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To those who have failed and keep trying.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fractal geometry will make you see everything differently. There is a danger in

reading further. You risk the loss of your childhood vision of clouds, forests, flowers,

galaxies, leaves, feathers, rocks, mountains, torrents of water, carpet, bricks, and much

else besides. Never again will your interpretation of these things be quite the same.

Michael F. Barnsley, Fractals Everywhere (2000), 1



Abstract

Assessment of diffuse brain disorders, where the brain may appear normal, has proven

difficult to translate into personalized treatments. Previous methods based on brain

magnetic resonance imaging (MRI) resting state blood oxygen level dependent (rs-

BOLD) signal routinely rely on group analysis where large data sets are assessed using

region-of interest (ROI) or probabilistic independent component analysis (PICA) to

identify temporal synchrony or desynchrony among regions of the brain.

Brain connectivity occurs in a complex, multilevel and multi-temporal manner,

driving the fluctuations observed in local oxygen demand. These fluctuations have

previously been characterized as fractal, as they auto-correlate at different time

scales. In this study we propose a model-free complexity analysis based on the fractal

dimension of the rs-BOLD signal, acquired with MRI. The fractal dimension can

be interpreted as a measure of signal complexity and connectivity. Previous studies

have suggested that reduction in signal complexity can be associated with disease.

Therefore, we hypothesized that a detectable differences in rs-BOLD signal complexity

could be observed between patients with diffuse or heterogeneous brain disorders and

healthy controls.

In this study, we obtained anatomical and functional data from patients with

brain disorders where traditional methods have been insufficient to fully assess the
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condition. More specifically, we tested our method on mild traumatic brain injury,

autism spectrum disorder, chemotherapy-induced cognitive impairment and chronic

fatigue syndrome patients. Three major databases from the Neuroimaging Informatics

Tools and Resources Clearinghouse (NITRC) project were used to acquire large

numbers of age matched healthy controls. Healthy control data was downloaded from

the the Autism Brain Imaging Data Exchange (ABIDE), the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) and the Human Connectome Project specifically

matching our experimental design.

In all of our studies, the voxel-wise rs-BOLD signal fractal dimension was calculated

following a procedure described by Eke and Herman et al., 2000. This method was

previously used to assess brain rs-BOLD signal in small mammals and humans. The

method consists of estimating the Hurst exponent in the frequency domain using a

power spectral density approach and refining the estimation in the time domain with

de-trended fluctuation analysis and signal summation conversion methods. Voxel-wise

fractal dimension (FD) was then calculated for every subject in the control and patient

groups to create ROI-based Z-scores for each individual patient. Voxel-wise validation

of FD normality across controls was studied and non-Gaussian voxels, determined

using kurtosis and skewness calculations, were eliminated from subsequent analysis.

To maintain a 95% confidence level, only regions where Z-score values were at least 2

standard deviations away from the mean were included in the analysis. In the case

of chronic fatigue patients and chemotherapy induced cognitive impairment, DTI

analysis was added to also determine whether white matter abnormalities were also

relevant. Similar Z-score analysis on DTI metrics was also performed.

Brain microscopic networks, modeled as complex systems, become affected in diffuse

v



brain disorders. Z-scoring of the fractal rs-BOLD frequency domain delineated patient-

specific regional brain anomalies which correlated with patient-specific symptoms. This

technique can be used alone, or in combination with DTI Z-scoring, to characterize a

single patient without any need for group analysis, making it ideal for personalized

diagnostics.

vi



Acknowledgements

I would like to thank my supervisor, Dr. Michael D. Noseworthy, for the patient

guidance, encouragement and advice he has provided throughout my time as his

student. I have been extremely lucky to have a supervisor who came up with new

projects when the original project did not materialize and who believed I could finish

this work when I did not believe it myself. I would also like to thank all the members of

my thesis committee Dr. Wong, Dr. Hall and Dr. Bock who helped me with patients

recruitment, interpretation of neuropychological components and who significantly

contributed to the realization of this work.

I would also like to acknowledge and thank my friends and colleagues of the

Imaging Research Centre for their support. They have read my work, troubleshot

my code, listened to my rants when things were not working or when papers were

rejected. Some have already graduated and others have just started and they are:

Evan McNabb, Andrew Davis, Alyaa Elzibak, Conrad Rockel (Conradical), Saurabh

Shaw, Alireza Akbari (Ali), Michael Behr, David Stillo, Catalina Charles (Caty),

Alejandro Santos, Amy Harrison and Julia (Shrimpy), Mitchell (Don P) Doughty,

Nick Simard and Diana Harasym. Thanks for the laughs too. This PhD work would

not have been possible without the help and support from Norm Konyer and the IRC

technologists Cheryl Contant, Julie Lecomte, and Carol Awde. They have taught me

vii



more about MRI than any book could ever do.

Lastly, I would like to thank my family and personal friends for their support

during this student period of my life that is finally about to end.

viii



Notation and abbreviations

AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Alzheimer’s Disease

AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Axial Diffusivity

ADI-R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Autism Diagnostic Interview Revised

ADNI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Alzheimer’s Disease Neuroimaging Initiative

ADOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Autism Diagnostic Observation Schedule

ASD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Autism Spectrum Disorder

BET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brain Extraction Tool

BOLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Blood Oxygen Level Dependent

CBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cerebral Blood Flow

CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Corpus Callosum

CFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Chronic Fatigue Syndrome

CFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Chronic Fatigue Syndrome

CNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Central Nervous System

CSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Cerebrospinal Fluid

CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Computed Tomography

DBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Deep Brain Stimulation

DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Discrete Fourier Transform

DMN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Default Mode Network

ix



DTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diffusion Tensor Imaging

EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electroencephalography

EPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Echo Planar Imaging

FA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fractional Anisotropy

fBm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fractional Brownian Motion

FD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fractal Dimension

FDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fMRIB Diffusion Toolbox

fGn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fractional Gaussian Noise

FMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Magnetic Resonance Imaging

FNIRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Near-Infrared Spectroscopy

GABA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . gamma-Aminobutyric Acid

GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gray Matter

HIREB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Hamilton Integrated Research Ethic Board

IFOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inferior Fronto Occipital Fasciculus

ILF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inferior Longitudinal Fasciculus

IQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intelligence Quotient

JHUICBM John Hopkins University and International Consortium of Brain Mapping

LFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low Frequency Fluctuations

MD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mean Diffusivity

MEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Magnetoencephalography

MPRAGE . . . . . . . . . . . . . . . . . . . . . . . . . . Magnetization Prepared Rapid Gradient Echo

MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Magnetic Resonance Imaging

MRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Magnetic Resonance Spectroscopy

mTBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mild Traumatic Brain Injury

x



myoI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . myoinositol

NAA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N-Acetyl Aspartate

PCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Posterior Cingulate Cortex

PET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Positron Emission Tomography

PICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Probabilistic Independent Component Analysis

PPMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pearson Product Moment Correlation

PSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Spectrum Density

RCFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rey Complex Figure Test and Recognition Trial

RD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Radial Diffusivity

ROI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Region of Interest

SCAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Spence Children’s Anxiety Scale

SPECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Photon Emission Tomography

SSCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signal Summation Conversion Method

SWI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Susceptibility Weighted Imaging

SWV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scale Window Variance

TBSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tract Based Spatial Statistics

TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Echo Time

TFCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Threshold Free Cluster Enhancement

TR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Repetition Time

WM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .White Matter

xi



Contents

Abstract iv

Acknowledgements vii

Notation and abbreviations ix

1 Introduction to Fractal Structures and Fractal Dynamics 1

2 Fractal behavior of the brain BOLD signal 7

2.1 The hemodynamic response . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 BOLD fMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Fractal behavior in the BOLD signal . . . . . . . . . . . . . . . . . . 11

2.4 BOLD fMRI acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Fractal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Hypothesis, Methods and Experimental Design 17

3.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

xii



4 Fractal Analysis of rs-BOLD Signals in Mild Traumatic Brain Injury

(mTBI) 26

4.1 Context of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Declaration Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Fractal Analysis of the rs-BOLD signal in Autism Spectrum Disorder

(ASD) patients. 59

5.1 Context of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Declaration Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Fractal Analysis of the brain rs-BOLD signal in cancer patients ex-

periencing chemotherapy-related cognitive impairment. 89

6.1 Context of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Declaration Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Preliminary Study on Chronic Fatigue Syndrome 124

7.1 Context of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 Declaration Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3 Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8 Conclusions and Future Directions 146

8.1 General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.2 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

xiii



8.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.4 Contribution and future directions . . . . . . . . . . . . . . . . . . . . 150

8.5 Concluding statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A Summary of publications, journals, conference proceedings and Code

152

A.1 Journal articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.2 Conference proceedings . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.3 Matlab code for Hurst, FD and Z-score methods . . . . . . . . . . . 154

A.3.1 Hurst exponent . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.3.2 FD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.3.3 Z-score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

xiv



List of Figures

1.1 (a). Fractal Surface. (Szeliski and Terzopoulos, 1989). (b). Fractal

Landscape. Debian art. (Bezo97, 2016) . . . . . . . . . . . . . . . . . 2

1.2 Model for fractal tree geometries (Bentley et al., 2013) . . . . . . . . 3

1.3 Fractal antenna. Reproduced with permission of Juan J de Onate,

M0WWA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Schematic representation of fractal dynamics in the human heart rate

(Goldberger et al., 2002). . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Schematic representation of the hemodynamic response. . . . . . . . . 9

2.2 Schematic representation of the hemoglobin molecule. . . . . . . . . . 10

2.3 (a). Raw BOLD signal .(b) Power spectrum analysis showing the power

law decay in the frequency range of 0.08 - 0.16 Hz . . . . . . . . . . 12

2.4 Schematic representation k-space trajectory for a single shot EPI . . . 14

xv



3.1 Analysis of normality.(a) Kolmogorov- Smirnov normality test. h=1

indicates rejection of the null hypothesis at a 5% significance level. (b)

Kurtosis map. Voxels where k 6= 3.0± 0.5 were removed from analysis.

The map was centered at k=3. (c) Skewness map. Skewness measures

asymmetry of the distribution. Positive skew(sk) indicates more data

points above the mean while negative skew indicates more data points

below the mean. Voxels where sk 6= 0.0± 0.5 were removed from the

analysis and the sk map was normalized. . . . . . . . . . . . . . . . . 22

xvi



Chapter 1

Introduction to Fractal Structures

and Fractal Dynamics

Fractals are geometrical or mathematical structures that can be found in countless

biological structures such as trees and coral colonies, and also inside animal bodies in

the lungs and vascular branching networks. Furthermore, fractals are used in graphics

created for movies and video games, on wireless communications and in numerous

areas of the medical field. Fractals are most commonly thought of as spatial constructs

but can also be used to classify the temporal domain such as with the rhythm of the

heart and ultimately the brain.

These mathematical structures mainly differ from others on the way they scale.

Unlike a cube where if the face doubles, the volume increases by six, a fractal structure

scales by a power that is not necessarily an integer and this power is called the

fractal dimension. Fractals are generated by divergent, self similar functions that

are un-differenciable and are ideal to characterize complex systems where typical (i.e.

Euclidean or integer) dimensions are insufficient.
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Although first described by Benoit Bandelbrot in 1975, fractal applications were

not developed until 1978 when Loren Carpenter, an engineer for Boeing aircraft, used

fractal geometry to create computer generated landscapes. The computer graphics

industry rapidly incorporated fractal techniques to generate stunningly realistic natural

looking structures. (See Figure1.1)

(a) (b)

Figure 1.1: (a). Fractal Surface. (Szeliski and Terzopoulos, 1989). (b). Fractal
Landscape. Debian art. (Bezo97, 2016)

In fractals, patterns are replicated at different scales. When the replication is

exactly the same at every scale, it is called a self-similar pattern. One of the most

familiar examples of self-similarity can be observed in a tree. In each of the branching

nodes of a tree, the pattern of branching is very similar and repeats throughout the

tree from the base to the top. This fractal characteristic in trees has enabled new

methods to calculate, with higher certainty, the amount of oxygen produced by an

entire rain forest and its carbon dioxide consumption (Bentley et al., 2013). Figure

1.2 demonstrates how the branches of a tree model can be divided in subsections that

are similar at different scales.

Another groundbreaking application of fractals was discovered by Nathan Collen

when he introduced fractal geometry in the design of modern antennas (Cohen, 2002).
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Figure 1.2: Model for fractal tree geometries (Bentley et al., 2013)

A fractal pattern caused the size of the antennas to be drastically reduced and the

frequency range to be widened. This discovery has been considered a breakthrough in

technological communication and fractal antennas are used in every communication

device today.

In addition to the spatial domain, fractal patterns can also be observed in the

time domain. A clear fractal pattern can be observed in the frequency of the heart

beat. The human heart rate generates fluctuations on different time scales that are

statistically self similar (Goldberger, 1996). This dynamic can be observed in Figure

1.4 and it has become an established bio-marker for the diagnosis of heart disease.

Additionally, fractal dynamics had been observed in electrocardiogram (ECG) (Bär

et al., 2007), in brain electroencephalography (EEG)(Nan and Jinghua, 1988) and

more recently in the brain blood oxygen level dependent (BOLD) signal acquired with

magnetic resonance imaging (MRI) (Zarahn et al., 1997; Bullmore et al., 1996, 2001).

Many biological systems exhibit fractal dynamics, however the reason behind this

behavior is still a mystery. One possible explanation is that, as seen with the fractal

antennas, fractal systems are more efficient in storing information, which allows for
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Figure 1.3: Fractal antenna. Reproduced with permission of Juan J de Onate,
M0WWA

adaptability and learning (Sharma, 2009). Reduction of the fractal dimension in

biological systems has been associated with disease due to a reduced capacity of the

system to adapt. In the case of the brain, complexity of brain signals, characterized by

the fractal dimension (FD), has been investigated using resting-state EEG (rs-EEG)

and rs-BOLD. A recent study by Smits et al. (Smits et al., 2016) showed calculations

of FD in resting state EEG recordings from 67 Alzheimer’s Disease (AD) patients

and 41 healthy controls. They found that the FD and signal complexity decreased

with age in normal controls and that it further decreased in AD patients, especially in

temporal-occipital regions of the brain. This study supports the concept that brain

signal FD correlates with changes in brain connectivity and complexity.

In another study Warsi et al. (Warsi et al., 2012) studied the correlation of rs-BOLD

fractal dimension and in vivo proton magnetic resonance spectroscopy (1H-MRS) in

the left putamen of AD patients and normal controls. It was shown that decreased
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FD was consistent with AD severity, as measured with known biomarkers N-acetyl

aspartate (NAA) (r = 0.44, p = 0.015) and myoinositol (myoI) (r = -0.45, p = 0.012)

Additionally, a study by Weber et al. (Weber et al., 2014) showed how complexity

of the rs-BOLD brain signal decreased as ethanol levels in the brain increased. This

was seen particularly in the right basal ganglia at 60 and 90 minutes after ethanol

consumption. Furthermore, the rs-BOLD signal complexity returned as the brain

ethanol became metabolized. Ethanol directly affects function of the brain GABA-A

receptors (Simson et al., 1993) decreasing brain functional connectivity. As ethanol

was cleared in the brain, brain connectivity increased and fractal dimension increased.

The conclusion from this work was that the temporal complexity of brain resting state

was diminished with increased levels of brain alcohol. In other words, the ability of

the brain to process information was reduced in an intoxicated state and this effect

was observed in the fractal dimension of the BOLD signal.

Despite the early identification of fractals in brain signals and the value of the FD

as a biomarker for pathology or disease, there have been very few studies on its clinical

applications beyond aging and dementia (Warsi et al., 2012; Maxim et al., 2005; Wink

et al., 2006). The complex nature of fractals makes the mathematical concept behind

fractals difficult to understand even for mathematicians thus impeding advancement

on this field of study. This work is intended to expand the fractal analysis of brain

signals to pathologies of the brain where traditional diagnostic methods have been

insufficient and will hopefully create a route map for future researchers and clinicians

willing to include chaos and complexity in the study of the brain.
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Figure 1.4: Schematic representation of fractal dynamics in the human heart rate
(Goldberger et al., 2002).
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Chapter 2

Fractal behavior of the brain BOLD

signal

2.1 The hemodynamic response

The human brain is the control center of the body. It sends and receives millions of

signals every second, in the form of hormones, nerve impulses, and chemical messengers.

Changes in brain activity could cause deficits in cognition, consciousness and motor

control, hence being able to asses brain activity is fundamental in the diagnosis of

several disorders.

In the brain, neuronal activation triggers an increase in cerebral blood flow (CBF).

This phenomenon is known as CBF and neuronal activity coupling and it was first ob-

served in 1980 in invasive animal studies (Tsubokawa et al., 1980; Roy and Sherrington,

1890). The mechanism behind the CBF and neuronal activity coupling is still under

scrutiny, but it has been suggested that when a region of the brain becomes active

in response to a particular stimulus, the metabolic activity of the neurons increase,
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demanding more oxygen and glucose, therefore increasing the local blood flow (Nair,

2005). Active neurons do not require much more oxygen compared to inactive neurons.

As a result there is a local increase in oxygen in the blood vessels surrounding the

active regions. Consequently, by measuring oxygenation, blood flow and neuronal

activity can be indirectly determined.

The need for non-invasive methods required in human studies caused an advance-

ment in different imaging modalities aiming at measuring blood oxygenation such as

functional positron emission tomography (PET), functional near infrared spectroscopy

(fNIRS) and BOLD functional magnetic resonance (fMRI). Out of these modalities,

BOLD fMRI is the most common method of measuring brain function. This is be-

cause MRI-based techniques provide an ideal balance between spatial and temporal

resolution and do not require radioactive contrast agents as PET. Figure 2.1 shows a

basic schematic representation of the hemodynamic response function for an activated

voxel in the brain. After the stimulus, it takes about 2 seconds before a change can

be observed. As the CBF increases, the hemodynamic response gradually increases

until it peaks at around 6 seconds and then slowly decays to baseline levels at 15 to

20 seconds. An initial and a final undershot is generally observed although it is not

clear what are the mechanisms behind them (Lazar, 2008).

2.2 BOLD fMRI

Oxygen is carried throughout the body by a red blood cell protein know as hemoglobin

(See Figure 2.2). The hemoglobin molecule is paramagnetic due to the presence of

iron. Paramagnetic materials have permanent magnetic moments (dipoles) due to the

spin of unpaired electrons in atomic or molecular electron orbitals. In the presence of
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Figure 2.1: Schematic representation of the hemodynamic response.

an external magnetic field, the spins align themselves with the magnetic field, thereby

increasing the local field strength. Hemoglobin without bound oxygen molecules,

deoxyhemoglobin, is paramagnetic because of the high spin state (S = 2) of the heme

iron. In contrast, oxygen-bound hemoglobin, oxyhemoglobin, has low spin (S = 0)

and is diamagnetic (Pauling and Coryell, 1936). This affects the MR signal creating

the Blood Oxygen Level Dependent (BOLD) contrast effect. More specifically, when

oxygen increases the local magnetic field decreases, affecting transverse magnetization,

thereby increasing T2* time (slower decay) and therefore the MR signal.

A typical BOLD fMRI experimental setup is a "block design", in which a task is

performed and stopped repeatedly for certain lengths of time, with the goal of shifting

brain activity between two or more well defined states. This shift should allow the

measurement of the relative changes in cerebral blood flow between the states (Friston

et al., 1999). A statistical activation map is created based on a comparison between

stimulation and rest states. This map is then used to present the activation as a color
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Figure 2.2: Schematic representation of the hemoglobin molecule.

overlay on an higher resolution anatomical T1 weighted image.

The major limitation with task-based fMRI is the ability of the subject to ade-

quately and consistently perform or respond to the task. Furthermore, activation

requires appropriate control tasks that may be difficult to determine as they need to

cause similar activation across all subjects. Because of these difficulties, assessment

of brain connectivity has shifted towards the use of resting state networks (rs-fMRI).

rs-fMRI is aimed at mapping resting state functional connectivity in the brain. Resting

state networks are brain regions which are temporally-correlated in BOLD response in

the absence of a specific task. Brain networks may or may not be physically adjacent

to one another, but have consistently similar patterns during rest. More specifically,

the default mode network (DMN) is active during wakeful rest with the subject not

performing any tasks. These networks are known to be consistent across healthy
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subjects and do not rely on subject performance. However, a limitation of using

rs-fMRI to assess brain connectivity is that they heavily rely on group analysis, which

is generally unsuitable when drawing conclusions on heterogeneous disorders. Large

datasets of rs-fMRI are assessed using probabilistic independent component analysis

(PICA) to find temporal synchrony among regions of the brain. This determines

the brain networks and the correlation coefficients, where the latter represents the

connectivity strength within each network. This approach is generally unsuitable to

assess the condition of an individual patient. As a result, the aim of this work consists

in exploring an alternative single-subject approach, using a model-free complexity

analysis based on the fractal nature of the rs-BOLD signal acquired with magnetic

resonance imaging.

2.3 Fractal behavior in the BOLD signal

From the previous section we know that the rs-BOLD signal is produced by temporal

fluctuations of blood oxygen in the brain. At rest, these fluctuations are caused

by complex neuronal connective functions, that demand an increase in local oxygen

consumption. When the deoxyhemoglobin to oxyhemoglobin ratio decreases, the local

magnetic field is perturbed due to changes in magnetic properties, which cause the

MR signal to increase.

Studies on the brain rs-BOLD signal have shown that the signal contains sponta-

neous low frequency fluctuations (LFF) (Fox and Raichle, 2007) that originate from

physiological functions such as cerebral blood oxygenation and cerebral blood flow and

volume as well as from a a small component of instrument noise added during fMRI

acquisition (Zarahn et al., 1997; El Boustani et al., 2009; Herman et al., 2011; Eke
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et al., 2000, 2002). These LFF follow the inverse power law scaling in the frequency

domain, which is a defined indication of fractality. Figure 2.3 shows the raw signal

and the corresponding power spectrum analysis of a 4x4x3mm voxel in the right

hippocampus of a healthy subject. The power spectrum shows the power-law decay

on a log-log scale in the frequency range of 0.08 - 0.16 Hz. Magnet and instrument

noise usually appears on the lower frequencies (<0.02Hz ) and the high frequencies

are filtered where the power is equally distributed across frequencies (random or white

noise) (Herman et al., 2011).

Time signals are considered fractals when they are self-similar and auto-correlate

across different time scales. The fractal dimension (FD) is considered a metric of

signal complexity, and has been previously used as a descriptor of the neural activity

based on hemodynamics and metabolic response (Herman et al., 2011; Bullmore and

Sporns, 2009).

(a) (b)

Figure 2.3: (a). Raw BOLD signal .(b) Power spectrum analysis showing the power
law decay in the frequency range of 0.08 - 0.16 Hz

12



Ph.D. Thesis - Olga M. Dona Lemus McMaster - Biomedical Engineering

2.4 BOLD fMRI acquisition

The effectiveness of the fractal analysis is based on the ability of the signal to capture

the true dynamics of the processes being studied. Ideally the sampling frequency should

be one order of magnitude higher than the highest frequency of the hemodynamic

response to neuronal activation. However, in the case of the BOLD signal, the sampling

frequency is determined by the repetition time (TR). The minimum TR (frequency

= 1/TR) is limited by the number of slices that are acquired on a single shot. To

cover the human brain at a resolution of 3mm per slice, the MR system requires

acquisition of 30 slices on a single shot, which limits the minimum TR to 1.7 s (0.58

Hz). The need for a fast acquisition requires a fast MRI imaging technique. BOLD

fMRI commonly uses Echo Plannar Imaging (EPI) to fill in the k-space which is

considered one of the fastest imaging methods. All the k-space is filled-in following

a single RF pulse. Since all the space must be acquired before there is a significant

decay in T2*, this techniques introduces a trade off in spacial resolution. Typical

EPI images will produce at most 128x128 voxels in a slice. In summary, in order to

increase the temporal resolution, spatial resolution must be sacrificed. The k-space

trajectory for a single shot EPI can be observed in Figure 2.4

2.5 Fractal Analysis

Because the rs-BOLD signal has been associated with post-synaptic potentials, which

are mainly localized in gray matter as opposed to action potentials more common in

the white matter, calculation of the FD must be performed using a gray matter mask.

There are several methods to estimate the fractal dimension, however the method
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Figure 2.4: Schematic representation k-space trajectory for a single shot EPI

proposed by Eke et al. Eke et al. (2002) has been the most successful in the analysis

of the BOLD signal. The methodology proposed by Eke et al. suggests estimating the

fractal dimension (FD) by calculating a voxel-wise Hurst exponent (H). For self-affine

processes in an n-dimensional space, the Hurst exponent is related to the fractal

dimension (FD) such as FD + H = n + 1 , where n = 1 for a time domain signal.

The rs-BOLD raw signal is initially normalized, end matched and bridge de-trended

following Eke’s procedure. The raw data is normalized by subtracting the mean from

every data point while end matching and bridge detrending is achieved by subtracting

from the data the line that connects the first and the last point and multiplying the

data by a parabolic window Equation (2.1).

W (j) = 1−
(

2j

N + 1
− 1

)
, j = 1→ N, (2.1)

Where N is the number of time points.
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The series are Fourier transformed to the frequency domain and the scaling

exponent (beta) of the inverse power law Equation (2.2) calculated. Where A is the

amplitude of the discrete Fourier transform (DFT) at frequency f ; β is the spectral

index and c is a constant.

The spectral index is calculated in a frequency range where the power-law scaling

behavior is consistently observed across all voxels and subjects. The spectral regions

known to display magnet and instrument noise and uncorrelated noise are generally

removed from the analysis. A previous study (Herman et al., 2011) have suggested

excluding low frequency regions below 0.02 Hz due to the presence of MRI system

noise in that region (Zarahn et al., 1997). It is also recommended that an isolated

vasomotion peak that often appears at 0.1 Hz be removed in order to avoid bias

in estimating the spectral index when fitting the linear trendline across the spectral

estimates of the spectrum. However, the same study by Herman et al. (Herman et al.,

2011) demonstrated that this peak only appears in about 2% of the voxels and that

the impact in the results was negligible.

