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ABSTRACT 

Entropy of mixing for random mass defects is 

examined and equations for the phonon contribution are 

developed. The Green's function method used gives the 

entropy change due to the phonons at all temperatures, 

but for experimental comparison the high temperature 

region is used. There simple formulae obtain, but the 

mass defect is not sufficient to account for the 

observed entropy changes. This suggests that further 

work is necessary. 
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INTRODUCTION 

The following report is set out in four sections. 

The first explores the mysteries of the entropy of mixing, 

which turns out to be the sum of many things 

This report deals only with the first two terms, the 

configuration entropy and the phonon entropy. It is also 

only a beginning and so the phonon entropy is treated as 

the result of a mass defect alone with no change in the 

force constants. The contribution due to a change in 

electronic configuration seems always to be argued away 

by pleading similarity to chemical species. The same will 

be done here. 

The second section deals with the assumptions for 

a model of a crystal containing impurities and painstakingly 

derives formulae for the phonon entropy from basic 

principles (essentially Newton's force law, periodicity, 

energy conservation and Boltzmann's principle). 

The third section tells the story of one student's 

battle with Fortran and the totally reduced Green's 

function that rose like a Pheonix from a generalized 

density of states. Armed with these functions the entropy 
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due to a low concentration of single mass defects could be 

found by intensive Riemann summing over frequency bins. 

The final section is a discussion of the results 

and a glimpse at some experimental data. The upshot of 

which is that for the copper-gold system, the mass change 

accounts for only one quarter of the observed entropy 

change. 

For the readers delectation, some listings of the 

programs used in the thermodynamic calculations are 

included at the end. 



CHAPTER I 

ON ENTROPY CHANGES DUE TO IMPURITIES 

If there are N atoms or molecules of a certain 

sort, in equilibrium, on replacing M of these with 

another sort, the new system will have different 

equilibrium thermal properties even if chemical 

reactions have not taken place. In particular, the 

number of states (0) accessible to the system will change, 

for a given set of external conditions (e.g., volume, 

temperature). The entropy (S), properly a pure number, 

is given by 

S - Rm.O 

For historic and philosophic reasons, it is usually given 

in units of Energy/°K and defined by 

S- k~O 

The units of k (Boltzmann's constant) stem from the 

historic relation 

ds = d'o 
T 

3 
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used to thermodynamically define entropy, and the 

unshakeable conviction that temperature is what is read 

from an ideal thermometer in °K1 • 

4 

Assuming that the molecules are tiny billiard 

balls, and the impurities have a different color~ then the 

change in entropy will be purely geometric in origin. In 

fact, for each state of the pure system, the introduction 

of impurities will break it up into a multiplicity of 

states arising from the physically different spatial 

arrangements. If this multiplicity is n•, then the total 

number of states accessible to the impure system is 

since for each state of the pure system, the impure system 

can occupy any element in its range (O'} of physically 

different atomic configurations. The configurational 

entropy change is defined by 

(2} 

Relating n• to N and M is a simple matter of combinatorics. 

We may consider N holes in space to be filled with (N-M) . 

red, and M blue balls. The N holes may be filled in Nl 

ways with N different colored balls. However, M of them 

have the same color and any of these M may be switched 
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among themselves in Ml waysi with no change in the physical 

consequences. So in the N! total, each physical state has 

been counted at least M! times too many. The same is true 

of the (N-M) red balls. Thus the multiplicity is 

n• = N! 
Ml (N-M) 1 

and (2) becomes 

ASCON = l.n (N 1) - Rln (M!) - Rln [ (N-M) ! } 

on invoking Stirling's approximation 

Rm (nl) ~ nR,nn - n 

and for n large, (3} becomes 

ASCON = NRinN- M~- (N-M)Rin(N-M) 

Then setting c -: , (4) can be written2 , after some 

algebra, as 

AS = [- (1-c)Rm(l-c) - cRinc]N CON 

(3) 

(4) 

(5) 

Picturing the differences between chemical species 

as purely one of quality and omitting precisely what might 
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be known - size, mass, and interaction; may seem 

unphysical. But it is precisely the physical assumption 

that the replacement atoms have the same degrees of freedom 

though physically different from the host atoms, that lies 

behind this geometric contribution to the entropy of 

mixing. Since it is common to any simple solid, liquid3 , or 

gas4 mixture, it may be regarded as a "first order" 

approximation. 

When the entropy of mixing is actually measured, 

the excess entropy is defined by 

This method of decomposition is suited to (and probably 

motivated by) phenomenological model building. Provided 

the entropy of mixing is experimentally well known, the 

(6} 

excess entropy can be honed down by expressing it in terms 

of atomic parameters, which hopefully can be independently 

measured. Thus, the concept of excess entropy appears as 

a part of the scaffolding, to be eliminated on completion 

of an adequate model. 



CHAPTER II 

THE ·MODEL 

2.1 A Perfect Host Crystal With Impurity Atoms Placed 
Randomly On Lattice Sites 

This ensures that host and impurity have the same 

spatial degrees of freedom and the configuration entropy 

can be applied as derived. Notice that if this assumption 

was not obeyed, then if the perfect host crystal had r 

atoms in each of the L unit cells (r•L = N) and the M 

impurity atoms could sit on any of p non-lattice sites in 

a unit cell, then there would be (N-M+pL) holes to be 

filled with atoms and the spatial entropy would be 

L\S = R,n [ (N-M+pL) ! ] 

M! (N-M) 1 (pL-M) ! 

Clearly, if neutron or X-ray studies were not 

available, these sort of gimmicks would be some of the 

first things tried in order to eliminate the excess 

entropy. This assumption also removes odd-ball chemical 

effects such as long range superstructures or short range 

clustering of impurities. That the impurities can be 

treated as chemically inert and homogeneous (adequately 

annealed) must be confirmed independently. 

8 



2.2 The Lattice Will Obey the Simple Harmonic 
Approximation 

Then the lattice will be effectively described 

by N point masses held together by Hookean springs5 • The 

atoms will be distinguished only by differing masses and 

force constants. Some of the excess entropy can be 

explained by the local resonances; which are, in effect, 

new states accessible to the impure system but not to the 

pure one. Flynn6 says that the excess entropy is not 

large when the impurity and host are similar chemically. 

Crudely speaking, changed force constants result from 

chemically dissimilar impurities, but dissimilar masses 

9 

yield only dynamic differences.· These dynamic differences 

although modified by force constant changes; are indeed 

significant for the entropy, provided the mass difference 

is adequate. 

