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Abstract 

The Scavenger Receptor, Class B, Type I (SR-BI) is an integral membrane protein 

whose expression in the liver is critical to reverse cholesterol transport by mediating the 

selective uptake ofHDL-derived cholesterol. SR-BI is expressed in a variety of tissues 

including bone marrow derived macrophages and foam cells in atherosclerotic lesions. 

We have explored the effect of eliminating SR-BI in leukocytes on advanced stages of 

atherosclerotic plaque development in apoE KO mice. We observed statistically 

significant cardiomegaly as a result of the elimination ofSR-BI in bone marrow derived 

cells compared to controls (.?=0.02). We report that the elimination ofSR-BI in bone 

marrow derived cells in apoE KO mice induced to undergo atherosclerosis by feeding a 

high fat diet for four weeks leads to no significant difference in cross-sectional 

atherosclerotic plaque area at the aortic root (4.9 ± 0.9xl04).1m2 when SR-BI-/- apoE-/- 7 

apoE-/- [n=9] and 5.5± 0.9xl04).1m2 when SR-BI +/+ apoE-/- 7 apoE -/- [n=12], 

.?=0.68) or plaque volume through the aortic sinus (1.8 ± 0.3x 107 ).1m3 when SR-BI-1-

apoE-/- 7 apoE-/- [n=9] and 1.9 ± 0.3xl07).1m3 when SR-BI +/+ apoE-/- 7 apoE -/­

[n=l2], P=0.69). We demonstrate that macrophage SR-BI protein expression can be 

decreased by cholesterol associated with lipoproteins. Furthermore, we report that in 

Raw 264.7 macrophage-like cells the expression ofSR-BI can also decrease in response 

to glucosamine treatment. The expression ofSR-BI is decreased significantly in cells 

overexpressing SR-BI (ldlA[mSR-BI] cells [.?=0.003]) due to treatment with 

glucosamine with increased protein mobility. We support this finding by demonstrating 

that this difference may be the result of altered glycosylation. 
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M.Sc. Thesis- V. Tedesco McMaster- Biochemistry and Biomedical Sciences 

1. Introduction 

1.1 Plasma Lipoproteins and Atherosclerosis 

Atherosclerosis is a complex multifactorial disease [1], a major reason for heart 

disease and stroke, and a leading cause of death in the developed world. In 2002 the 

World Health Organization estimated that 16.7 million people worldwide die each year of 

cardiovascular disease, accounting for one third of all deaths globally [2]. Elevated 

cholesterol levels in the form of low density lipoproteins, diabetes, hypertension, and 

smoking are the major risk factors correlated with atherosclerosis [3]. Plasma 

lipoproteins play critical roles in the formation and progression of atherosclerotic lesions. 

High blood glucose causes metabolic abnormalities that induce vascular dysfunction and 

predisposes diabetics to atherosclerotic plaque development [ 4]. 

Lipoproteins are soluble complexes that transport cholesterol in the circulation. 

Although the composition of plasma lipoproteins is highly dynamic, the general structure 

is similar. They consist of a core of neutral lipids (predominantly cholesteryl esters and 

triacylglycerol) surrounded by a monolayer of amphipathic lipids (phospholipids and 

unesterified cholesterol) and apolipoproteins [5]. 

Lipoproteins are separated into classes based on their buoyancy by density 

gradient ultracentrifugation [6]. They are classified as chylomicrons (CM), very low 

density lipoproteins (VLDL), low density lipoproteins (LDL), and high density 

lipoproteins (HDL). Chylomicrons have the lowest protein to lipid ratio and are the least 
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dense while HDL have the highest protein to lipid ratio and are therefore the most dense 

[5]. 

Chylomicrons are lipoproteins that transport dietary lipids (primarily 

triacylglycerol) and are synthesized in the intestine [5]. Chylomicrons are metabolized 

by lipoprotein lipase into chylomicron remnants which are cleared by the liver [7]. 

VLDL are assembled in the liver for the transport of endogenous triacylglycerols [5]. 

Lipoprotein lipase converts VLDL into intermediate density lipoproteins (IDL) which are 

subsequently converted into LDL by hepatic lipase [7]. LDL is the major lipoprotein 

which transports cholesteryl esters to peripheral tissues. HDL is formed in plasma either 

by the assembly of cholesterol/phospholipids effluxed by cells with protein components 

such as apoA-I [5]. HDL mediates the delivery of cholesterol back to the liver for 

metabolism or excretion and to steroidogenic tissues for steroid biosynthesis, a process 

called reverse cholesterol transport [8]. HDL cholesterol can also be reassembled into 

larger lipoproteins (i.e. VLDL and LDL) by the cholesteryl transfer protein (CETP) in the 

liver [5]. 

Lipids associated with HDL originate in the liver and peripheral tissues while 

HDL protein components are synthesized in the liver and intestine [5]. The principle 

apolipoprotein associated with HDL is apoA-I [9]. Minor protein components include 

apoA-II, apoC-II, and apoE [7]. apoA-I is an exchangeable apolipoprotein that 

spontaneously interacts with phospholipids to form discoidal HDL complexes [5]. The 

subsequent addition of cholesterol to discoidal phospholipid-rich HDL leads to its 

maturation [9]. Partially lipidated apoA-I matures into spherical HDL via cholesterol 
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esterification by lecithin-cholesterol acyltransferase (LCAT) in the plasma, and HDL 

particles are processed and remodeled by CETP, phospholipid transfer protein, and 

hepatic lipase [8]. Discoidal HDL and mature spherical HDL are the major fraction 

found in plasma [10,11]. 

Epidemiological evidence from the Framingham Heart Study indicated that low 

levels of plasma HDL is an independent risk factor for coronary heart disease, and 

implied that elevated levels of plasma HDL was inversely related to this risk [12]. 

Potential mechanisms by which HDL could protect against atherosclerosis include 

reverse cholesterol transport, protection against endothelial dysfunction, and inhibition of 

oxidative stress [ 13]. 

High levels of low density lipoproteins (LDL) are directly correlated with risk for 

heart disease [14,15]. Atherogenic lipoproteins such as LDL become trapped in the sub­

endothelial space of artery walls, called the intima [ 16], and can be modified by means of 

oxidation, glycation, aggregation, or association with proteoglycans leading to smooth 

muscle and endothelial injury [ 17, 18]. In response to retained modified lipoproteins 

circulating bone marrow derived monocytes are recruited to the intima [ 19]. 

Additionally, modified LDL is chemotactic for other monocytes and can stimulate the 

inflammatory response recruiting more macrophages to the artery wall [20]. Inside the 

sub-endothelial space, monocytes differentiate into macrophages [21]. Modified 

lipoproteins are internalized by macrophages [22,23]. These phagocytic cells internalize 

large quantities of oxidized LDL and therefore large quantities of cholesterol without 

negative feedback regulation [24]. The accumulation of cholesteryl esters from 
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atherogenic lipoproteins results in the formation of macrophage foam cells, the hallmark 

of an atherosclerotic plaque [25]. Macrophages are the major cellular component of both 

early and advanced atherosclerotic lesions [26]. 

1.2 Regulation of Cholesterol Homeostasis 

Cholesterol levels are controlled by numerous processes including reverse 

cholesterol transport [27 ,28], de novo synthesis [29], lipoprotein uptake [30], and 

cholesterol esterification [31]. Mammalian cells control cholesterol homeostasis by 

regulating transcription factors called sterol regulatory element binding proteins 

(SREBPs) [32]. SREBPs are synthesized as transmembrane precursors in the 

endoplasmic reticulum (ER) membrane [32,33], and they form complexes with SREBP 

cleavage-activating protein (SCAP). In the absence of sterols, SCAP escorts SREBP to 

the Golgi apparatus where SREBP is cleaved by Site-1 protease (SlP) and Site-2 protease 

(S2P) [32,33]. This generates a fragment of SREBP which travels to the nucleus and 

activates more than 35 genes, including those whose products are involved in cholesterol 

synthesis and lipid uptake [34]. Among the genes transcribed are the low density 

lipoprotein receptor (LDLR) [34] and 3-hydroxy-3-methylglutaryl coenzyme A reductase 

(HMG-CoA reductase) [35]. The increased expression of the LDLR gene in the absence 

of sterols results in increased LDLR expression on the cell surface and increases the 

internalization ofLDL from plasma, increasing cellular cholesterol levels and lowering 

LDL cholesterol in the plasma [36]. Additionally, HMG-CoA reductase (the rate limiting 
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enzyme in cholesterol biosynthesis) leads to increased production of endogenous 

cholesterol [35]. As cellular sterol levels increase, the SREBP/SCAP complex is retained 

in the ER membrane through the binding of SCAP to ER retention proteins called Insigs 

[37,38]. This prevents cleavage ofSREBP by SIP and S2P. Thus, the active fragment of 

SREBP is not released and cannot enter the nucleus to stimulate the transcription of genes 

including LDLR and HMG-CoA reductase in the presence of sterols. This leads to 

attenuated cholesterol synthesis and uptake in the presence of sterols [38]. 

1.3 Scavenger Receptors 

Scavenger receptors are cell surface transmembrane proteins that bind a broad 

variety ofligands including chemically modified lipoproteins, modified proteins, and 

sulfated polysaccharides [27], and several of them have been shown to play critical roles 

in lipoprotein metabolism and atherosclerosis [39]. These receptors were first 

characterized in cultured macrophages as mediators of cholesterol uptake from modified 

lipoproteins, leading to the formation oflipid-loaded macrophages that resemble foam 

cells in atherosclerotic lesions [ 40]. 

Scavenger receptors are characterized based on structural features and are divided 

into classes. Among the many classes of scavenger receptors are class A and class B. 

Class A scavenger receptors (SR-A) were first cloned from eDNA in macrophages and 

are homotrimeric integral membrane proteins that are structurally characterized by an 

elongated extracellular domain composed of an alpha-helical coiled coil region and a 

collagenous domain [41-43]. The SR-A gene encodes two scavenger receptor proteins 
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generated by translation of alternatively spliced transcripts [ 41,44]. SR-AI and SR-AII 

bind acetylated LDL and oxidized LDL [24]. Class B scavenger receptors have two 

transmembrane domains [27]. This family includes CD36 which binds oxidized LDL 

[ 45,46]. Additional members of this family are the scavenger receptor class B type I 

(SR-BI) [ 47] and its splice variant SR-BII [ 48]. The human homologue of SR-BI is 

CD36- and LIMPII analogous 1 (CLA-1) [49]. 

1.4 Scavenger Receptor class B type I 

1.4.1 SR-BI expression and binding partners 

SR-BI has 30% sequence homology to CD36 [50], and it is an integral membrane 

protein that is heavily glycosylated and is approximately 82kDa in size [51]. SR-BI has a 

horseshoe-like membrane topology composed of a short intracellular N-terminus, a large 

extracellular portion, and a relatively short C-terminus that is intracellular [27,50]. SR­

BI is highly expressed in steroidogenic tissues, adipocytes, and in hepatocytes [ 47,52-54]. 

Expression of SR-BI is also found in endothelial cells, macrophages, and in foam cells of 

atherosclerotic lesions [55-59]. 

SR-BI binds a wide array ofligands including HDL [52], and several 

apolipoproteins associated with HDL, namely apoA-1 [60,61], apoA-II, apoC-III [61], 

and apoE [62]. SR-BI also binds VLDL [63], and native or modified LDL [47,64], yet its 

binding to modified lipoproteins does not lead to foam cell formation [65]. SR-BI also 

binds protein-free lipid vesicles containing anionic phospholipids [66], maleylated bovine 
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serum albumin [47], and advanced glycation endproduct modified proteins [67]. 

Additionally, SR-BI has been reported to bind apoptotic thymocytes [64] and 

phosphatidylserine in apoptotic testicular Sertoli cells [68]. The diversity ofbinding 

partners associated with SR-BI suggests multiple functions of the receptor. 

1.4.2 SR-BI and Selective Uptake 

SR-BI expression in the liver is crucial for normal murine lipoprotein metabolism 

[69,70]. One pathway by which hepatocytes can take up cholesterol from HDL and other 

lipoproteins is mediated by SR-BI [52,71]. SR-BI mediates the selective uptake of 

cholesteryl esters from HDL in hepatocytes without net internalization of the lipoprotein 

[39,50]. HDL-derived cholesterol in the liver is secreted into the bile, used for bile acid 

synthesis, or packaged and secreted in newly synthesized lipoproteins. This leads to the 

clearance of plasma HD L cholesterol and ultimately to whole-body elimination of excess 

cholesterol in bile [28,72]. Selective uptake therefore appears to be important for the 

clearance ofHDL derived cholesterol [70]. 

A definitive role for SR-BI in HDL metabolism and reverse cholesterol transport 

in vivo has been demonstrated using different transgenic and knockout mouse models. 

Overexpression ofSR-BI in liver reduced HDL cholesterol levels, increased reverse 

cholesterol transport [73,74], and decreased susceptibility to atherosclerosis [69,75,76]. 

Atherosclerosis reduction associated with hepatic SR-BI overexpression may be the result 

of an increase in HDL-derived cholesterol clearance [69,74-76]. As SR-BI can also bind 

lipoproteins such as LDL and VLDL [47], it is possible that SR-BI might influence 

atherosclerosis by influencing the levels of these atherogenic lipoproteins [69]. In 
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contrast, the genetic suppression ofSR-BI activity in mice leads to increased 

susceptibility to diet-induced atherosclerosis [77]. Additionally, increased diet-induced 

atherosclerosis has been reported in SR-BVLDLR double knock out mice [78], and in 

LDLR knockout mice with an attenuated SR-BI expression [79]. Genetic suppression of 

SR-BI on an apoE knockout background leads to hypercholesterolemia, dramatically 

accelerates the onset of atherosclerosis, and is lethal [80,81]. The mice die between six to 

eight weeks of age with characteristics much like human coronary heart disease; this 

includes occlusive atherosclerosis, myocardial infarction and cardiac dysfunction [80,81]. 

SR-BI apoE double knockout mice have an abnormally high heart to body weight ratio 

which is 1.6 -1.8 fold greater than apoE knockout mice, and this cardiomegaly was the 

result ofheart damage and compensatory hypertrophy [80,81]. 

