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ABSTRACT 

Computer vision has been developed rapidly in the last few decades and it has 

been used in a variety of fields such as robotics, autonomous vehicles, traffic 

surveillance camera etc. nowadays. However, when we process these high-resolution 

raw materials from the cameras, it brings a heavy burden to the processors. Because of 

the physical architecture of the CPU, the pixels of the input image should be processed 

sequentially. So even if the computation capability of modern CPUs is increasing, it is 

still unable to make a decent performance in repeating one single work millions of times.  

The objective of this thesis is to give an alternative solution to speed up the 

execution time of processing images through integrating popular image recognition 

algorithms (SURF and FREAK) on GPUs with the help of CUDA platform developed 

by NVIDIA, to speed up the recognition time. 

The experiments were made to compare the performances between traditional 

CPU-only program and CUDA program, and the result show the algorithms running on 

CUDA platform have a significant speedup.   
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CHAPTER 1: INTRODUCTION 

1.1. Computer Vision 

Computer vision is a field that combines biological science and engineering and 

studies how to reconstruct, interpret and understand a three-dimensional scene from its 

two-dimensional images. The goal of computer vision is to model and mimic the visual 

system of human beings through computer software and hardware and build 

autonomous systems [1][2][3]. 

Researchers in computer vision have been developing mathematical techniques 

for replicating the visual system of a human being on computers and rebuild the three-

dimensional world from two-dimensional images. However, replicating such visual 

system has been proven to be difficult. Letting our computers to understand a picture at 

the same level as a human being, even a child, is still being considered as an 

untouchable goal. Part of the reasons are that computer vision is an inverse problem, 

which means computers need to rebuild the unknowns without enough information 

given, and lots of details of the real world would be lost during the formation of 2D 

images [4]. 

Beginning in the late 1960s, the concept of computer vision first appeared at 

universities pioneering artificial intelligence and robotics [4]. It originally aimed to 



M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering 

 

2 

 

mimic the visual system of human beings, as a stepping stone to endowing robots with 

intelligent behavior. In 1966, Gerald Jay Sussman in MIT achieved it in his summer 

project, by equipping a computer with a camera and having the computer "describe 

what it saw" [5][6].  

The main difference between computer vision and the pre-existing field of digital 

image processing at that period was a desire to obtain the three-dimensional structure 

from images to reach the level of full scene understanding [4]. In the 1970s, researches 

in computer vision formed the stepping stone for many of the algorithms existing today, 

for example detecting edges from images [7], non-polyhedral objects modeling [8][9], 

labeling of lines [10] and recovering 3D structure and camera motion [11][12]. 

In the 1980s, more rigorous mathematical analysis were implemented at the 

quantitative aspects of computer vision, including the concept of scale-space, the 

derivation of shape from various information such as shading and texture.  

A significant development in computer vision was achieved during the 1990s, 

which was the increased interaction between the fields of computer graphics and 

computer vision [13]. With the help of image morphing techniques [14], we could create 

new images by manipulating the pictures from real world directly. Later applications 

like view interpolation and panoramic image stitching were all benefit from it. 



M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering 

 

3 

 

Nowadays, the trend of computer vision is the connection between feature based 

methods and machine learning techniques. With the help of machine learning 

techniques, it’s possible to learn objects more efficiently and even without human 

supervision. New approaches to improve the efficiency of the learning and recognition 

processes through both hardware and software are also proposed frequently [15][16].  

As Table 1.1.1 shows, computer vision system can be divided into three levels 

from low to high by the information gained from it. Higher-level computer vision 

systems rely on low-level processes to perform accurately. For example, high-level 

operation, for instance object recognition, needs the information (features) extracted 

from low-level processes (feature detection and feature description).  

Hierarchy Description 

Low-level Process image for feature extraction (edges, corners or blobs). 

Middle-level 
Object recognition, motion analysis, and 3D reconstruction. Using 

features obtained from the low-level vision. 

High-level 

Interpretation of the evolving information provided by the middle-

level vision as well as directing what middle and low-level vision 

tasks should be performed. 

Table 1.1.1 Computer Vision Hierarchy 
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1.2. Computer Vision on Autonomous Vehicles 

An autonomous car is a vehicle that can sense and recognize its surrounding 

environment and navigate without human input [17]. For human beings, we can easily 

obtain the information of our surrounding environment by the senses like vision and 

hearing. However, for autonomous vehicles, they gather the environment information 

from sensors. Thus, the quality and comprehensiveness of the data coming from sensors 

play an important role for autonomous vehicles [18].  

 

1.3. History of Autonomous Vehicles  

The history of autonomous vehicles can be dated back to the 1920s. A radio-

controlled vehicle called “linrrican wonder” was demonstrated in 1925 on New York 

City streets. The linrrican wonder was equipped with a transmitting antennae and was 

operated by a second car that followed it. The following car was used to send out radio 

signals that could be caught by the transmitting antennae, then the antennae transferred 

the signals to circuit-breakers that directed the movements of the vehicle [19].  

Promising experiments of autonomous vehicles took place in the 1950s. In 1953, 

RCA Labs produced a miniature car that was controlled by wires laid in a pattern on a 

laboratory floor. This system inspired some engineers and they decided to implement 
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such system in actual highway installations. In 1958, a full size system was developed 

successfully. In that system, the vehicle received the signals send by a series of detector 

circuits which were buried along the edge of the street. With the help of General Motors, 

the system were equipped with special radio receivers and visual devices to simulate 

automatic steering, accelerating and brake control [20].  

The first self-sufficient and truly autonomous cars appeared in the 1980s. A vision-

guided Mercedes-Benz robotic van successfully ran on streets without traffic at a speed 

of 63 kilometers per hour [21]. In the same decade, the Autonomous Land Vehicle (ALV) 

project in the United States achieved the first road-following system using lidar, 

computer vision and autonomous robotic control to direct a robotic vehicle at speeds 

up to 31 kilometers per hour [22][23]. HRL Laboratories developed the first off-road 

map and sensor based autonomous navigation on the ALV project. The car successfully 

passed 610 meters with various terrain. Since then, lots of companies and research 

organizations have developed working prototype autonomous vehicles.  

In 1996, Alberto Broggi started a project which worked on enabling a modified 

traditional vehicle to follow the normal lane marks in an unmodified highway [24]. This 

vehicle only had two camera sensors and used stereoscopic vision algorithms to obtain 

the information of its surrounding environment. 

