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Abstract

In this thesis, we consider the problem of capturing finite-representability between

Banach spaces using the tools of continuous model theory. We introduce predicates

and additional sorts to capture finite-representability and show that these can be used

to expand the language of Banach spaces. We then show that the class of infinite-

dimensional Banach spaces expanded with this additional structure forms an elemen-

tary class KG, and conclude that the theory TG of KG is interpretable in T eq, where

T is the theory of infinite-dimensional Banach spaces. Finally, we show that existen-

tial equivalence in a reduct of the language implies finite-representability. Relevant

background on continuous model theory and Banach space theory is provided.
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Chapter 1

Introduction

Continuous model theory, in contrast to classical model theory, is fundamentally in-

terested in structures with an underlying metric. Whereas classical model theory is

rather rigid in the sense that truth values are binary, formulas in continuous model

theory take values in a bounded interval of R, allowing for a notion of approximate sat-

isfiability. Although it lives in a more general setting, all standard tools from classical

model theory, for example the Compactness Theorem or the Lowenheim-Skolem the-

orems, have a continuous counterpart. These, along with a richer language, provide

a setting to capture “metric” ideas, and continuous logic has found many modern

applications, including in Banach space theory (for example [17]) and to operator

algebras (for example [7]).

Within Banach space theory lies the study of the local properties of Banach spaces.

These are the finite-dimensional, linear properties of a Banach space. The study of

these properties dates back to the 1960s (see [13]) and sees many techniques employed

that would be recognizable to model-theorists (see for example [10] or [19]). Consid-

erable work was done in the 1970s and 1980s to apply logic to Banach space theory

in the context of positive bounded logic (see for example [9]), but modern develop-

ments in continuous logic offer the possibility that new aspects of the theory can be

effectively captured.
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Closely related to these local properties is the notion of finite-representability.

A Banach space (X, ‖ · ‖X) being finitely-representable in some other Banach space

(Y, ‖ · ‖Y ) means that an approximation of any finite-dimensional subspace of X can

be found in Y . More concretely, it means that the two Banach spaces have essen-

tially the same local properties. In the late 1960s, Ribe (see [18]) showed that local

properties are essentially metric properties, and so continuous model theory seems

eminently suitable to capture finite-representability.

This thesis aims to apply continuous model theory to the problem of capturing

the notion of finite-representability between Banach spaces. Relevant ideas and con-

cepts from continuous model theory are introduced in Chapter 2, and the concepts of

finite-representability and local properties of Banach spaces are explained in Chapter

3. Finally, in Chapter 4, a language suitable for capturing finite-representability is

introduced and proved to be captured in a reduct of the usual language of Banach

spaces.
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Chapter 2

The Basics of Continuous Model

Theory

We first briefly outline the basics of continuous model theory. For a more detailed

introduction, see [4] or [8], on which this description is based.

2.1 Languages, Formulas, and Theories

Definition 2.1.1. A signature L is a triple (S,R,F), where:

1. S denotes a family of sorts (Si : i ∈ I). To each sort we associate a relation

symbol dS : S×S → [0, KS], KS ∈ (0,∞), and a modulus of uniform continuity

taken to be the identity function.

2. R denotes a family of relation symbols (Rj : j ∈ J ). Each relation symbol has

an associated domain
∏n

i=1 Si, a range consisting of closed and bounded interval

BR ⊂ R, and a modulus of uniform continuity δRj
.

3. F denotes a family of function symbols (Fk : k ∈ K). To each function symbol

we associate a domain
∏n

i=1 Si of sorts in S, a range S ∈ S, and a modulus of

uniform continuity δFk
.

3
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By a modulus of uniform continuity above, we are referring specifically to some

continuous function δ : [0, 1]→ [0, 1].

A structure that interprets a signature in continuous logic is called a metric struc-

ture.

Definition 2.1.2. Let L be a signature as above. A metric structure M is a triple

(SM,RM,FM) interpreting the signature, such that:

1. SM is a collection of bounded, complete metric spaces (XS, dS)S∈S where dS is

taken to be the metric on XS, under which XS is bounded.

2. RM is a collection (RM)R∈R of uniformly continuous functions. Each RM ∈

RM has domain
∏n

i=1XSi
and range BR, where

∏n
i=1 Si and BR are the domain

and range, respectively, given to R by the signature L, and δR is the modulus of

continuity for RM.

3. FM is a collection (FM)F∈F of uniformly continuous functions. Each FM ∈

FM has domain
∏n

i=1 XSi
and range XS, where

∏n
i=1 Si and S are the domain

and range, respectively, given to F by L, and δF is the modulus of continuity

for FM.

So by saying that, for example, δR is a modulus of uniform continuity for R, we are

saying that if d(x, y) < δR(ε), then d(RM(x), RM(y)) < ε. Note that each function and

relation in a metric structure is uniformly continuous. To be precise, we also specify

that in the case where R takes inputs from multiple sorts, d(x, y) = max{di(xi, yi)}

where i ranges over the sorts Si appearing in x and y. The same is true for functions

symbols.

It is an important fact, proven in [4], that if we have two functions f : M → M ′

and g : M ′ →M ′′ between metric spaces, each of which has a modulus of continuity,

then the composition of the moduli of continuity gives a modulus of continuity for the

composition g ◦ f . This becomes essential when we begin defining formulas, since we

4
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want the formulas we produce to also be uniformly continuous and to have a modulus

of continuity.

Example 2.1.3. Let (X, ‖ · ‖X) be a Banach space. We can consider X as a metric

structure in the signature of Banach spaces,

L ={(Bn : n ∈ Z+), dn(x, y), 0, (imn : m ≤ n), (λn : n ∈ N, λ ∈ C),

(+mn : m ≤ n), (−n : n ∈ N)}

We consider X as a metric structure in this signature as follows:

• Bn is interpreted as the ball of radius n centred at the origin,

Bn = {x ∈ X : ‖x‖X ≤ n}

These are the sorts of our structure.

• dn(x, y) is interpreted as ‖x − y‖X on Bn. Note that the norm on each sort

is not explicitly included in the language, but it is of course definable for each

sort, i.e. if x ∈ Bn, then ‖x‖X = dn(x, 0). Due to the way we defined our sorts,

each of these relations is necessarily bounded.

• 0 is defined to be the origin and additive identity in B1.

• imn is the inclusion map between Bm and Bn.

• λn is interpreted as the unary function of scalar multiplication by λ on Bn. The

range of λn is Bk, where k is the least integer such that |λ| · n ≤ k.

• +mn is a binary function interpreted as addition on X ×X,

+mn : Bm ×Bn → Bm+n

• −n is a unary function interpreted as taking the additive inverse on X,

−n : Bn → Bn

5
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A signature L represents the non-logical symbols of a language, with the additional

logical symbols being:

1. An infinite collection of variables for each sort.

2. A symbol u for each continuous function u : Rn → R.

3. For each sorted variable x, the quantifiers supx and infx .

Just as in the discrete case, terms and formulas are built inductively from the

language.

Definition 2.1.4. Let L be a metric language. We first define L-terms:

1. Variables are terms with a modulus of uniform continuity being the identity

function.

2. If F is an n-ary function symbol from L and (ti)1≤i≤n are terms with ranges

matching the domain of F , then F (t1, ..., tn) is an L-term. The modulus of

uniform continuity for it is δF (min δti).

The atomic L-formulas are defined as:

1. If R is an n-ary relation from L and (ti)1≤i≤n are L-terms with range matching

the domain of R, then R(t1, ..., tn) is an atomic formula. A modulus of uniform

continuity for it is δR(min δti).

Finally, L-formulas are defined as:

1. Any atomic L-formula is an L-formula.

2. If u : Rn → R is a continuous function and φ1≤i≤n are L-formulas with moduli

of continuity δφi, then u(φ1, ..., φn) is an L-formula. As ran(φi) is on a compact

set, take the union of each and u is uniformly continuous on this with some

modulus of continuity δu. The modulus of uniform continuity for the L-formula

can then be taken to be δu(min δφi).

6
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3. If φ is an L-formula and x is a sorted variable, then both infx φ and supx φ are

L-formulas. See [4] for a proof that if δ is a modulus of uniform continuity for

φ, then it is also a modulus of uniform continuity for both infx φ and supx φ.

In all of the above cases, we determined the modulus of continuity of an L-term

or L-formula by composition of the continuity moduli of the constituent parts.

