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Abstract

This research formulates and implements a novel closed-loop optimal control system

that drives a train between two stations in an optimal time, energy efficient, or mixed

objective manner. The optimal controller uses sensor feedback from the train and

in real-time computes the most efficient control decision for the train to follow given

knowledge of the track profile ahead of the train, speed restrictions and required

arrival time windows. The control problem is solved both on an open track and while

safely driving no closer than a fixed distance behind another locomotive. In contrast

to other research in the field, this thesis achieves a real-time capable and embeddable

closed-loop optimization with advanced modeling and numerical solving techniques

with a non-linear optimal control problem.

This controller is first formulated as a non-convex control problem and then con-

verted to an advanced convex second-order cone problem with the intent of using a

simple numerical solver, ensuring global optimality, and improving control robustness.

Convex and non-convex numerical methods of solving the control problem are inves-

tigated and closed-loop performance results with a simulated vehicle are presented

under realistic modeling conditions on advanced tracks both on desktop and embed-

ded computer architectures. It is observed that the controller is capable of robust

vehicle driving in cases both with and without modeling uncertainty. The benefits of
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pairing the optimal controller with a parameter estimator are demonstrated for cases

where very large mismatches exists between the controller model and the simulated

vehicle. Stopping performance is consistently within ±25cm of target stations, and

the worst case closed-loop optimization time was within 100ms for the computation

of a 1000 point control horizon on an i7-6700 machine.
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Notation and Abbreviations

SOCP Second Order Cone Program

ATO Automatic Train Operation

ATS Automatic Train Supervision

ATC Automatic Train Control

DAS Driver Assited System

ECOS Embedded COnic Solver

SLSQP Sequential Least SQuares Programming

IPOPT Interior Point OPTimizer

BFGS Broyden-Fletcher-Goldfarb-Shanno Hessian approximation algorithm

KF Kalman Filter

API Application Program Interface

IP Interior Point

PID Proportional-Integral-Derivative controller

ω∗ The optimal value of the associated variable (the optimal solution for ω)
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Table 1: Trip Parameters

K ∈ Z ≥ 0 Discretization size
Vmax ∈ RK ≥ 0 Max allowable speed limit vector (m/s)
V0 ∈ R Current train speed (m/s)
X0 ∈ R Current vehicle position (m)
A0 ∈ R Current vehicle acceleration (m)
Vf ∈ R Speed at the arrival point (0m/s for station a stop).
G(x) Continuous grade acceleration (m/s2)
G ∈ RK−1 Discrete grade acceleration (m/s2)
g = 9.8 Gravitational Constant (m/s2)
X ∈ RK Discrete position vector (m)
∆x ∈ RK−1 ≥ 0 Diff of the discrete position vector
wt, we ∈ R ≥ 0 Time and energy weights for the mixed objective
wbrk, wos ∈ R ≥ 0 Overbraking and overspeeding objective weights
Tmin, Tmax ∈ R ≥ 0 Min/Max limits on arrival time into a station
T ∈ R Current time into trip
Tstart ∈ R Minimum start time in optimization
Tbuff ∈ RK−1 Discrete shifted leading train time profile
tlead(x) Continuous leading train time profile
Xsep ∈ R Minimum separation distance between successive trains (m)
θ(x) Track inclination (rad)
fctl Closed loop control frequency (Hz)
ε ∈ R > 0 Very small positive number
P ∗ ∈ R Optimal primal solution (P ∗ = f(z∗))
D∗ ∈ R Optimal dual solution
K Proper cone
K++ Non-negative orthant cone
Kso Second order cone
Kexp Exponential cone
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Table 2: Train Parameters and Optimization Variables

A(v,Γ) Traction and braking function (m/s2)
C(v) Motion resistance function (m/s2)
Fmin ∈ R ≤ 0 Maximum braking force
Fmax ∈ R ≥ 0 Maximum propulsion force
c0, cv, cv2 ∈ R Davis equation coefficients
r0, rv, rv2 ∈ R Tractive loss quadratic equation coefficients
Γ ∈ RK−1 Control input force (N)
u ∈ RK−1 Control input acceleration (u = Γ/m) (m/s2)
v ∈ RK Speed (m/s)
t ∈ RK Time (m/s)
∆t ∈ R Discrete time step (s)
ρ ∈ RK−1 Inverse speed (s/m)
a ∈ RK−1 Total train acceleration (m/s2)
α ∈ RK−1 Position domain acceleration (1/s)
γ, γ+ ∈ RK−1 Γ/v , and max(Γ/v, 0) respectively (1/s)
ct, ce ∈ R Arrival time cost, trip energy cost
cbrk, cos ∈ R Brake reserve cost, overspeed cost
f(z) ∈ R Minimization Objective
m ∈ R Vehicle mass
Bos ∈ R Overspeed buffer size
Bbrk ∈ R Brake reserve buffer (m/s2)
b ∈ RK−1 Additional overspeed violation variable
h ∈ RK−1 Additional brake reserve violation variable
z ∈ R7K−6 Optimization variable vector
w ∈ R7K−6 Standard form objective weight vector
U ∈ R2K+2,7K−6 Standard form equality constraint matrix
y ∈ R2K+2 Standard form equality vector
Q ∈ R12(K−1)+3(K−1),7K−6 Standard form inequality matrix
Q++ ∈ R12(K−1),7K−6 Non-negative orthant matrix part of Q
Qso ∈ R3(K−1),7K−6 Second order cone orthant matrix part of Q
r ∈ R12(K−1)+3(K−1) Standard form inequality vector
r++ ∈ R12(K−1) Non-negative orthant vector part of r
rso ∈ R3(K−1) Second order cone vector part of r
s ∈ R12(K−1)+3(K−1) Primal slack variables
λ, µ Dual variables in the conic optimization problem
Ef Simulated energy used for completing a trip (J/kg)
Xs Simulated final stopping point of the vehicle (m)
Tf Simulated arrival time at a station (s)
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Table 3: Uncertainty and Parameter Estimation

Y ∈ R Gaussian modeling uncertainty
j ∈ Z Kalman Filter estimation index (time-domain)
n ∈ Z Number of total KF estimates up to the stopping station
E ∈ Rn Priori and posteriori error covariance (KF)
H ∈ R Measurement uncertainty (KF)
R ∈ R Modeling uncertainty (KF)
e ∈ R Inverse mass (KF)
ê ∈ Rn Optimal inverse mass (KF)
l ∈ Rn Measured traction acceleration (KF)
ỹ ∈ Rn Measurement residual (KF)
S ∈ Rn Residual covariance (KF)
χ ∈ Rn Kalman Filter gain (KF)
m̂ ∈ Rn Optimal mass estimate (KF)
X̄ Measured vehicle position m
V̄ Measured vehicle velocity (from speedometer) (m/s)
Ā Measured vehicle acceleration (from accelerometer) (m/s2)
σ2
X Position measurement noise variance (m)
σ2
V Velocity measurement noise variance (m/s)
σ2
A Acceleration measurement noise variance (m/s2)
σ2
a Acceleration modelling variance (m/s2)
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Chapter 1

Introduction

1.1 Background

Global commuter train networks drive an increasing ridership every year and represent

a rapidly growing commercial industry. In the US alone there has been a 27% ridership

increase over the ten year period from 1997-2007 (U.S. Department of Transportation,

2009) and in China the government is presently spending a record 1.25% percent of

its GDP on investments in new rail infrastructure (Renner et al., 2015). In total, the

global light rail market is estimated at a value of $180.78 billion as of 2016 with an

expected growth of 2.3% by 2020 (Leenen and Wolf, 2016). Rail transportation is so

prolific that the railway transportation industry has accounted for 2% of the total

energy consumption in Europe alone (European Commission: Transport Statistics,

2014).

Given the ever-present and increasing need for rail commuter transit, there is great

motivation for reliable, energy efficient and safe on-board control systems for passen-

ger locomotives. Efficient train control can significantly benefit not only total energy
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consumption but greatly improve timetable adherence, reduce overall vehicle CO2

emission, and lessen wear-and-tear on vehicle drive trains (European Commission:

Transport Statistics, 2014; Hofestadt, 1995).

There has been a large global push towards automating or modernizing existing

light urban rail infrastructure, thus bringing forth the need for automatic train op-

eration systems (ATO). ATO systems, contrary to manually controlled rail vehicles,

allow for the added benefits of more accurate timetable adherence, safe and robust

system failure detection and fast subsequent response, and the ability to minimize the

energy expenditure for a given trip. There is a spectrum of ATO automation levels

ranging from semi-automatic operation (STO) to fully unattended train operation

(UTO) (Schifers and Hans, 2000).

A commuter train, contrary to popular belief, is quite a complicated piece of

engineering that has, in practice, been shown to be a challenge to control (Novak

et al., 2015). For fully automated (UTO) control, an automatic train operation (ATO)

controller is charged with driving the train between stations through a selection of

braking and motoring commands. It must do this while remaining below a civil

speed limit and ensuring arrival within a required time window at a station. Above

the ATO system resides an automatic train supervision system (ATS) which monitors

the ATO, computational hardware, and the vehicle itself (Schifers and Hans, 2000).

Effectively, the ATS emergency stops the train when and if the vehicle strays out of

safe operating conditions in both manual and driverless train operation. Together,

these two systems ensure that the vehicle adheres to a timetable in a safe and efficient

manner.

Conventional ATO control techniques in the railway industry mainly rely on PID
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based strategies, where the ATO controller attempts to follow a prespecified speed

trajectory between a set of stations (Zhang and Zhuan, 2015). Due to the lack of any

process knowledge and a simple constant gain multiplier feedback arrangement, the

PID is a reactive controller as opposed to a planning controller and is a compromise

(Reibig, 2011). As such, this type of control inherently presents some issues and

shortcomings. In recent years, there has been an increasing interest in moving away

from classical control strategies to more advanced control architectures due to the

need to resolve increasingly complicated control objectives (LaValle, 2006) and due

to the need for safer operation (Tomlin et al., 1998). This resulted in the general

move away from classical control strategy and towards optimal strategies for rail

vehicle control.

As compared to classical control, optimal control techniques work on the alto-

gether different principle of actively and intelligently re-designing the entire trip (for

an entire control horizon) during every application cycle, whereas classical control

strategies largely rely on combinations of well tuned ad-hoc strategies for decent feed-

back control of simple control objectives (LaValle, 2006). Therefore, for an optimal

controller the present and all subsequent control decisions are the most efficient pos-

sible given a set cost criteria and problem constraints, whereas a classical controller

is only as good as its tuning and is far from optimal for advanced control objectives.

Additionally, the added benefits of an optimal control strategy also allows for ad-

vanced constraining of state and input limits for an entire control horizon (Al-Gherwi

et al., 2013). This is especially interesting for the control of commuter trains since it

allows for the possibility of defining safety constraints and enforcing an optimal con-

trol strategy that resides within them. It should also be noted that optimal control
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techniques would have full knowledge of a locomotive and would therefore be able to

smartly control the train. PID based strategies often require tuning to perform well

within operating bands whereas, assuming accurate model knowledge, a model based

controller such as an optimal controller simply needs to be configured with the known

vehicle model and thus no further tuning would be required (LaValle, 2006).

While a PID can be used as a paired unit following an optimally generated speed

profile, it does not have the flexibility of an optimal controller and is both unusable

for more advanced control objective and cannot actively redesign the speed profile

when encountering large disturbances, modeling mismatch, or on-line changes in trip

constraints (LaValle, 2006).

Research efforts in the field have focused on optimal control of commuter trains as

either a numerical or analytical optimization problem (Novak et al., 2015; Wang et al.,

2011). Analytical methods allow for a closed-form solution to the optimization that

is very fast to compute yet suffers from only being able to support simplistic vehicle

models and control objectives. With realistic models, input constraints and complex

trip objectives, such as are required for advanced train control, traditional analyti-

cal optimization methods become unsolvable. Numerical optimization strategies, on

the other hand, show great promise in their ability to handle more realistic control

problems but traditionally suffer from being slow and computationally expensive in

computing optimal solutions. Additionally, the optimal solution uniqueness together

with global optimality have largely not been addressed with numerical train control

problems (Wang et al., 2011).

Numerical optimal control is usually prevalent in processes with very slow cy-

cles, such as engineering processes where control decision can take minutes to hours
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to compute without negatively affecting closed-loop performance (Al-Gherwi et al.,

2013). Trains, on the other hand, require quite fast control frequencies in order re-

spond immediately to disturbances and maintain an energy efficient control profile

that guarantees a timely arrival. The inherent complexity of the vehicle model, track

and problem constraints make the optimal control problem for a train a challenge.

This, combined with the requirement for a full guideway and high resolution control

horizon all while being real-time capable has largely meant that this control problem

has not been resolved for realistic models in a real-time manner as an on-board system

(Novak et al., 2015; Wang et al., 2011; Liu and Golovitcher, 2003).

1.2 Problem Statement

The objective of this research is to design a fully deployable optimal control system for

a commuter train that is capable of reliably controlling a rail vehicle under all feasible

real world objectives and track configurations. It must do this while being fully

configurable between time or energy efficient driving strategies while ensuring speeds

stay within allowed dynamic track limits, arrival is within an allowed time window,

and with a high final stopping accuracy. All of this must be done while adhering

to very strict computational time constraints, something that has not been possible

with existing numerical optimization strategies, on minimal computing hardware.

This thesis investigates formulating a train control problem as a non-convex con-

trol law followed by a convex transformation of the original non-linear control problem

with the subsequent formulations implemented and the practicality of both systems

as a deployable control system analyzed.
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1.3 Research Overview

The objective of an optimal controller for a rail vehicle is simply to drive a train

between two stations while adhering to strict speed limits with both starting and

finishing at a stopped state. It must do all of this while keeping in consideration

the physical properties of the vehicle, the track conditions ahead and in some cases

the additional constraint of driving no closer than a set distance to another vehicle

sharing the track. To achieve the highest accuracy control trajectory it is most useful

to optimize for an entire guideway and not just for a small window as is usually the

case with simpler model predictive control strategies (Al-Gherwi et al., 2013). This

presents a significant challenge as the guideway must be accurately discretized, and

longer guideways would result in a higher dimensional control problem that would

inherently be slower and more computationally expensive to numerically solve. Fur-

thermore, since railed vehicles are capable of high speed operation, the maximum

allowable controller response time is quite tightly constrained to no more than 100ms

per cycle.

This thesis formulates and implements a controller that is capable of all of the

above. First, vehicle dynamics models are developed in both time and position do-

main. With the models developed, a control law is proposed which takes into account

the true position domain vehicle model with the intent of using it to completely plan

out all control decisions based on vehicle performance for an entire control horizon.

Beyond this, there is a large number of possible constraint variations that can specify

any given trip such as: both lower and upper bounds on arrival times at a station;

speed limits that the vehicle cannot violate which may vary in different track regions

due safety or civil specifications; and strict requirements for high accuracy stopping

6
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when arriving at a station. All of these are implemented as constraints in the opti-

mization. Since there are, in essence, infinite feasible control laws that satisfy these

constraints for any given trip, the next phase is to define a sensible and applicable

objective function to uniquely define what is the most optimal course of control ac-

tion for the ATO to take. Total trip time and energy are chosen for the minimization

criteria of a mixed objective cost function where the weights attached to these criteria

can allow for vast customizability of the objective function.

With the initial formulation being in a non-convex form, the next phase of this

research was to investigate approaches for numerically solving this problem and the

robustness, real-time viability and quality of the resultant solution. Two optimization

packages, NLOPT and IPOT, are compared in this regard. To ensure that the most

realistic timing information is observed for both solvers, the optimization is hard-

coded into their C APIs. It is observed that, while both can solve the aforementioned

control law, neither scales well for larger problem sizes. Because of this, neither is

real-time capable for realistic control horizon dimensions. IPOPT shows substantially

better performance than NLOPT, but both greatly suffer from infeasibility issues

when run in closed-loop with a simulated vehicle model. These problems, along with

the fact that a global optimum would require a multi-start optimization strategy,

under which it may still be unattainable (Pál, 2013), make these numerical techniques

unsuitable for vehicle control and leads to the motivation in reformulating the control

law to a convex representation.

Through significant restructuring of the problem by epigraph and hyperbolic

means, the problem is transformed into a second-order cone problem that is fully

convex. In this form, extensions to the control law are presented as they are quite
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simple to implement and provide significant performance benefits. An additional soft

speed limit, brake reservation constraints and the ability to safely follow another

vehicle are presented as a mix of new constraints and a new augmented objective

function. In a convex form, effective numerical computational methods can be used

to solve the problem that satisfy necessary and sufficient conditions for optimality of

a global optimum (Boyd and Vandenberghe, 2004; Hiriart-Urruty and Lemaréchal,

2013).

