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Abstract

This thesis investigates some problems related to the form and shape of statistical
distributions with the main focus on goodness of fit and bump hunting.

A bump is a distinctive characteristic of distributional shape. A search for
bumps, or bump hunting, in a probability density function (PDF) has long been
an important topic in statistical research. We introduce a new definition of a bump
which relies on the notion of the curvature of a planar curve. We then propose a new
method for bump hunting which is based on a kernel density estimator of the un-
known PDF. The method gives not only the number of bumps but also the location
of their centers and base points.

In quantitative risk applications, the selection of distributions that properly cap-
ture upper tail behavior is essential for accurate modeling. We study tests of dis-
tributional form, or goodness-of-fit (GoF) tests, that assess simple hypotheses, i.e.,
when the parameters of the hypothesized distribution are completely specified. From
theoretical and practical perspectives, we analyze the limiting properties of a fam-
ily of weighted Cramér-von Mises GoF statistics W 2,β

n with weight function ψ (t) =

1/(1− t)β (for β 6 2) which focus on the upper tail. We demonstrate that W 2,2
n has

no limiting distribution. For this reason, we provide a normalization of W 2,2
n that

leads to a non-degenerate limiting distribution.
Further, we study W 2,β

n for composite hypotheses, i.e., when distributional pa-
rameters must be estimated from a sample at hand. When the hypothesized distri-
bution is heavy-tailed, we examine the finite sample properties of W 2,β

n under the
Chen-Balakrishnan transformation that reduces the original GoF test (the direct test)
to a test for normality (the indirect test). In particular, we compare the statistical
level and power of the pairs of direct and indirect tests. We observe that decisions
made by the direct and indirect tests agree well, and in many cases they become
independent as sample size grows.
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n . . . . . . . . 76
4.3.1 On Convergence in Distribution of Ŵ 2,β
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Chapter 1

Introduction

1.1 Bump Hunting in Probability Density Functions

A search for bumps, or bump-hunting, in a probability density function (PDF) has
long been an important topic in statistical research. In a PDF without flat regions,1

a bump is defined as the part lying between two inflection points and that is concave
if viewed from below. A bump may not necessarily correspond to a local maximum.
As Good and Gaskins (1980) and Dazard and Rao (2010) rightly point out, even if
a bump is not a local maximum, it still indicates some features of a random variable
requiring an explanation, and these features often reveal some useful characteristics
of the underlying phenomena leading to scientific discoveries.

If a bump does correspond to a local maximum, it is referred to as a modal
bump. Bump hunting is then closely related to tests for multimodality in PDFs.
The latter has developed into a vast subject (e.g., Silverman, 1980; Hartigan and
Hartigan, 1985; Müller and Sawitzki, 1991; Minnotte, 1997; Cheng and Hall, 1999;
Andryushkiw et al., 2008). Mode analysis is also paramount in some clustering
procedures – the ones which view modes as centers of clusters in a data set (e.g.,
Wishart, 1969; Azzalini and Torelli, 2007; Menardi and Azzalini, 2014).

The modal bump estimation procedures are roughly of the following two types
(Dharmadhikari and Joag-Dev, 1988): direct and indirect. The direct methods are
based on the clustering of observations and go back to Chernoff (1964). The in-
direct methods obtain estimators of the unknown PDF from the data at hand and

1Flat parts play a special role; see Müller and Sawitzki (1991, p. 740) and Appendix A.1.3.
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derive estimators of a bump as a by-product. This group of methods is termed
nonparametric and was originated by Parzen (1962b). A principal representative
of nonparametric methods, kernel density estimation (KDE), has given rise to a
number of methods of bump-hunting (Silverman, 1980, 1986; Azzalini and Torelli,
2007; Menardi and Azzalini, 2014). A detailed overview of nonparametric various
bump hunting methods can be found in Hall et al. (2004).

Bump-hunting tasks arise in a variety of areas ranging from physics and astron-
omy (Good and Gaskins, 1980), epidemiology (Jaffe et al., 2012) to financial risk
modeling. In operational risk modeling, for example, a prior knowledge of modal
structure of loss severities allows the modeler to select a suitable set of distributions
that accommodate shapes with multiple bumps.

In this thesis, we propose a new method for bump-hunting which is based on a
kernel density estimator2 of the unknown PDF. Motivated by geometrical consid-
erations, we introduce a new definition of a bump. The proposed method borrows
from the notion of curvature of a planar curve and utilizes it to make “surgeries”
to the KDE. A surgery is defined as an operation of cutting the “cap” of a bump
(the part under the bump confined between the KDE and the chord connecting the
bump’s two base points). The cap is then evaluated as follows: If its area exceeds a
set threshold, the bump is counted as a prominent one, otherwise, a number of steps
are performed to determine if the bump is part of an adjacent bump(s) whose cap’s
area is greater than the threshold or not. As the proposed method aims to identify
bumps with the cap’s area greater than a certain threshold, it will be referred to as
Targeted Bump Hunting (TBH).

1.2 Goodness-of-Fit Tests in Operational Risk Mod-
eling

This section uses material from the following article:

• K. Mayorov, J. Hristoskov and N. Balakrishnan. On a family of weighted
Cramér-von Mises goodness-of-fit tests in operational risk modeling. Journal

of Operational Risk, forthcoming 2017.

2A kernel density estimator will be abbreviated as KDE throughout this thesis when there will
be no confusion with kernel density estimation.
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The material is reproduced with permission from Incisive Media.

Financial institutions bear a number of operational risks while conducting busi-
ness activities. These risks can often result in potentially significant loss events that
can degrade the firm’s assets to levels that are lower than liabilities. Under such
circumstances financial institutions will not have adequate backing to compensate
losses of depositors and lenders, and will usually be faced with imminent default.
In order to mitigate the potential for default from adverse operational risk events,
firms are required to keep sufficient equity capital that can foreseeably absorb all
significant losses without jeopardizing liabilities and causing bankruptcy.

Definition. Operational risk (OpRisk) is defined as the risk of loss resulting from
inadequate or failed internal processes, people and systems or from external events.
This definition includes legal risk, but excludes strategic and reputational risk.

Some examples of OpRisk events (McNeil et al., 2015) are:

• Fraud (internal and external), losses due to IT failure, errors in settlements
of transactions, losses due to external events like flooding, fire, earthquake or
terrorism;

• System errors, such as the estimated $440 million loss from a computer-
trading glitch at Knight Capital Group in 2012;

• Legal losses and penalties such as Bank of America’s August 2014 record
fine of $16.65 billion for the misselling of financial products on the basis of
inaccurate or misleading information about their risks.

Regulators typically require financial institutions to hold equity capital for OpRisk
at a level that can ensure that the total yearly loss from extreme or on aggregate large
operational events not exceed capital with a chance of 0.1 percent over one year time
horizon. As such, to ensure capital adequacy, financial institutions attempt to deter-
mine the 1-year, 99.9 percentile aggregate loss that is possible to occur and ensure
that equity capital is at a level that is sufficient to cover such loss.

The 99.9 percentile aggregate loss is specified by the Basel Committee on Bank-
ing Supervision (Basel Committee on Banking Supervision, 2004) as representing
the target for minimum capitalization under Pillar 1 of its three pillar system. At
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present, Pillar 1 minimum capitalization for OpRisk can be determined via three dif-
ferent approaches, a basic indicator approach (BIA), standardized approach (TSA)
and the advanced measurement approach (AMA). The AMA is driven by regula-
tory principles prescribing a general framework which requires the application of
frequency and severity distributions to complete an aggregate loss distribution under
the loss distribution approach (LDA).

Under Basel II, Pillar 2 directives, financial institutions can apply internal mod-
els to complement and test the minimum capital requirements set under Pillar 1
(either through Economic Capital or Stress Testing frameworks). Being typically
more advanced, Pillar 2 models for OpRisk generally follow LDA prescriptions
and require well calibrated severity models as the loss targets for capitalization can
exceed the 99.95 percentile.

Given the high percentile loss targets for capitalization, under both pillars, a
major challenge for LDA modeling has been to accurately model loss severity with
limited publicly available or internal operational loss data for more extreme events.
Often the underlying problem is that less than a minimum set of historic losses
have been collected for adequate statistical modeling. In addition, wrong candi-
date severity distributions may be improperly selected. The combination of these
problems can lead to significant error in modeling for capital adequacy.

Motivated by these practical considerations, in Chapter 3, we address the prob-
lem of more accurate severity distribution selection under an LDA approach in the
case of simple hypotheses of goodness of fit (GoF). A simple GoF hypothesis is
that a random variable X is distributed according to a CDF with completely spec-
ified parameters, i.e., H0: X ∼ F(·;θθθ 0) with both the distributional form of F and
its parameters θθθ 0 being known. We discuss distributional properties of a family
of weighted Cramér-von Mises (WCvM) GoF test statistics, W 2,β

n , with weight
function ψ (t) = 1/(1− t)β , that are suitable for more accurate selection of best-
fit severity distributions. We demonstrate that for weights where β > 2 the WCvM
test statistic does not have limiting distributions, which may limit its practical util-
ity. In order to rectify the problem we provide a normalization for β = 2, which
leads to a non-degenerate asymptotic distribution. Notwithstanding the normaliza-
tion, our analysis will show that the tests provide greater utility when β < 1.5 and
that for β > 1.5 utility is questionable as only Monte Carlo schemes, which are
shown to be very slow in approaching the asymptotic regime, are practical even for
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very large samples.

1.3 The Chen-Balakrishnan Transformation to Nor-
mality

GoF tests play an important role in statistics and its applications. The theory of GoF
tests is well established (D’Agostino and Stephens, 1986; Thas, 2010; Bagdonav-
ičius et al., 2011). The range of applications of GoF tests spans from reliability
theory (Chen and Balakrishnan, 1995; Barros et al., 2014) to medicine (Kuss, 2002)
and risk modeling (see Chapter 3).

In applications, testing whether the distribution of a random variable belongs to
a given family of distributions with unspecified parameters, i.e., testing of a com-
posite hypothesis H0: X ∼ F(·;θθθ), is not uncommon. In this case, the distributional
form of F is known, but the parameter vector θθθ ∈ Ω ⊆ Rm (for some m ∈ N and
open set Ω) of the CDF F(·;θθθ) must be estimated from a sample at hand.

If a statistic is chosen to assess this type of hypotheses, one often has to resort to
a Monte Carlo (MC) method, such as a parametric bootstrap, to calculate a p-value
or critical value of a given statistic. Although the processing power and available
amounts of random-access memory (RAM) of modern computers have significantly
increased computational tractability of Monte Carlo methods, evaluation of critical
values may still face problems of long execution time as each MC trial includes
distributional parameter estimation. This is the case in OpRisk modeling wherein
dozens of truncated, multi-parameter severity distributions are tested via MC simu-
lations.

In Chen (1991) and Chen and Balakrishnan (1995), a transformation was pro-
posed that serves to avoid MC simulations. We refer to this transformation as the
Chen-Balakrishnan transformation (CBT) - the term suggested in Goldmann et al.
(2015, p. 60). CBT reduces the initial hypothesis H0 (the direct test) to an auxil-
iary composite hypothesis for normality H?

0 : Y ∼ N(µ,σ) (the indirect test), with
N(µ,σ) denoting a normally distributed random variable with mean µ and variance
σ2 whose CDF is Φ((·−µ)/σ), where Φ(x) = (1/

√
2π)
´ x
−∞

exp(−t2/2)dt. CBT
is presented in Algorithm 1.1.

CBT requires efficient estimation of the unknown parameter. It is known that
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Algorithm 1.1 The Chen-Balakrishnan Transformation

Input: Random sample X1, . . . ,Xn, CDF F(·;θθθ) with unknown θθθ ∈ Ω ⊆ Rm for
m ∈ N in H0 : X ∼ F(·;θθθ).

Output: Transformed null H?
0 : Y ∼ N(µ,σ) for unknown µ and σ .

1: Let X(1) 6 · · ·6 X(n) be order statistics of the sample;
2: Efficiently estimate θθθ by θ̂θθ n based on {X( j)}n

j=1;

3: Calculate Y( j) = Φ−1(F(X( j); θ̂θθ n));
4: Calculate Z j = (Y( j)− Ȳ )/sY , where Ȳ = (∑n

j=1Y( j))/n and s2
Y = (∑n

j=1(Y( j)−
Ȳ )2)/(n−1);

5: return H?
0 : Z ∼ N(µ,σ), where µ and σ have to be estimated from {Z j}n

j=1.

under certain regularity conditions, maximum likelihood (ML) estimators are asymp-
totically efficient (see Casella and Berger, 2002, p. 472 and p. 516).

The transformation to and assessment of H?
0 are performed in a fraction of a

second (see Section 4.6). The speed and applicability to arbitrary families F(·;θθθ)

of null distributions makes this transformation approach attractive in practice.
In the literature, the auxiliary normality hypothesis has mainly been studied on

a standalone basis (Chen and Balakrishnan, 1995; Meintanis, 2009) with rare at-
tempts to examine the quality of the approximation (Goldmann et al., 2015). How-
ever, due to the fact the mechanics of CBT relies on some assumptions which may
only be approximately valid in practice, it is natural to ask to what degree deci-
sions made by assessing H?

0 are reflective of those made by assessing H0 directly.
Secondly, since CBT is a nonlinear transformation, it is not clear a priori whether
switching from H0 to H?

0 leads to a gain in the level and power.
Motivated by these considerations, for a selected family of WCvM GoF test

statistics, in this thesis, we examine agreement between the decisions made based
on H0 and H?

0 on a given data set for distributional families with varying degree
of tail heaviness. We compare the level and power of the selected WCvM GoF
statistics for H0 and H?

0 . In many situations, decisions of direct and indirect tests
turn out to become independent as sample size grows.

1.4 Scope of This Thesis

The rest of this thesis is organized as follows.
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In Chapter 2, we introduce and study the targeted bump-hunting method. Therein,
Section 2.3 describes TBH. To substantiate the theoretical foundation of TBH, in
Section 2.3.2, Section 2.3.3, and Appendix A.1, we establish a number of math-
ematical results which are also of independent interest. The method is tested on
selected distributions under various settings and its performance is compared to the
performance of some existing methods in Section 2.4. We discuss the performance
of the method and make recommendations for the test’s use in practice. We then
apply TBH to a real dataset from Good and Gaskins (1980) in Section 2.5.

In Chapter 3, we study a family of weighted Cramér-von Mises test statistics.
In Section 3.3, we collect results from the literature related to the supremum and
quadratic classes of upper-tail test statistics. This section shows that some previ-
ously defined defined test statistics do not have well-defined limiting distributions.
The notion of the spectrum of an integral operator and some of its properties asso-
ciated with weighted Cramér-von Mises test statistics are presented in Section 3.4.
In Section 3.6, we provide a positive affine normalization under which the statistic
W 2,2

n tends in distribution to a standard Gaussian random variable. We also obtain
some results on the spectrum of the integral operator associated with W 2,2

n . In Sec-
tion 3.8, we provide evidence to demonstrate that for W 2,β

n , 1.56 β 6 2, the tests’
practical utility may be limited due to a very slow rate of convergence of the finite
sample distribution to the asymptotic regime.

In Chapter 4, we study the Chen-Balakrishnan transformation to normality in
selected goodness-of-fit tests. In Section 4.2, we present several WCvM statistics
for the purposes of the subsequent study. In Section 4.3, we discuss the convergence
of W 2,β

n , β 6 2, in distribution. In Section 4.4, on the selected WCvM statistics, we
perform a simulation study on several distributions some of which are flexible to
allow for a varying degree of tail heaviness. In Section 4.5, we discuss the findings
of the study. An application to a set of real data of severities of operational risk
losses is presented in Section 4.6.

Finally, Chapter 5 provides concluding remarks and a discussion of possible
directions for future research.

Auxiliary results are relegated to appendices for conciseness in the presentation
of the main text of this thesis.
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Chapter 2

A Targeted Bump-Hunting Method
for PDFs in a Nonparametric Setting

2.1 Introduction

In this chapter, we propose a new method for bump hunting, Targeted Bump Hunt-
ing, or TBH, which is based on KDE of the unknown PDF. The proposed method
utilizes a new definition of a bump. The method performs sequentially “surgeries”
to the KDE. A surgery is a series of operations of cutting the “cap” of a bump (the
part between the bump and the chord connecting the bump’s two base points).

The cap is then evaluated as follows: If its area exceeds a set threshold, the
potential bump is counted as a true bump and not an artifact of the particular sample
drawn; otherwise, certain actions are performed to determine whether the bump is
part of an adjacent bump(s) whose cap’s area is greater than the threshold or not.

An application to a real data set is presented to illustrate the proposed method.

2.2 Facts from Theory of Kernel Density Estimation

In this section, we give a brief overview of some key results on univariate KDE
which are pertinent to the developments in subsequent sections. A comprehensive
account of KDE methods can be found in Silverman (1986), Wand and Jones (1995)
and Henderson and Parmeter (2015), and the results presented below are from these
sources, unless stated otherwise.
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Let {Xi : i = 1, . . . ,n} be a collection of independent and identically distributed
(IID) random variables with common PDF f : R→ R+. In particular, this means
κ0( f ) = 1 and f (x) > 0 for all x ∈ R. Here, we denote κ j(g) =

´
∞

−∞
x jg(x)dx,

j ∈ N0, for a function g : R→ R.
Consider also a function K :R→R+ such that it is an even PDF and κ2(K)<∞.

It follows that κ0(K) and κ1(K) equal 1 and 0, respectively. The function K(·) is
referred to as the kernel function and the estimator

f̂h(x) =
1

nh

n

∑
j=1

K
(

x−X j

h

)
(2.1)

is referred to as the kernel density estimator of the unknown PDF f . Here, the
positive parameter h = h(n), called a smoothing window, or bandwidth, is such that
h(n)→ 0 as n→ ∞. In what follows, dependence of h on n will be suppressed for
notational simplicity.

If f (·) is twice continuously differentiable, h→ 0 and nh→ ∞ as n→ ∞, then
(2.1) is a consistent and asymptotically unbiased estimator of f = f (x). More gen-
erally, if f (·) is r + 2-times continuously differentiable, where r ∈ N0, and if the
derivative K(r)(·) exists and is square integrable,1 h→ 0 and nh1+2r→∞ as n→∞,

then, taking f̂ (r)h (·) = f̂ (r)h (·),

f̂ (r)h (x) =
1

nhr+1

n

∑
j=1

K(r)
(

x−X j

h

)
(2.2)

is a consistent and asymptotically unbiased estimator of f = f (r)(x).
Although there are other plausible KDEs of the unknown PDF and its derivatives

(Singh, 1977), it is (2.1)-(2.2) that will be used throughout our work here.
It has been noted in the literature that although the choice of the kernel is impor-

tant, the overall effect on the results obtained from the statistical analysis is limited
when compared to the effect of the bandwidth. Indeed, (2.1) based on too large a
bandwidth will likely erase important features of the unknown PDF; on the other
hand, for too small h, f̂h(·) will result in a wiggly estimator thereby introducing
artificial features.

The literature dedicated to bandwidth selection is abundant. Thorough discus-

1In Section 2.3.2 and Appendix A, some of these assumptions are relaxed.
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sions are given by Henderson and Parmeter (2015, pp. 30–50) and Jones et al.
(1996). There are roughly two large classes of bandwidth selection methods: opti-
mal and data-driven. Although the classes are different, they are all based to some
degree on estimation or approximation of Asymptotic Mean Integrated Squared
Error (AMISE) which arises as an approximation of MISE for large sample size:
MISE(h)≈ AMISE(h), where MISE(·) is

MISE(h) = E
[ˆ +∞

−∞

(
f̂ (r)h (x)− f (r)(x)

)2
dx
]

.

Then, AMISE(·) can be shown to equal

AMISE(h) =
h4

4
R
(

f (r+2)
)

κ
2
2 (K)+

R
(

K(r)
)

nh1+2r as n→ ∞,

where R(g) =
´

∞

−∞
g2(x)dx for a function g : R→ R.

By routine calculations, the bandwidth that minimizes AMISE(·), known as the
AMISE-optimal bandwidth, is found to be

hAMISE =

(1+2r)R
(

K(r)
)

R
(

f (r+2)
)

κ2
2 (K)


1

5+2r

n−
1

5+2r .

Let N(·; µ,σ) denote a Gaussian PDF with mean µ and standard deviation
σ , i.e., N(x; µ,σ) = (1/σ)ϕ((x− µ)/σ), where ϕ(x) = (1/

√
2π)exp(−x2/2).

Then, for the PDF2 being N(µ,σ), the so-called Silverman rule-of-thumb band-
width equals

hRoT = cr(K)σ̂n−1/(5+2r),

where the constant c = cr(K) depends on both r and K(·) and σ̂ is a sample es-
timate of the standard deviation. If the kernel K(x) = ϕ(x) is standard Gaussian,
then c0(K) = 4/3. The rule-of-thumb bandwidth tends to oversmooth data, espe-
cially, for data from multimodal, skewed or heavy-tailed distributions. However, the
rule-of-thumb bandwidth is usually sufficient for a preliminary analysis for gaining
insights from the data at hand.

The data-driven selection methods are mainly represented by plug-in (PI), least-

2N(·; µ,σ) will be abbreviated to just N(µ,σ) when no confusion would arise.
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squares cross-validation (LSCV) and biased cross-validation (BCV). There is no
single data-driven estimator which can be preferred over the others in all circum-
stances. As discussed in Jones et al. (1996), hLSCV is often too variable (especially
in the direction of undersmoothing) and hBCV tends to oversmooth (and has some
instability problems as well). A useful compromise between hLSCV and hBCV is
given by the PI bandwidth from Sheather and Jones (1991), hSJPI, which is found
to be a stable performer in estimating f (·). A similar conclusion has been reached
in Chacón and Duong (2013) in the context of bandwidth selection for estimation
of f (r)(·): They generalize hSJPI to the derivative case and, based on their study,
recommend the resulting bandwidth for practical use.

2.3 The Method

In this section, we utilize one of the fundamental concepts from differential geome-
try, namely, the curvature of a planar curve to introduce a new definition of a bump.
We then present some results on KDE of curvature. We introduce the notion of a λ -
surgery and then describe the algorithm of the proposed method for bump-hunting.

2.3.1 Curvature and its Extrema, and New Definition of a Bump

We first borrow some known facts about curvature. The reader is referred to Gibson
(2001) for a detailed introduction into the subject.

Let y = g(x) be the graph of a twice differentiable function g : R→ R. It can
be viewed as the planar curve z(t) = (x(t),y(t)), where x(t) = t and y(t) = g(t) for
t ∈R. In this case, the curvature of z = z(t), or, equivalently, of y = g(x) is given by

C(x) =
g′′(x)(

1+(g′(x))2
) 3

2
.

Curvature is invariant in the sense that speed (i.e.,
√

1+(g′(x))2) and curvature
determine the curve uniquely up to the relation of congruence (Gibson, 2001, p. 87).
In particular, it implies that curves of constant curvature C are either line segments
(C = 0) or arcs of a circle (C 6= 0).

The points where C(·) changes sign are known inflection points. In particular,
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inflection points must satisfy3 C(x) = 0, or g′′(x) = 0.

Remark. It is worthwhile mentioning that it has been common in the KDE literature
to view the second-order derivative as a measure of curvature or even refer to it as
curvature. While curvature and the second-order derivative are indeed very simi-
lar when the curve does not have sharp features, the two may be vastly different
otherwise. See Figure 2.2 below.

In a PDF without flat regions, Good and Gaskins (1980, p. 42) and Silverman
(1986, p. 137) define a bump as the part lying between two inflection points and
that is concave if viewed from below. That is, the base of the bump is formed by
two inflection points. We argue that, in general, this definition may not reflect the
common perception of the base of a hill which one encounters in nature, i.e., per-
ception of the foot of a hill. Indeed, let us consider the PDF of a symmetric “claw”
y = 0.5ϕ(t)+∑

4
j=0 ϕ(10(t− ( j/2− 1))) taken from Marron and Wand (1992). It

has five distinct bumps which are also local maxima. Figure 2.1 shows that inflec-
tion points (marked as squares) appear to be too high. Viable candidates for the
base of the bumps are the points marked by circles and diamonds (located much
lower down the bumps than inflection points), out of which the points marked by
diamonds seem to be the most natural candidates to serve as base points.

These special points are the points at which the second order derivative and
curvature attain positive maxima. The first and second order derivatives as well
as the curvature of the “claw” PDF are depicted in Figure 2.2. The importance of
curvature extrema, known as vertices, has been appreciated in image recognition
and shape analysis (Eberly, 1996; Hahmann et al., 2008). Vertices characterize
sharp turning points of the curve. A vertex is called a course if C′(x) = 0, C′′(x)< 0
and C(x) > 0 and is called a ridge if C′(x) = 0, C′′(x) > 0 and C(x) < 0. In this
terminology, the diamonds in Figure 2.2 correspond to courses.

Remark. It may be tempting to guess that stationary points (and, in particular, max-
ima and minima) of the graph of a function g(·) will coincide with vertices. How-
ever, this is generally not the case. It is known (Gibson, 2001, p. 128) that a station-
ary point x = b is a vertex if and only if g′′′(b) = 0. This condition is satisfied if, for
example, y = g(x) is locally symmetric around x = b.

3This is a necessary but not sufficient condition for inflection. The so-called undulation points x
satisfy C(x) = 0, but curvature is sign-constant in a vicinity of x.
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Figure 2.1: The PDF of a symmetric “claw” defined by the equation y = 0.5ϕ(t)+
∑

4
j=0 ϕ(10(t− ( j/2−1))) and special points.
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Motivated by these geometric considerations, we propose the following defini-
tion of a bump.

Definition 2.1 (Definition of a Bump). Let g : R→ R be a twice differentiable
function and let x = c1 and x = c2 be two consecutive courses, such that the interval
(c1,c2) contains a ridge x = r1,2. Then, a bump is defined as the part of the graph of
g(·) for x ∈ (c1,c2).

Remark. A bump from Definition 2.1 is well defined as in Appendix A.1.3, for a
continuous function g : R→ R without flat parts, we establish that between its any
two consecutive minima (maxima), there exists only one maximum (minimum).

The bump defined above will always be “wider” than the bump between two
inflection points. Indeed, the Intermediate Value Theorem guarantees the existence
of an inflection point i1 ∈ (c1,r1,2) and, similarly, there exists another inflection
point i2 ∈ (r1,2,c2). Thus, (i1, i2)⊂ (c1,c2).

Remark. In the rest of this thesis, a bump will be understood in the sense of Defini-
tion 2.1, unless stated otherwise.

Remark. In the spirit of Definition 2.1, a dip can be defined as the part of the graph
of g(·) between two consecutive ridges that contains a course.

It seems convenient to classify bumps of a function g : R→R containing no flat
pieces into the following three types:

Type 1. Function g(·) has a local maximum, or mode, m ∈ (c1,c2), i.e., g′(m) = 0,
g′′(m)< 0;

Type 2. Function g(·) has a “shoulder" s ∈ (c1,c2), i.e., g′(s) = 0, g′′(s) = 0, but
g′′′(s) 6= 0 (Cheng and Hall, 1999);

Type 3. Function g(·) is strictly increasing or strictly decreasing for all x ∈ (c1,c2),
i.e., g′(x)> 0 or g′(x)< 0 throughout the interval.

Type 1 is a modal bump, Type 3 is a purely non-modal bump, and Type 2 is a
non-modal bump, transitionary between modal and purely non-modal bumps. These
three types are illustrated in Figure 2.3. The left panel exemplifies a PDF with two
bumps, the left one of which is of Type 1, and the other bump is of Type 3. The
right panel shows a PDF (borrowed from Cheng and Hall, 1999) with two bumps,
too, but the bump on the left is now of Type 2 while the other one is of Type 1.

14
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Figure 2.3: The left panel shows the plot of the PDF y= 0.7N(0,1)+0.3N(−1,0.4),
and the right panel shows y = pN(0,1) + (1− p)N(−9

√
3/8,0.25), where p =

8exp(9/8)/(1+8exp(9/8)). Inflection points, courses, ridges, modes, and shoul-
ders are all shown where applicable.

2.3.2 Kernel Density Estimation of Curvature

Let us consider a collection of IID random variables {Xi : i = 1, . . . ,n} with a com-
mon unknown twice differentiable PDF f : R→R. We wish to estimate f (·) and its
curvature C(·) by KDE methods. To this end, for a fixed kernel function K : R→R,
the KDE of f (·) is obtained as in (2.1) while C(·) can be estimated as

Ĉh1,h2(x) =
f̂ ′′h1

(x)(
1+
(

f̂ ′h2
(x)
)2
) 3

2
, (2.3)

where h1 = h1(n) and h2 = h2(n) are bandwidths corresponding to the estimation
of f ′′(·) and f ′(·). When h1 and h2 are equal to some common value h3, Ĉh1,h2(·)
will be denoted by Ĉh3(·).

Below we present theorems for the expressions of the MISE, AMISE and AMISE-
optimal bandwidth hAMISE for Ĉh3(·). The theorems are valid under a wide range
of assumptions on f (·) and K(·). Under these conditions, Ĉh3(·) is shown to be a
consistent (see Corollary 2.6) and asymptotically unbiased (see Corollary 2.3) esti-
mator of the unknown curvature function C(·). The proofs rely on some auxiliary
lemmas which are relegated to Appendix A.

We begin by introducing the following two assumptions.
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Assumption 2.1.

1. Derivatives: Let g : R :→ R be a function which possesses the second order

derivative at a point x0 ∈ R;

2. Boundedness:

(a) g(x)6 b1 exp(b2x2) for some constants b1,b2 > 0 and all x ∈ R; or

(b) g(x)6 c1 + c2x2 for some constants c1,c2 > 0 and all x ∈ R.

Consider also a function V : R :→R such that it satisfies the following assump-
tion.

Assumption 2.2.

1.
´

∞

−∞
|V (x)|dx < ∞;

2.
´

∞

−∞
x2|V (x)|dx < ∞;

3. Support and Growth:

(a) supp |V |b R; or

(b) |V (x)|6 d1 exp(−d2x2) for some constants d1,d2 > 0 and all x ∈ R.

Remark. Conditions 1 and 2 of Assumption 2.2, together with an application of
the Cauchy-Schwarz inequality, imply that

´
∞

−∞
x|V (x)|dx < ∞. Therefore, each

κ j(V )< ∞ for j ∈ {0,1,2}, where κ j(V ) =
´

∞

−∞
u jV (u)du.

Theorem 2.2. The asymptotic bias of the KDE estimator of curvature of a PDF f

from (2.3) equals

Bias
(

Ĉh(x)
)
=

h2

2

 f (4)(x)(
1+
(

f ′(x)
)2
) 3

2
− 3 f

′
(x) f

′′
(x) f

′′′
(x)(

1+
(

f ′(x)
)2
) 5

2

κ2(K)+o(h2)+O
(

1
nh4

)

as n→ ∞.
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Proof. Indeed, from Lemma A.7, Lemma A.10 and (A.9), we get:

E
[
Ĉh(x)

]
=

f
′′
(x)+ h2

2 f (4)(x)κ2(K)+o(h2)(
1+
(

f ′(x)+ h2
2 f ′′′(x)κ2(K)+o(h2)

)2
) 3

2
+O

(
1

nh4

)

=C(x)
(

1+ h2

2
f (4)(x)κ2(K)

f ′′(x)
+o(h2)

)(
1− h2

2
3 f
′
(x) f

′′′
(x)κ2(K)(

1+( f ′(x))
2
) +o(h2)

)
+O

(
1

nh4

)
Then,

E
[
Ĉh(x)

]
=C(x)

1+
h2

2
f (4)(x)κ2(K)

f ′′(x)
− h2

2
3 f
′
(x) f

′′′
(x)κ2(K)(

1+
(

f ′(x)
)2
)
+o(h2)+O

(
1

nh4

)
.

�

Corollary 2.3. The curvature estimator is asymptotically unbiased.

Theorem 2.4. The variance of the KDE estimator of curvature of a PDF f from
(2.3) equals

V
[
Ĉh(x)

]
=

1
nh5

f (x)R
(

K
′′
)

(
1+
(

f ′(x)
)2
)3 +O

(
1

nh5

)
+O

(
1

n3/2h7

)

as n→ ∞.

Proof. Using (A.9), (A.11), Lemmas A.7, A.12 and A.13, we get

V
[
Ĉh(x)

]
= V[X ]

(1+(E[Y ])2)
3 +O(1)O

(
1

nh3

)
−O(1)O

(
1

nh3

)
+O

(
1

n3/2h7

)
=

(
f (x)R

(
K
′′)

nh5 +O
(

1
nh5

))
1(

1+( f ′(x))
2
)3 (1+O(1))+O

(
1

nh3

)
+O

(
1

n3/2h7

)
= 1

nh5

f (x)R
(

K
′′)(

1+( f ′(x))
2
)3 +O

(
1

nh5

)
+O

(
1

n3/2h7

)
.

�

Thus, we obtain the following theorem regarding the MSE and MISE of the
curvature estimator.
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Theorem 2.5. (1) The mean squared error of the curvature estimator (A.6) when
h1 = h2 = h equals

MSE
(

Ĉh

)
=

1
4

h4
α

2 (x)+
1

nh5 β (x)+o(h4)+O
(

1
nh5

)
+O

(
1

n3/2h7

)
;

(2) The mean squared integrated error of the curvature estimator (A.6) when
h1 = h2 = h equals

MISE
(

Ĉh

)
=

1
4

h4R(α)+
1

nh5

ˆ
∞

−∞

β (x)dx+o(h4)+O
(

1
nh5

)
+O

(
1

n3/2h7

)
,

where

α (x) =
1(

1+
(

f ′(x)
)2
) 3

2

(
f (4)(x)− 3 f

′
(x) f

′′
(x) f

′′′
(x)

1+
(

f ′(x)
)2

)
κ2(K)

and

β (x) =
f (x)R

(
K
′′
)

(
1+
(

f ′(x)
)2
)3 .

Consistency of Ĉh(x) follows immediately from Theorem 2.5 and Chebyshev’s
inequality.

Corollary 2.6. Suppose h→ 0 and nh5→ ∞ as n→ ∞. Then, under Assumptions
2.1 and 2.2, Ĉh(x)

P→C(x) as n→ ∞.

Proof. By Chebyshev’s inequality,

P
(∣∣∣Ĉh(x)−C(x)

∣∣∣> ε

)
6

E
[
(Ĉh(x)−C(x))

2]
ε2

= 1
ε2

(
1
4h2α2 (x)+ 1

nh5 β (x)
)
+o(h4)+O

(
1

nh5

)
+O

(
1

n3/2h7

)
→ 0

as n→ ∞. �

As yet another corollary, we obtain the expression of the AMISE of the curva-
ture estimator and the corresponding optimal bandwidth.
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Corollary 2.7. (1) The asymptotic mean squared integrated error of the curvature
estimator (A.6) when h1 = h2 = h equals

AMISE
(

Ĉh

)
=

1
4

h4R(α)+
1

nh5

ˆ
∞

−∞

β (x)dx;

(2) The asymptotic optimal bandwidth equals

hAMISE =

(
5

´
∞

−∞
β (x)dx

R(α)

) 1
9

n−
1
9 ; (2.4)

(3) AMISE at hopt is

AMISE
(

Ĉhopt

)
=

9
4

((
R(α)

5

)5(ˆ ∞

−∞

β (x)dx
)4
) 1

9

n−
4
9 .

Proof. While (1) is trivial, (2) and (3) are proved by routine calculations. �

One can observe that if f (·) does not have sharp features, then hAMISE is close
to the AMISE-optimal bandwidth for the KDE f̂

′′
h1
(·) for the second order derivative

f ′′(·) (see Henderson and Parmeter, 2015, p. 48) given by

hAMISE =

(
5

R(K′′)
R( f (4))κ2

2 (K)

) 1
9

n−
1
9 .

Remark. It is worth noting that if f̂
′
h1
(·) and f̂

′′
h1
(·) are consistent estimators of f ′(·)

and f ′′(·), respectively, then Ĉh1,h2(·), as a continuous function of f̂
′
h1
(·) and f̂

′′
h1
(·),

will be a consistent estimator of C(·).

2.3.3 The Number of Modal and Purely Non-Modal Bumps for
KDE with a Gaussian Kernel

In Silverman (1980), it has been shown that the number of maxima as x varies in
f̂ (r)h (x) in (2.2) for a Gaussian K(·) is a right continuous decreasing function of h

for each r ∈N0. The results imply that the number of maxima for f̂h(·) and f̂
′′
h (·) is

at most n and 2n, respectively.
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Below we show that similar results can be obtained for the number of minima.
The proofs rely on some auxiliary lemmas which are relegated to Section A.1.3 in
Appendix A.

Instrumental to our discussion is the following definition.

Definition 2.8. Let g : R→R be a continuous function such that limx→±∞ g(x) = 0
and is monotonic in a neighbourhood of both +∞ and −∞. We say that g is a
function of type (↗ ··· ↘) if it increases in a neighbourhood of −∞ and decreases
in a neighbourhood of +∞. Functions of types (↘ ··· ↘), (↗ ··· ↗), and (↘
·· · ↗) are defined analogously.

From Lemmas A.16 and A.17 with the help of Lemma A.18, we conclude that
for functions of type (↗ ·· ·↘) the number of local minima Min equals the number
of maxima Max minus one. Similarly, for functions of type (↘ ·· · ↗), Min =

Max+1. But, for functions of types (↘ ··· ↘) and (↗ ·· · ↗), Min = Max.

Theorem 2.9. For f̂ (r)h (·) from (2.2) with a Gaussian K(·), the number of minima,
Min, possesses the following properties:

1. It is a right continuous decreasing function of h;

2. It equals the number of maxima, Max, of f̂ (r)h (·) or equals Max−1 according
to whether r is odd or even.

Proof. First, let us show that f̂h(x) = (∑n
i=1 K((x−Xi)/h))/(nh) in (2.1) and each

derivative f̂ (r)h (x) in (2.2) for a Gaussian kernel function K(·) do not have flat parts.
Let us assume that, on the contrary, there exists a function `(x) = ax+b and interval
(c,d) such that `(x)≡ f̂ (r)h (x) for all x ∈ (c,d). Then there exists a polynomial P(x)

such that P(x) ≡ f̂h(x) for all x ∈ (c,d). Since both functions f̂h and P are real
analytic, then P≡ f̂h for all x (see Krantz and Parks, 2002, p. 14).

Next, as limx→±∞ f̂h(x) = 0, then P(x) ≡ 0. However, f̂h 6≡ 0 (e.g., due to´ +∞

−∞
f̂h(x)dx = 1). This contradiction establishes the absence of flat parts in (2.1)

and (2.2).
From the fact that (2.1) is a finite sum it follows that if K is any of the types of

Definition 2.8, then the function f̂ has the same type. But for the Gaussian kernel
function, K(r) has type (↗ ··· ↘) if r is even and type (↗ ··· ↗) if r is odd.
Thus, for odd r, the number of minima, Min, of f̂ (r)h is the same as Max and equals
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Max− 1 for even r. The fact that the number of minima of f̂ (r)h (x), as x varies,
is a right continuous decreasing function of h follows from the main theorem in
Silverman (1980, p. 97). �

Corollary 2.10. The number of minima for f̂
′′
h (·) is at most 2n−1.

Corollary 2.11. For f̂h(·) with a Gaussian kernel, the total number of modal bumps
and purely non-modal (i.e., excluding shoulders) bumps implied by f̂

′′
h (·) (i.e., if

f ′′(·) is taken as a measure of curvature) is at most 3n−1.

We conclude this section by proposing the following conjecture which we leave
for future work.

Conjecture 2.12. The number of minima of curvature estimator (2.3) is at most
2n−1.

Corollary 2.13. The total number of modal and purely non-modal (i.e., excluding
shoulders) bumps for f̂h(·) with a Gaussian kernel is at most 3n−1.

2.3.4 Definition of a Surgery

For subsequent developments, we need to introduce some definitions.

Definition 2.14. If a function g : R → R has a bump in (c1,c2), such that the
graph of g(·) lies entirely above the chord connecting (c1,g(c1)) and (c2,g(c2)),
i.e., g(x) > ((g(c2)− g(c1))/(c2− c1))(x− c1)+ g(c1) for all x ∈ (c1,c2), then c1

and c2 will be said to be aligned.

Definition 2.15. If a function g : R→ R has a bump in (c1,c2), where c1 and c2

are aligned, then the part confined between the chord and the graph of f (·) will be
referred to as the cap of the bump.

Definition 2.16 (Definition of a Surgery). The process of determination and re-
moval of caps whose area exceeds a certain fixed threshold λ ∈ [0,1) will be re-
ferred to as a λ -surgery.

