OPTIMUM COMPUTER DESIGN
OF
EXTERNAL SPUR GEARS

OPTIMUM COMPUTER DESIGN

OF
EXTERNAL SPUR GEARS

by
JOHN DAVID STRATTON, B. ENG.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree
Master of Engineering

McMaster University

TITLE: Optimum Computer Design of External Spur Gears AUTHOR: John David Stratton, B. Eng. (McMaster University) SUPERVISOR: Professor J. N. Siddall

NUMBER OF PAGES: vi, 162, A 159
SCOPE AND CONTENT:
Using established spur gear design practice, à user-oriented computer-aided design package is created by which a user requires minimal knowledge of, or experience in either FORTRAN, optimization or gear design, although this practice is risky since the designer's judgement should be employed to the same extent as in a manual design. The package is essentially material independent with options to specify the design variables as constant, standard or variable. The great flexibility incorporated in the routine enables the designer a full range of design features from control to power gearing. The structure of the package enables implementation of new theory or new optimization criteria with relative ease.

ACKNOWLEDGEMENTS

The author wishes to express his sincere thanks to the following people:

Professor J. N. Siddall for his guidance and supervision, Mr. G. B. Collin of Spar Aerospace Products Limited, Toronto,

Mr. F. G. East of Hamilton Gear and Machine Company, Toronto,
Mr. J. Miura of Canadian Acme Screw and Gear, Limited, Toronto, for their technical assistance and plant tours,

Messrs. Yosri Diab, Moosa Mahomed and Richie Peppin and Ms. Lora Minaker for their able assistance and encouragement,

The McMaster Computer Centre personnel for their help,
Ms. Marg Hruboska and Ms. Sheila Wright for their excellent typing of the manuscript,

The financial support of this work by the National Research Council of Canada is gratefully acknowledged.

TABLE OF CONTENTS

PAGE
CHAPTER I INTRODUCTION 1
CHAPTER II SPUR GEAR DESIGN 3
2.1 Introduction 3
2.2 Terminology and Nomenclature 3
2.3 Conjugate Action 11
2.4 Involute and Fillet Properties 14
2.4A Involute Profile 14
2.4B Fillet Profile 20
2.5 Fundamentals 35
2.6 Loading 39
2.7 Tooth Stresses 41
2.7A Bending Stress 42
2.7A.1 Tooth Loading 47
2.7A. 2 Tooth Deflection and Load 52 Sharing
2.7B Wear Stress 57
2.7C Allowable Power 61
2.8 Modification Factors 63
2.8A Geometric Factors Including Stress 65 Concentration
2.8B Elastic Coefficient 73
2.8C Dynamic (Velocity) Factor 74
2.8D Load-Distribution Factor 78
2.8E Overload Factor 81
2.8F Size Factor 83
2.8G Surface Condition Factor 84
2.8H Hardness Ratio Factor 84
2.8I Life Factor 86
2.8J Reliability Factor 89
2.8K Temperature Factor 91
2.8L Overall Derating Factors 92
2.9 Undercutting and Interference 93
2.10 Contact Ratio 94
2.11 Efficiency 99
2.12 Tolerances 102
2.13 Backlash Analysis 118
2.14 Gear Blank Dimensions 126
2.15 Miscellaneous Analysis Not Programmed 131
2.15A Cost 131
2.15B Scoring, Lubrication, Surface Finish 133 Temperature, Effects and Heat Loss
2.15C Noise 136
2.16D Tooth Modifications 138
CHAPTER III OPTIMIZATION 139
3.1 Optimization Criteria 139
3.2 Optimization Techniques 143
CHAPTER IV USER ORIENTATION OF PACKAGE 146
4.1 Concept of User Orientation 146
4.2 Package Design 148
4.3 Package Modifications 153
CHAPTER V DISCUSSION AND CONCLUSION 155
REFERENCES 159
APPENDIX A Program Listings A 1
APPENDIX B Step by Step Search Plus False Position A. 81Method of Root Determination
APPENDIX C. 1 Parabola as Constant Stress Beam A 83
APPENDIX C. 2 Method of Estimating Size of Parabola A 84 Representing Constant Stress Beam Inside Tooth Profile
APPENDIX D Extracts from OPTISEP Manual A 87
APPENDIX E Auxiliary Routines A 111
APPENDIX F Index of Subroutines A 114
APPENDIX G Spur Gear Design Package User's Manual A 118

CHAPTER 1

INTRODUCTION

As technology advances, the designer becomes burdened with more complex analysis requiring a higher degree of accuracy. Each element in a machine design demands such special treatment that it is almost beyond the capabilities of an average designer to maintain an adequate background necessary to successfully complete a competent, optimum design. In an effort to increase design efficiency and accuracy, computer-aided design has come into widespread use.

Gear design is no exception in regard to the complexity of the design effort. A delicate balance between art and science, gear design has become increasingly suited to computer analysis. Many of the larger gear manufacturing firms have developed computer-aided designs to ensure their competitive position in the open market. Empirical techniques developed from their design experience have been incorporated in their programs to yield a final design. However, these programs are generally not distributed in the gearing industry, for obvious reasons. Thus, a computer program package is required which will provide the "part-time" gear designer adequate information for optimum machine design as well as yielding the small gear manufacturing concern a "base" program in which further sophistications could be implemented easily.

The aim of this thesis is to develop a FORTRAN computer program package to optimize external spur gear design with the least possible restrictions to the designer. The program will be capable of standard or non-standard design practice without any loss of flexibility with regard to program usage or modification. The input is such that the designer can bring his judgement to bear to the same extent as he would in a manual design.

CHAPTER 2

SPUR GEAR DESIGN

2.1 INTRODUCTION

The subsequent sections of this chapter present the generally accepted external spur gear design procedure which has become prevalent in North America. Drawing theory from various sources, a design criterion is developed to access the feasibility of a design for implementation in a formal optimization technique to achieve the best possible design subject to the designer's specifications. In areas of the design where sufficient data is lacking, intuitive approximations are incorporated with existing formulations to give greater flexibility to the procedure.

2.2 TERMINOLOGY AND NOMENCLATURE

Although gear nomenclature is relatively standardized there is still a wide usage of terms and definitions. AGMA standards [19, 31] have been summarized to include variations utilized in this thesis employed to aid the reading of both the presented theory and subsequent computer programs. The following presentation will include definitions followed by a list of symbols. In the theoretical and computer analysis, the pinion is represented by subscripts p or 1 and the gear by subscript g or 2, unless otherwise specified. All definitions have been adapted to refer specifically to external spur gears.

Addendum is the height or radial distance tooth projects beyond the pitch line or pitch circle.

Addendum Coefficient for the purposes of this discussion is the product of the addendum size and the diametral pitch.

Addendum Circle coincides with the tops of the teeth in a cross section.
Arc of Action is the arc of the pitch circle through which a tooth profile moves from the beginning to the end of contact with a mating profile.

Arc of Approach is the arc of the pitch circle through which a tooth profile moves from its beginning of contact until the point of contact arrives at the pitch point.

Arc of Recess is the arc of the pitch circle through which a tooth profile moves from contact at the pitch point until contact ends.

Note: In the computer program, the length of approach and the length of recess are employed instead of the arc. The definitions remain similar except that the lengths are measured along the line of contact.

Backlash is the amount by which the width of a tooth space exceeds the thickness of the engaging tooth on the operating pitch circles.

Base Circle is the circle from which involute tooth profiles are derived.

Base Pitch in an involute gear is the pitch on the base circle or along the line of action. Corresponding sides of involute gear teeth are parallel curves, and the base pitch is the constant and fundamental distance between them along a common normal in a plane of rotation.

Back Rack is a gear with teeth spaced along a straight line, and suitable for straight line motion, adopted as the basis of a system of interchangeable gears.

Centre Distance is the distance between the parallel axes of a spur gear; the distance between the centres of the pitch circles.

Chordal Tooth Thickness is the length of the chord subtending a circular thickness arc.

Circular Tooth Thickness is the length of arc between the two sides of a gear tooth, on the pitch circle unless otherwise specified.

Circular Pitch is the distance along the pitch circle or pitch line between corresponding profiles of adjacent teeth.

Clearance is the amount by which the dedendum in a given gear exceeds the addendum of its mating gear.

Composite Error is an error of gear action composed from a number of contributory sources detected by rotating the gear with another gear or a master gear.

Contact Ratio is the number of angular base pitches through which a tooth surface rotates from the beginning to the end of contact.

Crowned Teeth have surfaces modified in the lengthwise direction to produce localized contact.

Dedendum is the depth or radial distance of a tooth space below the pitch line or pitch circle.

Dedendum Coefficient for the purposes of this discussion is the product of the dedendum size and the diametral pitch.

Dedendum (root) circle is tangent to the bottom of the tooth spaces in a cross section.

Diametral Pitch is the ratio of the number of teeth to the pitch circle diameter in inches.

Eccentricity is the distance between the axis of a surface of revolution and its axis of rotation in a given plane.

Equal-addendum Teeth are engaging gear teeth having equal addendums.
External Gear is a gear with teeth formed on the outer surface of a cylinder while internal gear teeth are formed on the inner surface of a cylinder.

Face Width is the length of the teeth in an axial plane.
Fillet Curve is the concave portion of the tooth profile where it joins the bottom of the tooth.

Fillet Radius is the radius of a circular arc approximating the fillet curve. In generated teeth the fillet curve has a varying radius of curvature.

Full Depth Teeth are those in which the working depth equals 2.0 divided by the diametral pitch.

Gear is any machine part with gear teeth. Of two gears that run together, the one with the larger number of teeth is called the gear and is generally referenced by a subscript g or 2.

Gear Ratio is the ratio of the larger to the smaller number of teeth in a pair of gears.

Hob is a milling cutter in the form of a screw thread which forms the gear teeth by generation.

Involute is the locus described by the end of a line unwound from the circumference of a circle.

Involute Function is a trigonometrical function equal to the tangent of an angle minus its value in radians.

Length of Action is the distance along the line of action which the point of contact moves during the action of the tooth profile.

Line of Action is the imaginary line along which contact occurs during the engagement of two tooth profiles. It is a straight line passing through the pitch point and tangent to the base circle.

Line of Contact is the line along which two tooth surfaces are tangent to each other.

Line of Centres connects the centres of the pitch circles of two engaging gears.

Long and Short Addendum Teeth are engaging gear teeth having unequal addendums.

Master Gear is an accurately made gear used for measuring the error in action of product gears.

Number of Teeth is the number of teeth contained in the whole circumference of the pitch circle.

Pinion is the smaller of a pair of gears and generally referenced by subscripts por 1.

Out-of-Roundness is the irregular radial variation from a surface of revolution in a given plane of rotation, exclusive of eccentricity.

Pitch Circle is the curve of intersection of a pitch surface of revolution and a plane of rotation. According to theory, it is the imaginary circle that rolls without slipping with a pitch circle of the mating gear.

Pitch Line corresponds in the cross section of a rack to the pitch circle in the cross section of a gear.

Pitch Point is the point of tangency of two pitch circles on the line of centres.

Pressure Angle is the angle at a pitch point between the line of action which is normal to the tooth surface and the plane tangent to the pitch surface.

Profile Radius of Curvature is the radius of curvature of a tooth profile, usually at the pitch point or a point of contact.

Radial Runout is the total variation in a direction perpendicular to the axis of rotation of an indicated surface from a plane surface of revolution.

Spacing is the measured distance between corresponding points on adjacent teeth.

Spur Gears are gears which are cylindrical in form and operate on parallel axes with straight teeth parallel to the axis.

Standard Centre Distance is the centre distance on which two gear mesh such that the sum of the circular tooth thicknesses at the pitch circles and the design backlash equal the circular pitch.

Stub Teeth are those in which the working depth is less than 2.000 divided by the diametral pitch.

Surface of Revolution is a surface generated by translating a line about an axis at a given distance. In the case of a spur gear, the surface of revolution is cylindrical.

Tip Radius is the radius of the circular arc used to join a sidecutting edge and an end-cutting edge in gear-cutting tools.

Tip Relief is an arbitrary modification of a tooth profile whereby a small amount of material is removed near the tip of the gear tooth.

Tooth Profile is one side of a tooth in a cross section between the outside circle and the root circle.

Tolerance is the specified range between limits equal to the algebraic difference of allowable variations.

Undercut is a condition in generated gear teeth when any part of the fillet curve lies inside of a line drawn tangent to the working profile at its point of junction with the fillet.

Variation is the amount of deviation from a specified value.
Whole Depth is the total depth of the tooth space equal to addendum plus dedendum.

Working Depth is the depth of engagement of two gears and is the sum of their addendums.

Computer Symbols	Theory Symbols	Description
ADD	a	Addendum (inches)
ADDK	a_{k}	Addendum coefficient ($a=\frac{{ }^{a} k}{D_{p}}$)
ADDL		Addendum limit to tooth point (inches)
ANGC	${ }^{\theta} \mathrm{C}$	Angle between origin of fillet on dedendum circle and gear tooth centreline (radians)
ANGL	${ }^{\text {L }}$	Load angle (radians)
BBA	b_{a}	Distance between pitch line and end of straight profile on generating hob tooth flank (inches)
BBX	b_{x}	Distance between tooth centreline and centre of rounded corner on generating hob tooth (inches)
BBY	b_{y}	Distance between pitch line and centre of rounded corner of generating hob tooth (inches)
BHN	Bhn	Brine 11 hardness
BL	B_{L}	Backlash including tooth thinning and machining tolerance (inches)
BLMIN	$B_{L}{ }^{\text {min }}$	Theoretical minimum backlash on standard centre distances
BLMINT		Actual minimum backlash on standard centre distances

BLMAX	$\mathrm{B}_{\mathrm{L}} \max ^{\text {a }}$	Theoretical maximum backlash on standard centre distance
BLMAXT		Actual maximum backlash on standard centre distance
BLMAXU		Actual maximum backlash on extended centre distance due to tolerance
BP	B_{p}	Base pitch
CCC	c	Clearance (inches)
CD	$c_{\text {d }}$	Centre distance (inches)
CP	C_{p}	Circular pitch
CRATIO	m_{C}	Contact ratio
DED	b	Dedendum (inches)
DEDK	b_{k}	Dedendum coefficient ($b=\frac{b_{k}}{D_{p}}$)
DELBL	ΔB_{L}	Minimum-maximum backlash range (inches)
DP	D_{p}	Diametral Pitch
E	E	Modulus of elasticity (psi)
EFF		Efficiency
ERR		Error in action (inches)
FW	F_{W}	Face width (inches)
HP	hp	Horsepower
HUBL		Hub length (inches)
HUBR		Outer hub radius (inches)
PAB	${ }^{\text {A }}$ AB	Allowable power in bending (HP)
PAD	ϕ	Pressure angle (degrees)
PAR		Pressure angle (radians)
PAW	$\mathrm{P}_{\text {AW }}$	Allowable power in wear (HP)

PLV	PLV	Pitch line velocity (fpm)
PR	R	Pitch circle radius (inches)
PTOL		Profile tolerance (inches)
RATIO	m_{g}	Gear Ratio
RB	R_{b}	Base circle radius (inches)
RHO		Density (1b/cubic inch)
RI	R_{I}	Dedendum circle radius (inches)
RL	R_{L}	Load radius on tooth centreline (inches)
RIM	RIM	Radius to inner portion of gear blank rim (inches)
RM	R_{M}	Interference limit radius (inches)
RO	R_{0}	Addendum circle radius (inches)
RPM	n	Shaft speed (revolutions per minute)
RU	R_{U}	Undercut limit radius (inches)
SAC	${ }^{\sigma} \mathrm{C}$	Allowable contact stress (psi)
SAF	${ }^{\sigma} \mathrm{F}$	Allowable fatigue stress (psi)
SB	${ }^{\sigma} b$	Actual bending stress (psi)
SBM	$\sigma_{b}{ }^{\max }$	Maximum allowable bending stress (psi)
SHAFT		Shaft diameter (inches)
SS	${ }^{\sigma}$ W	Actual wear stress (psi)
SSM	$\sigma_{w}^{\max }$	Maximum allowable wear stress (psi)
TCT	${ }^{\text {e }}$ TCT	Total composite tolerance (inches)
TEETH	N	Number of teeth
T0	T_{0}	Circular tooth thickness at addendum circle
TOLL	TOL_{L}	Lead tolerance is a measure of the parallelism of the tooth faces in a spur gear

TOLP	TOL_{p}	Pitch tolerance (inches)
TOLR	$\mathrm{TOL}_{\mathrm{R}}$	Runout tolerance (inches)
TP	T_{p}	Circular tooth thickness at pitch circle (inches)
TPTL		Upper and lower limits of tooth thickness tolerance at the pitch circle (inches) by caliper measurement
TPTE		Actual amount of tooth thickness tolerance including runout and tooth thickness variation determined from composite action analysis (inches)
TPTV		Actual tooth thickness tolerance determined by composite action analysis (inches)
U	ν	Poisson's ratio
WEB	WEB	Thickness of gear blank web (inches)
WA	W_{a}	Axial tooth load (1b)
WN	W_{n}	Normal tooth load (1b)
WR	W_{r}	Radial tooth load (1b)
WT	W_{t}	Tangential tooth load (1b)

Other variables not listed here will be defined when they are used in either the theory or computer program.

2.3 CONJUGATE ACTION

The essential purpose of a gear-tooth system is to transmit uniform rotary motion between shafts, and an almost infinite number of tooth profiles exist to fulfil this requirement. Kinematically, gear teeth act against each other in a similar manner to cams. If the tooth
profiles produce rotary motion coupled with a constant angular-velocity ratio during meshing, the surfaces are said to be conjugate. It must be remembered, however, that any discussion of this conjugate action unrealistically assumes that the teeth are perfectly formed, perfectly smooth and absolutely rigid.

The basic law of conjugate gear-tooth action states that to transmit uniform rotary motion between shafts, the normals to the tooth profiles at all points of contact must pass through a fixed point, the pitch point, on the line of centres of the shafts. This law is illustrated mathematically and graphically in Equation (2.3.1) and Figure 2.3.1.

$$
\begin{equation*}
\frac{\omega_{1}}{\omega_{2}}=\frac{R_{2}}{R_{1}} \tag{2.3.1}
\end{equation*}
$$

FIGURE 2.3.1 Conjugate Gear-Tooth Action

Point P is the pitch point on the line of centres $0_{1} 0_{2}$ where the common normal, or line of action aa intersects. Thus, for every instantaneous point of contact, the line of action will pass through the fixed point P. The locus of the points of contact, or path of action, however, may not necessarily pass along the line of action, although some profiles have this property.

By specifying one gear-tooth form or a particular path of contact, a mating profile could be realized which would develop conjugate action. However, problems arise which virtually eliminate the vast majority of possible profiles. For example, although two profiles may mate and run together properly, two other gears of the form of either original may not run together correctly. If there is to be interchangeability between gears, enabling all gears of all sizes conjugate to the same basic rack form* to mesh properly, the path of contact must be symmetrical about the pitch point. With this condition satisfied, then the basic rack profile of the system will also be symmetrical in relation to the pitch point. Therefore, all gears with any number of teeth that are conjugate to this basic rack will be conjugate with each other.

Another practical problem that exists is the reproduction of these curves economically on existing machinery. In addition, changes in shaft centres due to misalignment and large forces may seriously effect the capabilities of the profile to maintain conjugate action.

[^0]One of the most widely used gear-tooth profiles is the involute with properties highly suited for gearing applications.

2.4 INVOLUTE AND FILLET PROPERTIES

2.4A INVOLUTE PROFILE

The involute profile with its many unique and valuable properties is, with few exceptions, in universal use for gear teeth. References [1, 2, 3, 4] offer in-depth presentations of these properties as well as the mathematical development of the involute surfaces. Buckingham [2] summarizes the properties as follows:

1. The shape of the involute curve is dependent only upon the size of the base circle.
2. If one involute, rotating at a uniform rate of motion, acts against another involute, it will transmit a uniform angular motion to the second regardless of the distance between the centres of the two base circles.
3. The rate of motion transmitted from one involute to another depends only upon the relative sizes of the base circles of the two involute and is inversely proportional to those sizes.
4. The common tangent to the two base circles is both the path of contact and the line of action.
5. The path of contact of an involute is a straight line. Any point on this line may therefore be taken as a pitch point, and the path of contact will remain symmetrical in relation to this pitch point.
6. The intersection of the common tangent to the two base circles with their common centre line establishes the radii of the pitch circles of the mating involutes. No involute has a pitch circle until it is brought into contact with another involute, or with a straight line constrained to move in a fixed direction.
7. The pitch diameters of two involutes acting together are directly proportional to the diameters of their base circles.
8. The pressure angle of two involutes acting together is the angle between the common tangent to the two base circles and a line perpendicular to their common centre line. No involute has a pressure angle until it is brought into contact with another involute, or with a straight line constrained to move in a fixed direction.
9. The form of the basic rack of the involute is a straight line. The pressure angle of an involute acting against such a rack is the angle between the line of action and a line representing the. direction in which this rack moves.
10. The pitch radius of an involute acting against a straight line rack form is the length of the radial line, perpendicular to the direction of motion of the rack, measured from the centre of the base circle to its point of intersection with the line of action.

Although no formal proof will be given for the fore-mentioned summary, the following mathematical development of the involute profile will give some insight to the authenticity of these properties.

An involute curve is the locus described by the end of a line unwound from the circumference of a circle as illustrated in Figure 2.4.1.

FIGURE 2.4.1 Involute Generation
where

$$
\begin{aligned}
R_{b} & =\text { base circle radius } \\
r & =\text { radius to any point on involute } \\
\rho & =\text { radius of curvature of involute at radius } r
\end{aligned}
$$

By the method of generation of the involute curve, the length of the generating line $\left(r^{2}-R_{D}^{2}\right)^{\frac{1}{2}}$ is also the length of the circumference of the base circle subtended by angle β. Thus

$$
\begin{gathered}
\beta=\theta+\phi \\
\beta=\frac{\left(r^{2}-R_{b}{ }^{2}\right)^{\frac{3}{2}}}{R_{b}}
\end{gathered}
$$

but

$$
\tan \phi=\frac{\left.\left(r^{2}-R_{b}\right)^{2}\right)^{\frac{1}{2}}}{R_{b}}
$$

therefore

$$
\begin{gather*}
\theta=\beta-\phi \\
\theta=\frac{\left(r^{2}-R_{b} b^{\frac{1}{2}}\right.}{R_{b}}-\tan ^{-1} \frac{\left(r^{2}-R_{b}\right)^{\frac{1}{2}}}{R_{b}} \tag{2.4.1}\\
\theta=\operatorname{INV} \phi \tag{2.4.2}\\
=\tan \phi-\phi \tag{2.4.3}\\
r \tag{2.4.4}
\end{gather*}
$$

From the above geometrical conditions, it can be readily seen that the radius of curvature of any point on the involute profile is the length of generating line to that point.

Figure 2.4.2 illustrates the involute action of a mating pair of gears, or twin involute generation.

FIGURE 2.4.2 Involute Action of Mating Pair of Gears

The point of contact moves along the generating line, which does not change position because it is always tangent to the base circles, and, since the generating line is always normal to the involutes at the point of contact, the requirement of uniform motion is satisfied.

A complete gear tooth profile includes both the involute profile and the trochoidal fillet, which will be discussed later in this section, usually symmetrically generated about the centre line of the tooth. With the involute equations as a foundation, the following analysis describes the tooth properties which will clarify further development of the gear design.

Beginning with the involute profile, treating the fillet as a separate problem, it is possible to define the coordinates of the tooth involute profile once the arc tooth thickness and pressure angle at a definite radius have been specified. Referring to Figure 2.4.3 where

```
T
R1 = given radius of profile,
\phi}=\mathrm{ given pressure angle at radius R}\mp@subsup{\textrm{R}}{1}{}\mathrm{ , radians
r = any radius of profile,
    T = arc tooth thickness at r,
    \phi = pressure angle at r, radians,
R
```

equation (2.4.4) transposed becomes

$$
R_{b}=R_{1} \cos \phi_{1}
$$

FIGURE 2.4.3 Tooth Thickness Determination

Dealing with the half thickness of the tooth, since the teeth form is symmetrical, the angle of the half thickness at R_{1} in radians is equal to $T_{1} / 2 R_{1}$. With the angle between the involute origin at the base circle and any radius r specified by θ or the involute function INV, the half thickness of the tooth at the base circle is equal to $\left(T_{1} / 2 R_{1}\right)+I N V_{1}$. As $T / 2 r$ represents the angle between the tooth centreline and any given point r on the involute profile, the half tooth thickness at any radius r is equal to the half thickness at the base circle, minus the involute function of the pressure angle at the specified radius r which results in

$$
\begin{equation*}
T / 2 r=\theta_{r}=\left(T_{1} / 2 R_{1}\right)+I N V_{\phi_{1}}-I N V \phi \tag{2.4.5}
\end{equation*}
$$

or a tooth thickness at any radius r of

$$
T=2 r\left[\left(T_{1} / 2 R_{1}\right)+I N V_{\phi_{1}}-I N V \phi\right]
$$

All angular measure is made in radians.
A physical limitation of the profile generation occurs at a radius which produces a pointed tooth. At this radius the thickness becomes zero, reducing equation (2.4.5) to

$$
\operatorname{INV} \phi_{\phi}=\left(T_{1} / 2 R_{1}\right)+\operatorname{INV} \phi_{1}
$$

An iterative solution of the angle ϕ coupled with equation (2.4.4) yields the limiting radius of the involute profile.

In general practice the values of T_{1}, R_{1} and ϕ_{1} are specified as the properties of the involute at the design pitch circle radius. Further reference to these values at the pitch circle will be specified as T_{p}, R and ϕ.

2.4B FILLET PROFILE

Although mathematically the involute and trochoidal fillet may be considered separately, the physical generation of these curves produce a single profile. By knowing certain characteristics of the generating cutter, the resultant fillet profile on the gear may be determined analytically. The fillet coordinates are very dependent on the type of cutting method employed for tooth generating. Two methods considered here are hobbing and basic rack generation which yield a similar mathematical analysis. For the purpose of clarity and simplicity, future reference to hob will specify either the hob or rack cutter.

Figure 2.4.4 illustrates the tooth section of a hob where $b=$ dedendum of gear and addendum of hob $b_{a}=$ distance from pitch line of hob to point of tangency of rounded corner with straight line form
$b_{x}=$ distance from centre line of hob tooth to centre of rounded corner
$b_{y}=$ distance from pitch line of hob to centre of rounded corner.
c = clearance at bottom of tooth space
$C_{p}=$ circular pitch
$\phi=$ pressure angle at R and one-half included angle of hob tooth
$R=$ gear pitch circle radius
$r_{T}=$ radius of rounded corner of hob tooth
$T_{S}=\operatorname{arc}$ tooth thickness of gear tooth at pitch circle radius R, and hob tooth space width at pitch line.
from which the following relationships may be derived:

$$
\begin{gather*}
c=r_{T}(1-\sin \phi) \tag{2.4.6}\\
b_{y}=b-r_{T} \tag{2.4.7}\\
b_{x}=\frac{\left(c_{P}-T_{S}\right)}{2}-\left(b \tan \phi_{1}+\frac{r_{T}}{\cos \phi}\right) \tag{2.4.8}
\end{gather*}
$$

FIGURE 2.4.4 Hob Tooth Properties

The above equations are developed about a pitch line tangent to the design pitch circle of the gear. Thus, the angle between the centreline of gear tooth and the origin of the trochoid may be
defined by the arc length swept out on the hob pitch line between the centre of the hob tooth space and the centre of the rounded corner, or mathematically

$$
\begin{equation*}
{ }^{\theta_{c}}=\frac{\left(C_{p} / 2\right)-b_{x}}{R} \tag{2.4.9}
\end{equation*}
$$

For a standard hob the tooth space width T_{S} equals the tooth thickness T_{T} at the standard pitch line which, therefore, would generate a pitch circle tooth thickness of $C_{P} / 2.0$ on the gear. However, if the hob

> Design Pitch

Circle
FIGURE 2.4.5 Variation in Tooth Thickness from Hob Offset were advanced or withdrawn from the gear blank by some offset distance Δe, from this standard pitch line, as in Figure 2.4.5, the resultant tooth thickness on the gear pitch circle would be proportionately smaller or larger to the amount of offset by a value

$$
\begin{align*}
T_{S}-T_{S_{1}} & =2 \Delta e \tan \phi \\
\Delta T & =2 \Delta \operatorname{etan} \phi \tag{2.4.10}
\end{align*}
$$

Here the cutter has straight sides, but the similar equation evolves approximately for the situation of one gear advanced to another, to relate tooth thickness change to centre distance variation.

An offset advancing the hob into the gear blank is defined by a negative distance.

For an involute profile, conjugate action cannot take place below the radius R_{b} which would form a tangent circle drawn from the centre of the gear to the path of contact. Also, if the mating profile projects beyond this point of tangency, a cusp will exist in the theoretical form of the tooth profile since two points of contact should exist for the same radial distance on the gear. With this occurrence, the corner of the mating gear will interfere, making improper contact with the incomplete profile. In the case when the interfering member is the generating tool, an undercut tooth form will result, as part of the conjugate profile will be removed by the corner of the generating tooth which travels in a trochoidal path in relation to the generated gear. A trochoid is the locus of a fixed point on the mating member moving in relation to the centre of the gear. Usually, for ease of analysis, this fixed point on the generating hob is the centre of the rounded corner of the tooth, or the corner of a sharp cornered tooth when the radius of the tooth corner round is considered zero. Analyzing these trochoids, the form of the fillet may then be determined for both undercut and non-undercut conditions, including the inter-relationship of the involute and fillet forms.

For initial consideration, Figure 2.4 .6 represents a hob with a sharp cornered tooth (i.e. $r_{T}=0$) where
$\mathrm{R}=$ gear pitch circle radius
$b_{y}=$ distance from pitch line of hob to sharp corner of hob tooth. The addendum of the hob becomes the dedendum of the gear.
$r_{t}=$ any trochoid radius
${ }^{\theta} t=$ vectorial angle of trochoid
$\psi_{t}=$ angle between tangent to trochoid and radius vector

FIGURE 2.4.6 Trochoid Generation for Sharp Cornered Hob Tooth

The geometry of Figure (2.4.6) yields the following equation:

$$
\begin{aligned}
\tan \left(\theta_{1}+\theta_{t}\right) & =\frac{\left(r_{t}^{2}-\left(R-b_{y}\right)^{2}\right)^{\frac{1}{2}}}{R-b_{y}} \\
\theta_{t} & =\tan ^{-1}\left(\frac{\left(r_{t}^{2}-\left(R-b_{y}\right)^{2}\right)^{\frac{1}{2}}}{R-b_{y}}\right)-\theta_{1}
\end{aligned}
$$

Since $A A=A^{\prime} A^{\prime}$ and $A^{\prime} A^{\prime}$ equals the arc length $A^{\prime} A^{\prime \prime}$, we know that

$$
\theta_{1}=\frac{\left(r_{t}^{2}-\left(R-b_{y}\right)^{2}\right)^{\frac{1}{2}}}{R}
$$

and thus

$$
\begin{equation*}
\theta_{t}=\tan ^{-1}\left(\frac{\left(r_{t}^{2}-\left(R-b_{y}\right)^{2}\right)^{\frac{1}{2}}}{R-b_{y}}\right)-\frac{\left(r_{t}^{2}-\left(R-b_{y}\right)^{2}\right)^{\frac{1}{2}}}{R} \tag{2.4.11}
\end{equation*}
$$

but

$$
\begin{align*}
& \alpha=\theta_{1}+\theta_{t} \\
& \alpha=\cos ^{-1}\left(\frac{R-b_{y}}{r_{t}}\right) \tag{2.4.12}
\end{align*}
$$

and

$$
\tan \alpha=\frac{\left(r_{t}{ }^{2}-\left(R-b_{y}\right)^{2}\right)^{\frac{1}{2}}}{R-b_{y}}
$$

or

$$
\left(r_{t}^{2}-\left(R-b_{y}\right)^{2}\right)^{\frac{1}{2}}=\left(R-b_{y}\right) \tan \alpha
$$

Therefore, from equation (2.4.10)

$$
\begin{align*}
& \theta_{t}=\tan ^{-1}(\tan \alpha)-\left(\tan \alpha-\frac{b}{R} \tan \alpha\right) \\
& \theta_{t}=\frac{b}{R} \tan \alpha-(\tan \alpha-\alpha) \\
& \theta_{t}=\frac{b}{R} \tan \alpha-I N V \alpha \tag{2.4.13}
\end{align*}
$$

At the same time, the tangent angle to the trochoid becomes, in radial coordinates,

$$
\tan \psi_{t}=\frac{r_{t} d \theta_{t}}{d r_{t}}
$$

and from Equation (2.4.10)

$$
\begin{aligned}
& \frac{d \theta_{t}}{d r_{t}}=\frac{d}{d r_{t}}\left(\tan ^{-1}\left(\frac{\left(r_{t}{ }^{2}-\left(R-b_{y}\right)^{2}\right)^{\frac{1}{2}}}{\left(R-b_{y}\right)}\right)-\frac{\left(r_{t}{ }^{2}-\left(R-b_{y}\right)^{2}\right)^{\frac{1}{2}}}{r}\right) \\
& \frac{d \theta_{t}}{d r_{t}}=\frac{\left(R-b_{y}\right)}{r_{t}\left(r_{t}{ }^{2}-\left(R-b_{y}\right)^{2}\right)^{\frac{1}{2}}}-\frac{r_{t}}{R\left(r_{t}{ }^{2}-\left(R-b_{y}\right)^{2}\right)^{\frac{1}{2}}}
\end{aligned}
$$

which results in

$$
\begin{align*}
& \tan \psi_{t}=\frac{R\left(R-b_{y}\right)-r_{t}^{2}}{R\left(r_{t}^{2}-\left(R-b_{y}\right)^{2}\right)^{\frac{1}{2}}} \\
& \tan \psi_{t}=\frac{\left(R-b_{y}\right)-\left(r_{t}^{2} / R\right)}{\left(r_{t}^{2}-\left(R-b_{y}\right)^{2}\right)^{\frac{1}{2}}} \tag{2.4.14}
\end{align*}
$$

Expanding Equation (2.4.14) further

$$
\begin{align*}
& \tan \psi_{t}= \frac{1-\left(r_{t}{ }^{2} /\left(R\left(R-b_{y}\right)\right)\right)}{R\left[\left(r_{t}{ }^{2}-\left(R-b_{y}\right)^{2}\right]^{\frac{1}{2}} / R\left(R-b_{y}\right)\right.} \\
& \tan \psi_{t}=\frac{1-\frac{r_{t}{ }^{2}}{R\left(R-b_{y}\right)}}{\tan \alpha} \\
& \psi_{t}=\tan ^{-1}\left(\frac{1-\frac{r_{t}{ }^{2}}{R\left(R-b_{y}\right)}}{\tan \alpha}\right) \tag{2.4.15}
\end{align*}
$$

When a hob is employed as a cutting tool, however, the corner of the hob tooth is rounded, either purposefully or by wear. Considering the hob corner to be rounded with a radius r_{T}, the trochoidal fillet produced will be the envelope of the family of circles whose centres are moving along the trochoidal path of the centre of the round as in Figure 2.4.7.

FIGURE 2.4.7 Fillet Generation for Rounded Corner Hob Tooth where
$r_{t}=$ any radius of trochoid
$\theta_{t}=$ vectorial angle of trochoid
$r_{f}=$ any radius of fillet form
$\theta_{f}=$ vectorial angle of fillet form
$r_{T}=$ radius of corner rounding
$b_{y}=$ distance from pitch line to centre of rounding
Applying the law of cosines

$$
\begin{align*}
& r_{f}^{2}=r_{t}{ }^{2+r_{T}}{ }^{2}-2 r_{t} r_{T} \cos \left(90^{\circ}-\psi_{t}\right) \\
& r_{f}=\left(r_{t}^{2}+r_{T}{ }^{2}-2 r_{t} r_{T} \sin \psi_{t}\right)^{\frac{1}{2}} \tag{2.4.16}
\end{align*}
$$

and

$$
\begin{align*}
& \cos \left(\theta_{f}-\theta_{t}\right)=\left(r_{t}-r_{T} \sin \psi_{t}\right) / r_{f} \\
& \theta_{f}=\theta_{t}+\cos ^{-1}\left[\left(r_{t}-r_{T} \sin \psi_{t}\right) / r_{f}\right] \tag{2.4.17}
\end{align*}
$$

From Figure 2.4.7, the tangent angle $\psi_{t t}$ between the radial vector and the tangent line to the fillet becomes

$$
\begin{aligned}
\psi_{t t} & =\psi_{t}-\cos ^{-1}\left(\frac{r_{t}-r_{T} \sin \psi_{t}}{r_{f}}\right) \\
\psi_{t t} & =\psi_{t}-\left(\theta_{f}-\theta_{t}\right) \\
& =\psi_{t}+\theta_{t}-\theta_{f}
\end{aligned}
$$

Although the trochoidal fillet and involute profile have been specified mathematically, equations to link both curves together as a physical unit must be derived. Since the involute curve begins at the base circle, no conjugate gear tooth action can take place below this radius as was mentioned before. If any portion of the straight side of a basic rack flank extends below the base circle during operation, interference will occur. A similar situation occurring at the time of generation would result in removal of a part of the involute profile. In order to avoid this undercutting, the straight portion of the hob tooth flank must not extend below the line where the base circle becomes tangent to the line of action, as in Figure 2.4.8.