Following the dichotomous model proposed by Mandelbrot and Van Ness (Mandel-

brot and B., 1967) the signals are then classified as fractional Brownian motion (fBm)

for β > 1 and fractional Gaussian noise (fGn) for β < 1.

|A(f)2| ∝ cf−β, (2.2)

The Hurst exponent on fGn signals is calculated by using the dispersional analysis

proposed by Bassingthwaighte ((Bassingthwaighte and Raymond, 1995)), which is

based on the variability of the local averages of the signal over different time windows
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(τ) Equation (2.3). However, a scaled window variance analysis is used to calculate H

on the fBM signals when the series are divided in non-overlapping windows.

SD(τ) = SD(τ0)

(
τ

τ0

)H

, (2.3)

Signals where β is near 1 produced ambiguous results, therefore the classification

method must be refined using the signal summation conversion method (SSCM)

described by (Eke et al., 2002).
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Chapter 3

Hypothesis, Methods and

Experimental Design

3.1 Hypothesis

It is well known that the brain is best modeled as a complex system (Kannathal and

Puthusserypady, 2004) and therefore it is hypothesized that a measure of complexity

using FD could provide an alternative method to assess brain disorders. Brain

connectivity is best described as a multilevel model that takes into account three

distinctive levels of interaction: synaptic connections that link independent neurons,

networks that connect neuronal populations and brain regions linked by fiber pathways.

A measure of complexity of this model constitutes an ideal indicator of multilevel and

multitemporal connectivity within different brain regions. Tentatively, a healthy brain

is associated with more complex signals and high FD, while a diseased or dysfunctional

brain is associated with less complex signals and low FD (Warsi et al., 2012; Weber

et al., 2014; Smits et al., 2016; Goldberger et al., 2002). The capacity of the brain to
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perform real-time adaptation and processing of these connections is reflected in the

local demand of glucose and oxygen consumption, which drives the brain metabolic

fluctuation observed in the rs-BOLD signal.

At the same time, the BOLD signal is also a complex mixture of blood flow,

metabolism, fluctuating oxygenated and deoxygenated hemoglobin, blood volume,

and external sources of noise. Linear models generally fail in taking into account

the complexity of the phenomenon that is being studied and are challenged when

making conclusions on results where many levels of complexity are convoluted. The

objective of this work consist in demonstrating how the rs-BOLD fractal dimension

could provide additional patient-specific brain focal information that can be used to

assess and possibly monitor patients.

In order to demonstrate the applicability of the FD in assessing brain disorders

where traditional diagnostic methods have been insufficient, four different disorders

were tested: Mild Traumatic Brain Injury (mTBI), Autism Spectrum Disorder (ASD),

Chemotherapy-related Cognitive Impairment (Chemo-Brain) and Chronic Fatigue

Syndrome (CFS). These disorders have in common a noticeable heterogeneity among

their subjects.

For instance, ASD patients show a variety of clinical presentations, where each

individual will display unique difficulties in the three autism domains: verbal and

non-verbal communication, social interaction and restricted and repetitive behaviors.

Additionally, different classes of psychotropic medication are prescribed to treat the

symptoms which create additional confounding while investigating this disease.

In the case of mTBI, the injury unlikely occurs under the same conditions for each

patient. Location of the direct impact in the brain, and strength of the rotational and
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shearing forces experienced varies significantly from subject to subject.

Chemo-brain patients are also significantly heterogeneous. patients are prescribed

a cocktail of chemotherapy drugs depending on type and stage of the tumor and also

the general health of the patient. This is very specific to every patient. Additionally,

many confounding factors arise with respect of cognition in these patients as patients

undergoing chemotherapy are usually under psychological distress which affects their

cognitive performance. Furthermore, many patients are under the influence of medica-

tion prescribed to attenuate side effects of chemotherapy, such as anti-nauseates and

anti-inflammatories. In cases in which estrogen or progesterone receptors are detected

in the tumor, hormone therapy can be prescribed to the patients, which may also

cause an effect in cognition.

A design of a single subject approach, independent of group analysis, is fundamental

in these disorders. Hence, estimation of the FD of the voxel wise BOLD signal could

potentially arise as new metric in assessing complex brain pathologies.

3.2 Methods

Mild TBI (15 subjects), Chemobrain (5 subjects) and CFS patients (1 subject) were

recruited for this study. The study was approved by our Institutional Research Ethics

Board, (Hamilton Integrated Research Ethic Board (HIREB)) and all patients gave

written informed consent. In the case of mTBI patients, parental assent was also

obtained in writing as these patients were paediatric. All the studies were conducted

according to the principles expressed in the Declaration of Helsinki. Healthy control

data and ASD patients data (55 subjects) were acquired throughout the NITRC data

base directly from the Human Connectome Project (180 subjects), The Alzheimer’s
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Disease Neuroimaging Initiative (ADNI)(32 subjects), and the ABIDE-1 data-base

(55 subjects).

Resting state BOLD fMRI and anatomical data of the patients were acquired

on a 3T GE Signa scanner using a 32-channel RF-coil (General Electric Healthcare,

Milwaukee, WI). The anatomical data were acquired following a 3-plane localizer

and a calibration scan designed for parallel imaging using a 3D inversion recovery-

prepped T1-weighted pulse sequence (fSPGR, axial acquisition, TE/TR/flip angle

= 1.8/15.63/15deg, 256x256 matrix with 1.2 mm slice thickness with 26 cm FOV).

Resting state functional BOLD data was acquired in 10 min using an echo planar

imaging (EPI) sequence with FOV = 22cm, image matrix = 64x64; flip angle = 90deg;

echo time (TE) = 35 ms; repetition time (TR) = 2000ms (i.e, 0.5Hz temporal sampling

frequency); slice thickness of 3mm; and 180 temporal points. At the beginning of every

scan, 4 additional data points were acquired but automatically discarded to allow the

system to reach steady state. The rs-BOLD data were corrected for motion artifacts

using a time series general affine registration for 12 parameters (3dWarpDrive/AFNI).

Posterior ROI analysis required the rs-BOLD data to be transformed into a standard

space where statistical maps of anatomically defined brain regions have been defined.

Skull stripped anatomical data were aligned to the TT_N27 Tailarach standard space

then warped with the rs-BOLD data using a 12-point affine transformation to obtain

our final dataset. The regions of interest (ROIs) were extracted from the TT_Daemon

human brain atlas (Eickhoff S, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts

K, 2005) provided with the AFNI package (Cox, 1996).

Although all control data were scanned using a similar GE Healthcare 3T MR

scanner and similar pulse sequence and parameters as in the patients data, some
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differences existed. For instance, the data from ABIDE-1 database was collected with

300 data points while the data from the human connectome project was acquired on

180 data points. These differences were accounted for in the analysis.

3.3 Statistical analysis

A voxel-based Z-scoring methodology was used for statistical analysis. The Z-score

is the number of standard deviations (σ) a data point is above (Z > 0) or below

the mean (Z < 0). The Z-score of the voxel-wise fractal dimension was calculated

as: ZFD = (x− µ)/σ. Where x is the localized voxel rs-BOLD FD and µ and σ are

the voxel mean and standard deviation of that same voxel from the control group

respectively.

Prior to application of Z-scoring, voxel-wise validation of normality was performed

on the control group data (i.e. voxel-wise skewness and kurtosis was investigated).

Failure to satisfy normality indicated voxels that were not classifiable based on this

approach. Also, due to inaccurate spatial warping of all control subjects some voxels

had the possibility of not existing (i.e. unable to classify) simultaneously over all

control subjects.

To achieve a statistical power of at least 0.9, only voxels that existed simultaneously

in at least 11 subjects were included in the final Z-score maps. Control data was

tested for normality using the Kolmogorov-Smirnov test in every study (Smirnov,

1948) (Figure 3.1a), and kurtosis and skewness calculations (Figure 3.1b,c). Based

on the Kolmogorov-Smirnov test control data was considered normal within the gray

matter mask. However, a more detailed analysis of skeweness and kurtosis usually

revealed voxels that deviated from the univariated normal distribution, which were
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subsequently removed from the final Z-score map. This approach removed only around

3% of the voxels in the mean mask for normal controls. Thus the final mask was

deemed acceptable for use as a Z-score featurespace.

Figure 3.1: Analysis of normality.(a) Kolmogorov- Smirnov normality test. h=1
indicates rejection of the null hypothesis at a 5% significance level. (b) Kurtosis map.
Voxels where k 6= 3.0 ± 0.5 were removed from analysis. The map was centered at
k=3. (c) Skewness map. Skewness measures asymmetry of the distribution. Positive
skew(sk) indicates more data points above the mean while negative skew indicates
more data points below the mean. Voxels where sk 6= 0.0± 0.5 were removed from
the analysis and the sk map was normalized.

3.4 Experimental Design

The first study focused on the fractal analysis of the BOLD signal from children with

mTBI. mTBI is defined as a range of microstructural neurological injuries coupled with

functional disturbances that are rarely detectable with traditional MRI or Computed

Tomography (CT) scans. Post-injury symptoms are generally grouped into three

categories: cognitive, physical and behavioral anomalies. Symptoms include headache,
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difficulty concentrating, sleep impairment, memory deficit, depression and anxiety.

In this study, the voxel-wise FD was calculated in every subject and normalized

with the healthy control data to produce a Z-score map. The regions were |Z| > 2,

were reported as abnormal and the results were correlated with the individual post-

concussion symptom scale, (PCSS).

The second study explored the fractal dimension of ASD patients compared with

healthy controls. Neuroimaging research has previously explored anatomical and

functional disturbances in ASD patients. However, given the heterogeneous nature of

ASD, the results have been inconsistent or inconclusive. We hypothesized that patients

with ASD could show changes in the FD of the rs-BOLD signal and that theses changes

would reflect underlying alterations of neural structural organization and functional

connectivity. Furthermore, FD analysis would open the possibility of single subject

assessment. Diagnosis and severity of the symptoms was quantified in this study

using the scores of the Autism Diagnostic Observation Schedule (ADOS) (Lord et al.,

2000), the Autism Diagnostic Interview Revised (ADI-R) (Lord et al., 1994) as well

as clinical consensus. The data was IQ matched to eliminate the confounding from IQ

differences between the diseased and healthy groups.

To determine regions of the brain of ASD patients with increased or decreased

signal complexity respect to a typical control group, the voxel-wise FD was estimated

on every subject of both groups and normalized using the Z score methodology.

Only Z-score values were |Z| > 2 were considered statistically significant for a 0.95

confidence level. Finally, the Pearson Product Moment Correlation (PPMC) method

was used to establish correlation between ROI-based Z-score values and ADI-R and

ADOS questionnaires.
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The third study examined the fractal dimension of the BOLD signal in cancer

patients experiencing chemotherapy-related cognitive impairment. Chemotherapy is

known to be one of the most efficacious and aggressive treatments for cancer. It causes

many side effects including what is known as chemo-brain. The symptoms associated

with this condition are: memory lapses, concentration problems, disorganized thinking

and slower mental processing, none of which are easily detected on traditional MRI or

CT imaging modalities. Gray matter and white matter changes have been previously

reported for chemo-brain patients. Because the rs-BOLD signal has been associated

with post-synaptic potentials, which are mainly localized in gray matter as opposed

to action potentials more common in the white matter, diffusion tensor image (DTI)

was added in this study to assess the white matter integrity. Five subjects with

chemo-brain symptoms were recruited for this study. Healthy control data were

acquired throughout the NITRC data base directly from the Human Connectome

Project and the ADNI database. Although the data was not age matched, patients

above 70 years old were only matched with healthy controls from the ADNI data

base due to normal aging brain atrophy occurring at higher rates after this age

(Peters, 2006; Scahill et al., 2003). Additionally, patients were administered the

following neuropsychological tests: Hopkins Verbal Learning Test Revised (HVLT-R)

(Benedict and Brandt, 2001), Rey Complex Figure Test and Recognition Trial (RCFT)

(Meyers and Meyers, 1995), Digit Span - Wechsler adult intelligence scales (WAIS-III)

(Wechsler, 2014), Cognitive Failures Questionnaire (Broadbent et al., 1982) and the

Edinburgh Handedness Inventory(Oldfield, 1971). To determine regions of the brain

of chemo-brain patients with increased or decreased signal complexity respect to a

typical control group, the voxel- wise FD for gray matter and DTI measures for white
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matter were estimated on every subject of both groups and normalized using the Z

score methodology. Only Z score values were |Z| > 2 were considered statistically

significant for a 0.95 confidence level.

The fourth and final study implemented a case study on a single subject suffering

from CFS. The goal of this study was to explore the capabilities of the fractal analysis

on a single subject compared to healthy controls. CFS is a particular case of myalgic

encephalomyelitis, where clear inflammation of the brain or spinal cord cannot be

detected. Patients diagnosed with CFS experience marked fatigue and weakness in

the absence of physical activity. A variety of other symptoms usually accompany

this disease such as muscle pain, headaches, impaired memory and concentration

and mental fog. Some evidence suggest that the damage in CFS occurs mainly in

white matter, therefore DTI was also added on this study to account for white matter

abnormalities. To determine regions of the brain of the CFS patient with increased or

decreased signal complexity respect to a typical control group, the voxel- wise FD for

gray matter and DTI measures for white matter were estimated and normalized using

the Z score methodology.

The next four chapters provide further details on the experimental design as well

as a discussion of the results. Each following chapter is a published or submitted

paper and contains all the information required to replicate the experiments or to be

used as a guide for future applications.
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Chapter 4

Fractal Analysis of rs-BOLD Signals

in Mild Traumatic Brain Injury

(mTBI)

Regional Fractal Analysis of Brain Blood Oxygenation Level Dependent (BOLD)

Signals from Children With Mild Traumatic Brain Injury (mTBI).

Olga Dona, Michael D. Noseworthy , Carol DeMatteo and John F. Connolly
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4.1 Context of the paper

In this study, we applied the fractal dimension methodology combined with Z scoring

statistics to detect abnormalities in the brain following mild traumatic brain injury

(mTBI). Fractal dimension of the brain resting state blood oxygen level dependent

(rs-BOLD) signal represents complexity and therefore the level of connectivity or

activity certain brain region possess. While a single value of fractal dimension assigned

to a brain region have not intrinsic meaning, in a Z scoring or normalized model, we

were able to differentiate whether certain value was considered normal for that region

or if it was above or below the local mean. Furthermore, we hypothesized healthy

brains would show higher temporal complexity when compared with mTBI patients.

After implementing this methodology, we were able to find regions in the brain of

mTBI patients with decreased connectivity using FD methodology despite not showing

any abnormality in an anatomical scan. These regions have been previously reported

in the literature as dysfunctional for mTBI patients. We concluded from this paper

that the method we have proposed is able to provide additional information of mTBI

in a non-invasive and fast manner and could potentially aid in the design of future

treatment plans.
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Abstract

Background

Conventional imaging techniques are unable to detect abnormalities in the brain

following mild traumatic brain injury (mTBI). Yet patients with mTBI typically show

delayed response on neuropsychological evaluation. Because fractal geometry

represents complexity, we explored its utility in measuring temporal fluctuations of

brain resting state blood oxygen level dependent (rs-BOLD) signal. We hypothesized
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that there could be a detectable difference in rs-BOLD signal complexity between

healthy subjects and mTBI patients based on previous studies that associated

reduction in signal complexity with disease.

Methods

Fifteen subjects (13.4±2.3 y/o) and 56 age-matched (13.5±2.34 y/o) healthy controls

were scanned using a GE Discovery MR750 3T MRI and 32-channel RF-coil. Axial

FSPGR-3D images were used to prescribe rs-BOLD (TE/TR=35/2000ms), acquired

over 6 minutes. Motion correction was performed and anatomical and functional

images were aligned and spatially warped to the N27 standard atlas. Fractal analysis,

performed on grey matter, was done by estimating the Hurst exponent using

de-trended fluctuation analysis and signal summation conversion methods.

Results and Conclusions

Voxel-wise fractal dimension (FD) was calculated for every subject in the control

group to generate mean and standard deviation maps for regional Z-score analysis.

Voxel-wise validation of FD normality across controls was confirmed, and

non-Gaussian voxels (3.05% over the brain) were eliminated from subsequent analysis.

For each mTBI patient, regions where Z-score values were at least 2 standard

deviations away from the mean (i.e. where |Z| > 2.0) were identified. In individual

patients the frequently affected regions were amygdala (p=0.02), vermis(p=0.03),

caudate head (p=0.04), hippocampus(p=0.03), and hypothalamus(p=0.04), all

previously reported as dysfunctional after mTBI, but based on group analysis.It is

well known that the brain is best modeled as a complex system. Therefore a measure

of complexity using rs-BOLD signal FD could provide an additional method to grade
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and monitor mTBI. Furthermore, this approach can be personalized thus providing

unique patient specific assessment.

Introduction

Mild traumatic brain injury (mTBI), commonly referred to as concussion, is a

significant medical condition with serious implications for those affected, particularly

where the extension of the injury is not easily assessed or even detected. It represents

75% of all head injuries [1] and disproportionally affects young men and athletes.

Furthermore, the elderly are also a significant group because of increased incidence of

falls and subsequent head trauma [2,3].

All mTBIs are neurological injuries, which occur from rapid accelerative and/or

decelerative linear and rotational forces applied to the head. These result in rapid

velocity changes leading to the brain hitting the inside surface of the skull on the side

nearest the origin of the force. Subsequently, milliseconds later, the brain also collides

with the opposite side of the skull (contra-coup injury). In addition to direct

translational forces there are also rotational and shearing forces making mTBI a

highly complex injury. The occurrence of these forces does not necessarily come from

direct impact. The subsequent pathology is thought to be the result of a primary

mechanism (i.e. shearing and compression) occurring at the time of injury and from a

secondary mechanism involving edema and hypoxia, which occur in a time window of

hours to days after the incident [4]. Post-concussive symptoms are generally grouped

into three categories: cognitive, physical and behavioral anomalies. Symptoms

include headache, difficulty concentrating, sleep impairment, memory deficit,

depression and anxiety [5, 6]. These clinical symptoms are persistent in 10% of cases,
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lasting for months to years after the injury [7].

mTBI can be defined as a range of microstructural injuries coupled with functional

disturbances, rather than major structural injury, and thus have minimal detectable

anatomic pathology [8]. Consequently, conventional magnetic resonance imaging

(MRI) and computed tomography (CT) techniques are ineffective for mTBI

assessment, whether the patient has persistent post-concussive symptoms or not.

Therefore, the main objective of our work was to focus on developing a new approach

to assess brain functional disturbances. To do this we exploited the functional

capabilities of the resting state blood level oxygen dependent (BOLD) signal obtained

with magnetic resonance imaging (MRI).

The BOLD effect results from differences in magnetic properties between

oxyhemoglobin and deoxyhemoglobin in blood vessels. The magnetic susceptibility

difference between these two results in a T2*-weighted signal change. Under an

external stimuli, neuronal activity increases, creating a demand for oxygen delivery

and therefore increasing the BOLD signal. Furthermore, in the absence of a specific

task or stimuli, BOLD signals show fluctuations as a result of complex brain

interactive and connective function and this is known as resting state BOLD

(rs-BOLD). The rs-BOLD signal is a complex signal, where the effects of cerebral

blood oxygenation and cerebral blood flow and volume are convoluted. The rs-BOLD

signal shows spontaneous low frequency fluctuations [9], that exhibit inverse

power-law scaling in the frequency domain [10]. It has been suggested, that these

fluctuations and the inverse power-law behavior they follow originate from

physiological functions as well as from instrument noise added during fMRI

acquisition [10–14]. The inverse power-law scaling is a fundamental characteristic of
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signals or structures considered as fractals. Fractals are infinitely complex patterns

that are self-similar across different scales and their estimated dimension is a measure

of the complexity of the system [15]. Complexity of the BOLD signal has been

previously used as a descriptor of the neural activity based on hemodynamics and

metabolic response [12,16]. The brain, when healthy, is best described as a complex

system and thus could display regional changes in the fractal dimension (FD) of the

rs-BOLD signal as a result of a mTBI. A direct injury to the white matter tracts and

demyelination due to chronic inflammation could affect structural connectivity among

certain regions and inflammation around deep brain structures could also affect

neuronal activity [17]. We hypothesized that FD could be a measure of brain local

neural activity and therefore be a metric for identifying subtle functional changes in

mTBI patients that are not appreciable at the anatomical level.

Materials and Methods

Patients and controls.

Fifteen subjects (13.4±2.3 y/o) with a diagnosis of concussion (post-concussion

symptom scale, PCSS = 29.9±23.8) and 56 age-matched (13.7±7.8 y/o) healthy

controls were scanned at rest with eyes open. For the mTBI patients the average time

between MRI scanning and the date of injury was 33.0±43.8 days. The study was

approved by our Institutional Research Ethics Board, (Hamilton Integrated Reaseach

Ethic Board (HIREB)) and all patients gave written informed consent. As these

patients were paediatric, parental assent was also approved in writing. The study was

conducted according to the principles expressed in the Declaration of Helsinki.
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Data acquisition and pre-processing

Patients were scanned using a GE MR750 Discovery 3T MRI scanner, while all

control data were scanned using a similar GE Healthcare 3T MR scanner. Both

systems used a 32-channel RF receiver coil (General Electric Healthcare, Milwaukee,

WI). Healthy control data were obtained from the NIH database

(ABIDE-Michigan S1) [18]. Control data were acquired in a similar MRI scanner,

using the same pulse sequence and parameters as in the patients data.

Following a routine 3-plane localizer and calibration scan for parallel imaging, a

3D inversion recovery-prepped T1-weighted anatomical data set was acquired

(fSPGR, axial acquisition, TE/TR/flip angle = 4.25/11.36/12◦, 256x256 matrix with

1mm slice thickness with 25.6cm FOV, 1mm isotropic acquisition). Resting state

functional BOLD data was acquired using an echo planar imaging (EPI) sequence

with FOV = 22cm, image matrix = 64x64; flip angle = 90◦; echo time (TE) = 35ms;

repetition time (TR) = 2000ms (i.e, 0.5Hz temporal sampling frequency); slice

thickness of 3mm; and 180 temporal points. At the beginning of every scan, 4

additional data points were acquired but automatically discarded (allowing the

system to reach steady state), making the final scan time 6 minutes and 8 seconds.

Motion correction was performed on resting state data, using a 6 point affine

transformation, with the AFNI tool 3DVolreg. Images were spatially registered to

the first volume of the rs-BOLD data. Then anatomical and motion corrected

rs-BOLD data were aligned and spatially warped using a 12-point affine

transformation to the TT N27 atlas using AFNI [19]. Because functional information

is assumed to be processed predominantly in gray matter a binary mask was created

from the TT N27 atlas and multiplied through all functional rs-BOLD volumes.
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Fractal analysis

Fractal analysis, performed over the mask on a voxel-wise basis, was done by

calculating the Hurst exponent according to the procedure described by Eke et al. [13],

using Matlab (v.8.3.0, The Mathworks, Natick MA). According to the rs-BOLD

acquisition parameters, the time signal was sampled at 0.5 Hz for 360 seconds ( 180

time points x TR ). Fractality or self-similarity of the time signal was assessed using a

power spectral density (PSD) analysis. Low frequency fluctuation (LFF) of the

BOLD signal follows an inverse power law scaling according to Eq (1) [14]:

|A(f)2| ∝ cf−β, (1)

Where A is the amplitude of the discrete Fourier transform (DFT) at frequency f ; β

is the spectral index and c is a constant. Following the dichotomous model proposed

by Mandelbrot and Van Ness [20] the signal can be classified as fractional Brownian

motion (fBm) for β > 1 and fractional Gaussian noise (fGn) for β < 1, with the Hurst

exponent (H) calculated as H = (β − 1)/2 and H = (β + 1)/2 respectively for

classification purposes. H is a measure of the correlation or anti-correlation of the

signal. When H is close to 1.0 this indicates high correlation while H closer to 0

indicates anti-correlation. The long-memory dependence characterized by the Hurst

exponent is a global characteristic while the fractal dimension is a local property.

Local properties are reflected in the global characteristics, for self-affine processes in

an n-dimensional space which result in the relationship FD +H = n+ 1 where n = 1

for a time domain signal.

Following temporal co-registration, the raw BOLD signal Fig 1a was normalized

(voxel-wise), end matched and bridge de-trended based on the procedure described by
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Eke et al. [14]. The log-log representation of the power spectrum Fig 1b contained

multiple characteristic regions, which could be a sign of multi-modality [12].

However, for the purpose of our study, we selected a frequency range from 0.08 - 0.16

Hz where power-law scaling behavior was consistently observed across all voxels and

subjects. We followed recommendations from Herman et al. [12] about excluding low

frequency regions of below 0.02 Hz due to the presence of MRI system noise in that

region [10]. The peak at 0.1 Hz caused by synchronized vasomotion was not excluded

as a previous study suggested in only appears in about 2% of the acquisitions [12].

The same study reported that arterial blood pressure does not affect the fractal

analysis as it is uncorrelated with the rs-BOLD fluctuations.

The final Hurst coefficient was calculated by applying dispersional analysis on the

fGn signals; scale windowed variance (SWV) analysis on the fBm signals and signal

summation conversion (SSC) methods for the un-classified signals. FD maps were

generated using the estimated voxel-wise Hurst exponent for the 15 patients and the

56 controls.

