-					
12 07 IC13E       5.1         12 07 EF2       2.6         15 07 EF2       2.6         15 07 EF2       2.6         15 07 EF2       2.0         15 07 EF1       .51         15 07 EF2       .51         15 07 EF2       .51         15 07 EF2       .51         16 07 EF1       .51         16 07 IC13E       7.1         16 07 EF1       14.4         16 07 EF1       14.4         16 07 EF2       .51         17 07 IC13E       7.1         16 17 EF2       .51         17 07 IC13E       15.5         17 07 EF1       78         18 07 EF1       78         19 07 EF2       .51         19 07 EF2       14.2         19 07 EF2       14.3         20 7 EF1       34         21 7 EF1       34         22 07 EF1       34         23 07 IC13E       27         24 6       49         25 23       .472	11 67 EF2					5.0	2.1			
12       07       10131       9.1         12       07       EF2       2.6       4.0       1.9         12       07       EF2       2.6       4.0       1.9         15       07       EF2       2.6       4.0       1.9         15       07       EF2       2.0       16.0       2.0         15       07       EF2       .51       3.7       1.5       14.0       13.0         16       07       EF1       .51       2.5       3.7       14.0       13.0         16       07       EF1       .51       2.5       3.7       14.0       13.0         16       07       EF1       .51       2.5       3.7       14.0       13.0         16       07       EF1       .51       2.5       2.3       .7       14.4       14.2       7.2         16       17       EF2       .51       15.5       2.3       .7       14.4       14.2       7.2         17       17       IC19E       .55       2.7       14.5       11.4       .4       14.5       14.4         16       C7       EF1       .58       .51 <td>12 57 10435</td> <td></td> <td></td> <td></td> <td>Б. 4</td> <td></td> <td></td> <td></td> <td></td>	12 57 10435				Б. 4					
12 07 EF2       2.6       4.0       1.9         15 07 IC1BE       2.0 16.0       2.0         15 07 EF1       .51       3.7       1.5       14.0       13.0         15 07 EF2       .51       2.5       3.7       14.0       13.0         16 07 IC1BE       .51       2.5       3.7       14.0       13.0         16 07 EF2       .51       2.5       3.7       14.0       13.0         16 07 EF1       14.4       14.2       7.2       16.0       13.0         16 07 EF2       .51       2.5       3.7       14.0       13.0         16 07 EF2       .51       2.5       3.7       14.0       13.0         16 07 EF2       .51       2.5       2.3       .51       2.5         17 07 IC1BE       15.5       2.3       .51       14.4       14.2       .51         17 07 EF1       78       78       .51       10.5       2.4       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51       .51	<u></u>	-	·		- <u>1.8</u>		<del></del>			
15 37 IC1BE       2.0 16.0       2.0         15 67 EF1       .51 $3.7$ $1.5$ $14.0$ $13.0$ 15 67 EF2       .51 $2.5$ $3.7$ $14.0$ $13.0$ 16 67 IC1BE       .51 $2.5$ $3.7$ $14.0$ $13.0$ 16 67 IC1BE       .51 $2.5$ $3.7$ $14.0$ $13.0$ 16 67 IC1BE       .51 $2.5$ $3.7$ $14.0$ $13.0$ 16 67 EF1       .51 $14.4$ $14.2$ $7.2$ 16 7 EF2       .51 $2.5$ $2.3$ 17 67 EF2       .51 $5.1$ $14.5$ $11.4$ 16 (7 EF1       78       78       .51 $14.5$ $11.4$ 16 (7 EF1       78       78       .51 $10.5$ $2.4$ 18 (7 EF1       78       78       .51 $10.5$ $2.4$ 19 07 EF2       .51 $14.3$ $6.8$ $2.0$ 22 07 EF1       34 $36$ $7.4$ $7.4$ 22 07 EF2       46       49 $7.4$ $7.4$ 23 07 IC13E <td>12 07 EF2</td> <td></td> <td></td> <td></td> <td>2.6</td> <td>4.0</td> <td>1.9</td> <td></td> <td></td>	12 07 EF2				2.6	4.0	1.9			
15 $07 EF1$ .51 $3.7^{-1}.5$ $14.0$ $13.0$ 15 $07 EF2$ .51 $2.5$ $3.7$ $14.0$ $13.0$ 16 $07 EF2$ .51 $2.5$ $3.7$ $14.0$ $13.0$ 16 $07 EF2$ .51 $2.5$ $3.7$ $14.0$ $13.0$ 16 $07 EF1$ .51 $2.5$ $3.7$ $14.0$ $13.0$ 16 $07 EF1$ .51 $14.4$ $14.2$ $7.2$ 17 $07 IC1BE$ .50 $2.3$ $7.7$ 17 $07 IC1BE$ .51 $2.7$ $14.4$ $14.2$ $7.2$ 17 $07 IC1BE$ .51 $5.1$ $14.5$ $11.4$ $14.5$ $14.5$ $11.4$ 16 $07 EF1$ .51 $5.1$ $14.5$ $11.4$ $16.5$ $2.4$ 16 $07 EF2$ .51 $10.5$ $2.4$ $10.5$ $2.4$ 16 $07 EF1$ .58       .51 $10.5$ $2.4$ $14.2$ $16.2$ $2.2$ 19 $07 EF2$ .51 $14.3$ $6.8$ $2.0$ $7.4$ $2.2$ $7.4$	15 07 IC188			2.0	16.0			2.û		
15 67 EF2       .51       2.5       3.7       14.0       13.0         16 67 EF2 $7.1$ $7.1$ $7.1$ $16.7$ EF1 $14.4$ $14.2$ $7.2$ 16 67 EF2 $14.4$ $14.2$ $7.2$ $14.4$ $14.2$ $7.2$ 17 67 EF1 $15.5$ $2.3$ $7.1$ $14.4$ $14.2$ $7.2$ 17 67 EF1 $5.5$ $2.7$ $14.5$ $11.4$ $14.2$ $7.2$ 17 67 EF1 $7.8$ $7.5$ $2.7$ $14.5$ $11.4$ 18 (7 EF1 $7.8$ $7.5$ $10.5$ $2.4$ 18 (7 EF2 $96$ $96$ $51$ $10.5$ $2.4$ 18 (7 EF1 $7.8$ $7.8$ $51$ $10.5$ $2.4$ $19 \cdot 7$ EF1 $7.8$ $51$ $10.5$ $2.4$ $19 \cdot 7$ EF1 $7.3$ $4.3$ $6.8$ $2.5$ $22 \circ 7$ EF1 $34$ $36$ $7.4$ $7.4$ $23 \circ 7$ IC13E $36.5$ $37$ $7.4$ $7.4$ $23 \circ 7$ IC13E $36.5$ $37$					1.5	-14-0-	13.0			
16 67 IC1BE       7.1         16 07 EF1       14.4       14.2       7.2         16 07 EF2       14.4       14.2       7.2         16 07 EF2       14.4       14.2       7.2         17 07 IC1BE       15.5       2.3         17 07 EF1       .50       2.7       14.4         17 07 EF2       .51       5.1       14.5         17 07 EF2       .51       5.1       14.5         18 07 EF1       78       78       .51       10.5         18 07 EF1       78       78       .51       10.5       2.4         18 07 EF1       78       78       .51       10.5       2.4         19 07 EF2       96       .51       10.2       2.2       .2         19 07 EF2       14.2       16.2       2.2       .2         19 07 EF2       14.3       6.8       2.0       .2         22 07 EF1       34       .4       .3       .6       8       .0         23 07 IC13E       36.5       37       .4       .3       .4       .4       .4         23 07 FE2       167       132       .4       .4       .4       .4       .4       <	15 67 EF2		•51	2.5	3.7	14.0	13.0		م واند سد م	
$16 - 07 \cdot EF1$ $14 \cdot 4 - 14 \cdot 2 \cdot 7 \cdot 2$ $16 - 07 \cdot EF2$ $14 \cdot 4 - 14 \cdot 2 \cdot 7 \cdot 2$ $16 - 07 \cdot EF2$ $14 \cdot 4 - 14 \cdot 2 \cdot 7 \cdot 2$ $17 - 07 \cdot EF2$ $15 \cdot 5$ $2 \cdot 3$ $17 - 07 \cdot EF2$ $56 - 2 \cdot 7 - 14 \cdot 5 - 11 \cdot 4$ $2 \cdot 3 - 2 \cdot 7 - 14 \cdot 5 - 11 \cdot 4$ $17 - 07 \cdot EF2$ $55 - 2 \cdot 7 - 14 \cdot 5 - 11 \cdot 4$ $16 \cdot 5 - 2 \cdot 4$ $17 - 07 \cdot EF2$ $55 - 2 \cdot 7 - 14 \cdot 5 - 11 \cdot 4$ $16 \cdot 5 - 2 \cdot 4$ $18 \cdot 17 \cdot EF2$ $96 - 96 - 51$ $10 \cdot 5 - 2 \cdot 4$ $18 \cdot 07 \cdot EF2$ $96 - 96 - 51$ $10 \cdot 5 - 2 \cdot 4$ $19 - 7 \cdot EF1$ $78 - 78 - 51$ $10 \cdot 5 - 2 \cdot 4$ $19 - 7 \cdot EF1$ $78 - 78 - 51$ $14 \cdot 2 - 16 \cdot 2$ $19 - 7 \cdot EF2$ $14 \cdot 2 - 16 \cdot 2$ $14 \cdot 2 - 16 \cdot 2$ $22 \cdot 7 \cdot EF1$ $34 - 36 - 7 \cdot 4$ $7 \cdot 4 - 7 \cdot 4$ $22 \cdot 7 \cdot EF1$ $36 \cdot 5 - 37 - 7 \cdot 4$ $7 \cdot 4 - 7 \cdot 4$ $23 - 07 \cdot EF2$ $167 - 132$ $19 \cdot 8 - 18 \cdot 4 - 7 \cdot 4$	16 07 IC186	-						7.1		
16 $14.4$ $14.2$ $7.2$ 17 $07$ $167$ $15.5$ $2.3$ $17$ $07$ $EF1$ $50$ $2.7$ $14.5$ $11.4$ $17$ $07$ $EF2$ $.51$ $2.7$ $14.5$ $11.4$ $17$ $07$ $EF2$ $.51$ $5.1$ $14.5$ $11.4$ $18$ $07$ $EF1$ $78$ $78$ $.51$ $10.5$ $2.4$ $18$ $07$ $EF2$ $96$ $96$ $.51$ $10.5$ $2.4$ $19$ $07$ $EF1$ $78$ $78$ $.51$ $10.5$ $2.4$ $19$ $07$ $EF2$ $96$ $96$ $.51$ $10.5$ $2.4$ $19$ $07$ $EF2$ $14.3$ $6.8$ $2.5$ $2.2$ $19$ $07$ $EF2$ $46$ $49$ $7.4$ $7.4$ $23$ $07$ $167$ $132$ $472$ $19.8$ $18.4$ $18.4$	16-07-EF1					-14-4-	14.2	7.2		
17 07 IC1BE       15.5       2.3         17 07 EF1       .50       2.7 14.5 11.4         17 07 EF2       .51       5.1 14.5 11.4         18 07 EF1       78 78 .51       10.5       2.4         18 07 EF2       .51       10.5       2.4         19 07 EF2       .51       10.5       2.4         19 07 EF2       .51       10.5       2.4         22 07 EF1       .51       4.3       6.8       2.0         22 07 EF1       .34       .6       7.4          23 07 IC13E       36.5 37            23 07 EF1             23 07 IC13E             23 07 IC13E             23 07 IC13E             23 07 IC13E                                   <	10 07 EF2					14.4	14+2	1•2	·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 07 IC188	Ξ		2	15.5			2.3		
18 $?7  EF1$ 78       78 $.51$ $10.5$ $2.4$ 18 $?7  EF2$ $96$ $96$ $.51$ $10.5$ $2.4$ 19 $.7  EF2$ $96$ $.51$ $10.5$ $2.4$ 19 $.7  EF2$ $96$ $.51$ $10.5$ $2.4$ 19 $.7  EF1$ $.51$ $10.5$ $2.4$ 19 $.7  EF1$ $.51$ $10.5$ $2.4$ 22 $.7  EF1$ $.51$ $4.3$ $6.8  2.0$ 22 $.7  EF1$ $.34  ext{ .36}$ $.7.4$ $.7.4$ 22 $.7  EF2$ $.46  49$ $.472$ $.19.8  ext{ .8.4}$ 23  0.7  EF2 $.472$ $.472$ $.19.8  ext{ .8.4}$ $.48.4$	<u>17 67 EF1</u> 17 67 EF2					- <u>14.5</u> -	- <u>11.4</u>			
18 $\therefore 7 \ \text{EF1}$ 78       78       .51       10.5       2.4         18 $\therefore 7 \ \text{EF2}$ 96       96       .51       10.5       2.4         19 $\therefore 7 \ \text{EF2}$ 96       96       .51       10.5       2.4         19 $\therefore 7 \ \text{EF2}$ 96       96       .51       10.5       2.4         19 $\therefore 7 \ \text{EF2}$ 96       96       .51       10.2       2.2         19 $\therefore 7 \ \text{EF2}$ 14.2       10.2       2.2       2.2         19 $\therefore 7 \ \text{EF2}$ 27 \ 31 \ 4.3       4.3       6.8 \ 2.5       2.5         22 $\therefore 7 \ \text{EF1}$ 34 \ 36 \ -7.4       7.4       7.4         23 $\therefore 7 \ \text{EF2}$ 46 \ 49       472 \ -7.4       19.8 $18.4$ 18.4         23 $\therefore 7 \ \text{EF1}$ 25 \ 23 \ .472 \ -19.8 \ 18.4       18.4       -4.3 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .472 \ .474 \ .474 \ .474 \ .474 \ .474 \ .474 \ .474 \ .474 \ .							<b>TT04</b>	·····		
10 $12$ $30$ $30$ $31$ 19 $7$ $EF1$ $13 \cdot 8$ $10 \cdot 2$ $2 \cdot 2$ 19 $07$ $EF2$ $14 \cdot 2$ $16 \cdot 2$ $2 \cdot 2$ 19 $07$ $EF2$ $14 \cdot 2$ $16 \cdot 2$ $2 \cdot 2$ 22 $07$ $EF1$ $34$ $36$ $7 \cdot 4$ 22 $07$ $EF1$ $34$ $36$ $7 \cdot 4$ 22 $07$ $EF2$ $46$ $49$ $7 \cdot 4$ 23 $07$ $IC13E$ $36 \cdot 5$ $37$ 23 $07$ $IC13E$ $36 \cdot 5$ $37$ $23$ $07$ $EF2$ $167$ $132$	18 07 EF1	78 78	• 51				10.5	2•4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 11 Et 2				· •····	·	·			
19 07 EF2       14.2 16.2         22 $\overline{17}$ IC1BE       27 $\overline{31}$ 4.3       6.8 $2.5$ 22 $\overline{17}$ EF1       34 $\overline{36}$ 7.4         22 $\overline{17}$ EF2       46 $49$ 7.4         23 $\overline{17}$ IC1BE       36.5 $\overline{37}$ 19.8 $18.4$ 23 $\overline{17}$ EF1       25 $23$ $472$ 19.8 $18.4$	<u> 19 7 EF1</u>		,			-13-8-	-10.2-		<u></u>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 07 EF2					14.2	16.2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 C7 IC138	27 31		4.3				6.8 2.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 37 EF1							7.4		
23 07 IC1BE 36.5 37 <u>23 07 EF1</u> <u>25 23 472</u> <u>19.8</u> 18.4 23 07 FE2 167 132		45 49	<u></u>				, 	7 • 4		
23 67 FE2 167 132	23 07 IC188	36.5 37								
	23 07 FF2	<u> </u>				19.8	18.4			