1.4.3 SR-BI in Hematopoietic-Derived Cells 

In addition to an atheroprotective role in hepatocytes, SR-BI expression in 

macrophages appears to play a role in protection against atherosclerosis [78,82,83]. This 

was shown initially by our laboratory using tissue specific elimination of SR-BI 

expression [78]. Bone marrow transplantations (using either SR-BI knockout or wild­

type mice as donors) were performed on lethally irradiated LDL receptor knockout mice 

to generate mice with selective elimination ofSR-BI in bone marrow derived cells. 

Atherosclerosis was induced by feeding the mice a high fat diet for four months. The 

aortas ofLDLR KO mice have an increased amount of atherosclerotic plaque coverage 

when fed a high fat diet [84]. This study demonstrated that the selective elimination of 

SR-BI in bone marrow derived cells resulted in increased atherosclerosis [78], and 
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implied that the expression ofSR-BI in bone marrow derived cells leads to 

atheroprotection. Others confirmed this finding using bone marrow specific elimination 

of SR-BI in apoE knockout mice fed a chow diet. The mice that received SR-BI 

knockout bone marrow had a 1.4-fold increase in cross-sectional area of plaque in the 

aortic sinus compared to wild type controls [83]. Interestingly, another study in which 

SR-BI was eliminated in bone marrow derived cells in LDLR knockout animals indicated 

a possible dual role for SR-BI. At four weeks on a high fat diet, there was an increase in 

cross-sectional area of plaque in the aortic sinus due to the presence of bone marrow 

derived SR-BI while at 9-12 weeks, there was a decrease in cross-sectional area of 

atherosclerotic plaque due to the presence ofbone marrow derived SR-BI [82]. When 

SR-BI was eliminated from bone marrow derived cells in wild type mice fed a high 

cholesterol diet containing cholate for eight 'Yeeks, there was also an increase in cross­

sectional area of plaque in the aortic sinus due to the presence of bone marrow derived 

SR-BI [82]. The goal of this study is to determine the effect of a lack of macrophage SR­

BI at various stages of atherosclerotic development in apoE KO mice. 

1.4.4 SR-BI and Cholesterol Homeostasis 

SR-BI is a major determinant of murine plasma HDL concentrations 

[52, 70, 73,85], and therefore plays an important role in cholesterol homeostasis. 

Sequence analysis of the human SR-BI promoter revealed a 9-bp sequence containing an 

E box [86], an element which was previously shown to bind SREBP-la [87,88]. SR-BI 

expression in macrophages appears to be regulated by sterols, however this point is 
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somewhat controversial [56,89,90]. In culture, macrophage SR-BI expression is 

decreased in response to cholesterol loading from lipoproteins and 25-hydroxy­

cholesterol [90]. A recent study demonstrated SR-BI expression was elevated in human 

macrophage foam cells in response to modified lipoproteins [91]. Furthermore, there are 

conflicting reports regarding the binding of the SREBP transcription factor to the SR-BI 

promoter [88,90]. The effect of native lipoprotein derived cholesterol on SR-BI 

expression is not clear. 

1.5 Cholesterol Efflux from Macrophages and Atheroprotection 

The efflux of cholesterol from macrophages is an important first step in reverse 

cholesterol transport that plays a critical role in HDL-mediated atheroprotection. HDL 

has been shown to remove cholesterol from cells [9,92,93], and cholesterol efflux from 

macrophages can protect the artery wall from cholesterol overload. In vitro studies 

indicated an increase in cholesterol efflux to discoidal HDL (an HDL cholesterol 

acceptor) which appeared to be related to over-expression ofSR-BI [55,94]. Murine SR­

BI (mSR-BI) was over-expressed in Chinese Hamster Ovary (CHO) cells with a mutant 

LDL receptor (ldlA clone 7), and there was a statistically significant increase in efflux of 

eH] cholesterol tracer to cholesterol acceptors in ldlA[mSR-BI] cells compared to ldlA 7 

controls [55]. It has also been reported that efflux to HDL was dependent on lipoprotein 

binding to SR-BI [95]. This suggests that SR-BI expression promotes the efflux of 

cholesterol to HDL. It has been hypothesized that SR-BI expression in macrophages also 
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promotes the efflux of cholesterol to HDL, thereby proposing a mechanism where SR-BI 

protects against atherosclerosis by protecting artery walls from cholesterol accumulation. 

The theory that SR-BI plays a role in macrophage cholesterol efflux is intriguing, 

yet this point is controversial. Two reports cite no significant decreases in efflux when 

SR-BI expression was eliminated in primary macrophages [78,83], and another report 

cited no significant macrophage cholesterol efflux due to SR-BI or to the ATP-binding 

cassette transporter A1 (ABCA1) in 1774 cells [96]. Meanwhile, two other studies show 

minor decreases in cholesterol efflux to HDL when SR-BI was eliminated from primary 

macrophages [82,97]. Definitive biological data supporting SR-BI expression and 

macrophage cholesterol efflux is lacking. 

Interestingly, the overexpression of murine SR-BI in these cells has also been 

linked to the accumulation ofHDL-derived cholesterol without net internalization ofthe 

protein component [52]. ldlA[mSR-BI] cells were incubated with HDL and this led to an 

overall increase in HDL derived cholesteryl esters within the cells [52]. This implied that 

SR-BI led to an overall influx of cholesterol in ldlA[mSR-BI] cells, and it demonstrates 

that net flux is dependent on the cholesterol concentration gradient. 

SR-BI is among a group of proteins including those of the ATP-binding cassette 

(ABC) ·super-family of proteins implicated in macrophage cholesterol efflux. ABC 

proteins are membrane transporters that use ATP hydrolysis to transport solute molecules 

against a concentration gradient [98]. Among the ATP-binding cassette proteins, ABCA1 

is the most well-understood efflux protein [72,99]. It has been demonstrated that 

macrophage-expressed ABCA1 mediates the efflux of cholesterol to lipid-free apoA-1 
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[99], an exchangeable protein component predominantly associated with HDL. ABCAI 

has been shown to preferentially bind free apoA-1 and apoA-1 associated with discoidal 

HDL rather than binding to mature, spherical, lipid-rich HDL particles [10,11]. ABCAl 

expression also increases in response to macrophage cholesterol loading [100-102]. 

Conversely, SR-BI preferentially binds spherical, lipid-rich HDL particles [103]. 

Proteins within the ABCG family have also been implicated in cholesterol efflux. 

Recently, ABCG 1 which is highly expressed in macrophages has been shown to efflux 

cholesterol to partially lipidated HDL among other lipoprotein and non-lipoprotein 

acceptors [ 104]. ABCG 1 expression is regulated by an oxysterol activated transcription 

factor called liver X receptor (LXR) [105]. Additionally, ABCG4 is expressed in the 

bone marrow and in macrophages [ 1 06] and has been be implicated in cholesterol efflux 

in many cell types [ 104]. It has been hypothesized that ABCG4 may play a role in 

macrophage efflux [104]. Other macrophage efflux proteins that have been identified 

include the moesin-like HDL binding protein [107]. 

1.6 Glucose Transport 

Glucose is hydrophilic and cannot penetrate the lipid bilayer. It is transported into 

cells by Glucose Transport Proteins (GLUTs) whose genes are regulated by 

hyperglycemia, insulin, and cellular translocation. GLUTl, 3, and 5 are expressed in 

macrophages and foam cells [ 108,1 09]. GLUT3 is expressed in a variety of cells 

including platelets and macrophages and is the predominant transporter for glucose 

[ 110, Ill]. One major response of tissues to insulin is the recruitment of GLUTs, 
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including GLUT3, to the cell surface [112,113]. Reduced rates of insulin-mediated 

glucose uptake characterize insulin resistance [ 114, 115]. Glucose-induced insulin 

resistance involves the impaired recruitment of(GLUTs) to the cell surface without a 

change in total cell number of transporters [116,117]. Hyperglycemia negatively affects 

insulin secretion and insulin action [ 115, 118]. 

The metabolism of glucose can lead to the hexosamine biosynthesis pathway 

[119]. Upon entry into non-hepatic cells, glucose is phosphorylated by hexokinase. 

Glucose-6-phosphate can then be converted into :fructose-6-phosphate. Through the 

hexosamine pathway, :fructose-6-phosphate and glutamine are ultimately converted into 

glucosamine-6-phosphate by the enzymatic actions of glutamine::fructose-6-phosphate 

ami do transferase ( GF AT). This is the rate-limiting step of the hexosamine pathway 

[120]. Through this pathway, glucose is converted to glucosamine [121]. Acetylation 

leads to the production of N-acetylglucosamine-6-phosphate which is a component of 

many molecules including glycoproteins [121]. High levels of glucose [122], and free 

fatty acids [ 123] can accelerate the hexosamine pathway. 

It has been postulated that glucosamine and the hexosamine pathway play an 

important role in the development of insulin resistance [121,123,124]. High levels of 

blood glucose lead to insulin resistance by accelerating this pathway [121,125,126]. 

Glucosamine is more potent than glucose for the impairment of glucose transporters 

reaching the cell surface [ 117]. Glucosamine is widely used to accelerate the hexosamine 

pathway flux, independently of glucose [114,122,127-132]. 
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1.7 Interference with Glycosylation and ER stress 

Many proteins require N-linked glycans for folding and transport out ofthe ER 

but not necessarily for biological function [133]. The oligosaccharides in glycoproteins 

have several functions including facilitation of protein folding, protection against 

proteolysis, direction of intracellular trafficking and secretion, participation in 

intermolecular interactions, and the control of cell surface expression and activity [133-

135]. Glucosamine is a necessary component for glycosylation as N-linked glycans are 

attached to proteins through N-acetylglucosamine [120]. Although the observed mass of 

SR-BI based on immunoblot and immunoprecipitation experiments is -82 kDa, the mass 

predicted from the receptor's deduced primary amino acid sequence is -57 kDa [52]. This 

is due to extensive N-glycosylation of SR-BI which occurs both cotranslationally and 

posttranslationally [51]. SR-BI is initially synthesized with multiple high mannose N­

linked oligosaccharide chains, with the mature protein containing both complex as well as 

hybrid and/or high mannose chains [51]. There are 11 potential sites for N-linked 

glycosylation on mSR-BI; two of which affect SR-BI expression and appear to have an 

important role in ER folding and/or intracellular transport [ 136]. 

A variety of conditions or agents (including altered protein glycosylation, calcium 

depletion, reductive stress, and others) have been shown to interfere with the proper 

folding of proteins in the ER leading to disruption of the ER processing system [137-

139], resulting in a condition termed ER stress [138] which leads to the accumulation of 

unfolded or misfolded proteins in the ER. Excess glucosamine can inhibit protein 

glycosylation [140]. WhenN-linked glycosylation is prevented, proteins typically 

14 



M.Sc. Thesis- V. Tedesco McMaster- Biochemistry and Biomedical Sciences 

misfold, aggregate, and are retained in the ER [141]. Improperly folded proteins 

accumulated in the ER can induce an adaptive mechanism called the unfolded protein 

response [142]. 

1.8 The Unfolded Protein Response 

In response to ER stress, the synthesis of chaperones (i.e. GRP78) is induced at 

the transcriptional level [143] through an intracellular signaling pathway from the ER to 

the nucleus, called the unfolded protein response (UPR) [144,145]. GRP78 is induced 

when cells are glucose-starved [146,147], treated with tunicamycin [148] or glycoprotein­

containing viruses [149,150]. Unsalvageable proteins are targeted for translocation back 

to the cytosol for proteosomal degradation [ 151-153]. 

GRP78 negatively regulates the three signaling mechanisms that activate the 

UPR. GRP78 binds the luminal domain of the ER stress sensors inositol-requiring 

transmembrane kinase/endoribonuclease (IRE1) and PKR-like ER kinase (PERK), 

inhibits their dimerization, and maintains them in an inactive state [154,155]. GRP78 

also binds the activating transcription factor 6 (ATF6) and prevents its translocation to 

the Golgi apparatus for processing and activation [156,157]. In the presence ofmisfolded 

proteins, GRP78 dissociates from the sensors and binds the misfolded proteins thereby 

releasing the sensors and leading to their activation [154]. 

The oligomerization of PERK leads to autophosphorylation and subsequent 

phosphorylation of the alpha subunit of the eukaryotic translation initiation factor 2 

(eiF2a) [158,159]. This leads to transient inhibition of the translation initiating factor 
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eiF2a and a general decrease in translation thereby limiting the new protein load in the 

ER [160]. IREl is activated by dimerization and autophosphorylation. When IREl is 

activated, its endoribonuclease activity snips a pre-existing substrate mRNA which 

subsequently leads to the activation of a transcription factor X-box-binding protein 

(XBP-1) [155,161]. XBP-1 upregulates genes involved in ER-associated degradation 

(ERAD) and the retrotranslocation of proteins [162,163] thereby limiting the protein load 

of the ER. The UPR also leads to the trafficking of A TF6 to the Golgi from the ER 

where it is cleaved by SIP and S2P, the same proteases that cleave SREBP [32,33,164]. 

This leads to the release of a cytosolic domain that subsequently enters the nucleus and 

transactivates the genes encoding ER chaperone proteins (GRP78) to alleviate the 

protein-folding load on the ER [144,156,164]. 

1.9 Mammalian Response Downstream of ER Stress!UPR 

Mammalian cells also respond to the UPR by the activation of programmed cell 

death or apoptosis [ 165-167]. This appears to be a result of an inability to maintain ER 

homeostasis as the result of severe ER stress. Another consequence of ER stress is the 

activation ofSREBP [139]. ER stress has been shown to lead SREBP activation and 

subsequent promotion of lipid accumulation in human aortic smooth muscle cells and 

hepatocytes [139]. This dysregulation ofSREBP may lead to dysregulation of multiple 

pathways involved in lipid metabolism [139,168], and indicates a link between ER stress 

and cholesterol homeostasis. 
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Interestingly, there appears to be a correlation between ER stress and 

atherosclerotic lesion development in apoE KO mice [169], and it has most recently been 

shown that hyperglycemia is associated with tissue-specific ER stress and accelerated 

atherosclerosis in streptozotocin-induced apoE KO mice [170]. 