Most of the action in this report occurs under 

this assumption, so this is an appropr~ate place to set up/// 

its machinery. With respect to an arbitrary origin, the/ 
.//. 

d · 1 f h th f th . 'th t f ·the ~sp acement o t e a. component o e K -a_QULO · 

unit cell, in the tth unit cell may be written as 

a. E (1 1 21 3) 

K E (1 1 • • o 1 r) 

t e (1 1 ••• 1 L) . . 
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The Hamiltonian 

H = T + V (7) 

has a Newtonian kinetic energy part 

(8) 

using Pa(;) = Ma(;)~a<:>, with Ma(;) the mass point having 

displacement .ua(;); and a potential V which is an 

instantaneous function of atomic positions. Expanding the 

potential in a Taylor's series about the equilbirium 

displacements (u0 = 0) , gives 

+ 0 0 0 

The essence of the simple harmonic approximation is that~9e 

displacements are small, so that terms higher than the/ 

second order in this expansion are inconsequential. This 

makes the springs Hookean; as v0 is an arbitrary static 

potential, and 
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is the restoring force at the displacement u and identically 

zero at equilibrium, leaving 

1 V= 2 1: 
R.,K,a 

R.' ,K • ,a• 

with the force constant matrix defined by 

~aa' • 

(9) 

1

0n combining Eqs. (7), (8), and (9), the Hamiltonian becomes 

1 
H = 2 1: 

R.,K,a 

1 
+ 2 1: 

R.,K,a 
R.' ,K' ,a• 

and Hamilton's equations are 

1: 
R.' ,K' ,a• 

or 

1: 
R.' ,K' ,a' 

R,R,' R.' 
~ aa 1 (KK 1 ) Ua 1 (K 1 ) 

Equations (11) are indeed of the form required by Hookes 

law 

F = kx 

(10) 
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Equation (11) may be rewritten by Fourier transforming 

the position operators 

-CXI 

to give 

I: 
R.',K',a' 

which simplifies to 

I: 
R.' ,K' ,a• 

or 

(12) 

To actually calculate the phonon entropy one must know not 

only that the phonons are a boson gas, but also the 

difference in the temperature independent density of phonon 

states between the pure and impure cases. To obtain the 

latter quantity the full sophistication of the Green's 

------
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function method of Elliot and Taylor7 is not required.· In 

fact a neat derivation due to Taylor8 uses the resolvent 

-1 R.R,' G ( ·w) 
aa' KK' ' 

(13) 

for (12). On shifting around the masses, Eq. (13) becomes 

1 1 
2 fl, fl,R, I - 2 R, I 

- Ma (K)~aa' (KK 1 )Ma' (K,) 

Inverting Eq. (14) gives 

1 1 
M2 ( R, ) G ( R. R. ' ) M2 ( R. I ) = 

a K aa 1 KK';w a' K' 
R,R,' 2 

[ O a a 1 ( K K 1 ) W . 

(14) 

Note that the second term on the right hand side of Eq. (15) 

is the dynamical matrix and its eigenvalues are precisely 

the squares of the frequencies allowed by (12) • Taking 

the trace of both sides of (15) then yields 

= (16) 



Since the trace of a symmetric matrix is the sum of its 

eigenvalues, Eq. (16) simplifies to 

E M (t)G (it ) = E [w2 - ws2l-l a K aa KK~w 
t,K,a S 

14 

(17) 

where w8 is one of the 3N angular frequencies of the lattice 

vibrations permitted by Eq. (12). Allowing w to wander 

slightly into the complex plane, the right hand side of Eq. 

(17) may be written as 

1 
2-Ws + ie: 

with w, w8 still real which becomes 

on rationalizing the denominator. But 

2 2 ie: w - w -
lim (- Im E [ s 

2]) 2 _ w2)2 + e:~o s (w e: s 

lim ( e: 
2) = 2 _ w2)2 + e:~o s (w e: s 

is within a normalizing constant of the arc tan 

representation of Dirac's delta function 

• 
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Thus 

and finally 

'IT 
- - I: 0 ( w - ws) 2w 5 

so that in view of Eq. (18), taking imaginary parts of 

Eq. (17) give~ 

Im 'IT - - I: o (w - w5 ) 2w 5 
• 

The right hand side of (19) is virtually the required 

density of states, g(w). Now 3Ng(w)dw will count the 

number of permitted frequencies in a small neighbourhood, 

dw, about the frequency w; and being a distribution 

function will obey the normalization condition 

But 

r» g(w)dw = 1 

0 

J
w ~ 

Lo o(w- ws)dw 
0 s 

= N (w) 

15 

(18) 

(19) 

(20) 
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is the number of permitted frequencies between zero and w. 

Considering that there are 3N total frequencies between 

zero and infinity, g(w)dw may be written as 

g(w)dw = ~ (N(w+dw) - N(w)) 

Then treating dw as an infinitesimal 

Taking the limit, Eq. (21) becomes 

g(w) = 1 dN(w) 
3N dw 

and substituting from Eq. (20) 

E o(w- w8 ) = 3Ng(w) 
s 

so Eq. (19) becomes 

• 

Im 'IT - 2W 3Ng(w) 

Apparently the rather "intuitive" way of handling 

distribution functions that led to Eq. (23) can be 

justified by practitioners of Lebesgue theory and 

classical analysis. 

( 

(21) 

(22) 

(23) 
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The stage is now set to derive the phonon entropy. 

Now·a phonon can have any of the 3N perm~tted frequencies 

and its energy will be 

Although the subscript 'S' labels all the distinct phonon 

states (3N normal modes), some of these states will have 

the same energy (e.g., at least 48 for a cubic crystal). 

To derive the entropy from Eq. (24) using energy 

(24) 

conservation and Boltzmann's principle, requires attention 

to this detail. Essentially it is a choice between the 

expressions 

(25a) 

or 

E = L n.E. (25b) 
i 1 1. 

giving the total energy E of the phonon gas. In (25a) the 

sum is over distinct phonon states labelled by 'S' and in 

(25b) the sum is over distinct energy states labelled by 'i'. 

Now n8 is the number of phonons in state 'S' and ni is the 

number of phonons in the ith energy level. Since we are 

after the result that the entropy is an additive function 
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of the normal mode frequencies, it would appear that (2Sa) 

is the most natural way to write the total energy. But 

Boltzmann's principle demands (2Sb) and the trick is to 

keep the 'i' and 'S' straight. 

Suppose that the crystal is weakly coupled to the 

environment, so that even though the Hamiltonian (10) will 

not let the crystal reach equilibrium, it does so by 

appropriately creating and destroying phonons. Once it has 

reached equilibrium, the coupling will be turned off and 

the total energy E treated like a constant. Assymptotic 

formulae for ns or ni can then be found: since ~ey must 

maximize the number of states accessible to the system at 

equilibrium, subject to the constraint of constant total 

energy. How does one calculate the number of accessible 

states? On choosing (2Sa) one sees that there is only one 

way to put ns or any other number of phonons into the 

state'S'. In fact knowing the coefficients ns completely. 

specifies the state of the phonon gas. Thus knowing the 

decomposition (2Sa) , one would know the state of a single 

crystal's phonons and not the possible states that the 

crystal's phonons could have. Since Boltzmann's principle 

requires maximizing the possible states, one must resort 

to (2Sb) as only then is there any freedom in stuffing the 

crystal with phonons. The freedom arises since more than 

one distinct state can have the same energy, and if ni 
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phonons go into the ith energy level they can do so in many 

ways depending on how they are shared out among the distinct 

states belonging to the level. 

If the number of ways of parcelling out the energy 

at each level can be found, then the problem is solved. 

Since what happens at one energy level is independent of what 

happens at another, the total number of possibilities for the 

crystal is simply the product of the number of possibilities 

at each level. So what can happen in the ith energy level? 