FIGURE 2.4.8 Undercut Limit Radius

Thus the undercut limit becomes

$$
\begin{aligned}
R_{u} & =R_{b} \cos \phi \\
& =R \cos ^{2} \phi
\end{aligned}
$$

Relating this undercut limit radius to the generated dedendum circle of the gear, for no undercutting

$$
\begin{align*}
& R_{I} \geqslant R_{u} \tag{2.4.19}\\
& R_{I} \geqslant R_{b} \cos \phi \tag{2.4.20}
\end{align*}
$$

for sharp cornered hob teeth, or

$$
\begin{align*}
R_{I} & \geqslant R_{b} \cos \phi-r_{T}(1-\sin \phi) \tag{2.4.21}\\
& \geqslant R_{b} \cos \phi-c
\end{align*}
$$

for the rounded corner hob teeth, where R_{I} represents the dedendum circle radius of the gear.

If no undercut is present, the trochoidal fillet will be tangent to the involute profile at a radius where the end of the straight flank of the hob crosses the path of contact, as illustrated in Figure 2.4.9,
which yields

$$
\begin{equation*}
r_{f}=\left[\left(R \sin \phi-\left(b_{a} / \sin \phi\right)\right)^{2}+R_{b}{ }^{2}\right]^{\frac{3}{2}} \tag{2.4.22}
\end{equation*}
$$

FIGURE 2.4.9 Radius to Involute-Trochoidal Fillet Intersection During Non Undercut Conditions
from the geometry. The corresponding trochoid radius, from similar geometrical analysis, becomes

$$
\begin{align*}
& r_{t}=\left(R_{b}^{2}+\left(\left(r_{f}^{2}-R_{b}{ }^{2}\right)^{\frac{1}{2}}+r_{T}\right)^{2}\right)^{\frac{1}{2}} \\
& r_{t}=\left(r_{f}^{2}+r_{T}{ }^{2}+2 r_{T}\left(r_{f}^{2}-R_{b}{ }^{2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} \tag{2.4.23}
\end{align*}
$$

If the hob has sharp cornered teeth, this corner becomes the straight portion limit of the flank and the tangency radius a point on the trochoid.

In the case of undercutting, the radius to involute-trochoidal fillet intersection cannot be determined geometrical as in the no undercut condition, but must be computed using iterative techniques. Physically, the angle between the centre line of gear tooth and the point on the involute, plus the angle between the centre line of the trochojd and the point on the trochoidal fillet, must equal the angle between the
trochoid centre line and the tooth centre line. Combining equations (2.4.5), (2.4.9) and (2.4.17), the result becomes

$$
\begin{equation*}
{ }^{\theta_{c}}=\theta_{f}+\theta_{r} \tag{2.4.24}
\end{equation*}
$$

at the intersection radius.
When a sharp cornered hob tooth generates the undercut curves, the trochoid of the corner becomes the actual fillet so that the base circle radius may be taken as the initial point for the iterative process. Buckingham [8] suggests an approximate solution [Equation (2.4.25)] for the undercut radius which may be used as a second point in the process.

$$
\begin{equation*}
R_{2}=R_{b}+\frac{\left(R_{u}-R_{I}\right) / \sin ^{2} \phi}{6 R \cos \phi} \tag{2.4.25}
\end{equation*}
$$

For the rounded corner hob tooth, the trochoid radius producing a fillet radius of R_{b} must be determined before following the above iterative procedure. Further development of these properties will be discussed later under the appropriate sections required for the final design analysis.

Thus far, reference to the undercutting due to cutting has been developed with no mention of a similar problem arising when two involute gears mesh. If the outer circles of the gears (i.e. the addendum circle) extend beyond the point of tangency of the line of action with the base circle of the mating gear, similar interference as with the cutter will result. Therefore, employing Figure 2.4.10, the maximum addendum

FIGURE 2.4.10 Maximum Addendum Circle Radius to Avoid Interference circle to avoid interference becomes

$$
\begin{aligned}
& R_{M_{1}}=\left(R_{b_{1}}^{2+}\left(C_{d} \sin \phi\right)^{2}\right)^{\frac{1}{2}} \\
& R_{M_{2}}=\left(R_{b_{2}}^{2}+\left(C_{d} \sin \phi\right)^{2}\right)^{\frac{1}{2}} \\
& R_{U_{1}}=C_{d}-R_{M_{2}} \\
& R_{U_{1}}=C_{d}-R_{M_{1}}
\end{aligned}
$$

or generally

$$
\begin{equation*}
R_{M}=\left(R_{b}{ }^{2}+\left(C_{d} \sin \phi\right)^{2}\right)^{\frac{1}{2}} \tag{2.4.26}
\end{equation*}
$$

The foregoing equations have been incorporated basically in three subroutines: Subroutine CUTTER, Subroutine FILLET and Subroutine

ADDEND, Appendices [A.1], [A.2] and [A.3]. However, many of these equations have also been employed as FORTRAN Statement Functions in subroutines requiring their use; these functions will be discussed when the appropriate routines are developed later in the thesis.

SUBROUTINE CUTTER(ANGC,BL,CCC,CD,CP,DED,NCUT,PAR,PR,RB,RM,RU,TP,BBA,BBX, BBY, RT)

Use: This routine determines the undercut limit radius, the maximum addendum circle radius to prevent interference, the angle between the tooth centre line and fillet origin on the dedendum circle, and some geometric characteristics of the cutting tool teeth.

Calling Sequence: Once the various gear and pinion geometrical properties are specified in Subroutine UREAL this routine is called in Subroutine UREAL to develop the above properties.

SUBROUTINE FILLET(ANGC, NCUT,PAR, PR,RAD,RB,RI,RU,RRTL,RRTU,TP,BBA, BBX, BBY, RT)

Use: This routine determines the radius to the point of intersection of the involute and fillet profiles.

Calling Sequence: To determine the contact ratio during undercut conditions, this routine is called from Subroutine LENGTH which is called from Subroutine CONRAT.

Special Features: The subroutine handles the non-undercut tangency point exactly as the theory in this chapter was developed. However, the iterative solution required to return the undercut intersection point has a few features to enable a convergent solution to be found. Using a linear search followed by a false position root determination Appendix [B], the intersection radius of the involute-fillet profile is determined.

In the case of the sharp cornered hob tooth, the trochoid also becomes the fillet profile. Therefore, half of the step suggested by Buckingham was used for the linear search.

> However, the rounded corner hob tooth cutter presents an added problem since the fillet and trochoid are separate entities. A Aimilar process was carried out, only this time the trochoid radius yielding a fillet radius equal to the base circle radius was determined before continuing the intersection radius determination. The linear search step length used in calculating the fillet-base circle was 10% of the functional difference between the fillet radius with trochoid radius set at R and the actual base circle radius R ${ }_{b}$ once this trochoid radius was determined, the process continued in a manner similar to the sharp cornered tooth case.

SUBROUTINE ADDEND(ADDL,PAR,PR,RB,RO,T0,TP)
Use: This routine determines the addendum length of pointed teeth and tooth thickness at the addendum circle.

Calling Sequence: Having specified a pitch circle tooth thickness in Subroutine THICK, this routine is called to find the pointed tooth radius. These routines are both found in Subroutine SPUR.

Special Features: Employing the linear search and false position technique described in Appendix [B], the required radius is determined, thus defining the maximum possible addendum size. If the pointed tooth radius is less than the addendum circle radius, the tooth thickness at the addendum circle is set to zero. In the linear search, difference between the addendum circle and pitch circle radij specify the step length. If, during the optimization, this difference becomes zero, then an arbitrary step length of 0.1 inches is assumed.

2.5 FUNDAMENTALS

As a consequence of choosing the involute profile to produce the desired conjugate action, the properties of this curve and its generation present a foundation of fundamental equations used in the design procedure. These equations provide a reference point from
which more sophisticated theory may be developed to include stress constraints, contact ratio, etc. With a specified centre distance C_{d} and a desired angular velocity ratio, the law of conjugate gear tooth action mathematically states that

$$
\begin{equation*}
\frac{\omega_{1}}{\omega_{2}}=\frac{r_{2}}{R_{1}} \tag{2.5.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{n_{1}}{n_{2}}=\frac{R_{2}}{R_{1}} \tag{2.5.1A}
\end{equation*}
$$

where ω represents the angular velocity; r, the pitch circle radii and n, the shaft speeds in rpm. If the two pitch circles were considered rolling against each other without slipping at the above uniform angular velocities then the linear pitch line velocity is

$$
\begin{align*}
\text { PLV } & =\omega_{1} R_{1}=\omega_{2} R_{2} \\
& =2 \pi n_{1} R_{1}=2 \pi n_{2} R_{2} \tag{2.5.2}
\end{align*}
$$

The pitch circle radii of an involute gear are not fixed but are dependent on the centre distance and the magnitude of the base circle radii which are constant for a particular gear as pointed out in the summary of the involute properties in Chapter [2.4].

Figure (2.4.2) can be used to illustrate many of the geometrical relationships existing between the various radii and angles. As examples:

$$
\begin{align*}
& C_{d}=R_{1}+R_{2} \tag{2.5.3}\\
& R_{b}=R \cos \phi \tag{2.5.4}
\end{align*}
$$

$$
\begin{align*}
m_{g} & =\frac{\omega_{1}}{\omega_{2}} \\
& =\frac{R_{2}}{R_{1}} \tag{2.5.5}
\end{align*}
$$

where M_{g} represents the gear ratio.
If several involutes were developed on the same base circle, the profiles of several teeth would result. Evenly spacing these teeth, and considering only one side of the tooth as in Figure (2.5.1), the distance between the teeth equals the circumference of the base circle divided by the number of teeth of the gear from which the base pitch is defined.

$$
\begin{equation*}
B_{p}=\frac{2 \pi R_{b}}{N} \tag{2.5.6}
\end{equation*}
$$

with N specifying the number of teeth.

FIGURE 2.5.1 Geometrical Representation of Base Pitch
In similar fashion, the circular pitch defines the spacing between tooth profiles on the pitch circle giving

$$
\begin{equation*}
C_{P}=\frac{2 \pi R}{N} \tag{2.5.7}
\end{equation*}
$$

A third "pitch" known as diametral pitch, having no physical meaning, is defined as the number of teeth on the gear per inch of pitch diameter.

$$
\begin{equation*}
D_{P}=\frac{N}{2 R} \tag{2.5.8}
\end{equation*}
$$

Combining Equations (2.5.6) and (2.5.7) a useful relation

$$
\begin{equation*}
C_{P} D_{P}=\pi \tag{2.5.9}
\end{equation*}
$$

is obtained.
The addendum (dedendum) circles are defined by adding (subtracting) the addendum (dedendum) lengths to the pitch radii, as in the following equations:

$$
\begin{align*}
& R+a=R_{0} \tag{2.5.10}\\
& R-b=R_{I} \tag{2.5.11}
\end{align*}
$$

where $\mathrm{a}=$ addendum $\mathrm{and} \mathrm{b}=$ dedendum. The clearance between the mating teeth is defined here as

$$
\begin{equation*}
c=b_{m^{-a}} \tag{2.5.12}
\end{equation*}
$$

where the subscript m refers to the mating gear.
Having defined or developed the foregoing equations, further analyses may now be undertaken. These equations are employed in the computer program in Subroutine PITCH, Appendix [A. 4].

SUBROUTINE PITCH(RATIO,CD,TEETH1,TEETH2,RPM1,PAR,PI,PR1,PR2,RB1,RB2,BP,
CP,DP,PLV)

Use: This routine determines the various geometrical relationships developed in this chapter.

$$
\begin{array}{ll}
\text { Calling Sequence: } & \text { Subroutine VARY calls this routine after each new } \\
\text { set of variables is generated through Subroutine } \\
\text { UREAL. The routine is also used initially in } \\
\text { Subroutine VARY1 to define the argument values if } \\
\text { the package is used for analysis only, with no } \\
\text { variables, or to aid in defining starting values } \\
\text { for some variables (i.e. addendum-dedendum factors) } \\
\text { when required for optimization. }
\end{array}
$$

2.6 LOADING

When two gears act against each other, the resultant load W_{n}, is directed along the line of action. In Figure 2.6.1 the pinion and gear are separated with the loads and reactions directed, respectively, at the pitch point and the shaft centre of each gear to constitute a couple.

Using the pinion as an example, the forces may be resolved into components, illustrated in Figure 2.6.2.

Employing the subscripts r and t to indicate the radial and tangential directions with respect to the pitch circle, the moment of the couple W_{t} and F_{t} represents the torque application required to drive the gear set.

$$
\begin{equation*}
T=W_{t} R_{1} \tag{2.6.1}
\end{equation*}
$$

Defining horsepower as

$$
\begin{equation*}
h p=\frac{2 \pi T n}{33000} \tag{2.6.2}
\end{equation*}
$$

with

$$
h p=\text { horsepower }
$$

$\mathrm{T}=$ torque, ft. lbs.
$\mathrm{n}=$ shaft speed, rpm
Equation (2.6.1) combined with the pitch line velocity, Equation (2.5.2) results in

F reaction force of shaft
W_{n} load along line of action
T torque

FIGURE 2.6.1 Forces on Mating Gear Set

FIGURE 2.6.2 Component Forces Acting on Pinion

$$
\begin{equation*}
h p=\frac{W_{t}(\text { PLV })}{33,000} \tag{2.6.3}
\end{equation*}
$$

From the geometry of Figure 2.6.2, the following relationships can be derived:

$$
\begin{align*}
& W_{t}=W_{n} \cos \phi \tag{2.6.4}\\
& W_{r}=W_{n} \sin \phi \tag{2.6.5}\\
& W_{r}=W_{t} \tan \phi \tag{2.6.6}
\end{align*}
$$

Since the pitch surface of a spur gear sweeps out a cylinder, not a cone, no axial component is generated during loading, thus

$$
\begin{equation*}
W_{a}=0.0 \tag{2.6.7}
\end{equation*}
$$

These equations are used in Subroutine TORQUE and Subroutine TLOAD as part of the design analysis, Appendices [A.5] and [A.6]. SUBROUTINE TORQUE(HP,PI,RPM,TORQ)

Use: To determine the torque on the gear.
Calling Sequence: Subroutine SPUR calls this routine after the initiation of the design analysis.

SUBROUTINE TLOAD(HP,PLV,PAR,WA,WR,WT,WN)
Use: To determine the magnitude of tooth loading.
Calling Sequence: This is the first routine called after the variables have been specified in Subroutine JREAL.

2.7 TOOTH STRESSES

The most important design factors limiting the load carrying capacity of any gear set are the bending and wear stresses developed on a tooth. Buckingham [2, Chapter 18 and 22] presents one of the best historical accounts of the search for an accurate bending analysis
over the last 200 years. Lewis' formula [36]for the beam strength of a gear tooth combined with Dolan and Broghamer's [38] fillet stress concentration factor has been the foundation for bending stress analysis in North America for the last thirty years. Various authors mentioned by Buckingham set forth numerous equations to modify the static case of the Lewis Formula to implement a realistic dynamic load analysis. Finally, in 1931, Buckingham [9], as chairman of an ASME special research committee, proposed a method of dynamic load determination. This same committee also initiated wear analysis employing Hertzian theory [37] of rolling cylinders to simulate the action of gear tooth profiles during wear conditions.

The American Gear Manufacturer's Association (AGMA), an organization of manufacturers and academics in the gearing industry, in its interest in achieving a certain degree of uniformity in the design and manufacture of gears, has presented general stress formulas which are modifications of the original bending and wear analysis equations. To build up to these equations, the following sections will develop the original theory as a foundation for discussion of the AGMA formulas.

2.7A BENDING STRESS

With an initial assumption of a gear tooth as a stubby cantilever beam. stressed at the base of the beam, Lewis conceived the idea of inscribing a parabola of uniform strength inside the gear tooth. Appendix [C.1] offers proof that, if a parabola is made into a cantilever beam, the stress is constant along the surface of the parabola.

Inscribing the largest parabola that will fit in the gear-tooth shape, the most critically stressed position on the gear tooth is located at the point of tangency of the parabola and the tooth profile. Deriving the bending moment for a rectangular cantilever beam on thickness t, unit width, and length h from the base of the beam to the uniformly applied load W_{t}, the following stress equations for elementary beam theory evolve

$$
\begin{align*}
\sigma & =\frac{M_{y}}{I} \\
& =\frac{\left(W_{t} h\right)(t / 2)}{\frac{t^{3}}{12}} \\
& =\frac{6 W_{t} h}{t^{2}} \text { for unit width } \tag{2.7.1}
\end{align*}
$$

With the line of action crossing the tooth at different load angles θ_{L} during rotation, as in Figure 2.7.1, the above theory may be generally applied as follows.

If the load acts at the tooth centre line at point f, then the parabola of uniform strength becomes tangent to the tooth profile at point e determined by having tangent line ce located such that $\mathrm{cf}=\mathrm{fm}$ on the fillet. Appendix [C.2] illustrates the proof that point e lies on the parabola and may be considered the point of maximum bending stress on the tooth profile. Applying Equation (2.7.1) the bending stress becomes

$$
\begin{equation*}
\sigma_{b}=\left(\frac{W_{n}}{F_{W}}\right) \cos \theta_{L}\left(\frac{6 h}{t^{2}}\right) \tag{2.7.2}
\end{equation*}
$$

with the direct compressive stress becoming

$$
\begin{equation*}
\sigma_{c}=\frac{\left(\frac{W_{n}}{F_{w}}\right) \sin \theta_{L}}{t} \tag{2.7.3}
\end{equation*}
$$

again assuming unit face width. The total normal load is divided by the face width so that unit width analysis may be used. The total tensile and compressive stresses thus become

$$
\begin{aligned}
& \left|\sigma_{t}\right|=\left|\sigma_{b}\right|-\left|\sigma_{c}\right| \\
& \left|\sigma_{c o m p}\right|=\left|\sigma_{b}\right|+\left|\sigma_{c}\right|
\end{aligned}
$$

Numerically, the maximum resultant stress is the compressive stress found on the non-loaded side of the tooth, but in practice, fatigue failures in gear teeth generally begin at the fillet under tensile stress on the loaded side of the tooth. Taking the latter case as the criterion for stress analysis combining Equations (2.7.2) and (2.7.3)

$$
\left|\sigma_{\text {total }}\right|=\left|\sigma_{b}\right|-\left|\sigma_{c}\right|
$$

$$
\begin{aligned}
& =\left(\frac{W_{n}}{F_{W}}\right) \cos \theta_{L} \frac{6 h}{t^{2}}-\frac{\left(\frac{W_{n}}{F_{W}}\right) \sin \theta_{L}}{t} \\
& =\frac{W_{n}}{F_{W}}\left(\frac{6 h \cos \theta_{L}-t \sin \theta_{L}}{t^{2}}\right)
\end{aligned}
$$

However, by Equation (2.6.4), the total stress in bending may be modified using the transmitted load, so that

$$
\left|\sigma_{\text {total }}\right|=\frac{W_{t}}{F_{w} \cos \theta}\left|\frac{6 h \cos \theta_{L}-t \sin \theta_{L}}{t^{2}}\right|
$$

where θ represents the pressure angle. At the same time, from the geometry of Figure 2.7.1

$$
x=\frac{t^{2}}{4 h}
$$

which enables the equation to be further altered to

$$
\begin{equation*}
\left|\sigma_{\operatorname{tota} 1}\right|=\frac{W_{t}}{F_{W}}\left[\frac{\cos \theta}{\cos \theta} \frac{1.5}{x}-\frac{\tan \theta L}{t}\right] \tag{2.7.4}
\end{equation*}
$$

Expanding Equation (2.7.4) further by multiplying by D_{p} / D_{p} gives

$$
\begin{equation*}
\left|\sigma_{\text {total }}\right|=\frac{W_{t} D_{p}}{F_{W} y} \tag{2.7.5}
\end{equation*}
$$

where y is the modified Lewis Tooth Form Factor and is given by

$$
\begin{equation*}
y=\frac{D_{D}}{\frac{\cos \theta}{\cos \theta}\left(\frac{1.5}{x}-\frac{\tan \theta}{t}\right)} \tag{2.7.6}
\end{equation*}
$$

A photoelastic investigation by Dolan and Broghamer [38] established expressions for stress concentration correction factors
thus bringing Equation (2.7.6) closer to reality.
Further discussion of the tooth form factor and the stress correction factor will be continued in chapter 2.8A concerning geometry modifications factors. For the present, Equation (2.7.5) may be modified to take in a new geometry factor Q_{j}.

$$
\begin{equation*}
\left|\sigma_{\text {total }}\right|^{\prime}=\frac{W_{t} \cdot D_{p}}{F_{W} Q_{j}} \tag{2.7.7}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{j}=\frac{y}{Q_{f} M_{n}} \tag{2.7.8}
\end{equation*}
$$

and

$$
Q_{f}=\text { stress concentration factor }
$$

$M_{n}=$ load sharing ratio
With this formulation as a basis, the AGMA has introduced modification factors Q_{0}, Q_{s}, Q_{m} and Q_{r}, to bring the analysis closer to reality. These factors, discussed in later sections, enable the designer to establish the properties of the final design for special cases of loading. Knowing the allowable fatigue stress of the gear material, a feasible design within this limit may be found from the following, where $\left|\sigma_{\text {total }}\right|$ now becomes σ_{b}. The predicted stress is

$$
\begin{equation*}
\sigma_{b}=\frac{W_{t} D_{p}}{F_{w} Q_{j}}\left(\frac{Q_{0} Q_{s} Q_{m}}{Q_{v}}\right) \tag{2.7.9}
\end{equation*}
$$

and the critical stress is

$$
\begin{equation*}
\sigma_{b}^{\max }=\sigma_{F}\left(Q_{L} /\left(Q_{r} Q_{T}\right)\right) \tag{2.7.10}
\end{equation*}
$$

where

$$
\sigma_{F}=\text { allowable fatigue stress of the gear material }
$$

For no failure,

$$
\begin{equation*}
\sigma_{b} \leq \sigma_{b}^{\max } \tag{2.7.11}
\end{equation*}
$$

Since either empirical results or analytic solutions may be used to yield the stress factors, this type of formulation is much more flexible than any "true" theory developed which may be disproven in the future. Any stress given by the basic theory may form a ratio with any future analytic or experimental analysis to develop one of . these modification factors for "exact" design.

Equations (2.7.9) and (2.7.10) are employed in the computer program in Subroutine BEND, Appendix [A.9].

SUBROUTINE BEND(WT,DP,FW,QOD,QODL1,QODL2,QJ1,QJ2,SB1,SB2,SBM1,SBM2,SAF1, SAF2)

Use: To determine the actual and allowable bending stress.
Calling Sequence: This routine is called from Subroutine UREAL after the various modification factors are determined.

2.7A. 1 TOOTH LOADING

It must be remembered, however, that the magnitude of bending stress is highly dependent on the load location on the tooth. The worst possible case of loading would occur with one tooth bearing all the load at its tip. This situation occurs when the addendum circle of
the gear intersects with the line of action as illustrated in Figure 2.7.2.

FIGURE 2.7.2 Geometry of Tooth-Tip Loading

Using Equation (2.4.5) to determine the angle between the tooth centre line and the radial yector to the contact point on the tooth profile, the load angle can be evaluated as follows:

$$
\begin{align*}
& \theta_{L}=\cos ^{-1}\left(R_{b} / r\right)-\theta_{1} \tag{2.7.12}\\
& R_{L}=R_{b} / \cos \left(\theta_{L}\right) \tag{2.7.13}
\end{align*}
$$

where $r=$ radius to point of tooth contact
$R_{L}=$ load radius at tooth centre line
$\theta_{\mathrm{L}}=$ load angle
$\theta_{1}=$ angle between tooth centre line and radial vector to load point on tooth profile

Thus, by knowing the radius vector to the load point, the load radius and load angle may be determined using Equations (2.7.12) and (2.7.13). In the case of tip loading, $r=R_{0}$. To evaluate the load angle and radius of the succeeding tooth of the gear during tiploading, the load contact point may be determined using

$$
\begin{align*}
& z_{z z}=\left(R_{0}^{\left.2-R_{b}\right)^{\frac{1}{2}}}\right. \tag{2.7.14}\\
& z_{z}=z_{z z}-B_{p} \tag{2.7.15}\\
& R_{R}=\left(z_{z}^{2}+R_{b}\right)^{\frac{1}{2}} \tag{2.7.16}
\end{align*}
$$

and then employing Equations (2.4.5), (2.7.12) and (2.7.13) to find the load angle and radius.

The only problem existing in this form of analysis is to determine the radius to the point of contact on the line of action. Initial analysis by Lewis assumed that the application of the load at the tip of the tooth represented the worst case of loading. This assumption was not incorrect as even the best gears at that time were not very accurate and it was quite possible for a single tooth to bear all the load. However, as gears became more accurate, enabling load sharing to occur, the tip-load condition was not necessarily the most critical. Higher contact ratios and less error in present day gears enable a second pair of teeth to be in contact when one pair has reached the tip-load condition of one member. This worst load condition occurs when a single pair of teeth carrying full load continue contact to a point where a second pair are ready to come into contact, as pictured in Figure 2.7.3.

FIGURE 2.7.3 Geometry of Point of Highest Single Tooth Contact Loading

It can be readily seen that the contact point occurs one base pitch away from the initial point of contact. At the same time it must be visualized that tip-loading of one gear represents the midloading condition of the mating gear. By determining the radius to the desired point of contact, the foregoing analysis using Equations (2.4.5), (2.7.12) and (2.713) may be used to evaluate the load angle and radius. Thus, expanding the geometry of Figure 2.7.3 mathematically

$$
\begin{gather*}
Z_{a}=\left(R_{o_{m}}^{2}-R_{b_{m}}^{2}\right)^{\frac{1}{2}}-\left(R_{m}^{2}-R_{b_{m}}^{2}\right)^{\frac{1}{2}} \tag{2.7.17}\\
Z_{b}=\left(R_{o}^{2}-R_{b}^{2}\right)^{\frac{1}{2}}-\left(R^{2}-R_{b}^{2}\right)^{\frac{1}{2}} \tag{2.7.18}\\
Z=Z_{a}+Z_{b} \tag{2.7.19}\\
Z_{c}=B_{p}-Z_{a} \tag{2.7.20}
\end{gather*}
$$

and applying the law of cosines

$$
\begin{equation*}
r=\left(R^{2}+Z_{c}^{2}+(2 R)\left(Z_{c} \sin \phi\right)\right)^{\frac{1}{2}} \tag{2.7.21}
\end{equation*}
$$

yields the contact point radius. Following a similar procedure as for the tip-load case for determining the contact point radius of the succeeding tooth, the following results

$$
\begin{equation*}
Z_{z z}=\left(r^{2}-R_{b}^{2}\right)^{\frac{1}{2}} \tag{2.7.22}
\end{equation*}
$$

which can be coupled with Equations (2.7.15) and (2.7.16).
Thus, by knowing the contact radius, the load angle and radius may be evaluated using the previous analysis. The highest single tooth contact loading analysis, however, can only be assumed if the deformation of the gear teeth is enough to eliminate the base pitch error in the teeth due to profile and pitch tolerances during machining. Criteria for this will be discussed in the following sections.

The theory of this section is incorporated in the computer program in Subroutine LOAD, Appendix [A.7].

SUBROUTINE, LOAD(RL,ANGL,RLL,ANGLL,NLOAD,BP, PAR, PR, PRM, RB , RBM, RO, ROM ,TP)
Use: This routine determines the radius to the point of load application at the tooth centre line as well as the load angle for either tip-loading or point of highest single tooth contact loading. The load radius and load angle for the succeeding tooth are also determined.

Calling Sequence: This routine is called in Subroutine UREAL if the mode of loading is assumed by the user. If the user wishes the mode of loading to be determined by the computer program, the routine is called in Subroutine SHARE.

Special Features: If some of the logic statements in this routine seem redundant, it must be remembered that during the optimization search, solutions bordering on the limits of the theory or the limits of physical restrictions may be encountered. These logic statements restrict the analysis to acceptable computations within the limits of the computer. For example, r must be greater than R_{b} in the statement $\theta=\cos ^{-1}\left(R_{b} / r\right)$.

2.7A. 2 TOOTH DEFLECTION AND LOAD SHARING

As gear manufacturing improved, all properly designed gears with low errors had sufficient overlap of successive pairs of teeth to allow possible load sharing in the load zone at the beginning and end of contact. With this possibility arising, many gear designers believed that tip-loading was too drastic a load condition assuming that the highest bending stresses would occur down the face of the tooth below the tip, thus making gears designed by Lewis' assumptions stronger than necessary.

Timoshenko and Baud [48], Walker [40], Weber, and Van Zandt [39] are a few of the published sources of tooth deflection sources for load sharing analysis. Van Zandt's work seems to be the most widely accepted in North America with the AGMA basing a load sharing chart on his findings. In his paper Van Zandt states that his results were about 45% greater than that found by Weber while he says Weber found Walker's results to give 15 to 25% less deflection than according to Weber's calculations. With Van Zandt's results basically from experiment for one pressure angle system with no apparent empirical formulation to generalize for all designs, the writer decided to adapt Walker's empirical formula proportionately by the percentages indicated, to
assume a deflection equation close to Van Zandt's results. This seemed to be a correct procedure as Van Zandt stated in his paper that in the absence of more complete data he proportionately increased Weber's deflection curves (which were quite similar in shape to Walker's) to conform to the limited deflection tests Van Zandt had done at the time of the paper. Coupled with load distribution analysis given by Merritt [4] and a double tooth contact analysis by Buckingham [2], the author developed a load sharing analysis technique which hopefully gives reasonable results. Since no experimentation has been done to verify the procedure, no guarantee of the results can be given.

Walker's formula is closely related to the bending analysis used to evaluate the tooth form factor, in that it uses the chordal tooth thickness at the point of highest stress concentration on the fillet, the distance from the load application point on the tooth centre line to the tooth thickness chord, and the load angle at the load point to yield the deflection

$$
\begin{equation*}
\delta=K W_{n}^{\prime}\left(\frac{h_{1}}{t_{1} E_{1}} \cos \theta_{L}+\frac{h}{t_{2} E_{2}} \cos \theta_{L_{2}}\right) \tag{2.7.23}
\end{equation*}
$$

where $\quad \delta=$ deflection of both teeth at point of contact
$K=$ constant
$W_{n}{ }^{\prime}=$ load per inch face normal to the involute
$\mathrm{E}=$ modulus of elasticity (psi)
$\theta_{\mathrm{L}}=$ load angle (degrees)
$h, t=$ constant stress parabola properties (Figure 2.7.1) with the subscripts defining the two gears.

However, for linear stiffness ${ }^{\circ}{ }_{c}$,

$$
\begin{align*}
\rho_{c} & =\frac{W_{n}}{\delta} \tag{2.7.24}\\
& =\frac{F_{w} W_{n}^{\prime}}{\delta}
\end{align*}
$$

Thus

$$
\begin{equation*}
\rho_{c}=\frac{F_{W}}{K\left(\frac{h_{1}}{t_{1} E_{1}} \cos \theta_{L_{1}}+\frac{h_{2}}{t_{2} E_{2}} \cos \theta_{L_{2}}\right)} \tag{2.7.25}
\end{equation*}
$$

over the whole face width.
If the contact ratio is greater than one, the load is alternately carried by one and two pairs of teeth with the load divided between successive pairs of teeth in proportion to the respective combined stiffnesses at the points of contacts concerned, assuming the profiles and spacing are precise. Thus,

$$
\begin{align*}
& W_{n_{1}}=W_{n} \frac{{ }^{\rho} c_{1}}{{ }^{\rho} c_{1}{ }^{+\rho} c_{2}} \tag{2.7.26}\\
& W_{n_{2}}=W_{n} \frac{{ }^{\rho} c_{2}}{{ }_{\rho} c_{1}{ }^{+} \rho_{c_{2}}} \tag{2.7.27}
\end{align*}
$$

where the subscripts 1 and 2 refer to the two pairs of teeth loaded.
If, however, the second pair of teeth can not come in contact during the no load condition due to involute profile deviations, the initial pair of teeth must deflect by the amount of the error before the second pair of teeth can share the load. If the gap between the contact profiles of the two teeth is ε, the total load must be greater than $\varepsilon \cdot \rho_{c}$ before the second pair come into contact. Assuming the total load deflects the first pair of teeth, the load sharing is divided as
follows:

$$
\begin{align*}
& W_{n_{1}}=\frac{W_{n} \rho_{c_{1}}+\varepsilon \cdot \rho_{c_{1}} \cdot \rho_{c_{2}}}{\rho_{c_{1}}{ }^{+\rho} c_{2}} \tag{2.7.28}\\
& W_{n_{2}}=\frac{W_{n} c_{2}-{ }^{\varepsilon \cdot \rho} c_{1}{ }^{\cdot \rho} c_{2}}{\rho_{c_{1}}{ }^{+\rho} c_{2}} \tag{2.7.29}
\end{align*}
$$

Knowing the base pitch error (i.e. the error in action) along the line of action, the load proportions for tip-loading, and its successive pair, as well as point of highest single tooth contact loading (hereafter described as mid-loading), and its successive pair, are evaluated and compared for the worst stress condition. The actual worst stress may be determined from the Lewis theory directly since the relative magnitudes only are wanted. The worst stress condition, whether tip-loading or mid-loading, then becomes the prime stress criterion exclusive of any load sharing.

From the geometric development of the point of highest single tooth contact loading, it can be readily seen that for "perfect" gears, when one gear is in tip-loading, the mating gear is in midloading. It will also become obvious from Equations (2.7.28) and (2.7.29) that the worst load case for either tip-loading or mid-loading occurs when the mating pair under observation must deflect first before the following pair comes into contact. With the stiffnesses of the mating pairs specified in a given position of contact it is obvious that the
resultant tip-load, for example, necessary for tip deflection and load sharing, will be larger than the resultant tip-load from load sharing when the mid-loaded tooth deflected to achieve load sharing. Thus the eight possible loading combinations may be reduced with discussion centering on the four cases of tip and mid-loading for both the gear and pinion from the standpoint of initial deflection of each case.

If the bending stress for either pinion or gear tip-loading exceeds the mid-loading bending stress for either case, then the tiploading geometry factor for both gears will be used with the transmitted load for the actual bending stress analysis. On the other hand, the mid-loading geometry factors would be employed if the bending stress conditions were reversed.

The theory of this chapter has been incorporated in Subroutine SHARE [Appendix A.8] as a method of checking for load sharing. As the method demands more computation, it is suggested that a design be found for tip and mid-point loading and then test the "best" design for load sharing.

SUBROUTINE SHARE(ANGC1,ANGC2,ANGL1,ANGL2,BBY1,BBY2,BP,DP,E1,E2,ERR,FW, NCUT1,NCUT2,NNLOAD,PAD,PAR,PI, PR1,PR2,Q0,QV,QJ1,QJ2, RB1,RB2,RI1,RI2,RL1,RL2,RLL1,RLL2,RLM1,RLM2,R01,R02, RT1,RT2,TP1,TP2,WN)

Use: This routine determines if there is load sharing between successive pairs of teeth in a mating gear set. Analysis is made for tip and highest point of single tooth contact loading with the mode of loading producing the highest bending stress chosen for final stress analysis.

Calling Sequence: If the flag NLOAD=0 is called for Subroutine UREAL this analysis is carried out.

Special Features: The constant specified by Walker for Equation (2.7.23) was 14.0 from his experimental analysis. However, to partially conform with Van Zandt's this constant has been raised to 25.0.

2.7B WEAR STRESS

The previous sections have been concerned with the stress and strength of a gear tooth subjected to bending action. However, other modes of tooth failure occur affecting the surface of the tooth to produce failure. For example, pitting is a surface fatigue failure due to many repetitions of high contact stresses; scoring is a surface failure due to lubrication failure; abrasion is a surface failure due to the presence of foreign material. The combination of rolling and sliding motions of the gear tooth surfaces moving across each other cause additional compressive and tensile stresses to develop due to the sliding plus the coefficient of friction. Stress cycles during heavy loading result in both surface cracks and plastic flow on the contacting surface to bring about material failure on the tooth profile. Dudley [6], employing the work of Hertz [37], presented a derivation of an approximate solution to the surface fatigue stress problem, from which the AGMA developed their general formula similar in nature to the bending stress analysis.

