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Abstract: Hot tearing is strongly linked with the applied semi-solid strain rate. This defect is commonly 

qualitatively predicted using a pressure drop equation in the mushy zone that includes the effects of both 

tensile deformation perpendicular to the thermal gradient and shrinkage feeding. In this study, the effect of 

strain rate parallel to the thermal gradient is additionally introduced in order to assess its effect on hot 

tearing predictions. The deformation and shrinkage pore fractions are obtained on the basis of the 

dimensionless Niyama criterion and a scaling variable method. This Pore Fraction hot tearing model is first 

applied to the binary Al-Cu system under conditions of directional solidification. It is shown that for the 

same Niyama criterion, a decrease in the cooling rate increases both the deformation and shrinkage pore 

fractions because of an increase in the time spent in the brittle temperature region. Then, using a finite 

element simulation, the pore fraction distributions during Direct Chill casting of the AA5182 aluminum 

alloy are obtained. It is shown that including the strain rate parallel to the thermal gradient significantly 

improved the predictive quality of hot tearing criteria based on the pressure drop equation. Further, an 

increase in the casting speed increases the deformation and shrinkage pore fractions and causes the 

maximum point of pore fraction to move towards the base of the casting. 
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1 Introduction 

The direct-chill (DC) casting process often involves defects such as hot tearing,[1, 2] cold cracks,[3, 4, 5] butt 

curl, [6] macro/micro segregation,[7 ,8] and shrinkage porosity.[9] Hot tearing and shrinkage porosity in 

particular have been widely recognized in the literature for more than 10 decades. Shrinkage porosity is 

caused by the volume change occurring during solidification combined with the restricted feeding of liquid 

to the final solidifying region. Hot tearing is a defect with similar formation mechanisms, but also requires 

tensile deformation of the mushy zone[10]. Hot tearing and porosity are known to be inter-related. For 

example, it has been shown that hot tears nucleate on small intergranular pores[11], and that a reduction in 

porosity significantly increases semi-solid ductility[12]. 

 

Several hot tearing criteria have been developed on the basis of different parameters, e.g., strain,[13] strain 

rate,[ 14 , 15 ] alloy composition and solidification conditions.[1, 16 ] The so-called RDG criterion[15] is a 

prominent criterion based on the liquid pressure drop in the mushy zone that combines the effects of both 

tensile deformation perpendicular to the thermal gradient and shrinkage feeding on hot tear formation. The 

hot tearing predictor is given by the strain rate that satisfies the critical pressure drop ΔPcr required for hot 

tear formation. Although this criterion has achieved much recognition in the literature, it cannot distinguish 

between shrinkage porosity and hot tearing, especially for low thermal gradients.[17]  

 

The Niyama criterion, Ny, is commonly-used as a qualitative predictor of solidification shrinkage 

porosity during metal casting processes [18]. Recently, Carlson and Beckermann[9] proposed a dimensionless 

form of the Niyama criterion, Ny*, that directly predicts shrinkage pore fractions. As with the RDG criterion, 

Ny* was developed based on the liquid pressure drop in the mushy zone, but however it neglects tensile 

deformation. Within the framework of Ny*, ΔPcr marks the point at which liquid flow ceases in the mushy 
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zone. Thus, any solidification occurring after liquid feeding has ceased can result in shrinkage porosity. 

Monroe and Beckermann[17] later modified Ny* by adding a term related to strain rate perpendicular to the 

thermal gradient into the pressure drop equation. With the same method, i.e. tracking of solidification and 

deformation after liquid feeding cessation, both the shrinkage and deformation pore fractions were 

predicted. The deformation pore fraction is critical for hot tearing because this defect is related to mushy 

zone stresses and strains.[10] The main difference between the RDG criterion and the work of Monroe and 

Beckerman is that while the former predicts a strain rate satisfying ΔPcr, the latter predicts the evolution of 

deformation-related porosity after ΔPcr is reached based on an given strain rate. 

 

In this study, a Pore Fraction hot tearing model for predicting the evolution of pore fraction during 

solidification is presented that follows the method developed by Monroe and Beckermann[17] but 

additionally considers the effects of deformation parallel with the thermal gradient in the mushy zone. This 

model is then applied to the DC casting of an Al-Mg alloy, AA5182. The effect of casting speed on hot tear 

formation is investigated. 

 

2 Model Development 

2.1 Pore Fraction hot tearing model 

The Niyama criterion [18] is defined as, 

𝑁𝑦 =
𝐺

√𝑇̇
                                                                             (1) 

where G is the temperature gradient and 𝑇̇ is the cooling rate having a positive value if the temperature is 

decreasing. This criterion is evaluated at a temperature near the end of solidification, when solidification 

shrinkage forms.  