Suppose that there are gi distinct phonon states 

having the energy (or at least extremely close to gi) • Notice 

that 

E g. = 3N (26) 
i ~ 

Again it is a matter of combinatorics. Rephrasing the 

problem: "How many ways can ni balls be placed in gi boxes, 

with certain restraints?" It is the restraints that make 

the problem non-trivial. Firstly the ni balls are 

indistinguishable; in that one can decompose a big ripple in 

the lattice into a whole bunch of linearly adding little 

ones (normal modes). The only thing that is physically 

significant is the big ripple and not how the little ripples 

(excited normal modes) are labelled or added. Secondly the 

boxes which are the labels for the normal modes are 

"indistinguishable" since the labelling is quite arbitrary. 
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Thus both balls and boxes are to be considered interchangeable 

among themselves. To actually find the number ~f possible 

arrangements, imagine all the balls and boxes lying in a heap 

of (n. +g.) objects. The idea is to arrange the objects 
l. l. 

arbitrarily, but so that every ball will have a single box 

associated with it. Then each ball can be placed in that 

box. To insure that there is at least one box for every 

ball; remove one box from the pile, leaving (ni + gi - 1) 

objects in the pile. If a row of the remaining (n. + g. - 1) 
l. l. 

objects is then made to the right of this box, 

6T'oU~ .. 1U ... 
I 

... U LJo 
initial

1 
ni + gi - 1 objects 

box 
I .. 

then there is a single box which is left most to every ball. 

Clearly, every possible way of putting the balls in boxes 

will be generated in the 

(n. + g. - 1) ! 
l. l. 

possible ways of picking labelled objects from the heap to 

build the row beside the initial box. However, the ni balls 

may be labelled in ni! possible ways and the gi- 1 boxes may 

be labelled in (gi- 1)1 ways. Thus the total number of ways 

ni balls can be placed in gi boxes while allowing interchanges 



of balls and boxes respectively is 

(n. + g. - 1) 1 
.1 .1 

n. I (g. - 1) 1 
.1 l. 
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Returning to the interpretation of ni phonons and gi phonon 

states at or near energy ei the number of states accessible 

to these ni phonons is then 

Since 

(n. + g. - 1} 1 
.1 .1 

I: g = 3N i i 

and the asymptotic formulae occur at N ~ ~, it is 

reasonable to assume that as N ~ ~, the gi at or near ei 

become quite large and the -1 may be omitted giving 

n. = 
.1 

(ni + gi)! 

n. !g.! 
.1 .1 

Then the total number·of states accessible to the phonon 

gas is 

= rr n. 
i .1 

Using Eqs. (la), (26), and (27}, the phonon entropy is 

(26} 

(27} 

(28} 
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and with the aid of Stirling's approximation 

= L [(n. + g.)~(n. +g.) - n.~n. - g.~g.] 
1 1 1 1 1 1 1 1 i 

(29) 

At this point the phonon entropy is known as a function of 

the thermodynamic unknowns, ni. The gi are fixed and in 

principle known from the equation of motion (12). Boltzmann's 

principle now comes to the rescue and enables the ni to be 

solved in terms of the g .• Then with this expression for the 
1 

ni one can return to (29) and give the entropy explicitly as 

an additive function of the normal modes. Since maximizing 

the number of states accessible to the system is equivalent 

to maximizing its entropy, we have from (29) 

= 0 = L dn . ( Rln (n . + g. ) - ~n. ) 
1 1 1 1 

(30) 
i 

Equation (30) cannot yet be solved as the restriction (25) 

of constant total energy has not been used. Differentiating 

(2Sb) gives 

dE = 0 = L dni£i 
i 

(31) 

since the energy is a constant and the £, are fixed by the 
1 

equations of motion (12). Perspicatiously picking- i as 
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a Lagrange multiplier for Eq. (31) gives 

dS - l dE = 0 ph T (32) 

This T has the dimensions of energy and turns out to have all 

the properties required of a temperature. On substituting 

from Eqs. (30) and (31), Eq. (32) becomes 

The only way the sum can be zero is for each of the 

coefficients of dn. to be identically zero. This gives 
~ 

which can now be solved for ni 

£./T 1 
n. = g. [e ~ - 1]-
~ ~ 

Returning to Eq. (29) and armed with Eq. (35), the phonon 

entropy becomes almost accessible 

(33) 

(35) 

E./T l E./T l 
- gi[e ~ - 1]- ~(gi[e ~ - 1]- ) - gi~gi 

(36) 
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or 

£./T 1 £./T 1 
= E gi[([e 1 

- 1]- + l)~([e 1 
- 1]- + 1) 

i 

£./T 1 £./T 1 
- [e 1 

- 1]- ~[e 1 
- 1]- 1 

(37) 

and the second sum in (37) is identically zero. The 

structure of each term in the first sum of (37) is the 

number of phonon states at or near energy £i multiplied by 

a function involving only this energy. This fact and 

Eq. (24) enables (37) to be rewritten as 

~w5/T ~w /T 
= E ([e - 1]-l + l)tn([e 5 - 1]-l + 1) 

s 

(39) 

Since the phonon entropy is thus an additive function of 

the normal mode frequencies, the hard won sum over S in 

Eq. (39) can be replaced by the integral over the density 

of states according to 

~ + 3N J g(w)dw 

Using this prescription and further simplifying, Eq. (39) 

becomes 
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sph = 3N J 

1 1 
- 'fiw/T Rln 'fiw/T ) g (w) dw 

e - 1 e - 1 
(40) 

Unfortunately (40) is algebraically distant from formulae 

given in the literature11 • To retrieve Maradudin's formula, 

Eq. (40) is rearranged to give 

The first term in the square brackets can be rewritten as 

~w [e~w/T + 1 + e~w/T - 1 · 
2T e'hw/T _ 

1 
] 

which breaks into two terms 

Taking the second term of (42) inside the logarithm in 

Eq. (41) and fiddling with the definitions of hyperbolic 

(41) 

(42) 

trigonometric functions, results in Maradudin's expression 

f :hw 11w fiw sph = 3N g(w)dw[ 2T coth 2T- Rln.(2sinh 2T)] (43} 

Finally, the change in phonon entropy 
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"S S' S 
Ll ph = ph - ph 

can be written as 

f 
"hw ilw 1lw 

~sph = 3N ~g(w) [2T coth 2T- Rm(2sinh 2T)]dw (44) 

where 

~g = g' (w) - g(w) (45) 

with the primes referring to the impure system. Harking 

back to Eq. (23) , it then becomes possible to write Eq. (45) 

as 

~g(w) = 2w Im 
31TN 

with P as the perfect crystal Green's function and m, the 

mass of the host atom. 