Definition 2.16 implies that a λ -surgery is also a λ1-surgery for any λ1 > λ .
A λ -surgery produces a partition tm

j=1(a j,b j)⊆ suppg into m (for m ∈ N) disjoint
intervals (a j,b j) such that each pair 〈a j,b j〉 is aligned. The support line S = S(x)
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comprises of arcs of the graph of g(·) and chords connecting 〈a j,b j〉 lying no higher
than the graph of g(·). Since the partition is disjoint, if for a given x ∈ R, there
exists an index j0 ∈ 1,m, such that x ∈

(
a j0,b j0

)
, it is unique and S(x) = ((g(b j0)−

g(a j0))/(b j0 − a j0))(x− a j0)+ g(a j0). However, if no such j0 exists, then S(x) =

g(x). Definition 2.16 implies that the area between the axis of the abscissas and the
support line is at most 1−mλ .

If each 〈a j,b j〉 is a pair of consecutive inflection points, then this pair satisfies
Definition 2.14 while the partition tm

j=1(a j,b j) trivially satisfies Definition 2.16 for
λ = 0. However, Definition 2.14 may be satisfied by other points too. See Figure
2.4 where the result of a 0.01-surgery is illustrated for g(x) = f̂h(x) from (2.1) with
the standard Gaussian kernel function K(·) for a random sample of size n = 1,000
drawn from the mixture PDF f (x) = 0.1N(0,0.4)+0.9N(1.3,1.8).
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Figure 2.4: A 0.01-surgery for g(x) = f̂h(x) from (2.1) with the standard Gaussian
kernel function K(·) for a random sample of size 1,000 drawn from the mixture PDF
f (x) = 0.1N(0,0.4)+0.9N(1.3,1.8). The areas of the left and right caps equal 0.07
and 0.05, respectively. Chords, inflection points and courses are all shown.

2.3.5 Algorithm for Bump Hunting

We are now in a position to present the method for bump-hunting. The main steps
of TBH are presented in Algorithm 2.1, where Step 26 performs a λ -surgery.
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Algorithm 2.1 Main Steps of Bump Hunting

Input: Data set {Xi : i = 1, . . . ,n} of size n, threshold λ

Output: Number m, locations of bumps b1, . . . ,bm and values of caps’ areas
s1, . . . ,sm no smaller than λ

1: Fix a kernel function K(·)
2: Compute bandwidth h for KDE (2.1) of f (·) with kernel K(·)
3: Compute points of maxima and minima of f̂h(·)
4: if UseCurvature = 1 and UseSecondDerivative = 0 then . Use curvature
5: Compute bandwidths h1 and h2 for KDE (2.3) of C(·) with kernel K(·)
6: Compute points of maxima and minima Ĉh1,h2(·)
7: Remove points in Step 6 resulting in negative maxima and positive minima

of Ĉh1,h2(·)
8: Merge points of maxima of f̂h(·) with points of minima of Ĉh1,h2(·)
9: Merge points of minima of f̂h(·) with points of maxima of Ĉh1,h2(·)

10: Retain points from Step 9 where each pair consecutive values contains a
point from Step 8 between them. Refer to them collectively as “troughs”

11: Retain troughs with lowest values of f̂h(·)
12: Retain points from Step 8 which fall between a pair of troughs with highest

values of f̂h(·). Refer to them collectively as “peaks”
13: else if UseCurvature = 0 and UseSecondDerivative = 1 then . Use second

derivative
14: Compute bandwidth h2 for KDE (2.2) of f ′′(·) with kernel K(·)
15: Compute points of maxima and minima f̂

′′
h2
(·)

16: Remove points in Step 15 resulting in negative maxima and positive minima
of f̂

′′
h2
(·)

17: Merge points of maxima of f̂h(·) with points of minima of f̂
′′
h2
(·)

18: Retain points from Step 21 where each pair consecutive values contains a
point from Step 17 between them. Refer to them collectively as “troughs”

19: Retain troughs with lowest values of f̂h(·)
20: Retain points from Step 17 which fall between a pair of troughs with highest

values of f̂h(·). Refer to them collectively as “peaks”
21: Merge points of minima of f̂h(·) with points of maxima of f̂

′′
h2
(·)

22: end if
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Algorithm 2.1 Main Steps of Bump Hunting (continued)
23: Ensure that a trough-peak-trough pattern is obeyed
24: Ensure that each pair of consecutive troughs is aligned
25: Compute areas of the caps of bumps between consecutive troughs from Step 24
26: Run λ -surgery 2.2 in attempt to merge bumps whose cap’s area is smaller than

λ with adjacent bumps
27: Return the number m and locations of bumps b1, . . . ,bm with cap’s areas

s1, . . . ,sm no smaller than λ

This Algorithm relies on an auxiliary procedure given by Algorithm 2.2.

Algorithm 2.2 λ -Surgery

Input: M peaks, 2M troughs, (X ,Y ) = {〈xk, f̂h(xk)〉}k=1,...,N , area threshold λ

Output: peaks, troughs, areas, supportLine
1: supportLine← [ ], troughsTemp← troughs, areas← [ ]
2: i← 0, C← 1, Flag← 0
3: while Flag=0 do
4: if C > 2M or C+ i > 2M then Flag← 1
5: else
6: supportLineTemp ← [ ], L ← troughsTemp(C), R ←

troughsTemp(C+ i)
7: Connect L and R by a chord
8: if The graph of (X,Y) between L and R is no lower than the chord then
9: Measure the area S of this bump’s cap

10: Append supportLineTemp by L and R
11: if S> λ then
12: Append supportLine by supportLineTemp, append areas by S
13: Append peaks by the highest peak between L and R
14: troughsTemp(C)← L, troughsTemp(C+ i)← R, C←C+ i+1,

i← 0
15: else
16: i← i+1, troughsTemp(C)← L . Keep the left trough
17: end if
18: else
19: Check if there is a screening trough between L and R
20: for j← i by −1 to 1 do
21: if troughs(C+j) lies lower than the chord between L and R then
22: L← troughs(C+ j), C←C+ j . Switch to the rightmost

screening bump
23: i← 0
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Algorithm 2.2 λ -Surgery (continued)
24: break
25: end if
26: end for
27: Connect L and R by a chord
28: if The graph of (X ,Y ) between L and R is no lower than the chord

then
29: Measure the area S of this bump’s cap
30: Append supportLineTemp by L and R
31: else
32: Compute the GCM between L and R
33: Append supportLineTemp by the values of the GCM
34: Measure the area S confined between the graph (X ,Y ) and the

GCM
35: end if
36: if S> λ then
37: Append supportLine by supportLineTemp, append areas by S
38: Append peaks by the highest peak between L and R
39: troughsTemp(C)← L, troughsTemp(C+ i)← R
40: C←C+ i+1, i← 0
41: else
42: i← i+1, supportLineTemp← [ ], troughsTemp(C)← L .

Keep the left trough
43: end if
44: end if
45: end if
46: end while

To complete Step 24 in Algorithm 2.1, the alignment of any two base points
〈c1,c2〉 of a bump is accomplished by fitting the isotonic regression4 (Robertson
et al., 1988, pp. 4-11) computed by the pool-adjacent-violators algorithm on raw
slopes of those KDE points (x j, f̂h(x j)), x1 6 · · · 6 xM, j ∈ 1,M, for which c1 6

x j 6 c2. Figure 2.5 shows a PDF where a bump is selected with its two courses
being not aligned. Figure 2.6 shows the result of alignment. It is known (Robertson
et al., 1988, p. 7) that graphically the (unique) solution to the isotonic regression
will coincide with the greatest convex minorant (GCM). If the original function is
piecewise linear, the GCM will be such as well.

4We have also developed an alternative method of alignment by iterative rotations of the arc
around its left end. This led to results identical to those from the isotonic regression.
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Figure 2.5: A bump for g(x) = f̂h(x) from (2.1) with the standard Gaussian kernel
function K(·) for a random sample of size 1,000 drawn from the mixture PDF
f (x) = 0.1N(0,0.4)+ 0.9N(1.3,1.8). The courses corresponding to this bump are
not aligned.
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Figure 2.6: The demonstration of alignment of the two base points of the bump
from Figure 2.5. The figure displays the arc together with the original and aligned
base points.

Figure 2.7 demonstrates the output of the bump-hunting procedure.

2.4 Simulation Study

2.4.1 Preliminary Setup

We have assessed the performance of TBH by conducting extensive Monte Carlo
simulations on a variety of distributions under various settings. The method has
been implemented in MATLAB®5 software (MATLAB, 2016a). TBH has been
compared with the Hartigans’ DIP method (Hartigan and Hartigan, 1985) and the
nonparametric clustering method (“NCM”) from Azzalini and Torelli (2007) and

5MATLAB is a registered trademark of The MathWorks, Inc. For more information, see
http://www.mathworks.com.
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Figure 2.7: A 0.05-surgery for a KDE with the standard Gaussian kernel function
K(·) on a random sample of size 500 drawn from distribution number 10 of Marron
and Wand (1992) (the plot of its PDF is presented in Figure 2.1).

Menardi and Azzalini (2014) whose implementations are available as R (R Core
Team, 2016) (version 3.3.0) packages in Maechler (2015) and Azzalini and Menardi
(2014), respectively. To link MATLAB and R, an R package by Bengtsson (2016)
was employed. Computations were facilitated by the the use of parallel processing
(Calaway et al., 2015) in R and (MATLAB, 2016b) in MATLAB. All computa-
tions were performed on a 12-core HP Z800 workstation with the Xeon 2.93 GHz
processor and 48 GB DDR3 of random-access memory (RAM).

We have selected 22 distributions for testing purposes. Among those, 15 are
taken from Marron and Wand (1992, p. 720); see Table 2.1 where the corresponding
PDF expressions are listed. The PDFs for distributions 16-22, are given in Table 2.2.

The plots of all the 22 PDFs are given in Figures 2.8-2.9. The distributions are
Gaussian or LogNormal mixtures with and without sharp features. The distributions
also aim to imitate regular and asymmetric, kurtotic and long-tailed distributional
shapes.

We have selected several combinations of bandwidths which are all listed in
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Table 2.1: Parameter values for the PDFs of distributions 1-15 taken from Marron
and Wand (1992). Adapted with permission from the Institute of Mathematical
Statistics.

No
m
∑

i=1
N(µi,σi)

1 N(0,1)

2 1
5N(0,1)+ 1
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(1

2 ,
2
3

)
+ 3
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)
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4 2
3N(0,1)+ 1

3N
(
0, 1

10

)
5 1

10N(0,1)+ 9
10N

(
0, 1

10

)
6 1

2N
(
−1, 2

3

)
+ 1

2N
(
1, 2

3

)
7 1

2N
(
−3

2 ,
1
2

)
+ 1

2N
(3

2 ,
1
2

)
8 3

4N(0,1)+ 1
4N
(3

2 ,
1
3

)
9 9

20N
(
−6

5 ,
3
5

)
+ 9

20N
(6

5 ,
3
5

)
+ 1

10N
(
0, 1

4

)
10 1

2N(0,1)+
4
∑

i=0

1
10N

( i
2 −1, 1

10

)
11 49

100N
(
−1, 2

3

)
+ 49

100N
(
1, 2

3

)
+

6
∑

i=0

1
350N

( i−3
2 , 1

100

)
12 1

2N(0,1)+
2
∑

i=−2

21−i

31 N
(

i+ 1
2 ,

2−i

10

)
13

1
∑

i=0

46
100N

(
2i−1, 2

3

)
+

3
∑

i=1

1
300N

(
− i

2 ,
1

100

)
+

3
∑

i=1

7
300N

( i
2 ,

7
100

)
14

5
∑

i=0

25−i

63 N
(

1
21

(
65−96

(1
2

)i
)
, 32

63

(1
2

)i
)

15
2
∑

i=0

2
7N
(1

7 (12i−15) , 2
7

)
+

10
∑

i=8

1
21N

(2i
7 ,

1
21

)

Table 2.2: Parameter values for the PDFs of distributions 16-22. For No
16-20 the PDF is f (x) = pN(x; µ1,σ1) + (1− p)N(x; µ2,σ2), and for No 21-
22 f (x) = pLogn(x; µ1,σ1) + (1 − p)Logn(x; µ2,σ2), where Logn(x; µ1,σ1) =
N(lnx; µ1,σ1)/x. Mixtures 16 and 17 are from Cheng and Hall (1999): Used with
permission from the Institute of Mathematical Statistics.

No
Parameters

Description
p µ = 〈µ1,µ2〉 σ = 〈σ1,σ2〉

16 8e9/8/(1+8e9/8) 〈0.0,−9
√

3/8〉 〈1,0.25〉 Mixture with a mode and a shoulder
17 100/109 〈0.0,1.3〉 〈1.0,0.3〉 Mixture with a mode and a shoulder
18 0.7 〈0.0,−1.0〉 〈1.0,0.4〉 Mixture with two non-modal bumps
19 0.1 〈0.0,1.3〉 〈0.4,1.8〉 Mixture with two non-modal bumps
20 0.9 〈3.0,20.0〉 〈1.0,3.0〉 Mixture with two widely separated modal bumps
21 1.0 〈0.0,0.0〉 〈1.0,1.0〉 Logn(0,1) distribution
22 0.7 〈0.0,3.5〉 〈1.0,0.2〉 Mixture with two widely separated modal bumps
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Figure 2.8: Mixtures of Gaussian distributions 1-15 from Marron and Wand (1992).
Adapted with permission from the Institute of Mathematical Statistics.

Table 2.3. Among them are the Sheather-Jones direct-plugin bandwidths for the
KDEs of f , f ′ and f ′′ implemented in Duong (2016), the Sheather-Jones solve-the-
equation bandwidth implemented in Raykar et al. (2010), the 3/4 of Silverman’s rule
of thumb suggested in Menardi and Azzalini (2014), and the rule-of-thumb band-
width obtained for curvature by formula (2.4). Because no expression is available
in a closed analytical form for the Gaussian distribution based on (2.4), we have
numerically computed the latter bandwidth for N(0,σi) in the MapleTM software6

(MAPLE, 2016) on a fine grid of σi between 0.01 and 100 and applied linear spline
interpolation and extrapolation to determine the bandwidth for standard deviations
outside this range.

For bandwidth combinations 1 and 7 in Table 2.3, curvature information is not
used and the search is for modal bumps only. On the other hand, for combinations

6Maple is a trademark of Waterloo Maple Inc. For more information, see
http://www.maplesoft.com.
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Figure 2.9: Mixture of Gaussian distributions. Distributions 16-17 are from Cheng
and Hall (1999). Adapted with permission from the Institute of Mathematical Statis-
tics.

3 and 5, f̂
′′
h (·) plays the role of curvature. Where both h f̂ ′ and h f̂ ′′ are present, they

are used as, respectively, h2 and h1 in (2.3).

Remark. It is important to keep in mind that, as stressed in Jones et al. (1996,
p. 403), “when using the optimal bandwidth for estimation of f , the estimate f̂ ′′ is
asymptotically inconsistent for f ′′ and R( f̂ ′′) is only barely consistent for R( f ′′),
with much better performance available from better bandwidths”. The same caveat
applies to the estimate f̂ ′. However, we have observed that the performance of
TBH is satisfactory when h, an optimal bandwidth of f̂h, is fed into Ĉh which is not
a standalone object, but is a function of f̂ ′h and f̂ ′′h .

As kurtotic, asymmetric and long-tailed distributions have been known to pose
significant problems to kernel density estimation (Fisher et al., 1994, p. 510) due
to the inducement of outliers, a number of techniques have been suggested that
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Table 2.3: Combinations of bandwidths for f̂h(·), f̂ ′h(·), f̂
′′
h (·) used for testing pur-

poses. Here, SJSTE0 is the Sheather-Jones solve-the-equation bandwidth for the
KDE of f . SJDPI0, SJDPI1 and SJDPI2 stand for the Sheather-Jones direct-plugin
bandwidths for the KDEs of f , f ′ and f ′′, respectively. A0 denotes the 3/4 of Silver-
man’s rule of thumb for the KDE of f . Finally, ACURV stands for the rule-of-thumb
bandwidth for curvature.

Bandwidth
Combination

1 2 3 4 5 6 7 8 9

h f̂ SJSTE0 SJSTE0 SJSTE0 SJDPI0 SJDPI0 SJSTE0 A0 SJSTE0 A0
h f̂ ′ SJSTE0 SJDPI1 SJDPI1 ACURV ACURV
h f̂ ′′ SJSTE0 SJDPI2 SJDPI2 SJDPI2 SJDPI2 ACURV ACURV

attempt to deal with this issue. For example, one may apply an outlier removal
method. Alternatively, a suitable transformation may be performed on the data,
such as ln (on positively supported data), arctan (Markovitch and Krieger, 2000),
Champernowne (Buch-Larsen et al., 2005), or a transform from Johnson’s family
(Yang and Marron, 1999). A systematic treatise on transformations in the context
of nonparametric modeling can be found in Tarter and Lock (1993).

We have chosen to apply an efficient outlier rejection rule called X84 (Hampel
et al., 1986, p. 68) which, given a data set X = {x1, . . . ,xn}, removes the observa-
tions with the property |xi−med| > 5.2MAD, where med is the median of X and
MAD = median{|xi−med|} is the median absolute deviation. However, in many
applications (especially, risk modeling), it is not uncommon that observations be-
yond this cut-off 5.2MAD from the median do describe a true phenomenon (see
Pachamanova and Fabozzi, 2010, p. 288). Distributions 20 and 22, with two widely
separated modal bumps, fall into this class as the rightmost bump is located in the
tail region affected by X84. Where the relative frequency of observations located
beyond 5.2MAD from the median exceeds a chosen area threshold λ , automated
application of X84 is not recommended without a prior inspection of the data set in
question. Out of the 22 distributions, 8 distributions may be affected by X84: 2-5,
21 (due to asymmetry and/or peakedness) and 20 and 22 (due to the presence of
remote modal bumps). Therefore, we have run the simulations for these 8 distribu-
tions without invoking the X84 outlier removal rule.

Two competing approaches to TBH are evaluated: DIP and NCM. As the DIP
test is a statistical test of the null hypothesis H0 : m = 1 vs H1 : m > 1, where m is
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the number of modes of the underlying distribution, to assess H0, we have chosen
a value of 0.05 as the significance level. NCM is a clustering procedure based on
a Voronoi diagram, Delaunay triangulation, modal trees and KDE of the unknown
PDF for underlying data. We preserved all default parameter values for NCM,
in particular, the bandwidth equal to 3/4 of the Silverman rule of thumb. For all
the distributions, in TBH, we have fixed a common value of area threshold λ =

0.05. We have tested other values for λ , but λ = 0.05 proved to be the most stable
performer across all of the 22 distributions considered. Table 2.4 shows theoretical
values of bumps’ cap areas together with the number of them exceeding λ = 0.05.

Table 2.4: Theoretical values of the areas of caps corresponding to bumps for the
selected 22 distributions.

No # Mixture Components # Modes Total # Bumps Values of Areas of Bump Caps # Areas Exceeding 0.05

1 1 1 1 0.6188 1
2 3 1 1 0.4767 1
3 8 1 1 0.9121 1
4 2 1 3 0.0034 0.3249 0.0034 1
5 2 1 3 0.0003 0.8899 0.0003 1
6 2 2 2 0.1994 0.2007 2
7 2 2 2 0.3317 0.3317 2
8 2 2 2 0.1621 0.1675 2
9 3 3 3 0.1771 0.0276 0.1771 2

10 6 5 5 0.0891 0.0838 0.0845 0.0838 0.0891 5
11 9 7 13 0.0000 0.0028 0.0031 0.0028 0.0025 0.0028 0.0028 0.0028 0.0025 0.0028 0.0031 0.0028 0.0000 0
12 6 5 5 0.1070 0.0980 0.0713 0.0316 0.0157 3
13 8 6 9 0.0000 0.0033 0.0029 0.0032 0.0023 0.0033 0.0223 0.0318 0.0233 0
14 6 6 6 0.4925 0.2415 0.1207 0.0604 0.0302 0.0154 4
15 6 6 6 0.2325 0.2705 0.2722 0.0457 0.0451 0.0449 3
16 2 1 2 0.0150 0.5082 1
17 2 1 2 0.2177 0.0401 1
18 2 1 2 0.1942 0.0217 1
19 2 1 2 0.0669 0.0615 2
20 2 2 2 0.6688 0.0736 2
21 1 1 1 0.3220 1
22 2 2 2 0.6892 0.1962 2

We have selected a grid of 13 sample sizes ranging from 30 to 2,000. For each
sample size n from the grid, 1,000 samples {Xi}i=1,...,n were generated from each of
the 22 distributions and the three methods were then applied to them. To compare
the performance of TBH to those of NCM and DIP, we calculated the following
metrics on the number of detected bumps/modes: mean, median, standard devia-
tion, median absolute deviation and mean absolute deviation from the theoretical
number of modes. The percentage of pairwise-identical decisions made by TBH
and NCM, TBH and DIP, and NCM and DIP on each generated data set were tab-
ulated. The DIP test was compared to TBH and NCM as follows: If the number
of bumps (clusters) identified by TBH (NCM) was equal to 1, we regarded this
as a manifestation of unimodality, and multimodality otherwise. Finally, we also
recorded the number of errors occurred during simulations for each test.
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2.4.2 Discussion of Results

For the sake of brevity, we only present partial results7 for the subset of 10 distribu-
tions: number 1, 3, 5, 7, 9, 10, 11, 17, 20 and 21.

Inspection of Tables 2.5 and 2.6, which provide the average number of bumps
discovered by TBH with the use of X84, suggests that in majority of cases TBH is
capable of identifying the correct number of bumps whose cap’s areas exceed 0.05
(see Table 2.4) as sample size grows. Notable exceptions are distributions 11 and
20. For the latter one, the rightmost modal bump is removed by X84 and it therefore
becomes unidentifiable by TBH.

As Table 2.7 shows, removal of X84 rectifies the situation: there are 2 bandwidth
combinations which capture the 2 bumps. The two combinations correspond to the
use of A0 for f̂h with and without ACURV for Ĉh. For distribution 11, the method
reports two bumps, on average, as the 7 tiny spikes out of the 13 bumps altogether
have areas about 3.1% which is smaller than the set value of λ . Should the λ be
decreased, TBH still would have difficulty in capturing the spikes as the size of the
samples necessary to realize the spikes is so large that it falls beyond the sample
sizes commonly used in practice (cf. Marron and Wand, 1992). TBH aligns with
NCM for distribution 11 which also reports 2 bumps.

In terms of speed of convergence, as measured by the standard deviation (see
Tables 2.8, 2.9 and 2.10), TBH is at least as good as NCM and in some cases outper-
forming it. For example, it performs much better than NCM for distributions 1 and
20 (when X84 is not employed). Also, TBH, when used with X84, has an appar-
ent advantage over NCM for skewed and/or kurtotic distributions 3, 5 and 21. The
number of bumps identified by NCM seems to diverge to infinity for distributions 5
and 21.

For these two distributions as well as for the “claw” distribution 10, NCM re-
sults in execution failures whose number rises with sample size. See Table 2.11.
As documentation (Azzalini and Menardi, 2014) suggests, in such circumstances,
default parameters in NCM need to be adjusted.

We have also compared the ability of TBH to discover the unimodal nature of a
distribution to that of DIP and NCM. These results are reported in Tables 2.12, 2.13
and 2.14.

7The complete set of simulation results is available on author’s website http://www.
kmayorov.ca/supp_materials/TBH/ as spreadsheets in the Microsoft® Excel format.
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Table 2.5: The average number of identified bumps by TBH and NCM for distribu-
tions 1, 3, 5, 7, and 9. TBH was used with λ = 0.05 and the X84 rule.

ID True Bumps True Modes Sample Size
TBH

NCM
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

1 1 1 30 1.19 1.22 1.26 1.17 1.18 1.25 1.25 1.18 1.29
1 1 1 50 1.13 1.18 1.17 1.12 1.13 1.14 1.18 1.14 1.30
1 1 1 70 1.11 1.15 1.13 1.11 1.10 1.11 1.18 1.09 1.30
1 1 1 100 1.08 1.12 1.13 1.08 1.07 1.08 1.17 1.06 1.30
1 1 1 150 1.07 1.11 1.09 1.07 1.06 1.07 1.16 1.06 1.29
1 1 1 200 1.04 1.09 1.08 1.04 1.05 1.05 1.11 1.05 1.27
1 1 1 250 1.04 1.06 1.08 1.04 1.03 1.04 1.11 1.06 1.27
1 1 1 300 1.04 1.06 1.08 1.04 1.02 1.03 1.08 1.03 1.27
1 1 1 400 1.03 1.07 1.05 1.03 1.01 1.03 1.10 1.04 1.25
1 1 1 500 1.03 1.05 1.06 1.03 1.02 1.02 1.08 1.02 1.24
1 1 1 750 1.02 1.04 1.03 1.02 1.01 1.01 1.06 1.02 1.25
1 1 1 1000 1.01 1.04 1.03 1.01 1.00 1.00 1.07 1.02 1.24
1 1 1 2000 1.01 1.01 1.01 1.01 1.00 1.00 1.04 1.01 1.22
3 1 1 30 1.59 1.50 1.55 1.36 1.36 1.57 1.17 1.56 1.37
3 1 1 50 1.57 1.54 1.54 1.36 1.34 1.62 1.09 1.65 1.55
3 1 1 70 1.61 1.49 1.53 1.34 1.33 1.59 1.06 1.59 1.62
3 1 1 100 1.57 1.49 1.47 1.31 1.34 1.58 1.06 1.54 1.67
3 1 1 150 1.53 1.41 1.41 1.26 1.27 1.52 1.02 1.51 1.74
3 1 1 200 1.40 1.33 1.34 1.19 1.22 1.48 1.01 1.42 1.77
3 1 1 250 1.34 1.29 1.27 1.16 1.18 1.42 1.01 1.36 1.80
3 1 1 300 1.31 1.23 1.22 1.12 1.14 1.35 1.01 1.29 1.76
3 1 1 400 1.23 1.14 1.17 1.08 1.11 1.32 1.00 1.22 1.78
3 1 1 500 1.16 1.12 1.10 1.05 1.06 1.24 1.00 1.19 1.77
3 1 1 750 1.09 1.04 1.04 1.02 1.04 1.16 1.00 1.08 1.76
3 1 1 1000 1.04 1.02 1.02 1.01 1.03 1.09 1.00 1.05 1.72
3 1 1 2000 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.01 1.58
5 3 1 30 1.01 1.01 1.02 1.07 1.02 1.01 1.01 1.01 1.03
5 3 1 50 1.01 1.01 1.02 1.03 1.01 1.00 1.00 1.00 1.12
5 3 1 70 1.00 1.01 1.01 1.02 1.00 1.00 1.00 1.01 1.31
5 3 1 100 1.00 1.01 1.01 1.03 1.00 1.00 1.00 1.00 1.57
5 3 1 150 1.00 1.01 1.02 1.02 1.00 1.00 1.00 1.00 2.08
5 3 1 200 1.00 1.01 1.02 1.01 1.00 1.00 1.00 1.00 2.43
5 3 1 250 1.00 1.01 1.01 1.01 1.00 1.00 1.00 1.01 2.78
5 3 1 300 1.00 1.01 1.01 1.02 1.00 1.00 1.00 1.00 3.10
5 3 1 400 1.00 1.01 1.01 1.01 1.00 1.00 1.00 1.00 3.62
5 3 1 500 1.00 1.01 1.01 1.01 1.00 1.00 1.00 1.00 3.98
5 3 1 750 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 4.94
5 3 1 1000 1.00 1.01 1.01 1.01 1.00 1.00 1.00 1.01 5.62
5 3 1 2000 1.00 1.00 1.01 1.02 1.00 1.00 1.00 1.00 7.34
7 2 2 30 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.01 2.00
7 2 2 50 2.01 2.01 2.01 2.00 2.00 2.00 2.00 2.01 2.00
7 2 2 70 2.01 2.01 2.00 2.00 2.00 2.00 2.00 2.01 2.00
7 2 2 100 2.01 2.01 2.01 2.00 2.00 2.00 2.00 2.00 2.00
7 2 2 150 2.00 2.01 2.01 2.00 2.00 2.00 2.00 2.00 2.00
7 2 2 200 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
7 2 2 250 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
7 2 2 300 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
7 2 2 400 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
7 2 2 500 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
7 2 2 750 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
7 2 2 1000 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
7 2 2 2000 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
9 3 3 30 1.85 1.92 1.92 1.89 1.89 1.90 1.96 1.87 1.95
9 3 3 50 1.92 1.97 1.97 1.95 1.93 1.94 1.98 1.93 2.02
9 3 3 70 1.94 1.99 1.98 1.96 1.96 1.94 1.98 1.95 2.06
9 3 3 100 1.97 2.01 1.99 1.96 1.97 1.98 1.98 1.97 2.15
9 3 3 150 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.18
9 3 3 200 2.00 2.01 2.01 2.00 2.00 2.00 2.00 2.00 2.29
9 3 3 250 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.31
9 3 3 300 2.01 2.00 2.01 2.00 2.00 2.00 2.00 2.01 2.40
9 3 3 400 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.49
9 3 3 500 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.57
9 3 3 750 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.70
9 3 3 1000 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.83
9 3 3 2000 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.97
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Table 2.6: The average number of identified bumps by TBH and NCM for distribu-
tions 10, 11, 17, 20, and 21. TBH was used with λ = 0.05 and the X84 rule.

ID True Bumps True Modes Sample Size
TBH

NCM
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

10 5 5 30 1.19 1.28 1.25 1.23 1.22 1.25 1.38 1.19 1.37
10 5 5 50 1.21 1.32 1.31 1.24 1.24 1.26 1.42 1.23 1.44
10 5 5 70 1.22 1.41 1.36 1.30 1.26 1.28 1.41 1.22 1.51
10 5 5 100 1.28 1.42 1.43 1.32 1.27 1.32 1.47 1.28 1.59
10 5 5 150 1.31 1.55 1.51 1.37 1.30 1.30 1.51 1.30 1.71
10 5 5 200 1.35 1.61 1.59 1.40 1.36 1.36 1.55 1.36 1.83
10 5 5 250 1.41 1.69 1.71 1.44 1.36 1.41 1.59 1.45 1.98
10 5 5 300 1.50 1.77 1.79 1.48 1.39 1.43 1.63 1.48 2.14
10 5 5 400 1.73 1.92 1.95 1.56 1.42 1.47 1.81 1.69 2.57
10 5 5 500 2.06 2.25 2.23 1.68 1.47 1.60 1.86 2.06 3.03
10 5 5 750 3.42 3.37 3.36 1.91 1.60 1.87 1.98 3.36 4.16
10 5 5 1000 4.40 4.29 4.31 2.00 1.75 2.16 2.00 4.35 4.84
10 5 5 2000 4.98 4.91 4.90 2.40 2.36 4.61 2.00 4.98 5.21
11 13 7 30 1.67 1.76 1.73 1.70 1.72 1.74 1.83 1.70 1.84
11 13 7 50 1.76 1.84 1.85 1.81 1.80 1.78 1.89 1.79 1.93
11 13 7 70 1.84 1.93 1.95 1.92 1.88 1.89 1.95 1.86 2.01
11 13 7 100 1.89 1.96 1.95 1.92 1.90 1.92 1.96 1.92 2.04
11 13 7 150 1.94 1.98 1.99 1.96 1.95 1.97 1.99 1.96 2.07
11 13 7 200 1.95 1.99 1.99 1.98 1.96 1.96 2.00 1.96 2.08
11 13 7 250 1.98 2.00 2.00 1.99 1.98 1.98 2.00 1.99 2.08
11 13 7 300 1.98 2.00 2.00 2.00 1.99 1.99 2.00 1.99 2.08
11 13 7 400 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.07
11 13 7 500 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.07
11 13 7 750 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.06
11 13 7 1000 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.05
11 13 7 2000 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.04
17 2 1 30 1.21 1.27 1.27 1.24 1.23 1.26 1.30 1.23 1.36
17 2 1 50 1.21 1.29 1.28 1.21 1.23 1.23 1.33 1.20 1.44
17 2 1 70 1.19 1.27 1.28 1.23 1.22 1.22 1.37 1.21 1.47
17 2 1 100 1.17 1.28 1.25 1.20 1.17 1.22 1.35 1.18 1.47
17 2 1 150 1.15 1.26 1.28 1.19 1.15 1.16 1.32 1.18 1.49
17 2 1 200 1.17 1.29 1.28 1.20 1.17 1.18 1.31 1.18 1.53
17 2 1 250 1.17 1.28 1.28 1.19 1.15 1.17 1.33 1.17 1.54
17 2 1 300 1.16 1.29 1.31 1.21 1.20 1.17 1.31 1.18 1.57
17 2 1 400 1.13 1.26 1.27 1.19 1.16 1.19 1.33 1.16 1.56
17 2 1 500 1.14 1.28 1.29 1.19 1.14 1.17 1.25 1.14 1.56
17 2 1 750 1.13 1.31 1.30 1.17 1.15 1.16 1.29 1.14 1.60
17 2 1 1000 1.14 1.30 1.34 1.18 1.14 1.17 1.26 1.15 1.60
17 2 1 2000 1.09 1.37 1.35 1.17 1.14 1.17 1.22 1.09 1.61
20 2 2 30 1.00 1.00 1.00 1.04 1.06 1.00 1.00 1.00 1.21
20 2 2 50 1.00 1.00 1.00 1.04 1.04 1.00 1.00 1.00 1.96
20 2 2 70 1.00 1.00 1.00 1.03 1.04 1.00 1.00 1.00 2.00
20 2 2 100 1.00 1.00 1.01 1.02 1.02 1.00 1.00 1.00 2.07
20 2 2 150 1.00 1.00 1.00 1.02 1.02 1.00 1.00 1.00 2.12
20 2 2 200 1.00 1.01 1.01 1.02 1.02 1.00 1.00 1.00 2.13
20 2 2 250 1.00 1.01 1.01 1.02 1.01 1.00 1.00 1.00 2.15
20 2 2 300 1.00 1.01 1.01 1.02 1.01 1.00 1.00 1.00 2.16
20 2 2 400 1.00 1.01 1.01 1.02 1.01 1.00 1.00 1.00 2.14
20 2 2 500 1.00 1.01 1.01 1.01 1.01 1.00 1.00 1.00 2.15
20 2 2 750 1.01 1.01 1.00 1.01 1.00 1.00 1.00 1.00 2.15
20 2 2 1000 1.00 1.00 1.01 1.01 1.01 1.00 1.00 1.00 2.14
20 2 2 2000 1.00 1.00 1.01 1.00 1.01 1.00 1.00 1.00 2.13
21 1 1 30 1.22 1.24 1.21 1.26 1.27 1.22 1.05 1.23 1.20
21 1 1 50 1.18 1.19 1.16 1.21 1.20 1.22 1.02 1.21 1.26
21 1 1 70 1.19 1.14 1.15 1.17 1.17 1.16 1.01 1.17 1.36
21 1 1 100 1.13 1.11 1.12 1.13 1.11 1.12 1.00 1.15 1.46
21 1 1 150 1.07 1.04 1.06 1.07 1.08 1.08 1.00 1.08 1.58
21 1 1 200 1.04 1.04 1.03 1.04 1.05 1.05 1.00 1.05 1.70
21 1 1 250 1.03 1.03 1.02 1.02 1.03 1.04 1.00 1.04 1.76
21 1 1 300 1.03 1.01 1.01 1.02 1.01 1.02 1.00 1.02 1.87
21 1 1 400 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 1.99
21 1 1 500 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.01 2.08
21 1 1 750 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.31
21 1 1 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.48
21 1 1 2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.85
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Table 2.7: The average number of identified bumps by TBH for distributions 20 and
22. TBH was used with λ = 0.05 without the X84 rule.

ID True Bumps True Modes Sample Size
Bandwidth Combinations

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

20 2 2 30 1.96 1.85 1.84 2.00 2.00 1.97 1.99 1.97 1.99
20 2 2 50 1.92 1.75 1.72 1.87 1.87 1.92 2.00 1.91 2.00
20 2 2 70 1.89 1.67 1.66 1.82 1.82 1.87 2.00 1.88 2.00
20 2 2 100 1.84 1.60 1.61 1.73 1.75 1.83 2.00 1.85 2.00
20 2 2 150 1.80 1.52 1.51 1.71 1.70 1.76 2.00 1.80 2.00
20 2 2 200 1.76 1.49 1.44 1.62 1.62 1.74 2.00 1.74 2.00
20 2 2 250 1.72 1.44 1.43 1.59 1.58 1.71 2.00 1.70 2.00
20 2 2 300 1.67 1.38 1.42 1.55 1.58 1.67 2.00 1.68 2.00
20 2 2 400 1.61 1.33 1.35 1.51 1.51 1.65 2.00 1.62 2.00
20 2 2 500 1.57 1.29 1.27 1.46 1.47 1.58 2.00 1.60 2.00
20 2 2 750 1.52 1.26 1.22 1.40 1.41 1.52 1.99 1.51 2.00
20 2 2 1000 1.48 1.21 1.21 1.37 1.38 1.48 2.00 1.49 2.00
20 2 2 2000 1.42 1.12 1.12 1.31 1.27 1.39 1.99 1.38 1.99
22 2 2 30 2.51 2.38 2.37 2.19 2.21 2.48 2.00 2.45 2.00
22 2 2 50 2.48 2.39 2.40 2.13 2.13 2.51 2.00 2.48 2.00
22 2 2 70 2.49 2.38 2.37 2.12 2.10 2.47 2.00 2.46 2.00
22 2 2 100 2.45 2.31 2.31 2.06 2.07 2.46 2.00 2.46 2.00
22 2 2 150 2.39 2.16 2.16 2.04 2.04 2.35 2.00 2.38 2.00
22 2 2 200 2.31 2.05 2.04 2.04 2.03 2.28 2.00 2.30 2.00
22 2 2 250 2.23 1.93 1.95 2.02 2.03 2.20 2.00 2.24 2.00
22 2 2 300 2.12 1.80 1.81 2.02 2.02 2.14 2.00 2.16 2.00
22 2 2 400 2.00 1.63 1.64 2.01 2.01 2.03 2.00 2.02 2.00
22 2 2 500 1.88 1.47 1.48 2.01 2.01 1.87 2.00 1.86 2.00
22 2 2 750 1.65 1.30 1.28 2.00 2.00 1.64 2.00 1.65 2.00
22 2 2 1000 1.50 1.15 1.16 1.99 1.99 1.47 2.00 1.49 2.00
22 2 2 2000 1.18 1.04 1.04 1.96 1.96 1.18 2.00 1.22 2.00
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Table 2.8: The standard deviation of the number of identified bumps by TBH and
NCM for distributions 1, 3, 5, 7, and 9. TBH was used with λ = 0.05 and the X84
rule.