Given any L-formula φ(x) and an appropriately sorted tuple a from an L-structure

M, we denote the interpretation of φ(x) at a ∈M to be φM(a), and this interpretation

takes the value inductively found using the construction of φ(x).

Before continuing, we mention that it is often very convenient to assume that all

formulas take values on the interval [0, 1], and in many presentations this is assumed

in the definitions. As all formula and relation symbols in a language L take values on

some closed and bounded interval, this amounts to only a rescaling, and instead of

taking all continuous functions u : Rn → R, we would restrict to continuous functions

u : [0, 1]n → [0, 1] when building formulas. Making this assumption does not change

any of what follows, and at times we too will assume it for convenience.

With these definitions we can recapture the notions of elementary equivalence and

elementary substructures.

Definition 2.1.5. Fix a language L and let M and N be L-structures.

1. If dom(M) ⊆ dom(N ), meaning for each sort S ∈ L, SM ⊆ SN , and if for

every function f ∈ L and relation R ∈ L it is the case that,

fM = fN |M and RM = RN |M

then we call M a substructure of N and denote this by writing M⊆ N .

2. M and N are elementarily equivalent if φM = φN for any L-sentence φ. We

denote this by M≡ N .

3. If M ⊆ N and φM(a) = φN (a) for every L-formula φ(x) and every a ∈

dom(M), then we call M an elementary substructure of N and write M� N .

7
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If we fix a language L, we use Fx̄L to denote the set of all L-formulas in free

variables x̄. Note that F∅L denotes the collection of L-sentences. Using this, we define

FL = ∪x̄Fx̄L, the set of all L-formulas.

Definition 2.1.6. Fix a language L. Given a metric structure M, the theory of M,

denoted Th(M), is the function,

Th(M) : F∅L → R

defined as, Th(M)(φ) = φM. More generally, an L-theory T is a partial function

from F∅L to R, where for some L-structure M, Th(M)|dom(T ) = T . In this case, we

say that M satisfies T , writing M � T . A theory T is complete if dom(T ) = F∅L.

Consider a theory T : F∅L → R. We can naturally extend T to a partial linear

functional on F∅L, and in this sense it is completely determined by its kernel. For an

L-sentence φ, if T (φ) = r, then, since u(x) = x − r is continuous, ψ = φ − r ∈ F∅L

as well and T (ψ) = 0. For convenience, we often use the shorthand φ ∈ T to mean

that T (φ) = 0. Thought of this way, satisfiability in the continuous case is almost

identical to the discrete one, with the exception being that we consider “truth” to be

a value of 0.

Many of the key results from discrete model theory carry over to the continuous

setting, though often essential to this translation is the notion of an ultraproduct of

metric structures. Recall that an ultrafilter U on a set I is a maximal filter on I. We

say that U is a principal ultrafilter if there exists some i0 ∈ I such that,

U = {A ∈ P(I) : i0 ∈ A}

Otherwise we call U non-principal.

Definition 2.1.7. Let U be an ultrafilter on a set I and let (ri : i ∈ I) be an I-indexed

sequence of real numbers. We say the ultralimit of the sequence is L ∈ R, and write

L = lim
i→U

ri

8



M.Sc. Thesis - Sean Conley McMaster University - Mathematics

if for every ε > 0,

{i ∈ I : |L− ri| < ε} ∈ U

It is not too difficult to see that for any bounded sequence of real numbers, an

ultralimit exists and is in fact unique up to a change in choice of our ultrafilter on the

set I.

Definition 2.1.8. Let (Mi, di)i∈I be an indexed collection of bounded metric spaces

with uniform bound B ∈ R and let U be an ultrafilter on I. Consider the product∏
i∈IMi and the pseudo-metric on it given by,

d(x, y) = lim
i→U

di(xi, yi)

We define the ultraproduct of (Mi, di)i∈I to be the quotient of
∏

i∈IMi under the

equivalence relation x ∼ y if d(x, y) = 0.

Intuitively, two elements are in the same equivalence class if they are arbitrarily

close on sets in the ultrafilter (we will often colloquially refer to these sets as being

ultrafilter-large). Importantly, what happens on sets outside of the ultrafilter does

not affect ultralimits and it does not affect the equivalence class to which an element

belongs. In the above definition it was important that we had a uniform bound on

the metric spaces so that we have a well-defined metric on the ultraproduct. Without

this uniform bound, the ultralimit need not exist.

Now consider a setting where we have a family (Mi)i∈I of metric structures, each

interpreting a language L, and an ultrafilter U on I. We want a sensible way to take

an ultraproduct of these structures that will again give us an L-structure.

Denote the ultraproduct by,

M =
∏
U

Mi

Take the sorts of M to be the ultraproduct of the sorts of the Mi,

XS =
∏
U

XSi

9
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This is defined as in the above definition of the ultraproduct of a collection of

uniformly bounded metric spaces. We see now why we had to be so strict about

having a bound associated to the sorts in our language. Without such a uniform

bound, the ultraproduct of the sorts is not necessarily well-defined.

For an n-ary function symbol F , define FM by,

FM
(

(x1,i)i∈I /U , ..., (xn,i)i∈I /U

)
= FMi(x1,i..., xn,i)i∈I /U

and for an n-ary relation symbol R, denote RM by,

RM
(

(x1,i)i∈I /U , ..., (xn,i)i∈I /U

)
= lim

i→U
RMi(x1,i, ..., xn,i)

In the case where everyMi is the same structureM, we denote the ultraproduct

by MU and call it the ultrapower of M.

Proposition 2.1.9. With the above definitions, the ultraproduct M =
∏

UMi is a

metric structure.

Recall what needs to be shown. One must show thatM is complete and interprets

the signature of L appropriately – functions and relations are uniformly continuous

and relations are bounded as prescribed by L. All of this can be found in [4], but

we briefly note that the uniform continuity of the functions and relations is essential

for the ultraproduct to be well-defined. Otherwise, there can exist tuples of elements

equal in the ultrapower with different values under a continuous, but not uniformly

continuous, relation or function.

With these definitions in hand, we can more generally evaluate any L-formula in

our L-structure M,

Theorem 2.1.10 ( Loś Theorem). Let (Mi : i ∈ I) be a family of L-structures and let

U be an ultrafilter on I. If φ(x) is an L-formula and ak = ((aki )i∈I)U are appropriately

sorted elements of M =
∏

UMi, then,

φM(a) = lim
i→U

φMi(ai)

10
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Moreover, with the notion of an ultraproduct in hand, one can prove the Com-

pactness Theorem for continuous model theory (see [4]).

Theorem 2.1.11. Let L be a language and let T be an L-theory. Then T is satisfiable

if and only if every finite subset T0 ⊆ T is satisfiable.

If a theory T has the property that every finite subset of it is satisfiable then

we call the theory finitely satisfiable. The Compactness Theorem tells us that finite

satisfiability implies satisfiability. We can actually further extend the theorem by

defining what it means to be approximately satisfiable.

Definition 2.1.12. Fix a language L and an L-theory T . Given an L-sentence φ ∈ T

and some ε > 0, we say that an L-structure M satisfies the ε-approximation of φ if,

|T (φ)− φM| < ε

We say that T is approximately satisfiable if given any finite subset T0 ⊆ T and

ε > 0, the epsilon approximation of each φ ∈ T0 is simultaneously satisfied by some

L-structure M.

Theorem 2.1.13. An L-theory T is satisfiable if and only if it is approximately

satisfiable.

2.2 Definable Predicates and Types

We first introduce the notion of a definable predicate. What follows will largely be

drawn from [4] and [8]. Recalling that FxL denotes the collection of all L-formulas in

free variables x, we can put a pseudo-metric on FxL by fixing an L-theory T (note this

could even be the empty theory):

‖φ‖T = sup{φM(a) :M � T, a ∈M}

We can of course turn FxL into a metric space by quotienting it with respect to the

equivalence relation φ ∼ ψ if ‖φ− ψ‖T = 0.

11
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Definition 2.2.1. Fix a language L. A definable predicate φ(x) is a Cauchy sequence

(φn(x)) of formulas in the metric space FxL. We interpret it by,

φM(a) = lim
n→∞

φMn (a)

Definable predicates can of course then be viewed as what we gain when we com-

plete FxL relative to the metric ‖ · ‖T induced by a given theory T . In fact, it follows

then that every formula in the completion of FxL, which is often denoted by Mx
L, can

be realized as the uniform limit of L-formulas. Since each formula is uniformly con-

tinuous, definable predicates are thus uniformly continuous as well. In light of this,

we often make no distinction between definable predicates and formulas, just choosing

to work with the former.