(46) 

/ 
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2.3 The Host Will Be Copper and t~e Impurities Will Be 
At a Sufficiently Low Concentration 

27 

The immediate consequence of the face centered cubic 

host is the disappearance of the K's in all equations. The 

real reason for picking copper is the accessibility of pure 

copper Green's functions from the work of Taylor, Hampson, 

and Bruno. "Sufficiently low concentration" translates into 

less than a few percent. The idea is that the defects should 

in the overwhelming number of cases be widely enough 

separated so that they do not .affect one another. Since an 

f.c.c •. crystal has twelve nearest neighbours, already 8% 

impurity will have at the very best only one host atom 

t . th d f F H I k.11 't separa ~ng e e ects. rom ampson s wor , ~ appears 

as .though the affect of the impurity is mostly felt on 

first neighbours and is insignificant beyond third. Thus 

definitely less than 2% should be sufficiently low 

considering that 42 atoms are inside the third nearest 

neighbour shell. In this way there are M single defects in 

the crystal. Then for a single defect at the origin, Eq. 

{46) becomes 

with m' as the mass of the defect atom. Introducing 
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e: - 1 - m'/m (48) 

enables Eq. (47) to be rewritten as 

or 

flg1 (w) = 2
3

wNm Im{ E [P (tt;w) - G"'"'(R.R.;w)] 
. 'IT R.a. a.a. . .... ... 

+ e:Ga.a.(OO;w)} (49) 

Since the defects do not act in concert, it is reasonable 

to assume, at least to first order in the concentration, 

that for M defects 

flg(w) ~ Mflg1 (w) 

or 

+ e:Ga.a.(OO;w)} (50) 
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Finally, the phonon entropy can be calculated, using Eq. 

(SO) in Eq. (44), provided the single defect Green's 

functions are known in terms of the perfect crystal Green's 

functions and the perfect crystal Green's functions are 

themselves known. 

I 



2.4 The Influence of the Defect Shall Be Considered 
Insignificant Beyond Its Twelve Nearest Neighbours 

30 

This assumption helps in the relating of the defect 

and perfect Green's functions; in that, the force constant 

changes can be handled with a 39x39 matrix, instead of a 

129xl29 matrix necessary for effects extending to the third 

nearest neighbour. The Dyson equation relating the two 

functions will now be developed. Interpreting the definition 

(13} for the defect resolvent and postmultiplying it.by G 

·gives 

G-l (11'·w}G (1'1"·w} = aa' ' a'a" ' I 

i.e., 

1 1 

E 
a.'i' 

[w2M2 (1)M'2 (1')~ (11')G (1'1"·w) a a' aa' a'a" ' 

- ~· (11')G (1'1"·w)] aa.' a'a" ' (51) 

Having the mass defect at the origin "simplifies" Eq. (51) 

to 

E 
a'i' 

' 
2. 

[w mo (11')G (1'1"·w) a.a.' a'a." ' 

- w2£mo(01}o (11'}G (1'1"·w} aa' a'a" ' 

- ~~ (11')G (1'1"·w)] aa.• . a.'a." ' (52) 



31 

on using the definition of e, (48). Invoking assumption of 

2.4 and defining 

Aaa' (11') - ~~a' (11') - 4'>aa' (11') (53) 

gives the force constant change A whose only potential non-

zero values occur at 1 and 1' values ranging from zero to 

twelve. Apply~ng this definition to Eq. (52) gives 

l: 
!'a' 

x o a a ' ( 11 ' ) + A a a' ( 11 ' ) ] G a ' a" ( 1 ' 1" 1 w) 

Comparing the first coefficient of G in Eq. (54) with the 

definition (13), shows that it is the perfect crystal 

resolvent. Then by defining 

Eq. (54) is seen to be 

-1 
P (R.R.'·w)G (R.'R."·w) aa' 1 a'a" 1 l: 

R.'a' 

l: 
!'a' 

V (R.R.'·w)G · (R.'R."·w) 
aa' 1 a'a" ' 

-I 

' 

(54) 

(55) 
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Now premultiplying by the perfect crystal Green's function 

and chasing indices finally gives the Dyson equation 

P (R.R.'·w) = QQ. I I G (R.R.'·w) -a.a' , 1: 
R."a." 
R. "b. II I 

P (R.R."·w) aa." , 

(56) 



. CHAPTER III 

CALCULATIONS 

3.1 Perfect Crystal Green '·s Function 

The first item on the· list is a set of perfect 

crystal Green's functions. This calculation has been 

described in great detail by Bruno12 • The real and 

imaginary parts are given by 

Re P (tt' •w) aa' 1 
• (MAX 

0 
2 2 w - w' 

'\) ( R, R, I o (IJ I ) dW U 
aa' 1 

Im P , ( t t ' ~ w) = - ..:!L v ( t t ' • w) aa 2w aa' 1 

(57) 

(58) 

where the integral in (57) is taken as the principal value 

integral. The generalized density of states 

" (tt'·w) aa' 1 

is related to the density of states (23) by 

I: "a a ( R, R, ; l.ll) = 3: g ( w) •• 
t,a 
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(59) 

(60) 
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Using the symmetry properties of the crystal, it turns out 

that there are only thirteen independent v's for a nearest 

neighbour defect space12 • A set of data belonging to 

Hampson turned out to contain the real part of the Green's 

function and the generalized density of states. The 

maximum phonon frequency in copper is 7.44 Teraherz and so 

a frequency window of .zero to eight Teraherz, chopped into 

100 bins was used for Riemann summing on a reduced frequency 

X = w/wMAX 

The data used frequency instead of angular frequency 

(= 2~ frequency) and care had to be taken in keeping track 

of ·stray factors of 2~. Further the data Green's functions 

were "mass reduced" 

So a set of Green's functions p1 were punched up, related 

to Hampson's real and imaginary items, H, by 

Im p1 (t1';X) ~ 

(fl 
Im H(11';X) ) = -2X 
Im H(11;X)dX 

0 

Re p1 (11';X) = 64Re H(11';X) 
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The factor 64 arose from the denominator of the right hand 

side of (57). A mass reduced density of states, V, was 

punched out as well 

(61) 

To make sure Re p1 was indeed what it should be, two more 

Green's functions were calculated; p2 , p3• All three have 

the same imaginary part, but Re p2 and Re p3 are calculated 

•from 

v ( R, R. I ; X I ) dX I = 

x2 - x•2 
Re p(R.R.' ;X) (62) 

differently, Re p2 was calculated by assuming that V(R.R.';X) 

would not change much from bin to bin, so the left side of 

(62) can be decomposed to 

Noting that 

100 
E V (R.R.' ;XL) 

L=l 

1 1 1 
-x'='2 ...-;;._X_' 2=- = - 2 x < x • - x 

1 
x• - x> 

allows (63) to be written as 

(63) 
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Re p
2

(.U,';X) = ::":"'-1--==-l dX ' . X' - X 

or 

.or 

100 V(11' ;XL) x_ + X 
I: [ R.ln (~+1 ) 

L=l 2X ~ + X 

Rln (~+1 - X)] 
X -X 

L 

Re_ p
2 

(11 1 ;X} 
100 V(11';XL} (~+l +X) (XL- X) 

= I: Rln (____;;;;;.....;;~---=---) 
L=l 

2
X (XL + X} (~+l - X) 

(64} 

which is well defined as long as the X bins are slightly 

shifted from the Xi bins. Re p 3 (11';X) was foun~ using 

V(11';X') - V(11':X) dX' 
x2 - x•2 

fl dX' 
+ V(11';X} 

x2 - x•2 
0 

In evaluating the Riemann sum for the first integral one 

simply omits the term that has the X bin equal to the X' 

bin. The second integral is simply that in (63) between 

different limits and it reduces to 

=..!.. Rtnll+xl 2X 1-X 

(65} 
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A staggered bin prevents X = 1, 0. The differences between 

the real parts of p2 and p3 appeared systematic and greatest 

where the slope of V was greatest. It was the assumption 

that the slope differed little from bin to bin that led from 

(62) to (63). Although the discrepancies were not more than 

a few percent, the thermodynamic quantities were quite 

insensitive to them. A glance at the differences of p1 and 

p2 showed how p1 was calculated, since it was read in to 

.only 8 significant figures. 
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3.2 Phonon Entropy For Mass Defect Only 

This problem has more than just.pedagogical merit. 