ID True Bumps True Modes Sample Size
TBH

NCM
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

1 1 1 30 0.41 0.43 0.46 0.38 0.39 0.45 0.44 0.41 0.46
1 1 1 50 0.35 0.39 0.39 0.33 0.34 0.35 0.39 0.36 0.47
1 1 1 70 0.32 0.36 0.35 0.31 0.31 0.32 0.38 0.29 0.48
1 1 1 100 0.27 0.32 0.33 0.27 0.26 0.27 0.38 0.23 0.48
1 1 1 150 0.25 0.31 0.29 0.25 0.23 0.26 0.36 0.24 0.48
1 1 1 200 0.19 0.29 0.27 0.20 0.22 0.22 0.31 0.22 0.47
1 1 1 250 0.21 0.24 0.26 0.21 0.18 0.20 0.32 0.23 0.47
1 1 1 300 0.18 0.24 0.26 0.20 0.15 0.16 0.28 0.18 0.47
1 1 1 400 0.16 0.25 0.22 0.18 0.10 0.17 0.30 0.19 0.46
1 1 1 500 0.16 0.22 0.23 0.16 0.14 0.13 0.28 0.13 0.45
1 1 1 750 0.14 0.20 0.16 0.14 0.08 0.09 0.24 0.14 0.45
1 1 1 1000 0.12 0.19 0.17 0.11 0.04 0.06 0.25 0.15 0.44
1 1 1 2000 0.08 0.09 0.11 0.08 0.00 0.03 0.20 0.11 0.43
3 1 1 30 0.58 0.59 0.57 0.50 0.49 0.56 0.38 0.59 0.49
3 1 1 50 0.60 0.59 0.59 0.49 0.48 0.56 0.28 0.61 0.52
3 1 1 70 0.60 0.56 0.59 0.49 0.48 0.59 0.24 0.58 0.55
3 1 1 100 0.60 0.56 0.57 0.48 0.50 0.59 0.23 0.58 0.57
3 1 1 150 0.58 0.55 0.53 0.46 0.46 0.59 0.13 0.57 0.60
3 1 1 200 0.54 0.51 0.51 0.40 0.42 0.57 0.11 0.55 0.63
3 1 1 250 0.52 0.48 0.47 0.37 0.39 0.54 0.07 0.53 0.64
3 1 1 300 0.49 0.43 0.42 0.33 0.34 0.52 0.09 0.48 0.66
3 1 1 400 0.43 0.36 0.37 0.27 0.32 0.50 0.05 0.42 0.67
3 1 1 500 0.38 0.33 0.30 0.22 0.25 0.44 0.00 0.40 0.67
3 1 1 750 0.28 0.19 0.19 0.13 0.18 0.38 0.00 0.27 0.69
3 1 1 1000 0.20 0.13 0.14 0.11 0.16 0.29 0.00 0.21 0.70
3 1 1 2000 0.06 0.04 0.05 0.00 0.03 0.13 0.00 0.07 0.66
5 3 1 30 0.07 0.12 0.13 0.25 0.15 0.07 0.08 0.10 0.16
5 3 1 50 0.09 0.09 0.12 0.18 0.09 0.04 0.04 0.06 0.33
5 3 1 70 0.04 0.12 0.11 0.14 0.00 0.00 0.00 0.07 0.48
5 3 1 100 0.05 0.10 0.10 0.17 0.00 0.00 0.00 0.00 0.59
5 3 1 150 0.04 0.11 0.14 0.14 0.00 0.00 0.00 0.06 0.69
5 3 1 200 0.06 0.08 0.12 0.12 0.00 0.00 0.00 0.06 0.72
5 3 1 250 0.06 0.11 0.11 0.11 0.00 0.00 0.00 0.07 0.78
5 3 1 300 0.05 0.10 0.12 0.15 0.00 0.00 0.00 0.05 0.83
5 3 1 400 0.05 0.11 0.11 0.08 0.00 0.00 0.00 0.07 0.91
5 3 1 500 0.07 0.12 0.09 0.11 0.00 0.00 0.00 0.07 0.96
5 3 1 750 0.07 0.07 0.08 0.07 0.00 0.00 0.00 0.05 1.10
5 3 1 1000 0.00 0.08 0.12 0.10 0.00 0.00 0.00 0.08 1.19
5 3 1 2000 0.00 0.00 0.09 0.15 0.00 0.00 0.00 0.00 1.30
7 2 2 30 0.18 0.12 0.08 0.07 0.06 0.09 0.03 0.15 0.06
7 2 2 50 0.09 0.08 0.10 0.00 0.00 0.04 0.00 0.11 0.02
7 2 2 70 0.09 0.08 0.04 0.00 0.03 0.00 0.00 0.08 0.02
7 2 2 100 0.08 0.08 0.07 0.03 0.00 0.00 0.00 0.06 0.00
7 2 2 150 0.04 0.08 0.07 0.00 0.00 0.00 0.00 0.06 0.00
7 2 2 200 0.04 0.04 0.03 0.03 0.00 0.03 0.00 0.03 0.00
7 2 2 250 0.04 0.04 0.03 0.00 0.00 0.00 0.00 0.03 0.00
7 2 2 300 0.00 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00
7 2 2 400 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.04 0.00
7 2 2 500 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00
7 2 2 750 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00
7 2 2 1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 2 2 2000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 3 3 30 0.39 0.30 0.31 0.31 0.31 0.32 0.20 0.39 0.26
9 3 3 50 0.31 0.21 0.21 0.22 0.25 0.24 0.15 0.30 0.25
9 3 3 70 0.28 0.19 0.19 0.20 0.19 0.24 0.14 0.23 0.30
9 3 3 100 0.21 0.15 0.17 0.19 0.17 0.18 0.13 0.25 0.38
9 3 3 150 0.11 0.10 0.07 0.06 0.08 0.10 0.04 0.13 0.39
9 3 3 200 0.08 0.09 0.09 0.06 0.05 0.11 0.03 0.10 0.46
9 3 3 250 0.05 0.03 0.04 0.03 0.04 0.05 0.04 0.04 0.46
9 3 3 300 0.09 0.04 0.08 0.00 0.00 0.05 0.03 0.07 0.49
9 3 3 400 0.06 0.03 0.05 0.00 0.00 0.00 0.00 0.04 0.50
9 3 3 500 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.03 0.50
9 3 3 750 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.46
9 3 3 1000 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38
9 3 3 2000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16
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Table 2.9: The standard deviation of the number of identified bumps by TBH and
NCM for distributions 10, 11, 17, 20, and 21. TBH was used with λ = 0.05 and the
X84 rule.

ID True Bumps True Modes Sample Size
TBH

NCM
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

10 5 5 30 0.40 0.45 0.44 0.42 0.42 0.44 0.48 0.40 0.49
10 5 5 50 0.41 0.47 0.46 0.43 0.43 0.44 0.49 0.42 0.52
10 5 5 70 0.41 0.50 0.48 0.46 0.44 0.45 0.49 0.41 0.54
10 5 5 100 0.45 0.49 0.50 0.47 0.45 0.47 0.50 0.45 0.57
10 5 5 150 0.46 0.50 0.51 0.48 0.46 0.46 0.50 0.46 0.62
10 5 5 200 0.48 0.49 0.49 0.49 0.48 0.49 0.50 0.49 0.66
10 5 5 250 0.50 0.47 0.46 0.50 0.48 0.49 0.49 0.50 0.70
10 5 5 300 0.52 0.46 0.42 0.50 0.49 0.50 0.48 0.53 0.74
10 5 5 400 0.61 0.45 0.46 0.50 0.49 0.52 0.39 0.62 0.81
10 5 5 500 0.85 0.69 0.67 0.47 0.50 0.58 0.35 0.79 0.88
10 5 5 750 1.13 1.12 1.11 0.29 0.49 0.69 0.13 1.12 0.86
10 5 5 1000 0.82 0.88 0.87 0.08 0.43 0.78 0.04 0.86 0.70
10 5 5 2000 0.14 0.29 0.31 0.49 0.48 0.60 0.05 0.16 0.45
11 13 7 30 0.49 0.45 0.46 0.46 0.45 0.44 0.38 0.48 0.39
11 13 7 50 0.45 0.39 0.38 0.39 0.40 0.41 0.31 0.43 0.34
11 13 7 70 0.40 0.29 0.25 0.28 0.33 0.32 0.22 0.36 0.30
11 13 7 100 0.32 0.21 0.24 0.28 0.30 0.28 0.19 0.29 0.30
11 13 7 150 0.24 0.17 0.11 0.19 0.21 0.19 0.12 0.20 0.28
11 13 7 200 0.22 0.13 0.13 0.13 0.20 0.19 0.07 0.20 0.29
11 13 7 250 0.14 0.05 0.09 0.12 0.13 0.13 0.06 0.10 0.29
11 13 7 300 0.14 0.07 0.05 0.05 0.12 0.11 0.03 0.09 0.27
11 13 7 400 0.03 0.03 0.03 0.03 0.00 0.05 0.00 0.00 0.27
11 13 7 500 0.00 0.03 0.00 0.00 0.03 0.04 0.00 0.00 0.26
11 13 7 750 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.23
11 13 7 1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22
11 13 7 2000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19
17 2 1 30 0.43 0.47 0.48 0.44 0.44 0.46 0.46 0.46 0.49
17 2 1 50 0.43 0.46 0.46 0.41 0.43 0.45 0.47 0.42 0.52
17 2 1 70 0.41 0.45 0.46 0.42 0.41 0.42 0.48 0.42 0.53
17 2 1 100 0.38 0.45 0.44 0.40 0.37 0.42 0.48 0.39 0.54
17 2 1 150 0.36 0.44 0.45 0.39 0.36 0.37 0.47 0.39 0.56
17 2 1 200 0.38 0.46 0.45 0.40 0.38 0.39 0.47 0.39 0.57
17 2 1 250 0.37 0.45 0.45 0.40 0.36 0.38 0.47 0.38 0.56
17 2 1 300 0.37 0.45 0.46 0.40 0.40 0.38 0.46 0.38 0.58
17 2 1 400 0.34 0.44 0.44 0.39 0.37 0.39 0.47 0.37 0.58
17 2 1 500 0.34 0.45 0.46 0.39 0.34 0.37 0.43 0.35 0.59
17 2 1 750 0.34 0.46 0.46 0.37 0.36 0.36 0.45 0.34 0.60
17 2 1 1000 0.34 0.46 0.47 0.39 0.34 0.38 0.44 0.36 0.60
17 2 1 2000 0.28 0.48 0.48 0.37 0.35 0.37 0.42 0.29 0.62
20 2 2 30 0.00 0.00 0.00 0.20 0.25 0.00 0.00 0.00 0.41
20 2 2 50 0.00 0.03 0.03 0.19 0.20 0.00 0.00 0.00 0.19
20 2 2 70 0.00 0.05 0.04 0.16 0.20 0.03 0.00 0.00 0.20
20 2 2 100 0.00 0.00 0.07 0.13 0.15 0.00 0.00 0.03 0.25
20 2 2 150 0.00 0.05 0.04 0.14 0.14 0.03 0.00 0.00 0.32
20 2 2 200 0.00 0.08 0.08 0.13 0.12 0.00 0.00 0.03 0.34
20 2 2 250 0.04 0.11 0.09 0.14 0.11 0.00 0.00 0.00 0.36
20 2 2 300 0.04 0.09 0.09 0.12 0.09 0.03 0.00 0.04 0.37
20 2 2 400 0.03 0.09 0.10 0.13 0.08 0.04 0.00 0.04 0.35
20 2 2 500 0.00 0.08 0.08 0.07 0.08 0.03 0.00 0.05 0.36
20 2 2 750 0.07 0.07 0.04 0.10 0.06 0.03 0.00 0.03 0.36
20 2 2 1000 0.04 0.05 0.08 0.07 0.07 0.04 0.00 0.05 0.35
20 2 2 2000 0.04 0.03 0.08 0.03 0.08 0.03 0.00 0.04 0.34
21 1 1 30 0.45 0.45 0.42 0.46 0.46 0.44 0.23 0.46 0.40
21 1 1 50 0.41 0.41 0.38 0.42 0.41 0.44 0.13 0.45 0.45
21 1 1 70 0.41 0.35 0.37 0.38 0.40 0.38 0.11 0.39 0.50
21 1 1 100 0.35 0.32 0.33 0.35 0.32 0.34 0.04 0.36 0.55
21 1 1 150 0.26 0.20 0.25 0.25 0.28 0.28 0.00 0.27 0.60
21 1 1 200 0.20 0.21 0.18 0.21 0.21 0.22 0.00 0.21 0.63
21 1 1 250 0.16 0.17 0.15 0.14 0.17 0.20 0.00 0.20 0.64
21 1 1 300 0.16 0.10 0.11 0.13 0.12 0.14 0.00 0.15 0.67
21 1 1 400 0.10 0.10 0.07 0.10 0.11 0.11 0.00 0.06 0.69
21 1 1 500 0.07 0.05 0.04 0.06 0.00 0.06 0.00 0.10 0.71
21 1 1 750 0.05 0.05 0.05 0.03 0.00 0.03 0.00 0.00 0.75
21 1 1 1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.79
21 1 1 2000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.87
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Table 2.10: The standard deviation of the number of identified bumps by TBH for
distributions 20 and 22. TBH was used with λ = 0.05 without the X84 rule.

ID True Bumps True Modes Sample Size
Bandwidth Combinations

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

20 2 2 30 0.19 0.36 0.37 0.31 0.29 0.17 0.11 0.18 0.10
20 2 2 50 0.27 0.44 0.45 0.40 0.40 0.27 0.05 0.28 0.04
20 2 2 70 0.31 0.47 0.48 0.43 0.43 0.34 0.00 0.33 0.03
20 2 2 100 0.37 0.50 0.49 0.48 0.46 0.38 0.03 0.36 0.05
20 2 2 150 0.40 0.51 0.51 0.47 0.49 0.43 0.03 0.40 0.03
20 2 2 200 0.43 0.51 0.50 0.50 0.51 0.44 0.03 0.44 0.05
20 2 2 250 0.45 0.50 0.50 0.51 0.51 0.45 0.05 0.46 0.03
20 2 2 300 0.47 0.49 0.52 0.52 0.50 0.47 0.06 0.47 0.06
20 2 2 400 0.49 0.47 0.48 0.52 0.50 0.48 0.04 0.48 0.05
20 2 2 500 0.49 0.46 0.45 0.50 0.52 0.50 0.06 0.49 0.00
20 2 2 750 0.50 0.44 0.42 0.49 0.50 0.50 0.08 0.50 0.06
20 2 2 1000 0.50 0.41 0.41 0.49 0.49 0.50 0.06 0.50 0.07
20 2 2 2000 0.50 0.32 0.32 0.46 0.45 0.49 0.11 0.49 0.09
22 2 2 30 0.56 0.52 0.52 0.43 0.45 0.55 0.06 0.54 0.04
22 2 2 50 0.55 0.55 0.53 0.39 0.37 0.56 0.00 0.55 0.00
22 2 2 70 0.55 0.54 0.53 0.35 0.33 0.55 0.00 0.54 0.00
22 2 2 100 0.55 0.56 0.54 0.28 0.28 0.54 0.00 0.54 0.00
22 2 2 150 0.54 0.59 0.56 0.20 0.22 0.55 0.00 0.55 0.00
22 2 2 200 0.55 0.60 0.58 0.21 0.20 0.55 0.00 0.53 0.00
22 2 2 250 0.55 0.61 0.60 0.17 0.20 0.53 0.00 0.52 0.00
22 2 2 300 0.53 0.62 0.60 0.16 0.15 0.56 0.00 0.56 0.00
22 2 2 400 0.57 0.58 0.59 0.13 0.14 0.55 0.00 0.56 0.00
22 2 2 500 0.59 0.56 0.55 0.13 0.11 0.57 0.00 0.58 0.00
22 2 2 750 0.57 0.48 0.47 0.11 0.11 0.57 0.00 0.56 0.00
22 2 2 1000 0.55 0.36 0.38 0.12 0.13 0.53 0.00 0.54 0.00
22 2 2 2000 0.38 0.19 0.19 0.21 0.20 0.39 0.00 0.42 0.00

Table 2.11: Number of execution failures for NCM out of 1,000 simulations.

ID
Sample Size

30 50 70 100 150 200 250 300 400 500 750 1000 2000

5 0 0 0 0 1 18 45 91 203 336 566 705 884
10 0 0 0 0 0 0 0 0 0 1 2 10 56
21 0 0 0 0 0 0 1 4 11 14 31 51 68
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Table 2.12: The percentage of the number of decisions toward unimodality made
by TBH, NCM, and DIP for distributions 1, 3, 5, 7, and 9. TBH was used with
λ = 0.05 and the X84 rule.

ID True Bumps True Modes Sample Size
TBH

NCM DIP
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

1 1 1 30 82% 78% 75% 84% 83% 76% 75% 83% 71% 99%
1 1 1 50 88% 82% 83% 88% 87% 86% 82% 87% 71% 100%
1 1 1 70 90% 86% 87% 89% 90% 89% 82% 91% 71% 100%
1 1 1 100 92% 89% 88% 92% 93% 92% 83% 94% 71% 100%
1 1 1 150 93% 89% 91% 94% 94% 93% 84% 94% 72% 100%
1 1 1 200 96% 91% 92% 96% 95% 95% 89% 95% 74% 100%
1 1 1 250 96% 94% 93% 96% 97% 96% 89% 95% 75% 100%
1 1 1 300 97% 94% 93% 96% 98% 97% 92% 97% 74% 100%
1 1 1 400 97% 94% 95% 97% 99% 97% 90% 96% 76% 100%
1 1 1 500 98% 95% 95% 97% 98% 98% 92% 98% 76% 100%
1 1 1 750 98% 96% 98% 98% 99% 99% 94% 98% 76% 100%
1 1 1 1000 99% 96% 97% 99% 100% 100% 93% 98% 77% 100%
1 1 1 2000 99% 99% 99% 99% 100% 100% 96% 99% 79% 100%
3 1 1 30 46% 55% 49% 65% 65% 47% 83% 50% 63% 100%
3 1 1 50 49% 51% 51% 65% 67% 42% 91% 42% 47% 100%
3 1 1 70 45% 54% 52% 66% 68% 46% 94% 46% 42% 100%
3 1 1 100 49% 55% 56% 70% 67% 47% 94% 50% 38% 100%
3 1 1 150 51% 62% 61% 75% 74% 53% 98% 53% 34% 100%
3 1 1 200 63% 69% 68% 81% 79% 56% 99% 61% 34% 100%
3 1 1 250 68% 73% 75% 84% 83% 61% 100% 67% 33% 100%
3 1 1 300 70% 78% 79% 88% 86% 68% 99% 72% 36% 100%
3 1 1 400 78% 86% 84% 92% 89% 69% 100% 79% 35% 100%
3 1 1 500 85% 89% 91% 95% 94% 77% 100% 82% 36% 100%
3 1 1 750 91% 97% 96% 98% 97% 84% 100% 92% 38% 100%
3 1 1 1000 96% 98% 98% 99% 97% 91% 100% 95% 41% 100%
3 1 1 2000 100% 100% 100% 100% 100% 98% 100% 100% 51% 100%
5 3 1 30 100% 99% 99% 94% 98% 100% 99% 99% 97% 100%
5 3 1 50 99% 99% 99% 97% 99% 100% 100% 100% 88% 100%
5 3 1 70 100% 99% 99% 98% 100% 100% 100% 100% 69% 100%
5 3 1 100 100% 99% 99% 97% 100% 100% 100% 100% 48% 100%
5 3 1 150 100% 99% 98% 98% 100% 100% 100% 100% 19% 100%
5 3 1 200 100% 99% 98% 99% 100% 100% 100% 100% 8% 100%
5 3 1 250 100% 99% 99% 99% 100% 100% 100% 99% 3% 100%
5 3 1 300 100% 99% 99% 98% 100% 100% 100% 100% 1% 100%
5 3 1 400 100% 99% 99% 99% 100% 100% 100% 100% 0% 100%
5 3 1 500 100% 99% 99% 99% 100% 100% 100% 100% 0% 100%
5 3 1 750 100% 100% 99% 100% 100% 100% 100% 100% 0% 100%
5 3 1 1000 100% 99% 99% 99% 100% 100% 100% 99% 0% 100%
5 3 1 2000 100% 100% 99% 98% 100% 100% 100% 100% 0% 100%
7 2 2 30 2% 1% 0% 1% 0% 0% 0% 1% 0% 40%
7 2 2 50 0% 0% 0% 0% 0% 0% 0% 0% 0% 18%
7 2 2 70 0% 0% 0% 0% 0% 0% 0% 0% 0% 7%
7 2 2 100 0% 0% 0% 0% 0% 0% 0% 0% 0% 2%
7 2 2 150 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 2 2 200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 2 2 250 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 2 2 300 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 2 2 400 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 2 2 500 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 2 2 750 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 2 2 1000 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 2 2 2000 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
9 3 3 30 16% 9% 10% 11% 11% 11% 4% 15% 6% 85%
9 3 3 50 10% 4% 4% 5% 7% 6% 2% 9% 2% 85%
9 3 3 70 7% 3% 3% 4% 4% 6% 2% 5% 1% 83%
9 3 3 100 4% 1% 2% 4% 3% 3% 2% 4% 1% 84%
9 3 3 150 1% 0% 0% 0% 1% 1% 0% 1% 0% 71%
9 3 3 200 0% 0% 0% 0% 0% 1% 0% 1% 0% 68%
9 3 3 250 0% 0% 0% 0% 0% 0% 0% 0% 0% 56%
9 3 3 300 0% 0% 0% 0% 0% 0% 0% 0% 0% 52%
9 3 3 400 0% 0% 0% 0% 0% 0% 0% 0% 0% 39%
9 3 3 500 0% 0% 0% 0% 0% 0% 0% 0% 0% 27%
9 3 3 750 0% 0% 0% 0% 0% 0% 0% 0% 0% 9%
9 3 3 1000 0% 0% 0% 0% 0% 0% 0% 0% 0% 3%
9 3 3 2000 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table 2.13: The percentage of the number of decisions toward unimodality made
by TBH, NCM, and DIP for distributions 10, 11, 17, 20, and 21. TBH was used
with λ = 0.05 and the X84 rule.

ID True Bumps True Modes Sample Size
TBH

NCM DIP
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

10 5 5 30 81% 72% 76% 77% 78% 75% 63% 81% 63% 100%
10 5 5 50 79% 68% 69% 76% 76% 74% 59% 78% 57% 100%
10 5 5 70 79% 59% 64% 70% 74% 73% 59% 78% 51% 100%
10 5 5 100 72% 58% 57% 68% 73% 68% 53% 72% 45% 99%
10 5 5 150 69% 45% 50% 63% 70% 70% 49% 70% 38% 99%
10 5 5 200 66% 40% 41% 60% 64% 64% 45% 64% 31% 98%
10 5 5 250 59% 32% 30% 56% 64% 59% 41% 56% 24% 96%
10 5 5 300 51% 25% 22% 52% 62% 58% 37% 54% 18% 94%
10 5 5 400 33% 13% 11% 44% 58% 54% 19% 38% 7% 87%
10 5 5 500 21% 4% 4% 32% 53% 45% 14% 20% 3% 75%
10 5 5 750 1% 0% 0% 9% 40% 31% 2% 1% 0% 38%
10 5 5 1000 0% 0% 0% 1% 25% 20% 0% 1% 0% 10%
10 5 5 2000 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
11 13 7 30 34% 25% 28% 30% 28% 26% 18% 31% 17% 91%
11 13 7 50 25% 17% 16% 19% 20% 22% 11% 22% 9% 90%
11 13 7 70 17% 8% 6% 8% 12% 11% 5% 14% 4% 86%
11 13 7 100 11% 4% 5% 9% 10% 8% 4% 8% 3% 84%
11 13 7 150 6% 3% 1% 4% 5% 4% 1% 4% 1% 79%
11 13 7 200 5% 1% 2% 2% 4% 4% 1% 4% 1% 79%
11 13 7 250 2% 0% 1% 1% 2% 2% 0% 1% 0% 75%
11 13 7 300 2% 0% 0% 0% 1% 1% 0% 1% 0% 67%
11 13 7 400 0% 0% 0% 0% 0% 0% 0% 0% 0% 56%
11 13 7 500 0% 0% 0% 0% 0% 0% 0% 0% 0% 44%
11 13 7 750 0% 0% 0% 0% 0% 0% 0% 0% 0% 26%
11 13 7 1000 0% 0% 0% 0% 0% 0% 0% 0% 0% 14%
11 13 7 2000 0% 0% 0% 0% 0% 0% 0% 0% 0% 1%
17 2 1 30 80% 74% 75% 76% 77% 75% 70% 79% 64% 99%
17 2 1 50 79% 72% 73% 79% 78% 78% 67% 80% 57% 99%
17 2 1 70 81% 73% 72% 77% 78% 78% 64% 79% 55% 100%
17 2 1 100 83% 73% 75% 80% 83% 79% 65% 83% 55% 100%
17 2 1 150 85% 74% 73% 81% 85% 84% 68% 82% 53% 100%
17 2 1 200 83% 71% 72% 80% 83% 82% 69% 82% 51% 100%
17 2 1 250 84% 72% 73% 81% 85% 83% 67% 83% 49% 100%
17 2 1 300 84% 71% 70% 80% 81% 83% 69% 83% 48% 100%
17 2 1 400 87% 74% 73% 81% 84% 81% 67% 84% 49% 100%
17 2 1 500 86% 72% 71% 82% 86% 83% 75% 86% 49% 100%
17 2 1 750 87% 69% 70% 83% 85% 84% 71% 86% 46% 100%
17 2 1 1000 87% 70% 66% 82% 86% 83% 74% 85% 46% 100%
17 2 1 2000 91% 63% 65% 83% 86% 83% 78% 91% 47% 100%
20 2 2 30 100% 100% 100% 96% 95% 100% 100% 100% 79% 100%
20 2 2 50 100% 100% 100% 96% 96% 100% 100% 100% 4% 100%
20 2 2 70 100% 100% 100% 97% 96% 100% 100% 100% 2% 100%
20 2 2 100 100% 100% 100% 98% 98% 100% 100% 100% 0% 100%
20 2 2 150 100% 100% 100% 98% 98% 100% 100% 100% 0% 100%
20 2 2 200 100% 99% 99% 98% 99% 100% 100% 100% 0% 100%
20 2 2 250 100% 99% 99% 98% 99% 100% 100% 100% 0% 100%
20 2 2 300 100% 99% 99% 99% 99% 100% 100% 100% 0% 99%
20 2 2 400 100% 99% 99% 98% 99% 100% 100% 100% 0% 90%
20 2 2 500 100% 99% 99% 100% 99% 100% 100% 100% 0% 60%
20 2 2 750 100% 100% 100% 99% 100% 100% 100% 100% 0% 3%
20 2 2 1000 100% 100% 99% 100% 100% 100% 100% 100% 0% 0%
20 2 2 2000 100% 100% 99% 100% 99% 100% 100% 100% 0% 0%
21 1 1 30 79% 77% 79% 75% 74% 79% 95% 79% 80% 100%
21 1 1 50 83% 82% 84% 80% 80% 79% 98% 80% 74% 100%
21 1 1 70 82% 86% 86% 84% 84% 85% 99% 84% 64% 100%
21 1 1 100 88% 89% 89% 87% 89% 89% 100% 86% 56% 100%
21 1 1 150 93% 96% 94% 93% 92% 92% 100% 92% 47% 100%
21 1 1 200 96% 96% 97% 96% 95% 95% 100% 95% 39% 100%
21 1 1 250 97% 97% 98% 98% 97% 96% 100% 96% 35% 100%
21 1 1 300 97% 99% 99% 98% 99% 98% 100% 98% 29% 100%
21 1 1 400 99% 99% 99% 99% 99% 99% 100% 100% 23% 100%
21 1 1 500 99% 100% 100% 100% 100% 100% 100% 99% 19% 100%
21 1 1 750 100% 100% 100% 100% 100% 100% 100% 100% 12% 100%
21 1 1 1000 100% 100% 100% 100% 100% 100% 100% 100% 8% 100%
21 1 1 2000 100% 100% 100% 100% 100% 100% 100% 100% 2% 100%

DIP is the best performer for unimodal distributions 1, 3, 5, 17 and 21, but
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Table 2.14: The percentage of the number of decisions toward unimodality made
by TBH, NCM, and DIP for distributions 20 and 22. TBH was used with λ = 0.05
without the X84 rule.

ID True Bumps True Modes Sample Size
TBH

NCM DIP
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

20 2 2 30 4% 15% 16% 5% 4% 3% 1% 4% 1% 80% 100%
20 2 2 50 8% 25% 28% 15% 15% 8% 0% 9% 0% 4% 100%
20 2 2 70 11% 33% 35% 20% 20% 13% 0% 12% 0% 2% 100%
20 2 2 100 17% 40% 39% 29% 27% 17% 0% 15% 0% 0% 100%
20 2 2 150 20% 48% 49% 30% 32% 24% 0% 20% 0% 0% 100%
20 2 2 200 24% 52% 56% 39% 39% 26% 0% 26% 0% 0% 100%
20 2 2 250 28% 57% 57% 42% 43% 29% 0% 30% 0% 0% 100%
20 2 2 300 33% 62% 59% 46% 42% 33% 0% 33% 0% 0% 100%
20 2 2 400 39% 68% 65% 50% 50% 36% 0% 38% 0% 0% 90%
20 2 2 500 43% 71% 73% 54% 54% 42% 0% 40% 0% 0% 62%
20 2 2 750 48% 75% 78% 60% 59% 48% 1% 49% 0% 0% 2%
20 2 2 1000 53% 79% 80% 63% 62% 52% 0% 52% 1% 0% 0%
20 2 2 2000 58% 88% 88% 70% 73% 61% 1% 62% 1% 0% 0%
22 2 2 30 0% 1% 0% 0% 0% 0% 0% 0% 0% 1% 64%
22 2 2 50 0% 2% 1% 1% 0% 0% 0% 0% 0% 0% 45%
22 2 2 70 0% 2% 2% 1% 1% 0% 0% 0% 0% 0% 29%
22 2 2 100 1% 4% 3% 1% 1% 0% 0% 1% 0% 0% 13%
22 2 2 150 1% 10% 9% 0% 0% 2% 0% 2% 0% 0% 2%
22 2 2 200 4% 15% 15% 0% 1% 4% 0% 3% 0% 0% 0%
22 2 2 250 6% 22% 21% 1% 1% 6% 0% 4% 0% 0% 0%
22 2 2 300 9% 32% 29% 1% 0% 9% 0% 8% 0% 0% 0%
22 2 2 400 16% 42% 42% 0% 1% 14% 0% 15% 0% 0% 0%
22 2 2 500 24% 56% 55% 1% 0% 24% 0% 25% 0% 0% 0%
22 2 2 750 40% 71% 73% 1% 0% 41% 0% 39% 0% 0% 0%
22 2 2 1000 53% 85% 84% 1% 1% 55% 0% 53% 0% 0% 0%
22 2 2 2000 83% 96% 96% 4% 4% 82% 0% 78% 0% 0% 0%

it performs poorly on multimodal distributions 7, 9, 10, 11 and 20. On the other
hand, TBH is the second best for distributions 1, 3, 5, 17, 20 (without X84) and 21.
However, TBH is somewhat inferior to NCM in recognizing the multimodal nature
of distributions 9, 10 and 11 for smaller samples with bandwidth combination 2
from Table 2.3 being close to NCM.

In terms of execution time, as demonstrated in Table 2.15, TBH is an interme-
diate performer between DIP (the fastest) and NCM (slowest).

Table 2.15: Execution time, in seconds.

Procedure
Sample Size

50 100 250 500 1000 2000 5000

TBH 0.18 0.21 0.21 0.39 0.57 0.95 2.33
NCM 0.07 0.10 0.25 0.77 2.27 7.24 64.09
DIP 0.07 0.09 0.11 0.15 0.21 0.23 0.24

While NCM is fast for small samples, the execution time grows rapidly with
sample size. Taking into consideration the fact that DIP (Maechler, 2015) aims to
merely decide if the data at hand come from a unimodal or multimodal distribution

42



Ph.D. Thesis – K. Mayorov McMaster University – Mathematics & Statistics

without providing the specifics on the number of bumps, TBH is definitely a fairly
fast method for doing the bump identification job although further code optimization
is possible.

We conclude this section by suggesting the following iterative strategy for using
the TBH in practice:

Step 1 Fix a value of λ that best reflects one’s belief in the degree of bump promi-
nence.

Step 2 Decide which bump types are of interest: modal only or non-modal as well.
Curvature or second derivative information will be used accordingly.

Step 3 Visually examine the data at hand for indications of long tails, peakedness,
sharp features and the presence of dense regions in the tails.

Step 4 Fit a KDE f̂h(·) (and Ĉh1,h2(·) or f̂
′′
h (·) according to Step 2) with a few

choices of bandwidths.

• For data without long tails, which may be either regularly shaped or with
apparent sharp features, Combinations 1, 2, 7, 8, or 9 for bandwidths
may be attempted.

• For long tailed or/and kurtotic distributions, Combinations with cruder
bandwidths are recommended such as Combinations 7 or 9. Also, the
outlier removal rule X84 may be invoked for better KDE performance
if there is no evidence of the dense region in the tails. If, however, the
relative frequency of observations affected by X84 is comparable to or
exceeds λ , one may consider applying TBH without X84.

Step 5 Assess the overall quality of the KDE f̂h(·) fits and select the one which fits
the data reasonably well. This can be achieved by examining the Cox-Snell
residuals as exemplified in Section 2.5.

Step 6 Run TBH.

Step 7 Examine the resultant number and location of bumps. Compare these with
prior beliefs, if any. If not satisfied by the results, then return to Step 1 and
adjust relevant parameters.
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2.5 Application to Real Data

In this section, we apply the proposed method to the scaled Chondrite data from
Good and Gaskins (1980, p. 44). The data originate from the distribution of sil-
ica in 22 chondrite meteors, and are presented in Table 2.16. The scatterplot and
histogram are displayed in Figure 2.10.

Table 2.16: Scaled Percentages of Silica in 22 Chondrites (Good and Gaskins, 1980,
p. 44). Used with Permission from Taylor & Francis Group.

Scaled Percentages of Silica in 22 Chondrites

0.04 0.15 0.16 0.18 0.4 0.44 0.45 0.46 0.47 0.49 0.54
0.59 0.64 0.75 0.81 0.83 0.84 0.84 0.85 0.87 0.87 0.92
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Figure 2.10: The scatterplot (Panel A) and histogram (Panel B) of the chondrite
data.

We considered four KDE (2.1) fits, namely, with bandwidth equal to the Sheather-
Jones solve-the-equation, Sheather-Jones direct plugin, Silverman’s rule-of-thumb
and the 3/4-th of the Silverman’s rule of thumb. The overall quality of the fits were
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assessed by using the Cox-Snell residuals (Collett, 1994). Recall that the Cox-Snell
residual for a data set X = {Xi}i=1,...,n is defined as r(x) = − ln(1− F̂(x)), where
the F̂(·) is the CDF of X estimated based on the model. In the case of KDE (2.1),
with a standard Gaussian kernel, the CDF is given by

F̂h(x) =
1
n

n

∑
j=1

Φ

(
x−X j

h

)
.

If the model is exactly right, the Cox-Snell residuals should follow a unit expo-
nential distribution, and so the quantiles of r(Xi) should be close to the line passing
through the origin with unit slope. Therefore, in Figure 2.11, we plot the estimated
residuals against the quantiles of the unit-exponential distribution having unit mean
and variance. Figure 2.11 suggests that none of the candidate bandwidths performs
particularly well. This may be attributed to the asymptotic nature of the considered
bandwidths while the size of the data set under examination may be too small.
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Figure 2.11: The KDE fits (Panel A) and Cox-Snell residuals (Panel B) of the chon-
drite data.

Having said this, we note that based on the descriptive statistics from Table
2.17, the Sheather-Jones solve-the-equation bandwidth provides the best fit. For
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this reason, we have chosen this bandwidth for the subsequent analysis.

Table 2.17: Bandwidths and descriptive statistics for Cox-Snell residuals for the
KDE fits on the Chondrite data. Deviations are calculated with respect to the quan-
tiles of the unit-exponential distribution.

Bandwidth Type Bandwidth Value Mean Variance Maximum Absolute Deviation Mean Absolute Deviation

SJ Solve-the-Equation 0.06 0.91 0.52 1.83 0.15
SJ Direct Plugin 0.13 0.87 0.41 2.46 0.21

Silverman Rule-of-Thumb 0.16 0.86 0.38 2.58 0.23
3/4 of Silverman Rule-of-Thumb 0.12 0.88 0.42 2.39 0.21

We have applied TBH to the chondrite data with the choice of λ = 0.05. The
data exhibit neither long tails nor peakedness. In fact, no observation lies more than
5.2MAD from the median. Hence, X84 was not considered. To get an estimate
for curvature, we used the rule-of-thumb based on (2.4) for the bandwidth, namely,
hC = 0.18. An application of TBH to the chondrite data then resulted in identifi-
cation of three bumps each of which is modal (see Table 2.18).8 We note that the
negative value in Table 2.18 is a consequence of using the Gaussian kernel.

Table 2.18: Results of an application of TBH to the chondrite data: the values of
the areas of the caps of the identified bumps are provided. Also, the locations of the
corresponding peaks and troughs are shown. Each peak pi = 〈xpi,ypi〉, i ∈ {1,2,3},
has a pair of troughs t left

i = 〈xt l
i
,yt l

i
〉 and tright

i = 〈xtr
i
,ytr

i
〉 containing it.

No Areas
Peaks Troughs

xp yp xt l yt l xtr ytr

1 0.13 0.16 0.90 -0.12 0.01 0.29 0.22
2 0.24 0.47 1.76 0.30 0.22 0.68 0.60
3 0.30 0.85 2.17 0.68 0.60 1.06 0.04

Both Good and Gaskins (1980) and Silverman (1980) also arrived at the same
conclusion of the trimodal nature of the chondrite data. On the other hand, the
DIP test suggests unimodality (the p-value equals 0.18) while the NCM procedure
discovers just 2 clusters. This behavior of the latter two methods may be attributed
to the small number of observations in the data set.

8The same conclusion is reached if hC is taken to be the SJ solve-the-equation bandwidth or when
ridges and courses are not used in TBH.
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Chapter 3

On a Family of Weighted
Cramér-von Mises Goodness-of-Fit
Tests in Operational Risk Modeling

3.1 Introduction

Measurement of operational risk, through a loss distribution approach (LDA), for
bank capitalization purposes offers significant modeling challenges. Under LDA,
the severity of losses characterizing the monetary impact of potential operational
risk events is modelled via a severity distribution. The selection of best-fit severity
distributions that properly capture tail behavior is essential for accurate modeling.

In this chapter, we analyze limiting properties of a family of weighted Cramér-
von Mises (WCvM) goodness-of-fit test statistics, with weight function ψ (t) =

1/(1− t)β , that are suitable for more accurate selection of severity distributions.
Specifically, we apply classical theory to determine if limiting distributions exist for
these WCvM test statistics under a simple null hypothesis. We show that limiting
distributions do not exist for β > 2. For β = 2, we provide a normalization that leads
to a non-degenerate limiting distribution. Where limiting distributions originally
exist, for β < 2, or were obtained through the normalization, we show that for 1.56
β 6 2, the tests’ practical utility may be limited due to a very slow convergence of
the finite sample distribution to the asymptotic regime.

Our results suggest that the tests provide greater utility when β < 1.5 and that
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for β > 1.5 utility is questionable as only Monte Carlo schemes are practical even
for very large samples.

This chapter uses material from the following article:

• K. Mayorov, J. Hristoskov and N. Balakrishnan. On a family of weighted
Cramér-von Mises goodness-of-fit tests in operational risk modeling. Journal

of Operational Risk, forthcoming 2017.

The material is reproduced with permission from Incisive Media.

3.2 Suitable GoF Tests for OpRisk Modeling

Under LDA, financial institutions model frequencies and magnitudes of losses that
can result from potential future OpRisk events. The various magnitudes of potential
losses and their relative probabilities of occurrence are assumed to be best captured
and modeled through parametric severity distributions. In general, the profile of
historic losses is highly leptokurtic which makes weighted GoF test statistics that
are more sensitive to tails, such as the WCvM test statistic, popular for selection
of candidate severity distributions. In order to convey the importance of severity
distribution selection on capital modeling, below we show how under a general-
ized capital approximation regime, the upper quantiles of the severity distribution
directly affect capital requirements.

Definition 3.1. The Aggregate Loss Distribution (ALD) is the distribution of the
aggregate (compound) loss: L = X1 + ...+XN , where the frequency N is a discrete
random variable and X1, ...,XN are positive continuous random severities.

OpRisk capital is then a quantile of the ALD, given by

VaRδ (L) = F−1
L (δ ),

where F−1
L (t)= inf{x ∈ R | P(L > x)6 1− t} and confidence level δ ∈ (0,1). Typ-

ically δ ∈ {0.999,0.9995,0.9997}.
Frequencies of losses are usually assumed to follow the Poisson distribution and

generally are well-behaved and do not exhibit leptokurtic features. Therefore, with
the exception of cases where frequencies of losses are extremely low and jumps
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may occur (e.g., where the Poisson lambda is less than 0.25 per annum), new loss
event occurrences usually do not change the profile of frequency distributions and
the impact of new occurrences on capital requirements is typically modest.

This is due to the so-called Single Loss Approximation (Böcker and Klüppel-
berg, 2005) capital VaRδ (L)≈F−1

(
1− 1−δ

λ

)
, where λ is the mean of the Poisson-

distributed frequency of loss event occurrence, and F (·) is the severity cumulative
distribution function (CDF).

For regulatory capital, δ = 0.999. Even a λ of moderate magnitude, say, 25,
50 and 100 leads to calculation of 99.996, 99.998 and 99.999%-quantiles of the
severity distribution.

Consequently, the final choice of a severity distribution is crucial and capital
requirements are highly sensitive to upper tail behaviour of the selected severity
distribution. This supports the notion that use of appropriately tuned GoF tests
statistics for severity distribution selection is of significant importance. Our analy-
sis, therefore, will focus on presenting findings which allow for the development of
practical utility properties for WCvM test statistics. Based on the developed prop-
erties we are able to indicate weight boundaries for the test statistics that ensure that
practical utility exists.

To this end, below we provide a brief description of some concepts and tech-
niques that are key to the developments presented in subsequent sections.

Definition. Given a random sample x1, . . . ,xn of independent observations with
CDF F . The Empirical (Sample) Distribution Function (EDF) is defined as Fn (t) =
1
n ∑

n
i=1 I(−∞,t] (xi), where IA (·) is the indicator function on event A.

Some basic properties of the EDF are as follows:

• E(Fn (t)) = F (t) and Cov(Fn (t1) ,Fn (t2)) = 1
nF (t1)(1−F (t2)) for 0 6 t1 6

t2 6 1.

•
√

n(Fn (t)−F (t)) d→ N(0,
√

F (t)(1−F(t))) as n→ ∞.

We wish to test the null hypothesis

H0 : F(x) = F0 (x) vs H1 : F(x) 6= F0 (x) (3.1)

for a continuous CDF F0.
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The parameters of the CDF F0 may be completely known or have to be esti-
mated. The two cases are known as a simple and composite hypothesis, respectively.
In this chapter, we will consider the case of simple hypotheses, and composite hy-
potheses are discussed in Chapter 4.