EATE     SAMPLE     SOLIDS     FLOW     +ACH     EFF     CCOLER     PH CCCLER       AY MON     NH3N NO3N     A     N03-N     SPIKE OF 15     PPH MAS ALDED TO COOLER 2 DURING 23/07 AND 24/01       24 07 IC19E     29.7 32     7.2     2.3     7.2     2.3       24 07 IC19E     29.7 32     7.2     2.3     7.2     2.3       24 07 EF1     24.2 25     .45     21.3     20.6 7.7     7.2       25 07 IC19E     39     35     21.5     20.8       25 07 IC19E     39     35     21.5     20.8       25 07 IC19E     37.3     27.4     7.3     3.6       26 07 IC19E     37.3     22.0     21.4     7.7       29 07 IC19E     30.50     22.0     21.4     7.7       29 07 IC19E     30     30     22.0     21.4     7.7       29 07 IC19E     27     6.2     6.2     6.2       31 07 FF2     22 5     27     6.2     6.2       31 07 FF2     22 5     27     51     21.9       21 07 IC19E     30     31     6.3     31.4       31 07 FF2     22 5     20     22.0     21.6     7.8       31 07 FF2     26 27     51     21.9 <th></th> <th></th> <th></th> <th></th> <th>COI</th> <th>LUMN</th> <th>CPERAT</th> <th>ion</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>					COI	LUMN	CPERAT	ion						
NAY MON     NH3N NO3N       A N03-N SPIKE OF 15 PPM WAS ACDED TO COOLER 2 DURING 23/07 AND 24/07       24 07 EF1     24,22 ± 45       24 07 EF2     27.3 20       24 07 EF2     27.3 20       25 07 IC19E     39 35       26 07 EF2     27.3 20       26 07 IC19E     39 35       26 07 IC19E     39 35       26 07 IC19E     37.3       26 07 IC19E     37.3       26 07 IC19E     37.3       26 07 IC19E     30 30       27 EF1     42.5 42       28.0 7 EF2     19.5 20       21.0 21.4 7.7       29 07 IC19E     30 30       27 EF1     14.7 15       29 07 IC19E     27       30 07 EF2     22.5 34.6       21.7 EF1     14.7 15       21.7 IC19E     30 31       31.07 EF2     52 54       31.07 EF1     55 54       31.07 EF2     22.6       21.07 IC19E     31       31.07 EF1     55 54       31.07 EF2     52 34.6       22.0 21.0 7.6       31.07 EF1     55 54       31.07 EF2     32       31.07 EF2     32	CATE	SAMPLE	SOL	IDS	FLO	MC	HACH NO2N	EF	F	00 1	OLER	рн сс	CLER	
A N03-N SPIKE OF 15 PPH WAS ALDED TO COOLER 2 DURING 23/07 AND 24/01         24 07 FF1       24,2 25       45       21,3 20,6 7,7         24 07 FF2       27,3 20       50       21,2 20,5 7,6         25 07 IC19E       39 35       21,5 20,8       22,5 7,6         25 07 FF2       38 34       50       21,5 20,8         26 07 FF2       7,3 3,6       22,6 21,4 7,7       26,6         25 07 FF2       38 34       50       21,5 20,8         26 07 FF2       19,5 20       22,0 21,4 7,7       26,6         26 07 FF2       19,5 20       22,0 21,4 7,7       24,0 7,4 3,8         24 07 FF1       42,5 42       22,0 21,4 7,7       24,0 7,6         29 07 IC18E       30 30       22,2 0 21,4 7,7       24,0 7,4 3,8         24 07 FF1       26,3 3,6       22,0 21,0 7,4       3,8         24 07 FF1       26,3 3,6       22,0 21,0 7,6       3,4         31 07 FF1       26,3 3,6       22,0 21,0 7,6       3,4         31 07 FF1       26,3 3,6       22,0 21,0 7,6       3,4         31 07 FF1       26,3 3,6       22,0 21,0 7,6       3,4         31 07 FF1       26,3 3,6       22,0 21,0 7,6       4,5         31 07 FF1       55       54,47	CAY MON					NH3	N NO3N							
24 07 IC18E       29.7 32       7.2 2.3         24 07 EF2       24.2 25 .45       21.3 20.6 7.7         24 07 EF2       27.3 20       50       21.2 20.5 7.6         25 07 IC18E       39 35       21.5 20.8         25 07 EF2       38 34 .50       21.5 20.8         26 07 EF1       61 .45       21.5 20.8         26 07 EF2       38 34 .50       21.5 20.8         26 07 EF2       38 34 .50       21.4 7.7         26 07 EF2       19.5 20       22.0 21.4 7.7         26 07 EF2       19.5 20       22.0 21.4 7.7         26 07 EF2       19.5 20       22.0 21.4 7.7         29 07 EF2       22.5 18 .51       21.7 21.1 7.5         34 17 IC18E       27 27       6.2         34 17 IC18E       27 27       6.2         34 17 IC18E       27 27       6.3         34 17 IC18E       27 27       51         31 17 IC18E       33 31       6.3         31 17 IC18E       32 31       6.2         31 17 IC18E       33 31       21.5 21.5 7.5	A N03	-N SPIKE OF	15	PPM	WAS	ACDED	TO CO	OLER	2	DU	RING	23/07	ANC	24/07
24 07 EF1       24.2 25       44       21.3       20.6 7.7         24 07 EF2       27.3 20       50       21.2 20.5 7.6         25 07 IC19E       39       35       21.5 20.8         25 07 EF2       38       34       50       21.5 20.8         26 07 IC19E       37.3       2.6 27.5 20.8       22.6 21.4 7.7       20.8         26 07 IC19E       30       30       21.7 22.0 21.4 7.7       20.8         26 07 EF1       42.5 42       22.6 21.4 7.7       20.8         26 07 EF1       42.5 42       22.0 21.4 7.7       20.8         29 07 EF2       22.5 18       51       21.7 21.1 7.5       20.7         29 07 EF2       22.5 18       51       21.7 21.1 7.5       20.7         30 07 IC18E       27 27       21.7 21.1 7.5       21.7 21.1 7.5       21.7 21.1 7.5         29 07 EF2       22.5 18       51       21.7 21.7 7.8       30.6         31 07 IC18E       27 27       27.51       21.9 21.6 7.7       31.7 7.6         31 07 IC18E       30       31       471       21.6 21.2 7.7         RAW FEED CONTATINED MIXED LIDUCE DURING THE EVENING.FOR A SUFFICIENT TIME IO CAUSE SOLVOS TO GET INTO COOLER 2 AND THE DENTRIFYING SYSTE         12 0.8 EF1       22 15	24 07	IC1BE	29.	7 32	2							7.2	2.3	3
25       07       IC18E       39       39         25       47       EF1       61       45       21.5       20.8         25       67       EF2       38       34       56       21.5       20.8         26       07       IC18E       37.3       24.5       22.4       21.4       7.3       3.6         26       07       EF1       42.5       42.       22.4       21.4       7.7         26       17       IC18E       30       30       22.0       21.4       7.7         26       17       IC18E       30       30       30       22.0       21.4       7.4       3.8         29       07       EF2       14.7       15       51       21.7       21.1       7.6         30       17       IC18E       30       31       31       6.2       31.7         31       17       IC18E       30       31       31       6.3       31.17       EF2       25       50       22.0       21.4       7.7         34       07       16.2       30       31       31       31       31       36       31.1       31.1	24 07	EF2	27 .	3 20	;	• 50			21.	2	20.5	5 7.6		
25 $67$ $64$ $45$ $24.5$ $20.8$ 25 $67$ $6F2$ $38$ $34$ $50$ $21.5$ $20.8$ 26 $07$ $10.18E$ $37.3$ $22.0$ $21.4$ $7.7$ $3.6$ 26 $07$ $161.8E$ $30.30$ $7.4$ $3.8$ 20 $07$ $161.8E$ $30.30$ $7.4$ $3.8$ 20 $07$ $161.2$ $14.7$ $15.51$ $21.7$ $21.47.75$ 29 $07$ $167.2$ $22.5$ $18.51$ $21.7$ $21.67.78$ $30.67$ $101.8E$ $27.27$ $6.2$ $22.02.167.78$ $36.33$ $30.77$ $107.16$ $30.31$ $6.3$ $31.47.6E1$ $55.54.421$ $21.62.76$ $31.67.76$ $31.77$ $107.16$ $30.31$ $6.3$ $31.47.6E1$ $52.55.4.421$ $21.42.7.6$ $31.67.76$ $31.77$ $10.62$ $27.55.54.421$ $21.42.7.6$ $31.67.77.77.77.77.77.77.77.77.77.77.77.77.$	25 07	IC1BE	39	39	5				· · · · · · · · · · · · · · · · · · ·	<u></u>				
26 07 IC18E       37.3       7.3       3.6         26 07 EF1       42.5 42       22.5 21.4 7.7         26 07 EF2       19.5 20       22.0 21.4 7.7         29 07 IC18E       30 30       7.4 3.8         29 07 EF2       22.5 21.1 7.5       21.7 21.1 7.6         30 17 EF1       14.7 15       51       21.7 21.1 7.6         30 17 EF2       22.5 21.0 7.8       .51	<u>-25 07</u> 25 07	<u>EF1</u> EF2	38	61 34	1 4	•4 <u>9                                    </u>			21. 21.	5	<del>-20•8</del> 20•8	<b>}</b>		<u></u>
26       67       EF1       42.5       42       22.6       21.4       7.7         26       67       EF2       19.5       20       22.0       21.4       7.7         29       67       IC1BE       30       30       7.4       3.8         29       07       EF1       14.7       15       51       21.7       21.1       7.6         30       17       EF1       22.5       18       .51       21.7       21.1       7.6         31       67       IC1BE       27       27       6.2       30       7.4       3.8         30       67       EF2       22.5       18       .51       21.6       7.8       30         31       67       EF2       52       50       22.0       21.5       7.8       30         31       07       EF2       26       27       .51       21.2       7.2       .5         31       07       EF2       26       27       .51       21.9       21.2       7.5         31       07       EF2       26       27       .51       21.9       21.5       21.5       21.5       21.5       <	26 47	TC1BE	37.	 Z			<u>.</u>					7.3		
26 67 EF2       19.5 20       22.0 21.4 7.7         29 67 IC1BE       30 30       7.4 3.8         29 67 EF1       14.7 15 .51       21.7 21.1 7.9         29 67 EF2       22.5 18 .51       21.7 21.1 7.9         30 67 IC1BE       27 27       6.2         30 7 EF1       26.3 316       22.0 21.0 7.8         30 67 EF2       52 50       22.0 21.0 7.8         30 67 EF2       52 50       22.0 21.0 7.6         31 7 IC1BE       30 31       6.3         31 7 IC1BE       30 31       6.3         31 7 IC1BE       30 31       21.5 21.2 7.5         31 07 EF2       26 27 .51       21.9 21.2 7.7         RAW FEED CONTAINED MIXED LIQUER DURING THE EVENING-FOR A SUFFICIENT ITT IT COULER 2 AND THE DENTIFIEVING SYSTE         107 EF2       22 19 .45       21.5 21.5 7.5         22 08 EF1       22 19 .45       21.5 21.5 7.5         NIPROFEN BALANCES WERE ATTEMPTER FOR POTH COLUMNS DUBING THE PERIOD       05/08 T0 16/03.         C6 (8 IC1DE       40 34       34       3.6         65 08 EF2       36 42 .45       21.5 21.0       3.4         07 08 IC13E       126 117 .       21.5 21.0       3.4         07 08 IC13E       126 117 .       21.5 21.0       3.4     <	26 07	EF1	_42-	5 42	2			. <u> </u>	22.	<u>.</u>	21.4	7.7		
29 67 IC1BE       30       30       7.4       3.8         29 07 EF1       14.7       15       51       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7       21.7	26 07	EF2	19.	5 21	0				22.	0	21.4	7.7		
29 $07$ $174$ $147$ $15$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$ $21.7$	29 67	IC18E	30	3(	D					_		7.4	3.0	3
25       67       EF2       22.5       16       .5.         35       57       IC19E       27       27       6.2         36       67       FF1       263       366       22.0       21.6       7.8         30       67       EF2       52       50       22.0       21.0       7.6         31       67       IC19E       30       31       6.3       6.3         31       67       EF2       52       54       .421       21.2       7.6         31       17       IC19E       30       31       6.3       6.3         31       17       IC19E       30       31       6.3         31       17       IC19E       55       54       .421       21.4       21.2       7.4         31       17       IC19E       37       32       7.2       5.5       55         31       16       IC19E       37       32       7.5       21.5       21.5       7.5         31       16       16       37       32       7.5       21.5       7.5       5.5         32       16       12       16       16 <td>20 17</td> <td><u></u></td> <td>14.</td> <td></td> <td>2</td> <td>•5i</td> <td></td> <td></td> <td>21.</td> <td>7</td> <td>-21-1</td> <td>-7.<u>c</u></td> <td></td> <td></td>	20 17	<u></u>	14.		2	•5i			21.	7	-21-1	-7. <u>c</u>		
35 67 IC13E       27       6.2         36 67 EF1       263 316       22.0       21.0       7.8         30 67 EF2       52       50       22.0       21.0       7.8         31 17 IC18E       30       31       6.3       31       6.3         31 17 IC18E       30       16       6.3       31       6.3         31 17 IC18E       31       16       6.3       31       6.3         52 18 IC18E       37       32       14.5       21.5       7.5         10 16/0	2.9 07	LF 2	66	5 10		• 5 🔺					•			
30 $17$ FF2 $52$ $50$ $22 \cdot 0$ $21 \cdot 0$ $7 \cdot 6$ 31 $17$ FF2 $52$ $50$ $22 \cdot 0$ $21 \cdot 0$ $7 \cdot 6$ 31 $17$ FF1 $55$ $54$ $421$ $21 \cdot 0$ $7 \cdot 6$ 31 $17$ FF1 $55$ $54$ $421$ $21 \cdot 0$ $7 \cdot 6$ 31 $17$ FF2 $26$ $27$ $51$ $21 \cdot 9$ $21 \cdot 2$ $7 \cdot 6$ 31 $17$ FF2 $26$ $27$ $51$ $21 \cdot 9$ $21 \cdot 2$ $7 \cdot 2$ $5 \cdot 5$ 31 $17$ FF2 $26$ $27$ $51$ $21 \cdot 9$ $21 \cdot 2$ $7 \cdot 7$ RAW FEED CONTAINED MIXED LIQUCR DURING THE EVENING.FOR A SUFFICIENT TIME FOR ADURING THE DENITRIFYING SYSTE $7 \cdot 2$ $5 \cdot 5$ $10$ $16 \cdot 18$ $17$ $21 \cdot 5$ $21 \cdot 5$ $7 \cdot 5$ $10$ $16 \cdot 12$ $12$ $146$ $21 \cdot 5$ $21 \cdot 5$ $7 \cdot 5$ $10$ $16 \cdot 126$ $117$ $51$ $21 \cdot 5$ <t< td=""><td>38 67</td><td>IC1BE</td><td>27</td><td>27</td><td>7</td><td></td><td></td><td></td><td><u> </u></td><td>-</td><td></td><td>6.2</td><td></td><td></td></t<>	38 67	IC1BE	27	27	7				<u> </u>	-		6.2		
30       67       67       67       67       63         31       67       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107       107	30 07	<u> </u>	263	_ <u>30</u> 6	6				22.	0	-21 - 1	7.8	•	
31       7       IC18E       30       31       6.3         31       07       EF1       55       54       .471       21.2       21.2       7.5         31       07       EF2       26       27       .51       21.9       21.2       7.7         RAW FEED CONTAINED MIXED LIQUER DURING THE EVENING.FOR A SUFFICIENT TIME TO CAUSE SOLTOS TO GET TATO COOLER 2 AND THE DENTRIFYING SYSIF         62       LA IC18E       37       32       7.2       5.5         02       0.8       EF1       22       19       .45       21.5       21.5       7.5         02       0.8       EF1       22       19       .45       21.5       21.5       7.5         02       0.8       EF1       22       19       .45       21.5       21.5       7.5         02       0.8       EF1       22       14       .45       21.5       21.5       7.5         NITROGEN       PALANCES WERE ATTEMPTED FOR POTH COLUMNS DURING THE PERIOD.       .45       .45       21.5       21.6       .46         05/0.8       TO       16/0.8       .45       .21.5       21.6       .46       .46       .46       .46       .46       .46	<u> </u>	=F 2							22		21.00			
31 07 EF1       55       54       .471       21.9       21.2       7.9         31 07 EF2       26       27       .51       21.9       21.2       7.7         RAW FEED CONTAINED MIXED LIQUER DURING THE EVENING.FOR A SUFFICIENT TIME TO CAUSE SOLTDS TO GET INTO COOLER 2 AND THE DENTRIFYING SYSIF $102$ 0.8       101 EG1       32       7.2       5.5 $102$ 0.8       21.9       .49       21.5       21.5       7.5 $102$ 0.8       21.1       21.5       21.5       7.5       7.5 $102$ 0.8       21.2       37       .51       21.5       21.5       7.5         NITROGEN PALANCES WERE ATTEMPTED FOR BOTH COLUMNS DURING THE PERIOD.       05/0.8       10.6/0.8       3.6 $05/0.8$ 10       16/0.3       3.6       3.6       3.6 $05/0.8$ 10       16/0.3       3.4       3.6       3.4 $05/0.8$ 10       16/0.3       3.4       3.4       3.4 $05/0.8$ EF2       36       42       .45       21.5       21.0 $05/0.8$ EF2       36       42       .45       21.5       21.0 $07$ $0.8$ EF2 <t< td=""><td>31 7</td><td>IC1BE</td><td>30</td><td>31</td><td>1</td><td></td><td></td><td></td><td><b>_</b> .</td><td>_</td><td></td><td>6.3</td><td></td><td></td></t<>	31 7	IC1BE	30	31	1				<b>_</b> .	_		6.3		
31 C7 EF2       20       21       91       21.9       21.2       7.7         RAW FEED CONTAINED MIXED LIQUCR DURING THE EVENING.FOR A SUFFICIENT         IIME IO CAUSE SOLIDS TO GET INTO COOLER 2 AND THE DENITRIFYING SYSTE         52 CA ICIBE       37       32       7.2       5.5         52 CA ICIBE       37       51       21.5       21.5       7.5         NITROGEN PALANCES WERE ATTEMPTED FOR POTH COLUMNS OUEING THE PERIOD.       05/08 TO 16/08.       3.6         C6 CA ICIBE       40       34       3.6       3.6         05/08 TO 16/08.       31       3.4       3.6         06 CA EF2       36       42       45       21.5       21.0         07 CA ICIBE       126       117       .45       21.5       21.0         07 CA EF1       82       84       445       21.5       21.0         07 CA EF1       12       12       14       14       45 <t< td=""><td>31 47</td><td><u>EF1</u></td><td>_55_</td><td>5(</td><td>4 7</td><td>• 471</td><td></td><td>-<u>-</u></td><td>21.</td><td><u> </u></td><td>21.2</td><td></td><td><u> </u></td><td></td></t<>	31 47	<u>EF1</u>	_55_	5(	4 7	• 471		- <u>-</u>	21.	<u> </u>	21.2		<u> </u>	
D2 08 EF1       22       19       .46       21.5       21.5       21.5       7.5         NITROGEN PALANCES WERE ATTEMPTED FOR POTH COLUMNS ONEING THE PERIOD       05/03 TO 16/03.       3.6         05/03 TO 16/03.       3.6       3.6       3.6         06 08 EF1       93       146       .45       21.5       21.4         06 08 EF1       93       146       .45       3.6         06 08 EF2       36       42       .45       21.5       21.4         07 08 IC13E       126       117       3.4       3.4         07 08 EF1       82       94       .485       21.5       21.0         08 08 EF1       127       123       .46       21.5       21.0         08 08 EF1       127       123       .46       21.5       19.7       2.8         09 08 EF1       .50       21.5       19.5       .50       21.5       19.5<	62 68	IC1BE		32	2	- <u></u> .		<del></del>				7.2	<u> </u>	5
NITROGEN PALANCES WERE ATTEMPTED FOR BOTH COLUMNS DURING THE PERIOD.         05/08 TO 16/08.         C6 08 IC1BE       40       34       3.6         06 08 FF1       93       146       45       21.5       21.6         06 08 FF1       93       146       45       21.5       21.6         06 08 FF2       36       42       45       21.5       21.6         07 08 IC13E       126       117       3.4       3.4         07 08 EF1       82       94       21.5       21.0         08 08 EF1       127       123       45       21.6       19.7       2.8         08 08 EF1       127       123       45       21.5       19.5       5.0       21.5       19.5         09 08 EF1       .50       21.5       19.5       5.0       21.5       19.5	02 08	EF1	22	19	9	• 4 9			21.	5	21+5	5 7.5		
C6 (8 IC1BE       40       34       3.6         06 (8 EF1       93       146       .45       21.5       21.1         06 (8 EF2       36       42       .45       21.5       21.0         07 (8 IC13E       126       117       .       3.4         07 (8 IC13E       126       117       .       3.4         07 (8 EF2       114       114       .49       21.5       21.0         07 (8 EF2       114       114       .49       21.5       21.0         07 (8 EF2       114       114       .49       21.5       21.0         08 (8 EF1       127       123       .49       21.5       21.0         08 (8 EF2       93       85       .51       21.1       19.7         09 (8 IC1BE       27.0       21.5       19.5       29.5         09 (8 IC1BE       27.0       21.5       19.5       21.5       19.5         10 (8 EF1       .45       .45       21.5       19.5       .6         12 (8 IC1BE       28       9.4       7.3       5.6       .6         12 (8 EF1       .45       .45       21.5       20.8       7.2	NIIRO 05/08	GEN PALANCE To 16/03.	S WE	RE	ATTE	MPIEC_	FOR 20	TH C	OLI	<u>. WN</u>	S DUF	EING I	HE BI	ERIOD
$0.6 \ 0.8 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.7 \ 0.8 \ 0.8 \ 0.7 \ 0.8 \ 0.8 \ 0.7 \ 0.8 \ 0.8 \ 0.7 \ 0.8 \ 0.8 \ 0.7 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8 \ 0.8$	C6 C8	IC1BE	4 Û	34	4				<u> </u>	_		·······	3.	E
07 $08$ $1C13E$ $126$ $117$ $3.4$ $07$ $.8$ $FF1$ $82$ $84$ $.465$ $21.5$ $21.0$ $07$ $.8$ $FF1$ $82$ $84$ $.465$ $21.5$ $21.0$ $07$ $.8$ $EF2$ $114$ $114$ $.465$ $21.5$ $21.0$ $07$ $.8$ $EF2$ $114$ $114$ $.469$ $21.5$ $21.0$ $08$ $L8$ $EF1$ $127$ $123$ $.469$ $21.0$ $19.7$ $2.8$ $08$ $L8$ $EF2$ $93$ $85$ $51$ $21.0$ $19.7$ $2.8$ $09$ $08$ $EF1$ $.50$ $21.5$ $19.5$ $.50$ $21.5$ $19.5$ $.50$ $21.5$ $19.5$ $.50$ $.50$ $.50$ $.50$ $.50$ $.50$ $.50$ $.50$ $.50$ $.50$ $.50$ $.50$ $.50$ $.50$ $.50$ $.50$ $.50$ $.50$ $.50$ $.50$ $.50$ $.50$	<u> </u>		<u> </u>	148	6	<u>45</u>			21.	<u></u>	21.1	······································		
07 $08$ IC13E $126$ $117$ . $3.4$ $07$ $8$ $FF1$ $82$ $84$ $485$ $21.5$ $21.0$ $07$ $08$ $EF2$ $114$ $114$ $.485$ $21.5$ $21.0$ $07$ $08$ $EF2$ $114$ $114$ $.49$ $21.5$ $21.0$ $08$ $08$ $EF1$ $127$ $123$ $.49$ $21.5$ $21.0$ $08$ $08$ $EF1$ $127$ $123$ $.49$ $21.5$ $19.7$ $2.8$ $08$ $08$ $EF2$ $93$ $85$ $51$ $21.5$ $19.7$ $2.8$ $09$ $08$ $IC1BE$ $27.0$ $21.5$ $19.5$ $5.0$ $21.5$ $19.5$ $5.0$ $21.5$ $19.5$ $5.0$ $21.5$ $19.5$ $5.0$ $21.5$ $19.5$ $5.6$ $12.5$ $19.5$ $21.5$ $21.5$ $19.5$ $5.6$ $7.3$ $5.6$ $7.3$ $5.6$ $7.2$ $5.6$ $7.3$ $5.6$ </td <td></td> <td><u> </u></td> <td></td> <td>4 c</td> <td>c. </td> <td>• 4 3</td> <td></td> <td></td> <td>CT •</td> <td></td> <td><i>۲</i>۰۲۵</td> <td></td> <td></td> <td></td>		<u> </u>		4 c	c. 	• 4 3			CT •		<i>۲</i> ۰۲۵			
07 $03$ $EF1$ $82$ $84$ $485$ $21.5$ $21.0$ $07$ $08$ $EF2$ $114$ $114$ $.49$ $21.5$ $21.0$ $08$ $08$ $EF1$ $127$ $123$ $.49$ $21.5$ $21.0$ $08$ $08$ $EF1$ $127$ $123$ $.49$ $21.6$ $19.7$ $2.8$ $08$ $EF2$ $93$ $85$ $51$ $21.0$ $19.7$ $2.8$ $09$ $08$ $IC1BE$ $27.0$ $21.5$ $19.5$ $5.0$ $21.5$ $19.5$ $09$ $08$ $EF1$ $.50$ $21.5$ $19.5$ $.50$ $21.5$ $19.5$ $10$ $08$ $EF1$ $.46$ $21.5$ $19.5$ $.66$ $12$ $08$ $IC1BE$ $28$ $9.4$ $7.3$ $5.6$ $12$ $08$ $EF1$ $.49$ $21.5$ $20.8$ $7.2$ $12$ $08$ $EF2$ $33$ $.52$ $2.6$ $21.5$ <	07 08	IC1BE	126	117	7	•			<b>•</b> ·	-	<b>•</b> • •		3.	4
114 $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ $114$ <t< td=""><td><u>07 .8</u></td><td><u>++1</u> FF2</td><td><u>82</u></td><td>94</td><td>4</td><td>485</td><td></td><td></td><td>21</td><td>ق</td><td>21 .</td><td><u>ن</u> م</td><td></td><td></td></t<>	<u>07 .8</u>	<u>++1</u> FF2	<u>82</u>	94	4	485			21	ق	21 .	<u>ن</u> م		
08 08 08 08 00 08 00 08 00 08 00 08 00 08 00 00	ur 40	LIG	<b>T T d</b>	• ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	۳ 	• 4 5					٤٢٠١	د.		
09 08 IC1BE       27.0         09 08 EF1       .50       21.5       19.5         59 03 EF2       50       21.5       19.5         10 08 EF1       .45       21.5       19.5         12 08 EF1       .45       21.5       20.5         12 08 EF1       .45       21.5       20.8         12 08 EF2       33       .55       2.6       21.5	38 88 38 88	EF1 EF2	127	123	3	•49 •53			21.	• G	19.7	7 7	2.	8
09 08 EF1       .50       21.5       19.5         09 08 EF1       .50       21.5       19.5         10 08 EF1       .45       21.5       19.5         10 08 EF1       .45       21.5       19.5         12 08 IC1BF       28       9.4       7.3       5.6         12 08 EF1       .45       21.5       20.8       7.2         12 08 EF1       .45       21.5       20.8       7.2         12 08 EF2       33       .55       2.6       21.5       20.8       7.3		T 0 4 PC		مغارمي				- <u></u>				<u> </u>		
39     33     EF2     5.0     21.5     19.5       10     13     EF1     .45     21.5     19.5       12     13     16     12     13     145     21.5     19.5       12     13     16     16     17.3     5.6       12     13     15     21.5     20.8     7.3       12     13     15     21.5     20.8     7.3       12     13     15     21.5     20.8     7.3       12     13     15     2.6     21.5     20.8	<u>10968</u>	LUIBE				. 50		• U	21	5	10.0	5		······
10     13     EF1     .45     21.5     19.5       12     13     12     13     145     9.4     7.3     5.6       12     13     145     21.5     20.8     7.2       12     18     EF1     .45     21.5     20.8     7.2       12     18     EF2     33     .55     2.6     21.5     24.8     7.3	<u>- 59 (8</u>					• > u 	5	• 0	21	5	19.5	, 5		
12 08 IC1BF     28     9.4     7.3     5.6       12 08 EF1     .49     21.5     20.8     7.2       12 08 EF2     33     .50     2.6     21.5     20.8     7.3	10 08		· · · · · · · · · · · · · · · · · · ·			<u>4</u> C			26	_ع	19.5	5		
12 08 EF1 .49 21.5 20.8 7.2 12 08 EF2 33 .50 2.6 21.5 20.8 7.3	12 88	TC18F	28				0	. 4				7.3	5.	6
12 (8 EF2 33 .52 2.6 21.5 26.8 7.3	12 88	EF1	<u> </u>		· <u>····</u>	.49	2	<u></u>	21.	.5	20.1	8 7.2		<u> </u>
	12 (8	EF2	33			.52	2	• 6	21.	5	26.1	8 7.3		

COLUMN	CPERATION	
--------	-----------	--

	-DESIGNATI	SOLI	DS	FLOH	HACH 	EFF CO	OLER PH CC	CLER DO
DAY MO	N			ŇĦ	3N NO3N			
<del>- 13 ĉ</del>	8 TC18E		-29	·····	<u> </u>			4-0
13 0	8 EF1	54	66	.480		21.5	20.4	
-13-0	8 EF2		-45	•508				-
<del>-14 6</del>	8 IC1BE							
14 0	8 EF1			•481		21.5	21.1 7.2	
<u>14 î</u>	8 EF2			.455		21.5	21.1 7.2	<u> </u>
<del>- 15- č</del>	8 TC18E		-28					4.2
15 0	8 EF1	41		.565		21.5	28.4 7.4	
<del>-15-</del> 6	8 EF2	65				21.5	26.4 7.4	
-46-0	8 TC19F							
16 0	8 EF1			•486		20.5	20.0 6.9	
-16 :	8-EF2						-26.0 6.9	
40 0	8 554		-			15 9	17.7	- 1. I
<b>19</b> 0	8 EF2					15.5	13.3	
				·	<u> </u>			
20 5	8 IC13E	37.	35				6.9	5.1
23 0	8 EE2	53 88	-40-	.561		15.6	12.7 7.2	
21 Ű	8 IC1BE	17	19		8.	 5	- 6•9	2.9
24 1			4 0					
CI C	8 t+1	18.5	13			8-15.9	13.2-7.1	<u> </u>
21 0	8 EF1 8 EF2	- <del>18</del> .5 20	20	.517	. 3.	0 15.9 6 15.9	1 <del>3.2 7.1</del> 13.2 7.1	
21 C 21 C 22 D	8 EF1 8 EF2 8 IC1BE	20 24	20	.517		8 15.9 8	$\frac{13.2}{13.2} \frac{7.1}{1.1}$	3.7
21 0 22 0 22 0	8 EF1 8 EF2 8 IC1BE 8 EF1 9 EF1		20 24	.517		8 6 15.9 8	$   \begin{array}{r} 13.2 & 7.1 \\     13.2 & 7.1 \\     \hline     6.7 \\     \hline     14.9 & 6.5 \\     14.9 & 7.5 \\   \end{array} $	3.7
21 C 22 D 22 D 22 C	8 EF1 8 EF2 8 IC1BE 8 EF1 8 EF2	18.5 20 24 12.5 12.5	20 24 12 14	.517		0       15.9         6       15.9         8	$   \begin{array}{r}     13.2 & 7.1 \\     13.2 & 7.1 \\     \hline     6.7 \\     14.9 & 6.5 \\     14.9 & 7.0 \\   \end{array} $	3.7
21 0 22 0 22 0 22 0 22 0 ANOT EFFE	8 EF1 8 EF2 8 IC1BE 8 EF1 8 EF2 HER PAIR 0 CT CF BACK	18.5 20 24 12.5 12.5 F TRACE	20 24 12 14 R S	.517 	3. 3. 17. 4. Ere cond	0 15.9 6 15.9 8 6 16.4 16.4 UCTED 0	13.2 7.1 13.2 7.1 6.7 14.9 E.5 14.9 7.0 23/08 TC	3.7 SEE THE
21 0 22 0 22 0 22 0 ANOT EFFE	8 EF1 8 EF2 8 IC1BE 9 EF1 8 EF2 HER PAIR 0 CT CF BACK	18.5 20 24 	20 24 12 14	.517 TUDIES W	3. 3. 17. ERE COND	0 15.9 6 15.9 8 6 16.4 16.4 UCTED 0	13.2 7.1 13.2 7.1 6.7 14.9 7.0 23/08 TC	3.7 SEE THE
21 0 22 0 22 0 22 0 ANOT EFFE 24 0 24 0	8 EF1 8 EF2 8 IC1BE 8 EF1 8 EF2 HER PAIR O CT CF BACK 8 EF1 8 EF2	18.5 20 24 12.5 12.5 F TRACE	24 24 12 14 R S	.517 TUDIES W		0 15.9 6 15.9 8 6 16.4 16.4 UCTED 01 9.0	13.2 7.1 13.2 7.1 6.7 14.9 7.0 23/08 TC	3.7 SEE THE
21 0 22 0 22 0 22 0 ANOT EFFE 24 0 24 0	8 EF1 8 EF2 8 IC1BE 8 EF1 8 EF2 HER PAIR O CT CF BACK 8 EF1 8 EF1 8 EF2	18.5 20 24 12.5 12.5 F TRACE WASHING	20 24 12 14 R S	.517 TUDIES W	3. 3. 17. 4. ERE CCND	0 15.9 6 15.9 8 6 16.4 16.4 UCTED 01 9.0	13.2 7.1 13.2 7.1 6.7 14.9 E.C 14.9 7.0 23/08 TC	3.7 SEE THE
21 0 22 0 22 0 22 0 ANOT EFFE 24 0 24 0	8 EF1 8 EF2 8 IC1BE 8 EF1 8 EF2 HER PAIR O CT CF BACK 8 EF1 8 EF2 NGEF MORE	18.5 20 24 12.5 12.5 F TRACE WASHING	20 24 12 14 R S	.517 TUDIES W		0 15.9 6 15.9 8 6 16.4 16.4 UCTED 01 9.0	13.2 7.1 13.2 7.1 6.7 14.9 7.0 23/08 TC	3.7 SEE THE
21 0 22 0 22 0 22 0 ANOT EFFE 24 0 24 0 24 0	8 EF1 8 EF2 8 IC1BE 8 EF1 8 EF2 HER PAIR O CT CF BACK 9 EF1 8 EF2 NGEF MORE 8.IT LASTE	18.5 20 24 12.5 F TRACE WASHING VIGOROU D ROUGH	24 24 14 R S	.517 TUDIES W	3. 3. 17. ERE CCND WAS CONC ES BUT T	0 15.9 6 15.9 8 6 16.4 16.4 UCTED 01 9.0 9.0	13.2 7.1 13.2 7.1 6.7 14.9 7.0 23/08 TC 23/08 TC	3.7 SEE THE F1 CN LITTLE
21 0 22 0 22 0 22 0 ANOT EFFE 24 0 24 0 24 0 24 0 24 0 24 0	8 EF1 8 EF2 8 IC1BE 8 EF1 8 EF2 HER PAIR OF CT OF BACK 8 EF1 8 EF2 NGEF MORE 8 IT LASTE CT ON SHOR	18.5 20 24 12.5 12.5 F TRACE WASHING VIGOROU D ROUGH T CIRCU	24 -12 14 R S 	.517 TUDIES W AGKWASH 75 MINUT NG AS SE		0 15.9 6 15.9 8 6 16.4 16.4 UCTED 01 9.0 UCTED W HIS STIN A DYE S	13.2 7.1 13.2 7.1 6.7 14.9 7.0 X 23/CB TC X 23/CB TC ITH COLUMN L HAC VER FUDY DONE	3.7 SEE THE F1 CN LITTLE GHT
21 0 21 0 22 0 22 0 22 0 22 0 22 0 22 0	8 EF1 8 EF2 8 IC1BE 8 EF1 8 EF2 HER PAIR O CT CF BACK 8 EF1 8 EF2 NGEF MORE 8 IT LASTE CT CN SHOR R FINISHIM	18.5 20 24 12.5 F TRACE WASHING VIGOROU D ROUGH T CIRCU G THE E	24 24 12 14 R S L Y L Y L Y	.517 TUDIES W ACKWASH 75 MINUT NG AS SE WASH	3. 3. 17. ERE CCNE ERE CCNE ES EUT T EN FROM	0 15.9 6 15.9 8 6 16.4 16.4 UCTED 0 9.0 9.0 UCTED W HIS STII A DYE S	13.2 7.1 13.2 7.1 6.7 14.9 7.0 23/08 TC 23/08 TC ITH COLUMN L HAC VER FUDY DONE	3.7 SEE THE F1 CN LITTLE IGHT
21 0 22 0 22 0 22 0 ANOT EFFE 24 0 24 0 24 0 24 0 24/0 EFFE AFTE	8 EF1 8 EF2 8 IC1BE 9 EF1 8 EF2 HER PAIR O CT OF BACK 9 EF1 8 EF2 NGEF MORE 8 IT LASTE CT ON SHOR R FINISHIN WASH WAS L	18.5 20 24 12.5 F TRACE WASHING VIGOROU D ROUGH T CIRCU G THE E EFT CN	24 24 14 R S S E L Y I I I A CK	.517 TUDIES M ACKWASH 75 MINUT NG AS SE WASH UMN F1 C	3. 3. 17. ERE COND ERE COND ES BUT T EN FROM VERNIGHT	0 15.9 6 15.9 8 6 16.4 16.4 UCTED 01 9.0 UCTED W HIS STIN A DYE S CCVERIN	13.2 7.1 13.2 7.1 6.7 14.9 7.0 23/08 TC 23/08 TC ITH COLUMN L HAC VER FUDY DONE I	3.7 SEE THE F1 CN LITTLE IGHT 17 FCURS
21 0 22 0 22 0 22 0 ANOT EFFE 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0	8 EF1 8 EF2 8 IC1BE 8 EF1 8 EF2 HER PAIR OF CT OF BACK 8 EF1 8 EF1 8 EF2 NGEF MORE 8 IT LASTE CT ON SHOR R FINISHIN WASH NAS L RATES OF ON 25/08.	18.5 20 24 12.5 F TRACE WASHING VIGOROU D ROUGH T CIRCU G THE P EFT CN ROUGHLY	20 24 12 14 R S I L Y I T I A C K I C C L I I J J	.517 TUDIES M ACKWASH 75 MINUT NG AS SE WASH UMN F1 C GAL/MIN	3. 3. 17. ERE CONC ERE CONC ES BUT T EN FROM VERNIGHT FT2.ANC	0 15.9 6 15.9 8 6 16.4 16.4 UCTED 01 9.0 UCTED W HIS STIN HIS STIN A DYE S CCVERIN THER CYN	13.2 7.1 13.2 7.1 6.7 14.9 7.0 23/08 TC 23/08 TC UDY DONE 1 G ALMOST : STUDY WAS	3.7 SEE THE F1 CN LITTLE IGHT 17 FCURS 5-THEN
21 0 22 0 22 0 22 0 22 0 22 0 22 0 22 0	8 EF1 8 EF2 8 IC1BE 8 EF1 8 EF2 HER PAIR O CT CF BACK 8 EF1 8 EF2 NGEF MORE 8 IT LASTE CT CN SHOR R FINISHIN WASH NAS L RATES OF ON 25/08. D LIQUOR G	18.5 20 24 12.5 F TRACE WASHING VIGOROU D ROUGH T CIRCU G THE E EFT CN ROUGHLY OT INTO	24 24 12 14 R S I L Y I L Y L Y I L Y L Y L Y L Y L Y L Y L Y L Y L Y L Y	.517 TUDIES W AGKWASH 75 MINUT NG AS SE WASH UMN F1 C GAL/MIN E SYSTEM	3. 3. 17. ERE CCNC ERE CCNC ES BUT T EN FRCM VERNIGHT FT2.ANC AS FAR	0 15.9 6 15.9 8 6 16.4 16.4 UCTED ON 9.0 UCTED W HIS STIN A DYE S COVERIN THER CYN AS COCL	13.2 7.1 13.2 7.1 6.7 14.9 7.0 23/08 TC 23/08 TC 14.9 7.0 23/08 TC 14.9 7.0 C 23/08 TC C 23/	3.7 SEE THE F1 CN LITTLE IGHT 17 FCURS S-THEN
21 0 22 0 22 0 22 0 22 0 22 0 ANOT EFFE 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0	8 EF1 8 EF2 8 IC1BE 8 EF1 8 EF2 HER PAIR O CT OF BACK 8 EF1 8 EF2 NGEF MORE 8 EF2 8 EF2	18.5 20 24 12.5 F TRACE WASHING VIGOROU D ROUGH T CIRCU G THE E EFT CN ROUGHLY OT INTO N UNITS	20 24 12 14 R S I I I I I I I I I I I I I I I I I I I	.517 TUDIES M ACKWASH 75 MINUT NG AS SE WASH UMN F1 C GAL/PIN E SYSTEM ST NIGHT	3. 3. 17. ERE CONC ES EUT T EN FROM VERNIGHT FT2.ANC AS FAR F1 AND	0 15.9 6 15.9 8 6 16.4 16.4 UCTED 01 9.0 UCTED W HIS STIN 4 DYE S CCVERIN THER CYN AS COCLN F2 WERE	13.2 7.1 13.2 7.1 6.7 14.9 7.0 23/08 TC 23/08 TC 14.9 7.0 23/08 TC 14.9 7.0 C 23/08 TC C 24/08 TC C 24/	3.7 SEE THE F1 CN LITTLE IGHT 27 FCURS 5 THEN HE FCR A