The force constants appear to change by not more than 50% , 

while the mass change for gold in copper is about 300%. 

The possibility of defining effective mass changes also 

emerges. 

With no force constant changes, V in (55) becomes a 

constant diagonal matrix and the Dyson equation (56) for the 

:single mass defect at the origin is 

and 

P 1 (11 1 ;-w)= a. a 

P (11 1 ·w) aa 1 
' 

G (11 1 ·w)-a.al ' l: 
R."a." 
1 "b. HI 

P (R.R."·w) a.a. n . ' 

x w2 e:mo (OR.") o (1"1°1
) G,., ...... 1 (1"11 1 ;w) a"a."l .... u. 

(66} 

Premultiplying through by oa."a.(OR.) gives 

2 - Pan a. n ( 0 0 ; w} w e:mG a." a 1 ( 01 1 
; w) ( 6 7) 
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because the crystal is cubic, the three-fold and four-fold 

axes conspire to give 

(68) 

where P(O;w) is a scalar function of w. So (67) becomes 

The Kronecker o does nothing and the quantity in the square 

brackets ~s a scalar, so exactly 

Pa"a' (Oi;w) 

w2EmP(O;w) 

and {66) can be rewritten 

X w2Em 
2 PN"a'(Oi;w) 

1 - w EmP(O;w) ~ 
(69) 

which is clearly an exact solution. Substituting (69) into 

(SO) gives the density of states to first order in 

concentration, completely in terms of the pure crystal 

Green's function 



t:.g(w) 2 me · w2Em 
= w31T Im [I: [- P "'a' (R.O;w) ---:2~;.;;;.;..--

R.a ~ 1 - w EmP(O;w) 
a• 

x Pa•a(OR.;w)] + E I: (Paa(OO;w) 
a 
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(70) 

Passing to reduced coordinates 

w -+ X ; 

mP -+ p 

and using (68), Eq. (70) becomes 

or 

t:.g(X) 

X p I (OR.;X) + 3p(O:X) 
a a 1 - X2Ep(O;X) 

I: p aa, ( R.O; X) 
a' 

3p(O;X) - x2 t p , (R.O;X)p , (OR.;X) 

t:.g (X) = 2;~E Im I: 
R.a 

a' aa a a 
(----------~--~2~-------------) 

1 - X Ep (0 ;X) 



44 

or 

~g(X) = 
2~~E Im [-------------a~'~~----------------1 

1 - X2Ep(O~X) 

Now provided the enormous sum on ta in (71) could be 

eliminated, (71) would be fine for actual calculations. 

The fact 

1: P a a , ( t 0 : X) p a , a ( 0 1 : X) 
ta 

(71) 

(72) 

comes to the rescue. It can be established by returning to 

the definitions of the Green's function at the beginning of 

this section, (58) and (59). If thew is allowed to sneak 

into the complex plane, the Green's function can be written 

as a single integral. Changing the integral back to a sum 

on the modes and substituting into the left side of (72); 

gives, on collapsing the polarization vectors, exactly the 

right hand side of (72). Now (71) becomes 

~g(X) = 2XCE 
1T 

X d 
p(O:X) + 2 dX p(O:X) 

[ 2 1 
1 - X Ep(O:X) 

Derivative subroutines can be avoided with a method 

published by Hartmann et a1. 13 • Introducing 

S(X) - Im ~(1- EX2p(O:X)) 

(73) 

(74) 
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and taking its X derivative gives 

de ex> Im[ 1 (- 2e:Xp(O;X) - 2 d 
= - e:X dX p (0 ;X))] dX 1 - e:X2p (0; X) 

or 

de ex> - 2e:X 
p(O'X} + ~ :x p(O;X) 

(75) = Im[ 2 1 dX 
, 

1 - e:X p ( 0; X) 

which gives a neat expression for ~g on combining (73) and 

(75) 

or 

~g(X) = c de(X) 
- 1f dX 

~g(X)dX =- ~ de(X} (76) 

Now rewriting (44) as 

= 3N J
1 

0 

with 

~g(X)dX[BX coth(BX) - in(2 sinh(BX))] 

(77) 

(78} 

. McMASTER UN1\!£RS\TY I,,JB~~l 



Using (76) , (77) can be integrated by parts to give 

ASph =- J:c [(BX coth BX- ~n(2 sinh BX))S(X) ~~ 

f1 
8(X) :x [BX coth BX- ~n 2 sinh BX]dX 

0 
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(79) 

The integrated term on the right disappears because 8(X) is 

zero at these limits as can be seen from (76)~ regardless 

of the horrors that occur in the hyperbolic functions at 

these limits. Using the well known facts 

d 
dX coth BX = - B csch2 BX 

:x sinh BX = B cosh BX 

Equation (79) becomes 

or 

using 

ASph = J:c f1 
8(X) [(- B2X csch2 BX + B coth BX) 

0 

1 
- (2 sinh BX 2B cosh BX)]dX 

_ _3N_:_c_ J 1 

0 

8(X)BX csch2 (BX)dX 

(80) 

(81) 

(82) 



coth = + cosh 
sinh 
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Finally by using (74), (78), (82), and the zero-zero Green's 

function p(O:X): the phonon entropy can be calculated for 

mass defect only. 

S(X) - Im in[l- EX2p(O:X)] (74) 

(78) 

3c:B2 fl XS(X)csch2 (BX)dX (82) 

0 

Since Hartmann et al.·only considered specific heat (Cv) 

and for an Al-Ag, host-defect system, it was decided to 

check the computation by running the Al-Ag masses with 

the copper Green's functions in a heat capacity calqulation 

and looking for good agreement, since the density of states 

,are similar and both are f.c.c. 

heat capacity is defined by 

c = a-o I v dT v 

Since the constant volume 

where dQ is a small change in heat and from the relation 

dS = 4g_ 
T ' 



we have 

C = T dS 
v dT v 

Further from (78) , we can write 

1 dB = 1 dT B T 

Then (83) becomes 

dS 
Cv = - B dB 

v 

So from (82) and (84), one finds 

cv = 3cNB [2B J
1
xe(x)csch2 (BX)dX --

1T 

0 

+ B2 f1 X8(X)2csch(BX) d[csch(BX)] 
dB 

0 

Using the relation 

:y csch(u) = - csch(u)coth(u) ~~ 

the heat capacity is 

dX] 

Cv = 3~N [2B2 f1
xe(X)csch2 (BX) [1- BXcoth(BX)]dX] 

0 
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(83) 

(84) 
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or 

J1
xe(x)csch2 (BX) [1- BXcoth(BX)]dX 

0 

• (85) 

Equation (85) is equivalent to Hartmann's formula. 