Definition. EDF-based GoF tests are tests for assessing H0 that are based on a
comparison of F0 (x) with Fn (x).

The Kolmogorov-Smirnov and Cramér-von Mises (CvM) test statistics pro-
posed in this regard are

Dn =
√

nsup
x∈R
|Fn (x)−F0 (x)| and ω

2
n = n

ˆ
∞

−∞

(Fn (x)−F0 (x))
2 dF0 (x) .

These statistics are classical representatives of two classes of EDF-based GoF
tests: the supremum and integral-based tests.

If a test statistic is adopted, denoted by Kn, the hypothesis is rejected for the
samples for which Kn is greater than some Cn,α .

The value Cn,α is to be chosen so that when the hypothesis H0 is true the prob-
ability of rejection is some specified number, referred to as a significance level and
denoted by α . Usually α takes values from {0.01,0.05,0.10}. Then Cn,α is called
the critical value of the test statistic at significance level α . The critical value Cn,α

is usually determined by Monte Carlo simulations.
We now define the limiting distribution of a test statistic.

Definition 3.2. Let Kn
d→ K∞ as n→ ∞, i.e., FKn (t)→ FK∞

(t) at continuity points
of FK∞

(·). If K∞ is non-degenerate (i.e., with probability one (wp1) not a constant
or ±∞), then FK∞

(·) is referred to as the (non-degenerate) limiting distribution.

Definition 3.3. Under the notations of Definition 3.2,

• Where K∞ does not exist or exists but is degenerate, Kn will be said not to

possess a limiting distribution.

• If there is no limiting distribution, but there exist deterministic sequences
an ∈ R and bn > 0, such that (Kn−an)/bn

d→ K∗∞ as n→ ∞, and K∗∞ is non-
degenerate, then Kn will be said to possess an asymptotic distribution under

positive affine normalization.
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In sufficiently large samples, it is common practice to approximate the critical
values of Kn by their analogues from limiting (or asymptotic) distributions:1 Cn,α ≈
C∞,α (respectively, Cn,α ≈ bnC∗∞,α + an), where Cn,α = F−1

Kn
(1−α) and C∞,α =

F−1
K∞

(1−α) (respectively, C∗∞,α = F−1
K∗∞

(1−α)).
Therefore, limiting properties of distributions of GoF test statistics are of im-

portance as they are instrumental in computing critical values.
The classic Cramér-von Mises test places equal weight on the main part and the

tails of the distribution under H0. To weight the deviations between the EDF and F0

according to the importance attached to various portions of the CDF, let us consider
weighted Cramér-von Mises test (WCvM) statistics:

W 2
n (ψ) = n

ˆ
∞

−∞

ψ (F0 (x))(Fn (x)−F0 (x))
2 dF0 (x) , (3.2)

where weight ψ : [0,1]→ R+.
Notable examples include the following choices of the weighting function:

ψ (t) ≡ 1 (Cramér, 1928; von Mises, 1928), ψ (t) = 1/(t(1− t)) (Anderson and
Darling, 1952), ψ (t) = 1/t, ψ(t) = 1/(1− t) (Sinclair et al., 1990; Scott, 1999),
ψ (t) = 1/tβ for β < 2 (Deheuvels and Martynov, 2003), and ψ (t) = 1/(1− t)β for
β < 2 (Feuerverger, 2015).

In a series of works (see Chernobai et al., 2005; Chernobai, 2006; Luceño, 2006;
Chernobai et al., 2015), the following test statistics have been proposed:

AD∗ =
√

nsup
x∈R

|Fn (x)−F0 (x)|√
F0 (x)(1−F0 (x))

, (3.3)

ADup =
√

nsup
x∈R

|Fn (x)−F0 (x)|
(1−F0 (x))

, (3.4)

and

AD2
up = n

ˆ
∞

−∞

(Fn (x)−F0 (x))
2

(1−F0 (x))2 dF0(x). (3.5)

A related statistic that is useful will be denoted by AD2
down:

AD2
down = n

ˆ
∞

−∞

(Fn (x)−F0 (x))
2

(F0 (x))2 dF0(x). (3.6)

1As n→∞, FKn(t)→ FK∞
(t) at all continuity points of FK∞

(·) is equivalent to F−1
Kn

(α)→ F−1
K∞

(α)

at all continuity points of F−1
K∞

(·) (van der Vaart, 2007, p. 305).
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Statistic AD2
up is W 2

n (ψ) with ψ (t) = 1/(1− t)2. The AD2
up test statistic is a pop-

ular (see Mignola and Ugoccioni, 2006; Turk, 2009; Wahlström, 2013; Lavaud and
Lehérissé, 2014; Feuerverger, 2015; Chernobai et al., 2015) test statistic in OpRisk
modeling for severity distribution selection. It is also known in engineering and
meteorological applications under the name of the right-tail Anderson-Darling test
of second degree (Zhou, 2013; Drobinski et al., 2015).

Until recently, to the best of our knowledge, the OpRisk literature has not ques-
tioned limiting properties of any of (3.3)-(3.6). In Footnote 2, Chernobai et al.
(2015, p. 585), when briefly speaking about the mean of the asymptotic distribution
of AD2

up, takes for granted the very existence of such an asymptotic distribution. In
fact, in the terminology of the above Definition 3.2, Chernobai et al. (2015) means
the limiting distribution. In this thesis, however, we will show that no limiting dis-
tribution exists for the AD2

up statistic.
Moreover, we discuss limiting properties for (3.3) and (3.4) and contribute to

the analysis of the limiting properties of a subfamily of WCvM GoF test statistics
(3.2), with weight function ψ (t) = 1/(1− t)β , which will be denoted throughout
by

W 2,β
n = n

ˆ
∞

−∞

(Fn (x)−F0 (x))
2

(1−F0 (x))β
dF0(x),

for β ∈ R. Statistics W 2,β
n are suitable for more accurate selection of severity dis-

tributions due to the emphasis they put on the right tail of the distributions.

3.3 Facts from Theory of Empirical Processes

3.3.1 Preliminaries

Let U1, . . . ,Un be independent U(0,1) random variables with corresponding order
statistics U(1) 6 . . .6U(n).

Definition. For En (s) =


0, 06 s <U(1),

k/n, U(k) 6 s <U(k+1), k = 1, ..,n−1,
1, U(n) 6 s6 1.

the uniform

empirical process is defined en(s) =
√

n(En(s)− s), 06 s6 1.
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As shown in Shorack and Wellner (2009, pp. 3-5) and Csörgő and Horváth
(1993, pp. 365-367), for a continuous F0 (·), the probabilistic study of

√
n(Fn(x)−F0(x)) , x ∈ R,

is equivalent to that of en(F0(x)), x ∈ R under the null hypothesis (3.1) as in this
case U = F0(X) is U(0,1)-distributed.

It is known (see Csörgő and Horváth, 1993, formula (5.1.65)) that

{en(t)ψ(1− t), t ∈ (0,1)} d
= {en(1− t)ψ(1− t), t ∈ (0,1)}

for each n> 1, where d
= denotes equality in distribution.

Hence, in particular,

ˆ 1

0

(
e2

n(t)/t2) dt d
=

ˆ 1

0

(
e2

n(t)/(1− t)2
)

dt

and ˆ 1

0

(
e2

n(t)/t
)

dt d
=

ˆ 1

0

(
e2

n(t)/(1− t)
)

dt.

Thus, AD2
down

d
= AD2

up.
A standard Brownian motion will be denoted by W = {W (t) |W (0) = 0, t > 0}

with state space R and standard Brownian Bridge B d
=W (t)− tW (1) for t ∈ [0,1].

Of key interest is an adaptation of Theorem 1.1 from Csörgő et al. (1993):

Proposition 3.4. W 2
n (ψ)

d→
´ 1

0 ψ (t)B2(t)dt as n→ ∞ if and only if

ˆ 1

0
ψ (t) t (1− t) dt < ∞.

It follows that not all weights are suitable to produce a well-defined limiting
distribution for the corresponding test statistic.

3.3.2 Classical Results

Throughout, the limits are taken as n→ ∞ unless otherwise stated. We refer to
known and proven results as “Propositions” and to important new results emerging
from this work as “Theorems”.
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Proposition 3.5. (i) sup
06t61

|en(t)|
(1−t)β

d→ ∞ for any β > 1/2;

(ii) sup
06t61

|en(t)|√
t(1−t)

d→ ∞.

Proof. Part (i) follows from Mason (1985) and Part (ii) from Chibisov (1964, The-
orem 2). �

Corollary 3.6. Test statistics AD∗ (3.3) and ADup (3.4) do not have well-defined
limiting distributions.

Proposition 3.7. (i)
´ 1

0
e2

n(t)
(1−t)β

dt d→
´ 1

0
B2(t)
(1−t)β

dt if and only if β < 2;

(ii)
´ 1

0
e2

n(t)
(1−t)β

dt d→ ∞ for any β > 2.

Proof. Part (i) follows from Proposition 3.4, while Part (ii) is a consequence of
Csörgő et al. (1993, Theorem 1.3) or, for β = 2, from the results from Shepp (1966,
p. 353). �

Corollary 3.8. Test statistics AD2
up (3.5) and AD2

down (3.6) do not have well-defined
limiting distributions.

As discussed in Csörgő and Horváth (1988) and Csörgő and Horváth (1993),
ψ(t) = 1/

√
t(1− t) and ψ(t) = 1/(t(1− t))2 are special weight functions in the

sense that they separate light weights from heavy ones in the supremum and integral
class, respectively. In Chapter 5 of Csörgő and Horváth (1993) it is emphasized that
asymptotic behaviour of a weighted EDF-based test statistic will be determined by
that of the uniform empirical process en(t) on a subinterval In ⊆ [0,1] for t: in the
tails, if In is either (0,an] or [1− an,1), or in the middle, i.e., if In is [an,1− an],
where an ↓ 0.

Propositions 3.9 and 3.10 make this specific for weight function ψ(t) = 1/(1−
t)β .

Proposition 3.9. For any sequence of real numbers {an}∞

n=1 such that an→ 0 and
nan→ ∞, we have:

(i) If −∞ < β < 1/2, then

a
β− 1

2
n sup

1−an6t<1

|en(t)|
(1− t)β

d→ sup
t∈[0,1]

|W (t)|
tβ

;
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(ii) If β = 1/2, then

A
(

1
2

ln(nan)

)
sup

1−an6t<1

|en(t)|√
t (1− t)

−D
(

1
2

ln(nan)

)
d→ Y,

where A(x) =
√

2lnx, D(x) = 2lnx+(ln lnx)/2−(lnπ)/2 and Y is a Gumbel
random variable, whose PDF is exp(−2exp(−x)), x ∈ R;

(iii) If β > 1/2, then

n
1
2−β sup

1−an6t<1

|en(t)|
(1− t)β

d→ sup
t∈(0,∞)

|N (t)− t|
tβ

,

where {N(t), t > 0} is a Poisson process with E [N(t)] = t;

(iv) If β > 1/2, then

n
1
2−β sup

1−an6t<U(n)

|en(t)|
(1− t)β

d→ sup
t∈[S(1),∞)

|N (t)− t|
tβ

,

where S(1) is the time of the first jump of N(t).

Proof. See in Csörgő and Horváth (1993, p. 265, Theorem 1.2). �

Remark. It is known (Mason, 1985) that

sup
t∈(0,∞)

N (t)− t
t

d
= X ,

where X has CDF P(X 6 x) = x/(1+x) for x> 0 and 0 otherwise. This is a Lomax
distribution (Johnson et al., 1994).

Proposition 3.10. For any sequence of real numbers {an}∞

n=1 such that an→ 0 and
nan→ ∞, we have

(i) If −∞ < β < 2, then

aβ−2
n

ˆ 1

1−an

e2
n(t)

(1− t)β
dt d→

ˆ 1

0

W 2(t)
tβ

dt;
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(ii) If β = 2, then

1
2
√

ln(nan)

(ˆ 1

1−an

e2
n(t)

t2 (1− t)2 dt− ln(nan)

)
d→ N(0,1)

and, as n→ ∞,

1
2
√

2lnn

(ˆ 1

0

e2
n(t)

t2 (1− t)2 dt−2lnn

)
d→ N(0,1);

(iii) If β > 2, then

n2−β

ˆ 1

1−an

e2
n(t)

(1− t)β
dt d→

ˆ
∞

0

(N(t)− t)2

tβ
dt.

Proof. The proof follows from Csörgő and Horváth (1993, p. 325, Theorem 3.2)
and Csörgő and Horváth (1993, p. 335, Equation (5.3.113)). �

3.4 Facts from Spectral Theory

In this section, we define the spectrum of an integral operator and present some
known results related to the integral operators corresponding to the W 2,β

n test statis-
tics

Definition. (Reed and Simon, 1980, p. 188)

1. Let T be a bounded linear operator from a Banach space X to itself. A com-
plex number λ is said to be in the resolvent set ρ(T ) of T if T − λ I is a
bijection with a bounded inverse. Rλ (T ) = (T −λ I)−1 is called the resolvent
of T at λ . If λ 6∈ ρ(T ), then λ is said to be in the spectrum σ(T ) of T .

2. An x 6= 0 which satisfies T x = λx for some λ ∈ C is called an eigenvector of
T ; λ is called the corresponding eigenvalue.

Definition. (Pugachev and Sinitsyn, 1999, p. 419) If RT (λ ) is the range of T −λ I,

1. A set of eigenvalues of the operator T is called a point spectrum of T and is
denoted by σp(T ). The resolvent does not exist for λ ∈ σp(T ).
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2. A subset σc(T ) of σ(T ) for which the resolvent exists and its domain is dense
in X , RT (λ ) 6= X , RT (λ ) = X , is called a continuous spectrum of T .

3. A subset σr(T ) of σ(T ) for which the resolvent exists and its domain is not
dense in X , RT (λ ) 6= X , is called the residual spectrum of T .

Thus, σ(T ) = σp(T )tσc(T )tσr(T ), where t denotes a disjoint union of sets.
The spectrum of a bounded linear operator is a bounded closed set (Pugachev and
Sinitsyn, 1999, p. 423). If X , being a Banach space, is also Hilbert space (as in the
case of X = L2(S), S ⊆ R, of square integrable functions) and if T is self-adjoint,
then σ(T )⊂ R and σr(T ) =∅ (Pugachev and Sinitsyn, 1999, pp. 451-452).

If
´ 1

0 ψ (t) t (1− t) dt < ∞, an application of Mercer’s theorem and Karhunen-
Loève theorem leads to the classic representation (Shorack and Wellner, 2009,

pp. 201-213):
´ 1

0 ψ (t)B2(t)dt d
=

∞

∑
k=1

λkXk, where Xk are independent random vari-

ables distributed as χ2
1 , i.e., chi-squared distribution with one degree of freedom.

Here, λk are eigenvalues of the following integral operator acting in L2((0,1)):

(Kg)(x) =
ˆ 1

0
k(x,y)g(y)dy, x ∈ (0,1), g ∈ L2((0,1)), (3.7)

with kernel k(x,y) = (min(x,y)− xy)
√

ψ(x)ψ (y). That is, λk solve (Kg)(x) =

λg(x).
For ψ (t) = 1/(1− t)β , β < 2, Deheuvels and Martynov (2003) demonstrates

that λk =
(
2ν/zν ,k

)2, where zν ,k is the k-th positive zero of the Bessel function Jν (·)
of the first kind and ν = 1/(2−β ).

In other words, the spectrum of integral operator (3.7) for ψ (t) = 1/(1− t)β

with β < 2 contains eigenvalues. In contrast, in Section 3.6, we show that for β = 2
the spectrum is purely continuous.

3.5 Ornstein-Uhlenbeck Stochastic Process

In this section, we define the Ornstein-Uhlenbeck stochastic process. Some proper-
ties of this process will be used in the sequel.

We borrow from Section 1.1 of Fatalov (2014) the definition of the process.
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Definition. The Ornstein-Uhlenbeck (“OU”) process {ςθ (t) , t > 0} of order θ > 0
is a Gaussian homogeneous diffusion process satisfying the stochastic differential
equation

dςθ (t) =−θςθ (t)dt +dW (t), (3.8)

where W (t), W (0) = 0, is the standard Brownian motion.

The state space for {ςθ (t) , t > 0} is the whole real axis, and the rate measure is
the one-dimensional Gaussian probability measure

mθ (dx) =
√

θ/π exp
(
−θx2) dx, x ∈ R.

There are two types of OU processes: stationary and nonstationary. Both of
them satisfy (3.8) but with different initial distributions.

Definition. The stationary OU process is the process

Yθ (t) =
{

ςθ (t) | ςθ (t)
d
= mθ

}
for θ > 0 and t > 0.

Definition. The nonstationary OU process is the process

Xθ ,x(t) = {ςθ (t) | ςθ (0) = x}

for θ > 0 and t > 0 and some x ∈ R.

Both {Yθ (t), t > 0} and {Xθ ,x(t), t > 0} are Markov processes while {Yθ (t), t >

0} is also ergodic (Pavliotis, 2014; Iakus, 2008) with invariant measure mθ (dx).
The stationary OU process has mean zero and covariance function

E [Yθ (t)Yθ (s)] =
1

2θ
exp(−θ |t− s|)

for t,s> 0. On the other hand, the mean and covariance function of the nonstation-
ary OU process are E

[
Xθ ,x(t)

]
= xexp(−θ t) and

cov
(
Xθ ,x(t),Xθ ,x(s)

)
=

1
2θ

(exp(−θ |t− s|)− exp(−θ (t + s)))
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for t,s > 0. The stationary and nonstationary processes admit the following repre-
sentations (Iakus, 2008, p. 45):

Yθ (t) =
1√
2θ

exp(−θ t)W (exp(2θ t))

and
Xθ ,x(t) = xexp(−θ t)+

1√
2θ

exp(−θ t)W (exp(2θ t)−1) (3.9)

for t > 0.
Central to our discussion will be the functional Zθ ,x(T ) =

´ T
0 X2

θ ,x(t)dt for 06
T < ∞. For convenience, the zero-start {Xθ ,0 (t) , t > 0} and corresponding Zθ ,0(T )

will be denoted by {Xθ (t), t > 0} and Zθ (T ), respectively.

3.6 Main Results

In this section, we establish the following main theorems.

Theorem 3.11. We have

(i) Statistics AD2
up and AD2

down possess asymptotic distributions under positive
affine normalization:

AD2
up− lnn

2
√

lnn
d→ N (0,1) and

AD2
down− lnn

2
√

lnn
d→ N (0,1) ;

(ii) For all real x and y

P

(
AD2

up− lnn

2
√

lnn
6 x,

AD2
down− lnn

2
√

lnn
6 y

)
→Φ(x)Φ(y).

That is, the random variables

AD2
up− lnn

2
√

lnn
and

AD2
down− lnn

2
√

lnn

are asymptotically independent.
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Corollary 3.12. We have

√
lnn
2

ln

(
AD2

up

lnn

)
d→ N (0,1) and

√
lnn
2

ln
(

AD2
down

lnn

)
d→ N (0,1) .

Corollary 3.13. We have

AD2
up− lnn

2
√

lnn
+

AD2
down− lnn

2
√

lnn
d→
√

2N (0,1) .

Theorem 3.14. Statistic W 2,2
n admits the decomposition W 2,2

n = An +Bn, such that

An +2n
2
√

n
d→−X and

Bn−2n
2
√

n
d→ X ,

with X being distributed as the standard Gaussian distribution.

Theorem 3.15. Let k(x,y) = (min(x,y)− xy)/((1− x)(1− y)) for x and y ∈ [0,1).
Define the integral operator K with kernel k(·, ·) as (Kg)(x) =

´ 1
0 k(x,y)g(y)dy for

g∈ L2([0,1)) and x∈ [0,1). Then, the spectrum of this operator is purely continuous
filling in the interval [0,4].

3.7 Proofs of Main Results

The proofs presented below rely on some auxiliary lemmas. In order not to interrupt
the flow of the exposition, these lemmas are relegated to Appendix B.

Proof of Theorem 3.11. Part (i). First, let us observe that

ˆ 1

0

e2
n (t)

(1− t)2 dt =
ˆ U(n)

0

e2
n (t)−B2

n(t)

(1− t)2 dt +
ˆ U(n)

0

B2
n(t)

(1− t)2 dt +
ˆ 1

U(n)

e2
n (t)

(1− t)2 dt,

where Bn = Bn(s), s ∈ [0,1], is the sequence of Brownian bridges from Csörgő and
Horváth (1988, Theorem 3.1).

In Csörgő and Horváth (1988), it is shown that
´U(n)

U(1)

|e2
n(t)−B2

n(t)|
t2(1−t)2 dt = OP(1).

Since, for t ∈ (0,1), 1/(1−s)2 < 1/
(
s2(1− s)2), then

´U(n)
U(1)

|e2
n(t)−B2

n(t)|
(1−t)2 dt = OP(1).

It follows then Lemma B.3 that
´ 1

U(n)

e2
n(t)

(1−t)2 dt = OP(1).
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As in Lemma B.4, on account that U(1)
P→ 0, we conclude that

´U(1)
0

e2
n(t)

(1−t)2 dt =

oP(1). It is well known (Shepp, 1966; Csörgő et al., 1993) that
´ 1

0 B2
n(t)dt <∞ wp1.

Consequently, as in Lemma B.4,
´U(1)

0
B2

n(t)
(1−t)2 dt = oP(1).

Then,
´U(n)

0
e2

n(t)−B2
n(t)

(1−t)2 dt 6
´U(n)

U(1)

|e2
n(t)−B2

n(t)|
(1−t)2 dt+

´U(1)
0

e2
n(t)

(1−t)2 dt+
´U(1)

0
B2

n(t)
(1−t)2 dt =

OP(1), so that
´U(n)

0
e2

n(t)−B2
n(t)

(1−t)2 dt = OP(1).
Observe that

B(t) d
= (1− t)W

(
t

1− t

)
.

Then for all 0 < b < 1,

ˆ b

0

B2 (t)

(1− t)2 dt d
=

ˆ b

0
W 2
(

t
1− t

)
dt.

The change of variable t/(1− t) = exp(s)−1 leads to

ˆ b

0

B2 (t)

(1− t)2 dt d
=

ˆ − ln(1−b)

0

(
exp
(
− s

2

)
W (exp(s)−1)

)2
ds.

From representation (3.9), we recognize that

ˆ b

0

B2 (t)

(1− t)2 dt d
=

ˆ − ln(1−b)

0
X2

1
2
(t)dt (3.10)

Now the proof proceeds analogous to the proof of Corollary 2.2 of Csörgő and
Horváth (1988), but with the use of Lemma B.2 to conclude that as n→ ∞

1
2
√

ln(n)

(ˆ 1

0

e2
n (t)

(1− t)2 dt− lnn

)
d→ N(0,1).

Since AD2
up

d
= AD2

down (see Section 3.3), the proof of Part (i) is complete.
Part (ii). Let k(n) = n/ ln2 n. It is known (Csörgő and Horváth, 1993, p. 335)

that ˆ U(n−k(n))

U(k(n))

e2
n(t)

t2 (1− t)2 dt = OP(ln lnn)
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This implies that both

ˆ U(n−k(n))

U(k(n))

e2
n(t)
t2 dt = OP(ln lnn) and

ˆ U(n−k(n))

U(k(n))

e2
n(t)

(1− t)2 dt = OP(ln lnn). (3.11)

From (3.11), Lemma B.4, and the results obtained above in proving Part (i) we
conclude that the following representations are valid as n→ ∞:

AD2
down =

ˆ U(k(n))

U(1)

e2
n(t)
t2 dt +OP(ln lnn)

and

AD2
up =

ˆ U(n)

U(n−k(n))

e2
n(t)

(1− t)2 dt +OP(ln lnn).

By Csörgő and Horváth (1993, p. 272, Lemma 1.4), the random variables(´U(k(n))
U(1)

e2
n(t)
t2 dt− lnn

)
2
√

lnn
and

(´U(n)
U(n−k(n))

e2
n(t)

(1−t)2 dt− lnn
)

2
√

lnn

are asymptotically independent. This completes the proof of Theorem 3.11.
�

From (B.1), it follows2 that lim
T→+∞

E [exp(−Zθ (T ))] = 0 for all θ > 0. Conse-

quently, P
(´

∞

0 X2
θ
(t)dt =+∞

)
= 1 (see Liptser and Shiryaev, 2001, p. 234, Equa-

tion (17.57)). This, together with (3.10), gives another proof of Part (ii) in Proposi-
tion 3.7 for β = 2.

Although the above proof is similar to that of Corollary 2.2 in Csörgő and
Horváth (1988), there is a substantial difference. In Csörgő and Horváth (1988),
the OU {ξ (t), t > 0} process (B.5) is stationary and hence

ˆ b

a
ξ

2(t)dt d
=

ˆ b−a

0
ξ

2(t)dt

for all b> a> 0. However, the zero-start OU {X1/2(t), t > 0} is nonstationary, and

2In the proof of Lemma B.1, we show that the moment generating function, Laplace transform,
and characteristic function of Zθ (T ) can be obtained from each other by a corresponding change in
the independent variable.
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it is readily checked that

ˆ b

a
X2

1
2
(t)dt

d
6=
ˆ b−a

0
X2

1
2
(t)dt

in general (clearly, the equality trivially holds when either a = 0 or a = b). It is
sufficient to show that E

[´ b
a X2

1/2(t)dt
]
6= E

[´ b−a
0 X2

1/2(t)dt
]
. We have

E

[ˆ b

a
X2

1
2
(t)dt

]
= b−a+ exp(−b)− exp(−a)

and

E

[ˆ b−a

0
X2

1
2
(t)dt

]
= b−a+ exp(a−b)−1.

So

E

[ˆ b

a
X2

1
2
(t)dt

]
−E

[ˆ b−a

0
X2

1
2
(t)dt

]
= (exp(a)−1)(exp(−a)− exp(−b)),

which equals 0 if and only if a = 0 or a = b.

Proof of Corollary 3.12. As AD2
up

d
= AD2

down, we shall only prove the statement for

AD2
up. Let us observe that

(
AD2

up− lnn
)
/
(

2
√

lnn
)
≡
(√

lnn/2
)(

AD2
up/ lnn−1

)
.

Since y = lnx is differentiable at x = 1 and (lnx)′|x=1 = 1 is not zero, the Delta
Method (van der Vaart, 2007, p. 26, Theorem 3.1) yields the result. �

Remark. 1. This corollary can be proved directly by resorting to the fact that,
as T → ∞, the CDF and PDF of

´ T
0 X2

1/2(t)dt are equivalent to those of an
inverse Gaussian random variable (Dankel, 1991) whose PDF is

f (x; µ,λ ) =
√

λ/(2πx3)exp
(
−λ (x−µ)2/(2µ

2x)
)

with parameters µ = T and λ = T 2/4 for positive T and x. Then, the state-
ment of the corollary follows from the following property of an inverse Gaus-
sian distribution given in Jørgenssen (1982, p. 23):

√
ϕ ln(X/µ)

d→ N(0,1)
as ϕ → ∞ (for ϕ = λ/µ and any µ > 0) where ϕ = T/4. As T = lnn in the
case under consideration, the result follows.
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2. The main result of Whitmore and Yalovsky (1978) 1/(2
√

ϕ)+
√

ϕ ln(X/µ)
d→

N(0,1), as ϕ → ∞, leads to a slightly different normalization:

√
lnn
2

ln

(
AD2

up

lnn

)
+

1√
lnn

d→ N(0,1). (3.12)

This normalization immediately follows from Corollary 3.12 and Slutsky’s
Theorem. The reader is referred to Jørgenssen (1982, p. 24) for a discussion
of the nature of the additive term 1/(2

√
ϕ) = 1/

√
lnn.

3. Whitmore and Yalovsky (1978) suggests that for the normalizations from
Theorem 3.11 and normalization (3.12) to adequately approximate N(0,1),
ϕ must be much greater than 1000 and 10, respectively. This is equiva-
lent to requiring that sample size should exceed e4000 ≈ 1.5× 101737 and
e40 ≈ 2.4×1017.

Proof of Corollary 3.13. The statement follows from the Continuous Mapping The-
orem (van der Vaart, 2007, p. 7, Theorem 2.3). �

Luceño (2006) introduced the statistic a2
n = l2

n + r2
n, where, in the notation of

this paper, l2
n = AD2

down and r2
n = AD2

up. The above results yield that a2
n has no well-

defined limiting distribution but (cf. (ii) in Proposition 3.10 and Corollary 3.13)

1
2
√

2ln(n)

(
a2

n−2lnn
) d→ N (0,1) .

Proof of Theorem 3.14. From the proof of Theorem 3.11, we deduce that

W 2,2
n

2
√

n
= op(1)+

(
lnn
2
√

n

)(
1

lnn

ˆ lnn

0
X2

1
2
(t)dt

)
.

Therefore, from Lemma B.5 and Slutsky’s Theorem, it follows that

W 2,2
n

2
√

n
P→ 0. (3.13)
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In Chernobai et al. (2005), the following computational formula is obtained:

W 2,2
n = 2

n

∑
j=1

ln
(
1−U( j)

)
+

1
n

n

∑
j=1

1+2(n− j)
1−U( j)

.

Since ∑
n
j=1 ln

(
1−U( j)

)
= ∑

n
j=1 ln

(
1−U j

)
, the latter decomposition can be

rewritten as

W 2,2
n = 2

n

∑
j=1

ln
(
1−U j

)
+

1
n

n

∑
j=1

1+2(n− j)
1−U( j)

.

Let

An = 2
n

∑
j=1

ln
(
1−U j

)
and Bn =

1
n

n

∑
j=1

1+2(n− j)
1−U( j)

.

It is a straightforward exercise to see that−An is distributed as a random variable
with χ2

2n distribution, i.e., the chi-squared distribution with 2n degrees of freedom.
It is well-known that (χ2

m−m)/
√

2m d→ N(0,1) as m→ ∞. Hence, as n→ ∞, we
have

An +2n
2
√

n
→−X ,

where X is distributed as the standard Gaussian distribution. Hence, from (3.13)
and Slutsky’s Theorem, we conclude that as n→ ∞,

Bn−2n
2
√

n
→X .

This completes the proof of Theorem 3.14. �

The fact that (Bn−2n)/(2
√

n) converges in distribution to a standard Gaussian
random variable can be obtained directly by noticing that

1
n

n

∑
j=1

1+2(n− j)
1−U( j)

= OP(1)+
1
n

n−1

∑
j=2

1+2(n− j)
1−U( j)

. (3.14)

In (3.14), the term

Tn =
1
n

n−1

∑
j=2

1+2(n− j)
1−U( j)

is an example of a trimmed L-statistic. Then, Mason and Shorack (1992, Theorem
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1.1) implies that, as n→ ∞,

Tn−2n
2
√

n
d→ N(0,1).

Before proceeding to the proof of Theorem 3.15, we make a few observations.
In Deheuvels and Martynov (2003), it is demonstrated that eigenvalues of

ˆ 1

0

min(x,y)− xy

(1− x)β/2 (1− y)β/2 ϕ(y)dy = λϕ(x), x ∈ [0,1), ϕ ∈ L2([0,1)),

for β < 2 are λk =
(

2ν

zν ,k

)2
, k ∈ N, where zν ,k is the k-th positive zero of the Bessel

function Jν (·) of the first kind and ν = 1/(2−β ). In Elbert and Laforgia (1984),
the following result of Tricomi is cited: zν ,k = ν + akν1/3 +O

(
ν1/3

)
as ν → ∞,

where ak is independent of ν . Hence λk→ 4 as β ↑ 2. From Abramovitz and Ste-
gun (1972), the following interlacing property of zν ,k is known: 0 < zν ,1 < zν+1,1 <

zν ,2 < zν+1,2 < zν ,3 < .. . . Hence, this provides a heuristic evidence that λk gradu-
ally fill in [0,4] as β ↑ 2 as stated in Theorem 3.15.

Proof of Theorem 3.15. Let k(x,y) = (min(x,y)− xy)/((1− x)(1− y)) for x,y ∈
[0,1). Let us define the integral operator K with kernel k(·, ·) as

(Kg)(x) =
ˆ 1

0
k(x,y)g(y)dy

for any g ∈ L2([0,1)) and x ∈ [0,1). In (Kg)(x) = λg(x), x ∈ [0,1), we can make
the following change of variables:

x = 1− exp(−t), y = 1− exp(−s) and g∗(s) = exp(−s/2)g(1− exp(−s)) ,

where t,s ∈ [0,∞). With the help of two identities,

min(x,y) =
1
2
(x+ y−|x− y|), x,y ∈ R,

and
min(exp(x),exp(y)) = exp(min(x,y)), x,y ∈ R,

66



Ph.D. Thesis – K. Mayorov McMaster University – Mathematics & Statistics

after some algebra, we arrive at the equation

ˆ
∞

0

(
exp
(
−|t− s|

2

)
− exp

(
−t + s

2

))
g∗(s)ds = λg∗(t)

for t ∈ [0,∞). An application of Lemma B.6 for θ = 1/2 completes the proof. �

3.8 Practical Utility of W 2,β
n Test Statistics

Commonly used GoF test statistics have been observed to possess the following
properties, or stylized facts:

Property 1 The statistic has a finite mean and variance in finite samples;

Property 2 It possesses a non-degenerate limiting distribution;

Property 3 The limiting distribution has a finite mean and variance;

Property 4 The finite-sample distributions rapidly converge to the limiting distri-
bution.

For example, the Kolmogorov-Smirnov, Cramér-von Mises W 2,0
n , Anderson-

Darling and modified Anderson-Darling W 2,1
n test statistics satisfy the properties

(see Marsaglia et al., 2003; Csörgő and Faraway, 1996; Stephens, 1974; Sinclair
et al., 1990) for practically important upper-tail probabilities (0.8 and higher).

One may argue that the existence of the first two moments may be of little
to no importance in practical applications, where one is primarily concerned with
computing a critical value being a quantile. However, for a nonnegative random
variable the finiteness of its mean ensures that the random variable is well defined,
i.e., finite wp1 (Gut, 2013, Theorem 4.4, p. 52).

A conventional way to determine a finite sample critical value is via Monte
Carlo experiments. Although the processing power and available amounts of RAM
of modern computers have significantly increased computational tractability of Monte
Carlo methods, evaluation of critical values for sufficiently large samples still faces
problems of long execution time. In these circumstances, it is common to approxi-
mate the critical value by an asymptotic one.
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In this section, we investigate if the class of W 2,β
n test statistics for β > 1 possess

Properties 1-4.
Consider testing H0 : F(x) = F0(x) vs. H1 : F(x) 6= F0(x) for a continuous CDF

F0(·) with specified parameters. Given a sample of independent random variables
X1, . . . ,Xn distributed according to F0(·). If X(1) 6 · · · 6 X(n) are corresponding
order statistics, let z j = F0(X( j)).

In Feuerverger (2015), the following computational formula for W 2,β
n is estab-

lished:3

W 2,β
n =Const +

2
2−β

n

∑
j=1

(1− z j)
2−β +

1
(β −1)n

n

∑
j=1

1+2(n− j)
(1− z j)β−1 , (3.15)

where Const = n
(

1
3−β
− 2

2−β
+ 1

1−β

)
.

In Chernobai et al. (2005), the computational formula is given for W 2,2
n :

W 2,2
n = 2

n

∑
j=1

ln(1− z j)+
1
n

n

∑
j=1

1+2(n− j)
(1− z j)

. (3.16)

Observe that W 2,2
n can be viewed as a limit of W 2,β

n as β ↑ 2 (cf. Feuerverger,
2015).

Under the assumption that F0(·) is fully specified, z j, j = 1 . . .n, will follow a
uniform distribution in [0,1]. As such, W 2,β

n is independent of the null distribution.
After some straightforward algebra, it is not hard to determine the first two moments
of W 2,β

n . Indeed, E
[
W 2,β

n

]
= 1/((2−β )(3−β )) for β < 2 and +∞ otherwise.

Similarly, V
[
W 2,β

n

]
= 2/

(
(2−β )(5−2β )(3−β )2

)
for β < 2 and +∞ otherwise.

In Deheuvels and Martynov (2003), it shown that the limiting distributions of W 2,β
n

(β < 2) have the same moments as their finite sample analogues. As mentioned
above, this means that W 2,β

n (for β < 2) and their limiting random variables are
well defined.

Although W 2,2
n has no moments, it is still well defined as demonstrated in Lemma

3.16 below.

Lemma 3.16. Under the null hypothesis, P(W 2,2
n < ∞) = 1.

3The expression in Feuerverger (2015) must be multiplied by n to yield the correct result (3.15).
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Proof. Observe that
∞⋃

m=0

{W 2,2
n 6 m}= {W 2,2

n < ∞}

for all n ∈ N. Then (see Gut, 2013, Theorem 3.1, p. 11) P(W 2,2
n 6 m)→ P(W 2,2

n <

∞) as m→ ∞. Clearly P(W 2,2
n 6 0) = 0. From (3.16) it is readily seen that W 2,2

n 6

n/(1− zn) for all n ∈ N. Hence P(W 2,2
n 6 m) > P(n/(1− zn) 6 m). But P(n/(1−

zn)6 m) = (1−n/m)n implies P(n/(1− zn)6 m)→ 1 as m→ ∞. This completes
the proof. �

The results of Section 3.6 imply that since no limiting distribution exists for
W 2,2

n , one may speak of no moments of the limiting distribution whatsoever. There-
fore, while W 2,β

n (β < 2) enjoys the first three GoF properties identified above, W 2,2
n

albeit well defined fails each of them.
To study convergence of the finite sample distributions of W 2,β

n (β < 2) and
(W 2,2

n − lnn)/(2
√

lnn) to their limiting distributions, we considered testing H0 :
F(x) = Φ(x) vs. H1 : F(x) 6= Φ(x) for the standard Gaussian CDF Φ(·) at signifi-
cance level α = 0.05.

For a range of sample size n from 10 to 50,000 and various β from 1 to 2
with an increment of 0.05, we have tabulated4 W 2,β

n using (3.15)-(3.16) by exten-
sive Monte Carlo simulations (106 trials for each sample size). We then computed
critical values C2,β

n,α for W 2,β
n . See Figure 3.1.

The asymptotic critical values5 C2,β
∞,α , as a function of β , are shown in Figure

3.2. It is readily seen that C2,β
∞,α explode as they approach β = 2.

It is also informative to plot the finite-sample and asymptotic critical values
together for the normalized version of the W 2,2

n test statistic. It is seen that the
finite-sample critical values (C2,2

n,α− lnn)/(2
√

lnn) converge extremely slowly to the
asymptotic critical values Φ−1(1−α). See Figure 3.3 where the case of α = 0.05
is depicted.

We have considered a partition of the range of sample sizes n from 10 to 50,000
into disjoint intervals [n1,n2). We fitted a simple linear regression to the finite
sample critical values C2,β

n,α : C2,β
n,α = an+b+ ε in each interval. Here ε is the error

4Note that (3.15) is not applicable for β = 1. For this case, the computational formula is given
in Sinclair et al. (1990).

5The computation is based on the limiting distribution established in Deheuvels and Martynov
(2003, Formula (1.4), p. 67). Also, see Table 1.1 therein.
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Figure 3.1: Critical values C2,β
n,α for W 2,β

n by Monte Carlo simulations for selected
values of β ∈ [1,2) and for selected sample sizes (106 trials for each sample size).
Here α = 0.05 and the 2.0∗ exponent refers to the normalized version of W 2,β

n .
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Figure 3.2: Asymptotic critical values C2,β
∞,α as a function of β . Here β ∈ [1,2) and

α = 0.05.

term.
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Figure 3.3: Monte Carlo finite-sample critical values and asymptotic critical value
Φ−1(1−α) (straight line) for the normalized version of W 2,2

n for α = 0.05.

Then H0 : a = 0 vs H1 : a 6= 0 was assessed. The p-values are presented in Table
3.1 for α = 0.05 and selected β values.

Table 3.1: p-values for testing H0 : a = 0 vs H1 : a 6= 0 at α = 0.05 for C2,β
n,α =

an+b+ε . Samples whose size n falls in [n1,n2) are considered. The 2.0∗ exponent
refers to the normalized version of W 2,β

n .

β

n1 n2 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.0∗

10 1200 0.39 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1200 8000 0.19 0.20 0.12 0.09 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8000 50000 0.66 0.56 0.31 0.21 0.15 0.01 0.00 0.00 0.00 0.00 0.00 0.00

It is noteworthy that in all cases but one the p-values behave as expected: in-
crease rowwise and decrease columnwise. In practice, for a given event type, the
size of available internal loss data of financial institutions typically does not exceed
1,000 events while for external data the size does not exceed 50,000 points. Thus,
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Table 3.1 suggests that there is insufficient evidence that C2,β
n,α , 1.56 β 6 2 and the

normalized version (C2,2
n,α − lnn)/(2

√
lnn) flatten over the entire range of sample

sizes important in OpRisk applications.
The overall quality of the approximation to normality provided by a normal-

ization to W 2,2
n can be conveniently assessed by the overlapping coefficient (OVL)

introduced in Weitzman (1970). Given two PDFs f1(·) and f2(·), OVL is equal to
the area under f1(·) and f2(·) simultaneously:

OVL =

ˆ
∞

−∞

min{ f1(x), f2(x)}dx, or OVL = 1− 1
2

ˆ
∞

−∞

| f1(x)− f2(x)|dx.