To assess the quality of the solutions to the convex problem and to select the best

numerical solver for further development a simple Disciplined Convex Programming

(DCP) environment, CVXpy, is used (Diamond and Boyd, 2016). The convex nu-

merical solvers MOSEK, ECOS, SCS and CVXOPT are compared and all show the

capability to solve the convex control problem with a varying degree of performance

and quality. The convex problem shows very impressive scalability and real-time ca-

pable performance with both MOSEK and ECOS for very large horizon dimensions.

All solvers but SCS are robustly capable of solving the control problem to a high

precision. Through significant testing, and the fact that it is open source (Domahidi

et al., 2013), ECOS is ultimately selected for further development into an embedded

controller.

The control problem is implemented directly into ECOSs C-API in order to elim-

inate the large computational overhead of CVXpy and the subsequent controller is

interfaced to an advanced vehicle model written Lua. The performance of control is

then assessed with closed-loop tests under a wide spectrum of possible control sce-

narios that range from a simple trip on a flat grade all of the way up to long trip

with highly dynamic grade and speed limit profiles subject to safely following another

8
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vehicle. Good performance is observed in all tested situations. Subsequently, perfor-

mance is assessed under modeling uncertainty and plant/model mismatch. A simple

parameter estimator is formulated and tested to improve performance under the pres-

ence of very large plant/model mismatch- showing promising control improvements

when operating in conjunction with the controller. Real-time results are presented

on both desktop and embedded hardware demonstrating that the controller is shown

to be greatly capable in real-time on-board applications.

1.4 Thesis Outline

• Ch. 2 presents an outline of existing literature in the field of train control.

• Ch. 3 develops the train vehicle model.

• Ch. 4 develops a non-convex numerical control strategy.

• Ch. 5 assesses methods of solving the non-convex problem.

• Ch. 6 reformulates the optimal control problem into a convex form and formu-

lates useful extensions to the problem.

• Ch. 7 compares numerical techniques for solving the convex problem.

• Ch. 8 implements the convex numerical control problem as an embedded closed-

loop controller.

• Ch. 9 demonstrates performance results for the optimal convex control system.
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• Ch. 10 demonstrates performance results under uncertainty conditions and

demonstrates the effectiveness of pairing the optimal controller to a parameter

estimator.

• Ch. 11 concludes this thesis and presents possible future directions for this

research.

1.5 Research Contributions over Existing work

• A novel non-convex numerical optimization with the position domain model of a

train. The formulation for this was done in collaboration with Muzamil Rashid

(McMaster University, Department of Electrical and Computer Engineering).

• Comparison testing on the capability of numerical solvers in solving the non-

convex train control problem implementation.

• A novel advanced numerical optimization closed-loop controller as a convex

second-order cone problem that is real-time capable.

• Closed-loop performance tests with the controller both with and without system

uncertainty.

• Globally optimal solution for a numerically optimized train controller.

• Comparison of numerical solvers for the purpose of solving the convex train

control problem.

• Embeddable numerical problem and solver interface for deployment on minimal

hardware.
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• Closed-loop optimal control of a train while maintaining a safe distance behind

another train.

1.6 Related Publication

Submitting to IEEE Transactions on Intelligent Transportation Systems : ”A Convex

Real-time Capable Optimal Controller For a Commuter Train”.

Status: pending industrial review by Thales Canada Transportation Solutions

(TCTS).
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Chapter 2

Literature Review

Research in train speed control methods can be separated into non-optimal and opti-

mal methods that can, to a various degree, drive a railed vehicle. In general, optimal

control methods, especially numerical strategies, allow for the most advanced control

capabilities as is evident in the reviewed research below (Wang et al., 2011; Novak

et al., 2015).

2.1 Non-optimal Control Strategies

Classical control systems, as mentioned previously, involve a collection of ad-hoc

strategies that are tuned until performing as required. Allotta et al. (2013) devised

a switching PID system where good driving and stopping performance was demon-

strated in following a reference speed profile (Allotta et al., 2013). The design featured

three seperately tuned PID systems; two of which tracked the feedback error between

a reference speed signal and the measured velocity for increasing and decreasing speed

regions, respectively; and a stopping PID that was switched to when close to a stop,
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which would be tuned to minimize the stopping error (Allotta et al., 2013). Since their

control approach was not model based and required trip speed profiles to follow, their

approach was neither adaptive nor optimal and suffered from being unable to operate

with more advanced trip objectives and constraints, while requiring significant tuning

for three separate PID systems.

2.2 Optimal Control Strategies

Research into the optimal control of commuter trains is largely distributed between

numerical and analytical optimization techniques. Numerical techniques, such as the

implementations presented in this research, usually allow for more realistic vehicle and

trip models but generally suffer from unreliable global minima and computationally

do not usually allow for a real-time capable control platform (Wang et al., 2011).

2.2.1 Analytical Optimal Control Strategies

In the analytical realm of control, Ichikawa (1968) was the first to solve the optimal

control problem on a simplified train model through Pontryagin’s maximization prin-

ciple (Ichikawa, 1968). Since then, analytical methods have greatly advanced but still

generally suffer from the inability to find a solution when subjected to more advanced

nonlinear vehicle models, track models and trip constraints (Ko et al., 2004).

Albrecht et al. (2016a) formulated a theoretical optimal energy control strategy

that was based on local optimization around grade transitions followed by global

optimization to determine the optimal control switching points along a track (Albrecht

et al., 2016a). Previously, Howlett and Pudney (1995) have proven, through an
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analytical optimization problem, that an energy optimal control profile for a railed

vehicle on a flat grade with a constant speed limit is to MOTOR-SPEEDHOLD-

COAST-BRAKE (Howlett and Pudney, 1995; Albrecht et al., 2016a), as can be seen

in Fig. 2.1. Albrecht et al. (2016a) along with numerous other research have focused

on treating the train control problem as time optimal or energy optimal switching

problems where the transition points for a MOTOR-SPEEDHOLD-COAST-BRAKE

strategy are presented as an analytical or non-convex numerical optimization problem

(Novak et al., 2015). The MOTOR phase represents a region of maximum motoring

power to reach the maximum allowed speed under a maximum allowed acceleration.

In the SPEEDHOLD region, limited motoring is used to counteract resistance forces

and keep the vehicle’s speed close to the maximum allowable speed limit. Afterwards

the vehicle coasts for a period in the COAST phase and then brakes with maximum

force in the BRAKING region. In cases where there is a track grade, such a control

strategy does not hold.

Albrecht et al. (2016a) formulated a local optimization to determine local switch-

ing points for each transition in grade segments and proposed optimal driving modes

for uphill as well downhill segments. The local optimization result was then used

to compute the master switching problem along the entire track. They were able

to demonstrate good off-line optimization results for a relatively advanced vehicle

model. Solutions to their problem required a complicated analytical solving tech-

nique paired with sub-optimal ad-hoc strategies and numerical optimization methods

with a both poorly modeled grade profile and piece-wise constant track model (Al-

brecht et al., 2016b). The controller was not presented in a closed-loop online form

and required several ad-hoc re-computations of the optimal profile to come up with
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a feasible solution (Albrecht et al., 2016b,a). As such, their claim for the existence of

a unique optimal solution is overshadowed by the fact that it is for a sub-optimally

modeled system, and no claim is made on whether or not it is always attainable using

their perturbation methods. In addition, no computational aspects were presented

and their solution did not allow for continuous control input nor did it account for

dynamic speed limit profiles (Albrecht et al., 2016b).

Albrecht et al. (2015) formulated an energy optimal control strategy for cases

where there are two trains driving in sequence one after another on a flat grade

profile in such a way as to maintain a safe distance buffer between them. Their

research focused on a two stage approach. First, the leading train was optimized for

followed by the following in an energy optimal profile. As with the related research

conducted by Albrecht et al. (2016a), the problem was developed as a switching

problem. The following train problem enforces the separation for the two vehicles by

constraining the arrival time at each of the signals along the track for the following

train, such that the following vehicle cannot arrive at these positions earlier than a set

time offset. Their problem formulation was not intended to be run on-line. Methods

of analytically or numerically solving this optimal control problem were not addressed

(Albrecht et al., 2015).

2.2.2 Numerical Optimal Control Strategies

In the realm of numerical train control strategies, Matsuura and Miyatake (2014)

implemented a dynamic programming approach to solving the optimal speed profile

for a train, in both a single-threaded and parallel approach. The vehicle model that
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Figure 2.1: Energy Optimal Control Strategy

they used was significantly advanced involving complicated speed limits, grades, re-

generative braking and even advanced dynamic modeling for cross-car forces. They

were largely interested in controlling freight trains which are known to have signifi-

cantly more advanced models than commuter trains (Matsuura and Miyatake, 2014).

Although they were able to demonstrate a significant computational improvement

when parallelizing their algorithms, their solution was far from real-time capable as

a 1km journey took hundreds of seconds to compute on a parallel cluster (Matsuura

and Miyatake, 2014).

Other numerical research has yielded similar limitations to the work by Matsuura

and Miyatake (2014) and as such has proposed developing optimal control lookup

tables of required trip trajectories based on varying train and trip configurations that

can be loaded in real-time once a train is in motion. Needless to say, this is by no

means an optimal closed-loop strategy and is incredibly computationally expensive,
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completely non-adaptive to changes in trip conditions, and impractical for day-to-day

operation (Vašak et al., 2009; Novak et al., 2015).

Since real-time considerations have generally not been overcome with neither ad-

vanced analytical not numerical optimization techniques, other research has focused

alternatively on the optimal tuning or the optimal design of a suboptimal real-time

capable control strategy. Chang and Xu (2000) demonstrated the effectiveness of

pseudo-stochastic numerical optimization strategies (genetic algorithms and differen-

tial evolution) to optimally select the membership functions for a fuzzy ATO control

strategy (Chang and Xu, 2000). They were able to demonstrate good performance

under advanced grade profiles and non-constant speed limits (Chang and Xu, 2000).

Their tuning objective function was multi-objective and thus the fuzzy ATO controller

could be retuned for different performance criteria. Regardless of this, their control

did not account for the future impact of fuzzy control decision and as such cannot

guarantee arrival times nor smartly select control based on future track conditions

(Chang and Xu, 2000; Welch and Venayagamoorthy, 2006).

Huang et al. (2016) researched into more advanced neural network methods for

controlling the braking system on a train. They used a multi-layer neural network

that was trained via a modified back-propagation algorithm on normal train driving

data with the goal of it learning when to switch to braking for the vehicle. They

demonstrated good performance for transitioning to braking on their testing data

(Huang et al., 2016). As with many other neural network control systems, nothing

was addressed in regards to the reliability of the system (Huang et al., 2016; Kosiński

and Koz lowski, 1998). The reliability of neural networks relies on many factors such

as the size and structure of the network and the reliability of each discrete neuron and
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the training problem. Additionally, the explicit algorithm of operation for a neural

network is not known, and thus not all possible reactions to all possible inputs can be

reliably known (Kosiński and Koz lowski, 1998). Furthermore, at best the controller

will learn from the performance in the training data and thus will only be as energy

or time efficient as the training data is itself. This concern paired with the control

algorithm only being usable for braking with only speed limit adherence and accurate

stopping in mind make this control architecture unsuited to real-world train control

applications.

2.3 Optimal Driver Assisted Systems

Since real-time optimal control has presented a substantial challenge to research, re-

search focusing on industrial applications of such systems has instead reverted to

DAS (driver assisted system) type systems. For these systems, real-time considera-

tions are to a lesser degree a concern as these systems are responsible with supplying

the driver with information as to when optimal control mode switching is encour-

aged. The driver then chooses when and if to follow the DAS output. Thus, these are

not truly closed-loop control architectures. The systems work by receiving timetable,

grade and speed limit information while the train is stationary at a starting sta-

tion and optimally computing the required switching points once, then optionally

(rarely) recomputing them again while the train is in motion (Novak et al., 2015;

Wang et al., 2011). As such, this is not an ATO system and suffers from the inability

of being able to rapidly and reliably compensate for unforeseen disturbances. Despite

this, Siemens, Bombardier, and TTG Transportation Systems have demonstrated a

notable reduction (in some cases up to 23%) in driving energy and have shown an
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added benefit of reduced wear on the tested vehicles (Hofestadt, 1995; Bombardier,

2008; Albrecht et al., 2015).

The TTG Transportation Systems team have developed their own numerical opti-

mization algorithms for their Energymiser product based on the research by Albrecht

et al. (2016a) and claim to be capable of actively recomputing the optimization prob-

lem in several seconds on mainstream hardware. No performance testing or evidence

is supplied to support this claim (Albrecht et al., 2015). Such performance would

again mean that such a system is more suited to a closed-loop DAS system more

than it is to true ATO operation.

2.4 Contrasting with Existing Research

Truly optimal train control methods are often too complex and too slow to solve online

and as such research has largely targeted optimal planning techniques as either off-

line systems or DAS type models (Wang et al., 2011; Novak et al., 2015). This thesis

structures the optimal control problem as an on-board online closed-loop control

system in contrast to the more conventionally researched optimal off-line planning

problems.

This thesis presents a novel globally-optimal convex derivation and implementa-

tion of a commuter train optimal control system that is capable of real-time per-

formance. Contrary to other numerical optimal control techniques in the field, this

thesis does so with an advanced and real-world accurate train model, realistic trip

and track designs (speed limits, arrival times, grade profiles, etc.), both with and

without sharing the track with another vehicle. For several vehicles sharing the same

track this research employs a similar strategy to that of Albrecht et al. (2015), but
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does so for every signal point along the track and not just at signaling points. In

addition, Albrecht et al. (2015) formulated their optimization for a flat grade profile,

whereas the controller developed in this thesis can do this on any arbitrary grade in

real-time.

The convexity of the presented approach assures global optimality— something

uncommon with most numerical optimal control in the field— thus supporting the

notion of a unique control solution (Boyd and Vandenberghe, 2004). Moreover, it

does this by using the entire trip distance (from stop to stop) as the control horizon

as opposed to using only a small subset of the trip, and does not solve for only

switching points but allows for far more dynamic behavior along the track. As the

problem is resolved optimally at every control cycle, any changes in the trip timetable

or speed profiles can be optimized for immediately. The controller presents the ability

of using an advanced mixed optimal objective which can be used to tune the optimal

solution between a minimum energy, minimum time, minimum braking above a soft

maximum, and a soft buffer under the speed limit. As such, the control is highly user

configurable allowing for fine-tuning of the vehicle, safety margins, commuter comfort

and target arrival to allow for the best possible closed-loop performance.

In contrast to other research discussed above, this thesis develops a controller

with the idea of embedded applications in mind. The controller is implemented with

a direct interface to a robust second-order cone problem solver (ECOS) and shows

real-time capability with an advanced train model, sensor and model uncertainty on

non-trivial guideways and trip configurations on both x86-64 machines and embedded

ARM computers.
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Chapter 3

Model Formulation

The control objective for normal commuter train driving involves balancing traction

and braking effort subject to hardware limitations, knowledge of the track and trip

constraints. For efficient optimal control trajectory planning, accurate knowledge

of the dynamics of the locomotive vehicle are required, and as such are formulated

below.

3.1 Time Domain

The equations of motion of a locomotive can be described with the position (x(ti)(|m|)),

speed (v(ti)|m/s|) and acceleration (a(ti)|m/s2|) states at discrete points in time, ti

(Xu and Wang, 2014; Zhang and Zhuan, 2015). Thus the physics of a train are for-

mulated as a discrete time point mass system that has, at time ti (for i = 1 . . . K), an

applied propulsion or braking command force Γi, motion resistance C(vi), and track

grade acceleration forces G(xi) all in N (Xu and Wang, 2014; Zhang and Zhuan,

2015; Rochard and Schmid, 2000; Boschetti and Mariscotti, 2012). The model can
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be described by the ordinary differential Newtonian equations of motion numerically

integrated via the Euler method as below:

xi+1 = xi + vi∆t (3.1a)

vi+1 = vi + ai∆t (3.1b)

ai = A(vi,Γi) + C(vi) +G(xi) (3.1c)

where the grade acceleration G(xi) is a function of the vertical track inclination

(θ(xi)) as follows:

G(xi) = g sin(θ(xi)) (3.1d)

For convenience, this thesis also refers to the input acceleration u which is represented

as: u = A(vi,Γi). This, as seen in the above equations, represents the acceleration

due to motoring or braking input forces that is felt by the vehicle.