In the "natural" units employed here the heat 

capacity is dimensionless. To reproduce the results of 

Hartmann et al., temperature must be in °K. Now the 

entropy is in units of Boltzmann's constant and from (83) 

so is heat capacity. On writing the number of atoms N as 

N = nNA 

where n, NA are the number of moles and Avogadro's number 

respectively, N in (85) can be replaced by n and the heat 

capacity has the units of the gas constant 

(86) 

R = NAk = 8.31434 x 103 millijoule/mole-°K (87) 

Since the specific heat is the heat capacity per mole and 

using (85), (86), and (87), the specific heat at constant 

volume is // 

I 

\ 
\ 
\ 

/ 
/ 

/ 

6c:
2 rf1

xe(X)csch2 (BX) [1- BXcoth(BX)]dX] 

0 

x 8.31434 x 103 millijoules/mole•°K • (88) 



so 

With this equation half the battle for Hartmann's specific 

.heats is over. The remainder amounts to using the copper 

Green's functions correctly. From (58), (60), and (68), we 

have 

mimP(O;w) 'IT = - - g(w) 2w 

Changing the variables on the right hand side by 

gives 

w X= 

mimP (0 ;w) 1 'IT 
= 2 (- 2X g (X) ) 

wm 

The same will hold for aluminium with X= w'/w' m 

m • ImP ' ( 0 ; w) = 1 (- 2'1TX g' (X)) --;2 
wm 

(89) 

(90) 

(9la) 

(91b) 

But if the "reduced coordinate" density of states, g(X), is 

assumed the same for both metals, then 

2 ~ 2 
mwmi~)O;w) = - 2X g(X) =·,\'w~ ImP' (O;w) (92) 

With a reduced coordinate Green's function 
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ImP (0 ;;X) 'IT 
- - 2X g(X) 

(92) becomes 

mimP(O;X) = m'ImP'(O;X) 

and in mass reduced Green's functions 

Imp(O;X) = Imp' (O;X) (93) 

Thus provided that the maximum frequencies are changed, as 

required by the thermodynamic part of the calculation, the 

totally reduced copper Green's functions can be used 

unchanged in (74). 

I 
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CHAPTER IV 

DISCUSSION 

When the comparison with Hartmann's heat capacity 

was finally achieved (see Fig. 5), the difference was less 

than 10%. This discrepancy was systematic with Hartmann's 

values always being lower. A 5% increase in the maximum 

frequency of aluminium would have brought about an agreement 

well within the errors set by the visual estimate of 

Hartmann's data. 

Probably the most venerated paper on this topic was 

written in 1955 by Huntingdon, Shirn, and Wajda14 • Their 

main result was 

(94) 

·for temperatures well above the Debye temperature of the 

solvent, and ws was the eigenfrequency before the addition 

of the impurity and ws its value after. The remarkable 

thing about (94) is its temperature independence. The 

Debye temperature of ·copper according t~ Kittel15 is 343°K 
I 

and according to Fig. 6, the phonon entropy has already 
I 

begun to level out by 350°K. Since the mass defect will 

probably account for only some of the phonon entropy change 

(the rest being due to the effect of the force constant 
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change) , it is surprising that the mass defect phonon 

entropy is already close to temperature independence at 

the Debye temperature. 

To derive (94) is not hard. Starting from (39) 
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~ws/T 'ws/T 1 = 1: { ([e - 1] -l + 1) Rm ( [e . - 1]- + 1) 
s 

- [e~ws/T - 1]-1 Rl!l[e~ws/T - 1]-1} 
• (39) 

For high temperature, T >> ~wMAX' the exponent is less than 

one and the expansion 

e~w/T = 1 + ~w/T + . . . 

may be taken to first order. Equation (39) then becomes 

S h = 1: [ f,..!._ + 1) Rln (~ + 1) - T Rm c..L)] (95) 
p S ~WS nWS hwS ~WS 

Sine~ T/~ws >> 1 and the logarithm is a very slowly varying 

function 

(96) 

is more accurate than 

T + l t\. T 
1iws "' 1iws 
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Using (96) in (95) and simplifying gives 

Sph~ERin(T) 
s 1lws 

(97) 

Then the entropy difference 

= s• - s ph ph 

where the primes refer to the impure system, is given by 

• (98) 

Since there are still 3N modes in the impure system, then S 

and s• are the same index so that (98) becomes 

(94) 

As with many simple equations, (94) is difficult to use. 

It is useless unless one knows the dependence of w5 on ws 

and the mass and force constant changes. Several ingenious 

models have been given14 ' 16 , but the method commenced in 

this report is capable of giving reliable calculations of 

thermal properties valid at all temperatures for low 

concentrations of defects. 
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The solution to {94) is especially simple for a 

mass defect only. For two springs with force constants k, 

connected to masses m, m• the ratio of the frequencies is 

• {99) 

If the entire lattice were suddenly made heavier, then each 

of the 3N modes would change according to (99)~ and (94) 

·would become 

= 1 NRin 
2· 

m' 
m 

Then just changing a small concentration, c, to a greater 

mass m' would give 

3 m' = - cN9m(-) 2 m 

(100) 

(101) 

Figure 7 shows a comparison of 8Sph given by (100) and that 

given by {74) , {78) , and {82) at a 1% concentration and at 

1200°K. From the agreements in Figs. 5 and 7, it would 

appear that the calculations presented so far are correct. 

According to Fig. 6 the mass defect phonon entropy 

goes to its maximum in the high temperature limit so it 

would be near to this limit that the phonon entropy might 

not be swamped by the configurational entropy. To get a 

feeling for the relative sizes, Fig. 8 was prepared. The 
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curves correspond to different concentrations and are 

labelled by these concentrations and the configurational 

entropy per defect atom. Although the mass defect phonon 

entropy is linear in the concentration, the configurational 

entropy is not: hence the separation in the curves. 

Considering that the entropy can be measured to about three 

significant figures, the horizontal 10% line has been drawn 

to indicate where the mass defect entropy ought to make its 

appearance. Thus, assuming that the entropy is made up only 

from configurational and mass defect contributions, a 3% 

concentration of defects with a mass of 1.5 times that of 

copper would have a visible phonon effect, but for a 0.01% 

concentration the mass of the impurity would have to have 

a mass of at least 2.20 times that of copper. The vertical 

lines are the mass parameters corresponding to silver and 

gold. 

A paper by McLellan and Shuttleworth16 , found by 

Dr. Taylor towards the end of this project, claims to 

experimentally determine the vibrational entropy of mixing 

gold in copper. Either the value they obtain or its 

equivalent appears several times in the paper as several 

different numbers. Assuming that the misprints disagree, 

the value they report is about 7.0 ± 0.20 per defect atom. 