 

The dimensionless Niyama criterion[9] is a modified form of Eq. [1] that allows for prediction of pore 

fractions during casting,  

𝑁𝑦∗ = √
𝛥𝑃𝑐𝑟𝜆2

2

𝛽𝜇𝛥𝑇𝑓

𝐺

√𝑇̇
     (2) 

where ΔPcr corresponds to the critical pressure drop, λ2 is the secondary dendrite arm spacing (SDAS), β is 

the solidification shrinkage, µ is the viscosity, and ΔTf = Tliq−Tsol is the solidification interval where Tliq is 

the liquidus temperature and Tsol is the temperature at which the alloy is fully solidified. 

 

The governing equations for Ny* is conservation of mass using a control volume consisting of dendrite 

arms and interdendritic liquid[15] and Darcy’s Law governing pressure drop in the mushy zone, 

𝑑𝑖𝑣 < 𝜌𝑉 > −𝑉𝑇
𝜕<𝜌>

𝜕𝑥
= 0     (3) 

𝑓𝑙𝑉𝑙𝑥 = −
𝐾

𝜇

𝑑𝑝

𝑑𝑥
                                                            (4) 

where the notation <·> is employed to indicate values that are locally averaged over the liquid and solid 

phases,  represents density, V represents velocity, VT =
 Ṫ

G
 is the isotherm speed (growth interface velocity), 

with a direction aligned with that of the temperature gradient,  is the vicsocity, K is the permeability, and 

P is the melt pressure. Thus, the average specific mass and average mass flow are given by <ρ> = ρs fs + ρl 

fl, and <ρV> = ρs fs Vs + ρl fl Vl, where fl and fs are the volume fractions of liquid and solid, fl is equal to (1 – 

fs), and the densities of the two phases, ρs and ρl, are assumed to be constant but not equal.[15].  

 

Both Monroe and Beckerman’s extension of Ny*[17] and the RDG criterion[15] were developed from Eqs. 

[3] and [4] based on the assumptions that: (1) fluid moves only along the thermal gradient and thus equates 

to a one-dimensional fluid flow, and (2) the solid deforms only in a direction transverse to the fluid 

motion/thermal gradient.  During metal casting, the first assumption is appropriate, since the mushy zone 

consists of a continuous path between the liquid and solid phases enabling flow in a single direction. 

However, deformation of solid in a direction parallel to the thermal gradient is also possible in addition to 
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deformation in the transverse direction. Furthermore, the amount of such deformation can be easily 

calculated using finite element models of casting processes (e.g. [13, 19, 20]).  

 

Including the solid deformation in a direction parallel to the thermal gradient will not make the derivation 

of the pressure drop equation any more complex as compared previous work. From Eq. [3], mass 

conservation can be presented considering solid deformation in directions both parallel and perpendicular 

to the thermal gradient. First, under the given assumptions, Eq. [3] can be expanded, 
𝜕(𝜌𝑙𝑓𝑙𝑉𝑙𝑥)

𝜕𝑥
+

𝜕(𝜌𝑠𝑓𝑠𝑉𝑠𝑥)

𝜕𝑥
+

𝜕(𝜌𝑠𝑓𝑠𝑉𝑠𝑦)

𝜕𝑦
= 𝑉𝑇 [

𝜕(𝜌𝑠𝑓𝑠)

𝜕𝑥
+

𝜕(𝜌𝑙𝑓𝑙)

𝜕𝑥
]     (5) 

where Vsx  and Vsy are the relevant solid deformation velocities as shown in Fig. 1. Second, assuming that fs 

and fl only change over x (along the thermal gradient), Eq. [5] can be rewritten as,  
𝜕(𝑓𝑙𝑉𝑙𝑥)

𝜕𝑥
+ (1 + 𝛽) [𝑉𝑠𝑥

𝑑𝑓𝑠

𝑑𝑥
+ 𝑓𝑠𝜀𝑝̇𝑥 + 𝑓𝑠𝜀𝑝̇𝑦] = 𝑉𝑇𝛽

𝜕𝑓𝑠

𝜕𝑥
     (6) 

where 𝜀𝑝̇𝑥 =
𝜕𝑉𝑠𝑥

𝜕𝑥
 and 𝜀𝑝̇𝑦 =

𝜕𝑉𝑠𝑦

𝜕𝑦
  are the strain rates parallel with and perpendicular to the thermal gradient. 