Statistical analysis

A voxel-based Z-scoring methodology was used for statistical analysis. The Z-score is

the number of standard deviations (σ) a data point is above (Z > 0) or below the

mean (Z < 0). The Z-score of the voxel-wise fractal dimension was calculated as:

ZFD = (x− µ)/σ. Where x is the localized voxel rs-BOLD FD and µ and σ are the

voxel mean and standard deviation of that same voxel from the control group

respectively. Prior to application of Z-scoring, voxel-wise validation of normality was

performed on the control group data (i.e. voxel-wise skewness and kurtosis was

investigated). Failure to satisfy normality indicated voxels that were not classifiable
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Fig 1. Raw signal and power spectrum analysis. (a) Sample raw rs-BOLD
signal from grey matter of an mTBI patient(a) and a healthy control brain(b). These
time courses were specifically from a 4x4x3mm voxel in the right hippocampus,
located at 24.0[L],5.0[P],15.0[S] mm in the N27 atlas. (c,d) Power spectrum, from the
same voxel from Fig.1a and Fig.1b respectively, showing power-law decay on a log-log
scale. A frequency range of 0.08 - 0.16 Hz was fit because of the consistency in power
law scaling behavior (between and within subjects) of this spectral region.

based on this approach. Also, due to inaccurate spatial warping of all control subjects

some voxels had the possibility of not existing (i.e. unable to classify) simultaneously

over all control subjects. To achieve a statistical power of at least 0.9 only voxels that

existed simultaneously in at least 11 subjects were included in the final Z-score maps.

Control data was tested for normality using the Kolmogorov-Smirnov test [21]

Fig 2a, and kurtosis and skewness calculations Fig 2b,c. Based on the

Kolmogorov-Smirnov test control data was considered normal within the gray matter

mask. However, a more detailed analysis of skeweness and kurtosis revealed voxels
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that deviated from the univariated normal distribution, which were subsequently

removed from the final Z-score map. This approach removed only 3.06% of the voxels

in the mean mask for normal controls. Thus the final mask was deemed acceptable

for use as a Z-score featurespace.

Regions of interest(ROIs)

The Z-score maps from patients were co-registered to the TT Daemon [22] human

brain atlas and the mean Z-score was calculated for each of the 240 regions included

in the atlas Fig 3.

Fig 2. Analysis of normality. (a) Kolmogorov – Smirnov normality test. h=1
indicates rejection of the null hypothesis at a 5% significance level. (b) Kurtosis map.
Voxels where k 6= 3.0± 0.5 were removed from analysis. The map was centered at
k=3. (c) Skewness map. Skewness measures asymmetry of the distribution. Positive
skew(sk) indicates more data points above the mean while negative skew indicates
more data points below the mean. Voxels where sk 6= 0.0± 0.5 were removed from
the analysis and the sk map was normalized.
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Fig 3. Regions of interest. Montage showing 9 axial slices (taken every 5mm)
through the TT Daemon human brain atlas [22] with a selection of the 240
colour-coded brain structures identified.

Results

Fractal dimension maps

Voxel-wise FD values were calculated for each of the 15 patients and 56 controls from

the gray matter mask Fig 4. The mean gray matter FD for TBI patients was 1.58 ±

0.03 while the mean gray matter FD for controls was 1.61 ± 0.01. Using an unpaired

t-test with unequal sample sizes, overall brain gray matter FD in patients was

significantly lower compared to control (p < 0.05).
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Fig 4. FD map. FD map over a gray matter mask for an mTBI patient(a) and a
healthy control(b). FD values closer to 2 show increased signal complexity while FD
values closer to 1 show decreased signal complexity in that region

Z-score and ROI analysis

Voxel-wise Z-score maps were calculated for every patient Fig 5 on the 240 defined

regions. Ten regions that deviated the most from the control group mean were

extracted for each subject and the 11 regions with higher frequency of abnormal

fractal behavior were selected as the final regions of interest Fig 6. Table1 shows

mean Z-score, standard deviation and p values calculated for those regions of interest

that deviated greatest from control mean values.

The PCCS score was collected for every mTBI patient. This is a self-reported

questionnaire where patients report, using a scale from 0-6 (no symptoms to severe),

symptoms as headache, nausea, vomiting, balance problems, dizziness, fatigue,

trouble falling to sleep, excessive sleep, loss of sleep, drowsiness, light sensitivity, noise

sensitivity, irritability, sadness, nervousness, more emotional, numbness, feeling slow,

feeling foggy, difficulty concentrating, difficulty remembering and visual problems.

Z-scores were calculated for all the regions of interest and correlated with the
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Table 1. Mean Z-score, standard deviation and p-values for ROI FD
values that deviated greatest from healthy controls.

ROIs µ σ p
Right Amygdala -2.28 0.90 0.02
Right Culmen of Vermis -2.40 1.07 0.02
Left Uvula of Vermis -2.14 1.09 0.03
Right Caudate Head -2.06 0.70 0.04
Left Hippocampus -2.28 0.65 0.02
Right Nucleus Accumbens -1.99 1.11 0.05
Left Amygdala -2.06 0.68 0.05
Right Brodmann area 23 -2.06 0.52 0.05
Right Hypothalamus -2.01 0.79 0.04
Right Uvula of Vermis -1.73 1.24 0.08
Right Hippocampus -2.04 0.85 0.04
Mean Z (whole brain GM) -2.85 0.38 0.004

PCSS score, using the Pearson Product Moment Correlation or PPMC (Table2), to

show whether there is any relationship between the two variables. For the purpose of

this study the strength of the correlation was classified in low, moderate and high,

following the criteria proposed on Table3. The p-values reported tested the

hypothesis of no correlation against the alternative that there is nonzero correlation.

A smaller p-value indicates greater significant difference from zero.

Discussion

Deoxyhemoglobin, because of its paramagnetic properties compared to diamagnetic

oxyhemoglobin, has a shorter T2* relaxation time and hence reduced MR signal.

When an area of brain is activated, the local neuronal oxygen consumption increases

leading to a requirement for increased oxygen delivery (i.e. oxyhemoglobin). This is

accomplished by a disproportionate increase in blood flow and volume, in other words

more oxygen is delivered during activation than what is metabolically required. This
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Table 2. Pearson correlation coefficients and p-values of PCSS compared
against regional rs-BOLD Z-score.

Pearson correlation coefficient /ROIs r p
Right Amygdala 0.42 0.14
Right Culmen of Vermis 0.46 0.10
Left Uvula of Vermis 0.26 0.37
Right Caudate Head 0.41 0.15
Left Hippocampus 0.39 0.17
Right Nucleus Accumbens 0.31 0.29
Left Amygdala 0.11 0.70
Right Brodmann area 23 0.29 0.32
Right Hypothalamus 0.10 0.74
Right Uvula of Vermis 0.45 0.11
Right Hippocampus 0.25 0.40
Mean Z (whole brain GM) 0.54 0.05

Table 3. Qualitative criteria used to determine strength of the
correlation between FD and PCSS.

Strength of Correlation Pearson correlation coefficient, r
Low 0.1-0.3
Moderate 0.3-0.5
High 0.5-1.0

leads to a downstream decrease in deoxyhemoglobin and corresponding elevation in

T2* and MR signal. Because the signal change is due to an increased ratio of oxy to

deoxyhemoglobin it is called the blood oxygen level dependent BOLD signal. During

a specific task BOLD increases [23]. However, in the absence of a task, BOLD signal

fluctuates as a result of complex brain interactive and connective function. This is

referred to as rs-BOLD.

Based on time-domain correlation analysis, rs-BOLD has shown how parts of the

brain are regionally in temporal synchrony. These so called resting state networks are

robust and seen in all healthy brains. A number of networks are easily found using

region-of-interest (ROI) based localization. For example, the default mode network
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(DMN), the most dominant resting state network in the brain, is assessed through

probing time domain correlation between the posterior cingulate and all other areas

of the brain [24]. The problem with typical rs-BOLD analysis is that concurrent

assessment of a large number of networks, especially the more subtle ones, requires a

large number of concatenated 4D brain data sets and subsequent assessment via

probabilistic independent component analysis (PICA). Such an approach is thus only

for group-based analysis and single subject evaluation is impossible. An alternative

single-subject approach, using rs-BOLD, is using model-free complexity analysis.

Measurement of the rs-BOLD fractal dimension is the most frequently avenue for

complexity analysis. This method can be used for single subject analysis and is

temporally stable within, and between, healthy subjects [25].

Previous analysis of rs-BOLD signals using complexity analysis, based on fractals,

has been done to assess early onset Alzheimer’s disease (AD). In this work Warsi et

al. [26] studied the correlation of rs-BOLD fractal dimension and in vivo proton

magnetic resonance spectroscopy (1H-MRS) in the left putamen of AD patients and

normal controls. It was shown that decreased FD was consistent with AD severity, as

measured with known biomarkers N-acetyl aspartate (NAA) (r = 0.44, p = 0.015)

and myoinositol (myoI) (r = -0.45, p = 0.012). Additionally, a study by Weber et al.

[27] showed how complexity of the rs-BOLD signal decreased as ethanol levels in the

brain increased. This was seen particularly in the right basal ganglia at 60 and 90

minutes after ethanol consumption. Furthermore, the rs-BOLD signal complexity

returned as the brain ethanol became metabolized. Ethanol directly affects function

of the brain GABA-A receptors [28] decreasing brain connectivity. As ethanol was

cleared in the brain, brain connectivity increased and fractal dimension increased.
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The conclusion from this work was that the temporal complexity of brain resting

state was diminished with increased levels of brain alcohol. In other words, the ability

of the brain to process information was reduced in an intoxicated state and this effect

was observed in the fractal dimension of the BOLD signal.

Complexity of brain signals, characterized by the fractal dimension, has also been

investigated in resting-state electroencephalography (rs-EEG). A recent study by

Smits et al. [29] showed calculations of FD in resting state EEG recordings from 67

AD patients and 41 healthy controls. They found the FD and signal complexity

decreased with age in normal controls and that it further decreased in AD patients,

especially in temporal-occipital regions [29]. This study supports the concept that

brain signal FD correlates with changes in brain connectivity and complexity.

Based on previous studies [12,26,27], it can be inferred that the FD of rs-BOLD

represents brain temporal complexity at rest. Ideally, a healthy brain could be

associated with more complex signals, due higher multi-level and multi-time

connectivity within different brain regions. Furthermore, FD could be an indicator of

the brain’s ability to perform real-time adaptation and processing of the multitude of

external stimuli that subsequently lead to the continuous driving of brain metabolic

fluctuation. Low FD characterizes less complex signals, which has been associated

with pathologies of the brain [26–28,30]. Therefore, a decrease in signal complexity

could be associated with lack of adaptability and decreased brain connectivity.

The fractal dimension maps produced for mTBI and control subjects showed that

overall, grey matter rs-BOLD FD in mTBI patients decreased compared to controls.

This indicates reduction in temporal complexity of the rs-BOLD leading us to our

hypothesis that patients with mTBI experience a decrease in brain connectivity and
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that this could be observed with the FD approach. Z-score and subsequent regional

ROI analysis revealed a group of brain regions where FD values were observed to

deviate the greatest from mean values, as calculated from a population of healthy

controls. On average these regions had Z-scores values of -2.09 ± 0.18, or 2.09σ below

the mean. Table 1 shows 11 brain regions where FD significantly decreased for mTBI

patients.

In nine out of fifteen mTBI patients, the right amygdala was among the ten

regions with lower Z-score values, however the right culmen of vermis reported the

lowest values among the all the studied ROIs. The amygdala is a brain structure

known to be highly involved in the processing of emotions. Animal studies have

shown decreased excitability, decreased activation and inflammation in the amygdala

after mTBI [31,32]. The reported effects of mTBI in the amygdala also validate

neuropsychological symptoms commonly reported by TBI patients. Our study showed

decreased FD in the amygdala (Z-score = -2.28±0.90), which is consistent with

decreased neural activity in the region.

The culmen and the uvula of vermis, both cerebellar structures had decreased FD

values (Z-score = -2.40±1.07 and Z-score = -1.93±1.16 respectively), supporting

previous studies that suggested a link between mTBI and cerebellar dysfunction. A

recent diffusion tensor imaging (DTI) study of mTBI patients showed decreased

fractional anisotropy (FA) in the vermis compared to normal controls [33]. Lower FA

has been implicated in reduction of myelin integrity, which for mTBI likely would be

due to shearing forces causing micro tears in the axons. [33]. They suggested that

damage on these cerebellar regions could be associated with a dysfunction in

primitive fear conditioning circuits [34]. Additionally, a longitudinal study based on
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brain volume changes, showed a significant decrease in cerebellar volume of mTBI

patients [35].

The caudate nucleus and nucleus accumbens are regions of the basal ganglia. They

have been implicated with voluntary movement, learning, memory, sleep, and social

behavior and cognitive processing of aversion, motivation, pleasure, reward and

reinforcement learning respectively [36,37]. We found decreased FD for these two

regions and Z-scores were -2.06±0.7 and -1.99±1.11 respectively. Decreased signal

complexity in these regions agrees with neuropsychological symptoms commonly

reported by mTBI patients. A previous study correlated iron deposition in these

regions, through susceptibility weighted imaging (SWI), to cognitive impairment in

mTBI patients. A significant increase in caudate nucleus iron deposition has been

found to be positively correlated with the mini-mental state examination [38].

There is increasing evidence that cognitive and memory dysfunction of mTBI

patients is related to neuro-physiological changes that occur in the hippocampus.

Recent studies have shown changes in important neurotransmitters such as glutamate

and γ-aminobutyric acid (GABA) in the hippocampus following mTBI [39,40]. We

found that FD decreased for mTBI patients when compared with the uninjured

control group in both these areas. The mean Z-score value for hippocampus was -2.16

± 0.75. Decreased signal complexity in the hippocampus after mTBI is consistent

with changes in neuronal firing patterns reported by Witgen et al. [41].

ROI-based Z-scores were correlated with PCSS scores using the Pearson Product

Moment Correlation (PPMC). The correlation coefficients (r) paired with the

respective p-values (Table2) showed high correlation for GM; moderate correlation for

the right nucleus accumbens, right uvula of vermis, left hippocampus, right caudate

18/29

Ph.D. Thesis - Olga M. Dona Lemus McMaster - Biomedical Engineering

47



head, right culmen of vermis and right amygdala; and low correlation for left uvula of

vermis, left amygdala, right Brodmann area 23, right hypothalamus and right

hippocampus. Negative correlation was expected because we hypothesized that as

symptoms worsen the FD should decrease. However, all ROIs and GM showed

positive correlation Table2 with PCSS. This implies that as symptoms worsen the FD

Z-score increases (absolute value of Z-score decreases). The absence of significant

correlation with the PCSS score was expected because this metric does not

characterize symptoms associated with unique brain regions. Still, PCSS is the most

common test used clinically to characterize mTBI. This study, highlights the issues

related with the use of a self reported metric while trying to characterize a complex

phenomenon.

The effectiveness of PCSS in the assessment of cerebral concussion remains unclear

given that such symptoms are non-specific. A study by Iverson et al. indicated that

non-concussed normal controls have reported identical symptom scores than those

used on the PCSS score [42]. Therefore, using PCSS as a metric to establish

correlation with mTBI FD data may be considered unsatisfactory. Neuropsychological

tests specifically designed to measure a psychological function, related to a particular

brain structure or pathway would be of greater interest for future studies.

The main limitation of this study arises from our relatively low sampling frequency.

The effectiveness of the fractal analysis is based on the ability of the signal to capture

the true dynamics of the processes being studied. Ideally the sampling frequency

should be one order of magnitude higher than the highest frequency of the

hemodynamic response to neuronal activation. The BOLD responses are delayed by

1–2 s and have a temporal width on the order of 4–6 s [43], therefore we need to be
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able to sample the signal at 0.125 Hz (ideally 1.25 Hz). In order to acquire the

rs-BOLD signal for the entire brain in a reasonable time for the patients we were only

able to sample at a frequency of 0.5 Hz which significantly limited the scope of our

study. New techniques such as multi-band EPI would be ideal to overcome this issue

as they are able to achieve full brain sampling rates up to 2.5 Hz [44].

Conclusions

This study shows how rs-BOLD fractal dimension appears to provide additional

patient-specific brain focal information that can be used to assess and possibly

monitor mTBI patients. Traditional functional imaging approaches, based on linear

models, are able to show differences between normal and mTBI patients, but only

based on group-based statistics. It is well known that the brain is best modeled as a

complex system [45] and therefore a measure of complexity using FD could provide a

method to approach the mTBI problem. In this study, we were able to find regions in

the brain that despite not showing any abnormality in an anatomical scan, reported

decreased signal complexity using FD methodology. These regions have been

previously reported as dysfunctional for mTBI patients. The method we have

proposed is able to provide additional information of mTBI in a non-invasive and fast

manner and could hopefully help in the design of future treatment plans.
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Fig 5. ROIs with |Z| > 2.0 . Z-score map over grey matter mask was used to
calculate the regions that significantly deviated (p=0.01) from the mean FD. This
particular patient showed significant FD decreased in the right hippocampus (red)
and the right amygdala (green)

28/29

Ph.D. Thesis - Olga M. Dona Lemus McMaster - Biomedical Engineering

57



Right amygdala
Right culmen of vermis

Left uvula of vermis
Right caudate head

Left hippocampus
Right nucleus accumbens

Left amygdala
Right Brodmann area 23

Right hypothalamus
Right uvula of vermis

Right hippocampus
Left culmen of vermis

9
8

7
7
7
7
7

6
6

5
5
5

ROI frequency

Fig 6. ROI frequency. Bar graph showing ROI frequency in mTBI. Regions where
FD decreases significantly. i.e. 9 out of 15 patients showed decreased FD in the right
amygdala while 5 out of 15 showed decreased FD in the right hippocampus
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Chapter 5

Fractal Analysis of the rs-BOLD

signal in Autism Spectrum Disorder

(ASD) patients.
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Regional Fractal Analysis of Brain Blood Oxygenation Level Dependent (BOLD)

Signals from Children With Mild Traumatic Brain Injury (mTBI).

Olga Dona, Michael D. Noseworthy and Geoffrey Hall.

5.1 Context of the paper

Brain connectivity in autism spectrum disorders (ASD) has proven difficult to char-

acterize due to the heterogeneous nature of the spectrum. Connectivity in the brain

occurs in a complex, multilevel and multi-temporal manner, driving the fluctuations

observed in local oxygen demand. These fluctuations can be characterized as fractals,

as they auto-correlate at different time scales. In this study we propose a model-free

complexity analysis based on the fractal dimension of the rs-BOLD signal, acquired

with magnetic resonance imaging. The fractal dimension can be interpreted as measure

of signal complexity and connectivity. Previous studies have suggested that reduction

in signal complexity can be associated with disease. Therefore, we hypothesized that

a detectable difference in rs-BOLD signal complexity could be observed between ASD

patients and Controls.

Anatomical and functional data from fifty-five subjects with ASD (12.7 ± 2.4 y/o)

and 55 age-matched (14.1± 3.1 y/o) healthy controls were accessed through the NITRC

database and the ABIDE project. Subjects were scanned using a 3T GE Signa MRI

and a 32-channel RF-coil. Axial FSPGR-3D images were used to prescribe rs-BOLD

(TE/TR=30/2000ms) where 300 time points were acquired. Motion correction was

performed on the functional data and anatomical and functional images were aligned

and spatially warped to the N27 standard brain atlas. Fractal analysis, performed

on a grey matter mask, was done by estimating the Hurst exponent in the frequency
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domain using a power spectral density approach and refining the estimation in the

time domain with de-trended fluctuation analysis and signal summation conversion

methods.

Voxel-wise fractal dimension (FD) was calculated for every subject in the control

group and in the ASD group to create ROI-based Z-scores for the ASD patients. Voxel-

wise validation of FD normality across controls was confirmed, and non-Gaussian

voxels were eliminated from subsequent analysis. To maintain a 95% confidence level,

only regions where Z-score values were at least 2 standard deviations away from the

mean (i.e. where |Z| > 2.0) were included in the analysis. We found that the main

regions, where signal complexity significantly decreased among ASD patients, were

the amygdala (p=0.001), the vermis (p=0.02), the basal ganglia (p=0.01) and the

hippocampus (p=0.02). No regions reported significant increased in signal complexity

in this study. Our findings were correlated with ADIR and ADOS assessment tools,

reporting the highest correlation with the ADOS metrics. Brain connectivity is best

modeled as a complex system. Therefore a measure of complexity as the fractal

dimension of the fluctuations in the brain oxygen demand could provide important

information about connectivity issues in ASD. Moreover, this technique can be used in

the characterization of a single subject respect to controls without the need of group

analysis, making it ideal for personalized diagnostic, thus providing unique patient

specific assessment.

5.2 Declaration Statement

Olga M. Dona, as first author, acquired the data, performed the data analysis and

interpretation of the results and drafted the article including tables and figures.
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Contributions by Olga M. Dona warranted her name as first author.
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This paper has been submitted for publication to the journal Nature Scientific
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Autism Spectrum Disorder.
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Brain connectivity occurs in a complex multi-level manner driving fluctua-

tions in local brain oxygen demand. These fluctuations have been previously

characterized as fractals, as they autocorrelate at different time scales. In this

study, we performed fractal analysis of MRI resting state blood oxygenation

level dependent (rs-BOLD) signals to study autism spectrum disorder (ASD).

It has been suggested that reduction in signal complexity is associated with

abnormality. Therefore, we hypothesized that a detectable regional difference

in temporal rs-BOLD fractal dimension (FD) would be observed between ASD

patients and healthy controls. We found regional signal complexity was signifi-

cantly lower among ASD patients for the amygdala (p=0.001), vermis (p=0.02),

basal ganglia (p=0.01) and hippocampus (p=0.02), all commonly reported as

dysfunctional in ASD. This fast non-invasive approach can be used to assist

in patient management and the monitoring of potential targeted therapies for

ASD.
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Introduction

Clinical and neurobiological heterogeneity in autism spectrum disorder (ASD) is a marked

obstacle in trying to understand the underlining mechanisms of the disorder and a barrier in

increasing treatment efficacy. Early intervention with behavioral therapies has consistently re-

ported to improve the quality of life of ASD patients; therefore development of methods for

early diagnosis that focus on patient specific abnormalities has been highly prioritized around

the globe. Neuroimaging research has explored anatomical and functional disturbances in ASDs

aiming at gaining insight into the pathophysiology of the disorder. However, giving the hetero-

geneous nature of ASD, a wide range of brain structures and brain networks have been identified

as atypical by different studies. In terms of anatomic abnormalities, recent MRI studies have

found overgrowth of the brain in early stages of the disorder and abnormal decline during later

stages, specifically in adolescence.1 The decline in adolescence is characterized by cortical at-

rophy,2 frontal cortex volume reduction3 and atrophy of the amygdala.4 Additionally, diffusion

tensor imaging (DTI) studies in ASD have shown reduced white matter integrity in corpus callo-

sum,5 anterior cingulate gyri, bilateral superior temporal sulcus and temporal lobes approaching

the amygdala.6 The abnormalities detected in these anatomical regions, combined with reduced

structural connectivity, suggested changes in functional connectivity that could be of interest

for diagnosis and assessment of the disorder.

Functional connectivity has been widely studied using either task-based or resting estate

functional MRI techniques. However, reported results have been inconsistent or inconclusive.

For instance, while some task based-fMRI studies have shown increased connectivity on ASD

patients respect to controls7–9 others have reported decreased or weaker connectivity.10–14 Fur-

thermore, rs-fMRI studies have reported results that range from broad reduced connectivity in

the default mode network (DMN)15 to reduced connectivity between the superior frontal gyrus

and the posterior cingulate cortex (PCC) and stronger connectivity between right parahippocam-

pal gyrus and the PCC.16

One of the flaws of the current methodologies to assess brain connectivity in ASD patients

is that they heavily rely on group analysis. Large datasets of rs-fMRI are assessed using prob-

abilistic independent component analysis (PICA) to find temporal synchrony among regions of
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the brain. This determines the brain networks and the correlation coefficients, where the latter

represents the connectivity strength within each network. This approach is generally unsuit-

able when drawing conclusions on such heterogeneous disorders and to assess the condition

on a single patient basis. As a result, the aim of this work consists in proposing an alternative

single-subject approach, using a model-free complexity analysis based on the fractal nature of

the rs-BOLD signal acquired with magnetic resonance imaging.

The rs-BOLD signal is produced by temporal fluctuations of blood oxygen in the brain. At

rest, this fluctuations are caused by complex neuronal connective functions, that demand an

increase in local oxygen consumption. When the deoxyhaemoglobin to oxyhaemoglobin ratio

decreases, the local magnetic field is perturbed due to changes in magnetic properties, which

cause the MR signal to increase. Previous studies by Logothetis et al.17, 18 have shown that acti-

vation of apical dendrites in particular, is reflected in the BOLD signal. Greater spine densities

in apical dendrites have been found in ASD,19 suggesting connection changes specifically in the

cerebral cortex. Furthermore, a recent study have identified ASD-linked mutations in synaptic

genes that affect excitatory neuron dendrite development and synapse function in the cortex.20

These alterations in the structural organization and functional connectivity in ASD could be

reflected in rs-BOLD signal.

Studies on the brain rs-BOLD signal have shown that the signal contains spontaneous low

frequency fluctuations (LFF)21 that originate from physiological functions such as cerebral

blood oxygenation and cerebral blood flow and volume as well as from instrument noise added

during fMRI acquisition.22–26 These LFF follow the inverse power law scaling in the frequency

domain, which is a defined indication of fractality. Time signals are considered fractals when

they are self-similar and auto-correlate across different time scales. The fractal dimension (FD)

is considered a metric of signal complexity, which has been previously used as a descriptor of

the neural activity based on hemodynamics and metabolic response.24, 27

Fractal analysis of brain signals has been done in a range of pathologies that include epilepsy,

Alzheimers disease and vascular dementia and acquired through different imaging modalities

such as electroencephalography (EEG), magnetoencephalography (MEG) and single photon

emission computed tomography (SPECT).28–31 Additionally, recent studies have done fractal

analysis, specifically on brain rs-BOLD signals, obtaining insightful information about connec-
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tivity issues on Alzheimer Disease among others.32, 33

In this study, we hypothesize that patients with ASD could show changes in the FD of the

rs-BOLD signal and that theses changes would reflect underlying alterations of neural struc-

tural organization and functional connectivity. The viability of this method to asses individual

patients could help to overcome the heterogeneity issues and could have important treatment

implications.