This is a far cry from the value 1.68 per defect atom 

calculated here. The same is true for silver. Their 

reported value of 4.71 per defect atom compares badly with 



the calculated value of 0.782 per defect atom. The 

puzzling thing, however, is that an inclusion of force 

constant changes of some 30% must send the calculated 

entropies rocketing up by a factor ~4 to the observed 

values. This is because McLellan and Shuttleworth's 

calculation of the effect of just the mass defect is 
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1.70 (cf. 1.68) and 0.79 (cf. 0.782) per atom of gold and 

silver respectively, and their elastic model calculation 

comes to within 50% of their observed values. It should 

be noted that their reported values per defect atom for 

gold impurities at 0.5% and 2.5% concentration were not 

the same. Since the vibrational entropy is no longer 

linear in the concentration at 2.5% this suggests that the 

envisaged theory containing force constant changes as well 

as mass defects, will only be good at very low concentrations. 
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PROGRAM HETST 73/7J OPT:t FT~ '+e2+P18D 09/15/74 15.02.JJ 

c c 
8 
8 
8 
c 

c 

c 

c 

1" 

2 

3 

500 
510 

· PROG~~~~ETST (!NPUT,OUTPUT,TAPE5=INPUT) 

THIS PR~~~AH~~ TA~~S ~OPPER G~EENS FUNCTIONS 1 RESCALES TH·,· FRr
0
au

1
eNCY TO 

THAT OF ALUMI~U~ A~~ ljALCULATES THE CHANGf I~ HEAT C~PAGI V 0 E 0 A CONGe 
OF SILV~P ~TOMS IN l~ ALUMINUM HOST THE METHOO IS FRO~ H Me HARTMANN 
PHYS. ~EI/. 'l, VOL. t, 1486 •. Tl-iE Ht:At CADACITY IS G~APHEO !~'>10 PRINTED .111 
11ILLIJOULES PEP MOLE-OEGRE~ ~ELVIN,FROM 1 TO 100 DEGREES K~LVIN. 

OI:tC:I,ISimJ P(?, 16, 11:11)) 
U ! '1 F. 'I S I 0 ~I :< ( 111 0 ) 
1J I 1·1 H J ~ I 0 N T H ::: T 1\ ( 1 1111) 
OIMENSIO~ CV(100) 
R::AL t-IIJI11\ X 
RFt\L KE:l 11!1'1 
C0'1rL r..., oc 
S!NH(X)=(EXP(X)-EXP(-X))/2.0 
GOTII(Xl=1.0+2,0/(EXP(2.n•x>-1.0) 
PT=f.~.1L1S92&5358979 
N fJ !1 .. X= f. , 0 t: 1 2 
NUl~ AX =~I U"-1 AX •4?. fil ~ 4 3 
~ATIO nF n~BVE TE~P~RATURES ~ESCALES FREQUENCIES 
PLAN~K=6.6255qE-27 
BOLTZ=!. ~H054~-16 
C=NU~AX•PLANCK/(2,•BOLTZ) 
CI'HJr.=O, Q']gj 
REAO (S) P 
P IS P~PFECT XL G~E~~S FUNCTION 
WT 07 FGT = 107.870 
~T H~ST = ?&,9815 
E=1iry-~TOEFCT/WTHOST no K=1,100 . 
X(K):(K-0,5)/100~ 
XCK) AP~ 100 FRErJU~~CY BINS BETWEEN D. AND 1. 
PC=r.~1PLX(P(1 1tK> P(2,1J.K)). . ... 
THF.TA(~)=AIMAu\CL0G(1.-t•X<K>•X(KJ•PC)J 
CONTINUE 
KELVIN=1 
00 3 J~1,100 
HC=O. 
A=C/KiLVIN on ?. K=1,100 
1-tG=PC + v ( K) • T~tE T A ( ~) • ( 1. • B• X ( KJ •COTtH B• X ( K))) I (SINH ( B•X (I() ) ••2) 
C nr I TI I'll J .:: . 
CV<J>=&./( PI>•~·~•HC•CONC•D.01•8.311t34E3 
CALL PL0TPT CKELVIN,CV(J),4) 
KE.LVIN=Kt:LVIN+1 
CmiTI NU?. 
GALL OUTPLT 
PP I NT 50 0 
PP.PIT 510, GV 
FORHAT (1H1) 
FORMAT (1X,1P,10E12.5) 
ENO 

0\ 
VI 
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------- ~ 

PROGRAM ffETST 

c 
8 
B 
c 

c 

c 

c 

c 
c 

1 

2 

3 -

7317J OPT=1 TRACE: FTN 1+.2+Pl,:O 09/16174 13.15. 

PROG~AM~ETST (INPUT,~UTPUT,TAPES=INPUT) 

TJIIS Pr<.Of.i~l\!1 1-tE COMPARES PHONO~ ENTROPY TO CONFIGURATIONAL t.NTROPY AT 500 
O€GREES KELVIN FOR .01 TO 1 PER CE~T CONC OF GOLO ATOMS IN COPPER. 

OI'tf•tSION P(2t16,100) 
0 IfEN S t 0 ~ )( ( t fJ 0 ) 
OI~:!JSIO~ THETil(100) 
0 I foJt ~I S I 0 N S ( 21 ) 
11Ptf~SIO~I ~ (~1) 
OIOF'-ISimt SOX2 (100) 
REAL NUMAX 
REAL tJ, '<'-:L\tiJ~ 
COHPLtX PC 
S PHH X ) = ( ::X P ( X ) - t X., ( - )()) 12 • 0 
PI=3,1~1~q2o5l58979 . 
NIIMfl:i::6 • Oi12 
PLA~CK=~.~~539E-2~ 
~OLTZ=1.~8~5~=-l6 
C= ~-JlJ'1 A Y"" PL A~CKI 2 • •rlOL Tl) 
K~LVIt!::=nn. 
n=~I'<CLVTtJ 
C O'IC= 0 • 0 0 0 1 
H T HO S T = 6 3 • 5 4 
RC: An C ~) P 
P IS PEQFECT XL ~~EE~S FUNCTI~N no 1 K=1 too 
X(~)=(K-~.~)1100. 
X(~) ~~E 1~0 FREOU:~CY BINS 1ETNEEN 0. AND 1. 
S8X?CKl= SIN~( q•xcK) ) ••2 
QO'HINU~. 
uO t, L=1,100 
A=~cnuc•4LO~CCONG)-(t.-CONC)•ALOGC1.-CONCJ 
A IS T~f CIJNFIGURATIONAL ENT~OPY. 
WT~~FCT=WTYOST+0.001 . 
00 .') J= 1 '21 
~ = 1 • 0 - •of T lJ 0: F C T I W T H 0 S T 
N=n. 
0 0 2' ,... = 1 ' t 1) 0 
PC= c·~ P L X ( P C 1, 1 , K) , P .C 2, 1 , ~) ) 
TH~TA(~)=AIMA~tCL~G(t£-E•XC~)•X(K)•PC)) 
N :: N • "< (L~ ) • TI-t E: T A ( I( ) I S ;") X c: ( K ) 
CmHINU: 
sc.J)=-3.1< Pt)•1•R•~•co~c•o.ot 
S IS TH.:" PHONON £NT.~OPY 
ZCJ)=SCJ)/(A+S(J)J4100. 