Now having the definition of Mx
L, we can introduce types.

Definition 2.2.2. Given a language L, a (complete) type p is a linear functional from

Mx
L to R where, for some tuple a of elements in an L-structure M satisfying T ,

p(φ(x)) = φM(a)

for every φ(x) ∈ Mx
L. We say that a realizes p in this case. A partial type is just a

partial function from Mx
L to R.

A partial type is just the restriction of a complete type to some subset of Mx
L. If

a realizes p, then we can consider p = Th(M, a), where (M, a) is the (L, a)-structure

where the constant symbols a are just interpreted as themselves. So similarly to when

we were considering theories, a type is determined by its kernel. At times, notation

like φ(x) ∈ p is used to denote the fact that p(φ(x)) = 0, and so it can be convenient

at times to consider a type as a set of conditions satisfied by some tuple a in an

L-structure M, p(x) = {φ(x) : φM(a) = 0}.

We denote the collection of all types in free variables x relative to some theory

T by Sx(T ). It is clear that Sx(T ) ⊆ (Mx
L)∗. We consider the subspace topology

on Sx(T ) which is induced on it by the weak*-topology on (Mx
L)∗. Recall that the

12
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weak*-topology on (Mx
L)∗ is the weakest topology such that, identifying Mx

L with its

canonical image in (Mx
L)∗∗, every φ ∈ p is continuous on (Mx

L)∗. Hence the topology

on Sx(T ) is the weakest one where the linear functionals defined by p 7→ p(φ) are

continuous.

Proposition 2.2.3. Sx(T ) is compact.

Proof. By the Banach-Alaoglu theorem [12], it is enough to show that Sx(T ) is closed

and bounded with respect to the norm. It is clear that Sx(T ) is bounded. Let

p ∈ Sx(T ) and let a be an element realizing p. Then,

‖p‖ = sup
‖φ(x)‖=1

|p(φ)| = sup
‖φ(x)‖=1

|φ(a)| ≤ ‖φ‖

Now suppose (pn) is a convergent sequence in Sx(T ). We want to see that p =

lim
n→∞

pn ∈ Sx(T ). It is enough to show that there is a tuple a in some L-structure

M satisfying T , where for every φ(x) ∈ Mx
L, p(φ) = φ(a). This is a straightforward

application of ultraproducts. Let an be a tuple in some L-structure Mn satisfying

T such that an realizes pn. Let U be a non-principal ultrafilter on N. Here we note

the easily-proven fact that the ultralimit of a convergent sequence, with respect to a

non-principal ultrafilter, agrees with the regular limit.

Consider the ultraproduct,

M =
∏
U

Mn

It is easy to see by the  Loś theorem thatM � T . Let a ∈M be (a1, a2, a3, ...)U. Then

if φ(x) ∈Mx
L,

p(φ) = lim
n→∞

pn(φ) = lim
n→U

φMn(an) = φM(a)

We also note that the compactness of Sx(T ) follows more directly as a corollary

of the Compactness Theorem in much the same way as for classical model theory.

If we have an open cover of Sx(T ) without a finite subcover, then we can use the

13
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Compactness Theorem to show there is a tuple a in some model M of T whose type

is not in an open set in our cover.

We can also consider types over parameter sets. Given a language L and an L-

structureM, we can name a set B of elements in our structure as constants and add

them to our language, denoting the expanded language as (L, B). In this case we can

consider types in the space of formulas Mx
(L,B). In this setting, we denote the space

of complete types over the parameter set B by Sx(TB), where TB is the expansion of

the theory T by formulas thatM satisfies, which contain the constant symbols in B.

All of the above results still hold in this slightly more general setting.

The topology we put on Sx(T ) necessarily made every functional of the form

p 7→ p(φ) continuous for every φ ∈ Mx
L. The following result shows that continuous

functionals on Sx(T ) are exactly the functionals induced by formulas in Mx
L. This

is a direct result of the Stone-Weierstrass theorem which says that the functions of

the form p 7→ p(φ) are dense in the set of all continuous functions from Sx(T ) to

a compact set in R. In the statement of the following theorem we make use of the

common tactic to treat every formula as taking values in the interval [0, 1]

Theorem 2.2.4. Let Φ : Sx(T ) → [0, 1] be continuous. Then Φ(p) = p(ψ) for some

definable predicate ψ.

So if M is an L-structure satisfying a theory T , we would interpret ψM(a) as

Φ(p), where p is a complete type realized by a.

We required in the definition of a type that every type p be satisfiable, in the

sense that in some L-structure M there is a tuple a such that p(φ) = φ(a). We are

often concerned with where this tuple a lies, and the notion of saturation comes up

in response to this.

Definition 2.2.5. Let L be a language and M an L-structure that satisfies some

theory T . We say that M is κ-saturated if for every parameter set B ⊆ M, where

|B| < κ, and every p ∈ Sx(TB) there is some a in M realizing p.

14
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A nice fact proven in [4] (Proposition 7.6) is that if we have a countable language

L and any non-principle ultrafilter U on N, then given any family of L-structures

(Mn)n∈N, the ultraproduct, ∏
U

Mn

is ω1-saturated.

2.3 Elementary Classes and Definable Sets

Before discussing continuous model theory’s version of definable sets, we introduce

some basic categorical notions that will be useful.

Definition 2.3.1. Given a language L, a class C of L-structures is called an ele-

mentary class if there exists some L-theory T such that C = Mod(T ), meaning C is

precisely the class of all L-structures that model T .

We can also think of Mod(T ) as a category, the objects of which are the models

of T and the morphisms of which are elementary maps.

It will be important to be able to recognize when a class of structures is an ele-

mentary one. The following theorem from [8] gives us tools to do this.

Theorem 2.3.2. Let C be a class of L-structures. The following are equivalent:

1. C is an elementary class.

2. C is closed under isomorphisms, ultraproducts, and elementary submodels.

3. C is closed under isomorphisms, ultraproducts, and ultraroots.

Note that we say that C is closed under ultraroots if for any ultraproduct U on

any infinite set I, whenever MU ∈ C, then M∈ C too.

One other nice way to think of elementary classes is in terms of axiomatizability.
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Definition 2.3.3. Let C be a class of L-structures. We say that C is axiomatizable if

there is some set of L-sentences Φ such that if M is an L-structure, then M ∈ C if

and only if Φ ⊆ Th(M), so φM = 0 for every φ ∈ Φ.

Example 2.3.4. Let L be the language of Banach spaces that we introduced before.

Then the class K of all Banach spaces is axiomatizable [4]. This is not too difficult to

see, as the axioms for a vector space over R are readily converted into L-sentences.

For example, to say that there is an additive identity, take for each n ∈ Z+,

sup
x∈Bn

dn(x, x+nn i1n(0))

Theorem 2.3.5. Let C be a class of L-structures. Then C is an elementary class if

and only if C is axiomatizable.

This can be a useful theorem in practice, for example telling us that the class of

Banach spaces is an elementary class in the sense that the category of all Banach

spaces and the category of models of the theory of Banach spaces are equivalent

categories. In other situations though, it is not always readily apparent what the

correct axioms are for the class of structures under consideration, and for that we

often have to use the earlier characterization of an elementary class.

One of the main areas where continuous model theory diverges from classical model

theory is in its characterization of definable sets. Unlike in the classical setting, we

cannot just look at the zero set of a formula in a structure (i.e. the collection of

elements in a structure satisfying the formula). We want to be more restrictive, and

we will see the value in being more restrictive when we discuss imaginaries in the

continuous setting.

Every definable set arises as a zero set of a definable predicate, but not every

definable predicate gives us a zero set. In the following definition, Met is the category

of bounded metric spaces, the morphisms of which are isometries between the spaces.

Definition 2.3.6. Suppose C is an elementary class of models of some L-theory T .

16
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Let (Si)1≤i≤m be a finite collection of sorts from L. A functor X : C →Met is called

a uniform assignment of closed sets relative to C if,

1. For each M in C, X(M) is a closed subset of
∏m

i=1 S
M
i .

2. For each f :M→N , X(f) = f |X(M).

Such a functor is called a definable set if for every L-formula φ(x, y),

inf
x∈X(M)

φ(x, y) and sup
x∈X(M)

φ(x, y)

are definable predicates.