Materials and Methods
Patients and normal controls

The data for this study was accessed through NITRC and the ABIDE-1 data-base.34 Fifty-five

ASD subjects (12.7± 2.4 y/o) participated in this study. Forty-five were diagnosed with Autistic

Disorder, seven with Asperger’s Disorder, one with PDD-NOS and two with ASD of undeter-

mined subtype. Diagnosis was established with the Autism Diagnostic Observation Schedule

(ADOS),35 the Autism Diagnostic Interview Revised (ADI-R)36 as well as clinical consensus.

Fifty-five age-matched (14.1±3.1 y/o) subjects were MRI scanned as typical controls. In or-

der to avoid controls with borderline intelligence quotient (IQ), typical controls were required

to score more than 85 on the IQ, less than 10 on the Social Communication Questionnaire37

and less than 6 on the obsessive-compulsive sub-scale of the Spence Children’s Anxiety scale

(SCAS).38 See Table 1 for phenotypic information.

Data acquisition and pre-processing

Resting state Blood Oxygenation Level Dependence (rs-BOLD) fMRI and anatomical data were

acquired on a 3T GE Signa scanner using a 32-channel RF-coil (General Electric Healthcare,

Milwaukee, WI). The anatomical data were acquired following a 3-plane localizer and a cali-

bration scan designed for parallel imaging using a 3D inversion recovery-prepped T1-weighted

pulse sequence (fSPGR, axial acquisition, TE/TR/flip angle = 1.8/15.63/15deg, 256x256 ma-

trix with 1.2 mm slice thickness with 26 cm FOV). Resting state functional BOLD data was

acquired in 10 min using an echo planar imaging (EPI) sequence with FOV = 22cm, image

matrix = 64x64; flip angle = 90deg; echo time (TE) = 30 ms; repetition time (TR) = 2000ms
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(i.e, 0.5Hz temporal sampling frequency); slice thickness of 3mm; and 300 temporal points. At

the beginning of every scan, 4 additional data points were acquired but automatically discarded

to allow the system to reach steady state. The rs-BOLD data were corrected for motion artifacts

using a time series general affine registration for 12 parameters (3dWarpDrive/AFNI). Posterior

ROI analysis required the rs-BOLD data to be transformed into a standard space where statis-

tical maps of anatomically defined brain regions have been defined. Skull stripped anatomical

data were aligned to the TT N27 Tailarach standard space then warped with the rs-BOLD data

using a 12-point affine transformation to obtain our final dataset. The 240 regions of interest

(ROIs) defined for this study were extracted from the TT Daemon human brain atlas39 provided

with the AFNI package.40

Fractal Analysis

Because the rs-BOLD signal has been associated with post-synaptic potentials, which are mainly

localized in grey matter as opposed to action potentials more common in the white matter; we

calculated FD over a grey matter mask. Fractal dimension estimation was done by calculating a

voxel-wise Hurst exponent (H) on the grey matter mask, following the methodology proposed

by Eke et al.26 For self-affine processes in an n-dimensional space, the Hurst exponent is re-

lated to the fractal dimension (FD) such as FD +H = n+ 1 , where n = 1 for a time domain

signal. The rs-BOLD raw signal was initially normalized, end matched and bridge de-trended

following Ekes procedure. The data was normalized by subtracting the mean from every data

point while end matching and bridge detrending was achieved by subtracting from the data the

line that connects the first and the last point and multiplying the data by a parabolic window

Eq (1).

W (j) = 1−
(

2j

N + 1
− 1

)
, j = 1→ N, (1)

Where N is the number of time points.

The series were Fourier transformed to the frequency domain and the scaling exponent (beta)

of the inverse power law Eq (2) calculated. Where A is the amplitude of the discrete Fourier

transform (DFT) at frequency f ; β is the spectral index and c is a constant. The spectral index
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was calculated in a frequency range from 0.08 - 0.16 Hz where power-law scaling behavior

was consistently observed across all voxels and subjects. A previous study24 have suggested

excluding low frequency regions below 0.02 Hz due to the presence of MRI system noise in

that region.22 The spectral index calculated from this frequency range was exclusively used for

signal classification while the entire signal in the time-domain was used in the final estimation

of the Hurst exponent.

Following the dichotomous model proposed by Mandelbrot and Van Ness41 the signals were

classified as fractional Brownian motion (fBm) for β > 1 and fractional Gaussian noise (fGn)

for β < 1.

|A(f)2| ∝ cf−β, (2)

The Hurst exponent on fGn signals was calculated by using the dispersional analysis pro-

posed by Bassingthwaighte,42 which is based on the variability of the local averages of the

signal over different time windows (τ ) Eq (3). However, a scaled window variance analysis

was used to calculate H on the fBM signals where the series, were divided in non-overlapping

windows.

SD(τ) = SD(τ0)
(
τ

τ0

)H
, (3)

Signals where β was near 1 produced ambiguous results, therefore the classification method

was refined using the signal summation conversion method (SSCM) described by.26 It is impor-

tant to mention here that fractal dimension estimation based on a dispersional analysis is quite

robust with respect to uncorrelated noise and does not require preprocessing.42 For instance,

uncorrelated noise generated by motion artifacts will not affect the estimation of the fractal

dimension.

Z-score Analysis

A voxel-based Z-scoring methodology and the Pearson Product Moment Correlation PPMC was

used in the statistical analysis. Efficacy of the Z-score is based on the assumption of normality

of the data. Therefore, the data was subjected to analyses of normality such as the Kolmogorov-

Smirnov test,43 Kurtosis and Skewness assessment, where voxels that didnt fit the model were
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excluded from the analysis Fig. 1. Additionally, the voxels that contained data from less than

11 subjects in the control group were filtered in order to sustain a statistical power of 90%

over the entire mask. This approach removed less than 3.0 % of the voxels in the mean mask

for normal controls and it was deemed acceptable for its use in the Z-score methodology. This

study was conceived as an exploratory study rather than a hypothesis driven design, therefore the

overall false positive rate, accounting for multiple comparisons was controlled by selecting only

regions that showed significant decrease in FD in a significant proportion of the patients. This

approach is overly conservative, however, a Bonferroni correction was deemed not appropriate

as we could not establish independence of the data and smoothing of the signal across voxels

could significantly affect the true nature of the fractal behavior. PPMC was used to establish

correlation between ROI based Z-score values and ADI-R and ADOS questionnaires. For the

purpose of this study the strength of the correlation was classified as low for 0.1 < r < 0.3,

moderate for 0.3 < r < 0.5 and high, for 0.5 < r < 1.0.

Results

Fractal dimension and Z-scoring

To determine regions of the brain of ASD patients with increased or decreased signal complex-

ity respect to a typical control group, we estimated the voxel-wise FD on every subject of both

groups. Following the calculation of a mean FD and standard deviation per voxel in the control

group, we proceeded to calculate the Z-score of every voxel in the ASD group respect to con-

trols. Only Z-score values greater than two were considered statistically significant for a 0.95

confidence level. Fig. 2 shows a montage of a typical FD-score map of a randomly selected

ASD patient and Fig. 3 shows the same montage for the average healthy control.

A mean Z-score value was calculated for each of the ROIs and the ten regions the deviated

the most from the control group were extracted for each patient. The frequency each region re-

peats among the ASD subjects is shown in Fig. 4. The sample size needed to detect a difference

between a Z-score value of 1 and 2 with a power of 0.90, considering a maximum standard de-

viation of 1.24, was 19; therefore we only included in the analysis, regions that repeated at least

in 19 patients out of the total. Table 2 shows mean Z-score, standard deviation and p-values
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for the ROIs that followed this criteria. Positive Z-scores were minimal in every patient and in

none of the ASD subjects, we found a FD value of at least one standard deviation above the

mean. This indicates that there were no regions where signal complexity significantly increased

respect to controls among the ASD patients.

Correlation between fractal dimension and symptom severity

To assess correlation between FD and measures of symptoms severity, we implemented a PPMC

analysis. Severity of the symptoms was quantified using the scores from the ADI-R and ADOS

assessment tools. Higher ADI-R and ADOS scores indicate that a patient has a greater number

of items representing core deficits and greater severity of impairment. To eliminate the con-

founding from IQ differences between the groups, the data was IQ matched with IQ(ASD) =

103.1 ± 17.7 and IQ(controls) = 105.9 ± 10.38.

The ADI-R covers the three autism domains: difficulties in verbal and non-verbal commu-

nication, impairment in social interaction and restricted and repetitive behaviors. Each domain

is coded in a scale from 0 (absence of the symptom) to 3 (present in extreme form). The total

combines each of the three domains and a patient is diagnosed if the three domains are above

cutoff. While ADI-R is based on parental report, a trained examiner, who exposes the patient to

behavioral presses that allow for the observation of behaviors associated with ASD, performs

the ADOS test. Table 3 shows the correlation coefficients and p values between FD Z-score and

three ADI-R measurements: ADI-R social interaction, ADI-R verbal communication and ADI-

R restricted and repetitive behaviors on the selected regions of interest. Additionally, Table 4

shows the correlation coefficients and p values between FD Z-score and four ADOS measure-

ments: ADOS social interaction, ADOS restricted and repetitive behaviors, ADOS total and

ADOS severity on the selected regions of interest

Low FD characterizes less complex signals, which has been previously associated with

pathologies of the brain33, 44–46 . We hypothesized, that as the severity of the symptoms in-

crease, FD should decrease respect to the mean for that ROI, therefore Z-score decreases (ab-

solute value increases) and we expect negative correlation. Positive correlation means that

although FD values are all bellow the mean for the selected ROIs, they increase (absolute value

decreases) as symptoms severity increase.
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Discussion

The present study explored the differences between ASD patients and controls in terms of sig-

nal complexity using the fractal analysis of the rs-BOLD signal. Brain connectivity is best

described in a multilevel model that takes into account three distinctive levels of interaction:

synaptic connections that link independent neurons, networks that connect neuronal popula-

tions and brain regions linked by fiber pathways. A measure of complexity of this model con-

stitutes an ideal indicator of multilevel and multitemporal connectivity within different brain re-

gions. Tentatively, a healthy brain is associated with more complex signals and high FD, while

a diseased or dysfunctional brain is associated with less complex signals and low FD.33, 44–46

The capacity of the brain to perform real-time adaptation and processing of these connections

is reflected in the local demand of glucose and oxygen consumption, which drives the brain

metabolic fluctuation observed in the rs-BOLD signal.

Overall, we found reduced signal complexity in the ASD subjects with respect to controls.

Out of 250 regions, 14 regions showed significantly low FD in at least 19 subjects simultane-

ously (see Fig. 4). On average these regions had Z-scores values of −2.55 ± 0.25, or 2.55

standard deviations below the mean for that specific region. Positive Z-scores or regions where

FD increased respect to controls were minimal in every patient and in none of the ASD subjects

we found a FD value of at least one standard deviation above the mean. This indicates that there

were no regions where signal complexity significantly increased respect to controls among the

ASD patients.

In twenty-nine out of fifty ASD patients, the left amygdala and the left nucleus accumbens

were among the regions with lower Z-score values, and the left nucleus accumbens reported the

lowest values among all the studied ROIs. Abnormal function of the amygdala is considered

a strong neurobiological marker in ASD and it is associated with deficits of social perception,

affiliation and anxiety.12, 47, 48 Our study showed decreased FD in the amygdala (Z − score =

−2.8 ± 0.78) with respect to controls. However, no significant negative correlation was found

between the Z-score in the amygdala and any of the metrics from the ADI-R or ADOS. Positive

low correlation was detected for ADI-R social and ADOS (RRB), which means that as the

severity of the symptoms increase in these areas the Z score increases and FD values or signal
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complexity increases. The role of the amygdala in ASD is still under scrutiny. While some

authors report that diminished amygdala function correlates with deficits in social intelligence,

perception and motivation, on patients with ASD47, 49 others have reported increased amygdala

activity during the perception and experience of emotion, and fear.50, 51 It has been established

that anxiety disorders occur simultaneously with with social impairment in ASD,52 creating a

confounding situation in terms of determining the role of the amygdala in ASD.

The nucleus accumbens and the caudate head are functional components of the basal gan-

glia. These two regions showed significantly reduced fractal dimension and thus reduced signal

complexity, reporting Z-scores of (Z−score = −2.68±1.22) and (Z−score = −2.67±0.59)

respectively. We found significant low correlation between the caudate head and ADI-RRB (r

= -0.11), ADOS Social (r = -0.27), ADOS RRB (r = -0.18), ADOS TOTAL (r = -0.19) and

ADOS Severity (r = -0.13), implying that signal complexity in the region decreases as symp-

toms severity increases. The basal ganglia is known to be involved in voluntary movement and

social behavior. Previous animal studies have shown that deletion of the SAPAP3 gene in mice

leads to defective neuronal communication in the basal ganglia and repetitive behaviors impli-

cated in obsessive compulsive disorders and ASD.53 Furthermore, structural abnormalities in

the basal ganglia have been correlated to behavioral features of ASD54 and deep brain stimula-

tion (DBS), targeting the frontocortical-basal ganglia circuitry, have been used in the treatment

of low functioning ASD patients.55 Analysis of the fractal dimension in the basal ganglia could

become a diagnostic marker to assess individual patients in order to determine whether this

patient could benefit from a targeted treatment as DBS.

Several regions of the cerebellum in the ASD cohort showed significant reduced FD, specif-

ically in the vermis (Table 2). These results mildly correlate with the ADIRRB and ADOSRRB

metrics, hence, when severity of the symptoms increase in those domains, the FD and signal

complexity decreases (See Tables 3 and 4). Reduced complexity in this region was expected

as the cerebellum is the most consistent region of neural abnormality in autism. Postmortem

studies in individuals diagnosed with autism revealed reduced number of Purkinje neurons56, 57

while in-vivo MRI studies have found that cerebellar gray matter volume was reduced relative

to normal in ASD patients. The cerebellar vermis, which is a predominately a gray matter re-

gion, is also frequently reported as atrophied.58 Impaired cerebellar dysfunction, if detected
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in an early stage, could benefit from interventional approaches that can help the patients de-

velop compensatory strategies. Analysis of the FD relative to controls could add important

information in the process of deciding whether a specific patients could benefits from these

interventions.

We acknowledge two main limitations of this study. First, most of the ASD patients included

in this study received psychotropic medication. Since the use of medication is extraordinarily

high in ASD, excluding subjects under medication would potentially lead to an unrepresentative

sample size. We did not explore how the use of different classes of medications affected signal

complexity in our regions of interest, which could be confounding the results. Secondly, the

rs-BOLD signal was acquired at a relatively low sampling frequency (0.5 Hz). Accuracy of the

fractal analysis is based on the ability to capture true dynamics of the processes being studied

which could be achieved with higher sampling frequencies and by increasing the sampling

time. Our sampling frequency was technically limited by the EPI acquisition as it limits the

number of slices that can be acquired on a single shot. To cover the human brain at a resolution

of 3mm per slice we were required to read around 30 slices on a single shot, which limited the

minimum TR to 1.7 s (0.58 Hz). Additionally, we took into account the RF pulses and the safety

limits required for human studies. We would recommend for future studies newer acquisition

techniques such as multi-band EPI as they are able to achieve full brain sampling rates up to 2.5

Hz.

This study shows how the fractal dimension analysis of the fluctuations in the brain oxygen

demand appears to provide additional patient-specific brain focal information that can be used

to assess and possibly monitor ASD patients. Previous functional imaging approaches have

focused exclusively on characterization of brain networks through group-based statistics. This

approach, while providing important information of the disorder as a whole, failed to succeed

in providing single patient assessment. A measure of complexity as FD could provide a method

to assess brain connectivity in ASD patients. In this study, we were able to find regions in

the brain with reported decreased signal complexity using the FD methodology. These regions

have been previously reported as dysfunctional for ASD patients and correlated with behavioral

assessments. The method we have proposed is able to provide additional information of ASD

in a non-invasive and fast manner and could hopefully help in deciding whether a patient could
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benefit from targeted treatments and interventional techniques.
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Fig. 1. Analysis of normality. (a) Kolmogorov Smirnov normality test. h=1 indicates rejection
of the null hypothesis at a 5% significance level. (b) Kurtosis map. Voxels where k 6= 3.0± 0.5
were removed from analysis. The map was centered at k=3. (c) Skewness map. Skewness
measures asymmetry of the distribution. Positive skew(sk) indicates more data points above
the mean while negative skew indicates more data points below the mean. Voxels where sk 6=
0.0± 0.5 were removed from the analysis and the sk map was normalized.
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Fig. 2. FD map of ASD. FD map over a gray matter mask of a randomly selected ASD patient
showing regions with decreased FD and signal complexity
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Fig. 3. FD map of Controls. Mean FD map calculated from the voxel-wise mean FD value for
healthy controls. Grey matter mask was calculated from a probability atlas39
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Fig. 4. ROI frequency. Bar graph showing frequency of regions where FD decreases signifi-
cantly. Statistically significant regions below the bold line are indicated.
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Table 1. Phenotypic Data.

ASD subjects Typical Controls
Mean STD Mean STD

Age(y) 12.7 2.4 14.1 3.1
IQ 103.1 17.7 105.9 10.4
Male to Female ratio 46:9 38:17
Right to Left handedness ratio 41:6 44:8
ADI-R total 41.6 8.7
ADOS severity 6.5 2.2

Table 2. Mean Z-score(µ), standard deviation(σ) and p-values for ROIs where FD values devi-
ated greatest from healthy controls

ROIs µ σ p
Left Amygdala -2.88 0.73 0.00
Left Brodmann area 23 -2.66 0.60 0.01
Left Brodmann area 33 -2.17 1.34 0.03
Left Culmen of Vermis -2.70 1.09 0.01
Left Hippocampus -2.32 0.85 0.02
Left Nucleus Accumbens -2.94 1.43 0.00
Left Tuber of Vermis -2.22 1.11 0.03
Right Amygdala -2.72 0.83 0.01
Right Brodmann area 23 -2.64 0.57 0.01
Right Caudate Head -2.67 0.59 0.01
Right Culmen of Vermis -2.43 1.35 0.02
Right Nucleus Accumbens -2.42 1.01 0.02
Right Tuber of Vermis -2.26 1.26 0.02
Right Uvula of Vermis -2.65 1.20 0.01
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Table 3. Pearson correlation coefficients and p-values for ADI-R compared against regional
rs-BOLD Z-score

ROIs ADI SOCIAL ADI VERBAL ADI RRB ADI TOTAL
r p r p r p r p

Left Amygdala 0.07 0.62 0.14 0.30 -0.02 0.91 0.10 0.48
Left Brodmann area 23 0.30 0.03 0.17 0.21 -0.04 0.78 0.23 0.09
Left Brodmann area 33 0.20 0.15 -0.11 0.42 -0.10 0.50 0.04 0.80
Left Culmen of Vermis 0.11 0.42 0.02 0.88 -0.10 0.46 0.04 0.75
Left Hippocampu s 0.07 0.59 -0.04 0.76 -0.11 0.44 -0.01 0.96
Left Nucleus Accumbens -0.02 0.87 -0.03 0.81 0.07 0.61 -0.01 0.95
Left Tuber of Vermis 0.03 0.85 0.02 0.90 -0.22 0.11 -0.04 0.79
Right Amygdala 0.25 0.07 0.31 0.02 -0.03 0.83 0.27 0.05
Right Brodmann area 23 0.13 0.36 0.15 0.28 0.12 0.38 0.17 0.22
Right Caudate Head 0.12 0.40 0.03 0.83 -0.11 0.44 0.05 0.72
Right Culmen of Vermis 0.03 0.85 0.06 0.69 -0.16 0.26 0.00 0.98
Right Nucleus Accumbens 0.09 0.50 0.15 0.28 0.24 0.09 0.18 0.19
Right Tuber of Vermis 0.07 0.61 0.06 0.66 -0.10 0.48 0.04 0.77
Right Uvula of Vermis 0.30 0.03 0.13 0.35 -0.02 0.88 0.22 0.11

Table 4. Pearson correlation coefficients and p-values for ADOS compared against regional
rs-BOLD Z-score

ROIs ADOS SOC ADOS RRB ADOS TOT ADOS SEV
r p r p r p r p

Left Amygdala 0.04 0.80 0.18 0.26 0.02 0.86 0.05 0.76
Left Brodmann area 23 0.09 0.57 -0.04 0.78 0.01 0.94 0.06 0.67
Left Brodmann area 33 -0.02 0.92 -0.06 0.72 -0.07 0.63 -0.05 0.74
Left Culmen of Vermis 0.01 0.94 0.09 0.58 0.02 0.87 0.06 0.66
Left Hippocampus -0.15 0.33 0.01 0.95 -0.09 0.52 -0.03 0.81
Left Nucleus Accumbens -0.05 0.76 -0.07 0.64 -0.04 0.80 0.01 0.96
Left Tuber of Vermis -0.10 0.54 -0.20 0.21 -0.15 0.29 -0.12 0.40
Right Amygdala 0.11 0.49 0.20 0.21 0.03 0.81 0.07 0.65
Right Brodmann area 23 0.17 0.29 0.16 0.31 0.12 0.43 0.15 0.31
Right Caudate Head -0.27 0.08 -0.18 0.26 -0.19 0.19 -0.13 0.38
Right Culmen of Vermis -0.14 0.37 -0.19 0.22 -0.17 0.25 -0.15 0.31
Right Nucleus Accumbens -0.04 0.81 0.10 0.52 -0.07 0.65 -0.04 0.76
Right Tuber of Vermis -0.07 0.67 0.07 0.65 -0.04 0.76 0.01 0.92
Right Uvula of Vermis -0.08 0.60 -0.19 0.22 -0.18 0.22 -0.12 0.41
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Chapter 6

Fractal Analysis of the brain

rs-BOLD signal in cancer patients

experiencing chemotherapy-related

cognitive impairment.
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Fractal Analysis of the brain rs-BOLD signal in cancer patients experiencing

chemotherapy-related cognitive impairment.

Olga Dona, Michel Doughty, Geoffrey Hall, Raimond Wong and Michael D. Noseworthy.

6.1 Context of the paper

Chemotherapy-related cognitive impairment, also known as chemo-brain or chemo-fog,

is a long lasting and disturbing side effect of chemotherapy. The rapidly increasing

number of patients who have survived cancer, yet now live with the side effects of

treatment, has lead to an increase of chemo-brain related studies. However, there is

yet to be a definitive answer describing the etiology of chemo-brain, the affected brain

regions and how to manage the symptoms.

The purpose of this study was to assess the viability of using a complexity analysis

of the rs-BOLD signal in combination with DTI to detect brain abnormalities in chemo-

brain patients. Five patients were scanned using a GE Discovery MR750 3T MRI

and 32-channel RF-coil. Axial FSPGR-3D images were used to prescribe rs-BOLD

(TE/TR=35/2000ms) and DTI (60 directions, TR/TE = 8800/87ms). Complexity

analysis, performed on gray matter, was done by estimating the voxel-wise Hurst

exponent using de-trended fluctuation analysis and signal summation conversion

methods. Voxel-wise analysis of the DTI data was performed obtaining FA, MD, AD

and RD. All the results were normalized with a large database of healthy controls

using a Z-score analysis. Although no significant differences were found on the fractal

dimension of the rs BOLD signal when compared to controls, we were able to detect

significant (p<0.05) changes in FA specifically in the the corpus callosum, inferior

fronto occipital fasciculus and right inferior longitudinal fasciculus. These regions also
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correlated with neuropsychological scores of visuospacial constructional ability and

visuospacial memory.

This study demonstrates that white matter and gray matter integrity can be

explored on patients experiencing chemo-brain with a single subject approach based

on FD and DTI. The combination of these techniques provides a deeper, multifocal

understanding of chemo-brain and will hopefully lead to design of improved drugs and

treatments to prevent or lessen the cognitive collateral effects.
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Abstract

Chemotherapy-related cognitive impairment (chemobrain), is a lasting and disturbing side effect

of chemotherapy. However, the aetiology of chemobrain and how we can identify affected

brain regions on a patient specific basis, has so far been elusive. Due to patient genotypic and

metabolic heterogeneity, and the many different chemotherapy treatment regimes, it is difficult

if not impossible to predict who will exhibit chemobrain and what regional brain areas may

become affected. Here, we explore a novel approach, using MRI resting state BOLD (rs-BOLD)

and DTI, to map out abnormal brain gray and white matter, respectively, in a single patient. This

personalized assessment of chemotherapy-induced brain change can provide physicians clear

knowledge of location and severity of brain alterations as they appear during and following

cancer treatment. This information can then be used to better design chemotherapy regimes that

minimally affect the brain and provide a way to monitor brain recovery, on a patient-specific

basis, following treatment.
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Introduction

Innovations in cancer treatment as well as screening the population for certain types of cancers

have lead to an increase in survival rate. The Canadian Cancer Statistic Advisory Committee

reported that people diagnosed with cancer today have a better relative survival rate than people

diagnosed a decade ago (1). Yet, cancer survivors experience temporary, or even permanent

side effects due to their therapies.

Chemotherapy is known to be one of the most aggressive treatments for cancer. Although

efficacious, chemotherapy causes many side effects including nausea, vomiting, anemia, pe-

ripheral neuropathy and chemo-brain among others. While many of these symptoms resolve

within months of treatment, chemo-brain can persists for years and is considered one of the

main impediments for a return to normal life. Chemo-brain is the common name assigned

to chemotherapy related cognitive impairment experienced by cancer patients. Recent work

has found that the occurrence rate of chemo-brain for breast cancer patients who underwent

chemotherapy is about 33% (2, 3). The symptoms associated with this condition are: memory

lapses, concentration problems, disorganized thinking and slower mental processing. The du-

ration of symptoms is very difficult to predict. While for most patients chemo-brain symptoms

subside after the last dose of chemotherapy (4–6), deRuiter et al. and Kopplemans et al. have

found evidence of cognitive impairment in patients more than two decades after completing

therapy (7, 8).

