

Apply Modern Image Recognition Techniques

with CUDA Implementation on Autonomous

Systems

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

ii

Apply Modern Image Recognition Techniques with

CUDA Implementation on Autonomous Systems

By YICONG LIU

B.Eng.

A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the

Requirements for the Degree Master of Applied Science

McMaster University

 © Copyright by Yicong Liu, Apr 2017

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

iii

McMaster University
MASTER OF APPLIED SCIENCE (2017)

Hamilton, Ontario Mechanical Engineering

TITLE:
Apply Modern Image Recognition Techniques with

CUDA Implementation on Autonomous Systems

AUTHOR: YICONG LIU, B.Eng.

Supervisor
Professor Fengjun Yan

Department of Mechanical Engineering

NUMBER OF PAGES xiii, 73

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

iv

ABSTRACT

Computer vision has been developed rapidly in the last few decades and it has

been used in a variety of fields such as robotics, autonomous vehicles, traffic

surveillance camera etc. nowadays. However, when we process these high-resolution

raw materials from the cameras, it brings a heavy burden to the processors. Because of

the physical architecture of the CPU, the pixels of the input image should be processed

sequentially. So even if the computation capability of modern CPUs is increasing, it is

still unable to make a decent performance in repeating one single work millions of times.

The objective of this thesis is to give an alternative solution to speed up the

execution time of processing images through integrating popular image recognition

algorithms (SURF and FREAK) on GPUs with the help of CUDA platform developed

by NVIDIA, to speed up the recognition time.

The experiments were made to compare the performances between traditional

CPU-only program and CUDA program, and the result show the algorithms running on

CUDA platform have a significant speedup.

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

v

ACKNOWLEDGEMENTS

I would like to express my gratitude towards my supervisor Dr. Fengjun Yan for

his guidance in computer vision. This thesis would not have been possible without the

knowledge and inspiration I acquired from him.

Many thanks to the Department of Mechanical Engineering of McMaster

University, where I learn not only the advanced skills and knowledge but also the

inspiration thoughts.

I would like to thank my friends for accepting nothing less than excellence from

me. Last but not the least, I would like to thank my family: my parents and to my

brothers and sister for supporting me spiritually throughout writing this thesis and my

life in general.

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

vi

TABLE OF CONTENTS

ABSTRACT.. iv

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

LIST OF FIGURES .. viii

LIST OF TABLES .. xi

LIST OF ABBREVIATIONS ... xii

CHAPTER 1: INTRODUCTION .. 1

1.1. Computer Vision .. 1

1.2. Computer Vision on Autonomous Vehicles .. 4

1.3. History of Autonomous Vehicles .. 4

1.4. Censors on Autonomous Vehicles ... 7

1.5. Other Applications ..13

1.6. GPU Programing ..14

1.7. Novelty and Contribution ...19

1.8. Thesis Outline..20

CHAPTER 2: FEATURE DETECTION ..21

2.1. Feature Detection Overview ...21

2.2. Scale Space Theory ...22

2.3. Integral Image ...24

2.4. SURF Detector ...25

2.5. SURF Feature Detection Result ..28

CHAPTER 3: FEATURE DESCRIPTION...29

3.1. Feature Description Overview ...29

3.2. FREAK Descriptor ...31

3.3. Saccadic Search ..34

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

vii

3.4. FREAK Feature Description Result ..35

CHAPTER 4: GPU PROGRAMMING ..37

4.1. Nvidia GPU Introduction ...37

4.2. CUDA Introduction ..38

4.3. CUDA Scalability Programming Model ..39

4.4. Streaming Multiprocessor ...41

4.5. GPU Performance Optimization ...43

4.6. Parallel Implementation for the Integral Image...47

4.7. Parallel Implementation ...53

CHAPTER 5: EXPERIMENT SETUP AND RESULTS ..56

5.1. Experiment Setup...56

5.2. Experiment Results ..58

CHAPTER 6: CONCLUSION AND FUTURE WORK ...64

REFERENCES ..67

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

viii

LIST OF FIGURES

FIGURE 1.3.1 THE LEVELS OF AUTOMATION [27] .. 6

FIGURE 1.4.1 EVALUATIONS OF LADAR ... 8

 FIGURE 1.4.2 EVALUATIONS OF ELECTROMAGNET WAVE RADAR ... 9

FIGURE 1.4.3 EVALUATIONS OF ULTRASONIC RADAR .. 9

FIGURE 1.4.4 THE EVALUATIONS OF PASSIVE VISION SENSOR .. 11

FIGURE 1.4.5 COMBINATION OF THE OF FOUR SENSORS .. 12

FIGURE 1.4.6 GOOGLE AUTONOMOUS VEHICLE .. 12

FIGURE 1.6.1 FEATURE SIZE OF PROCESSORS OVER TIME [38] ... 16

FIGURE 1.6.2 CLOCK FREQUENCY OF PROCESSORS OVER TIME [38] 17

FIGURE 1.6.3 STRUCTURES OF CPU AND GPU [39] ... 17

FIGURE 2.2.1 SCALE SPACE PYRAMID REPRESENTATION .. 23

FIGURE 2.3.1 INTEGRAL IMAGE CALCULATION EXAMPLE ... 25

FIGURE 2.4.1 SURF APPROXIMATE HESSIAN MATRIX [49] ... 26

https://d.docs.live.net/9431b7a11532565f/Thesis/Thesis_Liu%20Yicong%20Final.docx#_Toc481055094

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

ix

FIGURE 2.4.2 SURF SCALE SPACE PYRAMID [49]... 27

FIGURE 2.4.3 GRAPHICAL REPRESENTATION OF THE SCALES FOR THREE DIFFERENT OCTAVES

[49] ... 27

FIGURE 2.5.1 SURF FEATURE DETECTION RESULT ... 28

FIGURE 3.2.1 THE HUMAN RETINA [68] ... 33

FIGURE 3.2.2 FREAK SAMPLING PATTERN [68] .. 33

FIGURE 3.2.3 FREAK SAMPLING PAIRS [68] ... 34

FIGURE 3.3.1 ILLUSTRATION OF CASCADE SEARCH [68] ... 35

FIGURE 3.4.1 FREAK FEATURE DESCRIPTION AND MATCHING RESULT 36

FIGURE 4.2.1 TYPICAL CUDA THREAD CONFIGURATION FOR IMAGE PROCESSING 39

FIGURE 4.3.1 CUDA AUTOMATIC SCALABILITY [39] .. 40

FIGURE 4.4.1 CUDA THREAD BLOCK CONFIGURATION [39] .. 42

FIGURE 4.5.1 GPU MEMORY ARCHITECTURE [39] .. 44

FIGURE 4.5.2 SPATIAL LOCALITY MEMORY ACCESS PATTERN .. 45

https://d.docs.live.net/9431b7a11532565f/Thesis/Thesis_Liu%20Yicong%20Final.docx#_Toc481055109
https://d.docs.live.net/9431b7a11532565f/Thesis/Thesis_Liu%20Yicong%20Final.docx#_Toc481055110

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

x

FIGURE 4.6.1 PARALLEL UP-SWEEP SCAN IMPLEMENTATION [72] .. 49

FIGURE 4.6.2 PARALLEL DOWN-SWEEP SCAN IMPLEMENTATION [72] 49

FIGURE 4.6.3 PARALLEL SCAN INVOLVING MULTIPLE THREAD BLOCKS [72] 51

FIGURE 4.6.4 CPU VS. GPU INTEGRAL IMAGE PROCESSING TIME .. 52

FIGURE 4.7.1 ARCHITECTURE OF THE PARALLELIZATION OF SURF DETECTION 53

FIGURE 4.7.2 SCHEMATIC OF THE SYSTEM ... 55

FIGURE 5.2.1 TRAINING IMAGE AND TARGET IMAGES .. 59

FIGURE 5.2.2 FEATURE MATCHING RESULTS ... 61

 FIGURE 5.2.3 INTEGRAL IMAGE GENERATION TIME COMPARISON BETWEEN CPU AND GPU

 ... 62

FIGURE 5.2.4 SURF FEATURE POINT DETECTION TIME COMPARISON BETWEEN CPU AND

CUDA .. 62

FIGURE 5.2.5 SURF AND FREAK EXECUTION TIMES COMPARISON BETWEEN CPU AND

CUDA .. 63

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

xi

LIST OF TABLES

TABLE 1.1.1 COMPUTER VISION HIERARCHY ... 3

TABLE 4.5.1 METHODS TO IMPROVE GPU PERFORMANCE ...44

TABLE 4.6.1 EXAMPLE THREAD CONFIGURATION ..50

TABLE 5.1.1 EXPERIMENT ENVIRONMENT SPECIFICATION ...56

TABLE 5.1.2 NVIDIA GPU SPECIFICATIONS ...57

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

xii

LIST OF ABBREVIATIONS

CPU Central Processing Unit

GPU Graphics Processing Unit

GPGPU General Purpose Graphics Processing Unit

CUDA Compute Unified Device Architecture

SM Streaming Processor

SIMD Single Instruction Multiple Data

LADAR LAser Detection and Ranging

SURF Speeded Up Robust Features

FREAK Fast Retina Keypoint

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

1

CHAPTER 1: INTRODUCTION

1.1. Computer Vision

Computer vision is a field that combines biological science and engineering and

studies how to reconstruct, interpret and understand a three-dimensional scene from its

two-dimensional images. The goal of computer vision is to model and mimic the visual

system of human beings through computer software and hardware and build

autonomous systems [1][2][3].