In the 2010s, major automotive manufacturers, for example General Motors, Audi, 
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Mercedes Benz, and BMW are building their own driverless vehicle systems. Besides, 

some internet companies began to show the interests in autonomous vehicles. Google 

began developing its self-driving vehicles in 2009 [25].  

In July 2013, some of the states in U.S. have allowed autonomous vehicles in 

traffic. Back then, fully autonomous vehicles are not yet available to the public, the car 

models only have limited autonomous functions, such as adaptive cruise control, lane 

assist and parking assistant [26]. In 2014, SAE (Society of Autonomous Engineers) 

published a standard for autonomous vehicles which identified six levels of driving 

automation, as shown in Figure 1.3.1.  

Figure 1.3.1 The Levels of Automation [27] 
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In October 2016, Tesla Motor announced that the tesla vehicles were built with the 

necessary hardware to allow the automation capability to reach SAE Level 5 (Full 

Automation). However, full automation is only likely after millions of miles of testing, 

and approval by authorities [28].  

 

1.4. Censors on Autonomous Vehicles  

Autonomous Vehicles use different sensors to obtain information of the 

surrounding environment. The most commonly used sensors are LADAR (LAser 

Detection and Ranging) [29], electromagnet wave radar, ultrasonic radar and passive 

vision sensor. Different kinds of sensor have different defects brought by their structure 

and mechanism. Figure 1.2.1 to Figure 1.2.4 illustrate the evaluations of these sensors 

in ten different aspects through a decagon representation.  

LADAR, which stands for laser detection and ranging, is a measuring device that 

detects the distance to an object through a laser light. As Figure 1.4.1 shows, LADAR has 

a good resolution and is capable of working in both day and night circumstance, but it 

will be disrupted easily by rain drops and snow. LADAR is also good at detection 

objects in long distance, however it could not detect obstacles within a short range. The 

most important factor which limits the popularization of LADAR is the cost. The price 
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of one LADAR device ranges from tens to even thousands times more than a normal 

electromagnet wave radar.  

Figure 1.4.1 Evaluations of LADAR 

Electromagnet wave radar uses the radio wave with higher wave length to 

determine the range of objects. Figure 1.4.2 shows the evaluations of the electromagnet 

wave radar. Compared to LADAR, electromagnet wave radar has a good adaption to 

different brightness, besides, it can work properly in extreme weather situation.  

Electromagnet wave radar is very effective in detecting speeds. Although the precision 

is slightly lower than LADAR, electromagnet wave radar has been widely used in 

autonomous vehicles due to its good performance and most importantly, its relatively 

lower price.  
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 Figure 1.4.2 Evaluations of Electromagnet Wave Radar 

Figure 1.4.3 Evaluations of Ultrasonic Radar 
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Ultrasonic radar is one kind of radars that acquires the distance information from 

the obstacle to the radar by emitting a beam of ultrasonic wave [30]. As shown in Figure 

1.4.3, ultrasonic radar is good at detecting the nearby objects, and it can be easily 

equipped onto a vehicle. However, it cannot detect the speed of the objects.   

As mentioned above, these radars neither cannot recognize complicated shapes 

nor detect colors, which means an autonomous vehicle can hardly read street signs or 

understand street signals only by radars. Therefore, we need passive vision sensor to be 

the ‘eyes’ of the autonomous vehicles [31]. Passive vision sensors, in short, are the 

cameras, which can record digital information of surroundings. After pictures taken 

from the cameras, computer vision will be applied as a complementary method through 

analyzing the images taken from censor cameras to further increase the reliability and 

intelligence of autonomous vehicles by providing the abilities of the street sign and 

street signal recognition and unexpected obstacles detection such as pedestrians on the 

street, under the conditions where active vision techniques say radar or LADAR can 

not perform well. 

Figure 1.4.4 pictures the evaluations of the passive vision censor. Similar to human 

beings’ eyes, the performance of the passive vision censor will be affected by the 

brightness and weather. But it is able to detect and distinguish complicated shapes and 
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colors, which is impossible for the other three kinds of radars. 

Figure 1.4.5 illustrates a combination of Figure 1.4.1 to Figure 1.4.4. To build a 

reliable autonomous vehicle system, it is necessary to combine the information acquired 

by these censors to eliminate blind spots of one specific censor. As an example, Figure 

1.4.6 shows the how the various sensors been applied to a Google autonomous vehicle 

to establish a reliable autonomous driving system. 

 

 

Figure 1.4.4 The Evaluations of Passive Vision Sensor 
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Figure 1.4.5 Combination of the of Four Sensors 

Figure 1.4.6 Google Autonomous Vehicle 
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1.5. Other Applications 

Besides the autonomous car, computer vision is being applied nowadays in a wide 

variety of real-world applications, such as: 

• Surveillance: monitoring for intruders, analyzing highway traffic, and 

monitoring pools for drowning victims [32];  

• Optical Character Recognition (OCR): reading words like handwritten 

postal codes on letters and automatic number plate recognition [33]; 

• Machine inspection: rapid parts inspection for quality assurance using stereo 

vision with specialized illumination to measure tolerances on aircraft wings 

or auto body parts or looking for defects in steel castings using X-ray vision 

[34]; 

• 3D model building (photogrammetry): fully automated construction of 3D 

models from aerial photographs used in systems such as Google Maps; 

• Match move: merging computer-generated imagery (CGI) with live action 

footage by tracking feature points in the source video to estimate the 3D 

camera motion and shape of the environment. Such techniques are widely 

used in Hollywood; they also require the use of precise matting to insert new 
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elements between foreground and background elements [35]. 

• Motion capture (mocap): using retro-reflective markers viewed from 

multiple cameras or other vision-based techniques to capture actors for 

computer animation [36]. 

• Fingerprint recognition and biometrics: for automatic access 

authentication such as electronic device login, as well as forensic applications 

[37]. 

 

1.6. GPU Programing 

Computer Vision plays a key role in autonomous vehicles. To increase the 

reliability and safety of the autonomous system, the system have to acquire and process 

the environment information as fast as possible. Thus, it requires a high computation 

ability of the processors. 