Davis Equation

The motion resistance model C(vi) can be expressed as the Davis equation with

constant coefficients c0, cv, cv2 (Rochard and Schmid, 2000). The coefficients of this

model represent the rolling friction, air resistance, mechanical resistance and other

forms all of which can be captured through a proper selection of c0, cv, cv2 (Rochard

and Schmid, 2000), either through the optimal parameter estimation of vehicle test

data or semi-empirically through equations such as the Armstrong and Swiff resistance

model (Boschetti and Mariscotti, 2012). The model is widely represented in modern

train literature as:

C(vi) = c0 + cvvi + cv2v
2
i (3.2)
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Traction Loss

Traction motors supply the tractive effort needed to move a rail vehicle. They range

from DC series motors and three phase induction motors to hybrid diesel electric

power-trains with complex transmission mechanisms. They may also have advanced

on-board control systems to track provided reference input, limit slip-slide and limit

wear and tear on the motors. Regardless of their mode of operation, rail motoring

systems take in a reference effort as input that must be within their operating range

and output the requested effort on the driven system (Novak et al., 2015; Eugene

A. Avallone, 2006).

It is common for rail electric motors to exhibit tractive effort loss behavior and

have maximum propulsion limits of the form of Fig. 3.1. As a result of the behavior

of electric motors at high speed, it can be expected that when moving fast a train’s

motor would only be able to supply a fraction of the traction force that it would have

otherwise been able to supply when moving at a crawl due to constant maximum

power constraints. In literature, there is general agreement over a two region traction

model. In the first, low speed, region the motor is capable of supplying up to a

constant tractive acceleration force (Fmax). In the higher speed region, the motor

is now in constant power mode where the tractive effort decays along a curve R(v)

(Eugene A. Avallone, 2006). Within this maximum limit, the input to output force

mapping is linear. As a complete model, given that the mass of the vehicle is m and

the maximum braking force is Fmin, the traction acceleration can be represented as:

A(vi,Γi) =
min(Γi, R(vi))

m
for Fmin ≤ Γ ≤ Fmax (3.3)

On a flat grade profile, the hypothetical maximum speed limit occurs along the in-

tersection of A(vi,Γi) and the resistance curve C(vi) (Eugene A. Avallone, 2006).
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In railway literature there are many presented models for the traction curve R(vi),

and a very common representation is as a polynomial of vi. For this vehicle model,

the form below is used:

R(vi) = r0 + rvvi + rv2v
2
i (3.4)

where r0, rv, rv2 are constant polynomial coefficients provided by a vehicle manu-

facturer or through parameter estimation (least-squares) of provided motoring force

curves.

Figure 3.1: Traction Loss and Vehicle Resistance

3.2 Position Domain

In the time domain, the train control optimization horizon is the discretized time

vector t for t = 0 . . . tK with a fixed sampling interval of ∆t (Novak et al., 2015).

The time domain formulation, although mathematically simple, is very difficult to
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use in an optimal control problem due to the inherent non-linearities presented by

the friction, traction and grade models. To address these difficulties, we propose a

reformulation into the position domain.

It has been shown by Howlett and Pudney (1995) that the advanced distributed

vehicle model for a multicar train can be in total represented as a point-mass model

in the position domain (Howlett and Pudney, 1995). Since G(t) is a non-smooth,

non-differentiable function of ti that varies from trip to trip, the train physics can be

reformulated in a way that makes the grade effectively a lookup table, with x as the

independent variable.

The control horizon in the position domain is now along the train position vector

X (Ouyang and Dam, 2011). Therefore the entire distance between two stations can

be discretized into a constant vector X of length K, with a finite differences vector

∆x of length K − 1. The trip grade can be discretized into the vector G of length

K − 1, where each G[i] is the grade acceleration at the corresponding X[i]. This

allows for a substantially more useful representation of the train trip since, for any

given trip, the station distance is a fixed known whereas arrival time can and will

vary given different train models, trip constraints, grade, and other design criteria.

Energy is also simpler to calculate in this domain as it is trivially ΓT∆x - an affine

function of control input. Therefore a simple convex mixed optimization objective of

both time and energy is possible.

In this domain, the equivalent to acceleration is the position domain acceleration

(the partial derivative of velocity with respect to position) α(1/s). Additionally, the

position domain also allows to change the train physics model into a distributed mass

model given only a change in how the constant G vector is calculated (Ouyang and
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Dam, 2011; Novak et al., 2015; Xu and Wang, 2014). The dynamics are transformed

to the following:

ti+1 = ti +
∆x

vi
(3.5a)

vi+1 = vi + αi∆x (3.5b)

αi =
∂vi
∂x

=
ai
vi

=
A(vi,Γi) + C(vi) +G[i]

vi
(3.5c)

These equations are equivalent to the time domain representation of the vehicle

motion Eqn. 3.1.

3.2.1 Resolving Control Singularities

The position domain representation of the dynamics does suffer from a singularity

when the vehicle velocity (v) approaches zero. This in turn causes α to approach

infinity which is a substantial problem in control. This numerical issue can be elimi-

nated by constraining the vehicle velocity to remain larger than an arbitrarily small

value (ε) as:

v ≥ ε (3.6)

where ε is small enough to effectively mean that the train is stopped at v = ε.

3.2.2 Higher Precision Control

Since both vi and ti are evaluated as difference equations, a large ∆x when vi is

small will result in a very large jump from ti to ti+1 resulting in very poor modeling

accuracy. This behavior can be effectively minimized by selecting a large K, such that

∆x is finely sampled enough for this to not be a concern. Alternatively, compared to
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selecting the ∆x profile as a constant, it can be intelligently selected as a non-uniform

profile such that the elements of ∆x are small for track regions where the velocity

is expected to be low and larger otherwise. In this way a shorter control horizon

dimension K can be used without any penalties in low-speed modeling accuracy, thus

resulting in a more computationally efficient optimal control solution.

In practice, a trapeziodal ∆x profile — as demonstrated in Fig. 3.2 — was em-

pirically determined to be sufficient for most normal vehicle driving strategies. This

profile contains increasing ∆x[i] for regions close to the starting station and conversely

decreasing ∆x[i] for regions approaching the stopping station as these regions repre-

sent large increases and decreases in velocity, respectively. The minimum value of ∆x

is chosen to be a small nominal non-zero value.

Other, more optimal selections for the ∆x profile may exist but are outside the

scope of this research and are a potential subject for future research. For this research

the trapezoidal ∆x profile is used in all tests conducted on the optimal controllers

presented.
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Figure 3.2: Trapeziodal ∆x Profile
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Chapter 4

Non-Convex Position Domain

Optimization Formulation

4.1 Non-Convex Formulation

The purpose of the controllers formulated in this research is to simply drive a com-

muter train from some station A to a station B in the most efficient and safe way

possible. This is done by optimizing for the entire optimal control input profile Γ∗ for

the entire distance between the present location of the train and the target station

and subsequently sending the first control element to the vehicle (Γ∗1). This process

is repeated until the train safely arrives at the target. This is not a trivial task by

any means due to both advanced train models and complex guideway constraints.

This thesis assumes that no reference velocity profile is provided to the closed-

loop controller and that it is up to the optimal control system to generate the control

profile for the entire remaining travel distance given only knowledge of the train

model, trip specifications (speed limits, grade profile, arrival time window, etc.), and
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current states of the train. The entire closed-loop control problem is formulated as

follows:

minimize
t,v∈RK Γ,Γ+∈RK−1

f(z) = wttK + we
∆T
xΓ+

m
(4.1a)

subject to:

0 ≤ Γ+ Γ ≤ Γ+ (4.1b)

ε ≤ vi ≤ Vmax[i] i = 2, . . . , K − 1 (4.1c)

v1 = V0 vK = Vf = 0 (4.1d)

ti+1 = ti +
∆x[i]

vi
i = 1, . . . , K − 1 (4.1e)

t1 = Tstart (4.1f)

Tmin ≤ tK ≤ Tmax (4.1g)

Fmin ≤ Γ ≤ Fmax (4.1h)

Γi ≤ r0 + rvvi + rv2v
2
i i = 1, . . . , K − 1 (4.1i)

vi+1 = vi + (c0 +G[i] +
Γi
m

+ cvvi + cv2v
2
i )

∆x[i]

vi
for i = 1, . . . , K − 1 (4.1j)

The objective of the control problem is a mixed cost one with weight wt on arrival

time and weight we on non-regenerative trip energy. This allows for simple tuning

for a spectrum of control objectives simply by the selection of weights to achieve a

pure time, energy or mixed objective. This allows the controller, for example, with

a mixed objective to minimize the energy used when there is an active constraint of

Tmin on the arrival time at a station. Thus, since the time cannot be minimized below

Tmin, the energy will be minimized instead.

An additional auxiliary variable Γ+ is added to extract only the positive control

applied to the train for use in the energy calculation in the objective.
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The total trip energy per unit mass can then be evaluated as (∆T
xΓ+)/m |J |. The

unit energy is more useful than the actual trip energy since the objective function

should not place more emphasis in energy minimization for a heavier vehicle than

it would for a light vehicle regardless of their passenger loading levels. This can

equivalently be rewritten as (∆T
xmax(Γ, 0))/m with the auxiliary variable removed,

but the former is more useful as it is at least twice continuously differentiable and is

already in an affine formulation. The time objective of the cost function minimizes

the arrival time tK .

The entire mixed control objective is defined as (Eqn. 4.1a):

minimize
t,v∈RK Γ,Γ+∈RK−1

f(z) = wttK + we
∆T
xΓ+

m

where Γ+ is defined as the following epigraph transformation and is equivalent to the

motoring input applied on the vehicle (Eqn. 4.1b):

0 ≤ Γ+ Γ ≤ Γ+

The vehicle’s velocity is constrained to be positive and within a safe required civil or

track speed limit. It is constrained from below by the small positive number ε to stop

control singularities in the optimization and disallow driving in reverse. Therefore,

the speed is constrained as follows (Eqn. 4.1c):

ε ≤ vi ≤ Vmax[i] i = 2, . . . , K − 1

The initial velocity is then constrained as the current measured velocity of the train

(V0) — equaling ε on the first optimization cycle when the train has not yet left the

starting station. The velocity at the target station at X[K], is set in such a way

as to force the train to arrive stopped at the station. It is not necessary to set the

stopping speed to ε since it cannot cause a singularity and as such the final stopping

30



M.A.Sc. Thesis - Dennis Ion Yazhemsky McMaster - Electrical Engineering

speed is constrained to zero. Therefore, the terminal velocity constraints are set to

be (Eqn. 4.1d):

v1 = V0 vK = Vf = 0;

where ε is sufficiently small such that the train has to continue braking for an in-

significant fraction of a second more after reaching X[K] at Vf . This ensures that the

final stopping distance error is inconsequentially affected.

The time at each segment along the track can be evaluated as follows (the same

as Eqn. 3.6a) (Eqn. 4.1e):

ti+1 = ti +
∆x[i]

vi
i = 1, . . . , K − 1

with the initial time being zero when at the starting point and the current runtime

of the trip when the train is in motion. It is constrained as (Eqn. 4.1f ):

t1 = Tstart

Thus, the arrival time at X[K] can be constrained from above and below by predefined

minimum and maximum allowable trip traversal time limits (Eqn. 4.1g):

Tmin ≤ tK ≤ Tmax

The braking limit and constant traction region of the traction loss motoring model

(A(vi,Γi)) are defined as the inequalities (Eqn. 4.1h):

Fmin ≤ Γ ≤ Fmax

The nonlinear region of the traction loss model (R(v)) is also introduced as an in-

equality constraint (Eqn. 4.1i):

Γi ≤ r0 + rvvi + rv2v
2
i i = 1, . . . , K − 1
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Finally, the dynamic model for the vehicle velocity (Eqn. 3.6c) is constrained, result-

ing in the recursive equality equation (Eqn. 4.1j ):

vi+1 = vi + (c0 +G[i] +
Γi
m

+ cvvi + cv2v
2
i )

∆x[i]

vi
for i = 1, . . . , K − 1

4.2 The Closed Loop Problem

The full control problem can be defined as a closed-loop version of Eqn. 4.1. In this

way a horizon x is discretized along the entire track spanning from the start station

to the stop station, resulting in a known X, ∆x, Vmax, and G. The closed-loop control

behavior can then be determined via solving Eqn. 4.1 for the optimal Γ∗ that satisfies

all of the constraints and results in the optimal cost f(z∗). The first element of Γ

(Γ1) is then extracted and applied to the vehicle plant. In the next feedback cycles,

X0, Tstart and V0 would be measured from the vehicle and fed back resulting in the

receding horizon shortening X, ∆x, Vmax, and G. The shrinking of these vectors can

be accomplished by the simple algorithm:

The current location on the guideway is used to search for the index (j) of the closest

element of X to the current position X0, such that:

X[j] ≤ X0 X[j + 1] ≥ X0 (4.2a)

Vmax and G then have their initial access pointer moved to the j’th index, having the

effect of popping off used up elements of theses vectors.

Vmax = [Vmax[j], Vmax[j + 1], . . . , Vmax[K]] (4.2b)

G = [G[j], G[j + 1], . . . , G[K − 1]] (4.2c)

The same is done with X and ∆x, but initial point of X (X[1]) is then updated to
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the current X0 and ∆x[1] is the first finite difference of X.

X = [X0, X[j + 1], . . . , X[K]] (4.2d)

∆x = [X[2]−X[1],∆x[j + 1], . . . ,∆x[K − 1]] (4.2e)

This is a very computationally efficient implementation as it removes the need for

re-allocating and re-discretizing the problem vectors.

The full control architecture can be seen in Fig. 4.1. Although the optimization

problem is implemented in the position domain, the closed loop control law is imple-

mented in the time domain resulting in a consistent response time in control updates.

In this structure, Eqn. 4.1 is resolved at resolved each 1
fctl

seconds until the train ar-

rives and stops at the target. In this way, the closed-loop re-optimization would allow

for resolving modeling inaccuracies and external disturbances all while maintaining

optimal driving behavior and rapidly adapting to changing problem specifications.

Optimal
Controller

Train
Plant

X, � x

Vmax

G

Track Database

Fmin ,Fmax

m
c0 ,cv, cv2

r0, rv, rv2

Vehicle Con�guration

Tmin, Tmax

wt, we, wos, wbr

Bos, Bbrk

Trip Limits and Objective

clock

V0 X0

Tstart

�1

Figure 4.1: Controller Architecture

The track, model parameters and trip objective weights are all loaded from databases

at each optimization cycle. Therefore, as the track horizon recedes, the controller pulls

up the remaining speed and grade profiles (for the area ahead of the train) from the
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database. Should the vehicle model change during operation, the updated model pa-

rameters can be supplied to the optimal controller. This is useful in situations where

there is poor knowledge of the vehicle model in which case a real-time parameter

estimator can be used to actively re-estimate the vehicle model and supply increas-

ingly more accurate parameters to the optimal controller (Vukov et al., 2015). The

trip limits can also be changed at any control cycle. For example: considering a case

where an optimally driven vehicle had driven a significant fraction of the distance

to its target station when it, with no prior warning, receives an instruction from the

ATS timetable scheduler that it must delay its minimum arrival time to the target

station by a fixed amount of time. In this case a new Tmin can be supplied to the

optimal controller and the control system will immediately adapt the optimal driving

profile given this new information, thus assuring safe adherence to the ATS limits.

For any given trip, running with an optimal controller in feedback can assure

that the vehicle always stays within allowed trip constraints through optimal closed

loop corrections (Vukov et al., 2015). In addition, recomputing the optimal driving

profiles allows the controller to take advantage of non-constraint violating feedback

error and respond in an efficient way without unnecessarily expending energy or

causing passenger discomfort by altering the entire future control trajectory instead

of immediately and aggressively reacting to potentially favorable local disturbances.