Researchers in computer vision have been developing mathematical techniques

for replicating the visual system of a human being on computers and rebuild the three-

dimensional world from two-dimensional images. However, replicating such visual

system has been proven to be difficult. Letting our computers to understand a picture at

the same level as a human being, even a child, is still being considered as an

untouchable goal. Part of the reasons are that computer vision is an inverse problem,

which means computers need to rebuild the unknowns without enough information

given, and lots of details of the real world would be lost during the formation of 2D

images [4].

Beginning in the late 1960s, the concept of computer vision first appeared at

universities pioneering artificial intelligence and robotics [4]. It originally aimed to

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

2

mimic the visual system of human beings, as a stepping stone to endowing robots with

intelligent behavior. In 1966, Gerald Jay Sussman in MIT achieved it in his summer

project, by equipping a computer with a camera and having the computer "describe

what it saw" [5][6].

The main difference between computer vision and the pre-existing field of digital

image processing at that period was a desire to obtain the three-dimensional structure

from images to reach the level of full scene understanding [4]. In the 1970s, researches

in computer vision formed the stepping stone for many of the algorithms existing today,

for example detecting edges from images [7], non-polyhedral objects modeling [8][9],

labeling of lines [10] and recovering 3D structure and camera motion [11][12].

In the 1980s, more rigorous mathematical analysis were implemented at the

quantitative aspects of computer vision, including the concept of scale-space, the

derivation of shape from various information such as shading and texture.

A significant development in computer vision was achieved during the 1990s,

which was the increased interaction between the fields of computer graphics and

computer vision [13]. With the help of image morphing techniques [14], we could create

new images by manipulating the pictures from real world directly. Later applications

like view interpolation and panoramic image stitching were all benefit from it.

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

3

Nowadays, the trend of computer vision is the connection between feature based

methods and machine learning techniques. With the help of machine learning

techniques, it’s possible to learn objects more efficiently and even without human

supervision. New approaches to improve the efficiency of the learning and recognition

processes through both hardware and software are also proposed frequently [15][16].

As Table 1.1.1 shows, computer vision system can be divided into three levels

from low to high by the information gained from it. Higher-level computer vision

systems rely on low-level processes to perform accurately. For example, high-level

operation, for instance object recognition, needs the information (features) extracted

from low-level processes (feature detection and feature description).

Hierarchy Description

Low-level Process image for feature extraction (edges, corners or blobs).

Middle-level
Object recognition, motion analysis, and 3D reconstruction. Using

features obtained from the low-level vision.

High-level

Interpretation of the evolving information provided by the middle-

level vision as well as directing what middle and low-level vision

tasks should be performed.

Table 1.1.1 Computer Vision Hierarchy

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

4

1.2. Computer Vision on Autonomous Vehicles

An autonomous car is a vehicle that can sense and recognize its surrounding

environment and navigate without human input [17]. For human beings, we can easily

obtain the information of our surrounding environment by the senses like vision and

hearing. However, for autonomous vehicles, they gather the environment information

from sensors. Thus, the quality and comprehensiveness of the data coming from sensors

play an important role for autonomous vehicles [18].

1.3. History of Autonomous Vehicles

The history of autonomous vehicles can be dated back to the 1920s. A radio-

controlled vehicle called “linrrican wonder” was demonstrated in 1925 on New York

City streets. The linrrican wonder was equipped with a transmitting antennae and was

operated by a second car that followed it. The following car was used to send out radio

signals that could be caught by the transmitting antennae, then the antennae transferred

the signals to circuit-breakers that directed the movements of the vehicle [19].

Promising experiments of autonomous vehicles took place in the 1950s. In 1953,

RCA Labs produced a miniature car that was controlled by wires laid in a pattern on a

laboratory floor. This system inspired some engineers and they decided to implement

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

5

such system in actual highway installations. In 1958, a full size system was developed

successfully. In that system, the vehicle received the signals send by a series of detector

circuits which were buried along the edge of the street. With the help of General Motors,

the system were equipped with special radio receivers and visual devices to simulate

automatic steering, accelerating and brake control [20].

The first self-sufficient and truly autonomous cars appeared in the 1980s. A vision-

guided Mercedes-Benz robotic van successfully ran on streets without traffic at a speed

of 63 kilometers per hour [21]. In the same decade, the Autonomous Land Vehicle (ALV)

project in the United States achieved the first road-following system using lidar,

computer vision and autonomous robotic control to direct a robotic vehicle at speeds

up to 31 kilometers per hour [22][23]. HRL Laboratories developed the first off-road

map and sensor based autonomous navigation on the ALV project. The car successfully

passed 610 meters with various terrain. Since then, lots of companies and research

organizations have developed working prototype autonomous vehicles.

In 1996, Alberto Broggi started a project which worked on enabling a modified

traditional vehicle to follow the normal lane marks in an unmodified highway [24]. This

vehicle only had two camera sensors and used stereoscopic vision algorithms to obtain

the information of its surrounding environment.

In the 2010s, major automotive manufacturers, for example General Motors, Audi,

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

6

Mercedes Benz, and BMW are building their own driverless vehicle systems. Besides,

some internet companies began to show the interests in autonomous vehicles. Google

began developing its self-driving vehicles in 2009 [25].

In July 2013, some of the states in U.S. have allowed autonomous vehicles in

traffic. Back then, fully autonomous vehicles are not yet available to the public, the car

models only have limited autonomous functions, such as adaptive cruise control, lane

assist and parking assistant [26]. In 2014, SAE (Society of Autonomous Engineers)

published a standard for autonomous vehicles which identified six levels of driving

automation, as shown in Figure 1.3.1.

Figure 1.3.1 The Levels of Automation [27]

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

7

In October 2016, Tesla Motor announced that the tesla vehicles were built with the

necessary hardware to allow the automation capability to reach SAE Level 5 (Full

Automation). However, full automation is only likely after millions of miles of testing,

and approval by authorities [28].

1.4. Censors on Autonomous Vehicles

Autonomous Vehicles use different sensors to obtain information of the

surrounding environment. The most commonly used sensors are LADAR (LAser

Detection and Ranging) [29], electromagnet wave radar, ultrasonic radar and passive

vision sensor. Different kinds of sensor have different defects brought by their structure

and mechanism. Figure 1.2.1 to Figure 1.2.4 illustrate the evaluations of these sensors

in ten different aspects through a decagon representation.

LADAR, which stands for laser detection and ranging, is a measuring device that

detects the distance to an object through a laser light. As Figure 1.4.1 shows, LADAR has

a good resolution and is capable of working in both day and night circumstance, but it

will be disrupted easily by rain drops and snow. LADAR is also good at detection

objects in long distance, however it could not detect obstacles within a short range. The

most important factor which limits the popularization of LADAR is the cost. The price

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

8

of one LADAR device ranges from tens to even thousands times more than a normal

electromagnet wave radar.

Figure 1.4.1 Evaluations of LADAR

Electromagnet wave radar uses the radio wave with higher wave length to

determine the range of objects. Figure 1.4.2 shows the evaluations of the electromagnet

wave radar. Compared to LADAR, electromagnet wave radar has a good adaption to

different brightness, besides, it can work properly in extreme weather situation.