Modern processors are made from transistors, and each year those transistors get 

smaller and smaller. Figure 1.6.1 shows the feature size of processors over time, where 

the feature size is the minimum size of a transistor or wire on a chip. We see that it’s 

consistently going down over time. As the feature size decrease, transistors get smaller, 
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run faster, use less power and we can put more on a chip. The consequence is that we 

have more resources for computation every single year. However, as transistors are 

improved, processor designers would then increase the clock rates of processors, 

running them faster and faster every year. Figure 1.6.2 illustrates the clock speeds over 

the years. Over many years, clock speeds continue to go up, but over the last decade, 

we see that clock speeds have essentially remained constant. The reason why we’re not 

increasing clock rate is not that transistors have stopped getting smaller and faster. Even 

though transistors are continuing to get smaller and faster and consume less energy per 

transistor, the problem is running a billion transistors generates an awful amount of heat 

and we cannot keep all these processors cool.  

In computer vision, most of the times we need to perform the same kinds of 

operations on every single pixel, and the total pixel number is increasing tremendously 

as the camera technique developed rapidly over these years. This requires processors to 

be parallelism, which is the capability to execute the same kind of operations on 

thousands of pixels at the same time, to accelerate the computation. However, as Figure 

1.6.3 shows, the structures between CPUs (Central Processing Unit) and GPU 

(Graphics Processing Unit) are different: CPUs have more powerful ALUs (Arithmetic 

Logic Unit) while GPUs own much more numbers of fewer efficiency ALUs.  

The reasons for these discrepancies between the CPU and GPU exist mainly 
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because of the objective for the CPU and GPU. CPUs are designed to minimize latency, 

which makes CPUs able to complete a single task very efficiently. However, GPUs are 

designed to increase throughputs, which means GPUs will execute more tasks in a 

period. That is to say, GPU is specialized for compute-intensive, highly parallel 

computation.  

 

Figure 1.6.1 Feature Size of Processors Over Time [38] 
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Figure 1.6.2 Clock Frequency of Processors Over Time [38] 

Figure 1.6.3 Structures of CPU and GPU [39] 

GPUs have become increasingly programmable over the past few decades. 

NVIDIA has led the field in parallel computing with their intuitive software, CUDA 

(Compute Unified Device Architecture), and highly optimized GPGPU (General 

Purpose Graphics Processing Unit) hardware. The difference between GPU and 
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GPGPU is that data can only be transferred `from the host CPU to the GPU while 

GPGPUs allow for data transfers from the host CPU to the GPGPU and vice-versa to 

perform parallel computations. Note that in the rest of this thesis, when we mention 

GPU, it refers in particular to GPGPU. 

In this thesis, we will discuss the implementation of modern image recognition 

algorithms (SURF and FREAK) on the NVIDIA GPU by utilizing the CUDA software 

platform. High-speed feature point detection and description are in high demand for 

computer vision systems in applications such as motion detection, video tracking, 

augmented reality, and object recognition.  
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1.7. Novelty and Contribution 

This thesis presents an alternative solution to speed up the execution time of 

processing images through integrating popular image recognition algorithms on GPUs 

with the help of CUDA platform developed by NVIDIA. 

Feature detection and description algorithms, which have been proved to be the 

high efficient image recognition approaches, are successfully been implemented on 

CUDA platform.  

Details of the parallel implementation are given, and further performance 

improvement strategies are discussed, including the memory utilization and block 

distribution strategy. 
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1.8. Thesis Outline 

This thesis consists of 6 chapters. 

Chapter 1 gives a brief introduction to computer vision and GPU development, 

introduces the fundamental knowledge of computer vision history and differences 

between CPU and GPU. Novelties and contributions are clarified here. 

Chapter 2 and Chapter 3 present the feature detection and description algorithms 

respectively. And the methods we implement them on CUDA platform. 

In Chapter 4, further details and explanations focusing on the GPU programming. 

NVIDIA CUDA platform is introduced to implement GPU programming. Discussions 

are made for the advantages and challenges of CUDA, and the strategies to improve 

performances. 

In Chapter 5, experiments were carried out with detailed discussion and analysis 

to demonstrate their performances. 

The last Chapter 6 consists of the conclusion and future work recommendation, 

which illustrates a potential possibility for later research. 
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CHAPTER 2: FEATURE DETECTION 

2.1. Feature Detection Overview 

Feature detection is a low-level operation in the image processing which makes 

decisions at every pixel whether this pixel can be considered as a certain type of feature 

by calculating abstractions of image information, and it is usually performed on an 

image as the initial step [40]. 

The definition of “feature” depends on the problem or the type of application, so 

a feature is defined as a part of the given image that we interested in. In general, there 

are mainly three types of features: edges, corners and blobs.  

The points at which image brightness changes sharply are typically organized into 

a set of curved line segments termed edges [41]. In general, an edge can be of almost 

arbitrary shape. A large amount of edge detection algorithms have been introduced such 

as Canny edge detector [42], Sobel operator [43] and Prewitt operator [44].  

Corners, or interest points, refer to point-like features in an image. It’s called 

“Corner” since in the early algorithms, in order to find interest points, people firstly 

applied edge detection, and then analyzed the edges to find rapid changes in direction, 

which are corners. However, as the algorithms developed, the corner features no longer 

have to be corners in the traditional sense, for instance a small dark spot on a bright 
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background may also be detected as corner point as well. Well-known corner detection 

algorithms include Harris operator [45], FAST [46], SIFT [47][48], SURF [49], etc.. In 

this thesis, we use SURF as the detection algorithm because of its accuracy and 

computational efficiency. A brief introduction to SURF algorithm will be given in the 

following sections. 

Blobs can be considered as a bunch of points that have the similar properties. Blob 

detectors can find regions of an image in which properties are constant or similar, which 

is not obtained from edge or corner detectors, thus blob detectors can provide 

complementary information of image structures. Differential methods and local 

extrema are the two most used methods in blob detectors. Laplacian of Gaussian (LoG), 

Difference of Gaussians (DoG), Determinant of Hessian (DoH), Maximally Stable 

Extremal Regions (MSER) [50] are popular blob detection algorithms. 

 

2.2. Scale Space Theory 

Scale space is an important and widely used concept in the fields of computer 

vision and image processing. The meaning of one specific object in the real world 

depends on the scale of observation. For example, a piece of leaf can be a meaningful 

entity within the scales from a few centimeters to five to six meters at most. It hardly 
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makes any sense to describe the leaf object at the nanometer or the kilometer level. 