The presence ofSR-BI in bone marrow derived macrophages may protect against 

atherosclerotic plaque formation in apoE KO mice, yet the effects of eliminating SR-BI 

in later stages of plaque development in apoE KO mice is unknown. Additionally, the 

effects ofER stress and increased cellular glucosamine levels on SR-BI expression in 

macrophages are not known. This thesis attempts to address some of these questions 

using bone marrow transplantation in mouse models of atherosclerosis and cell culture 

models. 
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2. Materials and Methods 

2.1 Materials 

Reagents and chemicals are detailed in Table 1. 

Table 1. Reagents and Suppliers 

Chemical or Reagent (Supplier) 

2,2,2-tribromoethanol (Sigma) 2-methylbutane (Fisher Scientific) 
2-methylbutanol (Sigma) Agarose (Bioshop} 
APMSF (Sigma} ApoA-1 antibody (Sigma) 
Aprotinin (Sigma) NH4CI (BDH, Inc.) 
~-actin antibody {MP Biomedicals,lnc.) Bicinchoninic Acid Assay (BCA) 
Bovine serum albumin (Sigma) CaCI2 (BDH, Inc.) 
CD36 antibody (Cascade Biosdences} Cell strainer, 1OOm (Flacon) 
Crystalmount (Biomeda) Cycloheximide {Sigma) 
DMSO (Sigma) DTI (Roche} 
EDT A (EMD) Ethidium Bromide (Bioshop) 
Fetal Bovine Serum (Hyclone) Filter Flask, 0.22m {Nalgene) 
37% formaldehyde (caledon) 10% formalin (Fisher Scientific} 
Glucosamine (Sigma) Glucose (Sigma) 
Glycine (Bioshop) Heparin (Sigma} 
HRP conjugated Donkey«Goat lgG {Jackson lmmunoresearch) High Fat Diet (Dyet's, Inc.) 
HRP conjugated DonkeyaMouse lgG (Jackson lmmunoresearch) Hepes (Bioshop) 
HRP conjugated DonkeyaRabbit lgG (Jackson lmmunoresearch) lscove's Medium (Gibco) 
Infinity Cholesterol liquid Stable Reagent (Thermo Electron Corp.} Jell-0 (Kraft Foods, Inc.) 
KHC03 (EMD) KCI (JT Baker) 

KH2P04 (BDH, Inc.) KBr (Bioshop) 

KDEL antibody (Stressgen Biotechnologies) KHC03 (EM Science) 
Leupeptin (Sigma) L-glutamine (Gibco) 
MgS04 (BDH, Inc.) MgCI2 (EM Science) 
Mannitol (Sigma) Mayer's Hematoxylin (Fiuka) 
NaCI (Bioshop) NaHC03 (EMD) 

NaP04 (BDH, Inc.) Newborn Calf Serum (Gibco) 
N-g!ycosidase F (Roche) Nutrical (Evsco) 
Nucleospin Blood Quick Pure Isolation Kit (BD Biosciences) Oil Red 0 (Sigma} 
Penicillin/Streptomycin (Gibco) Pep A (Sigma) 
PVDF (Perkin Elmer) Septra (Novopharm) 
Shandon Cryomatrix (Thermo Electron Corp.) Sucrose (Bioshop) 
SR-BI antibody, 400-101 (Novus Biologicals) Tris (Bioshop) 
Triton-X 100 (Sigma) Tween 20 (Sigma} 
Western Lightning Chemiluminescent Reagent (Perkin Elmer) 
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2.2 Methods 

2.2.1 Mice 

Experimental protocols involving mice were in approved by McMaster University's 

Animal Research Ethics Board. SR-BI+/- apoE knockout (KO) mice with a mixed 

C57BL/6J:129 agouti background were originally obtained from Dr. Monty Krieger 

(Massachusetts Institute of Technology). These mice were mated to generate SR-BI-1-

apoE-/- (SR-BI/apoE double KO) and control SR-BI+/+ apoE-/- mice. ApoE KO mice 

on a C57BL/6J background were originally obtained from The Jackson Laboratories. 

Mice were bred and housed in micro-isolator cages in the Barrier facility of the Central 

Animal Facility at McMaster University (Hamilton, Ontario). The mice were provided 

food and water ad libitum. Food was either low fat chow diet or an atherogenic high fat 

diet (Dyets, Inc: 21% butterfat, 0.15% cholesterol), as indicated. 

2.2.2 Preparation of Bone Marrow Recipient Mice 

Seven days prior to scheduled bone marrow transplant, 9 week old female apoE KO 

recipient mice were separated into individual sterile micro-isolator cages and 

acclimatized to the antibiotic Septra ( 40mg/mL sulfamethoxazole and 8mg/mL 

trimethoprim), which is widely used to block internal folic acid production in the gut 

(final concentrations: 1.25mg/mL trimethoprim and 0.25mg/mL sulfamethoxazole in 

sterile water) [171,172]. Each day the mice were provided with sterile pelleted food and 

sterile powdered food soaked with Septra-water and mixed with Nutrical, a calcium-rich 

19 



M.Sc. Thesis- V. Tedesco McMaster- Biochemistry and Biomedical Sciences 

nutritional supplement paste. The mice were also given approximately 6mL (V2 cube) 

strawberry Jell-0 prepared with Septra and sterile water. The mice remained on this 

Septra regimen for one month post transplant. The mice were monitored twice daily and 

were euthanized in accordance with the endpoint policies of McMaster University. 

2.2.3 Harvest of Bone Marrow from Donor Mice 

Mice were euthanized by carbon dioxide asphyxiation, and using sterile instruments, a 

superficial incision was made into the abdomen leaving the peritoneal membrane intact. 

Femurs and tibias were dissected free of muscle and extraneous tissue and were placed in 

ice cold Medium A (Iscove's medium containing 2% Heat-Inactivated FBS 

supplemented with 2mM L-glutamine and 50U/mL penicillin- 50 1-lg/mL streptomycin). 

Under aseptic conditions, the ends of the bones were snipped and the bone marrow was 

flushed out with Medium A (as described above) using a one milliliter syringe with a 

2301 needle for femurs and a 2505/8 needle for tibias. The bone marrow cells were 

dispersed by passage and expulsion through an 1801 V2 needle five times followed by 

subsequent dispersions using a 2001 V2, 2301, 2505/8, and 260V2 needles five times 

each. Cells were then filtered using a 1 001-lm sterile cell strainer. Bone marrow cells 

were pelleted by centrifugation at 500x g for 10 minutes and either resuspended in 

Medium A for subsequent counting and immediate transplant or resuspended in Heat­

Inactivated FBS with 10% DMSO and frozen at -20°C for one hour, -80°C overnight, 

then in liquid nitrogen for later use. At the time of transplant, bone marrow was thawed 

and a small sample of bone marrow derived cells was diluted 1:10 in sterile ACK 
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(150mM NH4Cl, lOmM KHC03, 0.1M EDTA. pH 7.2-7.4) to lyse erythrocytes and cells 

were counted using a hemacytometer. Concentrations were adjusted with Medium A as 

indicated. 

2.2.4 Irradiation and Bone Marrow Transplantation 

To determine the appropriate lethal irradiation dose for 10 week old female apoE KO 

mice, groups of mice were exposed to 9, 10, or 11Gy of 137Csy irradiation (Gammacell 

3000). Two thirds of the dose was administered during a first session and the remaining 

third was administered three hours later [78]. Bone marrow recipient mice were lethally 

irradiated with 11 Gy in the same manner using the same source. Immediately following 

irradiation, 6x 106 donor bone marrow cells were injected via the tail vein. 

2.2.5 Induction of Atherosclerosis 

Four weeks after transplantation the mice were fed an atherogenic, high fat western-type 

diet to accelerate the development of atherosclerosis [173,174]. Mice were fasted 

overnight, and plasma and tissue samples were subsequently prepared as described 

previously [81]. 

2.2.6 Blood Collection/Plasma and Serum Preparation 

Mice were anaesthetized by intraperitoneal (IP) injection using 2.5% avertin [81]. Four 

weeks after transplant and at harvest, mice were fasted overnight and blood was collected 

via tail vein under anesthesia into heparinized microtubes. At harvest blood was 
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collected by cardiac puncture into microtubes containing 1 f.tL of the anticoagulant 

heparin (1 Ox4U heparin/mL PBS). The blood was centrifuged at 14,000rpm at 4 OC in a 

Spectrafuge microcentrifuge (Labnet) for five minutes to separate blood cells from the 

plasma. Plasma was stored at 4 OC or used immediately for lipoprotein separation and 

cholesterol analysis. Cells were either stored at -20°C or used immediately for DNA 

isolation. 

2.2. 7 Genotyping 

Genomic DNA was isolated as described previously from tail biopsies of pups from SR­

BI+/- apoE-/- breeding pairs [175]. A minimum of 50flL (packed volume) of blood cells 

were used for DNA isolation using a NucleoSpin Blood Quick Pure kit (BD Biosciences). 

Resultant DNA was diluted 1:100 and 1 :20 in ultra-pure H20 and genotyping was 

determined by multiplex PCR (see Table 2 for primers) [70]. The PCR reaction was 

initiated by denaturation at 94°C for 2 minutes, annealing at 5TC for two minutes, and 

extension at 65°C for 5 minutes. This was followed by forty cycles of denaturation at 

94°C for 30 seconds, annealing at 5TC for 30 seconds and extension at 65T for 90 

seconds. Final extension was carried out at 65T for 10 minutes. The ramping speed was 

1 °/second. PCR products were separated on a 1% agarose gel containing 0.5f.tg/mL 

ethidium bromide. Wild-type and mutant alleles of SR-BI were visible as 1.9kb and 

1.4kb bands, respectively and heterozygotes exhibited both the 1.9kb and 1.4kb 

amplicons (Table 2) [70, 78]. 
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Table 2. Primer sequences and amplicon size information for SR-BI genotyping 

Allele Primer Primer Pair (5'-3') Amplicon Size 
Name (bp) 

SR-BI Wild-Type oDT44 TGA AGG TGG TCT TCA AGA GCA GTC CT 1900 
oDT66 TAT CCT CGG CAG ACC TGA GTC GTG T 

SR-Bl Mutant oDT44 TGA AGG TGG TCT TCA AGA GCA GTC CT 1400 
oSi75 GAT TGG GAA GAC AA T AGC AGG CAT GC 

2.2.8 Analysis of Plasma and Lipoprotein Cholesterol 

The volume of plasma prepared from each mouse was determined. Plasma or purified 

HDL (see below) was separated by gel filtration chromatography using an AKTA FPLC 

with a Superose 6 HR 10/30 column and eluted (154mM NaCl, lmM EDTA, pH 8.0) into 

250J.!L fractions [78]. Total cholesterol analyses were performed using a coupled 

spectrophotometric enzymatic assay comprised of cholesterol esterase, cholesterol 

oxidase, and peroxidase (Infinity Cholesterol Liquid Stable Reagent Kit). Each fraction 

was mixed and 1 OOJ.!L from each fraction was added to a 96 well plate. 200J.!L 

cholesterol reagent was added to each sample. After incubation at 3TC for 30 minutes, 

absorbance values were determined at 500nm using a 96 well plate reader. A standard 

curve of absorbance vs. cholesterol concentration was used to determine the total 

cholesterol in each sample. 
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2.2.9 Tissue Collection 

An incision was made into the abdominal cavity and up through the thorax to open the 

ribs which were then pinned back to allow access to the thoracic cavity. The circulatory 

system of each mouse was gravity perfused with 1 OmL ice cold PBS (0.14 M N aCl, 

2.7mM KCl, 15mM Na2P04, 1.5mM KH2P04, pH 7.5) containing 1mM EDTA pH 8.0 

(elevated one meter above the heart) using a winged butterfly needle (23G1x0.75" 

needle, 0.4mL tubing) inserted into the left ventricle of the heart (outflow from the right 

atrium). The heart and intact aorta were dissected from the mouse and extraneous tissue 

was removed under a dissecting scope. The aorta was dissected from the heart proximal 

to the emergence of the brachiocephalic and carotid artery branches and then fixed in 

10% formalin and stored at room temperature. Excised hearts were rinsed with PBS and 

incubated for 30 min at room temperature in Kreb-Henseleit buffer (118mM NaCl, 

4.7mM KCl, 1.2mM KH2P04, 1.2mM MgS04, 25mM NaHC03, and 11mM glucose), 

then fixed in 10% formalin for 24hrs at 4 °C. The hearts were then sliced in half 

horizontally and rinsed in PBS for 24hrs at 4°C. The samples were incubated in 30% 

sucrose in PBS for 24hrs at 4 OC and then frozen in Cryomatrix in a dry ice/2-

methylbutane bath and stored at -80°C for subsequent sectioning. The lobes of the liver 

were divided into four equal quantities, placed in cryovials, snap-frozen in liquid 

nitrogen, and stored at -80°C. 

2.2.10 Histology 

Cross sections (10~-tm) ofthe hearts were generated using a cryotome (ThermoShandon). 

Sections were collected onto microscope slides (Aptex treated slides from Hamilton 
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Health Sciences Histology Lab) starting at the aortic root and moving distally. Sections 

were fixed with 3 7% formaldehyde, stained with Oil Red 0 and counterstained with 

Mayer's Hematoxylin as previously described [176] and mounted with Crystalmount. 

2.2.11 Analysis of Atherosclerotic Plaque 

Digital images of stained slides were obtained in brightfield at Sx magnification using a 

Zeiss Axiovert 200M inverted microscope (Carl Zeiss, Inc) fitted with an Axiocam 

digital color camera. The section at the aortic root showing three complete aortic valves 

attached was assigned as the first section (OJ.lm) (see Figure 6A). That section and serial 

sections at 80Jlm intervals distal to that section were analyzed. Cross-sectional areas of 

atherosclerotic lesions in each section were quantified using the Axiovision 3.1 software. 