• 

.. 

Z IS THE P~R Cf~T OF P~ONON ENTROPY TO PHONON PLUS CONFIGUqATIONAL ENTPOPV 
WTOFFCT=HTOEFCT+0,15•WTHOST . 
CONit NUE 
PRINT 510, CONC•tOO.,A 
PlUtH :oo, S 
PRINT 500 
P P. I NT 5 0 0 , Z 
PRINT 50!1 
PRINT 500 

0\ 
0\ 



5 

10 

15 

20 

25 

30 

35 

40 

45 

so. 

PROGRAM f1C:TST 73/73 OPT:t TRACE Fnl '+e2+P~f\ 0 09/16/7~ 11.~9.1 

.• 

c 
g 
8 
8 

c-

c 

1 

2 

3 

500 
5?.0 

PRI)f';R,A ,., ~~:: T~ T (I ~0UT, OUTPUT, TAP ::5=1 ~PUT) 

CALCULATION OF ~NTQOPY (S) ~~TWEEN 1 AND 1401 DEGREES KELVIN AT 25 OEGPE~ 
f NT~~VALS. IT ARISfS FROM TH~ ADDITION OF.1 PER CENT CONC OF GOLD ATOMS 

0 A P~PF(CT COPPER CRYSTAL. 

DI~£NSIO~ P(~,1G,1~0) 
01'1~-.,SION XUOO) 
UIM~~SIO~ T~ETA(tOO) 
Ol'1c."'SI0"1 5 (5r,) 
~t:Al NIJHA'lC 

'"~·Al Y.i":LVIN 
CO 1tJL EX PC 
SI~~(X)=C~XP('l()-~XPC-X))/leO 
Pl=~.141~9?&53~897~ 
NU'tA'(:f, OF.:12 
PLAN~K=E,6?.559~-?.7 
HOL T~=1. ~~n 3 ... ~-16 
C= ~an A X"" PL A 14C i(/ ( 2 • • ilOL TZ) 
CO~H~=O,Ol . 
R!=:An ('::) P 
P IS PE~F~CT XL r,REr.NS FUNCTION 
WT OifCT = 13&.&7 
\H HI) S T = . o .1 • 54 
E=1.1-WTn~FCT/WTHOST 
01) 1K=1,10fJ 
XCI(): 0'-Q,c;)/i'lll. 
X(:O At;;t: tOO FREQtJC:~CY BINS .JETWEEN Oe AND 1• 
PC:C'1PLX( 0 (1 1tK>t°C~,1 K)) 
TH~i~CKl=AIHAG,CLuGct.-~•X(K)"'X(K)•PC)) 
CO'ITI Nll r:. 
K£LVH!= 1 on ~ J=t,so 
N=O • 
t) = Gl ~ t.:. L V H~ 
DO 2 K=1 100 
N=N+X(K)JTHETACK)/CSINHCB•X(I())••2) 
CO~TINUE . 
S(J):-3,/( PI)•O•B•~CONC•Oa01 
CALL PLOTPT CKC:LVIN,S(J),~J 
l(fLVIN='<t.LVIN+?.S 
cor-nrNut: 
CALL OLJTPL T 
P~I~T 500 
PIUNT 520, S 
FORMAT (1 HU 
FORMAT C1X,1P,~E25.5) 

. t:Nil 

.. . 

• 

en 
-..J 

I, 
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·, 

. 
-

c c c 
c 
c 
c 

c 

c 
1 

2 

3 

500 
510 

PPO~~A~~~T~T (lMPUT,OUTPUT,TAP~S=INPUT) 

THIS p~:. or.~ 1\M'E CO~PI\Q ~S 4 GR~.:: NS FUNCTION 'i IGH TEt1PE:tA TlH~ € ENTROPY CS) 
WITH A SIMPL~ ~IHOi~ FORMULA fZ) 

U PE~I S I 0 N n C ? , 1 o , 1 0 0 ) 
o It1: t-.J s r oN '< c 1 n 'J > 
D I '1 :.~ S I o~J T H.:: T A ( 10 IJ) 
ont~-~~ISHHJ ~(21.) 
0 I ,, L~ ~I s 1 f)~ I z ( 2 1) 
UI~~~SION ~ijX2(100) 
~(AL NU:AI\X . 
REAL N '· K ~ L 1/ I 14 CO:tPl EX r.J(; 
SIN~(X):(EXP(X)-~XPC•X))/2.0 
"PI=1.1~tSY~65~56979 
rw·tAI.=:;.ot.1Z . 
PLAI~~=6.S25~q~-27 
BOL 1 7 = t. ·~80 :J4::-t6 
C = N t Jt·1 tl X ~ P L A I~ C K I ( 2 • • tl n L T Z ) 
K~LVIN=l?OQ, · 
f:l=G/Kt.LV H~ 
CONC= 0. 01 

· W T • !0 ~ T = .o J • 5 <. 
RC::AQ ( 5) P 
P IS P~RFECT XL GR~~NS FUNCTION. 
0 0 1 t: = 1 ' 1 ;") 0 
X(V.)=(K-0.~)/100. 
XCK) AV:. 11JO Ft<::1U::!-4CY GINS 3~TWEEN O. AND le 
S~X?(K)= SIN~( ~•X(() ) 4 •2 . 
COIH~NIJ~ 
~IT 0 l F c T = ~IT.~ 0 s T + 0 • 0 I) 1 
00 ~ J=1,21 
E=1,C-WTO~FCT/WTHOST 
N=n. 
fJO ?. K=1 1 11JO 
PC=C'·iPLX(P(1 7 1,K) ,P(2 1 1,1()) 
TH~TA((l=AI~AG<~L~~(1 1·E•X(K)•X(K)•PC)) N: '·d X (I<) • T 'i ETA C V.) I SO'<~ (I() 
COr..JTINU:. 
SCJ>=-3,/( Pll 4 B4 ~•N•CONC4 0e01 
A=:not:f'Cl/WT~iOST 
ZCJ):3,/~.•AL0GCAJ•CONC 
CALL PLOTPT CA,SCJ),~) 
CALL rLoTPT (A Z(J),~) 
•H :l:.F CT = riT ,J~f'C t + 0.15 4 WTHOST 
CO "'ll f'!UF: 
CALL OUTPLT 
PP..INT 510 
PP.II'H 500, S 
PRitn 500, Z 
FO~MAT C1Xl1P,10E12e3) 
f 0 q 11A T ( 1 H ) 
ENO . 

: 

.0\ 
co 
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.PROGRA~ H::TST 

r. 
500 
510 

7?./73 OPT=1 

PRINT !300 
CO~C=CONC+0.0001 
CONTINUE 

TRACE 

FORMAl (tX 1P110~1?.3) . 
FORMAT (29~,+~0NG=4 ,1PE10.3,4SX,1PE1n.3,/) 
fNO 

FTN lte2+P3BO 09/16/7'+ 13.15.~8 

CJ\ 
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