Similarly, when analyzing an image, our objective is to extract the structures not only 

in one scale but also the other information in different scales.  

Thus, the scale space theory is developed to analyze image structures in different 

scales. The basic idea of scale space theory is representing an image with a family of 

smoothed images with multi-scales. Each image in this family contains the information 

from different scales of observation [51]. 

Lots of works have been done to find the way representing the image in different 

scales. One of the most widely used approaches is pyramid representation [52][53][54]. 

As Figure 2.2.1 shows, in the pyramid representation, an image is subjected to repeated 

subsampling and smoothing. The smoothing operation is utilized to reduce the affect 

brought by sub-sampling to the coarser scale images. 

Figure 2.2.1 Scale Space Pyramid Representation 
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Pyramid representations have become popular and been applied in the fields of 

data compression, pattern matching, image analysis, etc. The biggest advantage of 

pyramid representations is that due to the sub-sampling operation, less data have to be 

computed.  

 

2.3. Integral Image 

Proposed by Viola and Jones in 2001 [55], an integral image is capable of 

calculating summations over image sub-regions rapidly. In the integral image, every 

pixel is the summation of the pixels before it (above and to the left), the location 𝐱 =

(x, y)𝑇 of an integral image 𝐼∑(𝑥) represents the sum of all pixels in the input image 

𝐼 within a rectangular area defined by  

𝐼∑(𝑥) =  ∑ ∑ 𝐼(𝑖, 𝑗)

𝑗≤𝑦

𝑗=0

𝑖≤𝑥

𝑖=0

. 

As Figure 2.3.1 shows, the sum of intensities inside the rectangular area S can be 

calculated as S = C − B– D + A. It only takes three additions and four memory 
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accesses, which will massively decrease the computational complexity.  

Figure 2.3.1 Integral Image Calculation Example 

 

2.4. SURF Detector 

As the methodology proposed by Lindeberg in 1998 [56], Hessian determinant is 

computed in SURF for automatic scale selection. Hessian matrix describes the 2nd 

order image intensity variations around the selected pixel and is widely used in to 

analyze the image structures. In a 2D image 𝐈, the Hessian matrix of a given point 

𝒑(x, y) at scale σ can be defined as 

H(𝒑, σ) = [
𝐿𝑥𝑥(𝒑, σ) 𝐿𝑥𝑦(𝒑, σ)

𝐿𝑥𝑦(𝒑, σ) 𝐿𝑦𝑦(𝒑, σ)
],  

where 𝐿𝑥𝑥, 𝐿𝑥𝑦, 𝐿𝑦𝑦 are the Gaussian second order derivatives calculated using 

Gaussian kernels of deviation σ. However, the Gaussians need to be discretized and 
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cropped due to the discontinuity of pixels.  

As Figure 2.4.1 shows, the original Hessian matrix filter will be considered as the 

approximate Hessian matrix with box filter since the box filters can be computed using 

integral image with higher efficiency. 

Figure 2.4.1 SURF Approximate Hessian Matrix [49] 

To detect feature points in different scales, SURF applies an “up-side-down” scale 

pyramid (Figure 2.4.2) approach instead of iteratively reducing the image size. This 

approach analyses the scale space by up-scaling the filter size, thus it can make use of 

the integral image to gain more computational efficiency. The scale pyramid consists 

of several octaves and each octave contains four layers with different scales as Figure 

2.4.3 illustrates. Note that the octaves are overlapping in order to cover all possible 

scales seamlessly. 

The approximate hessian matrix will then be applied to each layers to get the 

responses. The SURF feature points candidates can be obtained by applying 3D non 

maximum suppression [57] on both spatially and over the neighboring scales within 
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one octave. Finally, those candidate points are interpolated in scale and image space 

with the method proposed by Brown et al. [58]. 

Figure 2.4.2 SURF scale space pyramid [49] 

Figure 2.4.3 Graphical representation of the scales for three different octaves [49] 
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2.5. SURF Feature Detection Result 

Figure 2.5.1 shows the SURF feature detection result. The green nodes represent 

the pixels which are detected as feature points. Mainly the points in the corner are 

selected as feature points. Note that there are around with the hessian response threshold 

of 0.0002, but we only draw 50 points with the highest response on Figure 2.5.1 to have 

a clear look. 

Figure 2.5.1 SURF Feature Detection Result 
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CHAPTER 3: FEATURE DESCRIPTION 

3.1. Feature Description Overview 

A feature descriptor is an algorithm, which takes an image and outputs feature 

descriptors or feature vectors. It encodes features into a series of numbers and act as a 

sort of numerical ID that can be used to differentiate one feature from another. Such 

feature descriptors have been widely used in the fields such as object recognition [48], 

texture classification [59], generation of panoramas [60], and image indexing [61]. 

A descriptor is built by transferring the characteristics of the local region of pixels 

around the feature points into digital vector. The descriptor generated from one feature 

point will be different depending on the chosen descriptor. The objective of the 

descriptor is to compactly represent these features while being unique at the same time. 

One of the frequently used methods to obtain descriptors is by representing the 

characteristics of the local area as a histogram, and transfer the histogram into a digital 

vector, that is feature descriptor.  

Johnson and Herbet [62] presented a 3D shape-based object recognition system 

for multiple objects in cluttered scenes. Its recognition is based on matching surfaces 

by matching points using spin image. The spin image is a mapping of relative positions 

of 3D surface points to a 2D plane. 2D histogram of the local neighborhood around 
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each surface point was used to create spin images. Lazebnik et al. [59] used this concept 

and extended it to texture classification. In this algorithm, a histogram of pixel and 

intensity values was generated by encoding a normalized image patch. 

In 2002, Belongie et al. [63] proposed shape context, which is able to match 

corresponding areas between two images by using their shape information. In this 

algorithm, a log polar histogram of edge point locations and orientations is computed 

where the locations are described relative to the reference point.  

DG Lowe [47][48] introduced a novel descriptor called Scale-Invariant Feature 

Transform (SIFT), which used the gradient information around the feature point to 

generate orientation histograms. And it was proved to have good robustness and speed 

performance among other local descriptors. [64] Based on this, in 2008, Herbert et al. 