The total atherosclerotic lesion cross-sectional area in a given section was calculated as 

the sum of the cross-sectional areas of each of the individual atherosclerotic lesions in 

that section [81]. The average atherosclerotic plaque volume in a 320Jlm long segment of 

the aortic sinus beginning at the aortic root and extending distally was calculated as 

follows: The cross-sectional area of atherosclerotic plaque measured in a given section 

was taken as the average area for a segment extending 40Jlm in either direction. The 

volume was calculated as the average area x linear distance (80Jlm). This was done for 

sections taken at 80Jlm intervals (see above) and summed to obtain the average 

atherosclerotic plaque volume over 320Jlm. 
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2.2.12 DiiAcLDL Uptake Assay 

Cells to be assayed were washed in Dulbecco's Modified Eagle's Medium (DMEM) 

containing 50ug/mL penicillin/streptomycin, 2mM L-glutamine, and 0.5% bovine serum 

albumin (Media B). Media B was supplemented with 5J..tg/mL 1 '1 '-dioctadecyl-3,3,3 ',3 '­

tetramethylindo iodide (Dii) labeled AcLDL in the dark. Cells were incubated in the 

dark at 3TC for 2 hrs. The media was removed and cells were washed twice in ice-cold 

complete PBS (PBS containing 0.5mM MgCb and 0.68mM CaCb ) containing 0.5%BSA 

and then washed with warm complete PBS +0.5%BSA [52]. Dil fluorescence was 

detected using a Zeiss Axiovert 200 fluorescent microscope (Carl Zeiss, Inc.). 

2.2.13 Preparation of Lipoprotein Deficient Serum 

Potassium bromide was dissolved in ice-cold Newborn Calf Serum to adjust its density to 

1.215g/mL (50.5g KBr/150ml serum). The serum was then subjected to 

ultracentrifugation in Quickseal ultracentrifuge tubes (Beckman 342414 1 x3 Y2 

polyallomer tube) at 55,000rpm for 52 hours at 4T (Ti70 rotor) [177,178], to float 

lipoproteins up to the top of the tube. Lipoprotein-deficient serum was collected from the 

bottom half of the tube and was dialyzed (12,000-14,000Da cut off) eight times at 4°C 

against 0.9% sodium chloride for a minimum of 4 hours. The protein concentration of 

the serum was determined and adjusted to 70mg/ml with 0.9% sodium chloride and 

sterilized by filtration through a 0.22J..tm pore size filter. Aliquots were stored at -20°C. 
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2.2.14 Preparation of Lipoproteins from Human Plasma 

Citrated human plasma was obtained from the laboratory of Dr. F. Ofosu (McMaster 

University, Hamilton, Ontario) and EDTA was added to 3mM. All procedures were 

conducted at 4°C. Potassium bromide was added to adjust its density to 1.019g/mL 

(2.86g KBr/150mL plasma). The plasma was subjected to ultracentrifugation in 

Quickseal ultracentrifuge tubes (Beckman 342414 1 x3 Yz polyallomer tube) at 55,000rpm 

for 15.2 hours (Ti70 rotor) to isolate and subsequently remove VLDL and chylomicrons. 

The plasma containing LDL and HDL was recovered from the bottom (approximately 

50%) of the tubes. The density of the recovered plasma was adjusted to 1.063g/mL with 

KBr and it was subjected to ultracentrifugation as described above. LDL was recovered 

from the top (approximately 25%) of the tubes. HDL remained within the plasma in the 

bottom (approximately 50%} of the tubes, and was collected separately. This 

ultracentrifugation step was repeated to remove residual LDL. Fresh butylated 

hydroxytoluene (20mM) was added to the remaining plasma, the density was adjusted to 

1.215g/mL with KBr, and samples were subjected to ultracentrifugation as described 

above. HDL was recovered from the top of the tubes. Lipoproteins were dialyzed as 

described above against 0.9%NaCl containing 3mM EDTA pH 7.4, saturated with N2 (g). 

Protein concentrations were determined as described above. 
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2.2.15 Cell Culture 

1.1.15.1 Maintenance 

Raw 264.7 (murine monocyte/macrophage cells) were cultured in DMEM supplemented 

with 5% heat-inactivated FBS, 2mM L-glutamine, and 50!Jg/mL penicillin/streptomycin 

(Media C) and were passaged by scraping. The ldlA 7 mutant Chinese Hamster Ovary 

(CHO) cell line lacks a functional LDL receptor (LDLR) due to a mutation in the LDLR 

gene [179]. ldlA[mSR-BI] cells are ldlA7 cells that overexpress murine SR-BI [47]. 

ldlA7 and ldlA[mSR-BI] cells were cultured in HAMS F12 media supplemented with 5% 

heat-inactivated FBS, 2mM L-glutamine, and 50!Jg/mL penicillin/streptomycin (Media 

D). All cells were maintained in a humidified incubator at 37°C with 5% C02. 

1.1.15.1 Experimental Treatment Conditions 

Prior to each experiment cell culture media was replaced with media containing either 

10% FBS or 3% NCLPDS. Raw 264.7 cells and ldlA[mSR-BI] cells were maintained in 

either 10% heat-inactivated FBS or 3% NCLPDS (see Preparation of Lipoprotein 

Deficient Serum), in DMEM and HAMS F12, respectively. Where indicated, media was 

supplemented with the following: g1ucosamine, glucose, mannitol, DTT, and/or 

cycloheximide (concentrations and time-points as indicated). 
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2.2.15.3 Preparation & Differentiation of Bone Marrow Derived Macrophages in 
Culture 

Bone marrow, isolated as described above, was plated in DMEM supplemented with 10% 

heat-inactivated FBS, 50ug/mL penicillin/streptomycin, 2mM L-glutamine (Media E) for 

2hrs to allow the adherence of differentiated macrophages. Suspended cells were then 

re-plated in MediaE for 12hrs to allow for the adherence of fibroblasts. The remaining 

cells in suspension were removed and cultured for seven days in the presence of 20% L-

cell conditioned media which contains macrophage colony stimulating factor [180-182]. 

To prepare L-cell conditioned medium, murine L929 cells were propagated in Media C 

for one week without reaching confluence [183]. The media was removed, filter 

sterilized, and stored at -20°C. 

2.2.16 Preparation of Cell Lysates 

Cells were washed twice with ice cold PBS and then scraped on ice in lysis buffer (0.2x 

PBS containing 0.1% Triton-X 1 00) and containing protease inhibitors (201-lg/mL 

aprotinin, 101-1g/mL leupeptin, lmM APMSF, and 101-1g/mL pepstatinA). Lysates were 

then centrifuged at 14,000rpm in a Spectrafuge microcentrifuge at 4T for 15 minutes to 

remove nuclei and cellular debris. Protein concentrations in the supernatants were 

determined using the bicinchoninic acid (BCA) assay using BSA as a standard. Where 

indicated, lysates were treated with N-glycosidase F (1 U/501-lg lysate) for 16hr at 37"C. 
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2.2.17 Western Blotting 

Equal amounts of protein were solubilized by boiling 5 minutes in sample buffer 

containing 2%SDS [w/v], 10%glycerol [v/v], 100mM dithiothreitol, 0.1% bromophenol 

blue [w/v], and 50mM Tris-HCl pH 6.8. The samples were subjected to SDS-PAGE 

(Separating gel: 12% acrylamide [30:1 bis-acrylamide], 0.4M Tris-HCl pH 8.8, 

0.1 %SDS. Stacking gel: 4% acrylamide [30:1 bis-acrylamide], 0.13M Tris-HCl pH 6.8, 

0.1% SDS) in electrophoresis tank containing running buffer (50mM Tris, 196mM 

glycine, and 0.1% SDS) [ 184]. Samples were electrophoretically transferred to activated 

PVDF membrane using a transfer buffer consisting of 14.4mM Tris pH 8.3, 122mM 

Glycine, 20% methanol and an Idea Scientific transfer apparatus at 24V for 45 minutes 

[ 185]. Non-specific protein binding sites on membranes were blocked by incubation for 

one hour in 5% non-fat dry milk in PBST (PBS containing 0.01% Tween-20). 

Membranes were then incubated for one hour at room temperature with primary 

antibodies at the following concentrations (~-actin, 1:50,000. CD36, 1:1000. a-COP (a 

generous gift from Dr. M. Krieger [MIT]), 1:5000. KDEL, 1:1000. SR-BI 400-101, 

1:1000 all in PBST). Membranes were washed three times for 10 min each in PBST and 

then incubated with secondary antibodies conjugated to horseradish peroxidase (HRP) 

anti-IgG (donkey a rabbit, donkey a mouse, or rabbit a goat, where appropriate) for one 

hour in PBST at room temperature. The membranes were then washed twice for 10 min 

with PBST followed by one wash with PBS. HRP activity was detected using Western 

Lightning Chemiluminescence Reagent. Images were captured on autoradiography film 
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and/or using a Kodak Imagestation 440CF. Net intensity ofbands was quantified on 

digital images using Kodak lD 3.5 image analysis software. 

2.2.18 Preparation of Thioglycollate Elicited Murine Peritoneal Macrophages 

Murine peritoneal macrophages (MPM) were elicited, collected, and cultured as 

described previously [186]. Mice were injected intraperitoneally with 1mL of sterile 

10% thioglycollate. Four days later mice were euthanized by carbon dioxide 

asphyxiation and cervical dislocation. PBS (10mL) containing EDTA (5mM) (3TC) was 

injected IP using a 25G% needle. Mice were rolled vigorously for 5 minutes on bench­

coat to dislodge peritoneal macrophages. The outer dermal layer of abdomen was opened 

leaving the peritoneum intact. The peritoneal membrane was tented and the peritoneal 

fluid was slowly aspirated using a 21 G needle and collected into sterile tubes. Cells were 

pelleted by centrifugation for 10 minutes at 500x g. The cell pellet was washed in Media 

C and pelleted as described above. Cells were resuspended in Media C, counted, and 

plated at 5x105cells/cm2 in 35mm dishes and cultured as previously described. The 

media and any non-adhering cells were removed after 2hrs, and attached cells were 

washed with unsupplemented DMEM at least three times to remove red blood cells. 

Cells were cultured in Media C as described above. 

2.2.19 Cholesterol Efflux Assay 

MPM were elicited from C57 BL6/J SR-BI KO and wild-type mice as described above. 

For each mouse, 50j..tCi of[1, z_3H] cholesterol was prepared by incubation overnight at 
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3TC in 50J.!L heat-inactivated fetal bovine serum. Four days after thioglycollate­

injection, cells within the peritoneal cavity were loaded with radioactive cholesterol in 

situ by injection with 50~-tCi [1, 2-3H] cholesterol in 500~-tL PBS. Three hours later, mice 

were euthanized and MPM were harvested as described above. MPM were plated at 

5xi05cells/cm2 in 35mm dishes and any non-adhering cells were removed after 2hrs, and 

attached cells were washed with unsupplemented DMEM at least three times to remove 

red blood cells. MPM were then cultured overnight in DMEM containing 3% NCLPDS 

(lipoprotein deficient serum). The following day, the media was changed to 2mL of 

DMEM containing 0.2% BSA without or with 25~-tg/mL HDL as a cholesterol acceptor 

(time 0). At time 0, and at each time point, lOOJ.!L aliquots of the efflux media were 

collected and centrifuged at 500xg for 10 minutes to remove cells. A 90~-tL sample of 

each aliquot was added to 5mL of aqueous counting scintillant (ACS) and radioactivity 

was determined by scintillation counting. After the final time point, cells were washed 

with PBS and cellular lysates were collected as described in 2.2.16. The amount of 

cellular eH] cholesterol was determined by scintillation counting of an aliquot 

representing 17% of the total lysate. Efflux was expressed as the proportion of 

radioactive cholesterol in the media at each time point relative to the total amount of 

radioactive cholesterol associated with cells. 

2.2.20 Statistical Analysis 

Data was analyzed using the Student's t-Test (Microsoft Excel) and was considered 

statistically significant when P < 0.05. 
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3. Results 

3.1 Diet-induced atherosclerosis in apoE KO mice transplanted with bone marrow 
from either SR-BIIapoE double KO or apoE single KO donors 

3.1.1 Establishing conditions for bone marrow transplantation 

The presence of SR-BI in bone marrow derived cells including macrophages 

appears to be important for protection against atherosclerosis at early stages oflesion 

development [78,83,184] (however, for an alternative see [82]). Little is known about the 

role ofSR-BI in macrophages in later events in the maturation of plaques. The goal of 

this study was to evaluate the effect of eliminating SR-BI in bone marrow derived cells 

on development of advanced stages of atherosclerosis in apoE knockout mice. The 

following experimental approach was taken: Bone marrow from either SR-BI/apoE 

double KO or control apoE single KO mice from the same colony was transplanted into 

lethally irradiated apoE knockout recipients that contain a wild type SR-BI gene. The 

purpose of these experiments was to generate experimental groups of mice which lacked 

a normal SR-BI gene in all hematopoietic cells including monocyte derived macrophages. 

One month later, atherosclerosis was induced in the mice by feeding them a high fat diet 

for either four or twelve weeks (Figure 2). 

C57BL6/J apoE KO mice were chosen for this study as this is a standard model 

for atherosclerosis. These mice spontaneously develop foam cell-rich depositions in their 

proximal aortas by three months of age, yet most of these mice survive without heart 
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disease to eight months of age [173,187] . Atherosclerotic plaque development is 

accelerated by feeding the mice a high fat diet [ 173]. 

First, the dosage required for lethal irradiation was tested in a pilot study. Ten 

week old female apoE KO mice were exposed to 9, 10, or 11Gy of whole body 

irradiation and monitored twice daily (see Methods 2.2.2 and 2.2.4). The mice that 

received 9 or 1 OGy survived up to 40 days while none of the mice that received 11 Gy 

survived past 16 days post irradiation (Figure 1). We therefore used 11Gy for subsequent 

bone marrow transplant studies. 
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'--------
1 
I 
l-------

0 5 10 15 20 25 30 35 40 

Days post irradiation 
Figure 1. Effect of radiation dose on survival of ten week old female a poE KO mice. 
Ten week old female apoE KO mice were irradiated with 9Gy (n=8), 1 OGy (n=5), 11 Gy 
(n=4) of 137Csy irradiation using a Gammacell 3000. Two thirds of the dose was 
administered during a first session and the remaining third was administered three hours 
later (see Methods 2.2.4). Mice were monitored twice daily and received post-irradiation 
treatment as described (see Methods 2.2.2). 
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Figure 2. Timeline for the generation of bone marrow transplant mice. Ten week 
old female apoE KO mice were lethally irradiated and transplanted with SR-BI-/-
apoE -/-or SR-BI+/+ apoE-/- bone marrow. After a four week recovery period, the 
genotype of circulating blood cells was determined to assess the extent of donor bone 
marrow engraftment. The mice were then induced to develop atherosclerosis by feeding 
a high fat diet for 4 weeks/12 weeks as indicated. Donor bone marrow repopulation was 
also assessed at harvest. 