OVL is a measure of agreement or similarity of the two PDFs. It takes on values in
[0,1], where 0 and 1 correspond to no and full overlap, respectively.

Figure 3.4 shows OVLs between the PDFs of three normalizations

(W 2,2
n − lnn)/(2

√
lnn), (

√
lnn/2) ln(W 2,2

n / lnn),

(
√

lnn/2) ln(W 2,2
n / lnn)+1/

√
lnn (see (3.12))

and the standard Gaussian PDF ϕ(x) = (1/
√

2π)exp(−x2/2). The three PDFs
converge to ϕ(·) (Whitmore and Yalovsky, 1978; Dankel, 1991). The OVLs were
calculated nonparametrically as in Schmid and Schmidt (2006), where kernel den-
sity estimators of the PDFs were based on the Gaussian kernel and the Silverman
rule-of-thumb bandwidth (see p. 10). This convergence appears to be rather slow for
all the three normalizations. The second normalization seems to perform slightly
better than the third one and much better than the first one. From Whitmore and
Yalovsky (1978), we can infer that for the first and third normalizations to pro-
vide an adequate approximation to normality, it would require sample size of order
n� e4000 ≈ 1.5×101737 and n� e40 ≈ 2.4×1017, respectively; see p. 64.

As such, the knowledge of the theoretical limiting distribution is of little utility.
Instead, a Monte Carlo method should be applied to determine critical values even
for large sample sizes.
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Figure 3.4: OVLs between the PDF of N(0,1) and the normalizations (W 2,2
n −

lnn)/(2
√

lnn), (
√

lnn/2) ln(W 2,2
n / lnn), (

√
lnn/2) ln(W 2,2

n / lnn)+1/
√

lnn.
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Chapter 4

On the Chen-Balakrishnan
Transformation to Normality
in Weighted Cramér-von Mises
Goodness-of-Fit Tests

4.1 Introduction

Let X = {X1, . . . ,Xn} be a sample of IID random variables with common CDF G(·).
In applications, tests of composite hypotheses

H0 : G ∈F = {F(·;θθθ),θθθ ∈Ω⊆ Rm} (4.1)

for goodness of fit (GoF) are not uncommon. Here the distributional class F is
given, but the parameter vector θθθ ∈Ω⊆ Rm (with m ∈ N and Ω being an open set)
is unknown and has to be estimated from a sample at hand.

In this case, one often has to resort to Monte Carlo (MC) simulations to cal-
culate a p-value or critical value. In general, this may require significant and time
consuming computational effort as each MC trial includes parameter estimation.

One possibility to overcome this is to transform H0 to a hypothesis easier to
deal with. The transformation suggested by Chen and Balakrishnan reduces the
initial hypothesis H0 to an auxiliary composite hypothesis for normality H?

0 : Y ∼
N(µ,σ). The transformation to and assessment of H?

0 are performed quite quickly.
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The speed and applicability to arbitrary families F(·;θθθ) of null distributions make
the transformation attractive in practice.

In previous works, H?
0 was mainly studied on a standalone basis. In this chapter,

for a selected family of weighted Cramér-von Mises (WCvM) GoF test statistics, we
examine agreement between the decisions made based on H0 (direct tests) and H?

0

(indirect tests) on the same data set for distributional families with a varying degree
of tail heaviness. We compare the level and power of the selected WCvM GoF
statistics for the direct and indirect tests. In many situations, decisions of direct and
indirect tests become independent as sample size grows. We present some results on
convergence in distribution. The work here is motivated by potential applications
in risk modeling. In particular, we apply the tests on a real data set of operational
risk losses.

4.2 Selected Weighted Cramér-von Mises GoF Tests

For the sake of convenience, in this section we will reproduce some key definitions
from Chapter 3.

We consider GoF test statistics which belong to the quadratic class of statis-
tics which are based on the empirical distribution function (EDF). EDF is defined
as Fn (t) = (1/n)∑

n
i=1 I(−∞,t] (Xi), where {Xi}n

i=1 is a random sample with common
CDF F (x;θθθ) and IA (·) is the indicator function on event A. The prominent mem-
bers of the quadratic class are the Cramér-von Mises (CvM) and Anderson-Darling
(AD) test statistics which are defined in (4.2) and (4.3) below:

W 2
n = n

ˆ
∞

−∞

(Fn (x)−F (x;θθθ))2 dF (x;θθθ) , (4.2)

A2
n = n

ˆ
∞

−∞

(Fn (x)−F (x;θθθ))2

F (x;θθθ)(1−F (x;θθθ))
dF (x;θθθ) . (4.3)

The CvM test places equal weight on the main part and the tails of the distribu-
tion under H0. On the other hand, AD, while emphasizing on the left and right tails,
treats them equally. To weigh the deviations between the EDF and F0 according to
the importance attached to various portions of the CDF, let us consider weighted
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Cramér-von Mises test statistics of the form

W 2
n (ψ) = n

ˆ
∞

−∞

ψ (F (x;θθθ))(Fn (x)−F (x;θθθ))2 dF (x;θθθ) , (4.4)

where weight ψ : [0,1]→ R+.
For the case of simple null hypotheses, limiting properties of the WCvM statis-

tics (4.4) with ψ (t) = 1/(1− t)β (which will be denoted by W 2,β
n , where n is the

sample size) have been treated in Chapter 3 for β 6 2. In particular, it is shown
there that for β < 2, W 2,β

n has a well-defined limiting distribution while W 2,2
n

d→+∞

as n→ +∞. Unfortunately, convergence to the limiting distribution of W 2,β
n with

1.5 6 β < 2 appears to be rather slow to be useful in practice as one has to re-
sort to MC simulations even for very large samples. This fact makes W 2,β

n with
1.5 6 β < 2 natural candidates for the study in this chapter. Therefore, we have
selected both standard and specialized test statistics: CvM Ŵ 2

n , AD Â2
n and Ŵ 2,β

n

for β ∈ {1.5,1.8,1.95}. Here, the hat indicates the fact that an estimator θ̂θθ n of the
unknown distributional parameter θθθ is used to evaluate the statistic.

4.3 Theoretical Results on Asymptotic Behavior of
Ŵ 2,β

n

In this section, we discuss convergence in distribution of Ŵ 2,β
n for β 6 2 and (Ŵ 2,2

n −
lnn)/(2

√
lnn). For β < 2, we present conditions under which Ŵ 2,β

n converges in
distribution and verify them by an example of the Gaussian distribution. We also
provide conditions for Ŵ 2,2

n
d→ +∞ as n→ +∞, where d→ denotes convergence in

distribution. For example, the conditions are satisfied by the Gaussian distribution.
Finally, we sketch a proof that the normalization (Ŵ 2,2

n − lnn)/(2
√

lnn) leads Ŵ 2,2
n

to a non-degenerate limiting distribution.
The results presented here rely on some auxiliary lemmas which are relegated

to Appendix C.
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4.3.1 On Convergence in Distribution of Ŵ 2,β
n

Let X = {X1, . . . ,Xn} be a sample of IID random variables with common CDF G(·).
We wish to test the following null hypothesis:

H0 : G ∈F = {F(·;θθθ),θθθ ∈Ω⊆ Rm} versus H1 : G 6∈F , (4.5)

where the distributional class F is given, but the parameter vector1 θθθ ∈ Ω ⊆ Rm

(with m ∈ N and Ω being an open set) is unknown and has to be estimated.
To assess the null hypothesis (4.5), let us consider weighted Cramér-von Mises

test statistics of the form

Ŵ 2
n (ψ) = n

ˆ
∞

−∞

ψ

(
F(x; θ̂θθ n)

)(
F̂n (x)−F(x; θ̂θθ n)

)2
dF(x; θ̂θθ n), (4.6)

where weight ψ : [0,1]→ R+, θ̂θθ n is an estimator of θθθ , and F̂n(·) is the empirical
CDF of X1, . . . ,Xn.

Throughout this section, we shall assume that θ̂θθ n is the maximum likelihood
(ML) estimator. The true value of θθθ will be denoted by θθθ 0. Further, let us consider
the Fisher Information I (θθθ 0) = E

[
∇θθθ ln f (x;θθθ)∇T

θθθ
ln f (x;θθθ) | θθθ 0

]
of θ̂θθ n, where f

is the PDF and ∇θθθ (·) is the operator of differentiation with respect to θθθ . Recall that
the standard Brownian bridge {B(t), t ∈ [0,1]} is a Gaussian process with mean 0
and covariance function Cov(B(t),B(s)) = K0(t,s), where K0(t,s) = min(t,s)− ts

for all t,s ∈ [0,1]. We shall define the estimated Brownian bridge as follows.

Definition. The estimated Brownian bridge {B̂(t), t ∈ [0,1]} is a Gaussian process
with mean 0 and covariance Cov(B̂(t), B̂(s)) = K(t,s;F,θθθ 0), and

K(t,s;F,θθθ 0) = K0(t,s)− r(t,s;F,θθθ 0),

where

r(t,s;F,θθθ 0) = ∇
T
θθθ

F(x;θθθ)|t=F(x;θθθ 0),θθθ=θθθ 0I
−1(θθθ 0)∇θθθ F(y;θθθ)|s=F(y;θθθ 0),θθθ=θθθ 0

for all t,s ∈ [0,1].

Without proof, Neuhaus (1979, p. 491), Shorack and Wellner (2009, p. 233),
1All vectors in Section 4.3 are column ones. We use the notation 〈·, . . . , ·〉 for row vectors.
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Thas (2010, p. 140) and Martynov (2011, p. 3572) mention that, under suitable
regularity conditions on F , ∇θθθ F , θ̂θθ n and ψ , the following result on convergence of
(4.6) in distribution holds.

Proposition 4.1. Under the null hypothesis, Ŵ 2
n (ψ)

d→
´ 1

0 B̂2(t)ψ(t)dt as n→ ∞.

Proving convergence in distribution of (4.6) for ψ(t) 6≡ 1 is, in general, a delicate
process. For continuous weight functions ψ(·), Durbin (1973b, p. 56) established
Proposition 4.1. Viollaz (1995) developed a method for proving Proposition 4.1 for
a class of weight functions ψ = ψ(t) which includes certain non-integrable on [0,1]
functions, such as ψ(t) = 1/(t(1− t)), ψ(t) = 1/(t(2− t)) and ψ(t) = 1/(1− t2).
However, as we shall see below, the case of ψ(t) = 1/(1− t)β for 3/2 6 β < 2
is not covered. The remark of Viollaz (1995, p. 2829) that, in the literature, no
rigourous proof is available for the general case, is still valid today, to the best of
our knowledge.

In Chapter 3, for simple hypotheses, we have considered ψ(t) = 1/(1− t)β

with β ∈ [1,2] and the corresponding statistic W 2,β
n , i.e., W 2

n (1/(1− t)β ). Below,
we specialize some known results on convergence in distribution to Ŵ 2,β

n .
For Proposition 4.2, we shall need some regularity conditions. Specifically, we

shall assume that the family of distributions F and the estimator θ̂θθ n of θθθ satisfy
conditions 4.1-4.2.

Regularity Condition 4.1. In a neighbourhood of θθθ , for β < 3/2, we have

F(x;θθθ
∗)−F(x;θθθ)− (θθθ ∗−θθθ)T ∇θθθ F(x;θθθ) = O

(
(F(x;θθθ)(1−F(x;θθθ))β/3

× (θθθ ∗−θθθ)T (θθθ ∗−θθθ)
)

,
(4.7)

∂F(x;θθθ)

∂θn j
= O

(
(F(x;θθθ)(1−F(x;θθθ))β/3

)
, (4.8)

where j = 1,m, θθθ = 〈θn1, . . . ,θnm〉T and the O terms hold uniformly in a neighbour-
hood of θθθ for both x→+∞ and x→−∞.

Regularity Condition 4.2. The estimator θ̂θθ n = 〈θ̂n1, . . . , θ̂nm〉T of θθθ = 〈θn1, . . . ,θnm〉T

is asymptotically linear in the sense that, for each j = 1,m,

√
n(θ̂n j−θ j) =

1√
n

n

∑
i=1

h j(ξni)+oP(1),
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as n→ ∞, where h j(ξni) for each j are IID with mean 0 and variance σ2
j .

Remark. We note that

1. ML estimators usually satisfy the Regularity Condition 4.2 (see van der Vaart,
2007, p. 65, Theorem 5.39);

2. As in Viollaz (1995, p. 2837), it can be verified that distributions satisfying
the Regularity Conditions 4.1-4.2 exist. For example, the conditions are sat-
isfied by the Exponential and Gumbel families of distributions. Indeed, for
these distributions, Regularity Condition 4.2 is known to hold from Cramér
(1999, pp. 505) and Smith (1985, p. 88). Part (4.7) of Regularity Condition
4.1 is checked by an application of Taylor’s formula with the remainder in
Lagrange’s form, while (4.8) is verified directly.

We are now in a position to establish the following theorem.

Theorem 4.2. Under the null hypothesis and the regularity conditions 4.1-4.2,
Ŵ 2,β

n
d→
´ 1

0 B̂2(t)/(1− t)β dt for β < 3/2, as n→ ∞.

Proof. For β 6 0, the proposition follows from Durbin (1973b, p. 56) as ψ(t) =

1/(1−t)β is continuous on [0,1]. For β ∈ (0,3/2), it can be established by adapting
the approach of Viollaz (1995) to ψ(t) = 1/(1−t)β . Indeed, the proof of their main
theorem (i.e., Theorem 3.1 on p. 2833) relies on

(i) The regularity conditions 4.1-4.2 (with β/3 replaced by 1/4);

(ii) Three lemmas, which require that ψ(·) should be differentiable, ψ3/4(·) and
(q(·))−2 be integrable, where q(t) = ψ−1/4(t) is strictly increasing on (0,c)
and strictly decreasing on (c,1) for some c ∈ [0,1];

(iii) q(t) = O( 4
√

t) as t ↓ 0 and q(t) = O( 4
√

1− t) as t ↑ 1.

On a close examination of the proof of Lemma 3.2 on p. 2835, we conclude that
instead of (iii) a different condition was used:

1/q(t) = O(1/ 4
√

t) and 1/q(t) = O(1/ 4
√

1− t), (4.9)

as t ↓ 0 and t ↑ 1, respectively. Therefore, (iii) should be replaced by (4.9).
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Under the null hypothesis, regularity conditions (i)-(ii) and (4.9), for ψ(t) =

(1− t)−β , Viollaz (1995, Theorem 3.1) only implies Proposition 4.2 for 0 < β 6 1.
This result can be improved to 0 < β < 3/2 by observing that the assumptions of
integrability of ψ3/4(·) and q−2(·) may be modified as follows. It is sufficient to
require that there should exist an r ∈ (0,1), such that ψr and q−2(·) are integrable
on [0,1], where q(t) = ψr−1(t). In this case,

β < sup
r∈(0,1)

min
{

1
r ,

1
2(1−r)

}
= 2

(
inf

r∈(0,1)
(2− r+ |3r−2|)

)−1

= 3
2

for the optimal ropt = 2/3.
If β ∈ (0,3/2), then ψropt(t) = (1− t)2β/3 and q(t) = (1− t)β/3 satisfy the

integrability assumptions, 1/q(t) = O
(
(1− t)−β/3

)
as t ↑ 1, 1/q(t) = O

(
t−β/3

)
as t ↓ 0 and q(·) is strictly decreasing on [0,1], i.e., c = 0. Thus, Theorem 3.1 and
Lemmas 4.1-4.2 of Viollaz (1995) are applicable mutatis mutandis to conclude the
proof of this proposition. �

Unfortunately, as it stands, the method of Viollaz (1995) is not suitable for prov-
ing the convergence of Ŵ 2,β

n in distribution for β ∈ [3/2,2).
However, a general regularity condition on the weight function in Proposition

4.2 is given in Neuhaus (1979) and Martynov (2011) without proof. The condition
requires ˆ 1

0
K(t, t;F,θθθ 0)ψ(t)dt < ∞.

As follows from Theorem C.1, under this condition,
´ 1

0 B̂2(t)ψ(t)dt is finite wp1.
The next proposition establishes the condition for the almost sure finiteness of´ 1

0 B̂2(t)ψ(t)dt.

Proposition 4.3. P(
´ 1

0 B̂2(t)ψ(t)dt <∞)= 1 if and only if
´ 1

0 K(t, t;F,θθθ 0)ψ(t)dt <

∞.

Proof. The proof follows from an application of Corollary C.2 with p = 2. �

The following corollary provides a sufficient condition for
´ 1

0 K(t, t;F,θθθ 0)ψ(t)dt <

∞.
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Corollary 4.4. If

ˆ 1

0
K0(t, t)ψ(t)dt < ∞ and

ˆ 1

0
r(t, t;F,θθθ 0)ψ(t)dt < ∞,

then
´ 1

0 K(t, t;F,θθθ 0)ψ(t)dt < ∞.

Similarly, we we can get a simple condition for P(
´ 1

0 B̂2(t)ψ(t)dt = ∞) = 1.

Corollary 4.5. If

ˆ 1

0
K0(t, t)ψ(t)dt = ∞ and

ˆ 1

0
r(t, t;F,θθθ 0)ψ(t)dt < ∞,

then P(
´ 1

0 B̂2(t)ψ(t)dt = ∞) = 1.

We have emphasized that r(·, ·;F,θθθ 0) is, in general, a function of both the CDF
and the true value of the unknown distributional parameter. Therefore, a separate
assessment has to be done for each distribution in the null hypothesis (4.5).

It is, however, known (Bagdonavičius et al., 2011, pp. 92-96) that for location-
scale G = {G((· − µ)/σ) | µ ∈ R,σ > 0)} and the particular type of scale-shape
W = {W ((·/β )α) |α,β > 0} families of distributions, r does not depend on the dis-
tributional parameter. In particular, for the Gaussian distribution, we have (Sukhatme,
1972; del Barrio et al., 2007)

r?(t,s) = ϕ(Φ−1(t))ϕ(Φ−1(s))+0.5Φ
−1(t)Φ−1(s)ϕ(Φ−1(t))ϕ(Φ−1(s)),

where r?(t,s)= r(t,s;Φ,θθθ 0), ϕ(x)= (1/
√

2π)exp(−x2/2) and Φ(x)=
´ x
−∞

ϕ(t)dt.
For the weight function ψ(t) = 1/(1− t)β with β ∈ [1,2],

´ 1
0 K0(t, t)ψ(t)dt =

1/((β − 2)(β − 3)) (cf. p. 68) if β < 2, and ∞ if β = 2. A similar fact holds for
Ŵ 2,β

n for the case of the Gaussian distribution.

Theorem 4.6. For the Gaussian distribution as null in (4.5), the limiting distribution
of Ŵ 2,β

n admits the following dichotomy: it is finite wp1 when β < 2, and is infinite
wp1 when β = 2.

Proof. An application of Corollaries 4.4, 4.5 and Lemma C.4 yield the result. �
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4.3.2 On a Normalization of Ŵ 2,2
n

We now proceed to constructing a normalization that would lead Ŵ 2,2
n to a non-

degenerate random variable as n→ ∞. Let us recall that Theorem 3.11 on p. 59
for simple hypotheses, established (W 2,2

n − lnn)/(2
√

lnn) d→ N(0,1) as n→ ∞. In
what follows, by an example of the Gaussian distribution as null in (4.5), we provide
evidence suggesting that the same normalization appears to work for Ŵ 2,2

n .
Next, we recall the notion of the uniform empirical process (see Section 3.3.1)

and, following Durbin (1973a) and Durbin (1973b), introduce the notion of the
estimated uniform empirical process.

Definition. Let θθθ 0 be the true value of the unknown parameter θθθ in (4.5). Let
further t j = F(x j;θθθ 0) and Fn(t) be the sample CDF, that is, the proportion of t j,
j = 1,n, which are smaller than or equal to t. Then, en(t) =

√
n(Fn(t)−t) is referred

to as the uniform empirical process (UEP).

Definition. Let t̂ j = F(x j; θ̂θθ n) and let F̂n(t) be the estimated sample CDF, that is,
the proportion of t̂ j, j = 1, . . . ,n which are smaller than or equal to t. Then ên(t) =√

n(F̂n(t)− t) is referred to as the estimated uniform empirical process.

Let

g(t) = ∇θθθ F(x;θθθ)|t=F(x;θθθ 0) and wn = (1/
√

n)I −1(θθθ 0)
n

∑
j=1

∇θθθ ln f (x j;θθθ)|θθθ=θθθ 0 .

Then, Lemma 2 of Durbin (1973a) (for the MLE θ̂θθ n and under the null hypothesis
(4.5)) establishes that the estimated UEP {ên(t), t ∈ [0,1]} admits the following
decomposition as n→ ∞: ên(t) = en(t)−wT

n g(t)+ εn(t), where εn
P→ 0 as n→ ∞

and P→ stands for convergence in probability.
Hence,

(Ŵ 2,2
n − lnn)
2
√

lnn
=

(W 2,2
n − lnn)
2
√

lnn
+

2
´ 1

0
en(t)(−wT

n g(t)+εn(t))
(1−t)2 dt

2
√

lnn
+

´ 1
0

(−wT
n g(t)+εn(t))2

(1−t)2 dt

2
√

lnn
.

(4.10)
By Slutsky’s Theorem, −wT

n g(t)+ εn(t) and −wT
n g(t) will have the same limit-

ing distribution.
From Shorack and Wellner (2009, p. 229), we get en

d→ B and wT
n g d→∑

m
j=1 Z jFj

as n→ ∞, where Fj(t) =
∂F(x;θθθ)

∂θ j
|t=F(x;θθθ 0),θθθ=θθθ 0 . The vector ZT = 〈Z1, . . . ,Zm〉 and
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the Brownian bridge process {B(t), t ∈ [0,1]} are jointly Gaussian (see Shorack and
Wellner, 2009, pp. 229-230) with zero means2 and covariances Cov(Z) =I −1(θθθ 0)

and Cov(Z,B(t)) =
´ t

0 h(s)ds, where the vector function

h(s) = I −1(θθθ 0)∇θθθ ln f (x;θθθ)|x=F(s;θθθ 0),θθθ=θθθ 0 .

This follows (e.g., refer to Sukhatme (1972, p. 1921) and Durbin (1973a, p. 285))
from an application of the Multivariate Central Limit Theorem to < en,wT

n >T . This
also implies 〈en,wT

n g〉T d→ Y as n→ ∞, where Y T = 〈B,∑m
j=1 Z jFj〉 is a Gaussian

process with mean zero for all t ∈ [0,1].
By the Continuous Mapping Theorem (van der Vaart, 2007, p. 7, Theorem 2.3),

−enwT
n g d→−B∑

m
j=1 Z jFj and (wT

n g)2 d→
(

∑
m
j=1 Z jFj

)2
as n→ ∞.

Thus, under suitable regularity conditions, the last two integrals in (4.10) will
converge in distribution as follows:

2
ˆ 1

0

en(t)(−wT
n g(t)+ εn(t))

(1− t)2 dt d→−
ˆ 1

0

B(t)∑
m
j=1 Z jFj(t)

(1− t)2 dt (4.11)

and
ˆ 1

0

(−wT
n g(t)+ εn(t))2

(1− t)2 dt d→
ˆ 1

0

(
∑

m
j=1 Z jFj(t)

)2

(1− t)2 dt. (4.12)

For right-hand sides in (4.11) and (4.12) to be nondegenerate, the two integrals

−
ˆ 1

0

B(t)∑
m
j=1 Z jFj(t)

(1− t)2 dt and
ˆ 1

0

(
∑

m
j=1 Z jFj(t)

)2

(1− t)2 dt (4.13)

should be finite wp1.
In this case, as n→ ∞,

Ŵ 2,2
n − lnn
2
√

lnn
=

W 2,2
n − lnn
2
√

lnn
+oP(1)

2Throughout this section, by mean zero, we understand the zero vector 〈0, . . . ,0〉T of a corre-
sponding dimension.
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and by Slutsky’s Theorem

Ŵ 2,2
n − lnn
2
√

lnn
d→ N(0,1).

For the Gaussian distribution with CDF Φ((·− µ)/σ), we now verify that the
integrals (4.13) are indeed finite wp1. In this case, m = 2, ZT = 〈Z1,Z2〉, F1(t) =

−(1/σ)ϕ(Φ−1(t)), F2(t) = −(1/σ)Φ−1(t)ϕ(Φ−1(t)) and (see del Barrio et al.,
2007, p. 39)

I −1(µ,σ) = σ
2

(
1 0
0 1

2

)
. (4.14)

By the Cauchy-Schwarz inequality, E[B(t)Z j]6
√

t(1− t)
√

V[Z j] for j∈{1,2}.
From (4.14), V[Z1] = σ2 and V[Z2] = 0.5σ2.

Upon using Lemma C.6, Theorem C.1, Corollary C.2, Lemma C.4 (for β = 2)
and Lemma C.5, we now conclude that the two integrals in (4.13) are finite wp1.
These considerations suggest the following proposition.

Proposition 4.7. Under suitable regularity conditions,

Ŵ 2,2
n − lnn
2
√

lnn
d→ N(0,1)

as n→ ∞.

Remark. Clearly, a formal proof of Proposition 4.7 will require the following:

1. A set of regularity conditions under which the statements (4.11) and (4.12)
are valid;

2. A rigorous proof of (4.11) and (4.12) under these regularity conditions.

4.4 Simulation Study

In this section, we explore agreement between H0 and H?
0 for selected distributions.

All computations were performed on a 12-core HP Z800 workstation with the Xeon
2.93 GHz processor and 48 GB DDR3 of random-access memory (RAM) with the
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help of MATLAB®3 software (MATLAB, 2016a) and the Parallel Computing Tool-
box (MATLAB, 2016b).

4.4.1 Tabulation of Critical Values for Testing for Normality

CBT relies on the fact that for a given GoF statistic, the mechanism of the assess-
ment of a hypothesis for normality is readily available. In Chen and Balakrishnan
(1995, p. 155), critical values for the CvM and AD statistics are presented. To tabu-
late critical values for Ŵ 2,β

n for β ∈ {1.5,1.8,1.95}, we have to use MC simulations.
For location-scale distributional families to which the normal distribution be-

longs, it is known (Bagdonavičius et al., 2011, pp. 92-96) that both the finite-sample
distribution and the limiting distribution (if it exists) of W 2

n (ψ) are independent of
the unknown parameter θθθ . Therefore, for the purposes of the tabulation, it is suffi-
cient to consider the standard Gaussian distribution N(0,1).

We considered a grid of sample sizes from 10 to 5000 and ran ten million trials
for each sample size. In each simulation trial for a given sample size n, we generated
a random sample {xi}n

i=1 from N(0,1), estimated the mean µ and standard deviation
σ using the parameter estimates µ̂ =(∑n

i=1 xi)/n and σ̂ =
√
(∑n

i=1(xi− µ̂)2)/(n−1).

Remark 4.8. σ̂ is not an MLE estimate of σ ; while σ̂2 is an unbiased estimator of
σ2, the bias of σ̂ tends to 0 as n→∞ (Cramér, 1999, p. 484). Also, see Chen (1991,
p. 129) for relevance of this estimate to CBT.

Each statistic was evaluated at {xi}n
i=1 as follows.

Let z( j) = F(x(i); θ̂θθ n), where x(1) 6 · · · 6 x(n), F is the null CDF of interest
(e.g., Φ((·−µ)/σ) for tabulation purposes) and θ̂θθ n is an (efficient) estimate of the
unknown parameter (a maximum likelihood (ML) estimate throughout this thesis).
Let us recall the following computational formula for W 2,β

n which is valid for β < 2
(see p. 68):

Ŵ 2,β
n =Const +

2
2−β

n

∑
j=1

(1− z( j))
2−β +

1
(β −1)n

n

∑
j=1

1+2(n− j)
(1− z( j))

β−1 , (4.15)

where Const = n
(

1
3−β
− 2

2−β
+ 1

1−β

)
.

3MATLAB is a registered trademark of The MathWorks, Inc. For more information, see
http://www.mathworks.com.
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The critical values C2,β
n,α were calculated as 100(1−α)%-sample quantiles of the

simulated distributions of the statistics for significance levels α ∈{0.01,0.05,0.10}.
In Table 4.1, the critical values are presented for sample size n ∈ {50,250,1000}.

Table 4.1: Monte Carlo based critical values C2,β
n,α for H0 : X ∼ N(µ,σ) with un-

known µ and σ for W 2,β
n for β ∈ {1.5,1.8,1.95}, sample size n ∈ {50,250,1000},

at significance level α ∈ {0.01,0.05,0.10}. Ten million simulations were used for
each sample size.

Sample Size
β = 1.5 β = 1.8 β = 1.95

0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

50 2.13 1.23 0.97 11.52 3.99 2.60 30.55 8.34 4.71
250 2.05 1.31 1.06 15.02 5.25 3.49 52.01 13.22 7.46

1000 1.89 1.30 1.07 14.33 5.60 3.95 59.47 15.87 9.42

To be able to compute the critical values for arbitrary sample sizes in [10,5000],
a nonlinear function can be fitted (e.g., D’Agostino and Stephens (1986, p. 105) and
MacKinnon (1991)) to the tabulated critical values C2,β

n,α . For example, for α = 0.10,
we have devised the following functional form that worked very well: 1/(a0 +

a1n−1/3 +a2n−1/2 +a3n−1); see Tables 4.2 and 4.3. The coefficients {ak}3
k=0 were

estimated by linear least-squares method. In Table 4.3, the following error metrics

are presented that compare C2,β
·,α with the fitted values Ĉ2,β

·,α : Mean Squared Error

(MSE), A = max
∣∣∣∣1−Ĉ2,β

·,α /C2,β
·,α

∣∣∣∣ and B = mean
∣∣∣∣1−Ĉ2,β

·,α /C2,β
·,α

∣∣∣∣ with mean
{

rN
i=1
}

defined as
(
∑

N
i=1 ri

)
/N.

Table 4.2: Fitted coefficients {âi}3
i=1 in the functional form 1/(a0 + a1n−1/3 +

a2n−1/2 +a3n−1) for the case of Ĉ2,β
·,0.10 with β ∈ {1.5,1.8,1.95}.

β 1.5 1.8 1.95

â0 0.973 0.221 0.070
â1 -1.157 0.042 0.300
â2 2.345 0.802 0.127
â3 1.914 1.918 2.165
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Table 4.3: Descriptive statistics for errors implied by the fits from Table 4.2.

β 1.5 1.8 1.95

A×100% 0.05% 0.09% 0.48%
B×100% 0.03% 0.04% 0.19%

MSE×100% 0.00% 0.00% 0.04%

4.4.2 Selected Distributions

As explained in Section 3.2, in financial applications, statistical distributions which
accurately describe upper tail behavior of a data set at hand are important. Such
distributions are usually heavy-tailed. In particular, heavy-tailed distributions have
been known to play a prominent role in operational risk (OpRisk) modeling (Peters
and Shevchenko, 2015). In this thesis, we will call a distribution heavy-tailed when
its CDF belongs to the class of subexponential distributions. Subexponentiality
and other notions which allow us to further classify heavy-tailed distributions are
defined below.

We begin by recalling the definition of the tail index of a distribution. It is well
defined for regularly varying distributions as follows (Degen, 2010, p. 9).

Definition 4.9. A positive measurable function f is regularly varying with param-
eter β ∈ R if f satisfies limt→∞ f (tx)/ f (t) = xβ for all x > 0.4 This is denoted by
f ∈Rβ . In the case of a probability density function (PDF) f , one in particular has
that if f ∈R−1/ξ−1, then F ≡ 1−F ∈R−1/ξ and ξ is referred to as the tail index.

The larger ξ is, the heavier the upper tail is. A distribution with ξ > 0 is con-
sidered to be heavy-tailed, while it belongs to the so-called class of rapidly varying
functions if ξ = 0, or, equivalently, F ∈R−∞ . The precise definition of a rapidly
varying function is given below (Embrechts et al., 1997, p. 570).

Definition 4.10. A positive measurable function h is rapidly varying with index−∞

(h ∈R−∞) if limt→∞ h(xt)/h(t) equals 0 if x > 1 and equals ∞ if 0 < x < 1.

Distributions with 0 6 ξ < 1/2, 1/2 6 ξ < 1 and ξ > 1 will have finite mean
and variance, finite mean but infinite variance, and infinite mean and variance, re-
spectively.

4Definitions 4.9-4.11 are generalizable to functions defined on R (see Embrechts et al., 1997,
p. 571).
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Another class of distributions extensively used in financial applications is the
class of subexponential distributions which are defined as follows (see Embrechts
et al., 1997, p. 13 and p. 39).

Definition 4.11. A CDF F with support (0,∞) is subexponential if, for all n > 2,
limn→∞ Fn?(x)/F(x) = n, where Fn? is the n-fold convolution of itself.

The class of subexponential distributions is denoted by S . The upper tail of
distributions from S decays slower than any exponential tail (Böcker and Klüp-
pelberg, 2005, p. 91). It is known that Rβ ⊂ S . Distributions which are subex-
ponential and belong to the maximum domain of attraction of the Gumbel distribu-
tion (which is denoted by MDA(Λ); for pertinent details, refer to Embrechts et al.
(1997).) are referred to as semi-heavy-tailed. We will call distributions light-tailed
if they are neither heavy-tailed nor semi-heavy-tailed.

The subexponential distributions are realistic models for heavy-tailed random
variables. In risk modeling, they are the candidates for loss distributions in the
heavy-tailed case. If X1, . . . ,Xn are independent random variables distributed ac-
cording to F ∈S , then limn→∞ P(∑n

i=1 Xi > x)/P(maxi=1,...,n Xi > x) = 1. In the
modeling of OpRisk, subexponential distributions find their applications as part of
describing the aggregate loss distribution which was defined on p. 48 as follows.

Definition. The Aggregate Loss Distribution (ALD) is the distribution of the ag-
gregate (compound) loss L = ∑

N
i=1 Xi, where the frequency N is a discrete random

variable and X1, ...,XN are positive continuous random severities with a common
CDF FX .

As we have discussed in Section 1.2, regulators typically require financial in-
stitutions to hold equity capital for OpRisk. The capital is a quantile of the ALD,
given by

VaRδ (L) = inf{x ∈ R | P(L > x)6 1−δ} ,

where confidence level δ ∈ (0,1). Normally, δ is very close to one. In particular,
value-at-risk for δ = 0.999 is known as regulatory capital.

If FX ∈ S and if λ = E[N] with N independent of {Xi}n
i=1, then VaRδ (L) ≈

F−1
X (1− (1−δ )/λ ) is the single loss approximation (SLA) to the capital (Böcker

and Klüppelberg, 2005).
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Motivated by the above considerations, we have selected seven distributions
for testing purposes which are commonly used in applications: Gaussian, Gamma,
Weibull, LogNormal, Generalized Pareto (GP), LogGamma and Fréchet. These dis-
tributions range from light-tailed (e.g., Gaussian) to heavy-tailed (e.g., GP). Also,
four of them have rapidly varying CDFs while the remaining ones are regularly
varying. At last, subexponentiality is a property of all but Gaussian and Gamma
distributions. The PDFs of these distributions, domains of definition and corre-
sponding tail indices are given in Table 4.4. A detailed discussion of tail behavior
of Gamma, Weibull and LogNormal distributions can be found in Papalexiou et al.
(2013), while the remaining distributions are part of numerous examples throughout
Embrechts et al. (1997).

Table 4.4: PDFs, domains of definition and tail indices for selected distributions

No Distribution PDF f = f (x) Domain of Definition Tail Index Tail Heaviness Subexponential

1 Gaussian 1√
2πσ

exp
(
− (x−µ)2

2σ2

)
x ∈ R, µ ∈ R, σ > 0 0 Light No

2 LogNormal 1
x
√

2πσ
exp
(
− (lnx−µ)2

2σ2

)
x > 0, µ ∈ R, σ > 0 0 Semi-Heavy Yes

3 Gamma 1
β αΓ (α)x

α−1 exp
(
− x

β

)
x > 0, α,β > 0 0 Light No

4 Weibull b
a

( x
a

)b−1 exp
(
−
( x

a

)b
)

x> 0, a,b > 0 0 Semi-Heavy (b ∈ (0,1)), Light (b> 1) Yes (b ∈ (0,1)), No (b> 1)

5 Generalized Pareto 1
θ

(
1+ξ

x
θ

)− 1
ξ
−1 x> 0, ξ > 0, θ > 0 ξ Heavy Yes

6 LogGamma 1
xβ+1Γ (α)

(lnx)α−1
β α x> 1, α,β > 0 1

β
Heavy Yes

7 Fréchet a
b

(b
x

)a+1
exp
(
−
(b

x

)a
)

x > 0, a,b > 0 1
a Heavy Yes

Remark. For the purposes of this thesis, we classify the Gamma distribution as light-
tailed for all α > 0. The Gamma distribution, albeit belonging to MDA(Λ), is not
subexponential for all α > 0. In Papalexiou et al. (2013, p. 856), it is mistakenly
asserted that the Gamma CDF belongs to the class S (α) where S (0) = S . In
fact, the CDF belongs to the different class L (1/β ) (for the definitions of the two
classes, see Embrechts and Goldie, 1982, pp. 263-265).

Remark. We have restricted the range of the parameter ξ of the GP distribution from
R to (0,+∞) as the latter is the most typical range used in OpRisk modeling (Peters
and Shevchenko, 2015, p. 56). The case of ξ = 0 corresponds to the exponential
distribution which is already covered by the Gamma and Weibull distributions when
α = 1 and b = 1, respectively.

For each of the selected distributions, we have considered three sets of param-
eters;5 see Table 4.5. These sets were constructed in such a way that they lead to

5The parameters of the last three distributions in the first set in Table 4.5 were suggested to the
author by J.D. Opdyke as part of personal communication.
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approximately the same VaR0.999 (L) with mean frequency λ = 25. To compute
the value of VaR0.999 (L), we used interpolated single loss approximation (ISLA)
approximation described in Opdyke (2014). The degree of tail heaviness increases
from the first to the third set.

Table 4.5: Three sets of parameters for each distribution. VaR is calculated for
δ = 0.999 and mean frequency λ = 25.

Distribution/Parameters
First Set Second Set Third Set

Parameter 1 Parameter 2 Tail Index VaR Parameter 1 Parameter 2 Tail Index VaR Parameter 1 Parameter 2 Tail Index VaR

Gaussian 3.694 1.000 0.00 100 4384605.980 62.000 0.000 114,000,000

Not Used
LogNormal 0.070 1.000 0.00 100 10.000 2.155 0.000 113,889,353

Gamma 2.000 1.590 0.00 100 39480000.000 0.111 0.000 113,942,032
Weibull 4.000 2.203 0.00 100 45000.000 0.299 0.000 114,321,912

GP 0.250 1.260 0.25 100 0.990 4954.250 0.990 114,500,114 1.50 8716.46 1.50 22,939,448,519.56
LogGamma 2.960 4.000 0.25 100 4.890 1.010 0.990 114,161,591 3.45 0.67 1.50 23,319,433,810.44

Fréchet 4.000 2.310 0.25 100 1.010 5000.000 0.990 114,583,740 0.67 5811.16 1.50 22,939,503,003.08

Table 4.6 summarizes the combinations of null and alternative distributions con-
sidered in this study.

Table 4.6: Combinations of distributions for the power study. Samples are simulated
from distribution F1 with a corresponding set of parameters from Table 4.5. The
parameters are estimated according to distribution F0.

First and Second Sets Third Set

F0 F1 F0 F1

Gaussian LogNormal Gamma Weibull

Not Used
LogNormal Gaussian GP LogGamma

Gamma Weibull LogNormal LogGamma
Weibull Gamma LogNormal LogGamma

GP LogNormal LogGamma Fréchet GP LogNormal LogGamma Fréchet
LogGamma LogNormal GP Fréchet LogGamma LogNormal GP Fréchet

Fréchet LogNormal GP LogGamma Fréchet LogNormal GP LogGamma

4.4.3 Simulations

For a given sample x1, . . . ,xn and its order statistics x(1) 6 · · · 6 x(n), let the null
CDF be F(·;θθθ), an ML estimate θ̂θθ n of the unknown parameter θθθ , ẑ( j) = F(x( j); θ̂θθ n),
the Cramér-von Mises Ŵ 2

n and Anderson-Darling AD Â2
n statistics were calculated

(see Chen and Balakrishnan, 1995, p. 155) as Ŵ 2
n = ∑

n
i=1
(
ẑ( j)− (2i−1)/(2n)

)2
+

1/(12n) and Â2
n =−n−n−1

∑
n
i=1{(2i−1) ln ẑ(i)+(2n+1−2i) ln(1− ẑ(i))}, respec-

tively. For Ŵ 2,β
n , we used (4.15).