Third, employing the same method as used by Rappaz et al.[15] , Eq. [6] can be integrated over x, giving,  

𝑓𝑙𝑉𝑙𝑥 + (1 + 𝛽)[𝑉𝑠𝑥𝑓𝑠 + ∫ 𝑓𝑠(𝜀𝑝̇𝑥 + 𝜀𝑝̇𝑦)𝑑𝑥] − 𝑉𝑇𝛽𝑓𝑠 = 𝐶 = −𝑉𝑇𝛽  (7) 

where the constant of integration, C, has been replaced by the boundary condition, C= -VT. This equation 

predicts the liquid velocity at any position in the mushy zone. Finally, Darcy’s law is used to link liquid 

melt pressure and velocity. Replacing the 𝑓𝑙𝑉𝑙𝑥 term of Eq. [7] with Eq. [4] and then integrating from xfl=flcr 

to xfl=1 gives a modified form of the pressure drop equation, 

𝛥𝑃𝑐𝑟 = (1 + 𝛽)𝜇 ∫
1

𝐾

𝑥𝑓𝑙
=1

𝑥𝑓𝑙=𝑓𝑙𝑐𝑟
[𝑉𝑠𝑥𝑓𝑠 + ∫ 𝑓𝑠(𝜀𝑝̇𝑥 + 𝜀𝑝̇𝑦)𝑑𝑥]𝑑𝑥 + 𝑉𝑇𝛽𝜇 ∫

𝑓𝑙

𝐾

𝑥𝑓𝑙
=1

𝑥𝑓𝑙=𝑓𝑙𝑐𝑟
𝑑𝑥  (8) 

 

assuming that µ and VT are constant throughout the mushy zone. Further, VT =
 Ṫ

G
is evaluated at a critical 

temperature near the solidus as defined for Ny. In this equation, ΔPcr corresponds to the critical pressure 

drop between fl=1.0 and a critical liquid fraction where feeding has ceased, flcr.  

 

Since the temperature gradient, cooling rate, and strain rate are assumed constant, the integration variable 

of Eq. [8] can be changed from position to fraction liquid and the strain rate terms can be taken out of the 

integral, yielding, 

𝛥𝑃𝑐𝑟 =
(1+𝛽)𝜇

𝐺
∫

1

𝐾

1

𝑓𝑙𝑐𝑟
[𝑉𝑠𝑥𝑓𝑠 +

(𝜀̇𝑝𝑥+𝜀̇𝑝𝑦)

𝐺
 ∫ (1−𝑓𝑙)

𝑑𝑇

𝑑𝑓𝑙
𝑑𝑓𝑙

𝑓𝑙𝑐𝑟

0
]

𝑑𝑇

𝑑𝑓𝑙
𝑑𝑓𝑙   +

𝑇̇𝛽𝜇

𝐺2 ∫
𝑓𝑙

𝐾

𝑑𝑇

𝑑𝑓𝑙

1

𝑓𝑙𝑐𝑟
𝑑𝑓𝑙.  (9) 

  

If the strain rates (𝜀𝑝̇𝑥 and 𝜀𝑝̇𝑦 are set to zero, Eq. [9] is identical with the result of Carlson and Beckerman[9] 

in deriving Ny* since the term 𝑉𝑠𝑥𝑓𝑠 = 0  (recall that 𝜀𝑝̇𝑥 =
𝜕𝑉𝑠𝑥

𝜕𝑥
by definition), and can be used for 

predicting shrinkage porosity. If only 𝜀𝑝̇𝑥  is set to zero, Eq. [12] matches the RDG criterion[15]  

 

Introducing a dimensionless temp. θ = (T − Tsol)/ΔTf where ΔTf  is the freezing range of the alloy, 

and rearranging Eq. [9] yields 

𝛥𝑃𝑐𝑟 =
(1 + 𝛽)𝜇𝛥𝑇𝑓

2(𝜀𝑝̇𝑥 + 𝜀𝑝̇𝑦)

𝐺2
𝐼𝑑𝑒 +

(1 + 𝛽)𝜇𝛥𝑇𝑓𝜀𝑝̇𝑥𝜆2

𝐺
𝐼𝑠ℎ𝜀̇ +

𝑇̇𝛽𝜇𝛥𝑇𝑓

𝐺2
𝐼𝑠ℎ , 

=
(1+𝛽)𝜇𝛥𝑇𝑓

2(𝜀̇𝑝𝑥+𝜀̇𝑝𝑦)

𝐺2 𝐼𝑑𝑒 +
(1+𝛽)𝜇𝛥𝑇𝑓𝑉𝑠𝑥

𝐺
𝐼𝑠ℎ𝜀̇ +

𝛽𝜇𝛥𝑇𝑓𝑉𝑇

𝐺
𝐼𝑠ℎ ,  (10a) 

 

 

𝐼𝑑𝑒 =  ∫ [
1

𝐾
∫ (1−𝑓𝑙)