3.1.2 Bone marrow transplantation and PCR to test repopulation 

Ten week old female apoE knockout recipient mice were irradiated with 11 Gy, 

and underwent bone marrow transplantation using donors that were SR-BI positive or 

SR-BI KO on an apoE KO background (SR-BI +/+ apoE-/- 7 apoE-/-, control or SR-BI-

1- apoE-/- 7 apoE-/-, experimental). We assessed the success of donor bone marrow 

engraftment in the transplanted mice one month later (data not shown) and after 

harvesting the mice (Figure 3A). Blood cell DNA was isolated and multiplex PCR was 

performed for the mutant and wild-type SR-BI alleles (Table 2 and Figure 3A). The 

majority of mice that received SR-BI KO donor bone marrow had circulating blood cells 
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that carried only the SR-BI KO allele indicating the absence of circulating blood cells 

derived from endogenous bone marrow. When a band corresponding to the wild-type 

allele was detected in blood cell derived DNA, the mouse was removed from the study (2 

cases). 

Macrophages are derived from circulating monocytes which originate from 

hematopoietic stem cells in the bone marrow. Monocytes constitute a very small 

percentage (1-6%) of the circulating blood cell population [188]. It was therefore 

important to verify that stem cell-derived macrophage precursors from the BM transplant 

mice were donor derived. We cultured macrophage-depleted bone marrow cells collected 

from select transplant mice (n=3 experimental, n=2 controls) at the time of harvest under 

conditions in which they differentiate into macrophages [183]. Macrophages express 

class A scavenger receptors (SR-AI and SR-AII} and can internalize acetylated LDL 

[45,189-191]. We used Dillabeled acetylated LDL to monitor acetylated LDL uptake by 

fluorescence microscopy. All of the bone marrow cells exhibited Dil uptake, suggesting 

that all of the cells differentiated into macrophages under the conditions employed 

(Figure 3B}. We isolated DNA from these in vitro bone marrow derived macrophage 

cells and analyzed the SR-BI genotype. The mice that received SR-BI KO donor bone 

marrow had bone marrow derived macrophages that carried the SR-BI KO allele. PCR 

confirmed that the macrophage-like cells were donor derived in the transplant mice 

(Figure 3A}. 

36 



M.Sc. Thesis - V. Tedesco McMaster- Biochemistry and Biomedical Sciences 
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Figure 3. Genotype analysis of circulating blood ceUs and bone marrow precursor­
derived macro phages. The positions of PCR products corresponding to the wild type 
(1.9kb) and mutant alleles (1.4kb) are shown on the right. The panels on the left 
correspond to control DNA prepared from tails of mice ofknown genotypes (A, Lanes 1-
3). Blood cell DNA was prepared at harvest and qualitative analysis ofSR-BI genotype 
was determined by PCR (A, Lanes 4-5) (see Methods 2.2.6 and 2.2.7). This data 
corresponds to DNA from representative bone marrow transplanted mice and 
demonstrates complete repopulation of hematopoietic stem cells. Bone marrow was 
prepared from mice when they were harvested and was stimulated to differentiate into 
macrophages by culturing in the presence ofMCSF (L-cell conditioned medium) for 
seven days (A, Lanes 6-7 and B) (see Methods 2.2.15.3). The cells were assessed to be 
macrophages indirectly by testing Dii-AcLDL uptake (B, scale=50!!m) (see Methods 
2.2.12). Cells were incubated with 5 mg/ml Dil-acetyl LDL and Dil fluorescence was 
visualized using a Zeiss Axiovert 200 fluorescent microscope. DNA was prepared, and 
qualitative analysis ofSR-BI genotype in representative samples was determined by PCR 
(A, Lanes 6-7). These data show that bone marrow derived macrophages differentiated 
in culture taken from recipient mice post-transplantation have the mutant allele. 
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3.1.3 Analysis of plasma cholesterol levels and lipoprotein promes 

SR-BI plays an important role in HDL metabolism [39,69,70,73,76,78-

83,145,192,193]. The elimination ofSR-BI on an apoE knockout background leads to 

altered lipoprotein sizes and distribution and doubled total cholesterol content, 

attributable to hepatic SR-BI [81]. Previous reports indicated that a lack ofSR-BI in BM 

derived cells did not affect plasma total cholesterol levels in high fat diet fed LDLR KO 

mice, chow fed apoE KO mice, or in high cholesterol/cholate fed wild-type mice 

[78,82,83]. We monitored lipoprotein total cholesterol to determine if eliminating SR-BI 

in BM derived cells altered lipoprotein total cholesterol levels in high fat diet fed apoE 

KO mice. Analysis of plasma lipoproteins indicated no statistically significant 

differences in plasma total cholesterol or cholesterol content of any of the lipoprotein 

fractions when SR-BI was eliminated from bone marrow compared to mice that received 

bone marrow from SR-BI+/+ apoE-/- donors either after four (n=9, SR-BI-/- apoE-/- ~ 

apoE-/- and n=14, SR-BI+/+ apoE-/- ~ apoE-/-, Table 3 and Figure 4A) or twelve weeks 

(n=9 per group, Table 4 and Figure 4B) of high fat diet feeding. Thus the elimination of 

SR-BI in bone marrow derived cells did not influence the levels of total cholesterol levels 

in plasma or in individual lipoproteins in apoE KO mice fed a high fat, western-type diet. 

This is consistent with findings in SR-BI KO transplanted high fat diet fed LDLR KO 

mice [78,82], chow fed apoE KO mice [83], or in high cholesterol/cholate fed wild-type 

mice [82]. 
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Figure 4. Plasma lipoprotein total cholesterol profiles of high fat diet fed apoE KO 
mice transplanted with either SR-BIIapoE double KO or apoE single KO BM. 
ApoE KO mice were transplanted and fed a high fat diet as described (see Methods 2.2.4 
and 2.2.5) for either 4 weeks (A) or 12 weeks (B). ApoE KO mice received either SR­
BI/apoE double KO (filled symbols [•] , n=9 for 4 weeks [A] n=9 for 12 weeks [B]) or 
control apoE single KO BM (open symbols [o], n=14 for 4 weeks [A] or n=9 for 12 
weeks [B]). Plasma lipoproteins from the transplanted mice were separated by size 
exclusion chromatography (see Methods 2.2.6 and 2.2.8). Total cholesterol in each 
fraction was determined (see Methods 2.2.8). The fractions in which purified human 
VLDL, IDL/LDL, or HDL elute are indicated [70,194]. Profiles are the averages of those 
of individual mice ± SEM, P >0.05 indicating no statistically significant differences 
between mice receiving SR-BI/apoE double KO or control apoE single KO BM after 4 or 
12 weeks of high fat diet feeding. 
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Table 3. Plasma total cholesterol in SR-BII apoE double KO or apoE single KO BM 
transplanted apoE: KO mice after 4 weeks of high fat diet feeding. Plasma 
lipoproteins from individual fasted mice were separated by size by gel filtration-FPLC, 
and the concentration of total cholesterol in each fraction was measured. VLDL 
cholesterol is the sum of cholesterol in fractions 1 through 9; IDLILDL cholesterol is the 
sum of cholesterol in fractions 10 through 25; HD L cholesterol is the sum of cholesterol 
levels in fractions 2:6 through 38. Values are mean± SEM (standard error of the mean). 
Group numbers are indicated in parenthesis. P values were determined by Student's t-test 
for comparison between apoE KO mice receiving apoE single KO or SR-BI/apoE double 
KOBM. 

Genotype Total VLDL IDLILDL HDL 
Cholesterol cholesterol cholesterol cholesterol 
(mg/dL) (mg/dL) (mg/dL) (mg/dL) 

SR-BI+/+ apoE-/- ·~ 777 ± 97 421 ±54 317 ± 44 39 ± 3.9 
apoE-/- (n=14) 
SR-BI-/- apoE-/- -?• 898 ± 113 483 ± 72 367 ±54 48 ± 7.3 
apoE-/- (n=9) 
Pvalue 0.43 0.49 0.48 0.25 

Table 4. Plasma total cholesterol in SR-BII apoE double KO or apoE single KO BM 
transplanted apoE KO mice after 12 weeks of high fat diet feeding. Plasma 
lipoproteins from individual fasted mice were separated by size by gel filtration-FPLC, 
and the concentration of total cholesterol in each fraction was measured. VLDL 
cholesterol is the sum of cholesterol in fractions 1 through 9; IDLILDL cholesterol is the 
sum of cholesterol in fractions 10 through 25; HDL cholesterol is the sum of cholesterol 
levels in fractions 26 through 38. Values are mean± SEM. Group numbers are indicated 
in parenthesis. P values were determined by Student's t-test for comparison between 
apoE KO mice receiving apoE single KO or SR-BI/apoE double KO BM. 

Genotype Total VLDL IDLILDL HDL 
Cholesterol cholesterol cholesterol cholesterol 
(mg/dL) (mg/dL) (mg/dL) (mg/dL) 

SR-BI+/+ apoE-/- 717 ±57 469 ± 46 217 ± 19 28 ± 1.8 
7 apoE-/- (n=9) 
SR-BI-/- apoE-/- ·~ 682 ± 107 424 ± 71 225 ± 38 26 ± 3.8 
apoE-/- (n=9) 
Pvalue 0.77 0.61 0.85 0.74 
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3.1.4 Histological assessment of atherosclerotic plaque development 

At harvest, it was apparent that the hearts of the transplanted apoE KO mice that 

received SR-BVapoE double KO bone marrow were enlarged compared to those that 

received apoE KO bone marrow. We measured heart to body weight ratios in the bone 

marrow transplant mice fed a high fat diet for four weeks, and we observed that the hearts 

of the mice that received SR-BI apoE double KO bone marrow were enlarged 17% 

relative to apoE KO controls (Figure 5B, Student's t-test, P=0.02) with no statistically 

significant differences in total weight of the mice (Figure SA, Student's t-test, P=0.66). 

Histological analysis showed healthy myocardium in transplant mice induced to develop 

atherosclerosis by feeding a high fat diet for four or twelve weeks (not shown). It is not 

yet clear whether this is accompanied by a biologically significant alteration in heart 

function. Further studies such as magnetic resonance imaging (MRI) or 

echocardiography are required [195-199]. 

41 



M.Sc. Thesis- V. Tedesco McMaster - Biochemistry and Biomedical Sciences 

A. 

-0) 
......... 

~ .E 
0 
:E 
0) 

~ 5 

0 ......___...__---~.. __ 

Donors: SR-81+/+ apoE-1- SR-81-/- apoE-/- Donors: SR-BI+/+ apoE-/- SR-81-/- apoE-/-

Figure 5. Gravimetric analysis of hearts from BM transplanted apoE KO mice fed 
a high fat diet for 4 weeks. ApoE KO mice were transplanted with BM from either SR­
BI/apoE double KO (white bars) or apoE single KO (grey bars) and were fed a high fat 
diet for 4 weeks. Prior to euthanasia, the mice were fasted overnight, weighed, and 
tissues were harvested as described (see Methods 2.2.6 and 2.2.9). Hearts were weighed 
after harvest. Data are mean values ± SEM for apoE KO mice transplanted with BM 
from SR-BI/apoE double KO donors (n=7) and apoE single KO donors (n=12). (A) 
Body weights were 20.3g ± 0.66 (SR-BI/apoE double KO donors) and 20.5g ± 0.41 
(apoE single KO donors), Using Student's t-test, P = 0.66 when transplant groups were 
compared. (B) Ratio ofheart weight to body weight were 8.3 ± 0.41 (SR-BI/apoE 
double KO donors) and 7.00 ± 0.26 (apoE single KO donors). Using Student's t-test, P = 
0.02 when transplant groups were compared. 

Atherosclerosis initially develops in the aortic sinus of atherosclerotic mouse 

models, including apoE KO mice [173]. As atherosclerosis advances, plaque 

development is observed in the aortic arch and descending aorta [ 173, 187]. We first 

measured the amount of atherosclerosis in 10 week old female apoE knockout mice (n=8) 

corresponding in age and sex to the recipient mice used in bone marrow transplants. The 

amount of atherosclerosis was determined by measuring the cross-sectional area of Oil 

Red 0 stained plaques in sections through the aortic sinus (Figure 6A). The 

atherosclerotic lesions detected exhibited small, isolated groups of cells with lipid 

42 



M.Sc. Thesis- V. Tedesco McMaster- Biochemistry and Biomedical Sciences 

deposits. These likdy represented macrophage foam cells and appeared to be fatty 

streaks or Type I lesions based on Stary's histological classification of atherosclerosis 

[200]. Atherosclerosis was measured from the aortic valve extending 560f.!m distally 

(Figure 6B). The average plaque area at the aortic root was 7.2± 0.1x103f.!m2 (n=8). The 

total plaque volume in this region was 2.1 ± 0.3x 1 06f.!m3 (n=7) (Figure 6C). This data is 

consistent with studies that demonstrated that apoE KO mice develop only small 

atherosclerotic plaques by this age [173,187]. 