From Hertz's analysis of two cylinders with axes parallel, as
in Figure (2.7B.1), the width of band of contact resultant from an applied load of F pounds over the length L is
where

$$
B=\left(\frac{16 F}{L} \frac{\left(K_{1}+K_{2}\right) r_{1} r_{2}}{\left(r_{1}+r_{2}\right)}\right)^{\frac{1}{2}}
$$

$$
\begin{aligned}
& K_{1}=\frac{1-v_{1}^{2}}{\pi E_{1}} \\
& K_{2}=\frac{1-v_{2}^{2}}{\pi_{2}}
\end{aligned}
$$

with $\quad v_{i}=$ Poisson's ratio
$E_{i}=$ modules of Elasticity

FIGURE 2.7B. 1 Hertzian Cylinders in Contact

At any instant of time when the tooth profiles are in contact, the surfaces of the teeth at those points may be considered cylinders with centres on the base circle, as illustrated in Figure 2.4.1 concerning involute development. Thus

$$
\begin{equation*}
B=\left(\frac{16 F\left(K_{1}+K_{2}\right)}{\pi L\left(\frac{1}{r_{1}}+\frac{l}{r_{2}}\right)}\right)^{\frac{1}{2}} \tag{2.7.31}
\end{equation*}
$$

The maximum compressive stress between the contacting surfaces of the cylinders is

$$
\begin{equation*}
\sigma_{W}=\frac{4 F}{\pi L B} \tag{2.7.32}
\end{equation*}
$$

Since the load transmitted acts along the line of action and the width of the tooth equals the face width, Equation (2.7.32) becomes

$$
\sigma_{w}=\frac{4 W_{n}}{\pi F_{w} B}
$$

from which, applying Equation (2.7.31)

$$
\begin{aligned}
\sigma_{w}^{2} & =\frac{16 W_{n}^{2}}{\pi^{2} F_{w}^{2}\left(\frac{16 W_{n}}{\pi_{w}}\left(\frac{K_{1}+K_{2}}{\frac{1}{r_{1}}+\frac{1}{r_{2}}}\right)\right)} \\
\sigma_{w} & =\left[\frac{W_{n}\left(\frac{1}{r_{1}}+\frac{1}{r_{1}}\right)}{\pi F_{w}\left(K_{1}+K_{2}\right)}\right]^{\frac{1}{2}} .
\end{aligned}
$$

but $W_{n}=\frac{W_{t}}{\cos \phi}$

$$
\sigma_{w}=\left[\frac{w_{t}}{\pi F_{w}\left(k_{1}+k_{2}\right)\left(\frac{r_{1} r_{2}}{r_{1}+r_{2}}\right)}\right]^{\frac{1}{2}}
$$

By multiplying the denominator of this equation by d / d, where d is the pinion pitch circle diameter

$$
\begin{equation*}
\sigma_{w}=\left[\frac{W_{t}}{F_{W} d}\left(\frac{1}{\pi\left(\frac{1-v_{1}^{2}}{E_{1}}\right.} \frac{\left.\frac{1-v_{2}^{2}}{E_{2}}\right)}{)}\right)\left(\frac{1}{\left(\frac{r_{1} r_{2}}{r_{1}+r_{2}}\right) \frac{\cos \phi}{d}}\right)\right]^{\frac{1}{2}} \tag{2.7.33}
\end{equation*}
$$

By specifying

$$
\begin{equation*}
C_{E}=\left[\frac{1}{\pi\left(\frac{1-v_{1}^{2}}{E} \frac{1-v_{2}^{2}}{E}\right)}\right]^{\frac{1}{2}} \tag{2.7.34}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{j}=\left[\left(\frac{r_{1} r_{2}}{r_{1}+r_{2}}\right) \frac{\cos \phi}{d}\right] \tag{2.7.35}
\end{equation*}
$$

then the basic wear stress equation becomes

$$
\begin{equation*}
\sigma_{W}=C_{E}\left(\frac{W_{t}}{F_{W} d C_{J}}\right)^{\frac{1}{2}} \tag{2.7.36}
\end{equation*}
$$

Using the Equation (2.7.33) as a basis, the AGMA developed a generalized surface durability equation using modification factors to establish a realistic design criterion. Knowing the allowable contact stress of the gear material, the following equations allow the designer within the limits of the modification factors to be discussed in later sections, to predict the wear capabilities of his design in regards to destructive pitting. The predicted stress is

$$
\begin{equation*}
\sigma_{W}=C_{E}\left[\frac{W_{t}}{F_{W} d}\left(\frac{C_{f} C_{m} C_{0} C_{s}}{C_{J} C_{V}}\right)\right]^{\frac{1}{2}} \tag{2.7.37}
\end{equation*}
$$

The allowable critical fatigue stress is

$$
\begin{equation*}
\sigma_{W} \max =\sigma_{C} \frac{C_{L} C_{H}}{C_{R} C_{T}} \tag{2.7.38}
\end{equation*}
$$

where

$$
\sigma_{C}=\text { allowable contact stress of the gear material }
$$

The design criterion is

$$
\begin{equation*}
\sigma_{W} \leq \sigma_{W}^{\max } \tag{2.7.39}
\end{equation*}
$$

Similar reasoning for the use of modification factors, as used for the bending equations, may also be applied here. The equations introduced in this section are incorporated in Subroutine WEAR, Appendix [A.10].

SUBROUTINE WEAR(COD,CODL1,CODL2,CE,CJ,FW,FW,PR1,SAC1,SAC2,SS1,SS2,SSM1, SSM2,WT)

Use: To determine the actual and allowable contact stress on the tooth face.

Calling Sequence: This routine is called in Subroutine UREAL after the bending stress is evaluated.

2.7C ALLOWABLE POWER

With Equations (2.7.9), (2.7.10), (2.7.37), and (2.7.38)
specifying the constraining equations of both bending and wear analysis, the maximum allowable horsepower transmitted by a gear set within the conditions specified may be evaluated. Since $\sigma_{b}{ }^{\text {max }}$ and $\sigma_{w}{ }^{\text {max }}$ represent the limits of the allowable stresses for bending and wear analysis, the maximum load to achieve this value can be calculated so that

$$
\frac{\sigma_{F} Q_{L}}{Q_{R} Q_{T}}=\frac{W_{t} Q_{0}}{Q_{V}} \frac{D_{p}}{F_{W}} \frac{Q_{S} Q_{m}}{Q_{J}}
$$

and

$$
{ }^{\sigma_{c}} \frac{c_{L} c_{H}}{C_{T} c_{R}}=C_{E}\left(\frac{W_{t} c_{0}}{c_{v}} \frac{c_{s}}{d F_{W}} \frac{c_{m} c_{f}}{c_{J}}\right)^{\frac{1}{2}}
$$

but $h_{p}=\frac{W_{t} \text { PLV }}{33,000}$
Specifying the allowable power in bending as PAB and the allowable power in wear as PAW, the following results

$$
\begin{align*}
& P A B=\frac{P L V}{33000} \frac{Q_{V} F_{W} Q_{J}}{D_{p} Q_{o} Q_{S} Q_{m}} \frac{Q_{L} \sigma_{F}}{Q_{R}} Q_{T} \tag{2.7.40}\\
& P A W=\frac{P L V}{33000} \frac{d F_{W} C_{V} C_{J}}{C_{o} C_{S} C_{m} C_{f}}\left({ }^{\sigma_{C}} \frac{C_{L} C_{H}}{C_{E} C_{R} C_{T}}\right)^{2} \tag{2.7.41}
\end{align*}
$$

However, with the pitch circle radius in inches, the pitch line velocity in feet per minute becomes

$$
\begin{equation*}
\operatorname{PLV}=\left(2 \pi n_{1} R_{1}\right) / 12 \tag{2.5.2}
\end{equation*}
$$

which changes Equations (2.7.40) and (2.7.41) to

$$
\begin{gather*}
\text { PAB }=\frac{\pi n_{1} F_{W}}{396,000} \frac{2 R_{1} Q_{V} Q_{J}}{D_{p} Q_{0} Q_{s} Q_{m}} \frac{Q_{L} \sigma_{F}}{Q_{R} Q_{T}} \tag{2.7.42}\\
\text { PAW }=\frac{\pi n_{1} F_{W}}{396,000} \frac{C_{J} C_{V}}{C_{s} C_{m} C_{f} C_{0}} \cdot\left[\frac{{ }_{c}{ }^{2} R_{1} C_{L} C_{H}}{C_{E} C_{T} C_{R}}\right]^{2} \tag{2.7.43}
\end{gather*}
$$

Knowing the values of the modification factors as well as gear and material properties, the maximum allowable horsepower transmitted by a gear set may be determined, giving some insight into the capabilities of the design. Subroutine POWER, Appendix [A.11], employs this theory in the computer program.

SUBROUTINE POWER(CE,CJ,COD,CODL1,CODL2,QJ1,QJ2,QOD,OODL1,QODL2,DP,FW,PAB1, PAB2,PAW1,PAW2,PI, PR1,RPM1,SAC1,SAC2,SAF1,SAF2)

Use: To determine the maximum allowable power that can be transmitted under wear and bending conditions for the pinion and gear.

Calling Sequence: Subroutine UREAL calls this routine after the wear and bending stress routines are cailed.

2.8 MODIFICATION FACTORS

The AGMA, in an effort to standardize design practice, developed the foregoing stress analysis so that future changes in the art could eas ily be incorporated in the analysis without a major renovation to the theory. The stress equations of both bending and wear are divided into three groups of terms concerned with the loading, the tooth size and the stress distribution as the following expressions indicate:

$$
\begin{align*}
\sigma_{b} & =\frac{W_{t} Q_{0}}{Q_{V}} \frac{D_{p}}{F_{W}} \frac{Q_{s} Q_{m}}{Q_{J}} \tag{2.7.9}\\
\sigma_{b}{ }^{\max } & =\frac{\sigma_{F} Q_{L}}{Q_{R} Q_{T}} \tag{2.7.10}\\
\sigma_{b} & \leq \sigma_{b}^{\max } \\
\sigma_{W} & \left.=C_{E}\left(\frac{W_{t} C_{0} C_{s}}{C_{v}} \frac{C_{m} C_{f}}{d_{w}}\right)^{C_{J}}\right)^{\frac{1}{2}} \tag{2.7.37}\\
\sigma_{W}^{\max } & =\sigma_{C} \frac{C_{L} C_{H}}{C_{T} C_{R}} \tag{2.7.38}\\
\sigma_{W} & \leq \sigma_{W}^{\max } \tag{2.7.39}
\end{align*}
$$

where
$\sigma_{b} \quad=$ calculated tensile bending stress at the root of
the teeth, psi
$\sigma_{W}=$ calculated contact stress
$C_{E}=$ elastic coefficient
teeth, inches
$C_{S}=$ size factor
$\underset{\text { distribution }}{\text { stress }}\left\{\begin{array}{l}Q_{s}=\text { size factor } \\ Q_{m}, C_{m}=\text { load distribution factor } \\ Q_{J}, C_{J}=\text { geometry factor } \\ C_{f}=\text { surface finish factor }\end{array}\right.$
$\sigma_{C} \quad=$ allowable compressive stress, psi
$R_{L}, C_{L}=1 i f e$ factor
$Q_{T}, C_{T}=$ temperature factor
$Q_{R}, C_{R}=$ factor of safety (reliability factor)
$C_{H} \quad=$ hardness ratio factor

The subsequent sections will present the AGMA standards used in the above analysis along with modifications of these standards used in the computer program. It will be readily seen that future stress formulas created from new theory can form ratios with the "base" theory for development of the above factors. The computer programs have the same flexibility, as each factor is developed independently in individual subroutines. Similar factors for wear and bending will be developed in the same sections.

The derivation of the following factors are extracted from various AGMA standards mentioned in the references.

2.8A GEOMETRY FACTORS INCLUDING STRESS CONCENTRATION

From the development of the base bending stress formula in Chapter 2.7, the tooth form factor

$$
\begin{equation*}
Y=\frac{D_{p}}{\frac{\cos \theta_{L}}{\cos \theta}\left(\frac{1.5}{x}-\frac{\tan \theta_{L}}{t}\right)} \tag{2.7.6}
\end{equation*}
$$

was derived and modified by Dolan and Broghamer's stress concentration factor [38] to give the bending stress geometry factor

$$
\begin{equation*}
Q_{J}=\frac{Y}{Q_{f}^{m} n} \tag{2.7.8}
\end{equation*}
$$

The geometry factor evaluates the shape of the tooth, the position at which the most damaging load is applied, stress concentration due to geometric shape, and the sharing of load. Accurate spur gears develop the most critical stress when the load is applied at the highest
point of tooth where a single pair of teeth is carrying all the load. Less accurate spur gears, having errors that prevent two pairs of teeth from sharing the load, may be stressed most heavily when load is applied at the tip. Load sharing was discussed in Section 2.7A.2.

Figure 2.7.1 illustrates the tooth form factor layout used for any general load application on the tooth. Using some of the geometrical relationships of this figure, equation (2.7.6) was derived. The Dolan and Broghamer stress correction factor employs similar relationships for the equation

$$
\begin{equation*}
Q_{f}=c_{1}+\left(\frac{t}{r_{f}}\right)^{c_{2}}\left(\frac{t}{h}\right)^{c_{3}} \tag{2.8A.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{h}=\text { distance } \mathrm{fm} \text { from Figure 2.7.1 } \\
& \mathrm{t} / 2=\text { distance me from Figure 2.7.1 }
\end{aligned}
$$

and

$$
\begin{equation*}
r_{f}=r_{T}+\frac{\left(b-r_{T}\right)^{2}}{R R_{0}+\left(b-r_{T}\right)} \tag{2.8A.2}
\end{equation*}
$$

with

$$
r_{f}=\text { radius of curvature of fillet }
$$

$$
r_{T}=\text { edge radius of tool }
$$

$$
R R_{0}=\text { the relative radius of curvature of the pitch }
$$ circle of the gear and the pitch line of the generating tool. For generation by a rack or hob, R_{0} equals the pitch radius R of the gear being generated. For generation by a pinion shaped cutter, $1 / R R_{0}=1 / R+1 / R_{c}$ where R_{c} is the pitch radius of the cutter.

b = dedendum of gear
From experimental analysis the constants of Equation (2.8A.1) are tablulated as follows:

TABLE 2.8A.1
Values of C_{1}, C_{2} and C_{3} of Equation 2.8A.1

Pressure Angle	C_{1}	C_{2}	C_{3}
$14 \frac{3}{2}^{\circ}$	0.22	0.20	0.40
20°	0.18	0.15	0.45
25°	0.14	0.11	0.50

For other pressure angles not presented in the above table, values for the constants may be obtained using linear interpolation or extrapolation.

The stress correction factor actually depends on the effective stress concentration, location of load, plasticity effects, residual stress effects, material composition effects, surface finish resulting from gear production or service, Hertz stress effects, size effects and end of tooth effects. With this many factors affecting the stress concentration, the analytic method presented can only be expected to give approximate results for all situations.

The load sharing ratio, m_{n}, is influenced by the contact ratio, but may be taken as 1 , since the most critical position of spur gear load application normally occurs when only one tooth is in contact.

The geometry values from Figure 2.7.1 can be determined graphically following the procedure outlined in AGMA standard for Rating the Strength of Spur Gear Teeth (AGMA 220.02), or using an iterative method developed for the computer using basic theory. Redrawing Figure 2.7.1 to include the radius to a point on the fillet, Figure 2.8A. 1 illustrates an iterative process to detemine the highest stress point on the fillet.

FIGURE 2.8A.1 Geometrical Determination of Highest Stress Point on the Fillet

According to Appendix [C1 and C2], the parabola of constant stress will be tangent to the fillet at point e when $h_{1}=h_{2}$. This relationship may be expanded to give a function

$$
\begin{aligned}
F\left(R_{F}\right) & =h_{1}-h_{2}=0 \\
& =-\left[\frac{t / 2}{\tan \theta_{2}}-\left(R_{L}-R_{F} \cos \theta_{1}\right)\right]
\end{aligned}
$$

$$
+\left(R_{L}-R_{F} \cos \theta_{1}\right)
$$

but

$$
\begin{aligned}
\frac{t}{2} & =R_{F} \sin \theta_{1} \\
f & =+\left(2.0 R_{L}-R_{F}\left(2.0 \cos \theta_{1}+\left(\sin \theta_{1} / \tan \theta_{2}\right)\right)\right) \\
\theta_{2} & =\psi t-\theta_{1}
\end{aligned}
$$

or
and
therefore

$$
\begin{equation*}
F\left(R_{F}\right)=2 R_{L}-R_{R}\left(2 \cos \theta_{1}+\left(\sin \theta_{1} / \tan \left(\psi_{t}-\theta_{1}\right)\right)\right) \tag{2.8A.3}
\end{equation*}
$$

Thus, solving for the root of this equation employing the linear search and false position technique outlined in Appendix [B], the geometric relations for the tooth form factor and the stress correction factor can be derived. The profile and tangent angle of the fillet with respect to the centre of the gear may be determined using the equations developed in Chapter 2.4.

From the extended theory of the Lewis technique, the limiting load radius would occur when the constant stress parabola becomes tangent to the fillet at the dedendum circle, at which point the tangent angle $\psi_{t}=90^{\circ}$ and the vectorial angle $\theta_{1}=\theta_{c}$, where θ_{c} is the angle between the tooth centre line and the origin of the fillet curve at the dedendum circle, with a fillet radial vector equal to the dedendum circle radius. Since $h_{1}=h_{2}$ is a necessary requirement in the theory for the constant stress parabola assumption to exist, then

$$
\begin{equation*}
R_{L}^{\min }=R_{I}\left(\cos \theta_{C}+0.5 \frac{\sin \theta_{c}}{\tan \left(\frac{\pi}{2}-\theta_{c}\right)}\right) \tag{2.8A.4}
\end{equation*}
$$

which results from setting $\theta_{\perp}=\theta_{C}, R_{F}=R_{I}$ and $F\left(R_{F}\right)=0$ Equation (2.8A.3)

This analysis has been used in Subroutine JFACT [Appendix A.12]
and Subroutine CWALL [Appendix A.13]for computed geometry factor determination.

SUBROUTINE CWALL (BBY,ANGC,ANGR,NCUT,PI,PR,RI,RL,RRF,RRO,RT)
Use: This subroutine calculates, in radial coordinates with respect to the centre of the gear referenced to the centre line of the tooth, the point on the tooth fillet considered the location of highest stress concentration.

Calling Sequence: Subroutine JFACT calls this routine as part of the development of geometry factor used in bending analysis.

Special Features: Because of the nature of the fillet equations, the function Equation (2.8A.3) is discontinuous thus preventing a gradient solution. The linear search and false position technique enables the desired solution to be found. Since the parabola of the physically limiting case would be tangent to the fillet at the dedendum circle, this was chosen as the first point in the iterative process. The step length from this point was chosen arbitrarily as 10% of the distance between the dedendum cirlce radius and the radius where the tangent angle to the trochoid becomes zero. A check to prevent divergence on the discontinuous portion of the curve was also employed.

In the case of the sharp cornered cutter tooth, the trochoid of the corner represents the fillet, thus the angle between the radial vector and the tangent line to the fillet can be computed directly from the theory. However, for rounded corner cutter teeth the angle between the radial vector and the tangent line to the fillet can not be computed from the trochoid tangent angle but must be altered slightly as in Equation (2.4.18). The program was developed using the above theory and was only modified slightly to incorporate the root determination technique.

SUBROUTINE JFACT(ANGC,ANGL, BBY, DP ,NCUT, PAD, PAR, PI ,PR,RI, RL, RLM, RT, H, T, QJ, Y)

Use: This subroutine calculates the geometry factor and the tooth form factor for spur gear bending stress analysis. The minimum load application radius possible for tooth form factor analysis by the Lewis technique is also calculated.

Calling Sequence: Depending on the method used to determine the point of load application, this routine can be called from either Subroutine UREAL or Subroutine SHARE. Computer calculated load points call this routine from Subroutine SHARE while user specified load points require this routine in Subroutine UREAL.

Special Features: If the computed load radius during the analysis exceeds the minimum limit, Equation (2.8A.4), then the iterative solution is bypassed, the load point is assumed to be at the limit and the analysis is continued. As an added feature, the Dolan and Broghamer Equation (2.8A.1) with its constants from TABLE (2.8A.1) has been generalized by developing linear equations for the constants using the $14 \frac{1}{2}^{\circ}$ and 20° pressure angles as base points for equation determination.

As in the bending stress analysis, the wear geometry factor results from the derivation of contact stress on the tooth profile, Section 2.7B. The geometry factor, Equation (2.7.35), extracted from Equation (2.7.33), acts as the base equation for the general mathematical development. The greatest contact stress occurs at the lowest point of single tooth contact of the pinion where the sliding velocity and friction factor of the tooth profiles would be greatest and the relative radius of curvature of the two involute profile would also be the smallest, thus forcing the stress to be greatest. From Figure (2.8A.2) the geometry factor is

$$
\begin{equation*}
c_{J}=\left(\frac{r_{1} r_{2}}{r_{1}+r_{2}}\right) \cdot\left(\frac{\cos \phi}{d}\right) \tag{2.7.35}
\end{equation*}
$$

FIGURE 2.8A. 2 Lowest Point of Single Tooth Contact
with $\quad r_{1}, r_{2}=$ radii of curvature of pinion and gear involute at point of contact
$\mathrm{d}=$ pinion pitch circle diameter
$\phi=$ pressure angle
This can be changed to

$$
\begin{aligned}
C_{J} & =\left[\frac{\left(R_{1} \sin \phi-Z_{c}\right)\left(R_{2} \sin \phi+Z_{c}\right)}{\left(R_{1} \sin \phi-Z_{c}\right)+\left(R_{2} \sin \phi+Z_{c}\right)}\right] \frac{\cos \phi}{2 R_{1}} \\
& =\frac{\cot \phi}{2 R_{1}}\left[\frac{R_{1} R_{2} \sin ^{2} \phi-Z_{c} \sin \phi\left(R_{2}-R_{1}\right)-Z_{c}^{2}}{\left(R_{1}+R_{2}\right)}\right] \\
& =R_{1} R_{2} \frac{\cot \phi}{2 R_{1}}\left[\frac{\sin ^{2} \phi-Z_{c} \sin \phi \frac{1}{R_{1}}-\frac{1}{R_{2}}-\frac{Z_{c}^{2}}{R_{1} R_{2}}}{R_{1}+R_{2}}\right]
\end{aligned}
$$

But

$$
m_{g}=\frac{R_{2}}{R_{1}}=\text { gear ratio }
$$

therefore, expanding the above equation

$$
\begin{equation*}
C_{J}=0.5 \cot \phi\left(\frac{m_{g}}{m_{g}+1}\right)\left(\sin +\frac{Z_{c}}{R_{2}}\right) \quad\left(\sin \phi-\frac{Z_{c}}{R_{1}}\right) \tag{2.8A.5}
\end{equation*}
$$

and from Figure 2.8A.1

$$
\begin{align*}
& Z_{a}=\sqrt{R_{o_{1}}^{2}-R_{b_{1}}^{2}}-\sqrt{R_{1}^{2}-R_{b_{1}}^{2}} \tag{2.8A.6}\\
& Z_{b}=\sqrt{R_{o_{2}}^{2}-R_{b_{2}}^{2}}-\sqrt{R_{2}-R_{b_{2}}^{2}} \tag{2.8A.7}\\
& Z_{c}=B_{p}-Z_{a} \tag{2.8A.8}
\end{align*}
$$

In the computer program, the above theory is used in Subroutine IFACT [Appendix A.14] to evaluate the wear geometry factor.

SUBROUTINE IFACT(BP,CJ,PAR,PR1,PR2,RATI0,RB1,K01)
Use: This routine determines the geometry factor for the worst case of surface loading at the point of lowest single single tooth contact.

Calling Sequence: Subroutine UREAL calls this routine when evaluating the other modification factors.

Special Features: As can be seen from the AGMA wear stress equation, the contact stress would tend to infinity when the geometry factor approached zero. To avoid this during the optimization, the geometry factor is set to an arbitrary zero of 10^{-50} if $\left(\sin \phi-Z_{C} / R_{1}\right) \leqslant 0$.

2.8B ELASTIC COEFFICIENT

The elastic coefficient term of the wear stress analysis comes from the contact stress in Equation (2.7.33), and is defined by

$$
\begin{equation*}
C_{E}=\left[\frac{1}{\pi\left(\frac{1-\nu_{1}^{2}}{E_{1}}+\frac{1-\nu_{2}^{2}}{E_{2}}\right)}\right]^{\frac{1}{2}} \tag{2.7.34}
\end{equation*}
$$

where $v=$ Poisson's ratio

$$
E=\text { modulus of elasticity }
$$

with subscripts 1 and 2 representing the pinion and the gear, respectively.
This analysis of pinion and gear properties is used in Subroutine EFACT [Appendix A.15].

SUBROUTINE EFACT(CE,E1,E2,PI,U1,U2)
Use: To determine the elastic coefficient for the surface stress analysis..

Calling Sequence: This routine is called from Subroutine SPUR with other modification factors not affected by variable changes during optimization.

2.8C DYNAMIC (VELOCITY) FACTOR

The bending and wear stress analysis have both been computed using the average transmitted load, while in actual fact there will be load fluctuations. The dynamic load is due to vibrations in the geared system which produce sudden accelerations of the gears, followed by impact loading when the mating gear teeth come back into mesh. The nature of the tooth vibrations is affected by the inertia and stiffness of all rotating elements, the rotational and pitch line. speeds, the tooth spacing and profile errors, the magnitude of transmitted load per inch of face and the tooth stiffness. Shipley [7, Chapter 14] has traced some of the works of the many investigators, and states that they are not in full agreement as to the maner in which dynamic load effects should be evaluated. He suggests that Buckingham's method [2] seems to be the proper approach to use considering the state of the art.

The fundamental Buckingham equation for dynamic load determination is

$$
\begin{equation*}
W_{d}=W_{t}+\left(W_{a}\left(2 W_{2}-W_{a}\right)\right)^{\frac{1}{2}} \tag{2.8C.1}
\end{equation*}
$$

where
$W_{d}=$ dynamic load, 1bs
$W_{t}=$ transmitted load, 1bs
$W_{a}=$ acceleration load, 1bs
$W_{2}=$ force required to deform teeth through amount of effective error, lbs
with the acceleration load defined as

$$
\begin{equation*}
W_{a}=\frac{W_{1} W_{2}}{W_{1}+W_{2}} \tag{2.8C.2}
\end{equation*}
$$

where

$$
\begin{aligned}
W_{1}= & \text { average force required to accelerate the masses when they } \\
& \text { are considered as absolutely rigid, lbs }
\end{aligned}
$$

The forces may be defined as

$$
\begin{equation*}
W_{1}=\left[\frac{\tan \phi(1-\cos \phi)}{150 \phi^{2}}\right]\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) m(P L V) \tag{2.8C.3}
\end{equation*}
$$

where

$$
\begin{aligned}
\phi & =\text { pressure angle } \\
R & =\text { pitch radius, inches } \\
m & =\text { effective mass influence at gear pitch line, slugs } \\
\text { PLV } & =\text { pitch line velocity, fpm }
\end{aligned}
$$

with

$$
\begin{equation*}
m=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \tag{2.8C.4}
\end{equation*}
$$

and

$$
m_{1} \text { and } m_{2}=\text { effective masses acting at pitch line of }
$$ pinion and gear respectively, slugs

while

$$
\begin{equation*}
W_{2}=W_{t}\left[\frac{e}{d}+1\right] \tag{2.8C.5}
\end{equation*}
$$

where $e=$ measured error in action, inches
$\mathrm{d}=$ deformation of the teeth at the pitch line caused by load W_{t}, inches
Buckingham then presented deformation formulas determined by Timoshenko and Baud [48] to calculate the amount of deflection for teeth under load conditions. At the same time an approximation for mid-tooth deflection based on experimental results was given for use in the dynamic analysis. Since that time more work has been done on deflection analysis without a concrete analytic or emperical formula being presented. With no dependable formula being given for deformation analysis except for a modified Walker formula (Chapter 2.7A. 2 on Tooth Deflection and Load Sharing) coupled with the vast disagreement of dynamic load analysis, as well as the difficulties in specifying the elemental properties of a design, the author decided to use the less. formal approach specified by the AGMA $[24,26]$.

The following three formulas are given by the AGMA:

$$
\begin{array}{ll}
c_{v} \text { or } Q_{v}=1.0 & \begin{array}{l}
\text { for high precision shaved or ground } \\
\text { spur gears where no appreciable } \\
\text { dynamic load is developed }
\end{array} \\
c_{v} \text { or } Q_{V}=\left(\frac{78}{\left.78+P L V^{\frac{1}{2}}\right)^{\frac{1}{2}}}\right. & \begin{array}{l}
\text { for high precision shaved or ground } \\
\text { spur gears where dynamic load is } \\
\text { developed }
\end{array} \\
c_{V} \text { or } Q_{V}=\frac{50}{50+P L V^{\frac{1}{2}}} & \begin{array}{l}
\text { for spur gears finished by hobbing } \\
\text { or shaping }
\end{array}
\end{array}
$$

Initially, the more accurate gears are made, the more precise the mountings will be. On this premise the author felt that dynamic loads would then also be a function of AGMA quality number representative of the profile or tooth spacing errors. Thus six equations of the same
form suggested by the AGMA have been used in the program to determine the velocity factor. These equations, illustrated in Figure 2.8C.1, are

$$
\begin{array}{ll}
c_{V_{1}}=\frac{600}{600+P L V} & \text { NQUAL }=3,4,5 \\
c_{V_{2}}=\frac{1200}{1200+P L V} & \text { NQUAL }=6,7 \\
c_{V_{3}}=\frac{50}{50+P L V^{\frac{1}{2}}} & \text { NQUAL }=8,9 \\
c_{V_{4}}=\frac{78}{78+P L V^{\frac{1}{2}}} & \text { NQUAL }=10,11,12 \\
c_{v_{5}}=\left[\frac{78}{78+P L V^{\frac{1}{2}}}\right]^{\frac{1}{2}} & \text { NQUAL }=13,14,15 . \\
c_{V_{6}}=1.0 & \text { NQUAL }=16 \\
Q_{V}=c_{V} & \tag{2.8C.12}
\end{array}
$$

where NQUAL is the AGMA quality number

FIGURE 2.8C. 1 Velocity Factor C_{V}

These equations are used in Subroutine VFACT [Appendix A.16] to evaluate the dynamic effect in the computer program.

If in the future a more acceptable method of dynamic load determination becomes available to the user, it can be easily incorporated in the program with the appropriate variables listed in the labelled common blocks and called through the argument list of the new subroutine. By taking the ratio of the transmitted load to the dynamic load, the new velocity factor is determined for use in the stress analysis.

SUBROUTINE VFACT(CV,QV,NQUAL,PLV)
Use: To determine the velocity (dynamic) factor for the stress analysis.

Calling Sequence: Subroutine UREAL calls this routine once the pitch line velocity has been specified.

2.8D LOAD DISTRIBUTION FACTOR

When the load distribution across the tooth face does not. result in 100% contact due to misalignment of the axes of rotation, cutting errors and elastic deflection of the teeth, gear blank, shafts, bearings and housing, the resulting load concentration raises the stress on the tooth. To compensate for this higher stress the rated strength of the teeth must be increased. The AGMA standards [24,26] present an empirical technique for the load distribution factor determination if the misalignment is known. This technique employs a few equations coupled with some empirical curves, from which the distribution factor may be found. However, in this computer program, it was assumed that a loading analysis, general enough for use in an optimization routine, may not present the flexibility the user requires. An alternative solution,
employed in the program, uses an empirical curve also developed in the same AGMA standards, shown in Figure 2.8D.1. This curve, from the AGMA standards [24,26], coupled with Table 2.8D.1 from AGMA standard [27] was the basis for the analysis in the program. Since the factors representing the most accurate conditions on the chart fall along the curve, and assuming that the quality of the gear, expressed by the AGMA quality number, intuitively represents the accuracy of the assembly, a relationship between the load distribution factor from the curve and the gear quality was derived. The curve representing the most accurate conditions was divided into three portions for analysis as follows:

$$
\begin{align*}
F_{W} \leqslant 2.0^{\prime \prime} \quad c_{m}^{\prime}= & 1.3 \tag{2.8D.1}\\
2.0^{\prime \prime}<F_{W}<18.0^{\prime \prime} \quad c_{m}^{\prime}= & -9.6282 \times 10^{-8} F_{W}{ }^{6} \\
& +6.33757 \times 10^{-6} F_{W}^{5} \\
& -1.5862 \times 10^{-4} \mathrm{~F}_{\mathrm{W}}{ }^{4} \\
& +1.82424 \times 10^{-3} \mathrm{~F}_{\mathrm{W}}^{3} \\
& -9.30188 \times 10^{-3} \mathrm{~F}_{\mathrm{W}}{ }^{2} \\
& +4.82409 \times 10^{-2} \mathrm{~F}_{\mathrm{W}} \\
& +1.22786 \tag{2.8D.2}\\
\mathrm{~F}_{\mathrm{W}} \geqslant 18.0^{\prime \prime} \quad \mathrm{c}_{\mathrm{m}}^{\prime}= & \frac{F_{\mathrm{w}}}{0.45 F_{\mathrm{W}}+2.0} \tag{2.8D.3}
\end{align*}
$$

Equation (2.8D.2) results from a curve fitting routine using points taken from the curve, while Equation (2.8D.2) is suggested by the AGMA standard.

FIGURE 2.8D.1 Load Distribution Factor C_{m}

TABLE 2.8D.1 Load Distribution Factor Q_{m}

Condition of Support	Face width, in.			
	2 in and under	6 in.	9 in.	16 in. and under
Accurate mountings, low bearing clearances, minimum elastic deflection, precision gears.	1.3	1.4	1.5	1.8
Less rigid mountings, less accurate gears, contact across face.	1.6	1.7	1.8	2.0
Accuracy and mounting such that less than full face contact exists.				

Gear qualities greater than the AGMA quality number 14 were assumed perfect and the above values were used unmodified. However, lower gear qualities of AGMA quality numbers $3-14$ were assumed to follow the arbitrary formula derived in coordination with Table 2.8D.1, so that

$$
\begin{equation*}
Q_{m}=c_{m}=c_{m}^{\prime}+0.9 \frac{(15-N Q U A L)}{12} \tag{2:8D.4}
\end{equation*}
$$

where NQUAL $=$ AGMA quality number. The Equations (2.8D.1) (2.8D.2) and (2.8D.3) provide a useful guide for the load distribution factor as long as the ($\frac{\text { face width }}{\text { pinion pitch diameter }}$) ratio does not exceed 2. Ratios above this limit suggest that a more detailed analysis should be followed. The above formulas are incorporated in the computer analysis in Subroutine MFACT, Appendix [A.17].

SUBROUTINE MFACT(CM,QM,FW,NQUAL)
Use: This routine determines the load distribution factor for the stress analysis.

Calling Sequence: Subroutine UREAL calls this subroutine when the other modification factors are evaluated.

2.8E OVERLOAD FACTOR

The overload factor makes allowances for the roughness or smoothness of operation of both the driving and driven apparatus. Specific overload factors can only be established after considerable field experience is gained in a particular application. In determining the overload factor, consideration should be given to the fact that many prime movers develop momentary overload torques appreciably greater than those determined by the name plate ratings of either the prime
mover or the driven apparatus. Since specific overload factors could not be employed in the computer analysis, Table 2.8 E .1 , extracted from the AGMA standards $[24,26]$ has been incorporated in the program in equation form.

TABLE 2.8E. 1			
Overload Factors C_{0}, Q_{0}			
Power Source	Character of Load on Driven Machine		
	Uniform	Moderate Shock	Heavy Shock
Uniform	1.00	1.25	$1.75+$
	1.25	1.50	$2.00+$
	1.50	1.75	$2.25+$

This table is for speed decreasing drives only. For speed increasing drives, the quantity, $0.1\left|\frac{n_{G}}{n_{p}}\right|^{2}$ is added to the above factors.

Service factors have been established where field data is available for specific applications. These service factors include not only the overload factor, but also the life factor and factor of safety. If a specific service factor is used in place of the overload factor $\left[c_{0}, Q_{0}\right]$, use a value of 1.0 for C_{R}, Q_{R} and C_{L}, Q_{L}. The mathematical expressions for Table 2.8E.1 is

$$
\begin{equation*}
c_{0}=\frac{\left(\text { driven }^{2}-\text { driven }+2 d \text { river }+6\right)}{8} \tag{2.8E.1}
\end{equation*}
$$

where driven = 1.0 load on driven machine - uniform

$$
=2.0 \text { load on driven machine - moderate }
$$

$=3.0$ load on driven machine - heavy
and

$$
\begin{aligned}
\text { driver } & =1.0 \text { power source }- \text { uniform } \\
& =2.0 \text { power source }- \text { light shock } \\
& =3.0 \text { power source }- \text { medium shock }
\end{aligned}
$$

This is developed for the computer in Subroutine OFACT, Appendix [A.18]. Equation (2.8E.1) reproduces Table 2.8E.1 exactly with the above values, while interpolation or extrapolation may be accomplished by using different driven and driver values.

SUBROUTINE OFACT (CO,QO,DRIVEN,DRIVER,NDRIVE,RATIO)
Use: To determine the overload factors for the stress analysis.

Calling Sequence: Called in Subroutine UREAL when other modification factors developed.

2.8F SIZE FACTOR

The size factor, which reflects the effect of dimensions on the uniformity of material properties, depends primarily on tooth size, gear diameter, face width, ratio of tooth size to gear diameter, area of contact pattern, ratio of case depth to tooth size and hardenability and heat treatment of materials. Standard size factors for spur gear teeth have not yet been estabiished for cases where there is a detrimental size effect. The size factor may be taken as unity for most spur gears provided a proper choice of steel is made for the size of the parts and the case depth or hardness pattern is adequate. Subroutine SFACT, Appendix [A.19], sets the size factor in the computer program.