So if we take φ(x, y) to be the formula d(x, y), then if SM is definable (meaning

that for a functor X as above X(M) = SM), the predicate infx∈SM d(x, y) gives us

the distance from any element to SM, and since this is a definable predicate, SM

arises as the zero set of some definable predicate. In fact, we have an even stronger

correspondence between being definable and being the zero set of some definable

predicate.

Theorem 2.3.7 ([8]). An assignment of the above type gives a definable set if and

only if d(x, SM) is a definable predicate.

Though this is a purely syntactic definition of definability, in practice it can be

easier to work with a semantic version. What follows is stated and proven in [8].

Theorem 2.3.8 (Beth Definability). Fix a theory T in some language L, and let T ′

be an extension of T in a language L′ that in turn expands L without introducing

new sorts. Moreover, suppose that the forgetful functor between models of T and T ′,

F : Mod(T ′) → Mod(T ), is an equivalence of categories. Then every predicate in L′

is equivalent to a definable predicate in L.

Let us parse this. Recall that in this context, saying that F is an equivalence of

categories means that if we begin with an L-structure M , expand it to an L′-structure

and then apply the forgetful functor to “forget” the extra structure, we arrive at an

17
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L-structure that is isomorphic to the structure we started with. The importance of

this is that the predicates (i.e. relations or functions) that we added to our language

L could already be realized as definable predicates in our original language. We in

some sense are adding nothing new. When we discuss imaginaries, we will attempt

to make this precise.

An important and very useful consequence of Beth Definability is the following.

Theorem 2.3.9. For a language L, consider an elementary class C of L-structures

and an expansion L′ of L by some predicate P with modulus of continuity δP such

that for each L-structure M ∈ C, PM is a uniformly continuous, bounded function

into R. Let C ′ be the collection of all structures in C expanded into L′-structures. If

C ′ is an elementary class of models of some theory T ′, then P is T ′-equivalent to a

definable predicate in L.

A corollary of this is given in [8].

Theorem 2.3.10. Let C be an elementary class and S 7→ SM an assignment of closed

sets. This assignment is a definable set if and only if for every ultrafilter U on an

index set I, and family (Mi)i∈I of structures in C,

SM =
∏
U

SMi

where M denotes the ultraproduct of the family (Mi)i∈I with respect to U.

Colloquially we say that the assignment commutes with ultraproducts if the second

half of the theorem above holds.

We will finish with an example of a set that is not definable. The result is folklore

to an extent, but a reference can be found in [11].

Example 2.3.11. Recall that an ultrametric d(x, y) on a metric space M is a metric

with the stronger property that for every x, y, z ∈M , d(x, y) ≤ max{d(x, z), d(z, y)}.

Consider T , the theory of pointed metric spaces of diameter 1, where a pointed metric
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space is a metric space with a distinguished point c. The language of pointed metric

spaces of diameter 1 is just the language of pure metric spaces with one sort and a

constant, L = {M,d(x, y), c}. We will show that even though Br(c), the ball of radius

r centred at c, is the zero set D of the formula φ(x) = max{d(x, c)− r, 0}, it is not a

definable set.

Pick xn ∈M such that d(c, xn) = r+ 1
n

and let x = (xn)U in MU, where U is some

non-principal ultrafilter. Then clearly d(x, c) = r.

If Br(c) is definable, then we can find representatives yn ∈ Br(c) such that x =

(yn)U too by theorem 2.3.10. The ultrametric inequality tells us that,

d(xn, c) ≤ max{d(xn, yn), d(yn, c)}

But d(yn, c) ≤ r always and d(xn, yn) is small on some U big set, contradicting that

d(xn, c) > r.

2.4 Imaginaries in Continuous Model Theory

We recall that in classical model theory, we introduce imaginaries to our language

as equivalence classes of ∅-definable equivalence relations. We have a similar notion

in continuous logic, and the use of imaginaries will be essential in capturing local

properties of Banach spaces.

There are three sources of imaginary sorts which we will consider in turn. Much

of what follows is drawn from either [2] or [8].

1. Definable sets provide the first source of imaginary sorts. These can be extremely

convenient to include, since, as was discussed earlier, these are exactly the sets

over which we are able to quantify.

2. We also obtain imaginary sorts by taking countable products of sorts in our

language. If (Si : i ∈ N) is a countable collection of sorts, then we consider an
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imaginary sort SP , where SP is interpreted as the countable product,∏
i∈N

Si

We also add in a metric d on SP induced by the metrics on the Si’s and, for each

Si showing up in the product, functions πi : SP → Si projecting SP onto the

sort Si. Again, there is flexibility in choosing the metric on SP , but we refer to

[8] where the metric,

d(x, y) =
∑
i∈N

di(xi, yi)

Bi2i

is given as an example that one could take, where Bi is taken as a bound on Si.

3. The last source we consider is most similar to the construction of imaginary sorts

in the discrete case. Let φ(x, y) be an L-formula, where both x and y are distinct

tuples of variables from some finite product S :=
∏

i Si. Moreover, suppose that

φ(x, y) is interpreted as a pseudometric on S in all L-structures. Then we add

an imaginary sort Sφ interpreted as S/φ, the quotient of S with respect to the

pseudometric φ(x, y). On this sort we define a metric d induced by φ(x, y) and

a function π : S → Sφ sending a tuple in S to its equivalence class.

With all this said, suppose that we have some L-theory T . Then we can iteratively add

all sorts of the type described above to our language, and, to remain consistent with

the discrete case, the resulting language is denoted Leq. We can similarly expand our

theory T with Leq-formulas stating that what we have added to L has the properties

that we intend, such as that the new metric symbols d that we added are in fact

interpreted as a metric on the imaginary sorts. This expanded theory is denoted T eq.

Thus given any L-structure M, where M � T , there is a natural extension of M to

an Leq-structure denoted Meq, where Meq � T eq.

An essential point is that although expanding our language with imaginary sorts

and potentially any new definable predicates relative to T eq gives us a richer language,

it does not increase our expressive ability. The metric structures M and Meq are in
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some sense the same. The following theorem from [8] makes this precise and echoes

the discussion in the section on definable sets.

Definition 2.4.1. Let L and L′ be two languages such that L ⊆ L′. If T is an L-

theory and T ′ is an L′-theory, then we say that T ′ is a strongly conservative extension

of T if the forgetful functor from Mod(T ′) to Mod(T ) is an equivalence of categories.

Theorem 2.4.2. Suppose that T is a theory in a language L. Then T eq is a strongly

conservative extension of T .

It is this theorem that allows us to add imaginary sorts to our language. It

is convenient to think of these sorts as already being in our language, though we

generally do not need to consider a full extension of a language to Leq, instead just

taking a portion of it.

We finish with a statement of Conceptual Completeness from [8].

Theorem 2.4.3 (Conceptual Completeness). Let T be an L-theory and T ′ be a con-

servative extension of T via the forgetful functor F ′. Then there exists a functor

G : Mod(T eq)→ Mod(T ′) such that F ′ ◦G = F .

Recall that T ′ is a conservative extension of T if every model of T can be uniquely

expanded to a model of T ′. As discussed in [3] and [8], suppose we have an elementary

class C of L-structures of some theory T . This theorem tells us that if L ⊆ L′ and

we expand C to a class C ′ of L′-structures, then if C ′ is also an elementary class, the

forgetful functor from C ′ to C is an equivalence of categories and the sorts added to

make L′ are definable in L.

21



Chapter 3

The Local Theory of Banach

Spaces

3.1 Introduction

The notation and concepts introduced here are standard and largely drawn from [6].

Any exceptions are noted.

Recall that a Banach space over R is a vector space X over R equipped with a

norm ‖ · ‖X under which X is complete. Henceforth we will assume that all Banach

spaces are over R unless stated otherwise.

Definition 3.1.1. A (linear) isomorphism between Banach spaces (X, ‖ · ‖X) and

(Y, ‖ · ‖Y ) is a linear bijection T : X −→ Y such that

K1‖x‖X ≤ ‖Tx‖Y ≤ K2‖x‖X

for some constants K1, K2 ∈ R.

This definition is saying that both T and T−1 are bounded (hence continuous).

Thus a linear isomorphism is a linear map T : (X, ‖ · ‖X) −→ (Y, ‖ · ‖Y ) that is a

homeomorphism.
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We will be primarily interested in a specific class of isomorphisms, which we will

call expansive maps.

Definition 3.1.2. Let T : (X, ‖ · ‖X) −→ (Y, ‖ · ‖Y ) be a linear operator and λ ≥ 1.

