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Abstract 

 A combined X-ray micro-computed tomography (XMT) and micro- Finite Element 

Analysis study is presented to quantify the effects of micro-scale random fiber distributions on the 

effective (homogenized) elastic properties of unidirectional (UD) yarns, as often used by designers 

for component-level computational modelling of composite structures. In addition, it is shown how 

the XMT artefacts can yield unreliable FE homogenization of the composite yarns by 

overestimating the stress transfer capacity between the material constituents. Finally, the micro-

FEA modeling results under fiber distribution randomness are compared to the macro-level 

predictions such as the classical rule of mixture and Halpin-Tsai equations. 

Keywords: Glass fibre yarns; Polymer-matrix composite; Effective elastic properties; Micro-

finite element analysis; Random fiber distribution; X-ray tomography  

1. Introduction 

 Long-fiber reinforced polymers have gained significant attention in many industrial 

applications because of their low density, high specific stiffness and strength, and low thermal 

expansion [1]. Such composites are inherently multi-scale materials since their properties at the 

macro-scale are strongly affected by their fiber architecture and behaviour at lower scales. In 

general, a composite material has three distinguishable scales: (i) macro-scale which normally 

refers to a manufactured part, (ii) meso-scale which is an intermediate scale and refers to the yarn 

architecture, and (iii) micro-scale which concerns the assembly of a large number of fibers that 

make up an individual yarn [2]. 
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 Over the years, numerical simulation tools have been extensively utilized to investigate the 

behaviour of composites at different material scales [3]. One area of interest has been the prediction 

of macro-mechanical properties using micro-mechanics modelling, based on the known properties 

of the matrix and the reinforcement material phases [4]. This method is normally preformed 

through the analysis of a representative volume element (RVE) or a unit cell [5, 6, 7]. For different 

types of composites (e.g. unidirectional and textile composites), the mechanical properties of the 

material macrostructure can be simulated by periodically repeating such unit cells. Focusing on 

the case of unidirectional lamina, the repeating unit cell has been often defined in the literature 

assuming that the reinforcement has a uniform distribution and identical geometry [4]. However, 

not all the reinforcing phase constituents necessarily have the same geometry. In the case of glass 

fiber reinforced polymers (GFRPs), for example, depending on the supplier of the raw material, 

the fibers can have very different radii and the arrangement of fibers within the matrix is often 

non-periodic. Although these micro-level uncertainty effects will vary the properties of composite 

part at the macro-level [2], the available simulation tools do not often take such material 

inhomogeneity into account [8, 9], and designers in industry use average macro-material properties 

from given datasheets/handbooks. However, to obtain an accurate and reliable virtual model of a 

composite part at macro-level, the statistics of the microstructure must be characterized and 

incorporated using microscopy of actual specimens and a multi-scale analysis framework [10].  

 Due to advances in computer sciences and image processing technologies, image-based 

modelling, in which detailed models of specimens are created based on realistic geometry acquired 

via microscopy, has made significant advancements in the last decade. Three-dimensional (3D) 

image-based modelling is today possible using X-ray micro-computed tomographic microscopy 

(XMT) machines for image acquisition, followed by image processing and meshing using 

available software such as ScanIPTM (Simpleware, UK). The combination of XMT and image 

processing tools is a useful technique for modelling of complex hierarchical materials such as 

composites [11]. Blacklock et al. [10] have used statistical data obtained from XMT to generate 

virtual textile composite specimens rather than using the XMT image directly. More specifically, 

the textile reinforcement was presented as one-dimensional tow loci in 3D space, which was then 

incorporated into a binary model of textile composites. Simulation and XMT analysis of textile 

composite reinforcement deformation (e.g., biaxial tension and in-plane shear) at the mesoscopic 

scale was performed by Badel et al. [12] to characterize the 3D geometries of the deformed and 
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un-deformed reinforcement, and particularly to provide a correct fiber distribution within a yarn 

model. In another study, Alghamdi et al. [11] presented a multi-scale 3D image-based model of a 

carbon/carbon (C/C) composite to evaluate its thermal diffusivity and Young’s modulus. 

Specifically, two finite element (FE) models were created at different length scales; the micro-

scale model was developed from scanning electron microscope (SEM) micrographs of the carbon 

tow, while the macro-scale model was developed from XMT images of the composite. The use of 

XMT images to create an image-based model of composites is advantageous because, due to its 

non-destructive nature, the XMT technique prevents the internal microstructure/features from 

being affected by sample preparation stages such as cutting of the specimen. However, a 

disadvantage in an image-based model of polymer-matrix composites is the similar absorption 

coefficients of the fibers and matrix phases, leading to similar grayscale levels and thus making 

fiber segmentation difficult [11]. The micron level spatial resolution of XMT images may also 

make it challenging to properly separating adjacent fibers, depending on the fiber diameter.  