[49] proposed SURF. SURF utilized integral image to speed up the computation time. 

Another novel method to build descriptors is binary descriptors. The core idea of 

binary descriptor is to encode most of the information of a patch as a binary string using 

only comparison of intensity values. This will further speed up the computation time of 

description as only intensity comparisons need to be made and the matching between 

two binary strings can be done fast using Hamming distance. Many feature description 

algorithms based on binary descriptor are proposed in the recent decade, such as BRIEF 

[65], ORB [66], BRISK [67] and FREAK [68]. 
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In general, a binary descriptor is composed of three parts:  

1) Sampling pattern which is a small patch centered around a feature point used 

to pick sampling points. 

2) Orientation compensation. To make the descriptor invariant to rotation, we 

need to calculate the orientation of the feature point and rotate it by the degrees. 

3) Sampling pairs used to make intensity comparison and build the descriptor.  

In this thesis, FREAK (Fast Retina Keypoints) is chosen as the feature descriptor, 

and further discussion will be presented in the following section. 

 

3.2. FREAK Descriptor 

The FREAK (Fast Retina Keypoints) descriptor proposed by Alexandre Alahi and 

Raphael Ortiz [68] recently has become one of the most widely used binary descriptors. 

And it’s proved to be much more efficient than normal HOG based descriptors. 

As introduced previously, sampling patterns are used to build descriptors by 

making comparison between feature points and sampling points. Different algorithms 

have different sampling patterns, BRIEF applies random pairs, ORB uses learned pairs, 
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while BRISK uses a circular pattern where points are equally spaced on concentric 

circles. 

Inspired by human retina areas (Figure 3.2.1), FREAK suggests to apply the retinal 

sampling grid. As shown in Figure 3.2.2, FREAK pattern is also circular, with a higher 

density of sampling points near the center. To get the descriptors, this pattern will be 

applied to all detected feature points. The small black dots are the sampling locations 

while the red circles are drawn at a radius corresponding to the standard deviation of 

the Gaussian kernel used to smooth the intensity values at the sampling points.  

Figure 3.2.3 shows all the pairs generated in the FREAK sampling pattern. The 

selected pairs are segmented into four clusters corresponding to four areas in human 

retina: perifoveal, parafoveal, fovea and foveal. As Figure 3.2.3 illustrates, the first 

group of pairs mainly locate at the outer circular area of the pattern while the last pairs 

compare mainly points in the inner rings of the pattern. Each group has 128 sampling 

pairs. This approach mimics the way that our human retina works: higher resolution is 

captured in the fovea area while the perifoveal area forms an estimation of the object.  
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Figure 3.2.1 The Human Retina [68] 

Figure 3.2.2 FREAK Sampling Pattern [68] 
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Figure 3.2.3 FREAK Sampling Pairs [68] 

 

3.3. Saccadic Search 

In the matching step, FREAK takes the advantages of the coarse-to-fine structure 

to speed up matching by applying a cascade approach. It first makes comparison 

between the pairs located in the perifoveal section, which is the first 128 bits of the 

descriptor. If the distance is smaller than a threshold, it continues to compare the next 

128 bits in parafoveal area. As a result, more than 90% of the candidate pairs are 

discarded in the first step of comparison, thus these candidates would not cost additional 
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computation. Figure 3.3.1 Illustration of Cascade Search [68]. 

3.4. FREAK Feature Description Result 

The FREAK description and matching result is shown in Figure 3.4.1. The target 

image size is 600*800 pixels, and the processing time is 511ms on average. Note that 

not all the matching points are from the points shown in Figure 2.5.1. This is because 

Figure 2.5.1 didn’t show all the feature points found through SURF algorithm as 

mentioned before. The matching result is decent even the object in the target image has 

some rotations and is taken from a different perspective.  

Figure 3.3.1 Illustration of Cascade Search [68] 
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Figure 3.4.1 FREAK Feature Description and Matching Result 
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CHAPTER 4: GPU PROGRAMMING 

4.1. Nvidia GPU Introduction 

As mentioned in Chapter 1, starting from the late 1990’s, the NVIDIA GPU had 

become increasingly programmable. Since the overwhelming performance benefits 

over sequential computation, many developers began to run their graphical systems 

with GPU. Parallel computation has been more and more welcomed in the past few 

decades. 

Driven by the insatiable market demand for real-time, high-resolution graphic, the 

Graphic Processor Unit (GPU) has evolved into a highly parallel, multithreaded 

processor with tremendous computational horsepower [39]. The high parallelism of 

GPU is achieved by the massive replication of simple SIMD (Single Instruction 

Multiple Data) processors, known as SM (Streaming Multiprocessors) [69].  

In 2004, Ian Buck proposed Brook programming language, which was influential 

attempts to achieve general-purpose computing on GPUs [70]. NVIDIA then coupled 

the Brooke language extension into their specialized hardware and created the first 

solution to general purpose parallel computing --- CUDA (Compute Unified Device 

Architecture). 

NVIDIA GPUs are parallel processing units which have the capability of running 
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thousands of concurrent threads in parallel. The GPU streaming multiprocessors (SMs) 

have shared resources and on-chip memory which can run parallel tasks with higher 

performance [39].  

 

4.2. CUDA Introduction 

As mentioned above, CUDA (Compute Unified Device Architecture) is a parallel 

computing platform and application programming interface model developed by 

NVIDIA. CUDA is not a programming language itself, rather it is a C/C++ extension 

which enables parallel constructs. In CUDA, no prior knowledge of the graphics 

pipeline is required, and general algorithms can be transferred into thousands of 

concurrent threads, executed in parallel, to achieve a significant performance 

improvement. 

The CUDA platform provides three key abstractions: thread group hierarchy, 

shared memories, and barrier synchronization [39]. CUDA revolves around the idea of 

a kernel, or GPU function, which is executed for every thread, in every block, within 

the configured grid. Invoking a CUDA kernel involves firstly creating a thread 

hierarchy composed of the thread blocks, and threads per a block. Threads are grouped 

into what are called thread blocks. First building an N-dimensional array of blocks, then 
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defining how many threads exist in each block forms a thread grid. Figure 4.2.1 shows 

the typical grid configuration used for image processing (2 dimensional grid of blocks, 

2 dimensional blocks of threads). In the case of image processing, the grid size would 

be dependent on the image’s dimensions. For example, if the input image size is 

512*512, and the number of threads per block was set to 16*32 (512 threads per block), 

then the CUDA grid would consist 16*32 thread blocks to process each pixel 

individually. 