𝑑𝜃

𝑑𝑓𝑙
𝑑𝑓𝑙

𝑓𝑙𝑐𝑟

0
]

1

𝑓𝑙𝑐𝑟

𝑑𝜃

𝑑𝑓𝑙
𝑑𝑓𝑙    (10b) 
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𝐼𝑠ℎ𝜀̇ =  ∫
1−𝑓𝑙

𝐾

𝑑𝜃

𝑑𝑓𝑙
𝑑𝑓𝑙

1

𝑓𝑙𝑐𝑟
   (10c) 

 

𝐼𝑠ℎ =  ∫
𝑓𝑙

𝐾

𝑑𝜃

𝑑𝑓𝑙
𝑑𝑓𝑙

1

𝑓𝑙𝑐𝑟
   (10d) 

In this expression, 𝐼𝑑𝑒 is associated with the term related to the deformation, 𝐼𝑠ℎ  
is associated with 

the term related to the shrinkage, and 𝐼𝑠ℎ𝜀̇  is associated with the term related to the deformation-induced 

shrinkage. As can be seen, the second and third terms of Eq. [10a] have the same form, related through the 

isotherm velocity VT and solid deformation velocity Vsx. The permeability K has also been left inside the 

integrations of 𝐼𝑑𝑒, 𝐼𝑠ℎ𝜀̇ , and 𝐼𝑠ℎ  because many different empirical relations exist for this function,[21, 22] 

such as the Kozeny–Carman relation.[21]   

 

Following Monroe and Beckerman[17], it is assumed that fluid flow ceases once the pressure drop 

exceeds ΔPcr. Thus, for a given value of ΔPcr, the critical fraction of fluid flcr can be obtained from Eq. [10]. 

Further shrinkage and deformation beyond flcr will result in the formation of porosity.  

 

When flow stops at flcr, mass conservation can be applied to determine the porosity that must form 

to feed the remaining shrinkage[17],  

𝑓𝑝,𝑠ℎ =
𝛽

1+𝛽
𝑓𝑙𝑐𝑟   (11) 

 

A similar set of variables can be used to calculate deformation-related porosity, 𝑓𝑝,𝑑𝑒,𝜀𝑥 and 𝑓𝑝,𝑑𝑒,𝜀𝑦,  

𝑓𝑝,𝑑𝑒,𝜀𝑥 =
𝜀̇𝑝𝑥𝛥𝑇𝑓

𝑇̇
∫ (1 − 𝑓𝑙)

𝑑𝜃

𝑑𝑓𝑙
𝑑𝑓𝑙

𝑓𝑙𝑐𝑟

0
                                                         (12) 

𝑓𝑝,𝑑𝑒,𝜀𝑦 =
𝜀̇𝑝𝑦𝛥𝑇𝑓

𝑇̇
∫ (1 − 𝑓𝑙)

𝑑𝜃

𝑑𝑓𝑙
𝑑𝑓𝑙

𝑓𝑙𝑐𝑟

0
                                                          (13) 

Finally, because of the term 𝐼𝑠ℎ𝜀̇  in Eq. [10], there is additionally strain rate-induced shrinkage porosity,  

𝑓𝑝,𝑠ℎ𝜀̇ =
𝐺𝜀̇𝑝𝑥𝜆2

Ṫ
(1 − 𝑓𝑙) =

𝑉𝑠𝑥

𝑉𝑇
(1 − 𝑓𝑙𝑐𝑟)     (14) 

Thus, as shown in Eqs. [11]-[14], the total porosity that forms during the late stages of solidification 

below flcr consists of four components: 𝑓𝑝,𝑠ℎ, 𝑓𝑝,𝑑𝑒,𝜀𝑥, 𝑓𝑝,𝑑𝑒,𝜀𝑦, and 𝑓𝑝,𝑠ℎ𝜀̇. Further, the total deformation pore 

fraction and total pore fraction can be computed, and are denoted as 𝑓𝑝,𝑑𝑒 and 𝑓𝑝,𝑠𝑢𝑚, i.e., 

𝑓𝑝,𝑑𝑒 = 𝑓𝑝,𝑑𝑒,𝜀𝑥 + 𝑓𝑝,𝑑𝑒,𝜀𝑦                                                                       (15) 

𝑓𝑝,𝑠𝑢𝑚 = 𝑓𝑝,𝑠ℎ + 𝑓𝑝,𝑠ℎ𝜀̇ + 𝑓𝑝,𝑑𝑒,𝜀𝑥 + 𝑓𝑝,𝑑𝑒,𝜀𝑦                                               (16) 

Since only a positive strain rate increases pore fraction to result in the formation of a hot tear, the 

occurrence of a negative strain rate is ignored in the following analysis. 