			COLUMN	CPERATI	ON			
DATE	SAMPLE SIGNATION	SOLIDS	FLOW	HACH NO2N	EFF C	OOLER PI	CCOLER	₹
DAY MON			NH:	3N NO3N				
COLUMN	F2 WAS BA	CKWASHED	AT A MEI	DIUM FLC	W FOR A	COUPLE	OF HCU	RS
<u>ON-27/(</u> MIGHT H	<del>d8 to help</del> have becom	<u>-CLEAR C</u> L E trapped	IT <u>SCPE</u> (	OF_THE_M	IXEC LI	QUOR-SOI	ICS IF	11
07.00.1								
27 08 1	EE1	36 40 <u>24 27</u>	. 482	- <u></u>	9.0	6+5		· 4 . 
27 88 9	EF2	18.5 18	.512		9.0	6.5		
28 08 E	EF1				10.0	6.3	3.	6
28.08.5	<u>F2</u>			~	16.6	6.3		
29 08 1		29						5
29 08 E	EF1	69 63	• 485	•	10.0	8.0		,
						Qij		
	IRATE LEVE	LS ARE E		IN THE C	OLUMN E		29/68	PECAUSE
KEEP N	ITRIFICATI	ON AT A L	OW LEVEL	LIN A A	ND B.	UI2. MICI		
66 00 S	564				21. E			
G4 99 E	EF2	·····	······		24.5			
A NITR	ATE SPIKE	OF ROUGHL	Y 15 PP	M WAS AD	DED TC	COOLER 2	2 FCR D4	<b>₩/ũ6</b>
66 89 1	IC1BE	43.5					5.4 1.	, 3
06 89 F	EF1	27	.485		25.0	24.7	7.1	
		199	• 4 35	<u> </u>	22.0	24+1	/ • 1	
ANOTHER	R NITRATE	SPIKE WAS	PREFAR	ED FOR A	DDITICN	0F 15 I	PPM NC31	Ň
	NALL DAL	01 03743	<b></b>			····		
12 09 1			1.90		20.0		<u>5.0 1</u>	3
	EF1 EF2		•469		26.0	25.5	7 • 1 7 • 1	
001.000								
ALSC CO	CMPLETED O	<u>19960 ANU</u> N 07/09.0	GLEANEU DYE STUDI	<u>en satu</u> Ies were	RUAY DZ	FORE AN	D AFTER	WAS
F1 WAS	SEEDED WI	TH KNO3.	ETHANCL	WATER A	ND RETU	RN SLUDI	SE EROM	81
A TRACE	ER STUDY W	AS AGAIN	RUN CN S	SATURDAY	SEPT 1	4. THIS	AAS SIX	1. 70
LOADING	G OF .5 GA	L/MIN	L <u>BEEN</u> R:	E-STARTE	U AL IH	E_NURMAI	. BILKEI	
4.0.0.1								
18 (9 )	LU19E	42.5						
A NITR/	ATE SPIKE	OF 15 PFN	1 NO3N N	AS RUN F	OR THE	19/09 R	ATE CAY	
19 89 1 19 39 5	EC1BÉ FF1	54 62	. 485		20 E			
19 09 E	F2	53	.508	•	20.5			**************************************
SOLIDS E2.SOLI	COMING OU	T OF F1 A	RE A MU	CH LIGHT	ER BRCW	N COLOU	RTHAN	I N .
29 29 1	IC185	48.5		<u></u>			· · · · · · · · · · · · · · · · · · ·	
07 07						~ -		<u> </u>
<u> </u>	<u>- r 1</u>		• 4 5	-159	<u>    11.0</u> -	9.5		<u></u>

			COLUPN	CPERATI	CN			
DATE	SAMPLE	SOLIDS	FLOW	HACH	EFF C	COLER PH	CCOLER	
DAY MON	DESIGNATION		NH	3N NO3N	1257	15.69	<u> </u>	
27 89	EF2		.504		11.0	9.5		
DURIN <del>Signi</del>	G THE ENTIR	E PERIOD	OF CCLU <del>Sure in</del>	MN OPERA	TION TH	IERE WAS	NO <del>A Clccgin</del>	6
<del>- on se</del> Was a	<del>PT 29,DUE T</del> DOED DIRECT	<del>o a redu</del> Ly to co	CTION IN OLER IC	FLCW TH	ROUGH 1	JNIT A,TA JMNS AND	P WATER THE STIRE	ED
OF TH	E 5 DEGREE	NITRIFIC	ATION RU	NS.AT THE WORK	IASTEU IE SAME Ing Rou	TIME A N JGHLY 8 P	TRATE	TION
TO TH	E 1.2 GAL/M	IIN OF TA	P WATER		·		<u></u>	
28 10	EF1		• 51		25.			
20 10	EFZ		. 30		221			
<del>- 07 11</del> 07 11	EF2		.49 .5ĩ		<del>25.</del> 25.			
		<u></u>	·····	······································				
			·					·
				<del></del>				a manga manga minang minang mangang man
	·····	•						-
								سراد ندان والبوامين مب
			•					
	<u> </u>	<u></u>						
			·				·	
<u> </u>				-160-				

								ANAL	YSIS										
DA	TÉ	Ś	SAMPI	LE	UNF	ILT	ERED				F	ILTE	RED			<u></u>		•	
DAY	MO	DES	SIGN	ATION	COD	8 O D	TKN	CO	D 80	00 T	00	NH3 N	N02	N	N03N	TKN	M	ETH	
													·						
A	NAL	.YT ]	ICAL	DATA	FOR C	DENI.	TRIFIC	ATIC	IN COL	LUMN	S								
C C	OLU OLU	IMN IMN	F1	CONTA: Conta:	INS 1 INS 2	INC	HE NOR He Pal	TCN L RI	POLYI INGS	PROP	YLE	NE P	ALL	RI	NGS		-		
T	HE	COL	UMN	S BEG	AN ACC		ATIZAT	ION	JUNE	7 A	ND	CONT	INUO	US	OPER	RATI	ON		
J	UNE	8.	HYD	RAULI	C LOAD	ING	WAS I	NCRE	ASED	TO	•5	IMP	GAL/	MI	N JUI	NE 1:	1.		
<b></b> T	HE	REC	JULA	RSAM	PLING	BEG	AN JUK	E 13									<u></u> .		angen d
1	30 30	6I(		GAM	54	•	16.	4	38		13	15.	0 2	• 2	14.8	5 15	• 0	14.5	
1	30	6EF	1-2	GAM			·		54		30	15.	1 1	• 0	2.5	5 15	•5	1407	
1	30	6E	-1-4	GAM					132		28	16.	4 1	• 3	4.7	7 16	•4		
1:	5 ป	651	-1	GAM	143		17.	1	87		29	10.	4 1	. • U	2.1	16	•4	18.5	-
1	3 <u>∵</u> 0 z n	6EF	2-2	GAM	·····				70		28	14.	7 1	•7	4.0	15	-2	·	-
1	3 - 0 3 - 0	6E	2-4	GAM	165	,	17.	4	94		32	15.	7.1	+ 7	7.1	1 16	•1	17.5	
R	ATE	. DI	195	START	<u>ED 20</u>	796	FORF	1 AN	D 297	<u>196-</u>	FOR	FZ.			<u> </u>			····	<u>`</u>
													<b>.</b>						
2	0 0 n n	6 T (		GPM GPM		)	1.	4	25		11	U.	5 0	• 5	38.5	ل ح	•7	44.5	
2		6EF	1-2	GPN	<u></u>		· <u> </u>		170		51	0.	0 4	•5	24.5	5 1	•1		
2	0 0	6EF	1-4	GPM					136		48	ΰ.	0 3	. 8	23.7	7 1	.1		
2	0 0	DET	1	GPM	155	)	2.	3	123		37	<u> </u>	5 4	• U	5.1	J	•9	16.5	
-2	0-0	6EF	2-2	GPM			·····		88		46	U .	<del>0</del> 6	•5	8 - 5	5 1	•5	<u> </u>	
21	0 0	6EF	2-4	GPM					98		42	<u>0</u> .	6 4	• 6	8.3	3 1	•3	~ <u></u>	
21	0 0	021	· 2	GPM	159		1.	1	140		- 44	: Us	บ่ว	• 2	. 23.41	L. U	• Q -	.14.1	• •
2	9 0	610	TBE	GAM	70		7.	t	45		15	4.	0 5	• 8	23.0	- 4	-0	35.5	10-1
	9 U 9 O	6FI	1-2	GAM			·		161		4つ 		っっ 5	• 0	10.	2 3	•0		_
2º	9 0 9 0	6EF	1	GAM	202	2	5.	5	99		34		20	.7	4.9	2	•4	12•C	
2	 a n	SEL	-2-2	GAM			<u></u>	<u>.</u>	161		49	2.	0 5	. 5	21.5	3 3	.2		-
<u> </u>	9-0	6EI	2-4	GAM					145	فحيريد عبد وتصبي	-45	-2.	2-4	• • •	18.		-0-		- 780
2	9 0	6EF	-2	GAM	174	•	5.	4	136		39	<u></u> .	1 2	•2	11.9	3 2	•6	14.5	
0	50	710	1BE	GPM	42	2	2.	4	21		12	Û.	4 0	•5	20.9	51	•7		
ម	5 U 5 C	756	51AF	GPM GPM					184		63	2.	a 1	.5	24.5	1 2	<b>_</b> N	27.0	
	5-0	751	-1-2	GPM				- <u></u>	159		-54	Ū.	5-1	• 5	17.		-5-	والجريري حواكشماته	-
0 !	<b>5</b> û	7EF	-1-3	GPM					126			ΰ.	0 1	•1	13.2	2 2	•7		
	5 Û 5 0	751	1-4	GPM					150		49	- ţ.		•4	13.7	2	• 0		-
יט יז <del>י</del>	シーゼ 5-1:	1 Et 7FF	·1-2 ·1-6	6РМ - <del>Срм</del>		<u> </u>			11/ - 88			U •	u 1 ∏+	• 4		L 1. 7	• 7 - 9		-
0	5 0	7EF	1	GPM	130		2.	5	92		32	0.	0 1	•3	5.0	1	•5	12.5	-
0!	5 E	7EF	-2-1	GPM					176			Ũ.	5 1	• 0	21.0	i 1	•7		
0!	5-û	721	2-2	GPM	··				150			<u> </u>	1 1	• 3	17.6	5 1	.7		-
ני אח	ט כ ק	1 2f	2-3		· ·		<u> </u>		142			<u> </u>	u •1 <del>a</del> 4	•4	16.i	1	•2		-
0:	. 0	1 <u>-</u> E	<b>∟</b> – +	UFSI					-16]	1-		0.	u I	• 2	1001	~ +	φU		

DATE	SAMPL	.Ε	UN	FILTE	RED			F	ILTER	<u>ED</u>			······································
	DESIGNA	TION											
DAY MO	0		COD	BOD	TKN	CCD	800	TOC	NH3N	NO2N	NO3N	TKN M	ETH
							_						
05_[	07EF2-5	GPM	·····	···_··		142			0.0	1.	7 14.	5 1.7	
.05 1	U7EF2-6	GPM	77		A	121	L 7		U•U		5 12.		40 5
<u> </u>		GPM	33	1	11.0	113	<u>,                                     </u>	45	> 0.0	1.0	4 9.	8 2.1	19.5
40.0	770405	CDM	7	0	7 1	77	,	41			3 4 1. 1	E 6 9	
10 (	DZICIAE	CDM		2	1 0 4			<u> </u>			2 140	2 0.0	22-0
10 0	D7101A	CPM				170	2	57	- 	ະ ດີ	5 12.	1 7.2	2200
10 1	N7FF1-4	GPM				100	<u>,</u>	50	5.0		6 11 .	<u>7 7 1</u>	
10 0	D7FF1	GPM	15	1	7.9	109	- -	.42	5.2	2 0	5 4.	9 6.1	16.0
												<u> </u>	
10 (	07EF2-2	GPM				15:	L	53	3 6.5	5 0.	4 11.	9 7.5	
10 1	07EF2-4	GPM				118	3	50	5.9	3 0.	6 10.	4 6.8	······································
10 (	07EF2	GPM	17	2	8.3	189	3	46	5.5	5 C.	6 7.	9 6.8	18.5
18 (	07IC1BE	GPM	5	9	5.5	3(	]	14	<u> </u>	3 1.	1 18.	9 4.9	
18 (	07IC1AF	GPM		•				60	)				50.5
18 (	07EF1-2	GPM				130	<u>)</u>	3.8	2.8	5 1.	1 14.	5 4.5	<b>i</b>
18 1	07EF1-4	GPM				130	)(	39	3 2.4	· 1.	1 12.	4 3.9	- ,
18 (	07EF1	GPM	17	0	6.3	81	<u> </u>	31	1 1-8	3. 0.	9_3.	9 3.3	17.5
1.8. (	07EF2-2	GPM				169	9	50	2.6	5 1.	2 14.	5 3.6	
18 1	07EF2-4	GPM		_		89	9	3.9	2.0	i. 1.	4 11.	2 3.8	
<u>18 i</u>	07EF2	GPM	19	4	5.2	4(	5	<u>, 25</u>	5 1.6	5 1.	4 4.	9 2.9	16.6
0 F <i>1</i>		60W										~ ~ ~	
25 1	UTICIBE	<u>GPM</u>	·		3.5	191	0	10	0.1	<u> </u>	3 21.	2 2.1	
25 1	UTEGIAF	GPM COM				4 5 1	<b>`</b>	51		n 4	G 4 /	7 2 1.	24.2
22 1	07551-2	CPM	<u></u>			17	2			3 <u>1</u> 0 - 4	7 4 8	5 2 0	
20 1	07 <u>5</u> 51-4 07554	CDM	17	E	7.9	7 7		23	00. 14	⊾ – – – – – – – – – – – – – – – – – – –	7 <u>1</u> 00	2 LAU 7 2.2	44-6
23 1	UTEFI	GFR	12	9	Jez		5	20			<u> </u>	1	1100
25 0	7552-2	CDM				443	z	31		1 1.	5 17.	7 2.0	
25	07EF2-4	GPM	·			94	5	33		2.	$\frac{7}{7}$ 11.	2 2.0	·
25	UTEF2	GPM	14	2	2.9	84	4	27	6.3	5 2	6 3.	2 1.9	18.5
06 (	08IC2BE	GPM	8	1	2.1	31	0	11	L 0.1	L 0.	0 25.	5 0.4	
66 (	08IC1AF	GPM						40	3				
06	08EF1-2	GPM				61	В	59	3 5.2	2 8.	8 15.	2 2.1	
66 6	C8EF1-4	GPM				61	8	52	2 6.2	2 1.	2 10.	9 2.1	
06 (	08EF1	GPM	24	4	5.3	5:	L	43	3 Ű.1	L 3.	7 2.	4 2.4	3.5
06	08EF2-2	GPM					5	59	9 ü.1	L 0.	6 22.	9 2.8	
06 (	08EF2-4	GPM				E	8	48	5 0.2	2 1.	2 11.	8 2.5	
06	<u>08EF2</u>	GPM	18	8	3.2	6	0	38	3 0.1	<u> </u>	5 5.	5 2.3	21.0
		~ <b>~</b> · · ·	-	_			-						
08	USICIBE	GPM	(	2	16.9	1(	b		2 14.1	<u>. U .</u>	1 40.	5 15.5	•
08	UBIUIAF	GPM					2	57	1 7 6 1		ດ ຄ່	0 1	21.6
	00551-2	CD14		<u>·</u>			2	01		t U.		U 4.5	
100 no 1	UOEF1=4 NgEE4	0771 C D M	77	£	o <i>I</i> .		2 0	10	5 U.e.S 5 a 5	ן עני עיין ע	1 De'	7 CON 7 7 1	71. C
UO	UOLFI	UFN	- 33	<u>,</u>	0 • 4	<u> </u>	0	04	L U.	JUe	T N.	<u> </u>	34+L
00	88552-2	CDM				6	R	79	R 11.4	L 0	1 1 2	1 2 1.	
00	DAFE2-4	CPM				2	<u> </u>			<u>- U</u> .	1 1	<u> </u>	
00 1 A 1	GAFE2	GPM	28	A	<u>8_</u> 4	6 C C 6 C	R	20	5 0-1		n n.	- 2-3	14-6
			20	<u> </u>			<u> </u>	0.	/ U+.		<u> </u>	<u> </u>	U

RESULTS OF FEED ANALYSIS ON D8/08 INDICATES A PROBLEM WITH THE SAMPLE HENCE THE DATA WILL NOT BE USED FOR RATE CALCULATIONS.

DAT	E SAMPL	E	UN	FILTE	RED		F	ILTER	ED				
AY	DESIGN/ Mo	ATION	COD	80D	TKN	COD BO	TOC	NH3N	NO2N I	NO 3N T	KN ME	ETH	
		<u></u> ,,,								<u></u>			
13	08IC1BE R8TC1AF	GPM GPM	4	• 0	9.2	12	10	7.5	0.2	27.8	8.3	27.6	
13	U8EF1-2	GPM				44	64	4.1	2.0	9.9	6.7		
13	08EF1-4	GPM				44	62	3.5	2.5	7.7	5.2		
13	08EF1	GPM	17	2	7.2	41	32	2.7	0.7	1.3	4.6	6.0	
13	08EF2-2	GPM				53		5.2	2.4	13.8	6.7		
13	08EF2-4	GPM				45	68	4.0	3.2	8.5	5.7		
13	08EF2	GPM	18	34	6.5	41	- 34	2.5	1.6	2.7	4.3	7.0	
TH	E FOLLOW	ING SI	AMPLE	S WER	ETAKE	N FOR NI	TROGEN	BALA	NCE P	RUPOSE	S.	•	
09	081F1-S	·-···			4.6	· · · · · · · · · · · · · · · · · · ·		1.6	0.4	28.6	2.2		
09	08EF1-S				2.1			0.4	0.1	8.5	1.3		
12	081F1-S				2.1			J.1	. 0.1	11.6	0.1		
12	08EF1=5				2.6			0.0	0.0	1.1	1.5		-
13	00111-5				( •5 = 1			2 0	) U1_ N E	.21.4	7.5	٠	
13	00EF1-3							7.3	0.02	- 1+C	3.3	<u> </u>	<u> </u>
13	08EF2-S				6.4			1.9	- 1.2	3.7	3.4		
14	- 08172-5				5.4	· · · · · · · · · · · · · · · · · · ·	<u></u>	2.6	0.3	22.2	4		
1.4	08EF2-S				4.3			ũ • 6	1.5	4.8	2.3		
15	081F2-5			<u></u>	6.9			4.9	0.1	23.0	5.9		
15	08EF2-S				4.0			<u> </u>	1.8	2.0	2.2		
16	081F2-S				4.4			2.3	0.1	26.0	3.2	_	
TH	E ABOVE S Re Measur		ES WE	RE AL	L GRAE	S TAKEN /	AT THE	SAME	TIME	THAT	GAS	RATES	
15	USICIBE	GPM	4	19	13.1	25	19	11.4	01.	274	12.5	== (	-
12	00101AF	GPM CDM				403	47 	- <u>-</u> 8			-7-6	シフ・レ	
15	08EF1-4	GPM				102	85	4.6	2.9	7.5	6.5		
15	UBEF1	GPM	27	0	6.9	70	53	2.6	1.2	1.1	5.1	33.1	
15	38EF2-2	GPM				53	- 55	6.5	2.1	17.9	8.4		
15	08EF2-4	GPM				41	62	4.9	3.2	6.7	6.8	_	
15	UBEF2	GPM	-23	8	8+1	45		3.2	1.7	1.9	5.0	34.0	Caleon
SA Co	MPLES WER NDUCTED (	RE COL	LECT E COL	ED ON	2J/U8 SINCE	JUST PRI START-UP	TOR TO	THE YS PR	FIRST	BACKI	ASH 1	TO BE	
20	08IC1BE	GPM				21		1.9	0.7	18.2	3.5		
20	08EF1-2	- 1949 - 1949				62		<b>U • 2</b>		11.7	2.0		
20 	08EF1-4	GPM GPM	<u></u>	<u></u>					0.3	10.0	1.5	· · · · · · · · · · · · · · · · · · ·	
-						-				_			
-20	38EF2-2	GPM	<del></del>	•		83		û • 2	1.0	11.6	1.6		
20	UBEF2-4	GPM				37		0.1	. 1.0	3.2	1.2		
20	UDEFZ	GMA				41		0.1	. U.C	-1-9	0.5		
<b>T</b> H	URSDAY R/	ATES /	ARE T	AKEN	60 HRS	AFTER 1	5 MINU	TE BA	CKWAS	H	<u> </u>		
	- FRTCIBE	- <del></del>		÷ <del>n</del>						- <u>+ 11 - 8</u> -	-2-1-		

ANALYSIS

ANALYSIS

_____

DAT	E SAMPI	LE	UN	FILTE	RED			FI	LTER	ED			
<u>مر بار ارتبار ارتبار</u>	DESIGN	ATION			· · · ·								
DAY	MO		COD	800	TKN	CCD	BOD TO	DC N	H3N I	NO2N M	103N 1	IKN ME	ETH
													_
22	J8IG1AF	GPM						26					26.0
· 22	08EF1-2	GPM				107		35	6.6	1.3	18.5	3.0	•
22	08EF1-4	<u>GPM</u>				112		32	0.7	1.8	12.8	2.3	· · ·
22	08EF1	GPM	10	3	2.07	62		21	0.5	1.5	4 • U	1.0	15.5
22	08552-2	CPM			. <u></u>	103	<u> </u>	30	0.6	4 5	17 0	4 0	
22	08EE2-4	CPM				107		31	1.3	1.6	8.G	3.2	
22	DAEE2	GPM	·····			66		24	<u><u> </u></u>	1.7	5.1	1.6	7.5
									••••			2.00	
SA	MPLE FOR	28/0	8 WAS	A SP	ECIAL R	UN CN	THE (	COLL	IMNS	TO SE	E THE	EFFE	CT OF
LO	W INFLUE	NT NI	TRATE	LEVE	LS ON R	EMOVA	L						
					-								,
<u> </u>	LUMN F1	WAS B	ACKWA	SHED	VIGOROU	SLY F	OR 16	HRS	S ON	AUG 24	+ AND	25	
28	08IC1BE	GAM							9.8	0.1	7.0	10.6	۲
28	08EF1	GAM							7.8	0.3	4+6	10.2	
28	UBEF2	GAM							8	<u>U.3</u>	4.4	10.3	
20	5 9 T C 4 0E	COM	E	0 4 0	16 E	20		4.7	42 0	6 A	9 5	4 E 4	
23	6 REC1 AE	CPM	9	0 10	10.65			26	12.0-0	U.e.L.	0	12.12	
29	0.8FF1-2	GPM				45		47	7.5	0.2	8.1	9.6	
29	085F1-4	GPM	<u>-</u>			37		46	7.2	0.2	8.2	9.3	
29	08EF1	GPM	13	5	12.3	33	.*	27	6.6	5.2	6.3	9.5	
29	08EF2-2	GPM				41		39	7.6	0.2	8.3	9.9	
29	08EF2-4	GPM				29		18	7.3	0.2	7.4	9.7	
29	08EF2	GPM .	12	3	12.2	37		17	6.7	0.1	5.1	9.6	والمري عمر وجرال فرما الم
										-		_	
	MPLES FO	R 04/	UY WE	RE AL	SU LAKE	NIU	SEE II		++++		LOW II	VF NU.	5
υŪ	NCENTRAL	TONS		IAL R	EMUVAL.								
04	A GTC1 BF	GAM		· · · · · · · · · · · · · · · · · · ·				10	0.3	0.1	-16.4		· · · <u> </u>
04 11	09FF1	GAM						24	0.5	0.2	1.1	1.9	
64	09EF2	GAM						24	0.4	0.3	1.7	1.7	• • • • • • • • • • • • • • • • • • •
•													
06	09IC1BE	GPM	7	5	15.6	29	·······	11	14.0	0.5	48.0	14.3	
06	09IC1AF	GPM						44					
06	09EF1-2	GPM				83		36	12.5	4.3	24.7	12.5	
06	09EF1-4	GPM				54	-	29	11.4	5.7	14.8	11.4	
06	09EF1	GPM	8	3	14.2	48	·	17	11.3	4•2	1.5	11.6	
	00550 0	<u> </u>				400	- <u>-</u>		40.4			4.2.4	
06	09EF2-2	6PM				100		39	12.4	5.9	3/.9	12.4	
00	09272-4	CPM			24 7	12		23	11+4	2.1	10.3	14 5	
30	09282	Gr H			20.07	40		22	1105	4 • /	3.5	77.02	
ON	FRIDAY	AFTER	NOON	AND S	ATURDAY	<u>C01 U</u>	MN F1	WAS		ASSEM		THE PI	ACKING
WA	S CLEANE	D AND	THE	UNIT	WAS RE-	START	ED WIT	ГН Л	1 24	HR NO	3 PLU:	S MET	HANOL
BA	TCH SPIK	E.A T	RACER	STUD	Y WAS C	ONDUC	TED BE	FOF	RE SP	IKING	RETU	RN SLI	JDGE
FR	OM CLARI	FIER	81 WA	S USE	DASA	SEEDI	NG MA	TERI	[AL.				
			· · · · ·										
12	091C18E	GPM	7	7	14.0	40		18	11.2	0.1	35.5	13.6	
12	D9IC1AF	GPM						78					
12	09EF1-2	GPM	- <u></u>	<u></u>		<u> </u>			8.3	4.7	19.3	8.7	
12	09EF1-4	GPM		•	<u> </u>	57		~-	7.3	7.2	11.8	8.8	
12	U9271	649	10	ប	11.0	57		23	6.2	0.5	5.5	(.(	

ATE SAMPLE	UNFILTE	RED		FILT	ERED	
IY MO	COD BOC	TKN	CCD EOC	TOC NH3	N NG2N NC3N TKN METH	-
12 09EF2-2 GPM			61	7.	•5 8•2 13•3 8•7	
12 09EF2 GPM	79	7.5	37	23 4	.7 8.0 3.6 6.3	
09 09IC1BE GPM	52	7.1	34	12 4	.5 0.2 41.3 5.5	-
19 09EF1-2 GPM				2	.4 3.7 17.3 4.4	
19 09EF1 GPM		3.3		. 0,	•4 1•1 1•8 1•5	
19 095F2-2 GPM	· · · · · · · · · · · · · · · · · · ·	<u>.</u>	······	3.	.7 2.8 24.8 5.0	
19 09EF2 GPM		4.7			• 9 - <del>3 • 4 - 21 • 6 - 4 • 1</del> • 6 - 4 • 3 - 10 • 2 - 3 • 1	,
27 09IF1			132	9.	.1 0.1 40.4 11.7	
27 09EF1-4	4.06	474	56		• 3 1• 4 10• 5 7• 6	
	<u> </u>	<u>_</u>	45		• <u>5 1 • 4 1 • 5 • 6</u>	~- <u></u> -
27 091F2-2			80	8. .8	•2 0•1 33•4 8•8	
27 09EF2-4	344	15.5	<u>81</u> 93	91 4.	• <del>8   0 • 2   27 • 3   8 • 7</del> • 2   5 • 2   7 • 3   4 • 8	
28 10IF1			47	. Ĉ ,	5 1.9 91.1 2.7	
28 10EF1-2 28 10EF1-4			36	1.	•9 2•6 77•0 3•3 •1 2•4 59•6 2•5	
<u>28.10FF1</u>	275	17.4	40	18 2	0 2.3 53.7 4.1	
28 10 IF2 28 10 EF2-2			40	<u>.</u> 0.	<u>4 1.9 90.1 2.7</u> 6 2.3 88.7 2.4	
28 10EF2-4 28 10EF2	485	39.8	38	<u> </u>	9 2.6 67.4 2.4 0 4.5 68.5 3.7	. <u>.</u>
07 11IF1		<del></del>	- <u>ora-ca-ota-adapting</u>	3,	.2 2.0 52.1 1.1	اقرار بيون الموارزي
07 11EF1-2 07 11EF1-4		<u> </u>		.ق 2.	<b>1 3.7 41.3 1.6 7 4.0 28.0 2.4</b>	
07 11EF1		12.5		24 1	6 3.2 23.8 3.1	
07 111E2			· · · · · · · · · · · · · · · · · · ·	£,	<u>1 1.8 EQ.2 1.0</u>	
07 11FF2-4		· E A		1	<u>4 5.5 34.5 3.5</u>	
Ur 112F2		5.0	<u> </u>	31 60	• 7 6•2 47•8 2•3	

-

---

•••

ANALYSIS

-165-

# APPENDIX B

.