For instance: a disturbance that causes a higher than expected increase in vehicle

velocity will allow the optimal controller to re-plan a trajectory that immediately

corrects if a constraint violation is immediately imminent, or using the advantage

gained by this increase and adjusting the future control strategy to be even more

time or energy optimal that it was in the previous cycle.
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Altogether, closed-loop re-optimization with updating vehicle states paired with

the ability to change the trip and vehicle model in real-time allow for a highly adaptive

and robust control architecture.
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Chapter 5

Numerical Solutions to the

Non-Convex Control Problem

As a non-convex problem, the optimal control profile can be optimized by a variety of

robust non-convex numerical solvers. The motivation in doing so is to test the real-

time capability, optimality and reliability of using a non-convex numerical optimizer

with the non-convex optimization formulation (Eqn. 4.1 ) for the closed-loop on-board

control system. Other research in the field has largely noted that real-time and

robust performance is not usually apparent with non-convex numerical control (Wang

et al., 2011). To see if this claim is shared with the novel non-convex representation

formulated in this paper, the early stages of this research focused on determining the

practicality with which Eqn. 4.1 can be solved for numerically using the non-convex

NLOPT SLSQP solver package as well as IPOPT environment.
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5.1 NLOPT

NLOPT is a free and open source MIT licensed solver package (although some of

the internal solvers are licensed with the less liberal GNU GPLv3 license) that in-

cludes a wide collection of local and global optimization algorithms for solving un-

constrained, equality constrained or inequality constrained non-convex optimization

problems (Johnson, 2014). The package has bindings to numerous programming lan-

guages such as: C/C++, Python, Matlab, Julia, R and other mathematically oriented

environments. Since the computational efficiency of numerically solving the control

problem is of utmost importance, the lowest level and fastest implementation was

used and thus the control problem was written in C and used the NLOPT native C

interface.

Due to the specific need for both equality and inequality constraints to define

the non-convex train control problem, NLOPT’s SLSQP (Sequential Least Squares

Programming) solver was used as it was the only provided solver suitable for the

required problem structure. NLOPT has, in addition, some pseudo-stochastic solvers

that could be used to solve the problem but these were not of notable interest, due

to the poor computational performance and reliability usually attributed to solvers

employing variations on the Genetic Algorithm method (Datta, 2012).

The implementation of the SLSQP method used in NLOPT is of the form pro-

posed and implemented by Kraft (1994) and is a Quasi-Newton method that uses a

dense matrix BFGS methods for Hessian matrix approximations using the supplied

problem gradient information (Kraft, 1994). Therefore it is not advertised as being

highly scalable and has O(n2) storage and O(n3) time scaling for an n dimensional
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problem, and is thus only suited for problems with generally less than 1000 optimiza-

tion variables (Kraft, 1994; Malouf, 2002).

The non-convex control law was implemented in C and interfaced to NLOPT’s

SLSQP method with supplied gradient information and BFGS approximated Hessian.

A simple flat grade and constant speed limit problem was then solved only once as

an initial optimization problem (with V0 = 0, and Tstart = 0), with the results given

in Tab. 5.1 and Fig. 5.1

K = 30 60 90
Time Optimal Objective 28.7 245.0 992.5

Energy Optimal Objective 280.0 2.0e3 129.0e3

Table 5.1: NLOPT Initial Horizon Optimization Times (ms) (AMD FX6300)
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Figure 5.1: NLOPT Mixed Objective, Flat Grade (Open Loop) for K=90
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As evidenced by Tab. 5.1, NLOPT’s SLSQP solver does scale very poorly and

can really only be usable in closed-loop control for K = 30 due to its slowness.

Performance was seen to widely vary given a different selection of control objectives.

As can also be seen from Fig. 5.1 the problem is solvable with the SLSQP method to

an optimal control profile similar to the expected flat grade optimum of the form of

Fig. 2.1. Regardless of this, the small value of K results in a rather unstable control

profile in the speedhold region. The slowness of SQP methods with quasi-Newton

Hessian approximations, like SLSQP, in solving large or badly-scaled problems has

been noted in other research (Schittkowski, 1982; Morales et al., 2011; Malouf, 2002).

Realistically, such a small horizon dimension cannot provide accurate vehicle modeling

for control on any reasonable track length and thus SLSQP is an unsuitable non-

convex optimizer for vehicle control.

5.2 IPOPT

IPOPT is a package for non-linear optimization using a primal-dual method with a

filter line search algorithm developed by the COIN-OR project team (Wächter and

Biegler, 2006). Like NLOPT, it too is available with bindings to other mathemat-

ical programming languages, but only the C implementation is of interest for this

research. It is an open source project, but in contrast to NLOPT it does allow for

using commercial subsolver routines to accelerate optimizations and allow for more ro-

bust problem solutions. In the implementation paper by Wächter and Biegler (2006),

IPOPT showed favorable results in solution time, iteration count and function eval-

uations as compared to the commercial LOQO and KNITRO solvers (Wächter and

Biegler, 2006). The algorithm contains significant heuristic correctional features and
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thus claims to be robust at solving large-scale optimization problems.

As mentioned previously, the solver is capable of using a large variety of sparse

symmetric indefinite matrix subsolvers in its algorithm to accelerate the problem

computation such as: MUMPS (MUltifrontal Massively Parallel Sparse direct Solver)

(Amestoy et al., 2015), WSMP (Watson Sparse Matrix Package) (Gupta, 2000) or

numerous COIN-OR HSL routines (Wächter and Biegler, 2006). It should be noted

that of the three, only MUMPS is open-source and is therefore the prime candidate

for use in this research. Although MUMPS is capable of multi-threaded math opera-

tions, the IPOPT interface to MUMPS does not support parallelization (Wächter and

Biegler, 2006). The non-convex formulation was realized and tested with the IPOPT

solver compiled with the MUMPS linear subsolver (Wächter and Biegler, 2006) and

compiled under Linux with the efficient and paralleliseable openBLAS linear algebra

routine directly through its C API. To further improve solver robustness and speed,

the gradient and Hessian information for the objective, equality and inequality con-

straints were specified. Thus, no Hessian approximation is performed by IPOPT. It

should also be noted that the problem is highly sparse, and as such all matrices were

supplied to IPOPT sparsely to take full computational advantage.

Linear Sub-Solver K = 30 90 150 300 600 3000
Min. MUMPS <1 15 38 1,399 18,192 6,883
time WSMP 12 20 28 36 85 392

HSL MA57 8 16 4 31 2,406 8,231
Min. MUMPS 12 24 40 116 286 1802

energy WSMP 15 24 40 60 189 1573
HSL MA57 6 12 16 35 56 503

Table 5.2: IPOPT Initial Horizon Optimization Times (ms) (AMD FX6300)

In Tab. 5.2 the only free and open-source solver was MUMPS whose general
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Figure 5.2: IPOPT Mixed Objective, Flat Grade (Open Loop) for K=300

performance was overall worse as compared to the commercial solvers (WSMP and

HSL). As was evident with NLOPT, the optimization time is largely inconsistent

between time optimal and energy optimal control regimes and the problem scaling

is quite poor. The unpredictable nature of non-convex problem computation can be

witnessed in the anomalous behavior with MUMPS for K = 600 and K = 3000, as

the solver converges faster for the larger horizon size. This may be due to the solver

attempting to solve a nearly infeasible problem for that particular value of K, memory

alignment issues in MUMPS’s linear algebra routines causing stochastic behavior for

large problem sizes, or alternatively due to the chosen starting point resulting in a

longer search for an optimal solution (Wächter and Biegler, 2006; Amestoy et al.,

2015).
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The mixed objective optimization (Fig. 5.2), as was evident with NLOPT, yields

the expected optimal control profile as established by Howlett and Pudney (1995).

In practical initial open loop testing, the IPOPT solver could solve small scale

problems with a coarse horizon to a small duality gap and relatively quickly. Regard-

less, when converted to a closed-loop architecture the performance was not reliable

in terms of the optimization time, solution quality and solver feasibility (the ability

to find a feasible point that satisfies all problem constraints). In many cases the

solver would terminate sub-optimally (with a very large predicted duality gap) in the

allowed optimization time or with an infeasible solution regardless of the subsolvers

used. This causes quite aggressive closed-loop behavior and the complete controller

performance was quire poor, unreliable, and very slow in energy efficient modes.

Therefore, since reliable real-time control is a primary design criteria of the proposed

closed-loop control architecture, there is great motivation in abandoning IPOPT in

favor of more robust convex routines. Before this is possible, Eqn. 4.1 needs to be

reformulated as a convex optimization problem.
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Chapter 6

Convex Optimization Formulation

6.1 Convex SOCP

Eqn. 4.1 is a non-convex optimization problem and therefore suffers from the inher-

ent issues associated with these classes of problems. Firstly, given the definition of

convexity, the non-convex control formulation may not be able to attain the global

optimum at each optimization cycle, whereas any local optima for a convex prob-

lem (given strong duality), by definition, is a global minima (Hiriart-Urruty and

Lemaréchal, 2013). The way that this issue can be addressed for a non-convex prob-

lem, to a degree, is via a multi-start approach given a random or pseudo-random

selection of the initial problem guess. Due to the real-time sensitive and robustness

requirements of an efficient and safe train optimal controller, multi-starting a suffi-

cient number of starting points such as to, with a sufficient probability, approach the

global optimum is not realizable (Mart́ı et al., 2013). This problem is not present with

convex optimization strategies. On a practical consideration, non-convex solvers are

fewer in number, less efficient and inherently slower than their convex counterparts
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(Hiriart-Urruty and Lemaréchal, 2013).

Convex problems largely benefit from their highly scalable nature (Domahidi et al.,

2013; MOSEK ApS, 2015), allowing for fast solutions to vastly larger problems that,

for the case of this control problem, allow for a more accurate determination of the

optimal trip profile for a train. Therefore, an optimal train controller would be more

robust if it were to be reformulated as a convex problem.

Eqn. 4.1 can be modified into a convex realization and structured as a second-

order cone problem with a minimal reformulation into a relaxed problem, allowing

not only for an approach that does not suffer from the same issues as the non-convex

formulation but also allows for interesting and invaluable extensions to the problem.

This is done by first replacing the control force Γ with the auxiliary variable γ, such

that γ = Γ/v. Furthermore, an additional optimization variable ρ is introduced such

that ρ = 1/v. Thus, the convex control problem will look as follows:

minimize
ρ,γ,γ+∈RK−1 v,t∈RK

f(z) = ct + ce = wttK +
∆T
x (weγ

+)

m
(6.1a)

subject to:

ε ≤ vi ≤ Vmax[i] i = 2, . . . , K − 1 (6.1b)

v1 = V0 vK = Vf = 0 (6.1c)

t1 = Tstart (6.1d)

Tmin ≤ tK ≤ Tmax (6.1e)

ti+1 = ti + ρi∆x[i] i = 1, . . . , K − 1 (6.1f)∥∥∥∥∥∥∥
2

vi − ρi

∥∥∥∥∥∥∥
2

≤ vi + ρi i = 1, . . . , K − 1 (6.1g)
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Fminρ ≤ γ ≤ Fmaxρ (6.1h)

0 ≤ γ+ γ ≤ γ+ (6.1i)

γi ≤ r0ρi + rv + rv2vi i = 1, . . . , K − 1 (6.1j)

vi+1 = vi + ((c0 +G[i])ρi +
γi
m

+ cv + cv2vi)∆x[i] i = 1, . . . , K − 1 (6.1k)

The objective function remains unchanged from Eqn. 4.1a for the minimum time

cost. Since Γ is no longer an optimization variable in the convex reformulation, an en-

ergy efficient similar objective of ce = (∆T
xweγ

+)/m is presented instead, where γ+ is

the non-negative of γ (γ+ = max(0, γ)). Physically, this new objective represents rep-

resents a momentum minimization. Therefore, as with the non-convex case, through

adjusting the ratios between wt and we the switching point between the speedhold,

coasting and braking regions can be tweaked. For active Tmin and Tmax, the energy

objective weight we allows for effectively minimizing total energy expenditure as is

demonstrated in the results section of this paper.

Thus mixed time and energy objective is combined to Eqn. 6.1a:

minimize
ρ,γ,γ+∈RK−1 v,t∈RK

f(z) = ct + ce = wttK + ∆T
x (we

γ+

m
)

Although the convex energy objective term is physically a momentum minimization,

it can empirically and experimentally be shown that it behaves identically to the

true non-convex energy strategy. Fig. 6.1 compares the optimal solutions for a mixed

objective given trip with we/wt = 0.01 . . . 100 where the non-convex problem was run

through a multi-start strategy to increase the probability of converging to the globally

optimal solution. The non-convex case was solved with the IPOPT solver, whereas

the convex problem was solved with ECOS — an interior-point solver that is used and

detailed extensively throughout the rest of this research. It can be seen that both the
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convex and non-convex objectives converge to the same optimal solution f(z∗). Due

to the globally optimal nature of the convex formulation in some regions of Fig. 6.1

the convex problem is more optimal than the non-convex objective.
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Figure 6.1: Optimal Solutions with Convex and Non-Convex Objectives

As a consequence of the different physical meanings and scaling of the energy

minimization objective terms in the convex and non-convex case, it is expected that

a different we/wt ratio is required in the convex case for converging to the same

optimal point as the non-convex case. This can be seen in Fig. 6.2, and 6.3 .

These figures can be used to select the ratio of we/wt such that the required

balance between trip time and energy can be achieved for a problem with a loosely

constrained final arrival time for both the convex and non-convex case.

The rest of the problem remains almost identical to the non-convex case, but with

the new auxiliary variables substituted. The following constraints remain unchanged

from Eqn. 4.1 (Eqn. 6.1b-e):

ε ≤ vi ≤ Vmax[i] i = 2, . . . , K − 1

v1 = V0 vK = Vf = 0
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Figure 6.2: Optimal Solutions with Convex and Non-Convex Objectives: Arrival
Time

t1 = Tstart

Tmin ≤ tK ≤ Tmax

ρ is substituted into the recursive time equation Eqn. 4.1e to result in (Eqn. 6.1f ):

ti+1 = ti + ρi∆x[i] i = 1, . . . , K − 1

ρ = 1/v being a strictly non-convex constraint is first relaxed to the inequality ρ ≥ 1/v

and then reformulated as an equivalent hyperbolic constraint. Thus it becomes a

second-order cone constraint of the form (Eqn. 6.1g):∥∥∥∥∥∥∥
2

vi − ρi

∥∥∥∥∥∥∥
2

≤ vi + ρi i = 1, . . . , K − 1

With downwards pressure on ρ from the minimum time objective (ct = wttK) and no

other interfering constraints on ρ, it can empirically be seen that for any given feasible

problem where ct � 0, ρ∗ = 1/v∗ holds at optimum. It should also be noted that

through empirical testing, downwards pressure from the minimum energy objective

(ce) can also reduce the ρ∗− 1/v∗ gap to a small margin (but not true equality) such
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Figure 6.3: Optimal Solutions with Convex and Non-Convex Objectives: Trip Energy

that normal (but suboptimal) driving is apparent.

The additional benefit of a relaxation such as this is that even given infeasible

control problems (e.g. the maximum arrival time Tmax is below the minimum possible

tK) the controller will violate the activity of ρ∗ = 1/v∗ resulting in a situation where

ρ∗ > 1/v∗, but maintaining a feasible control problem. In reality, this will be detected

by the ATS and the problem specification can be altered to result in a feasible control

problem. In this event the controller will continue functioning sub-optimally but safely

until feasible trip specifications are supplied. The physical representation of this slack

is a violation of the vehicle control input constraints through Eqn. 6.1h, and as such

this equation would be relaxed to allow the controller to demand more propulsion or

braking than is available. This in turn keeps the problem feasible in cases where the

provided problem constraints result in a physically infeasible optimization problem.

Since all problems provided to the optimal controller are strictly feasible this will not

happen and ρ∗ = 1/v∗ will be true at optimum.

Given the large number of complex constraints and great variability in vehicles,
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trips and driving objectives an analytical proof for the stationarity at optimality of

the hyperbolic constraint is far beyond the scope of this implementation oriented

research and may be sufficiently difficult as to be practically not realizable.

Given that ρ = 1/v and γ = Γ/v, Eqn. 4.1h can trivially be converted to the

equivalent set of inequalities (Eqn. 6.1h):

Fminρ ≤ γ ≤ Fmaxρ

Since the non-negative control input is required for the energy efficient objective

function it must be isolated. The following is equivalent to Eqn. 4.1b due to the fact

that v is strictly positive as a result of Eqn. 6.1b (Eqn. 6.1i):

0 ≤ γ+ γ ≤ γ+

The non-linear traction loss region model (Eqn. 4.1i) is converted to convex form

through the substitution of γ and ρ (Eqn. 6.1j ):

γi ≤ r0ρi + rv + rv2vi i = 1, . . . , K − 1

The vehicle dynamics (Eqn. 4.1j ) is converted to the affine representation below

through the same substitution of γ and ρ (Eqn. 6.1k):

vi+1 = vi + ((c0 +G[i])ρi +
γi
m

+ cv + cv2vi)∆x[i] i = 1, . . . , K − 1

The entire above formulation (Eqn. 6.1 ) is therefore in convex second-order conic

problem form. This can be verified by comparing the problem structure to the SOCP

review paper by Lobo et al. (1998). Therefore this problem can be numerically opti-

mized by solvers capable of working with conic optimization problems.
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6.2 Advanced Convex Controller Model

Although Eqn. 6.1 is sufficient for closed-loop control, the convex formulation allows

for additional controller features and extensions that can improve controller perfor-

mance under extreme conditions such as:

• Highly restrictive speed profiles that force the optimal controller to drive as

close as possible to the speed limit when running in time optimal mode or with

a restrictive Tmax.