We measured atherosclerotic plaque sizes in apoE KO mice reconstituted with 

bone marrow from either SR-BI!apoE double KO or apoE single KO donors and fed a 

high fat diet for four weeks. Large complex atherosclerotic plaques were detected that 

exhibited extracellular lipid accumulation and what appeared to be layers of cells that 

may represent smooth muscle cells. There were fissures within some of the 

atherosclerotic plaques and cholesterol clefts were visible, indicating Type II 

atherosclerotic lesions based on Stary's histological classification of atherosclerosis 

(Figure 6A) [200]. Atherosclerosis was measured as the cross-sectional areas of plaques 

at the aortic roots and in sections spaced at 8011m intervals in a segment (560f.!m) distal to 

the aortic root (Figure 6B). Mean cross-sectional areas through the aortic root were 4.9 ± 

0.9x 1 0411m2 when SR-BI!apoE double KO 7 apoE KO (n=9) and 5.5x 104 ± 0.9x l0411m2 

when apoE single KO 7 apoE KO (n=12) (Student's t-test P=0.68). Atherosclerotic 

plaque sizes decreased with distance from the aortic root, and the differences between 

transplant groups did not reach statistical significance (Figure 6B). Total plaque volume 

was calculated, and the averages were consistent with areas (1.9± 0.3x 107f.!m3 for SR-

43 



M.Sc. Thesis- V. Tedesco McMaster- Biochemistry and Biomedical Sciences 

BI+/+ apoE-/- donors and 1.7± 0.3xlO\tm3 for SR-BI-/- apoE-/- donors [P=0.69]) 

demonstrating no difference in plaque volume in the aortic sinus due to the elimination of 

SR-BI in apoE KO mice after 4 weeks of feeding a high fat diet (Figure 6C). 

Interestingly, however, there was a trend towards increased atherosclerosis in more distal 

regions of the aortic root when apoE KO mice were reconstituted with SR-BI/ apoE 

double KO bone marrow. Atherosclerotic plaque sizes decrease with distance from the 

aortic root, yet the decrease appears to be less when apoE KO are transplanted with SR­

BI!apoE double KO bone marrow. At positions 320, 400, 480, and 560)lm from the 

aortic root, there is Iess of a decrease in area of atherosclerotic plaque when apoE KO 

mice are reconstituted with SR-BI/apoE double KO-/- bone marrow compared to apoE 

single KO controls (Figure 6B). Although this difference does not reach statistical 

significance, the differences in area of this region may suggest that presence ofSR-BI 

influences less advanced, smaller-sized plaques. 
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Figure 6. Aortic sinus atherosclerosis in apoE KO mice at 10 weeks of age, and 
apoE KO mice transplanted with either SR-BIIapoE double KO or apoE single KO 
BM and fed a high fat diet for four weeks. Atherosclerosis was measured in Oil Red 0 
and hematoxylin stained cross sections through the aortic sinus. Atherosclerotic plaque 
development was assessed in apoE KO mice transplanted with either SR-BI/apoE double 
KO ( •) or apoE single KO BM ( o) and in 1 0 week old apoE KO mice corresponding to 
the age of transplant (o). (A) Representative histological images with plaque sizes 
corresponding to the average cross-sectional areas determined for each group. Arrow 
heads point to the artery wall, filled arrows point to valve leaflets, open arrows point to 
atherosclerotic plaque. Scale= 200!Jm. (B) Plaque cross-sectional area was analyzed in 
the sections separated by 80!Jm coverin? 560!Jm the vessel. Values are averages ±SEM, 
and at the aortic root were 4.9 ± 0.9x10 !Jm2 when SR-BI!apoE double KO ~ apoE KO 
(•, n=9) and 5.5± 0.9x104!Jm2 when apoE single KO ~ apoE KO (o, n=12). Pvalue 
=0.68 when comparing transplant groups. P values >0.05 at each interval (n=8/group) 
when comparing transplant groups. In 10 week old apoE KO mice corresponding to the 
age oftransplant (o), the average plaque area at the aortic root was 7.2± 0.1x103!Jm2 

(n=8). (C) Plaque volume was analyzed starting at the aortic root and spanned a 320!Jm 
segment of the aorta distal to the root. Each point represents an individual animal, 
horizontal bars repn~sent mean values which were as follows: ApoE KO mice 
transplanted with B:\1 from SR-BI!apoE double KO donors 1.8± 0.3x107 !Jm3 (n=9) or 
apoE single KO donors 1.9± 0.3x107 !Jm3 (n=13). P value= 0.69. Plaque volume of 
apoE KO mice at transplant age (o) was 2.1 ± 0.3x106!Jm3 (n=7). 
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Previously, atherosclerotic plaque was measured in the aorta of a similar set of 

transplanted apoE KO mice fed a high fat diet for 12 weeks. The absence ofSR-BI in 

bone marrow derived cells resulted in a statistically significant increases in the amount of 

atherosclerotic plaque in the descending aorta (ratio of area of lipid-rich Sudan IV stained 

plaque to the total area of the aorta and ratio of area of plaque in abdominal aorta to total 

area of the abdominal aorta for each mouse (unpublished results [201]). There were no 

statistically significant differences in cross-sectional area of plaque in the aortic sinuses 

of mice fed a high fat diet for 12 weeks (unpublished results [201]) which is consistent 

with the results desc:ribed in this study in transplanted apoE KO mice fed a high fat diet 

for four weeks. These observations, together with the findings reported by others [83], 

suggest that the elimination ofSR-BI from bone marrow derived cells increases early 

atherosclerotic plaque development in apoE KO mice but does not affect the size or 

morphology of more advanced plaques such as those closer to the aortic root in high fat 

diet fed apoE KO mice. This appears to be different from results in high fat diet fed 

LDLR KO mice suggesting that the elimination ofSR-BI in bone marrow derived cells 

increased the development of more advanced atherosclerotic plaque [78,82], but 

decreased the development of very early stage atherosclerotic plaque [82]. The reasons 

for these differences are not presently clear. 
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3.2 Effect of lipoproteins on SR-BI protein levels in macrophages 

SR-BI is expressed in macrophage cell lines and atherosclerotic plaques [55-57]. 

Figure 7 A shows the results of an immunoblot for SR-BI in lysates from mouse 

peritoneal macrophages (MPM) isolated from SR-BI+/+ or control SR-BI-/- mice. Cells 

were cultured for 16h in the presence of lipoprotein deficient serum. SR-BI was detected 

as an 82kDa band in the lysate from SR-BI+/+ cells, and no SR-BI immunoreactive band 

was detected in the lysate ofSR-BI -/-cells. To control for equal loading ~:>-COP was 

included. Therefore, SR-BI is also expressed in elicited peritoneal macrophages (Figure 

7A). 

There has been conflicting data regarding the regulation ofSR-BI expression by 

modified lipoproteins [56,89]. Oxidized and acetylated LDL have been shown to 

increase SR-BI transcript and protein levels in human macrophages [56]. A recent study 

demonstrated SR-Bl expression is elevated in human macrophage foam cells in response 

to modified lipoproteins [91]. Conversely, it has been demonstrated that SR-BI 

expression in Raw 264.7 cells (murine macrophages) is decreased upon treatment with 

oxidized LDL [89]. It was also determined that SR-BI expression is down-regulated in 

the presence of sterols such 25-hydroxy-cholesterol and acetylated LDL [90]. SR-BI 

appears to be a target gene of the SREBP transcription factor family [88,202], although 

there are conflicting reports [90]. To test whether native lipoproteins affected SR-BI 

protein levels in maerophages, we cultured elicited MPM and Raw 264.7 cells in the 

presence of lipoprotein deficient newborn calf serum (NCLPDS) without or with 

increasing amounts of purified human LDL or HDL for 16 hours. Murine peritoneal 
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macrophages and macrophage-like Raw 264.7 cells are normally cultured in media 

containing 10% FBS. SR-BI protein levels were compared in both MPM and Raw 264.7 

cells cultured in media containing either 10% FBS (containing lipoproteins) or 3% 

NCLPDS (lacking lipoproteins) (Figure 7B). Cells cultured in 3% NCLPDS (Lanes 2 

and 4) exhibited higher SR-BI protein levels than cells cultured in 10% FBS (Lanes 1 and 

3). In contrast, equal protein levels were detected for CD36 (middle panels) and for 8-

COP (bottom panels). The expression ofSR-BI increased when MPM and Raw 264.7 

cells were cultured without lipoproteins (Figure 7B). Raw 264.7 cells were cultured in 

media lacking serum (Figure 7C, Lane 1) or containing lipoprotein deficient serum in the 

absence (Lane 2) or presence of increasing concentrations of either LDL (Lanes 3-6) or 

HD L (Lanes 7-1 0). The levels of SR-BI protein were highest when Raw 264.7 cells were 

cultured in the absence of serum (Lane 1 ). SR-BI protein levels decreased in a dose­

dependent manner in response to increasing concentrations ofLDL (Lanes 3-6) and HDL 

(Lanes 7-10). This is consistent with the notion that lipoprotein-delivered cholesterol can 

down-regulate SR-BI expression. SR-BI expression levels appeared to decrease more in 

the presence ofLDL compared to HDL at the same concentration. 
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Figure 7. SR-BI fxpression in macrophages is regulated by lipoproteins. (A) 
Elicited MPM were collected from wild-type and SR-BI KO mice and cultured for 16h in 
DMEM with 3% NCLPDS (lipoprotein deficient serum). This immunoblot shows SR-BI 
protein expression in murine wild-type MPM, and the lack ofSR-BI protein expression in 
SR-BI KO MPM. Experiments were run in duplicate. (B) Elicited MPM were collected 
from wild-type mice (left panel) and Raw 264.7 cells (right panel) were cultured for 16h 
in 10%FBS (containing lipoproteins) or 3% NCLPDS (lacking lipoproteins). This 
immunoblot demonstrates that SR-BI expression is up regulated in the absence of 
lipoproteins in MPM (comparing Lanes 1 and 2) and Raw 264.7 cells (comparing Lanes 
3-4). Images are rt::presentative of either MPM were run in duplicate or Raw 264.7 cells 
run in triplicate. (C) Raw 264.7 cells were incubated for 16h without serum, in 
3%NCLPDS, or in the presence of3% NCLPDS with 10, 25, 50, 100 f.lg/ml LDL or 
HDL. This immunoblot indicates decreased SR-BI expression in response to LDL 
(Lanes 3-6) and HDL (Lanes 7-10). The levels ofSR-BI protein were highest when Raw 
264.7 cells were cultured in the absence of serum (Lane 1). Experiment was run in 
triplicate. Equal amounts of protein were run on SDS-PAGE, blotted, probed with 
antibodies for SR-BI, CD36 and a-COP (loading control), and detected by 
chemiluminescence as described (see Methods 2.2.16 and 2.2.17). 
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3.3 Cholesterol efflux from MPM from wild-type and SR-BI KO mice and SR­
BI expression during the time-course of efflux 

It has been hypothesized that SR-BI expression in peripheral tissues, such as 

macrophages in the artery wall, may play a role in cholesterol efflux 

[55,82,83,94,203,204]. However, the evidence regarding macrophage SR-BI and 

cholesterol efflux is conflicting. As described earlier, overexpression ofSR-BI in a 

variety of cell lines leads to increased levels of efflux of3H cholesterol tracer to HDL and 

phospholipid vesic:,es [55,94]. In contrast, both our lab and others have reported that 

efflux of 3H cholesterol tracer to HDL acceptors is either unaffected [78,83,194] or only 

very slightly [82,89] reduced in macrophages from SR-BI KO mice compared to those 

from wild-type mice with intact SR-BI expression. Similar results have been reported for 

endothelial cells treated with the SR-BI inhibitor BLT-1 [205]. In contrast, BLT-1 

appears to partially reduce cholesterol efflux from hepatocytes to HDL [205]. It is 

interesting that SR-BI expression in endothelial cells has been reported to be reduced by 

increased cellular c1olesterol/oxysterols, whereas hepatocyte SR-BI appears to be 

insensitive to cellular sterol levels [205]. This, together with our results and those of 

others [90] raises the possibility that the finding that HDL-dependent cholesterol efflux is 

not substantially reduced in SR-BI KO macrophages may be because SR-BI expression is 

reduced in the wild-type control cells in the presence ofHDL over the course of the 

efflux assay. The following experiment was designed to test this possibility. 

Figure SA shows preliminary data reproducing the experiment carried out by 

Scott Covey [194] and reported previously by our lab [78]. Elicited MPM from SR-BI 

KO and wild-type mice were loaded in situ with [1,2-3H] cholesterol as described in 
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Methods 2.2.19. Three hours later MPM were harvested and cultured overnight in 

lipoprotein deficient media. Cholesterol efflux was initiated by the addition of media 

with 25J..Lg/mL HDL (closed symbols) or without HDL (open symbols) and the level of 

efflux was determined as the amount of radioactivity in the media at each time point 

relative to the total amount associated with cells. In each case, cholesterol efflux was 

higher in the presence ofHDL (compare filled with open symbols) as expected. 

Although there was substantial sample-to-sample variation (compare SR-BI+/+ #1 with 

SR-BI+/+ #2, which refer to cells from two independent mice), this preliminary data 

indicate no apparert decrease in cholesterol efflux from SR-BI-/- cells (circles 

representing cells f:om one mouse). This is consistent with previous findings reported by 

our lab [78,194] and others [83]. 

To directly test whether the level of SR-BI expression decreased in cells from 

wild-type mice in the presence ofHDL over the course ofthe efflux assay, we carried out 

a "mock" efflux experiment. Cells were treated as above (without 3H cholesterol 

loading) and harvested at different points in the efflux assay (see Figure 8B, left panel). 