Figure 4.2.1 Typical CUDA Thread Configuration for Image Processing 

 

4.3. CUDA Scalability Programming Model  

As Moore's law predicts, the number of transistors in a dense integrated circuit 

doubles approximately every two years. Thus, the parallelism of GPUs will increase 

continuously over time. The biggest challenge for a parallel program is to transparently 

scale its parallelism to leverage the increasing number of processor cores [39].  
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The CUDA parallel programming model is designed to solve this problem. As 

illustrated in Figure 4.3.1, within CUDA, each block of threads can be scheduled on 

any of the available SMs within a GPU in any order, so that a compiled CUDA program 

can be executed on any number of SMs. With the Scalability feature, programmers can 

create general parallel codes on CUDA and expect a better performance by updating 

GPU only. 

 

Figure 4.3.1 CUDA Automatic Scalability [39] 
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4.4. Streaming Multiprocessor 

The CUDA architecture is built around a scalable array of multithreaded Streaming 

Multiprocessors (SMs) and the number of SMs on a GPU determines the degree of 

possible physical parallelism [39]. As mentioned previously, the massive sets of CUDA 

threads are divided into thread blocks with fixed size in the execution configuration. 

CUDA threads are grouped into blocks, and CUDA blocks are configured into grids. 

When a CUDA program invokes a kernel grid, the blocks of the grid are 

enumerated and distributed to multiprocessors with available SMs. The threads of a 

block execute concurrently on one multiprocessor, and multiple thread blocks can 

execute concurrently on one multiprocessor as well. When thread blocks terminate, new 

blocks will be launched on the vacated SM.  

The SM will further partition the blocks into warps, where each warp will be 

scheduled independently to run all its threads with lock-step level parallelism. Threads 

within a block will run on the same SM, therefore threads within the same block can 

utilize local on-chip memory types, say shared memory. The NVIDIA global scheduler 

will schedule the thread blocks to particular SMs basing on the number of thread blocks, 

and the number of threads per block in the execution configuration. Figure 4.4.1 shows 

an example of how CUDA thread blocks are mapped to streaming multiprocessors on 

the NVIDIA GPU. 
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Figure 4.4.1 CUDA Thread Block Configuration [39] 

A SM consists of a large array of SIMD (single instruction multiple data) 

processing cores. SIMD implies that the processing units within an SM will run the 

same instruction in lock-step level parallelism on different data.  

As discussed above, the SM will further partition the scheduled block of threads 

into units called warps. Warp is the fundamental unit of parallelism defined on NVIDIA 

GPU hardware. Since the CUDA cores have an SIMD architecture, each thread within 
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a warp must run the same instruction, or be idle. 

 

4.5. GPU Performance Optimization 

Tuning CUDA codes for specific hardware configurations can greatly improve the 

performance of the system.  

Several specifications can improve the performance of NVIDIA GPUs, as shown 

in Table 4.5.1. By knowing the GPU specifications for the hardware being programmed, 

an algorithm’s implementation can be optimized to exploit all resources on the specific 

GPU. 

GPU Specification Method to Improve Performance 

SM Number 
Increase the number of SMs to increase the number of 

concurrent threads executing in parallel 

Warp Size 
Increase the warp size to increase the number of threads 

running in parallel within a single SM 

Shared Memory Size 
Increase the shared memory size per block to allow for higher 

SM thread occupancy 

Warps per SM 
Increase the number of warps in an SM to increase the 

number of threads executing in parallel 



M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering 

 

44 

 

Table 4.5.1 Methods to improve GPU performance 

The performance can also be improved by using different types of memory. Figure 

4.5.1 illustrates the memory architecture of GPU: 

Figure 4.5.1 GPU Memory Architecture [39] 

1) Texture Memory 

Texture memory on the GPU is the memory normally used for the graphics 

pipeline, however it is also available for general purpose computing. Texture memory 
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is cached on-chip, so in some situations it will provide higher effective bandwidth by 

reducing memory requests to off-chip DRAM. And it has great performance benefits 

when memory accesses exhibit spatial locality (Figure 4.5.2). In the SURF algorithm, 

convolution operations are of high reference of locality in terms of memory access since 

neighboring pixels are required to work on one pixel. So that GPUs are able to make 

use of the texture memory to achieve better performance when executing convolution 

operations.  

Figure 4.5.2 Spatial Locality Memory Access Pattern 

In general, for implementations that have read-only memory access patterns with 

high spatial locality, texture memory can be exploited to improve performance by 

avoiding the costs of accessing global memory. 

Kernel code is not able to write data into texture memory though it can read from 

texture memory, which means execution should be switched between CPU code and 

GPU kernel code repeatedly whenever it generates a texture with the calculation results 
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at each step. Therefore there will be four times data transferring between host and 

device in the implementation using texture memory. This is costly since the bandwidth 

between the device memory and the host memory is much lower compared to the 

bandwidth between the device and the device memory.  

2) Global Memory 

Device memory reads texture fetching present several benefits over reads from 

global or constant memory:  

i. Texture memory are cached, potentially exhibiting higher bandwidth if there 

is high locality in the texture fetches.  

ii. The method of addressing is much easier because they are not subject to the 

constraints on memory access pattern that global or constant memory reads 

have to obey to get good performance.  

iii. The latency of addressing calculations is better hidden.  

However, performance of switching between device and host in order to write data 

into texture memory versus no switching between device and host but using global 

memory for manipulating data still have to be considered.  

3) Shared Memory 
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Shared memory is the streaming multiprocessor on-chip memory normally with 

sizes ranged from 16 KB to 64 KB, thus its access is faster than global memory access. 

In fact, shared memory latency is approximately 100 times lower than uncached global 

memory latency. Each thread block has its own dedicated segment of shared memory 

since each block is scheduled to run exclusively on a particular SM. Threads can access 

data in shared memory loaded from global memory by other threads within the same 

thread block, however shared memory cannot be accessed between SMs, and therefore 

shared memory cannot be shared between thread blocks. The amount of shared memory 

is orders of magnitude smaller than global memory, thus the use of shared memory may 

increase the complexity of CUDA implementation. 