Chemo-brain has proved to be very difficult to diagnose due to a variety of confounding

factors that are also associated with cognitive impairment. Patients undergoing chemotherapy

are usually under psychological distress which can impact their cognitive performance. Further-

more, patients may be affected by medications prescribed to attenuate side effects of chemother-

apy, such as anti-nauseates and anti-inflammatories. In cases in which estrogen or progesterone
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receptors are detected in the tumor, hormone therapy can be prescribed which may also impact

on cognition (9). MRI techniques in combination with performance-based neuropsychological

testing have been previously used to assess structural and functional changes in the brain fol-

lowing chemo-therapy exposure (10–16). However, reported findings have been inconsistent or

inconclusive. For instance, in a study by Zunini et al. a prospective functional MRI (fMRI) ver-

bal recall task was conducted in chemotherapy patients and healthy controls. The focus of the

study was on breast cancer patients and the evaluation was done before and after chemotherapy.

Chemotherapy patients showed less activation, than controls, specifically in the left middle tem-

poral gyrus, orbitofrontal cortex, insula and temporal pole (11). On the other hand, Silverman et

al. conducted a similar functional study using 15O and 18F positron emission tomography (PET)

producing differing results. They found increased activation in the prefrontal cortex and cere-

bellum using a working memory task in chemotherapy treated patients while untreated patients

showed the greatest activation in parietal and occipital cortex (14).

The major limitation with task-based fMRI is the ability of the subject to adequately and

consistently perform or respond to the task. Furthermore activation requires appropriate control

tasks that may be difficult to determine as they need to cause similar patterns of activation across

all subjects. Because of these difficulties, assessment of brain connectivity has shifted towards

the use of resting state networks, based on the resting state blood oxygenation level dependent

(rsBOLD) signal. These networks are known to be consistent across healthy subjects and do

not rely on subject capacity to perform. However, a limitation of rsBOLD assessment of brain

connectivity in chemobrain patients is the reliance upon group analysis comparisons, which is

generally unsuitable when drawing conclusions on a presumed heterogeneous disorder.

As a result, the aim of this work was to propose an alternative single-subject approach,

using model-free complexity analysis based on the fractal nature of the MRI rsBOLD signal.

The fractal dimension (FD) is considered a metric of signal complexity, and has previously been
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used as a descriptor of neural activity based on hemodynamics and metabolic response (17,18).

Because the rsBOLD signal has been associated with post-synaptic potentials, localized

mainly in gray matter, diffusion tensor imaging (DTI) was also included in this study to as-

sess the white matter micro-structural integrity. A number of studies examining the structural

changes in the brain of patients treated with chemotherapy have been published. For example,

Deprez et al. (13) studied chemotherapy induced structural changes in cerebral white matter us-

ing DTI techniques combined with cognitive assessment. They showed decreased fractional

anisotropy (FA) and increased mean diffusivity (MD) in the frontal and temporal tracts of

chemotherapy patients. A further DTI study by De Ruiter et al. (12) also showed decreased

white matter integrity in high dose chemotherapy breast cancer survivors.

In our current work, we show how Z-scoring of both grey matter fractal rsBOLD, and white

matter structural integrity (from DTI), can identify specific abnormal brain regions in individual

chemobrain patients.

Materials and Methods

Patients and controls.

Five subjects (60.6 ± 14.8 y/o) experiencing chemo-brain symptoms were recruited for this

study. The study was approved by our Institutional Research Ethics Board, (Hamilton Integrated

Research Ethic Board (HIREB)) and all patients gave written informed consent. The study was

conducted according to the principles expressed in the Declaration of Helsinki. Healthy control

data were acquired throughout the NITRC data base directly from the Human Connectome

Project (180 subjects, 21.2 ± 1.9yo) (19), (19 subjects, 36.4 ± 9.2yo ) and The Alzheimer’s

Disease Neuroimaging Initiative (ADNI)(32 subjects, 73.7 ± 6.5yo) (20). Although the data

was not age matched, patients above 70 years old were only matched with healthy controls

from the ADNI data base due to normal aging brain atrophy occurring at higher rates after this

5

Ph.D. Thesis - Olga M. Dona Lemus McMaster - Biomedical Engineering

98



age (21, 22).

Data acquisition

Five patients were scanned using a GE MR750 Discovery 3T MRI scanner with a 32-channel

RF receiver coil (General Electric Healthcare, Milwaukee, WI). Following a routine 3-plane lo-

calizer and calibration scan for parallel imaging, a 3D inversion recovery-prepped T1-weighted

anatomical data set was acquired (fSPGR, axial acquisition, TE/TR/flip angle = 4.25/11.36/12◦,

256x256 matrix with 1mm slice thickness with 25.6cm FOV, 1mm isotropic acquisition). Rest-

ing state functional BOLD data was acquired using an echo planar imaging (EPI) sequence

with FOV = 22cm, image matrix = 64x64; flip angle = 90◦; echo time (TE) = 35ms; repetition

time (TR) = 2000ms (i.e, 0.5Hz temporal sampling frequency); slice thickness of 3mm; and

180 temporal points. At the beginning of every scan, 4 additional data points were acquired but

automatically discarded (allowing the system to reach steady state), making the final scan time

6 minutes and 8 seconds. Axial Diffusion Tensor Imaging (DTI) data was acquired using a dual

echo EPI sequence. Imaging parameters were as follows: 60 non-coplanar directions, TE/TR =

87/8800 ms, b = 1000 s/mm2, 122x122 matrix, 70 slices, 2.0 mm slice thickness, 244 mm FOV,

ASSET = 2.

Anatomical, functional and diffusion data for healthy control subjects were downloaded

from the NITRC database, the Human Connectome Project and the ADNI database respec-

tively. Two cohorts of healthy subjects (N=180 (21.2 ± 1.9yo) and N=19 (36.4 ± 9.2yo))

downloaded from the Human Connectome project were acquired with the following param-

eters: a T1-weighted sagittal three-dimensional magnetization-prepared rapid gradient echo

(MPRAGE) sequence was acquired, covering the entire brain: 128 slices, TR = 2530 ms, TE =

3.39 ms, slice thickness = 1.33 mm, flip angle = 7deg, inversion time = 1100 ms, FOV = 256

x 256 mm, and in-plane resolution = 256 x 192. The rsBOLD images were obtained using an
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echo-planar imaging sequence with the following parameters: 33 axial slices, thickness/gap =

3/0.6 mm, in-plane resolution = 64 x 64, TR = 2000 ms, TE = 30 ms, flip angle = 90deg, FOV

= 200 x 200 mm. Diffusion tensor images were acquired by using a single-shot Echo-Planar

Imaging-based sequence (coverage of the whole brain, 2.0 mm slice thickness with no inter-

slice gap, 70 axial slices, TR = 8800 ms, TE = 87 ms, 64 diffusion directions. Additionally,

one cohort of healthy subjects (N=36 (73.7±6.5yo)) was downloaded from the ADNI database

with the following parameters: A T1-weighted sagittal three-dimensional SPGR sequence was

acquired, covering the entire brain: 200 slices, TR = 2530 ms, TE = min full , slice thickness

= 1.2 mm, flip angle = 11deg, inversion time = 400 ms, FOV = 256 x 256 mm. The rsBOLD

images were obtained using an echo-planar imaging sequence with the following parameters:

48 axial slices, thickness/gap = 3.3 mm, in-plane resolution = 64 x 64, TR = 2925 ms, TE = 30

ms, flip angle = 90deg, FOV = 200 x 200 mm. Diffusion tensor images were acquired by using

a single-shot Echo-Planar Imaging-based sequence (coverage of the whole brain, 2.7 mm slice

thickness with no inter-slice gap, 70 axial slices, TR = 12300 ms, TE = minimum, 64 diffusion

directions.

In addition to imaging, patients were administered the following neuropsychological tests:

Hopkins Verbal Learning Test Revised (HVLT-R) (23), Rey Complex Figure Test and Recogni-

tion Trial (RCFT) (24), Digit Span - Wechsler adult intelligence scales (WAIS-III) (25), Cogni-

tive Failures Questionnaire (26) and the Edinburgh Handedness Inventory (27). See Table 1 for

phenotypic data of the chemobrain patients.

Data pre-processing

Motion correction was performed on all resting state data, using a 6 point affine transformation,

with the AFNI tool 3DVolreg. Images were spatially registered to the first volume of the

rsBOLD data. Then anatomical and motion corrected rsBOLD data were aligned and spatially
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warped using a 12-point affine transformation to the TT N27 atlas using AFNI (28). DTI data

was corrected for eddy current and head motion using FMRIB’s Diffusion Toolbox (FDT). Next,

the skull and other non-brain tissues were removed using the Brain Extraction Tool (BET) from

FSL (29).

Fractal Analysis

FD was calculated over a grey matter mask. Fractal dimension estimation was done by calcu-

lating a voxel-wise Hurst exponent (H) on the gray matter mask, following the methodology

proposed by Eke et al. (30). For self-affine processes with n-dimensions, the Hurst exponent is

related to the fractal dimension (FD) such as FD+H = n+1 , where n = 1 for a time domain

signal. The rs-BOLD raw signal was initially normalized, end matched and bridge de-trended

following Ekes procedure. The data was normalized by subtracting the mean from every data

point while end matching and bridge detrending was achieved by subtracting from the data the

line that connects the first and the last point, and multiplying the data by a parabolic window

Eq (1).

W (j) = 1−
(

2j

N + 1
− 1

)
, j = 1→ N, (1)

Where N is the number of time points.

The series were Fourier transformed to the frequency domain and the scaling exponent (beta)

of the inverse power law Eq (2) calculated. Where A is the amplitude of the discrete Fourier

transform (DFT) at frequency f ; β is the spectral index and c is a constant. The spectral index

was calculated in a frequency range from 0.08 - 0.16 Hz where power-law scaling behavior was

consistently observed across all voxels and subjects . A previous study (17) suggested excluding

low frequency regions below 0.02 Hz due to the presence of MRI system noise in that spectral

region (31). The spectral index calculated from this frequency range was exclusively used for
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signal classification while the entire signal in the time-domain was used in the final estimation

of the Hurst exponent.

Following the dichotomous model proposed by Mandelbrot and Van Ness (32) the signals

were classified as fractional Brownian motion (fBm) for β > 1 and fractional Gaussian noise

(fGn) for β < 1.

|A(f)2| ∝ cf−β, (2)

The Hurst exponent on fGn signals was calculated using dispersional analysis, proposed by

Bassingthwaighte (33), which is based on the variability of the local averages of the signal over

different time windows (τ ) Eq (3). However, a scaled window variance analysis was used to

calculate H on the fBM signals where the series, were divided in non-overlapping windows.

SD(τ) = SD(τ0)
(
τ

τ0

)H
, (3)

Signals where β was near 1 produced ambiguous results, therefore the classification method

was refined using the signal summation conversion method (SSCM) described by Eke (30). It

is important to mention here that fractal dimension estimation based on a dispersional analysis

is quite robust with respect to correlated noise and does not require preprocessing (33). For

instance, uncorrelated noise generated by motion artifacts will not affect the estimation of the

fractal dimension.

Diffusion Tensor Imaging

In order to perform a whole-brain, voxel wise analysis of the DTI data, the FMRIB Diffusion

Toolbox (FDT) programs were used. Through FDT, diffusion tensors were reconstructed by

fitting a tensor model to the raw diffusion data, resulting in images of FA, MD, AD, and RD.

Then a common registration target was created and using a Z-score methodology, each subject’s

aligned images (FA, MD, axial diffusivity (AD) and radial diffusivity (RD)) were projected onto
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this common target. Voxel wise statistics were performed in addition to region of interest (ROI)

analysis of 20 individual structures according to the JHU DTI-based white-matter atlas.

Z-score and Normalization

A voxel-based Z-scoring methodology was used for the statistical analysis of both fractal rs-

BOLD and DTI analysis. The Z-score was calculated as the number of standard deviations (σ)

a data point is above (Z > 0) or below the mean (Z < 0). The Z-score of the voxel-wise fractal

dimension was calculated as: ZFD = (x − µ)/σ. Where x is the localized voxel rs-BOLD FD

and µ and σ are the voxel mean and standard deviation of that same voxel, from the control

group, respectively. Similarly, Z-scores of the voxel-wise FA, MD, RD and AD were calculated

as: ZFA = (x1 − µ1)/σ1. Where x1 is the localized voxel FA and µ1 and σ1 are the voxel

mean and standard deviation of that same voxel from the control group, respectively. Voxel-

wise validation of normality was performed on the control group data (i.e. voxel-wise skewness

and kurtosis was investigated) and voxels that deviated from the univariate normal distribution,

were subsequently removed from the final Z-score map. This study was conceived as an ex-

ploratory study rather than a hypothesis driven design, therefore the overall false positive rate,

accounting for multiple comparisons was controlled by selecting only regions of interests where

significant decrease in mean FD was observed. This approach was considered overly conser-

vative, however, a Bonferroni correction was deemed not appropriate as we could not establish

independence of the data and smoothing of the signal across voxels could significantly affect

the true nature of the fractal behavior.

Regions of interest (ROIs)

The FD Z-score maps from patients were co-registered to the TT Daemon (34) human brain

atlas and the mean FD Z-score was was calculated for each of the 240 regions included in
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the atlas. In contrast, FA Z-score maps on WM regions were co-registered to the Johns Hop-

kins University and International Consortium of Brain Mapping atlases of human white matter

anatomy (35).

Results

FD analysis

To determine regions of the brain of chemobrain patients with increased or decreased signal

complexity respect to a typical control group, we estimated the voxel-wise FD on every subject

of both groups and calculated the Z-score of every voxel in the chemobrain group respect to

controls. The mean Z-score value was obtained per ROI, however, only Z-score values greater

than two were considered statistically significant for a 0.95 confidence level and therefore in-

cluded in the analysis. Figure 1 shows the FD maps of the five patients, mean FD map for

controls below 70 years old and controls above 70 years old. After doing a Z-score normal-

ization with the healthy control maps, we found no significant difference in any of the ROIS,

except the posterior commissure in Patient 3 (Z=-2.11,p=0.017). The posterior commissure is

a white matter structure completely surrounded by gray matter. We suspect that this result was

caused by a misregistration of the gray matter map and what we are actually detecting is the

culmen of vermis. Reduced FD compared to controls suggests decreased in signal complexity

and therefore a decreased local neural activity somewhere around that region for this patient in

particular.

Mean FD for in gray matter was calculated for patients and controls respectively. We per-

formed a Crawford-Howell t-test commonly used between single cases and normative groups

of controls for each patient independently, the results are presented in Table 2. We found no

significant difference between the mean FD in each subject and the healthy control groups
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DTI analysis

Voxel-wise FA, MD, AD and RD Z-score maps were calculated for the patients on the 20 white

matter tract labels previously selected as ROIs. The regions that significantly deviated from

the respective control group mean were extracted. Table 3 shows the Z-score of FA, MD, AD

and RD calculated based on control mean values. Figure 2 shows the z scored FA maps for

patients 1(< 70yo) and 2(< 70yo), offering visual insight into the observed differences. Two

healthy control groups were used, one for patients below 70 years old and another group for

patients above 70 years old. All patients, independently of age, showed significantly reduced

FA in the corpus callosum, inferior fronto occipital fasciculus and right inferior longitudinal

fasciculus. Additionally, patients above 70 years old showed significantly reduced FA in the

bilateral uncinate fasciculus and in the superior longitudinal fasciculus temporal. FA is a scalar

metric that represents the degree of anisotropy in the diffusion tensor and ranges between 0 and

1. A FA value of zero indicates completely isotropic diffusion (spherical shaped ellipsoid) and

a FA value of one indicates completely anisotropic diffusion (cigar shaped ellipsoid). Healthy

white matter tracts are expected to follow the anisotropic diffusion model. Therefore, a decrease

in FA indicates a potential decrease in structural connectivity within that tract.

Each patient showed additional regions that significantly deviated from controls however of

particular interest was Patient 4 who showed a marked increased diffusivity in several ROIs.

MD, AD and RD are three distinct metrics that provide information about diffusivity in the

brain. MD offers information about the size of the diffusion ellipsoid, rather than its shape, as is

quantified with FA measures. MD is an inverse measure of membrane density, and is expected to

increase with damage to tissue due to increased free diffusion. AD is a measure of the principal

(largest) eigenvalue of the diffusion tensor, and is sensitive to axonal diameter and integrity, as

well as myelination. RD offers more insight into myelin pathology and it is sensitive to changes

in axonal packing, myelination/demyelination, as well as axonal degeneration (36–38).
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Correlation analysis of neuropsychological scores with FA values

Significant correlations between FA values and neuro-psychological test scores were found in

the the corpus callosum (CC), inferior fronto occipital fasciculus (IFOF) and right inferior lon-

gitudinal fasciculus (ILF)( Table 4 and Figure 3).

FA correlated significantly with the Cognitive Failure questionnaire in the IFOF, in which a

strong positive correlation was demonstrated. FA was negatively correlated with Rey Complex

Copy Trial in the left CC and the Rey Complex Recognition Trial showed a strong positive

correlation in the right CC, right IFOF and right ILF.

Discussion

The neurotoxicity of chemotherapy drugs has, for many years, been a source of debate among

researchers and clinicians. While neurotoxic effects of these drugs have been demonstrated

when delivered directly to the central nervous system (CNS) (39), the effects they cause in the

brain when administered orally or intravenously are not yet well understood. In the case of non-

CNS cancer, it was previously believed that chemotherapy agents did not penetrate the blood

brain barrier (BBB). Endothelial cells in the BBB restrict the diffusion of large or hydrophilic

molecules into the cerebrospinal fluid (CSF), while permitting the diffusion (or transport) of

small hydrophobic molecules and hormones. Nevertheless, there is enough evidence to think

that in fact chemotherapy cross the BBB (40). Several studies, intending to find an association

between chemotherapy and cognitive dysfunction, have been conducted on breast cancer pa-

tients in the last 10 years. Wefel et al. (40) have summarized the results of at least 80 studies,

concluding there is already enough evidence to support the connection between chemotherapy

drugs and chemotherapy-induced cognitive dysfunction. Despite evidence of cognitive changes

associated with chemotherapy in breast cancer patients, the pathophysiology of these changes
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stills unknown. MRI techniques in combination with performance-based neuropsychological

testing have been previously used to assess structural and functional changes in the brain fol-

lowing CTD exposure (10–15, 41). However, all the studies to date show significant variability

in results. The main reason for this is the lack of a standardized acquisition protocol and subse-

quent analysis. Studies that rely on group based statistics face the challenge of finding enough

patients with the same type of cancer and under the same treatment. Additionally, co-morbidity

is usually encountered in cancer patients which adds another level of complexity in the analysis

of chemobrain. As the medical field moves towards personalized medicine, the need to develop

diagnostic techniques based on a single subject approach becomes indispensable. In this study

we proposed a combination of a FD analysis for the gray matter and a DTI analysis for the white

matter tracts as alternative methods that could be used for a single subject analysis approach.

Previous analysis of rs BOLD signals using complexity analysis, based on fractals, has been

done to assess early onset Alzheimer’s disease (AD) (42, 43). These studies have shown that

decreased FD is consistent with AD severity. A more recent study in our laboratory have shown

regions in the brain with decreased FD in mild traumatic brain injury patients that correlates

with neurological symptoms (44). Although no significant changes were found in the FD of

the rs BOLD signal of the studied chemo brain patients, the analysis of the FD in the rs BOLD

signal provides additional patient-specific brain information that can be used to assess the gray

matter in brain disorders. In the case of the chemo brain subjects, changes in gray matter are

either below our detection limit or non existent.

The main limitation of the FD analysis arises from our technical capacity of sampling the

signal at higher frequencies. Ideally, accuracy of FD depends on the ability to capture the true

dynamics of the rs BOLD signal. The sampling frequency should be one order of magnitude

higher than the highest frequency of the hemodynamic response to neuronal activation. The

BOLD responses have a temporal width on the order of 4 –6 s (45), therefore the signal needs
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to be sampled at 0.125 Hz. In order to acquire the rs-BOLD signal for the entire brain in a

reasonable time for the patients, we were only able to sample at a frequency of 0.5 Hz which

significantly limited the scope of our study. The minimum TR (frequency = 1/TR) is limited by

the number of slices being acquired on a single shot. To cover the human brain at a resolution

of 3mm per slice we were required to read around 30 slices on a single shot, which limited the

minimum TR to 1.7 s (0.58 Hz).

Previous studies have done DTI analysis to assess white matter integrity in patients experi-

encing chemo-brain (12, 13) . They have found significant FA reduction in the inferior longitu-

dinal fasciculus and inferior fronto-occipital fasciculus among other regions which is consistent

with our findings.

This study shows that integrity of the white matter tracts, evaluated with DTI measures,

specifically FA, is significantly lower in chemo-brain patients when compared with healthy

controls. Three regions (CC, IFOF, ILF) were identified as common among all patients inde-

pendently of age while three additional regions (bilateral uncinate fasciculus and the superior

longitudinal fasciculus temporal) were exclusively detected on older patients.

ILF and IFOF are long association tracts that structurally connect frontal, parietal, and tem-

poral association cortices, involved in the execution of complex cognitive tasks (46). Decreased

FA in these tracts has been associated with mild cognitive impairment (47), cognitive deficits in

mild traumatic brain injury (48) and reduced cognitive processing speed in healthy subjects (49).

We found a strong correlation between FA in these regions and the Rey Complex recognition

Trial, which is a measure of visuospatial memory and a strong correlation between IFOF and

the cognitive failure questionnaire. Additionally, we found decreased FA in the bilateral CC

of the chemo-brain patients when compared to controls. The role of CC is the integration and

coordination of information between the two cerebral hemispheres. It is involved in learning,

memory, thinking, three-dimensional visual ability, executive functions, as well as visual reac-
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tion time (50). In this study, FA in the CC showed strong correlation with the Rey Complex

copy trial (visuospatial constructional ability) and the recognition trial(visuospatial memory).

Although significant differences in white matter integrity were detected in all the studied

chemo-brain patients when compared to untreated healthy controls, we cannot completely as-

sume that these differences, and their associate cognitive disturbances, are exclusively attributed

to the chemotherapy treatment. One way to overcome this limitation in future studies could be

acquiring baseline data before the treatment begins. The results of this baseline acquisition

could help in the exclusion of confounding factors such as stress, hormonal therapies and co-

morbidity.

In summary, this study demonstrates that white and gray matter integrity can be explored

in patients experiencing the effects of chemotherapy-related cognitive impairment through a

single subject approach. This alternative method will hopefully shed further light on the eti-

ology of chemo-brain, and provide the means for development of a standardized approach for

assessing chemo-brain, enhancing patient care through targeted treatments and personalized

interventional techniques.
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50. Caillé, S., Sauerwein, H. C., Schiavetto, A., Villemure, J.-G. & Lassonde, M. Sensory and

motor interhemispheric integration after section of different portions of the anterior corpus

callosum in nonepileptic patients. Neurosurgery 57, 50–59 (2005).

Author Contributions

Olga M. Dona, as first author, acquired the data, performed the data analysis and interpretation

of the results and drafted the article including tables and figures. Contributions by Olga M.

Dona warranted her name as first author. Mitchel Doughty as a co-author performed the data

analysis of the DTI section and drafted the respective figures and tables. He participated in

proofreading the article. Dr. Michael D. Noseworthy, as corresponding author, designed and

conceptualized this project which is part of a his long trajectory on developing applications

based on the fractal analysis in human brain signals. He performed the critical revision of the

article and the final approval of the version to be published. Furthermore, Dr. Noseworthy

provided constant guidance and advice through out the duration of this study and secured the

required funds. Dr. Geoffrey Hall actively collaborated in the interpretation of the results due

to his vast experience studying neurological disorders. He provided guidance with application

and interpretation of the neuropsychological testings. Moreover, he exhaustively revised and

edited the final version of this article.Dr. Raimond Wong recruited the patients for this study

and participated in the conception and design of this work. Additionally, Dr. Wong participated

in the critical revision of the article and the final approval of the version to be published. All

authors agreed to be accountable for all aspects of the work in ensuring that questions related to

the accuracy or integrity of any part of the work were appropriately investigated and resolved.

23

Ph.D. Thesis - Olga M. Dona Lemus McMaster - Biomedical Engineering

116



Additional Information

Competing financial interests

The authors declare that the research was conducted in the absence of any commercial or finan-

cial relationships that could be construed as a potential conflict of interest.

24

Ph.D. Thesis - Olga M. Dona Lemus McMaster - Biomedical Engineering

117



Tables

Table 1: Phenotypic Data.

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5
Age(y) 46 43 70 74 70
Sex M F F M M
Handessness L R R R R
Cognitive Failure 51 57 40 36 38
Digit Span Scaled 12 9 8 8 14
HVL Learning index 6 2 3 0 4
HVL Retention % 88 100 100 100 100
HVL delayed discrimination index 8 7 11 9 10
Rey Copy 34 33 33 36 36
Rey Immediate Recall 21 21 17 19 18.5
Rey Delayed Recall 20.5 21 15 21 17.5
Rey Recognition Trial 20 22 20 18 22

Table 2: Mean gray matter FD for chemo-brain patients and controls. Patients 1 and 2 are
below 70 years old and patients 3, 4 and 5 above 70 years old. T-test was performed with
corresponding control group based on age.