As outlined above, finite element (FE) modeling at the micro-level can be used to estimate 

the mechanical properties of a composite part at a macro-level; which is normally the level used 

by most designers in industry. On the other hand, the heterogeneity is an essential/inherent 

characteristic of composite materials [13-23]. Thus, ‘homogenization’ through numerical methods 

(e.g., FE) has been implemented by researchers as a capable method for predicting properties of 

the material in higher scales using results of analysis in lower scales. Homogenization starts by 

considering an RVE that is a subsystem of the entire composite part and can represent its typical 

structure fairly well [13, 14, 15]. For composite parts with an ideal periodic media, defining this 

unit cell is rather easy. However, the reality of fibers’ random distribution inside the matrix is more 

challenging. In general, the selected RVE should include a reasonable number of micro-level 

features and represent overall fiber distribution. The effect of micro-level random features during 

homogenization of composites along with the effect of RVE size has been scarcely studied in the 

past.  

 In the present study, a combined XMT-FEA investigation has been carried out to 

characterize the effects of micro-scale fiber spatial distribution on the overall mechanical 

properties of a typical unidirectional (UD) fiberglass/polymer composite yarn. First, XMT has 

been used to image a consolidated UD yarn containing glass fibers. Then, a series of finite-element 

simulations were carried out on both randomized micro-scale RVEs (hereafter called “Randomized 
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Unit Cell Analysis Library” or R-UCAL), as well as a full-size scanned macro-scale yarn 

specimen. Although many other uncertainly variables could be considered, the focus of this work 

is to characterize the effect of fiber radii as well as fiber centroid distribution on the ensuing 

effective properties of consolidated UD yarns at different volume fractions, when compared to 

theoretical (average) predictions.  The assessment of the FE models generated by random 

reinforcement phases immersed in the matrix, versus those meshed based on the computed micro-

tomography scans of the real material microstructure, has also been the topic of recent studies,  

although on different types of materials and properties (e.g., on a Cr–Al2O3–Re composite and its 

Young’s modulus [24], or on a random chopped fiberglass composite and its Young’s modulus as 

well as in-plane shear modulus [25], or on a short steel fibers composite and its equivalent 

orientation tensor [26]). Also recently a new approach for compressing and reconstructing complex 

information on the two-dimensional microstructures of disordered (random) particulate media has 

been introduced [27], by means of a finite set of tiles assembled via a stochastic tiling algorithm. 

The current case study has selected a long-fiber reinforced thermoplastic (LFRT) material along 

with the five elastic properties that are needed for its macro-level three-dimensional FE analysis 

as a transversely isotropic UD composite. 

2. Methodology 

2.1. X-ray tomographic microscopy  

X-ray micro-computed tomography (XMT) was performed on a unidirectional (UD) yarn 

containing glass fibers embedded in polypropylene matrix, using a MicroXCT-400 (ZeissTM) 

instrument in order to visualize fiber distribution. During the XMT set-up, 2500 2-D radiographic 

projections were acquired at different angles through 360˚ at an exposure time of 25s for each 

radiograph. The projections were reconstructed to create a tomographic volume containing 

1600x1600x500 voxels at a voxel size of 0.53 µm. The volume image was then post-processed to 

separate the fiber and matrix phases and to extract geometrical information about the fiber 

distribution within the yarn using the advanced ImageJ and Avizo® packages. Due to imaging a 

UD yarn, all the cross-sectional slices were comparable. Thus, only a single slice, shown in Figure 

1, was used for further analysis.   
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Figure 1 X-ray micro-computed tomography (XMT) image of a PP/glass UD yarn; the example 

of small unit cell/RVE extracted from the XMT image has been illustrated by a square box. In 

establishing the R-UCAL library, this box was randomly located at several locations to capture 

different local fiber distributions within the yarn. 

 

2.2. Finite Element Analysis of R-UCAL 

2.2.1. Geometry and mesh 

A series of small representative volume elements (RVEs) with a fiber volume fraction 

ranging from 0.14 to 0.54, shown in Figure 2, were randomly extracted from the XMT image of 

Figure 1 for the consolidated PP/glass UD composite yarn, in order to establish a Randomized 

Unit Cell Analysis Library (R-UCAL) with cell size of 150x150 pixels (0.08x0.08 mm). For each 

library element (i.e., individual unit cell as an idealized binary image similar to the study [28]), the 

coordinate and radius of individual fibers were extracted using a digitizer software (xyExtract) and 

an in-house developed Matlab® code, and then regenerated in Abaqus® as an FE mesh. 3D 

continuum elements were used to discretize the library elements.  
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Figure 2 Small unit cells (R-UCAL library elements) extracted and regenerated from the actual 

scanned yarn, resulting in different volume fractions and fibre distributions. This library of unit 

cells was then used to obtain the effective mechanical properties and investigate the effect of fibre 

distribution on the yarn macro-level properties. The elements were also used to regenerate a 

random whole-yarn model in order to predict its effective mechanical properties and compare to 

the actual scanned yarn model properties. 