SUBROUTINE SFACT(CS,QS)

Use: This routine determines the size factor for the stress analysis.

Calling Sequence: Subroutine SPUR calls this routine during the initial execution of the design. If in the future the size factor becomes dependent on variables in the design, the routine could be altered and placed in Subroutine UREAL to become part of the optimi.zation procedure.

2.8G SURFACE CONDITION FACTOR

The surface condition factor depends on the surface finish as affected by cutting, shaving, lapping, grinding, shot peening, and the like, and also depends on residual stress and plasticity effects from work hardening. It may be taken as unity when a good surface is developed by either processing or run-in. With no other information available, the surface condition factor was set as 1 in Subroutine FFACT, Appendix [A.19] the computer routines.

SUBROUTINE FFACT(CF)

Use: To determine the surface condition factor for wear stress analysis.

Calling Sequence: Called in Subroutine SPUR along with the other modification factors not dependent on variable quantities.

2.8H HARDNESS RATIO FACTOR

The hardness ratio factor depends on the gear ratio and the hardness of the pinion and gear material. Table 2.8H.1 offers some typical hardness combinations used in design.

TABLE 2.8H.1

Typical Hardness Combinations	
GEAR (BHN)	PINION (BHN)
180	210
210	245
225	265
245	285
255	300
270	315
285	335
300	350

Figure 2.8H.1, extracted from the AGMA standards $[24,26]$, may be used as a guide for the hardness ratio factor employed in the design process.

Single Reduction Gear Ratio
FIGURE 2.8H.1 Hardness Ratio Factor C_{H}
where $K=\frac{\text { Brinell of Pinion }}{\text { Brinell of Gear }}$
and for $K<1.2$ use $C_{H}=1.0$
To give the graph in Figure 2.8H. 1 a degree of generality, a mathematical expression was fitted to this family of lines so that intermediate points could be extracted.

$$
\begin{equation*}
c_{H}=\left(0.052808 K^{0.225683}-0.052632\right)\left(\frac{n_{G}}{n_{p}}-1.0\right)+1.0 \tag{2.8H.1}
\end{equation*}
$$

Subroutine HFACT, Appendix [A.20], uses Equation (2.8H.1) in the design analysis to evaluate the hardness ratio factor.

SUBROUTINE HFACT(BHN1,BHN2,RATIO,CH)
Use: To determine the hardness ratio factor for surface stress analysis.

Calling Sequence: As this analysis is not dependent on any program related variables, this routine is called by Subroutine SPUR.

2.8I LIFE FACTOR

The life factors Q_{L} and C_{L} adjust the allowable loading for the required number of cycles to account for the change in fatigue strength as a function of the loading cycles. The fatigue strength versus life cycles curve known as an S-N diagram has been determined for steel producing curves similar to Figure 2.8I.1

The curve becomes horizontal for steel at the fatigue or endurance limit after a certain number of cycles, indicating that for working stresses below this limit, failure will not occur regardless of the number of stress cycles. By determining the ratio of fatigue strength to fatigue limit at a particular life cycle, the life factor

FIGURE 2.8I.1 Typical S-N Diagram for Stee]

FIGURE 2.8I.2 Life Factor C_{L}

FIGURE 2.81.3 Life Factor Q_{L}
may be determined. Since the curve never becomes horizontal for nonferrous metals and alloys, these materials do not have an endurance limit.

The life factors suggested by the AGMA standards [24,26] are for steel assuming that the endurance limit will occur at 10^{7} life cycles for all steels recommended by AGMA in the standards. From the available data the fatigue curve for pitting may be represented by Figure 2.8I.2. Mathematically, this curve has been formulated as

$$
\begin{array}{ll}
C_{L}=2.575607 C Y C L E E^{-0.058697} & \text { for CYCLE }<10^{7} \\
C_{L}=1.0 & \text { for } C Y C L E \geqslant 10^{7} \tag{2.8I.2}
\end{array}
$$

The life factors for bending analysis were plotted to give curves as in Figure 2.81 .3 with a mathematical formulation of

$$
\begin{align*}
& Q_{L}{ }^{160}=2.335254 \text { CYCLE }^{-0.056092} \tag{2.8I.3}\\
& Q_{L}^{250}=5.236361 \text { CYCLE }^{-0.112266} \tag{2.8I.4}\\
& Q_{L}{ }^{450}=9.626709 \text { CYCLE }^{-0.150709} \tag{2.8I.5}
\end{align*}
$$

Using the three hardness curves to determine the life factor for the required cycles, linear interpolation utilizing the following equations may be used to determine the life factor for the particular material hardness.

$$
\begin{align*}
& Q_{L}=Q_{L}{ }^{160}+\frac{B h n-160}{250-160}\left(Q_{L}^{250}-Q_{L}^{160}\right) \tag{2.8I.6}\\
& Q_{L}=Q_{L}^{250}+\frac{B h n-250}{450-250}\left(Q_{L}^{450-Q_{L}}{ }^{250}\right) \tag{2.8I.7}
\end{align*}
$$

When using material other than steel in the computer program, the life cycles factor, CYCLE may be set greater than 10^{7} with the
actual fatigue strengths of the material at the desired life replacing the endurance limits in the bending and wear stress analysis.

The values for steel are incorporated in the computer program Subroutine LFACT, Appendix [A.21].

SUBROUTINE LFACT(BHN,CYCLE,CL,QL)
Use: To determine the life factor for stress analysis.
Calling Sequence: Subroutine SPUR calls the routine during initial execution when the modification factors of program independent variables are tabulated.

2.8J RELIABILITY FACTOR

The reliability factors, Q_{R} and C_{R} were introduced by the AGMA to offer the designer an opportunity to design for a specified reliability. However, the data is rather crude, as shown in Table 2.8J. 1 from the AGMA standards [24,26]. Failure in this table does not mean an immediate failure under applied load, but rather a shorter life than the minimum specified.

TABLE 2.8J. 1
Reliability Factors C_{R} and Q_{R}

Requirement of Application	C_{R}	Q_{R}
High reliability	$1.25+$	$1.50+$
Fewer than 1 failure in 100	1.00	1.00
Fewer than 1 failure in 3	$0.80 * *$	0.70

** At this value, plastic profile deformation might occur rather than pitting.

As the AGMA table does not provide adequate information for a mathematical development, an intuitive expression was developed using the above factors as a base. Arbitrarily, the factor of safety was assumed to increase linearly from $66-2 / 3 \%$ to 99% and then logarithmically above 99\%, according to the following equations:

$$
\begin{align*}
& \text { Reliability } \leqslant 0.99, C_{R}=0.773196 \text { RELI }+0.234536 \tag{2.8J.1}\\
& \text { Reliability }>0.99, C_{R}=0.444444\left(\frac{1}{1-R E L I}\right) 0.176091 \tag{2.8J.2}
\end{align*}
$$

The factor of safety of Equation (2.8J.2) goes to infinity if the reliability becomes 100%, which is intuitively true. Some intermediate values of Equation (2.8J.2) are tabulated in Table 2.8J.2 for reference.

TABLE 2.8J. 2

Some Intermediate Values of Equation 2.8J.2	
Reliability $\%$	C_{R}.
66.67	0.750
99.00	1.000
99.30	1.065
99.5	1.130
99.7	1.236
99.9	1.50
99.99	2.250

In the computer program these values are evaluated in Subroutine RFACT, Appendix [A.22].

SUBROUTINE RFACT(CR,QR,RELI)
Use: To determine the factor of safety for the stress analysis.

Calling Sequence: Subroutine SPUR calls this routine during the initial execution.

Special Features: If a reliability of greater than or equal to 100% is presented to the routine, the reliability is reset to 99.99\%.

2.8K TEMPERATURE FACTOR

From the AGMA standards $[24,26]$ the temperature factors Q_{T} and C_{T} can generally be taken as unity when the gears operate with $0 i 1$ or gear blank temperatures not exceeding 250 degrees F. In some instances, it is necessary to use $\dot{a} Q_{T}$ and C_{T} value greater than unity for carburized gears operating at oil temperatures above 180 degrees F for wear analysis factor, C_{R} or above 160 degrees F for bending analysis factor, Q_{T}.

The following equations are used in the computer program in Subroutine TFACT, Appendix A. 23 in all cases:

$$
\begin{array}{ll}
T_{F}<160, & Q_{T}=1.0 \\
T_{F}<180, & C_{T}=1.0 \\
T_{F} \geqslant 160, & Q_{T}=\frac{460+T_{F}}{620} \\
T_{F} \geqslant 180, & C_{T}=\frac{460+T_{F}}{640} \tag{2.8K.4}
\end{array}
$$

SUBROUTINE TFACT(CT,QT,TEMP)
Use: To determine the temperature factor for the stress analysis.

Calling Sequence: Subroutine SPUR calls this routine during the initial execution.

2.8L OVERALL DERATING FACTORS

The various factors thus far developed may be regarded as safety factors to the original Lewis and Hertzian analysis. With these factors as part of the numerator and denominator of the stress equations, an overall feeling for the magnitude of this factor of safety can not be found. Lumping these terms into one factor gives the designer a better insight into the problem than can all the separate values. These following equations do not have any design significance other than a coagulation of many separate terms.

$$
\begin{align*}
& Q_{O D}=\frac{Q_{m} Q_{0} Q_{S}}{Q_{V}} \tag{2.8L.1}\\
& C_{O D}=\frac{C_{F} C_{m} C_{0} C_{S}}{C_{V}} \tag{2.8L.2}\\
& C_{O D}^{L}=\frac{C_{H} C_{L}}{C_{R} C_{T}} \tag{2.8L.3}\\
& Q_{0 D}^{L}=\frac{Q_{L}}{Q_{R} Q_{T}} \tag{2.8L.4}
\end{align*}
$$

Subroutine FACTOR, Appendix [A.24], groups all these terms for use in the computer program.

SUBROUTINE FACTOR(CF ,CH,CL1,CL2,QL1,QL2,CM, QM,CO, QO,CR, QR,CS, QS,CT,QT, $C V, Q V, C O D, C O D L 1, C O D L 2, Q O D, Q 0 D L 1, Q O D L 2)$

Use: This routine groups all the individual modification factors into an overall factor used in the stress analysis.

Calling Sequence: Once all the modification factors are called in Subroutine UREAL, this routine is called.

Special Features: It must be noted that there are two life terms for each type of stress analysis. Since the number of loading cycles for the gear and pinion are different proportional to the gear ratio, the overall life derating factors for the pinion and gear are different.

2.9 UNDERCUTTING AND INTERFERENCE

For an involute profile, conjugate action can not take place below the base circle, which is that formed by a tangent circle drawn from the gear centre to the path of contact. If the initial point of contact of the driven gear is outside this point of tangency, so that the tip of the driven tooth is forced into contact with the flank of the driver below the base circle, then conjugate action is not secured, because this portion of the flank is not of involute shape and interference occurs. When the tooth profiles are generated by the cutting tools there is no interference, because the flank of the driver is
undercut. However, this weakens the base of the tooth. Further insight into this problem may be gained from Chapter $2.4 B$ on fillet profiles. This section in the chapter on the tooth profiles--involute and fillet--illustrates how the interference and undercutting phenomenon occurs. Equations given in Chapter 2.4 B can also be used to bypass the above problem during the design process.

With part of the involute profile removed by undercutting, the length of contact also decreases, resulting in a lower contact ratio. Also, the thinning of the base of the tooth due to undercutting weakens the tooth. Several methods are available to eliminate undercutting or
interference but each is accompanjed by detrimental effects which must be weighted in the design. For example, by increasing the number of teeth, interference can be eliminated but if the gears are to transmit a given amount of power, then more teeth can only be used by enlarging the pitch diameter. This increases the gear size and pitch line velocity, which is usually undesirable. At the same time, the increased pitch line velocity results in noisier gears and reduced power transmission. A more acceptable solution is to increase the pressure angle, creating a smaller base circle so that a greater portion of the tooth profile has an involute shape. Although a larger pressure angle means that fewer teeth may be employed with correspondingly smaller gears, the frictional forces and bearing loads are increased.

As outlined at the conclusion of Chapter 2.4B, Subroutine FILLET and Subroutine CUTTER develop the geometry factors which suggest whether interference or undercutting occurs. Equations (2.4.19), (2.4.20) and (2.4.21) act as a basis for constraining the design to non-undercut conditions. To prevent interference in the design, we must have $R_{0} \leq R_{m}$, where R_{0} is addendum circle radius and R_{m} is defined by Equation (2.4.26). A further constraint prevents the addendum of one gear to be larger than the dedendum of the mate. These inequality constraints are dealt with in Subroutine CONST of the optimization routines.

2.10 CONTACT RATIO

Correct geometry in order to secure smooth and continuous action is a necessary requirement to successfully design a gear set,
especially if the number of teeth are reduced. The length of tooth contact must be long enough to ensure an overlap between a successive pair of mating teeth. Care must be taken not to reduce this contact duration below a satisfactory minimum value, even if the teeth are undercut. The length of contact is a relatively simple geometric condition to evaluate analytically for non-undercut gears. However, the shortening of the length of contact due to undercutting adds a further complication to the analysis. M. F. Spotts [35] predicts the effects of undercutting in hobbed spur gear teeth, thus giving an insight into the lost action from undercutting. If the general method of contact ratio evaluation is coupled with Spotts' work, the contact length and contact ratio for both undercut and non-undercut conditions can be determined rapidly by the computer program.

FIGURE 2.10.1 Geometry of Length of Contact Determination

We define the contact ratio as the ratio of the length of contact to the base pitch, since the base pitch is the interval between successive tooth profiles along the path of contact. The contact ratio, m_{c} becomes

$$
m_{c}=\frac{A B}{B_{p}}
$$

from Figure (2.10.1). The length AP may be defined as the length of approach 1_{a}, while length $P B$ is the length of recess 1_{r}, and the angles subtended at the centre of both gears by these lines are the angle of approach, θ_{a}, and the angle of recess, θ_{r}, respectively. Mathematically, these lengths may be expressed as

$$
\begin{aligned}
& A P=\left(R_{O_{2}}{ }^{2}-R_{b_{2}}{ }^{2}\right)^{\frac{1}{2}}-R_{2} \sin \phi \\
& P B=\left(R_{O_{1}}{ }^{2}-R_{b_{1}}{ }^{2}\right)^{\frac{1}{2}}-R_{1} \sin \phi
\end{aligned}
$$

or in terms of $A B$

$$
\left.A B=\left(R_{O_{1}}{ }^{2}-R_{b_{1}}\right)^{2 \frac{1}{2}}+\left(R_{O_{2}}{ }^{2}-R_{b_{2}}\right)^{2}\right)^{\frac{1}{2}}-C_{d} \sin \phi
$$

since $C_{d}=R_{1}+R_{2}$. Thus the contact ratio for non-undercut gears becomes

$$
\begin{equation*}
m_{c}=\frac{\left(R_{\mathrm{o}_{1}}{ }^{2}-\mathrm{R}_{\mathrm{b}_{1}}{ }^{2}\right)^{\frac{3}{2}}+\left(\mathrm{R}_{\mathrm{o}_{2}}{ }^{2}-\mathrm{R}_{\mathrm{b}_{2}}{ }^{2}\right)^{\frac{1}{2}}-\mathrm{C}_{\mathrm{d}} \sin \phi}{\mathrm{~B}_{\mathrm{p}}} \tag{2.10.1}
\end{equation*}
$$

As a point of clarification, Equation (2.10.1) may yield a correct value of contact ratio for undercut gears if the addendum of the mating gear crosses the path of contact at a point closer to the pitch point than the undercut portion of the gear involute. In Spotts' paper, referred to above, he defines the circle passing through the fillet-involute intersection at undercut conditions as the undercut circle, and states that the loss of contact is equal to the distance
between the pressure line-base circle tangency and the point where the undercut circle crosses the path of contact. Thus, from Figure 2.10.2, the last action occurs along the line AC which leaves $C P$ as the only contact length. Using Figure 2.4.1 from the involute profile development, and the theory of Chapter 2.4A, we get

$$
\begin{align*}
\alpha & =\cos ^{-1}\left(R_{b} / r_{c}\right) \tag{2.10.2}\\
C P & =R_{b}(\tan \phi-\tan \alpha) \tag{2.10.3}
\end{align*}
$$

By knowing the radius to the involute-fillet intersection during undercut, the loss of contact length can be determined using Equations (2.10.2) and (2.10.3). Splitting the contact length into two parts, length of approach and length of recess, the contact ratio of all possible undercut and non-undercut combinations can be evaluated simply, since with a gear set subject to conditions of undercut and non-undercut, only four possible combination sets can exist. The mathematical

FIGURE 2.10.2 Loss of Contact Due to Undercut
determination of the radius of the undercut circle has been explained in Chapter 2.4B, and the description of Subroutine FILLET to evaluate this radius was also given at the conclusion of Chapter 2.4B. The determination of the contact ratio for all conditions is developed for the computer in Subroutine CONRAT, Appendix [A.25], Subroutine LENGTH, Appendix [A.26] and Subroutine FILLET [A.2].

SUBROUTINE CONRAT (ANGC1,ANGC2,BP, CRATIO,NCUT1,NCUT2,NDRIVE,PAR, ,PR1, PR2, RB1, RB2, RI1,RI2, R01, R02, RU1,RU2,TP1,TP2, $X L A, X L R, B B A 1, B B A 2, B B X 1, B B X 2, B B Y 1, B B Y 2, R T 1, R T 2)$

Use: To determine the contact ratio for non-undercut and undercut conditions and the length of approach and recess for the gear set.

Calling Sequence: This routine is called in Subroutine UREAL when all the geometric features of the gear are specified. Subroutine LENGTH and Subroutine FILLET are only called if an undercut gear set combination arises, otherwise this routine functions without any other programs.

Special Features: A simple method to determine the undercut non-undercut combination used in the design is employed at the beginning of the routine and is self-explanatory from comments included in the routine. The extra long argument list used in this routine is only necessary for the most part in determining the undercut contact ratio.

SUBROUTINE LENGTH(ANGC, NCUT, PAR, PR,RB,RI,RO,RU,TP, BBA, BBX, BBY,RT, $X X X)$

Use: This routine determines the length of contact from the undercut circle to the pitch point for undercut conditions.

Calling Sequence: Subroutine CONRAT only calls this routine when undercut conditions arise. Subroutine FILLET is employed by this routine to find the radius of the undercut circle.

2.11 EFFICIENCY

Although spur gears are a very efficient method of transmitting power (in the range of 98 percent or more), designers of ten require reliable efficiency information because this small friction loss can cause considerable concern since it must be dissipated as heat throughout the gear system. In applications where large amounts of power are being transmitted, the efficiency becomes very important.

Buckingham [2] develops the efficiency equations with the coefficient of friction first assumed constant and then variable.

Actual tests [9] made of the power losses with spur gears indicate that the general form of the curves representing the average coefficients of friction plotted against sliding or pitch line velocities, is similar to graphs representing the performance of plain bearings. Merritt [4] also presents a technique similar to Buckingham's constant friction factor technique in his development of the efficiency of spur gears. Buckingham began with the following rather unrealistic assumptions: perfectly shaped and equally speced involute teeth, a constant normal pressure at all times between the teeth in engagement, when two or more pairs of teeth carry the load simultaneously, the normal pressure is shared equally between them. He then developed the following equations for efficiency:

$$
\begin{equation*}
\text { Efficiency }=1-\left[\frac{1+\left(1 / m_{g}\right)}{A_{a}+A_{r}}\right] \frac{f}{2}\left(A_{a}{ }^{2}+A_{r}{ }^{2}\right) \tag{2.11.1}
\end{equation*}
$$

when the coefficient of friction is assumed as constant

$$
\begin{equation*}
\text { Efficiency }=1-\left[\frac{1-(1 / m)}{B_{a}+B_{r}}\right]\left(\frac{f_{a}}{2} A_{a}{ }^{2}+\frac{f_{r}}{2} A_{r}{ }^{2}\right) \tag{2.11.2}
\end{equation*}
$$

when the average coefficients of friction of approach and recess are different, where

$$
\begin{aligned}
m_{g} & =\text { gear ratio } \\
A_{a}, A_{r} & =\operatorname{arc} \text { of approach and recess on driver, respectively } \\
f & =\text { average coefficient of friction } \\
f_{a} & =\text { average coefficient of friction of approach } \\
f_{r} & =\text { average coefficient of friction of recess }
\end{aligned}
$$

and

$$
\begin{align*}
& A_{a}=\frac{\left(R_{0_{2}}{ }^{2}-R_{b_{2}}{ }^{2}\right)^{\frac{1}{2}}-R_{2} \sin \phi}{R_{b_{1}}} \tag{2.11.3}\\
& A_{r}=\frac{\left(R_{0_{2}}{ }^{2}-R_{b_{1}}{ }^{2}\right)^{\frac{1}{2}-R_{1}} \sin \phi}{R_{b_{1}}} \tag{2.11.4}
\end{align*}
$$

with the subscripts 1 and 2 referring to the driver and driven gear respectively.

For general use, the constant coefficient of friction Equation (2.11.1) is used for simplicity. However, the coefficient of friction is not constant but varies with different loads, speeds, lubricants and gear materials, as well as different types of surface finishes. Actual tests have indicated that, at low speeds, the values of the coefficient of friction are high, reducing rapidly to a minimum with increasing speed, and then rising again slowly with further increases in speed. After pointing out that the nature of the sliding between involute gear teeth consists of sliding in one direction during approach, reducing to zero at the pitch point where the direction of sliding changes and increases again as the contact progresses through the recess action. Buckingham states that, since the direction of sliding
changes at the pitch point, the coefficient of friction could never be wholly within the field of perfect film lubrication during the period of engagement of a pair of mating teeth. He also observed that the friction of approach appeared to be about double that of recess on hobbed, milled and shaped gears of cast iron, soft steel, bronze and aluminum, while on hardened and ground steel gears, the friction factors seemed equal for approach and recess at low speed. From the research an empirical formula was suggested (for friction factor in terms of sliding velocity) from the tests on soft steel.

$$
\begin{equation*}
f=\frac{0.050}{e^{0.125 v_{s}}}+0.002 \sqrt{v_{s}} \tag{2.11.5}
\end{equation*}
$$

Also, from what was mentioned previously

$$
\begin{align*}
& f_{a}=\frac{4}{3} f \tag{2.11.6}\\
& f_{r}=\frac{2}{3} f \tag{2.11.7}
\end{align*}
$$

For the lack of adequate general information, Equations (2.11.2) to (2.11.7) have been employed in the computer Subroutine EFFIC to evaluate efficiency. Since the empirical formula used to determine the average coefficient of friction was developed using soft steel, the resultant analysis will not be exact for all applications. As long as steel is used as gear material, however, the efficiencies resultant from this analysis will be slightly lower than the exact values. If future developments produce an average coefficient of friction factor dependent on lubrication and material properties, it can be substituted for the friction analysis already incorporated. Further analyșis may
also determine the correct proportions of the approach and recess friction factors related to the average.

Subroutine EFFIC, Appendix [A.27] incorporates the foregoing analysis in the computer design.

SUBROUTINE EFFIC(EFF, RB1,RB2, PAR,PLV,RATIO,NDRIVE,XLA, XLR)

Use: To determine the frictional efficiency of the gear set.

Calling Sequence: This routine is called from Subroutine UREAL.
Special Features: Two assumptions are made when using this routine. The average coefficient of friction equation developed by Buckingham [2] represents the friction factor for all gear materials, and the friction of approach is $1-1 / 3$ times the average friction factor and the friction of recess is $2 / 3$ times the average friction factor.

2.12 TOLERANCES

Not unlike any manufactured item, the dimensions of gears are subject to specified permissible variations. These tolerances constitute a complex area of gear specification which directly affects gear performance, materials and finishes, fabrication and inspection techniques and cost.

The American Gear Manufacturers Association (AGMA) handbook [31] recommends gear specifications for quality, material, treatment and measuring methods and practices. For convenience and simplicity, gearing selections are identified by an AGMA class number, consisting of a Quality Number identifying specific tooth element tolerances, a letter indicating tooth thickness tolerance and two letters followed by a
number indicating material, treatment and hardness. This particular section of the spur gear design deals only with tooth element and thickness tolerances with no regard to material specifications. The higher the quality number, the more precise the gearing will be and the closer the tolerances. The cost of fabricating a gear set is a direct function of the tolerances specified and this is related to the quality number. A more in-depth discussion of cost will be given in Chapter 2.15A.

Only certain tooth element tolerances and their centre distance tolerance will be evaluated here since a lot information in this area has not been standardized. For this reason many of the dimensions, such as gear blank dimensions, are not toleranced and must be taken as "worst-case" conditions with the user specifying the tolerances desired. References [7, Chapter 9; 10] present a comprehensive appraisal of tolerances in gear design.

The tolerance equations discussed in this chapter represent a standardized method of error determination employed by most manufacturers. Tolerances evolving from these equations can be obtained by the majority of manufacturers operating in conjunction with the AGMA suggested values. Knowing the degree of error obtainable for a particular Quality Number, gear elements such as tooth thickness and backlash requirements may be evaluated as part of further gear design analysis.

The tooth element tolerances -- runout, pitch, profile tooth-totooth composite and total composite tolerances -- are all determined from the same basic inspection set up, illustrated in Figure 2.12.1

FIGURE 2.12.1 Composite Action Setup

FIGURE 2.12.2 Composite Action Error Plot

When the working gear rolls in tight mesh against the master "perfect" gear, the deviation from the true centre distance, pictured in Figure 2.12.2, will be representative of the errors in the working gear. In this work any reference to a "variation" means the actual amount of error while a "tolerance" refers to the allowable amount of "variation".

The AGMA handbook, previously mentioned, presents typical values for use in gear calculation of the design process. If runout, pitch and profile tolerances are specified, they should be in lieu of the composite action tolerances and vice versa. Although all suggested tolerances are represented by equations, the runout pitch, profile and composite action tolerances may be considered valid only for diametral pitches below $20 D_{p}$ while the composite action tolerances are also valid for diametral pitch above $20 \mathrm{D}_{\mathrm{p}}$. Some ambiguity in this AGMA handbook exists in the diametral pitch range of the tolerance equations for runout, profile and pitch tolerances.

The runout is the total variation of the distance between a surface of revolution and an indicated surface measured perpendicular to the surface of revolution.

Detrimental effects may result from these variations since the teeth may bind during a portion of the mesh if an adequate amount of backlash is not provided.

Runout may include the effects of eccentricity, out of roundness profile variation, spacing and tooth thickness variation. Eccentricity may be due to
a) single eccentricity caused by the difference in centres used
during cutting and running, and/or distortions in mounting, b) multiple eccentricity of a cyclical nature caused by errors in machine tools, cutting tools and lack of rigidity in set up, and c) irregular runout caused by hardness variation in the gear blank, the cutting tool's inability to cut to a constant depth, or by heat treatment distortions.

From Figure 2.12.1 and 2.12.2 the runout variation on the centre distance between working and master gears is equal to the difference of the total composite tolerance and the tooth-to-tooth composite tolerance.

$$
\begin{equation*}
e_{\text {runout }}=e_{T C}-e_{T T C} \tag{2.12.1}
\end{equation*}
$$

An AGMA suggested equation for runout tolerance is

$$
\begin{equation*}
\operatorname{TOL}_{R}^{\prime}=59(2 R)^{0.238}\left(D_{p}\right)^{-0.484}(1.4)^{\left(8-Q_{n}\right)} \tag{2.12.2}
\end{equation*}
$$

where

$$
\begin{aligned}
R & =\text { pitch radius (inches) } \\
D_{p} & =\text { diametral pitch } \\
Q_{N} & =A G M A \text { quality number } \\
T O L_{R} & =\text { runout tolerance }
\end{aligned}
$$

However, Equation (2.12.2) returns tolerances in ten-thousandths of an inch, which was altered for the computer to

$$
\begin{equation*}
T O L_{R}=T O L_{R}{ }^{\prime}\left(10^{-4}\right) \tag{2.12.3}
\end{equation*}
$$

These equations reproduce tolerances tables presented in the same AGMA standard and, therefore, must be considered valid for designs of diametral pitch less than $20 \mathrm{D}_{\mathrm{p}}$.

The pitch tolerance is the allowable amount of pitch variation, which in turn, is the difference between pitch and the measured distance between any two adjacent teeth, as illustrated in Figure 2.12.3.

FIGURE 2.12.3 Pitch Variation Measurement

While the pitch for circular gears is the theoretical length of a circular arc, actual checking is accomplished by measuring a chordal dimension shown as A. Tooth-to-tooth spacing is a measurement of three adjacent profiles in the same manner as Figure 2.12.3.

Since these pitch errors indicate the tooth-to-tooth spacing, a potent source of gear noise arises from pitch errors. The frequency and the rate of change of the pitch errors from tooth-to-tooth are important factors in gear noise since more objectionable notes result from higher frequencies, while the rate of change of pitch error coupled with profile errors affects the angular acceleration and impact forces between the teeth. Pitch errors usually represent the departures of the cutting edge position relative to the motion of the member which drives the cutter and the departure of the work from uniform angular velocity relative to the motion of the cutter.

An AGMA suggested equation for pitch tolerance is

$$
\begin{equation*}
T O L_{\text {PITCH }}^{\prime}=10.5(2 R)^{(0.177)}\left(D_{p}\right)^{(-0.224)}(1.42)^{\left(8-Q_{n}\right)} \tag{2.12.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { TOL }_{\text {PITCH }}^{\prime}=\text { TOL }_{\text {PITCH }}\left(10^{-4}\right) \tag{2.12.5}
\end{equation*}
$$

Similar to the runout tolerances, the suggested tolerances for pitch are valid for designs of diametral pitch less than 200 p .

The profile error is the variation of the shape of a tooth as evaluation from its root to its tip, exclusive of root and tip modifications. Excluding distortion during heat treatment, the principal sources of profile error arise from inaccuracies of the generating cutter tooth profile, errors in setting the generating cutter, and departures from uniformity of the motion between cutter and work. Excess of metal from the true profile represents a positive error. while a deficiency of metal, a negative error. The profile tolerance is normally designated as the width of a specified envelope enclosing the positive-negative error as in Figure 2.12.4.

--......actual profile - theoretical profile
--- tolerance envelope

FIGURE 2.12.4 Profite Error

An AGMA suggested equation for profile tolerance is

$$
\begin{equation*}
\text { TOL }_{\text {PROFILE }}^{\prime}=21.5(2 R)^{0.154}\left(D_{p}\right)^{(-0.435)}(1.4)^{8-Q_{n}} \tag{2.12.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{TOL}_{\text {PROFILE }}=\text { TOL }_{\text {PROFILE }}^{\prime}\left(10^{-4}\right) \tag{2.12.7}
\end{equation*}
$$

Similar to runout and pitch tolerances, the suggested tolerances for pitch are valid for designs of diametral pitch less than $20 \mathrm{D}_{\mathrm{p}}$.

Another error quite similar to the pitch error would be the base pitch error measured along the line of action. Knowing the magnitude of this error for both gears of a mesh, the error in action would be given directly. The error in action is the amount of error between the contacting faces of the following tooth pair. When the teeth deform, it is the magnitude of the error in action which determines whether the following pair of teeth will share part of the load. Since no formulas or standard measurements have been given to determine the error in action, Dudley [6] gives an approximation for this error as the sum of the pitch error plus half the profile error for each gear. This relationship is employed in Subroutine UREAL before going into the load sharing analysis of Subroutine SHARE.

Composite action is the variation in centre distance when a work gear is roiled in tight mesh with a master "perfect" gear as in Figures 2.12.1 and 2.12.2. The tooth-to-tooth composite variation and the total composite variation can be evaluated by means of master gears which have smaller errors than those expected in the gears to be inspected. The total composite error specification combines the effect of runout,
pitch, profile and tooth thickness errors. The tooth-to-tooth composite error also results from the combined effect of the foregoing errors but only reflects variations in successive teeth.

AGMA suggested equations for tooth-to-tooth composite tolerance and total composite tolerance are

1) Tooth-to-tooth composite tolerance (TTCT)

$$
\begin{equation*}
T T C T=54.7\left(D_{p}\right)^{(-0.48)}(2 R)^{(-0.24)}(1.4)^{\left(8-Q_{n}\right)} \tag{2.12.}
\end{equation*}
$$

for the number of teeth $\leqslant 20$

$$
\begin{equation*}
T T C T=38.2\left(D_{p}\right)^{(-0.36)}(2 R)^{(-0.13)}(1.4)^{\left(8-Q_{n}\right)} . \tag{2.12.9}
\end{equation*}
$$

for 20 < number of teeth $\leqslant 32$
and \quad TTCT $=25\left(D_{p}\right)^{(-0.24)}(1.4)^{(8-Q n)}$
for number of teeth >32
2) Total Composite Tolerance (TCT)

$$
\begin{gather*}
T C T=15\left|\frac{20.2}{D_{p}}\right|^{0.24\left(D_{p}\right)^{(-0.15)}} 1.16^{(10-x)}(1.4)^{\left(8-Q_{n}\right)} \\
-(0.075)\left(20 D_{p}\right)\left[\left(20 / D_{p}\right)-(2 R)\right] \tag{2.12.11}
\end{gather*}
$$

for number of teeth ≤ 20.2

$$
T C T=14.5\left[(2 R)^{\left.\left.(0.24)\left(D_{p}\right)^{(-0.15)}\right](1.16)^{(10-x)}(1.4)^{\left(8-Q_{n}\right)}\right) .}\right.
$$

for number of teeth > 20.2
where

$$
\begin{equation*}
X=\left[5.0337 \log _{10}\left(D_{p}\right)\right]-0.5153 \tag{2.12.13}
\end{equation*}
$$

This analysis will provide valid tolerances for the diametral pitch range of $0.5 \mathrm{D}_{\mathrm{p}}$ to $200 \mathrm{D}_{\mathrm{p}}$.

The tooth thickness tolerances are to be interpreted as the maximum permissible variation of tooth thickness of all of the teeth in all of the gears made in accordance with a specific specification. These values, therefore, are the allowable range in thickness between the thinnest and the thickest teeth of any gear. The theoretical or basic tooth thickness of a gear is customarily equal to one half of its circular pitch on its standard pitch circle. Unless otherwise specified, the actual maximum tooth thickness on an unassembled gear will generally be slightly less than the theoretical value, since the manufacturer usually makes an allowance for some backlash at mesh (discussed in next section). The minimum tooth thickness will be somewhat less than maximum since a machining tolerance on tooth size is required. A table, taken from the AGMA handbook, gives sugges ted tooth thickness tolerance classes for spur gears from which the following equations were approximated and compared with the discrete values in Figure 2.12.5.

Specifying the tooth thickness tolerance as e_{T}

$$
\begin{equation*}
\mathrm{e}_{\mathrm{T}}=0.075807 \mathrm{D}_{\mathrm{p}}^{-0.653066} \tag{2.12.14}
\end{equation*}
$$

for $D_{p}<10.0$

$$
\begin{equation*}
\mathrm{e}_{\mathrm{T}}=0.37423 \mathrm{D}_{\mathrm{p}}{ }^{-0.978801} \tag{2.12.15}
\end{equation*}
$$

for $D_{p} \geqslant 10.0$

FIGURE 2.12.5 Comparison of AGMA Suggested Tooth Thickness Tolerances with Approximating Equations

The five classes A, B, C, D, E have been represented in the computer employing Equations (2.12.14) and (2.12.15) as class A. Thus, the tooth thickness tolerances may be specified in general as

$$
\begin{equation*}
\left[e_{T}\right]_{n}=\frac{e_{T}}{2^{(n-1)}} \tag{2.12.16}
\end{equation*}
$$

where

$$
n=1,2,3,4,5 \text { for the five classes } A \text { to } E \text {. }
$$

These tolerances represent the tooth thickness variation at the design pitch circle evaluated by measuring instruments such as calipers.

An alternative method of measuring tooth thickness tolerance is to measure centre distance variations for an intimate meshing of master and test gear as illustrated in Figure 2.12.1 Michalec [10] describes a method of relating this composite action variation to the tooth thickness of the test gear, knowing the various properties of the master gear. However, this technique requires information concerning the master gear which would restrict the usage of the computer program. As a simplifying approximation [34], a geometrical relationship results from the tooth separation, illustrated in Figure 2.12.6.

FIGURE 2.12.6 Tooth Thickness Variation with Centre Distance Change
which yields

$$
\begin{equation*}
\frac{\Delta t}{2}=\Delta C_{d} \tan \phi \tag{2.12.17}
\end{equation*}
$$

Although this is not as accurate as the composite action tooth thickness determination, it is adequate for most gear work. With backlash specified empirically, the need for more accuracy is not generally required. However, if high precision is absolutely necessary in the backlash determination, Michalec's technique should be utilized with known master gear specifications.