Subjects Mean(FD) std(FD) t p
Patient 1 1.64 0.23 0.68 0.49
Patient 2 1.66 0.22 1.30 0.19
Patient 3 1.62 0.24 0.11 0.91
Patient 4 1.59 0.25 -0.12 0.90
Patient 5 1.62 0.24 0.11 0.91
Controls < 70 1.62 0.03
Controls ≥ 70 1.61 0.12
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Table 3: Z score values for FA, MD, AD and RD in the the ROIs. Highlighted in red are
Zscores < 2 (p < 0.05), which represents the number of standard deviation this value is below
the mean. Highlighted in green are Zscores > 2 (p < 0.05), which represents the number of
standard deviations this value is above the mean.

ROI
<70 >70

ROI
<70 >70

Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat 1 Pat 2 Pat 3 Pat 4 Pat 5

Anterior Thalamic L

FA -2.14 -1.96 -1.52 -1.76 -1.61

Forceps Minor

FA -1.18 -1.19 -1.42 -1.71 -1.55

MD -0.56 -0.58 -0.46 1.89 0.15 MD -0.33 0.21 -0.24 1.19 0.21

AD -0.11 -0.18 -0.08 2.27 0.60 AD 0.37 0.93 0.26 1.82 0.75

RD 0.12 0.05 0.13 2.43 0.76 RD 0.77 1.26 0.51 2.02 1.01

Anterior Thalamic R

FA -2.06 -1.97 -1.36 -1.43 -1.37

Inferior Fronto Occipital Fasciculus L

FA -2.06 -1.86 -2.27 -2.68 -2.48

MD -0.60 -0.39 -0.56 -0.23 -0.33 MD -0.55 -0.59 -1.02 2.31 -0.11

AD -0.20 0.01 -0.23 0.08 -0.02 AD 1.13 0.96 -0.19 3.64 0.97

RD 0.13 0.26 -0.05 0.24 0.19 RD 2.09 1.78 0.33 4.14 1.45

Cingulum Cingulate Gyrus L

FA -1.94 -2.14 -1.40 -2.45 -1.91

Inferior Fronto Occipital Fasciculus R

FA -2.21 -2.11 -2.42 -2.63 -2.27

MD -0.92 0.23 -0.85 9.40 -0.21 MD -0.60 -0.91 -0.84 0.25 -0.32

AD 0.83 2.59 0.28 15.94 1.97 AD 1.10 0.64 -0.02 1.25 0.48

RD 1.22 2.77 0.85 13.21 2.31 RD 1.95 1.56 0.46 1.76 0.91

Cingulum Cingulate Gyrus R

FA -2.34 -2.68 -1.34 -2.52 -2.11

Inferior Longitudinal Fasciculus L

FA -1.92 -1.75 -1.81 -2.14 -1.88

MD -0.68 0.03 -1.38 8.25 -0.13 MD -0.24 -0.66 -0.82 0.93 0.12

AD 1.06 2.49 -0.46 10.15 1.04 AD 1.04 0.57 -0.10 1.58 0.94

RD 1.66 2.61 0.14 9.22 1.66 RD 1.30 0.98 0.28 1.84 1.15

Corpus Callosum L

FA -2.17 -2.01 -2.04 -2.69 -2.27

Inferior Longitudinal Fasciculus R

FA -2.38 -2.24 -2.45 -2.57 -2.23

MD -0.05 0.41 -0.90 2.58 -0.48 MD -0.96 -1.13 -1.11 -0.25 -0.52

AD 0.99 1.49 -0.20 3.79 0.26 AD 0.54 0.37 -0.10 0.87 0.38

RD 1.26 1.60 0.29 4.38 0.74 RD 1.32 1.11 0.44 1.40 0.87

Corpus Callosum R

FA -2.15 -2.03 -2.45 -2.65 -2.17

Sup. Long. Fasciculus Temporal Part L

FA -1.94 -1.91 -2.20 -1.97 -2.07

MD 0.04 1.01 -0.25 1.76 0.33 MD -1.21 -1.24 -1.04 2.89 -0.01

AD 0.80 1.88 0.35 2.33 0.83 AD 0.71 0.68 0.74 4.15 1.63

RD 1.45 2.60 0.55 2.56 1.15 RD 1.12 1.09 1.37 4.01 2.08

Corticospinal Tract L

FA -1.10 -1.10 -1.36 -1.88 -1.43

Sup. Long. Fasciculus Temporal Part R

FA -1.97 -1.89 -2.54 -2.34 -2.29

MD -0.33 0.11 -0.32 1.86 -0.74 MD -1.56 -1.66 -0.62 2.10 -0.68

AD 0.27 0.70 0.26 2.47 -0.16 AD 0.50 0.37 1.22 3.92 0.88

RD 0.67 1.07 0.49 2.64 0.18 RD 0.96 0.97 1.88 4.18 1.50

Forceps Major

FA -1.67 -1.79 -1.45 -1.90 -1.61

Uncinate Fasciculus L

FA -1.91 -1.84 -2.59 -2.64 -2.79

MD -0.61 0.50 -0.75 0.40 -0.39 MD -0.72 -0.57 -1.07 1.50 0.03

AD 0.41 2.09 -0.18 1.38 0.25 AD 0.05 0.17 -0.06 2.12 1.20

RD 0.78 2.31 0.20 1.88 0.63 RD 0.34 0.43 0.38 2.33 1.44

Uncinate Fasciculus R

FA -1.56 -1.55 -2.20 -2.52 -2.31

MD -0.83 -0.56 -1.19 0.21 -0.81

AD -0.25 0.01 -0.28 0.93 -0.03

RD 0.14 0.38 0.14 1.18 0.32
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Table 4: Correlation coefficients and p-values of Neuropsychological scores with normalized
(Z-score) FA values in the corpus callosum (CC), inferior fronto occipital fasciculus (IFOF)
and right inferior longitudinal fasciculus (ILF). Values with higher than 90% confidence are
highlighted in red..

Z(FA) CC L Z(FA) CC R Z(FA) IFOF R Z(FA) ILF R

r p r p r p r p
Cognitive Failure 0.64 0.24 0.77 0.12 0.82 0.08 0.51 0.37

Digit Span Total 0.17 0.78 0.64 0.23 0.57 0.3 0.6 0.28

HVL Learning Index 0.52 0.35 0.6 0.28 0.61 0.28 0.45 0.44

HVL Retention -0.13 0.82 -0.31 0.61 -0.32 0.59 0.02 0.97

HVL Delayed Disc. index -0.09 0.88 -0.54 0.35 -0.53 0.36 -0.29 0.62

Rey Copy -0.83 0.07 -0.37 0.53 -0.49 0.39 -0.18 0.76

Rey Immediate Recall 0.11 0.85 0.6 0.27 0.59 0.29 0.34 0.57

Rey Delayed Recall -0.37 0.53 0.17 0.78 0.13 0.83 -0.02 0.96

Rey Recognition Trial 0.7 0.18 0.87 0.05 0.85 0.06 0.98 0.003

Figures
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(a) (b)

Figure 1: FD analysis. (a) FD maps for patients younger than 70 y compared to healthy controls
(C < 70). (b) FD maps for patients older than 70 y compared to healthy controls (C > 70).
The gray matter mask for the mean FD in healthy controls was calculated using a probability
distribution atlas while the gray matter for patients was done using a segmentation tool from fsl
(fast).
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Figure 2: DTI Analysis. DTI results of patients 1 (P1) and 3 (P3) shown on a standard 1mm
MNI FA overlay. The top image is of chemo-brain patient 1 (< 70 yo). Red-yellow areas
indicate regions along white matter tracts in the chemo-brain patient where FA is significantly
lower than the HCP control population (Z-score < −2). Similar to the top image, the FA result
for patient 3 (≥ 70 yo) is shown overlain into standard space. Again, red-yellow regions indicate
areas in the chemo-brain patient where FA is significantly lower than the ADNI controls (Z-
score < −2). The colour-bar shown on the right side of the figure gives a visual representation
of the significance of the deficits between these chemo-brain patients, and controls. Red areas
indicate a Z-score of −2 (p < 0.05), ranging up to yellow regions which indicate a Z-score of
−3 (p < 0.01).
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(a) (b)

(c)

(d) (e)

Figure 3: Scatter plot of significantly correlated neuropsychological scores and normalized
FA values. (a) Cognitive failure correlated with IFOF. (b) Rey copy trail positively correlated
with left CC. (c) Rey complex recognition trial negatively correlated with right CC. (d) Rey
complex recognition trial positively correlated with right IFOF. (e) Rey complex recognition
trial positively correlated with right ILF.
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Chapter 7

Preliminary Study on Chronic

Fatigue Syndrome
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Case Report: Voxel-wise DTI and Fractal Analysis in a Chronic Fatigue Syndrome

Patient .

Olga Dona, Mitchell Doughty, Peter Powles, Heather McNeely and Michael D. Nose-

worthy.

7.1 Context of the paper

Chronic fatigue syndrome (CSF) is a disorder characterized by extreme fatigue that

cannot be attributed to a specific physical activity or to any underlying medical

condition. Previous imaging techniques have been unable to identify anatomical or

functional markers of this disease.

The purpose of this study was to explore the viability of using a complexity analysis

of the rs-BOLD signal in combination with DTI to detect brain abnormalities in a

single patient with a diagnostic of CSF. The patient was scanned twice in a three

month period using a GE Discovery MR750 3T MRI and 32-channel RF-coil. Axial

FSPGR-3D images were used to prescribe rs-BOLD (TE/TR=35/2000ms) and DTI (60

directions, TR/TE = 8800/87ms). Complexity analysis, was done by estimating the

voxel-wise Hurst exponent using de-trended fluctuation analysis and signal summation

conversion methods. Voxel-wise analysis of the DTI data was performed obtaining FA,

MD, AD and RD measures. All the results were normalized with a database healthy

controls using a Z-score methodology.

No significant differences were found on the global fractal dimension of the rs-

BOLD signal when compared to controls in both trials. However, we found significant

(p<0.05) decrease of the rs-BOlD fractal dimension in the cerebellar vermis on trial

2. In terms of structural connectivity, we detected significant (p<0.05) changes in
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MD specifically in the bilateral cingulum cingulate gyrus for trial 1. The cerebellar

vermis and the cingulate gyrus have been previously reported as dysfunctional by

other studies .

This study demonstrates that white matter and gray matter integrity can be

assessed on patients experiencing CFS using a single subject approach based on the

FD of the rs-BOLD signal and DTI analysis. The combination of these techniques

provides a non invasive alternative in the study of CFS and will hopefully lead to

improved and targeted therapies for patients experiencing this condition.
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This paper will be submitted for publication to the journal JMC Case Reports on

March 10th, 2017 .
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Case Report: Voxel-wise DTI and Fractal Analysis in
a Chronic Fatigue Syndrome Patient

Olga Dona 1,2, Mitchell Doughty 1,2, Peter Powles 5 , Heather McNeely 6

and Michael D. Noseworthy 1,2,3,4,∗
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1 Abstract

Abstract : Chronic fatigue syndrome (CSF) is a disorder characterized by extreme fatigue that

cannot be attributed to a specific physical activity or to any underlying medical condition. Pre-

vious imaging techniques have been unable to identify anatomical or functional markers of this

disease Purpose. The purpose of this study was to explore the viability of using a complex-

ity analysis of the rs-BOLD signal in combination with DTI to detect brain abnormalities in

a single patient with a diagnostic of CSF. Materials and Methods. The patient was scanned

twice in a three month period using a GE Discovery MR750 3T MRI and 32-channel RF-coil.

Axial FSPGR-3D images were used to prescribe rs-BOLD (TE/TR=35/2000ms) and DTI (60

directions, TR/TE = 8800/87ms). Complexity analysis, was done by estimating the voxel-

wise Hurst exponent using de-trended fluctuation analysis and signal summation conversion
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methods. Voxel-wise analysis of the DTI data was performed obtaining FA, MD, AD and RD

measures. All the results were normalized with a database healthy controls using a Z-score

methodology. Results No significant differences were found on the global fractal dimension

of the rs-BOLD signal when compared to controls in both trials. However, we found signifi-

cant (p<0.05) decrease of the rs-BOlD fractal dimension in the cerebellar vermis on trial 2. In

terms of structural connectivity, we detected significant (p<0.05) changes in MD specifically

in the bilateral cingulum cingulate gyrus for trial 1. The cerebellar vermis and the cingulate

gyrus have been previously reported as dysfunctional by other studies . Conclusions This study

demonstrates that white matter and gray matter integrity can be assessed on patients experi-

encing CFS using a single subject approach based on the FD of the rs-BOLD signal and DTI

analysis. The combination of these techniques provides a non invasive alternative in the study

of CFS and will hopefully lead to improved and targeted therapies for patients experiencing this

condition.

Keywords: Chronic fatigue syndrome, Fractal Analysis, DTI, Z-score, BOLD fMRI.

2 Introduction

Chronic fatigue syndrome (CFS) is a particular case of myalgic encephalomyelitis, where clear

inflammation of the brain or spinal cord cannot be detected. Patients diagnosed with CFS expe-

rience marked fatigue and weakness in the absence of a relatively proportional physical activity.

A variety of other symptoms usually accompany this disease such as muscle pain, headaches,

impaired memory and concentration and mental fog (1). The psychopathology of CFS is not

fully understood and the causes have been attributed either to an abnormal immune system and

brain function in response to an infection or virus or to genetic and environmental factors. Brain

imaging, specifically MRI, have been previously used to study CFS. However, the results have

been inconclusive or inconsistent. A study conducted by Puri et al. (2) applied a voxel based
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morphometry approach to calculate regional gray and white matter volumetric changes in CSF,

reporting significant neuroanatomical changes in CFS when compared to controls. However,

a different study by Perrin et al. (3) reported that no cerebral abnormality was observed in

a longitudinal MRI study of CFS. In terms of structural and functional connectivity, a study

by Zeineh et al. (4) found a significant decrease in the fractional anisotropy of the right arcu-

ate fasciculus which is involved with short term memory. Additionally, a functional study by

Wortinger et al. (5) hypothesized that the hypersensitivity experienced by CFS patients could

be attributed to an aberrant neurobiological stress response, which is controlled by brain net-

works involving autonomic, endocrine, and immune adjustments. In this study, they found a

significant decrease in the Salience Network functional connectivity to the right posterior insula

compared to healthy controls. Reduced connectivity of this network has been highly related to

the fatigue symptoms that patients experience. The objective of this case study report consisted

in exploring the structural connectivity and neuronal activity of a single patient by normalizing

the analysis with a Z-score approach. Structural connectivity was assessed using 60 direction

Diffusion Tensor Imaging (DTI) to calculate different measures of the diffusion tensor, mainly:

fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusiv-

ity (RD). Neuronal activity was investigated by analyzing the fractal dimension (FD) of the

rs-BOLD signal.

3 Case Report

A 53 year old female patient came to our department in the Image Research Center at St. Joseph

Health Care, Hamilton, Ontario with a diagnosis of chronic fatigue syndrom (CFS). The patient

had reported neuro-psychological symptoms such as reduced concentration, headaches, sleep-

ing disorder and impaired short term memory along with the symptoms of fatigue and extreme

exhaustion. Traditional brain MRI scanning did not reveal clear abnormalities in this patient.
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Subsequently, we decided to implement an experimental imaging protocol to assess functional

and structural brain connectivity and its correlation with the clinical symptoms.

4 Methods

The patient was scanned twice in a three month period using a GE MR750 Discovery 3T MRI

scanner, and a 32-channel RF receiver coil (General Electric Healthcare, Milwaukee, WI).

Anatomical images were acquired using a 3-plane localizer and calibration scan for parallel

imaging followed by a 3D inversion recovery-prepped T1-weighted (fSPGR, axial acquisition,

TE/TR/flip angle = 4.25/11.36/12◦, 256x256 matrix with 1mm slice thickness with 25.6cm

FOV, 1mm isotropic acquisition). To assess the functional connectivity, a resting state func-

tional BOLD data was acquired using an echo planar imaging (EPI) sequence with FOV =

22cm, image matrix = 64x64; flip angle = 90◦; echo time (TE) = 35ms; repetition time (TR) =

2000ms (i.e, 0.5Hz temporal sampling frequency); slice thickness of 3mm; and 180 temporal

points.

Axial Diffusion Tensor Imaging (DTI) data was acquired using a dual echo EPI sequence.

Imaging parameters were as follows: 60 non-coplanar directions, TE/TR = 87/8800 ms, b =

1000 s/mm2, 122x122 matrix, 70 slices, 2.0 mm slice thickness, 244 mm FOV, ASSET = 2.

4.1 Pre-processing

Motion correction was performed on the rs-BOLD data, using a 6 point affine transformation,

with the AFNI tool 3DVolreg. Images were spatially registered to the first volume of the rs-

BOLD data. Then anatomical and motion corrected rs-BOLD data were aligned and spatially

warped using a 12-point affine transformation to the TT N27 atlas using AFNI (6). DTI data

was corrected for eddy current and head motion using FMRIB’s Diffusion Toolbox (FDT). Next,

the skull and other non-brain tissue were removed using Brain Extraction Tool (BET) from FSL
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(7).

4.2 Fractal Analysis

Fractal analysis of the rs-BOLD signal, was done by calculating the Hurst exponent according

to the procedure described by Eke et al. (8), using Matlab (v.8.3.0, The Mathworks, Natick

MA). The Hurst exponent is related to the fractal dimension (FD) as H = 2 − FD, and is a

measure of the correlation or anti-correlation of the signal. Studies on human and animal brain

have shown that the rs-BOLD signal contains spontaneous low frequency fluctuations (LFF)

(9) that originate from physiological functions such as cerebral blood oxygenation and cerebral

blood flow and volume as well as from some instrument noise added during fMRI acquisition

(8, 10–13). These LFF follow the inverse power law scaling in the frequency domain, which is

a defined indication of fractal behavior. Time signals are considered fractals when they are self-

similar and auto-correlate across different time scales. The fractal dimension (FD) is considered

a metric of signal complexity, which has been previously used as a descriptor of the neural

activity based on hemodynamics and metabolic response (12, 14). Increased FD is a sign of

higher signal complexity which implies high neural activity and functionality while decreased

FD is associated with decreased neural activity and disease (15–18).

4.3 Diffusion Tensor Imaging

In order to perform a whole-brain, voxelwise analysis of the DTI data, the FMRIB Diffusion

Toolbox (FDT) and Tract-Based Spatial Statistics (TBSS) programs were used. Through FDT,

diffusion tensors were reconstructed by fitting a tensor model to the raw diffusion data, this

resulting in images of FA, MD, AD, and RD. From here, a common registration target was

created and using TBSS, each subjects aligned image (FA, MD, AD and RD) was projected

onto this common target. Voxel wise statistics were performed in addition to region of inter-
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est (ROI) analysis of 20 individual structures according to the JHU DTI-based white-matter

atlas. Group differences in DTI measures were probed through permutation testing methods

(FSL randomise). The design of a simple linear model placing patients and controls in different

subcategories, and subsequent application of Threshold-Free Cluster Enhancement (TFCE) pro-

vided the basis for observing group differences in structural integrity between the CFS patient

and healthy controls.

FA is a scalar metric that represents the degree of anisotropy in the diffusion tensor and

ranges between 0 and 1. A FA value of zero indicates completely isotropic diffusion (spherical

shaped ellipsoid) and a FA value of one indicates completely anisotropic diffusion (cigar shaped

ellipsoid). Healthy white matter tracts are expected to follow the anisotropic diffusion model.

Therefore, a decrease in FA indicates a potential decrease in structural connectivity within that

tract. MD offers information about the size of the diffusion ellipsoid, rather than its shape, as is

quantified with FA measures. MD is an inverse measure of membrane density, and is expected to

increase with damage to tissue due to increased free diffusion. AD is a measure of the principal

(largest) eigenvalue of the diffusion tensor, and is sensitive to axonal diameter and integrity, as

well as myelination. The final measure recorded was RD, which aims to offer more insight into

myelin pathology. RD is sensitive to changes in axonal packing, myelination/demyelination, as

well as axonal degeneration (19–21).

4.4 Z-scoring

A voxel-based Z-scoring methodology was used for the statistical analysis of fractal and DTI

analysis respectively. Anatomical, functional and diffusion data for healthy control subjects

were downloaded from the NITRC database and the Human Connectome Project. The data for

the 180 healthy subjects (21.2 ± 1.9 yo) were acquired with similar acquisition protocols as

the CFS patient and the following parameters : 1)Anatomical: A T1-weighted sagittal three-
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dimensional magnetization-prepared rapid gradient echo (MPRAGE) sequence was acquired,

covering the entire brain: 128 slices, TR = 2530 ms, TE = 3.39 ms, slice thickness = 1.33 mm,

flip angle = 7deg, inversion time = 1100 ms, FOV = 256 x 256 mm, and in-plane resolution =

256 x 192. 2) Functional: The rs- BOLD images were obtained using an echo-planar imaging

sequence with the following parameters: 33 axial slices, thickness/gap = 3/0.6 mm, in-plane

resolution = 64 x 64, TR = 2000 ms, TE = 30 ms, flip angle = 90deg, FOV = 200 x 200 mm.

The control data used for DTI analysis consisted of 19 healthy, adult subjects (36.4±9.2 y.o).

The following acquisition parameters were used in the recording of this database: spin-echo

Echo-Planar Imaging-based sequence (coverage of the whole brain), 1.5 mm slice thickness

with no inter-slice gap, b = 1000 s/mm2, 140x140 matrix, 96 axial slices, TR/TE = 8800/57 ms,

64 diffusion directions and 210 mm FOV.

The Z-score was calculated as the number of standard deviations (σ) a data point is above

(Z > 0) or below the mean (Z < 0). The Z-score of the voxel-wise fractal dimension was

calculated as: ZFD = (x − µ)/σ. Where x is the localized voxel rs-BOLD FD and µ and

σ are the voxel mean and standard deviation of that same voxel from the control group re-

spectively. Similarly, The Z-score of the voxel-wise FA, MD, RD and AD was calculated as:

ZFA,MD,RD,AD = (x1−µ1)/σ1. Where x1 is the localized voxel FA, MD, RD, AD respectively

and µ1 and σ1 are the voxel mean and standard deviation of that same voxel from the control

group respectively. Voxel-wise validation of normality was performed on the control group

data (i.e. voxel-wise skewness and kurtosis was investigated) and voxels that deviated from the

univariate normal distribution, were subsequently removed from the final Z-score map.

4.5 Regions of Interest(ROIs)

The FD Z-score maps from patients were co-registered to the TT Daemon (22) human brain

atlas and the mean FD Z-score was was calculated for each of the 240 regions included in
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the atlas. In contrast, FA Z-score maps on WM regions were co-registered to the John Hopkins

University and International Consortium of Brain Mapping (JHUICBM) atlases of human white

matter anatomy (23).

5 Preliminary Results

5.1 Global Fractal Dimension

Voxel-wise FD values (Figure 1)were calculated for each voxel in the brain of the patient and

averaged for the gray matter. The rs-BOLD signal has been associated with post-synaptic poten-

tials, which are mainly localized in gray matter as opposed to action potentials more common in

the white matter. Similarly, mean FD in the gray matter was calculated for the healthy controls.

The mean gray matter FD for the CFS patient was 1.58 ± 0.25 while the mean gray matter

FD for controls was 1.62 ± 0.04. We performed a Crawford-Howell t-test commonly used be-

tween single cases and normative groups of controls. We found t and p values of -0.75 and 0.45

respectively which implies there is not significant difference between these two values.

5.2 FD Z-score and ROI analysis

A voxel-wise FD Z-score map was calculated for the patient on the 240 defined regions. Ten

regions that deviated the most from the control group mean were extracted. Table1 and Table2

show mean Z-score, and p values calculated for those regions of interest that deviated great-

est from control mean values. To achieve a p value of 0.95 the Z score must be above 1.96.

Therefore the only region where FD significantly decreased in this patient was the posterior

commisure and this only occurred on Trial 2 (3 months re-scanning)(Table2). rs-BOLD sig-

nal complexity in the posterior commisure significantly decreased in Trial two. The posterior

comissure is a white matter structure completely surrounded by gray matter. We suspect that

this result was caused by a misregistration of the gray matter map and that the region we are
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Figure 1: FD maps for Trial 1 and Trial 2 compared to healthy controls. The gray matter mask
for the mean FD in healthy controls was done using a probability distribution atlas while the
gray matter for patients was done using a segmentation tool from fsl (fast)

actually detecting is the culmen of vermis. Reduced FD in this region translates into reduction

in local neural activity.

5.3 DTI Z-score and ROI analysis

Voxel-wise FA, MD, AD and RD Z-score maps were calculated for the patient on the 48 white

matter tract labels from the JHUICBM atlas. Table 3 shows mean Z-score, and p values calcu-

lated for those regions on both trials. Although no significant differences between the patient

and healthy controls were found in Trial 2, we found a statistically significant increase in MD
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Figure 2: Z-score maps for Trial 1 and Trail 2 over gray matter mask was used to calculate the
regions that significantly deviated (p < 0.05) from the mean FD. Scale was normalized(1,-1)

in the bilateral cingulum cingulate gyrus on Trail 1. MD is sensitive to axonal diameter and

integrity, as well as myelination (20,21). Increased MD in the cingulum cingulate Gyrus of the

CFS patient when compared to healthy controls, could suggest increased axonal diameter and

axonal demyelination, which could also be reflective of localized swelling.

6 Discussion

In this case report study of a CFS patient, we did not find significant differences in global

neuronal activity based on the fractal analysis of the BOLD signal. We evaluated FD for the

whole brain gray matter as well as for 240 regions of interests and we only found a significant
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Table 1: Trial 1. Mean Z-score and p-value for ROI FD values that deviated greatest from
healthy controls.

ROIs Z− Score p
Right Caudate -0.78 0.43
Left Hippocampus -0.78 0.43
Left Brodmann area 34 -0.79 0.43
Right Brodmann area 36 -0.86 0.39
Left Brodmann area 36 -0.88 0.38
Right Caudate Head -0.90 0.37
Left Amygdala -0.92 0.36
Right Hippocampus -0.95 0.34
Left Brodmann area 27 -0.97 0.33
Left Uvula of Vermis -1.08 0.28

Table 2: Trial 2. Mean Z-score and p-value for ROI FD values that deviated greatest from
healthy controls.