 

2.2 Effect of strain rate parallel with thermal gradient on pore fraction 

To investigate the predictions of the Pore Fraction hot tearing model, and verify its accuracy, the present 

results are compared against the results provided by Monroe[17] for Al-Cu alloys using the same solid 

fraction–temperature curve and input parameters given in their work (Eq. [17] and Table I in [17]). Most 

importantly, ΔPcr is set to 1.0 atm. Note also that the eutectic temperature in [17] should have been given 

as 821 K (547.85 ˚C) and not 855 K (581.85 ˚C) to match the Al-Cu binary phase diagram. To additionally 

examine the effect of the strain rate parallel with the thermal gradient, 𝜀𝑝̇𝑥 is arbitrary assigned a value of 

0.1 times 𝜀𝑝̇𝑦. Fig. 2 shows the pore fraction curves as function of Ny* for an Al-3wt.%Cu alloy. The results 

given in Fig. 2 match Fig. 3 in [17] but with the addition of the curves 𝑓𝑝,𝑑𝑒,𝜀𝑥 (Eq. [12]) and𝑓𝑝,𝑠ℎ𝜀̇ (Eq. 

[14]). As can be seen, the curves for 𝑓𝑝,𝑠ℎ, and 𝑓𝑝,𝑑𝑒,𝜀𝑦  predict significant porosity, especially at lower 

values of Ny*. For the same Ny*, the value of 𝑓𝑝,𝑑𝑒,𝜀𝑥 is 0.1 times that of 𝑓𝑝,𝑑𝑒,𝜀𝑦 , as expected. Clearly, the 

positive value of 𝜀𝑝̇𝑥 increases the total deformation pore fraction 𝑓𝑝,𝑑𝑒, and 𝜀𝑝̇𝑥 has the same impact on 

the deformation pore fraction as 𝜀𝑝̇𝑦 has. The value of 𝑓𝑝,𝑠ℎ𝜀̇
 
has a magnitude of 10−7, which is negligible 

compared with the values of 𝑓𝑝,𝑠ℎ, 𝑓𝑝,𝑑𝑒,𝜀𝑦, and 𝑓𝑝,𝑑𝑒,𝜀𝑥. 
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The effect of alloy composition C0, thermal gradient G, and cooling rate Ṫ on the pore fraction is shown 

in Fig. 3. The red and black curves in Fig. 3 are both calculated with a Niyama criterion (Eq. [1]) value of 

100, with the black curves matching those from Fig. 5 in [17]. The 𝑓𝑝,𝑑𝑒,𝜀𝑥 curve has the same trend as the 

𝑓𝑝,𝑑𝑒,𝜀𝑦  curve, increasing with composition up to C0 = 0.25[17] and then decreasing at higher alloy 

concentrations, identifying the point of maximum hot tearing susceptibility. Thus, the strain rates parallel 

with and perpendicular to the thermal gradient have the same effect on pore development. As the value of 

𝑓𝑝,𝑠ℎ𝜀̇ was negligible, it is not shown in Fig. 3. Note that experimentally (e.g. [23]), the maximum hot 

tearing susceptibility for Al-Cu alloys is found at ~Al-1wt%Cu alloys and not Al-0.25wt.%Cu. As 

explained in detail in [17], C0,max corresponds to the maximum solidification interval, and it is strongly 

related to the fraction liquid for grain bridging. In this work, it has been assumed that grain bridging occurs 

at fl=0 in order to compare the results in the present manuscript against [17]. An increase in in fl,gb to the 

usual value of 0.02 (fs=0.98) will increase C0,max as well, to 1.32wt.%Cu. 

 

Surprisingly, by comparing the red and black curves, it can be seen that even with the same Niyama 

criterion, the pore fractions differ for different cooling rates and thermal gradients. Given the same Niyama 

criterion, the application of a low cooling rate results in a high pore fraction and thus a high propensity for 

hot tearing because this results in a decreases in the isotherm speed VT (Eq. [3]), which in turn increases the 

solidification time and finally increases the duration within the brittle temperature region (BTR, i.e. the 

temperature region within the semi-solid where the ductility of the alloy is virtually zero [24]) [25, 26]. The 

effect is much more significant on the deformation-related porosity (fp,de,εy curve) as compared to the 

shrinkage-related porosity (fp,sh curve). This is because the deformation-related porosity is both directly 

proportional to flcr and inversely proportional to Ṫ  whereas the shrinkage-related porosity is only 

proportional to flcr. Thus, the Niyama criterion is not sufficient to predict hot tearing susceptibility. 

Furthermore, although the red and black curves for fp,sh are similar, identical Niyama values do not indicate 

identical levels of shrinkage porosity in the context of the present model.   