• Cases where there is a substantial brake model or mass mismatch, resulting

in an infeasible stop at a station due to the optimal controller planning an

unachievable high brake rate in the braking region.

• Safely driving a train that has another train in front of it along the same route,

and ensuring safety and optimality throughout the entire process.

Therefore, to achieve all of the above, the convex optimization is extended to ad-

dress the mentioned issues with a substantial change for the control objective function

f(z) and the introduction of additional system constraints.

6.2.1 Overspeed Compensation

Although controller performance was acceptable in closed loop simulated tests, there

is a significant issue in control which becomes apparent when a train is riding at or

near the maximum permitted guideway speed Vmax in the SPEEDHOLD region. As

a result, any noise or model mismatch that forces the train’s velocity to be registered

as above the speed limit (whether it is in fact or the sensor noise makes the controller
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think that this is the case) will force the optimal controller to react with an agressive

response.

Large overspeeding can also cause an infeasible V0 to be provided to the controller,

if the speed is sufficiently above Vmax such that the controller cannot feasibly reduce

the velocity before the next discretization point along X. This is a potentially serious

issue because the controller will not be able to optimize the trip without disabling

the activity ρ ≥ 1/v set of constraints. Furthermore, of more serious concern is that

any violation of Vmax will cause the ATS to deploy the emergency brake.

A solution is presented via additional soft constraints on the speed limit and

increasing objective penalties when the train velocity is within a soft limit of the

allowed speed limit (Vmax). Therefore a speed buffer (Bos), which represents a buffer

below Vmax, is introduced with the intended effect of adding cost penalties when

exceeded and none when operating below, thus favoring control trajectories staying

out of the buffer. Additionally, when a disturbance forces the vehicle’s measured

speed to violate this buffer, the resulting situation remains a feasible problem that

the controller can cope with a preferably minimal amount of undesired braking.

A soft speed buffer was formulated in the controller through an additional cost

term of the form:

cos = ∆T
xwos max(v − (Vmax −Bos), 0) (6.3)

where Bos is the range of the penalty buffer (m/s). This additional objective evaluates

to zero for v ≤ Vmax − Bos or becomes a linear function of the amount of buffer

violation otherwise. It can be equivalently represented in the standard form for a

linear objective by introducing an auxiliary optimization variable b such that, through
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an epigraph transformation:

cos = wos∆
T
x b (6.4)

with the additional convex inequalities:

b ≥ 0 (6.5a)

bi ≥ vi − (Vmax[i]−Bos) i = 1, . . . , K − 1 (6.5b)

The overspeed objective tuning weight (wos) can then be empirically determined

based on the required level of enforcement and required aggressiveness of the control

response if the vehicle is in the buffer.

6.2.2 Reserve Braking

In normal train operation, the maximum braking is usually constrained to a fraction of

the full emergency braking capabilities of vehicle (Wang et al., 2011). Since Eqn. 6.1a

does not penalize braking (although it does rigidly limit the maximum allowable

braking), when a train approaches an edge where Vmax decreases or the train is

approaching a stop, the controller will hold off braking until the latest possible point

(due to a minimum energy or minimum time control behavior). This can cause an

overspeed if there is a significant modeling mismatch in the braking capabilities of

the train or if the position estimation on the train is poor. Furthermore, very large

braking can be quite uncomfortable to passengers. Therefore there is motivation

in reserving some brake effort for the event of such an occurrence in a way that

the controller can still demand extra braking if required, thus ensuring the control

problem remains feasible.

By adding additional soft constraints on braking and adding a weight cbrk to the
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cost, excessive braking can be minimized. In a similar way as overspeed compensation

was implemented above, an over-brake penalty is introduced in the form of:

cbrk = ∆T
xwbrk max(γ+/m− γ/m−Bbrkρ, 0) (6.6)

where Bbrk is the desired maximum brake deceleration level (m/s2) such that Bbrk <

−Fmin/m. Therefore, Fmin/m − Bbrk is the amount of braking that is reserved for

the event of an emergency. For example: assuming that Bbrk = −0.8Fmin/m, the

controller will design input trajectories that stay within 80% of the maximum possible

brake level (for wbrk � 0). Thus when the vehicle approaches a pooled brake region

the controller can demand up to an additional 20% braking effort if it is required. As

in the overspeed case, an empirical selection of wbrk is required such as to force the

optimal control solution vector (Γ∗) to be one where future brake effort is no greater

in acceleration magnitude than Bbrk.

As was required in the case of the overspeeding compensation, this objective is

reformulated to a convex form in the same way as previously. In this formulation, an

auxiliary variable h is introduced and cbrk is reformulated as:

cbrk = ∆T
xh (6.7)

with the additional convex constraints on h of:

h ≥ 0 (6.8a)

h ≥ γ+

m
− γ

m
−Bbrkρ (6.8b)
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6.2.3 Successive Trains Simultaneously Sharing the Same Guide-

way

When maximizing headway (minimizing arrival time) a train scheduler will force a

maximum number of trains onto the guideway. Thus, there may be instances where

several trains are required to traverse an area between two stations one after another,

effectively sharing the track (Cordeau et al., 1998). This represents some safety

concerns for an optimal control regime as an ideal optimal controller must be able

to maintain some reasonable safety buffer between the vehicles to ensure safety and

remove any chance of collision.

In the position domain it is quite straightforward to formulate a leading/following

train model given the following assumptions:

• There can be any number of trains driving one after another.

• The motion of a following train (rear) is constrained by the motion of the leading

train (front), where leading and following trains are as demonstrated in Fig. 6.4

and Fig. 6.5.

• Leading trains may be optimally controlled, but this is not necessary for the

optimal control of a following vehicle. Although this is the case, it is necessary

for the following train to be able to predict the entire trajectory of its leading

vehicle. Therefore, for this research, it is assumed that the leading train driving

profile (Tlead(x)) is known or can be estimated to a reasonable accuracy.

• Every following train has feasible trip constraints (i.e. Tmin, Tmax such that

following a leading train will not violate them).
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• A required safety buffer distance (Xsep) is known, and can be either a constant

scalar or a sampled vector of a distance separation function (Xsep(x)).

Xsep

LeadingFollowing

tlead(x)*t(x)*>tlead(x+Xsep)*

Figure 6.4: Leading and Following Train Model

tlead(x)

Tbuff(x)=tlead(x+Xsep)

x=0m

Tstart

Xsep

x

t

Figure 6.5: Following Train Time Constraint

Fig. 6.4 and Fig. 6.5 demonstrate how a leading train can be used to constrain

a following train in the position domain. Since the optimal time profile (tlead(x)∗) is

known, it can be shifted back by the required municipal, customer or safety separation

distance (Xsep) and redescretized along the position vector X of the following train
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such that: t ≥ Tbuff for Tbuff = tlead(x + xsep). In order to accommodate more than

two trains on a given track segment, simply each and every train must be running the

optimal ATO and have a communication line with their immediate leading train. The

leading train can then communicate back its T (x)∗ profile and the following trains

will constrain themselves to avoid collisions with their leader. In this way the control

strategy would propagate back to each and every train on the line. If the guideway is

circular then the last train on the line will close the loop and become a leading train

constraint for the first train on the guideway.

The constraints for the following train can be formulated as the convex inequality:

ti ≥ Tbuff [i] i = 1, . . . , K − 1 (6.9)

In this way the following train can drive optimally behind a constraining vehicle.

Complete Closed Loop Optimization with Advanced Objective

The complete closed-loop control objective with time (ct), energy (ce), overspeed

buffer (cos), and reserve braking (cbr) is:

minimize
ρ,γ,γ+,b,h∈RK−1 v,t∈RK

f(z) = wttK + ∆T
x (we

γ+

m
+ wbrh+ wosb) (6.10)

subject to: Equations 6.1b-6.1k, 6.5, 6.8 and 6.9

Eqn. 6.10 is henceforth referred to as the convex optimization formulation and

the convex controller interchangeably and will be throughly tested and implemented

in the subsequent chapters of this thesis.
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Chapter 7

Numerical Solutions to the Convex

Control Problem

The convex representation, as presented in the previous chapter, is both convex and

in fact in disciplined convex programming form (DCP)(Diamond and Boyd, 2016).

This is quite useful as it allows for the use of CVXpy, a Python disciplined convex

programming modeling library, based on the popular CVX package for Matlab, used

to easily interface a variety of convex problem structures to a wide array of potential

numerical solvers. This allows for a rapid prototype of a convex program and easy

testing under a wide variety of numerical solvers, where changing the program code

to run with a different solver is as simple as changing one code parameter.

Although this is the case, CVXpy is also quite slow and computationally expensive

since is does all of solver interfacing on its own thus providing the user with a simplified

and intuitive rapid prototyping platform. It also does this from a high level language

(Python in this case) thus allowing for a very simple and user friendly code structure.

Therefore, in this research CVXpy is used to determine the most robust, fastest and
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most scalable (preferably open source) solver to directly and efficiently interface and

transform into an embedded closed-loop controller for a real commuter train. Of all of

the solvers available for use in CVXpy only ECOS, MOSEK, SCS and CVXOPT are

capable of solving the convex control problem since they all support conic problems

(Diamond and Boyd, 2016). Since it is based on the matlab CVX package but is not

a direct copy, some conic solvers native to CVX are not wrapped for CVXpy (the

inverse is also true) (Diamond and Boyd, 2016) and as such were not tested in this

thesis.

ECOS (Embedded Conic Solver) is a small footprint SOCP solver that uses a

standard primal-dual Mehrotra predictor-corrector method with Nesterov-Todd scal-

ing and self-dual embedding (Domahidi et al., 2013). It is also fully open source and

implements sparse martix routines for accelerated computation.

Mosek is a well known large scale commercial solver for solving LP, QP, SOCP,

SDP and MIP problems (MOSEK ApS, 2015). The Mosek package contains both ad-

vanced interior point and sophisticated simplex methods for solving convex problems,

but conic problems are solved with its own implementation of homogeneous and self-

dual interior point algorithm (MOSEK ApS, 2015). Mosek utilizes optimized BLAS

(Basic Linear Algebra Subroutines) for rapid computation of large scale problems.

SCS is a modestly accurate fist order conic solver and is the only one in the above

list that is not an interior point algorithm. It uses its own operator splitting and

homogeneous self-dual embedding to solve Symmetric, SOCP, SDP and exponential

cone problems (ODonoghue et al., 2016).
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CVXOPT in contrast to all of the other solvers mentioned is implemented com-

pletely in Python. This means that embedding a convex controller paired with CVX-

OPT is not an option. It supports a wide range of convex optimization problems,

but its conic solver is implemented purely in Python and it too uses an interior point

method (M. S. Andersen and Vandenberghe, 2013).

7.1 Comparing Solvers in CVXpy

Solvers were compared based on their optimization time, scalability, and precision

when solving the convex control problem. Each of CVXpy’s SOCP capable solvers

were configured to terminate when a duality gap of |P ∗−D∗| < 1× 10−8 is achieved,

with all other solver settings left at default. The reader may note that this duality

gap is far tighter than is necessary, but it should be noted that it takes the solvers an

insignificant number of extra iterations to drop the duality gap from approximately

10−2 to 10−8. All solvers were then run with the same problem to compute the open-

loop initial optimization at X0 = 0m and with K = 300 where the resultant quality

of the solution, optimal cost and computation time were compared. The trip and

vehicle were configured as:

c0 = −0.01
m

s2
, cv = −0.001

1

s
, cv2 = −0.0005

1

m

r0 = 2.23× 106N, rv = 0.08× 106kg

s
, rv2 = 0

kg

m

Fmin = −1× 106N, Fmax = 1× 106N, Tmin = 0s

Bos = 1(m/s), Bbrk = 0.5(m/s2), m = 1× 106kg

wt = 1, we = 1, wos = 0.02, wbr = 1
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xf = 1000m,Tmax = 100s

g =


0
m

s2
for 0 ≤ x ≤ 420m

0.1
m

s2
for 420 ≤ x ≤ 480m

0
m

s2
for 480 ≤ x ≤ 1000m

Vmax =

{
18
m

s
for 0 ≤ x ≤ 1000m
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(c) MOSEK
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(d) CVXOPT

Figure 7.1: Numeric Solvers

Fig. 7.1 all demonstrate an optimal solution of the MOTOR-SPEEDHOLD-COAST-

BRAKE form due to a mixed time and energy optimization criterion that is equivalent

to the results displayed in other research (Albrecht et al., 2016a). It should be noted

that there is a grade change in the trip and controller reduces motoring for the region

to prevent an overspeed and to conserve energy. This, combined with there being a
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significant COAST phase, supports the claim that the pseudo-energy objective term

(ce) promotes energy efficient driving behavior. Since we is substantially smaller than

wt in these tests the MOTOR phase is significantly longer than the Coast phase and

the arrival times are all significantly lower than Tmax. The overspeeding and over-

braking constraints also work as expected as the vehicle drives no closer than 1m/s

below the maximum allowed speed limit and reserves 50% of its maximum allowed

braking.

It can be seen that ECOS, MOSEK and CVXOPT all converge to the same f(z∗)

(to a constraint violation of no more than 1× 10−8), whereas SCS returns similar yet

very coarse results. Given the description of SCS as being an “experimental solver

designed to solve larger problems than other CVX solvers typically handle, but to

more modest levels of accuracy” (ODonoghue et al., 2016) it does seem that the solver

lacks the precision needed for solving the train control problem to a satisfactory level.

This can also be seen in its resulting optimal objective value as it is substantially

different from that of the other solvers.

Under all of the tested solvers the optimal solution was one in which ρ ≥ 1/v was

active with a maximum violation of |ρ∗i − 1/v∗i | ≤ 10−8 for i = 0 . . . K − 1, thus

supporting the claim for this constraint being active at optimum.

7.2 Comparing Real-time Aspects of Solving the

Convex Problem

Fig. 7.1 only demonstrates the solution to the convex control problem but it does not

portray the computation time required in obtaining the solution. Thus, computation
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time for solving the problem in Fig. 7.1 is presented in Fig. 7.2, 7.3, and 7.4 .

In Fig. 7.2 and Fig. 7.3 it can be seen that CVXOPT is the slowest solver tested

— most likely due to being written in a high level language (Python) (M. S. Andersen

and Vandenberghe, 2013). It is so much slower than the other solvers that it is not

viable for use as a feedback controller.
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Figure 7.2: CVXpy Solver Time
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Figure 7.3: CVXpy Comparison of ECOS and MOSEK

ECOS and MOSEK are seen to be the fastest of all of the solvers tested and are

very comparable in both primal solution and solve time. Both exhibited nearly linear

scaling for the horizon dimensions tested in Fig. 7.3 and Fig. 7.4. For larger problem

sizes, MOSEK was observed to be notably faster than ECOS. These observations are

comparable to the results of the tests performed by Domahidi et al. (2013), the authors

of the ECOS project (Domahidi et al., 2013). Hardware optimized linear algebra

routines (BLAS and LAPACK) in MOSEK as compared to the minimal CSPARSE

implementation in ECOS may have attributed to the faster MOSEK performance for

large problem horizons.
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Figure 7.4: CVXpy Comparison of ECOS and MOSEK for Large Horizons

For the latter part of this research, ECOS was ultimately selected for development

into a closed-loop control system. This was due to several significant reasons, staring

with the fact that it is open-source (GNU GPL v3 licensed) whereas MOSEK is

a closed source commercial product (MOSEK ApS, 2015). Additionally ECOS was

designed from the ground up to be fully embeddable and is a sparse dedicated second-

order-cone and exponential-cone solver comprised of less than 750 lines of C code

(Domahidi et al., 2013). Due to the open-source and library free nature of the solver, it

is quite straightforward to compile or cross-compile the solver and the entire controller

onto embedded platforms for field deployment. Furthermore, it uses a very efficient

C library for sparse math (CSPARSE) routines including LDL factorization for the

determination of search direction and does not require external dependencies, such as

the BLAS and LAPACK dependencies for MOSEK (Domahidi et al., 2013; MOSEK

ApS, 2015). If required, the algebra subroutines in ECOS can be swapped to hardware

optimized routines to allow for better or comparable performance to MOSEK for large

problem (Domahidi et al., 2013).
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Figure 7.5: CVXpy Overhead

Fig. 7.5 demonstrates how much slower the CVXpy implementation of ECOS is

as compared to the isolated ECOS solver. Since CVXPY takes in the optimization

problem in Disciplined Convex Programming form, if takes a significant amount of

time and computational resources for it to compute the true inputs to ECOS. In fact,

the actual overhead time associated with CVXPY converting the DCP problem into

the format used by ECOS was measured to be consistently no less than 100 times

slower than the amount of time it takes ECOS to solve the problem. This is by

no means a criticism of the CVXpy environment as much as it as an observation of

the limitations associated with using a DCP environment for realtime optimization-

something it was never intended to do in the first place. Therefore, if the problem

can be supplied to ECOS in the exact form that the solver requires as input the huge

overhead can be greatly minimized or eliminated altogether. Furthermore, interfacing

the problem directly in C will further speed up both problem setup and solve time

as the overhead due to CVXpy using the Python wrapped variant of the ECOS C

library will be eliminated (Diamond and Boyd, 2016).
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In order to interface the control problem to ECOS directly, the optimization must

first be translated to general conic form, where the objectives and constraint can be

supplied as matrices and vectors to the solver.
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Chapter 8

Implementation of Optimal

Control

8.1 SOCP In Standard form

To interface the control problem directly to ECOS’s C API - so as to essentially

eliminate problem setup time - the problem must be converted into a form that is

used by the solver. In this case, the convex formulation must be converted into conic

form with equality and inequality constraints (Eqn. 8.1 ) for cone K being either a

non-negative orthant cone K++, second-order cone Kso, or exponential cone Kexp (for

geometric programming) (Domahidi et al., 2013; Lobo et al., 1998). In this problem

Kso is used to define the hyperbolic constraint ρ > 1/v through the matrix Qso. The

dimensionality of each conic constraint in Qso is 3, thus each successive 3 rows of Qso

represent a Qsoi that is equivalent to an individual ρi ≥ 1/vi constraint.