Electromagnet wave radar is very effective in detecting speeds. Although the precision

is slightly lower than LADAR, electromagnet wave radar has been widely used in

autonomous vehicles due to its good performance and most importantly, its relatively

lower price.

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

9

 Figure 1.4.2 Evaluations of Electromagnet Wave Radar

Figure 1.4.3 Evaluations of Ultrasonic Radar

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

10

Ultrasonic radar is one kind of radars that acquires the distance information from

the obstacle to the radar by emitting a beam of ultrasonic wave [30]. As shown in Figure

1.4.3, ultrasonic radar is good at detecting the nearby objects, and it can be easily

equipped onto a vehicle. However, it cannot detect the speed of the objects.

As mentioned above, these radars neither cannot recognize complicated shapes

nor detect colors, which means an autonomous vehicle can hardly read street signs or

understand street signals only by radars. Therefore, we need passive vision sensor to be

the ‘eyes’ of the autonomous vehicles [31]. Passive vision sensors, in short, are the

cameras, which can record digital information of surroundings. After pictures taken

from the cameras, computer vision will be applied as a complementary method through

analyzing the images taken from censor cameras to further increase the reliability and

intelligence of autonomous vehicles by providing the abilities of the street sign and

street signal recognition and unexpected obstacles detection such as pedestrians on the

street, under the conditions where active vision techniques say radar or LADAR can

not perform well.

Figure 1.4.4 pictures the evaluations of the passive vision censor. Similar to human

beings’ eyes, the performance of the passive vision censor will be affected by the

brightness and weather. But it is able to detect and distinguish complicated shapes and

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

11

colors, which is impossible for the other three kinds of radars.

Figure 1.4.5 illustrates a combination of Figure 1.4.1 to Figure 1.4.4. To build a

reliable autonomous vehicle system, it is necessary to combine the information acquired

by these censors to eliminate blind spots of one specific censor. As an example, Figure

1.4.6 shows the how the various sensors been applied to a Google autonomous vehicle

to establish a reliable autonomous driving system.

Figure 1.4.4 The Evaluations of Passive Vision Sensor

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

12

Figure 1.4.5 Combination of the of Four Sensors

Figure 1.4.6 Google Autonomous Vehicle

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

13

1.5. Other Applications

Besides the autonomous car, computer vision is being applied nowadays in a wide

variety of real-world applications, such as:

• Surveillance: monitoring for intruders, analyzing highway traffic, and

monitoring pools for drowning victims [32];

• Optical Character Recognition (OCR): reading words like handwritten

postal codes on letters and automatic number plate recognition [33];

• Machine inspection: rapid parts inspection for quality assurance using stereo

vision with specialized illumination to measure tolerances on aircraft wings

or auto body parts or looking for defects in steel castings using X-ray vision

[34];

• 3D model building (photogrammetry): fully automated construction of 3D

models from aerial photographs used in systems such as Google Maps;

• Match move: merging computer-generated imagery (CGI) with live action

footage by tracking feature points in the source video to estimate the 3D

camera motion and shape of the environment. Such techniques are widely

used in Hollywood; they also require the use of precise matting to insert new

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

14

elements between foreground and background elements [35].

• Motion capture (mocap): using retro-reflective markers viewed from

multiple cameras or other vision-based techniques to capture actors for

computer animation [36].

• Fingerprint recognition and biometrics: for automatic access

authentication such as electronic device login, as well as forensic applications

[37].

1.6. GPU Programing

Computer Vision plays a key role in autonomous vehicles. To increase the

reliability and safety of the autonomous system, the system have to acquire and process

the environment information as fast as possible. Thus, it requires a high computation

ability of the processors.

Modern processors are made from transistors, and each year those transistors get

smaller and smaller. Figure 1.6.1 shows the feature size of processors over time, where

the feature size is the minimum size of a transistor or wire on a chip. We see that it’s

consistently going down over time. As the feature size decrease, transistors get smaller,

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

15

run faster, use less power and we can put more on a chip. The consequence is that we

have more resources for computation every single year. However, as transistors are

improved, processor designers would then increase the clock rates of processors,

running them faster and faster every year. Figure 1.6.2 illustrates the clock speeds over

the years. Over many years, clock speeds continue to go up, but over the last decade,

we see that clock speeds have essentially remained constant. The reason why we’re not

increasing clock rate is not that transistors have stopped getting smaller and faster. Even

though transistors are continuing to get smaller and faster and consume less energy per

transistor, the problem is running a billion transistors generates an awful amount of heat

and we cannot keep all these processors cool.

In computer vision, most of the times we need to perform the same kinds of

operations on every single pixel, and the total pixel number is increasing tremendously

as the camera technique developed rapidly over these years. This requires processors to

be parallelism, which is the capability to execute the same kind of operations on

thousands of pixels at the same time, to accelerate the computation. However, as Figure

1.6.3 shows, the structures between CPUs (Central Processing Unit) and GPU

(Graphics Processing Unit) are different: CPUs have more powerful ALUs (Arithmetic

Logic Unit) while GPUs own much more numbers of fewer efficiency ALUs.

The reasons for these discrepancies between the CPU and GPU exist mainly

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

16

because of the objective for the CPU and GPU. CPUs are designed to minimize latency,

which makes CPUs able to complete a single task very efficiently. However, GPUs are

designed to increase throughputs, which means GPUs will execute more tasks in a

period. That is to say, GPU is specialized for compute-intensive, highly parallel

computation.

Figure 1.6.1 Feature Size of Processors Over Time [38]

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

17

Figure 1.6.2 Clock Frequency of Processors Over Time [38]

Figure 1.6.3 Structures of CPU and GPU [39]

GPUs have become increasingly programmable over the past few decades.

NVIDIA has led the field in parallel computing with their intuitive software, CUDA

(Compute Unified Device Architecture), and highly optimized GPGPU (General

Purpose Graphics Processing Unit) hardware. The difference between GPU and

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

18

GPGPU is that data can only be transferred `from the host CPU to the GPU while

GPGPUs allow for data transfers from the host CPU to the GPGPU and vice-versa to

perform parallel computations. Note that in the rest of this thesis, when we mention

GPU, it refers in particular to GPGPU.

In this thesis, we will discuss the implementation of modern image recognition

algorithms (SURF and FREAK) on the NVIDIA GPU by utilizing the CUDA software

platform. High-speed feature point detection and description are in high demand for

computer vision systems in applications such as motion detection, video tracking,

augmented reality, and object recognition.

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

19

1.7. Novelty and Contribution

This thesis presents an alternative solution to speed up the execution time of

processing images through integrating popular image recognition algorithms on GPUs

with the help of CUDA platform developed by NVIDIA.

Feature detection and description algorithms, which have been proved to be the

high efficient image recognition approaches, are successfully been implemented on

CUDA platform.

Details of the parallel implementation are given, and further performance

improvement strategies are discussed, including the memory utilization and block

distribution strategy.

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

20

1.8. Thesis Outline

This thesis consists of 6 chapters.

Chapter 1 gives a brief introduction to computer vision and GPU development,

introduces the fundamental knowledge of computer vision history and differences

between CPU and GPU. Novelties and contributions are clarified here.

Chapter 2 and Chapter 3 present the feature detection and description algorithms

respectively. And the methods we implement them on CUDA platform.

In Chapter 4, further details and explanations focusing on the GPU programming.

NVIDIA CUDA platform is introduced to implement GPU programming. Discussions

are made for the advantages and challenges of CUDA, and the strategies to improve

performances.

In Chapter 5, experiments were carried out with detailed discussion and analysis

to demonstrate their performances.

The last Chapter 6 consists of the conclusion and future work recommendation,

which illustrates a potential possibility for later research.

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

21

CHAPTER 2: FEATURE DETECTION

2.1. Feature Detection Overview

Feature detection is a low-level operation in the image processing which makes

decisions at every pixel whether this pixel can be considered as a certain type of feature

by calculating abstractions of image information, and it is usually performed on an

image as the initial step [40].

The definition of “feature” depends on the problem or the type of application, so

a feature is defined as a part of the given image that we interested in. In general, there

are mainly three types of features: edges, corners and blobs.

The points at which image brightness changes sharply are typically organized into

a set of curved line segments termed edges [41]. In general, an edge can be of almost

arbitrary shape. A large amount of edge detection algorithms have been introduced such

as Canny edge detector [42], Sobel operator [43] and Prewitt operator [44].