 

2.2.2. Simulation procedure  

In order to simulate deformation of the library elements, a series of finite element models 

was created and analyzed using the commercial FE package SIMULIA Abaqus as follows. The 

mechanical simulations were performed under the assumption of small deformation theory. It must 

be noted that the theoretical grounds laid down in subsequent subsections are suitable particularly 

when using commercial software. When building own in-house FE software, the formulation may 

be provided in a simpler way, e.g., without giving special attention to the Poisson’s ration and 

shear stiffness effects [29], depending on the geometry or loading condition of structure. 
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(i) Periodic boundary conditions 

The boundary conditions that are applied to imitate the adjacent repetitive cells in RVE 

modeling are called periodic boundary conditions (PBCs) [15]. The basic principle of a periodic 

boundary condition relies on the fact that from a micro-level point of view, each point on one side 

of the RVE undergoes deformation identical to the point on the opposite side. In this way, an RVE 

can be used to generate the entire medium through repetition of a particular pattern and hence a 

single RVE can ideally represent the mechanical response of the entire media [16]. For instance, 

Figure 3 illustrates a general cube shaped RVE. If this RVE is in a periodic medium, surface 𝛤𝑗
+ 

on one side is attached to the 𝛤𝑗
− surface of another RVE right next to it. The displacement field 

condition can be rewritten as [15]: 

𝑢𝑖(𝒙) = 𝑢𝑖,𝑚(𝒙) + 𝑢𝑖,𝑝(𝒙) (1) 

where 𝑢𝑖(𝒙) is the displacement vector and 𝑢𝑖,𝑚(𝒙) and 𝑢𝑖,𝑝(𝒙) are the macro-level/macroscopic 

and periodic/fluctuating component of the displacement vector, respectively. It can be argued that 

under a macroscopically uniform loading on the medium (where the average deformation remains 

the same over any arbitrary number of RVEs), 𝑢𝑖,𝑝(𝒙) is the same for 𝛤𝑗
+ and 𝛤𝑗

− [16, 17, 18]. 

Thus, 𝑢𝑝(𝛤𝑗
+) = 𝑢𝑝(𝛤𝑗

−), which results in: 

𝑢𝑖(𝛤𝑗
+) − 𝑢𝑖(𝛤𝑗

−) = [𝑢𝑖,𝑚(𝛤𝑗
+) + 𝑢𝑖,𝑝(𝛤𝑗

+)] − [𝑢𝑖,𝑚(𝛤𝑗
−) + 𝑢𝑖,𝑝(𝛤𝑗

−)]

= 𝑢𝑚(𝛤𝑗
+) − 𝑢𝑚(𝛤𝑗

−),  
(2) 

assuming that the macro-level/macroscopic strain tensor (𝜀𝑖̅𝑗) for uniform loading is known. 

Additionally, for small deformations [16, 19]: 

𝑢𝑖(𝛤𝑗
+) − 𝑢𝑖(𝛤𝑗

−) = 𝜀𝑖̅𝑗Δ𝑥𝑗   (3) 

where Δ𝑥𝑗 is the vector that connects each point on 𝛤𝑗
+ to its corresponding periodic point on 𝛤𝑗

−, 

and the repeated indices are for summation.  

The condition imposed by Eq. (3) for periodic boundary conditions was applied to the 

deformation simulation of the R-UCAL elements through use of a Multi-Point Constraint (MPC) 

in Abaqus. To control the displacements on each of the periodic surfaces, three reference nodes 
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(𝑅𝑚) were additionally created, outside of the volume enclosed by the library elements. The MPC 

formulation can be expressed as: 

𝑢𝑖(𝛤𝑗
+ ) − 𝑢𝑖(𝛤𝑗

− ) = 𝜀𝑖̅𝑗Δ𝑥𝑗 = 𝑢𝑖(𝑅𝑗)  (4) 

The imposition of macro-level strains (𝜀𝑖̅𝑗) on the RVE was carried out by adjusting the 

displacement degree of freedom, i, on the reference point, j, to match the applied deformation. The 

unconstrained displacement degrees of freedoms on the reference nodes were then evaluated after 

the analysis and transferred to their corresponding strain values. For example, uniaxial extension 

of 𝜀1̅1 along direction 1 was achieved by displacing 𝑢1 in 𝑅1 with a value of 𝜀1̅1Δ𝑥1, where Δ𝑥1 is 

the distance between 𝛤1
+ and 𝛤1

−. Upon completion of the simulation, 𝑢2 in 𝑅2 was extracted to 

find 𝜀2̅2 = 𝑢2(𝑅2)/Δ𝑥2. Similarly, the other loading modes were applied on the RVE, and the 

unconstrained degrees of freedom were used to find the resultant deformations. To ensure the 

symmetry condition in shear modes, 𝜀𝑖̅𝑗 = 𝜀𝑗̅𝑖, two boundary conditions were imposed for each 

shear strain component. For example, in order to impose 𝜀1̅2 = 𝜀2̅1, 𝑢1 = 𝜀1̅2 Δ𝑥2 was applied on 

𝑅2 while 𝑢2 = 𝜀1̅2 Δ𝑥1 was applied on 𝑅1. 

 

Figure 3 Periodic faces on a typical cubic RVE. 