The complete optimization problem is represented as the SOCP:
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minimize
z,s

wT z

subject to Uz = y

Qz + s = r, s ∈ K

(8.1)

Where:

z = [v1, t1, p1, γ1, γ
+
1 , b1, h1, . . . ,

vK−1, tK−1, pK−1, γK−1, γ
+
K−1, bK−1, hK−1, vK , tK ] (8.2)

w = [0, 0, 0, 0,∆x[1]we,∆x[1]wos,∆x[1]wbr, . . . ,

0, 0, 0, 0,∆x[K − 1]we,∆x[K − 1]wos,∆x[K − 1]wbr, 0, wt] (8.3)

Q =

Q++

Qso

 r =

r++

rso

 (8.4)

Thus U and y represent the equalities Eqn. 6.1c, d, f and k ; and Q and r represent

the inequality Eqn. 6.1b,e,g,h,i and j, Eqn. 6.4a-b, Eqn. 6.8a-b and Eqn. 6.9. z denotes

the primal variables and s denotes the conic slack variables (Domahidi et al., 2013).

Since all of the mentioned equality and inequality constraints are mostly vectorized

along X at each i for i = 0 . . . K−1 the matrices U and Q are largely block diagonal.

U and Q are also quite sparse with approximately 0.046% and 0.025% fill, respectively.

8.2 Numerically Solving with ECOS

ECOS is configured to terminate an optimization once a sufficiently small duality gap

is achieved (|P ∗ − D∗| ≤ 1 × 10−8), returning the optimal primal variables z∗. As

69



M.A.Sc. Thesis - Dennis Ion Yazhemsky McMaster - Electrical Engineering

a certificate of feasibility and optimality the dual variables λ∗ and µ∗ are returned

thus validating that the required Karush-Kuhn-Tucker optimally conditions hold and

that the resultant solution is optimal (Kuhn, 2014; Domahidi et al., 2013). The dual

problem to Eqn. 8.1 is the following:

maximize
λ,µ

− yTλ− rTµ

subject to QTµ+ UTλ+ w = 0

µ ∈ K

(8.5)

Weak duality (P ∗ ≥ D∗) is always assured for an SOCP problem. Strong duality

only requires for either the primal or the dual to be strictly feasible (Domahidi et al.,

2013; Lobo et al., 1998; Boyd and Vandenberghe, 2004). Since the convex formulation

in this Thesis has a strictly feasible constraints set (for feasible trip conditions) with

strictly feasible Uz = y and relaxed inequality variables, both the primal and dual

are attainable. In theory, a very tight arrival time window (Tmax − Tmin) combined

with a poorly sampled control horizon (small K) may result a not strictly feasible

Uz = y constraint. As such, reasonable arrival time window limits and a large K

should be provided to the controller to ensure that strong duality holds. Therefore, a

globally optimal solution to the convex problem should be attainable for any realistic

feasible trip scenario, as is evident by the implementation results and their associated

certificates of optimality as provided by the ECOS output.
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8.3 Implementation of Embedded Closed Loop Con-

trol

The complete closed-loop control law is implemented through Alg. 1 which resides in

the controller/vehicle model architecture as shown in Fig. 4.1. As was noted previ-

ously, U and Q are very sparse and thus take advantage of ECOS’s sparse computation

through the efficient CSPARSE routines (Domahidi et al., 2013). A key concept to

note in Alg. 1 is the fact that at each optimization cycle the current position of the

vehicle (X0) is used to trim down X, G and Vmax, thus resulting in the shrinking

horizon as per Eqn. 4.2.

The optimal solution at each control cycle (z∗) is not used to warm-start the next

optimization cycle. Although, in concept, this may seem to be inefficient, ECOS does

not support warm starting. This is mainly because substantial benefit has not been

demonstrated in warm-starting primal-dual interior-point methods due to the fact

that these methods first work by finding a central path and then following that path

to the solution. Since the optimal solution of the previous optimization is not on the

central path for the new optimization simply starting from a random initial guess

would have the same or better effect than would be reusing the old solution (John

and Yıldırım, 2008). Although this is the case, other specialized IP methods have

been able to demonstrate marginal reduction in computation time or solver iterations

through specific variations on the interior-point method specifically for warm-starting

(Wächter and Biegler, 2006; MOSEK ApS, 2015).

At the successful termination of the optimization for the current horizon, only the

first immediate control decision is applied on the vehicle and must first be resolved
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(as Γ is not an optimization variable in the convex form problem) by evaluating:

Γ1 = γ∗1v
∗
1 = z∗1z

∗
4 (8.6)

In terms of computation time, Alg. 1 is implemented in such as a way to make

the overhead time associated with solving the control problem a minimum. Unlike

Fig. 7.5 where the overhead in setting up the control problem was 100 times that

of what it took for ECOS to solve the problem this implementation does not suffer

from the same deficiency. In fact, no plots are presented for overhead time analysis of

the C implementation simply because the setup is so fast that it cannot effectively be

timed under Linux kernel even when using the high precision CLOCK MONOTONIC

timer in C’s clock gettime(3) method (Matagawa and Shudo, 2016). Therefore, there

is sufficient evidence to claim that execution is sub-millisecond even for very large

control horizon sizes. As such, the configuration time is considered negligible. Thus

all subsequent timing results are presented as configuration time plus the ECOS solve

time.

The fast problem setup can be attributed to several efficient strategies taken into

consideration when designing and implementing Alg. 1. Firstly, the algorithm is

implemented in C and compiled under the highest GCC optimization level (-03),

naturally eliminating any language implementation slowdowns that where apparent

when using Python. Furthermore, the problem is interfaced in the exact sparse form

as required by ECOS’s C API. Lastly, no further memory allocation or reallocation

is performed after the initilization step, and whatever arrays and matrices that can

be preserved between successive optimizations are preserved and have their access

pointers moved forward as the control horizon truncates.
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Algorithm 1 Optimal Controller

{Problem Initialization}

X[i] =
i∑

j=1

∆x[j] for i = 1 . . . K

Vmax ← [Vmax(X[1]), Vmax(X[2]), . . . , Vmax(X[K])]
G← [G(X[1]), G(X[2]), . . . , G(X[K − 1])]
∆t = 0.01
sparse allocate: w,Q, r, U, y, z
T = 0
while X0 ≤ X[K] OR V0 ≥ 0 do
V0, X0 ← read from vehicle sensors
{Search for locations along discretization in X}
for i = 0; i ≤ K; i+ + do
if X0 > X[i] then

BREAK
end if

end for
{Recede the control horizon}
∗X[0] = ∗X[i]; X[0] = X0
∗∆x[0] = ∗∆x[i]; ∆x[0] = X[1]−X[0]
∗Vmax[0] = ∗Vmax[i]
∗G[0] = ∗G[i]
Tstart = T
evaluate w,Q, r, U, y
z ← 0
F ← initialize ECOS with w,Q, r, U, y, z
z∗, f(z∗)← solve F
Γ1 ← z∗[1]z∗[4]
send Γ1 to vehicle
T+ = ∆t

end while
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8.4 Vehicle Simulation

The convex controller was implemented in C with a direct interface to ECOS’s C API

with a simple wrapper then written in Lua to allow for easy access to the powerful

Torch7 computation environment for simulation and analytics. All of the problem

matrices were implemented as sparse triplet pairs using the CSPARSE sparse matrix

data type. The entire formulation was then interfaced to a train model written in

Lua and simulated as the ODE:

∂x

∂t
= v (8.7)

∂v

∂t
=
min(Γ1, R(v))

m
+ c0 + cvv + cv2v

2 +G(x) (8.8)

where the ODE was simulated with a high frequency Euler integration (1kHz) rate.

This assures high modeling accuracy. Since the optimal controller discretizes the track

in position to a substantially lower precision some significant modeling uncertainty

becomes inherently presented. Zero-order holding is performed on the control input

Γ∗1 in simulation regions between successive 1/fctl loops. To allow for easier to follow

plot, the model input control acceleration (u) is plotted in all future plots, where

u = min(Γ1,R(v))
m

and is the actual input acceleration experienced by the vehicle due to

Γ1.

As is evident in the next chapter, the controller was fully capable of smooth, high

quality control even with this model mismatch.
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Chapter 9

Controller Simulation Results

This chapter demonstrates the closed-loop performance of the convex optimal con-

troller as implemented in Alg. 1. All of the tests below were conducted with K = 500

(unless explicitly stated otherwise) and a receding distance horizon X given X0, V0,

and Tstart as sensor measurements being fed back from the train model every 100ms

with re-optimization at the same rate. The vehicle and trip were configured as:

c0 = −0.01
m

s2
, cv = −0.001

1

s
, cv2 = −0.0005

1

m

r0 = 1.3× 106N, rv = 0.01× 106kg

s
, rv2 = 0.002× 106kg

m

Fmin = −1× 106N, Fmax = 1× 106N, Tmin = 0s

Bos = 1
m

s
, Bbrk = 0.8

m

s2
, m = 1× 106kg

Thus, the full friction and traction loss models are active and their affects should

be apparent during higher speed driving. There is a soft buffer of 1m/s below Vmax

and 20% (0.2m/s2) of the maximum braking capability of the vehicle is reserved for

the event of an emergency.
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9.1 Simple Closed Loop Case

The vehicle is first run on a simple and flat track with a constant speed limit. This

is done to validate that the optimal controller works in closed-loop form and that

the optimal driving strategy is representative of the optimal behavior noted by other

research. The trip is configured as:

xf = 1, 000m, Tmax = 200s

g =

{
0m/s2 for 0 ≤ x ≤ 1, 000m

Vmax =

{
18m/s for 0 ≤ x ≤ 1, 000m

Under a zero grade trip, with a slack Tmax and a constant Vmax profile Howlett and

Pudney (1995) theoretically proved that the energy optimal control strategy would

be that of the form of MOTORING-SPEEDHOLD-COAST-BRAKE (Albrecht et al.,

2016a; Howlett and Pudney, 1995). The convex closed-loop controller also behaves

as such given these same conditions as is apparent in Fig. 9.1. This also matches the

results observed in both the convex and non-convex open-loop experiments. Thus,

it can be claimed that similar performance as seen by Albrecht et al. (2016a), and

Howlett and Pudney (1995) is observed without needing to structure a control prob-

lem to explicitly solve for optimal switching points (Albrecht et al., 2016a; Howlett

and Pudney, 1995).

The positive effect of the closed-loop reoptimization, although happening through-

out the entire trip, can be seen very well as the train approaches the station stop. In

the last 50m, the controller finely adjusts the braking. This results in high accuracy

driving and a stop that is only 11cm (Xs = 1000.11m) past the target.

76



M.A.Sc. Thesis - Dennis Ion Yazhemsky McMaster - Electrical Engineering

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700 800 900 1000
-1

-0.5

0

0.5

1
V

e
lo

c
it
y
 (
m

/s
)

A
c
c
e
le

ra
ti
o
n
 (
m

/s
2
)

Position (m)

v (m/s)
u (m/s

2
)

a (m/s
2
)

G (m/s
2
)

Vmax (m/s)

wt = 1, we = 1, wos = 0.02, wbr = 1
Tf = 77.99s, Ef = 236.72J/kg, Xs = 1, 000.11m

Figure 9.1: Mixed Objective Trip on a Flat Grade

As modeling knowledge was accurate and no sensor uncertainty was present, the

controller did not have to request any of the additional 20% braking effort that was

reserved by the overbraking constraints and neither did it drive any closer than Bos

to the speed limit.

9.2 Advanced Closed Loop Case

Since Fig. 9.1 showed that the controller works as expected on a simple trip, a more

advanced trip is configured to test how the optimal controller copes with aggressive

changes in steep grade profiles while driving under a dynamic Vmax profile for a
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significantly long trip. This trip is configured as:

xf = 1000m, Tmax = 200m

g =



0m/s2 for 0 ≤ x ≤ 200m

0.2m/s2 for 200 < x ≤ 400m

−0.2m/s2 for 400 < x ≤ 600m

0m/s2 for 600 < x ≤ 650m

−0.15m/s2 for 650 < x ≤ 700m

0.15m/s2 for 700 < x ≤ 800m

0m/s2 for 800 < x ≤ 1, 000m

Vmax =



18m/s for 0 ≤ x ≤ 400m

15m/s for 400 < x ≤ 500m

20m/s for 500 < x ≤ 900m

11m/s for 900 < x ≤ 1, 000m

On an advanced track with a non-constant Vmax profile, the MOTORING-SPEEDHOLD-

COAST-BRAKE is no longer optimal as demonstrated by Fig. 9.2, Fig. 9.3, Fig. 9.4

and Fig. 9.5. It should be noted that the controller plans its course of action with

a full image of the future track grade in mind. Thus it fully utilizes the acceleration

and deceleration from the grade segments to further minimize the objective term to

expend less energy and plans its actions in such a way as to ensure no overspeed is

caused on steep downhill segments.

Fig. 9.2 demonstrates a time efficient control objective with a large weight on time

and a small weight on energy with additional overspeed and brake reserve objective

weights. It can be seen that the controller is largely driving as fast as possible within

Vmax, while holding outside the soft buffer region (Bos = 1m/s) as much as possible
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and reserving 20% of braking for emergency situations.
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Figure 9.2: Time Efficient Control for an Advanced Trip

Fig. 9.3, on the other hand, demonstrates more of an energy efficient objective. As

such, it can be seen that the controller prefers extended coasting regions, and smartly

relies on the grade profile for additional energy efficient speed-up in downhill regions.

The energy expenditure is substantially reduced as compared to Fig. 9.2 (115.34 J/kg

as compared to 331.52 J/kg). As a result the arrival time is extended to 100.87s with

the energy efficient objective as compared to 79.31s when in time efficient operating

mode.

Fig. 9.4 demonstrates a case when equal weights are assigned to the energy and

time objectives. As a result the final arrival time and total trip energy fall between

79



M.A.Sc. Thesis - Dennis Ion Yazhemsky McMaster - Electrical Engineering

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700 800 900 1000
-1

-0.5

0

0.5

1
V

e
lo

c
it
y
 (
m

/s
)

A
c
c
e
le

ra
ti
o
n
 (
m

/s
2
)

Position (m)

v (m/s)
u (m/s

2
)

a (m/s
2
)

G (m/s
2
)

Vmax (m/s)

wt = 1, we = 10, wos = 0.02, wbr = 1
Tf = 100.87s, Ef = 115.34J/kg, Xs = 999.97m

Figure 9.3: Energy Efficient Control for an Advanced Trip

those noted in Fig. 9.2 and Fig. 9.3.

All three of the above test cases (Fig. 9.2, Fig. 9.3, and Fig. 9.4) demonstrated

very good stopping accuracy and complete adherence to the trip constraints.