Corners, or interest points, refer to point-like features in an image. It’s called

“Corner” since in the early algorithms, in order to find interest points, people firstly

applied edge detection, and then analyzed the edges to find rapid changes in direction,

which are corners. However, as the algorithms developed, the corner features no longer

have to be corners in the traditional sense, for instance a small dark spot on a bright

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

22

background may also be detected as corner point as well. Well-known corner detection

algorithms include Harris operator [45], FAST [46], SIFT [47][48], SURF [49], etc.. In

this thesis, we use SURF as the detection algorithm because of its accuracy and

computational efficiency. A brief introduction to SURF algorithm will be given in the

following sections.

Blobs can be considered as a bunch of points that have the similar properties. Blob

detectors can find regions of an image in which properties are constant or similar, which

is not obtained from edge or corner detectors, thus blob detectors can provide

complementary information of image structures. Differential methods and local

extrema are the two most used methods in blob detectors. Laplacian of Gaussian (LoG),

Difference of Gaussians (DoG), Determinant of Hessian (DoH), Maximally Stable

Extremal Regions (MSER) [50] are popular blob detection algorithms.

2.2. Scale Space Theory

Scale space is an important and widely used concept in the fields of computer

vision and image processing. The meaning of one specific object in the real world

depends on the scale of observation. For example, a piece of leaf can be a meaningful

entity within the scales from a few centimeters to five to six meters at most. It hardly

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

23

makes any sense to describe the leaf object at the nanometer or the kilometer level.

Similarly, when analyzing an image, our objective is to extract the structures not only

in one scale but also the other information in different scales.

Thus, the scale space theory is developed to analyze image structures in different

scales. The basic idea of scale space theory is representing an image with a family of

smoothed images with multi-scales. Each image in this family contains the information

from different scales of observation [51].

Lots of works have been done to find the way representing the image in different

scales. One of the most widely used approaches is pyramid representation [52][53][54].

As Figure 2.2.1 shows, in the pyramid representation, an image is subjected to repeated

subsampling and smoothing. The smoothing operation is utilized to reduce the affect

brought by sub-sampling to the coarser scale images.

Figure 2.2.1 Scale Space Pyramid Representation

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

24

Pyramid representations have become popular and been applied in the fields of

data compression, pattern matching, image analysis, etc. The biggest advantage of

pyramid representations is that due to the sub-sampling operation, less data have to be

computed.

2.3. Integral Image

Proposed by Viola and Jones in 2001 [55], an integral image is capable of

calculating summations over image sub-regions rapidly. In the integral image, every

pixel is the summation of the pixels before it (above and to the left), the location 𝐱 =

(x, y)𝑇 of an integral image 𝐼∑(𝑥) represents the sum of all pixels in the input image

𝐼 within a rectangular area defined by

𝐼∑(𝑥) = ∑ ∑ 𝐼(𝑖, 𝑗)

𝑗≤𝑦

𝑗=0

𝑖≤𝑥

𝑖=0

.

As Figure 2.3.1 shows, the sum of intensities inside the rectangular area S can be

calculated as S = C − B– D + A. It only takes three additions and four memory

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

25

accesses, which will massively decrease the computational complexity.

Figure 2.3.1 Integral Image Calculation Example

2.4. SURF Detector

As the methodology proposed by Lindeberg in 1998 [56], Hessian determinant is

computed in SURF for automatic scale selection. Hessian matrix describes the 2nd

order image intensity variations around the selected pixel and is widely used in to

analyze the image structures. In a 2D image 𝐈, the Hessian matrix of a given point

𝒑(x, y) at scale σ can be defined as

H(𝒑, σ) = [
𝐿𝑥𝑥(𝒑, σ) 𝐿𝑥𝑦(𝒑, σ)

𝐿𝑥𝑦(𝒑, σ) 𝐿𝑦𝑦(𝒑, σ)
],

where 𝐿𝑥𝑥, 𝐿𝑥𝑦, 𝐿𝑦𝑦 are the Gaussian second order derivatives calculated using

Gaussian kernels of deviation σ. However, the Gaussians need to be discretized and

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

26

cropped due to the discontinuity of pixels.

As Figure 2.4.1 shows, the original Hessian matrix filter will be considered as the

approximate Hessian matrix with box filter since the box filters can be computed using

integral image with higher efficiency.

Figure 2.4.1 SURF Approximate Hessian Matrix [49]

To detect feature points in different scales, SURF applies an “up-side-down” scale

pyramid (Figure 2.4.2) approach instead of iteratively reducing the image size. This

approach analyses the scale space by up-scaling the filter size, thus it can make use of

the integral image to gain more computational efficiency. The scale pyramid consists

of several octaves and each octave contains four layers with different scales as Figure

2.4.3 illustrates. Note that the octaves are overlapping in order to cover all possible

scales seamlessly.

The approximate hessian matrix will then be applied to each layers to get the

responses. The SURF feature points candidates can be obtained by applying 3D non

maximum suppression [57] on both spatially and over the neighboring scales within

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

27

one octave. Finally, those candidate points are interpolated in scale and image space

with the method proposed by Brown et al. [58].

Figure 2.4.2 SURF scale space pyramid [49]

Figure 2.4.3 Graphical representation of the scales for three different octaves [49]

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

28

2.5. SURF Feature Detection Result

Figure 2.5.1 shows the SURF feature detection result. The green nodes represent

the pixels which are detected as feature points. Mainly the points in the corner are

selected as feature points. Note that there are around with the hessian response threshold

of 0.0002, but we only draw 50 points with the highest response on Figure 2.5.1 to have

a clear look.

Figure 2.5.1 SURF Feature Detection Result

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

29

CHAPTER 3: FEATURE DESCRIPTION

3.1. Feature Description Overview

A feature descriptor is an algorithm, which takes an image and outputs feature

descriptors or feature vectors. It encodes features into a series of numbers and act as a

sort of numerical ID that can be used to differentiate one feature from another. Such

feature descriptors have been widely used in the fields such as object recognition [48],

texture classification [59], generation of panoramas [60], and image indexing [61].

A descriptor is built by transferring the characteristics of the local region of pixels

around the feature points into digital vector. The descriptor generated from one feature

point will be different depending on the chosen descriptor. The objective of the

descriptor is to compactly represent these features while being unique at the same time.

One of the frequently used methods to obtain descriptors is by representing the

characteristics of the local area as a histogram, and transfer the histogram into a digital

vector, that is feature descriptor.

Johnson and Herbet [62] presented a 3D shape-based object recognition system

for multiple objects in cluttered scenes. Its recognition is based on matching surfaces

by matching points using spin image. The spin image is a mapping of relative positions

of 3D surface points to a 2D plane. 2D histogram of the local neighborhood around

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

30

each surface point was used to create spin images. Lazebnik et al. [59] used this concept

and extended it to texture classification. In this algorithm, a histogram of pixel and

intensity values was generated by encoding a normalized image patch.

In 2002, Belongie et al. [63] proposed shape context, which is able to match

corresponding areas between two images by using their shape information. In this

algorithm, a log polar histogram of edge point locations and orientations is computed

where the locations are described relative to the reference point.

DG Lowe [47][48] introduced a novel descriptor called Scale-Invariant Feature

Transform (SIFT), which used the gradient information around the feature point to

generate orientation histograms. And it was proved to have good robustness and speed

performance among other local descriptors. [64] Based on this, in 2008, Herbert et al.

[49] proposed SURF. SURF utilized integral image to speed up the computation time.

Another novel method to build descriptors is binary descriptors. The core idea of

binary descriptor is to encode most of the information of a patch as a binary string using

only comparison of intensity values. This will further speed up the computation time of

description as only intensity comparisons need to be made and the matching between

two binary strings can be done fast using Hamming distance. Many feature description

algorithms based on binary descriptor are proposed in the recent decade, such as BRIEF

[65], ORB [66], BRISK [67] and FREAK [68].

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

31

In general, a binary descriptor is composed of three parts:

1) Sampling pattern which is a small patch centered around a feature point used

to pick sampling points.

2) Orientation compensation. To make the descriptor invariant to rotation, we

need to calculate the orientation of the feature point and rotate it by the degrees.

3) Sampling pairs used to make intensity comparison and build the descriptor.

In this thesis, FREAK (Fast Retina Keypoints) is chosen as the feature descriptor,

and further discussion will be presented in the following section.