We say that T is a λ-expansive map if,

‖x‖X ≤ ‖Tx‖Y ≤ λ‖x‖X

for all x ∈ X

Now we consider what it means for a Banach space to be (crudely) finitely repre-

sentable in another.

Definition 3.1.3. A Banach space (X, ‖ · ‖X) is crudely finitely representable in

(Y, ‖ · ‖Y ) if there exists a constant λ ∈ [1,∞) such that for every finite-dimensional

subspace F ⊆ X, there exists a linear operator T : F −→ Y that is λ-expansive.

We say that (X, ‖ · ‖X) is finitely-representable in (Y, ‖ · ‖Y ), if for every ε > 0

(X, ‖ · ‖X) is crudely finitely-representable in (Y, ‖ · ‖Y ) with constant λ < 1 + ε.

Recall that the operator norm on the linear space L(X, Y ) of all bounded linear

operators from X to Y is given by,

‖T‖ = sup{‖Tx‖ : ‖x‖ = 1}

An equivalent, and sometimes useful, formulation of the definition of crude finite-

representability is that (X, ‖ · ‖X) is crudely finitely-representable in (Y, ‖ · ‖Y ) if there

exists some λ > 1 such that for every finite-dimensional subspace F ⊂ X, there

exists a linear operator T : F → Y that is isomorphic onto its image such that

‖T‖ · ‖T−1‖ ≤ λ.

The key here is that a specific λ works for every finite-dimensional subspace of X.

Up to that tolerance, we can find an approximation of any finite-dimensional subspace

of X.
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Example 3.1.4. [6] Any Banach space is finitely representable in c0. Recall c0 denotes

the space of sequences of real numbers that converge to 0 with the max norm.

To see this is true, fix ε > 0 and let X be an arbitrary Banach space and F ⊆ X

be a finite-dimensional subspace. Using the compactness of the unit ball in finite

dimensions, let {xi}ni=1 be a finite ε-net of the unit sphere SF . For 1 ≤ i ≤ n, take

li ∈ SX∗ such that |li(xi)| = 1. Then define T : F → c0 by x 7→ (li(x))ni=1. Note then

that if x ∈ X,

‖Tx‖ = max
i
|li(x)| ≤ max

i
‖li‖‖x‖ = ‖x‖

and so ‖T‖ ≤ 1. Similarly, if x ∈ SF , fix i so that ‖x− xi‖ ≤ ε, then,

‖Tx‖ ≥ |li(x)| = |li(xi) + li(x− xi)| ≥ |li(xi)| − ‖li‖‖x− xi‖ ≥ 1− ε = (1− ε)‖x‖

So for any x ∈ F , (1−ε)‖x‖ ≤ ‖Tx‖, hence ‖T−1‖ ≤ 1
1−ε . Putting the two inequalities

together, we see that ‖T‖‖T−1‖ ≤ 1
1−ε .

We now begin applying ultraproducts to Banach spaces. Suppose (Xi)i∈I is a

family of Banach spaces and U is some ultrafilter on I. In the traditional application

of ultraproducts to Banach spaces, one must restrict oneself to sequences (xi)i∈I of

elements that are uniformly bounded, restricting to the set of infinite tuples (xi)i∈I

where supi∈I ‖xi‖Xi
<∞. This is because, without this restriction, the ultraproduct

does not necessarily give well-defined elements. For example, suppose I = N and we

take a sequence of terms (xi)i∈N with ‖xi‖ = i. Then lim
i→U

xi →∞.

In the setting of ultraproducts of metric structures the problem never arises, as

ultraproducts are defined with regards to the sorts of our language and each sort is by

definition uniformly bounded across all structures. It is not too difficult to see that

the two notions of ultraproduct coincide. For example, one can recall the discussion

in Chapter 2 that the categories of Banach spaces and the categories of models of

the theory of Banach spaces are equivalent to see immediately that their respective

notions of ultraproducts must coincide. Or more concretely, if supi∈N ‖xi‖Xi
< M for
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some M > 0, then pick n ∈ N so that n > M and then xi ∈ BMi
n , where Mi is the

metric structure interpreted as Xi. Similarly, if x ∈ Bn =
∏

UB
Mi
n , then ‖xi‖ ≤ n for

every i in some ultrafilter large set, and hence a representative can be taken so that

‖xi‖ ≤ n for every i ∈ N. Hence, we will not generally concern ourselves with the

issue, freely taking ultraproducts when useful.

Lemma 3.1.5. Let (Xi : i ∈ I) be a collection of n-dimensional subspaces of a

Banach space X, and let U be an ultrafilter on an index set I. Then
∏

UXi is also

n-dimensional.

Proof. Let (Xi : i ∈ I) be a collection of n-dimensional subspaces of a Banach space

X and let U be an ultrafilter on I.

Take bi1, ..., b
i
n to be a basis for Xi, with each element of unit length and ‖bin−bim‖ ≥

ε, where ε > 0 is some small fixed number. Take the element bk ∈
∏

UXi that has as

a representative (bik)i∈U. We will show that b1, .., bn is a basis for
∏

UXi. Note first

that bi 6= bj if i 6= j, since we required the basis elements in each Xi be at a distance

of at least ε from each other. Similarly, bi 6= 0. Let x ∈ B1, the unit ball of
∏

UXi,

and let (xi)U be a representative for x. Then for each i ∈ I, there exists scalars cik

such that xi =
∑
cikb

i
k.

Define ck = lim
i→U

cik. Then x =
∑
ckbk.

This proof tells us, in particular, that if X is finitely-representable in a Banach

space Y , then we can find an isometric copy of every finite-dimensional subspace of

X in the ultrapower of Y with respect to any non-principal ultrafilter.

Lemma 3.1.6. Let X be an n-dimensional Banach space and U be an ultrafilter on

an index set I. Then X ∼= XU.

Proof. The proof of this is actually contained in the proof of lemma 3.1.5. Take the

diagonal embedding of basis elements of X into XU.

Proposition 3.1.7. For some fixed n ∈ Z+, let U be an ultrafilter on a set I, let

X =
∏

UXi and Y =
∏

U Yi, where each Xi and Yi are n-dimensional Banach spaces,
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and let T =
∏

U Ti : X → Y , (xi)U 7→ (Tixi)U, where (Ti)i∈I is uniformly bounded.

Then:

1. ‖T‖ = lim
i→U
‖Ti‖.

2. min
‖x‖=1

‖Tx‖ = lim
i→U

( min
‖xi‖=1

‖Tixi‖)

Proof. (1) We first show that ‖T‖ ≥ lim
i→U
‖Ti‖. Since each Xi is finite-dimensional,

then the unit sphere SXi
of Xi is compact. Hence since each Ti is continuous, there

exists some xi ∈ Xi such that ‖Ti‖ = ‖Tixi‖. Note then that (xi)U ∈ X and ‖x‖ =

lim
i→U
‖xi‖ = 1, so

‖T‖ ≥ ‖Tx‖ = lim
i→U
‖Tixi‖

Now we want to show that ‖T‖ ≤ lim
i→U
‖Ti‖. Towards a contradiction, suppose that

‖T‖ > lim
i→U
‖Ti‖ and let δ = ‖T‖ − lim

i→U
‖Ti‖. Take x = (xi)U such that ‖T‖ = ‖Tx‖ =

‖(Tixi)U‖ = lim
i→U
‖Tixi‖, where lim

i→U
‖xi‖ = 1. Thus for every n ∈ Z+,

An = {i ∈ I : |1− ‖xi‖| < 1/n} ∈ U

and

Bn = {i ∈ I : |‖Tx‖ − ‖Tixi‖| < 1/n} ∈ U

Since U is an ultrafilter, Cn = An ∩ Bn ∈ U as well. For all i ∈ I, let yi = 1
‖xi‖xi,

so ‖yi‖ = 1, and notice that for n > 2, if i ∈ Cn, then 1
‖xi‖ < 2 and ‖Tixi‖ < ‖T‖+ 1

2
.

Hence, when n > 2,

| ‖Tx‖ − ‖Tiyi‖ | ≤| ‖Tx‖ − ‖Tixi‖ | + | ‖Tixi‖ − ‖Tiyi‖ |

≤| ‖Tx‖ − ‖Tixi‖ | +‖Tiyi‖· | 1− ‖xi‖ |

≤ 2‖T‖+ 2

n

So letting n grow large enough that the last inequality is smaller than δ, we see that

for all i ∈ Cn, ‖Tiyi‖ > lim
i→U
‖Ti‖ on an ultrafilter-large set, which is a contradiction.