Since actual graphs of composite action similar to Figure 2.12.2 produce reasonably smooth variations which could be approximated by a sine function such that, if the total composite error was predominently runout, then the instantaneous centre distance variation would be

$$
\begin{equation*}
\Delta C_{d}=\left(\frac{e_{T C^{-e} T T C}}{2}\right) \sin \theta \tag{2.12.18}
\end{equation*}
$$

where θ is the gear rotational position with a positive centre distance change indicating thicker teeth. If, however, the total composite error was predominently tooth-to-tooth error, then the instantaneous centre distance change would be

$$
\begin{equation*}
\Delta C_{d}=\left(\frac{e_{T T C}}{2}\right) \sin (n \theta) \tag{2.12.19}
\end{equation*}
$$

where n is the number of teeth. By superposition the instantaneous centre distance change for both conditions would be

$$
\begin{equation*}
\Delta C_{d}=\left(\frac{{ }^{e} T C^{-\mathrm{e}} T T C}{2} \sin \theta+\frac{{ }^{e_{T T C}}}{2} \sin (n \theta)\right) \tag{2.12.20}
\end{equation*}
$$

To select the proper tooth thickness tolerance class, Equations (2.12.17) and (2.12.19) can be used to find the actual tooth thickness variation. Also, a tooth thickness tolerance can be selected from Equation (2.12.16) so that the class tolerance is equal to or less than the composite action method, since the composite action includes other errors besides the tooth thickness error measured by calipers.

The need to define tooth thickness variations will become more evident in the next section [2.13] when backlash is discussed. For the present the interrelation of many of these tolerances represents the prime concern.

The backlash discussion will present gear element tolerances necessary for consideration of the backlash of the gear set. However, some non-gear element tolerances are important in the analysis for successful gear operation. Due to its affect on backlash and contact ratio, centre distance tolerance becomes a primary concern. This tolerance is a function of the backlash requirement, gear quality, pitch and centre distance magnitude, all of which must be adjusted to avoid excessive backlash, low contact ratio affecting load capacity and smooth operation, and binding conditions. Table 2.12.1 from reference [7, Chapter 9] represent typical centre distance tolerances which are represented in the following equations:

$$
\begin{array}{ll}
3 \leqslant \text { quality number } \leqslant 7 & \text { TOL }_{C_{d}}=0.0100+0.0100\left(\frac{C_{d}-12}{12}\right) \\
\text { with a minimum of } & \text { TOL }_{C_{d}}=0.0020
\end{array}
$$

$$
\left.\begin{array}{ll}
8 \leqslant \text { quality number } \leqslant 12 & \mathrm{TOL}_{C_{d}}=0.0020+0.0020\left(\frac{{ }_{d}{ }_{d}-12}{12}\right)(2.12 .22) \\
\text { with a minimum of } & \text { TOL }_{C_{d}}=0.0005 \\
13 \leqslant \text { quality number } \leqslant 16 & \text { TOL }_{C_{d}}=0.0005+0.0005\left(\frac{{ }^{C_{d}}}{}-12\right. \tag{2.12.23}\\
12
\end{array}\right)(2.12 .23)
$$

These bilateral tolerances are doubled in the computer program to achieve the necessary unilateral tolerance required for analysis.

TABLE 12.1
Suggested Centre Distance Tolerances

Quality	Centre Distance				
	Under $1 \prime$	$1-6^{\prime \prime}$	$6-12^{\prime \prime}$	$12-24^{\prime \prime}$	Over $24^{\prime \prime}$
Commercial (3-7)	± 0.02	± 0.003	± 0.005	± 0.010	± 0.010 per ft
Precision (8-12)	± 0.0005	± 0.001	± 0.002	± 0.002	± 0.002 per ft ± 0.0005 per ft

In the computer program no centre distance allowance has been made as it has been assumed that backlash may be achieved by tooth thinning. However, the centre distance tolerance is employed so that the maximum amount of backlash for worst tooth thickness-centre distance variation conditions may be obtained.

As no definite criterion for tolerance specification has been presented for universal acceptance, the computer program has been established to consider the worst case of tolerance for many of the
variables. A manufacturer employing the program could incorporate his own criterion for tolerance specification. A non-manufacturer user must remember that tolerances affect cost to a great degree and therefore he must try to obtain the tolerance criterion of his supplier so that he may wisely select these tolerances. With proper care, tolerances not mentioned here will not detrimentally affect the gear performance. For example, face width has not been toleranced, so that any values attached +x.xxxx to the face width should be of the form -0.0000 . Similarly, material hardness or surface finish should have actual values of at least that specified by the program. Variables such as addendum and dedundum, which, along with the pitch circle radius, specify the addendumdedendum circle radii, must have tolerances carefully checked so that binding will not occur. The outer radius employed in the program must be considered as maximum, including actual error as well as runout. A similar situation occurs with the dedendum circle radius, which must be toleranced so that adequate clearance appears during "worst" conditions of tolerance. The dedendum utilized in the program is the normal size with no regard to either tooth thinning or thickness errors. Since the tooth thickness at the pitch circle represents the minimum value due to both thinning and tolerance, the actual dedendum will be larger than the dedendum value specified. This method was selected to achieve the worst stress condition on the teeth and to guarantee a minimum clearance for all conditions of error including runout.

Tolerancing is an extremely complex subject in any machine element design, but it becomes critical in gear operation.

Further advances in analytic tolerance evaluation or more adequate information should be incorporated into the program once available. Discussion of the subroutines employing the foregoing tolerance equation will be presented in the next section under backlash. Subroutine ERROR, Appendix [A.28] develops the various tooth element and composite action tolerances suggested by the AGMA for stored program computers.

SUBROUTINE ERROR(DP,FW,NQUAL,PR,TEETH,TOLR,TOLP,PTOL,TOLL,TTCT,TCT)
Use: To determine the various cutting tolerances for the gear.

Calling Sequence: Subroutine UREAL calls this routine once the gear geometrical conditions are determined.

2.13 BACKLASH ANALYSIS

References $[4,7,10]$ discuss backlash in varying degrees but do not present a definite analytical approach to the analysis. Much of what is presented here is a conglomeration of various reference sources on backlash with the author expressing his interpretation of the design backlash procedure.

Backlash in an assembled gear set is the clearance between the teeth of the meshing gears measured either along the line of action or along the pitch circle. By definition, backlash cannot exist in a single gear. In a mating gear set, the backlash that exists is a function of the actual centre distance at which the gears operate, the teeth thicknesses, the teeth deflection due to loading, temperature changes which may cause differential expansion of the gears and mountings,
and possibly other factors. The minimum backlash specified by the user is assumed to take care of temperature differentials and tooth loading deflection. If this method is not satisfactory for the user's conditions, increased analysis in tooth deflection and temperature differentials coupled with appropriate constraints could be incorporated into this base program so that compu'ter calculated backlash requirements could be employed. For the present, however, insufficient analytical background exists to use this technique.

The minimum backlash will occur when all the tolerances react at the same time to give the shortest centre distance and the thickest teeth with the high points of gear runout, while the maximum backlash will occur as these tolerances move in the opposite direction. As presented in Chapter 2.12 on tolerances, the actual tooth thickness is dependent on tooth thinning and tooth element tolerances, while changes in centre distance produce a proportional change in tooth thickness at the new pitch circle.

Design backlash is incorporated into the mesh to ensure that contact will not occur on the non-driving side of the gear teeth. Although backlash may be introduced by increased centre distance, the usual practice is tooth thinning with operation on the standard centre distance.

The total mesh backlash is dependent on the summation of the design backlash for the pinion and the gear, each of which has its constant and variable sources to backlash. Interpreted mathematically,

$$
\begin{equation*}
B_{\text {mesh }}=B_{\text {gear }}+\text { Bpinion } \tag{2.1.1}
\end{equation*}
$$

$$
\begin{equation*}
B_{\text {gear }}=B_{c}+B_{v} \tag{2.13.2}
\end{equation*}
$$

where $\quad B_{C}=\sum$ constant backlash sources
$B_{v}=\sum$ variable backlash sources
The constant backlash sources would include deliberate tooth thinning to achieve some minimum desired backlash, or operation at a changed centre distance. Variable sources of backlash would include all errors in the tooth dimensions as well as bearing, housing and mounting, which would contribute to the degree of backlash. If the tooth thickness is assumed to be an independent variable, then analysis for tooth deflection due to loading, coupled with various geometrical constraints, can yield an optimum amount of backlash during an optimization search. However, this form of analysis, at present, is too complex since the theory of deflection has not been developed with enough accuracy to successfully predict deflection in all cases. Thus, from experience, acceptable amounts of backlash, as a function of diametral pitch, have been presented from which tooth thickness may be extracted as a dependent variable. Table 2.13.1 from Dudley [7] recommends minimummaximum backlash for assembled gears, which are plotted in Figure 2.13.1 using the approximating equations

$$
\begin{align*}
& B_{L}^{\min }=0.025\left(B_{L}{ }^{L}\right) D_{p}^{-0.903090} \tag{2.13.3}\\
& B_{L}^{\max }=0.040\left(B_{L}^{U}\right) D_{p}^{-0.903090} \tag{2.13.4}
\end{align*}
$$

where $B_{L}{ }^{L}$ and $B_{L}{ }^{U}$ are control factors to raise or lower the constant values of the backlash term to give greater flexibility in specifying backlash limits.

TABLE 2.13.1

Suggested Backlash for Power Gearing
DIAMETRAL PITCH BACKLASH (INCHES)

1	$0.025-0.040$
$1 \frac{1}{2}$	$0.018-0.027$
2	$0.014-0.020$
$2 \frac{1}{2}$	$0.011-0.016$
3	$0.009-0.014$
4	$0.007-0.011$
5	$0.006-0.009$
6	$0.005-0.008$
7	$0.004-0.007$
8 and 9	$0.004-0.006$
$10-13$	$0.003-0.005$
$14-32$	$0.002-0.004$

FIGURE 2.13.1 Comparison of Suggested Backlash with Approximating Equations

Having specified the minimum and maximum backlash that the mesh requires, the proportion of this backlash range shared between the pinion and gear may be represented as

$$
\begin{equation*}
\frac{B_{\text {pinion }}}{B_{\text {mesh }}}=B_{L}^{R} \tag{2.13.5}
\end{equation*}
$$

or employing Equation (2.13.1)

$$
\begin{equation*}
\frac{B_{\text {gear }}}{B_{\text {mesh }}}=1-B_{L}^{R} \tag{2.13.6}
\end{equation*}
$$

From Chapter 2.12 on tolerances, tooth thickness variations, including tooth thickness tolerance and runout, can be selected to fit within the upper and lower limits of the backlash requirements of the pinion and gear considered separately. Since this tooth thickness variation from the two sources conceptually represents the allowable. range in thickness between the thinnest and thickest teeth of a gear, the total amount of design backlash becomes this unilateral tooth thickness variation, plus a tooth thinning allowance to achieve the minimum backlash. It must be remembered that, although the tooth thickness tolerance of the gear may be specified, the runout has the effect of varying the centre distance of the mesh, thus varying the tooth thickness at the operating pitch circle. With the minimum and maximum backlash difference specifying the range of allowable tooth thickness variation from runout and tooth thickness error, constraints must control the optimization search so that the tooth thickness error does not exceed the allowable backlash range. The minimum backlash requirement specifies the amount of tooth thinning from the theoretical
tooth thickness, which is usually equal to one half of the circular pitch on its standard pitch circle, and the sum of the tooth thickness variations of the pinion and gear must be less than the backlash range as outlined in Equation (2.13.7).

$$
\begin{equation*}
B_{L}-\left(e_{t}{ }^{p}+e_{t}^{G}\right) \geqslant 0 \tag{2.13.7}
\end{equation*}
$$

It should be noted that an increase in centre distance either by allowance, tolerance, or negative runout decreases the tooth thickness at the operating pitch circle and thus increases the backlash. Since no centre distance allowance has been used and the tolerance has been specified in this analysis as -0.0000 , Equations (2.12.23) to (2.12.25) are utilized in evaluating the backlash for centre distance variations, while Equation (2.12.20) is employed to analyze the effect of runout and tooth thickness tolerances on backlash. The constant source of backlash in this analysis evolves from the minimum desired backlash. For a specific design, the worst extreme values of the backlash contributors may be arithmetically totalled to calculate the maximum backlash.

The backlash analysis procedure may be summarized as follows:

1) Establish the maximum and minimum backlash requirements.
2) Determine the proportion of the minimum backlash to be shared between the pinion and gear in the form of tooth thinning of each component.
3) Knowing the composite action tolerances and the maximum tooth thickness after tooth thinning, the minimum tooth thickness may be determined by adding twice the maximum error evaluated in Equation (2.12.20) to the design pitch circle radius and computing the tooth
thickness at this radius which would now become the minimum tooth thickness at the design pitch circle. A similar procedure will specify the minimum tooth thickness for both gears. This analysis assumes that the tooth machining errors, specifying the range between the maximum and minimum tooth thickness, create a perfect involute envelope at both limits. Thus, by advancing the "minimum" involute radially outward by the total composite tolerance the tooth thickness difference between the envelopes may be approximated by Equation (2.12.7).
4) With the minimum tooth thickness specified, including runout and tooth element errors, the backlash due to machining errors becomes the difference between the maximum and minimum tooth thicknesses at the design pitch circle. This backlash plus the backlash due to tooth thinning specifies the maximum backlash at the design pitch circle.
5) When the centre distance is defined with a positive unilateral tolerance, the maximum overall backlash at this extended centre distance occurs when the minimum design tooth thickness is coupled with the centre distance increase.

By specifying this minimum tooth thickness as the actual operating thickness, the conditions of "worst" stress may be analyzed for the gear. Deviations from this minimum will only tend to strengthen the tooth by thickening it. At the same time, any tooth thickness variations, due to either runout or tooth element errors, will not cause the gears to bind as allowances have been made for this circumstance. For the
remainder of the analysis, the gear is assumed perfect at the minimum conditions specified, with the thickness size reductions nullifying the effects of runout and other errors.

In actual fact, the gears may have a lesser maximum backlash since the conditions analyzed for the set were the worst possible combinations contributing to the particular calculation. If some guarantee of the actual magnitude of the error combination could be presented for the program, lesser compensations for error could be taken in the program.

Subroutine BLASH, Appendix [A.29] and Subroutine TOLCD, Appendix [A.30] develop the backlash conditions and centre distance tolerances for the gear set.

SUBROUTINE BLASH(BLMIN,BLMINT,BLMAX,BLMAXT,BL1,BL2,BLL,BLU,BLR,CP,DP,DELBL, NQUAL, PAR,TPTL1,TPTL2,TPTU1,TPTU2,TPTE1,TPTE2,TPTV1, TPTV2, TTCT1, TTCT2,TCT1,TCT2).

Use: This routine determines
a) the maximum and minimum backlash desired at the design pitch radius,
b) the actual maximum and minimum backlash at this operating design pitch radius,
c) the maximum tooth thinning for backlash including the machining tolerance,
d) the difference between the minimum and maximum backlash,
e) the tooth thickness tolerance,
f) the actual maximum tooth-to-tooth thickness error from tooth element errors, and
g) the actual maximum tooth-to-tooth errors from runout and tooth element erros.

Calling Subroutine: Subroutine UREAL calls this routine after the suggested tolerances have been specified.

Special Features: With the tooth-to-tooth composite error specifying the tooth thickness error, the tooth thickness tolerance from the various classes is determined utilizing Equation (2.12.16), transposed so that the numerical value of the class may be evaluated using the next smallest tolerance classes (i.e. the next greatest tolerance class number). This required tolerance class is then tested against the permitted tolerance class levels for the particular gear quality. If the tolerance class is larger than required, the constraint requiring the actual tooth thickness error to be greater than the tolerance class value will be violated. This condition must be true since the tooth thickness error from composite action analysis includes further errors which make it slightly larger than the tooth thickness tolerance class value.

SUBROUTINE TOLCD(BLMAXU,CD,CDR,CDTOLL,CDTOLU,NQUAL, PAR,PI, PR1,PR2, RATIO, RB1, RB2, TEETH1, TP1,TP2).

Use: To determine
a) the centre distance tolerance, and
b) the maximum backlash at the extended limit of the centre distance tolerance.

Calling Sequence: Subroutine SPUR calls this routine after the design analysis is complete and before the analysis is printed out and returned.

2.14 GEAR BLANK DIMENSIONS

In designing a gear blank, [15] illustrated in Figure 2.14.1, the prime consideration almost always is rigidity. The hub must be long enough so that the gear will rotate in a single plane without wobble. It must also have sufficient diameter to provide adequate metal for keyways, to maintain a proper fit with the shaft and to transmit the required torque through the hub to the web without serious stress
concentrations. Proper rigidity in the web and rim become another consideration since these dimensions affect the inertial contribution to dynamic loading.

FIGURE 2.14.1 Gear Blank Nomenclature

Since no general rule could be found for the analytic design of the gear blanks, and since the stresses in the blank elements are usually low compared to the tooth stresses, the blank dimensions were generally designed to certain proportions of a specified variable such as face width or shaft diameter. The following equations represent suggested values for the use in the design of gear blanks.

From general practice, keys were chosen with a size one-fourth the shaft diameter, adjusting the hub length (HUBL) and the key length so that the torsional stresses are satisfied. Knowing the torque transmitted through the gear, the force tangential to the shaft at the keyway can be determined by

$$
\begin{equation*}
F=\frac{T}{r_{\text {shaft }}} \tag{2.14.1}
\end{equation*}
$$

Using a square key of thickness t

$$
\begin{equation*}
t=2 r_{\text {shaft }} \tag{2.14.2}
\end{equation*}
$$

the shear stress through the key over the length 1 may be specified as

$$
\begin{equation*}
\sigma_{\text {shear }}^{A}=\frac{F}{t 1} \tag{2.14.3}
\end{equation*}
$$

which must be less than the shear strength

sy

$$
\begin{equation*}
\sigma_{s y}=0.577 s_{y} \tag{2.14.4}
\end{equation*}
$$

where s_{y} equals the yield strength of the material while the distortionenergy theory for pure torsion provides the modification constant. To resist crushing, the area of one half on the key face is used, with the actual stress required to be less than the yield stress

$$
\begin{equation*}
\sigma_{\text {crushing }}^{A}=\frac{F}{t 1 / 2} \tag{2.14.5}
\end{equation*}
$$

Thus

$$
\begin{align*}
& { }_{n \sigma}^{A} \sigma_{\text {shear }} \leq \text { sy } \\
& { }^{n \sigma_{\text {crushing }}^{A} \leq s y} \tag{2.14.6}
\end{align*}
$$

where n is the safety factor. The greater length of key required to support the shear or crushing stress is chosen as the length of the key as well as the length of the hub of the blank. The foregoing equations are the only stress analysis for the gear blank. The face width is specified as being the minimum allowable hub length, although the stresses may indicate that a smaller length is acceptable.

$$
\begin{equation*}
L_{H U B} \geqslant F_{W} \tag{2.14.8}
\end{equation*}
$$

If the shaft was specified as zero diameter, the shaft and gear blank are considered one piece with no key and a hub length equal to the face width.

The radius to the outer portion of the hub (HUBR) is arbitrarily assumed 75% greater than the radius of the shaft, such that

$$
\begin{equation*}
r_{\text {HUB }} \quad 1.75\left(\mathrm{D}_{\text {shaft }} / 2\right) \tag{2.14.9}
\end{equation*}
$$

At the same time, the thickness of the rim is chosen arbitrarily as equal to the whole depth of the tooth. Thus the inner rim radius (RIM) is equal the dedendum circle minus the working depth,

$$
\begin{equation*}
r_{\text {RIM }}=R_{I}-(a+b) \tag{2.14.10}
\end{equation*}
$$

Similarly the web is chosen arbitrarily as being 50% of the face width and located in the mid portion of the blank.

$$
\begin{equation*}
W E B=0.50 \mathrm{~F}_{\mathrm{w}} \tag{2.14.11}
\end{equation*}
$$

Physically, the dimensions are limited so that

$$
\begin{equation*}
r_{\text {HUB }} \leqslant r_{\text {RIM }} \tag{2.14.12}
\end{equation*}
$$

with the web equal the face width of Equation (2.14.12) is at its limit. Another limitation to the web thickness occurs if the face width is greater than or equal to 0.1 inches and the web thickness is less than 0.1 inches, at which point the web becomes constant at 0.1 inches.

The volume of the blank is determined by summing three discrete parts of the blank - the hub, the web and the rim. Since the teeth are generated from a blank, the metal removed from the tooth space is wasted but must be accounted for as part of the blank material. Thus the addendum circle radius and inner rim radius specify a ring of
material from which the teeth are cut. The web may be considered a circular plate of constant thickness while the hub acts as a hollow cylinder of constant thickness. All these elements contribute to the volume.

These equations were only included in the program to give some criterion for choosing a minimum volume design. Since the particular geometry has not been included in any other aspect of the design such as dynamic loading, the values presented here are not necessarily concrete design specifications. If an adequate stress analysis were available, the variables of the blank design could also be incorporated in the optimization process as independent variables. Coupled with this, more accurate dynamic load analysis would specify limiting constraints, giving an optimum gear blank with low dynamic loads. Also, the user may find that the gear blank criterion used by his supplier may be instituted into the design package to offer him more realistic solutions.

To incorporate this analysis in the computer program Subroutine SIZE Appendix [A.31] and Subroutine VOLUME Appendix [A.32] were employed.

SUBROUTINE SIZE(ADD,DED,FW,HUBL,HUBR, RI,RIM,SHAFT,SAF,TORQ,WEB,XKEY)
Use: To specify the gear blank dimensions for use in the volume determination of the gear set.

Calling Sequence: Subroutine UREAL calls this routine after the geometric conditions of the gear set have been finalized.

Special Features: The analysis for determination of the key and hub length utilizes the yield stress of the material from which a shear stress is evaluated. However, only the fatigue stress of the material was provided for the design. For stee1, the yield strength is
approximately twice the fatigue strength. This assumption plus a safety factor of 2 were incorporated in the analysis.

Since the results of this subroutine are only employed in the volume calculations and do not affect the design seriously, the resultant values are realistic for present solutions. However, when gear blank analysis becomes necessary for other analysis besides volume, this subroutine should be updated accordingly.

SUBROUTINE VOLUME(FW,HUBL,HUBR,PI,RIM,RO,SHAFT,VOL,WEB)

Use: To determine the gear blank volumes for application in the optimization function.

Calling Sequence: Subroutine UREAL calls this routine once the gear blank dimensions have been specified.

2.15 MISCELLANEOUS ANALYSIS NOT PROGRAMMED

A close examination of this spur gear design package will
reveal that certain topics have not been dealt with directly as part of the optimization. There may be some features which the user feels are quite important which the author has not included. This section deals with the most obvious deletions with a qualitative explanation of reasons for the deletions as well as possible methods of solution to incorporate these features.

2.15A COST

One of the most obvious optimization criteria lacking in this design is cost. This would seem to be one of the main features of the whole optimization process for the average user. Cost generally depends on
a) the gear material including heat treatment,
b) the volume of material,
c) the overall gear dimensions such as face width or pitch circle diameter which govern machining costs,
d) the AGMA quality number which affects the tolerances, and e) the standardization of gear dimensions with the available machine tools.

Although there may be other factors on which cost is dependent, the above list illustrates the main cost factors of individual gears. Except for the volume of material, the cost of obtaining the other features will be highly shop-dependent. The gear manufacturer's ability to achieve the user requirements of gear size, tolerance specification and non-standard design practices will directly affect the cost to varying degrees. For example, the required effort in obtaining finer tolerances increases rapidly as the tolerances approach zero, while relaxation of tolerances beyond some limit may have little affect on cost, as illustrated in Figure 2.15A.1.

FIGURE 2.15A.1 Cost Versus Tolerance Magnitude

At the same time, as the gear size increases, the ability of the manufacturers equipment to handle the gear may decrease, thus increasing the cost.

Since cost is closely related to the particular manufacturer's capability, the cost, related to these factors in either equations or charts, has been left to the user to implement in the program. The program has been so arranged that the analysis is incorporated in Subroutine UREAL where all variables, dependent and independent, are created. Additional variables for the design process are easily placed in labelled COMMON blocks while the cost may be installed in the optimization function following the criterion of multifactor optimization featured in Chapter 5. In the present program, volume of material is the only indirect method of cost analysis, with no real value of cost being presented.

2.15B SCORING, LUBRICATION, SURFACE FINISH, TEMPERATURE EFFECTS AND HEAT TRANSFER

Although bending and pitting failure determination has been carried out as the main stress criteria, various other factors may effect gear life as well. Although definite design procedures have not been presented in call cases, Dudley [6,7], Michalec [10], and some AGMA standards $[30,33]$ propose solutions for many of the problems.

Radial scratch lines on the tooth face resulting from the scoring process occur for the following reasons: excessive load coupled with a break down in lubrication, too rough a surface finish, large tooth errors, high coefficients of friction, poor material properties and large sliding velocities. Dudley [6] states that most
gear designers can not agree on a formula to guard against scoring, but gives two methods generally accepted by designers at the present state of the art. The PVT formula, using the product of the Hertz contact pressure, the worst sliding velocity during the mesh, and length of the line of action, provides a value which is compared with empirical limits of scoring. This technique could have been easily incorporated into the computer package since the length of contact on the line of action is determined for contact ratio analysis; the sliding velocities, for efficiency analysis and the Hertz contact pressure, as part of the wear stress analysis. However, a more recent method known as the "flash temperature" formula seems to fit closer to test data and field experience. An AGMA Information Sheet [33] explains the use of the formula with test data indicating the results from various lubricants. As laid out by the AGMA, this formula could have been easily implemented into the package, but was not since the user would have to supply information regarding surface finish and lubricants, or corresponding information incorporated into the package, which might be restrictive to the user. The assumption was made that, for the average user, adequate lubrication and surface finish would be supplied, although not specified by the design. If this approach is not satisfactory, the user may supply his own subroutine into Subroutine UREAL to evaluate scoring, and providing comparisons (i.e. constraints) with known lubricant scoring limits in Subroutine CONST. New variable names would be introduced into the labelled COMMON blocks where required in a similar manner to the existing program.

Lubrication failures generally result from inadequate "wetting" of tooth surfaces before meshing, inadequate viscosity to develop suitable film between contacting surfaces under high contact pressure and temperature, inadequate properties to reduce friction below a safe limit between surfaces, inability of lubricant to remove heat developed during contact, and contamination of lubricant with dirt, sand, metal particles, sludge or acids which tend to wear or corrode tooth surfaces. Knowing the various properties of a lubricant and lubricating system, analysis may be made on different wear conditions as well as heat removal from tooth surfaces. If one lubricant is specified, however, the analysis for the package becomes restrictive if the user wishes to utilize a different lubrication technique. On the other hand, a large variety of lubricants may be less restrictive, but the problem arises in the selection of the correct lubricant and system for a particular design. The user may find that it will be to his benefit to specify a lubrication-wear analysis for a few lubricants which will reduce the need for stock-piling a quantity of different lubricants. With a lubricant and lubricating system specified, the properties of the lubricant may be easily incorporated with the "flash temperature" formula to analyze scoring as well as establishing a more valid friction factor analysis for use in the efficiency determination.

Surface finish as seen from the "flash temperature" formula has some affect in the wear characteristics of a tooth surface, since the "flash temperature" increases rapidly if the surface roughness after "run-in" is high. At the same time, the material endurance limit is
appreciably reduced if the quality of the surface finish is poor. In an effort to make the computer package material independent, this quantity has not been incorporated as part of the design; it is assumed that surface finish quality will be a function of the AGMA quality number with the gear set being "run-in" before actual use to achieve a good operating surface finish.

Temperature effects and heat transfer have a substantial effect on the operating gear set, since temperature gradients cause thermal expansion of various elements which may be detrimental in terms of increased stress or poor operating conditions outside the tolerance limits. The amount of temperature rise depends largely on the ability of the lubricant and gear housing to absorb and dissipate heat, while the lubricant capabilities depend on lubricant properties, method of application and external cooling sources. The gear housing provides the means of application of the lubricant as well as the external cooling sources, either natural or artificial. These factors are thus beyond the capabilities of the program due to the restrictive nature of their implementation. For a particular design the user may find that this information may be quite relevant and, therefore, may readily implement the pertinent theory into the program as described previously.

215C NOISE

At present, very little data is available to develop a general noise factor to be employed in a design. Generally, gear noise is an indication of the accuracy with which a gear has been produced.

Noise develops as a result of the clashing of loaded teeth related to tooth errors and tooth-load deflection, as well as forced and resonant vibrations of the gears and housing. In all cases, the noise origin is found in the non-uniform tooth load, which is the result of non-uniform angular velocity and the inertia of the rotating masses while secondary causes may be produced by static or dynamic instability or torque reversals due to the drive system or torsional vibrations. Uniformly changing errors may produce vibrations corresponding to the frequency of tooth engagement, while randomly varying errors may create numerous different frequencies and irregular noise patterns. Since it is almost impossible to obtain a set of gears to run without some noise, the elimination of the above causes by having more accurate teeth and less inertia in the rotating masses seems to be the only cure. Shigley [15] presents a curve, Figure 2.15C.1, illustrating the permissible error in action, e for a reasonable noise level, which may be approximated by

FIGURE 2.12C. 1 Suggested Permissible Error for Acceptable Noise Level

$$
\begin{equation*}
e_{\text {noise }}=0.082079 e^{-0.001230 P L V} \tag{2.15c.1}
\end{equation*}
$$

for

$$
\text { PLV } \leq 4000 \mathrm{fpm}
$$

$$
\begin{equation*}
e_{\text {noise }}=0.0005 \tag{2.15C.2}
\end{equation*}
$$

$$
\text { PLV > } 4000 \text { fpm }
$$

However, since noise is a purely subjective topic which has not been analytically or empirically developed mathematically, this is another topic left to the discretion of the user.

2.15D TOOTH MODIFICATIONS

The theory developed concerning gear teeth has assumed that the teeth mesh in true involute contact. However, errors of manufacturer, deflection of the teeth under load and deflections of mountings under load all combine to prevent theoretical contact. In order to reduce excess tooth loads due to premature tip contact or excessive tip contact pressures, profile modification has become a usual" practice. Dean [7, Chapter 5] presents a general criterion for modifying the tooth profiles to allow for errors of gear manufacture as weil as deflection under load. Also mentioned is the practice of "crowning" to relieve the ends of the teeth to force contact near the mid-face of the tooth. As this area of gear design remains highly empirical with no definite criterion for determining if modification should be employed or not, this area of design has been left open. If a criterion of profile modification were implemented by the user, the analysis should generally take place after the optimization, when the analysis has returned to Subroutine SPUR.

CHAPTER 3

OPTIMIZATION

3.1 OPTIMIZATION CRITERION

All of the previous sections, are concerned with feasibility of a design. This package is also concerned with getting the best possible design, and to do this, we must first establish criteria of desirability.

As the complexity of gear design increases, it becomes increasingly important to weight a number of parameters in the overall optimization criterion. No longer can only one dependent variable (eg. volume of gear material) be optimized, without also attempting to minimize cost, maximize contact ratio, maximize efficiency or minimize dynamic loading and the like. Siddall [46] has summarized various works on the subject of multifactor optimization from which the method employed for this computer package has been extracted. The following paragraphs briefly describe the reasoning behind the selection of the criteria known as the minimization of the sum of the inverted utility functions, which is utilized in this optimization.

Since the different dimensions of the dependent variables does not allow a direct combination for an overall criterion, a method to combine the variables must be found. One solution is to relate the variables through utility functions of the dependent variables. The utility function, scaled between zero and one and properly formed, does not need weighting coefficients to suggest the relative importance between the various dependent variables. Maximizing the summation of
the individual utility may go to zero without forcing the total utility to zero. This would make the design undesirable, but may be accepted as an overall optimum by the program. Maximizing the product of the individual utility functions solves this inadequacy since the combined utility goes to zero if an individual utility goes to zero, however, multiplying the utilities may intuitively make the overall optimization criterion too sensitive to small changes in the individual utility functions. By inverting each utility so that the reciprocal of utility may be thought of as undesirability, the combined undesirability may be minimized as follows:

$$
\begin{align*}
& u_{0}^{-1}=\sum_{i=1}^{s} u_{i}^{-1} \tag{3.1.1}\\
& = \tag{3.1.2}\\
& \frac{u_{2} u_{3} \ldots u_{i}+u_{1} u_{3} \ldots u_{i}+\ldots+u_{1} u_{2} \ldots u_{i-1}}{u_{1} u_{2} \ldots u_{i}} \\
& =
\end{align*}
$$

Equation (3.1.2) illustrates the combined advantages of pure addition and pure multiplication of the individual utility functions. Any function becoming zero forces the undesirability to infinity while the addition-multiplication condition stabilizes the combined function.

At the present time, with no real data available to accurately define utility functions, the curves are chosen to be linear between maximum and minimum values, which assumes that all the dependent variables optimized affect the overall optimization function equally. Dependent variables to be minimized would have a utility function similar to case 1, Figure 3.1.1 and a utility function of

$$
\begin{equation*}
u_{j}=1.0-\frac{y_{i}-y_{i}^{\min }}{y_{i}^{\max }-y_{i}^{\min }} \tag{3.1.3}
\end{equation*}
$$

while maximized dependent variables similar to case 2, Figure 3.1.1 would have a utility function equation of

$$
\begin{equation*}
u_{j}=\frac{y_{i}-y_{j}^{\prime \min }}{y_{i}^{\max }-y_{i}^{\min }} \tag{3.1.4}
\end{equation*}
$$

where y_{i} represents the i th optimized dependent variable.
$y_{i}{ }^{\text {min }}$ and $y_{i}{ }^{\text {max }}$ represent arbitrary limit values on the dependent variable about which a utility function equivalent to the desirability of a design is created. Using case 1 of Figure 3.1.1 as an example, the desirability of a design, which produces a dependent variable y_{i}, near $y_{i}{ }^{\max }$ is very small while the desirability of a design with dependent variable y_{i} closer to $y_{i}{ }^{\text {min }}$ is greater. A utility of 1 usually specifies the "ultimate" design although the utility may go higher.

FIGURE 3.1.1 Utility Functions

Again using case 1 of Figure 3.1.1 as an example, the undesirability or reciprocal of utility, sketch in Figure 3.1.2,

FIGURE 3.1.2 Reciprocal of Utility
becomes discontinuous at the point $y_{i}{ }^{\text {max }}$ where the utility function becomes negative. In both case 1 and 2 the undesirability function becomes discontinuous between positive and negative infinity when the original utility function becomes less than zero. To avoid this, an arbitrary large number has been chosen as infinity with a linear increase from this value for variables y_{i} exceeding the limits. This configuration will generally force the dependent variables in such a manner to decrease the undesirability.

In this package, the four dependent variables are volume, contact ratio, centre distance and face width, each of which is identified by flags NOF1, NOF2, NOF3, NOF4 respectively, each having a value of 1 or 0 . The corresponding flag is set at 1 to indicate that the user wishes this criterion employed in his optimization. This technique is very
flexible with additional dependent variables only requiring the specification of NOF5, NOF6, ... etc., and some minor programming changes. See Chapter 4.3. Thus, numerous quantities can be combined to yield an overall optimum of many dependent variables.

3.2 OPTIMIZATION TECHNIQUES

Having formulated the problem in mathematical terms, it now becomes possible to obtain the best design by formal optimization techniques [46, 47]. Any optimization problem may be developed in terms of

$$
\begin{aligned}
& u=u\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=\begin{array}{c}
\text { maximum } \\
\text { or } \\
\text { minimum }
\end{array} \\
& \psi_{i}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=0 \text { where } i=1, m \\
& c_{j} \leqslant \phi_{j}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) \leqslant c_{j}
\end{aligned}
$$

where $j=1, p$ and c_{j} and C_{j} are constants. u expresses the optimization function and the remaining equations define the equality and inequality constraints, if they exist, on the optimization function.

This theory has been utilized in the optimization portion of the gear design employing the OPTISEP technique [47] of problem formulation, incorporating various optimization search strategies. Appendix [D] presents part of the OPTISEP presentation. In this method, the user is only required to write 1) a calling program containing required DIMENSION statements and input variable, the optimization technique call statement and a supplied subroutine for standard printed output, all following basic FORTRAN procedure, 2) Subroutine UREAL to define the
optimization function, and 3) Subroutines CONST and EQUAL to define the inequality and equality constraints, respectively. All subroutines relevant to the optimization technique used can then be coupled with the user created subroutines.

Two direct search techniques [42, 43, 44], Subroutines SEEK1 and SEEK3 and one gradient technique [45], Subroutine NPFMIN were used in the optimization search of the spur gear design to determine the fastest, most accurate technique for final implementation. After a number of tests, Subroutine SEEK1 gave the least minimum results of the three methods, with subroutine SEEK3 next, and Subroutine NPFMIN third. Although Subroutines SEEK1 and SEEK3 used the same direct search strategy, the artificial optimization function employed by Subroutine SEEK3 is more complicated, thus taking more time. The gradient method, Subroutine NPFMIN, was hampered in its search because the gradients, which were too complicated to determine analytically due to the constraints were determined using the finite difference technique. In addition, the search algorithm utilized by the optimization strategy made certain assumptions which were not all fulfilled by the complex functions created by the gear design and the artificial unconstrained optimization function.

Although SEEK1 seemed the fastest, it is possible for this routine to hang up on constraints. For this reason, all three methods have been incorporated in the program with a flag NTYPE specifying the technique desired for the optimization. The user may find it advantageous to optimize initially using Subroutine SEEK1, then reoptimizing with

Subroutine SEEK3, utilizing the previous optimum as starting values for the new search.

If another optimization technique provided by the user proves more efficient than the methods presented, it may be implemented easily by arranging the new optimization program similar to the OPTISEP construction, Appendix [D], and utilizing the present base routines Subroutine SPUR, UREAL, and CONST to incorporate the spur gear design and constraints.