3.2. FREAK Descriptor

The FREAK (Fast Retina Keypoints) descriptor proposed by Alexandre Alahi and

Raphael Ortiz [68] recently has become one of the most widely used binary descriptors.

And it’s proved to be much more efficient than normal HOG based descriptors.

As introduced previously, sampling patterns are used to build descriptors by

making comparison between feature points and sampling points. Different algorithms

have different sampling patterns, BRIEF applies random pairs, ORB uses learned pairs,

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

32

while BRISK uses a circular pattern where points are equally spaced on concentric

circles.

Inspired by human retina areas (Figure 3.2.1), FREAK suggests to apply the retinal

sampling grid. As shown in Figure 3.2.2, FREAK pattern is also circular, with a higher

density of sampling points near the center. To get the descriptors, this pattern will be

applied to all detected feature points. The small black dots are the sampling locations

while the red circles are drawn at a radius corresponding to the standard deviation of

the Gaussian kernel used to smooth the intensity values at the sampling points.

Figure 3.2.3 shows all the pairs generated in the FREAK sampling pattern. The

selected pairs are segmented into four clusters corresponding to four areas in human

retina: perifoveal, parafoveal, fovea and foveal. As Figure 3.2.3 illustrates, the first

group of pairs mainly locate at the outer circular area of the pattern while the last pairs

compare mainly points in the inner rings of the pattern. Each group has 128 sampling

pairs. This approach mimics the way that our human retina works: higher resolution is

captured in the fovea area while the perifoveal area forms an estimation of the object.

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

33

Figure 3.2.1 The Human Retina [68]

Figure 3.2.2 FREAK Sampling Pattern [68]

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

34

Figure 3.2.3 FREAK Sampling Pairs [68]

3.3. Saccadic Search

In the matching step, FREAK takes the advantages of the coarse-to-fine structure

to speed up matching by applying a cascade approach. It first makes comparison

between the pairs located in the perifoveal section, which is the first 128 bits of the

descriptor. If the distance is smaller than a threshold, it continues to compare the next

128 bits in parafoveal area. As a result, more than 90% of the candidate pairs are

discarded in the first step of comparison, thus these candidates would not cost additional

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

35

computation. Figure 3.3.1 Illustration of Cascade Search [68].

3.4. FREAK Feature Description Result

The FREAK description and matching result is shown in Figure 3.4.1. The target

image size is 600*800 pixels, and the processing time is 511ms on average. Note that

not all the matching points are from the points shown in Figure 2.5.1. This is because

Figure 2.5.1 didn’t show all the feature points found through SURF algorithm as

mentioned before. The matching result is decent even the object in the target image has

some rotations and is taken from a different perspective.

Figure 3.3.1 Illustration of Cascade Search [68]

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

36

Figure 3.4.1 FREAK Feature Description and Matching Result

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

37

CHAPTER 4: GPU PROGRAMMING

4.1. Nvidia GPU Introduction

As mentioned in Chapter 1, starting from the late 1990’s, the NVIDIA GPU had

become increasingly programmable. Since the overwhelming performance benefits

over sequential computation, many developers began to run their graphical systems

with GPU. Parallel computation has been more and more welcomed in the past few

decades.

Driven by the insatiable market demand for real-time, high-resolution graphic, the

Graphic Processor Unit (GPU) has evolved into a highly parallel, multithreaded

processor with tremendous computational horsepower [39]. The high parallelism of

GPU is achieved by the massive replication of simple SIMD (Single Instruction

Multiple Data) processors, known as SM (Streaming Multiprocessors) [69].

In 2004, Ian Buck proposed Brook programming language, which was influential

attempts to achieve general-purpose computing on GPUs [70]. NVIDIA then coupled

the Brooke language extension into their specialized hardware and created the first

solution to general purpose parallel computing --- CUDA (Compute Unified Device

Architecture).

NVIDIA GPUs are parallel processing units which have the capability of running

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

38

thousands of concurrent threads in parallel. The GPU streaming multiprocessors (SMs)

have shared resources and on-chip memory which can run parallel tasks with higher

performance [39].

4.2. CUDA Introduction

As mentioned above, CUDA (Compute Unified Device Architecture) is a parallel

computing platform and application programming interface model developed by

NVIDIA. CUDA is not a programming language itself, rather it is a C/C++ extension

which enables parallel constructs. In CUDA, no prior knowledge of the graphics

pipeline is required, and general algorithms can be transferred into thousands of

concurrent threads, executed in parallel, to achieve a significant performance

improvement.

The CUDA platform provides three key abstractions: thread group hierarchy,

shared memories, and barrier synchronization [39]. CUDA revolves around the idea of

a kernel, or GPU function, which is executed for every thread, in every block, within

the configured grid. Invoking a CUDA kernel involves firstly creating a thread

hierarchy composed of the thread blocks, and threads per a block. Threads are grouped

into what are called thread blocks. First building an N-dimensional array of blocks, then

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

39

defining how many threads exist in each block forms a thread grid. Figure 4.2.1 shows

the typical grid configuration used for image processing (2 dimensional grid of blocks,

2 dimensional blocks of threads). In the case of image processing, the grid size would

be dependent on the image’s dimensions. For example, if the input image size is

512*512, and the number of threads per block was set to 16*32 (512 threads per block),

then the CUDA grid would consist 16*32 thread blocks to process each pixel

individually.

Figure 4.2.1 Typical CUDA Thread Configuration for Image Processing

4.3. CUDA Scalability Programming Model

As Moore's law predicts, the number of transistors in a dense integrated circuit

doubles approximately every two years. Thus, the parallelism of GPUs will increase

continuously over time. The biggest challenge for a parallel program is to transparently

scale its parallelism to leverage the increasing number of processor cores [39].

Block

(0,0)

Block

(0,1)

Block

(0,2)

Block

(0,3)

Block

(1,0)

Block

(1,1)

Block

(1,2)

Block

(1,3)

Block

(2,0)

Block

(2,1)

Block

(2,2)

Block

(2,3)

Block

(3,0)

Block

(3,1)

Block

(3,2)

Block

(3,3)

2D Grid of Blocks

Thread

(0,0)

Thread

(0,1)

Thread

(0,2)

Thread

(0,3)

Thread

(1,0)

Thread

(1,1)

Thread

(1,2)

Thread

(1,3)

Thread

(2,0)

Thread

(2,1)

Thread

(2,2)

Thread

(2,3)

Thread

(3,0)

Thread

(3,1)

Thread

(3,2)

Thread

(3,3)

2D Block of Threads

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

40

The CUDA parallel programming model is designed to solve this problem. As

illustrated in Figure 4.3.1, within CUDA, each block of threads can be scheduled on

any of the available SMs within a GPU in any order, so that a compiled CUDA program

can be executed on any number of SMs. With the Scalability feature, programmers can

create general parallel codes on CUDA and expect a better performance by updating

GPU only.

Figure 4.3.1 CUDA Automatic Scalability [39]

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

41

4.4. Streaming Multiprocessor

The CUDA architecture is built around a scalable array of multithreaded Streaming

Multiprocessors (SMs) and the number of SMs on a GPU determines the degree of

possible physical parallelism [39]. As mentioned previously, the massive sets of CUDA

threads are divided into thread blocks with fixed size in the execution configuration.

CUDA threads are grouped into blocks, and CUDA blocks are configured into grids.

When a CUDA program invokes a kernel grid, the blocks of the grid are

enumerated and distributed to multiprocessors with available SMs. The threads of a

block execute concurrently on one multiprocessor, and multiple thread blocks can

execute concurrently on one multiprocessor as well. When thread blocks terminate, new

blocks will be launched on the vacated SM.

The SM will further partition the blocks into warps, where each warp will be

scheduled independently to run all its threads with lock-step level parallelism. Threads

within a block will run on the same SM, therefore threads within the same block can

utilize local on-chip memory types, say shared memory. The NVIDIA global scheduler

will schedule the thread blocks to particular SMs basing on the number of thread blocks,

and the number of threads per block in the execution configuration. Figure 4.4.1 shows

an example of how CUDA thread blocks are mapped to streaming multiprocessors on

the NVIDIA GPU.

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

42

Figure 4.4.1 CUDA Thread Block Configuration [39]

A SM consists of a large array of SIMD (single instruction multiple data)

processing cores. SIMD implies that the processing units within an SM will run the

same instruction in lock-step level parallelism on different data.