(2) is proved in much the same way.
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3.2 The Ribe Program

In [18], Ribe gave a condition for knowing when two Banach spaces are finitely-

representable in each other.

Definition 3.2.1. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. Then a bijection

f : X → Y is a uniform homeomorphism if both f and f−1 are uniformly continuous.

Theorem 3.2.2 (Ribe Rigidity Theorem). If two Banach spaces (X, ‖ · ‖X) and

(Y, ‖ · ‖Y ) are uniformly homeomorphic, then X is crudely finitely-representable in

Y and Y is crudely finitely-representable in X.

Ribe’s theorem tells us that certain properties of the geometry of Banach spaces

are essentially metric properties, in the sense that they are preserved under uniform

homeomorphisms, which generally do not preserve the linear structure of the spaces.

Specifically, Ribe tells us that these properties are the so-called local properties, mean-

ing finite-dimensional linear properties. The Ribe program is concerned with using

this correspondence to study general metric spaces. These local properties should be

able to be viewed as metric properties.

There are many proofs of Ribe’s theorem, but the one presented in [10] is in the

spirit of the rest of this thesis. We will sketch it here.

Proof. Suppose that X and Y are uniformly homeomorphic Banach spaces. We will

show there is some λ ≥ 1 such that if E ⊆ X is a finite-dimensional subspace of X,

there is some F ∈ Y and an isomorphism T : E → F such that ‖T‖‖T−1‖ ≤ λ.

Let f : X → Y be the uniform homeomorphism between the two spaces and let U

be a non-principal ultrafilter on I = Z+. Define a family of maps fn(x) = 1
n
f(nx) on

X. One can check this is an equicontinuous family of maps. We now use the following

clever lemma,

Lemma 3.2.3. If f : X → Y is a uniform homeomorphism between Banach spaces

X and Y , then for every δ > 0 there exists some K > 0 such that if ‖x−y‖ ≥ δ, then

‖f(x)− f(y)‖ ≤ K‖x− y‖.
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Often this is just expressed by saying that f : X → Y is Lipschitz at large

distances. We use this to get a constant K for δ = 1 where ‖f(x)−f(y)‖ ≤ K‖x−y‖

if ‖x− y‖ ≥ 1 and hence ‖fn(x)− fn(y)‖ ≤ K‖x− y‖ if ‖x− y‖ ≥ 1
n
. Hence letting

F : XU → Y U be the map (xn)U 7→ (fn(x))U we get a Lipschitz map between the

ultrapowers with constant K.

Consider E ⊆ X as a subspace of XU and so F is a Lipschitz embedding of E into

Y U. Considering Y U inside of (Y U)∗∗, [10] shows there is a subspace G ⊆ (Y U)∗∗ and

an isomorphism T : E → G such that ‖T‖‖T−1‖ ≤ K + ε for any ε > 0. We now call

upon the Principle of Local Reflexivity,

Theorem 3.2.4. Let X ⊂ X∗∗ be a Banach space and U ⊆ X∗∗ be a finite-dimensional

subspace. Then there exists a finite-dimensional V ⊆ X and isomorphism T : U → V

such that T (x) = x if x ∈ U and ‖T‖‖T−1‖ ≤ 1 + ε.

This is saying for any Banach space X, X∗∗ is finitely-represented in X, and we

can almost view it as an application of the Downward Lowenheim-Skolem theorem

in the right logic, moving from X∗∗ to X, the latter of which is w∗-dense in the

former. Thus there exists some G′ ⊆ Y U and an isomorphism T : E → G′ with

‖T‖‖T−1‖ ≤ (K + ε)(1 + ε). It is not too difficult to see that there must be a

finite-dimensional subspace F ⊆ Y and an isomorphism H from G′ to F such that

‖H‖‖H−1‖ ≤ 1 + ε. Putting all this together, we see X is finitely-representable in Y

with constant λ = K + ε for any ε.

As was briefly mentioned above, uniformly homeomorphic spaces are not in gen-

eral linearly isomorphic to each other. Moreover, it appears that Ribe’s Theorem is

the strongest general statement we can make to relate the notions of uniform homeo-

morphisms, finite-representability, and linearly isomorphisms among Banach spaces,

as the converse is not true either.

Example 3.2.5. Let Γ be a set of the cardinality of the continuum and let c0(Γ)
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be the collection of all functions f : Γ → R where for every ε > 0, |f(γ)| > ε for

only finitely many γ ∈ Γ. Take ‖f‖ = supγ∈Γ |f(γ)| as the norm. Note that c0(N) is

just the familiar sequence space we usually denote c0. In [1] it is shown that c0(Γ) is

uniformly homeomorphic to a closed subspace of l∞, but is not linearly isomorphic.

Example 3.2.6. In [5], it is shown that, for p ∈ (1, 2), although Lp(R) and lp are

finitely-representable in each other, they are not uniformly homeomorphic.

Example 3.2.7. Let us consider an example of viewing a geometric property of a

Banach space as a metric property. What follows is largely drawn from [15].

We say that a Banach space X has Rademacher type p, where p ≥ 1, if for some

T > 0 it is the case that for any collection {xi}ni=1 of n elements of X,

1

2n

∑
εi∈{−1,1}

(
‖

n∑
i=1

εixi‖

)
≤ T

(
n∑
i=1

‖xi‖p
) 1

p

We can note immediately that this is a strengthening of the triangle property and

that every Banach space has Rademacher type 1. In fact if X has Rademacher type

p, then X has Rademacher type q for every 1 ≤ q ≤ p. The reader can see [14] for a

discussion on the usefulness of Rademacher type and for further references regarding

it.

If we consider the inequality, it is clear that Rademacher type is finite-dimensional,

and hence is a local property. As such, Ribe’s Theorem is essentially telling us that

it is a metric property in disguise and we should be able to find a formulation of it

just using the metric properties of a Banach space, without reference to its linear

structure.

So let (M,d) be a metric space. We say that M has Enflo type p if for some T > 0,

it is the case that for all n ∈ N and f : {−1, 1}n →M ,

1

2n

∑
ε∈{−1,1}n

d(f(ε)− f(−ε)) ≤ T

2n

∑
ε∈{−1,1}n

(
n∑
i=1

d(f(ε(−i))− f(ε))p

) 1
p

where ε(−i) = (ε1, ..., εi−1,−εi, εi+1, ..., εn).
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It turns out from [16] that if a Banach space X has Rademacher type p, then it

also has Enflo type p − ε for every ε > 0. Note how the above definition of Enflo

type is purely dependent on the metric. Notice too that the type of a metric space is

expressible in continuous logic.
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Chapter 4

The Model Theory of

Finite-Representability

Our starting language is the language of Banach spaces we introduced earlier in Ex-

ample 2.1.3. We are eventually going to add in very particular relations and sorts to

our language that will help us capture the local structure of a Banach space. Before

we do this though, we need to show that they satisfy the requirements of a metric

language and are bounded and uniformly continuous.

For a fixed infinite-dimensional Banach space B and each n ∈ Z+, consider the

set Gn(B), consisting of all closed unit balls of n-dimensional subspaces of B. The

inspiration here, and what Gn represents, is the n-dimensional Grassmannian, which

is the space of all n-dimensional subspaces. We put the Hausdorff metric on the set,

where if X, Y ∈ Gn(B),

dGn(X, Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}

Lemma 4.0.8. Gn(B) is bounded and complete with respect to the metric dGn(X, Y ).

Proof. Fix n and a Banach space B and consider Gn(B) and the metric dGn(X, Y )

on Gn(B). We first note easily that Gn(B) is bounded. If X, Y ∈ Gn(B), then by

definition X, Y ⊂ B1, the ball of radius 1. Hence for any x ∈ X, since 0 ∈ Y ,
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d(x, Y ) ≤ 1 and similarly for any y ∈ Y , d(X, y) ≤ 1, and so dGn(X, Y ) ≤ 1 as well.

We now show that Gn(B) is complete. Consider a sequence (Xn) of elements in

Gn(B) that is Cauchy with respect to the metric on it. Then the limit X of this

sequence can be realized as the ultraproduct of the sequence with respect to any non-

principal ultrafilter on N. By lemma 3.1.5, such an ultraproduct is also n-dimensional.

Moreover, if z ∈ X, then by definition of the metric, there is a sequence (zn), with

zn ∈ Xn, in the unit ball of B converging to it. Hence z = (zn)U ∈ B, so X is an

n-dimensional subspace of B.