9.3 Several Trains on a Single Guideway

To demonstrate the effectiveness of the controller in driving safely behind a leading

train it is first necessary to launch a leading train running the optimal control system

and then spawn a following train behind it. In order for the leading train to signifi-

cantly impede the following (thus showing the full scale of the controller’s ability to
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Figure 9.4: Mixed Objective Control for an Advanced Trip

handle such a case), the leader is put in a mixed time and energy efficient control

regime (equal we and wt), resulting in the closed-loop driving behavior as was evident

in Fig. 9.4. Once the leading train has left the station, the following train is placed on

the guideway. The following train is exactly the same in performance parameters as

the leading but is set to run in time efficient mode, configured with the same objective

as Fig. 9.2. This induces it to ride right up to the separation buffer as specified by

the leading train.

Since the two trains are identical in every way, had the separation gap constraints

not been in place the two trains would have crashed as the front train takes 84.92s

to complete the trip whereas the following would have taken 79.31s to complete the
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same trip under the same circumstances due to their different objective functions.

But this is not the case, as Fig. 9.6 shows, since the following train does not cross

over the Tlead buffer line and never approaches closer than 100m behind the leading,

as required.

First, the following train waits until if can set off as it must wait until as least

Tlead[1] seconds. It should also be noted that only the arrival time tK is being op-

timized for due to the objective in Eqn. 6.10 and not times at any other X[i] for

i = 1 . . . K − 1. Therefore there is no incentive for the following train to ride close to

the buffer as its arrival up to at least 900m is constrained by the leading train. There-

fore, since it had a mixed objective cost the controller, with no external intervention,

minimizes the energy cost (ce) since it cannot bring the arrival time down any more

than Tlead[K]. This behavior can also be seen in Fig. 9.5 as, despite having a larger

time weight (wt) than the leading, the following’s resultant control profile looks like

the leading’s with an emphasis on bang-off-bang control strategies and thus it does

not expend energy unnecessarily. Both leading and following vehicles drive optimally

given their trip designs, and the following train uses knowledge of the leading vehicle’s

expected behavior to optimally plan and implement a safe control strategy.

9.4 Tight Arrival Time Constraints

The optimal control approach to the train control problem allows for substantially

finer regulation of the vehicle’s arrival time at a target station than does manual

control (Novak et al., 2015). As such, this criteria is implemented into the controller

as Eqn. 6.1e. A closed-loop test is therefore ran to test this feature. Fig. 9.7 demon-

strates performance under a very tight 1 second arrival window of 79 to 80 seconds.
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Figure 9.5: Time Efficient Following Train

The controller is otherwise configured identically to that of Fig. 9.4. If not for the

constraint from Tmax = 80s the vehicle would have arrived in 84.92s given its objec-

tive. This is evidently not the case as is visible in Fig. 9.7 where the train arrives

in 80.21s — an acceptable margin or error. This time is just outside of the target

arrival time due to the fact that the mixed objective prefers an optimal solution where

t∗K = Tmax and consequently disturbances and modelling inaccuracies cause the ve-

hicle to overshoot slightly. This is evidenced by the problem becoming infeasable

at x = 992.4m. Regardless of the problem becoming infeasable, the hyperbolic con-

straint p = 1/v relaxes so that p∗ > 1/v∗ + ε and control is still maintained with

high stopping accuracy, resulting only in an insignificantly late arrival of less than a
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Figure 9.6: Both Leading and Following Trains on the Same Track

quarter of a second.

9.5 Long-Range Rail

As demonstrated previously, the convexity of the optimal controller allows for huge

scalability for the control algorithm. Therefore, there is motivation in assessing con-

troller performance when stations are very far apart. Fig. 9.8 is a closed-loop example

for a 10km trip with K = 1, 000. It can be seen that control performance does not

degrade when the controller is working with a control horizon of 10km as energy and

time efficiency is maintained along with stopping accuracy. Regardless of the highly

dynamic speed limit and grade profiles, the vehicle never overspeeds, control is fairly
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Figure 9.7: Mixed Objective Control with Tight Arrival Time Constraints

smooth, and the final stop is within 9cm of error at the target station.

Fig. 9.9 demonstrates an even longer trip of 100km, again with a vehicle being

controlled in closed-loop with a receding horizon spanning all of the way to the stop-

ping station. Performance is again noted to be great, as less than 25cm of stopping

error is witnessed after driving for 100km even with a fairly small K of 1000.

It should be noted that for very long trips, in cases where the arrival time is

not constrained (Tmin = 0, Tmax = ∞), the controller does not necessarily need to

optimize for the entire distance between the stations in one go. When this is the

case the controller can work more similarly to rolling horizon window type control
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Figure 9.8: Time Efficient Long Range Trip (10km)

systems where the controller only plans for the next few kilometers ahead (smaller

window distance than the full trip distance), with the terminal stopping constraint

(Eqn. 6.1c) modified only for when the final stop is outside of the window, to the

following:

v1 = V0 vK ≤ Vmax[K] (9.1)

This would unconstrain the final velocity of the vehicle to Vmax[K] at the end of the

window allowing it to remain at high speed when the end of the window is still far

from a stop. Once the rolling window becomes a receding window (when the station
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stop overlaps with the end of the window) the above equation should be reverted

back to Eqn. 6.1c, forcing a stop at the station. In this case, the time objective can

be used to tune the unconstrained arrival time.
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Figure 9.9: Time Efficient Long Range Trip (100km)

9.6 High Speed Rail

The optimal controller represented in thesis can also work with high speed rail vehicles

equally as well as with light rail. Fig. 9.10 represents a closed-loop control example

of the performance on a vehicle with substantially lower drag and higher propulsion
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capabilities than what was used in the previous tests. The vehicle for Fig. 9.10 is

configured as follows:

c0 = −0.001
m

s2
, cv = −1× 10−4 1

s
, cv2 = −5× 10−5 1

m

r0 = 1.8× 106N, rv = 0.001
kg

s
, rv2 = 3× 102kg

m

Fmin = −1× 106N, Fmax = 1× 106N, Tmin = 0s

Bos = 1
m

s
, Bbrk = 0.8

m

s2
, m = 1× 106kg
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Figure 9.10: Time Efficient High Speed Rail Vehicle

Reaching a top speed of over 210km/hr - the vehicle in Fig. 9.10 demonstrates

the effectiveness of optimal control at high speeds. As with all of the previous test

88



M.A.Sc. Thesis - Dennis Ion Yazhemsky McMaster - Electrical Engineering

cases, controller performance is very good and high accuracy stopping is observed.

9.7 Real-time Capability

Regardless of the large number of variables being optimized for (z ∈ R7k−6), the

controller is real-time capable on both desktop and embedded processors as is shown

in Fig. 9.11, Fig. 9.12 and Fig. 9.13. These figures demonstrate the computation

time in solving a problem setup with the same parameters and trip as Fig. 9.2 for

various sizes of K in closed-loop form. Also demonstrated is how the optimization

time decreases as the train approaches the target station due to the receding control

horizon and the shrinking value of K. The non-linearities at small and large closed-

loop iterations can largely be attributed to the chosen selection of the ∆x profile being

of the trapeziodal form as in Fig. 3.2. The noise in the plots can be attributed to the

lack of any hard or soft real-time enforcement on the testing hardware. Regardless,

controller reoptimization is still quite consistent in timing due the robustness and

consistency of the ECOS solver.

9.7.1 Main-stream Desktop Processor

The two tested desktop CPUs were the AMD FX6300 and the Intel i7-6300. The AMD

FX6300 is a 6-core CPU whereas the Intel i7-6300 was a 4-core, but this variation

between the two processors is of little consequence as the entire implementation of

the controller and the ECOS library are all in a single threaded mode of operation.

On a mid-high range Intel i7-6700, the worst case closed-loop optimization time

is less than 0.25s for control horizons of K = 2, 000. This represents a performance
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Figure 9.11: Cpu Performance - AMD FX6300

of about twice faster than the lower end AMD FX6300 for this horizon size. This

large K is substantially larger than what is necessary to maintain robust control of a

passenger locomotive, as was demonstrated in the above 100km driving test.

9.7.2 Embedded Applications

It can be shown that a full desktop i686 or amd64 architecture machine is not even

required for robust control. Real-time performance tests were conducted on an em-

bedded ARM architecture based Hardkernel Odroid XU4, which is similar in size and

performance to the more familiar Raspberry Pi 3. As can be seen in Fig. 9.13, the

controller is fully capable of real-time execution on a low power system (sub 15w) and

dimensionally compact (83x58x22mm) package for significantly large control horizon

90



M.A.Sc. Thesis - Dennis Ion Yazhemsky McMaster - Electrical Engineering

0.00000

0.05000

0.10000

0.15000

0.20000

0.25000

 0  200  400  600  800  1000

R
e

-o
p

ti
m

iz
a

ti
o

n
 T

im
e

 (
s
) 

[i
7

-6
7

0
0

]

Position (m)

100 steps
200 steps
300 steps
400 steps
500 steps

1000 steps
1500 steps
2000 steps

Figure 9.12: Cpu Performance - Intel i7 6700

dimensions (K) (Hardkernel, 2017). As discussed previously, a more optimal selection

of the ∆x profile may be able to significantly improve control accuracy with smaller

K, allowing for even finer control on an embedded machine such as the Odroid.

The Odroid tests were performed while running under ARMv7 Linux kernel (De-

bian Jessie). Since ECOS and the entire implementation of Alg. 1 are completely

library free and platform independent, the convex optimal control can in practice

be executed on true real-time hardware or soft real-time capable operating systems

(RTOS) for real-world controller deployment on a vehicle.

91



M.A.Sc. Thesis - Dennis Ion Yazhemsky McMaster - Electrical Engineering

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  100  200  300  400  500  600  700  800  900  1000

R
e

-o
p

ti
m

iz
a

ti
o

n
 T

im
e

 (
s
) 

[O
d

ro
id

 X
U

4
 (

A
R

M
v
7

)]

Position (m)

50 steps
100 steps
200 steps
300 steps
400 steps
500 steps

Figure 9.13: Cpu Performance - Hardkernel Odroid XU4

92



Chapter 10

System Performance in the

Presence of Uncertainty

Since the whole purpose of a controller is to maintain control over a process under

the presence of disturbance, there is great motivation in testing how well the optimal

controller copes with various disturbances. Largely of interest here is to test perfor-

mance under modeling and sensor uncertainty, where the modeling uncertainty can

be either stochastic or a constant error between the model in the optimal controller

and the actual vehicle.

10.1 Disturbance and Measurement Noise

To fully demonstrate the effectiveness of coping with disturbances the controller is

tested in the vehicle with stochastic uncertainty models on both modeling and mea-

surement uncertainty. The vehicle acceleration is simulated as an ODE as before, but
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with the additional Gaussian process (white noise) of the form:

∂v

∂t
=

min(Γ1, R(v))

m
+ c0 + cvv + cv2v

2 +G(x) + Y (10.1)

where:

Y ∼ N (0, σ2
a) (10.2)

Additionally, a measurement noise is induced on the feedback speed reading (V̄ ) and

the position estimate (X̄) that are also white noise processes:

V̄ ∼ N (V0, σ
2
V ) (10.3)

X̄ ∼ N (X0, σ
2
X) (10.4)

The complete simulated system can be seen in Fig. 10.1, where V̄ and X̄ are

used as feedback into the optimal controller as opposed to X0 and V0. This replicates

having the controller reading system states from poor sensors and therefore getting a

poor estimate of vehicle’s speed and position.

Optimal
Controller

Train
Plant

CLOCK

Tmin, Tmax

wt, we, wos, wbr

Bos, Bbrk

Trip Limits and Objective

X, � x

Vmax

G

Track Database

Fmin, Fmax, m
c0, cv, cv2

r0, rv, rv2

Vehicle Con�guration

Sensor

Model

X0

V0
Tstart

X
�1

V

Figure 10.1: Simulation Model with Sensor Noise

For testing purposes the variances are initialized to the significantly large values

as follows:

σ2
a = 0.05m/s2 σ2

V = 0.01m/s σ2
X = 0.01m
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The acceleration modeling uncertainty is updated at a slow frequency of 1Hz. In this

way, the effects of the acceleration uncertainty are not integrated out by the vehicle

when evaluating the speed state. This represents physical uncertainty causing the ve-

hicle’s dynamics to be less predictable and thus introducing a stochastic plant/model

mismatch. The speed and position measurement update rate is, on the other hand,

set to the same frequency as the control feedback rate of 10Hz thus inducing a noise

more similar to that of a hardware sensor.
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Figure 10.2: Large Gaussian System Noise

Fig. 10.2 demonstrates the convex optimal controller running in closed-loop form

with the Gaussian vehicle uncertainty model as described above. As can be seen from
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Fig. 10.2 that the uncertainty model does not lead to any overspeeding or final target

overshoots even with the excessively noisy acceleration profile. The control output is

also quite smooth and it can be seen that the low quality velocity estimation also does

not cause the controller to output any undesirably aggressive changes in commands.

Under these test conditions stability is maintained and accurate stopping is ob-

served. Thus there is some evidence that the closed-loop reoptimization strategy

seems to be capable in suppressing stochastic modeling and measurement distur-

bance.

10.2 Model Parameter Mismatch

Model based control relies on the accurate knowledge of the vehicle or process being

controlled. Although this is a requirement there may be instances where some model

parameters may be hard to determine on a vehicle or may have changed since the

last system identification. Take for instance the following scenario: Assuming that a

vehicle model parameter is accurately determined during the systems identification

phase, the mass may vary from trip to trip as the passenger loading levels change

between different station runs.

In Fig. 10.3 the mass provided to the controller is 5% lower than the real vehicle’s

mass (the controller thinks that the mass is 1×106kg whereas it is really 1.05×106kg).

This can represent an unmeasured change in passenger loading between different

station runs (there are more passengers on-board than the controller is configured

for). Subsequently, the controller’s Fmin/m and Fmax/m result in control acceleration

limits that are 5% higher than what the true vehicle is capable of. Thus every control

action sent by the controller to the vehicle has a 5% lower impact on the vehicle
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acceleration than was predicted.

Fig. 10.3 demonstrates the above example. It can be expected that the modeling

uncertainty would degrade the control quality for an optimal controller, especially

when the vehicle approaches decreasing edges in Vmax or approaches the stopping

point. This is not the case, as seen in Fig. 10.3. As can be observed, the overbraking

constraints are helpful in this case as the controller starts commanding braking in the

reserved region to make the heavier train stop with minimal overshoot. This is most

visible on Fig. 10.3 near 4km and once again near 5km as full braking is demanded

near these regions. Therefore the overshoot for the final stop is minimized to less than

half a meter (where it would have had 6.27m of overshoot without an active brake

reserve objective) and generally good driving quality is maintained. Thus it can be

seen that in closed-loop form, re-optimizing for the receding horizon can greatly help

in handling modeling disturbance.

When a very large modeling mismatch is present, the controller is no longer able

to accurately drive the train. As seen in Fig. 10.4, when subject to a 20% mass error

(the controller thinks that the mass is 1× 106kg whereas it is really 1.2× 106kg) the

controller predicts incorrect optimal trajectories and the closed-loop nature of the

controller is unable to compensate sufficiently. Thus the train violates the speed limit

at the transition region and stops 35.74m past the target. This sort of behavior is

common with model based controllers as their performance degrades when there is

significant plant/model mismatch. Likewise, PID based strategies can also suffer in

this way if operating outside of tuning bands (Jahanshahi and Skogestad, 2013).
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Figure 10.3: 5% Mass error

10.3 Pairing the Optimal Controller With a Pa-

rameter Estimator

Since the optimal controller takes in the vehicle parameters as constants and reopti-

mizes a new trajectory for every closed-loop cycle, the controller can be paired with

some form of parameter estimator and the constant parameters can be adjusted at

each control cycle and used as inputs along with the driving measurements. Working

together, the parameter estimator can feed in the latest optimal parameter estimates

to the optimal controller which will subsequently use them to predict the next optimal
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Figure 10.4: 20% Mass error

control strategy (Γ∗). Once the optimal estimator converges to the true estimate for

the required parameters Γ∗ will be the true optimal solution for the given vehicle.