In summary, optimizing the GPU specification naively may sometimes produce 

worse performance over the CPU implementation. Correct optimization strategies must 

be known in order to maximize the parallel performance. The purpose of running 

algorithms in parallel is to maximize algorithmic performance, so a basic knowledge of 

the hardware specifications is imperative.  

 

4.6. Parallel Implementation for the Integral Image 

Before discussing the parallel implementation for the integral image, we first 



M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering 

 

48 

 

introduce a popular approach to calculate the sum of an arbitrary array.  

The exclusive scan operation is defined as the one-dimensional accumulation of 

an arbitrary array, for each value computed is equal to the sum of all previous values, 

excluding the current value. The exclusive scan of an array of n elements can be 

represented as the following equation: 

[𝑎0, 𝑎1, … , 𝑎𝑛−1] → [0, 𝑎0, (𝑎0 + 𝑎1), … , (𝑎0 + 𝑎1 + ⋯ + 𝑎𝑛−2)]. 

In 1990, Blelloch proposed an approach to calculate exclusive scan efficiently 

using parallel algorithms [71]. The parallel implementation of the exclusive scan 

operation involves two separate steps: the up-sweep step and the down-sweep step. As 

shown in Figure 4.6.1, the up-sweep operation can be considered as a binary tree, which 

reduces the number of nodes at each level by half and makes one summation per node 

[72]. Each thread will execute log2(N) iterations where N is the length of the input array. 

Only half of the data from the previous iteration are used to generate the next layer. 
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Figure 4.6.1 Parallel Up-Sweep Scan Implementation [72] 

Figure 4.6.2 shows the parallel implementation of the down-sweep phase. In the 

down-sweep step, the last element from the up-sweep result is set to zero first, then 

from the root to the leaves, partial sums computed in the up-sweep step are used to get 

the final exclusive scan result. At each iteration, twice the number of data will be 

executed than the previous iteration. The parallel exclusive scan operation is work 

efficient and has a O(N) work complexity, same as the sequential implementation. 

Figure 4.6.2 Parallel Down-Sweep Scan Implementation [72] 

Even though this usual exclusive scan approach is work efficient, it suffers from 

the limitation of one block, as indicated in [73]. It loads the entire input data into shared 

memory and executes the whole exclusive scan operation within one block, which 

means it is unable to scan arrays with larger size since the maximum number of threads 
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per block is 512. And using one single thread block will also leave the other SMs 

inactivated, bringing a low SM utilization ratio.   

To solve this problem and achieve more parallelism, we divide the input array into 

several parts, and distribute them into different thread blocks. For example, we have an 

input array of size n and b thread blocks to launch. To make full use of all the SM, the 

number of thread blocks should be no less than the number of SMs. Thus, the number 

of thread t we need to launch per block is equal to n / s, where s is the number of SM 

on the GPU. And the number of thread blocks we need to launch is n / t. Table 4.6.1 

shows an example of our approach. 

Variable Expression Value 

Input Data Size N 2048 

Number of SMs S 8 

Threads Per Block t = (n/s) 256 

Number of Blocks b = (n/t) 64 

Table 4.6.1 Thread Configuration Example 

The CUDA exclusive scan implementation spanning over multiple thread blocks 

is visually represented in Figure 4.6.3. Each block will execute the exclusive scan 

operation on individually. The last element of each block contains the summation result 
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of all the elements in that segment, we extract it to build an auxiliary array [72]. Then 

the exclusive scan operation will be performed on the generated auxiliary array. And 

the results of the auxiliary array will be added back into the segmented scan arrays to 

complete the exclusive scan operation of the whole input array.  

Figure 4.6.3 Parallel scan involving multiple thread blocks [72] 

The integral image is computed by taking the rows of the input image as arbitrary 

arrays, then performing exclusive scan operation on all the rows. After that, in order to 

obtain the scan result of the columns, we take the transpose of the resultant array and 

use the same scanning kernel again. Once the second exclusive scan operation is 

completed, the resultant array will be transposed again in order to obtain the final 

integral image result.  
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Figure 4.6.4 shows the comparison of integral image processing times on CPU and 

GPU. Further discussion of the result will be presented in chapter 5.  

Figure 4.6.4 CPU vs. GPU Integral Image Processing Time 
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4.7. Parallel Implementation 

 

Figure 4.7.1 Architecture of the Parallelization of SURF Detection 

The whole procedure of parallel implementation of SURF detector is illustrated in 

Figure 4.7.1. As mentioned in the previous section, the input image is divided into 

several segments first and assigned to different thread blocks to be processed. The 

system first performed the exclusive scan operation for all the rows of the input segment, 

and transposed the column-scanned image back to the original orientation. Then it 

repeated the same operation on the transposed image to obtain the integral image.  

To characterize the effects of different parallel optimization strategies for our 

image recognition algorithm, we implement SURF algorithm using different memories 

and access patterns. 

First, we use global memory only in the implementation. In this approach, an 
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Box Filter 

Interest point 

Localization 

…
 

…
 

…
 …
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image is loaded into a global memory, a region of the image block is multiplied with 

the box filters, add up the results, and then output pixel is written back to global memory 

for next step. Since whole image is loaded into the global memory, we only need to 

consider boundary when a pixel is at the edge of the image. Then the input image is 

segmented into 16×16 sub-windows and a set of CUDA blocks process these sub-

windows for convolution operations until all the sub-windows are completed. 

For the implementation using texture memory only, since texture memory is read-

only for kernel code on GPU, which means operations should be transferred between 

CPU code and GPU kernel code repeatedly whenever it generates a texture with the 

calculation results at each step. Therefore four times data transferring between host and 

device in the implementation using texture memory. 

When we implement SURF algorithm with shared memory, a block of pixels from 

the image is loaded into an array in shared memory, convolution or thresholding 

operation is applied to the pixel block, and then the output image is written into shared 

memory array for the use on the next step.  

In all cases of implementation, the kernel configuration is of 16×16 threads of each 

block and 32 of blocks on a 512x512 image. The convolution is parallelized across the 

available computational threads where each thread computes the convolution result of 

its assigned pixels sequentially. Pixels are distributed evenly across the threads. The 
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result shows that the shared memory and texture memory implementations have a big 

advantages in speed, however texture memory processing time is longer than shared 

memory. The main reason for that is due to the repeatedly data transfer operation 

between host and device. Thus in our GPU SURF program, we only use texture memory 

to store the integral image and original image to avoid the use of global memory. The 

convolution operations of box filter will be implemented in shared memory to increase 

the speed. 