We also consider a function Pn(x, y) on B1×Gn(B), recalling that B1 is interpreted

as the unit ball, where Pn(x, Y ) is interpreted as the distance of x ∈ B1 to Y ∈ Gn(B),

Pn(x, Y ) = inf
y∈Y

d(x, y)

Lemma 4.0.9. For any n ∈ Z+, Pn(x, y) is a bounded and uniformly continuous

function.

Proof. It is clear that Pn(x, Y ) ≤ 1 for any x ∈ B1 and Y ∈ Gn(B) as Y is a subspace

and 0 ∈ Y .

It is not much more difficult to see that Pn(x, Y ) is uniformly continuous. Fix ε > 0

and suppose that d((x1, Y1), (x2, Y2)) < ε/2, where x1, x2 ∈ B1 and Y1, Y2 ∈ Gn(B).

Recall that d((x1, Y1), (x2, Y2)) < ε/2 means that max{d(x1, x2), d(Y1, Y2)} < ε/2.

Since Y1 and Y2 are both compact, there exist z1 ∈ Y1 and z2 ∈ Y2 where d(x1, Y1) =

d(x1, z1) and d(x2, Y2) = d(x2, z2). Noting that,

d(x1, z1) ≤ d(x2, z2) + d(x1, x2) + d(z1, z2)

and

d(x2, z2) ≤ d(x1, z1) + d(x1, x2) + d(z1, z2)

we see that

|Pn(x1, Y1)− Pn(x2, Y2)| = |d(x1, z1)− d(x2, z2)| ≤ |d(x1, x2) + d(z1, z2)| < ε
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Hence δ(ε) = ε/2 can be taken to be the modulus of uniform continuity for each

Pn(x, Y ).

Finally, we also define relations on Gn(B). For an arbitrary n-dimensional Banach

space A with λ ∈ [1,∞), let Cλ(A) denote the family of Banach spaces X for which

there exists a λ-expansive map to A,

Cλ(A) = {X : ∃T : X → A, T λ-expansive}

For each λ ∈ [1,∞), and for every finite-dimensional Banach space A,

Rλ
A(Z) = inf{‖T‖ : T : Z → X, T expansive, X ∈ Cλ(A)}

As before, we want to show that these additions are bounded and uniformly con-

tinuous, and in fact we will show that they are “uniformly” uniformly continuous

and bounded, in the sense that it does not matter what Banach space we evaluate

Rλ
A(x) in. To do so we will need to show they commute with ultraproducts. Note this

proposition will be very important later for us when we show that the class of Banach

spaces expanded by this language forms an elementary class.

Proposition 4.0.10. Let A be an n-dimensional Banach space, λ ∈ [1,∞), U be an

ultrafilter on an index set I, and (Bi)i∈I be an I-indexed sequence from Gn(B) for

some Banach space B. Then,

lim
i→U

Rλ
A(Bi) = Rλ

A(
∏
U

Bi)

Proof. It’s clear that lim
i→U

RA
λ (Bi) ≥ RA

λ (
∏

UBi). If not, let

δ = RA
λ (
∏
U

Bi)− lim
i→U

RA
λ (Bi) > 0

and so there exist expansive maps Ti : Bi → Xi ∈ Cλ(A), where

| ‖Ti‖ −RA
λ (
∏
U

Bi) |> δ/2
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for all i in an ultrafilter-large set I0 ∈ U. Then T =
∏

U Ti :
∏

UBi →
∏

UXi ∈ Cλ(A).

But ‖T‖ < RA
λ (
∏

UBi) then, which is a contradiction.

We want to also see that RA
λ (
∏

UBi) ≥ lim
i→U

RA
λ (Bi).

Suppose instead that lim
i→U

RA
λ (Bi) > RA

λ (
∏

UBi). This time let

δ =
1

2
(lim
i→U

RA
λ (Bi)−RA

λ (
∏
U

Bi))

By how the relations were defined, there exists T :
∏

UBi → X, where X ∈ Cλ(A).

Our goal is to eventually arrive at a contradiction by showing that if a map such as

T exists, then we can find expansive maps from Bi to something in Cλ(A) with norm

less than RA
λ (
∏

UBi) + δ on an ultrafilter large set, which is a contradiction.

Let {b1, ..., bn} be a basis for
∏

UBi, so, defining yi = Tbi, {y1, ..., yn} is a basis

for X. Take representations bj = (bj(i))i∈I for each of the basis elements as well.

Arguing as in Lemma 3.1.5, {b1(i), ..., bn(i)} and {y1, ..., yn} are bases for Bi and X

respectively on an ultrafilter-large set.

Define maps Ti : Bi → X by bj(i) 7→ yj, and note that by design T =
∏

U Ti.

Moreover, since T is a bijection, Ti is a bijection on an ultrafilter large set too.

However, Ti may not be expansive on an ultrafilter large set. We do know that by

Proposition 3.1.7 though, for all integers n > 1,

An = {i ∈ I : |‖T‖ − ‖Ti‖| < 1/n} ∈ U

and

Bn = {i ∈ I : | min
‖x‖=1

‖Tx‖ − min
‖xi‖=1

‖Tixi‖| < 1/n} ∈ U

Note Cn = An ∩Bn ∈ U. If i ∈ Cn,

(1− 1

n
)‖xi‖ ≤ ‖Tixi‖ ≤ (‖T‖+ δ +

1

n
)‖xi‖

So for all Ti where i ∈ C2, if Ti is expansive, then let T ′i = Ti, else if Ti is not

expansive, define T ′i = ( n
n−1

)Ti, where n is the greatest integer such that i ∈ Cn.
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Thus, T ′i is an expansive map from Bi on an ultrafilter large set. Also,

| ‖T‖ − ‖T ′i‖ ≤| ‖T‖ − ‖Ti‖ | + | ‖Ti‖ − ‖T ′i‖ |

≤| ‖T‖ − ‖Ti‖ | +‖Ti‖ | 1−
n

n− 1
|

<
1

n
+
‖Ti‖
n− 1

<
1

n
+
‖T‖+ 1/n

n− 1

So for every n large enough so that the last inequality is less than δ, we get

expansive maps on an ultrafilter large set of norm strictly less than lim
i→U

RA
λ (Bi), a

contradiction.

Proposition 4.0.11. Let A be an n-dimensional Banach space and λ ∈ [1,∞).

1. Rλ
A(x) is bounded independent of the Banach space under consideration.

2. Rλ
A(x) is uniformly continuous independent of the Banach space under consider-

ation.

Proof. For (1), suppose not and we work towards a contradiction. Assume there exists

some λ ∈ [1,∞) and an n-dimensional space A such that Rλ
A(x) is not bounded.

Hence for every k ∈ N, there exists some n-dimensional subspace Zk of some Banach

space Xk such that Rλ
A(Zk) > k. From the definition of Rλ

A(x) and Cλ(A), for every

X ∈ Cλ(A), if we have any expansive map T : Zk → X, then ‖T‖ > k.

Let Tk : Zk → A be any expansive map. Certainly A ∈ Cλ(A), so ‖Tk‖ > k. Now

take U to be any non-principal ultrafilter on N so that, denoting Z =
∏

U Zk ⊆
∏

UXk,

there is some expansive map,

T =
∏
U

Tk : Z → A

between the finite-dimensional subspaces. Thus ‖T‖ < ∞, but we showed earlier in

Proposition 3.1.7 that ‖T‖ = lim
k→U
‖Tk‖, which contradicts the fact that ‖Tk‖ > k.

For (2), suppose that Rλ
A(x) is not uniformly continuous. Fix ε > 0. Then we can

find a family of Banach spaces (Xk)k∈N with n-dimensional subspaces Bk, Ck ⊆ Xk
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such that d(Bk, Ck) < 1/k but |Rλ
A(Bk) − Rλ

A(Ck)| > ε. Then take U to be a non-

principal ultrafilter on N, and d(
∏

UBk,
∏

UCk) = 0, but |Rλ
A(
∏

UBk)−Rλ
A(
∏

UCk)| >

ε, contradicting the previous proposition.

Putting all of this together, consider the expanded language,

LG = L ∪ {Gn}n∈Z+ ∪ {dGn(X, Y )}n∈Z+ ∪ {Pn(x, y)}n∈Z+ ∪ {RA
λ (x)}λ∈[1,∞),A f.d.

Our goal is to show that these sorts and relations are definable in Leq already.