~

### ANALYTICAL METHODS

-

.

#### ANALYTICAL METHODS:

### Total Kjeldahl Nitrogen

Total Kjeldahl nitrogen analyses (organic plus ammonia nitrogen) were performed according to Technicon Autoanalyzer Industrial Method 30-69A. Essentially this procedure consists of digestion of organic matter at 380 degrees C followed by measurement of the ammonia produced using the Berthelot reaction in which the formation of a blue indophenol complex occurs when ammonia reacts with sodium phenate followed by the addition of sodium hypochlorite. Glycine standards were used for calibration. For keeping unfiltered samples homogenized in the sample cups the system has two air aspirators. One aspirator provides complete mixing in the cup being sampled while the second aspirator mixes the next cup on the tray.

#### Ammonia Nitrogen

Analyses of ammonia nitrogen were conducted using Technicon Auto-analyzer Industrial Method 18-69W. This is essentially the same technique employed for Total Kjeldahl nitrogen with the omission of the selenium dioxide/sulphuric acid/perchloric acid digestion step which ammonifies the organic nitrogen fraction. Ammonium chloride standards provided calibration.

-167-

#### Nitrite

Technicon Auto-analyzer Industrial Method 35-69W was used for nitrite nitrogen determinations. This technique involves a reaction between nitrite and sulphanilamide under acid conditions to form a diazo compound which in turn is coupled with N-1-naphthylethylenediamine to form a reddish purple azo dye. Colorimetric determination is then made on the sample.

### Nitrate + Nitrite

Nitrate plus nitrite nitrogen analyses were performed using Technicon Auto-analyzer Industrial Method 33-69W. In this method, the nitrate nitrogen is reduced to nitrite in a copper-cadium reduction column. The sample is then analyzed for nitrite nitrogen as described previously.

#### Chemical Oxygen Demand (COD)

Early COD determinations were done according to the dichromate reflux method described in "Standard Methods" (1971). During the research period, a modified version of Technicon Auto-analyzer Industrial Method No. 268-73W was adapted for COD analysis. A Technicon Solidprep II sampler was introduced in place of the normal sampler. This allowed analysis of samples containing suspended solids and provided high shear homogenization of samples with the dichromate and sulphuric acid reagents. Standard solutions were prepared using a combination of urea, beef extract and chloride salts.

-168-

The standards were first analyzed using the "Standard Methods" reflux technique and then analyzed on the Technicon equipment. The standard peaks produced on the Technicon System were then calibrated against the "Standard Methods" results. This complicated approach was necessary since the sample digestion time in the Auto-analyzer was shorter than that in the standard reflux test. This resulted in a lower degree of reaction completion with the Auto-analyzer when heterogeneous sewage samples were tested. With this procedure_modification_in effect;Auto-analyzer=COD_results=for sewage_samples_were=generally_only~55to~7;percent=lower=than results=obtained via=the="Standard-Methods" technique.

### Biochemical Oxygen Demand (BOD)

The 5 day, 20 degree C BOD determinations were performed according to the method described in "Standard Methods" pages 489-495-(1971).

#### Total Soluble Organic Carbon (TOC)

Twenty micro-liter samples previously acidified and purged were injected into a Beckman Infrared Carbon Analyzer. The resulting peaks were compared to a calibration curve prepared from standards using anhydrous potassium biphthalate.

### Suspended Solids

Gelman .45 micron glass fiber filters were dried, but not washed, for at least two hours in a 103 degree C oven.

-169-
They were then cooled in a dessicator and weighed. Suspended solids determinations were made by filtering a minimum of 10 mL of solution through a filter. The filter was then re-dried at 103 degrees for two or more hours, dessicated for 15 minutes and re-weighed. The increase in weight was taken as a measure of the suspended solids.

### Dissolved Oxygen

An Electronic Instruments Ltd. Dissolved Oxygen Meter Model 15A was used for dissolved oxygen determinations. It was found necessary to calibrate the probe roughly once a week.

### Temperature

The D.O. meter also included a temperature probe and this was used for temperature measurements of the feed streams and the RBC. Normal centigrade calibrated laboratory thermometers were used to measure column effluent and air temperatures.

### pH

pH was measured using an Orion Specific Ion Meter (Model 401) together with Fisher Combination electrodes (Cat. 13-639-90).

#### Alkalinity

By using the Orion pH meter, 50 mL samples were

-170-

titrated to a pH of 4.8 by addition of .02 N sulphuric acid. Results were expressed as mg/1 as calcium carbonate.

#### Methanol

Direct aqueous injection gas chromatography on a porous polymer column was employed to determine methanol. Filtered samples were acidified by addition of concentrated hydrochloric acid to a pH around 2.0. The samples were then frozen until the time of analysis. A description of the procedure is given by Fox (1973).

### Gas Analysis

A Fisher Hamilton gas partitioner (Model 29) with helium carrier gas was used to separate and analyze the mixture of gases collected from the denitrification columns. A Hamilton Co. (Reno Nevada) Gas-Tight syringe, 1001-LT, was used to inject .5 ml gas samples into the chromatograph. A 42 inch silica gel column and a second column consisting of 13 feet of molecular sieve 13x were employed to separate the mixture. Known mixtures of oxygen, nitrogen, carbon dioxide and methane were used to provide a calibration of the instrument. Operating details are discussed fully in the manual which is supplied with the partitioner.

Dissolved nitrogen gas concentrations in liquid samples were also measured using the same gas partitioner. A small liquid retention chamber was added to the system into which .5 ml samples of liquid containing dissolved

-171-

nitrogen were injected. The nitrogen in the sample was stripped from the liquid by carrier gas which passed through the chamber on its way to the partitioning columns. Calibration was provided by saturating aliquots of distilled water (with nitrogen gas) at various temperatures between 0 degrees C and 40 degrees C and then injecting these into the special chamber. Saturation concentrations of nitrogen in water at varying temperatures were plotted from data given in Fair and Geyer (1968). A flow diagram of the gas partitioner as it was set up for dissolved gas analysis is given in Figure B-1. Normally about five liquid injections could be made before it was necessary to eliminate the pressure in the system by shutting off the carrier gas so that the chamber could be emptied and dried. Even if larger capacity chambers were used, it is not recommended that more than about five samples be run at any one time as it is important to ensure rapid stripping of the dissolved gases by the helium after injection. If stripping is too slow, separation of the gases in the columns can become a problem. Also, frequent replacement of the Drierite packing in the tubing following the liquid injection chamber was necessary to prevent water vapor from reaching the silica gel and molecular sieve columns. Figure B-2 shows typical results of a dissolved gas analysis using effluent from the denitrification columns.

It should be noted that dissolved gas analyses could have been facilitated somewhat by inserting a four way valve

-172-

into the system that would allow the carrier gas flow to by-pass the liquid chamber. This would allow chamber cleanout and replacement without affecting the gas flow through the detector which is sensitive to gas flow fluctuations.

6

-173-

# FIGURE B-1

# FISHER HAMILTON GAS PARTITIONER (MODEL 29) GAS FLOW DIAGRAM FOR DISSOLVED GAS ANALYSIS

FROM CYLINDER

FRONT VIEW OF PARTITIONER WITH HOOD REMOVED

A: DRYING TUBE CONTAINING DIERITE

HELIUM FLOW

- B: THERMAL CONDUCTIVITY DETECTION CELL
- C: SMALL DRYING TUBE WITH DIERITE
- D: LIQUID INJECTION CHAMBER WITH PORUS DIFFUSER AND SERUM CAP
- E: PVC TUBING CONTAINING DIERITE
- F: SILICA GEL COLUMN
- G: MOLECULAR SIEVE COLUMN



-175-

# APPENDIX C

ŧ

### COMPUTER PROGRAMMES

.

₽ROGRAMME #1

÷

NNN N	NNNNN NNNNN	NNNN	<u>INNNI</u> INNNI	NNNN N	INNNN	INNNF INNNF	NNN	NNNNN NNNNN	NNNN	NNNNI NNNNI	<u>innn</u> Nnnn	INNNN INNNNI	<u>VNNNN</u> VNNNN	MNNNN MNNNN	NNNN NNNN	<u> </u>	
RAM	TST		73	3/73	0P1	=0	TR	ACE					FTN 4	•2+P3	83	1	2/0
,	ç	PRO	GRAM	TST	(INPL	JT, 0l	JTPU	T,TAP	E5=1	NPUT	TAPE	6=0U	TPUT)	   	• /		
		THE	TWC	CHIE	F REF	ERE	VCES	USED	FOR	THIS	S PRC	GRAM	ME AR	E	•		·•.
h			1.	LEVE	NSPIE	ïL,	CHE	MICAL	REA	CTIC	N ENG	FINEE	RING	, 'CHA	PTER 9	<u> </u>	•
			2.	TIMF TANK UNIV	ERSIT	VA STER	RIAT 196	ION I HESIS 6.	N AX , DE	IAL N PT. (		IG IN IEM EI	AN A NG+,	ERATI MCMAS	ON TER	••••	-
		CORI		VAL		R TH	HE D TIM	ISPER E VER	SION SUS			SOLV	VED BY	Y USI TIMPA	NG THE NY . (PP	31	- 3
	¥	THE	CST	<u>r in</u> N 9-7	SERIE 5 IN		DEL	<u>IS</u> S TFL	OLVE	D BY	TAK]	ING_TI		RIVAT	IVE OF	<u> </u>	
1		SOL OF THE	VING THETT DRET	FÓF - JHE CAL	THE N TA IS RESID		R O IND TI	F ĒQU By di Me.	AL T VIDI	ANKS NG TI		AK D	ŝ, j re ti	ME BY	TERMS THE		
-		THE		) VAL TTAUG	UES F		THE THAP	DISPE TER 2	RSIO OF	N MCI Timp/	DEL A NY+-	RE-SI	OLVED	B) I	TERATI	ON	
· · · ·		THE EQU,		VAL 9-3	UES F 5 IN	OR LEVE	THE	CSTR IEL F	IN S OR V	ERIES	S_MU[ JS_V/	DEL AI	RE SO	LVED HETA.	USING		· · · ·
	•	DIM DIM DIM DIM	NSI NSI NSI NSI	ON CON CON CON CON CON CON CON CON CON C	500) 0(2,1 B(100 UE(10	CUL 00) ), TE	(500 U (5 BAR (	),TAN 00),A 2),RA	KS (5 MU (5 TIO (	)•AW •5001 500)	(5) •0 •COC •BETA	012P( 0(5) (500)	5).TH 500). .ETA	ETA(2 CCI(1 (500)	,100) 00)		
(	<b>-</b>	DIM	INSI	DN CE	1200)								•				
	¥	VOL - TPE	X=PE	NK VO Eak T	LUME IME I	IN L		ES ES		1	/FLK= )YTN=	FLOW	IN L	I 股ES	ZMIN IN LII	RES	
~ -		N=NI CII		₩C OF CF CF	DATA DYE	PTS IN E	FFL	uent:	PP <del>B</del> -	L	) = M ]	NULE	S- BET	WEEN	DATA	13	1
1 <b>99</b> (* 1	•	REAL REAL REAL	)(5,1 )(5,2 )(5,3	[) VO 2) N 3) (C	(I),I	LR,1	PEA N)	K,DYI	NIDY	CONI	DT	~~~~~			9999-9999-9999-9999-9999-9999-9999-99999		
	÷	PER	CENT	DYE	RECOV	ERY						- <u></u>	•				
	•	AMT		(1) #D	T#VFL	.R#1(	) • **	(-6)			-						
		DO AMT LUL		(=2,N +(C(	I)+C(	I-1)	)*D	T*VFL	R#10	• * * (-	-6)			an a fair an			
	100	CON DYE PER	INUE = D = CL	CON #	DYIN4 /DYE4	10.	** (-	6)	<del>,</del>							• •	- <u>-</u>
		CAL		TION TION	OF ME OF PE	AN F	RESI NT S	DENCE	TIM NT Z	E OF	THE	Tota	DYE	RETR	IEVED	an fai co an <mark>ana</mark> n	

2

- -

د این در این به به به محمد می د. این این این در این به به محمد م

111111

11

. . . . . . . . .

	PROGRAM TST	73/73	0PT=0	TRACE	-	FTN	4.2+P
	Č		dad metering gap and a second diffe				
60		$\frac{TBAR(1)}{ANI} = VOLI$	I/VFLR		- <b>7</b>		
5 m 7 m	. 201	I = I ZONE = CUL(N) IF(CUL(I)•GT•Z	/2. ZONE) GO	TO 200		•	,
65	· · · · · · · · · · · · · · · · · · ·	$\mathbf{I} := \mathbf{I} + \mathbf{I}$	<b></b>	·····	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	
	200	GO 10 201 TBAR(2) = ANT* DFAD = (твар(1	*DT 1)TRAP(	2))/TBAR(1)	• • •	· • ·	
70	C C C	CALCULATION NU	JMBER OF	TANKS IN SER	[ES		
753		TP2 = TPEAK/TE TANKS(1) = 1.7 TANKS(2) = 1.7	JAR(2) /(TP1#(1) /(TP2#(1	:/昭曰:33			•
	Č.	TRUNCATE TO NE	EAREST	HOLE NUMBER OF	TANKS		
800		AW(1) == TANKS	ш÷́		•		
a an ann an Startenna	503	$IF(AW(1) \cdot LT \cdot Af$ $AA = AA + 1 \cdot$	4 <del>)</del> -60-70	-202			* به بر ب
	202	GO TO 203 AW(1) = AA - ,	.5				
85	2.5	AW(2) = TANKS( AA = 1.5 TE(AW(3)) = A(	(2) ^\ co 70	204			
- معتقد بوق و موقع مراجع الم	-02	$\frac{11}{AA} = \frac{AA}{A} + \frac{1}{1}$	4) 60 IV	204	· · ·		
9 <del>0</del> -	204- C:	AW12) = AA	•50			`	· · · · · · · · · · · · · · · · · · ·
•	<u> </u>	CALCULATION UP	TIMPAN	YZS PEAK TIME	DANT ANIES	<u> </u>	
95	U*	IF(1TP1.GT.0=0 IF(1P1.GT.0=3	037 • AND • 37 • AND • 1	(TP1.LT.0.3)) TP1.LT.0.87) (	GO TO 206 30 TO 207		
, and the second se	206	$\begin{array}{c} 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 208 \\ 0 & 10 & 10 \\ 0 & 10 & 10 \\ 0 & 10 & 1$	TP1##(-1	•34))			
100	207	DULP(1) = 4.02	27*(10.*	*(-2.09#TP1))	•		
·····	508	WRITE (6,300) IF (TP1.LE.0.03	3) GO TO	206			
105	209	CONTINUE		(TP2-1 F-0-31)	60 TO 210		
****	•	IF ((TP2.GT.0.3	3) . AND . T	TP2.LE.0.8))	30 TO 211		
		<u>ĎŮL P (2) = ,2*</u>	(TP2## (	1.34))	•		
110	211	$\begin{array}{c} 0 & 10 & 214 \\ 0 & 10 & 214 \\ 0 & 10 & 214 \\ 0 & 10 & 214 \end{array}$	27*(10.*	*(-2.09*TP2))	-		
	213	WRITE (8:300) IF (TP2.LE.0.0:	3) GO TO	210			
		GO TO 211					

-178-

~~n			UFIEU		
~	214	CONTINUE			
<u> </u>		CALCULATION	OF C/CO	VS THETA VAL	LUES ECR CSTR MODELS
C C		DERIVATIVE A	PEAK D	TE CONC METH	OD USED
•	•	DO 101 I=1,2	T )		
		XX=1.	•		
	216	IF (AW(I).EG.	BB) GO T	0 215 -	· ••
		$\frac{XX=XX*(AW(T))}{BB=BB+1}$	-88)		
		GO TO 216	•		· · · · · · · · · · · · · · · · · · ·
	212	$\frac{\Gamma}{IHETA(I,1)} = XX$	0		
.*	••••	DO 102 J=2,2	1 Theta/t	·J-11 + .05	
	102	CCO(I,J) = x/	XX#THETA	(Ī,Ĵ) ++ (Ă₩(I)	$)-1_{\bullet}$ *EXP(-AW(I) *THETA(I,J))
	·	$\frac{1}{1} = \frac{1}{2}$	THETA (1	<u>+-1) + +2</u>	
	103	$CCO(T_{D}) = X/$	XX#THETA	(1,J) ** (AW (1	)-1.)*EXP(-AW(I)*THETA(II.J.)
<u> </u>		CT-ACHILATTON		CTCO MALIE	C EROM CIDE-IMENTIAL DAMA
č		OLACOLA FIGH			S FROM EMPERIMENTAL UNTA
		$CNCJ = DY_{IN} $	UYCON/VO	LISPER/100.	
	•	DRAG = 0.		······································	
		DO 104 I = 1	•30		
	···	$\frac{NN = NN + 3}{MM = MN + 1}$	······	*******	
		RATIO(MM) =	C(NN)/CN	OT	7
		$\frac{BETA(MM)}{BETA(MM)} = DR$	AG/THARL		
	104	LIA(MM) = CR LM = (N - 9A)	AG/TBAR( /10 + 29	27	
		105 I = 3	1.9- IM		
	~	DRAG = DRAG	+ 10.*DT		
		NN = NN + 10 RATIO(MM) =	GINNIZON	OT	
		BETA(MM) = D	RAG/TRAP	(1)	
	105	CONTINUE	AGY CINUT		
C C		CALCULATION	OF C/CO	VALUES VS TH	FTA FOR DAUL METHOD
č					
L		M = 1			
	40	$\frac{1=1}{AMU(M \bullet T)=1-4}$			<u> </u>
	, E	U(M) = 5/DULP	(M)	01	
	4⊃	ER=_COS(AMU)	M.II)/ST	N (AMULM. I)	
•		FR = FR = ANU IF (FR) 45.45.	(M,I)*DŰ 5n	LP(M)+ •25/(	AMU(M, I)*DULP(M))
			v		
		·····	•		
			-		

3

•

~ <b>~ •</b> • • • • •	• • • • • • •	:2 · : 2	·_ · _ · -		· · · · · · · · · · ·	e o nova o e na na na secono o secono se secono se secono se secono se secono se
ROGRAM	TST	7	13/73	0PT=0	TRACE	FTN 4.2+P383

	50	AMU ( FR = FR=	M+1) - COS	14 =  UAA)  UAA)	4U(M.I) (M.I)) (M.T)	) + . /SIN(	00001 AMU(M,	1))	MIL(Mat)		1974 - 1974 - 1974 1971 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 -	• .	• •
	55	IF (F AMU ( FR =	R) 55 M, I) COS	•50 •5 = AN (ANU	50 U(M,I) (M,I))	) /sIN(	000000 AMU (M					~	•
•	60	FR = IF(F I= I AMU(	FR R)55 + 1 M,1)	- AMU ,55,6 _= AN	)(M+I) )) 4U(M+T	*DULP	(M) +	•25/(	AMU (M.I	) # ₀ ULP (	(M) )	. •	-
	•	IF(I M ≔ IF(M DO 8	LE.	50) ( 1 2) G( 1,2	50 <u>t</u> ó 70 4	45 0		10.0	-			• <b>**</b>	
ور موجوع من المراجع ور محموم الم	999	ZETA DO 7 ZETA COCO	= 0 0 K= =-Z (M+K	•0 1•30 ETA= 1==(			· •						ا ہے تک ہے اس میں سیری ا
		DO 6 A=2. B=EX D=U(	D=1= D#AM P.(U() y)##	1 • 50 U(N • 1 M) - { ( 2 - + - 6	) + (Ur U-(M) + 0 + U (	My#51 #2_+- M)_+-	AMU (M) AMU (M) AMU (M)	My []) 1)##2 []##2	+- AMU()	437)*Co L(M)))3	STAMUL ZETAT	<u>N; []]</u>	
	998≞ 65≓ 67	CETI COCO CONT CONT	INUE INUE	A# <del>8</del> /[ ) = - (	0001M	∋K) = +	- CE (1)	÷	•	· -			
	70 80	CONT CONT PRIN		STEUC	TIONS	AND	DATA F	RESEN	TATICN J				294 •
С				700+							•		•••••
·	700	WRII FORM	E (69 AI (≠ EI 60	1007 1797 7811	Ē				TRACE	₹⊇ <b>₽</b> E5₽0	NSE AN	ALYSI	S#1///
	700 701 702	WRII FORM FORM WRII FOBM	E 169 AI (# E169 AI (# E169	701) 701) 701) 7027 7027 7027	- - -				TRACE DENI HYDRAI	RESPO	NSE AN TION C HARACTE	ALYSI OLUMN RIZAT	5#1/// 5#4//) ION#4/
	700 701 702 703	WRII FORM FORM FORM FORM WRIT FORM WRIT FORM FORM		700 1 7 7 7 7 7 7 7 7 7 7 7 7 7		·	TEST	метно	TRACEI DENI HYDRAU D USING	RESPO	DNSE AN	ALYSI OLUMN RIZAT T OF I	S¥1/// S≠1//) ION≠1/ RODAMI
	700 701 702 703 703	WRIT FORIT FORIT FORIT FORIT FORIT WFOL WFOL WFOL WFOL FOL FOL FOL FOL FOL FOL FOL FOL FOL		7000 170 707 707 707 707 707 707	VCLTR	EACTO	TEST R OPER	METHO	TRACEI DENI HYDRAI D USING AND TES	RESPO	DNSE AN	ALYSI: OLUMN RIZAT T OF I #,///	S¥⊅/// S≠+//) ION≠+/ RODAMI )
	700 701 702 703 704 704 705 706	WRITM FURRET WORITM FURRET WORITM FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FURRET FUR	LIG; AIG; AIG; AIG; AIG; AIG; AIG; AIG; A	70 1 7 7 7 7 7 7 7 7 7 7 7 7 7	VCLT ^R VFLR	EACTO	TEST R OPER Volu Hydr	METHO ATION ME OF AULIC	TRACE DENI HYDRAU D USING AND TES REACTO LOADING	RESPO IRTFICA JLTC CH A PULS ST COND R = ≠•F S = ≠•F	DNSE AN TION C HARACTE SE INPU DITIONS 7.2.7 7.2.7	ALYSI OLUMN RIZAT T OF I \$,/// LITR	S¥1/// S≠4//) ION≠4/ RODAMI P ES≠) ES/MIN
	700 701 702 703 704 705 706 706	WRINTM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FWRITM FW	16 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	70 170 70 70 70 70 70 70 70 70 70	VCLT ^R VFLR TBAR (	EACTO 1)	TEST R OPER Volu Hydr Theo	METHO METHO ME OF AULIC	TRACE DENI HYDRAU D USING AND TE: REACTO LOADING	$R = RESPO$ $IRIFICA$ $JLIC CH$ $A PULS$ $ST COND$ $R = \neq F$ $S = \neq F$	DNSE AN TION C HARACTE DE INPU DITIONS 7.2.≠ 7.2.≠ 7.2.≠	ALYSI: OLUMN RIZAT T OF I \$,/// LITRI LITRI MIN#	S¥⊅/// S≠•//) ION≠+/ RODAMI ) ES≠) ES/MIN
-	700 701 702 703 704 705 706 707 708	WRITH FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FURNEL FUR		1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td>VCLT^R VELR TBAR ( DYIN DYCON</td> <td>EACTO 1)</td> <td>TEST R OPER Volu Hydr Theo Dye</td> <td>METHO METHO ME OF AULIC DRETIC INJEC</td> <td>TRACE DENI HYDRAU D USING AND TES REACTO LOADING AL DET. TICN</td> <td>$R = RESPO$ $IRTFICA$ $JLTC CH$ $A PULS$ $ST COND$ $R = \neq \bullet F$ $S = \neq \bullet F$ $= \neq \bullet F$ $= \neq \bullet F$</td> <td>$\frac{110}{110} = C$ $\frac{110}{110} = C$</td> <td>ALYSI OLUMN RIZAT T OF I #,/// LITRI LITRI LITRI</td> <td>S¥ 177 S¥ 177 S¥ 177 ION ≠ 17</td>	VCLT ^R VELR TBAR ( DYIN DYCON	EACTO 1)	TEST R OPER Volu Hydr Theo Dye	METHO METHO ME OF AULIC DRETIC INJEC	TRACE DENI HYDRAU D USING AND TES REACTO LOADING AL DET. TICN	$R = RESPO$ $IRTFICA$ $JLTC CH$ $A PULS$ $ST COND$ $R = \neq \bullet F$ $S = \neq \bullet F$ $= \neq \bullet F$ $= \neq \bullet F$	$\frac{110}{110} = C$	ALYSI OLUMN RIZAT T OF I #,/// LITRI LITRI LITRI	S¥ 177 S¥ 177 S¥ 177 ION ≠ 17
	700 701 702 703 704 705 706 707 708 709 710	WFWFWFWFWFWFWFWFWFWFWFWFWFWFWFWFWFWFWF		1+0+1+2+7 0+1+2+7 7+1+2+7 7+1+2+7 7+1+1+2+7 7+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1	VCLT ^R VFLR TBAR ( DYIN DYCON CNOT	EACTO 1)	TEST R OPER Volu Hydr Theo Dye Cono Dye	METHO METHO ME OF AULIC DRETIC INJEC OF D / TAN	TRACE DENI HYDRAU D USING AND TES REACTO LOADING AL DET. TICN YE_ADDEN	$R = RESPO$ $IRTFICA$ $JLTC CH$ $A PULS$ $ST COND$ $R = \neq \bullet F$ $S = \neq \bullet F$ $= \neq \bullet F$ $C = \neq \bullet F$ $C = \neq \bullet F$	$\frac{10 \times 52}{10 \times 52}$	ALYSI OLUMN RIZAT T OF I #,/// LITR LITR LITR LITR PPB	S¥ 177 S¥ 177 S¥ 177 ION ≠ 17

-180-

4

M	TST		73/73	OPT=0	TRACE	FTN 4.2+	p383 12/
	711	WRITE Forma	(6,711) 「(≠ ≠,≠	TEST	RESULTS AND CALCULA	TEn VALUES≠,/	//)
	712	FORMA	<del>(6,712)</del> T(≠ ≠.≠	TPEAK	DYE PEAK TIME	= #.F7.2.#	MTN#)
	713	WRITE FORMA	(6,713) T(≠ ≠,≠	TP1	PEAK/THEOR. DET	= ≠,F7.3)	
<del></del>	714	FORMA	(6,714). T(≠ ≠,≠	_TP2	PEAK/MEAN DYE RE	5 = ≠,F7.3,/)	
	715	FORMA	(6,715) T(≠_≠,≠	TBAR (2)	MEAN DYE RESIDEN	CE= ≠,F7.2,≠	MIN#)
	716	FORMA	<u>(6•716)</u> Ī (≠_≠,≠	PER	PER DYE RECOVERY	= #,F7.3,#	p≠)
	·717	FORMA	(6,717) T(≠ ≠,≠	DEAD	FR. STAGNANT ZON	E = #,F7.3,/)	• •
	718	FORMA	(6,718) Ī (≠ ≠,≠	TANKS (1)	CSTR S IN SERIES	USING THEORE	TICAL RES. =
	e	₩ <del>RI</del> TE	2) (61719)	TANKS (2)			
	_ <u>719</u>	FORMA	[ <u>(左 左,</u> <del>左</del> 2)]	÷	CSTR STR SERIES	USING MEAND	VE RES
	720	FORMA	( <del>6,72</del> 0) F(# #,#	DULP(1)	DZUL VALUE USING	THEORETICAL	RESIDENCE =
		vRIJE	1,41 16,7211	DULP(2)			· · · · · · · · · · · · · · · · · · ·
	721	FORMA 5 ≠,E1	[](≠−≠5≠ ]_4)	,	DYUE VALUE USING	MEAN DYE RES	IDENCE =
	722	FORMA	(6,722) ( = 1 = , /	1///,+	EXPERIM	ENTAL RESULTS	C/CO VERSUS
	6	, THETA WRITE	A≠,7//// (6,723)	/)			
	723	FORMA	$\left[ \left( \neq \neq , \neq \right) \right]$	(HETAIT)	THETA RATIO(I) (I) (I) (I)	C/C0+•//	/-)
	724	FORMA	t (15X-F (6+725)	5.3715X;F	5.3)		
	725	FORMA	[[井]夫]	11119=	CALCULA	IED CZCO VERS	IIS THETA VAL
	726	WRITE FORMA	(6•726) F ( <i>+</i> - <i>+</i> , <i>+</i>	- - -	EOR CS	TR IN SERIES	MODEL #11711
		WRIJE	(6,727)				
	727	FORMA	T (≠ ≠,≠ DN≠,///	)	THEORETICAL DETEN	<b>TION</b> [®]	ACTUAL DE
	728	FORMA	<u>(6•728)</u> T(≠ ≠•≠	) .	THETA C/C	0	THETA
	- (	WRITE	0≠•//) (6•729)	THETA (1	J) +CCO(1+J) +THETA (2	·1) •CCO (2•1) •	.1=2+37)
		FORMA WRITE	[(15X,E) (6,725)	5.3,6X,E5	3,15X,F5,3,6X,F5,31		weiter and a second
	730	WRITE	(6,730) T(≠ ≠,≠		FoR	DISPERSION M	•DEL≠•////)
		WRITE BLUE (	(6, 727)				
		DO 73 BLUE (	Ĩ K=2,3 K)= BIU	0 E(K-1) + 4	•1		
	731	CONTINUE	UE	(BLUF (K)	.COCO (1.K) .BLUE (K) .C	000(2.6).6=1.	301
	1	FORMA	T.(4F10.	4,E10.2,F	10.4)		
	· 2	FORMA	[(110)		· · ·	ree 1 at a total	
·····,	5 	FORMA	(5F10.0 [(≠1≠,≠	2) PEAK TIME	OUTSIDE LIMIT FOR I	VUL CALCULAT	TON≠)
		STOP					

. . . . . . . . .