ROIs Z− Score p
Right Caudate -0.17 0.87
Left Uvula of Vermis -0.18 0.86
Right Uvula of Vermis -0.19 0.85
Right Declive of Vermis -0.25 0.80
Right Brodmann area 28 -0.28 0.78
Right Caudate Head -0.33 0.74
Left Lateral Dorsal Nucleus -0.34 0.73
Right Lateral Dorsal Nucleus -0.39 0.69
Right Cerebellar Lingual -0.40 0.68
Posterior Commissure -2.31 0.02

difference (p¡0.05) in the posterior commissure (cerebellar vermis) on Trial 2. The cerebellar

vermis is a region of the cerebellum and lesions on this region are commonly associated to clin-

ical depression (24, 25). A recent study by Roelcke et al. (26) used 18F-Positron Emission

Tomography (PET) to study fatigue in Multiple Sclerosis(MS) patients. Patients who suffer

poliomyelitis or MS commonly experience weakness and fatigue (27, 28). MS patients show-

ing fatigue symptoms showed elevated glucose metabolism in the anterior cingulate and the

cerebellar vermis compared to non fatigue MS patients. The authors concluded that abnormal

11
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Table 3: Mean Z-score and p-values for ROI DTI values in Trial 1 and Trial 2. Statistically
significant values are highlighted in red

ROI
Trial 1 Trial 2

ROI
Trial 1 Trial 2

Z-score p Z-score p Z-score p Z-score p

Anterior Thalamic L

FA 0.09 0.47 -0.09 0.54

Inferior Fronto Occipital Fasciculus L

FA 0.08 0.47 -0.17 0.57
MD -0.16 0.56 0.08 0.47 MD 0.87 0.19 0.47 0.32
AD -0.24 0.59 0.01 0.50 AD 0.91 0.18 0.78 0.22
RD -0.24 0.59 -0.03 0.51 RD 0.60 0.27 0.68 0.25

Anterior Thalamic R

FA -0.15 0.56 -0.01 0.50

Inferior Fronto Occipital Fasciculus R

FA -0.07 0.53 -0.05 0.52
MD 0.09 0.46 0.17 0.43 MD 0.63 0.27 0.37 0.35
AD 0.05 0.48 0.13 0.45 AD 0.60 0.28 0.40 0.34
RD 0.04 0.48 0.10 0.46 RD 0.43 0.33 0.34 0.37

Cingulum Cingulate Gyrus L

FA 0.17 0.43 -0.04 0.52

Inferior Longitudinal Fasciculus L

FA -0.14 0.56 -0.26 0.60
MD 2.30 0.01 1.53 0.06 MD 0.63 0.26 0.47 0.32
AD 1.12 0.13 1.10 0.14 AD 0.51 0.31 0.49 0.31
RD 0.47 0.32 0.65 0.26 RD 0.35 0.36 0.35 0.36

Cingulum Cingulate Gyrus R

FA -0.35 0.64 -0.30 0.62

Inferior Longitudinal Fasciculus R

FA -0.16 0.56 -0.18 0.57
MD 1.71 0.04 1.35 0.09 MD 0.96 0.17 0.69 0.24
AD 1.43 0.08 1.60 0.05 AD 0.76 0.22 0.72 0.24
RD 0.73 0.23 0.98 0.16 RD 0.54 0.30 0.57 0.29

Corpus Callosum L

FA -0.39 0.65 -0.64 0.74

Superior Longitudinal Fasciculus L

FA -0.12 0.55 -0.32 0.63
MD 0.70 0.24 0.06 0.48 MD 0.55 0.29 0.44 0.33
AD 0.80 0.21 0.39 0.35 AD 0.14 0.44 0.35 0.36
RD 0.49 0.31 0.26 0.40 RD 0.03 0.49 0.26 0.40

Corpus Callosum R

FA 0.09 0.46 0.02 0.49

Superior Longitudinal Fasciculus R

FA -0.27 0.61 -0.36 0.64
MD 0.89 0.19 0.36 0.36 MD 0.69 0.24 0.70 0.24
AD 0.66 0.25 0.27 0.39 AD 0.34 0.37 0.49 0.31
RD 0.73 0.23 0.41 0.34 RD 0.26 0.40 0.42 0.34

Corticospinal Tract L

FA 0.17 0.43 0.18 0.43

Sup. Long. Fasciculus Temporal Part L

FA 0.09 0.47 -0.16 0.56
MD 0.92 0.18 0.84 0.20 MD 0.74 0.23 0.30 0.38
AD 0.78 0.22 0.69 0.25 AD 0.03 0.49 0.18 0.43
RD 0.71 0.24 0.64 0.26 RD -0.20 0.58 0.03 0.49

Corticospinal Tract R

FA 0.16 0.44 0.18 0.43

Sup. Long. Fasciculus Temporal Part R

FA -0.27 0.61 -0.37 0.64
MD 1.15 0.13 1.22 0.11 MD 0.51 0.30 0.78 0.22
AD 1.05 0.15 1.21 0.11 AD 0.22 0.41 0.69 0.24
RD 0.91 0.18 1.08 0.14 RD 0.14 0.44 0.50 0.31

Forceps Major

FA 0.21 0.42 0.27 0.40

Uncinate Fasciculus L

FA 0.03 0.49 -0.19 0.57
MD 1.11 0.13 0.21 0.42 MD 0.77 0.22 1.02 0.15
AD 0.70 0.24 -0.07 0.53 AD 0.61 0.27 0.94 0.17
RD 0.19 0.42 -0.28 0.61 RD 0.44 0.33 0.69 0.25

Forceps Minor

FA -0.10 0.54 -0.33 0.63

Uncinate Fasciculus R

FA -0.03 0.51 -0.17 0.57
MD 1.04 0.15 1.16 0.12 MD 0.66 0.25 1.00 0.16
AD 0.95 0.17 1.29 0.10 AD 0.49 0.31 0.97 0.17
RD 0.84 0.20 1.21 0.11 RD 0.46 0.32 0.90 0.18
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Figure 3: DTI TBSS results shown on a standard MNI 1mm anatomical overlay. The green
underlay is the mean FA skeleton across the two CFS patient trials and healthy controls. Red-
yellow shading indicates regions where the CFS patient had significantly higher measures of
MD than the control populous (p < 0.05). Brighter areas indicate more significant correlation.
Results for both trials are shown. Fewer regions of significant difference are observed in the
trial 2 image in deep brain structures.

cerebral activity in the basal ganglia and prefrontal regions can be associated with fatigue in per-

sons with MS. Additionally, another study by Cook et al. (29) used task-based fMRI to explore

the relationship between fatigue and functional brain activity in CFS patients. They found that

reports of fatigue after task performance correlated positively with brain activity in the cerebel-

lar vermis among other regions. The absence of other regions were FD significantly decreased

in the gray suggested that the the symptoms experienced by this patient could potentially be

related to changes mainly occurring in the white matter. In this study, structural connectivity in

the white matter was evaluated in 48 white matter tracts of the brain. We found significantly in-
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creased MD in the bilateral cingulum cingulate gyrus tract (p¡0.05) which suggests local axonal

demyelination, and localized swelling.

Previous studies have shown a connection between the cingulate gyrus and CFS. For in-

stance, a study by Yamamoto et al. (30) assessed involvement of serotonergic neurotransmitters

in CFS using 11C-PET . They found that the density of serotonergic neurotransmitters (5-HTTs)

in the CFS brain, was significantly reduced in the anterior cingulate compared healthy controls.

A similar study by Siessmeier et al. (31) evaluated glucose metabolism with 18F-PET in CFS

patients compared to controls. The study showed hypometabolism bilaterally in the cingulate

gyrus on CFS patients. Additionally , a study by Lutz et al. (32) explored the microstructural

changes of patients with fibromyalgia using DTI. Fibromyalgia is closely related to chronic

fatigue syndrome, however pain is more predominant than in chronic fatigue syndrome. This

study reported increased FA in the cingulate gyrus and positive correlation was found with

fatigue symptoms.

7 Conclusions

This preliminary study study shows how the fractal dimension analysis in combination with a

DTI analysis can to provide additional patient-specific information respect to brain functional

and structural connectivity. Fatigue symptoms experienced by CFS patients appears to be re-

lated to abnormalities in the white matter tracts possibly arising from inflammatory processes

that caused demyelination of the axons. This was reflected by the FA decrease detected on

the bilateral cingulum cingulate gyrus. Since no significant difference was found in the fractal

analysis of the rs-BOLD signal, we could say that this patient could benefit the most from ther-

apies that target inflammation of the white matter. This new methodology we have proposed

combining the analysis of functional and anatomical connectivity is able to provide additional

information for CFS patients in a non-invasive and fast manner and could hopefully help in
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deciding whether a patient could benefit from specific White matter targeted treatments and

interventional techniques.
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Chapter 8

Conclusions and Future Directions

8.1 General remarks

A complexity analysis based on the fractal dimension of the brain rs-BOLD signal

appears to provide additional information regarding neural activity that can be used

to assess and possibly monitor a spectrum of brain disorders. Brain connectivity is

best described as a multilevel model that takes into account three distinctive levels

of interaction: synaptic connections that link independent neurons, networks that

connect local neuronal populations and broader brain regions linked by fiber pathways.

A measure of complexity of this model constitutes an ideal indicator of multilevel and

multitemporal connectivity within different brain regions. Tentatively, a healthy brain

is associated with more complex signals and high FD, while a diseased or dysfunctional

brain is associated with less complex signals and low FD. The capacity of the brain to

perform real-time adaptation and processing based on these connections is reflected in

the local demand of glucose and oxygen consumption, which drives the brain metabolic

fluctuation observed in the rs-BOLD signal and its fractal dimension.
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Estimation of the fractal dimension, when normalized for a large control group,

can be used in the study of individual patients. As it is independent of group statistics,

the FD methodology is applicable when heterogeneous brain disorders are being

investigated. In this study, applicability of the FD methodology was explored in

mTBI, ASD, CFS and chemo-brain and significant differences in FD between diseased

and healthy control were encountered with higher prevalence among the mTBI and

ASD groups.

8.2 Main findings

The fractal dimension maps produced for mTBI showed that overall, gray matter

rs-BOLD FD in mTBI patients decreased compared to controls. This reduction in

temporal complexity of the rs-BOLD leading us to our hypothesis that patients with

mTBI experience a decrease in brain connectivity and that this could be observed

with the FD approach. Z-score and subsequent regional ROI analysis revealed a group

of brain regions where FD values were observed to deviate the greatest from mean

values, as calculated from a population of healthy controls. The regions that showed

significant decreased in signal complexity were the amygdala, the cerebellar vermis,

caudate nucleus, nucleus accumbens and hippopotamus. All of these regions have

been previously reported as dysfunctional for mTBI in animal studies, DTI and SWI

human studies. These regions also functionally correlate with symptoms of memory

loss, concentration and sleep impairment experienced by mTBI patients. No significant

correlation was found between regional FD and the PCSS score. The PCSS does

not characterize symptoms associated with unique brain regions. Still, PCSS is the

most common test used clinically to characterize mTBI. This study highlighted the
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issues related with the use of a self-reported metric while trying to characterize a

complex phenomenon. Neuropsychological tests specifically designed to measure a

psychological function related to a particular brain structure or pathway would be of

greater interest for future studies.

When applying fractal analysis to ASD, we found reduced signal complexity in the

ASD patients compared to controls. Out of 250 regions, 14 regions showed significantly

low FD in 19 of the 50 studied subjects. Positive Z-scores or regions where FD

increased compared to controls were minimal in every patient and in none of the ASD

subjects we found a FD value of at least one standard deviation above the mean. This

indicated that there were no regions where signal complexity significantly increased

with respect to controls among the ASD patients. The regions that showed significant

decrease in signal complexity in ASD respect to controls were the amygdala, nucleus

accumbens, cerebellar vermis and caudate head. These regions have been previously

reported as dysfunctional in ASD and have been correlated to behavioral features

of the patients. Additionally, the FD in the cerebellar vermis correlated with the

ADI and ADOS restricted repetitive behavior metrics, hence, when severity of the

symptoms increased in those domains, the FD and signal complexity decreased.

Regarding the study on chemo-brain patients, no significant changes were found in

the FD of the rs-BOLD signal compared to healthy controls. In this case, FD changes in

gray matter were either below our detection limit or non existent. However, this study

showed that integrity of the white matter tracts, evaluated with DTI measures (e.g.FA),

was significantly lower in chemo-brain patients when compared with healthy controls.

Three regions (corpus callosum, inferior fronto-occipital fasciculus and right inferior

longitudinal fasciculus) were identified as common among all patients independently
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of age while three more regions were exclusively detected on older (above 70 years old)

patients (bilateral uncinate fasciculus and superior longitudinal fasciculus temporal).

Decreased FA in the corpus callosum, inferior fronto-occipital fasciculus and right

inferior longitudinal fasciculus correlated with the Rey Complex copy trial and the

recognition trial which measure visuospatial memory and visuospatial constructional

ability. Furthermore, a strong correlation was found between the cognitive failure

questionnaire and reduced FA in the inferior fronto-occipital fasciculus.

With reference to the study on CFS, we did not find significant differences in global

neuronal activity based on the fractal analysis of the BOLD signal. We evaluated FD

for the whole brain gray matter as well as for 240 regions of interests and we only

found a significant difference in the cerebellar vermis on Trial 2 (three months after

first scan). The absence of other regions where FD significantly decreased in the gray

matter suggested that the the symptoms experienced by this patient could potentially

be related to changes mainly occurring in the white matter. Structural connectivity

in the white matter was evaluated in 48 white matter tracts of the brain and it was

found that mean difussivity significantly increased in the bilateral cingulum cingulate

gyrus tract which suggested local axonal demyelination, and localized swelling.

8.3 Limitations

The main limitation of the FD analysis arises from the low sampling frequency

that can be achieved when measuring the rs-BOLD signal. The effectiveness of the

fractal analysis is based on the ability of the signal to capture the true dynamics

of the processes being studied. Ideally the sampling frequency should be one order

of magnitude higher than the highest frequency of the hemodynamic response to
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neuronal activation. For example, the BOLD responses are delayed by 1− 2 s and

have a temporal width on the order of 46 s, therefore we need to be able to sample

the signal at 1.25 Hz. In order to acquire the rs-BOLD signal for the entire brain in a

reasonable time for the patients we were only able to sample at a frequency of 0.5 Hz

which significantly limited the scope of our study. New techniques such as multi-band

EPI can perhaps be ideal to overcome this issue as they are able to achieve full brain

sampling rates up to 2.5 Hz.

8.4 Contribution and future directions

To the best of our knowledge, we believe that fractal analyses of rs-BOLD signal

have not been applied previously in the study of mTBI, ASD, chemo-brain or CFS.

Furthermore, a Z-score methodology has not been previously used to normalize the

FD to a large healthy control dataset. Although fractal analysis of brain signals has

been done in Alzheimer’s disease and vascular dementia and acquired through different

imaging modalities such as EEG, MEG and SPECT, few studies have performed

fractal analysis specifically on brain rs-BOLD signals. This work is a continuation of

previous studies performed at the Imaging Research Centre where FD was explored

as a viable technique to assess complexity of the rs-BOLD signal in AD and in brain

alcohol intoxication.

In this study, we complemented the fractal analysis of the rs-BOLD signal with

DTI to obtain information of the white matter integrity. In the future, we would

like to explore the viability of a fractal analysis directly on the white matter. The

two main reasons why white matter is excluded from fMRI BOLD studies are that

first, the BOLD signal depends on cerebral blood flow and volume, which are lower
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in white matter than gray matter. Second, the BOLD signal has been associated

with post-synaptic potentials, which are more common in gray matter as opposed to

action potentials which are more predominant in white matter. Regardless of these

two reasons, which are not a direct evidence against measuring BOLD signal in white

matter, many studies frequently report activation in white matter, predominately in

the corpus callosum.

Additionally, we would like to combine in future studies the highly spatially-resolved

MRI BOLD signal with highly temporally-resolved signals as EEG and NIR. This will

enable FD measurements to more precisely capture the dynamics of the processes that

occur at lower scales of fractals.

8.5 Concluding statement

Fractals, a quantitative measure of complexity, have enabled a new perspective in

studying the human brain. Brain connectivity is best described as a complex system

due to the many levels of interactions that take place among independent neurons,

neuronal populations and brain regions. Including fractals in the analysis of the brain

signals may be critical for understanding neuronal behavior in response to different

perturbations that occur at different time scales. It is our hope that this method

sparks new interest in the scientific community and that future applications can lead

to better diagnosis and monitoring of neurological conditions and ultimately their

cure.
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Appendix A

Summary of publications, journals,

conference proceedings and Code

A.1 Journal articles

1. (2017). Temporal Fractal Analysis Identifies Brain Abnormalities in Autism

Spectrum Disorder. Nature Scientific Reports. First Listed Author Submitted, AAAS,

Refereed?: Yes, Open Access?: Yes

2. (2016). Fractal Analysis of Brain Blood Oxygenation Level Dependent (BOLD)

Signals from Children With mild Traumatic Brain Injury. PLOS-ONE. First Listed

Author Published, PLOSONE, Refereed?: Yes, Open Access?: Yes Number of Con-

tributors: 4

3. (2016). A Comprehensive Review on MR Imaging of Alzheimer’s Disease.

Critical Reviews in Biomedical Engineering. First Listed Author Published, Bagel

House, Refereed?: Yes Number of Contributors: 3

4. (2017). Fractal analysis of the blood oxygenation level dependent (BOLD) signal
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and DTI analysis of white matter micro-structure in cancer patients experiencing

chemotherapy-related cognitive impairment. First Listed Author Submitted, Clinical

Cancer Research AACR, Refereed?: Yes Number of Contributors: 5

5. (2017). Case Report: Voxel-wise DTI and Fractal Analysis in a Chronic Fatigue

Syndrome Patient. First Listed Author Submission pending, TBD, Refereed?: Yes

Number of Contributors: 5

A.2 Conference proceedings

1. Fractal Analysis of the rs-BOLD signal in mTBI patients. ESMRMB, Vienna,

Austria, Conference Date: 2016/9 Abstract First Listed Author Refereed?: Yes

2. Fractal Analysis of the brain blood oxygenation level dependent (BOLD) signal

of mild traumatic brain injury (mTBI) patients. . COMP-OCPM ASM, Saint John’s,

Canada, Conference Date: 2016/7 Abstract First Listed Author Refereed?: Yes

3. Fractal Analysis of the brain blood oxygenation level dependent (BOLD) signal

of mild traumatic brain injury (mTBI) patients. Conference Date: 2016/2 Abstract

First Listed Author Refereed?: Yes

4. Fractal analysis of the brain blood oxygenation level dependent (BOLD) signal

in the left putamen of mild traumatic brain injury (mTBI) patients. ISMRM-2016,

Toronto, Canada (4047), Conference Date: 2015/5 Abstract First Listed Author

Refereed?: Yes
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A.3 Matlab code for Hurst, FD and Z-score methods

A.3.1 Hurst exponent
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function [H, RSquare] = HurstOlga(rawBOLD, TR) 
% This function will analyze an ROI timecourse and output the appropriate 
% Hurst exponent according to the procedure of Eke et al. (Eur J Physiol 
% (2000) 439:403?415) 
% Olga Dona (2016/02/20), Saurabh Shaw(2015), Mohamed A. Warsi(2012), Alex 
Weber(2012), Alya Elzybaak(2011), Evan McNabb(2013), Michael Noseworthy. 
 
 
% Initialziation: 
Hurst = NaN; 
Hurst_SSC_fGN_Dispersion = NaN; 
Hurst_SSC_fBM_SWV = NaN; 
H = NaN; 
abort = false; 
% Common parameters: 
fs = 1/TR;   % Sampling frequency 
n = length(rawBOLD);  % Number of timepoints 
 
% Normalizing the time series: 
m1 = mean(rawBOLD); 
rawBOLD_sub = rawBOLD - m1; 
 
% Multiply each new value by parabolic window 
N = length(rawBOLD_sub); 
W = zeros(N, 1); 
for j = 1:N 
    W(j) = 1 - (2*j/(N+1)-1).^2;    % parabolic window 
end 
signal_pw = rawBOLD_sub.*W; 
 
% Matching the ends: 
y11 = signal_pw(1); y21 = signal_pw(end); 
slope1 = (y21-y11)/(N-1); 
y_int1 = y21 - slope1*N; 
line = 1:N; 
E1 = slope1 * line + y_int1; 
 
% Bridge detrend: 
signal_em1 = signal_pw - E1'; 
range = ceil((N+1) / 2); 
freq = [fs * (0 : range-1) / N]'; 
 
% plot log (power) vs. log(frequency) --> make sure this is linear over a 
% 2-decade range otherwise signal can't be analyzed using fractals 
 
fftSignal1 = fft(signal_em1,N); 
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fftSignal1 = fftSignal1(1:range);  % 1st half of fft since it's symmetric 
PSD1 = (abs(fftSignal1).^2)/N; 
             
if rem(N,2) 
    PSD1(2:end)=PSD1(2:end)*2; 
else 
    PSD1(2:end-1)=PSD1(2:end-1)*2; 
end 
[min_value1, min_index1] = min(abs(freq - 0.08)); 
[min_value2, min_index2] = min(abs(freq - 0.16)); 
 PSDpart = PSD1(min_index1 : min_index2);  % fit only low frequencies for the fit (0.08 
Hz - 0.16 Hz). This is to exculde random white noise at higher frequencies and magnet 
noise below 0.02 Hz 
 freqpart = freq(min_index1 : min_index2);   
 
logPSD = log10(PSDpart); 
logfreq = log10(freqpart); 
 
% Removing all the Inf values: 
nu = ~isinf(logPSD) & ~isinf(logfreq); 
logPSD_c = logPSD(nu); 
logfreq_c = logfreq(nu); 
 
if (~isempty(logPSD_c) && ~isempty(logfreq_c))     
    fit_opts = fitoptions('Method', 'LinearLeastSquares', 'Robust', 'off'); 
    [fits_result, fit_goodness] = fit(logfreq_c, logPSD_c, 'poly1', fit_opts); 
     
    % Beta is the negative of the slope of the fitted line: 
    Beta = -1 * fits_result(1); 
    RSquare_Beta = fit_goodness.rsquare; 
else 
    % Voxel lies outside the brain, disregard it. 
    abort = true; 
    Beta = 0; 
    Hurst = NaN; 
    Hurst_SSC_fGN_Dispersion = NaN; 
    Hurst_SSC_fBM_SWV = NaN; 
    return 
end 
 
% Analysis if signal is fractional Gaussian Noise (fGn) 
if((Beta > -1 && Beta < 0.38) && ~abort) 
     
    Hurst_PSD_fGn = (Beta + 1) / 2;   %This method of calculating H (from slope of line) 
is not as accurate (according to Eke) as doing the dispersional analysis, so use H from 
dispersional analysis 
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    % Dispersional analysis to get H for fGn signals: 
    maxBins = nextpow2(length(rawBOLD)) - 1; 
    signal_2 = rawBOLD(1 : 2^maxBins); 
     
    DISP = zeros(maxBins, 1); 
    tau = zeros(maxBins, 1); 
     
    for i = 1 : maxBins         
        m = 2^i; 
        signal_binned = reshape(signal_2, [m, (length(signal_2)/m)]); 
         
        mean_binned = mean(signal_binned); 
        DISP(i) = std(mean_binned); 
        tau(i) = m; 
        if(DISP(i) == 0) 
            DISP(i) = 0.0001; 
        end 
    end 
     
    logDISP = log10(DISP(3:7)); 
    logtau = log10(tau(3:7)); 
     
    fit_opts = fitoptions('Method', 'LinearLeastSquares', 'Robust', 'off'); 
    [fits_result, fit_goodness] = fit(logtau, logDISP, 'poly1', fit_opts); 
     
    Hurst_fGn_Dispersion = fits_result.p1 + 1; 
    RSquare = fit_goodness.rsquare; 
    H = Hurst_PSD_fGn; 
     
% Analysis if signal is fractional Brownian motion (fBm) 
elseif((Beta > 1.04 && Beta < 3) && ~abort) 
     
    Hurst_PSD_fBm = (Beta - 1) / 2; 
     
    %Bridge detrended SWV to get H for fBm signals    
    %Recall: signal_em1 is the original bridge detrended data     
    maxBins = nextpow2(length(rawBOLD)) - 1; 
    signal_2 = signal_em1(1 : 2^maxBins); 
     
    SWV = zeros(maxBins, 1); 
    tau = zeros(maxBins, 1); 
     
    for i = 1 : maxBins         
        m = 2^i; 
        signal_binned = reshape(signal_2, [m, (length(signal_2)/m)]); 
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        std_binned = std(signal_binned); 
        SWV(i) = mean(std_binned); 
        tau(i) = m;         
    end 
     
    logSWV = log10(SWV(3:7)); 
    logtau = log10(tau(3:7)); 
     
    fit_opts = fitoptions('Method', 'LinearLeastSquares', 'Robust', 'off'); 
    [fits_result, fit_goodness] = fit(logtau, logSWV, 'poly1', fit_opts); 
     
    Hurst_fBm_SWV = fits_result.p1; 
    RSquare = fit_goodness.rsquare; 
    H = Hurst_PSD_fBm; 
% Signal summation conversion for signals that fall in the non-classifiable region     
elseif((Beta >= 0.38 && Beta <= 1.04) && ~abort) 
     
    Y = zeros(size(rawBOLD)); 
     
    for j = 1:length(Y) 
        temp = 0; 
         
        for i = 1:j 
            temp = temp + rawBOLD(i); 
        end 
         
        Y(j) = temp; 
    end 
     
     
    % Run SWV to get Hurst exponent:     
    maxBins = nextpow2(length(rawBOLD)) - 1; 
    signal_2 = signal_em1(1 : 2^maxBins); 
     