Lysates were prepa:ed and SR-BI levels were analyzed by SDS-PAGE and 

immunoblotting. This analysis revealed that SR-BI levels were similar at the start of the 

efflux period and 4 and 8 hours after the incubation with HDL during the efflux period 

(Figure 8B, right panel). Note that for this assay, lOOJ.lg/mL ofHDL was used rather 

than the 25J.lg/mL used in the efflux assay presented in Figure 8A. Furthermore, SR-BI 

levels in the celllysates collected in the experiment shown in Figure 8A were also 

analyzed and compared to those from a parallel dish of SR-BI+/+ cells collected at time 
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0. Consistent with the data in Figure 8B, that analysis showed no changes in the levels of 

SR-BI from SR-BI+/+ cells over the course of the efflux assay, and no SR-BI was 

detected in the lysate from SR-BI-/- cells (data not shown). 
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Figure 8. Effect of a lack of SR-BI on HDL-dependent cholesterol efflux. (A) MPM 
were elicited with thioglycollate in one SR-BI-/- (circles) and two control wild-type mice 
(squares and triangles) (see Methods 2.2.18). Cells were labeled in situ with eH]­
cholesterol by direct injection into the peritoneal cavity (see Methods 2.2.19). Cells were 
then harvested and cultured overnight in 35mm dishes (5x105 cells/cm2)in DMEM 
containing 3% NCLPDS. Efflux assays were initiated by replacement of the media with 
DMEM containing 0.2% BSA with (closed symbols) or without (open symbols) 
25flg/mL HDL as a cholesterol acceptor. The amount ofeH]-cholesterol in the media at 
different time points was detected by scintillation counting and is plotted as relative to the 
total amount of cellular eH]-cholesterol. Shown are efflux time courses with or without 
HDL from parallel dishes of cells from each of three individual mice (n=1 with and 1 
without HDL, per mouse). (B) In a separate experiment, MPM were isolated from wild­
type mice and processed as for a cholesterol efflux experiment. Cells were lysed either 
before or at t=O, 4, or 8h after the addition of 1 OOflg/mL HDL (left panel). Equal 
amounts of protein (100flg) were analyzed by SDS-PAGE and immunoblotted (right 
panel) using antibodies for either SR-BI (top) orB-actin (bottom, loading control) and 
detected by chemiluminescence as described (see Methods 2.2.16 and 2.2.17). 
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One potenti 11 explanation for our finding that cholesterol efflux was not 

decreased in SR-BI KO compared to wild-type MPM may be the presence of substantial 

amounts of free apoA-1 in the preparation ofHDL used as a cholesterol acceptor. ApoA-

1 is the major apolipoprotein associated with HDL [9], and free apoA-I is also an efficient 

acceptor of cholesterol efflux mediated by ABCAl [99]. To test this possibility, we 

analyzed our HDL preparation for the presence of free apoA-1. This was done by 

separating HDL using size exclusion chromatography. HDL is between 175-360kDa 

[206] and typically elutes between fractions 26-38 [78]. Lipid free apoA-I is 30kDa and 

is expected to elute between fractions 42-46 (see protein standards profile, Figure 9B). 

As expected, the m<~ority of apoA-I was associated with cholesterol and eluted in 

fractions 27-39 con:;istent with it being associated with spherical HDL particles. Only 

minor amounts of apoA-I were detected in FPLC fractions corresponding to smaller sized 

particles including lipid-free apoA-I (Figure 9A). Therefore it is not likely that efflux of 

cholesterol measured in Figure 8A and in previous data generated by our lab [194] was 

the result of efflux t::l lipid-free apoA-1. Instead, it appears that SR-BI is not required for 

HDL dependent cholesterol efflux. 
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Figure 9. Assessment of HDL preparation for free apoA-1. (A) HDL prepared from 
human plasma (800jlg) was passed through a gel filtration column to analyze HDL for 
the presence of free apoA-1. Aliquots of fractions associated with HDL sized particles 
and subsequent fractions that elute smaller particles (i.e. free apoA-I) were separated via 
SDS-PAGE, blotted, probed with an antibody for apoA-I, and detected by 
chemiluminescence. Total cholesterol from each fraction was assayed. (B) Protein 
standards (BioRad Gel Filtration Standards; the proteins are thyroglobulin [670kDa], 
gamma globulin [158kDa], chicken ovalbumin [44kDa], equine myoglobin [17kDa], and 
vitamin B 12 [1.3kDa]) were run through an FPLC column. Based on the volume of eluent 
associated with each standard, we deduced where HDL sized particles (175-360kDa) and 
free apoA-I (30kDa) would be expected to elute. 

57 



M.Sc. Thesis- V. Tedesco McMaster- Biochemistry and Biomedical Sciences 

3.4 Affect of glm osamine treatment on macrophage SR-BI expression 

Atherosclerosis is a frequent complication of diabetes [ 4]. One of the effects of 

elevated levels of glucose in diabetes is a concomitant increase in intracellular 

glucosamine levels resulting from increased flux of glucose through the hexosamine 

pathway [122]. Glucosamine exerts a number of effects on cells including interference 

with normal protein N-linked glycosylation, induction ofER stress (possibly as a 

consequence of int1~rference with normal protein N-linked glycosylation), and increased 

protein 0-linked gl ycosylation. 

Many proteins require N-linked glycans for folding and transport out of the ER, 

although glycosylation may not be necessary for biological function [133]. There are 

eleven sites for N-glycosylation on SR-BI; two of which affect SR-BI expression and 

function and also appear to have an important role in protein folding within the ER and/or 

intracellular transpiJrt [ 136]. 

There appears to be a link between ER stress and the development of 

atherosclerosis. El~vated plasma concentrations of total homocysteine, a condition that 

leads to ER stress, ·las been linked with atherosclerotic plaque development in apoE KO 

(diet and/or genetically induced hyperhomocysteinemia) [169,207-210]. Additionally, a 

report has indicated that glucosamine may be linked to increased atherosclerosis 

associated with dia::>etes mellitus through the induction ofER stress [170]. 

We tested the consequences of glucosamine or DTT on SR-BI expression levels 

in macrophage-like Raw 264.7 cells. Both in the presence (Figure lOA) and absence of 

lipoproteins (Figure 1 OB), treatment with 5mM glucosamine resulted in apparent 
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decreases in SR-BI expression after 8 hours (Figure 10, panels A and B, Lane 2) and 16 

hours (Figure 10, panels A and B, Lane 6). Mannitol (5mM) was included as a control 

for hyperosmotic stress [211] and resulted in an apparent slight increase in SR-BI 

expression (Figure lOA, Lanes 3 and 7). In the presence ofDTT (2.5mM), a reducing 

agent that is known to induce ER stress [212], SR-BI levels also tended to increase, 

although the diffennces did not reach statistical significance (due in part to large sample 

to sample variation I (Figure 1 OB, Lane 8). 

To determire if this might be due to altered glycosylation of SR-BI Raw 264.7 

cells were treated without or with 5mM glucosamine, 5mM mannitol, or 2.5mM DTT (as 

described above), lysed, and then treated without or with N-glycanase for 16hours (Figure 

1 OC). Controllysa1es (Figure 1 OC, Lanes 5-8) exhibited similar changes in the level of 

the 82kDa band corresponding to the mature glycosylated SR-BI [51] (as in Figure 10, 

panels A and B). Additionally, (as shown in Lanes 5-8), a significant amount ofSR-BI 

protein migrates wirh an apparent molecular weight of 55kDa, consistent with a poorly 

glycosylated form of the protein. Upon treatment with N-glycanase, the 82kDa band 

disappeared. There were no apparent differences in the amount of the non-glycosylated 

55kDa SR-BI protein (Figure IOC, Lanes 1-4) from cells treated with glucosamine, 

mannitol, or DTT. This suggests that changes in the levels of the 82kDa band most likely 

reflected altered glycosylation of SR-BI rather than altered protein levels. 
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Figure 10. Glucosamine treatment in Raw 264.7 cells. Raw 264.7 cells cultured for 8 
or 16h in the presence ofFBS (A) or NCLPDS (B) were treated with 5mM glucosamine, 
mannitol, or 2.5mM DTT, as indicated. Celllysates (100).lg) were incubated without or 
with N-glycosidase F for 16h at 37°C to remove N-linked glycans (C). Celllysates 
(100).lg) were run on SDS-PAGE, blotted, probed with antibodies for SR-BI and ~-actin 
(loading control), and detected by chemiluminescence (see Methods 2.2.16 and 2.2.17). 
The net intensity of each band was quantified using Kodak ID software. The ratio of SR­
BI to ~-actin was determined, and values were normalized to 16h NCLPDS treatment. 
The error bars represent standard deviation (n=2, differences did not reach statistical 
significance when comparing glucosamine treatment to untreated and mannitol treated 
cells, P>0.05). 
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To determine ifER stress was induced by these treatments, we probed expression 

of GRP78 using an antibody against the KDEL peptide. GRP78 contains the KDEL ER 

retention sequence, is up-regulated in response to ER stress, and is the major 78kDa 

protein detected using the anti-KDEL antibody. GRP78 expression increased in Raw 

264.7 cells treated with glucosamine (Figure 11 , Lane 2 compared to 1), mannitol (Lane 

2 compared to 3) or DTT (Lane 4 compared to 2 and 1). This suggests that ER stress was 

induced in each case. 

16h: 

GRP94 94kDa 
KDEL 

78kDa 

Figure 11. Immunoblot for KDEL in glucosamine treated Raw 264.7 cells. Raw 
264.7 cells were incubated with NCLPDS and glucosamine, mannitol, or DTT for 
16hours. Celllysates were prepared and equal amounts of protein (1 OOflg) were run on 
SDS-PAGE, blotted, probed with antibodies for KDEL and P-actin (loading control), and 
detected by chemiluminescence (see Methods 2.2.16 and 2.2.17). A representative 
experiment is shown (n=3). 
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3.5 Affect of glucosamine treatment on SR-BI expression in ldlA[mSR-BI] cells 

We also test,~d the effects of glucosamine on levels ofSR-BI in CHO-derived 

ldlA7 that stably ov~~rexpress murine SR-BI (mSR-BI) (Figure 12). When cells were 

cultured in either lipoprotein deficient or lipoprotein containing serum, glucosamine 

treatment for 16 hours resulted in decreased levels and altered migration of SR-BI 

(Figure 12A, Lanes 3-4 compared to Lanes 1-2 and 5-8, and panel BLane 5 compared to 

4 and 6). SR-BI migrated as a doublet with increased mobility in lysates from 

glucosamine-treated ldlA[mSR-BI] cells. Quantitation ofbands from a number of 

experiments (n=3) suggested that mannitol or DTT treatment resulted in less substantial 

decreases in SR-BI with no changes in protein mobility (Figure 12A, Lanes 5-8, and 12B, 

Lane 6). 

As described for Raw 264.7 cells, we compared the levels of the mature 82kDa 

and 55kDa precursor proteins in lysates treated without or with N-glycanase. Unlike Raw 

264.7 cells, ldlA[mSR-BI] cells contained no 55kDa band. Upon treatment with N­

g1ycanase, lower mc,bility SR-BI bands disappeared and were replaced by the 55kDa 

non-glycosylated fo1m ofSR-BI. Consistent with Raw 264.7 cells, the levels ofthe 

55kDa band in ldlAimSR-BI] cells were the same in control, glucosamine and mannitol 

treated cells. Thus it appears that glucosamine treatment results in altered glycosylation 

of SR-BI. 
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Figure 12. Glucosamine treatment in ldlA[mSR-BI] cells. (A) ldlA[mSR-BI] cells 
were cultured for16h in the presence of 10% FBS or 3% NCLPDS and were treated with 
5mM glucosamine, mannitol, or 2.5mM DTT, as indicated. Celllysates were prepared 
and equal amounts ,Jf protein (25 Jlg) were run on SDS-PAGE, blotted, probed with 
antibodies for SR-EI and ~-actin (loading control), and detected by chemiluminescence. 
The net intensity of each band was quantified using Kodak ID software. The ratio ofSR­
BI to ~-actin was determined, and values were normalized to 16h NCLPDS treatment. 
The error bars repn:sent SEM (n=3, comparing Lanes 2 and 4, P=0.003). A 
representative expe:iment is shown. (B) ldlA[mSR-BI] cells were cultured for16h in the 
presence of 5mM glucosamine, mannitol, or 2.5mM DTT and celllysates (50J.tg) were 
incubated without cr with N-glycosidase F for 16h at 37°C to remove N-linked glycans. 
Celllysates (50J.!g) were run on SDS-PAGE, blotted, probed as described in (A). 
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We tested the involvement of newly synthesized proteins in the altered expression 

of SR-BI associated with glucosamine treatnient. We incubated ldlA[ mSR -BI] cells with 

cycloheximide (70~Lm), a general inhibitor of protein synthesis, for one hour, at which 

time glucosamine (:5mM) or mannitol (5mM) was added to the cycloheximide treated 

cells as indicated. ~)R-BI levels were tested at different times for up to 16 hours after the 

addition of glucosamine or mannitol (Figure 13B-D). Treatment of cells with 

glucosamine did not affect the migration of SR-BI after 4h but did after 8 and 16h (Figure 

13, panel A). Treatment with cycloheximide alone resulted in a very gradual decline in 

the levels ofSR-BI over 16h (Figure13, panel Band E) consistent with the reported half­

life of the protein [:;1]. No effect on the time course was observed when either 

glucosamine or mannitol were included (Figure 13, panels C, D, and E). This suggests 

that the altered glycosylation induced by glucosamine requires new protein synthesis. 

This may reflect co-translational glycosylation of newly synthesized SR-BI. It is 

surprising, however, that when protein synthesis was not blocked and cells were treated 

with glucosamine for as short as 8h there was little or no normally glycosylated 82kDa 

SR-BI detected, even though substantial amounts were present after 16h in the presence 

of cycloheximide. This suggests the possibility that in addition to altering the 

glycosylation of newly synthesized SR-BI, glucosamine may alter either the 

glycosylation or stability of mature previously synthesized SR-BI. Further experiments 

would be required to test this. 
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Figure 13. Test for the involvement of new protein synthesis in decreased SR-BI 
expression associated with glucosamine treatment in ldiA[mSR-BI] cells. ldlA[mSR­
BI] cells were pretreated with cycloheximide, as indicated for one hour followed by 
treatment with (A) glucosamine (B) cycloheximide only (C) cycloheximide and 
glucosamine or (D) cycloheximide and mannitol. Cells lysates were prepared at each 
time point (0-16h) and equal amounts of protein (25J.!g) were run on SDS-PAGE, blotted, 
probed with antibodies for SR-BI and ~-actin (loading control). Representative 
experiment shown (n=3). (E) The net intensity of each band was quantified using Kodak 
ID software. The ratio ofSR-BI to ~-actin was determined, and values were normalized 
to Oh cycloheximide (after lh pretreatment). Averages are shown (n=3 , P>0.05). 
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4. Discussion 

4.1 Consequence!: of the elimination of SR-BI in bone marrow derived cells in diet­
induced apoE KO mice 

Hepatic SR-BI expression has a profound effect on plasma HDL levels, influences 

plasma HDL subpo}ulations, and protects against atherosclerosis in mouse models by 

promoting hepatic clearance ofHDL derived cholesterol [14,69,70,73-76]. SR-BI binds 

a wide variety of li§;ands [ 4 7 ,52,60-64,66-68] and is expressed in cell types relevant to 

atherosclerotic plaq lle development, such as macro phages, endothelial cells, and smooth 

muscle cells [55-591. As macrophages are the predominant cell type associated with 

atherosclerotic plaqlle, we and others have asked whether eliminating SR-BI in bone 

marrow derived cells such as macrophages also influenced atherosclerotic plaque 

development. In this study we have examined the effect of the bone marrow specific 

elimination ofSR-EI at advanced stages of atherosclerotic development on an apoE KO 

background. In doing so, we have expanded unpublished data previously generated in 

our lab by Ali Rizvi [201] and our published data [78]. 