 

3 Pore fraction prediction for DC casting under different conditions 

In combination with a finite element simulation, the Pore Fraction hot tearing model can be applied to 

analyze the distribution of fp,de during DC casting of AA5182 aluminum alloy cylindrical billets. 

 

3.1 Coupled thermal-mechanical DC casting model 

The DC casting process of an AA5182 round billet was simulated using an axisymmetric coupled 

thermomechanical model implemented in the commercial FE code Abaqus, which is schematically shown 

in Fig. 4. The details of the simulation methodology, boundary conditions, and constitutive behaviour are 

provided in Jamaly et al.[13]. The key feature for predicting hot tearing using the Pore Fraction hot tearing 

model is the alloy’s constitutive behaviour since this controls the development of the strain rate tensor 

within the mushy zone. As reported in [13], the modified Ludwik equation developed by Alankar and 

Wells[27] is used to simulate the constitutive behavior of the alloy at temperatures below the solidus 

temperature, while the constitutive behaviour between the solidus temperature (796.15 K (523˚C)) and the 

temperature for mechanical coalescence (875.15 K (602 ˚C)) is simulated based on microstructure and 

fraction solid according to a model proposed by Phillion et al.[28] Above the temperature for mechanical 

coalescence, a low constant yield strength is specified, matching the yield strength values calculated with 

the model proposed by Phillion et al.[28] at the temperature for mechanical coalescence. 

 

3.2 Implementation of pore prediction model 
The pore fractions were calculated using a C# purpose-written code. First, the DC casting finite element 

simulation of Jamaly et al. [13] was run to completion. Second, the cooling rate, thermal gradient, and strain 

rate was extracted from the simulation output at the critical temperature of 819.15 K (546˚C), corresponding 

to a solid fraction of 0.98. Third, all the negative strain rate values were set to zero because they do not 
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increase the pore fraction. Finally, the Pore Fraction hot tearing model was applied to calculate 𝑓𝑝,𝑠ℎ , 

𝑓𝑝,𝑑𝑒,𝜀𝑦, 𝑓𝑝,𝑑𝑒,𝜀𝑥, and 𝑓𝑝,𝑠ℎ𝜀̇. 

 

The computation of permeability via the Kozeny–Carman equation requires the secondary dendrite arm 

spacing λ2 (SDAS). Following Glenn et al.[29], SDAS is calculated as 

ln(𝜆2) = 0.47 ln(𝜏𝑓) + 1.75                                    (17) 

 

where the unit of λ2 is µm and τf is the local solidification time (s) defined as the duration between the 

liquidus (910.15 K (637˚C)) and solidus (796.15 K (523˚C)) temperatures.  

 

The computation of the strain rates parallel with and perpendicular to the fluid flow within the mushy 

zone requires a rotation of the strain rate tensor from the global axi-symmetric coordinate system to the 

local system aligned with the thermal gradient. The strain rate is calculated as follows,  

𝐴 = 𝑅 × 𝜀𝑖̇𝑗 × 𝑅′,  (18a) 

𝑅 = [
cos (

𝜋

2
− 𝛾) sin (

𝜋

2
− 𝛾)

− sin (
𝑝𝑖

2
− 𝛾) cos (

𝜋

2
− 𝛾)

],  (18b) 

,                                                               

where γ is the rotation angle between the radius and the thermal gradient, R is the transformation matrix, 

𝜀𝑖̇𝑗  is the strain rate tensor in the global coordinates, and A is the strain rate in the local coordinates. The 

strain rate perpendicular to the thermal gradient, 𝜀𝑝̇𝑦, is given by A11+𝜀𝑝̇𝐻 where 𝜀𝑝̇𝐻 
is hoop plastic strain 

rate, and the strain rate parallel to the thermal gradient, 𝜀𝑝̇𝑥, is A22. 

 

3.3 Effect of strain rate parallel with thermal gradient on pore fraction 

Fig. 5 shows (a) the pore fraction distribution along the centerline of the billet at a casting speed of 56 

mm·min−1 , and (b) the corresponding strain rates parallel with and perpendicular to the thermal gradient. 

Fig. 5(a) shows that the part of the billet at 16 mm from the bottom of the billet has the highest pore fractions 

𝑓𝑝,𝑑𝑒 and 𝑓𝑝,𝑠𝑢𝑚, which make this region prone to hot tearing. The total deformation pore fraction 𝑓𝑝,𝑑𝑒 then 

undergoes a steep decrease as the height increases from 16 mm, and  𝑓𝑝,𝑑𝑒 is less than 10−4 at 48 mm from 

the bottom of the billet. After a distance of 96 mm from the bottom of the billet, 𝑓𝑝,𝑑𝑒 starts to increase 

again as the strain rate 𝜀𝑝̇𝑦 acquires a tensile nature (as shown in Fig. 5(b)) and finally reaches a plateau. 