CHAPTER 4

USER ORIENTATION OF PACKAGE

4.1 CONCEPT OF USER ORIENTATION

Demands for more load capacity at higher speeds, with the conflicting requirement of weight reduction, are only a few of the problems confronting the modern machine designer which require his full knowledge of current design practices. These include not only materials or manufacturing methods, but also accepted methods of analysis and design. The package brings together a conglomeration of this kind of design information, organized into a logical procedure for spur gear design.

The whole concept of this package is to present the gear designer with a rapid tool to successfully complete a feasible computer design with at least the same flexibility and input of judgement offered by a manual solution. At the same time, the package enables future modifications to the design procedure to be incorporated easily, thus allowing the maintenance of a "current design practice", in a well organized and convenient manner. To accomplish this, the formulation has been divided into two parts--the actual gear design procedure, and the optimization procedure. By developing these parts independently, implementation of different design variables by users becomes easier, as illustrated later in this chapter.

Not unlike any design, the problem is made up of independent or design variables and input data, all of which act together to define some design criteria which must be minimized or maximized within certain constraints to achieve a suitable result.

To simplify the computation in this package, the design procedure is developed in three parts involving dependent variables which are problem-oriented, and calculated in Subroutine SPUR, dependent variables which are functions of the design variables, and calculated in Subroutine UREAL, and constraints which are calculated in Subroutine CONST. By utilizing this procedure, greater flexibility is achieved so that modifications are implemented easily into the design. All variables, whether independent or dependent, are represented by names which are independent of the optimization routine. This allows a union between the optimization and design procedures through an intermediate routine which equivalences the pseudonyms of the design procedure with the design variable array name of the optimization routine. For example, if the design variables in an optimization routine are specified in an array $X(I), I=1, n$ where n is the total number of design variables and Fw represents face width, an independent variables in the gear design, then the cross-link between the two procedures may be achieved by a statement

$$
\begin{equation*}
F w=x(J) \tag{4.1.1}
\end{equation*}
$$

which transfers the value of the design variables $X(J)$ to the pseudonym Fw for use in the design procedure. In this manrier, numerous values may take on design variable status just by altering the intermediate routine, thus increasing the scope of the design process. Thus the
user is able to pick and choose the number of design variables he desires simply by changing a few control values, without the need to alter either the design procedure or the optimization procedure.

Since the design and optimization procedure are independent except through the intermediate routine, the package can thus be utilized in a pure analysis mode with all design variables specified by the user, an optimization mode where the computer program determines the best design variables for given conditions, or some intermediate mode. It was with these features in mind that the user package was developed, giving the user essentially complete control of the design through control factors which allow various changes in the design procedure to be initiated.

4.2 PACKAGE DESIGN

In general, the purpose of gearing is to transmit motion between shafts having the output speed some function of the input. In most applications, an amount of power is to be transferred between the shafts, subject to certain environmental conditions. The ability of a gear to successfully fulfil its operating requirements becomes a function of some dependent variables which in turn depend on a number of independent geometrical and material property variables. The problem arises in differentiating between independent or design variables and input variables, so that the highest degree of flexibility is maintained for most applications.

Due to discreteness of material properties over a range, it seemed more appropriate to have these properties as input variables
which would remain constant during an optimization. However, if a material had continuous properties over a range, the program could be modified so as to incorporate these material properties as design variables.

With the material properties described as input variables, the gear geometry remains the only method of specifying a feasible design within the limitations of the operating and environmental requirements. The centre distance, face width, pressure angle, number of teeth and addendum-dedendum values of both gears best represent the independent variables affecting a design criteria.

As was mentioned in Section 4.1, a link can be made between the pseudonyms of the design procedure and the independent variable array of the optimization through an intermediate routine. Thus, it becomes possible to select the desired design variables of a design. Using various logic statements to create a control array indicating what design variables are variable (i.e. computer determined values) or standard (i.e. following some prescribed convention), the correct equivalence of the pseudonyms and the design variable array can be implemented with the aid of the controlling array. The creation of the control array is brought about in Subroutine VARY1, Appendix [E] while the equivalence process during optimization is carried out in Subroutine VARY, Appendix [E]. For example, if centre distance CD is to be a design variable in the program, the user specifies $C D=3$ HVAR (see Appendix G for explanation. Through logic statements in VARY1 the control array $\operatorname{NVAR}(I)=6$ indicates that $C D$ is the 6 th pseudonym in a list of the eight gear design variables and the Ith design variables of n variables to be optimized in this particular problem.

In. Subroutine VARY during the optimization, the appropriate pseudonyms are equivalenced with the optimization design array by advancing through the control array and extracting the relevant locations of the pseudonyms. This method provides a fast cross-link between the optimization and design routines, with a high degree of flexibility. In a similar manner, values specifed as standard, where applicable (see Appendix G), have a control array NSTD to control the extraction of the appropriate specification formula during optimization. When design variables are given numerical values by the user, they remain constant throughout the analysis, thus bypassing use in the control arrays. If all design variables are specified, no optimization is carried out and only the feasibility analysis of the given design is returned.

Having specified how variables are incorporated into the design, an explanation of a few basic design assumptions should be given. Although one can analyze with exact quantities in a paper design, deviation from these values either in manufacture or operation may seriously effect the capacity of the gear to fulfil its requirements. Thus, in this package an attempt has been made to analyze the "worst" conditions of the design so that the resultant gear will always be operating in better conditions. For this reason, the few tolerances used in the program are unilateral in order that analysis can be made for the "worst" case. Items which.are not toleranced are taken as the worst limit.

The following list discusses briefly the reasoning behind the selection of a particular design procedure for certain variables.

1) The centre distance should have a positive unilateral tolerance to prevent binding of the teeth.
2) The face width should have a positive unilateral tolerance to preyent stress failure.
3) The addendum circle radius should have a negative unilateral tolerance to prevent interference with the mating gear.
4) The dedendum circle radius should have a negative unilateral tolerance to ensure that adequate clearance is available. This tolerance will be a function of the amount of deliberate tooth thinning and tooth thickness errors which tend to create a larger dedendum in generated gears. Constraints should ensure that the minimum clearance is zero and there is no undercutting even if the tooth thinning effects are considered.
5) The tooth thickness at the pitch circle radius should have a positive unilateral tolerance thus enabling tooth stresses to be evaluated for the thinnest tooth condition.
6) The backlash range required by the design should exceed the backlash introduced to the design by error sources.

Another assumption utilized in the routine requires that the analysis be carried out for a floating point number of teeth, which is integerized before returning to the calling program. In this procedure the closest integers on either side of the floating point solution are tested for the most feasible result. This allows the number of teeth which is a discrete quantity, to be handled as a continuous variable in the optimization.

To fall within certain physical limits the following inequality constraints were implemented in Subroutine CONST.

1) $\mathrm{PHI}(1)$ and $\mathrm{PHI}(2)$ ensure that the actual bending stress is less than the allowable.
2) $\mathrm{PHI}(3)$ and $\mathrm{PHI}(4)$ ensure that the actual wear (pitting) stress is less than the allowable.
3) $\operatorname{PHI}(5)$ and $\operatorname{PHI}(6)$ ensure that undercut will not occur even with a dedendum circle radius variation due to errors, while PHI(7) and PHI(8) enable interference to be eliminated.
4) $\operatorname{PHI}(9)$ and $\operatorname{PHI}(10)$ prevent the teeth from being pointed, while $\operatorname{PHI}(11)$ and $\mathrm{PHI}(12)$ ensure adequate clearance is provided.
5) $\mathrm{PHI}(13)$ to $\mathrm{PHI}(18)$ ensure that the centre distance, face width and pressure angle fall within user specified limits.
6) $\mathrm{PHI}(19)$ ensures that the errors of manufacture do not contribute to backlash more than the allowed backlash range, while PHI (20) and PHI(21) place the required tooth thickness tolerance class within the actual machining errors.
7) PHI(22) and PHI (23) prevent the tooth thickness at the addendum circle from being below a limiting value.
8) PHI(24) and PHI(25) prevent the load point on a gear tooth from being below a limiting radius for the bending stress analysis.

Presented in this manner, the gear design is completely flexible for modification. The analysis can also be expected to present a reliable design solution due to the considerations used in the design procedure.

4.3 PACKAGE MODICATIONS

As gear design information reaches the user, he may wish to incorporate new analysis in this program. The following section presents a brief description of the procedure for implementation of modications.

If the new analysis is not dependent on variables which change as a result of variations of the design variables, it may be incorporated in Subroutine SPUR before or after the optimization CALL statements, depending on the requirements. On the other hand, if the new analysis depends either directly on any of the design variables, then it should be evaluated in Subroutine UREAL. New variable names (pseudonyms), whether independent or dependent, should be placed in all the labelled COMMON blocks for data transfer. New design variables should be implemented into Subroutines VARY1 and VARY in the same manner as the present program, so that the same flexibility may be maintained. It will be noted in Subroutines VARY1 and VARY that NN represents the total number of geometric design variables utilized in each optimization . At the present time N, which represents the total number of design variables, is equal to NN. However, future design variable additions will require a larger value of N with $\mathrm{N}+1$ to N representing the new variables. Changes to the package will be understood more easily after careful examination of Subroutines SPUR, UREAL, VARY1 and VARY. Care should be taken to maintain adequate array sizes for altered parts of the program.

If further dependent variables are to be incorporated as design criteria in the optimization function, utility functions may be made for
the new variables following the method outlined in Section 3.1. Each new dependent variable will require the specification of a flag (eg. NOF5, NOF6, ..., etc.), which expresses the user's desire to utilize this criteria in the overall optimization. This desire is represented internally in a controlling array NOF (NOFM), where NOFM is the total possible dependent variables used in the optimization criterion (in the present case $N O F M=4$). The first NOFN elements of this array contain numbers specifying the locations of the dependent variables utilized in the optimization criterion, where NOFN may equal 1 to NOFM. A FORTRAN DO loop ($\mathrm{I}=1, \mathrm{NOFN}$), combined with a computed GO TO statement, extracts the desired criterion from the list of possibilities, as illustrated in Subroutine UREAL. On reading the program listing of Subroutine SPUR (under title of SETUP OF OPTIMIATION CRITERION FLAGS) and Subroutine UREAL (under title of OPTIMIZATION CRITERION) this technique will become clearer.

CHAPTER 5
 DISCUSSION AND CONCLUSION

With such a large number of input and design variable options available to the user, a complete test of all combinations would be impossible. Like all computer design packages, a considerable number of trials must be run to ensure that the results can be completely guaranteed. Although a large number of examples were run for extreme cases of spur gear design in an attempt to test the capabilities and limitations of the computer package, more tests will be needed in the future. The results were quite satisfactory, although in some cases, design requirements pushed the solution to a physically undesirable region, although feasible from a theoretical viewpoint. Thus, as has been mentioned previously, the designer's judgement should not be lacking completely in the design process. The following paragraphs illustrate some problems which may be encountered during the optimization.

As the design is optimized, the solution tends towards limiting values in its search for the minimum optimization criterion. In some cases, as the optimum is reached, or being reached, an exploratory search may suggest a design combination which could not physically exist, but must be evaluated to indicate infeasibility. Generated solutions returned from the programmed analysis may be infinite, for example, which may generate fatal computer error messages when this result is utilized in further analysis. This problem occurs only with the optimization routine SEEK1, when the directed random search is being carried out in Subroutine SHOT at the assumed optimum. If these errors
occur, the result of the last iteration printed in the intermediate data may be taken as the optimum since the search was indicating an optimum before SHOT was called. The final gear design layout may be produced by inserting the last iteration results in the "analysis-only" mode of the package (see Appendix G). Alternatively, these values could be used as starting values for another optimization technique.

Two other problem areas are the handling of a standard design practice and the discreteness of the number of teeth. Although standard design procedure may be handled in the design (see Appendix G), the optimum solution may not result in the selection of a standard diametral pitch if the number of teeth or the centre distance are design variables. If the gear is to be manufactured using standard tooling, a standardized diametral pitch may also be a requirement besides the specification of the standard addendum-dedendum sizes. To bypass this limitation, the following formula, in FORTRAN notation, may be used to compute various combinations of centre distance and number of teeth for the closest standard diametral pitch.

$$
\begin{equation*}
C D=(T E E T H 1 *(R A T I O+1.0)) /(2.0 * D P) \tag{5.1}
\end{equation*}
$$

In the "analysis-only" mode, the design may be tested for various numbers of teeth close to the optimum solution utilizing the closest standard diametral pitches above and below the optimum solution and keeping the centre distance as a dependent variable. Another approach is to specify centre distance and calculate the number of teeth to keep the diametral pitch standard. Familiarity with the package capabilities for incorporating different options will enable the user to select an optimum standard solution with relative ease.

Through the package all design variables have been employed as floating point quantities (i.e. decimal numbers), so that a continuous optimization function could be obtained for each variable. However, the number of teeth in a gear is a discrete quantity which demands that this variable should be treated as an integer value. To overcome this discrepancy, the number of teeth is used as a floating point number in the package but is integerized after the optimization is complete (see Section 4.2). This creates the problem that a constraint may be violated when the number of teeth is integerized, thus making the design infeasible as in the example problem of Appendix G. The corrected final solution may be obtained by using the "analysis-only" mode close to the optimum until an acceptable solution is reached which eliminates the violation, but yields a discrete number of teeth.

Generally, enough relevant information is printed to give the overall view of the resultant spur gear design. A close examination of this output will enable the designer to make logical changes which will represent more closely his real life situation. This package offers the capability of both "analysis-only" and optimization with a programming structure which can easily be changed with advances in the design process, or to account for analyses not discussed. Most benefit can be gained from this package by employing an interactive optimization, utilizing a teietype or viewing scope which will quickly present the design to the user. Ultimately the package may be used as a base for a plotting routine to yield final gear drawings. The package may also be built into an overall optimization of machines incorporating gears,
or combined with other computer packages, directly or indirectly related with gear usage, including their manufacture.

REFERENCES

(1) Buckingham, E., "Spur Gears", McGraw-Hill, New York 1928.
(2) Buckingham, E., "Analytical Mechanics of Gears", McGrawHill, New York, 1949.
(3) Candee, A.H., "Introduction to the Kinematic Geometry of Gear Teeth", Chilton, New York, 1961.
(4) Merritt, H.E., "Gears", Third Edition, Pitman, London, 1955.
(5) Davis, W.O., "Gears for Small Mechanisms", N.A.G. Press, London, 1970.
(6) Dudley, D.W., "Practical Gear Design", McGraw-Hill, New York, 1954.
(7) Dudley, D.W., "Gear Handbook", McGraw-Hill, New York, 1962
(8) Buckingham, E., "Manual of Gear Design-Section Two", Industrial Press, Brighton, 1935.
(9.) Buckingham, E., "Dynamic Loads on Gear Teeth", (Report of the ASME Special Research Committee on the Strength of Gear Teeth), American Society of Mechanical Engineers, New York, 1931.
(10) Michalec, G.W., "Precision Gearing - Theory and Practice", Wiley, New York, 1966.
(11) Steeds, W., "Involute Gears", Longmans, Green, London, 1948.
(12) Tuplin, W.A., "Gear Design", The Machinery Co. Ltd., London, 1962.
(13) Stokes, A., "High Performance Gear Design", The Machinery Co. Ltd., London, 1970.
(14) Chironis, N.P., "Gear Design and Application", McGraw-Hill, New York, 1967.
(15) Shigley, J.E,, "Mechanical Engineering Design", McGrawHill, New York, 1963.
(16) Shigley, J.E., "Theory of Machines", McGraw-Hill, New York, 1961.
(17) Johnson, R.C., "Optimum Design of Mechanical Elements", Wiley, New York, 1961.
(18) AGMA 109.11 "Contact Ratio of Hobbed Spur Gear Teeth", June 1957.
(19) AGMA 112.04, "Terms, Definitions, Symbols and Abbreviations", August 1965.
(20) AGMA 115.01, "Reference Information - Basic Gear Geometry", July 1959.
(21) AGMA 150.03, "Application Classification for Spur, Helical, Herringbone and Bevel Gear Gear motors", April 1968.
(22) AGMA 201.02, "Tooth Proportions for Coarse - Pitch Involute Spur Gears (ANS1 B6.1-1968), August 1964.
(23) AGMA 207.05, "Tooth Proportions for Time-Pitch Involute Sour and Helical Gears", June 1971.
(24) AGMA 210.02, "Surface Durability (Pitting) of Spur Gear Teeth", January 1965.
(25) AGMA 215.01 "Information Sheet for Surface Durability (Pitting) of Spur, Helical, Herringbone and Bevel Gear Teeth, September 1966.
(26) AGMA 220.02, "Rating the Strength of Spur Gear Teeth", August 1966.
(27) AGMA 225.01, "Information Sheet for Strength of Spur, Helical, Herringbone and Bevel Gear Teeth", December 1967.
(28) AGMA 226.01, "Information Sheet - Geometry Factors for the Strength of Spur, Helical, Herringbone and Bevel Gear Teeth", August 1970.
(29) AGMA 229.08, "Computed Geometry Factor for Hobbed Spur Gears", October, 1964.
(30) AGMA 251.01, "Specification - Lubrication of Industrial Gearing", January 1964.
(31) AGMA Gear Handbook - Volume 1 - Gear Classification, Materials and Measuring Methods of Unassembled Gears, January 1971.
(32) AGMA 411.02, "Design Procedure for Aircraft Engine and Power Take-0ff Spur and Helical Gears", September 1966.
(33) AGMA 217.01, "Information Sheet - Gear. Scoring Design Guide for Aerospace Spur and Helical Power Gears",
(34) Theon, R.L., "How to Find Exact Values of Backlash in Sour Gears for Changes in Tooth Thickness or Centre Distance", Machine Desion, January 23, 1958
(35) Spotts, M.F., "How to predict effects of undercutting Hobbed Spur Gear Teeth", Machine Design, Vol. 28, April 29, 1956.
(36) Lewis, W., Investigation of the Strength of Gear Teeth, Proceedings of the Engineering Club, Philadelphia 1893.
(.37) Hertz, H., "On the Contact of Solid Elastic Bodies and on Hardness, Journal of Math., Vol. 92, PP. 156-171, 1831.
(38) Dolan, T.J. and E.I. Broghamer, "A Photoelastic Study of the Stresses in Gear Tooth Fillets", Univ. Illinois Expt. Sta. Bull. 335, March, 1942.
(39) Van Zandt, R.P., "Beam Strength of Spur Gears - Whether to. Use the Higher or Lower Strength Factor", SAE nuarterly Transactions, Vol. 6, No. 2, April 1952
(40) Walker, H. "Gear Tooth Deflection and Profile Modification", The Engineer, Vol. 166, pp 409-412, 434-436, 1938; Vol. 170, pp 102-104, 1940.
(41) White, D.D., and J.L. Henderson, "Computer-Aided Spur Gear Design", SAE paper 690564, September 1969.
(42) Hooke, R. and T.A. Jeeves, "Direct Search Solution of Numerical and Statistical Problems", Westinghouse Research Laboratories, Scientific Paper, 1960.
(43) Fiacco, A.V. and G.P. HcCormick, "Extensions of SUMT for Nonlinear Programming : Equality Constraints and Extrapolation", Management Science, Vol. 12, July 1966, pp 816 -828.
(44) Fiacco, A.V. and G.P. McCormick, "Nonlinear Programming : Sequential Unconstrained Minimization Technique", Wiley, New York, 1968.
(45) Fletcher, R., "A New Approach to Variable Metric Algorithm", Computer Journal, Vol. 13, No. 3, August 1970
(46) Siddall, J.N., Analytical Decision Making in Engineering Design, Prentice Hall, Englewoodcliffs, N.J., 1972.
(47) ----------, OPTISEP - Designers' Optimization Subroutines, McMaster University, Canada, 1971.
(48) Timoshenko, S., and R.V. Baud, Strength of Gear Teeth, Mechanical Engineering, Vol. 48, Nov. 1926, pp. 1105-1109.

SUBKOUTLNL CUTTGK(ANGC, BL,CCC, CU, CP, UEU,NCUT,PAK,PR,RE,RM,RU,TP, 1UUA, BEX, BEY,RT
THIS ROJTINE UETLRIINES RAODUS
B) The maximun aúchuum circle radius to prevent interferende
C) THE CNGLE EETHEEN TOOTH CENTKELINE ANU FILLET UKIGIN UN THE bedevuvan circle
0) SOHE GEOMETRICAL GHARACTERISTICS OF THE CUTTING TOCL TEETH
E) TUOTt THICKNESS AT PITCH CIRCLE

ANGC = ANGLE BETWEEN THE TOJTH CENTRELINE AND FILLET URIGIN
BL \quad. UESIGL EACKLASH UN TUUTH INCLUUING DELIBERATE TUOTH
CCC $=$ CHEANING ANS THICKNESS TOLERANCE (INNGHESS
CLE $=$ CENTRE DISTANEE (INCHES)
NLUT = UIRCULAK PITCH (INCHES/TUOTH)
$=\frac{1}{2}$ IF GEAR CUT GY RACK WITH ROUNDED CORAERS TEETH
PAR = FRESSURL ANGLE (RAUIANS)
PR $=$ PITCH RAUIUS (INCHES)
RE = RAUIUS UF BASE CIRCLE (INCHES)
RM \quad MAXIMUH RADIUS BEFURE INTERFERENCE OCCURS (INCHES)
RU = UNULRUUT LIMIT RADIUS (INCHES)
BGA = GISTANLE BETWEEN PITCH CIRCLE ANU END OF STEAIGHT
BBX = ORSTANEL GETHEENTOOTH CENTERLINE ANO CENTRE OF ROUNDED
CORINER UN GENERATING RACK TOUTH (INCHES)
BGY = OISTANCE BETVEN PITCHGIRCLE ANU CENTRE OF ROUNDED
RT = RORNEK ON GENERATING RAGK TOOTH (INCHES) TOOTH (INCHES)
USING A STANUARU HUB FORM, TOOTH THINNING WILL PRODUCE A LARGER
DEUENOUM AS THE HOB IS FEU INTU THE GEAR BLANK
THE HUU PROPEETHES ARE REFERENCED TO THE CENTRELINE OF THE GEAR TUUTH SPACE AT THE GEAK PITCH CIRCLE THESE PSEUDO FROPERTIES RLPRESEVT THE FEEU-IN POSITION OF THE HOX
THE RESJLTANT TOUTH FILLET PROPERTIES REPRESENT THE WORST GEOMETRY
FOK GLINJING STRESS ANALYSIS
$\left.\left.T P=(\operatorname{CP} / 2 \cdot 1)^{-3}-8 \operatorname{Can}(P A R)\right)\right)$

GUTU (1 jJ, Zu() , NEUT
$140 R U=R 3^{*} C J S(P A R)$
$R T=0 \cdot b$
$06 A=O U E J$
GEY=0 DE 3

RT=CCC/(1:0-SIN(PAR))
$\mathrm{B} \square \mathrm{A}=0 \mathrm{E} \mathrm{E}-\mathrm{CCC}$
$3 \forall X=\left(\left(C^{2}-T P\right) / 2 \cdot U\right)-((B B Y * T A N(P A R))+(R T / C O S(P A R)))$

$A N G C=((O P / G \cdot u)-B B X) / P R$

RHETURN
END

SUEROUTINE FTLLET(ANGC,NCUT, PAR,PR,RAU,RE,RI,RU,RRTL,RRTU, 1TP, GEA, SBX, EBY, RT)

THIS SUBROUTTNE ULTERMLNES THE KADIUS TO THE POINT OF INTERSECTION of The FIllet and involute profileś.
ANGC = ANGLE BETWEEN THE TOUTH CENTRELINE ANU FILLET ORIGIN
NCUT $=A_{1}$ IF GEAK CUT BY RACKE WITH SHARP CORNERED TEETH
PAR $\quad=\overrightarrow{P R E S G U C A R ~ C U T ~ B Y ~ R A C K ~ W I T H ~ R O U N O E O ~ C O R N E R S ~}$
$\begin{array}{ll}P A R & =P R E S S U R L A N G L E \\ P R & =P T R I A N S)\end{array}$
RAD $\quad=$ RTTCH KAUIUS ITNCHESS $\quad=$ RAUUS TUE INTERSETION OF THE FILLET ANL INVOLUTE - PRUFILLS (INCHES)

RE $\quad=$ RAUIUS OF BASE CIRCLE (INCHES)
RI $=$ RUUT UIRLLE KADIUS (INCHES) OO (PR-DED)

RRTU = UPPER LIMIT RADIUS OF TROCHOIU TU PROUUCE FILLET
TH - INTERDECIION WITH THE INVOLUTE (INCHES)
TH $\quad=$ TUOTH THICKNESS AT PITCH CIRCLE (INLHES)
EBA = GISTANCE GLTWELNPITCH CIRCLEANU END UF STRAIGHT

BEY - CORNEK UN GENERATING RACK TOOTH (INCHES)
GBY - QTSTANCE GETWEEN PITCH CIRCLE ANO CENTRE OF ROUNOED
RT = ROUNUEU GORNER RAUIUS UF GENERATING GEAR TCOTH (INCHES)
$X \perp N V(A N J)=T A N(A N G)-A N G$
TAFT (ANG, $B Y, P R, R K T)=A T A N((1,0-(R R T * * C) /(P R *(P R-B B Y)))) / T A N(A N G))$

FRRC (ANS, RRT, KT) =SQKT ((RRT**2) +RT* (RT-2. U*RRT*SIN (ANG)))
FASC (ANO, BBY, PK) $=(B G Y / P R) * T A N(A N G)-X I N V(A N G)$
FARC (ANG,ANGL, BDY, PR, KRF, RRT, RT) = FASC (ANG, BBY, PR) \& ACOS ((RRT-RT*SIN 1 (ANG1)) (?RF)

3
$>$

```
    RRF=RITT(PAR,BEA,PR,RB)
ANG=ACDS (XX/REF)
        ANGF=FASC(ANG,BOY,PR)
        RFTL=xX=KT
        RRTU=R足
    RAD=RRF
    Ir(rAL.-T,RB) RAU=RB
    F!TURIN
105 R1=R&
    ANG: = ACJS ( }XX/R1
    ANGi1=A`OS(RB/K2)
    FUNC1=F4SC(ANG1,BEY,PR) +TANG(TP,PR,PAR,ANG11)-ANGC
    ULLR=(((RU-(XX-RT))/SIN(PAR))**)/(6.0*PR*COS(PAR))
    IF(UELR.LE.U.0) GO TO 125
    0LLR=JELRノく.J
    K2=^1
    FLNCZ二FJNC1
    R1=ん2
    FUNLI=FJNC:
    R2=R2+U三LR
    ANG2=405S(xx/R2)
    ANGC2=4うOS(RJJR2)
    FUNCC=FASC (ANGC, EBY,PR) +TANG(TP,PR,PAR,ANG22) - ANGC
    IF((FUN:1*FUNCZ).GT.0.0)GO TO 110
115 否=(k1*=UNC2-K2*FUNC1)/(FUNCZ-FUNC1)
    ANGS=ACJS(xX/K3)
    ANGOO=AこOS(RO/RO)
    FUNCJ=FGSC(ANGO,BBY,P(R)+TANG (TP,PR,PAR,ANG33)-ANGC
    IF((ABS(FUNCS)):LTOERRCR) GOTO 13U
    IF((FUNUB*FUNCI).GT.0.U) GO TO 120
    R2=RO
    FUNC2=F JNC3
    GOTO 115
    R1=に3
    FUNLi=FJNCS
    GuTO 115
105 R3=れ゙1
130 RRTL=XX-RT
    RRTU=RU
    RAU=R3
    IF(RAD.LT.RB) RAD=RB
    RETUKN
CLU XX=PROSY
    IF((XX-ZT).LT.RU) GO TO 210
    KRF=RITI(PAR, BGA,PR,RB)
    R B=SQRT((RRF**C))+(RT**2)+2.0*RT*SQRT((RRF**2)-(RQ**2)))
```



```
    ANG31=TART(ANGS,BEY,PR,R3)
    RKTL=XX
    RRTL=XX
    RKTU=R'S
    IF(RAB, - T.RB) RAU=RB
ANGI=ACJS(XX/R1)
```

```
    ANGL1=TART(ANG1,UBN,PR,R1)
    RKF1=FRKC(ANG11,K1,RT)
    FUNQ I=R?FI-RE
```



```
    K2=に1
    FUNCc=FJNCL
215
    FUNCI=FJNCZ
```



```
    ANGC=ACJS(XX/K<)
    ANGC1=TAKT (ANGC,BEY,PR,RZ)
    RF2=FR2C(ANG21,K2gKT)
    FUNUC=NरF2-RB
    IF((FUNS1*FUNCL) GT.U.U) GO TO 215
22U RJ=(R1*=UNC2-KC*FUNG1)/(FUNC2-FUNC1)
```



```
    ANGS1=TART(ANG3,BBY,PR,R3)
    RKFS=FKKKL(ANGuLgFisgRT)
    FUNUS=R2FJ-RB
    IF((ABS (FUNC3)) LE,ERRUR) GO TO 235
    IF(f(FUNC3*FUNC1):GT:0.G) GO TO 225
    Rc=ド心
    FUNUCZF JNC3
    GO FU 220
225
    R1=k3
    FLNC1=FJNCU
    GO TO 220
230 Ku=R1
C35R1=R3
    ANG1=ACJS (xX/K1)
    ANG11=TART (ANG1,BBY,PR,R1)
    RKF1=F}{C(ANG11,K1,KT)
    ANGFI=FARC(ANG1,ANG11,GBY,PR,RRF1,R1,RT)
    1F(RRFI LI.RB) KKF1=RB
    AMG12=4,0S (RU/RKF1)
    FUNU1=ANGF1+TKNG(TP,PR,PAR,ANG12)-ANGC
    UELK=(((RU- (XX-RT)) /SIN(PAR))**2)/(6.0*PR*COS(PAR))
    IF (UELROLE U.U) GO TO CSS
    ULLKシUELR/C`U
    R2=R1
    FUNCZ=FUNC1
C4
R%=心字
    FUNL1=FUNCZ
    R2=<2+UこLR
    ANGE=A(JS (xX/R2)
    ANGC2=1+KT (ANG<,BBY,PR,RC)
    RNFC=FK彐C(ANG21,K2,RT)
    ANGF2=FARU(ANG2,ANG21,BBY,PR,RRF2,R2,RT)
```



```
    IF(NFFCOLG:RS)KRF&
    FUNCK=ANGF2+TANG(TP,PR,PAR,ANG2Z)-ANGC
    IF((FUNC1*FUNCC)。GT.O.U) GO TO 240
    ANGSI=TART (ANG3, BEY, PR,R3)
    , RRFS=FRZC(ANGSI,RU,RT)
    ANGF \(3=F A R C\) (ANGJ, ANG31, WBY, PR, RRF3,R3, RT)
    IF (RRFBULT, RU) RRF3=RB
    ANGO2=40OS (KE/KKF3)
    FUNC \(3=A \cup G F 3+T A N G(T P, P R, P A R, A N G 32)-A N G C\)
    IF ( \(A E S(F U N C S)\) ) LE:ERKUR) GO TO 260
    IF ( (FUNJ3FFUNCi) GT:O.L) GO TO 250
    RG=RS
    FUNC C=FUNC3
    GU TOć45
    した
    FUNCI=FJNC3
    GOTU 245
    Rこのに
    C60 RKTL \(=X X\)
    RKアースR=1
    RRTU=R
    KAO=RRF
    IF (RAD. - T.RB) RAD=RB
    RとTURN
    ENO
    SUBROUTINE AODEND (ADUL, PAR,PR,RB,RO,TO,TP)
(x) (x) (N)
    THIS RJJTINE DETLRMINES THE ADDENOUM LENGTH OF POINTED TEETH
AND TODTH THICKNESS AT AUDLNDUM CIRCLE
    AUDL \(=\) ADULNUUM LENGTH TO POLNT \{INCHES
    PAR \(\quad=\) PRESSURE ANGLE (RADTANS)
    PK \(\quad=\) PITCH CIRCLE RADIUS (INCHES)
    RB = BASE CINCLE KAUIUS (INCHES)
    RO \(\quad=\) AOUENUUM CIRCLE RAUIUS (INCHES)
    TO \(\quad=\) TUOTH THTCKNESS AI AUUENOUM GIKCLE (INEHES)
    \(X I N V(A N う)=T A N(A N G)-A N G\)
    ERRUK=10UE-00
    \(X A X=(T P ;(L \cdot(* P R))+X I N V(P A R)\)
    R \(1=\mathrm{P}\)
    \(A H G 1=P A 2\)
    \(F\) UNU1 \(=X\) INV (ANG1) \(-X X X\)
    OLLR二ABS (RU-PK)
    IF (ULLR.EU.O.U) UELK=0.1
    \(R 2=\mathrm{R} \frac{1}{2}=F\) UNC1
FUNC 2
1
RUFRC
FUNC
FJNZ
FUNG \(1=F J N O 2\)
ANG \(=A C J S(R B / R 2)\)
FUNG2=XINV (ANG2)-XXX
```

 IF((FUNS1*FUNC2).GT.0.6) GO TO 1
 2 RU=(R1*FUNC2-R2*FUNC1)/(FUNC2-FUNC1)
ANGS=AC)S (RE/KS)
FLNC3=xLINV (ANG3) - xXx
IF((AUS(FUNCS));LT\&ERROR)GO TO }\mp@subsup{}{}{4
R\&=R*
FGNGZ=FJNC3
GNUC=FJNC3
80=R
3R1=R゙3
FUNC1=FJNC3
GO TO ?
4 ADCL=RO-PR
ANG=ALUS (RB/RO)
TU=c:0*20* (XXX-XINV(ANG))
IF((PR+AUDL).LT.KO) TO=0.0
RLTURN
ENO

```
SUBROUTLNE PITCH (RATIO,CD, TEETH1,TEETH2,RPM1,PAR,PI,PR1,PR2,R81,
THIS ROJTANE LETERMINES VARIOUS GEOMETRICAL RELATIONSHIPS
```

SUBSCRIJT (1) REFERS TU THE PINION
RATIO = GEAR RAT 10 (IE。GEARTEETH / PINION TEETH)
CL = CENTRE DISTANCE (INCHES)
TEGTH = NUMEER OF TETH
RPAT = SHAFT SPEED (REVULUTIONS PER MINUTE)
PAR = PRESSURLEANGLE (NAUIANS)
$\mathrm{PI}=301415 y^{2} 2.000$
PR $\quad=$ PITCH RAUIUS (INCHLS)
RE $\quad=$ BASE CIRCLE RADIUS (INCHES)
BP = EASE PITLAE (ANCHES)
$\mathrm{CP} \quad=$ CIRCULAR PITUH (INGHES)
DP $\quad=$ DIRCULAR PITLH (INGHES) PER INCH)
PLV $=$ PITLH LINE VELOCITYE (FPM)
PK1 $=$ CU/ (RATIU+1. 6$)$
PR2=CU- $2 R 1$
PLR=CupR
RE1=PK1*CUS (PAR)
$R B 2=P R E C U S(P A R)$
OP=TEETHI/PU1

```