For each selected sample size n ∈ {50,250,1000}, we ran MC experiments as
detailed in Algorithm 4.1, where we chose nSim = 103, nSim1 = 104 and signif-
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icance level α ∈ {0.01,0.05,0.10}, distributional parameters from Table 4.5, and
distribution names F0, F1 from Table 4.6.

The method of maximum likelihood is used to estimate the unknown param-
eters for all distribution types from Table 4.4 except for the Gaussian distribution
for which parameter estimates µ̂ = (∑n

i=1 xi)/n and σ̂ =
√
(∑n

i=1(xi− µ̂)2)/(n−1)
were used; see Remark 4.8.

Algorithm 4.1 Steps for the MC Experiments

Input: CDF F1(·;θθθ) with θθθ ∈ Rd specified in Table 4.5, CDF F0(·;ηηη) with un-
known ηηη), GoF statistic T , sample size n, number nSim of simulations for
checking normality by CBH, number nSim1 of simulations for assessing the
null by MC simulations and significance level α .

Output: Rejection rates (level if F0 ≡ F1 or power if F0 6≡ F1) for the five statistics
on H0 and H?

0 , metrics of agreement between decisions made by T for H0 and
H?

0 .
1: for K← 1 to nSim; do
2: Generate a pseudo-random sample {x j}n

j=1 from F1(·;θθθ). . Base sample
for H0 and H?

0 ;
3: Fit F0(·;ηηη) to {x j}n

j=1 by determining an ML estimate η̂ηη0;
4: Calculate values T0 of T for {x j}n

j=1 and z( j) = F0(x( j); η̂ηη0), j = 1, . . . ,n;
5: for i← 1 to nSim1 do . Parametric bootstrap to determine p-values for H0;
6: Generate a pseudo-random sample {y j}n

j=1 from F0(·; η̂ηη0);
7: Determine an ML estimate η̂ηη i;
8: Calculate values Ti of T for {y j}n

j=1 and z( j) = F0(y( j); η̂ηη i), j = 1, . . . ,n;
9: Based on T0 from Step 4, record whether T rejects H0;

10: end for;
11: Based on the result of Steps 5-10, calculate the p-value pK as the proportion

of rejections in the nSim1 trials;
12: Run Algorithm 1.1 to determine value TA for testing for normality;
13: With a critical value from Table 4.1 corresponding to significance level α

and TA from Step 12, record RK = 1 if T rejects H?
0 and RK = 0, otherwise;
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Algorithm 4.1 Steps for the MC Experiments (continued)
14: end for
15: return Rate Prr of simultaneous rejection of H0 and H?

0 :
(1/nSim)∑

nSim
K=1 I[0,α]×{1} (pK,RK);

16: return Rate Paa of simultaneous failure to reject H0 and H?
0 :

(1/nSim)∑
nSim
K=1 I(α,1]×{0} (pK,RK);

17: return Rate Pra of simultaneous rejection of H0 and failure to reject H?
0 :

(1/nSim)∑
nSim
K=1 I[0,α]×{0} (pK,RK);

18: return Rate Par of simultaneous failure to reject H0 and rejection H?
0 is 1−Prr−

Paa−Par;
19: return Rate of rejection of H0 is Pr = Prr +Pra. . Level if F0 ≡ F1 or power if

F0 6≡ F1;
20: return Rate of rejection of H?

0 is P?
r = Prr +Par. . Level if F0 ≡ F1 or power if

F0 6≡ F1.

4.5 Discussion of Results

Since the results are fairly similar across the three parameter sets considered in
Table 4.5, we only present a discussion of results for the second set.6

In this section, we assess the performance of both direct and indirect tests ac-
cording to a number of metrics.

4.5.1 Level and Power

Tables 4.7 and 4.8 summarize the rejection rates of the direct and indirect tests
based on the CvM, AD and Ŵ 2,β

n (β ∈ {1.5,1.8,1.95}) test statistics under the null
hypotheses H0 and H?

0 . By using the Wald 95%-confidence interval

α±1.96
√

α(1−α)/1000

(Newcombe, 2013, pp. 55-58), it can be readily seen that the nominal level of α is
largely maintained by both direct and indirect tests. While indirect CvM, AD and
Ŵ 2,1.5

n are somewhat conservative under the GP null distribution, both Ŵ 2,1.8
n and

Ŵ 2,1.95
n maintain the nominal level in this case.

6The complete set of simulation results is available on the author’s website http://www.
kmayorov.ca/supp_materials/CBT/ as spreadsheets in the Microsoft® Excel format.
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Table 4.7: Observed empirical Type 1 error rates for a given significance level of
the direct (indirect) tests based on CvM and AD under the null hypothesis H0 (H?

0 ).
The parameters θθθ = 〈θ1,θ2〉 are from the second set of Table 4.5.

Distribution θ1 θ2 Tail index Sample size
Direct CvM Indirect CvM Direct AD Indirect AD

Significance Level Significance Level Significance Level Significance Level
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

Gaussian 4384605.98 62.00 0 50 0.010 0.047 0.104 0.011 0.049 0.104 0.010 0.046 0.099 0.011 0.045 0.101
Gaussian 4384605.98 62.00 0 250 0.002 0.043 0.089 0.002 0.042 0.087 0.002 0.039 0.095 0.003 0.039 0.096
Gaussian 4384605.98 62.00 0 1000 0.011 0.045 0.090 0.010 0.046 0.088 0.012 0.045 0.094 0.012 0.045 0.092

LogNormal 10.00 2.16 0 50 0.011 0.053 0.101 0.011 0.052 0.097 0.011 0.048 0.097 0.011 0.049 0.094
LogNormal 10.00 2.16 0 250 0.017 0.058 0.103 0.015 0.059 0.105 0.018 0.059 0.108 0.016 0.059 0.110
LogNormal 10.00 2.16 0 1000 0.013 0.057 0.098 0.012 0.057 0.098 0.015 0.060 0.097 0.014 0.060 0.096

Gamma 0.27 8000000.00 0 50 0.011 0.047 0.098 0.009 0.044 0.089 0.011 0.042 0.103 0.012 0.045 0.091
Gamma 0.27 8000000.00 0 250 0.016 0.045 0.083 0.013 0.038 0.080 0.014 0.049 0.084 0.009 0.041 0.084
Gamma 0.27 8000000.00 0 1000 0.007 0.044 0.096 0.006 0.042 0.086 0.009 0.044 0.096 0.008 0.037 0.089
Weibull 45000.00 0.30 0 50 0.010 0.059 0.105 0.011 0.056 0.099 0.012 0.051 0.115 0.012 0.053 0.108
Weibull 45000.00 0.30 0 250 0.013 0.060 0.106 0.011 0.054 0.102 0.014 0.061 0.110 0.012 0.061 0.105
Weibull 45000.00 0.30 0 1000 0.009 0.052 0.101 0.006 0.051 0.088 0.008 0.046 0.104 0.005 0.045 0.087

GP 0.99 4954.25 0.99 50 0.011 0.045 0.097 0.006 0.026 0.053 0.009 0.047 0.095 0.006 0.028 0.057
GP 0.99 4954.25 0.99 250 0.006 0.042 0.082 0.004 0.026 0.060 0.008 0.038 0.080 0.004 0.027 0.055
GP 0.99 4954.25 0.99 1000 0.010 0.050 0.094 0.003 0.034 0.072 0.006 0.053 0.101 0.002 0.026 0.073

LogGamma 4.89 1.01 0.99 50 0.010 0.056 0.103 0.012 0.054 0.100 0.009 0.052 0.097 0.009 0.051 0.099
LogGamma 4.89 1.01 0.99 250 0.010 0.056 0.115 0.009 0.058 0.116 0.013 0.059 0.114 0.012 0.059 0.115
LogGamma 4.89 1.01 0.99 1000 0.010 0.045 0.098 0.010 0.046 0.097 0.011 0.050 0.100 0.011 0.048 0.102

Fréchet 1.01 5000.00 0.99 50 0.011 0.045 0.104 0.010 0.045 0.083 0.015 0.051 0.091 0.012 0.046 0.084
Fréchet 1.01 5000.00 0.99 250 0.016 0.057 0.102 0.013 0.053 0.096 0.016 0.052 0.104 0.013 0.049 0.093
Fréchet 1.01 5000.00 0.99 1000 0.014 0.067 0.120 0.009 0.060 0.112 0.013 0.065 0.119 0.012 0.058 0.117

Table 4.8: Observed empirical Type 1 error rates for a given significance level of
the direct (indirect) tests based on Ŵ 2,β

n for β ∈ {1.5,1.8,1.95} under the null hy-
pothesis H0 (H?

0 ). The parameters θθθ = 〈θ1,θ2〉 are from the second set of Table
4.5.

Distribution θ1 θ2 Tail index Sample size
Direct Ŵ 2,1.5

n Indirect Ŵ 2,1.5
n Direct Ŵ 2,1.8

n Indirect Ŵ 2,1.8
n Direct Ŵ 2,1.95

n Indirect Ŵ 2,1.95
n

Significance Level Significance Level Significance Level Significance Level Significance Level Significance Level
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

Gaussian 4384605.98 62.00 0 50 0.010 0.064 0.115 0.011 0.058 0.112 0.012 0.059 0.106 0.012 0.059 0.107 0.013 0.058 0.105 0.013 0.058 0.106
Gaussian 4384605.98 62.00 0 250 0.008 0.045 0.091 0.008 0.044 0.091 0.009 0.045 0.098 0.011 0.045 0.097 0.010 0.049 0.102 0.010 0.053 0.102
Gaussian 4384605.98 62.00 0 1000 0.008 0.041 0.091 0.006 0.040 0.090 0.011 0.049 0.093 0.011 0.048 0.091 0.009 0.045 0.097 0.009 0.046 0.101

LogNormal 10.00 2.16 0 50 0.011 0.054 0.106 0.010 0.052 0.103 0.013 0.051 0.100 0.011 0.051 0.101 0.012 0.051 0.101 0.012 0.052 0.100
LogNormal 10.00 2.16 0 250 0.020 0.069 0.116 0.021 0.070 0.118 0.019 0.069 0.121 0.018 0.069 0.122 0.019 0.069 0.112 0.017 0.070 0.113
LogNormal 10.00 2.16 0 1000 0.009 0.045 0.099 0.009 0.047 0.096 0.009 0.040 0.094 0.010 0.041 0.093 0.009 0.046 0.093 0.008 0.045 0.092

Gamma 0.27 8000000.00 0 50 0.012 0.059 0.103 0.016 0.054 0.101 0.019 0.057 0.112 0.019 0.059 0.106 0.019 0.061 0.117 0.019 0.056 0.116
Gamma 0.27 8000000.00 0 250 0.009 0.053 0.093 0.007 0.054 0.093 0.010 0.051 0.100 0.008 0.050 0.100 0.011 0.054 0.107 0.009 0.053 0.104
Gamma 0.27 8000000.00 0 1000 0.009 0.043 0.098 0.008 0.041 0.092 0.014 0.050 0.091 0.016 0.053 0.091 0.013 0.058 0.095 0.016 0.054 0.095
Weibull 45000.00 0.30 0 50 0.010 0.044 0.119 0.009 0.049 0.114 0.009 0.056 0.101 0.009 0.054 0.101 0.009 0.059 0.101 0.009 0.052 0.102
Weibull 45000.00 0.30 0 250 0.008 0.051 0.094 0.006 0.051 0.092 0.004 0.038 0.097 0.004 0.038 0.099 0.004 0.036 0.094 0.003 0.040 0.096
Weibull 45000.00 0.30 0 1000 0.012 0.050 0.095 0.011 0.048 0.087 0.010 0.047 0.108 0.010 0.050 0.104 0.011 0.060 0.106 0.010 0.057 0.103

GP 0.99 4954.25 0.99 50 0.012 0.048 0.092 0.009 0.041 0.076 0.009 0.039 0.099 0.010 0.044 0.088 0.009 0.043 0.093 0.007 0.049 0.090
GP 0.99 4954.25 0.99 250 0.013 0.042 0.102 0.007 0.033 0.073 0.010 0.045 0.102 0.010 0.038 0.087 0.011 0.046 0.107 0.009 0.041 0.090
GP 0.99 4954.25 0.99 1000 0.007 0.053 0.114 0.003 0.033 0.078 0.007 0.044 0.104 0.007 0.043 0.085 0.009 0.041 0.105 0.008 0.040 0.098

LogGamma 4.89 1.01 0.99 50 0.009 0.062 0.113 0.008 0.061 0.112 0.011 0.061 0.115 0.010 0.061 0.116 0.012 0.059 0.110 0.011 0.059 0.112
LogGamma 4.89 1.01 0.99 250 0.013 0.056 0.109 0.013 0.058 0.108 0.013 0.059 0.127 0.013 0.059 0.124 0.014 0.058 0.126 0.013 0.058 0.127
LogGamma 4.89 1.01 0.99 1000 0.015 0.053 0.106 0.016 0.054 0.102 0.009 0.054 0.108 0.009 0.053 0.109 0.010 0.051 0.109 0.010 0.050 0.109

Fréchet 1.01 5000.00 0.99 50 0.008 0.061 0.107 0.006 0.052 0.090 0.009 0.053 0.116 0.008 0.045 0.095 0.010 0.051 0.109 0.008 0.045 0.099
Fréchet 1.01 5000.00 0.99 250 0.007 0.049 0.106 0.008 0.042 0.092 0.010 0.059 0.103 0.008 0.049 0.103 0.009 0.055 0.110 0.007 0.059 0.106
Fréchet 1.01 5000.00 0.99 1000 0.016 0.062 0.108 0.015 0.055 0.109 0.013 0.050 0.106 0.011 0.047 0.101 0.011 0.047 0.104 0.011 0.051 0.098

In Tables 4.9 and 4.10, we present the powers of the direct and indirect tests
based on the CvM, AD and Ŵ 2,β

n (β ∈ {1.5,1.8,1.95}) test statistics.
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Table 4.9: Powers of the direct and indirect tests based on CvM and AD under the
alternative hypothesis. The parameters θθθ = 〈θ1,θ2〉 are from the Second Set of
Table 4.5.

Simulated as θ1 θ2 Tail index Estimated as Sample size
Direct CvM Indirect CvM Direct AD Indirect AD

Significance level Significance level Significance level Significance level
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

Fréchet 1.01 5000.00 0.99

GP
50 0.49 0.76 0.86 0.43 0.72 0.83 0.58 0.86 0.94 0.51 0.80 0.90

250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LogGamma
50 0.15 0.32 0.44 0.16 0.33 0.44 0.18 0.37 0.48 0.19 0.37 0.48

250 0.85 0.95 0.98 0.84 0.95 0.98 0.90 0.97 0.99 0.90 0.97 0.99
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LogNormal
50 0.34 0.54 0.66 0.34 0.54 0.66 0.40 0.59 0.71 0.40 0.60 0.72

250 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Gamma 0.27 8000000.00 0

LogGamma
50 50 0.98 0.99 0.94 0.98 0.99 0.98 1.00 1.00 0.97 1.00 1.00

250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LogNormal
50 0.82 0.93 0.96 0.81 0.93 0.96 0.87 0.95 0.98 0.87 0.95 0.98

250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Weibull
50 0.13 0.27 0.38 0.11 0.24 0.35 0.16 0.32 0.44 0.13 0.26 0.37

250 0.78 0.91 0.95 0.72 0.88 0.94 0.86 0.96 0.98 0.81 0.93 0.97
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GP 0.99 4954.25 0.99

Fréchet
50 0.46 0.64 0.71 0.40 0.59 0.68 0.52 0.68 0.74 0.46 0.65 0.72

250 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LogGamma
50 0.16 0.29 0.39 0.17 0.30 0.40 0.18 0.32 0.42 0.19 0.33 0.43

250 0.71 0.83 0.88 0.71 0.83 0.88 0.76 0.86 0.91 0.77 0.87 0.91
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LogNormal
50 0.04 0.12 0.20 0.04 0.13 0.22 0.05 0.14 0.22 0.05 0.15 0.24

250 0.20 0.39 0.51 0.21 0.40 0.52 0.24 0.45 0.56 0.25 0.46 0.57
1000 0.83 0.95 0.98 0.84 0.95 0.98 0.90 0.97 0.99 0.90 0.97 0.99

LogGamma 4.89 1.01 0.99

Fréchet
50 0.02 0.06 0.11 0.01 0.06 0.11 0.01 0.06 0.11 0.01 0.06 0.11

250 0.02 0.07 0.13 0.02 0.07 0.13 0.02 0.07 0.15 0.02 0.08 0.14
1000 0.07 0.24 0.35 0.08 0.25 0.35 0.08 0.27 0.40 0.11 0.29 0.41

GP
50 0.02 0.08 0.16 0.03 0.12 0.20 0.02 0.09 0.19 0.03 0.12 0.22

250 0.10 0.32 0.49 0.36 0.67 0.81 0.32 0.68 0.82 0.51 0.81 0.91
1000 0.86 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LogNormal
50 0.23 0.42 0.55 0.23 0.43 0.55 0.27 0.48 0.61 0.28 0.49 0.61

250 0.97 0.99 1.00 0.96 0.99 1.00 0.99 1.00 1.00 0.99 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LogNormal 10.00 2.16 0

GP
50 0.05 0.16 0.25 0.01 0.07 0.16 0.06 0.17 0.28 0.02 0.08 0.15

250 0.43 0.69 0.79 0.25 0.49 0.64 0.50 0.74 0.84 0.31 0.57 0.71
1000 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LogGamma
50 0.06 0.17 0.25 0.06 0.17 0.25 0.08 0.19 0.28 0.08 0.19 0.28

250 0.34 0.55 0.66 0.34 0.55 0.65 0.40 0.61 0.72 0.40 0.61 0.72
1000 0.97 0.99 1.00 0.97 0.99 1.00 0.99 1.00 1.00 0.99 1.00 1.00

Gaussian
50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Gaussian 4384605.98 62.00 0

Gamma
50 0.01 0.05 0.11 0.01 0.05 0.11 0.01 0.06 0.11 0.01 0.06 0.12

250 0.01 0.06 0.10 0.01 0.06 0.10 0.01 0.06 0.11 0.01 0.06 0.11
1000 0.01 0.04 0.10 0.01 0.04 0.10 0.01 0.05 0.10 0.01 0.05 0.10

LogNormal
50 0.00 0.04 0.10 0.01 0.04 0.10 0.01 0.05 0.10 0.01 0.05 0.10

250 0.01 0.06 0.12 0.01 0.06 0.12 0.01 0.06 0.11 0.01 0.06 0.11
1000 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.06 0.10

Weibull
50 0.28 0.50 0.63 0.24 0.48 0.61 0.34 0.55 0.67 0.30 0.55 0.66

250 0.99 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Weibull 45000.00 0.30 0

Gamma
50 0.40 0.62 0.72 0.21 0.43 0.56 0.41 0.62 0.72 0.26 0.48 0.62

250 1.00 1.00 1.00 0.97 0.99 1.00 1.00 1.00 1.00 0.98 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LogGamma
50 0.60 0.80 0.88 0.59 0.80 0.88 0.80 0.91 0.94 0.80 0.91 0.94

250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LogNormal
50 0.31 0.54 0.65 0.32 0.54 0.66 0.37 0.61 0.71 0.37 0.61 0.71

250 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 4.10: Powers of the direct and indirect tests based on on Ŵ 2,β
n for β ∈

{1.5,1.8,1.95} under the alternative hypothesis. The parameters θθθ = 〈θ1,θ2〉 are
from the Second Set of Table 4.5.

Simulated as θ1 θ2 Tail index Estimated as Sample size
Direct Ŵ 2,1.5

n Indirect Ŵ 2,1.5
n Direct Ŵ 2,1.8

n Indirect Ŵ 2,1.8
n Direct Ŵ 2,1.95

n Indirect Ŵ 2,1.95
n

Significance level Significance level Significance level Significance level Significance level Significance level
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

Fréchet 1.01 5000.00 0.99

GP
50 0.20 0.43 0.59 0.39 0.78 0.90 0.11 0.34 0.50 0.27 0.70 0.88 0.10 0.30 0.47 0.25 0.64 0.86

250 0.93 1.00 1.00 1.00 1.00 1.00 0.26 0.84 0.97 0.93 1.00 1.00 0.17 0.61 0.89 0.73 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00

LogGamma
50 0.25 0.47 0.59 0.24 0.46 0.57 0.19 0.45 0.60 0.20 0.45 0.59 0.18 0.44 0.58 0.18 0.44 0.57

250 0.89 0.98 0.99 0.88 0.97 0.99 0.67 0.94 0.98 0.67 0.93 0.98 0.57 0.91 0.97 0.57 0.90 0.97
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 0.98 1.00 1.00

LogNormal
50 0.44 0.65 0.75 0.43 0.65 0.74 0.36 0.63 0.75 0.35 0.63 0.74 0.33 0.61 0.74 0.33 0.61 0.73

250 0.99 1.00 1.00 0.99 1.00 1.00 0.90 0.99 1.00 0.90 0.99 1.00 0.82 0.99 1.00 0.82 0.99 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Gamma 0.27 8000000.00 0

LogGamma
50 0.83 0.99 1.00 0.88 0.99 1.00 0.00 0.85 0.99 0.00 0.91 1.00 0.00 0.39 0.96 0.00 0.58 0.98

250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.10 1.00 1.00 0.11 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LogNormal
50 0.55 0.92 0.97 0.61 0.94 0.98 0.00 0.55 0.91 0.00 0.67 0.95 0.00 0.12 0.79 0.00 0.22 0.87

250 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Weibull
50 0.03 0.20 0.32 0.02 0.19 0.34 0.00 0.04 0.19 0.00 0.02 0.19 0.00 0.00 0.09 0.00 0.00 0.09

250 0.72 0.93 0.98 0.74 0.95 0.99 0.00 0.67 0.91 0.00 0.72 0.95 0.00 0.16 0.79 0.00 0.18 0.85
1000 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 0.99 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00

GP 0.99 4954.25 0.99

Fréchet
50 0.11 0.45 0.62 0.11 0.40 0.55 0.00 0.10 0.39 0.00 0.12 0.37 0.00 0.01 0.21 0.00 0.02 0.24

250 1.00 1.00 1.00 0.97 1.00 1.00 0.37 0.99 1.00 0.07 0.95 0.99 0.00 0.90 0.99 0.00 0.61 0.96
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.49 1.00 1.00

LogGamma
50 0.04 0.16 0.26 0.05 0.19 0.28 0.02 0.07 0.17 0.02 0.08 0.19 0.02 0.05 0.13 0.02 0.06 0.16

250 0.37 0.66 0.78 0.39 0.67 0.79 0.02 0.28 0.54 0.03 0.30 0.57 0.02 0.10 0.35 0.02 0.11 0.37
1000 0.99 1.00 1.00 0.99 1.00 1.00 0.32 0.96 0.99 0.34 0.96 0.99 0.03 0.64 0.93 0.03 0.67 0.94

LogNormal
50 0.08 0.17 0.24 0.08 0.17 0.24 0.08 0.16 0.25 0.08 0.16 0.25 0.08 0.16 0.25 0.08 0.17 0.25

250 0.28 0.45 0.57 0.28 0.46 0.57 0.22 0.43 0.55 0.22 0.43 0.56 0.20 0.41 0.54 0.20 0.41 0.54
1000 0.83 0.93 0.97 0.83 0.93 0.97 0.57 0.85 0.93 0.57 0.85 0.93 0.48 0.79 0.88 0.48 0.79 0.88

LogGamma 4.89 1.01 0.99

Fréchet
50 0.00 0.03 0.07 0.00 0.03 0.06 0.00 0.02 0.06 0.00 0.01 0.05 0.00 0.02 0.05 0.00 0.01 0.04

250 0.01 0.04 0.10 0.01 0.05 0.11 0.00 0.01 0.04 0.00 0.01 0.06 0.00 0.01 0.03 0.00 0.01 0.03
1000 0.05 0.20 0.32 0.07 0.23 0.34 0.00 0.05 0.18 0.00 0.05 0.20 0.00 0.01 0.09 0.00 0.01 0.09

GP
50 0.00 0.03 0.09 0.01 0.06 0.14 0.00 0.03 0.07 0.01 0.05 0.12 0.00 0.03 0.06 0.01 0.05 0.12

250 0.00 0.06 0.13 0.03 0.20 0.40 0.00 0.01 0.05 0.01 0.04 0.16 0.00 0.01 0.03 0.01 0.03 0.12
1000 0.07 0.31 0.51 0.81 0.99 1.00 0.00 0.04 0.15 0.01 0.35 0.77 0.00 0.01 0.06 0.00 0.04 0.32

LogNormal
50 0.31 0.55 0.65 0.31 0.54 0.63 0.23 0.52 0.65 0.23 0.52 0.64 0.22 0.49 0.65 0.22 0.49 0.64

250 0.96 0.99 1.00 0.96 0.99 1.00 0.76 0.97 0.99 0.77 0.97 0.99 0.65 0.95 0.99 0.65 0.95 0.99
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LogNormal 10.00 2.16 0

GP
50 0.00 0.08 0.17 0.00 0.04 0.12 0.00 0.01 0.07 0.00 0.00 0.05 0.00 0.00 0.03 0.00 0.00 0.01

250 0.24 0.64 0.78 0.20 0.58 0.74 0.00 0.17 0.56 0.00 0.17 0.56 0.00 0.00 0.31 0.00 0.00 0.34
1000 1.00 1.00 1.00 1.00 1.00 1.00 0.21 1.00 1.00 0.30 1.00 1.00 0.00 0.83 1.00 0.00 0.91 1.00

LogGamma
50 0.00 0.07 0.16 0.01 0.09 0.19 0.00 0.01 0.06 0.00 0.01 0.10 0.00 0.00 0.03 0.00 0.01 0.05

250 0.17 0.48 0.63 0.18 0.50 0.64 0.00 0.12 0.41 0.00 0.14 0.44 0.00 0.01 0.22 0.00 0.01 0.26
1000 0.97 1.00 1.00 0.97 1.00 1.00 0.14 0.95 0.99 0.14 0.96 0.99 0.00 0.65 0.97 0.00 0.68 0.97

Gaussian
50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Gaussian 4384605.98 62.00 0

Gamma
50 0.01 0.05 0.10 0.01 0.06 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.04 0.10 0.01 0.04 0.10

250 0.01 0.05 0.10 0.01 0.06 0.10 0.01 0.04 0.09 0.01 0.04 0.09 0.01 0.04 0.09 0.01 0.05 0.09
1000 0.01 0.06 0.10 0.01 0.06 0.10 0.01 0.04 0.10 0.01 0.04 0.11 0.01 0.04 0.10 0.01 0.05 0.10

LogNormal
50 0.01 0.06 0.10 0.01 0.05 0.11 0.01 0.06 0.11 0.01 0.06 0.11 0.01 0.06 0.11 0.01 0.06 0.11

250 0.02 0.06 0.10 0.02 0.06 0.10 0.01 0.06 0.10 0.01 0.06 0.10 0.01 0.06 0.10 0.01 0.07 0.10
1000 0.00 0.05 0.09 0.01 0.05 0.09 0.01 0.04 0.10 0.01 0.04 0.10 0.01 0.04 0.10 0.01 0.04 0.10

Weibull
50 0.35 0.54 0.66 0.40 0.62 0.73 0.28 0.53 0.66 0.32 0.60 0.73 0.26 0.51 0.66 0.30 0.57 0.72

250 0.97 0.99 1.00 0.99 1.00 1.00 0.81 0.99 0.99 0.91 0.99 1.00 0.70 0.96 0.99 0.84 0.99 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

Weibull 45000.00 0.30 0

Gamma
50 0.44 0.64 0.73 0.47 0.70 0.77 0.35 0.60 0.72 0.43 0.69 0.80 0.32 0.57 0.71 0.41 0.67 0.79

250 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.99 1.00 0.96 1.00 1.00 0.84 0.98 1.00 0.94 0.99 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LogGamma
50 0.34 0.79 0.90 0.40 0.83 0.92 0.00 0.35 0.79 0.00 0.49 0.85 0.00 0.04 0.62 0.00 0.11 0.74

250 1.00 1.00 1.00 1.00 1.00 1.00 0.84 1.00 1.00 0.89 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LogNormal
50 0.06 0.39 0.59 0.08 0.45 0.64 0.00 0.07 0.36 0.00 0.11 0.46 0.00 0.00 0.19 0.00 0.01 0.28

250 0.99 1.00 1.00 0.99 1.00 1.00 0.08 0.99 1.00 0.09 0.99 1.00 0.00 0.79 0.99 0.00 0.84 1.00
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.76 1.00 1.00 0.82 1.00 1.00

The AD test generally has greater power than CvM. Among the three Ŵ 2,β
n

statistics, Ŵ 2,1.5
n provides the greatest power in most of the cases. Because CBT is a

nonlinear transformation, it is not obvious a priori whether its application will result
in a loss or gain in power. Tables 4.9 and 4.10 suggest that in 31%, 42% and 28% of
the considered cases, indirect tests resulted in the same, greater, or smaller power,
respectively, than that for the corresponding direct test. The average gain and loss
in power amount to 7.5% and -4.5%, respectively. A general observation is that
any advantage or disadvantage of an indirect test tend to disappear as sample size
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increases. There are three notable exceptions to this observation. Firstly, for Ŵ 2,β
n

(β ∈ {1.5,1.8,1.95}), when the null distribution is GP and alternative distribution
is LogGamma, then the amount of gain in power increases (up to 74%) with sample
size. For the first and third sets of distributional parameters from Table 4.5, when
the null distribution is Fréchet and alternative distribution is LogGamma, then the
indirect tests progressively lose power (up to -33%). For the Third Set, when the
null distribution is GP and alternative distribution is Fréchet, indirect tests based on
Ŵ 2,β

n (β ∈ {1.8,1.95}) tend to gain a considerable amount of power (up to 77%)
with sample size growing.

We note each of the considered tests has weak power to discern the Gamma and
LogNormal null distributions from the Gaussian distribution in the alternative. It is
known (Johnson et al., 1994, p. 340 and p. 215) that the Gamma distribution and
LogNormal distributions may very well mimic the Gaussian distribution. Indeed,
under proper normalizations, they tend to the standard Gaussian distribution as the
shape parameter α → ∞ for Gamma and as σ ↓ 0 for LogNormal distribution.

4.5.2 Agreement of Decisions

For pairs of direct and indirect tests, we recorded the proportions of simultaneous
rejection (of H0 by the direct and of H?

0 by the indirect tests), failure to reject and
rejection by direct combined with a failure to reject by indirect denoted by Prr, Paa

and Pra, respectively. Clearly, Par = 1−Prr−Paa−Pra and the rejection rates of the
direct and indirect tests equal, respectively, Pr = Prr +Pra and P?

r = Prr +Par.
We observe that the level of agreement is very good. Pra and Par, measures of

disagreement, are generally negligible, or close to 0. They are observed to tend to 0
with increasing sample size. Under the null, Prr is small while Paa is high. Under an
alternative, Prr→ 1 while Paa→ 0 as sample size increases; see Tables 4.11-4.12.
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Table 4.11: Rates of agreement of decisions made by the direct and indirect tests
based on CvM and AD. The parameters θθθ = 〈θ1,θ2〉 are from the Second Set of
Table 4.5.

Simulated as θ1 θ2 Tail index Estimated as Sample size

CvM AD

Taa Trr Tra Tar Taa Trr Tra Tar
Significance level Significance level Significance level Significance level Significance level Significance level Significance level Significance level
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

Fréchet 1.01 5000.00 0.99

Fréchet
50 0.99 0.95 0.89 0.01 0.04 0.08 0.00 0.01 0.03 0.00 0.01 0.00 0.98 0.95 0.90 0.01 0.04 0.08 0.00 0.01 0.01 0.00 0.00 0.01

250 0.98 0.94 0.89 0.01 0.05 0.09 0.00 0.01 0.01 0.00 0.01 0.01 0.98 0.95 0.89 0.01 0.05 0.08 0.01 0.01 0.02 0.00 0.00 0.01
1000 0.99 0.93 0.88 0.01 0.05 0.11 0.01 0.02 0.01 0.00 0.01 0.01 0.99 0.93 0.88 0.01 0.05 0.11 0.00 0.01 0.01 0.00 0.00 0.01

GP
50 0.45 0.19 0.10 0.36 0.67 0.80 0.12 0.09 0.07 0.06 0.05 0.04 0.37 0.11 0.05 0.46 0.78 0.89 0.12 0.09 0.05 0.05 0.02 0.01

250 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

LogGamma
50 0.84 0.67 0.56 0.15 0.32 0.43 0.00 0.00 0.00 0.01 0.01 0.01 0.81 0.62 0.52 0.18 0.37 0.47 0.00 0.00 0.00 0.00 0.00 0.01

250 0.15 0.05 0.02 0.84 0.95 0.98 0.01 0.00 0.00 0.00 0.00 0.00 0.10 0.03 0.01 0.90 0.97 0.99 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

LogNormal
50 0.65 0.45 0.34 0.33 0.54 0.66 0.01 0.00 0.00 0.01 0.01 0.01 0.59 0.40 0.28 0.39 0.59 0.71 0.01 0.01 0.00 0.01 0.01 0.01

250 0.01 0.00 0.00 0.99 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Gamma 0.27 8000000.00 0

Gamma
50 0.99 0.95 0.89 0.01 0.04 0.08 0.01 0.01 0.02 0.00 0.01 0.01 0.98 0.95 0.88 0.01 0.03 0.08 0.00 0.01 0.03 0.01 0.01 0.01

250 0.98 0.95 0.90 0.01 0.03 0.06 0.01 0.02 0.02 0.00 0.01 0.02 0.98 0.95 0.90 0.01 0.04 0.07 0.01 0.01 0.02 0.00 0.01 0.02
1000 0.99 0.94 0.89 0.01 0.03 0.07 0.00 0.02 0.03 0.00 0.01 0.02 0.99 0.95 0.89 0.01 0.03 0.08 0.00 0.02 0.02 0.00 0.01 0.01

LogGamma
50 0.06 0.02 0.01 0.93 0.98 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.97 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

250 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

LogNormal
50 0.18 0.07 0.04 0.81 0.93 0.96 0.01 0.00 0.00 0.00 0.00 0.00 0.13 0.05 0.02 0.87 0.95 0.98 0.00 0.00 0.00 0.01 0.00 0.00

250 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Weibull
50 0.87 0.72 0.61 0.11 0.23 0.34 0.02 0.04 0.04 0.01 0.01 0.01 0.84 0.67 0.56 0.13 0.26 0.37 0.04 0.06 0.07 0.00 0.00 0.01

250 0.22 0.08 0.05 0.72 0.88 0.94 0.06 0.04 0.02 0.00 0.00 0.00 0.14 0.04 0.02 0.81 0.93 0.97 0.05 0.03 0.01 0.00 0.00 0.00
1000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

GP 0.99 4954.25 0.99

Fréchet
50 0.54 0.36 0.28 0.40 0.59 0.68 0.06 0.05 0.03 0.00 0.01 0.01 0.48 0.31 0.25 0.46 0.64 0.71 0.06 0.04 0.03 0.00 0.01 0.01

250 0.00 0.00 0.00 0.99 1.00 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

GP
50 0.99 0.95 0.89 0.01 0.02 0.04 0.01 0.03 0.05 0.00 0.01 0.01 0.99 0.95 0.90 0.01 0.02 0.05 0.00 0.03 0.05 0.00 0.01 0.01

250 0.99 0.96 0.90 0.00 0.02 0.05 0.00 0.02 0.04 0.00 0.00 0.02 0.99 0.96 0.91 0.00 0.02 0.05 0.01 0.02 0.04 0.00 0.01 0.01
1000 0.99 0.95 0.89 0.00 0.03 0.06 0.01 0.02 0.04 0.00 0.00 0.01 0.99 0.95 0.89 0.00 0.03 0.06 0.00 0.03 0.04 0.00 0.00 0.01

LogGamma
50 0.83 0.70 0.60 0.16 0.29 0.39 0.00 0.00 0.00 0.00 0.01 0.01 0.81 0.67 0.57 0.18 0.32 0.41 0.00 0.00 0.00 0.01 0.01 0.01

250 0.29 0.17 0.12 0.71 0.83 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.13 0.09 0.76 0.86 0.91 0.00 0.00 0.00 0.01 0.00 0.00
1000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

LogNormal
50 0.96 0.87 0.78 0.04 0.12 0.20 0.00 0.00 0.00 0.00 0.01 0.02 0.95 0.85 0.76 0.05 0.14 0.22 0.00 0.00 0.00 0.01 0.01 0.02

250 0.79 0.60 0.48 0.20 0.39 0.51 0.00 0.00 0.00 0.01 0.01 0.01 0.75 0.54 0.43 0.24 0.45 0.56 0.00 0.00 0.00 0.01 0.01 0.01
1000 0.16 0.05 0.02 0.83 0.95 0.98 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.03 0.01 0.90 0.97 0.99 0.00 0.00 0.00 0.00 0.00 0.00

LogGamma 4.89 1.01 0.99

Fréchet
50 0.99 0.94 0.88 0.01 0.05 0.10 0.00 0.01 0.01 0.00 0.00 0.01 0.99 0.93 0.89 0.01 0.05 0.10 0.00 0.01 0.01 0.00 0.01 0.01

250 0.97 0.92 0.85 0.02 0.07 0.12 0.00 0.01 0.01 0.00 0.01 0.01 0.98 0.91 0.84 0.02 0.07 0.13 0.00 0.01 0.01 0.00 0.01 0.01
1000 0.91 0.74 0.62 0.07 0.22 0.33 0.00 0.02 0.03 0.02 0.03 0.03 0.89 0.70 0.58 0.08 0.25 0.38 0.00 0.01 0.02 0.03 0.03 0.03

GP
50 0.97 0.87 0.79 0.01 0.07 0.15 0.00 0.01 0.02 0.01 0.05 0.05 0.97 0.87 0.77 0.02 0.08 0.18 0.00 0.01 0.02 0.02 0.04 0.04

250 0.64 0.33 0.19 0.10 0.32 0.49 0.00 0.00 0.00 0.26 0.35 0.32 0.49 0.18 0.08 0.32 0.67 0.82 0.00 0.00 0.00 0.19 0.14 0.09
1000 0.00 0.00 0.00 0.86 0.99 1.00 0.00 0.00 0.00 0.14 0.01 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

LogGamma
50 0.99 0.94 0.89 0.01 0.05 0.10 0.00 0.00 0.01 0.00 0.00 0.00 0.99 0.95 0.90 0.01 0.05 0.10 0.00 0.00 0.00 0.00 0.00 0.00

250 0.99 0.94 0.88 0.01 0.06 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.94 0.88 0.01 0.06 0.11 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.99 0.95 0.90 0.01 0.05 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.95 0.90 0.01 0.05 0.10 0.00 0.00 0.00 0.00 0.00 0.00

LogNormal
50 0.77 0.57 0.45 0.23 0.41 0.55 0.00 0.01 0.00 0.00 0.01 0.01 0.72 0.51 0.39 0.27 0.48 0.60 0.00 0.00 0.01 0.01 0.01 0.01

250 0.03 0.01 0.00 0.96 0.99 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.99 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

LogNormal 10.00 2.16 0

GP
50 0.95 0.84 0.74 0.01 0.07 0.16 0.03 0.09 0.10 0.00 0.00 0.00 0.94 0.83 0.72 0.02 0.08 0.15 0.04 0.09 0.12 0.00 0.00 0.00

250 0.57 0.31 0.21 0.25 0.49 0.64 0.18 0.20 0.15 0.00 0.00 0.00 0.49 0.26 0.16 0.31 0.57 0.71 0.20 0.17 0.13 0.01 0.00 0.00
1000 0.00 0.00 0.00 0.98 1.00 1.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

LogGamma
50 0.94 0.83 0.74 0.06 0.16 0.25 0.00 0.01 0.01 0.00 0.01 0.00 0.92 0.81 0.71 0.08 0.18 0.28 0.00 0.01 0.01 0.00 0.01 0.01

250 0.66 0.45 0.34 0.34 0.55 0.65 0.01 0.00 0.01 0.00 0.00 0.00 0.60 0.39 0.28 0.40 0.61 0.71 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.03 0.01 0.00 0.97 0.99 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.99 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

LogNormal
50 0.99 0.95 0.90 0.01 0.05 0.10 0.00 0.00 0.01 0.00 0.00 0.00 0.99 0.95 0.90 0.01 0.05 0.09 0.00 0.00 0.00 0.00 0.00 0.00

250 0.98 0.94 0.89 0.02 0.06 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.94 0.89 0.02 0.06 0.11 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.99 0.94 0.90 0.01 0.06 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.94 0.90 0.01 0.06 0.10 0.00 0.00 0.00 0.00 0.00 0.00

Gaussian
50 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

250 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Gaussian 4384605.98 62.00 0

Gamma
50 0.99 0.95 0.89 0.01 0.05 0.10 0.00 0.00 0.01 0.00 0.00 0.01 0.99 0.94 0.88 0.01 0.05 0.11 0.00 0.00 0.00 0.00 0.00 0.01

250 0.99 0.94 0.90 0.01 0.06 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.94 0.89 0.01 0.06 0.11 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.99 0.96 0.90 0.01 0.04 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.95 0.90 0.01 0.05 0.10 0.00 0.00 0.00 0.00 0.00 0.00

LogNormal
50 1.00 0.96 0.90 0.00 0.04 0.09 0.00 0.00 0.00 0.00 0.01 0.00 1.00 0.95 0.90 0.01 0.05 0.10 0.00 0.00 0.00 0.00 0.00 0.01

250 0.99 0.94 0.88 0.01 0.06 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.94 0.89 0.01 0.05 0.11 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.99 0.95 0.90 0.01 0.05 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.95 0.90 0.01 0.05 0.09 0.00 0.00 0.00 0.00 0.00 0.00

Gaussian
50 0.99 0.95 0.89 0.01 0.05 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.95 0.90 0.01 0.04 0.10 0.00 0.00 0.00 0.00 0.00 0.00

250 1.00 0.96 0.91 0.00 0.04 0.09 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.96 0.90 0.00 0.04 0.09 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.99 0.95 0.91 0.01 0.05 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.96 0.91 0.01 0.05 0.09 0.00 0.00 0.00 0.00 0.00 0.00

Weibull
50 0.71 0.49 0.36 0.23 0.46 0.60 0.05 0.04 0.03 0.01 0.02 0.01 0.65 0.43 0.32 0.29 0.53 0.65 0.05 0.02 0.02 0.01 0.02 0.01

250 0.01 0.00 0.00 0.98 1.00 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Weibull 45000.00 0.30 0

Gamma
50 0.59 0.38 0.28 0.21 0.43 0.55 0.20 0.19 0.17 0.00 0.00 0.00 0.59 0.38 0.27 0.26 0.48 0.61 0.15 0.15 0.11 0.00 0.00 0.00

250 0.00 0.00 0.00 0.97 0.99 1.00 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 1.00 1.00 0.02 0.00 0.00 0.00 0.00 0.00
1000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

LogGamma
50 0.40 0.20 0.12 0.59 0.80 0.88 0.01 0.01 0.00 0.00 0.00 0.00 0.20 0.09 0.06 0.80 0.91 0.94 0.00 0.00 0.00 0.00 0.00 0.00

250 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

LogNormal
50 0.68 0.45 0.34 0.31 0.53 0.65 0.00 0.01 0.00 0.01 0.01 0.01 0.62 0.39 0.29 0.37 0.60 0.70 0.00 0.01 0.00 0.01 0.01 0.01

250 0.01 0.00 0.00 0.99 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.99 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
1000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Weibull
50 0.99 0.93 0.89 0.01 0.05 0.09 0.00 0.01 0.02 0.00 0.01 0.01 0.99 0.94 0.88 0.01 0.05 0.10 0.00 0.01 0.02 0.00 0.01 0.01

250 0.99 0.94 0.89 0.01 0.05 0.10 0.00 0.01 0.01 0.00 0.00 0.01 0.98 0.93 0.89 0.01 0.05 0.10 0.00 0.01 0.01 0.00 0.01 0.01
1000 0.99 0.94 0.90 0.01 0.04 0.09 0.00 0.01 0.01 0.00 0.01 0.00 0.99 0.95 0.89 0.01 0.04 0.08 0.00 0.00 0.02 0.00 0.00 0.00
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Table 4.12: Rates of agreement of decisions made by the direct and indirect tests
based on Ŵ 2,β

n for β ∈ {1.5,1.8,1.95} at significance level α = 0.1. The parameters
θθθ = 〈θ1,θ2〉 are from the Second Set of Table 4.5.