Note that each height value is a multiple of four since that is the mesh size in the finite element simulation. 

Although the maximum value of 𝜀𝑝̇𝑦 is similar to the maximum value of 𝜀𝑝̇𝑥, the pore fraction in the steady 

state regime above 96 mm is significantly smaller than that at 16 mm because of the different thermal 

conditions. In the start-up regime, the cooling rate and thermal gradient are very low (although the Niyama 

value is larger than the steady state) because the contact heat transfer coefficient between the billet and the 

bottom block is considerably lower than the water film heat transfer coefficient. 

 

The importance of including the strain rate parallel to the thermal gradient is evident in Fig. 5(b), since 

all of the tensile deformation occurring in the start-up region is in this direction, while 𝜀𝑝̇𝑦 remains at zero 

until a distance of 96 mm from the bottom of the billet. Without including 𝜀𝑝̇𝑥, the deformation pore fraction 

would be very small within a distance of 96 mm from bottom of the billet, making it appear that the 

shrinkage pore fraction dominates within this region. This would lead to erroneous conclusions regarding 

the relative importance of the shrinkage and deformation pore fractions as predictors for hot tearing 

formation within the start-up region of DC casting. Furthermore, this would lead to the appearance that the 

total pore fraction increases with increasing distance from bottom of the billet, i.e. hot tearing susceptibility 

is increased in the steady-state region as compared to the start-up region. This would not match industrial 

experience. 
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Fig 6. shows the contour plots of the pore fractions 𝑓𝑝,𝑑𝑒, 𝑓𝑝,𝑠𝑢𝑚 and the critical liquid fraction 𝑓𝑙𝑐𝑟 using 

the  casting conditions corresponding to Fig. 5. The highest values of the pore fractions 𝑓𝑝,𝑑𝑒 and 𝑓𝑝,𝑠𝑢𝑚 

appear at a radius of 15 mm and a distance of 16 mm from bottom of the billet. The part at which 𝑓𝑝,𝑑𝑒 

exceeds 10−2 is concentrated in a small region, between 12 and 26 mm above the bottom block and within 

70 mm on the centerline. This region is within the start-up phase of DC casting. Thus, if hot tears are to 

occur, they should appear within this region. Large values of 𝑓𝑝,𝑑𝑒 equate to a high susceptibility to hot 

tearing due to their link with tensile strain. Examining Fig. 6(c), it can be seen that the highest 𝑓𝑙𝑐𝑟, i.e. the 

fraction of liquid at which feeding ceases to occur, is found much further up the casting, within the steady-

state region, and has a value of fl = 0.95. However, the highest 𝑓𝑙𝑐𝑟 doesn’t correspond with the highest 

𝑓𝑝,𝑑𝑒 and 𝑓𝑝,𝑠𝑢𝑚 because of the strong dependence of these terms on thermal gradient, cooling rate, and 

strain rate. 

 

3.4 Effect of casting speed 

Fig. 7 shows the effect of casting speed on (a) total pore fraction  𝑓𝑝,𝑠𝑢𝑚 and (b) total deformation pore 

fraction 𝑓𝑝,𝑑𝑒 along the centerline of the billet. Both figures show the maximum values of pore fraction as 

well as the hot tearing sensitivity increase with increasing casting speed. Similar results were obtained by 

Drezet and Rappaz;[30] that is, in the DC casting process, a high casting speed results in large pressure drops 

and high hot tearing tendencies according to the RDG criterion. However, Fig. 7 also shows that the location 

of the maximum point of the pore fraction moves downward along the centerline as the casting speed 

increases. This phenomenon indicates that a high casting speed equates to a high hot tearing tendency, but 

hot tearing in this case occurs early after the start of DC casting. Beyond a distance of 50 mm from the 

bottom of the billet, the deformation pore fraction rapidly increases again in cases in which the casting 

speeds are 56 and 66 mm·min−1. This condition is due to the increase in the strain rate 𝜀𝑝̇𝑦, as shown in Fig. 

5(b). In contrast, nearly no increase in the deformation pore fraction occurs when the casting speed is 46 

mm·min−1.  

 

In the start-up region of the casting, the maximum pore fractions are observed at 24, 16, and 12 mm from 

the bottom for the casting speeds of 46, 56, and 66 mm·min−1, respectively. Fig. 8 shows the curves of 𝑓𝑝,𝑑𝑒 

and 𝑓𝑝,𝑠𝑢𝑚  along the radius and crossing the maximum points at different casting speeds. Similar to the 

trend shown in Fig. 7, the increase in casting speed raises the pore fraction and finally raises the hot tearing 

probability. The regions where 𝑓𝑝,𝑑𝑒 exceeds 10−3 are mainly within the radius range of 0 mm to 100 mm. 