(ii) Analysis procedure  

For each library element in the R-UCAL, the relation between the tensor of average strain 

and stress was determined in order to acquire the effective elastic mechanical properties of the 

composite yarn under random fiber distribution in the yarn’s cross-section. The macro-level 

strains, 𝜀𝑖̅𝑗, were either imposed as the loading condition or were read from the displacement 

degrees of freedom of the unconstrained reference nodes. Although an average level of stress, 𝜎𝑖𝑗, 

can be found by averaging the stress level across all the elements in the RVE [16], a more 

convenient alternative would be a formulation based on the conservation of energy (𝑊𝑒𝑥𝑡 =

𝑊𝑒𝑙𝑎𝑠𝑡𝑖𝑐). Under static condition and single mode loading, the conservation of energy for axial 

extension modes (i.e. applying 𝜀𝑖𝑖, no summation on i) is reduced to: 

 

 
 

𝛤2
+

𝛤2
−

𝛤1
+𝛤1

−

𝛤 
+

𝛤 
−
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𝑊𝑒𝑥𝑡 = ∫𝐹𝑘 𝑑𝑢𝑘 (5a) 

𝑊𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =
 

 
𝐸̅𝑖𝑖𝜀𝑖̅𝑖

2  𝑉 (5b) 

where 𝑊𝑒𝑥𝑡 and 𝑊𝑒𝑙𝑎𝑠𝑡𝑖𝑐 are the energies from the external force and elastic deformation stored in 

the RVE, respectively. 𝐹𝑘 is the reaction force at reference node, 𝑑𝑢𝑘 is the applied differential 

displacement at that node,  𝐸̅𝑖𝑖 = 𝜎𝑖𝑖 /𝜀𝑖̅𝑖 is the axial stiffness in the direction of loading mode, and 

𝑉 is the total volume of RVE. Note that in Equation (5b), i is the index for loading mode and there 

is no summation on repeated indices. Also, it must be mentioned that the above simplified equation 

is only valid if the loading occurs on one deformation mode; i.e., when only one of the 𝜀𝑖̅𝑖 

components is imposed and the corresponding 𝜎𝑖𝑖 is the only non-zero stress component. In a linear 

elastic case, Equation (5) results in: 

𝐸̅𝑖𝑖 =
𝐹𝑗  𝑢𝑗

𝜀𝑖̅𝑖
2  𝑉

  (6) 

The strain values in the transverse direction can also be calculated after each simulation, as will be 

discussed in Section 2.4, in order to estimate the values of corresponding Poisson’s ratio. Similarly, 

for the shear modes, considering that the loading was applied on two reference nodes and 

engineering shear strain (𝛾𝑖𝑗 =  𝜀𝑖𝑗), one can write: 

𝑊𝑒𝑥𝑡 =  ∫𝐹𝑘 𝑑𝑢𝑘 (7a) 

𝑊𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =
 

 
𝐺̅𝑖𝑗𝛾̅𝑖𝑗

2  𝑉 =  𝐺̅𝑖𝑗𝜀𝑖̅𝑗
2  𝑉 (7b) 

where 𝐺̅𝑖𝑗 = 𝜎𝑖𝑗  /𝛾̅𝑖𝑗 is the effective shear stiffness and the repeated indices of i and j refer to the 

loading mode with no summation. Finally, from the conservation of energy in shear mode: 

𝐺̅𝑖𝑗 =
𝐹𝑘𝑢𝑘

 𝜀𝑖̅𝑗
2  𝑉

  (8) 

Note that Eqs. (6) and (8) will be directly employed in Section 3 to find the elastic moduli of the 

R-UCAL elements at different fiber volume fractions. 
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2.3. FEA of the whole UD yarn models 

2.3.1. Geometry and mesh 

Three full-scale yarn models of size matching Figure 1 (1600x500 pixels/0.85x0.26 mm) were 

created for comparison purposes. For these models, the macro-scale yarn was assumed to contain 

infinite out-of-plane length (i.e., long-fiber composite) but with a free perimeter (i.e., no traction 

with the surrounding boundaries). The geometries were meshed using 3D continuum elements. 

(i) Yarn model R1 (low fiber volume fraction ~0.26, random yarn model, Figure 4a): This model 

was created by randomly selecting R-UCAL elements, tying them together, and meshing using 

Abaqus. It was assumed that the specimen was sufficiently large to be considered for a large-scale 

simulation and thus could be simulated as a single consolidated yarn model with random fiber 

distribution. 

(ii) Yarn model R2 (high fiber volume fraction ~0.47, random yarn model, Figure 4b): This model 

was created using the same approach as in (i) with difference being that library elements with 

higher volume fractions of fiber were used so that the selected cross section had a volume fraction 

very similar to that of the actual scanned yarn in Figure 1.  

(iii) Yarn model S: This comprehensive model (Figure 4c) having a fiber volume fraction of ~0.47, 

which was also verified experimentally on the test sample using ASTM D3171 burn-off test, was 

created from the actual image of the scanned yarn in Figure 1. Specifically, the fiber phase was 

segmented from the composite, and then both the fiber and matrix were directly meshed using the 

ScanIPTM software. The result of meshing directly from the scanned yarn was that, due to 

limitations in the scanning resolution, some fibers could not be individually identified and instead 

appeared as (attached) fiber ‘bundles’ of varying shape and size.  Similar challenges have been 

reported in the literature regarding the micron level spatial resolution of XMT images for 

composite materials with close  [11]. In Section 3, it will be shown how such artifacts translate 

into variations in effective macro-scale mechanical properties.  
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Figure 4 (a) A full size micro-model of the yarn generated by randomly tying R-UCAL library 

elements in Figure 2 with a total fiber volume fraction of 0.2612, (b) full size micro-model of the 

yearn generated from the library elements but having a fibre volume fraction very similar to that 

of the actual image (Vf = 0.4765), and (c) scanned whole-yarn model generated from the x-ray 

micro-computed tomography image, segmented and meshed in ScanIPTM and imported to FEA (Vf 