    SWV = zeros(maxBins, 1); 
    tau = zeros(maxBins, 1); 
     
    for i = 1 : maxBins         
        m = 2^i; 
        signal_binned = reshape(signal_2, [m, (length(signal_2)/m)]); 
         
        std_binned = std(signal_binned); 
        SWV(i) = mean(std_binned); 
        tau(i) = m;         
    end 
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    logSWV = log10(SWV(3:7)); 
    logtau = log10(tau(3:7)); 
     
    fit_opts = fitoptions('Method', 'LinearLeastSquares', 'Robust', 'off'); 
    [fits_result, fit_goodness] = fit(logtau, logSWV, 'poly1', fit_opts); 
     
    Hurst= fits_result.p1; 
    Stats_RSquare = fit_goodness.rsquare; 
     
    if(Hurst < 0.8)         
        % The signal is an fGn signal, so can do dispersion analysis on it 
        % to get final Hurst         
         
        maxBins = nextpow2(length(rawBOLD)) - 1; 
        signal_2 = rawBOLD(1 : 2^maxBins); 
         
        DISP = zeros(maxBins, 1); 
        tau = zeros(maxBins, 1); 
         
        for i = 1 : maxBins             
            m = 2^i; 
            signal_binned = reshape(signal_2, [m, (length(signal_2)/m)]); 
             
            mean_binned = mean(signal_binned); 
            DISP(i) = std(mean_binned); 
            tau(i) = m; 
            if(DISP(i) == 0) 
                DISP(i) = 0.0001; 
            end 
        end 
         
        logDISP = log10(DISP(3:7)); 
        logtau = log10(tau(3:7)); 
         
        fit_opts = fitoptions('Method', 'LinearLeastSquares', 'Robust', 'off'); 
        [fits_result, fit_goodness] = fit(logtau, logDISP, 'poly1', fit_opts); 
         
        Hurst_SSC_fGN_Dispersion = fits_result.p1 + 1; 
        RSquare = fit_goodness.rsquare; 
        H = Hurst_SSC_fGN_Dispersion; 
    elseif(Hurst > 1)         
        %The signal is an fBm signal, so can do SWV analysis on it to get 
        %final Hurst         
         
        maxBins = nextpow2(length(rawBOLD)) - 1; 
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        signal_3 = signal_em1(1 : 2^maxBins); 
         
        SWV1 = zeros(maxBins, 1); 
        tau1 = zeros(maxBins, 1); 
         
        for v = 1 : maxBins             
            mm = 2^v; 
            signal_bin = reshape(signal_3, [mm, (length(signal_3)/mm)]); 
             
            std_bin = std(signal_bin); 
            SWV1(i) = mean(std_bin); 
            tau1(i) = mm;             
        end 
         
        logSWV1 = log10(SWV1(3:7)); 
        logtau1 = log10(tau1(3:7)); 
         
        fit_opts = fitoptions('Method', 'LinearLeastSquares', 'Robust', 'off'); 
        [fits_result, fit_goodness] = fit(logtau1, logSWV1, 'poly1', fit_opts); 
         
        Hurst_SSC_fBM_SWV= fits_result.p1; 
        RSquare = fit_goodness.rsquare;    
        H = Hurst_SSC_fBM_SWV; 
    else         
        % If H is not less than 0.8 or larger than 1, then it can't be 
        % classified 
        H = NaN;         
    end 
end 
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%matlabpool close 
matlabpool open 
 
% Parameters: 
TR = 2.0; % TR = 2600ms was used 
 
% Load Data 
%anatomical = load_nii('1399_anat_ns.nii'); 
functional = load_nii('363func_ALIGNED.nii'); 
[N1,N2,N3,NT] = size(functional.img); 
 
% Fractal Dimension per voxel 
Hurst = zeros(N1,N2,N3);  
Hurst_fGN = zeros(N1,N2,N3); 
Hurst_fBM = zeros(N1,N2,N3); 
FD = zeros(N1,N2,N3); 
FDstd = FD; 
method = 'fgm'; 
parfor i = 1:N1 
    tic 
    for j = 1:N2 
        for k = 1:N3 
             if sum(abs(squeeze(functional.img(i,j,k,:))))>0 
                 [FD{i,j,k} FD2{i,j,k}] = fractaldim(squeeze(functional.img(i,j,k,:)),0,3); 
             end 
            rawBOLD = double(squeeze(functional.img(i,j,k,:))); 
            [Hurst(i,j,k),Hurst_fGN(i,j,k),Hurst_fBM(i,j,k)] = HurstOlga(rawBOLD,TR); 
         
        end 
    end 
    fprintf('Loop [%g/%g]... %g s\n',i,N1,toc); 
end 
FD(isnan(FD)) = 0; 
FD(FD==0) = 1/2; 
 
Hurst(isnan(Hurst)) = 0; 
Hurst(Hurst==0) = 1/2; 
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clear; 
%setenv('PATH', [getenv('PATH'), ':/Users/omdona/abin']) 
Deceased_numbers = {'5558','5771','5904'}% 
%Controls = 
{'0050327','0050328','0050329','0050330','0050331','0050332','0050333','0050334','0050
335','0050336','0050337','0050338','0050339','0050340','0050341','0050342','0050343','00
50344','0050346','0050347','0050348','0050349','0050350','0050351','0050352','0050353','
0050354','0050355','0050356','0050357','0050358','0050359','0050360','0050361','005036
2','0050363','0050364','0050365','0050367','0050368','0050369','0050370','0050371','0050
372','0050373','0050374','0050375','0050376','0050377','0050378','0050379','0050380','00
50381'};%Controls 
nExams = length(Deceased_numbers); 
 
 
 
current_dir = pwd; 
cd(sprintf('Controls_old')); 
count = 1; 
Controls = {}; 
dir_list = dir(); 
num_dir = size(dir_list, 1); 
for i = 1 : num_dir 
 
    % Grab the current directory listing 
    listing = dir_list(i); 
    if(listing.isdir == 1) 
        if(~(strcmp(listing.name, '.') || strcmp(listing.name, '..'))) 
            Controls{count} = listing.name; 
            count = count + 1; 
        end 
    end 
end 
cd(current_dir) 
%% Z-score 
 
for subj = 1:nExams 
 
    Hurst = load(['Patients/exam_',Deceased_numbers{subj},'/FD_Olga.mat'],'Hurst');% 
changed FD_masked with FD  
    Hurst = Hurst.('Hurst'); 
    Hurst(Hurst==1/2) = nan; 
    FD_Autism = 2 - Hurst;  
    FD_Autism(isnan(FD_Autism)) = 0; 
    [a, b, c] = size(FD_Autism); 
    % if a == 47   
    % FD_TBI_resized = FD_TBI; 
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    % %    FD_TBI_padded = FD_TBI; 
    % %else FD_TBI_padded = padarray(FD_TBI,[7 8 6],'post'); 
    % else FD_TBI_resized = resize(FD_TBI,[47 56 44]); 
    %     
    % end 
    [mean_FD, std_FD, mask_all] = ControlValues(Controls); 
 
    FD_Zmaps = zeros(size(FD_Autism)); 
    for i = 1 : size(FD_Autism, 1) 
        for j = 1 : size(FD_Autism, 2) 
            for k = 1 : size(FD_Autism, 3) 
 
                % Check two things: 1) FD value exists 
                %                   2) mask exists 
                current_fd = FD_Autism(i, j, k); 
                if(mask_all(i, j, k) == 1 && current_fd >= 1 && current_fd <= 2) 
                    FD_Zmaps(i, j, k) = (current_fd - mean_FD(i, j, k)) / std_FD(i, j, k); 
                end 
            end 
        end 
    end 
    %FD_TBI_masked_all = FD_TBI .* mask_all; 
    %FD_Zmaps = (FD_TBI_masked_all - mean_FD) ./ std_FD; 
    [~,GMmask,~,~] = 
BrikLoad(['Patients/exam_',Deceased_numbers{subj},'/GM_resampled+tlrc']); 
    FD_Zmaps_GMmasked = double(GMmask .* FD_Zmaps); 
 
    %WRITE BRIK Z_MAPS 
    [err1,Info] = BrikInfo('FD_Zmaps_1569+tlrc'); 
    bold_mean_wb = FD_Zmaps_GMmasked (:,:,:) ;  
    %bold_mean_wb = FD_Zmaps(:,:,:) ;  
    InfoBold.RootName = ''; %that'll get set by WriteBrik 
    InfoBold.DATASET_RANK(1) = 3; % must be 3 spatial dimensions 
    InfoBold.DATASET_RANK(2) = 1; % one sub brick 
    InfoBold.DATASET_DIMENSIONS(1) = 47;%Info.DATASET_DIMENSIONS(1); 
    InfoBold.DATASET_DIMENSIONS(2) = 56;%Info.DATASET_DIMENSIONS(2); 
    InfoBold.DATASET_DIMENSIONS(3) = 44; %Info.DATASET_DIMENSIONS(3); 
%write out 3 slices  
    InfoBold.TYPESTRING = '3DIM_HEAD_ANAT'; 
    InfoBold.TypeBytes = 4; % to allow 4 bytes per voxel 
    InfoBold.SCENE_DATA(1) = Info.SCENE_DATA(2); % value is 0: orig view 
    InfoBold.SCENE_DATA(2) = Info.SCENE_DATA(1); % value is 2: labels it as EPI 
although any type will work 
    InfoBold.SCENE_DATA(3) = Info.SCENE_DATA(3); % value is 0: 
3DIM_HEAD_ANAT 
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    InfoBold.ORIENT_SPECIFIC(1) = Info.ORIENT_SPECIFIC(1); % Value is 3: X axis 
Ant to Post 
    InfoBold.ORIENT_SPECIFIC(2) = Info.ORIENT_SPECIFIC(2); % Value is 0: Y axis 
Right to Left 
    InfoBold.ORIENT_SPECIFIC(3) = Info.ORIENT_SPECIFIC(3); % Value is 5: Z axis 
Sup to Inf 
    InfoBold.ORIGIN(1) = Info.ORIGIN(1); 
    InfoBold.ORIGIN(2) = Info.ORIGIN(2); 
    InfoBold.ORIGIN(3) = Info.ORIGIN(3); 
    InfoBold.DELTA(1) = Info.DELTA(1); % Voxel size 3.75 X 3.75 X 5 
    InfoBold.DELTA(2) = Info.DELTA(2); 
    InfoBold.DELTA(3) = Info.DELTA(3); 
    InfoBold.BRICK_TYPES = 3; % 1 store data as shorts, 3 single precision floating 
point  
    InfoBold.BYTEORDER_STRING = 'MSB_FIRST'; 
    InfoBold.BRICK_STATS= [min(FD_Zmaps_GMmasked(:)), 
max(FD_Zmaps_GMmasked(:))]; %is set by writebrik 
    InfoBold.BRICK_FLOAT_FACS = []; %" " 
    %InfoBold.TAXIS_NUMS(1) = 1; 
 
    %Define options: 
 
    %OptBold.Prefix = ['FD_Zmaps',Deceased_numbers{subj}]; 
    OptBold.Prefix = ['FD_Zmaps',Deceased_numbers{subj}]; 
    OptBold.verbose = 0; 
    OptBold.View = '+tlrc' ; 
    OptBold.OverWrite = 'y'; 
 
    % run the WriteBrik command: 
    [err, ErrMessage, InfoBold] = WriteBrik (bold_mean_wb, InfoBold, OptBold); 
end 
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function [ mean_FD, STD_FD, mask_all, h, kt, sk] = ControlValues( Controls ) 
%CONTROLVALUES Calculate mean and std per voxel of control patients  
%   Given a series of directories with control patients, this function will 
%   mask all of the FD_masked variables to only calculate the mean and std 
%   values for non-zero voxel locations across ALL patients. 
% 
%   Inputs:         subject_numbers 
% 
%   Outputs:        mean_FD 
%                   STD_FD 
%                   h - normality test (Kolmogorov-Smirnov) 
%                   kt - kurtosis  
%                   sk - skewness   
% Data sizes 
N = size(Controls, 2); 
size_x = 47; 
size_y = 56; 
size_z = 44; 
 
% Load each FD_mask and and create a logical mask where values are NOT 
% zero. Store in a N x 47 x 56 x 44 matrix 
zero_mask = zeros(N, 47, 56, 44); 
for i = 1 : N 
     
    % Grab the filename and load the .mat file 
    filename = sprintf('Controls/%s/FD_Olga.mat', Controls{i}); 
    load(filename, 'Hurst'); 
    %FD(FD==1/2) = 0; 
    Hurst(Hurst==1/2) = nan; 
    FD = 2 - Hurst;  
    FD(isnan(FD)) = 0; 
    A = FD >= 1; 
    B = FD <= 2; 
    C = A .* B; 
    zero_mask(i, :, :, :) = C; 
   
end 
% Create a mask to calculate mean only when minimun number of significat 
% voxels is achieved 
mask_all = zeros(47, 56, 44); 
for i = 1 : N 
    current_zero_mask = squeeze(zero_mask(i, :, :, :)); 
    mask_all = mask_all + current_zero_mask; 
   end 
  mask_all(mask_all < 2) = 0; % sample size for pwr =0.9 is 11 subjects 
  mask_all(mask_all >= 2) = 1; 
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% Go through each control and store the entire FD_masked matrix 
FDs = zeros(N, 47, 56, 44); 
for i = 1 : N 
 
    % Grab the filename and load the .mat file 
    filename = sprintf('Controls/%s/FD_Olga.mat', Controls{i}); 
    load(filename, 'Hurst');% changed FD_masked with FD  
    %FD(FD==1/2) = 0; 
    Hurst(Hurst==1/2) = nan; 
    FD = 2 - Hurst;  
    FD(isnan(FD)) = 0; 
    current_zero_mask = squeeze(zero_mask(i, :, :, :)); 
    FDs(i, :, :, :) = (FD .* current_zero_mask); 
end 
 
mean_FD = zeros(47, 56, 44); 
STD_FD = zeros(47, 56, 44); 
h = zeros(47, 56, 44); 
kt = zeros(47, 56, 44); 
sk = zeros(47, 56, 44); 
 
for i = 1 : size_x 
    for j = 1 : size_y 
        for k = 1 : size_z 
            FD1 = squeeze(FDs(:, i, j, k)); 
            mean_FD(i, j, k) = mean(FD1(FD1 ~= 0)); 
            mean_FD(isnan(mean_FD)) = 0; 
            mean_FD = mean_FD .* mask_all; 
            STD_FD(i, j, k) = std(FD1(FD1 ~= 0)); 
            STD_FD(isnan(STD_FD)) = 0; 
            STD_FD = STD_FD .* mask_all; 
            h(i, j, k) = kstest(FD1); 
            h(isnan(h)) = 0; 
            kt(i, j, k) = kurtosis(FD1); 
            kt(isnan(kt)) = 0; 
            sk(i, j, k) = skewness(FD1); 
            sk(isnan(sk)) = 0; 
        end 
    end 
end 
 
end 
 
 

Ph.D. Thesis - Olga M. Dona Lemus McMaster - Biomedical Engineering

168



Bibliography

Bär, K.-J., Boettger, M. K., Koschke, M., Schulz, S., Chokka, P., Yeragani, V. K., and

Voss, A. (2007). Non-linear complexity measures of heart rate variability in acute

schizophrenia. Clinical neurophysiology, 118(9), 2009–2015.

Bassingthwaighte, J. B. and Raymond, G. M. (1995). Evaluation of the dispersional

analysis method for fractal time series. Annals of biomedical engineering, 23(4),

491–505.

Benedict, R. and Brandt, J. (2001). Hopkins verbal learning test-revised (hvlt-r):

Professional manual. Lutz: Psychological Assessment Resources.

Bentley, L. P., Stegen, J. C., Savage, V. M., Smith, D. D., von Allmen, E. I., Sperry,

J. S., Reich, P. B., and Enquist, B. J. (2013). An empirical assessment of tree

branching networks and implications for plant allometric scaling models. Ecology

letters, 16(8), 1069–1078.

Bezo97 (2016). Mandelbulb3D, Fractal surface.

Broadbent, D. E., Cooper, P. F., FitzGerald, P., and Parkes, K. R. (1982). The

Cognitive Failures Questionnaire (CFQ) and its correlates. The British journal of

clinical psychology, 21 (Pt 1), 1–16.

169



Ph.D. Thesis - Olga M. Dona Lemus McMaster - Biomedical Engineering

Bullmore, E. and Sporns, O. (2009). Complex brain networks: graph theoretical

analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3),

186–198.

Bullmore, E., Brammer, M., Williams, S. C., Rabe-Hesketh, S., Janot, N., David, A.,

Mellers, J., Howard, R., and Sham, P. (1996). Statistical methods of estimation

and inference for functional mr image analysis. Magnetic Resonance in Medicine,

35(2), 261–277.

Bullmore, E., Long, C., Suckling, J., Fadili, J., Calvert, G., Zelaya, F., Carpenter,

T. A., and Brammer, M. (2001). Colored noise and computational inference in

neurophysiological (fmri) time series analysis: resampling methods in time and

wavelet domains. Human brain mapping, 12(2), 61–78.

Cohen, N. (2002). Fractal antennas and fractal resonators.

Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic

resonance neuroimages. Computers and biomedical research, an international journal,

29(3), 162–173.

Eickhoff S, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Z. K. (2005). A

new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional

imaging data. NeuroImage, 25(4), 1325–1335.

Eke, A., Herman, P., Bassingthwaighte, J. B., Raymond, G. M., Percival, D. B.,

Cannon, M., Balla, I., and Ikrenyi, C. (2000). Physiological time series: distinguish-

ing fractal noises from motions. Pflugers Archiv : European journal of physiology,

439(4), 403–415.

170



Ph.D. Thesis - Olga M. Dona Lemus McMaster - Biomedical Engineering

Eke, A., Herman, P., Kocsis, L., and Kozak, L. R. (2002). Fractal characterization

of complexity in temporal physiological signals. Physiological measurement, 23(1),

R1–38.

El Boustani, S., Marre, O., Béhuret, S., Baudot, P., Yger, P., Bal, T., Destexhe, A.,

and Frégnac, Y. (2009). Network-state modulation of power-law frequency-scaling

in visual cortical neurons. PLoS Comput Biol, 5(9), e1000519.

Fox, M. D. and Raichle, M. E. (2007). Spontaneous fluctuations in brain activity

observed with functional magnetic resonance imaging. Nature reviews. Neuroscience,

8(9), 700–711.

Friston, K. J., Zarahn, E., Josephs, O., Henson, R., and Dale, A. M. (1999). Stochastic

designs in event-related fmri. Neuroimage, 10(5), 607–619.

Goldberger, A. L. (1996). Non-linear dynamics for clinicians: chaos theory, fractals,

and complexity at the bedside. The Lancet, 347(9011), 1312–1314.

Goldberger, A. L., Amaral, L. A. N., Hausdorff, J. M., Ivanov, P. C., Peng, C.-K.,

and Stanley, H. E. (2002). Fractal dynamics in physiology: alterations with disease

and aging. Proceedings of the National Academy of Sciences of the United States of

America, 99 Suppl 1, 2466–2472.

Herman, P., Sanganahalli, B. G., Hyder, F., and Eke, A. (2011). Fractal analysis

of spontaneous fluctuations of the bold signal in rat brain. Neuroimage, 58(4),

1060–1069.

Kannathal, N. and Puthusserypady, S. (2004). Complex dynamics of epileptic EEG.

In Conf Proc IEEE Eng Med Biol Soc, pages 604–607.

171



Ph.D. Thesis - Olga M. Dona Lemus McMaster - Biomedical Engineering

Lazar, N. (2008). The statistical analysis of functional MRI data. Springer Science &

Business Media.

Lord, C., Rutter, M., and Le Couteur, A. (1994). Autism Diagnostic Interview-Revised:

a revised version of a diagnostic interview for caregivers of individuals with possible

pervasive developmental disorders. Journal of autism and developmental disorders,

24(5), 659–685.

Lord, C., Risi, S., Lambrecht, L., Cook, E. H. J., Leventhal, B. L., DiLavore, P. C.,

Pickles, A., and Rutter, M. (2000). The autism diagnostic observation schedule-

generic: a standard measure of social and communication deficits associated with

the spectrum of autism. Journal of autism and developmental disorders, 30(3),

205–223.

Mandelbrot, J. W. V. and B., B. (1967). Fractional Brownian Motions, Fractional

Noises and Applications. SIAM Rev., 10(4), 422–437.

Maxim, V., Şendur, L., Fadili, J., Suckling, J., Gould, R., Howard, R., and Bullmore, E.

(2005). Fractional gaussian noise, functional mri and alzheimer’s disease. Neuroimage,

25(1), 141–158.

Meyers, J. E. and Meyers, K. R. (1995). Rey Complex Figure Test and recognition

trial professional manual. Psychological Assessment Resources.

Nair, D. G. (2005). About being bold. Brain Research Reviews, 50(2), 229–243.

Nan, X. and Jinghua, X. (1988). The fractal dimension of eeg as a physical measure of

conscious human brain activities. Bulletin of Mathematical Biology, 50(5), 559–565.

172



Ph.D. Thesis - Olga M. Dona Lemus McMaster - Biomedical Engineering

Oldfield, R. C. (1971). The assessment and analysis of handedness: the edinburgh

inventory. Neuropsychologia, 9(1), 97–113.

Pauling, L. and Coryell, C. D. (1936). The magnetic properties and structure of

hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proceedings of the

National Academy of Sciences, 22(4), 210–216.

Peters, R. (2006). Ageing and the brain.

Roy, C. S. and Sherrington, C. S. (1890). On the regulation of the blood-supply of

the brain. The Journal of physiology, 11(1-2), 85.

Scahill, R. I., Frost, C., Jenkins, R., Whitwell, J. L., Rossor, M. N., and Fox, N. C.

(2003). A longitudinal study of brain volume changes in normal aging using serial

registered magnetic resonance imaging. Archives of neurology, 60(7), 989–994.

Sharma, V. (2009). Deterministic chaos and fractal complexity in the dynamics of

cardiovascular behavior: perspectives on a new frontier. Open Cardiovasc Med J, 3,

110–123.

Simson, P. E., Criswell, H. E., and Breese, G. R. (1993). Inhibition of NMDA-evoked

electrophysiological activity by ethanol in selected brain regions: evidence for

ethanol-sensitive and ethanol-insensitive NMDA-evoked responses. Brain research,

607(1-2), 9–16.

Smirnov, N. (1948). Table for Estimating the Goodness of Fit of Empirical Distribu-

tions. The Annals of Mathematical Statistics, 19(2), 279–281.

Smits, F. M., Porcaro, C., Cottone, C., Cancelli, A., Rossini, P. M., and Tecchio,

173



Ph.D. Thesis - Olga M. Dona Lemus McMaster - Biomedical Engineering

F. (2016). Electroencephalographic Fractal Dimension in Healthy Ageing and

Alzheimer’s Disease. PloS one, 11(2), e0149587.

Szeliski, R. and Terzopoulos, D. (1989). From splines to fractals. In ACM Siggraph

Computer Graphics, volume 23, pages 51–60. ACM.

Tsubokawa, T., Katayama, Y., Kondo, T., Ueno, Y., Hayashi, N., and Moriyasu, N.

(1980). Changes in local cerebral blood flow and neuronal activity during sensory

stimulation in normal and sympathectomized cats. Brain research, 190(1), 51–64.

Warsi, M. A., Molloy, W., and Noseworthy, M. D. (2012). Correlating brain blood

oxygenation level dependent (BOLD) fractal dimension mapping with magnetic

resonance spectroscopy (MRS) in Alzheimer’s disease. Magma (New York, N.Y.),

25(5), 335–344.

Weber, A. M., Soreni, N., and Noseworthy, M. D. (2014). A preliminary study on the

effects of acute ethanol ingestion on default mode network and temporal fractal

properties of the brain. Magma (New York, N.Y.), 27(4), 291–301.

Wechsler, D. (2014). Wechsler adult intelligence scale–fourth edition (wais–iv).

Wink, A. M., Bernard, F., Salvador, R., Bullmore, E., and Suckling, J. (2006).

Age and cholinergic effects on hemodynamics and functional coherence of human

hippocampus. Neurobiology of aging, 27(10), 1395–1404.

Zarahn, E., Aguirre, G. K., and D’Esposito, M. (1997). Empirical analyses of BOLD

fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis condi-

tions. NeuroImage, 5(3), 179–197.

174


	Abstract
	Acknowledgements
	Notation and abbreviations
	Introduction to Fractal Structures and Fractal Dynamics
	 Fractal behavior of the brain BOLD signal
	The hemodynamic response
	BOLD fMRI
	Fractal behavior in the BOLD signal
	BOLD fMRI acquisition
	Fractal Analysis

	 Hypothesis, Methods and Experimental Design
	Hypothesis
	Methods
	Statistical analysis
	Experimental Design

	 Fractal Analysis of rs-BOLD Signals in Mild Traumatic Brain Injury (mTBI)
	Context of the paper
	Declaration Statement
	Paper

	Fractal Analysis of the rs-BOLD signal in Autism Spectrum Disorder (ASD) patients.
	Context of the paper
	Declaration Statement
	Paper

	Fractal Analysis of the brain rs-BOLD signal in cancer patients experiencing chemotherapy-related cognitive impairment.
	Context of the paper
	Declaration Statement
	Paper

	 Preliminary Study on Chronic Fatigue Syndrome 
	Context of the paper
	Declaration Statement
	Paper

	Conclusions and Future Directions
	General remarks
	Main findings
	Limitations
	Contribution and future directions
	Concluding statement

	Summary of publications, journals, conference proceedings and Code 
	Journal articles
	Conference proceedings
	Matlab code for Hurst, FD and Z-score methods 
	Hurst exponent
	FD
	Z-score