In this study we demonstrated no significant differences in plasma lipoprotein 

profiles nor total cholesterol levels due to the elimination ofSR-BI in bone marrow 

derived cells when transplanted apoE KO mice were fed a high fat diet for four or twelve 

weeks. These findings agree with our lab's previous work and the findings of others 

where SR-BI was eLminated from bone marrow derived cells in LDLR KO mice fed a 

high fat diet [78,82], chow fed apoE KO mice [83], and wild-type mice fed a high 

cholesterol diet cont:tining cholate [82]. This suggests that SR-BI in bone marrow 
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derived cells does not appear to play a major role in regulating plasma lipoprotein 

cholesterol levels. [n contrast, hepatic SR-BI does play an important role in lipoprotein 

and cholesterol metabolism [14,69,70,73,76]. 

Previously our lab reported that the selective elimination ofSR-BI in bone 

marrow derived cells in LDL receptor KO mice fed a high fat diet for four months leads 

to increased atherm clerotic lesion development in the aortic arch [78]. It has also been 

shown that bone marrow specific elimination ofSR-BI leads to increased atherosclerosis 

in the aortic sinus in 18 week old apoE KO mice when the mice were fed a normal chow 

diet [83]. Taken to;~ether, this data indicated that the presence ofSR-BI in bone marrow 

derived cells protected against atherosclerosis. Others have reported that the selective 

elimination ofSR-HI in bone marrow derived cells in LDLR KO mice led to reduced 

atherosclerosis when mice were fed a high fat diet for four weeks [82], but increased 

atherosclerosis when mice were fed a high fat diet for up to 12 weeks [78,82]. 

Furthermore, the elimination ofSR-BI from bone marrow derived cells in wild-type mice 

fed a high cholesterol diet containing cholate for eight weeks led to reduced 

atherosclerosis [82]. This suggests that bone marrow derived SR-BI may have a complex 

effect on atherosclerosis. 

In contrast, we have shown in this study that the elimination of SR-BI in bone 

marrow derived cells leads to no statistically significant difference in cross-sectional area 

of atherosclerotic plaques in the aortic sinus in apoE KO mice when the mice were fed a 

high fat diet for four weeks. Ali Rizvi from our lab has obtained similar results in apoE 

KO mice fed a high fat diet for 12 weeks [201]. However, he did find a statistically 
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significant increase in the distribution of atherosclerosis descending aorta (unpublished 

data) [201]. Notably, in this study we found a trend towards increased lesion size in apoE 

KO mice transplanted with SR-BI/apoE double KO bone marrow, as lesion size 

decreases. Although the differences did not reach statistical significance, this trend may 

be consistent with the increased plaque distribution in more distal portions of the aorta. 

This suggests the possibility that presence ofSR-BI might influence less advanced, 

smaller-sized plaque. 

It remains to be determined if plaque distribution is effected due to a lack ofSR­

BI in bone marrow derived cells in apoE KO mice fed a high fat diet for four weeks. We 

predict that the pre~ence ofSR-BI in bone marrow derived cells would lead to 

atheroprotection ba3ed on the trend observed in this study and previously published 

reports. We expect that plaque development in the aortic arch will be minimal based on 

the age of the mice and length of atherosclerotic plaque induction by feeding a high fat 

diet. Taken togetht:r this data clearly illustrates that the stage of plaque formation, the 

manner and time-course of atherosclerotic induction, and the experimental model used 

are important variables in assessing the development of atherosclerosis in transplanted 

m1ce. 

Interestingly, apoE KO mice transplanted with SR-BI/apoE double KO bone 

marrow and fed a h[gh fat diet for four weeks showed statistically significant 

macroscopic chang1~s of intact animal hearts based on heart: body weight ratios indicating 

cardiomegaly. Altl:ough this correlates with the phenotype ofSR-BI/apoE double KO 

mice which includes cardiomegaly, and multiple myocardial infarct resulting in 
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premature death, the cardiomegaly reported in the mice transplanted with SR-BI!apoE 

double KO bone m1rrow mice was less pronounced. Biological significance in the 

transplanted mice has not been determined, and this observation would have to be 

supported by evaluation of cardiac function. Magnetic resonance imaging (MRI) would 

accurately determire murine myocardial mass, assess heart damage and measure blood 

flow [ 195-197] and echocardiograms would measure pumping abilities and to measure 

the size of the chambers of the heart, including the dimension or volume of the cavity and 

the thickness of the walls [199]. SR-BI!apoE double KO mice also develop extensive 

cardiac fibrosis [80l We therefore examined heart sections for fibrosis in transplanted 

mice induced to deYelop atherosclerosis by feeding a high fat diet for four or twelve 

weeks. There was no observable fibrosis in any sections (data not shown). It is possible 

that the cardiomegaly we observed may indicate early stages of heart disease but the 

disease has not pro~:ressed to myocardial infarction and fibrosis. More research is 

required to determine ifbone marrow derived SR-BI influences coronary heart disease in 

apoE KO mice. 

The bone marrow transplantation technique allows for a quick, straightforward 

means to genetically eliminate SR-BI from bone marrow derived cells, yet it has 

limitations. Recipient mice were transplanted with crude bone marrow which consists of 

pluripotent hematopoietic stem cells surrounded by stromal cells and multipotent 

mesenchymal stem cells [213]. SR-BI is expressed in cell types that arise from the bone 

marrow including macrophages [55-57], yet circulating endothelial cell precursors [214] 

and cardiomyocytes [47] also originate in the bone marrow. It is not clear whether any 
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influence ofSR-BI in vivo are the direct result ofmacrophages, macrophage foam cells, 

or another hematopoietic derivative such as endothelial cells. 

4.2 Implications of dysregulated SR-BI expression by lipoprotein-derived 
cholesterol 

SR-BI expn:ssion in macrophages is down regulated by oxidized LDL [89], 

acetylated LDL and 25-hydroxy-cholesterol [90]. In this study we report that murine SR-

BI expression in mc.crophages (elicited peritoneal macrophages and Raw 264.7 cells) is 

down-regulated in response to cholesterol associated with native lipoproteins. This may 

affect SR-BI mediated cholesterol exchange between cells and lipoproteins. 

Macrophages are the principle cell type in both early and advanced atherosclerotic 

plaque [26], and these phagocytic cells take up large quantities of lipoproteins without 

negative feedback control [24]. It is conceivable that in advanced plaques, which 

accumulate increasing quantities oflipoprotein derived cholesterol and accumulate 

cholesterol in lipid droplets, that macrophage SR-BI in vivo is down-regulated in a 

similar manner to what we report in this study in culture. This supports the 

atherosclerotic anal;rsis which indicates no statistically significant changes in the sizes of 

advanced plaques in the aortic sinus when SR-BI is eliminated from bone marrow 

derived cells when cpoE KO mice are fed a high fat diet. It remains to be determined if 

the levels of SR-BI ~~xpression in macrophages differ in early versus advanced plaques 

and immunohistochemistry experiments would be required to assess this. 
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The overexpression of murine SR-BI in cell culture resulted in increased HDL 

cholesterol uptake and increased cellular cholesterol content [52]. Nonetheless, studies 

using cells overexp~essing SR-BI demonstrate that SR-BI can mediate the efflux of 

unesterified cholesterol tracer to HDL and phospholipid acceptors [55,96], and the net 

flux ofHDL cholesterol/lipids is dependent on the cholesterol concentration gradient 

[52,96]. Cholesteml efflux is a popular hypothesis explaining atheroprotection associated 

with SR-BI, yet in macrophages definitive biological data supporting this is lacking. In 

primary macrophages two reports cite no significant decreases in efflux due to the genetic 

elimination of SR-BI [78,83], and another report cited no significant cholesterol efflux 

due to SR-BI or ABCAl in J774 macrophage-like cells [96]. On the other hand, two 

other studies show minor decreases in cholesterol efflux to HDL when SR-BI was 

eliminated from primary macrophages [82,97]. Work reported by our lab and this study 

demonstrate no decrease in cholesterol efflux due to the inactivation of the SR-BI gene 

[78]. We have shown that macrophage SR-BI is expressed throughout the conditions of 

the efflux experiment, and we have demonstrated that the quantity of free apoA-1, an 

established cholesterol acceptor for ABCAl mediated efflux, is minor in our HDL 

preparation. Our laboratory's data and the supporting evidence presented in this study 

indicate no cholesterol efflux due to the presence ofSR-BI in macrophages. 
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4.3 Implications of dysregulated SR-BI expression by glucosamine 

High blood glucose causes metabolic abnormalities that predispose diabetics to 

atherosclerosis [ 4], and elevated levels of glucose promotes increased glucose uptake and 

leads to increased levels of intracellular glucosamine [122]. Increased glucosamine levels 

have been shown to interfere with protein glycosylation [148] and can lead to ER stress 

[215]. It has recently been shown that ER stress correlates with atherogenic lesion 

development in hyr erhomocyteinemic apoE knockout mice [ 169] and that ER stress may 

be linked to accelented atherosclerosis associated with diabetes mellitus [170]. 

It has also b :;!en reported that the induction of ER stress in cells leads to the 

alteration of SREBP independent of cellular sterol levels [ 168]. Our finding that SR-BI 

levels are negatively regulated by lipoproteins and those of others demonstrating negative 

regulation by sterol:; [90] and/or transcription activation of the SR-BI promoter by 

SREBP [87,88], suggest the possibility that ER stress may affect SR-BI levels in cells. 

We tested this by culturing cells in the presence ofDTT or glucosamine (or mannitol) to 

induce ER stress. Vv'hile treatment with DTT tended to result in either unchanged or 

slightly increased levels ofSR-BI (as did mannitol), exposure to glucosamine tended to 

result in reduced leYels of the mature 82kDa protein in both Raw 264.7 cells and 

ldlA[mSR-BI] cells This appeared to be due to altered glycosylation ofSR-BI rather 

than decreased polypeptide levels. Interestingly, in the absence of protein synthesis SR­

BI appeared to be rc:ther stable with substantial amounts of mature 82kDa SR-BI 

remaining 1 7 hours after the addition of cycloheximide. In contrast, in the presence of 
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protein synthesis, glucosamine appeared to result in the replacement of an 82kDa band 

with one of altered mobility probably due to altered glycosylation. 

It remains to be determined ifSR-BI expression in vivo is effected by agents that 

induce ER stress. Hyperhomocysteinemia has been linked to ER stress in apoE KO mice 

[169]. One approach would be to assess the expression ofSR-BI in atherosclerotic 

lesions of apoE KO mice made hyperhomocysteinemic by feeding a high methionine diet 

[207,209]. Furtherm.ore, SR-BI expression could be assessed in atherosclerotic lesions of 

streptozoticin-induced hyperglycemic apoE KO mice. Effects on SR-BI function by 

glucosamine and other ER stress agents have yet to be explored. 
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5. Conclusion 

In this study we tested the effect of bone marrow specific elimination of SR-BI in 

apoE KO mice induced to develop advanced atherosclerosis by feeding a high fat diet for 

four weeks. We report statistically significant cardiomegaly when SR-BVapoE double 

KO bone marrow was transplanted into apoE KO mice, yet the influence of the 

elimination of bone marrow specific SR-BI in apoE KO mice on coronary heart disease 

has not been explor1~d. We demonstrate that the elimination ofbone marrow specific SR­

BI in apoE KO mice leads to no statistically significant changes in cross-sectional 

atherosclerotic plaq11e area or plaque volume in the aortic sinus when the transplanted 

mice were fed a hig:1 fat diet for four weeks. We observed a trend towards increased 

lesion size in apoE KO mice transplanted with SR-BI!apoE double KO bone marrow, as 

lesion size decrease:; yet this did not reach statistical significance. 

We demonstrate that SR-BI expression in macrophages is decreased in response 

to native lipoproteins (LDL and HDL). It is unclear whether macrophage SR-BI 

expression is dysregulated in vivo. Based on these findings, it is conceivable that the 

expression of macrophage SR-BI in atherosclerotic plaques may not be static. 

Treatment w[th glucosamine leads to a slight decrease in SR-BI expression in 

Raw 264.7 cells and in ldlA[mSR-BI] cells. In Raw cells it is potentially a result ofER 

stress. Glucosamine treatment appears to result in altered glycosylation of SR-BI in Raw 

264.7 cells and in ldA[mSR-BI] cells, and may require new protein synthesis. It is 

possible that decreased SR-BI expression is associated with diminished function ofSR­

BI, although this has not been explored. 
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Taken togeth.er, these in vitro studies highlight conditions that are relevant to an in 

vivo model of atherJsclerosis, such as accumulated cholesterol in the artery wall or 

elevated plasma glucose levels that lead to increased intracellular glucosamine and ER 

stress. We speculate that conditions that lead to decreased SR-BI expression in 

macrophages may i1fluence the progression of the advanced disease state in mice. 

This study £)cuses on SR-BI in mice and murine cell lines. The expression of 

CLA-1, the human :1omologue ofSR-BI, is also decreased by acetylated LDL and 25-

hydroxycholesterol [90]. It is unknown how glucosamine affects CLA-1. It appears that 

the expression of SR-BI may be down-regulated with glucosamine or in response 

lipoproteins. 
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