ę

-181-

.

\$103	0.031LINR,3;1000,3305, DOUG BEECROFT	· · · · · · · · · · · · · · · · · · ·
\$SGH	SCR=5+CORE=52	·-
SFTN	yXyLyP)	توانه د سنوی به مر
	ROGRAM LINRG	LI
C		LI
С	DOUG BEECROFT, ENVIRONMENTAL PROTECTION SERVICE, SEPTEMBER 19	72L1
C	an a ang panan ang pang ang ang ang pang p	์ ี ี ี ี ี ี ี ี ี ไม่
C	THIS PROGRAM USES LEAST SQUARES TO ESTIMATE THE REGRESSION	LI
C	COEFFICIENTS FOR ANY LINEAR FUNCTION INVOLVING LESS THAN TEN	Ĩ ĹI
C	INDEPENDENT VARIABLES. CUTPUT INCLUDES MEANS AND STANDARD	LI
Ċ	DEVIATIONS FOR ALL VARIABLES, THE CORRELATION MATRIX,	ĽI
C	REGRESSION COEFFICIENTS, AN ANALYSIS OF VARIANCE TABLE, THE	LI
С	SQUARE OF THE MULTIPLE CORRELATION COEFFICIENT, AND A TABLE D	FLI

...

PROGRAMME #2

•_

.

ı

Ċ		RESIDUALS. THE RE	QUIRED DATA CARDS ARE LISTED BELOW.
C			
C	•		O PRUBLM9, AN EIGHT LHARAUTER ALPHANUMERIU
C			CODE TO BE USED IN IDENTIFYING THE
C		- · · ·	PROBLEM.
С			
С		COL. 9-1	1 NPTS, THE NUMBER OF OBSERVATIONS. NPTS
С			MUST BE LESS THAN 251.
. C.		• • • • • • • • • • • • • • • • • • •	د. ما د مسلم الله الا الي الدار ال <del>اركوك مكافرة من مكافر موقع م</del> امينيون المكافر الارامية المسلم الاستان أما مكافرة ما ما المسلم الله الا الي الدار الحكوك مكافرة من مكافر المكافر الما مسلم الماني المسلم المكافر المكافرة المانيا ال
C		COL. 12-1	3 NVAR, THE TOTAL NUMBER OF VARIABLES (THE
C .	<b></b>		NUMBER OF INDEPENDENT VARIABLES + 1).
C		•	NVAR MUST BE LESS THAN 11.
C			
C		COL. 14-1	5 NDEPND, THE NUMBER OF THE DEPENDENT
. C.		a a second de la complete de la comp	VARIABLE, THAT IS, THE COLUMN OF THE INPU
C		•	DATA MATRIX CONTAINING THE VALUES OF THE
C.			DEPENDENT VARIABLE.
C			
č		$B_{2} = CO[x + 1 - 7]$	2 VARIARIE FORMAT CARD WITH WHICH THE INPUT
U			DATA TS TO BE READ. SEE THE RMD NANIAL.
č			PAGES 22-28. FOR A MORE COMPLETE
 ^		and and an	DESCRIPTION OF THIS TYPE OF CARD.
r r			
		C. THE TNOHT	- DATA - FACH-CAPD, CONTAINS ONE ORSERVATION -
୍		0% 10L_10/0.4	EAPH-VADTAQLE, THE CENEDAL, ECOM. CETTHER
	ñ		TADITS OATA: TO, THE CONCLASS CONSTRUCTION OF THE
- U.) - CT			
،'ملے 	1963 - 1 - 1989 - 1977 - 1977 1	anna 1969 - Tha anns anns an Anns an Tàrrainn an Anns a Tha anns an Anns	EROURAND LIBROURANUALS FADED IL TETET
	- -		
_ U:	·	USEUF_UARD=	LSIANDARU-DabalaNa-GREITSIKIPED-EUEI
Ci.	.•		
C _		NUIE GARUS A TH	RUUGH U MAT BE-REPEATED AS UPTEN AS DESTRED.
C			<i>,</i>
	1955 (1956) - 1977 - 187	COMMON CORMAL, NINDEP	an ann an ann ann an a
		REAL MEANS(10), COEFF (	9)
		DIMENSION DATMAT(250,	101, CATUSE (250, 10), RESID(250), VARFMT (9)
		DIMENSION CORMATING, 1	01,51107,SPARE(91,IVAR1101,YF1)(250)
	<b>.</b>	EQUIVALENCE (DATUSE) 1	), YF1T(1)), (DATUSE(251), RESID(1))
		EQUIVALENCE (VARFHI, D	ATUSEI
<b>.</b> C.	Колтоника - с	المراجع	— با با است. من المحمد وفي الحداث المحمد الاي المحمد المحمد من المحمد بالمحمد بالا الما والمحمد المحمد المحمد - المحمد المحمد
C		READ CONTROL INFOR	MATION
<b>C</b> _		an a	
	10	READ 39, PROBLM, NPTS,	NVAR,NCEPND,VARFMT
	_99	FORMAT (A8, 13, 212/948	
		IF (IFEOF(60).EQ1)	STOP
		DO 100 I=1,NPTS	
_	100	READ (60, VARENT) (DAT	MAT(I, J), J=1, NVAR)
		NINDEP=NVAR-1	
C			
Ċ		COMPUTE MEANS OF A	LL VARIABLES. CENTRE DATA
Ŭ		DO 200 T=1.NVAR	
		MEANS(T) = 0.0	, and a feature of the second descendence of the second product of the second product of the second se
		DO 300 J=1-NPTS	· ·
	300	MEANS(T)-MEANS(T) LOAT	
	366	MEANS(I) - MEANS(I) + DAT	
			✓ <u></u>
	200	DATHSEAL THERATAL	
~	ູເງນ	UHIUSE (J 9 11- UAIMAI (J 9	LI-HLANJII
		CONDUTE DUM OF DOLL	ADEC OF DENTATIONS FOON NEAN FOO NADIAS TO
U C		CUMPULE SUM OF SUU	HKED OF DEVIAIIONS FRUM MEAN FUR VARIABLES
. U			
		DU DUD I=1,NVAR	100
		2171=2.0	-TR3-

```
600 S(I)=S(I)+DATUSE(J,I)**2
      SAVE=SORT(S(I))
      00 500
              J=1.NPTS
  500 DATUSE(J,I)=DATUSE(J,I)/SAVE
         PRINT CONTROL INFORMATION, MEANS, AND STANDARD DEVIATIONS
      PRINT 44, PROBLM, NPTS, NVAR, NDEPND
   44 FORMAT (27H1MULTIPLE LINEAR REGRESSION
            /13HOPROBLEM CODE, A23
             /23H NUMBER OF DESERVATIONS, 10X, 13
     2
             /20H NUMBER OF VARIABLES, 116
     3
             /29H DEPENDENT VARIABLE IS NUMBER, 17/
     4
     5
             /30HDMEANS AND STANDARD DEVIATIONS
        //11X,42HVARIABLE NO.
                                  MEAN
                                           STANDARD DEVIATION/)
     6
      DO 1030 I=1.NVAR
      SAVE=SQRT(S(I)/(NPTS-1))
 1030 PRINT 22, I, MEANS(I), SAVE
   22 FORMAT (16X,12,2F15.5)
C
Ĉ
         COMPUTE AND PRINT CORRELATION MATRIX
C
                                          -----
      00-700 I=1.NVAR
      DO 700 J=1-NVAR
      CORNAT-(I, J) = 0 . 0.
      DO 700 K=1, NPTS
  700 CORMAT(I,J)=CORMAT(I,J)+CATUSE(K,I)+OATUSE(K,J)=
      PRINT 88, (I, I=1, NVAR)
   88 FORMAI (/19HOCORRELATION MATRIX//9X,10(7X,12))
      00-800
              I=1,NVAR
  800 PRINT 77, I, (CORMAT(I,K), K=1, NVAR)
   77 FORMAT (8X,11,3X,13F9.5)
C 🔅
C ປ
         TRANSFER DEPENDENT VARIABLE TO LAST ROW AND LAST COLUMN
Ĉ L
      DO 18 I=1,NVAR
   18 IVARET-I
      IF (NDEPND.EQ.NVAR) GO TO 32
      DO 17. I=1,NVAR
      SWAP=CORMAT(I,NVAR)
      CORMAT(I, NVAR) = CORMAT(I, NDEPND)
   17 CORMAT(I, NDEPND) = SWAP
            I=1.NVAR
      00 16
      SWAP=CORMAT(NVAR, I)
      CORMAT(NVAR, I)=CORMAT(NDEPND, I)
   16 CORMAT(NDEPND, I) = SWAP
      IVAR (NDEPND) = NVAR
      IVAR(NVAR)=NDEPND
С
         COMPUTE PRODUCT OF TRANSPOSE MATRIX OF X VALUES WITH Y VALUES
C
Č
   32 DO 900
              I=1,NINDEP
      SPARE(I)=0.0
      L = TVAR(T)
      DO 900
              K=1.NPTS
  933 SPARE(I)=SPARE(I)+DATUSE(K,L)*DATUSE(K,NDEPND)
С
C
         COMPUTE INVERSE OF CORRELATION MATRIX
C
      CALL MATINV
С
                                 -184-
```

C	COMPUTE AND PRINT RECRESSION GUEFFICIENTS
تا تا	DOTNT 44
	PRINT DO
50	FURMAL (77240 REGRESSION CUEFFICIENTS
	1 //11X92/HVARIABLE NUS GUEFFIGIENI// La a
-	DO 1099 L=1,NINUEP
	$COEFF(1)=U \cdot U$
	L=IVAR(II
	DO 403 K=1,NINDEP
	COEFF(I)=COEFF(I)+CORMAT(I,K)*SPARE(K)
	COEFF(I)=COEFF(I)*SQRT(S(NDEPND)/S(L))
<b></b>	CONST=CONST-COEFF(I)*MEANS(L)
1080	PRINT 55, L,COEFF(I)
	FORMAT_(14X, I2, E21.5)
v	PRINT 14, CONST
14	FORMAT_(/11X, 38HCONSIANT_TERM IN PREDICTION EQUATION_=, F12.5/)
C	
C	PRINT_ANALYSIS_OF_VARIANCE_AND_CORRELATION_COEFFICIENT
C	
	REGSS=0.0
-	DO 1040 I=1.NPTS
	YEIT(I)=CONST
	DOB10585 JE1.NINDEPF
1058	YFIT(J)=YFIT(J)+60FFF4J)+FATMATET-1-
	RESIDITIZATMAT(L.NAEPNAI-YEIT(I)
1848	REGSS#REGSS+YETI(T)*NATHAT(T=NNEPND)
20/10	TOTAVG=NPTS+MFANSTNDFPKT1++27
	TOTSS=TOTAVG+S (NDEPND)
	RESSS=TOTSS-REGSS
	REGSS=S(NDEPND)-RESSS
	RECMS=RECSS/NTNDEP
3 1939 1. P 3. 1962 Mar.	
	- DUTATE 4±07 TATES NOTE TATAVE. STNAFDNALS TERFERE NINAED DEEMELES -
م میں میں ایک ایک میں <del>می</del> ی	1
4407	ENDMAT (2440ANALVETS OF VARIANCE/448.429.744SOURCE OF VARIATION
	TORMAL (2100 AMALISIS OF VARIANCE/10091229/10300ROE OF VARIATION
	2 /4HA 42V 40HTATA) /PNCADDECTEDY E46 & T46/4H 27V &BMEAN
	Z/IDU912A9178101ALUUNGUNREQIEU/9F10499119/18.927A99884444 Z7100912A9178101ALUUNGUNREQIEU/9F10499119/18.927A9988444444444444
	J FID:4914X9101/10 914X91/01/UNAL (CURRECTED)9F1D:49117/10 921
hand	$4 = 100 \text{KEGKEJJ10N} = 10 \text{ AJ10} = 10 \text$
~	$5 \qquad 119_{3}F21_{0}4/33HUGURRELATION GUEFFIGIENT (R**2) = 989_{0}3$
С С	PRINT TABLE OF RESIDUALS
U	n e e a secondaria de la companya de En la companya de la c
	PRINT 12
12	FURMAT (19H1TABLE OF RESTOUALS
	1 /1HU,4X,29HOBSERVALION NU. UESERVEU Y,8X,8HFILLEU Y,
	2 8HRESIDUAL/)
	UU 1060 I=1,NPIS
1969	PRINT 13, I, DATMAT(I, NDEPND), YFIT(I), RESID(I)
13	FORMAT (10X, I3, 10X, F11.5, 6X, F11.5, 5X, F10.5)
	GO TO 10
	END
	SUBROUTINE MATINV
С	
С	MATRIX INVERSION
С	-185-

```
COMMON A,N
      DIMENSION A(10,10), INDEX(10,3)
      EQUIVALENCE (IROW, JROW), (ICCLUM, JCOLUM), (AMAX, T, SWAP)
      DO 60
             J=1,N
   60 INDEX(J,3)=0
C
C
C
         SEARCH FOR PIVOT ELEMENT
      DO 550 I=1,N
      AMAX=0.0
      DO 105 J=1,N
      IF (INDEX(J,3).EQ.1) GO TO 105
      DO 103 K=1,N
                                            ----
      IF (INDEX(K,3)-1) 80,100,715
   89 IF (AMAX.GE.ABS(A(J,K))) GO TO 100
      IROW=J
      ICOLUM=K
                                        _____
      AMAX=ABS(A(J,K))
  100 CONTINUE
                                         105 CONTINUE
      INDEX(ICOLUM,3)=INDEX(ICOLUM,3)+1
      INDEX(I,1)=IROW
      INDEX (1,2)=ICOLUM
                                           -IF (IROW.EQ.ICOLUMI: GO: TO: 310
C.
                                      _____
C
         INTERCHANGE ROWS
CD
                                       ۵۰٬۰۰۰ میلاد میکند. در ۲۰۰۰ میلاد در ۲۰۰۰ میلود و بعد میدود و با در میلود از میلود از میلود از م
      DD 280 L=1,N
      SWAP=A(IROW,L)
      A(IROW, L) = A(ICOLUM, L)
  200 A(ICOLUM,L)=SWAP
C
<u>C</u>
CC
         REDUCE-NON-PIVOT-ROWS
  310 PIVOT=ALICOLUNGICOLUNG
      ALICOLUM, ICOLUM) = 1.0
      D00350 L=14N*
  350 ATIGOLUMIL) = A (ICOLUMILI) PIVCT
      DO 550 L1=1;N
      IF (L1.EQ.ICOLUM) GO TO 550
      T=A(L1, ICOLUM)
      A(L1, ICOLUM) = 0.0
      DO 450 L=1,N
  450 A(L1,L)=A(L1,L)-A(ICOLUH,L)*T
  550 CONTINUE
C
С
         INTERCHANGE COLUMNS
Ċ
      00 710
              I=1,N
      L=N+1-I
      IF (INDEX(L,1).EQ.INDEX(L,2)) GO TO 710
      JROW=INDEX(L,1)
      JCOLUM=INDEX(L,2)
      DO 705
              K=1.N
      SWAP=A(K, JROW)
      A(K, JROW) = A(K, JCOLUM)
  715 A(K, JCOLUM) = SWAP
  710 CONTINUE
      DO 733
              K=1,N
      IF (INDEX(K,3).NE.1) GO TO 715
  730 CONTINUE
                                       -186-
      RETURN
```

C		-					
Č	PRINT ERROR ME	SSAGE					
<b>U</b>						مرجعا المريسي المعمولا المرج	
	115 PRINT MANDINUED	55 OF NA.	TOTA CANNO			CVCCUTT	ON TERM
	1INATED)	JE UP PA	IKIA CANNU	H BE UU	APUILU	EXECUTE	UNLERI
	STOP			-			
	END					•	
	EINIS		an a				
3	MAP=N						× 5.
	X,LG0					· •	
	LINRG 25 3 2						
	4X, E5.1, E6.1, E5.1)						•
3	5.3 20.0 10.98 35.3						, <b>.</b>
2	9.7.20.0.11.13.29.7	استكرينا المدرجان والموركية الموضوا			ورا مراجع بالمراجع المراجع ومراجع والتقاري		
3	0.8 23.0 12.51 30.8						
5	8.8.20.0.8.40.58.8.						
6	1.4 21.0 9.27 61.4						
7	1.3 22.0 8.73 71.3						
7	4.4 11.0 6.36 74.4						
	6-7 23.0 8.50 76.7	مربع المحمد المحمد المحمد المحمد المربع			محافظاتهم وحمياته فالمحافظ		
7	0.7 21.0 7.82 70.7	•			•	•	-
	7.5 20.0 9.14 57.5						
- 4	6-4-28-0: 8-24-46-4-						
- 2	8,9-21.0 12.19 28.9						
; 2	289112110011188028-11						
	9.1.19.0.9.57.39.1						:
4	6:8=23:0-10:94-46:8=						
4	8.5.20.0 9.58 48.5	· ·· ··· ··· ··· ···				·····	
9	9.3 22.0 10.09 59.3						
_7	0.0 22.0 8.11 70.0		·· - ·				
7	0.0.11.0 6.83 70.0						
7	A-522330= 8388-74-5	an balan i all'harran kabata erar	ar to several cataly mandata		مواجوه الجرورية المكلة الرمين بوادينا أباسي فعلوا		
7	271 28 0 7.68 72.1						
	581121.0 -8:47 58:1		• • • • • • • • • • • • • • • • • • •				
4	4.5.20.00 8.85.44.65						
3	13.4 29.0 10.36 33.4	······					
2	8.6 22.0 11.08 28.6					-	
							• •

•

PROGRAMME #3

.

• :

0001		PROGRAM CON95	
0002	C		
0003	C	DOUG BEECROFT, ENVIR	ONMENTAL PROTECTION SERVICE, OCTOBER 1972
0004	C		
0005	<u>C</u>		S THE 95 PERCENT CONFIDENCE LIMITS FOR ANY
0006	C	LINEAR REGRESSION EQ	UATION. THE NECESSARY DATA CARUS ARE
0007	G C		
0000			PROBLM AN ETCHT CHARACTER ALPHANUMERTC
0010	Ĉ		CODE USED TO TOENTTEY THE PROBLEM.
0011	č		
0012	C	COL. 9-11	NPTS, THE NUMBER OF OBSERVATIONS USED IN
0013	C		COMPUTING THE REGRESSION COEFFICIENTS.
0014	C		NPTS MUST BE LESS THAN 501.
-8815		01 42-47	NUAD THE TOTAL NUMBER OF MARTARIES
0010	с С	LUL: 12-13	TNVARY THE TUTAL NURBER OF VARIABLES
1018-	<u> </u>		TNDEPENCENT VARIARIES + 413 NVAR-MUSTER
0019-	C		LESS THAN 11-
0020	C		
0021	C	COL. 14-16	NLIN, THE NUMBER OF CONFIDENCE LIMITS TO-
0022	C		BE COMPUTED.
0023	<u>C</u>		
0024	C C	UUL. 17-30	VARING - INT RESIDUAL MEAN SQUARE UK
0025	U C		STATISTIC IS GIVEN IN THE ANALYSTS OF
0020	C		VARIANCE TABLE COMPUTED BY LING OR STPRG
0028	Č		THE NUMBER MUST CONTAIN A DECIMAL POINT.
0029			
0030.	<b>C</b>	B. THE COMPUTE	DT REGRESSION COEFFICIENTS EACH
0031	C	·	COEFFICIENT, BEGINNING WITH THE CONSTANT
0032:			TERN CANE FOLLOWED BY THE VARIABLE
-4455	U:		COLUMNS OF THE CADD. TELAWAD TO COLATON
0034	С		THAN 5. INO CARDS WILL BE REQUIRED.
0036	C		<u>ਗ਼੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶</u>
0037		CC0L. 1-72	VARIABLE FORMAT CARD TO BE USED IN READIN
0038	C	··· ··· ··· ··· ··· ··· ··· ··· ··· ··	THE INPUT DATA. SEE THE BMD MANUAL, PAGE
0039	C	· · · · · · · · · · · · · · · · · · ·	22-28 FOR A DESCRIPTION OF THIS TYPE OF
0040	C		CARD. CNLY THE INDEPENDENT VARIABLE
0041	<u>C</u>	······································	VALUES NEED BE READ TN.
0042	U C		ATA. THE DAW DATA EDON WHTCH THE
<u> </u>	U C	U. INC INPUL U	REGRESSION COFFETCIENTS WERE CALCULATED.
0045			THE OBSERVED VALUES OF THE DEPENDENT
0046	C		VARIABLE MUST NOT BE INCLUDED. VALUES
0047	C		OF THE OTHER VARIABLES MUST APPEAR IN THE
0048	C		SAME ORCER AS THEIR RESPECTIVE
0049	<u> </u>	· · · · · · · · · · · · · · · · · · ·	COEFFICIENTS IN CARD B.
0050	C		VARTARIE CORNET CARD TO BE USED TH DEADTH
0052	U C	L. UUL. 1-/2	THE POINTS AT WHICH CONSTRENCS I THITS ADD
9052	C C		TO BE COMPUTED.
0054	C		
	~		

**K**--

LN 0055	C F. THE POINTS AT WHICH LIMITS ARE TO BE COMPUTED. THE
LN 0056	C GENERAL FORM IS SIMILAR TO THE INPUT DAT
LN 0057_	
LN 0058	C G. EUF GARD (STANUARD G.G.I.W. GRET-STRIPED EUF)
LN 0059	C NOTE CARDS & THROUGH E MAY BE DEDEATED AS DETEN AS DESTRED
N 00CU	C NOTE GARDS A THROUGH F HAT BE REFEATED AS UFTEN AS DESIRED
N 0061	COMMON COVINY NY AP
LN 0063	DIMENSION COVINV(10.10). TVALUES(33). POINT(10). XMATRX(500.10)
N 0064	DIMENSION VARENT(9).COFFF(10)
LN 9065	DATA TVALUES /12.706.4.303.3.182.2.776.2.571.2.447.2.365.2.306.
N 0066	1 2.262.2.228.2.201.2.179.2.160.2.145.2.131.2.120.2.110.2.101.
LN 0067	2 2.093,2.086,2.080,2.074,2.069,2.064,2.060,2.056,2.052,2.048,
LN 0068	3 2.045,2.042,2.021,2.000,1.980/
N 0069	C
LN 0070	C READ AND PRINT CONTROL INFORMATION
LN 0071	<u>C</u>
5N-0972	60 READ 99, PROBLM, NPTS, NVAR, NLIM, VARYNC, (COEFF(I), I=1, NVAR)
LN 0073	99 FORMAT (A8, 13, 12, 13, F14, 475F15, 5, 5X)
LN=0074=	IE (IFEOF (60) . EQ.=11 STOP
<u>N-0075</u>	READ 88, VARENT
LN 0076	88 FORMAT (9A8)
LN 0077	DO 100 I=1, NPTS
LN 0078	
LN 0079	100 READ (60, VARENT) (XMATRX (1, J) - J=2, NVAR)
LN UU80	PRINI //, PRUBLM,NPIS,NVAR,NLIM,VARYNU 77 Format (2004.05 percent construct Limito/
LN 0001	A A A A A A A A A A A A A A A A A A A
LN 9902	2 23H-NHMPED OF ORSERVATIONS 143/
N 0084	3 20 HENUNRERE OF VARIABLES, 116/
N=0085-	44 32HENUMBER DEFITINTS TO PERCOMPUTED TAX
N- 0086	5: 21H-RESIDUAL MEAN-SQUARE, F19.4/7/
LN 0087	6 24HOREGRESSION COEFFICIENTS//11X,
LN=0088	77 22HVARIABLE COEFFICIENT/1=
LN 0089-	DO 300 I=2,NVAR
LN 0090	J=I-1
LN 0091	300 PRINT 55, J,COEFF(I)
LN 0092	55 FORMAT (I16,F17.5)
N 0093	PRINT 44, COEFF(1)
LN 0094	44 FORMAT (/10X, 38HCONSTANT TERM IN PREDICTION EQUATION =, F12.5///
LN 0095	1 18HOCONFIDENCE LIMITS//10X,
LN 0096	2 48HLIMIT NO. LOWER LIMIT FITTED Y UPPER LIMI
N 0097	
LN 0098	C COMPUTE INVERSE OF COVARIANCE MATRIX
LN UUSS	
LN 0100	UU / UU 1=1,NVAK Do 700 1=4 NWAD
LN 0101	
LN 0403	DUVINVLIGJJ=U+U Do 700 v=1.NDIS
N 0101	$\frac{1}{700 \text{ COVINV(T, 1)=COVINV(T, 1)+YNATPY(V, T)+YNATPY(V, 1)}}{700 \text{ COVINV(T, 1)=COVINV(T, 1)+YNATPY(V, T)+YNATPY(V, 1)}}$
N 0105	C
LN 0106	C COMPUTE COVARTANCE MATRIX
LN 0107	
LN 0108	CALL MATINV