As discussed above, the SM will further partition the scheduled block of threads

into units called warps. Warp is the fundamental unit of parallelism defined on NVIDIA

GPU hardware. Since the CUDA cores have an SIMD architecture, each thread within

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

43

a warp must run the same instruction, or be idle.

4.5. GPU Performance Optimization

Tuning CUDA codes for specific hardware configurations can greatly improve the

performance of the system.

Several specifications can improve the performance of NVIDIA GPUs, as shown

in Table 4.5.1. By knowing the GPU specifications for the hardware being programmed,

an algorithm’s implementation can be optimized to exploit all resources on the specific

GPU.

GPU Specification Method to Improve Performance

SM Number
Increase the number of SMs to increase the number of

concurrent threads executing in parallel

Warp Size
Increase the warp size to increase the number of threads

running in parallel within a single SM

Shared Memory Size
Increase the shared memory size per block to allow for higher

SM thread occupancy

Warps per SM
Increase the number of warps in an SM to increase the

number of threads executing in parallel

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

44

Table 4.5.1 Methods to improve GPU performance

The performance can also be improved by using different types of memory. Figure

4.5.1 illustrates the memory architecture of GPU:

Figure 4.5.1 GPU Memory Architecture [39]

1) Texture Memory

Texture memory on the GPU is the memory normally used for the graphics

pipeline, however it is also available for general purpose computing. Texture memory

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

45

is cached on-chip, so in some situations it will provide higher effective bandwidth by

reducing memory requests to off-chip DRAM. And it has great performance benefits

when memory accesses exhibit spatial locality (Figure 4.5.2). In the SURF algorithm,

convolution operations are of high reference of locality in terms of memory access since

neighboring pixels are required to work on one pixel. So that GPUs are able to make

use of the texture memory to achieve better performance when executing convolution

operations.

Figure 4.5.2 Spatial Locality Memory Access Pattern

In general, for implementations that have read-only memory access patterns with

high spatial locality, texture memory can be exploited to improve performance by

avoiding the costs of accessing global memory.

Kernel code is not able to write data into texture memory though it can read from

texture memory, which means execution should be switched between CPU code and

GPU kernel code repeatedly whenever it generates a texture with the calculation results

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

46

at each step. Therefore there will be four times data transferring between host and

device in the implementation using texture memory. This is costly since the bandwidth

between the device memory and the host memory is much lower compared to the

bandwidth between the device and the device memory.

2) Global Memory

Device memory reads texture fetching present several benefits over reads from

global or constant memory:

i. Texture memory are cached, potentially exhibiting higher bandwidth if there

is high locality in the texture fetches.

ii. The method of addressing is much easier because they are not subject to the

constraints on memory access pattern that global or constant memory reads

have to obey to get good performance.

iii. The latency of addressing calculations is better hidden.

However, performance of switching between device and host in order to write data

into texture memory versus no switching between device and host but using global

memory for manipulating data still have to be considered.

3) Shared Memory

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

47

Shared memory is the streaming multiprocessor on-chip memory normally with

sizes ranged from 16 KB to 64 KB, thus its access is faster than global memory access.

In fact, shared memory latency is approximately 100 times lower than uncached global

memory latency. Each thread block has its own dedicated segment of shared memory

since each block is scheduled to run exclusively on a particular SM. Threads can access

data in shared memory loaded from global memory by other threads within the same

thread block, however shared memory cannot be accessed between SMs, and therefore

shared memory cannot be shared between thread blocks. The amount of shared memory

is orders of magnitude smaller than global memory, thus the use of shared memory may

increase the complexity of CUDA implementation.

In summary, optimizing the GPU specification naively may sometimes produce

worse performance over the CPU implementation. Correct optimization strategies must

be known in order to maximize the parallel performance. The purpose of running

algorithms in parallel is to maximize algorithmic performance, so a basic knowledge of

the hardware specifications is imperative.

4.6. Parallel Implementation for the Integral Image

Before discussing the parallel implementation for the integral image, we first

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

48

introduce a popular approach to calculate the sum of an arbitrary array.

The exclusive scan operation is defined as the one-dimensional accumulation of

an arbitrary array, for each value computed is equal to the sum of all previous values,

excluding the current value. The exclusive scan of an array of n elements can be

represented as the following equation:

[𝑎0, 𝑎1, … , 𝑎𝑛−1] → [0, 𝑎0, (𝑎0 + 𝑎1), … , (𝑎0 + 𝑎1 + ⋯ + 𝑎𝑛−2)].

In 1990, Blelloch proposed an approach to calculate exclusive scan efficiently

using parallel algorithms [71]. The parallel implementation of the exclusive scan

operation involves two separate steps: the up-sweep step and the down-sweep step. As

shown in Figure 4.6.1, the up-sweep operation can be considered as a binary tree, which

reduces the number of nodes at each level by half and makes one summation per node

[72]. Each thread will execute log2(N) iterations where N is the length of the input array.

Only half of the data from the previous iteration are used to generate the next layer.

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

49

Figure 4.6.1 Parallel Up-Sweep Scan Implementation [72]

Figure 4.6.2 shows the parallel implementation of the down-sweep phase. In the

down-sweep step, the last element from the up-sweep result is set to zero first, then

from the root to the leaves, partial sums computed in the up-sweep step are used to get

the final exclusive scan result. At each iteration, twice the number of data will be

executed than the previous iteration. The parallel exclusive scan operation is work

efficient and has a O(N) work complexity, same as the sequential implementation.

Figure 4.6.2 Parallel Down-Sweep Scan Implementation [72]

Even though this usual exclusive scan approach is work efficient, it suffers from

the limitation of one block, as indicated in [73]. It loads the entire input data into shared

memory and executes the whole exclusive scan operation within one block, which

means it is unable to scan arrays with larger size since the maximum number of threads

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

50

per block is 512. And using one single thread block will also leave the other SMs

inactivated, bringing a low SM utilization ratio.

To solve this problem and achieve more parallelism, we divide the input array into

several parts, and distribute them into different thread blocks. For example, we have an

input array of size n and b thread blocks to launch. To make full use of all the SM, the

number of thread blocks should be no less than the number of SMs. Thus, the number

of thread t we need to launch per block is equal to n / s, where s is the number of SM

on the GPU. And the number of thread blocks we need to launch is n / t. Table 4.6.1

shows an example of our approach.

Variable Expression Value

Input Data Size N 2048

Number of SMs S 8

Threads Per Block t = (n/s) 256

Number of Blocks b = (n/t) 64

Table 4.6.1 Thread Configuration Example

The CUDA exclusive scan implementation spanning over multiple thread blocks

is visually represented in Figure 4.6.3. Each block will execute the exclusive scan

operation on individually. The last element of each block contains the summation result

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

51

of all the elements in that segment, we extract it to build an auxiliary array [72]. Then

the exclusive scan operation will be performed on the generated auxiliary array. And

the results of the auxiliary array will be added back into the segmented scan arrays to

complete the exclusive scan operation of the whole input array.

Figure 4.6.3 Parallel scan involving multiple thread blocks [72]

The integral image is computed by taking the rows of the input image as arbitrary

arrays, then performing exclusive scan operation on all the rows. After that, in order to

obtain the scan result of the columns, we take the transpose of the resultant array and

use the same scanning kernel again. Once the second exclusive scan operation is

completed, the resultant array will be transposed again in order to obtain the final

integral image result.

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

52

Figure 4.6.4 shows the comparison of integral image processing times on CPU and

GPU. Further discussion of the result will be presented in chapter 5.

Figure 4.6.4 CPU vs. GPU Integral Image Processing Time

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

53

4.7. Parallel Implementation

Figure 4.7.1 Architecture of the Parallelization of SURF Detection

The whole procedure of parallel implementation of SURF detector is illustrated in

Figure 4.7.1. As mentioned in the previous section, the input image is divided into

several segments first and assigned to different thread blocks to be processed. The

system first performed the exclusive scan operation for all the rows of the input segment,

and transposed the column-scanned image back to the original orientation. Then it

repeated the same operation on the transposed image to obtain the integral image.

To characterize the effects of different parallel optimization strategies for our

image recognition algorithm, we implement SURF algorithm using different memories

and access patterns.