Simulated as θ1 θ2 Tail index Estimated as Sample size
Ŵ 2,1.5

n Ŵ 2,1.8
n Ŵ 2,1.95

n

Taa Trr Tra Tar Taa Trr Tra Tar Taa Trr Tra Tar

Fréchet 1.01 5000.00 0.99

Fréchet
50 0.89 0.08 0.02 0.01 0.87 0.09 0.03 0.01 0.88 0.09 0.02 0.01

250 0.88 0.07 0.03 0.02 0.89 0.09 0.01 0.01 0.88 0.10 0.01 0.01
1000 0.88 0.09 0.01 0.02 0.88 0.09 0.02 0.01 0.89 0.10 0.01 0.00

GP
50 0.10 0.59 0.00 0.31 0.12 0.50 0.00 0.38 0.14 0.47 0.00 0.39

250 0.00 1.00 0.00 0.00 0.00 0.97 0.00 0.03 0.00 0.89 0.00 0.11
1000 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

LogGamma
50 0.42 0.57 0.02 0.00 0.41 0.59 0.01 0.00 0.42 0.57 0.00 0.00

250 0.01 0.99 0.00 0.00 0.02 0.98 0.00 0.00 0.03 0.97 0.00 0.00
1000 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

LogNormal
50 0.25 0.74 0.01 0.00 0.25 0.74 0.01 0.00 0.26 0.73 0.01 0.00

250 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00
1000 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

Gamma 0.27 8000000.00 0

Gamma
50 0.89 0.09 0.01 0.01 0.88 0.10 0.02 0.01 0.87 0.10 0.01 0.01

250 0.90 0.09 0.01 0.01 0.89 0.09 0.01 0.01 0.88 0.09 0.01 0.01
1000 0.90 0.09 0.01 0.00 0.90 0.09 0.01 0.01 0.90 0.09 0.01 0.01

LogGamma
50 0.00 1.00 0.00 0.00 0.00 0.99 0.00 0.01 0.02 0.96 0.00 0.03

250 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00
1000 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

LogNormal
50 0.02 0.97 0.00 0.01 0.05 0.91 0.00 0.04 0.13 0.79 0.00 0.08

250 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00
1000 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

Weibull
50 0.65 0.30 0.02 0.04 0.78 0.17 0.02 0.03 0.89 0.07 0.02 0.01

250 0.02 0.98 0.00 0.01 0.05 0.91 0.00 0.04 0.14 0.78 0.00 0.07
1000 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

GP 0.99 4954.25 0.99

Fréchet
50 0.37 0.54 0.08 0.01 0.58 0.34 0.04 0.03 0.74 0.19 0.02 0.05

250 0.00 1.00 0.00 0.00 0.00 0.99 0.01 0.00 0.01 0.96 0.03 0.00
1000 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

GP
50 0.89 0.06 0.03 0.02 0.88 0.07 0.03 0.02 0.89 0.07 0.02 0.02

250 0.89 0.07 0.04 0.01 0.89 0.08 0.03 0.01 0.89 0.08 0.02 0.01
1000 0.88 0.07 0.05 0.01 0.89 0.08 0.02 0.00 0.89 0.09 0.01 0.01

LogGamma
50 0.72 0.26 0.00 0.03 0.81 0.17 0.00 0.02 0.84 0.13 0.00 0.03

250 0.21 0.78 0.00 0.02 0.43 0.54 0.00 0.03 0.63 0.35 0.00 0.02
1000 0.00 1.00 0.00 0.00 0.01 0.99 0.00 0.00 0.06 0.93 0.00 0.01

LogNormal
50 0.76 0.23 0.00 0.01 0.74 0.25 0.01 0.00 0.74 0.25 0.00 0.01

250 0.43 0.57 0.00 0.01 0.45 0.55 0.00 0.00 0.46 0.53 0.01 0.00
1000 0.03 0.97 0.00 0.00 0.07 0.93 0.00 0.00 0.12 0.88 0.00 0.01

LogGamma 4.89 1.01 0.99

Fréchet
50 0.92 0.05 0.02 0.01 0.93 0.04 0.01 0.01 0.95 0.04 0.02 0.00

250 0.89 0.09 0.01 0.02 0.94 0.04 0.00 0.02 0.97 0.03 0.00 0.01
1000 0.65 0.31 0.01 0.03 0.80 0.17 0.01 0.03 0.90 0.08 0.01 0.01

GP
50 0.85 0.08 0.01 0.06 0.88 0.06 0.01 0.06 0.88 0.06 0.00 0.06

250 0.59 0.12 0.01 0.28 0.83 0.05 0.01 0.12 0.88 0.03 0.01 0.09
1000 0.00 0.51 0.00 0.49 0.23 0.15 0.00 0.62 0.68 0.05 0.01 0.26

LogGamma
50 0.88 0.11 0.00 0.00 0.88 0.11 0.00 0.00 0.89 0.11 0.00 0.00

250 0.89 0.10 0.01 0.00 0.87 0.12 0.00 0.00 0.87 0.13 0.00 0.00
1000 0.89 0.10 0.00 0.00 0.89 0.11 0.00 0.00 0.89 0.11 0.00 0.00

LogNormal
50 0.35 0.63 0.01 0.00 0.35 0.64 0.01 0.00 0.36 0.64 0.01 0.00

250 0.00 1.00 0.00 0.00 0.01 0.99 0.00 0.00 0.01 0.99 0.00 0.00
1000 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

LogNormal 10.00 2.16 0

GP
50 0.83 0.11 0.06 0.01 0.92 0.04 0.03 0.00 0.97 0.01 0.02 0.00

250 0.21 0.73 0.05 0.01 0.41 0.52 0.03 0.03 0.63 0.28 0.03 0.05
1000 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

LogGamma
50 0.81 0.16 0.00 0.02 0.90 0.06 0.00 0.04 0.95 0.03 0.00 0.01

250 0.36 0.63 0.00 0.02 0.56 0.41 0.00 0.03 0.74 0.22 0.00 0.04
1000 0.00 1.00 0.00 0.00 0.01 0.99 0.00 0.00 0.03 0.97 0.00 0.00

LogNormal
50 0.89 0.10 0.01 0.00 0.90 0.10 0.00 0.00 0.90 0.10 0.00 0.00

250 0.88 0.12 0.00 0.00 0.88 0.12 0.00 0.00 0.89 0.11 0.00 0.00
1000 0.90 0.10 0.00 0.00 0.91 0.09 0.00 0.00 0.91 0.09 0.00 0.00

Gaussian
50 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

250 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00
1000 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

Gaussian 4384605.98 62.00 0

Gamma
50 0.90 0.10 0.00 0.00 0.89 0.10 0.00 0.00 0.90 0.10 0.00 0.00

250 0.90 0.10 0.00 0.00 0.91 0.09 0.00 0.00 0.91 0.09 0.00 0.00
1000 0.90 0.10 0.00 0.00 0.89 0.10 0.00 0.00 0.90 0.09 0.00 0.00

LogNormal
50 0.89 0.10 0.00 0.01 0.88 0.11 0.01 0.00 0.89 0.11 0.00 0.00

250 0.90 0.10 0.00 0.00 0.90 0.10 0.00 0.00 0.90 0.10 0.00 0.00
1000 0.90 0.09 0.00 0.00 0.90 0.10 0.00 0.00 0.90 0.10 0.00 0.00

Gaussian
50 0.88 0.11 0.01 0.00 0.89 0.10 0.00 0.00 0.89 0.10 0.00 0.00

250 0.91 0.09 0.00 0.00 0.90 0.10 0.00 0.00 0.90 0.10 0.00 0.00
1000 0.91 0.09 0.00 0.00 0.91 0.09 0.00 0.00 0.90 0.10 0.00 0.00

Weibull
50 0.27 0.66 0.00 0.08 0.27 0.66 0.00 0.07 0.28 0.66 0.00 0.07

250 0.00 1.00 0.00 0.00 0.00 0.99 0.00 0.01 0.00 0.99 0.00 0.01
1000 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

Weibull 45000.00 0.30 0

Gamma
50 0.23 0.73 0.00 0.03 0.20 0.72 0.00 0.08 0.21 0.71 0.00 0.09

250 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.99 0.00 0.01
1000 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

LogGamma
50 0.08 0.90 0.00 0.02 0.16 0.79 0.00 0.06 0.26 0.62 0.00 0.12

250 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00
1000 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

LogNormal
50 0.36 0.59 0.00 0.05 0.54 0.36 0.00 0.10 0.72 0.19 0.00 0.09

250 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.01 0.99 0.00 0.00
1000 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

Weibull
50 0.87 0.10 0.02 0.01 0.89 0.09 0.01 0.01 0.89 0.09 0.01 0.01

250 0.90 0.09 0.01 0.01 0.89 0.09 0.01 0.01 0.90 0.09 0.01 0.01
1000 0.90 0.08 0.01 0.00 0.89 0.10 0.01 0.01 0.89 0.10 0.01 0.00
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4.5.3 Independence of Decisions

Let us consider Prr−PrP?
r . It is readily seen to be a measure of independence of

the decisions made by a pair of the direct and indirect tests. This quantity has been
tabulated in Table 4.13.

We observe that generally, when the null and alternative distributions are dif-
ferent, Prr−PrP?

r → 0 as n grows. That is, the decisions made by the direct and
indirect tests appear to be asymptotically independent.

4.6 Application to Real Data

We apply the direct and indirect goodness-of-fit tests to a set of real data of losses
caused by operational risk events. The source of the data is Operational Risk Ex-
change (ORX), the world’s leading OpRisk loss data consortium for financial insti-
tutions. ORX has over 80 members and a database of more than 500,000 worldwide
loss events.7 The data set was accessed through Royal Bank of Canada with per-
mission from ORX.8

This data set contains 3,034 severities of losses incurred by financial institutions,
members of ORX in North America and Western Europe, from January 01, 2002
to June 30, 2016. This, on average, corresponds to approximately λ = 204.227
events per year. The business line and event type which we chose to consider are
Capital Markets and “Clients, Products & Business Practices”, respectively. The
latter includes, for example, fiduciary breaches, aggressive sales, account churning,
market manipulation, insider trading (on firm’s account) and unlicensed activity
(Basel Committee on Banking Supervision, 2004). The heavytail nature of the data
set is apparent from Table 4.14, which contains some descriptive characteristics of
the data.

Due to this fact, from Table 4.4, we consider all but the Gaussian and Gamma
distributions. As ORX only records losses above e20,000, we also include the
left-truncated versions of the distributions. One could also subtract the threshold
from data and fit regular distributions. This results in using the so-called “shifted
distributions” which, according to the regulatory note Board of Governors of the

7For more information on ORX, see https://managingrisktogether.orx.org/.
8Disclaimer: The views expressed in this thesis are the author’s own and do not represent the

views of ORX, Royal Bank of Canada or any other institution.
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Table 4.13: Measure Prr−PrP?
r of the independence of decisions made by the direct

and indirect tests based on Ŵ 2,β
n for β ∈ {1.5,1.8,1.95} at significance level α =

0.1. The parameters θθθ = 〈θ1,θ2〉 are from the Second Set of Table 4.5.

Simulate as Parm1 Parm2 Tail index Estimate as Sample size CvM AD Ŵ 2,1.5
n Ŵ 2,1.8

n Ŵ 2,1.95
n

Fréchet 1.01 5000.00 0.99

Fréchet
50 0.070 0.070 0.073 0.074 0.075

250 0.081 0.074 0.064 0.082 0.084
1000 0.094 0.097 0.082 0.080 0.085

GP
50 0.076 0.043 0.062 0.062 0.066

250 0.000 0.000 0.000 0.000 0.000
1000 0.000 0.000 0.000 0.000 0.000

LogGamma
50 0.240 0.245 0.236 0.237 0.243

250 0.023 0.012 0.008 0.020 0.032
1000 0.000 0.000 0.000 0.000 0.000

LogNormal
50 0.219 0.199 0.183 0.184 0.191

250 0.000 0.000 0.000 0.000 0.002
1000 0.000 0.000 0.000 0.000 0.000

Gamma 0.27 8000000.00 0

Gamma
50 0.066 0.069 0.083 0.083 0.090

250 0.055 0.058 0.077 0.083 0.082
1000 0.063 0.067 0.081 0.078 0.081

LogGamma
50 0.006 0.000 0.000 0.003 0.017

250 0.000 0.000 0.000 0.000 0.000
1000 0.000 0.000 0.000 0.000 0.000

LogNormal
50 0.035 0.020 0.021 0.046 0.102

250 0.000 0.000 0.000 0.000 0.000
1000 0.000 0.000 0.000 0.000 0.000

Weibull
50 0.205 0.203 0.194 0.132 0.065

250 0.043 0.017 0.015 0.047 0.113
1000 0.000 0.000 0.000 0.000 0.000

Gaussian 4384605.98 62.00 0

Gamma
50 0.089 0.097 0.085 0.090 0.089

250 0.087 0.094 0.089 0.084 0.083
1000 0.090 0.085 0.088 0.092 0.084

Gaussian
50 0.090 0.088 0.096 0.092 0.092

250 0.077 0.083 0.079 0.086 0.089
1000 0.078 0.082 0.082 0.083 0.087

LogNormal
50 0.082 0.085 0.088 0.095 0.096

250 0.102 0.098 0.086 0.091 0.091
1000 0.090 0.084 0.082 0.086 0.087

Weibull
50 0.215 0.208 0.174 0.178 0.183

250 0.001 0.000 0.000 0.001 0.002
1000 0.000 0.000 0.000 0.000 0.000

GP 0.99 4954.25 0.99

Fréchet
50 0.191 0.178 0.196 0.198 0.135

250 0.001 0.001 0.001 0.001 0.010
1000 0.000 0.000 0.000 0.000 0.000

GP
50 0.038 0.042 0.054 0.057 0.061

250 0.040 0.041 0.059 0.068 0.073
1000 0.051 0.054 0.059 0.072 0.083

LogGamma
50 0.233 0.236 0.185 0.139 0.111

250 0.101 0.080 0.160 0.234 0.219
1000 0.000 0.000 0.000 0.010 0.054

LogNormal
50 0.156 0.167 0.176 0.183 0.184

250 0.243 0.239 0.242 0.246 0.244
1000 0.021 0.014 0.028 0.065 0.101

LogGamma 4.89 1.01 0.99

Fréchet
50 0.086 0.086 0.050 0.038 0.034

250 0.104 0.111 0.079 0.035 0.024
1000 0.202 0.219 0.200 0.134 0.075

GP
50 0.113 0.135 0.066 0.052 0.049

250 0.093 0.068 0.071 0.038 0.022
1000 0.000 0.000 0.002 0.035 0.034

LogGamma
50 0.087 0.085 0.096 0.101 0.097

250 0.099 0.099 0.092 0.107 0.110
1000 0.086 0.088 0.091 0.095 0.095

LogNormal
50 0.243 0.232 0.224 0.224 0.227

250 0.002 0.001 0.004 0.008 0.013
1000 0.000 0.000 0.000 0.000 0.000

LogNormal 10.00 2.16 0

Gaussian
50 0.000 0.000 0.000 0.000 0.000

250 0.000 0.000 0.000 0.000 0.000
1000 0.000 0.000 0.000 0.000 0.000

GP
50 0.118 0.110 0.092 0.040 0.012

250 0.134 0.116 0.153 0.214 0.178
1000 0.000 0.000 0.000 0.000 0.000

LogGamma
50 0.182 0.195 0.133 0.056 0.031

250 0.221 0.201 0.224 0.230 0.163
1000 0.003 0.002 0.003 0.006 0.030

LogNormal
50 0.086 0.085 0.089 0.088 0.089

250 0.090 0.095 0.102 0.105 0.097
1000 0.087 0.087 0.086 0.083 0.083

Weibull 45000.00 0.30 0

Gamma
50 0.153 0.167 0.171 0.145 0.145

250 0.000 0.000 0.000 0.000 0.000
1000 0.000 0.000 0.000 0.000 0.000

LogGamma
50 0.105 0.057 0.074 0.122 0.160

250 0.000 0.000 0.000 0.000 0.000
1000 0.000 0.000 0.000 0.000 0.000

LogNormal
50 0.219 0.203 0.211 0.195 0.137

250 0.002 0.001 0.001 0.001 0.005
1000 0.000 0.000 0.000 0.000 0.000

Weibull
50 0.080 0.088 0.089 0.080 0.084

250 0.084 0.088 0.077 0.079 0.079
1000 0.078 0.075 0.075 0.088 0.088
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Table 4.14: Descriptive statistics of the OpRisk loss data set

Min Max Mean StDev Q25 Q50 Q75 Skewness Kurtosis

20,000 3,834,093,911 11,952,929 124,517,475 45,300 134,495 698,088 19.98 482.98

Federal Reserve System (2014, p. 13), “may introduce bias into capital estimates
by not capturing the probability distribution for loss severities below the modeling
threshold.” For this reason, we chose not to include shifted distributions in the pool
of candidates.

The significance level α was chosen to be 0.10. The p-values for the direct tests
were calculated by means of 10,000 trials of a parametric bootstrap. The critical
values of the indirect tests based on Ŵ 2,β

n (β ∈ {1.5,1.8,1.95}) were determined by
substituting coefficients {âi}3

j=0 taken from Table 4.2 and sample size n = 3,034
into 1/(â0 + â1n−1/3 + â2n−1/2 + â3n−1). In Table 4.15, the results of the assess-
ment is presented.

Table 4.15: Decisions made by the direct (indirect) tests on assessing the null hy-
pothesis H0 (H?

0 ) at significance level α = 0.10. Here “A” and “R” stand for “fails to
reject” and “rejects”, respectively. The last column contains the ratio of execution
time between that for the direct and indirect tests.

Distribution Type θ̂1 θ̂2
NLL

Decision
Execution Time, sec

Time Ratio
CvM AD Ŵ 2,1.5

n Ŵ 2,1.8
n Ŵ 2,1.95

n

Direct Indirect Direct Indirect Direct Indirect Direct Indirect Direct Indirect Direct Indirect Direct Indirect

Weibull Truncated 0.002 0.084 43267.161 4291.519 A A A A A A A A A A 607.207 0.004 172458.24
LogNormal Truncated 4.605 4.861 43268.354 4298.583 A A A A A A A A A A 105.220 0.003 32779.81
LogGamma Truncated 9.320 1.009 43271.372 4308.848 R A A A R R A A A A 159.054 0.003 45954.20

Fréchet Truncated 0.497 15828.319 43280.904 4296.954 R R R R R R R R R R 213.579 0.002 86648.04
GP Truncated 2.158 23641.743 43288.314 4298.993 R R R R R R R R R R 144.017 0.003 45210.95

Fréchet Regular 0.680 93889.730 43641.949 4437.091 R R R R R R R R R R 6.615 0.013 506.78
GP Regular 1.676 132454.272 43902.535 3971.351 R R R R R R R R R R 22.357 0.011 1981.30

LogGamma Regular 37.995 3.071 43927.598 4304.934 R R R R R R R R R R 8.038 0.004 1937.86
LogNormal Regular 12.372 2.113 44110.295 4305.060 R R R R R R R R R R 4.239 0.027 157.78

Weibull Regular 754480.374 0.373 44876.111 3853.222 R R R R R R R R R R 6.924 0.015 455.10

The order of the distributions corresponds to the ascending order of the values of
the negative log-likelihood function (NLL) for the direct tests. As each distribution
has two parameters, this order corresponds to the ascending order implied by the
Akaike Information Criterion as well. Only the left-truncated Weibull, LogNormal
and LogGamma distributions appear to be suitable models for the given data set.
Table 4.15 suggests that according to both direct and indirect tests, the left-truncated
Weibull distribution is the best at describing the data in the body and tails. The
decisions made by the direct and indirect tests agree very well. The only exception
is CvM for LogGamma where the direct test rejects the null while the indirect test
fails to do so.
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The last three columns in Table 4.15 provide evidence on clear advantage of
the indirect tests over their direct counterparts in terms of execution time. The
indirect tests for the Weibull distribution are 172,458 times faster than the direct
tests. Without using parallel computing, the advantage will be even more drastic.
This may be a decisive factor in applications.

We conclude this section by demonstrating the fact that the selection of best-fit
severity distributions properly capturing the upper tail behavior is essential for ac-
curate modeling. In Table 4.16, VaR of the aggregate loss distribution is determined
for δ = 0.999 and λ = 204.227 by two different methods.

Table 4.16: Value-at-Risk (in e) of the aggregate loss distribution for δ = 0.999
and λ = 204.227 computed for the severity distributions of Table 4.12 by the meth-
ods of Opdyke (2014) (VaR?) and Hernández et al. (2014) (VaR??). The relative
discrepancy is 100(VaR??/VaR?−1) (in %).

Distribution Type θ̂1 θ̂2 VaR? VaR?? Relative Difference

Weibull Truncated 0.002 0.084 369,057,122,035.81 367,897,668,700.84 -0.314
LogNormal Truncated 4.605 4.861 1,612,936,041,395.56 1,601,895,740,617.92 -0.684
LogGamma Truncated 9.320 1.009 16,946,010,489,032.10 16,644,246,530,583.70 -1.781

Fréchet Truncated 0.497 15828.319 2,172,587,392,340,770.00 2,172,516,886,433,050.00 -0.003
GP Truncated 2.158 23641.743 8,934,481,137,897,670.00 8,930,541,905,501,710.00 -0.044

Fréchet Regular 0.680 93889.730 6,090,425,793,574.64 6,107,774,521,521.65 0.285
GP Regular 1.676 132454.272 62,835,740,830,873.70 62,918,519,959,436.90 0.132

LogGamma Regular 37.995 3.071 14,190,399,916.16 14,150,245,634.38 -0.283
LogNormal Regular 12.372 2.113 3,143,387,786.26 3,138,064,038.88 -0.169

Weibull Regular 754480.374 0.373 1,246,514,105.86 1,245,671,937.88 -0.068

The first method is ISLA of Opdyke (2014) and the second one is a first-order
perturbative approximation of Hernández et al. (2014). As Table 4.16 suggests, the
two methods agree very well.

The range of the VaR numbers is extremely wide, and even for the top three dis-
tributions the variability is significant: the largest VaR of the three is 46 times larger
than the smallest one. Clearly, an erroneous final choice of the best-fit distribution
may cause significant under- or over-estimation of the capital.

These VaR numbers reflect broad capitalization required for all the financial in-
stitutions in the ORX pool for the particular risk event type. An average capital
requirement per institution is about e8 billion (i.e., e369 billion divided by 46,
where 46 is the number of financial institutions which experienced OpRisk losses
in North America and Western Europe during the considered period). External data,
however, are usually not used on their own, but rather taken as an auxiliary source
of information by a financial institution in the course of modeling its own, inter-
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nal, losses. There are approaches to combine the internal and external experience
that aim to produce a reasonable final severity model for the internal data. One is
referred to Bolancé et al. (2012, Chapter 4) for a detailed exposition of this topic.
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Chapter 5

Conclusions

5.1 Summary

In this thesis, we have investigated some important aspects of distributional form
and shape. To this end, we have used inferential methods, both parametric and
nonparametric. In particular, we used linear and isotonic regression, hypothesis
testing, point estimation and kernel density estimation. We also extensively relied
on methods of asymptotic statistics and empirical processes.

In Chapter 2, we have presented a method for bump hunting for probability
density functions, TBH, using kernel density estimators. TBH is featured by a
new definition of a bump together with a classification of bumps into types. The
development is based on the notion of curvature of a planar curve. Under different
settings, we have applied the method to a wide range of distributions distinguished
by their varying bump patterns, and compared it to two procedures known in the
literature. Extensive Monte Carlo simulations have demonstrated the viability of the
proposed methodology and its satisfactory performance. We have also considered
a real data example where TBH identified three bumps, a conclusion supported by
previous works.

In Chapter 3, motivated by the problem of selecting parametric distributions
for modeling OpRisk loss severities more adequately in the upper tails, we have
examined a class of weighted EDF-based GoF test statistics W 2,β

n when β 6 2. As
β gets closer to 2, W 2,β

n puts more weight on the upper tail of the distribution under
the null hypothesis. The statistic W 2,2

n is used for severity distribution selection by
some OpRisk modelers in the financial industry. Given the importance of this class
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of test statistics in the severity selection process, we have more carefully studied
the behavior of W 2,β

n for 1.56 β 6 2 and discovered that the practical utility of the
statistics is likely limited. In fact, it has been established that W 2,β

n for β > 2 has
no well-defined limiting distribution. Therefore, OpRisk modelers applying LDA
principles should be highly cautious when using W 2,β

n for 1.56 β < 2 and exercise
extreme caution when attempting to use the statistic for β > 2.

In Chapter 4, we have studied a transformation that reduces a general compos-
ite hypothesis to a test for normality. CBT is fast and easy to implement. In the
literature, the indirect tests based on CBT have been studied on a standalone ba-
sis. We have examined the performance of the direct and indirect tests based on
selected WCvM test statistics in parallel. The study confirmed a good degree of
agreement between the two tests. WCvM tests with a focus on the upper tail, Ŵ 2,β

n

(β ∈ [1,2)), seem to benefit best from the reduction to normality while indirect
tests based on the classical CvM and AD tests may suffer from a loss in power.
The study also suggested that, in many situations, decisions made by the direct and
indirect tests become independent. An application of the tests to an OpRisk loss
data set has demonstrated excellent agreement between direct and indirect tests and
has also shown a considerable advantage of the indirect tests in terms of execution
time. Overall, we feel that the transformation deserves practitioners’ attention and
warrants further study.

5.2 Future Work

As part of future work related to Chapter 2, we plan to enhance the method in a
number of ways. First, we can make the area threshold, λ , data driven. This may
be attempted, for example, along the same lines as the critical bandwidth paradigm
of Silverman (1980) which also may help us to (re)define TBH as a statistical test.
Indeed, the theoretical results of Section 2.3.3 regarding minima of derivatives of
the KDE with a Gaussian kernel indicate potential for making progress in this di-
rection. In order to deal with outliers, we proposed the use of X84 rejection rule.
However, this rule may be avoided or used in conjunction with data transforma-
tion methods mentioned in Section 2.4.1. Alternatively, we can rely on an adaptive
bandwidth approach such as the one described by Botev et al. (2010) has shown
promise when coupled with TBH in our Monte Carlo experiments. Finally, a gen-
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eralization of the method to the multidimensional case may be considered which
would use the concepts of multidimensional KDE (Silverman, 1986, pp. 75-94),
results on the number of its maxima from Carreira-Perpiñán and Williams (2003),
multidimensional ridges (Eberly, 1996; Belyaev et al., 1998) and multivariate iso-
tonic regression (Sasabuchi et al., 1983).

Work on the material of Chapter 3 may be continued to establish analogous
theoretical statements about test statistics in the composite hypothesis case by ex-
panding results of Section 4.3.

As part of future work for Chapter 4, we plan to enhance CBT. For example, one
possibility is to leverage the fact that for location-scale G = {G((· − µ)/σ) | µ ∈
R,σ > 0)} and a subclass of scale-shape W = {W ((·/β )α) | α,β > 0} families of
distributions, the limiting distribution of the WCvM test statistics (when it exists) is
independent of the unknown distributional parameters (Bagdonavičius et al., 2011,
pp. 92-96). Therefore, the base distribution, instead of the Gaussian distribution,
can be taken to be the Gumbel, Weibull, or Pareto distributions. This may provide
greater power against heavy-tailed alternative distributions. Considerations of Sec-
tion 4.3 evidenced the validity of (Ŵ 2,2

n − lnn)/(2
√

lnn) d→ N(0,1) as n→ ∞. We
aim to work on developing a rigourous proof of this statement.
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Appendix A

For Chapter 2

A.1 Auxiliary Results

A.1.1 Facts from Real Analysis

Let us now consider the following integral:

Ix(h) =
ˆ

∞

−∞

V (u)g(x−hu)du (A.1)

for h→ 0.
Condition 1 of Assumption 2.1, in particular, implies that the function g has the

first order derivative in a neighbourhood of point x0 and the Taylor’s expansion

g(x0 +∆x) = g(x0)+g′(x0)∆x+
1
2

g′′(x0)(∆x)2 +o
(
(∆x)2) (A.2)

holds as ∆x→ 0. The o
(
(∆x)2) term can be represented as (∆x)2r∗2,x0

(∆x) with
function r∗2,x0

: R→ R being such that r∗2,x0
(∆x)→ 0 as ∆x→ 0.

By plugging (A.2) into (A.1) with ∆x = −hu, we obtain the following formal
expansion:

Ix0(h) = g(x0)κ0(V )−g′(x0)κ1(V )h+
1
2

g′′(x0)κ2(V )h2 +h2R2(h), (A.3)

where R2(h) =
´

∞

−∞
u2V (u)r2,x0(hu)du and r2,x0(hu) = r∗2,x0

(−hu).

Remark. Function R2(·), of course, depends on x0. However, for the sake of no-
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tational simplicity, we will suppress this dependance and assume that the number
x0 ∈ R is fixed. Moreover, in what follows, we will denote the function r2,x0(·) by
just r(·).

We are interested in establishing conditions under which, in (A.3), the remainder
term R2(h)→ 0 as h→ 0, or, equivalently, h2R2(h) = o

(
h2). The following three

theorems provide sufficient conditions for this to hold true.

Theorem A.1. Suppose a function g : R→ R satisfies condition 1 of Assumption
2.1. Also, let a function V : R→ R satisfy conditions 1, 2 and 3a of Assumption 2.
Then, h2R2(h) = o

(
h2) as h→ 0.

Theorem A.2. Suppose a function g : R→ R satisfies conditions 1 and 2b of As-
sumption 2.1. Also, let a function V : R→R satisfy conditions 1 and 2 of Assump-
tion 2. Then, h2R2(h) = o

(
h2) as h→ 0.

Theorem A.3. Suppose a function g : R→ R satisfies conditions 1 and 2a of As-
sumption 2.1. Also, let a function V : R→ R satisfy conditions 1, 2 and 3b of
Assumption 2. Then, h2R2(h) = o

(
h2) as h→ 0.

To prove the theorems, we will need several auxiliary results. We will summa-
rize them as lemmas.

Lemma A.4. If supp |V |b R, then R2(h)→ 0 as h→ 0.

Proof. There exists a number 0 < A < ∞, such that V (x)≡ 0 when |x|> A. Then,

|R2(h)| 6
´ A
−A u2|V (u)||r(hu)|du

6 sup
u∈[−A,A]

|r(hu)|
´ A
−A u2|V (u)|du

= sup
x∈[−hA,hA]

|r(x)|
´ A
−A u2|V (u)|du.

As h → 0, the right-hand side of the last row goes to 0 because r(x) → 0 and´ A
−A u2|V (u)|du is bounded. �

Lemma A.5. Suppose there exists a constant 0 < C < ∞ such that for any x ∈ R
r(x)6C. Assume further that r(x)→ 0 as x→ 0. Then, R2(h)→ 0 as h→ 0.
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Proof. The claim of the lemma follows from Lebesgue’s Dominated Convergence
Theorem (Kolmogorov and Fomin, 1970, p. 303). Indeed,

|R2(h)|6
ˆ

∞

−∞

u2|V (u)||r(hu)|du,

where

• u2|V (u)||r(hu)|6Cu2|V (u)| and
´

∞

−∞
u2|V (u)|du < ∞;

• For any fixed u, we have u2|V (u)||r(hu)| → 0 as h→ 0.

�

Lemma A.6. Suppose there exist constants 0 < d1,d2 < ∞ such that for any x ∈ R
|V (x)|6 d1 exp(−d2x2). Further, let us assume that

1. For any h ∈ R, the integral
´

∞

−∞
u2|V (u)||r(hu)|du exists and is finite;

2. There exist constants 0 < a1,a2 < ∞ such that r(x)6 a1 exp(a2x2);

3. r(x)→ 0 as x→ 0.

Then, R2(h)→ 0 as h→ 0.

Proof. First, observe that condition 1 follows from 2 when |h| <
√

d2/a2. Let
us now fix a number h1 ∈ (0,

√
d2/a2) and only consider those h ∈ [−h1,h1]. As

before, note that |R2(h)|6
´

∞

−∞
u2|V (u)||r(hu)|du and apply Lebesgue’s Dominated

Convergence Theorem to obtain

• u2|V (u)||r(hu)|6 d1a1u2 exp(−(d2−a2h2)u2)6 d1a1u2 exp(−(d2−a2h2
1)u

2).
Since d2−a2h2

1 > 0, then
´

∞

−∞
u2 exp(−(d2−a2h2

1)u
2)du < ∞;

• For any fixed u, we have u2|V (u)||r(hu)| → 0 as h→ 0.

�

Let us now proceed to proving Theorems A.1, A.2 and A.3.

Proof of Theorem A.1. Directly follows from Lemma A.4. �
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Proof of Theorem A.2. Since the function g :R→R has the second order derivative
at some point x0, we have seen above that r2,x0(x)→ 0 as x→ 0. Consequently, there
exists a δ > 0 such that supx∈[−δ ,δ ] |r2,x0(x)|6 1. The statement of the theorem will
follow from Lemma A.5 if we show that there exists a constant 0 < A3 < ∞ such
that for any x ∈ R |r(x)|6 A3.

To this end, consider ∆x outside of [−δ ,δ ]. Let g(x) 6 c1 + c2x2 for some
positive constants c1 and c2. Then,

|r(∆x)| 6 |g(x0+∆x)|+|g(x0)|+|∆x||g′(x0)|+(∆x)2|g′′(x0)|/2
(∆x)2

6 A2(∆x)2+A1|∆x|+A0
(∆x)2

6 A2 +A1/δ +A0/δ 2

for |∆x| > δ and some positive constants A0, A1 and A2. Then, for any x ∈ R,
|r(x)| 6 A3, where A3 = max{1,A2 +A1/δ +A0/δ 2}; that is, |r(·)| is bounded, as
desired. �

Proof of Theorem A.3. g(x) 6 b1 exp(b2x2) for some positive constants b1 and b2.
Analogous to the proof of Theorem A.2, it can be readily shown that there exist
constants 0 <C1,C2 < ∞ such that, for any x ∈ R, |r(x)|6C1 exp(C2x2). Then, the
statement of the theorem follows from Lemma A.6. �

We conclude this section with the following lemma.

Lemma A.7. If the assumptions of either Theorem A.1, A.2 or A.3 hold, and if,
additionally, V (−x) =V (x) for all x ∈ R, then the expansion

(
1+ I2

x (h)
)−β

=
(
1+(g(x)κ0(V ))2)−β

−2βg(x)κ0(V )(1+(g(x)κ0(V ))2)−(β+1)

×
(1

2g′′(x)κ2(V )h2)+o
(
h2)

is valid as h→ 0 and β ∈ R.

Proof. The fact that
((

1+ x2)−β
)′

= −2βx
(
1+ x2)−(β+1) means, in particular,

that (
1+(x0 +∆x)2

)−β

=
(
1+ x2

0
)−β −2βx0

(
1+ x2

0
)−(β+1)

∆x+o(∆x) (A.4)
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as ∆x→ 0. Under the assumptions of either Theorem A.1, A.2 or A.3,

Ix(h) = g(x)κ0(V )+
1
2

g′′(x)κ2(V )h2 +o
(
h2)

as h→ 0. Here we have made use of the fact that κ1(V ) = 0 due to the symmetry
of V . Having made the substitutions x0 = g(x)κ0(V ) and ∆x = g′′(x)κ2(V )h2/2+
o
(
h2) in (A.4), we arrive at the conclusion of the lemma. �

A.1.2 Lemmas for Section 2.3.2

In this section, present several lemmas which are used in the proofs of the theorems
in Section 2.3.2.

We assume that {Xi : i = 1, . . . ,n} is a collection of IID random variables with
common PDF f : R→ R+. In particular, this means κ0( f ) = 1.

Consider also a function K :R→R+ such that it is an even PDF and κ2(K)<∞.
It follows that κ0(K) and κ1(K) equal 1 and 0, respectively. The function K(·) is
referred to as the kernel function and the estimator

f̂h(x) =
1
nh

n

∑
j=1

K
(

x−X j

h

)

is referred to as the kernel density estimator of the unknown PDF f . Here, the
bandwidth h = h(n) is such that h(n)→ 0 as n→ ∞.

If f (·) is twice differentiable, we let

C(x) =
f
′′
(x)(

1+
(

f ′(x)
)2
) 3

2

be the curvature of the PDF and

Ĉh1,h2(x) =
f̂ ′′h1

(x)(
1+
(

f̂ ′h2
(x)
)2
) 3

2
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be its kernel density estimator. In what follows, we take f̂ (r)h (x) = f̂ (r)h (x), and

f̂ (r)h (x) =
1

nhr+1

n

∑
j=1

K(r)
(

x−X j

h

)
. (A.5)

When h1 = h2 = h, Ĉh1,h2(·) will be denoted by Ĉh(·).
We wish to derive MISE

(
Ĉh1,h2

)
. Recall that

MISE
(

Ĉh1,h2

)
= E

[ˆ +∞

−∞

(
Ĉh1,h2(x)−C(x)

)2
dx
]

,

or, since the integrand is nonnegative,

MISE
(

Ĉh1,h2

)
=

ˆ +∞

−∞

MSE
(

Ĉh1,h2

)
dx,

where
MSE

(
Ĉh1,h2

)
= E

[(
Ĉh1,h2(x)−C(x)

)2
]

.