N_0109	C		
N 0110	C	READ IN THE CO-ORDINATES OF THE POINT AND COMPUTE THE FITTED	) 1
<u>N 0111</u>			····
V 0112		READ 88, VARFMT	
0113		00_70J=1,NLIM	
N 0114	•	POINT(1)=1.0	
N_0115		READ (60,VARENT) (POINT(I),I=2,NVAR)	
N 0116		YFIT=COEFF(1)	
N-0117		DO 200 I=2,NVAR	
N 0118	200	YFIT=YFIT+COEFF(I)*POINT(I)	
0119			
N 0120	C	COMPUTE PRODUCT OF THE POINT AND THE COVARIANCE MATRIX	•
N 0121	C		
N 0122		CONFID=0.0	
V_0123			
N 0124		SPARE=0.0	
N-0125		DO 900 K=1,NVAR	
0126	900	SPARE=SPARE+POINTIKI*COVINV(K+I)	
N=0127	800	CONFID=CONFID+SPARE*POINT(I)	
N= 0128-	C		
1 0129		CHOOSE APPROPRIATE T VALUE AND COMPUTE CONFIDENCE LIMIT	-
N=0130	C		
N-0131-		TEKENPTSENVAR	- <del>191</del> 1
N 0132		TF (TJK.GT.30) GO TO 10	
N 8133			
N 0134		GO TO 20	
N 0135	10	TE ( T.K.GT.35) GO TO 30	
N 013E		T=TVALUES(38)	
N.0137		GO: TO 20	
N-0138-	30	TE (T.IK. 6T. 50) 60 TO 40	
NO1397	••		
N= 0140		60: T0: 20.	
N= 0141	· 40	TE (TJK-GT-90) - 60 TO 50	
U- 0142		T=IVA1 11FS (32)	
0143		GO TO 20	
N 8144	50	T=TVALUES(33)	
0145	20	CONFID=SORT(CONFID*VARYNC)+T	
N 0146		UP=YFTT+CONFID	
0147		DOWN=YFIT-CONFID	
1 0148	71	PRINT 66. J.DOWN.YFIT.UP	
0149	66	FORMAT (115.F18.5.F11.5.F14.5)	
1 0150		60 TO 60	
0151		FND	
P			

USASI FORTRAN DIAGNOSTIC RESULTS FOR CON95

NO ERRORS

,

•

-190-

# NSI FORTRAN(2.3)/MASTER INTEGER WORD SIZE = 1 , * OPTION IS CFF , O OPTION IS

N r	0004		SUBROUTINE MATINV	
<u>x 1</u> N N	1002	C		·····
N C	1003	õ	MATRIX INVERSION	
	1004	C		
	1005	•	COMMON A.N	
J	1006		DIMENSION A(10,10), INDEX(10,3)	
	1007		EQUIVALENCE (IROW.JROW). (ICOLUM.JCOLUM). (AMAX.T.SWAP)	1
v (	1008		DO 60 J=1.N	
N E	009	60	INDEX(J,3)=0	
NC	010	C		
N (	0011	C	SEARCH FOR PIVOT ELEMENT	
1 (	012	C		
1	0013		DC 550 I=1,N	· · · · · · · · · · · · · · · · · · ·
1 (	014		AMA X=0 • 0	
N_(	015		DO 105 J=1,N	
1 (	016		IF (INDEX(J,3).EQ.1) GO TO 105	
1	1017		DO 100 K=1,N	
1 (	1018		IF- (INDEX(K,3)-1)-80,100,715	
<b>⊨</b> [	1019	80	IF (AMAX.GE.ABS(A(J;K))) GO TO 100	
17:0	1020.		IROW=J	
l÷(	)021_		IGOLUN=K	
- (	0022		AMAX=ABS(A(J,K))	· · · · ·
1 1	1023	100	CONTINUE	
1{	0024-	105	CONTINUE	
<u>1 - (</u>	1025		INDEX(ICOLUM, 3) = INDEX(ICOLUM, 3) +1	
	1026		INDEX(I,1)=IROW	
	0027		INDEX (1,2)=ICOLUM	
	1028	•	IF (IROW.EQ.ICOLUM) GO IO 310	
	1029	<u> </u>		
	1030	6	INTERGHANGE - KOWS >	
	1031	<u> </u>	DO200 1-4-N	
	0032			.=
	1035			
201	1834= 1076.	200	ALLKUNJLJ-ALLUUUNJEJ* AJICALUNJLJ-SWAD	
<u> </u>	0035	<u> </u>	4(100L0M)L/-3#AF	
	103C	C	DEDUCE NON-DIVOT DOWS	
	0038	<u> </u>		····
	0039	310	PTVOT=A (TCOLUM, TCOLUM)	
	0040		A(TCOLUM, TCOLUM) = 1.0	
	0041		DO 350 L=1.N	
	0042	350	A(ICOLUM.L)=A(ICOLUM.L)/PIVOT	
	0043		DO 550 L1=1,N	
1	0044		IF (L1.EQ.ICOLUM) GO TO 550	
	0045		T=A(L1, ICOLUM)	
(	0046		A(L1,ICOLUM)=0.0	
	0047		DO 450 L=1,N	. °
1	0048	450	A(L1,L) = A(L1,L) - A(ICOLUM,L) + T	
	0049	550	CONTINUE	
	0050	C		
	0051	<u> </u>	INTERCHANGE COLUMNS	
l i	0052	С		
N I	0053		DO 710 I=1,N	the second se
N 1	0054		L=N+1-I	
		<u></u>		

FCRTRAI	N(2.3)/MASTER INTEGER WORD SIZE = 1 , * OPTI	ON_ISCFF_, O_OPTION_IS
0055	IF (INDEX(L,1).EQ.INDEX(L,2)) GC TO 710	
0056	JROW=INDEX(L,1)	
0057	JCOLUM=INDEX(L+2)	
0058	DO 705 K=1,N	
0059		
0000	A(K,JKUW)=A(K,JUULUM) 705 A(K, (COLUM)-SAAD	
0062	710 CONTINUE	
0064	IF (INDEX(K,3).NE.1) GO TO 715	
0065	730_CONTINUE	
0066	RETURN	• •
_0067		
0068	C PRINT ERROR MESSAGE	
	74 5 DOTNT 00	
0070	99 FORMAT (61HOINVERSE DE MAIRIX CANNOI RE 1	COMPUTED EXECUTION_IE
-0072	1TNATED):	
0073	STOP	·
-0074-	END	
<u></u>	NO ERRORS	
		· · · · · · · · · · · · · · · · · · ·
	-	
	· · · · · · · · · · · · · · · · · · ·	
		•

.

PROBLEM COI	DE	95 CON	E	
NUMBER OF	DBSERVATIONS	2	1	
NUMBER OF	LIMITS TO BE	COMPUTED	5	
RESIDUAL MI	EAN SQUARE	0	.0566	
			•	<u></u>
REGRESSION	COEFFICIENTS			,
	VARIABLE CO	EFFICIENT	4 <u></u>	
		128.00000	• • • • • • • • • • • • • • • • • • • •	
C	ONSTANT TERM	IN PREDICTI	ON EQUATION =	3.35000
CONFIDENCE		NED 1-1977 -		
<b>L</b> .	LM11 NU	MERSEINI	Filted T	IEPER LIBIT
	1	2.47157	2.64433	2.81709
	2 <i>⊥</i> 3 ₹	3.24133	3-35000	3:45867
	4	3.63441	3.77055	3.90669
·	5	3.98338	4.17685	4.37031
		<u></u>		
				<u></u>
	······································		· · · · · · · · · · · · · · · · · · ·	
		<u> </u>	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
	•			
				······································
		·		
		······································	· ·	······
	•			
	· · · · ·		<u> </u>	· · · · · · · · · · · · · · · · · · ·
	······································		-193	

# APPENDIX D

.

•

.

# NITROGEN BALANCES

•

### NITROGEN BALANCES

The results of the nitrogen balances performed on the packed columns are summarized in Tables D-1 and D-2. For each balance, influent and effluent liquid samples were analyzed for soluble nitrate and nitrite nitrogen as well as for total unfiltered Kjeldahl nitrogen. It was assumed that this accounted for all of the significant nitrogen compounds, both organic and inorganic, in the system. A second set of influent and effluent samples were measured for dissolved nitrogen gas using the method outlined in Appendix BE The influent sample was obtained from the cooling unit which was located just upstream of the columns. Care was taken to avoid agitation of each sample and to keep it out of contact with the atmosphere once it was obtained. The effluent samples were collected from the port indicated in Figure D-1. The BOD bottle-used for this was flushed with sufficient_effluent_ to assure that the final sample had not come in contact with the outside atmosphere. In both cases, dissolved gas analyses were done within fifteen minutes of collection. Gas evolution rates were measured by a simple water displacement technique. The time required to collect one litre of gas was recorded as close as possible to the time of liquid sampling. Normally this took one half to three quarters of an hour. Figure D-1 also shows the method used to collect gas samples. Once again, precautions were taken to exclude air from the system well before gas samples were obtained. It is assumed that

-195-

the procedure used was adequate since the Gas Partitioner results showed no oxygen peaks.

### TABLE - D1

### DENITRIFICATION COLUMN F1

s.

### NITROGEN BALANCES

-

	· · · · · · · · · · · · · · · · · · ·	. <u></u>					
Aug. 9	Gas Flow = 57.6 1/day at 72 % N ₂ Liquid Flow = 3298 1/day						
(20 ⁰ C)	Gas Temp = 22 degrees C						
	<u>COMPONENT</u>	INFLUENT	EFFLUENT	DIFF.			
4 		mg/1 gm/day	mg/1 gm/day	(IN <del>-OUT)</del> gm/day			
7	Unfiltered TKN=	4.6 15.2	- 2.1 - 6.9				
	NO ₃ -N	28 <b>.6</b> - 94.3:	÷ 8 <del>∶</del> 5≑ −28=0⇒				
	NO2-N	0.4 1.3	0.1 0.3				
	Dissolved N ₂	11.8 38.9	13.6 44.9				
	Gaseous N _{2 ∠}	0.0 0.0	72% 48:0	Σ.	L.		
	-	149.7	128.1	21.6-	·		
Aug. 12 (20 ⁰ C)	Gas Flow = 10.2 Liquid Flow = 2 Gas Temp = 22 d	5 1/day at 66% 3224 1/day degrees C	N ₂		· · · · · · · · · · · · · · · · · · ·		
	COMPONENT	INFLUENT	EFFLUENT	DIFF.			
		mg/1 gm/day	mg/1 gm/day	(IN-OUT) gm/day			
	Unfiltered TKN	2.1 6.8	2.6 8.3				
	NO3-N	10.6 34.2	1.1 3.6				
	NO2-N	0.1 .3	0.0 0.0				
	Dissolved N ₂	15.3 49.3	16.6 53.5				
	Gaseous N ₂	0.0 0.0	66% 8.0				
		90.6	73.4	17.2			
1		1		1			

# TABLE - D1 (CONTINUED)

Aug. 13 (20 [°] C)	Gas Flow = Liquid Flow Gas Temp. =	Gas Flow = 83.9 1/day at 69% N ₂ Liquid Flow = 3142 1/day Gas Temp. = 22 ⁰ C					
	COMPONENT	INFL	UENT	EFFLU	JENT	DIFF.	
		<b>mg/1</b>	gm/day	mg/1	gm/day	(IN-OUT) gm/day	
- - -	Unfiltered TKN	∍ ⊪7ъ5.∍ ≣	23 <i>2</i> 65	□ 3 <b>5.1</b> :	16-1	е •	· · · <u></u> · ·
<b>1</b> 2	NO3-N	2774	_86-1-	112	3.8		
	NO2-N	:0 <b>≆1</b> :	0-3	- 0751	1.6	-	
	Dissolved N	15.5	48.7	16.1	50.6		
	Gaseous N ₂	0.0	0.0	69%	67.0		
1	1. 		158.7	1	139.1	19.6	
TOTAL OF	THREE-DAYS-		399.0		340.6	58.4	
AVERAGE P	ERCENT NITROGE	N LOSS	= 15%				

### TABLE D2

### DENITRIFICATION COLUMN F2

# NITROGEN BALANCES

				•					
Aug. 13	Gas Flow = 63.4 1/day at 66.5% N ₂								
	Liquid Flow = 3248 1/day								
(20 ⁰ C)	Gas Temp = 22 ⁰ C								
	COMPONENT	INFL	UENT	EFFL	UENT	DIFF.			
·2		mg/1	gm/day-	mg/1:	gm/day-	( <del>IN=OUT)</del> -	-		
	Unfiltered-TKN=	877	2879-	6.4	21-3-				
•	N <del>O _</del> N	27.0	89 <b>.</b> 7	3.7	12.3				
	NO2-N	0.1	0-3	1.2	4-0				
	Dissolved N ₂	17.2	57.2	17.2	57.2				
	Gaseous N ₂	-	-	66.5%	48.8				
		2	176 .1_		143.6	32 <b>∡5</b> ⊸			
A	0 F1 27 /	1/1	- 70 - 59 - 37-			<u> </u>			
Aug14	Gas: Flow = 2L.4	″⊥/:day -ar ?#9 -114 ou	2						
(20 ⁰ C)	$ = L1qu1a = Flow3248^{-1}/day $								
(20 0)	Gas lemp - 22 C								
,	COMPONENT	INFL	UENT	EFFL	UENT	DIFF.			
		mg/1	gm/day	mg/1	gm/day	(IN-OUT)			
	Unfiltered TKN	5.4	17.5	4.3	14.0				
	NO ₂ -N	22.2	72.1	4.8	15.6				
	NO ₂ -N	0.3	1.0	1.5	4.9				
.5	Dissolved No	16.5	53.6	16.0	52.0				
	Gaseous N ₂	-	_	73.5%	23.3	-			
		<u>_</u>	144.2		109.8	34.4			
				l					

•

### TABLE - D2 (CONTINUED)

	4						
Aug. 15	Gas Flow = 56.4	1/day at	: 76%				
	Liquid Flow = 3	8298 1/day	,				
(20 ⁰ C)	Gas Temp. = $22^{\circ}C$						
	COMPONENT	INFL	JUENT	EFFLUE	NT	DIFF.	
e Megi e se s	t transformer	mg/1	gm/day	mg/1	gm/day	(IN-OUT)	
	Unfiltered TKN	6.9	22.8	4.0	13.2		
	NO ₃ -N	23.0	75.9	2.0	6.6		
-	NO ₂ -N	0.1	0.3	1.8	5.9		
2	Dissolved N2	13.2	43.5	15.0	49.5		
	Gaseous N2		<b>-</b> #	· 76%	49=6=		
		1 2 1	142.5		124.8	· 17-7	
Aug. 16	Gas Flow - 28.6	1/day a	t 76% N ₂				
Aug. 16	Gas Flow - 28.6 Liquid Flow = 3 Gas Temp. = 22 ⁰	) 1/day a 17 <del>6-1/day</del> C	t 76% N ₂				
Aug. 16 (20 ⁰ C)	Gas Flow - 28.6 Liquid Flow = 3 Gas Temp. = 22 COMPONENT	1/day a 1 <del>76-1/day</del> C	t 76% N ₂	EFFL	UENT	DIFF	
Aug. 16 (20 ⁰ C).	Gas Flow - 28.6 Liquid Flow = 3 Gas Temp = 22 COMPONENT	1/day a 176-1/day C INFL mg/1	ut 76% N ₂ UENT gm/day	EFFL mg/12	UENT gm/day	DIFF. (IN-OUT)	
Aug. 16	Gas Flow - 28.6 Liquid Flow = 3 Gas Temp. = 22 COMPONENT	1/day a 176-1/day C INFL mg/1- 4.4	t 76% N ₂  UENT gm/day 14.0	EFFE mg/1 -	UENT gm/day 12.4	DIFF. (IN <del>-O</del> UT)	
Aug. 16	Gas Flow - 28.6 Liquid Flow = 3 Gas Temp. = 22 COMPONENT Unfiltered TKN NO ₃ -N	1/day a 176-1/day C INFL mg/1 4.4 26.0	t 76% N ₂  UENT gm/day 14.0 82.6	EFFE mg/1 - 3.9 2.6	UENT gm/day 12.4 8.3	DIFF: (IN <del>-O</del> UT)	
Aug. 16	Gas Flow - 28.6 Liquid Flow = 3 Gas Temp. = 22 COMPONENT Unfiltered TKN NO ₃ -N NO ₂ -N	1/day a 176-1/day C INFE mg/1 4.4 26.0 0.1	t 76% N ₂ UENT gm/day 14.0 82.6 0.3	EFFL mg/1 3.9 2.6 4.3	UENT gm/day 12.4 8.3 13.7	DIFF. (IN <del>-OU</del> T)	
Aug. 16	Gas Flow - 28.6 Liquid Flow = 3 Gas Temp. = 22 ^O COMPONENT Unfiltered TKN NO ₃ -N NO ₂ -N Dissolved N ₂	1/day a 176-1/day C INFE mg/1 4.4 26.0 0.1 15.2	t 76% N ₂ UENT gm/day 14.0 82.6 0.3 48.3	EFFL mg/1 3.9 2.6 4.3 17.2	UENT gm/day 12.4 8.3 13.7 54.6	DIFF. (IN <del>-O</del> UT)	
Aug. 16	Gas Flow - 28.6 Liquid Flow = 3 Gas Temp. = 22 ^O COMPONENT Unfiltered TKN $NO_3-N$ $NO_2-N$ Dissolved $N_2$ Gaseous $N_2$	1/day a 176-1/day C INFL mg/1 4.4 26.0 0.1 15.2 -	t 76% N ₂ UENT gm/day 14.0 82.6 0.3 48.3	EFFL mg/1 = 3.9 2.6 4.3 17.2 76%	UENT gm/day 12.4 8.3 13.7 54.6 25.1	DIFF. (IN-OUT)	
Aug. 16	Gas Flow - 28.6 Liquid Flow = 3 Gas Temp. = 22 ^O COMPONENT Unfiltered TKN NO ₃ -N NO ₂ -N Dissolved N ₂ Gaseous N ₂	1/day a 176-1/day C INFL mg/1 4.4 26.0 0.1 15.2 -	t 76% N ₂ UENT gm/day 14.0 82.6 0.3 48.3 - 145.2	EFFE mg/1 2 3.9 2.6 4.3 17.2 76%	UENT gm/day 12.4 8.3 13.7 54.6 25.1 114.1	DIFF. (IN-OUT) 31.1	
Aug. 16 (20 ⁰ Ĉ), TOTAL OF	Gas Flow - 28.6 Liquid Flow = 3 Gas Temp. = 22 ^O COMPONENT Unfiltered TKN NO ₃ -N NO ₂ -N Dissolved N ₂ Gaseous N ₂ FOUR DAYS	1/day a 176-1/day C INFL mg/1 4.4 26.0 0.1 15.2 -	t 76% N ₂ UENT gm/day 14.0 82.6 0.3 48.3 - 145.2 608.0	EFFL mg/1 = 3.9 2.6 4.3 17.2 76%	UENT gm/day 12.4 8.3 13.7 54.6 25.1 114.1 492.3	DIFF. (IN-OUT) 31.1 115.7	



-201-

# APPENDIX E

.

.

# NITRIFICATION

•

### TABLE E-1

# CALCULATION OF RBC

TKN REMOVAL RATES

### BASED ON ZERO ORDER KINETICS

Surface Area A =  $250 \text{ ft}^2 (23.2 \text{m}^2)$ 

RUN	TEMPERATURE	FLOW SOL. TKN IN S _l		FLOW SOL. TKN IN SOL. TKN OUT S ₁ S ₀		SOL. TKN OUT S ₀	TKN REMOVAL RATES (S ₁ -S ₀ ) Flow
	°c	l/hr	mg/1	mg/1	A mg/m ² •hr		
R16-	7.	8 <del>9</del> 73=	22.7	18-9	14.7		
R16	7	92.1	25.4	23.3	8.3		
R8-	7	49.8	20.6	12.7	17.0		
R20	7.	42.2	27.5	20-8	12.1		
<b>R21</b>	7	42.2	27.5	18.9	15.7		
R1	10	49.8	19.4	10.4	19.3		
R7	10	49.8	20.2	9.9	22.1		
<b>R14</b>	10	98.6	24.3	18.2	26.0		
R15_	12_	104	37.6	34.2	15-2		
R6	13.5	51.2	31.4	23:5	17.5		
R3 [®]	15	50.1	26.6	12.5	<del>30</del> €6°		
R4-	15	48.5	33.2	17.4	33.2		
R5	15-	50.1	38-9	13.1	34.2		
R10	20	50.1	47.7	25.4	48.3		
<b>R11</b>	20	48.5	41.1	21.4	41.3		
R13	20	95.1	39.8	26.3	55.5		
R12	21.5	<b>95.1</b> .	34.3	18.3	65.8		
R18	25	55.6	48.7	25.5	55.7		
R19	25	47.7	56.2	25.0	64.3		
R22	25	50.9	49.5	23.7	56.7		
R23	25	49.0	59.4	33.8	54.2		

t

### TABLE E-2

# CALCULATION OF TKN REMOVAL RATES FOR THE RBC BASED ON FIRST ORDER KINETICS

Rate = 
$$\frac{K \cdot C_2 \cdot V^{1/2}}{A^{1/2}}$$

$$K = \frac{1}{\mp 1/2} \left[ \left( \frac{C_0}{C_2} \right)^{1/2} - 1 \right]$$

 $A_{1/2}$  = surface area of each CSTR. = 11.6 m²

 $V_{1/2}$  = hydraulic volume of each CSTR. = 64 %

 $F_{1/2}$  = hydraulic detention time for each CSTR.

 $C_{0}^{-}$  =-influent soluble. TKN concentration to the first CSTR.

C₂ = effluent soluble TKN concentration from the second CSTR.

RUN	TEMPERATURE	C ₀	C ₂	Ē 1/2	K	RATE
	°c	mg/1	mg/1	hr	hr ⁻¹	mg/m ² • hr
<b>D16</b>	7	יר <b>ר</b> ר	19.0	717	132	13.8
N10- D17-	7	2241 985 / '	10+3- 10+3-	•/1/ 717~	.132	7-7-
NT /	7-	23.4	19-7-	-/1/ 1- 00 <del>5</del>	212	1/.0
NO DOO	7	20.0	20.8	1.203	.212	17 2
KZUG	7:	2122J		1 50	- USOU 1 0F	
K21	1	27.5	18.9	1.52	.135	14.1
R1	10	19.4	10.4	1.29	. 282	16.2
R7	10	20.2	9.9	1.29	.333	18.2
R14	10	24.3	18.2	.649	.237	23.8
D3	15	26.6	12 5	1 28	358	24 6
ν. 2/	15	20.0	17 4	1 32	288	277
D5	15	38 0	12 1	1 28	- 200	27.7
K)	LJ	30.9	13.1	1.20	. 50	21.J
R10	20	47.7	25.4	1.28	. 288	40.3
R11	20	21.1	21.4	1.32	.291	34.4
R13	20	39.8	26.3	.673	.342	49.5
<b>P18</b>	25	487	25 5	1 15	221	46 6
D10	25	56 2	25.0	1 3/	• JJI 373	51 5
MTA WTA	23	JU.Z	23.0	1 94	. 3/3	77.2
KZZ	23	49.0	23.7	1.20	.353	40.2
K23	25	59.4	33.8	1.31	.23	43.0

### NITRIFICATION:

### Analysis of Variance

The analysis of variance results for the linearized Arrhenius models were obtained from the output of Computer Programme No. 2 (Appendix C). The mean square pure error estimates were obtained from repeats (Himmelblau, 1970). If an F-test showed the mean square lack of fit to be not significantly greater than the error mean square at the 95% confidence level, it was inferred that in light of the pilot plant results, there was no lack of fit in the model.

### ANOVA No. 1 RBC Results

Reparameterized and linearized Arrhenius Model

$$\ln K = -\frac{E}{R} \left(\frac{1}{T} - \frac{1}{T_0}\right) + \ln \left(Ae^{-E/RT}o\right)$$

Regression Results

$$\ln K = -7128_{-} \left(\frac{1}{T} - \frac{1}{T_{0}}\right) + 3.35_{-}$$
  
where  $T_{0} = 288$ 

Source of Variation	<u>Sum of</u> Squares	Degrees of Freedom	<u>Mean</u> Square	<u>F</u>
Total	242.819	21		
Mean	235.023	1		
Total (corrected for the mean)	7.796	20		
Regression	6.720	1	6.720	118.7
Residual	1.075	19	0.057	
*Pure Error $(S_{PE}^2)$	.466	13	0.036	
Lack of Fit	.610	6	0.101	2.81
$F_{c,10} = 2.9$	2			

⁶,13,.95 ²
# Pure Error Estimate

$$S_{t}^{2} = \text{estimated variance of data at } \mathbf{T}^{\circ}\mathbf{C}$$

$$v_{T} = \text{degrees of freedom at } \mathbf{T}^{\circ}\mathbf{C} \quad (\text{observations -1})$$

$$S_{PE}^{2} = \frac{v_{7}S_{7}^{2} + v_{10}S_{10}^{2} + v_{15}S_{15}^{2} + v_{20}S_{20}^{2} + v_{25}S_{25}^{2}}{v_{7} + v_{10} + v_{15} + v_{20} + v_{25}}$$

$$S_{PE}^{2} = \frac{4(.0834) + 2(.0224) + 2(.0035) + 2(.0204) + 3(.0131)}{4 + 2 + 2 + 2 + 2 + 3}$$

$$= .036 \text{ j degrees of freedom = 13}$$

ANOVA No. 2 Pilot Plant B Results

Reparameterized and linearized Arrhenius Model

$$\ln K = -\frac{E}{R} \left(\frac{1}{T} - \frac{1}{T_o}\right) + \ln \left(Ae^{-E/RT}o\right)$$

Regression Results

$$\ln K = -107200 \left(\frac{1}{T} - \frac{1}{T_0}\right) - 3.055$$

Source of Variation.	Sum of Squares	Degrees of Freedom	Mean Square	<u>F_</u>
Total	274.953	23		
Mean	259.540	1		
Total (corrected for the mean)	*15.413	22		
Regression	13.166	1	13.166	123.02
Residual	2.247	21	.107	
*Pure Error	.838	13	.0645	
Lack of Fit	1.409	8	.176	2.75
$F_{8, 13, .95} = 2.7$	7			

* calculated in the same manner as above

# Heat Transfer Coefficient for RBC

Programme No. 2 (Appendix C) was also used to fit a linear model to the heat flux and temperature driving force data which was calculated in Table E-3. The following model was used

$$y = ax + B$$

 $x = \underset{C}{\operatorname{driving}}$  force between atmosphere and liquid in a = heat transfer coefficient in kcal/hr m² °C B = constant term

Regression Result

$$y = 2.1 (T_{LIO} - T_{ATM}) - 2.1$$

Source of Variation	<u>Sum of</u> Squares	Degrees of Freedom	<u>Mean</u> Square	F
met a 1	1504 0	20		
IULAL	1394.9	20		
Mean	1.2	1		
Total (corrected for the mean)	1593.7	19.		
Regression	1409.3	· 1	-1409.3	137.5
Residual	184.4	18	10.2	

 $F_{1, 18, .95} = 4.41$ 

Therefore, the regression model significantly reduces the residual sum of squares.

# HEAT FLUX IN THE RBC

All heat flux data was taken from days in which the air conditioner was cooling the air circulating above the discs. This assures:

- 1. Conditions of air flow around the discs is similar for every set of data.
- 2. The air in the hood was at or close to 100% relative humidity for each set of data. This minimizes any evaporative cooling effects.