First, we use global memory only in the implementation. In this approach, an

Scan data (Row) Scan data (Column)

Generate Integral Image

Box Filter

Interest point

Localization

…

…

…
 …

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

54

image is loaded into a global memory, a region of the image block is multiplied with

the box filters, add up the results, and then output pixel is written back to global memory

for next step. Since whole image is loaded into the global memory, we only need to

consider boundary when a pixel is at the edge of the image. Then the input image is

segmented into 16×16 sub-windows and a set of CUDA blocks process these sub-

windows for convolution operations until all the sub-windows are completed.

For the implementation using texture memory only, since texture memory is read-

only for kernel code on GPU, which means operations should be transferred between

CPU code and GPU kernel code repeatedly whenever it generates a texture with the

calculation results at each step. Therefore four times data transferring between host and

device in the implementation using texture memory.

When we implement SURF algorithm with shared memory, a block of pixels from

the image is loaded into an array in shared memory, convolution or thresholding

operation is applied to the pixel block, and then the output image is written into shared

memory array for the use on the next step.

In all cases of implementation, the kernel configuration is of 16×16 threads of each

block and 32 of blocks on a 512x512 image. The convolution is parallelized across the

available computational threads where each thread computes the convolution result of

its assigned pixels sequentially. Pixels are distributed evenly across the threads. The

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

55

result shows that the shared memory and texture memory implementations have a big

advantages in speed, however texture memory processing time is longer than shared

memory. The main reason for that is due to the repeatedly data transfer operation

between host and device. Thus in our GPU SURF program, we only use texture memory

to store the integral image and original image to avoid the use of global memory. The

convolution operations of box filter will be implemented in shared memory to increase

the speed.

Figure 4.7.2 shows the schematic of the whole system. The parallel computation

allowed the system to finish the operations on pixels efficiently, which are a major part

of SURF and FREAK algorithm.

 Figure 4.7.2 Schematic of the System

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

56

CHAPTER 5: EXPERIMENT SETUP AND RESULTS

5.1. Experiment Setup

 Table 5.1.1 shows the configurations of our experiment setup. Note that the results

of our experiments are all based on the environment specification below. Table 5.1.2

GPU Specifications shows the specification of NVIDIA GeForece GT 755M. The

CUDA code has been optimized based on the specification of this GPU.

Environment Specification

CPU Intel(R) Core(TM) i5-4200M CPU @ 2.50GHz

GPU NVIDIA GeForce GT 755M

RAM 8.00 GB

OS Microsoft Windows 10 (64bit)

OPEN CV Version 2.4.13

Visual Studio Visual Studio 2013

CUDA CUDA Toolkit 8.0

Table 5.1.1 Experiment environment specification

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

57

NVIDIA GeForce GT 755M Specification

Architecture Type Kepler

CUDA Capable Version 3.0

Threads per Warp 32

Max Warps per SM 64

Max Thread Blocks per SM 16

Max Active Threads per SM 2048

Max Threads per Block 1024

Shared Memory per SM (bytes) 49152

Max Shared Memory per Block (bytes) 49152

Table 5.1.2 GPU Specifications

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

58

5.2. Experiment Results

The schematic of the object recognition system is shown in Figure 4.7.2. The

detection and description stages are implemented in CUDA platform to take full

advantage of the parallel computing capability of NVIDIA GPU. The feature matching

system is executed by first providing an original training image to build a feature

database, then providing target images where the features from the training image will

be matched to. Figure 5.2.1 (a) shows the training image chosen for this thesis, and

Figure 5.2.1 (b, c, d) illustrates the target images for measuring the performance of the

feature matching computer vision system.

The performance results were analyzed by feature matching a training image to

multiple images, as shown in Figure 5.2.1. Then the target images were sub-sampled

from image dimensions 2048*2048 to 216*216 to measure performance processing

time over various image resolutions. Figure 5.2.2 illustrated the results of our feature

matching system.

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

59

(a) Training Image (b) Target Image 1

(c) Target Image 2 (d) Target Image 3

 Figure 5.2.1 Training Image and Target Images

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

60

(a) Matching with Target Image 1

(b) Matching with Target Image 2

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

61

(c) Matching with Target Image 3

Figure 5.2.2 Feature Matching Results

Figure 5.2.3 to Figure 5.2.5 list the execution time comparisons of the integral

image, feature detection and recognition between CPU and CUDA, where the input

images are the training image 1(Figure 5.2.1 (a)) and scaled target image 2 and 3(Figure

5.2.1 (b,c)).

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

62

 Figure 5.2.3 Integral Image Generation Time Comparison between CPU and GPU

Figure 5.2.4 SURF Feature Point Detection Time Comparison between CPU and CUDA

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

63

Figure 5.2.5 SURF and FREAK Execution Times Comparison between CPU and CUDA

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

64

CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1. Conclusion

This thesis presents modern CUDA optimizations strategies to decrease the

processing time for real-time performance. As shown in Figure 5.2.3, the processing

times of the optimized CUDA implementation did not exceed 350 ms for all image

dimensions ranging up to 1440x1440. The optimized CUDA implementation had an

average 3 times faster over CPU-only implementation. The optimized CUDA

implementation did not compromise did not compromise precision for performance,

since the implementation has the same precision as the other implementations.

The application of the optimized CUDA SURF detection implementation towards

the feature matching computer vision system showed an average speed-up of 3 times

faster over the traditional CPU implementation. The CUDA implementation of the

object recognition algorithms provides an efficient and flexible system which can be

utilized by passive vision censors on the autonomous vehicle or other higher level

computer vision systems: motion detection, image registration, video tracking,

panorama stitching, 3D modeling, and object recognition.

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

65

6.2. Future Work

The significant speed advantages of CUDA implementation over traditional CPU

implementation due to NVIDIA CUDA scalability, as discussed in Section 2.2, the

optimized CUDA implementation will scale to future NVIDIA GPUs with higher

performance specifications. This implies that the same optimized CUDA

implementation is contemporary. Future improvements to NVIDIA GPU hardware will

effectively improve the performance of this implementation.

The NVIDIA GPU and CUDA platform is continually upgrading and the GPU

performance is always increasing. For instance, the GeForce GTX 480 released in 2010

contains 480 processing cores, while the GPU used to conduct this thesis research,

GeForce GT 755M, released in 2013 contains 1344 processing cores, nearly tripling the

parallel processing capability over the span of 3 years. Areas of future work in the area

of GPU image recognition include optimizing the algorithm on the most recent GPU

hardware architecture (Maxwell) and scaling the algorithm’s implementation to a multi-

GPU environment.

Maxwell is one of the NVIDIA’s latest GPU architecture, which released in 2014.

The Maxwell architecture provides dramatic improvements to the streaming

multiprocessor design in areas of energy efficiency, control logic partitioning (avoids

warp divergence), workload balancing, instructions executed per clock cycle, and many

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

66

more. The Maxwell architecture supports dynamic parallelism which allows for CUDA

kernels to invoke kernels themselves. The same implementation discussed throughout

this thesis will receive a performance benefit when run on Maxwell architecture;

however, further performance improvement can be achieved by re-implementing the

algorithm specifically to utilize all resources on the NVIDIA Maxwell architecture.

CUDA supports the invocation of multiple GPU execution asynchronously away

from the host. Future work for the research discussed in this thesis includes scaling the

single GPU CUDA SURF and FREAK image recognition implementation to a multi-

GPU environment. The existence of multiple GPUs in the environment allow for

optimized load balancing of threads per SM between all GPUs, thus increasing GPU

efficiency and performance.

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

67

REFERENCES

[1] D. Ballard and C. Brown, “Computer vision,” 1982.

[2] T. S. Huang, “Computer Vision: Evolution and Promise.”

[3] M. Sonka, V. Hlavac, and R. Boyle, “Image Processing, Analysis, and Machine

Vision Second Edition.”

[4] R. Szeliski, “Computer vision: algorithms and applications,” 2010.

[5] S. A. Papert, “The Summer Vision Project,” 1966.

[6] M. A. Boden, Mind as machine : a history of cognitive science. Clarendon Press,

2008.

[7] L. Davis, “A survey of edge detection techniques,” Comput. Graph. image Process.,

1975.

[8] B. Baumgart, “Geometric modeling for computer vision,” 1974.

[9] H. Baker, “Three-Dimensional Modeling.,” IJCAI, 1977.

[10] V. Nalwa, “A guided tour of computer vision,” 1994.

[11] S. Ullman, “The interpretation of structure from motion,” Proc. R. Soc., 1979.