= 0.4773). These three models in the text are frequently referred to as R1, R2, and S models, 

respectively. 
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2.3.2. Simulation procedure and analysis methodology 

The yarn models R1, R2, and S were assumed to simulate an infinitely long yarn that is free 

on the sides. Therefore, their surfaces were modelled as a free perimeter, and not using the periodic 

boundary conditions that were imposed on individual R-UCAL elements. As shown in the 

Appendix, the periodic boundary condition is vital for simulating the deformation of the RVE 

elements but its effect on the whole-structure (macro-size) model is trivial, especially when the 

size of the full structure is much larger relative to the RVE.  

(i) Normal response and Poisson’s ratios 

The axial modulus along the fibers for the three yarn models were extracted by fixing one 

side of the yarn section and then imposing displacement along the fiber direction on the opposite 

side. One corner was fixed in order to avoid rigid body motion. For the transverse axial stiffness, 

one of the side surfaces was constrained and displacement was applied on the opposite side. 

Moreover, in order to induce a plane strain state and because this geometry represented an 

infinitely long yarn, the two surfaces normal to the fiber direction, i.e. normal to 𝒏  and −𝒏 , were 

constrained in the third direction during transverse loading. Figure 5 shows the boundary 

conditions used for applying axial/transverse tension on the yarn’s section. 

The corresponding normal stresses, required for finding the effective elastic properties, 

were determined via summation of the nodal reaction forces on the loading surface divided by the 

surface area. This nominal stress for loading along fibers can be used to find the axial stiffness as 

𝐸̅  = 𝜎  /𝜀 ̅ . However, for transverse loading, the full 3D compliance tensor must be evaluated 

due to the fact that the section is constrained along the third direction. The general formula for the 

compliance matrix in an orthotropic media is: 
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Figure 5 Boundary conditions on the yarn element faces for normal loading modes; (a) axial tension 

along fibers (in 3-direciton), and (b) transverse tension along direction 1. 
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 (8) 

Assuming a loading along i (1 or 2) direction (𝜎𝑗𝑗 ≠ 0), while j (2 or 1) surfaces are traction-free 

(𝜎𝑗𝑗 = 0), the strains are given by: 

𝜀𝑖̅𝑖 = 𝑆𝑖̅𝑖𝜎𝑖𝑖 + 𝑆𝑖̅ 𝜎̅   (9a) 

𝜀𝑗̅𝑗 = 𝑆𝑗̅𝑖𝜎𝑖𝑖 + 𝑆𝑗̅ 𝜎   (9b) 

𝜀 ̅ = 0 = 𝑆 ̅𝑖𝜎𝑖𝑖 + 𝑆 ̅ 𝜎    (9c) 

Finally, an algebraic system of equations can be established [20] and solved to obtain the 

corresponding transverse stiffness and Poisson’s ratio. This requires finding 𝜎𝑖𝑖 (for i=1,2) and 𝜎   

(for each of these two cases, respectively, i=1,2) from the reaction forces on the corresponding 

surfaces,  having 𝑆 ̅ =  /𝐸̅   from the axial response along the fiber direction, and assuming 

symmetry in the compliance matrix. 
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(ii) Shear response 

The application of a pure shear mode, 𝛾̅𝑖𝑗, implies that the surface normal to −𝒏𝑖 be fixed 

and that displacement be applied along 𝑢𝑗  on the opposite surface 𝒏𝑖, as shown in Figure 6. 

Moreover, when shear displacement is applied along the fiber direction 𝑢 , as in Figure 6, in order 

to avoid bending in surfaces −𝒏𝑗 and  𝒏𝑗, they require asymmetry boundary condition along the j-

direction (j=1 or 2). On the other hand, when applying the shear loading along 𝑢1 or 𝑢2, since the 

UD yarn is assumed to have a section with infinite length along fibers, −𝒏  and 𝒏  surfaces should 

remain under symmetry along the third direction to ensure the plane strain condition (𝑢 = 0). 

After running each shear simulation, the nominal shear stress was found through summation of the 

nodal traction forces on the surface containing the displacement boundary condition. Knowing the 

imposed level of the applied displacement, the shear strain and subsequently the shear stiffness 

were calculated. Through additional simulations, where the choice of surface was reversed (i.e. 

imposing 𝛾̅𝑗𝑖 instead of 𝛾̅𝑖𝑗), it was found that the numerical results were not noticeably affected 

for the yarn models R1 and R2 (<1% difference). However, the choice of shearing surface could 

considerably affect the results of shear tests on the yarn model S. This will be further discussed in 

Section 3. 

 

 

Figure 6 Schematic of applying shear mode, γij: surfaces normal to –nj and nj are under asymmetry boundary 

condition along j while –ni section is fixed and loading displacement is applied on ni section along uj. 
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2.4. Elastic constants of unidirectional fiber-reinforced composites 

The effective elastic properties determined from the R-UCAL RVE’s and the whole UD 

yarn models can be compared against classical mechanics approaches, as well as the Halpin-Tsai 

(H-T) equations [21] as follows. 