DATE	FLOW	LIQ. TEM	PERATURE	FLUX	AVE. TEM	PERATURES .	DRIVING FORCE
		IN	OUT		LIQ.	AIR.	
<u></u>	kg/hr	.ºC	[`] oC	<u>kcal</u> m ² hr	°C	°C	oC
26/06	49.9	17.753	16.4	-2 <u>-</u> 98 ⁻	16.4	15	-1.5
0 <del>2/07</del>	50.4	15-0	15-3-	.65	15.3	17.5	2.2
05/07 ~	51.3°	13.6	13.6	0.00	13.6	14	.4
08/07	49.0	6.1	8 <b>.</b> 9**	5.90	8:9-	10.5	1.6-
10/07	49.9	6.0	10.0	8.62	10.0	12.	2.0
12/07	49.9	5.7	7.7	4.31	7.7	12	4.3
22/07	46.8	14.3	13.6	-1.42	13.6	13.3	3
16/08	97.2	8.3	10.2	7.97	10.2	15.0	4.8
20/08-	98.5.	7.8	9.6-	7.63	9.6	15.0	5.4
21/08	86:3	8-4-	9.6-	4.48	9-6-	15.0	5.4-
22/08	10474	10.6	11.6	4.48-	11.6	15.3	3.7
27/08	8974	5.4	6.9	5.78	6.9	_11:37	4-4
28/08	87.6-	4.4	7.0	10.2	6.2	12.7	6.5
29708	92.2	4:3	7.0	10.7	6.3	9-8-	3-5
30/08 -	94.4	<b>5 : 5</b> ·	7.4	7.72	6.9	10:3	3.4
16/09	50.4	20.5	14.0	-14.1	15.8	12	-3.8
17/09	50.4	20.0	15.0	-10.9	16.2	13.6	-2.6
18/09	46.3	20.3	13.8	-13.0	15.2	9.6	-5.6
19/09	50.8	20.0	13.9	-13.4	15.2	9.7	-5.5
20/09	54.5	24.0	16.4	-17.8	18.3	12	-6.3

Total area of discs =  $250 \text{ ft}^2(23.2 \text{ sq m})$ 

# APPENDIX F

.

•

# DYE STUDIES

#### DYE STUDIES

All dye studies were conducted with a Turner Model 111 continuous flow fluorometer. The dye used in each run was prepared from 20% by weight stock Rodamine WT. For the RBC studies, a slug of dye was dumped into the feed end of the first compartment of the unit. In the case of the packed columns, a system was arranged such that dye could be injected into the feed lines with a syringe. In this way, the normal flows of the columns and the RBC were not disturbed during dye-additon. Effluent samples were then taken at close. intervals. Approximately 200 ml of each was filtered through .45 micron Gelman glass fiber filters. This provided a sufficient volume to permit fluorometer analysis by continuous flow. Before each experimental run, a filtered sample of reactor effluent was prepared to provide base line calibration of the fluorometer. The machine was re-zeroed every time the reading scale was changed. Calibration curves for the four fluorometer scales were provided by running dye solutions of known concentration through the unit. This produced straight line correlations between the fluorometer scale readings and dye concentration in parts per billion.

The dye study analysis programme listed in Appendix C was used to fit dispersion models and equal tanks in series models. The mean dye residence time for each study was also calculated and printed in the output.

-210-

## Tank in Series Model

The particular flow patterns which produce the effluent dye concentration curves in tracer studies can often be approximated by effluent concentrations predicted for a number of equal sized continuous stirred tanks in series (CSTR's).

The final effluent of a system of j equal sized CSTR's can be found from the following equation:

$$\frac{C}{C_{o}} = \frac{j^{j} \theta^{j-1}}{(j-1)!} e^{-j\theta}$$

where: C = effluent tracer concentrations

- $\Theta = -dimensionless time$
- j = number of tanks
- C_o = the quantity of tracer added divided by the volume of the entire system.

This applies only to a pulse input of tracer. In this type of system, as j approaches large values (say 15), the flow regime approximates plug flow whereas, when j is equal to 1, the flow is completely mixed. If the time at which the peak dye concentration occurs is shown, the above equation can be solved for j by taking the derivative and equating the result to zero. Theta peak is determined by dividing the peak time by the residence time. The final form of the equation is:

$$j = \frac{1}{1 - \Theta}$$

-211-

# Dispersion Models

The dispersion model is developed in such a way that it assumes plug flow for a given reactor system with the inclusion of a term which describes the degree of molecular dispersion or deviation from the ideal. The general equation for this model is:

$$\frac{D\dot{a}^2C}{\dot{a}x^2} - \frac{u\dot{a}C}{\dot{a}x} - \frac{C}{\dot{a}} = 0$$

Where u = mean displacement velocity C = concentration  $\frac{C}{x}$  = concentration gradient  $\frac{C}{t}$  = -reaction term D = turbulence expression

The solution of this equation for a tracer pulse. input to a closed wessel given by Mujachi (1953) is quoted by Timpany (1967).

$$\frac{C}{C_{O}} = 2\sum_{n=1}^{\infty} \frac{U_{n} (U \sin U_{n} + U_{n} \cos n)}{(U^{2} + 2U + U_{n}^{2})} EXP U - (\frac{U^{2} + U_{n}^{2}}{2U})_{Q}$$
where  $U_{n} = COT^{-1} (U_{n} - U_{n})/2$ 

$$U = \frac{UL}{2D}$$

$$L = tank length$$

The value U_n is best calculated by trial and error using an iterative approach. Also, the summation in equation 4 is taken to some reasonably large but finite value

-212-

for practical purposes.

Instead of determining a value for D by the normal variance technique suggested by Levenspiel (1967), a correlation between peak time and D/uL developed by Timpany (1967) has been used. Proper use of the variance method for D/uL calculation generally requires concentration data to be entered to at least seven detention times. This is rarely practical.

The discussions given above form the basis for the analytical procedures designed into the computer programme.

The remainder of this Appendix lists summaries of the results for all of the dye studies that were run.



THETA	C/C0	
- 058	028	
•116	188	
-232	517	• • • • • • • • • • • • • • • • • • •
-347	635	
• 463 -	.673	-
•579	635-	
•6253	.57.9-2	······································
•753 •811	•525 <u>-</u> •527	
<u>•868</u> •926	.508	
•984 1•042	470	
<u>1.100</u> 1.158	433	
1.216	390-	
1.390	<u>329</u>	
1.447	-287-	
1.505-	249	
1.621	221	
1.737	:202	
2•123 2•316	.151	
2.509	.113 .094	
2.895	085	
3.281	066	
3.667	• 052	
4 • 053	.047	
4.439	.035	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4•63 <i>2</i> 4•825	.026	

-215-

. ح

	· -			
		.•	······································	
CALCULAT	EN CACO VERSUS THE	TA VALUES		
	FOR CSTR IN SERIES	MODEL		
			·· · ·	
	• •• ••	-		4
THEORETICAL	DETENTION	ACTUAL	DETENTION	
· ·	•			. :•
THETA	C/C0	THETA	C/C0	
.0507	.181	.050	.181	
•100-			.327	
•200	•536-	•200	•536-	
•250%	•60 <i>4</i>	•250 § •300 \$	•607	
.350	.695	• 350	695	
•400± - 450	•719	•490÷ :450	•719=	
•500	136	-500	•736	
•550			.732	· · · · · · · · · · · · · · · · · · ·
•650	5709	-650	.709	
.700	•690	•700	.690	
•750	• 646	• 750 • 800		
.850=	•62E	.850-	.621	
• 900	•595	•900=	•595	· *
1.000	•541	1.000#	.541	
1.200-	•435	1.200	•435	
1.400	•341	1-400	• 34 1	
1.800	•197	1.800	.197	
2.000	•147	2:000	•147	
2.200	•108 -070	2.200	•108	
2.600	• 057	2.600	.057	
2.800	.041	2-800	• 041	••
3.200	•030 2021	3-200	• 030	-
3.400	.015	3.400	.015	
3.600	+011	3-600		
2 0 0 0	1008	31800	.808.	

-216-

て

FOR DISPERSI	LUN MODEL	
THEORETICAL DETENTION	ACTUAL DETENTION	
an a		:
•100 •051 -467	•100 •062 •062	
.300 .783	.300 .799	
_400# <del>-8</del> 99-	400 902	
- <u>500</u> - 		- · ·
.700 .758	.700	
- <del>800</del>	.800	
•9000 •394- 1:0007 - 1521		
1.1000 .4555	171000	
1.200 .397	1.200 .392=	
	1-400 .299	
1.500 .262	1.500 .260	
1:900 -150	15900 .151	
22200 099=	2:200 100	
2-300	2.300 .087	
	2=500 .066	•
27600	2.600 .058	
2.700 .049	2.700 .050	
2.900 -037		

·•- •

.

4

•

ę

٠

•

-217-

•	
a a construction de la construction La construction de la construction d	الم الي الله الله الم الله الله الله الله الله
TRACER RESPONSE ANALYSIS	
ROTATING BIOLOGICAL CONTACTOR.	······································
HYDRAULIC CHARACTERIZATION	
TEST METHOD USING A PULSE INPUT OF RODAN	INE DYE
REACTOR OPERATION AND TEST CONCITIONS	
VOLUME: OF REACIOR. == 129+25 LITRES HYDPAULIC: LOADING == 1.68 LITRES/MIN THEORETICAL DEI. = 77712 MIN DYE: INJECTION = .1350 LITRES CONC. OF DYE: ADDED = .238E*06 PPB	<b>↓</b> =
UYE / TANK VULUME = 220 JI PPB	***************************************
TEST RESULTS AND CALCULATED VALUES	5-
DYE-PEAK TIME == 44+00 MIN PEAK/THEOR+ DEI == .571 PEAK/MEAN-DYE-RES == .524-	
MEAN DYE RESIDENCE = 84+00 MIN PER DYE RECOVERY = 88.625 p FR. STAGNANT ZONE = 089	
CSTR S IN SERIES USING THEORETICAL RES CSTR S IN SERIES USING MEAN DYE RES. D/UL VALUE USING THEORETICAL RESIDENCE D/UL VALUE USING MEAN DYE RESIDENCE	= 2.33 = 2.10 = .2585E+00 = .3238E+00
TRACER STUDY CONDUCTED ON AUGUST 19 1974 DURING A PER	RIOD OF HIGH HYDRAULIC
LOADING.	
	······································
· · · · · · · · · · · · · · · · · · ·	
-218-	

**~** 

. ..

EXPERIMENTAL I	RESULTS C/CO VERSU	IS THETA
THETA	C/C0	
•117 •233 •350	.499 0.000 186	
•467 •584 •700	631 649 608	
•934 1.050 1.167	483 424 372 372	
1.400 1.517 1.634	300 266 245	
1.867 1.984 2.101	195 182 172	-
2,334 2,451 2,567	148 135 135	······································
2.801 2.918 3.034	104 .098 .091	
3.151 3.268 3.384 3.501	083 083 078 073	
3.890 4.279 4.668 5.057	041 027 016	· · · · · · · · · · · · · · · · · · ·
·····		

••

• • • •

-- · -

CALCULATED C/CO VERSUS THEY         FOR CSTR IN SERIES         THEORETICAL DETENTION         THETA C/CO         050       181         100       327         150       444         200       536         250       607         300       659         300       659         300       719         450       732         500       732         600       723         650       709         700       6690	TA VALUES MODEL ACTUAL DE THETA • 050 • 100 • 100 • 100 • 100 • 250 • 250 • 300 • 350 • 400 • 450 • 500 • 650	C/CO 181 327 444 536 607 659 695 719 732 736 732 736 732 736 732 736
CALCULATED C/CO VERSUS THEY         FOR CSTR IN SERIES         THEORETICAL DETENTION         THETA       C/CO         .050       .181         .100       .327         .150       .444         .200       .536         .250       .607         .300       .659         .300       .6259         .444       .200         .536       .695         .450       .719         .450       .732         .500       .732         .500       .732      .500       .732         .500       .723         .650       .709         .700       .6690         .750       .6691	TA VALUES MODEL ACTUAL DE THETA • 050 • 100 • 150 • 200 • 250 • 300 • 350 • 400 • 450 • 500 • 550 • 650	C/CO 181 327 444 536 607 659 695 719 732 736 736 736 732 736 732 736
THEORETICAL       DETENTION         THETA       C/CO         .050       .181         .150       .327         .150       .444         .200       .536         .250       .607         .300       .659         .350       .719         .450       .719         .450       .732         .500       .732         .500       .732         .550       .732         .6600       .723         .650       .709         .700       .6690         .750       .6691	ACTUAL DE THETA • 050 • 100 • 150 • 200 • 250 • 250 • 300 • 350 • 400 • 450 • 500 • 550 • 650	C/CO 181 327 444 536 607 659 695 719 732 736 736 732 736 732 736
THEORETICAL       DETENTION         THETA       C/CO         .050       .181         .100       .327         .150       .444         .200       .536         .250       .607         .300       .695         .350       .695         .444       .200         .300       .6719         .350       .732         .550       .732         .550       .732         .600       .723         .650       .709         .700       .6690         .750       .6691	ACTUAL DE THETA • 050 • 100 • 150 • 200 • 250 • 300 • 350 • 400 • 450 • 500 • 500 • 650	C/CO 181 327 444 536 607 659 695 719 732 736 736 736 736 723
THETA       C/CO         .050       .181         .100       .327         .150       .444         .200       .536         .250       .607         .300       .659         .350       .695         .400       .719         .450       .732         .500       .732         .500       .732         .500       .732         .500       .732         .500       .732         .650       .709         .700       .6690         .750       .669	THETA • 050 • 100 • 150 • 200 • 250 • 250 • 300 • 350 • 400 • 450 • 500 • 550 • 650	C/C0 181 327 444 536 607 659 695 719 732 736 732 736 732 736
THETA       C/CO         .050       .181         .100       .327         .150       .444         .200       .536         .250       .607         .300       .659         .350       .695         .480       .719         .450       .732         .550       .732         .600       .723         .650       .709         .700       .6690         .750       .6691	THETA • 050 • 100 • 150 • 200 • 250 • 300 • 350 • 400 • 450 • 500 • 550 • 650	C/C0 181 327 444 536 607 659 695 719 732 736 736 736 736 736 736 736 736
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• 050 = 100 = 150 • 200 = 250 • 300 • 350 • 400 = 450 • 500 • 500 • 650	181 327 444 536 607 659 695 719 732 736 736 736 736
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100 150 200 250 300 350 400 400 450 550 550 660 650	- 327 
•200       •536         •250       •607         •300       •659         •300       •695         •300       •719         •400       •719         •450       •732         •500       •732         •500       •732         •500       •732         •500       •732         •500       •732         •500       •732         •500       •723         •600       •723         •600       •723         •650       •709         •700       •690         •750       •669	•200 •250 •300 •350 •400 •450 •500 •550 •650	536 607 659 719 732 736 736 732 736
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•250 •300 •350 •400 •450 •500 •550 •650	607 659 719 732 736 736 736
• 350 • 400 • 400 • 400 • 719 • 450 • 732 • 500 • 732 • 500 • 732 • 600 • 723 • 600 • 723 • 650 • 709 • 700 • 690 • 750 • 669		695 719 732 736 736 732 732
•400 •450 •500 •732 •500 •732 •600 •723 •600 •709 •700 •690 •750 •669	•400 •450 •500 •550 •650	719- 732 736- 732 732
•500     •236       •500     •732       •600     •723       •650     •709       •700     •690       •750     •669	•500 •550 •650 •650	- 132 - 736 - 732 - 723
•550 •600 •723 •650 •709 •700 •690 •750 •669		732
•600 •723 •650 •709 •700 •690 •750 •669	•650	. ( 2 3
•700 •690 •750 •669		1789
•750 •669	•700	.690
	• 750	
•850 •621	•850	
•900	•900	•595-
<u>•950***</u> 176⊕@≈ •541-:	1.000	<u>.500-</u>
1 200 435	1.200	.435-
	1-400	•341
1.800 .197	1.800-	.197
2.000 .147	2.000	•147
	2.200	•108
2.600 .057	2.600	.057
2.800 .041	2.800	•041
3.200 021	3-200	.030
3.400 .015	3.400	.015
	3-600	.011
4.000 2005	4.000	005
4.200 .004	4.200	.004

t

-220-

フ

# CALCULATED C/CO VERSUS THETA VALUES FOR DISPERSION MODEL

# THEORETICAL DETENTION

# ACTUAL DETENTION

.

. .

3

••

		-		.• · · ·
•100	•002	•100	•010 •267	
.300	514	÷300	636	
•400	793	-400	•85 <u>5</u>	
•500: 600	• <del>775</del>	•500 5600	-925	
.700	.897	• 7 0 0	.839	
.800	-817	.800	755	50 St.
.900	-725		+667	
1,100	546	1-100	505	
1.200	.468	Ī\$200	436	
1.300	-399	1:300	375	
1.400			-322	
1.500	-243	1,600	1237	
<b>1.700</b>	205	1.700	203	
1.800	.173	1-800	.174	
1.900	-146	1.900	•149	
2:100	.104	2.100	109	-
2.200	.088	2.200	093	
2.300	.074	2.300	.080	
2.400	.052	2.500	058	
2.600	-044	2.600	.050	•
2.700	.037	2.700	.043	
5.800	-031	2.800	•037	
2.900	020	2.900	+UJI	
30000	• • • • • • • • • • • • • • • • • • •	GUUV.		

-221-

### DENITRIFICATION COLUMNS

# HYDRAULIC CHARACTERIZATION

# TEST METHOD USING A PULSE INPUT OF RODAMINE DYE

REACTOR OPERATION AND TEST CONDITIONS

VOLUME OF REACTOR = 158.00 LITRES HYDRAULIC LOADING = 2.08 LITRES/MIN THEORETICAL DET. = 75.96 MIN DYE INJECTION = .0070 LITRES CONC OF DYE ADDED = .238E+07 PPB-DYE / TANK VOLUME = 105.44 PPB

### TEST RESULTS AND CALCULATED VALUES

DYE PEAK TIME = 64.70 MIN PEAK/THEOR. DET = .852 PEAK/MEAN DYE RES = .973 MEAN DYE RESIDENCE = 66.50 MIN PER DYE RECOVERY = 92.657 FR. STAGNANT ZONE = .125 CSIR S IN SERIES USING THEORETICAL RES. = CSIR S IN SERIES USING MEAN DYE RES. =

CSTR S IN SERIES USING MEAN DYE RES. = 36.94 D7UE VALUE USING THEORETICAL RESIDENCE = .6681E-01 D/UL VALUE USING MEAN DYE RESIDENCE = .3729E-01

TRACER STUDY CONDUCTED ON COLUMN F1 JUNE 6 BEFORE ANY GROWTH HAD OCCURRED.

-222-

THETA

. . . . . . . . .

¢

C/C0

.....

•

	•	<b>*</b>
n an anna an an an anna anna anna anna		
• 020	0.000	· ·
• 0.39	0.000	
• 029	0.000 0.000	
.099	0.000	
1-18	0.000	· ·
• 128	0.000	بغيشه لجراعيتهم المراق التاريجي والمتحص والمتراج المتراك والمحم
.178	<u>0.000</u>	• • •
197	0.00	•
•217	0-000-	
•237	0.000	
• 275		
296	020978*	
.316	0.000	
· 336		
• 3 7 5	0.000	
.395	<b>0.000</b>	
• 415	0-000	, .
• 434°		
.424		1
. 494	0.000	
•513	0-000-	
• 233	• <b>61 b</b> 7 <b>b 9</b>	
• <i>923</i> •573	• # # 9 2	•
•59Ž	• 986	
• 658	1.214	· · · · · · · · · · · ·
• 7 2 4	1.432	
• 856	1.745	
•922	1.318	
• 987	• 967	
1.053	• 825 750	
1,185	.749	
1.251	.266	
1.316	• 427	
1.382	•275	• '
1.514 1.514	• 175	
1.580	138	
1.646	.126	•
	. 119	
1.711	104	
1.847	.095	
T • 0 4 9		•
		•
		· · ·

-223-

#### DENITRIFICATION COLUMNS

# HYDRAULIC CHARACTERIZATION

# TEST METHOD USING A PULSE INPUT OF RODAMINE DYE

# REACTOR OPERATION AND TEST CONDITIONS

VOLUME OF REACTOR = 158.00 LITRES HYDRAULIC LOADING = 2.21 **LITRES7MIN** 71:49 THEORETICAL DET. MIN =-LITRES DYE INJECTION = ·0150_ CONCOFEDYE ADDED == DYEL / TANK VOLUME = .793E+86 PPR 63.59 PP3

### TEST RESULTS AND CALCULATED VALUES

DYE PEAK TIME == 7.05 MIN PEAK/THEOR.DET = .198 PEAK/MEAN DYE RES = .292 MEAN DYE RESIDENCE= 24.00 MIN PER DYE RECOVERY = 84.465 P FP..STAGNANT ZONE = .664

CSTR S IN SERIES USING THEORETICAL RES. = 1.11 CSTR S IN SERIES USING MEAN DYE RES. = 1.41 D/UL VALUE USING THEORETICAL RESIDENCE = .4501E+01 D/UL VALUE USING MEAN DYE RESIDENCE = .1043E+01

TRACER STUDY #2 FOR COLUMN F1 WAS COMPLETED ON AUGUST 23 1974 BEFORE A GENTLE BACKWASH WAS CONDUCTED.THIS REPRESENTS APPROXIMATELY 74 DAYS OF CONTINUOUS OPERATION SINCE STARTUP.

-224-

THETA

C/C0

<u> </u>		
	•	
• 0 4 2	<b>.</b> 629	
• U 0 4 1 2 6		
.168	2.044	•
.210	1.557	
.252	1.219	
	907	بالارد المراجع فيترك والمراجع
•3.5.5 • 3.78=	.731	
.420	. 6377	
•462	• 566	
•504 File	•- <b>511</b>	
•540 •587	- 456	
629	• 440	= · · · · · · · · ·
•671	+ 417	
• / 13	• 393	
.797	-346	<b>4</b>
.839	.330	·
.881	• 307	· .
•923 965	- 275	
1.007	252	<del>.</del>
1-049	• 236	
1.391	•-224-	
1,175	189	
1.217	•18í	
1.259	• 173	
1.599	• 146	
1.678	• 11 Ŭ	
1.818	• 10 2	
1.958	• 194	
2.238	• 07 3	
2.378	.063	
2.518	• 055	· · · · · · · · · · · · · · · · · · ·
2.658	■ Up b	

-225-

# DENITRIFICATION COLUMNS

## HYDRAULIC CHARACTERIZATION

# TEST METHOD USING A PULSE INPUT OF RODAMINE DYE

# REACTOR OPERATION AND TEST CONDITIONS

VOLUME OF REACTOR =	158.00 LITRES
HÝÐRAULÍC LÖAÐÍNG =	2.22 LITRES/MIN
THEORETICAL DET. =	71-17 MIN
OTE INJECTION =	.0150 LITRES
CONG OF DYE ADDED =-	.793E+06 PPB
DYE / TANK VOLUME =	75-28 -PPB

### TEST RESULTS AND CALCULATED VALUES

	DYE PE PEAK/ PEAK/	EAK T Theor Mean	IME DE DYE	T RES		6.50 .091 .361	MIN	
-	MEAN-I PER-D FRS	DYE RE VE RE FAGNA	ESID COVE NT-Z	ENCE RY ONE	<u>=</u> ≈ =₌ 8 =-	18-08: 6-579 -747	M <del>in.</del> Pe	·
	CSTR S	5" IN-	SERI	E <del>S-</del> U	SING	- THEORE	FTGAL	RES

CSIR S IN SERIES USING MEAN DYE RES = 1.57 D/UL VALUE USING THEORETICAL RESIDENCE = .4941E+01 D/UL VALUE USING MEAN DYE RESIDENCE = .7084E+00

TRACER STUDY #3 WAS CONDUCTED ON AUGUST 23 1974 AFTER THE BACKWASH WAS FINISHED. '

-226-

THETA

1

C/C0

•042 •084 •126 •169 •211 •253 •295	• 558 3• 294 2• 750 2• 032 1• 408 • 996 • 797	· · · · · · · · · · · · · · · · · · ·
• 537 • 379 • 422 • 464 • 506 • 548 • 590 • 532	•644 •598 •558 •485 •485 •385 •385 •352 •352	
674 717 759 801 843 885 927	• 319 • 299 • 272 • 252 • 239 • 239 • 232	
• 969 1.012 1.054 1.096 1.138 1.180 1.222 1.265	• 225 • 225 • 220 • 213 • 205 • 199 • 186 • 173 • 159	
1.5207 1.405 1.546 1.686 1.827 1.967	• 175 • 120 • 100 • 066 • 053 • 946	

÷227-

# DENITRIFICATION COLUMNS

### HYDRAULIC CHARACTERIZATION

#### TEST METHOD USING A PULSE INPUT OF RODAMINE DYE

# REACTOR OPERATION AND TEST CONDITIONS

VOLUME OF REACTOR = 158.00 LITRES HYDRAULIC LOADING = 2.33 LITRES/MIN THEORETICAL DET. = 67.81 MIN DYE INJECTION = 67.81 MIN .0150 LITRES CONC.OF DYE ADDED = .793E+86- PP9 DYE_/.TANK-VOLUME = 75+28- PP8

# TEST=RESULTSTAND CALCULATED-VALUES

DYE PEAK TIME = 16.00 MIN PEAK/THEOR. DET = .236 PEAK/MEAN DYE RES = .727 MEAN DYE RESIDENCE = .727 FR. STAGNANT ZONE = .676

CSTR SERIESUSING THEORETICAL RES. = 1.31 CSTR SERIES USING MEAN DYE RES. = 3.67 D/UL VALUE USING THEORETICAL RESIDENCE = .1385E+01 D/UL VALUE USING MEAN DYE RESIDENCE = .1216E+01

TRACER STUDY #4 FOR COLUMN F1 WAS RUN ON AUGUST 25 1974 AFTER COMPLETION OF A 16 HOUR BACKWASH AT A HIGH HYDRAULIC FLOW.

-228-

THETA

C/C0

were an even of the second		جدر بالتصاحب التداعات	- بيا الريم، يا مهدمانية
		:	• • • •
0.9.8	. 013		
4 77	2°355		
• 1 / /	. 2 . 202		
.265	3.161		•
. 354	1.687		
642	0.7		
674		-	
• 2 3 1	• 220		•
	• 412		
• <b>Z08</b> 12	.319		
.796	.256-		•
885	226		· •
073	407		
• 31.2 2	• 123		
1-062-	•157 ·		
1-150	• 1 <u>5</u> 1 _		•
1 - 2 39	135		
4 707	120		
	• 1 4 3		• • •
1.410	• 116		.•
1.504	•104		
1.593	.096		
1.681	. 182		
4 770	052	•	
	• 900		
1.698	• 924		
1-947	• 9 4 6		· · · · · · · · · · · · · · · · · · ·
2.20355	,D40 °		
2=1.24	. 0	•	
5 777	กัววัว		
	• UUUU		
2.301	+ U 3.3		
2-389-	• 82/	•	
2.477	.027		
5.566	.ň2n		
	020		
2 • 274	• 8 5 4		
2.949	• 013		

# DENITRIFICATION COLUMNS

### HYDRAULIC CHARACTERIZATION

# TEST METHOD USING A PULSE INPUT OF RODAMINE DYE

REACTOR OPERATION AND TEST CONDITIONS

VOLUME- OF REACTOR =158.00LITRESHYDRAULIC LOADING =2.24LITRESZMINTHEORETICAL DET =70.54MINDYE INJECTION =.0150LITRESCONC OF DYE ADDED =.793E+06PPBDYE / TANK VOLUME =75.28PPB

### TEST RESULTS AND CALCULATED VALUES

DYEPEAK TIME=57.80MIN.PEAK/THEOR. DET=.819PEAK/MEAN DYERES=.814

MEAN DYE RESIDENCE 71.00 MIN PER DYE RECOVERY = 100.764 * FR. STAGNANT ZONE = -.007

CSTR S IN SERIES USING THEORETICAL RES. = 5.54 CSTR S IN SERIES USING MEAN DYE RES. = 5.38 D/UL VALUE USING THEORETICAL RESIDENCE = .7805E-01 D/UL VALUE USING MEAN DYE RESIDENCE = .8008E-01

TRACER STUDY #5 FOR COLUMN F1 WAS DONE ON SEPTEMBER 39 1974 AFTER COLUMN CLEANOUT AND BEFORE GROWTH HAD RESTARTED.

THETA

٩.