By standard properties of expectation and variance, the latter can be rewritten as

MSE
(

Ĉh1,h2 (x)
)
=
(

Bias
(

Ĉh1,h2(x)
))2

+V
[
Ĉh1,h2(x)

]
and so

MISE
(

Ĉh1,h2

)
=

ˆ +∞

−∞

(
Bias

(
Ĉh1,h2(x)

))2
dx+

ˆ +∞

−∞

V
[
Ĉh1,h2(x)

]
dx, (A.6)

where Bias
(

Ĉh1,h2(x)
)
= E

[
Ĉh1,h2(x)

]
−C(x).

We will need the following lemmas.

Lemma A.8. For any s ∈N and IID random variables Z1, . . . ,Zn with mean µ there
exists a positive constant αs depending only on s such that the following inequality
holds:

E

(1
n

n

∑
j=1

(
Z j−µ

))2s
6 αs

ns E
[
Z2s

1
]

.
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Proof. First, let us note that

E

(1
n

n

∑
j=1

(
Z j−µ

))2s
=

(
1
n

)2s

E

( n

∑
j=1

(
Z j−µ

))2s
 .

We will now need the following corollary to the Marcinkiewicz-Zygmund Inequal-
ity (see Small, 2010, Inequality (4.3) on p. 103) valid for independent random vari-
ables Y1, . . . ,Yn with zero mean which establishes the existence of some constant
βm > 0 depending on m only:

E

[∣∣∣∣∣ n

∑
j=1

Yj

∣∣∣∣∣
m]
6 βmn(m−2)/2E

[
n

∑
j=1

∣∣Yj
∣∣m] ,

This inequality, when applied to Yj = Z j−µn, implies that

E

(1
n

n

∑
j=1

(
Z j−µ

))2s
6 1

ns+1 β2sE

[
n

∑
j=1

(
Z j−µ

)2s

]
=

1
ns β2sE

[
(Z1−µ)2s

]
.

From the binomial theorem, we get

E
[
(Z1−µ)2s

]
6

2s

∑
k=0

(
2s
k

)
E
[
|Z1|2s−k

]
|µ|k .

By the Lyapounov inequality (Gut, 2013, p. 129), we have

E
[
|Z1|2s−k

]
|µ|k 6 E

[
Z2s

1
](2s−k)/(2s)E

[
Z2s

1
]k/(2s)

= E
[
Z2s

1
]

for each k = 0,2s. As the sum of binomial coefficients equals 22s, defining αs =

22sβ2s completes the proof of the lemma. �

With the help of Lemma A.8, the following bound on the moments of the KDE
(A.5) is valid.

Lemma A.9. Let X1, . . . ,Xn be IID random variables with PDF f = f (x) possessing
finite second order derivative at some x ∈ R. Further, suppose K(r)(u) exists for all
u ∈ R. If f (·) and K(r)(·) satisfy assumptions of either Theorem A.1, A.2 or A.3,
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and if
´

∞

−∞

(
K(r)(z)

)2s
dz < ∞ for some s ∈ N, then

E
[(

f̂ (r)h (x)−E
[

f̂ (r)h (x)
])2s

]
= O

(
1

nsh2s(r+1)−1

)

as n→ ∞, where f̂ (r)h (·) is the estimator (A.5).

Proof. Indeed, Lemma A.8 implies that

E
[(

f̂ (r)h (x)−E
[

f̂ (r)h (x)
])2s

]
6

αs

ns E

[(
1

hr+1 K(r)
(

x−X1

h

))2s
]

.

The expectation on the right-hand side can be written as

E
[(

1
hr+1 K(r)

(
x−X1

h

))2s
]

= 1
h2s(r+1)−1

´
∞

−∞

(
K(r)(z)

)2s
f (x− zh)dz

= 1
h2s(r+1)−1

(
f (x)
´

∞

−∞

(
K(r)(z)

)2s
dz+o(1)

)
,

where the o(1) step is justified by Theorem A.1, A.2 or A.3. This, when combined
with the previous inequality, proves the lemma. �

Lemma A.9 allows us to demonstrate the following result.

Lemma A.10. Let X1, . . . ,Xn be IID random variables with PDF f = f (x) possess-
ing finite fourth order derivative at some x ∈ R. Suppose also that K(r)(u)→ 0 as
|u| → ∞ for r ∈ {0,1,2} and that f (4)(·) and K(·) satisfy the assumptions of either
Theorem A.1, A.2 or A.3. If nh4→ ∞ as n→ ∞, then

E
[
Ĉh(x)

]
=

E
[

f̂h
′′
(x)
]

(
1+
(
E
[

f̂ ′h(x)
])2
) 3

2
+O

(
1

nh4

)
.

Proof. Taylor’s formula applied to function g(X ,Y ) = X/
(
1+Y 2)3/2 in a neigh-

bourhood of a point (X0,Y0) ∈ R2 yields

X

(1+Y 2)
3
2
=

X0(
1+Y 2

0
) 3

2
+

X−X0(
1+Y 2

0
) 3

2
− 3X0Y0 (Y −Y0)(

1+Y 2
0
) 5

2
+R2, (A.7)
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where the remainder term R2, if written in the Lagrange form, equals

R2 =−
3η

(1+η2)
5
2
(X−X0)(Y −Y0)+

3
(
4η2−1

)
ξ

2(1+η2)
7
2

(Y −Y0)
2 (A.8)

with ξ ∈ (X0,X) and η ∈ (Y0,Y ).
Therefore,

|R2|6 |X−X0| |Y −Y0|+(|X0|+ |X−X0|)(Y −Y0)
2

as max
(

3η/
(
1+η2)5/2

)
= 48
√

5/125< 1, max
(

3
(
4η2−1

)
/

(
2
(
1+η2) 7

2

))
=

384
√

7/2401 < 1 and |ξ | 6 max(|X0| , |X |) 6 |X0|+ |X−X0|. Now let (X ,Y ) =(
f̂h
′′
(x), f̂ ′h(x)

)
and (X0,Y0) =

(
E
[

f̂h
′′
(x)
]
,E
[

f̂
′
h(x)

])
. Then,

|E [R2]|6
√
V
[

f̂h
′′
(x)
](√

V
[

f̂ ′h(x)
]
+

√
E
[

f̂ ′h(x)−E
[

f̂ ′h(x)
]]4)

+O(1)V
[

f̂ ′h(x)
]

,

where we have used the Cauchy-Schwarz inequality. The O-term above can be
justified as follows. Observe first that

E
[

f̂ (r)h (x)
]
=

1
hr

ˆ
∞

−∞

K(r)(u) f (x−uh)du.

By repeated integration by parts of the integral, one can observe that if K(r)(u)→ 0
as |u| → ∞, then the latter expression simplifies to

E
[

f̂ (r)h (x)
]
=

ˆ
∞

−∞

K(u) f (r)(x−uh)du.

Under the conditions of Theorem A.1, A.2 or A.3 on f (r)(·) and K(·) (for r = 2),

E
[

f̂ (r)h (x)
]
= f (r)(x)+

h2

2
f (r+2)(x)κ2(K)+o(h2) (A.9)

as h→ 0 (cf. Henderson and Parmeter, 2015, Section 2.6). Hence, E
[

f̂ (r)h (x)
]
=
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O(1). By Lemma A.9, we obtain

|E [R2]| 6 O
(

1
nh4

)
+O

(
1

n3/2h6

)
+O

(
1

nh3

)
,

= O
(

max
{

1
nh4 ,

1
n3/2h6 ,

1
nh3

})
= O

(
1

nh4

)
,

which concludes the proof of the lemma. �

Let us now turn to deriving an expression for the variance V
[
Ĉh(x)

]
. We will

need a few lemmas again.

Lemma A.11. If nh4→ ∞ as n→ ∞, V
[
Ĉh(x)

]
admits the following decomposi-

tion:

V
[
Ĉh(x)

]
= E


Ĉh(x)−

E
[

f̂h
′′
(x)
]

(
1+
(
E
[

f̂h
′
(x)
])2
) 3

2


2
+O

(
1

n2h8

)
.

Proof. The proof is straightforward based on linear properties of expectations and
Lemma A.10. �

Lemma A.12. Let PDF f = f (x) possesses finite fourth order derivative at some
x ∈ R. Suppose also that K(r)(u)→ 0 as |u| → ∞ for r ∈ {0,1,2} and that f (4)(·)
and K(·) satisfy the assumptions of either Theorem A.1, A.2 or A.3. If nh5→ ∞ as
n→ ∞, then V

[
Ĉh(x)

]
can also be decomposed as follows:

V
[
Ĉh(x)

]
= V[X ]

(1+(E[Y ])2)
3 +

9(E[X ])2(E[Y ])2

(1+(E[Y ])2)
5 V [Y ]− 6E[X ]E[Y ]

(1+(E[Y ])2)
4Cov [X ,Y ]

+O
(

1
n3/2h7

)
,

where X = f̂h
′′
(x) and Y = f̂h

′
(x).

Proof. With the help of (A.7), we can write

E


Ĉh(x)−

X0(
1+Y 2

0
) 3

2

2
= E


 X−X0(

1+Y 2
0
) 3

2
− 3X0Y0 (Y −Y0)(

1+Y 2
0
) 5

2
+R2

2
 ,
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where (X0,Y0) =
(
E
[

f̂
′′
h (x)

]
,E
[

f̂
′
h(x)

])
. Expanding the brackets, the arrive at

E

(Ĉh(x)− X0

(1+Y 2
0 )

3
2

)2
 = E

( X−X0

(1+Y 2
0 )

3
2
− 3X0Y0(Y−Y0)

(1+Y 2
0 )

5
2

)2


+2E

[
R2

(
X−X0

(1+Y 2
0 )

3
2
− 3X0Y0(Y−Y0)

(1+Y 2
0 )

5
2

)]
+E
[
R2

2
]

.

(A.10)

From the proof of Lemma A.10, we infer that

E
[
R2

2
]
6 E

[(
|X−X0| |Y −Y0|+(|X0|+ |X−X0|)(Y −Y0)

2
)2
]

.

Recall that E
[

f̂ (r)h (x)
]
= O(1) and observe that E

[(
f̂ (r)h (x)

)2
]
= O(1). The latter

can be established as follows. By routine calculations, upon using (A.9), we arrive
at

V
[

f̂ (r)h (x)
]
=

1
nh1+2r

ˆ
∞

−∞

(
K(r)(u)

)2
f (x−uh)du+o(n−1).

If f (·) and (K(r)(·))2 satisfy the assumptions of either Theorem A.1, A.2 or A.3,
then the latter integral can be extended to result in Henderson and Parmeter (2015,
pp. 45-50):

V
[

f̂ (r)h (x)
]
=

f (x)R(K(r))

nh1+2r +O
(

1
nh1+2r

)
, (A.11)

where R(W ) =
´

∞

−∞
W 2(u)du.

As nh5→ 0 by assumption, then it follows that E
[(

f̂ (r)h (x)
)2
]
= O(1) as de-

sired. Then, by applying the Cauchy-Schwarz inequality, we get

E
[
R2

2
]
6

√
E
[
|X−X0|4

]√
E
[
|Y −Y0|4

]
+

√
E
[
|X−X0|4

]√
E
[
|Y −Y0|8

]
+2 |X0|

√
V [X ]

√
E
[
|Y −Y0|8

]
+X2

0E
[
|Y −Y0|4

]
+2
√
E
[
|X−X0|4

]√
E
[
|Y −Y0|6

]
+2X0

√
V [X ]

√
E
[
|Y −Y0|6

]
.
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The moments can be estimated as in Lemma A.9:

E
[
R2

2
]
6 O

(
max

{
1

n2h9 ,
1

n3h13 ,
1

n5/2h10
,

1
n2h7 ,

1
n5/2h11

,
1

n2h8

})
= O

(
1

n2h9

)
.

(A.12)
Similarly, the upper bound is obtained for the middle term in (A.10):

E

[
R2

(
X−X0

(1+Y 2
0 )

3
2
− 3X0Y0(Y−Y0)

(1+Y 2
0 )

5
2

)]
6
√
E
[
R2

2
]√

E
[
(|X−X0|+ |X0| |Y −Y0|)2

]
= O

(
1

nh9/2

)(√
V(X)+

√
V(Y )

)
= O

(
1

nh9/2

)
O
(

max
{

1
n1/2h5/2 ,

1
n1/2h3/2

})
= O

(
1

n3/2h7

)
.

(A.13)
On account of Lemma A.11, (A.12) and (A.13), we get

V
[
Ĉh(x)

]
= V[X ]

(1+(E[Y ])2)
3 +

9(E[X ])2(E[Y ])2

(1+(E[Y ])2)
5 V [Y ]− 6E[X ]E[Y ]

(1+(E[Y ])2)
4Cov [X ,Y ]

+O
(

1
n2h8

)
+O

(
1

n3/2h7

)
+O

(
1

n2h9

)
.

Noticing that the sum of the three O-terms equals O
(

1/
(

n3/2h7
))

completes the
proof of the lemma. �

Lemma A.13. Let the kernel K(·) be twice differentiable. Suppose further that the
PDF f (·) and function V (·) = K′(·)K′′(·) satisfy the assumptions of either Theorem
A.1, A.2 or A.3. Then, the covariance of the KDE estimators f̂

′
h(x) and f̂

′′
h (x) from

(A.5) of f
′
(x) and f ′′(x), respectively, equals

Cov
[

f̂
′
h(x), f̂

′′
h (x)

]
= O

(
1

nh3

)
.

Proof. Observe that Cov
[

f̂
′
h(x), f̂

′′
h (x)

]
=E

[
f̂
′
h(x) f̂

′′
h (x)

]
−E

[
f̂
′
h(x)

]
E
[

f̂
′′
h (x)

]
sim-

plifies to

Cov
[

f̂
′
h(x), f̂

′′
h (x)

]
=

1
nh5

ˆ
∞

−∞

K
′
(

x− y
n

)
K
′′
(

x− y
n

)
f (y)dy− 1

n
E
[

f̂
′
h(x)

]
E
[

f̂
′′
h (x)

]
.
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The integral can be written as

1
nh5

´
∞

−∞
K
′ (x−y

n

)
K
′′ (x−y

n

)
f (y)dy = 1

nh4

´
∞

−∞
K
′
(w)K

′′
(w) f (x−hw)dw

= 1
nh4

´
∞

−∞
K
′
(w)K

′′
(w)
(

f (x)−hw f
′
(x)

+1
2h2w2 f

′′
(x)+o

(
h2))dw

=− 1
nh3 f

′
(x)
(´

∞

−∞
wK

′
(w)K

′′
(w)dw

)
+o
(

1
nh2

)
.

Here the o-term is justified by Theorems A.1, A.2 or A.3. We have also used the
fact that K (·) is symmetric around zero and hence its derivatives K

′
(·) and K

′′
(·)

are odd and even functions, respectively. Hence, both
´

∞

−∞
K
′
(w)K

′′
(w)dw = 0

and
´

∞

−∞
w2K

′
(w)K

′′
(w)dw = 0. As o

(
1

nh2

)
= O

(
1

nh3

)
and 1

nE
[

f̂
′
h(x)

]
E
[

f̂
′′
h (x)

]
=

O
(1

n

)
, the conclusion of the lemma follows. �

A.1.3 Lemmas for Section 2.3.3

In this section, we assume that function g : R→ R does not have flat parts. Impor-
tance of the role played by flat parts has already been recognized in the literature
(Müller and Sawitzki, 1991, p. 740).

Lemma A.14. Let g : R→R be a continuous function. Suppose a1 < a2 are points
of local maxima of g. Then, between them there exists at least one point b of local
minimum.

Proof. By the definition of a local maximum, there exist points x1,x2 ∈ (a1,a2) such
that g(x1)< g(a1) and g(x2)< g(a2). Here, xi is located in a neighbourhood of ai for
i ∈ {1,2}. Since g is a continuous function, then in [a1,a2] it attains its minimum at
some point b. Moreover, g(b)6 g(xi)< g(ai), and consequently, b 6= ai, i ∈ {1,2}.
Thus, point b is an interior point of (a1,a2). �

Lemma A.15. Let g : R→R be a continuous function. Suppose a1 < a2 are points
of local minima of g. Then, between them there exists at least one point b of local
maximum.

Proof. Proof is analogous to that of Lemma A.14. �

Lemma A.16. Let g : R→ R be a continuous function. Suppose a1 < a2 are two
consecutive points of local maxima of g. Then, between them there exists only one
point b of local minimum.
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Proof. By Lemma A.14, there exists at least one such minimum. If there were more
than one minimum, then between them by Lemma A.15 there would be yet another
local maximum. In this case, a1 and a2 will not be consecutive local maxima. �

Lemma A.17. Let g : R→ R be a continuous function. Suppose a1 < a2 are two
consecutive points of local minima of g. Then, between them there exists only one
point b of local maximum.

Proof. Proof is analogous to that of Lemma A.16. �

Lemma A.18. Let g : R→ R be such that limx→+∞ g(x) = 0. Let g be monotoni-
cally decreasing in a neighbourhood of +∞, i.e., there exists an M ∈ R such that g

decreases in (M,+∞). Then, the last (the rightmost) extremum is a local maximum.

Proof. Let us define ξ = inf{m ∈ R : function g decreases in (m,+∞)}. Then, ξ is
a point of maximum followed by no extrema. �

134



Appendix B

For Chapter 3

This appendix uses material from the following article:

• K. Mayorov, J. Hristoskov and N. Balakrishnan. On a family of weighted
Cramér-von Mises goodness-of-fit tests in operational risk modeling. Journal

of Operational Risk, forthcoming 2017.

The material is reproduced with permission from Incisive Media.

B.1 Auxiliary Results

Lemma B.1. Let Λθ (a) =
√

θ 2−2ai,1 a ∈ R, θ ∈ (0,∞) and T ∈ [0,∞). We have

(i) The characteristic function of
´ T

0 Y 2
θ
(t)dt is equal to

E
[

exp
(

ia
ˆ T

0
Y 2

θ (t)dt
)]

=

√
Λθ (a)exp(T θ)(

θ − ai
θ

)
sinh(T Λθ (a))+Λθ (a)cosh(T Λθ (a))

;

(ii) The characteristic functions of Zθ ,x(t) and Zθ (t) are equal to

E
[
exp
(
iaZθ ,x(T )

)]
= E [exp(iaZθ (T ))]

×exp
(

iax2 sinh(T Λθ (a))
θ sinh(T Λθ (a))+Λθ (a)cosh(T Λθ (a))

)
1The branch of the square root is chosen consistent with the branch chosen for a = 0.
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and

E [exp(iaZθ (T ))] =

√
Λθ (a)exp(T θ)

θ sinh(T Λθ (a))+Λθ (a)cosh(T Λθ (a))
, (B.1)

respectively.

Proof. Let us establish Part (ii). The proof of Part (i) is analogous. Let

ϕS(a) = E [exp(iaS)] and MS(a) = E [exp(aS)] ,

a ∈R, be the characteristic function and moment-generating function, respectively,
of a random variable S.

Let us consider an OU process {X∗1,x∗(t), t > 0} with parameter θ = 1 and a
starting value x∗ ∈ R and the corresponding Z∗1,x∗(T ) =

´ T
0 (X∗1,x∗(t))

2 dt for 0 6
T < ∞.

Dankel (1991, pp. 569-571) derived expressions of the Laplace transforms

M´ T
0 Y 2

1 (t)dt(−a) and MZ∗1,x∗(T )
(−a)

for a> 0. The expressions remain well-defined for a >−1/2 and, in particular, for
any a∈ (−δ ,δ ) with δ ∈ (0,1/2). In this case, it is known (Grimmett and Stirzaker,
2001, p. 184) that

MZ∗1,x∗(T )
(ia) = ϕZ∗1,x∗(T )

(a)

for all a ∈R. Equation (3.9) implies (1/
√

θ)X∗1,x∗(θ t) d
= Xθ ,x(t) for all t > 0, where

x = x∗/
√

θ . Then, the claim of Part (ii) follows from the results of Dankel (1991)
after replacing a by −ia/θ 2, T by θT , and x∗ by

√
θx. �

Remark. The Laplace transform of Zθ ,0(T ) was also given in Liptser and Shiryaev
(2001, p. 232). For T = 1, the Laplace transforms were obtained in Gao et al. (2003,
pp. 7-8) using the Hadamard Factorization Theorem.

The next lemma establishes a useful central limit theorem.

Lemma B.2. We have, as T → ∞:

(i) ´ T
0 Y 2

θ
(t)dt−T/(2θ)√

T/(2θ 3)

d→ N(0,1);
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(ii) ´ T
0 X2

θ
(t)dt−T/(2θ)√

T/(2θ 3)

d→ N(0,1).

Proof. Let us prove Part (ii). Let Rθ (T ) =
Zθ (T )−T/(2θ)√

T/(2θ 3)
. The result will follow by

Lévy’s continuity theorem (Gut, 2013, pp. 237-239) if we show

E[exp(iaRθ (T ))]→ exp(−a2/2) (B.2)

as T → ∞, for all a ∈ R.
With the help of the previous lemma, we compute

E [exp(iaRθ (T ))] = exp
(
−1

2 ia
√

2T θ + 1
2T θ

)
×

√
2wa,θ (T )exp

(
(T θ)3/4wa,θ (T )

)
(
(T θ)1/4+wa,θ (T )

)
exp
(

2(T θ)3/4wa,θ (T )
)
−(T θ)1/4+wa,θ (T )

,

where wa,θ (T ) =
√√

T θ −2
√

2ia.2

Firstly, let us demonstrate that

lim
T→∞

(
−1

2
ia
√

2T θ +
1
2

T θ − 1
2
(T θ)3/4 wa,θ (T )

)
=−a2

2
. (B.3)

For brevity, let L denote the left-hand side of (B.3). Then, upon rewriting the
expression under the limit sign as

−1
2 ia
√

2T θ + 1
2T θ − 1

2 (T θ)3/4 wa,θ (T ) = 1
2

((
T θ − ia

√
2T θ

)
−
√

(T θ)2−2
√

2iaT θ
√

T θ

)

and multiplying and dividing the right-hand side of the last equality by
(

T θ − ia
√

2T θ

)
+√

(T θ)2−2
√

2iaT θ
√

T θ , we arrive at

2The branch of the square root is chosen consistent with the branch chosen for a = 0.
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L = 1
2 lim

T→∞

−2a2T θ

T θ−ia
√

2T θ+
√

(T θ)2−2
√

2iaT θ
√

T θ

=−a2

2 lim
T→∞

1(
1
2−ia 1√

2T θ

)
+ 1

2

√
1− 2

√
2ia√

T θ

=−a2

2 ,

as desired.
Secondly, let us demonstrate that

lim
T→∞

√√√√ 2wa,θ (T )(
1−w∗a,θ (T )

)
(T θ)1/4 +

(
1+w∗a,θ (T )

)
wa,θ (T )

= 1, (B.4)

where w∗a,θ (T ) = exp
(
−2(T θ)3/4 wa,θ (T )

)
.

Indeed, the fact that w∗a,θ (T )→ 0 as T → ∞ and

lim
T→∞

(T θ)1/4√√
T θ −2

√
2ia

= 1,

yield (B.4).
On combining (B.3) and (B.4), we readily obtain (B.2). This concludes the

proof of Part (ii). The proof of Part (i) is analogous. �

Remark. We observe that Part (i) is a particular case of a result of Bhattacharya
(refer to Bhattacharya (1982, p. 188, Theorem 2.1) or Bhattacharya and Waymire
(2009, p. 440, Proposition 13.2)). Indeed, the result states that

´ T
0

(
Y 2

θ
(t)−1/(2θ)

)
dt

√
T

d→ N(0,σ),

where σ2 = 2
´

∞

−∞
(x2 − 1/(2θ))L −1

θ
(1/(2θ)− x2/(2θ))mθ (x)dx, where L

θ
=

1
2

d2

dx2 −θx d
dx is the infinitesimal generator for (3.8). But, Lθ (x2/(2θ)) = 1/(2θ)−

x2. By simple calculations, then σ2 = 1/
(
2θ 3).

Remark. As part of Csörgő and Horváth (1988, Theorem 3.4), Part (i) is established
for the stationary OU process parameterized differently from (3.8) (the proof is
based on Mandl (1968, p. 94, Theorem 9)). In fact, in Csörgő and Horváth (1988)
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the OU process actually solves

dξ (t) =−ξ (t)dt +
√

2dW (t). (B.5)

This is a zero-mean process with covariance function E [ξ (t),ξ (s)] = exp(−|t− s|).
It is not hard to see that ξ (t) d

=
√

2Y1(t), where {Y1(t), t > 0} is the OU process
solving (3.8) for θ = 1.

We will need the following two lemmas.

Lemma B.3. We have ˆ 1

U(n)

e2
n (t)

(1− t)2 dt d→ X ,

where X is an exponentially distributed random variable with mean 1.

Proof. Since
´ 1

U(n)

e2
n(t)

(1−t)2 dt = n
(
1−U(n)

)
, the result follows. �

Lemma B.4. For k(n) = n/ ln2 n, as n→ ∞, we have

(i)
´U(k(n))

0
e2

n(t)
(1−t)2 dt = oP(1).

(ii)
´ 1

U(n−k(n))

e2
n(t)
t2 dt = oP(1).

Proof. Observe that

ˆ U(k(n))

0

e2
n(t)

(1− t)2 dt 6
1

(1−U(k(n)))
2

ˆ U(k(n))

0
e2

n(t)dt

and ˆ 1

U(n−k(n))

e2
n(t)
t2 dt 6

1
U2
(n−k(n))

ˆ 1

U(n−k(n))

e2
n(t)dt.

Since nU(k(n))/k(n) P→ 1 and nU(n−k(n))/(n−k(n)) P→ 1 (Csörgő and Horváth, 1993,

p. 335, Equation (5.3.111)), then U(k(n))
P→ 0, U(n−k(n))

P→ 1. With this and Propo-
sition 3.4 we have

ˆ U(k(n))

0

e2
n(t)

(1− t)2 dt 6 OP(1)oP(1) and
ˆ 1

U(n−k(n))

e2
n(t)
t2 dt 6 OP(1)oP(1),

which establish Part (i) and Part (ii), respectively. �
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Lemma B.5. We have, as T → ∞, wp1:
(i) ´ T

0 Y 2
θ
(t)dt

T
→ 1

2θ
;

(ii) ´ T
0 X2

θ
(t)dt

T
→ 1

2θ
.

Proof. Part (i). This follows from the fact that {Yθ (t), t > 0} is ergodic and the
expectation Emθ

[
Y 2

θ
(t)
]
= 1/(2θ).

Part (ii). Every ergodic process is stationary. Hence, {X
θ
(t), t > 0} is not er-

godic. However, the process is asymptotically stationary in the sense of Parzen
Parzen (1962a) as

lim
t→∞

E [Xθ (t)Xθ (t + v)] =
1

2θ
exp(−θ |v|)

for any v> 0 and exp(−θ |v|)/(2θ) = E [Yθ (t)Yθ (t + v)]. The validity of the state-
ment of Part (ii) will follow (Parzen, 1962a) if we prove that for all v > 0 there
exists a positive number q such that

lim
t→∞

tqCt (v) = 0, (B.6)

where
Ct (v) =

1
t

ˆ t

0
cov [Xθ (s)Xθ (s+ v) ,Xθ (t)Xθ (t + v)] ds.

But,

cov[Xθ (s)Xθ (s+ v),Xθ (t)Xθ (t + v)] = cov[Xθ (s)Xθ (t),Xθ (s+ v)Xθ (t + v)]

+cov[Xθ (s)Xθ (t + v),Xθ (t)Xθ (s+ v)], or

cov[Xθ (s)Xθ (s+ v),Xθ (t)Xθ (t + v)] = 1
4θ 2 (exp(−2θ |t− s|)
−exp(−θ(|t− s|+ t + s)))

−exp(−θ(|t− s|+ t + s+2v))

+2exp(−2θ(t + s+ v))

−exp(−θ(|t− s+ v|+ t + s+ v))

+exp(−θ(|t− s+ v|+ |t− s− v|))
−exp(−θ(|t− s− v|+ t + s+ v))).
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Assuming v6 t, we readily obtain that for any q∈ [0,1) (B.6) holds true. For t→∞,
the case v > t is only possible when v = ∞. In this case, for any q ∈ [0,1),

lim
t,v→∞

tqCt (v) = 0.

Thus, (B.6) is true for all v> 0 and any q ∈ [0,1). This completes the proof of Part
(ii) of Lemma B.5. �

Lemma B.6. Define the integral operator K with kernel k(·, ·) as

(Kg)(t) =
ˆ T

0
k(t,s)g(s)ds

with kernel
k(t,s) =

1
2θ

(exp(−θ |t− s|)− exp(−θ (t + s))) ,

where θ > 0, g ∈ L2([0,T ]) and t ∈ [0,T ]. The spectrum σ(K) of K satisfies

(i) σ(K)\{0}= {λk | λk > 0 is an eigenvalue and k ∈ N} if T > 0 is finite;

(ii) σ(K) = [0,1/θ 2] is purely continuous if T =+∞.

Proof. First note that K, a linear operator acting in the separable Hilbert space
L2([0,T ]), is self-adjoint as the kernel k(t,s) = k(s, t) is symmetric (Pugachev and
Sinitsyn, 1999, p. 521).
Part (i). It is known (Reed and Simon, 1980, p. 210) that K is Hilbert-Schmidt (and,
in particular, bounded) if and only if

ˆ T

0

ˆ T

0
(k(t,s))2 dt ds < ∞.

The evaluation of the left-hand side yields

ˆ T

0

ˆ T

0
(k(t,s))2 dt ds=

4T θ +4exp(−2T θ)+ exp(−4T θ)+8T θ exp(−2T θ)−5
16θ 4 ,

(B.7)
which is finite for 0 6 T < ∞. It is readily seen that the operator K corresponds to
Zθ ,x(T ).

As the k(t,s) = k(s, t) for all 0 6 t,s 6 T , K is a self-adjoint Hilbert-Schmidt
operator, its spectrum σ(K) consists of no more than a countable set of eigenvalues
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and the point 0 (Pugachev and Sinitsyn, 1999, p. 507).
In Corlay and Pagès (2015), the expressions of the eigenvalues of K are deter-

mined, so

σ(K)\{0}=
{

λn > 0, n ∈ N | λn =
1

ω2
n+θ 2 ,where

θ sin(T ωn)+ωn cos(T ωn) = 0,
0 < ω1 < · · ·< ωn < .. .} .

This proves the first part of the Lemma.
Part (ii). It follows from (B.7) that

´
∞

0

´
∞

0 (k(t,s))2 dt ds is infinite. Hence, the
operator K is not Hilbert-Schmidt on L2([0,∞)). However, it is still bounded. This
can be demonstrated as follows.

Let us observe that the integral equation (Kg)(t) = λg(t) can be rewritten as´
∞

0 k∗(t,s)g∗(s)ds = λ ∗g∗(t), where k∗(t,s) = 1
2 (exp(−|t− s|)− exp(−(t + s))) ,

g∗(t) = g(t/θ), and λ ∗ = θ 2λ . From Krein (1953, pp. 622-623) and Kostrikin and
Makarov (2008, p. 2068), we know that to k∗(t,s) there corresponds a bounded in
L2([0,∞)) operator K∗g∗(t) =

´
∞

0 k∗(t,s)g∗(s)ds.
The operator K∗ is the resolvent of the Dirichlet one-dimensional Laplacian

−d2/dt2 at the point −1 which has purely continuous spectrum3 filling in [0,1].
Then, by the Spectral Mapping Theorem (Reed and Simon, 1980, p. 222) we con-
clude that the spectrum of K is

σ(K) =

[
0,

1
θ 2

]
. (B.8)

This completes the proof of Lemma B.6. �

Another result from Corlay and Pagès (2015) is that

lim
n→∞

(
ωn−

π

T

(
n− 1

2

))
= 0.

For large n, ωn ≈ π

T

(
n− 1

2

)
which implies that as T → ∞ and n→ ∞, λn→ 1/θ 2.

Since {Xθ ,x(t), t ∈ [0,∞)} is a Gaussian process with continuous covariance
k(·, ·), it is known (see Shorack and Wellner (2009, pp. 201–203) and Pavliotis

3In fact, it is purely absolutely continuous. For the definition of the purely absolutely continuous
spectrum, see Reed and Simon (1980, p. 231).
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(2014, pp. 17–23)) that its Karhunen-Loéve expansion is

Xθ ,x(t) =
∞

∑
n=1

√
λnξnbn(t), (B.9)

where t ∈ [0,T ] and {ξn}∞

n=1 are IID distributed standard Gaussian random variables
and bn(t) is the normalized eigenfunction corresponding to eigenvalue λn.

Due to the orthonormality of {bn(t)}∞

n=1, from (B.9), we readily get:

Zθ ,x(T ) =
∞

∑
n=1

λnξ
2
n . (B.10)

As byproducts, for an important case of the zero-start Zθ (T ) from (B.10) and
(B.1), we can determine the sum of the eigenvalues and the sum of their squares.
Indeed, as in Anderson and Darling (1952, p. 200) and Shorack and Wellner (2009,
p. 213), we get

∞

∑
n=1

λn =

ˆ T

0
k(t, t)dt

and
∞

∑
n=1

λ
2
n =

ˆ T

0

ˆ T

0
(k(t,s))2 dt ds.

Using the fact that
´ T

0 k(t, t)dt = (2θT +exp(−2θT )−1)/(4θ 2) and (B.7), we
arrive at

∞

∑
n=1

λn =
2θT + exp(−2θT )−1

4θ 2 ,

∞

∑
n=1

λ
2
n =

4T θ +4exp(−2T θ)+ exp(−4T θ)+8T θ exp(−2T θ)−5
16θ 4 .

Remark. We also note that conclusion (B.8) is readily reached by applying results
of Kozhukhar (1992, Example 1 and Example 3) on the spectrum of compact per-
turbations of Wiener-Hopf operators.
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Appendix C

For Chapter 4

C.1 Auxiliary Results

Theorem C.1 (Theorem 2.1 in Csörgő et al. (1993)). Let −∞ 6 a < b 6 ∞, µ be
a measure on (a,b) and {ξ (t),a < t < b} be a real-valued µ-measurable stochastic
process with finite mean. We assume that there are constants r > 1 and C > 0 such
that

E [|ξ (t)|r]6C (E [|ξ (t)|])r for all a < t < b.

Then, ˆ b

a
|ξ (t)|µ(dt)< ∞ wp1

if and only if ˆ b

a
E [|ξ (t)|]µ(dt)< ∞.

Corollary C.2 (Corollary 2.2 in Csörgő et al. (1993)). Let 0 < p < ∞, −∞ 6 a <

b 6 ∞, and {η(t),a < t < b} be a Gaussian process with E[η(t)] = 0 and σ2(t) =

V[η(t)]. Then,

P

(ˆ b

a
|η(t)|pdt < ∞

)
=

1, if
´ b

a σ p(t)dt < ∞,

0, if
´ b

a σ p(t)dt = ∞.

Lemma C.3. Let h = h(x) be the hazard rate of the standard Gaussian distribution
N(0,1), i.e., h(x) = ϕ(x)/(1−Φ(x)). Then,

1. h(x)/x→ 1 as x→ ∞;

144



Ph.D. Thesis – K. Mayorov McMaster University – Mathematics & Statistics

2. h = h(x) is a strictly increasing function for all x ∈ R.

Proof. The first part follows by an application of L’Hôpital’s rule.
Let us now establish the second part. Since (x+ t)2/2> x2/2+ xt, we have

e−
(x+t)2

2 6 e−
x2
2 e−xt

with equality holding only if t = 0. Therefore, for x > 0,

ˆ
∞

x
e−

τ2
2 dτ =

ˆ
∞

0
e−

(x+t)2
2 dt < e−

x2
2

ˆ
∞

0
e−xtdt =

1
x

e−
x2
2 .

Thus, for x > 0, we have 1−Φ(x)< ϕ(x)/x, or equivalently,

ϕ(x)> x(1−Φ(x)). (C.1)

Inequality (C.1) can also be written as h(x) > x. Obviously, inequality (C.1) holds
for x6 0 as well. Hence, w(x) = ϕ(x)−x(1−Φ(x)) is strictly positive for all x∈R.
Since

h′(x) =
h(x)w(x)
1−Φ(x)

,

we conclude that the map x 7→ h(x) is a strictly increasing function for all x∈R. �

Remark. 1. The function w(x) introduced in the proof is strictly decreasing for
x ∈ R as w′(x) = Φ(x)−1 < 0 for all x ∈ R;

2. We also observe that limx→+∞ w(x) = 0. Indeed, for x > 0, the inequality
0 < w(x)< ϕ(x) and the Squeeze Theorem imply the result.

Lemma C.4. For all β 6 2,

1. I1(β ) =
´ 1

0 ϕ2(Φ−1(t))/(1− t)β dt < ∞;

2. I2(β ) =
´ 1

0 (Φ
−1(t))2ϕ2(Φ−1(t))/(1− t)β dt < ∞.

Proof. To establish convergence of both integrals, due to nonnegativity of the inte-
grands and the fact that 1/(1− t)β 6 1/(1− t)2 for all t ∈ [0,1), it is sufficient to
consider β = 2. Then, the claim of the Lemma will follow from the Comparison
Test of convergence of improper integrals.
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Part 1. Making the change of variable x = Φ−1(t), the integral, for β = 2, be-
comes I1(2) =

´
∞

−∞
h2(x)ϕ(x)dx. Due to Part 2 of Lemma C.3 and the fact that

h(0) =
√

2/π , the integral
´ 0
−∞

h2(x)ϕ(x)dx < 1/π < ∞.
As limx→∞(h2(x)ϕ(x))/(x2ϕ(x))= 1, where we have used Part 1 of Lemma C.3,

by the Limit Comparison Test,
´

∞

0 h2(x)ϕ(x)dx converges or diverges depending on
whether

´
∞

0 x2ϕ(x)dx converges or diverges. But, the latter integral is simply the
variance of the standard Gaussian distribution, and is equal to 1. This completes the
proof of Part 1 of the Lemma.
Part 2. The proof is analogous to that of Part 1, except

´
∞

0 x4ϕ(x)dx should be
considered in the last step. This integral converges and is equal to κ/2 = 3/2,
where κ = 3 is the kurtosis of the standard Gaussian distribution. �

Lemma C.5. The following three integrals are finite:

1.
´ 1

0

√
tϕ(Φ−1(t))
(1−t)3/2 dt;

2.
´ 1

0

√
tΦ−1(t)ϕ(Φ−1(t))

(1−t)3/2 dt;

3.
´ 1

0
Φ−1(t)ϕ2(Φ−1(t))

(1−t)2 dt;

Proof. Part 1. By the Comparison Test, it is sufficient to show that
´ 1

0 ϕ(Φ−1(t))/(1−
t)3/2dt converges. The latter integral equals

´
∞

−∞

√
h3(x)ϕ(x)dx. As in the proof of

Lemma C.4, it can be readily shown that
´ 0
−∞

√
h3(x)ϕ(x)dx < ∞. Since

lim
x→∞

√
h3(x)ϕ(x)/

√
x3ϕ(x) = 1,

by the Limit Comparison Test,
´

∞

0 h3/2(x)
√

ϕ(x)dx will converge or diverge de-
pending on whether

´
∞

0

√
x3ϕ(x)dx converges or diverges. We can partition

ˆ
∞

0

√
x3ϕ(x)dx =

ˆ 1

0

√
x3ϕ(x)dx+

ˆ
∞

1

√
x3ϕ(x)dx.

The first integral in the sum is finite as the integrand is a bounded continuous func-
tion on [0,1]. Also,

´
∞

1

√
x3ϕ(x)dx6

´
∞

−∞
x2
√

ϕ(x)dx, and the integral on the right-
hand side equals 21/2(2π)1/4V[X ] = 4

√
128π , where X is an N(0,

√
2) distributed

random variable. Thus,
´

∞

1

√
x3ϕ(x)dx converges by the Comparison Test. This

completes the proof of Part 1.
Parts 2 and 3. The proof is analogous to that of Part 1. �
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Lemma C.6. Let Z =(X ,Y ) be a bivariate Gaussian random variable with E[X ] = 0,
E[Y ] = 0. Then, there exists a constant C > 0 such that E

[
|XY |2

]
6C (E [|XY |])2.

Proof. In Nabeya (1951), it is shown that if V[X ] = σ2, V[Y ] = γ2 and corre-
lation ρ , then E [|XY |] = 2σγΩ(ρ)/π , where Ω(ρ) = ρ arcsinρ +

√
1−ρ2. It

is known that E
[
|XY |2

]
= σ2γ2(1+ 2ρ2). Since maxρ∈[0,1] {1/Ω2(ρ)} = 1 and

maxρ∈[0,1] {1+2ρ2} = 3, it is readily seen that if C = 3π2/4, then E
[
|XY |2

]
6

C (E [|XY |])2. �
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