(a) The longitudinal elastic modulus E33 given by the rule of mixtures is: 

                                                        𝐸  = 𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚                                          (10) 

where Vf is the fiber volume fraction, Vm is the matrix volume fraction, and Ef and Em are the elastic 

moduli of the individual fiber and matrix materials, respectively. 

(b) The major Poisson’s ration, ν31, which is assumed to be identical to ν32 in a UD material at 

macro-level (transversely isotropic), is given by: 

                                                   ν 1 = ν 2 = ν𝑓𝑉𝑓 + ν𝑚𝑉𝑚                                       (11) 

(c) Based on a mechanics approach, the transverse elastic modulus E11, which is equal to E22 for 

a transversely isotropic media, is given by: 

                                              
1

𝐸11
= 

𝑉𝑓

𝐸𝑓
+ 

𝑉𝑚

𝐸𝑚
                                                  (12) 

However, the H-T equation for the transverse elastic modulus, E11 and also E22, is: 

                                                 
𝐸11

𝐸𝑚
=

𝐸22

𝐸𝑚
 
1+ 𝜉𝜂𝑉𝑓

1− 𝜂𝑉𝑓
                                                   (13) 

where ξ is the reinforcing factor and depends on loading conditions as well as the fiber packing 

geometry, and is merely found/fitted empirically. η is given as: 

                                            𝜂 =
(
𝐸𝑓

𝐸𝑚
)−1

(
𝐸𝑓

𝐸𝑚
)+ 𝜉

                                                           (14) 

The numerical value of Eq. (13) lies between the extreme case of ξ = 0 (in which case it is 

simplified to the series-like model of Eq. 10), and ξ = ∞ (in which case it is simplified to the 

parallel-like model of Eq. 12) [22]. 



 

16 
 

(d) The H-T equation for in-plane shear modulus, G31, is given by: 

                                           
𝐺31

𝐺𝑚
= 

1+ 𝜉𝜂𝑉𝑓

1− 𝜂𝑉𝑓
                                                (15) 

where η is given as: 

                                           𝜂 =
(
𝐺𝑓

𝐺𝑚
)−1

(
𝐺𝑓

𝐺𝑚
)+ 𝜉

                                                    (16) 

(e) The transverse Poisson’s ratio, ν12, may be approximately calculated from (Halpin [23]): 

                                           𝜈12 ≅  − 
𝐸1

𝐺12
                                                        (17) 

(f) The transverse Poisson’s ratio, ν13, can be found by [21]: 

                                                 
𝜈13

 𝐸11
= 

𝜈31

𝐸33
                                                         (18) 

It is worth adding that there exist several other analytical homogenization methods [21] including 

Variational Bounding Technique, Self Consistency Method, and Mori-Tanaka. The Halpin-Tsai 

equations and classical rule of mixtures have been selected as two example analytical methods, 

similar to an earlier study [24]. Further, these other methods, unlike the Halpin-Tsai equations, do 

not account for variation in the geometry of composite particulates. In all cases, the analytical 

models assume that the fibers never touch one another, which is not practically the case at higher 

volume fraction of composite [21]. In contrast, there is no limitation on the geometry, size and 

constituent material properties of a given composite in numerical (FE-based) homogenization 

methods. 

3. Results and Discussion 

The results consisting of the elastic moduli and Poisson’s ratios extracted from the 

deformation simulations of the R-UCAL elements as well as those from the whole yarn models 

R1, R2 and S are shown in Figures 7-9 as a function of fiber volume fraction. In these simulations, 

the properties of polypropylene and E-glass material (Table 1) have been used. 
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Table 1: Material properties of E-glass and Polypropylene used in the micro-level simulations 

 

 

 

 

Figure 7 shows the axial modulus, E33, and the transvers modulus, E11, (which is equal to 

E22 for a transversely isotropic UD yarn) of all the R-UCAL elements as well as the random and 

scanned yarn models. As can be seen in Figure 7a, the axial modulus predicted by modeling of the 

R-UCAL elements under random fiber distribution follows very closely the classical rule of 

mixtures for all the library elements, as well as the whole-yarn models R1 and R2 and the actual 

scanned model S. This is in support of the earlier findings on the minimal effect of fiber 

randomness on axial elastic stiffness of composite fiber tows [28]. In contrast, the calculated values 

for the transverse modulus are quite different and overestimated as compared to those obtained 

from the classical mechanics approach as shown in Figure 7b. The R-UCAL and whole-yarn 

models R1 and R2 instead follow the predictions of the H-T equation due to its semi-analytical 

empirical nature. Interestingly, however, the transverse modulus of the yarn model S is 

considerably higher than the random media with similar fiber volume fraction. This could be due 

to the fact that some of the fibers were attached together in this scanned yarn media, causing 

continuous/perfectly bundled fiber regions that affect the load transfer capacity, or in other words 

the stiffness under a given deformation level, in transverse direction. This effect is analogous to 

the ‘shear wall’ of buildings, which counters the influence of lateral load acting on the structure. 

From a composite manufacturing perspective, this effect also means that if the fibers are not well-

distributed into the matrix but instead are uncontrollably bundled (e.g., during open manual lay-

up), a severe deviation from the theoretical values of composite properties in transverse directions 

could potentially result.  