C/C0

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	المروحية المعارية المروحية والمروحية والمروحية والمروحية والمروحية والمروحية والمروحية والمروحية والمروحية والمروحية	a 1. a 4.4. Marka	·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•043 •085 •128 •170 •213	0.000 0.000 0.000 0.000 0.000 0.000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• 255 • 298 • 34 <u>1</u> • 383	0.000 0.000 0.000 0.000 0.000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•425 •468 •510 •553	0.000 0.000 0.000 .033		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• 595 • 638 • 681 • 723	•246 •638 1•009 1•395	· · ·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•766 •808 •851 •893	1.501 1.521 1.514 1.461	· · · · · · · · · · · · · · · · · · ·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•936 •978 1•021 1•063	1.301 1.262 1.129 1.009	· · · · ·	
1.276       .925         1.418       .425         1.559       .359         1.701       .306         1.843       .239         1.985       .166         2.127       .120         2.268       .053	1.148 1.191 1.233	• 097 • 784 • 684 • 598		
1.843       .239         1.985       .166         2.127       .120         2.268       .053	1.276 1.418 1.559 1.701	• 525 • 425 • 359 • 3056	- ··· -	
	1.043 1.985 2.127 2.268	•239 •166 •120 •053	· · · · · · · · · · · · · · · · · · ·	

# CALCULATED C/CO VERSUS THETA VALUES FOR CSTR IN SERIES MODEL

# THEORETICAL DETENTION

# ACTUAL DETENTION

	•		
THETA	C/C0	THETA	C/C0
• 05.D	.000	• 0 50	• 001
• 1995 - 157a	• <u>UUZ</u> 042	• 1003	0.71
·280-	. 137	-150	. 077
-250	.085	-250	146
.300	.155	.300	.235-
• 350	• 250	.350	• 340
• 400± 4 50÷	-351	•400	·451
•470	• 402 605	- 45U 500	+ 503 67 R
.550	. 722	• 5000	- 762
600	. 826	600	.840
.650	• 913	•650	.901
•700	• 980	•700	•944
• /50	1.025	•750	· 9 <u>69</u> -
851	14 040	• 6 U U • 5 D -	+977
.9 <del>11</del>	1 . 072	• 0 2 U . 9 A A **	• 97 U
.9583	110077	-951	•.J=J= 
1.000	964	1.000	.877
1.200	•722	1.200	.669
1-400	-470	1.400	.456
1309998	+ <del></del>		• 200
	. 176		105
2.200	.037	2.200	.051
2.400	.017	2.400	. 027
2.600	• <u>008</u>	2.600	• 013
2.000	• 003	2.800	• 0 97
3.200	• 101	3.200	• 003
3.400	. 000	3.400	.002
3.600	<b>រ</b> ី 0 ី 0 ី	<b>3.60</b> 0	JÖÖÖ
3.800	• 0 0 0	3.800	.000
4.000	.000	4.000	. •000
4.200	• 808	4.200	. 888

# CALCULATED C/CO VERSUS THETA VALUES FOR DISPERSION MODEL

# THEORETICAL DETENTION

# ACTUAL DETENTION

	400	0.00	. 1 0 0	000
	200	ំព័ត៌	200	
	300	124	.300	.027
	. 4ŏŏ	186	400	198
	.500	. 525	•500	.540
		893	•600	.902
-	•700	1.144	• 700	1.143
	.800	1.232	•800	1.222
	• 900	1.184	•900	1.171
	1.000	1.052	1.000	1.040
	1.100	• 284		• 9 ( 2
	1 200	+/14 EEO	1 200	•/00
	1.480	• 229 • 428	1.400	• 220
	1.500	. 322	1,500	.322
	1.600	238	1.600	240
	1.700	.174	1.700	177
	1.800	127	<b>1.800</b>	•129
	1.900	.091	1.900	•093
	2.000	• 065	2.000	• 067
	2.100	• 047		• 048
	2.200			• 034
	2.400			024
	2.500	. 812	2.500	.012
	2.600	ំព័ត៌គ	- 2.600	<b>2</b> 002
	2.700	. 0.06	2.700	.006
	2.800	.004	2.800	.004
	2.900	.003	2.900	.003
	3.000		3.000	. 002

-233-

### - DENITRIFICATION COLUMNS

### HYDRAULIC CHARACTERIZATION

TEST METHOD USING A PULSE INPUT OF RODAMINE DYE

REACTOR OPERATION AND TEST CONDITIONS

VOLUME: OF REACTOR ==158.00LITRESHYDRAULIC: LOADING ==2:31LITRESTHEORETICAL: DET. ==68.40MINDYE INJECTION ==0150LITRESCONCOF DYE ADDED =.793E±06PPBDYE: /* TANK= VOLUME ==75.28PPB

### TEST RESULTS AND CALCULATED VALUES

D¥E-PEAK-TIME =- 52°20° MIN PEAK/JHEOR-DET =- 0763° PEAK/MEAN=D¥E=RESE== 0768*

MEAN=DYE RESIDENCE -68-00 MIN PER=DYE RECOVERY = 108-662 PM FR. SIAGNANI ZONE - 006

CSTR S IN SERIES USING THEORETICAL RES. =4.22CSTR S IN SERIES USING MEAN DYE RES. =4.30D/UL VALUE USING THEORETICAL RESIDENCE =.1023E+00D/UL VALUE USING MEAN DYE RESIDENCE =.1001E+00

TRACER STUDY #6 FOR COLUMN F1 WAS RUN ON SEPTEMBER 10 1974, THIS WAS 2 DAYS AFTER STARTUP.

-234-

THETA

s,

C/C0

د المعادة منتخب المنظ المرجع منطقة العام المنطقة الم	· · · -
• 088	0.000
1381	0.000
439	.199
•5ž6	<b>5</b> 84
•614	1.049
•702	1.295
• (89	1.328
• 0 / /	
1.053	- 863
1.140	784
1.228	•578
1.316	• 472
1 • 404	• 392
1.491	• 332
1.267	• 292
1. 754	- 252
1.842	232
1.930 -	.213
2.018	• 193
2.105	•173
2.193	•139
2 281	• 120
2.1.56	• 102
2.544	.076
2.632	.060
ランロラム	Ĩ Ň Ž 7

-235-

	DENITRIFICATION COLUMNS	
	HYDRAULIC CHARACTERIZATION	
. ,	TEST WETHOD USING A PULSE INPUT OF RODAMINE DYE	•
REACTO	CPERATION AND TEST CONDITIONS	
	VOLUME DE REACTOR = 158-00 LITRES	-
	THEORETICAL DET = 70.54 MIN DYE INJECTION = 0150 LITRES CONC OF DYE ADDED = 753E+06 PPB DYE / TANK VOLUME = 75.28 PPB	
TEST R	SULTS AND CALCULATED VALUES	
	DYE PEAK TIME = 33.00 MIN PEAK/THEOR DEI = .468 PEAK/MEAN DYE RES = .500	····
<u> </u>	MEAN DYE RESIDENCE = 66-00 MIN PER DYE REGOVERY = -103.262 P FR. STAGNANT ZONE = .064	
	CSTR S IN SERIES USING THEORETICAL RES. = 1.88 CSTR S IN SERIES USING MEAN DYE RES. = 2.00 D/UL VALUE USING THEORETICAL RESIDENCE = .4238E+ D/UL VALUE USING MEAN DYE RESIDENCE = .4238E+	00
TRACER	STUDY #7 FOR COLUMN F1 WAS DONE 6 DAYS AFTER STARTUP ON	
SEPTEM	BER 14 1974.	

•

-236-

....

THETA	C/OC			. •
•085	0.000	- <u></u>		
•170	•213 •458	*	•	
• 340	•717			
•510	•810	. <i>·</i>	•	
• 681	•744			
•766±	•697	•	•	•
936	-5782	در سه المترسم الماري		جرمدی حد در م
	•485			<u></u>
	-438	<u></u>	•	
1.361	-365			
1.531	-325			
1•616 1•701	•306 •292	•		•
1-786	•279	• <u>-</u> •		
	<u>536</u>		·····	
2+127	• 229= • 213-			
2-212	•1 <del>86</del> •153		· ····	معريد کارد درومخان ور.
2.362	• 133			-
2•40/ 2•552	•080			

۰.

-237-

. .

DELITRISTCATION ON HUNC		
DENTIRIFICATION COLOMNS		- -
HYDRAULIC CHARACTERIZATION		÷
DENITRIFICATION COLUMNS HYDRAULIC CHARACTERIZATION TEST METHOD USING A PULSE INPUT OF RODAMINE DYE REACTOR OPERATION AND TEST CONDITIONS VOLUME OF REACTOR = 158.00 LITRES HUDRATUG COMPANY THEORETICAL DET		
REACTOR OPERATION AND TEST CONDITIONS		
VOLUME OF REACTOR = 158,00 LITRES		
THEORETICAL DEL. == 71.17 MIN DYE TNJECTION == 0150 LITRES CONC OF DYE ADDED = .753E+06 PPB DYE / TANK VOLUME == 75.28 PPB		
	-	: :
EST RESULTS AND CALCULATED VALUES		
DYE PEAK TIME = 27.00 MIN PEAK/THEOR. DET = .379 PEAK/MEAN DYE RES = .482	and the second	•
VEAN OVERESIDENCE== 56,000 MINN PEREDYEERECOVERY ==105,642 PR FR. STAGNANT ZONE = .213		•
CSIR-S_IN-SERIES_USING_THEORETICAL_RES. = CSIR-S_IN-SERIES_USING_MEAN_DYE_RES. == D/UL VALUE_USING_THEORETICAL_RESIDENCE = D/UL_VALUE_USING_MEAN_DYE_RESIDENCE =	1.61 1.93 .6488E+00 .3956E+00	······································
PRACER STUDY #8 FOR COLUMN F1 WAS DONE 14 DAYS AFTER START	UP ON ·	
SEPTEMBER 22 1974.	n n n n n n n n n n n n n n n n n n n	(- * 110)
	• • •	:
-		

-238-

THETA	C/CC		• •	•
•084	•013	· · · · ·	······································	
•169	• 325		•	
•253	•990	na a cuirent comerce andreas anno a suger a cor	-	• • •••
•422=	1.003			
•598=	• •877		· · · · · · · · · · · · · · · · · · ·	
• <del>674</del> -	•750-		÷	
•8433	•624-			
•927	•545_			•
1.096	•438			
1.180	•405			
1.349	• 352			
1.433	•319	•		
1.602	•255=		· • ·	
1⇒686œ 1⇒278=:	•232-	· .		
<u><u>1</u>=855-</u>	•195			
2:023	•173			· · · ·
2-108	•166			
2.276	•139			
2.361	•120			
2.529	•0ěě		· · ·	

# DENITRIFICATION COLUMNS

### * HYDRAULIC CHARACTERIZATION

## TEST METHOD USING A PULSE INPUT OF RODAMINE DYE

# REACTOR OPERATION AND TEST CONDITIONS

VOLUME OF REACTOR = 158.00 LITRES HYDRAULIG LOADING = 2.17 LITRES/MIN THEORETIGAL DET. = 72.81 MIN DYE INJECTION = .0150 LITRES CONC OF DYE ADDED = .793E+05 PPB DYE / TANK VOLUME = 75.28 PPB

#### TEST RESULTS AND CALCULATED VALUES

DYE_PEAK TIME =- 14-00 MIN PEAKZTHEORT DEL = .192 PEAKZMEAN DYE_RES = .538

MEAN DYE RESIDENCE= 26.00 MIN PER-DYE RECOVERY = 111.320 P-FR. STAGNANT ZONE = .643

CSTR S IN SERIES USING THEORETICAL RES. =1.24CSTR S IN SERIES USING MEAN DYE RES. =2.17D/UL VALUE USING THEORETICAL RESIDENCE =1822E+01D/UL VALUE USING MEAN DYE RESIDENCE =.3017E+00

TRACER STUDY #9 FOR COLUMN F1 WAS DONE ON OCTOBER 2. THIS WAS 24 DAYS AFTER STARTUP.

# CALCULATED C/CO VERSUS THETA VALUES FOR DISPERSION MODEL

# THEORETICAL DETENTION

۰,

ACTUAL DETENTION

				•
.100 "	744		.100	.007
200	921		200	231
.300	. ลักกิ		.300	ີເດັກຄື
	.775	•	.400	.838
500	696		-500-	927
600			600	918
700	-559-	•	710	857
-8.00-	501		880	.774
900	449		900	. 584
1.000	- <u>483</u> =		1.000	.597
1.100	.361	•	1.100	.517
1.200	. 324		1200	445
1.300	• 290		1.300	. 382
1.400	• 260		1.400	327
1.500	• 233		1.500	.280
1.600	•503		1.600	.239
1.700	• 187		1.700	• 204
1.800	• 1 5 8		1.800	• 1.74
1.900	• 151		1.900	.140
2.000	• 1 3 2 -	-	2:00-	120
2.100	• 121 -		2/100	.10/
2.200	• 100		2 200	073
2-1-2-00			2-2-2-0-0-	• 0 / 0
2 500	0 U Q I	•	2 600	• 865
2.688	- 070		2.600	. 0483
22280	. 063		2.700	040
2.800	. 156		2.200	035
2.900	. 150		2.900	.030
3.000	045		3.000	ĨŽŠ
	· · · · ·			

-241-
#### DENITRIFICATION COLUMNS

### HYDRAULIC CHARACTERIZATION

### TEST METHOD USING A PULSE INPUT OF RODAMINE DYE

### REACTOR OPERATION AND TEST CONCITIONS

VOLUME OF REACTOR = 158.00_ LITRES HYDRAULIC LOADING = 2.50 LITRES/MIN THEORETICAL DET. = 63.20 MIN DYE INJECTION = .0150 LITRES CONC OF DYE ADDED = .357E+06 PPB DYE / TANK VOLUME = .33.89 PPB

#### TEST RESULTS AND CALCULATED VALUES

DYE PEAK TIME = PEAKZTHEOR DET = PEAKZMEANDYE RES ==	3•00 •047 •693-	MIN	
MEAN DYE RESIDENCE == 1 PER DYE RECOVERY == 1 FR: STAGNANT ZONE ==	4+ <del>33</del> 21.324 •932	Min P	
CSTR S IN SERIES USIN CSTR S IN SERIES USIN D/UL VALUE USING THEO D/UL VALUE USING MEAN	IG THEORE IG MEAN D RETICAL I DYE RES	TICAL RES. YE RES. RESIDENCE IDENCE	= 1.05 = 3.26 = .1188E+02 = .1434E+00

TRACER STUDY #10 WAS THE LAST STUDY FOR COLUMN F1 AND WAS FINISHED ON DECEMBER 6 1974.

-242-

#### PEAK TIME OUTSIDE LIMIT FOR D/UL CALCULATION TRACER RESPONSE ANALYSIS

### DENITRIFICATION COLUMNS

### HYDRAULIC CHARACTERIZATION

### TEST METHOD USING A PULSE INPUT OF RODAMINE DYE

#### REACTOR OPERATION AND TEST CONDITIONS

VOLUME OF REACTOR = 163.00 LITRES HYDRAULIC LOADING = 2.52 LITRES/MIN THEORETICAL DET. = 64.68 MIN DYE INJECTION = .0125 LITRES CONC. OF DYE ADDED = .238E+07 PPB DYE / TANK VOLUME = 182.52 PPB

### TEST RESULTS_AND CALCULATED VALUES

DYE PEAK TIME PEAK/THEOR. DET PEAK/MEAN-DYE RES	==	37.00 •572 •831	MIN	a 4 2 <b>4</b> 4	
MEAN=OYE_RESIDENT PER-DYE_RECOVERY FR-STAGNANT-ZONE	)E=-	44 <u>.50</u> 98-996 .312	MIN.~ P-		
CSIR S IN SERIES CSIR S IN SERIES DZUL VALUE USING	USI USI THE MEA	NG THEOR NG MEAN ORETICAL N DYE RE	ETICAL DYE RES RESIDE SIDENCE	RES. =	2-34 5-93 •2567E+00 •7366E-01

TRACER STUDY #1 FOR COLUMN F2 WAS DONE ON JUNE 5 1974 PRIOR TO STARTUP OF DENITRIFICATION. EXPERIMENTAL RESULTS C/CO VERSUS THETA

Г	H	E	T	A	

:.

¢

**C/C**0

٠

		يد يو الجديد، الم		a anna anna an gann a sannar ag
• 023 • 046- • 070		0-000- 0-000- 0-000-		
•116 •139 •162				-
-186 -289 -232 -255	and along t			
•278 •301 •325		• 170 • 334 • 477	4.	
• 340 • 371 • 394 • 417		• 057 • 833 1• 057 1• 129	•	1 <u>.</u>
•441 •464 •487 •510		1-381 1-381 1-562 1-523		
•533 •557 •580		1:507~ 1.605 1.479 1.479		
• 626 • 649 • 673		1.523 1.507 1.452	-	
• 995 • 773 • 850 • 928	· • •	1.189 .928 .674	••	- ···
1.005 1.082 1.160 1.237		•521 •466 •384 •345		
1.314 1.391 1.469		• 279 • 192 • 151	<b>v</b> .	
1.623		• 137		

-244-

### - CALCULATED C/CO VERSUS THETA VALUES -FOR CSTR IN SERIES MODEL

# THEORETICAL DETENTION

## ACTUAL DETENTION

THETA	C/C0	THETA	C/C0
•050 •100	• 181	•058 •100	.000. -200.
•1503		•150	•012
250	• 535	•250	• 037=
.300-	• 659	.300-	•156
.350	• 695	• 350	•250
.451	•732	•400	• 301
500	• <u>736</u>	.500	605
	• 732	•550	•722
• 650	•723	•000	• 020
700	.690	700	.98õ
•750	• 669	•750	1.025
• 858 ¹¹	• 040 • 62 ¹	•010	1.052
<b>9</b> 00 ±	595	• 900s	1.037-
- 950	• 568	• 250	1.007
11200	•-241 _ <u>135</u>	1-200-	• 504
1.400	.341	1.400	.470
15600	.261	1.600	•276
2.000	•197	1.800	•150
2.200	108	2.200	.037
2.400	• 079	2.400	•017
	• 057		•008
3.000	• 030	3.000	.001
3.200	•021	3.200	.001
3.600	• 017	3.600	• 0 0 0
3.800	• 008	3.800	.000
4.000	• 0 05		.000
4 A C U U	▲ U U4+	4 a Z 11 11	_ H H H

## CALCULATED C/CO VERSUS THETA VALUES FOR DISPERSION MODEL

# THEORETICAL DETENTION

# ACTUAL DETENTION

• 100 • 200 • 300 • 400 • 500 • 600	002 157 510 791 925 945	•100 •200 •300 •400 •500 •600	• 000 • 000 • 018 • 161- • 490
.700 .800 .900 1.000 1.100	•8993 •8494 •727? •634: •5483	•709 •800 •900 1.000 1.100	1.147 1.254 1.213 1.080 .907
1.200 1.300 1.400 1.500 1.500	• 409 • 400 • 339 • 288 • 248	1.200 1.300 1.400 1.500 1.500 1.600	• 728 • 567 • 430 • 320 • 234 • 470
1.800 1.900 25000 251000 251000 251000	173 1460 123 104 104	1.800 1.900 2.000 2.100 2.100	122 086 061 043=
2-300 2-400 2-500 2-500 2-600 2-700	974- 062 952- 944-	2:400 2:400 2:400 2:500 2:500 2:600 2:00	• 021 • 014 • 010 • 010
2.800 2.900 3.000	• 031 • 026 • 022	2.800 2.900 3.000	•003 •002 •002

-246-

		• .			·
*	• .		-		· - · · ·
	TRACER RESPO	NSE ANALYS	S		
					· · · · · · · · · · · · · · · · · · ·
	DENTINIFICA	TION COLONIN		·	
and a substance and an owner and the substance and	HYDRAULIC CH	ARACTERIZAT	TION		
TEST METH	HOD USING A PULS	E INPUT OF	RODAMINE	DYE	•
REACTOR OPERATIO	ON AND TEST COND	ITIONS		•	
	DE REACTOR = 16	3.00 LITRE	SZMIN	•	· · · · · · · · · · · · · · · · · · ·
THEORET DYE INJU CONC OF DYE / TT	ICAL DEI - = 7 ECTION = DYE ADDED = 12 ANK VOLUME = 12	1.18 MIN 0250 LIIR 733E+06 PF 1.63 PPB	S B	• •	
TEST RESULTS AND	D CALCULATED VAL	UES			
DYE PEAK PEAK7THI PEAK7ME	K TIME = EOR DEI = AN DYE RES =	9.00 MIN .126_ .346			<u>.</u>
MEAN D¥I PERRD¥E FRa STAI	E RESIDENCE 2 RECOVERY == 89 GNANT ZONE =	64000 MIN			
CSTR S CSTR S D/UL VAI	IN SERIES USING IN SERIES USING LUE USING THEORE LUE USING MEAN D	THEORETICAL MEAN DYE RE TICAL RESIDENCE	RES. = S. = DENCE = E	1-14 1-53 -3195E+0 -7612E+0	1
				· · · · ·	
TRACER STUDY #2 FC CONTINUOUS OPERATI	OR COLUMN F2 WAS DO	DNE ON AUGUST	23 AFTER	73 DAYS OF	
· · . ·					·
	<i>a</i>				··· •
				•	
· · · · ·		· · -			· <del>-</del>
•	-247	7-			
· · · · · ·	• 		•		-

.

•	•		an coan anna an	a a Car maa. 19
EXPERIMENTAL	RESULTS C/CC VER	SUS_THETA_		
			* · •	:
THETA	C/CC		-	
•084 •169	1.110 2.351			
•253 •337 •421 •506	1•21 •691 •510 •411	- na na sa sa sa sa	·	
.674 .759 .843	•288 •267 •267	<u></u>	•	
1.012 1.096 1.180	•209 •194 •183	•		- -
1.349 1.433 1.517	• 158 • 146 • 141		•	·······
1.686 1.770 1.854	• 130 • 132 • 119 • 119			
27023 27023 27107 27192	• <u>1-07</u> • <u>1-03</u> • <u>099</u> • 095	<u> </u>		
2 • 276 2 • <del>360</del> 2 • 445 2 • 529	• 090 • <del>082 -</del> • 074 • 062	· ·		
	• 049	· · · ·		

-248-

### DENITRIFICATION COLUMNS

# 

# TEST METHOD USING A PULSE INPUT OF RODAMINE DYE

# REACTOR OPERATION AND TEST CONDITIONS

VOLUME OF REACTOR =	163.00_	LITRES
HYDRAULIC LOADING =	2=33	LIIRES/MIN
THEOREFICAL DET. =	69.95	MIN
CONCOSTINCE ADDED		LIIKES
DYE-/- TANK VOLUME =	72-98	ppg_

### TEST RESULTS AND CALCULATED VALUES

DYE PEAK PEAK	PEAK T /Theof /Mean	IME • DET • DYE_RES	= =_ :~ =	10.00 .143 .500	MIN	· ·	
MEAN PER F <del>R</del> a	DYE_R Dye_re Stagn#	RESIDENC COVERY	E== (	2 <del>0.</del> 00 94.565 .714	MIN -		
CSIR CSTR N/UL D/UL	SEIN SIN VALUE VALUE	SERIES SERIES USING USING	USING USING THEOI MEAN	G THEORE G MEAN I RETICAL DYE RES	TICAL RE DYE RES. RESIDENC SIDENCE	S = = = = = =	1.17 2.00 .2711E+01 .3631E+00

TRACER STUDY #3 FOR COLUMN F2 WAS DONE AFTER COMPLETION OF THE BACKWASH ON AUGUST 23 1974.

-249-

· · · · · · · · · · · · · · · · · · ·	· •		an in a		د. مدينة (برينية) مريد
				• •	•
THETA	C/C0		- 14 F	-	
				•	. •
- 186	.754		. مستقدة بالمعتدين اليام		
• 172	3.220				• •
• 25 (	1.535		•		
• 429	- 507		~	-	<b>.</b>
• 515	.329				
•686	- 288	•			
• 4 4 2	233	· · · · ·	· · · · · · · · · · ·		an a
.943	• 219			· .	
	.192				
1.201	.185				
1.372	.123				
1.458	.110		· · · ·		- 14 <b>- 14 - 1</b> 4 - 14
1.630	•096				
1.715	089				•
1.801 1.887	.082				•
1.973	• 075				
2.144	• 06-9	-			
2:230	• 0523 n=23				
2.401	.055.			-	-
2 487	035				
2:859	.041:				
			•	•	
••••••••••••••••••••••••••••••••••••••	• • • • •	••			
			•	-	
an a				· · · · · · · · · · · · · · · · · · ·	· • · · · · · · · · · · · · · · · · · ·
					_
•				•	
•	•	•	. *	-	
				•	
•	•		•		
	-250-			•	
•	. 230		. •		-

# EXPERIMENTAL RESULTS C/CO VERSUS THETA.

.

æ

#### DENITRIFICATION COLUMNS

#### HYDRAULIC CHARACTERIZATION

#### TEST METHOD USING A PULSE INPUT OF RODAMINE DYE

### REACTOR OPERATION AND TEST CONDITIONS

VOLUME OF REACTOR = 163.00 LITRES HYDRAULIC LOADING = 2.33- LITRES/MIN THEORETICAL DET. = 69.96 MIN DYE-INJECTION = .0150 LITRES CONG-OF-DYE ADDED = .793E+06 PPB DYE / TANK VOLUME = 72.98 PPB-

### TEST RESULTS AND CALCULATED VALUES

DYE PEAK TIME = 6.00 MIN PEAK/THEOR. DET = .086 PEAK/MEAN DYE RESS = .600 MEAN DYE RESIDENCE= 10.00 MIN PER DYE RESOVERY = 10.7.415 FR. STAGNANT ZONE = .857

CSTR S IN SERIES USING THEORETICAL RES. == 1.09 CSTR S IN SERIES USING MEAN DYE RES. = 2.50 D/UL VALUE USING THEORETICAL RESIDENCE = .5375E+01 D/UL VALUE USING MEAN DYE RESIDENCE = .2244E+00

TRACER STUDY #4 FOR COLUMN F2 WAS DONE ON OCTERBER 2. THIS WAS ROUGHLY 118 DAYS AFTER THE INITIAL STARTUP.

# EXPERIMENTAL RESULTS C/CO VERSUS THETA

T	ł	ł	Ε	Τ	Α
---	---	---	---	---	---

C/C0

		•	-	
•043 •086 •129 •172	1.932 7.619 5.522 3.152		· ·	
• 214 • 257 • 300 • 343	1.083 .713 .562			··· ···
•386 •429 •472 •515	. 425 . 315 . 274 . 254			
• 537 • 600 • 643 • 686	• 220 • 214 • 206 • 189 • 175			- · <u>-</u>
• 772 • 815 • 858	• 167 • 167 • 137 • 096	· · ·	•	
• 943 • 986 1•029 • 1•072	055 055 052 049			. 1
1.115 1.158 1.201 1.244	•047 •044 •041 •040			
1.287 1.429	•038 •034		• •••••••••••	

### DENITRIFICATION COLUMNS

#### HYDRAULIC CHARACTERIZATION

### TEST METHOD USING A PULSE INPUT OF RODAMINE DYE

REACTOR OPERATION AND TEST CONDITIONS

VOLUME OF REACTOR = 163.00 LITRES HYDRAULIC LOADING = 2.40 LITRES/MIN THEORETICAL DET. = 67.92 MIN DYE INJECTION = .0150 LITRES CONC OF DYE ADDED = .357E+06 PPB DYE / TANK VOLUME = 32.85 PPB

#### TEST RESULTS AND CALCULATED VALUES

DYE PEAK TIME = PEAK/THEOR. DET = PEAK/MEAN DYE RES = 5.00 MIN . 667 MEAN DYE RESIDENCE= PER DYE RECOVERY = FR. STAGNANT ZONE = 7.50 92.109 .890 MIN 1 CSTR S IN SERIES USING THEORETICAL RES. CSTR S IN SERIES USING MEAN DYE RES. D/UL VALUE USING THEORETICAL RESIDENCE D/UL VALUE USING MEAN DYE RESIDENCE 1.08 = = 3.00 •6596E+01 = = .1628E+00

TRACER STUDY #5 FOR COLUMN F2 WAS THE LAST AND THIS WAS RUN ON DECEMBER 5.

-253-