```

$B P=C P * C O S(P A R)$
$P L V=(P T P U 1 * R P H 1) / 12.0$
TEETH2=RATIO*TEETH1
KETURN
END

```
```

SUEROUTINE TORQUE (HP,FI,RPN,TORQ)

```
(3) (6) (x) (x)
THIS ROJTINE UETERAINES THE TORQUE ON THE GEAR
    HP \(=\) HORSEPOWER

    TORQ \(=\) TORQUE (FTOLES)
    \(T U R Q=(33300.0 * H \dot{F}) /(2.0 * P I * R P M)\)
    RLTURN
    END
    SUSROUTINE TLUAU (HP,PLV,PAR,WA,WR,WT,WN)
006x)
THIS RUJTINE UETEKMINES THE MAGNITUOE OF LOADING ON THE TEETH
\(H F=\quad\) HORSEPOWLR
    PLV = PITCH LINE VELOCITY (FPM)
    PAR \(\quad=\) PRLSSUNE ANGLE (RAUIANS)
    Wh \(=A X L A L\) LUAD (LGS))

    WN \(\quad=\) TANGENTIAL LOAD (LBS)
    \(W T=(S J U U Q Q H H P) / P L V\)
\(W R=W T A N G A R)\)
    \(W A=\cup \circ 0\)
    \(W N=W T / C D S(P A R)\)
    RETURN
    END

SUERKULTAY LOAD (RL, ANGL,RLL, ANGLL, NLOAD, BP, PAR, PR, PRM, RB, RBM,
THIS KOJTTHE DLTERMINES THE RAUIUS TO THE POINT OF LOAD APPLICATIUN AT THE TUOTH CENTKELINE AS WELL AS THE LGAD ANGLE FOR EITHER TIP LOAUING OR POINT OF HIGHEST SINGLE TOOTH LONTACT LOAUING. THE LOAU KAUIUS ANU LUAD ANGLE FOK THE FULLCWING TOOTH AKE ALSj UETERMINEU.

RL \(\quad\) KADIUS TO POINT OF LOAD APPLICATION ON GEAR TOOTH
ANGL \(=\) LENTRELINE (RNEHESS
RLL \(=\) RAUIUS TO POINT OF LOAD APPLICATION ON FOLLUWING GEAR
TUOTH CliNTRELINE (INEHES)
ANGLL = FULLOWING TUUTHLOAU ANGLE (RAOIANS)
HLOAD \(=1\) FUR TIP-LUAUING
BF = \(\angle F\) FUR HIGHEST FOINT OF SINGLE TOOTH CONTACT
BF \(\quad=\) GASE PITCH (INCHES)
PRAR = PRESSURL ANGLE RADIANS)
PR PITCH CIRCLE KADIUS (INCHES)
PKM = PITUH CIRCLE RAUIUS UF MATING GEAR (INCHES)
RE E EASE CIRCLE RAUTUS (INCHES)
RBM = BASE ORIRLLE RADIUS OF HATING GEAR (INCHES)
RU \(\quad\) HUUENUUM CIRCLE RAUIUS OINCHESI
RUM = AUUENUUM CIRLEE RAUIUS OF MATING GEAR (INCHES)

XTNV (ANJ) \(=\) TAN (ANG) -ANG
TANS (TP, PR, ANG,\(~ A N G Z)=\)
IF (NLOA). EQ. 2) GO TO 1
A \(A G=A C O S\) ( \(R B / R U\) )
ANGA=TAVG(TF, PR, PAR, ANG)
ANGA = ANGLE GETWEEN CENTERLINE OF TOOTH TO EQGE OF TOP LAND
ANGL=ANJ-ANGA
KL=KDAUSN(ANGL
IF (RL.GT:RO) \(K L=K O\)

\(2 \angle=\angle \angle Z-3 P\)

\(\left.R K=S O R T(K U * * 2)+\left(L L^{* *} 2\right)\right)\)
1F(KROLI:RB) \(K R=R B\)
A \(N G=A \cup J S\) (KU/RK)
\(A N G 1=T A J G(T P, P R, P A R, A N G)\)
ANGLL=AVG-ANG1
RLL \(=R 13 /\) うOS (ANGLL)
RETURN

\(Z Z=(B P-\angle B)\)
\(R K=S Q R T\left(\left(P R^{* *} 2\right)+\left(Z Z^{* * 2}\right)+200 * P R * Z Z * S I N(P A R)\right)\)
ANG=ACOS (RB/RR)
ANG1=TAVG(TP,PR,PAR, ANG)
```

ANGL=AN3-ANG1
R2=RもノCOS(ANGL)
IFGRLGIORO) KLL=RO
ZZL=S(RT ((RR**2)- (RE**Z))
ZZ=2ZL-3P
1F(LL,LT:U.j) LZ=0.u

```

```

IF(KROLT KB) KR=KB
ANG=ACOS (RB/RR)
ANGI=TANG(TP,PR,PAR,ANG)
ANGLL=A VG-ANGI
RLL=RD/SOS(ANGLL)
RETURN
ENU

```

SUBROUTINE SHAPE (ANGC1, ANGCZ, ANGL1, ANGL2, BBY1, BBYZ, BP, LP, E1, E2, 1ERR,FW, VCUT1, NUUTL, NNLUAD,FAU,PAR,PI,PR1,PK2,QO,QV,QJ1,QU2,
 \(\left.\operatorname{T} P_{i}, T P_{C}, W N\right)\)
THIS ROJTINE DETLRHINES IF THERE IS LOAD SHARING BETWELN
SUCUESSLVE TELTH OF A HATING GEAR SET. ANALYSIS IS MAUE FOR TIP ANU HIGHEST PUINT UF SINGLE TUOTH CONTACT LOADING THE MUDE OF LOAUING YILLULING THE HIGHEST BENUING STRESS WILL EE USED FOR FINAL STRESS ANALYSIS.
```

SUBSCRIOT (1) REFERS TU THE PINIU
ANGLGR = ANGLE BETWEEN THE TJOTH CENTRELINE AND THE FILLET ORIGIN
AT THC ULUENUUM CIRCLE (RAOIANS)
ANGL = LOAUPRESSURL ANGLE (RAUIANS)
UGY = DISTANLE BETWEEN FTGH CIRCLE AND CENTRE OF ROUNDED
CORNER ON GENERATING RAGK TOOTH (INCHESS
BP = BASL PITCH (INCHCS)
D% = DIARETRALPPTCH (TEETH PER INGH)
EOR = MOUULUS OF ELASTICITY (PSI)
ERR = ERRUR IN ACTIUN (INGHES)
FW = FACL WIUTH (INCHES)
NGUT = 1 IF GEAR CUT EY RACK WITH SHARP CORNERED TEETH
= LIF GEAK CUT GY KACK WITH ROUNDEO COKNERS
NINLOAO = 1 FOR TIP LOADING

```

```

PAR = PRESSURE ANGLE (RAUIANS)

```

```

QV \VELOCLTY CORKECTION FACTOR
QJ = GEUMETRY FACTOR
= BASLE CIRCLE RADIUS (INCHES)
RBI = BASL CIRCLERARIUS (INCHES)
RL = NAUIUS TU POINT OF LOAD APPLICATION ON GEAR TOOTH

```
\(R L L\)
\(R L M\)
\(R O\)
\(K T\)
\(W N\)
\(=\) CENTRELINE UINCHESS LOAU APPLICATION. ON GEAR TOUTH
\(=\) CENTRELINE OF FOLLOWING TOOTH (INGHES) TUUTH CENTRELINE FOR ANALYSIS USING LEWIS TECHNIQUE UF TUUTH FORN FACTOR DETERMINATIUN (INCHES)
\(R O\)
\(R T\)
TP
= ADULNUUN UIKCLE RAUIUS (INCHES)
= TOUTH THICKNESS AT PITCH CIRCLE (INCHES)

UIMLHSIJN KRR(8), AAA (8), QGQ (8), HHH (8), TTT (8), ST1F (4)


NLUADI=1
NLUAD2 =2
\(0011=1,3,2\)
CALL LJAU(KNR (I), AAA (I) , KRR(I+1), AAA (I + I) , NLOAD1, BP, PAR, PRI, PR2, 1KE1, RE2, RO1, RU2,TF1)
CALL LOAU(RRS \((I+4), A A A(I+4)\), \(R R R(I+5)\), \(A A A(I+5), N L O A D 2, B P, P A R\),
1PR2, PR1, RE2, KU1, KU2,RO1,TPZ
NLOHD1=2

NLUADC=
1 CUNTINUE
\(00 \quad\) C \(1=1,4\)
CALL JFACT (ANGC1, AAA (I), BBY1, DP,NCUT1, PAO, PAR,P1,PR1,RI1, RRR(I),
aKLHL, KT1, HHH(I), TTT(I), QQQ(I), Y1)
CALL JFACT (ANGCZ, AAA (I + 4) , BGY2, DP, NCUT2,PAD,PAR,PI,PR2,RI2,
\(2^{1 \mathrm{RGR}(I+4)}\), RLML, RT2, HHH \((I+4)\), TTT \(\left.(I+4), Q Q Q(I+4\}, Y 2\right\}\)
2 CUNTINUE
STIF (I) = STiFF (AAA (I), AAA (I+5), E1, EZ, FW, HHH(I), HHH(I+5), TTT(I), 1 TfT \((1+j)\) )
\(S T \perp F(5-I)=S T I F H(A A A(I+1), A A A(I+4), E 1, E 2, F W, H H H(I+1), H H H(I+4)\),
ITTT( \(1+1\) ), TTT \((I+4)\) )
3 CUNTINU
UWII=WIN (QO/QV)
IF (UWN. -T. (ERK*STIF (1)) ) GO TO 4
IF (UNA. T. (ERR*STIF (2)) )GO TO 4
\(x \times x=6 \cos ^{2} \mathrm{STIF}\) (1) *STIF(4)
Y YY=S \(\Gamma=(1)+S T Y F(4)\)
FTL \(=(\) LWU*STIF \((1)+X X X) / Y Y Y\)
\(F H E=(U W Y\) TSIF \((4)+X X X) / \forall Y Y\)
\(X X X=L P R+S T I F(2) * S T \perp F(3)\)
YYY=STIF (2) +STIF (3)
\(F T Z=(D W Y * S T I F(2)+X X X) / Y Y Y\)
\(F H=(U W V\) STIF \((S)+X X X) / Y Y Y\)
GSTI \(=(F T 1 * A A A(1) * U P) /(F W * Q Q Q(1))\)
\(B S H 1=(F+12+A A A(3)+U P) /\left(F W^{*} Q Q Q(3)\right)\)
IF (BST1.GT, ESH1) GO TO 4
BSTC=(FTC*AAA(7)*UP)/(FW*QQQ(7))

GSM2 \(=\left(F+2^{*} A A A(5) * O P\right) /\left(F W^{*} Q Q Q(5)\right)\)
IF (ESTR.GT.BSMC) GO TO 4
RLi=RRR(3)
        RLLI = NR (4)
        RLL \(=\) RN( 0 (
    QUL=RQU (3)
    \(Q J \frac{1}{2}=Q Q Q(5)\)
    NNLOAJ=?
    RETUFiN
\(\left.4 \begin{array}{rl}R L \frac{1}{2}=R K R(1) \\ R 2\end{array}\right)\)
    ANGL2=AAA
    ANGL2=4AA(1)
    RLLI =RR2 (2)
    RLL \(=\) Rर大 8
    QJI = Qứu (1)
    Q J \(=\) QUQ ( 17
    NWLOQUOK
    NALUAN=
    RETU
    SUBROUTINE BENU(WT,UP,FW,QUD,QUDL1,QODL2,QJ1,QJ2,SE1,SB2,

\(S E M 1=S A=1+Q O D L\)
\(S B M 2=5 A=2 * Q O U L 2\)

RETURN
END

SUBROUTINE WEAR (COD, CODL1,CODL 2,CE,CJ,FW,PR1,SAC1,SAC2,SS1,SS2,

THIS ROUTINE DETERMINES THE ACTUAL AND ALLOWABLE CONTACT STRESS ON THE TOOTH FACE (PSI)

SUBSCRIT (1) REFERS TO THE PINION
SUBSCRIPT (2) REFERS TO THE GEAR
CUO
\(=0 V E R A L L ~ U E R A I N G F A C T O R ~\)
\(=\left(\mathrm{CO}^{*} \mathrm{CS} \mathrm{S}^{\ddagger} \mathrm{CM}^{*} \mathrm{CF}\right) / \mathrm{CV}\)
CODL = OVLRALL LIFE OERATING FAGTOR
CE E ELASTIC COEFFICIENT FACTOR
CF = SURFACE CONUITION FACTOR
CH E HARONESS RATIO FACTOR
CJ = GEUMETRY FACTOR
CL = LIFE FACTOR
CM \(\quad=\) LUAU-UISTRIBUTION CORRECTION FACTOR

\(\begin{array}{ll}C R & =R E L I A B I L T T Y F A C T O R ~(F A C \\ G S & =S I L E R O L T O N F A C T O R\end{array}\)
- TEMPERATURE FACTOR
= VELOCITY CORRECTION FACTOR (DYNAMIC FACTOR)
FACE WIUTH (INCHES)
PITCH RADIUS (INCHES)
ALLOWABLE CONTACT STRESS (PSI)
\(\begin{array}{ll}S A C & \text { ALLOWABLE CONTACT STRESS (PSI) } \\ S S & =A C T U A L ~ S U R F A C E ~ S T R E S S ~(P S I) ~\end{array}\)
SSM = MAXIMUM ALLOWABLE SURFACE STRESS (PSI)
WT \(=\) TRANSMITTED LOAD ON TEETH (LBS)
SS1=CE*SQRT( \((W T * C O O) /(2.0 * P R 1 * F W * C J))\)
SSC=SS1
SSM1=SAT \(1 * \operatorname{COUL} 1\)
RETURN
END

SUBROUTLNE FOWER(CE, CJ,CUD,CUOLI,CODLZ,QU1,QJZ,QOD,QODL1, QODLE,
THIS KOUTINE UETERIINES THE MAXIMUM ALLOWABLE HORSEPOWER THAT
CAN BE TNANSMITTEU UNULR WEAR AND BENDING STRESS CONDITIUNS
CL \(\quad=\) GLASTIC COEFFICIENT FACTOR
CUO = OVLAAL DERATING FACTOR
\(=\left(\mathrm{CO}^{*} \mathrm{CS} \mathrm{S}^{*} \mathrm{CH} \mathrm{H}^{*} \mathrm{CF}\right) / \mathrm{CV}\)
COOL = OVERALL LIFE DERATING FAOTOR
QJ \(=\left(C L^{*} C H\right) /\left(C T^{*} C R\right)\)
QUU \(=\)-OVERALL OERATING FACTOR
QOUL \(\equiv\) EOVRRALLGMFE DERATING FACTOR
OP E OJAMETRAL PITCH (TEETH PER INCH)
PLB = MAXIMUM ALLOWAGLE POWER... BENOING ANALYSIS (HP)
PAW = MAXIMUH ALLOWABLE POWER... WEAR ANALYSIS (HP)
\(\mathrm{P} 1=3=3141592\).
PR \(=\) PITCH CIKCLE RADIUS (INCHES)
RPA = SHAFT SPEED (REVOLUTIUNS PER MINUTE)
SAC \(=\) ALLOWABLE CONTACT STRESS (PSI)
SAF = MAXIMUHALLOWAGLE FATIGUE STRESS (PSI)
SUBSCRIJT (1) REFLRS TU THE PINION
SUBSLKIDT (2) REFERS TU THE GEAR
C-FACTORS FUR WEAK ANALYSIS
Q-FACTORS FOR BENUING ANALYSIS

\(x \times x_{1}=x \times x *((2.0 * P K 1) /(Q U D * D P))\)
xxx \(=x \times x *(C, 1 / C O D) *((2 . U * P R 1) / C E) * * 2)\)
PAB1 \(=x \times x 1 * Q J 1 * S A F 1 * Q O D L 1\)
PABC \(=x \times x 1^{*} 4 J 2^{*} S A F 2 * Q O D L\)

PAW2 \(=x \times \times 2 *((S A C 2 * C O D L 2) * * 2)\)
RETURN
ENO

SUBROU! [NL, JFACT (ANGC, ANGL, BAY, UP, NCUT, PAD,PAR,PI,PR,RI,RL,RLM,

THIS SJBROUTLNE GALCULATES THE゙ GEOMETRY FACTOR ANU THE TUOTH FORM FAGTOR FOR SPUK GLAK BLNUING STKESS ANALYSIS THE MINIMUM LUAU AFPLILATION RAUIUS POSSIELE FOR TOOTH FURM FACTOR ANALYSIS BY LEWIS TECHNXUUE IS ALSO CALCULATED

ANGC \(\quad=A N G L E\) BETWELN THE TOUTH UENTRELINE AND FILLET URIGIN AT THE LEUENUUM CIRCLE
ANGL \(=\angle O A D P R E S S U K E A N G L E\)
BBY = UTSTANCE BETNEEN PITGH CIRCLE AND CENTRE OF ROUNOED COKNEK ON GENERATING KACK TOOTH (INCHES)
DF
= UTAIETKAL PITEH (TEETH PER INCH)
NCUT \(\quad=1\) IF GEAR CUT GY RAGK WITH SHARP CORNERED TEETH
PAU \(\quad=\quad\) PRESSURE ANGLE (UEGREES)
PAK \(\quad\) PRRLSSUKE ANGLE (KAUIANSS
\(P 1\)
3. 14159.0 .

 CENTKELINE (INCHES)
RLI \(=\) ITNIMUM RAUIUS TO POINT OF LOAL APPLICATION ON GEAR TJUTH UENTRELINE FUR ANALYSIS USING LEWIS TECHNIGUE OF TOOTH FORN FACTOR UETERMINATION (INCHES)
\(\begin{array}{ll}R T & \text { RUUNDEG CORNER RALIUS OF GENERATING GEAR TOOTH (INCHESJ } \\ H & \text { GISTANGE FROH POINT UF LOAG APPLICATION ON TOOTH CENTRE- }\end{array}\)
LINE TO ASSUMED WALL OF TOOTH UANTILEVER (INCHES)
T = CHORDAL TOOTH THICKNESS AT POINT OF HIGHEST STKESS CCNCENTRATION ON TOOTH FILLET (INCHES)
Qu \(\quad=\) GEOHETRY FACTOR
\(Y=\) TOUTH FORH FACTOR
THIS SUBRUUTINE ALSO REQUIRES *FSUBROUTINE CHALL F TO DETERMINE THE PUIVT OF MAXIMUM STRESS CONCENTRATION ON THE FILLET GURVE
\(Y Y\) (ANGL, ANG, UP, \(X, T)=D P /((C O S(A N G L) / C O S(A N G) \geqslant(1.5 / X)-(T A N(A N G L)\)
\(1 / T)\) )
\(S C F(P A U, H, R F, T)=(U .325455-0.047273 \% P A D)+((T / R F)+*(0.331819-0.0090\)
\(191 * P A(U)) *((T * H)+*(U .268182+0.049091+P A D))\)

\(K L M=F I *\left(C O S(A N G C)+\left(U . j^{*} S I N(A N G C) / T A N((P I / 2.0)-A N G C)\right)\right)\)
CALL CWALL (BUY, ANGC, ANGR, NCUT, PI, PR,RI,RL, RRF,RRO,RT) \(X X X=R L\)
\(G E T O C\)
\(1 \times \times X=K L H\)
\(4 N G K=A N S C\)
\(B K O=F K\)
\(R K F=R I\)

\(H=X X X-R 2 F=C O S(A N G R)\)
\(X=(T x+2) /(4, U * H)\)
```

Y=YYQ(A\cupGL,PAS,OP,X,T)
KF=FRII(RRO,OEY,KT)
XKF=SCF(PAU,H,RF,T)
QJ=Y/XK=
RltURN
END

```
    SUBROLTLIV CWALL (BGY, ANGC, ANGR,NCUT, PI, PR, RI,RL, RRF, RRO, RT)
    THIS SUBROUTINE CALCULATES, IN RAUIAL GOOKDINATES WITH RESPECT
    TU. THL JENTRE OF THE GEAR REFENENCED TO CENTRELINE OF THE TOOTH,
    THE FOL IT OIV THE TUOTH FILLET CONSIDERED THE LOCATION OF HIGHESI
    STRESS =ONCENTRATIUN TO BE USEU IN THE Y- AND J-FACTOR
    DETERMIVATION
    BBY = DISTANCE FROM PITCH CIRCLE TO CENTRE OF ROUNUEU CORNER
                OF GENEKATING TUOTH. BBY = DED IF THE GENERATING TOOL
    ANGC = ANGLE BETWEEN THE TOOTH CENTRE AND THE ORIGIN OF THE
    NLUT \(=1\) IF GEAR CUT GY RACK WLEH SHARP CORNERED TEETH
    \(=\frac{1}{2}\) IF GEAK CUT BY RACK WITH ROUNDED CORNERS
    \(P 1=3.1415920\).
    PR \(\quad=\) PITEH CIRCLE RAUIUS (INCHES)
    RI = UEUENUUM CIRCLE RADIUS (INCHES)
    RL = RAUIUS TO POINT OF LUAO APPLICATION ON GEAR TOUTH
    RRO = RELATLVE KAUIJS OF CURVATURE OF THE PTTCH CIRCLE OF THE
        KERAT ANE THE PITCH LINE OR PITCH CIRCLE OF THE
        GENEANL THE PITCH LINE OR PITCH CIRCLE OF THE
        (INCHES)
    ANGK, RK: \(\because\) RALLAL COUROINATES OF POINT OF HIGHEST STRESS
    CUNEENTマATION GN FILLET CURVE.
    WALL(RL, \(3 R T, A N G 1, A N G 2)=2.0 * R L-R R T *(2.0 * C O S(A N G 1)+(S I N(A N G 1) / T A N(A N\)
\(\left.1 G 2=A \operatorname{lal}^{2}\right)\)
    \(X \operatorname{INV}(A \cup 3)=\operatorname{TAN}(A N G)-A N G\)
    \(T A R T(A N \xi, B B Y, P R, R R T)=A T A N\left(\left(1,0-\left((R R T * * C) /\left(P R^{*}(P R-B B Y)\right)\right)\right) / T A N(A N G)\right)\)
    YANG (TP, PR, ANGI, ANG2) = (TP/ (2.0*PR) + XINU (ANGI) -XINV (ANGZ))

    FASC (ANG, DBY, PR) = (UBY/PR) कTAN(ANG)-XINV(ANG)
    \(F A R C(A N J, A N G 1, B B Y, P R, R K F, R R T, R T)=F A S C(A N G, B B Y, P R)+A C O S(1 R R T-R T * S I N\)
    1(ANG1)) RRF)

R1=x X
ANGI=0.0
ANG11=AVGC

ANG12=P1/2.0
\(F U N C 1=W A L L(R L, R 1, A N G 11, A N G 12)\)
UELR=SQRT ( \(\left.P R^{*} \times X\right)-R 1\)
IF (UELR.LE.U.U) GOTO 125
DELK=DELR/5:U
R2=R1
FUNCC=FJNCI
105
R1=R2
FUNCI=FJNC2
\(R \mathbb{C}^{\prime}=R 2+U E L R\)
ANG \(=A C J\) 'S \((X X / R 2)\)
ANG21=ANGC-FASLI (ANG2,BUY,PR)
ANG \(22=T A R T\) (ANG2, BBY,PR,R2)
FUNC2=WALL (RL,R2, ANG21, ANG22)
IF (FUNCL. GE OUNCI) 60 TO 103
IF (FUND 1*FUNCC) GT:0.0) GO TO 105
110 R3= (R1* \(=\) UNC2-R2* FUNC1) / (FUNC2-FUNC1)
ANG3 \(=\) ACJS \(\left(X \times /{ }^{2} 3\right)\)
\(A N G S 1=A V G C-F A S C(A N G 3, B B Y, P R)\)
ANG \(32=T A R T\) (ANG 3 , BBY, PR,R3)
FUNC \(3=\) WALL ( RL, R3, ANG 31, ANG32)

R2=尺3
FUNL2=FJNC3
GOTU 110
FUNCI=FJNC3
GLTO 110
RRF=R3
\(R \mathrm{RO}=\mathrm{PK}\)
ANGR=ANJ31
RETURN
\(\begin{array}{ll}R K F=R 1 \\ R 2 & =P R\end{array}\)
\(\mathrm{KRO}=P \mathrm{~K}\)
ANGR
ANJ11
RETUFN
\(X X=P R-E 3 Y\)
\(R 1=X X\)
R \(1=x \times\)
ANG1 \(=0.0\)
ANG11=21/2.0
RRF \(1=x X-R T\)
FUNC \(1=N 4 L L(R L, R R F 1\), ANG12, ANG11)

IF (UELR.LE.O.U) GO TO 225
OLR \(=U E R / 5 \cdot J\)

RKF \(=\) RR=1
ANGCZ=AVG12
FUNC2=FUNC1
RRF1=RRF2

ANG12=4 VG22
FUNCI FJNC
ANGC=ACJS ( \(x X / R C\) )
ANGL1=TART (ANGZ, BBY, PR,R2)
RRF \(2=F R R C\) (ANGZI, RZ,RT)

FUNLZ \(=\) W4LL (RL, RRFC, ANG22, ANG21)
IF (AUS (22-R1) •LT•ERROR) GO 10225
IF (FUNCZ G G FUNCI) GO TO 203
IF ( (FUN \({ }^{*} F(I N C Z)\).GT: \(\left.0 . U\right)\) GO TO 205

ANGS =ACTRT(ANG3, BBY Y PR, R3)
RFFJ=FR2C(ANGJ, RJ́, RT)
ANG \(2=A \cup G C-F A R C\) (ANG3, ANG31, BGY, PR, RRF3, R3, RT)
ANG31=A VG31-ACOS ( (K3-RTFSIN(ANG31)) /RRF3)
FUNC \(3=14 A L\) (RL, RRF3, ANGO2, ANG 31)
IF (ABS (FUNCS) LEAERRUR GO TO 220
R2=R3

GO TO ciu

GU TO 210
\(R R F=R R F\)
\(R K U=P R\)
\(A N G F=A N\)
RETURN
225
RRF=RRF1
KKO \(=\) PR
ANGR=ANう12
RLTURN
ENO
```

\. SUBROUTENL IFACT(BP,CJ,PAR,FR1,PR2,RATIO,RB1,RO1)
THIS KOJTINE GETEKMINES THE GEUNETRY EACTOR FOR THE WORST CASE
SUBSCRI`T (1) REFERS TO THE PINION
SUBSCRIPT (2) REFERS TO THE GEAR
Br = BASE PITCH (INCHES)
PAR = PRESSUKL ANGLE (KAUIANS)
PR = PITCH CIRCLE RAUIUS (INCHES)
RATIO = GEAK RATIO (IE.GEAR TEETH/ PINION TEETH)
RATIO = GEAK RAIIO (IESOGEARITEETH
RO = ADUENOUH CIRCLE RADIUS (INCHES)
XXX=(U.5/TAN(PAR))*(RATIU/(RATTO+1.0))
2A1=(SQ<T((RO1**2)-(RB1**2))-SQRT((PR1**2)-(RB1**2)))
ZC1=(BF-ZA1)
IF(SIN(PAR).LT.(ZC1/PR1)) GO TO 1
CJ=XXX*(SIN(PAR) +(ZC1/PRZ))*(SIN(PAR)-(ZC1/PR1))
RETUKN
1
U=1.UE-5u
RETURN
END
SUBROUTLNE EFACT (CE,E1,E2,PI, (1,U2)
00000605060swow
IGIS RUUTINE UETERUINES THE ELASTIC COEFFICIENT FOR THE SURFACE
STRESS ANALYSIS
SUBSCRTT (1) REFERS TO THE PINION
SUBSCRIDT (2) KLFERS TU THE GEAR
CE = ELASTIC COEFFICIENT FACTOR
E = MOUULUS OF ELASTICITY(PSI)

```

```

CLE=1.0
CE=SQRT(CCE/ (PI* (((1.0-(U1**2))/E1)+((1.0-(U2**2))/E2))))
RETURN
RENO

```
\(\stackrel{>}{\sim}\)

SUBROUTINE VFACT(CV,QV,NQUAL,PLV)
THIS SUSROUTLNE DETERMINES THE VELOCITY (DYNAMIC) FACTOR FOR THE STRESS 4NALYSIS

CV,LV = VELOCITY OR IUNAMIC FACTOR
NQUAL \(=A . G O M . A\) QUALITY NUVBER
PLV \(=\) PITEH LINE VELOCITY (FPM)

NNN=NQUAL-c

GUTU 700
CJO \(\mathrm{CV}=1200.0 /(1200 . \mathrm{U}+\mathrm{PLV})\)
GO 107 J
\(3 \cup 0\)
V=らU.0/(50.U子SQRT (PLV))
\(G U=70.4 J(78 . U+S Q R T(P L V))\)
6010700
\(5 J 0 \mathrm{CV}=5 \mathrm{QRT}(78.0 /(78.0+S Q R T(P L V)))\)
GU TO 700
OUO
\(C V=1.0\)
750
RETURN
ENO

SUBROUTLNE MFACT (CM, QM,FW, NQUAL)
(xacsessexses

\section*{THIS ROJTINE UETERMINES THE LOAD DISTRIBUTION FACTOR FOR THE}

CN, QM = LOAU UISTRIBUTION FACTOR
FW \(=\) FACL WIUTH (INCHES)
NQUAL = A.G.H.A. QUALITY NUMBER

IF(FW.GI.2.0) GO TO 1
\(\mathrm{CH}=1\) © 3
1. IF (FW.GT•18:U) GO 102


GOTO 3
2 CH=FW/(0.45*FW+2.0)
3 IF (NQUAL GT.14) GO TO 4
\(\mathrm{C} M=\mathrm{CN}+(\mathrm{U} .9 *(\) FLOAT (15-NQUAL) / 12.U) \()\)
Q \(1=C \mathrm{CN}\)
RETUKN

\(4 Q \mathrm{BH}_{\mathrm{j}}=\mathrm{CM}\)
RETURN
END

SUBROUTLNE OFACT (CO, QO, URIVEN,DRIVER,NURIVE,RATIO)
THIS ROJTINE UETERMINES THE OVERLOAD FACTORS FOR THE STRESS AhALYSIS

CORGO = OVERLUAD FACTORS
= 1.j LUAD ON URIVEN MACHINE - UNIFORM
= ZOU LUAU ON LRIVEN MACHINE - MODERATE
= 3.U LUAU ON DRIVCN MACHINE - HEAVY
DRIVER = 1.0 POWER SOURCE - UNIFORM
SHOCK
= SOU POWER SOURGE - MEOIUM SHOCK
NDRIVE \(=1\) FUR PINION ORIVE
RATIO = GEAK RATIO (IE. GEAR TEETH/ PINION TEETH)
XXX=((URIVEN-1.0)*URIVEN+2.0*DRIVER+6.0)/8.0
GCTO (1, c), NURIVE
\(1-0=x \times x\)
GUTU3

\(3 \mathrm{QO}=\mathrm{CO}\)
RETURN
ENO
sugruutlane sfact (CS,QS)
000006
this routine determines the size factor for the stress analysis
CS,QS = SIZE CORRECTION FACTCR
\(Q S=1 \cdot 0\)
\(Q S=C S\)
RETURN
ENO

SUBROUTINE FFACT (CF)
6030.0.300

THIS FOUTINE UETERMINES THE SURFACE FINISH CORRECTION FACTOR FOR
CF \(=\) SURFACE FINISH CORRECTION FACTOR
Niv N
\(C F=1.0\)
RETURN
ENO

SUBKOUTLNE HFACT（BHN1，BHN2，RATIO，CH）
THIS ROJTINE UETERMINES THE HARUNESS RATIO FACTOR FOR SURFACE STKESS ANALYSIS

SUESCRIPT（1）REFERS TU THE PINTON
SUBSCRIDT（L）REFERS TO THE GEAR
BHN \(=\) BRINELL HARDNESS
RATIO
CH GEAR RATIO（IC GEAR TEETH／PINION TEETH）
\(H R=6 H N 1 / B H N 2\)
IF（HR．LT．1．2）GU TO 1
\(X X X=0.052008 *(H K * * 0.225683)-0.052032\) CHEXXX＊（RATIO－1．（J）+1.0
KETURN
\(1 \mathrm{CH}=100\)
KETURN
END

SUBROUTINE LFACT（BHN，CYCLE，CL，QL）
THIS ROUTINE UETERMINES THE LIFE FACTORS FOR STRESS ANALYSIS
BHN＝BRINELL HARONESS
CYCLE \(=\) NUNBEK OF LOAU CYCLES FOR PINION
CL，GL \(=\) LIFE FACTOR

IF（CYCLE．GT．1．0ct07）GO TO 1
LL＝2．5756U7\％（CYCLE＊＊（－0．058697））
GO TOC
12
2 QL100＝2．335254＊（CVCLE＊＊（－0．056092））
QL \(25 U=5.236361 *(C Y C L E * *(-U .112266))\)
QL4うu＝9．0く070与＊（CYCLE＊＊（－0．150709））
IF（QLIOU．LT．1．U）QL16U \(=1\) ． 0
IF（UL2うU．LT：1．U）UL \(250=1 \cdot U\)
IF（ \(4 L 450 . L T \cdot 1.0) Q L 450=1.0\)
IF゙（BHN．GT・とうU＠GU TO 3
\(Q L=Q L 10 j+((3 H N-16 U . U) / 90.0) *(Q L 250-Q L 160)\)
RETUKN
3 QL＝QL25J＋（（BHN－250．0）／200．0）＊（QL450－QL250） RETURN
END
```

SUBROUTINE RFACT (CR,QR,RELI)
THIS RUUTINE UETERNINES THE RELIABILITY FACTOR (SAFETY FACTOR) FOR
THE SIR=SS ANALYSIS

```
KELI \(=\) RELIAGILITY
CR, QR = KELIABILITY FACTOR
IF(RELI.GE.1.U) KELI \(=0.9999\)
IF (RELI. LT T. Yg) GO TO 1
CR=U.444444*((1.0/(1.0-RELI))**0.176091)
GOT0
\(\frac{1}{2}\)
QRECK
RETURN
END
SUGROUTINE TFACT (CT,QT,TEMP)
    THIS ROJTINE DETERMINE THE TEMPERATURE FAGTORS FOR THE STRESS
    ANALYSIS
CTMQT \(=\) TEMPERATURE CORRECTIUN FACTORS
\(\mathrm{CT}=1.0\)
QF (TEMP.GT. 160.0) \(\quad Q T=(460.0+T E(P) / 620.0\)
IF (TEMP:GT:18U.0) CT \(=(46 \mathrm{U} .0+\) TEMP \() / 640.0\)
RETUKN
END


THIS ROJTINE DETLRMINES THE OVERALL DERATING FACTORS FOR BENDING
    ANO WEAZ STRESS ANALYSIS
    SUBSCRIJT (1) RLFERS TO THE PINTON
\(P ?\)
SUBSCRID (2) RLFERS TO THE GEAR
N゙NN
\(\begin{array}{ll}\text { CF } & =\text { SURFACE CONOITIUN FACTOR } \\ C H & =\text { HARUNESSKATO FACTOR }\end{array}\)
CL, QL
CHIQM
= LIFE FACTOR
CH, QM
                                = LOAU-UISTRIBUTIUN CORRECTION FACTOR
CO,QO
    = OVERLOAU CORKECTION FACTOR
CO,QR \(=\) RELIABILITYFACTUR (FACTOR OF SAFETY)

```

 CS,US = SIZL CORRECTION FACTOR
    ```
    CS,US = SIZL CORRECTION FACTOR
    CT,QT = TEIPLRATUKE FACTOK
    CT,QT = TEIPLRATUKE FACTOK
    CVQQV \(=V E L O C I T Y\) CORRECTIUN FACTORIDYNAMIC FACTORD
    CVQQV \(=V E L O C I T Y\) CORRECTIUN FACTORIDYNAMIC FACTORD
    CCU = OVEKALL DERATING FACTOR
    CCU = OVEKALL DERATING FACTOR
    QOU \(=\) OVARALL UERATING FACIOR
    QOU \(=\) OVARALL UERATING FACIOR
    COLIL \(=\) OVEKALL LIFE UERATING FACTOR
    COLIL \(=\) OVEKALL LIFE UERATING FACTOR
    QUDL = OVERALL LIFE DERATING FACTOR
    QUDL = OVERALL LIFE DERATING FACTOR
    C-FACTOZS USEU IN WLAR ANALYSIS
    C-FACTOZS USEU IN WLAR ANALYSIS
    Q-FACTOR'S USED IN BENDING ANALYSIS
    Q-FACTOR'S USED IN BENDING ANALYSIS
    \(\dot{C U U}=\left(\mathrm{CJ} \mathrm{CS}^{7} \mathrm{CM} \mathrm{CF}\right) / \mathrm{CV}\)
    \(\dot{C U U}=\left(\mathrm{CJ} \mathrm{CS}^{7} \mathrm{CM} \mathrm{CF}\right) / \mathrm{CV}\)
    \(Q U U=\left(Q O^{+} \mathrm{Q}^{2}+Q m\right) / Q V\)
    \(Q U U=\left(Q O^{+} \mathrm{Q}^{2}+Q m\right) / Q V\)
    \(X X X=C H /(C R * C T)\)
    \(X X X=C H /(C R * C T)\)
    \(Y Y Y=Q R^{*} Q T\)
    \(Y Y Y=Q R^{*} Q T\)
    CUOL \(1=0-1 * \times X X\)
    CUOL \(1=0-1 * \times X X\)
    COUL \(2=\mathrm{C}-2+x \times X\)
    COUL \(2=\mathrm{C}-2+x \times X\)
    QUULI=QLI/YYY
    QUULI=QLI/YYY
    QOUL \(2=Q L 2 / Y Y Y\)
    QOUL \(2=Q L 2 / Y Y Y\)
    RETURN
    RETURN
    ENO
```

 ENO
    ```
SUBKOUTINE CUNRAT GANGCI, ANGC 2, BP, GRATIO, NCUT1, NCUTE, NORIVE,
1PAR, PR1, PRZ, RE1, RB2, KI1, RI2, RU1, RO2, RU1, KU2,TP1, TPZ, XLA, XLR,
2BLA1, UBA2, UBX1, \(3 B X 2 ; B E Y 1\), \(B B Y 2, R T 1, R T 2)\)

    THE KOUTINE ALSO KEGUIRES **SUBROUTINE LENGTH** TO DETERMINE THE
    LLNGTH JF CONTACT IF UNUERCUTTING IS PRESENT.**SUBROUTINE LENGTH**
    KEUUIRES **SUBRUUTINE FILLET** OAG IS PRESENI***SUBROUTINE LENGTH**
    SUESCRIPT (1) REFERS TU THE PINION
SUGSCRI T (2) REFERS TU THE GEAR
    ANGG = ANGLE BETWCEN THE TOOTH
    \(\mathrm{BP}=\mathrm{BASE}\) HITCH (DNEHES)
    CKATIO = CONTACT. KATIO
    NCUT \(=1\) IF GLAK CUT BY RACK WITH SHARP CORNEREO TLETH
    N \(=\frac{1}{2}\) IF GEAAR CUT BY RACK WITH ROUNDED CORNERS
NDRIVE \(=2\) FF GEAR CUT BY RACK WITH KOUNOEO CORNERS
    PAR \(\quad=2\) FOR GEAR \(\quad=\) RSSURE ANGLE (KADIANSI
    \(\begin{array}{ll}\text { PAR } & =\text { PITCH RAUIUS (INCHESS } \\ \text { RB } & =B A S E G I R C L E R A U I U S ~(I N C H E S) ~\end{array}\)
    \(\begin{array}{ll}R E & \text { RASE GIRCLE RADIUS (INCHES) } \\ \text { RI } & =\text { ROUT UIRCLE RADIUS (INCHES) * (PR-DED) }\end{array}\)
    RO \(=\) AUULNOUA CIRCLE RAOIUS (INCHESS)
RU \(\quad=\) UNUERCUT LIMIT RADIUS (INCHES)
    A) THE GONTACT RATIU FUR NON-UNDERCUT ANU UNUERCUT CONDITIONS
\(\begin{array}{ll} & = \\ \text { PAR } & = \\ \text { PR } & = \\ \text { RE } & = \\ \text { RO } & = \\ \text { RU } & =\end{array}\)
2 FOR PINION DRIVE
2 FUR GEAR DRIVE
```