 

Property Unit E-glass Polypropylene 

Tensile Modulus GPa 73.1 1.4 

Poisson’s ratio - 0.22 0.3 

Axial shear modulus GPa 30.19 0.54 
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Figure 7 (a) Axial modulus (E33), and (b) transvers modulus (E11= E22) of all the library unit cells 

as well as the whole-yarn random models R1, R2, and the actual scanned model S. The graph 

includes data obtained from the simulation as well as the theoretical predictions for comparisons. 

 

The Poisson’s ratios resulting from the simulations are presented in Figure 8. Figure 8a 

shows the transverse-to-axial Poisson’s ratio, ν31 (which is identical to ν32 in a transversely 

isotropic UD material) from the simulation models as well as the mechanics approach. Data points 

from the R-UCAL element library are in good agreement with the mechanics approach, while the 

whole yarn model S shows a lower ν32 compared to the other media. The ν12 prediction is shown 

in Figure 8b. In general, the calculated values show a scattered distribution over the fiber volume 

fraction, i.e., no particular trend, and even yarn systems with similar fiber volume fractions but 

different fiber distribution randomness show different ν12 Poisson’s ratios. Namely, the ν12 value 

was 0.39 for the yarn model R1, while the library element with similar volume fraction showed a 

ν21 value of 0.35. Hence, clearly the fiber distribution plays a strong role in the Poisson’s ratio of 

composite materials, especially in the transverse-to-transverse component. For this elastic 

R1 

R2 

S 

S 

R2 

R1 
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constant, the Halpin-Tsai equation also greatly underestimates the simulated findings. Finally, the 

calculated values of ν23, shown in Figure 8c, were also in line with the theory for all the library 

elements and whole yarn models, except for the yarn model S. This is presumed to be again a 

consequence of having fiber bundles (shear wall artifact) instead of individually dispersed fibers 

in the scanned media from XMT.  

Figure 9 shows the in-plane and out-of-plane shear moduli of the library elements and yarn 

models. As can be seen, the in-plane shear modulus, G13 , of both the library and whole-yarn 

random media obeyed the Halpin-Tsai equation with ξ = 1.5, while the out-of-plane shear modulus, 

G12, also matched the Halpin-Tsai equation with ξ = 0.5. However, the whole yarn model S again 

showed a considerable over-estimation in shear moduli.  

 The results presented in Figures 7-9 on the micro-scale modeling of UD fiberglass/polymer 

yarns via two approaches (R-UCAL elements and the whole yarn models) confirmed that fiber 

distribution, including both their radii and location relative to each other, could affect considerably 

the effective properties of composites. It was shown that when the fibers are individually separated, 

the properties of the entire composite yarn can be simulated by using small unit cells while 

imposing a random distribution of fibers, e.g., from an actual XMT image of the yarn. The 

computational advantage here is that the unit cell approach with appropriate periodic boundary 

conditions gives almost the same response of the whole yarn as long as the selected volume fraction 

of the representative RVE (unit cell) and the actual yarn are the same. This is shown throughout 

Figures 7-9, as the whole yarn models R1 and R2 are aligned with the predictions of the R-UCAL 

elements. However, when the fibers are bundled such as in the whole yarn model S, the predicted 

elastic constants and Poisson’s ratio are quite different. In this case, the presence of fiber bundles 

significantly affects the stress transfer among the fibers, as well as stress transfer between the fibers 

and the matrix, and consequently influences the composite effective properties in the transverse 

direction. The effect of such fiber entanglement on the stress transfer/distribution within the yarn 

is further investigated in Figure 10, in which a comparison of the von-Mises stress between the 

whole yarn model S and the yarn model R2 of similar fiber volume fraction (~0.47) is provided. 

As can be seen, the stress contours show significantly higher values in the fiber entangled regions. 

This indicates greater stress transfer. To more closely visualize fiber entanglement, a high 

magnification (1500X) image of the same test sample, obtained using a Stereo Optical Microscope, 

is shown in Figure 11. 



 

20 
 

Finally, one can conclude from Figures (7) to (9) that the modified macro-level rules of 

mixture via the Halpin-Tsai equations are fairly consistent in predicting the average values of 

effective UD yarn properties over different volume fractions, even in the presence of fiber 

distribution randomness at micro-level. However, the results obtained in this work indicate that 

the main limitation of this theoretical model is that a different reinforcing factor ξ should be 

estimated for each type of material constant/loading mode. This is practically impossible without 

testing and modeling of the actual yarn. The exception to this limitation, however, is the prediction 

of the yarn’s axial modulus (E33) and the axial Poisson’s ratio (ν31), which do not require ξ and are 

equivalent to the classical rule of mixtures. 
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Figure 8 (a) Axial Poisson’s ratio (ν31= ν32), (b) the transverse Poisson’s ratio (ν21), and (c) the 

axial Poisson’s ratios (ν23= ν13) of the R-UCAL library elements, whole-yarn random models R1 

and R2 and the scanned model S. Theoretical values have also been shown for comparisons. 
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Figure 9 (a) The in-plane (G13) and (b) out-of-plane (G12) shear moduli of the library units, random 

models (yarn models R1 and R2) and scanned model (yarn model S). Theoretical values have also 

been plotted for comparisons. 
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Figure 10 Von Mises stress contours of the (a) scanned whole-yarn model S, and (b) random 

whole-yarn model R2 with a similar fibre volume fraction (~0.47). A significantly greater stress 

values in the fibres-entangled regions can be seen in the stress contours of the XMT scanned 

model, indicating a higher/overestimated stress transfer capacity within the material 

microstructure. 