Hence, the central part of the billet is sensitive to hot tearing. 

 

3.5 Comparison with Prior Models 

Based on RDG criterion, Drezet et al. [30] concluded that the during the DC casting, the bottom of the 

billet is more sensitive to hot tearing than the region of the primary cooling, and the process conditions used 

to start the casting are critical. Hao et al.[31] investigated hot tearing during DC casting of AZ31 magnesium 

billet, showing that the locations near the base of the ingot are more sensible to hot tearing, and that faster 

casting speeds tend to exacerbate hot tear formation. Thus, the results given in this work that include a term 

accounting for the strain rate parallel to the thermal gradient match qualitatively the previous findings. 

However, as shown in Figure 5, without including the term 𝜀𝑝̇𝑥, hot tearing susceptibility is predicted to be 

enhanced in the start-up region because of the shrinkage term and not because of the strain-rate term. Ideally, 

a criterion for predicting hot tearing would show greater dependence on the amount of deformation as 

compared to porosity developing within the semi-solid. In work on steels, Monroe and Beckermann [32] 

developed a hot tearing indicator in which hot tearing susceptibility was determined based on the integral 

of the volumetric strain rate after liquid feeding has ceased. In that work shrinkage-based and deformation-

based porosity were only loosely coupled whereas in our model the shrinkage and deformation terms are 

fully integrated. Thus, the Pore Fraction hot tearing model proposed in this work represents the continued 
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and natural evolution of the RDG criterion towards ultimately quantitatively predicting the occurrence of 

hot tears. 

 

4 Conclusions 

The strain rate parallel with the thermal gradient has been added to a pressure drop equation in the mushy 

zone that already includes the effects of strain rate perpendicular to the thermal gradient and shrinkage 

feeding in order to improve hot tearing predictions based on the dimensionless Niyama criterion. 

Application of this criterion to analytical simulations of the casting of an Al-3wt%Cu alloy, and FE 

simulations of the DC casting process for the aluminum alloy AA5182 has demonstrated the following:  

 

(a) For the casting simulation of Al-3wt%Cu alloy, under the same Niyama criterion, a decrease in the 

cooling rate increases significantly the deformation pore fraction, and increases moderately the shrinkage 

pore fraction. Thus, the Niyama criterion is insufficient as a predictor for hot tear formation.  

 

(b) For the DC casting simulation and hot tearing prediction of AA5182 alloy, 

 Including the strain rate parallel to the thermal gradient strongly improves the predictive quality of 

hot tearing criteria based on a pressure drop equation. Without this term, the deformation pore 

fraction would be very small in the start-up region of DC casting as compared to the shrinkage pore 

fraction, and the total pore fraction would be highest in the steady-state region. 

 

 An increase in casting speed increases both the deformation and shrinkage pore fractions, resulting 

in an increase in the probability of hot tearing. An increase in casting speed also causes the location 

of highest hot tearing susceptibility to move towards the bottom part of the billet. 
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Figure Captions: 

 

Fig. 1 Schematic of a DC cast billet showing the location of the mushy zone upon of interest in this work, 

along with the semi-solid microstructure (after Rappaz et al.[15]) upon which the mass balance is 

performed. Solid deformation occurs in the directions of the x- and y-axes, as indicated. 

 
 

Fig. 2 Pore fraction vs. dimensionless Niyama criterion for an Al-3wt.%Cu alloy with an applied strain 

rate  of 10−3 s−1. 
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Fig. 3 Pore fraction vs. alloy composition for equal Niyama values, and an applied strain rate  of 10−3 

s−1. 

 

 

Fig. 4 Schematic of the axi-symmetric DC casting model showing the billet dimensions and placement of 

the boundary conditions (. [13]  
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Fig. 5 Distribution of pore fractions and strain rate vs. distance from the bottom block at a casting speed 

56 mm·min−1. 

a)  

 

b)  
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Fig. 6 Contour maps showing the variation of pore fractions (a) fp,sum, (b) fp,de and critical liquid fraction 

(c) flcr throughout the billet for a casting speed of 56 mm·min−1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 14 

Fig. 7 Distribution of pore fractions (a) fp,sum and (b) fp,de along the centerline of the billet at different 

casting speeds. 

a)  
 

b)  
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Fig. 8 Distribution of pore fractions (a) fp,sum and (b) fp,de along the radius of the billet at different casting 

speeds.  

a)  
 

b)  