To demonstrate the effectiveness and benefits of such an approach, the optimal

controller will be paired with a simple Kalman Filter configured to act as a mass

estimator. With many control strategies Kalman Filters have become the de-facto

standard for both parameter and state estimation due to their simplicity, robust-

ness, simple computation and optimality under Gaussian modeling and measurement

uncertainty conditions (Wolpert and Ghahramani, 2000).
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A Kalman filter is introduced to estimate the mass every 1/fctl seconds (every con-

trol cycle). The entire closed-loop simulation interface is altered to that in Fig. 10.5,

where a Kalman filter takes Ā, V̄ , X̄ and Γ1 as input at every control cycle and uses

this information to estimate m̂ (the optimal mass esstimate for the vehicle), which

is then used as an input to the optimal controller as the m parameter. The new

accelerometer sensor Ā is configured in the same way as were the other two sensors

and is set to be a white noise process of the form: Ā ∼ N (A0, σ
2
A), where A0 is the

true vehicle acceleration at a cycle. Thus, it is expected that as the Kalman filter

converges to an optimal estimate of m̂ the controller performance will improve and

then become equivalent to the test cases where the mass was fully known.
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Figure 10.5: Simulation Model with Sensor Noise and KF Mass Estimator

10.3.1 Mass Estimation Model

A simple linear model is proposed for estimating mass based on Eqn. 3.1c— the

dynamic model of the train. It should be noted that the index j for j = 0 . . . n
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corresponds to the optimization cycle count in the time domain, increasing at each

successive re-optimization. Since Eqn. 3.1c is actually linear in 1/m and not m, a

new variable e is introduced as:

e =
1

m
(10.5)

This allows to treat the estimation problem linearly, and thus a linear KF can be used

to estimate the inverse mass which can then be inverted to provide m̂ to the optimal

controller. For an optimal inverse mass estimate (ê) and the observed/estimated

traction force (l) a model can be represented by the following state-space form which

is linearly related to inverse mass as:

ej = MAej−1 +MBd+ wR (10.6a)

lj = MCjej + wH (10.6b)

where d is an arbitrary external input on the mass state-space equation. Since the

mass is expected to be constant throughout a trip and no external input can adjust

the mass, MA and MB are trivially selected as:

MA = 1 MB = 0 (10.6c)

where MCj is:

MCj = min(Γ∗1, r0 + rvV̄ + rv2V̄
2) (10.6d)

It should be noted here that using sensor measurements in MCj is a suboptimal

strategy, and thus the Kalman Filter implementation is not truly optimal for this

noise profile. Regardless of this, testing results with this model showed very good

convergence of the mass estimate to the true mass. The objective of the KF is to

minimize the error between the theoretical traction acceleration (MCjej) and the

101



M.A.Sc. Thesis - Dennis Ion Yazhemsky McMaster - Electrical Engineering

measured traction acceleration (lj), where the lj can be evaluated through combining

sensor outputs to create the virtual observation:

lj = Ā−G(X̄)− c0 − cvV̄ − cv2V̄ 2 (10.6e)

X̄ ,V̄ and Ā are measurements of present vehicle states and Γ∗1 is the current cycle’s

optimal control decision that was sent to the vehicle. Here, wR ∼ N (0, R) is the

process noise and wH ∼ N (0, H) is the measurement noise.

10.3.2 Scalar Kalman Filter Model

With the above mass estimation model, a scalar KF can be formulated with the

estimation model equations (Wolpert and Ghahramani, 2000):

The a priori prediction equations for the estimate and its covariance:

êj|j−1 = MAêj−1|j−1 +MBdj (10.7a)

Ej|j−1 = M2
AEj−1|j−1 +H (10.7b)

For the measurement residual (the difference between the theoretical and actual con-

trol acceleration virtual measurements):

ỹj = lj −MCj êj|j−1 (10.7c)

and its residual Covariance:

Sj = M2
CjEj|j−1 +R (10.7d)

The optimal Kalman gain to apply on the next estimate is computed as:

χj =
Ej|j−1MCj

Sj
(10.7e)

The updated (a posteriori) inverse mass estimate - the best estimate for the inverse

vehicle mass thus far - is computed by combining an optimally weighted sum of the
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previous best inverse mass estimate and the measurement residual:

êj|j = êj|j−1 + χj ỹj (10.7f)

The optimal mass estimate can then be evaluated by inverting êj:

m̂j =
1

êj|j
(10.7g)

The new (a posteriori) estimate covariance is also updated for use during the next

KF cycle:

Ej|j = (1− χjMCj)Ej|j−1 (10.7h)

The above equations must be successively resolved at each control cycle to provide

an accurate estimate for the inverse vehicle mass. Thus, êj|j and Ej|j need to be stored

and carried over into the j + 1 time cycle.

10.3.3 Kalman Filter Implementation

Substituting the inverse mass estimation model (Eqn. 10.5 ) into the above scalar

kalman filter formulation (Eqn. 10.6 ) results in the following simplified equations:

The priori covariance is evaluated as:

Ej|j−1 = Ej−1|j−1 +H (10.8a)

The scalar Kalman gain (χ) evaluates to:

χj =
min(Γ∗1, r0 + rvV̄ + rv2V̄

2)Ej|j−1

min(Γ∗1, r0 + rvV̄ + rv2V̄ 2)2Ej|j−1 +R
(10.8b)

This results in the posteriori estimate and covariance:

êj|j = êj|j−1 + χ((Ā−G(X̄)− c0 − cvV̄ − cv2V̄
2)−min(Γ∗1, r0 + rvV̄ + rv2V̄

2
0 )êj|j−1)

(10.8c)
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Ej|j = Ej|j−1(1−min(Γ∗1, r0 + rvV̄ + rv2V̄
2)χj) (10.8d)

And finally, inverting the estimate to resolve the mass:

m̂j =
1

êj|j
(10.8e)

E0|0, R and H are initialized and tuned to affect the KF convergence rate, and ê0|0 is

set to be the inverse of the initial mass guess.

10.3.4 Mass Estimator Performance with No Measurement

Noise

Fig. 10.6 demonstrates the effect of including the above KF formulation with the

optimal controller for E0|0 = 0.01,R = 0.01 and H = 10. The initial mass guess is set

to m̂0 = 1× 106kg, with the actual simulated mass being 1.2× 106kg. At each cycle

the new mass estimate is fed back into the controller as in Fig. 10.5. In Fig. 10.7 it

can be seen that m̂ converges to within 1% error of the true vehicle mass in 1551m

with the chosen selection of E0|0,R and H. This is a case with no uncertainty and as

such the noise model is configured as:

σ2
a = 0 σ2

V = 0 σ2
X = 0 σ2

A = 0

With the Kalman Filter in the loop acting as a suboptimal recursive least-squares

estimator (Wolpert and Ghahramani, 2000), the live improvements to the parameter

estimation are sufficient to remove over-speeding and the stopping overshoot is re-

duced from 35.74m to 0.1m as compared to the case where no mass estimation was

performed (Fig. (10.4)).

This KF implementation is just a simple example of the significant benefits that

can be gained when pairing control with a parameter estimator. In practice, a more
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advanced implementation of optimal estimation should be used - one that can estimate

all observable parameters and not just the mass.
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Figure 10.6: 20% Mass Error With Mass Estimator

10.3.5 Mass Estimator Performance with Measurement Noise

Since a KF is optimal under a white noise model and process noise, a test is con-

ducted where the filter is run with sensor error. This example tests both the optimal

controller’s and the KF’s performance when operating under uncertainty conditions.

For the following test (Fig. 10.8 and Fig. 10.9) the sensor model is configured as:

σ2
a = 0.05m/s2 σ2

V = 0.01m/s σ2
X = 0.01m σ2

A = 0.01m/s2

105



M.A.Sc. Thesis - Dennis Ion Yazhemsky McMaster - Electrical Engineering

Figure 10.7: Kalman Filter Convergence
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The KF is configured with the initial conditions: E0|0 = 0.01,R = 0.01 and H = 10.

The initial mass guess is set to m̂0 = 1.2 × 106kg, with the actual simulated mass

being 1× 106kg (the reverse of the previous example).

As with the no noise case it can be seen that the KF accurately converges to the

true mass in approximately 1km (Fig. 10.9). Driving performance is again quite good

as can be seen in Fig. 10.8. Thus, it can be seen that, in practice, a suboptimal KF

formulation that used noisy measurements in its parameter evolution equations still

resulted in good overall driving performance.

These examples successfully demonstrate the benefits and potentials of pairing

an optimal controller with an optimal parameter estimator for removing constant

modeling uncertainty. Even a trivial scalar KF implementation was enough to not

only eliminate unsafe driving when significant modeling error was presented, but was
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Figure 10.8: 20% Mass Error with Sensor Noise and Mass Estimator

also sufficient to reinstate optimal driving behavior. Thus a more advanced optimal

parameter estimator, one that can estimate more than a single parameter - may be a

good future research direction for optimal train control.
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Figure 10.9: Kalman Filter Convergence
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Chapter 11

Conclusion and Future Work

11.1 Conclusion

With the increasing computational capabilities of modern computer hardware, opti-

mal control is rapidly becoming a very interesting prospective as more realistic vehicle

models and more useful control problems can be solved in a reasonable amount of

time. This thesis has focused on formulating and implementing an optimal controller

that is usable for real-world conditions and trip objectives while being capable of in

real-time controlling a rail vehicle in motion.

The controller is first formulated and tested as a non-convex optimal control prob-

lem, with IPOPT and NLOPT being used as numerical solvers. Although both solvers

are capable of solving the optimal control problem to high degree of accuracy neither

is well suited towards real-time control applications. As observed by other research

in the field, numerical optimization strategies often suffer from computational com-

plexity and are thus not readily real-time implementable, and thus other research has
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largely focused on problem simplification, thus achieving optimal results for supopti-

mal problem formulations (Novak et al., 2015). This is not apparent with the convex

formulation in this thesis as the numerical optimization of the presented optimal con-

trol strategy is real-time capable due to the convexity, problem structure and efficient

solving routines combined with a low-level embedded implementation of the control

algorithm.

As compared to the analytical research with advanced models conducted by Al-

brecht et al. (2016a), the convexity of the optimal control problem allowed for solving

the problem uniquely, robustly and quickly with a numerical solver in a single iter-

ation, whereas Albrecht et al. (2016a) could not demonstrate real-time performance

and employed numerous ad-hoc strategies (Albrecht et al., 2016a). The research by

Albrecht et al. (2015) was similar the research of Albrecht et al. (2016a) but was

adapted to controlling two vehicles sharing the same track as a non-convex optimal

control problem, but had an unspecified solution strategy (Albrecht et al., 2016a,

2015). This research introduced the multi-vehicle control problem in a similar struc-

ture to Albrecht et al. (2015), but the convexity of the approach allowed for a fully

real-time capable and robustly solvable control problem.

As compared to existing numerical control methods this research utilized advanced

modeling to allow the controller to optimally work with highly complex trip config-

urations as is common in other numerical research methods. In contrast with other

numerical methods this was done robustly, on-line and was very fast to compute; de-

ployable simply via configuring the on-board model without requiring training as was

the case with numerous numerical strategies (Matsuura and Miyatake, 2014; Vašak

et al., 2009; Chang and Xu, 2000).
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Therefore, since analytical approaches to the train control problem have been

known to be efficiently solvable yet lacking the necessary complexity for robust control

(Ichikawa, 1968), the convex controller allows for an optimal control strategy that

incorporates the best attributes of researched analytical and numerical train control

methods: the computational efficiency and real-time capabilty of analytical train

control research paired with high modeling accuracy and advanced trip objectives as

seen in advanced numerical train control optimization research.

Given the extensive testing of the controller formulation as presented in this thesis

in the convex case, the practical robustness of the method was demonstrated on a

simulated model of a train system. This research strived to address as many varia-

tions of trip conditions while modeling the vehicle as accurately as possible. Great

performance was demonstrated for simple and advanced trips alike. Performance for

high speed rail and long range rail was likewise great. Demonstrated also was a case

where several vehicles are sharing the track simultaneously with a safety buffer con-

straint between them. The controller proceeded to drive both trains optimally and

safely. When subjected to disturbances, the controller performance did not degrade

until very large plant/model mismatch was applied. For very large modeling errors

it was paired with a parameter estimator, a combination that led to significantly

improved performance resulting in the controller subsequently being able to stop the

train with insignificantly small error.

Computational performance on both desktop processors and embedded ARM sys-

tems was shown to be very fast even with large control horizons. This opens up an

interesting application for the controller in an embedded role. A highly robust system

with a significant amount of redundancy can be cheaply and efficiently implemented
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on a live vehicle. In this case, multiple ARM Linux machines - like the Hardkernel

Odroid XU4 PCs - can be deployed, all of which run the same optimal controller hav-

ing either the same objective or different objective weights. Therefore, in the event

of a system failure the ATS module can select another physical instance of the ATO

to drive the train, thus allowing for robust hard or soft failure recovery.

The same qualities could not be extended to the non-convex implementation as

developed in the early stages of this research as it would not scale well and per-

formance was largely unsuitable for real-world applications with both IPOPT and

NLOPT:SLSQP implementations.

In conclusion, this research represents the viability of advanced optimal control

for real-time applications through convex numerical optimization strategies. This is

possible not only through efficient problem formulations but due to advancements

in computational hardware and developments in evolved and efficient numerical con-

vex solvers. It is hoped that this research assists others in realizing advanced and

safety critical control problems as real-world implementable numerical optimization

problems.

11.2 Future Work

The successful implementation of a convex optimal controller does allow for a signif-

icant amount of interesting research that would extend and improve the controller’s

capabilities and allow for faster adaptive control to a higher precision.

This research demonstrates the effectiveness of the proposed optimal control strat-

egy in regulating a simulated rail vehicle as an embedded system. The next logical

step is to install the embedded controller on one of Thales Canada Transport Solutions

112



M.A.Sc. Thesis - Dennis Ion Yazhemsky McMaster - Electrical Engineering

vehicles for real-world performance testing. In this way, the controller performance

can be further validated under real-world test and track conditions.

Also demonstrated were the gained benefits in driving performance when pairing

the optimal controller to a simplistic real-time parameter estimator. A useful future

research direction would be to focus on a more advanced parameter estimation algo-

rithm - one capable of resolving most if not all of the model parameters at once. This

can be a significant challenge due to the complexity of the vehicle dynamics model

and the potential unobservability of some parameters under normal driving condi-

tions. Additionally of a challenge is ensuring that no overfit in parameter estimation

is apparent.

Optimal estimation paired with optimal control is prevalent for systems such as

MPC and MHE paired systems where real-time estimation has been demonstrated for

large-scale Quadratic Programming (QP) estimation problems (Vukov et al., 2015).

As was demonstrated in this thesis, a convex numerical optimization formulation

proved to be well suited for real-time control. Perhaps a convex numerical optimiza-

tion can be formulated for advanced parameter estimation that is equally robust, is

an unbiased optimal estimator and allows for real-time parameter updates.

Another interesting future research direction is further improving the computa-

tional speed of ECOS for larger optimization problems. As was shown in Fig. 7.4

and Domahidi et al. (2013), MOSEK outperforms ECOS for very large optimization

horizons (K > 1000) (Domahidi et al., 2013). As mentioned previously, this may

largely be due to MOSEK using efficient hardware optimized BLAS and LAPACK

routines that speed up large-scale linear algebra computation (MOSEK ApS, 2015).

Therefore, modifying ECOS’s rather minimal source to use something like cuSPARSE
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instead of CSPARSE, may result in significant acceleration for large K due to GPU

evaluations of high level matrix routines under the NVIDIA CUDA environment (Liu

and Schmidt, 2015). In this manner, the precision for very long trips can be further

improved with a decrease in computation time.

In conjunction, significant performance benefits may be gained through smarter

selection of the ∆x profile. In this thesis, the profile was naively set as a suboptimal

trapeziodal profile so as to improve performace at station start and stop regions. A

future direction can be to develop an optimal method of ∆x selection based on the G

and Vmax profiles. This can allow for either a smaller control horizon dimension size

(K) or a finer and more accurate sampling of X. In either case, better control perfor-

mance may be apparent per millisecond of computation time than for a trapeziodal

profile.

The scope of this research did not focus on cases where there may be a significant

delay in controller actuation. Large delay has been extensively noted to be especially

harmful to control in feedback systems (Brown and Coombs, 1991). Therefore a

future research direction may be to incorporate controller delay straight into the

optimal control strategy such that the controller can smartly handle large delays

without adverse driving behavior.

The control problem, as implemented in this research, can also be extended to

other types of vehicles with similar driving applications and objectives. The control

objectives of automotive automatic cruise control systems come to mind and they

require many of the control objectives demonstrated in this research. This optimal

convex controller requires minimal modifications to fulfill the role of a cruise control

system on a driver-less car, so long as there is a higher level control system that
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is responsible for route mapping, and an additional system responsible for steering

control.
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