Hence we can safely include them without changing the expressive ability of our

language. To do so, we will use Conceptual Completeness and Beth definability.

Let K denote the class of infinite-dimensional Banach spaces. K is an elementary

class. We noted earlier in section 1 that the class of Banach spaces is an elementary

class, and it is not too difficult to see that K is as well. It is certainly closed under

isomorphisms and ultraproducts. Also, we showed that the ultrapower of a finite-

dimensional Banach space is finite-dimensional, so if BU ∈ K, then B ∈ K. Let TB

denote the theory of infinite-dimensional Banach spaces.

We eventually want to show that the class of LG-structures we get by expanding

the L-structures in K is an elementary class, but we need one more fact first.

Proposition 4.0.12. Let U be an ultrafilter on some index set I. If (Bi)i∈I is a family

of Banach spaces, then,

Gn(
∏
U

Bi) =
∏
U

Gn(Bi)

Proof. We first just note that it is almost immediate that
∏

UGn(Bi) ⊆ Gn(
∏

UBi).

An ultraproduct of n-dimensional spaces is again n-dimensional, so if W ∈
∏

UGn(Bi),

then W =
∏

UWi for Wi ∈ Gn(Wi). Hence W is n-dimensional. If x ∈ W , then

x = (xi)U, where xi ∈ Wi. Hence x ∈
∏

UBi and so W ⊆
∏

UBi.

So now suppose that V ∈ Gn(
∏

UBi), so V ⊆
∏

UBi is n-dimensional. We will

show that there are Wi ∈ Gn(Bi) such that V =
∏

UWi.

Let {e1, · · · , en} be a basis for V , taking a representative ek = (ek(i)) for each.

For fixed i, let Wi = span{e1(i), · · · , en(i)} ⊆ Bi. It is clear that V =
∏

UWi, but
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there is a concern that although the ultraproduct is n-dimensional, not all of the Wi’s

are n-dimensional.

So let I0 = {i ∈ I : Wi /∈ Gn(Bi)}. Note that I0 /∈ U. Suppose it were. Then for

each Wi, let di = dimWi and li = n− di. For every 1 ≤ j ≤ li, pick fj(i) ∈ Bi linearly

independent of each other, outside the span of Wi, and where ‖fj(i)‖Bi
= 1. Define,

W+
i = span{e1(i), · · · , en(i), f1(i), · · · , fli(i)}

Note that W+
i = Wi if i /∈ I0. By construction, W+

i is n-dimensional for every

i, and hence so too is W+ =
∏

UW
+
i . Since ek ∈ W+ for every k, V ⊆ W+, and

after comparing dimensions, it is easily seen that in fact V = W+. But this leads to

a contradiction. Set yi = 0 if i /∈ I0 and yi = f1(i) otherwise. Then (yi)U /∈ V , but

‖y‖ 6= 0, a contradiction. So we see that I0 /∈ U, and hence for every i ∈ I0, we can

replace Wi with an arbitrary n-dimensional space from Gn(Bi) without changing the

ultraproduct.

Theorem 4.0.13. Given an L-structure X ∈ K, let X̂ denote the expansion to an

LG-structure. Let KG denote the class of LG-structures,

KG = {M :M∼= X̂,X ∈ K}

Then KG is an elementary class.

Proof. We need to show that KG is closed under isomorphisms, ultraproducts, and

ultraroots.

It is clear that ifM∈ KG and N ∼=M, then N ∼= X̂ for some X ∈ K, so N ∈ KG.

Suppose that (Mi) is a family of structures in KG. We want to show that M =∏
UMi ∈ KG for any ultrafilter U on I. By Propositions 4.0.8 and 4.0.10, ifMi

∼= X̂i,

then M∼=
∏̂

UXi, the expansion of
∏

UXi, which is in K, to an LG-structure
∏̂

UXi.

Finally, suppose that M is an LG-structure and MU ∈ KG, so for some X ∈ K,

MU ∼= X̂. So MU is isomorphic to a Banach space expanded as we described above,

hence the sorts Gn(MU) capture the unit balls of the n-dimensional subspaces ofMU
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for each n. Since MU � TB and M is an elementary substructure of MU, M also

has a Banach space structure. Suppose A ∈ Gn(M) for some n, so A ∈ Gn(MU) too.

In MU, A is interpreted as an n-dimensional subspace of MU, but to see our class is

elementary, we need to show A is contained inside of the Banach space structure on

M as a substructure of MU.

It is clear that there exist y ∈ M such that PMn (y, A) = 0. We know that

MU � infx∈B1 Pn(x,A), and henceM does as well. This means for every ε > 0, there

exists some yn ∈M such that d(y, A) < ε. We take a Cauchy sequence of these to see

there exists some y ∈M where d(y, A) = 0. Since A is compact inMU and y ∈MU,

we see y ∈ A. Moreover, we can see that the zero-set of Pn(x,A) is compact in M

as well, because we can express the fact that it has an ε-net covering it. Take the

LG-sentence φε,k,

inf
y1,...,yk∈B1

sup
x∈B1

(
Pn(x,A) +

k∑
i=1

Pn(yi, A) +
k∏
i=1

max{d(x, yi)− ε, 0}

)

This formula is saying that there are k-points y1, ..., yk ∈ B1, recalling B1 is the unit

ball, all of which belong to A, such that for any x ∈ A, one of the yi are within ε of

x. Note that for ε > 0, there is a k such that MU � φε,k and hence M � φε,k too.

It remains to show that A ⊆M inside of MU. Suppose not, so there exists some

z ∈ MU ∩ A such that z /∈ M. Let ε > 0 be smaller than the distance from z to any

point in M. Note that we can express the fact that there are k points forming an

ε
2
-net of the zero set of Pn(x,A) in M. We can then by assumption write a sentence

saying that MU has a point not covered by this net, but this gives a contradiction

since M is an elementary substructure and so should satisfy this sentence too.

Denote the theory of the LG-structures in KG by TG. So in fact the sorts Gn(B)

are definable in Leq. We actually have already shown that the relations are in Leq as

well. To show that Beth definability applies, it is enough to show that the relations

commute with ultraproducts [8].
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We showed in Propositions 4.0.8 and 4.0.10 that this is the case, and hence we get

the following.

Theorem 4.0.14. Let L be the language of Banach spaces and TB be the theory of

infinite dimensional Banach spaces. Then with LG and TG as defined above, LG is

definable in Leq and TG is interpretable in T eq.

Hence we see that both the sorts Gn and the relations RA
λ are definable in Leq.

We can thus consider the language,

Lλ = {Gn : n ∈ Z+} ∪ {RA
λ (x) : A a finite-dimensional Banach space}

as a reduct of L for any specific λ ∈ [1,∞).

We want to show that this language is effective in capturing the notion of finite-

representability.

Definition 4.0.15. Let L be any language andM and N be two L-structures. We say

that M and N are existentially equivalent, denoted M≡∃ N if for any L-sentence ψ

of the form infx∈S φ(x), where φ is a quantifier-free formula with a single free-variable

x ∈ S, M |= ψ if and only if N |= ψ.

Theorem 4.0.16. For fixed λ ∈ [1,∞), consider Lλ, a reduct of the language of

Banach spaces L, and let X and Y be two Banach spaces such that with respect to Lλ,

X ≡∃ Y . Then X and Y are crudely finitely-representable in each other with constant

λ+ ε for every ε > 0.

Proof. Let F ⊆ X be n-dimensional and fix ε > 0. We want to show that there exists

some (λ+ ε)-expansive map T : F → Y .

Note that X |= infx∈Gn(X) R
F
λ (x) = 1, since F ∈ Cλ(F ) via the identity map, which

has norm 1. Thus since X and Y are existentially equivalent, Y |= infx∈Gn(Y ) R
F
λ (x) =

1 as well. Hence for every ε > 0, there exists an expansive map H : Z → A, where

Z ⊆ Y is n-dimensional and A ∈ Cλ(F ), such that ‖H‖ < 1 + ε
λ
.
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By definition of Cλ(F ), there exists a λ-expansive map J : A → F , hence

‖J‖‖J−1‖ ≤ λ. Thus JH : Z → F is expansive since both J and H are, and

‖JH‖ ≤ λ+ ε,

‖y‖ ≤ ‖JHy‖ ≤ (λ+ ε)‖y‖

Take T = (JH)−1 and note ‖T‖‖T−1‖ ≤ λ + ε. The case showing X is finitely-

representable in Y is the same.
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