[12] H. Longuet-Higgins, “A computer algorithm for reconstructing a scene from two

projections,” Comput. Vis. Issues, Probl. …, 1987.

[13] S. Seitz and R. Szeliski, “Applications of computer vision to computer graphics,”

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

68

Comput. Graph. (ACM)., 1999.

[14] T. Beier and S. Neely, “Feature-based image metamorphosis,” ACM SIGGRAPH

Comput. Graph., 1992.

[15] N. Sebe, Machine learning in computer vision. Springer, 2005.

[16] W. Freeman, P. Perona, and B. Schölkopf, “Guest Editorial,” Int. J. Comput. Vis.,

vol. 77, no. 1–3, pp. 1–1, May 2008.

[17] S. Gehrig and F. Stein, “Dead reckoning and cartography using stereo vision for an

autonomous car,” Robot. Syst. 1999. IROS’99. …, 1999.

[18] E. Dickmanns and A. Zapp, “Autonomous high speed road vehicle guidance by

computer vision,” Autom. Control. World Congr. (10th). …, 1988.

[19] “‘Phantom Auto’ to Be Operated Here,” Google News Arch., 1932.

[20] “Autonomous Cars Will Make Us Safer,” WIRED, 2009.

[21] J. Schmidhuber, Prof. Schmidhuber’s highlights of robot car history. 2009.

[22] T. Kanade, C. Thorpe, and W. Whittaker, “Autonomous land vehicle project at

CMU,” in Proceedings of the 1986 ACM fourteenth annual conference on Computer

science - CSC ’86, 1986, pp. 71–80.

[23] R. Wallace, “First results in robot road-following,” JCAI’85 Proc. 9th Int. Jt. Conf.

Artif. Intell., 1985.

[24] C. Albanesius, “Google Car: Not the First Self-Driving Vehicle,” PC Mag., 2010.

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

69

[25] M. Harris, “How Google’s autonomous car passed the first US state self-driving

test,” IEEE Spectr., 2014.

[26] D. P. Howley, “The Race to Build Self-Driving Cars,” Laptop, 2012.

[27] O. A. V. S. Committee, “SAE J3016: Taxonomy and Definitions for Terms Related

to On-Road Motor Vehicle Automated Driving Systems,” SAE Int.

[28] Autopilot: Full Self-Driving Hardware on All Cars. Tesla Motors.

[29] W. Stone, M. Juberts, N. Dagalakis, J. Stone, and J. Gorman, “Performance

analysis of next-generation LADAR for manufacturing, construction, and mobility,”

2004.

[30] F. Alonge, M. Branciforte, and F. Motta, “A novel method of distance measurement

based on pulse position modulation and synchronization of chaotic signals using

ultrasonic radar systems,” IEEE Trans., 2009.

[31] S. Seitz, “An overview of passive vision techniques,” cs.cmu.edu.

[32] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik, “A real-time computer

vision system for vehicle tracking and traffic surveillance,” Res. Part C Emerg. …,

1998.

[33] H. Herbert, “The history of OCR, optical character recognition,” Manchester

Center, VT Recognit. Technol., 1982.

[34] D. Vernon, “Machine vision-Automated visual inspection and robot vision,” NASA

STI/Recon Tech. Rep. A, 1991.

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

70

[35] Y. Chuang, A. Agarwala, and B. Curless, “Video matting of complex scenes,” ACM

Trans., 2002.

[36] T. Moeslund and E. Granum, “A Survey of Computer Vision-Based Human Motion

Capture,” Comput. Vis. Image, 2001.

[37] N. Ratha and R. Bolle, “Automatic fingerprint recognition systems,” 2007.

[38] A. Danowitz, K. Kelley, J. Mao, and J. Stevenson, “CPU DB: recording

microprocessor history,” Commun., 2012.

[39] NVIDIA, “Cuda C Programming Guide,” Program. Guid., no. September, pp. 1–

261, 2015.

[40] T. Lindeberg, “Scale-Space,” in Wiley Encyclopedia of Computer Science and

Engineering, vol. IV, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008, pp. 2495–

2504.

[41] S. Umbaugh, “Digital image processing and analysis: human and computer vision

applications with CVIPtools,” 2016.

[42] J. Canny, “A computational approach to edge detection,” IEEE Trans. pattern Anal.

Mach., 1986.

[43] H. Works, “Sobel Edge Detector,” cse.secs.oakland.edu.

[44] J. Prewitt, “Object enhancement and extraction,” Pict. Process. Psychopictorics,

1970.

[45] C. Harris and M. Stephens, “A combined corner and edge detector.,” Alvey Vis.

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

71

Conf., 1988.

[46] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 3951 LNCS, pp. 430–443, 2006.

[47] D. G. Lowe, “Object recognition from local scale-invariant features,” Proc.

Seventh IEEE Int. Conf. Comput. Vis., vol. 2, no. [8, pp. 1150–1157, 1999.

[48] D. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J.

Comput. Vis., 2004.

[49] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features

(SURF),” no. September, 2008.

[50] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline stereo from

maximally stable extremal regions,” Image Vis. Comput., 2004.

[51] T. Lindeberg, “Scale-space theory: A basic tool for analyzing structures at different

scales,” J. Appl. Stat., 1994.

[52] E. Adelson, C. Anderson, and J. Bergen, “Pyramid methods in image processing,”

RCA, 1984.

[53] P. Burt and E. Adelson, “The Laplacian pyramid as a compact image code,” IEEE

Trans. Commun., 1983.

[54] J. Crowley and A. Parker, “A representation for shape based on peaks and ridges in

the difference of low-pass transform,” IEEE Trans. Pattern Anal., 1984.

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

72

[55] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple

features,” Comput. Vis. Pattern Recognit., vol. 1, p. I--511--I--518, 2001.

[56] T. Lindeberg, “Feature Detection with Automatic Scale Selection,” Int. J. Comput.

Vis., vol. 30, no. 2, pp. 79–116, 1998.

[57] A. Neubeck and L. Van Gool, “Efficient Non-Maximum Suppression,” 18th Int.

Conf. Pattern Recognit., vol. 3, no. 1, pp. 850–855, 2006.

[58] M. Brown and D. Lowe, “Invariant Features from Interest Point Groups,” pp. 253–

262, 2002.

[59] S. Lazebnik, C. Schmid, and J. Ponce, “A sparse texture representation using

affine-invariant regions,” Comput. Vis. Pattern, 2003.

[60] M. Brown and D. Lowe, “Recognising panoramas.,” ICCV, 2003.

[61] C. Schmid and R. Mohr, “Local grayvalue invariants for image retrieval,” IEEE

Trans. Pattern Anal. Mach., 1997.

[62] A. Johnson and M. Hebert, “Using spin images for efficient object recognition in

cluttered 3D scenes,” IEEE Trans. pattern Anal., 1999.

[63] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition

using shape contexts,” IEEE Trans. pattern, 2002.

[64] K. Mikolajczyk, K. Mikolajczyk, C. Schmid, and C. Schmid, “A performance

evaluation of local descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no.

10, pp. 1615–1630, 2005.

M.Sc. Thesis - Y. Liu; McMaster University – Mechanical Engineering

73

[65] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary robust

independent elementary features,” Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6314 LNCS, no. PART 4, pp. 778–

792, 2010.

[66] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative

to SIFT or SURF,” Proc. IEEE Int. Conf. Comput. Vis., pp. 2564–2571, 2011.

[67] S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Binary Robust invariant

scalable keypoints,” Proc. IEEE Int. Conf. Comput. Vis., pp. 2548–2555, 2011.

[68] A. Alahi, R. Ortiz, and P. Vandergheynst, “FREAK: Fast retina keypoint,” Proc.

IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 510–517, 2012.

[69] R. Farber, “CUDA application design and development,” 2011.

[70] I. Buck, T. Foley, D. Horn, and J. Sugerman, “Brook for GPUs: stream computing

on graphics hardware,” ACM Trans., 2004.

[71] G. Blelloch, “Prefix sums and their applications,” 1990.

[72] B. Bilgic, B. Horn, and I. Masaki, “Efficient integral image computation on the

GPU,” Intell. Veh. Symp. (, 2010.

[73] M. Harris, S. Sengupta, and J. Owens, “Parallel prefix sum (scan) with CUDA,”

GPU gems, 2007.