 

  

Figure 11 High magnification (1500X) image of the yarn sample with a Stereo Optical 

Microscope; notice the fuzzy boundaries between the fibers inside example blue marked regions, 

suggesting very careful post-processing of scanned images during RVE modeling in order to avoid 

artificial shear-wall effects in the subsequent FE analysis as shown in Figure 10. 
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4. Concluding remarks 

The micro-scale modeling of a UD fiberglass/polymer yarn was performed under random 

fiber distribution. It was shown that the properties of the composite yarn are influenced by fiber 

distribution including their radii and location relative to each other. Overall, the results revealed 

that random fiber distribution did not significantly alter the axial and transverse elastic moduli as 

well as the transverse-to-axial Poisson’s ratio and shear moduli (i.e., the micro-simulations 

followed the macro-level theories). However, fiber distribution strongly affected the transverse-

to-transverse Poisson’s ratio since yarns of different fiber distributions, under a similar volume 

fraction, resulted in very different values that did not match the theory.  The deviation between R-

UCAL models and the full scale yarn model could also be related to the effect of RVE sizes [30, 

31, 32]. Regardless, when using an image-based or XMT scanned yarn model, the status of fibers 

was found to have a significant effect on the simulated mechanical properties at the micro-scale. 

For example, when an image of the yarn was used for direct modeling, i.e. yarn model S, the fibers 

could not be separated completely during image processing and thus consisted of complex shapes. 

This geometry change in the reinforcement significantly affected the stress transfer amongst the 

fibers and between the fibers and the matrix, resulting in an overestimation of the transverse 

mechanical properties at macro-scale.  

The results of this study have shown that, while the classical rule of mixture can be used 

for predicting the axial modulus and transverse-to-axial Poisson’s ratio of a UD yarn with random 

fiber distribution, this theory cannot be used for transverse moduli and other Poisson’s ratios that 

show a non-linear variation with fiber volume fraction. For the latter properties, the Halpin-Tsai 

equations work fairly well, though they are limited since the reinforcing factor ξ varies as a 

function of loading mode. However, if a specific composite processing creates conditions where 

fibers become actually merged or bonded together forming a shear-wall in the cross-section of the 

yarn, then a direct image-based modeling at the micro-scale is needed to confidently simulate the 

material’s response under different loading modes.  

In the future, it may be worthwhile to create a library of randomized unit cells for other 

fiber/matrix yarn types for similar micro-level FE simulations in order to make the yarn’s effective 

mechanical properties readily available for subsequent macro-level simulations under different 
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fiber volume fractions. The inclusion of fiber path randomness (misalignment/ waviness) through 

XMT and full-scale yarn modeling with porosity effects would also be of high interest for further 

accounting for micro-level uncertainties and composite defects. Finally, while the presented work 

might be considered as a first step towards studying the effect of fiber clustering evident in 

micrographs, this may greatly affect the macroscopic response of composites when going beyond 

the elasticity limits. There is not much information available on the latter subject yet and it could 

be recommended as another critical future work. 
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Appendix: How important is to apply periodic boundary condition on RVE and/or whole 

yarn models 

In order to evaluate the effect of imposing a periodic boundary condition on the RVE as 

well as on the whole-structure modeling approaches (which were both used during UD yarn’s 

micro-FEA in the current work), a rudimentary case study was conducted in this appendix as a 

side example. First, an arbitrary 2D plane-strain RVE was constructed. Then this RVE was 

modeled under four different scenarios: (1) using the periodic boundary conditions all around; (2) 

no periodicity; (3) a larger structure made of the repetition of the latter RVE (5 by 5) with a periodic 

boundary condition; and (4) a similar large structures but without periodicity. The contours of the 

transverse stress distribution and deformed shape of the 2D model for each case is depicted in 

Figure A1. Moreover, the ensuing (homogenized) transverse Young’s modulus values are shown 

in Figure A2. As it can be seen, the periodic and non-periodic RVE models are very different 

(~35%); however, the whole structure model responses with or without periodicity are fairly 

similar. Therefore, the periodic boundary condition is deemed to be the necessary feature of micro-

level RVE as it can provide a good representation of the large (macro) structure with or without a 

periodic boundary. Detailed studies on the effect of boundary condition in RVE analysis of other 

materials types, including orthotropic or nearly orthotropic such as bone, can be found in [33].   
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Figure A1 Deformed shape of (a) an example unit cell with periodic boundary condition, (b) the 

same unit cell without periodic boundary condition, (c) a larger (full size) structure with 5×5 size 

of the initial unit cell and without periodic boundary condition, and (d) the same large structure 

but with periodic boundary condition. All the models are under uniaxial tension in the horizontal 

direction. Notice that the boundary lines of model (b) are not straight after deformation. 

 

 

Figure A2 Relative transverse Young’s moduli of the models shown in Figure A1. 