Figure 4.7.2 shows the schematic of the whole system. The parallel computation 

allowed the system to finish the operations on pixels efficiently, which are a major part 

of SURF and FREAK algorithm.    

 Figure 4.7.2 Schematic of the System 
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CHAPTER 5: EXPERIMENT SETUP AND RESULTS 

5.1. Experiment Setup 

  Table 5.1.1 shows the configurations of our experiment setup. Note that the results 

of our experiments are all based on the environment specification below. Table 5.1.2 

GPU Specifications shows the specification of NVIDIA GeForece GT 755M. The 

CUDA code has been optimized based on the specification of this GPU.  

Environment Specification 

CPU Intel(R) Core(TM) i5-4200M CPU @ 2.50GHz 

GPU NVIDIA GeForce GT 755M 

RAM 8.00 GB 

OS Microsoft Windows 10 (64bit) 

OPEN CV Version 2.4.13 

Visual Studio Visual Studio 2013 

CUDA CUDA Toolkit 8.0 

Table 5.1.1 Experiment environment specification 
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NVIDIA GeForce GT 755M Specification 

Architecture Type Kepler 

CUDA Capable Version 3.0 

Threads per Warp 32 

Max Warps per SM 64 

Max Thread Blocks per SM 16 

Max Active Threads per SM 2048 

Max Threads per Block 1024 

Shared Memory per SM (bytes) 49152 

Max Shared Memory per Block (bytes) 49152 

Table 5.1.2 GPU Specifications 
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5.2. Experiment Results 

The schematic of the object recognition system is shown in Figure 4.7.2. The 

detection and description stages are implemented in CUDA platform to take full 

advantage of the parallel computing capability of NVIDIA GPU. The feature matching 

system is executed by first providing an original training image to build a feature 

database, then providing target images where the features from the training image will 

be matched to. Figure 5.2.1 (a) shows the training image chosen for this thesis, and 

Figure 5.2.1 (b, c, d) illustrates the target images for measuring the performance of the 

feature matching computer vision system. 

The performance results were analyzed by feature matching a training image to 

multiple images, as shown in Figure 5.2.1. Then the target images were sub-sampled 

from image dimensions 2048*2048 to 216*216 to measure performance processing 

time over various image resolutions. Figure 5.2.2 illustrated the results of our feature 

matching system. 
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(a) Training Image                               (b) Target Image 1 

     

(c) Target Image 2                      (d) Target Image 3 

 Figure 5.2.1 Training Image and Target Images 
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(a) Matching with Target Image 1 

 

(b) Matching with Target Image 2 
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(c) Matching with Target Image 3 

Figure 5.2.2 Feature Matching Results 

Figure 5.2.3 to Figure 5.2.5 list the execution time comparisons of the integral 

image, feature detection and recognition between CPU and CUDA, where the input 

images are the training image 1(Figure 5.2.1 (a)) and scaled target image 2 and 3(Figure 

5.2.1 (b,c)).  
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 Figure 5.2.3 Integral Image Generation Time Comparison between CPU and GPU 

Figure 5.2.4 SURF Feature Point Detection Time Comparison between CPU and CUDA 
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Figure 5.2.5 SURF and FREAK Execution Times Comparison between CPU and CUDA 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

6.1. Conclusion 

This thesis presents modern CUDA optimizations strategies to decrease the 

processing time for real-time performance. As shown in Figure 5.2.3, the processing 

times of the optimized CUDA implementation did not exceed 350 ms for all image 

dimensions ranging up to 1440x1440. The optimized CUDA implementation had an 

average 3 times faster over CPU-only implementation. The optimized CUDA 

implementation did not compromise did not compromise precision for performance, 

since the implementation has the same precision as the other implementations.  

The application of the optimized CUDA SURF detection implementation towards 

the feature matching computer vision system showed an average speed-up of 3 times 

faster over the traditional CPU implementation. The CUDA implementation of the 

object recognition algorithms provides an efficient and flexible system which can be 

utilized by passive vision censors on the autonomous vehicle or other higher level 

computer vision systems: motion detection, image registration, video tracking, 

panorama stitching, 3D modeling, and object recognition. 
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6.2. Future Work 

The significant speed advantages of CUDA implementation over traditional CPU 

implementation due to NVIDIA CUDA scalability, as discussed in Section 2.2, the 

optimized CUDA implementation will scale to future NVIDIA GPUs with higher 

performance specifications. This implies that the same optimized CUDA 

implementation is contemporary. Future improvements to NVIDIA GPU hardware will 

effectively improve the performance of this implementation. 

The NVIDIA GPU and CUDA platform is continually upgrading and the GPU 

performance is always increasing. For instance, the GeForce GTX 480 released in 2010 

contains 480 processing cores, while the GPU used to conduct this thesis research, 

GeForce GT 755M, released in 2013 contains 1344 processing cores, nearly tripling the 

parallel processing capability over the span of 3 years. Areas of future work in the area 

of GPU image recognition include optimizing the algorithm on the most recent GPU 

hardware architecture (Maxwell) and scaling the algorithm’s implementation to a multi-

GPU environment. 

Maxwell is one of the NVIDIA’s latest GPU architecture, which released in 2014. 

The Maxwell architecture provides dramatic improvements to the streaming 

multiprocessor design in areas of energy efficiency, control logic partitioning (avoids 

warp divergence), workload balancing, instructions executed per clock cycle, and many 
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more. The Maxwell architecture supports dynamic parallelism which allows for CUDA 

kernels to invoke kernels themselves. The same implementation discussed throughout 

this thesis will receive a performance benefit when run on Maxwell architecture; 

however, further performance improvement can be achieved by re-implementing the 

algorithm specifically to utilize all resources on the NVIDIA Maxwell architecture. 

CUDA supports the invocation of multiple GPU execution asynchronously away 

from the host. Future work for the research discussed in this thesis includes scaling the 

single GPU CUDA SURF and FREAK image recognition implementation to a multi-

GPU environment. The existence of multiple GPUs in the environment allow for 

optimized load balancing of threads per SM between all GPUs, thus increasing GPU 

efficiency and performance.  
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