`. TPA = TUUTH THLCKNLSS AT PITCH CIRCLE (INCHES)
XLA = LENGTH OF APRROALH IINCHESS
XLP = LENGTH OF ReLESS (INCHES)
BUA = UISTANGE BETWEEN PITCH CIRCLE AND END OF STRAIGHT
PRUFILE UN G\&NERATING RACK TUOTH FLANK (INCHES)
BEX = UISTANCE BETWELN TUUTH CENTERLINE AND CENTRE OF ROUNDED
BUY = UISTANCE GETWEENFITCH CIRCLE ANDGENTRE OF ROUNDED
RT = RORNER ONGGGNERATING RACK GONER RAUIUS OF GENERATING GEAR TOOTH (INCHES)
NNN=1
IF(RU1. ST.RI1) NNN=NNN+1
If (RU2.jT:RI2) NNN=NNN+2
0.053000,
NNN = 1 NEITHER GLAR UNUERCUT
= 1 NEITHLR GLAR UNUERCUT
= 2 PLNEON UNUEKCUY UNLY
= 3 GEAR GUNULRCUT ONLY
G0 TO(4U0,30u,200,100), NWN
100 心ALL LEVGTH(ANGLi,NCUT1,PAR,PR1,RB1,RI1,gRU1,TP1,BBA1,
1BEX1, EBY1,RT1gXXX1)
GALL LEVG]H(ANGCG,NCUTZ,PAR,PR2,RB2,RI2,RU2,JP2,BBA2,
13BX2,EBY2,RTC,XXX2)
GG TO 5JU
2J0 CHLL LENGTH(ANGC2,NCUT2,PAR,PR2,RB2,RI2,RU2,TP2,BBA2,

```

```

 XXXI=SQ2T((RJC** C)=(RE2**2))-PR2*SIN (PAR)
 GU TO bu u
 3U0 CALL LEVGTH(ANGC1,NCUT1,PAR,PR1,RB1,RI1,RUI,TP1,GBA1,
1BEX1,BOY1,RT1,XXX1)
x\timesx2=SLRT((RU1**2)-(RB1**2))-PR1*SIN(PAR)
GO TO SUO
4U0 X X X1=SURT((RUC**2)-(RBC***2))-PRC*SIN(PAR)
X\timesX2=SQRT ((RO1**<)-(RBI**2))-PR1*SIN (PAR)
500 IF (XXX1.LT.U.U) XXX1=0.U
IF(XXXC.LT.0.0) XXX2=0.U
GRATIU=(XX\times1+XXX2)/EP
10 (OUU,7JU), NURIVE
600 XLA= XXX1
XLR=XXX2
RLTUFN
700 XLA=XXX2
XLR=XXX1
RETURN
END

```

SUBROUTINE LENG1H(ANGC,NCUT, PAR,PR,RB,RI,RU,TP, BBA,BGX,BGY,RT, XXX) THIS ROJTINE UETEKMINES THE LENGTH OF CONTACT FOR A GEAR FROM THE UNDERCJT CIRCLE TO THE PITCH PUINT FOR UINDERUUT CONDITIONS
the rojtine alsu requires **sugruutine fillet** to determine the radius to the fillet-Involute intersection
ANGC = ANGLE BETWEEN THE TOJTH CENTRELINE AND FILLET ORIGIN at the geueinuum circle
NCUT \(=1\) IF GGAR CUT BY KACK WITH SHARP CORNERED TEETH
\(=2\) IF GLAR CUT BY RACK WITH RUUNDED CORNERS
PAR \(=\) PRESSURL ANGLE (RAUIANS)
PK \(=\) PITCH RAUIUS (INCHES)
RE = RAUIUS UF BASE CIRCLE (INGHES)
RI = ROUT UIRCLERADIUS (INCHES) ••(PR-DED)
RU \(\quad=\) ONUERCUTLEMIT RALIUS (INCHESO
- TOUTH THLCKNLSS AT PITCH CIRCLE (INCHES)

GUA = UISTANCE BETWEENFTTCH CIRCLE ANDENO OF STRAIGHT PROFILE ON GLNERATING RACK TOOTH F ANK (INCHES)
BBX = UISTANEE BETWEEN TOUTH CENTERLINE AND CENTRE OF ROUNDED
CORNEK ON GENERATING RACK TOOTH (INCHES
BUY = OISTANCE BETWEEN FITCH OIRCLE AND OENTRE OF ROUNDED
RT = RUUNUL CORNER RALIUS OF GENERATING GEAR TOOTH (INGHES)
\(X_{X X X}=\) LENGTH OF CONTACT (INCHES)

CALL FI-LET(ANGC, NCUT,PAR,PR,RAD,RB,RI,RU,RRTL,RRTU,TP,BBA, BEX, BEY,RT)
ANG=ACOS (RB/RAU
\(X X X=R B^{*}(T A N(P A R)-T A N(A N G))\)
RETURN
ENO

SUBROUTINc EFFIC(EFF,RU1,RD2,PAR, PLV,RATIO,NJRIVE,XLA,XLR)
this kojtine detekmines the friotional efficiency of the gear set
SUSQCRIPT (1) REFERS TO THE PIVION
LFF = EFFICIENCY
RE = BASE CIRCLE RADIUS (INCHES)
PAR \(\quad=\) PRESSURE ANGLE (RAUIANS)
RATIO = GEAK RATIO (IE. GEAR TEETH / PINION TEETH)
NURIVE = FOR PIAIUN URIVE
\(\begin{array}{ll}\text { KLA } & =\text { EENGTH OF APPROACH (INCHES) } \\ \times \text { OENGH OF RECESS (INCHESS }\end{array}\)

FS(VS) \(=(0.05\) U/EXP(U. \(125 * V S))+0.002 * S Q R T(V S)\)
STATEMEVT FUNCTION FSGVS) GIVES THE COEFFICIENT OF FRICTION
AS A FUVCIIDN OF SULIDING VELNAM IN *ANALYTICAL MECHANICS OF GEARS**
GO TO (20, टu), NURIVE
14 \(A A=X L A / 2 B 1\)
AR=XLR/रBATIO
GOTOJj
© 1 A \(A=X L A / 2 B 2\)
ARKRKRTO
ou \(\dot{x} \times x=\left(P_{1} / 2.0\right) *(1.0+R R R) * \operatorname{Cos}(P A R)\)
\(\vee S A=X X x^{*} A A\)
\(V S R=X x X * A R\)
\(F A=F S(V, A)\)
FR=FS (VSR)
\(X \times X X=A A+A\)
\(F A=(4 \cdot U / 3 \cdot 0) * F S(V S A)\)
\(F R=(2,0 / 3.0) \div F S(V S R)\)
\(E F F=10 u-((1.0+R R R) / X X X X) *\left((F A / 2.0) *(A A * * 2)+(F R / 2.0) *\left(A R^{*} * 2\right)\right)\) RLTURN
END

ITUGTOUIINE ERROR IDP, FW, NQUAL, PR,TEETH,TOLR,TOLP,PTUL,TOLL, THIS RJJTINE UETERMINES THE VARIOUS CUTTING TOLERANGES FOR -
\begin{tabular}{|c|c|}
\hline \({ }_{\text {O }} \mathrm{H}\) & ¢IA \\
\hline NQUAL & A.E.il. A. QUALITY NUMBER \\
\hline & (1) \\
\hline TOLT \({ }^{\text {P }}\) & RUNOUT POLERANCE \\
\hline \({ }^{1}\) OTOP & PiTCH TOLERan \\
\hline & Leat tollerance is \\
\hline TCGT &  \\
\hline
\end{tabular}

QUAL \(=\mathrm{NQJAL}((C .0 * P R) * * 0.238) *(0 P * *(-0.484)) *(1.4 * *(8-\) NGUAL \())\)
TOLP \(=14.5 *((2.0 * P R) * * 0.177) *(0 P * *(-0.224)) *(1.42 * *(8-N Q U A L))\)
PTOL \(=21: 5 *(6.0 * P R) * * 0.154) *\left(D^{* * *}(-0.435)\right) *(1.4 * *(8-N G U A L))\)
TULL \(=\left(\left(\left(-0.0 \cup C^{2} 44^{*}\right.\right.\right.\) QUAL +1.13038\(\left.\left.) * Q U A L-2.69177\right) * Q U A L+18.995\right) *\)

\({ }_{1 F}{ }^{1 F}(T E E T-L E \cdot 20.0)\) GO TO 1
ITGTE \(=1\)
Gu 103
1 TTCT \(=54.7 *\left(0 P^{* *}(-0.48)\right) *((2.0 * P R) * *(-0.24)) *(1.4 * *(8-\) NQUAL \())\)
TTCT \(\left.=38.2^{*}(O P * *(-0.36)) *(2.0 * P R) * *(-0.13)\right) *(1.4 * *(8-\) NQUAL \())\)
\(3 x \times x=(5 \circ 1337 * A L U G 1 \cup(0 P))-0.5153\)


1(1.4**(3-NQUAL))
GU TU 5


TULP=1.0 0 E-04~10LP
PTOL \(=1 . \mathrm{VE}-04 *\) PTOL
TULL =1: 1.
\(T T C T=100 E-0+^{* T T}\)
TLTEARN
ENU
SUBRUUTINE BLASHGLMIN,BLMINT, BLMAX, BLMAXT, BLI, BLC\&BLL, BLU,BLR,CP, 10P, ULLBL, NQLAL, PAR, TPTL1, TPTL2,TPTU1,TPTUZ,TPTE1,TRTEZ, 2TPTV1, TラTV2,TTUT1, ITCT2, TCT1, TCT2)
THIS RJJTINE UETERMINESO
A) MINIMUA ANU MAXIMUM BACKLASH UESIRED AT OPERATING PITCH RADIUS
B) ACTUAL MININUMAND MAXIMUH BACKLASH AT OPERATING PITCH RAUIUS
(b) HAXIYUM TUUTH THINNING FOR BACKlash inclujing machining tulezafive
0) UIFF =RENCE BETWEEN MINIMUM ANU MAXIMUIF BAJKLASH
E) TOOTA THICKNESS TOLLRANCE CLASS
) ACTUAL MAXIMUN TOOTH THICKINE'S VARIATION FROM TOOTH ELEMENT ERRURS
G) aCTJAL MAXIMUM TOOTH THICKNESS VARIATION FROM TOOTH ELEMENT EHRORS ANO RuNUUT
SUBSCRIPT (1) REFERS TO THE PINION
SUBSCRIPT ( 2 ) REFLRS TU THE GEAR
BLMIN = UESIRLU HINIMUM BACKLASH AT OPERATING PITCH RAUIUS (INCHLS)
BLMINT = ALTUAL MINIMLM BACKLASH AT OPEKATING PITCH
BLMAX = UESIREL MAXIMUM BACKLASH AT OPERATING PITGH
BLMAXT = ACTUAL MAXIMUM BACKLASH AT OPEKATING PITCH
RADIJS (INCHES)
BL = MAXIMUP TOOTH THINNING FOR BACKLASH INCLUDING MACHINING
BLL = TOLERANCE (INCHES)
BLU \(=\) FAUTUR TO CONTROL LOWER BACKLASH LIMI
BLK = RATIO OF PINION BACKLASH TO TOTAL BACKLASH
COP = CIRCULAR PITCH (INCHES/TOOTH)
DP \(=\) DIAMETRAL PITCH (TEETH PER INCH)
ULLBL
= DIAMETRAL PITCH OTEE THRER INCH
= differtive between desired maximum and minimum BACKLASH (INCHES)
NQUAL \(=A \cdot G . M . A\). QUALITY NUM JER
PAR = PRESSURE ANGLE (RAUIANS)
THTL = LUWLR TOUTH THICKNESSS TOLERANCE (INCHES)
TPTU = UPPER TUOTH THICKNESS TULERANCE (INCHES)
TFTE = ACTUAL MAXIMUM TUOTH THICKNESS VARIATION FROM TOOTH
TFTV = ACTUENT MARIMUM ANUTRUNUUTGNESS VARIATION FROM TOOTH ELEHENT ERROKS
FOR THE BACKLASH GIFFEKENCE REQUIREMENTS THERE IS A CHOICE OF NUME (5) TOOTH THICKNESS TOLERANGE CLASSES UEPENDING CN
A MINIMJM BACKLASH IS UIVIUEU PKOPORTIONATELY BETWEEN THE
GLAR ANJ THE PINION THUS SPECIFYING THE MAXIMUM TOOTH THICKNESS
FOR THE TWO GLARS. THE WORKING TUOTH THICKNESS IS DETERMINEU GY
SUETRACTING THE TOUTH THICKNESS TOLERANCE (ASSUMED UNILATERAL)
FROM THE NAXIMUM TUOTH THICKNE SS.
```

j
BLHIN=(3LL*0.025)* (0P** (-0.903090))
BLMINI=3LR*ELHIN
BLMINC=3LMIN-GLMIN1
BLGINI ANU ELMINZ LQUAL THE AMOUNT OF DELIBERATE TOOTH THINNING
DLLBL=BLMAX-ULHIN
dLTERMINE LARGEST TOOTH THICKNEOSS TOLERANCE CLASS
IF(UP.LT.1U.U) GO TO 1
TTOL=U.ji58807*(UP**(-0.653006))
GOT0 2
1 TTOL=U.U年74CS*(UP**(-0.9788U1))
detlRMive REQuIRed tollRance class
2 TPTVI=C.0*TTCT1*TAN(PAR)
TPTVC=* U*TTCT2*YAN(PAR)
TTUL1=TSTV1
TTULZ=TOTVZ
IF(GLR.0.GG(00)GOTTOL3
N1=XXX
IF(N1.LT.1)N1=1
IF((XXA-AINT(XXX)).EQ.U.0) N1=N1-1
GO TO 4
3N1=5
4 X X X = ((ALOG(TTUL/TTOL2)/ALOG(2.0))+1.0)+1.0
NE=\lambdaxx
IF(i<x的. 2)N==1
IF((XXX-AINT(XXX)).EQ.U.0) N2=N2-1
DETERMIVE UPPER TOLERANGE LIMIT
TFTU1=TTOL/(<.0**(N1-1))
TPTUZ=TTUL/(2.U**(N2-1))
NHNNIN=VQUAL-2
GU TO (10,10,11,12,13,13,13,13,13,13,13,13,13,13),NNNNN

```

```

 IF(IN2.GT:1)TPTUZ=TTOL
 6010
 If(N1.ST.2)TPTU1=TTOLAC.0
 IF(NE.GI.c)TPTUC=T1OL/C.G
 GOT0 it
 12 IF (N1:GT:3)TPTUI=TTOL/44:0
 IF(N1.GT.5)TPTU1=TTOL/10́.
 IF(N2.GT:5)TPTU2=TTUL/16.0
 14 TPTL 1=0.0
 TPTLZ=0.0
    ```
```

DETERIIVE AMOUNT OF TOOTH THINNING FOR BACKLASH INCLUUING TOOTH
THICKNESS TClERANCL
THTC1=2.0*TCT1*TAN(PAR)
TFTER=2.O*TCT2*TAN(PAR)
BL1=SLNLN1+TPTE1
BLC=BLMLNL+TPTEL
BLMINT=3LNIN
BLMAXT=3LHIN+(TPTU1\&TPTU2)
RETURIN
ENO

```
    SUBRUUILNE TULCU (BLLMAXU,CD,CDR,CDTOLL, CDTOLU,NQUAL,PAR,PI,PR1,PR2,
    1RATIO,RB1,RBZ, TLETH1,TP1,TRZ)
    thise rojtine uetermines oidce
    A) CEMT BE OISTANGE TOLERANCE LIMT OF CENTKE DISTANCE TOLERANCE
    SUBSCRI \({ }^{3} T(1)\) REFERS TO THE PLINLON
    BLMAXU = MAXIMUM BACKLASH AT UPPER LIMIT OF CENTRE DISTANCE
        MAXIMUMGBCKLASH A
TOLERANGE INCHES)
    CO = CELNTRE UIS IANCE (INCHES)
    CUR \(=\) CENTRE UISTANEE TOLERANCE MODIFICATION FACTOR
    COTOLL = LONER GEITRE DISTANGE TOLERANGE (INGHES)
    CUTOLU E UPPER CENTRE DISTANCE TOLERANCE (INCHES)
    NQUAL = AOSOM.A. QUALITY NUMEER
    PAR \(=\) PRESSURE ANGLE (RAUIANS)

RATIO = GEAR RATIO (IE, GEAR TEETH/PINION TEETH)
    RE \(=\) EASE CIRCLE KADIUS (INCHES)
    TEETH 三 NUMOER OF TEETH
TEETK \(=\) TUOTH THICKNESS AT PITCH RADIUS (INCHES)
    MAXIMUM BACKLASH INCLUUES VALUES FOR TOOTH THINNING, EXTENSION OF
CENTPE ISTANE ANU MACHINING TOLERANCES
THE TOMTH THICKNESS IS ALREADY REDUCED BY AN ALLOWANCE TO YIELD A
    INGLUCES RUNOUT ANU TOUTH ELEMENT ERRORS
\(\operatorname{XINV}(A N G)=\operatorname{TAN(ANG)}-A N G\)


    \(D \quad D\)
DETERMLVE BILATERAL CENTRE DISTANCE TOLERANCE ANO THEN CONVERT

NINNNH=N2UAL-2
GU TO ( \(10,10,14,10,10,11,11,11,11,11,12,12,12,12)\), NNNNN
10 CUTUL \(=0.0150+((-4-12,0) / 12.0) * 0.0100\)
IF (CUTU. LT.U.UU2U)COTOL = U.UU2 J
GU TO 15
\(11 \mathrm{CUTOL}=\mathrm{U} \cdot \mathrm{Juc} 0+((\mathrm{CO}-12.0) / 12 \cdot \mathrm{U}) * 0.0020\) IF(CUTO.LTOU.UUOS)COTOL \(=0.0035\) GO TO 13

IF(CUTU. LTOU.UUU1)CUTUL \(=0.0001\)
CUTULU=と. U*CUK*CUTOL
(UTULL=U.U
UETERMIVE GEAR CHARACTERISTICS AT EXTENDED CENTRE DISTANGE
OCU=CUTJOTULU

\(O P K 2=U C J-O P K 1\)
OLP \(=\left(2, U^{*} \neq 1 * U P R 1\right) / T E E T H 1\)
ANG1=ACJS (RG1/OPR1)
ANGC=ACJS (RBZ/OPRZ)
\(0 T P_{1}=T H I C K(T P 1, P R 1, O P R 1, P A R, A N G 1)\)
\(0 T P 2=T H I C K(T P 2, P R 2, O P R 2, P A R, A N G C)\)

SINCE THE TUUTH THICKNESS VALUE REPRESENTS THE THEORETICAL TOOTH THICKNESS (I-. GP/2.U) MINUS THE THINNING ALLOWANCE AND THE THICKNESS ERRUR UUE TO RUNOUT AND TOOTH ELEMENT ERRORS, THE MAXIMUH BACKLASH AT THE EXTENDED CENTRE UISTANCE INCLUUES ALL UETRIMEVTAL SOURCES
BLMAXU=(OCP- (OTP1+UTP2))
RETURN
ENO

AUO＝AUUENUUH（INUHES）
ULD＝ULULivUUN（1N（HES）
FW \(=\) FALE WLUTH（LNCHCS）
HUBL＝HUO LLNGTH（INCHLS）
HUBR＝OUTEN RAUIUS OF HUO
RI
RIM
SHAFT
SAF
TURQ
WES \(=\) TORGUE THICKNESSS（INCHES）
XKEY \(=\) KEY WIUTH（INCHES）．．．ASSUME SQUARE KEY
\(S S Y=0.577 \div S A F\)
UISTORTION ENERGY THEORY
\(S Y=2.0 \times 3 A F\)
\(E=2.0\)
SAFE \(\quad=\) SAFETY FACTOK
IF（SHAFT 日GQ．U．U）GOTO 1
\(X K E Y=S H A F T / 4\)
FOKUE＝TORQ／（SHAFT／24。O）
HUBL＝2．U＊SAFE＊FURCE／（XKEY＊SY）
HUBL \(1=(S A F E * F(X R C E)\)（XKEY＊SSY）
60102
\(1 \times K L Y=0 . J\)
HUもL＝F
HUUL \(1=H J B L\)
\(2 R \dot{R} M=R I=(A D U+D E U)\)
HUdK＝（1075＊SHAFT）（C．0
WEB＝0． \(\operatorname{HFF}^{\circ} \mathrm{F}\)
IF（HUBL•LT•HUBL1）HUBL＝HUBL1
IF（HUBL•LT•FW）HUBL＝FW
TF（HUUN，GT．RIM）HUBK＝KIM
IF（KIM，\(Q \quad H \cup B K) \quad W E B=F W\)
IF（WEB．T．O．1．AND．FW．GE． 0.1 ）WEB＝0． 1
RETURN
END

SUGROUIINE VOLUME (FW,HUBL,HUB,R,PI,RIM,RO, SHAFT, VOL, WEB)
THIS SUBROUTINE UETERMINES THE VOLUME OF MATERIAL REQUIRED FOR THE GLAR BLANK TO THE AUUENUUM CIRCLE RAUIUS

Fh
\(=\) FACE WIUTH (INCHES)
HUBL
HUBR
PI
HUS LENGIN (INCHES)

R1M
SHAFT
WUL
3.1459 C
- INiver rauIUS

OF
NCHES)

WED
- SHAFT UIAMETERE (INCHES
= VOLUME (CUBIC INCHES)

IF OUTE? HUB RAUIUS IS LESS THAN SHAFT RADIUS, VOLUME DETERMINED ASSUMINS SHAFT RAUIUS ZERO. (IE. HUB ANO SHAFT BECOME ONE PIECES
\(X \times X \times X=S H A F T\)
IF (SHAFT.GT。HUBR) \(X X X X X=0.0\)

\(1 W E G)+(((R O *+2)-(K I M * * 2)) * F W))\)
RETUKN
END

SUBROUTINE VARYi
THIS SU3ROUTINE ULTERMLNES THE VARIABLES IN THE PROBLEM, ORGANIZES ARRAYS TO KEEP TRACK OF THE VARIABLES, DETERIINES INITIAL VALUES ANJ OUTDUTS INPUT UATA

THE ROUTINE ALSO REQUIRES **SUBROUTINE PITCHF*
```

DIMENSEON NSORT (11)
COMLUN/BLKO/IUATA,IPRINT,INRITE,NTYPE
CUHMUN/3LK1/BHN1, BHN2,E1,EC, RHJ1, RHO2,SAC1,SAC2,SAF1,SAF2,U1,U2
COMmON/ SLK2/HP; NPMI,RFNO,SHAFIL, SHAFTO,CD,FW,PAU,TEETH1
COHMOH/3LKS AAOUK1,ADOKC,DEDK1,DEUKK,AUDL,AUUZ,UEU1,DED2
COMHON/SLKSA/COHAX,CDNIN,FWMAX,FWMIN,PADMAX,PADAINN
CUM|ON/3LK3B/BLL,GLU,BLR;CUR
CUHMON/3LK4 /LYCLE, URIVEN,UFIVER,NCUT1,NCUT2,NLOAD,NGUAL,RELI,TEMP
CCMAUN/3LK4A/ISIRT,STRT (8),NOFI\&NOFL,NOFS,NUF4
COAMON/BLK5/BP,UP,UP,PAR,PLV,NATIU,KPM1,RPMZ,SHAFT1,SHAFT2,TEETH2
CUMHUN/GLKO /PR1,FRE,RU1,RUC,RI1,RI\&,RM1,RMC2RO1,ROZ,RU1,RUZ
COMUGN/OLKQ /PRI,FRZgRUI,RUC,RIERRI2,RM1,RMC2
COMNON/ 3LK7A/HUELI;HUBLC;HUGRI,HUBRC,RINI,RIML,WEB1,WEB2,VOLI, VOLZ
COMMON/BLK7B/ANGC1, ANGC2,ANGL1,ANGL2,RL1,RL2,RLL1,RLLZ,RLM1,RLM2
CUMMON/BLK7C/XKLY1,XKEY2,VOLMIN,VULMAX,XLA,XLRYTU1,TOC,TF1,TP2 D,CH,CH,CLI,CL,CM,CO,CK,CS,CH,CV
COMMON/ SLK8A/QJ1,QJ2,QL1,QLE,QA,QO,QR,QS,QT,QV,GN

```

COMAOH/ELKG /COU,COUL1,CUDL 2,QUD, WODL1,QODL2

COHMOW/BLK1OA/PAB1, PAGE, PAW1, PAW2, TOKQ1, TORU2, WA, WR, WT, WN
CUAHUN, SLK 11 / J, K, N, INN, NUU, NFW, NTOOTH, NURIVE, NNLOAD, NOPT, NOFN, PI
COMIOW/ULK11A/NVAK ( 8 ), NSTD (8), NOF (4)
CUMMUN/ \(3 L K 12 / X(8)\), XSTRT ( 8 ), RMAX ( 8), RMIN( 8), PHI (č), PSI (1)
CUMHCN/BLK13/BEA1, BBAC, BBX1, 3 BXL, BBY1, 3 BYZ, RT1, RT2

COMHONOLK14A/TTCT1; TTCTC,TCT1, TCT2,TPTL1, TPTLZ, TPTU1, TPTU2
COHMON/3LK14B/TPTEI;TPTEZSTFTVI,TPTVZ, CUTOLL, CDTOLU, ERR
CUMMUN/ \(3 L K 15 / B L M I N, B L M I N T, E L M A X, B L M A X T, B L M A X U, ~ C E L B L, B L 1, B L 2\)
\(u=u\)
\(k=u\)
\(N\)
\(\mathrm{NCO}=\)
NFW=U
NTOO TH=0
NOPT \(=0\)
NSU: \(=\mathrm{J}\)
\(x \times x=3 H V A ?\)
Y \(\quad 7=3 \mathrm{HSTO}\)
\(Z \angle Z=3 H C J N\)
IF (IUATA.EQ.U) GO TO 999
WHITE (6, 5U0)
WKITE ( 0,501 )
WRITE \((6,542)\) HP
WRITE ( 0,545 ) NPMI
WRITE \((6,504)\) RPMO
WFITE ( 0,505 )
WRITE (0,506) SAF1,SAF2
WRITE ( \(0,5 \cup 7\) ) SACL, SACE
WRITE (O, 508)E1, LZ
WRITE \((0,509) \cup 1, U 2\)
WKITE \((0,510)\) RHU1, RHO2
WRITE \((0,511) \mathrm{BHN}, \mathrm{BHN} 2\)
NSUN =NSJM+1
IF (XXX,VE, PAU) GO TO 1
\(\mathrm{N}=\mathrm{N}+1\)
NSUM \(=\mathrm{N}, ~ J M+1\)
NVAR (N) =?
NSOKT (NSUM) \(=3\)
GU TO 2

NSUH=NS JM+1
NSURT(NSUM) \(=2\)
2 If ( \(X X X_{0}\) VE.TEETHI) GO TO 3
\(\mathrm{N}=\mathrm{N}+1\)
NSUKONS JM+1
NTOU TH=
\(K=k+1\)
NVAR (N) \(=8\)
NSORT \((N S \cup M)=b\)
```

NSUN =NS JM +1
NSURT(NSUM) $=4$
4 1F (XXX.NE. LD) GO TO 5
$N=N+1$
NSUM=NS $J M+1$
$\mathrm{NCU}=\mathrm{N}$
\forall VAR $(N)=0$
NSORT (NSUM) $=7$
5 NSUMFNS $\mathrm{N} M+1$
NSURT (NSUM) $=0$
IF (NOFO.EU.1.ANU.CUMAX.EQ.CDMIN) NOF3=0
6 IF (XXX.NE.FW) GO TO 7
$\mathrm{N}=\mathrm{N}+1$
NSUHENS $M+1$
$N F W=N$
NVAR (N) $=5$
NSOKT TNSUM) = 9
GOTO O
7 NSUIT=NS JM+1
NSURT(NSUM) $=8$
IF (NOF4.EQ.1.ANO.FWMAX.EQ.FWMIN) NOF $4=0$
8 NSUM=NSJM+1
NSURT(NSUM $^{2}=10$
IF (ZZZ. $=1 . A 10 K 1)$ GO TO IUIU
IF (YYY: $=0 . A O D K I)$ GO TO 9
IF (XXX: VE:ADOK1) GO To 10
$\mathrm{N}=\mathrm{N}+1$
NSUM=NS JM+I
$\operatorname{NVAR}(N)=1$
NSORT (NJUM) $=12$
GUTO 11
$9 \quad j=\mathrm{j}+1$
NSUH:NS JM+1
$\mathrm{NSTO}(\mathrm{J})=1$
NSORT (VSUM) $=14$
GOTO 11
$10 \begin{aligned} & \text { NSUMENSJM+I } \\ & \text { NSUR } \\ & \text { NSUM) }\end{aligned}$
$j=j+1$
NSTU $(J)=5$
GLTO 11
1010 NSUM=NSUM+1
NSORT(VSUM) $=22$
11 IF (KZZ. Z .ADUK2) GO TO 1013
IF (YYY:EQ:AUUKC) GO TO 12
$N=N+1$
WUH=NSJM+1
NSUM $=N S J M$
$N \operatorname{VAK}(N)=C$
$\begin{aligned} & \text { NVAK }(N)=L \\ & N S O R T \\ & \text { NSUM }\end{aligned}=13$
NSORT(NSUM) $=13$
$J=J+1$
$12 J=J+1$
NSUH $=N S J M+1$
NSTU $(J)=2$

```

NSORT \((N \triangle U M)=15\)
GU \(101+\)
13 insun=NSJM+1
NSURT(NSUM)=19
\(J=j+1\)
\(\mathrm{NSTD}(J)=0\)
GO \(101+\)
1013 NSUM=NSUM+1
NSORT \((\) NSUMI \()=23\)
14 NSUH \(=N S J M+1\)
NSORT (NSUM) \(=11\)

IF (YYY-EQ.DEUK1) GU TO 15 IF (XXX,VE.UEUK2) GO TO 10
\(N=N+1\)
NSUM=NSJM+1
NVAR (N) \(=3\)
NSORT (NSUM) \(=1 \mathrm{C}\)
GO 7017
\(15 \mathrm{~J}=\mathrm{J}+1\)
NSUA =NS JHt
NSTU (J) \(=0\)
NSOKT \((\) NSUM \()=10\)
GU TO 1 ?
16 NSUH=NSJM+1
NSURT (NSUM) \(=\angle U\)
\(j=J+1\)
NSTU (J) \(=\) ?
GU TU 17
1016 NSUH=NS LM+1
NSORT (NSUH) \(=24\)
17 IF ( \(\angle \angle Z . E Q\). UEOKZ) GO TO 1019

N=N+1
NSUn =NS \(\mathrm{N} M+1\)
\(\operatorname{VAR}(N)=4\)
NSORT \((N J U M)=13\)
GO TO c
\(18 \mathrm{~J}=\mathrm{J}+1\)
\(N S U H=N S J M+1\)
NSTU (J) \(=4\)
NSORT \((N S U M)=17\)
GU TC 20
19 NSUM=NSJM+1
\(j=j+1\)
HSTU (u) \(=8\)
NSORT (NSUM) \(=21\)
GOTO 21
1019 NSUM=NSJM+1
NSORT \((\) NSUM \()=25\)
\(\because 0\) NOR
IF (IUATA, EQ.O) GO TO 47
\(00461=1\), NSUM
NINNN=NSORT(I) \(140,41,42,43,44,4 b)\) ，NNNINN
21．WRITE（ogoun）
GO 1042
WRITE（0，bU1）PAD
GUTU42
3 WFITL（6，b02）
GUTO40
24 WRITE（0，6נ3）TEETH1，TEETH2
GOTO 42
WRITE（ 6,504 ）
GOTO 4 2
©6 WKITE（0，605）C0
601040
C7 WRITE（6，006）
GO 40
8 WRITE（U，6U7）F゙W
GOTO
29 WFITE（0，ó08）
GOTU45
30 WKITE（0，609）
GU TO 40
31 WRITE（0，610）
GUTO 40
ふこ WKITE（0，011）
GUTO 43
33 WRITE（ 0,612 ）
GUTO 40
34 WRITE（ \(0,01 \omega\) ）
GUTO4う
35 WK1TE（0，014）
- GUTO 40

6 WKITE \((0,615)\)
GUTO 45
37 WRITE（0，616） GUTU4
38 WRITE（ 0,017 ）ADOK1 GUTO 40,18 ）ADOK2 GU TO \(40^{\circ}\)
\(4 U\) WRITE（0，017）UEDK1 GU TO 40
41 WRITE（ 4,018 ）ULOK2 GO 1040
42 WKITE 0,619\()\) ADO1
－GU TU42 40 1002
43 WRITE（ 0,620 ）ADO2
44 WKITE \((0,019)\) OLD1
GO TO 40
45 WRITE（ 0,020 ）ULD 2
46 CUNTINU？
47 NINN＝1
INN＝I
UF（NNOEQEO GO TO 110

NININN=NVAR (I)
IF(NWidNA.LE. F ) GO TO 108
9960 TU (1402101,102,103,104,145,106,107), NNNNN
\(100 \quad A \cup 01=1.0 / 0 P\)
\(X S T K T(I)=A 001\)
RHAX (1) \(=200^{+} \times S T R T(1)\)
RMIN (1) \(=0.0\)
GL 70109
201 AUUC 1.1 ufUP
\(\times S T K T(I)=A L D Z\)
RMAX \((I)=2 \cdot U^{*} \times S T R T(I)\)
RWIN (I) \(=0.0\)
GOTO \(1 J 9\)
\(\times S T H T 10.010 \mathrm{OP}\)
\(x\) STKT (I) \(=0 \operatorname{CD1}\)
\(\operatorname{KiAAX}(I)=2.0^{*} X S T R T(I)\)
RHIN \((1)=0.0\)
GOTU1U9
103 UEUC=1.250/DP
XSTRT(I)=0COZ
RHAX \((I)=2 \cdot U * X S T R T(I)\)
RHIN(I) \(=0.0\)
GUTU1U9
\(144 F W=200^{* 2 R 1}\)
XSTRT \((I)=F W\)
KMAX (I) \(=5 . \cup *\) ABS (FWMAX-FWMIN)
\(\operatorname{KHIN}(\bar{I})=0.0\)
GU TU 109
\(105 \times K=(S A C i * *<) *((1 . u-(U 1 * * 2)) / E 1)+((1.0-(U 2 * * 2)) / E 2)) *((P I * S I N(P A R)\)
1) \((2.0)\)
\(X U=(H P *((R A T I O+1.0) * * 3)) /(R P I 1 * R A T I O)\)
\(C U=\left(\left(\left(1575 U . U^{*} \times G+(R A T I U+1.0)\right) / X K\right) * *(1.0 / 3.0)\right)\)
\(X S T R T(I)=00\)
RHAX \((I)=500 A B S\) (CDMAX-COMIN)
RHIN (I) \(=0.0\)
GL TO IUG
\(200 \mathrm{PAD}=\angle U\).
PAR= (PAD/180.0)*P1
\(\times S T K T(I)=P A D\)
\(\operatorname{RHAX}(I)=100.0\)
\(\operatorname{RMLN}(I)=0.0\)
GUTO 149
\(107 \mathrm{~T}-\mathrm{THT}=4 \mathrm{INT}((20 \mathrm{U} /(\mathrm{SIN}(\mathrm{PAR}) * * 2))+1.0)\)
\(\times 5 \operatorname{Tr} T(1)=T L E T H 1\)
RHAX (1) \(=1\) UUOU
\(\operatorname{KHIN}(I)=0.0\)
GUTO 109
1L8 IF (NNN =Q。1) CALL PITCH(RATIO,CD,TEETH1, TEETH2,RPM1,PAR,PI,PR1,PR2, \(2 K B 1, K B C, B P, C P, D P, P L V)\)
N:NIN=0
GOTO 93
 1RB1,RE2, BP,CP, \(D P, P L V)\)

GU TO（201， \(202,203,205,207,208,209,210\) ），NNNNN
Cu1 AUU1＝1．U／UP
GU10 cil
\(2 \mathrm{CL} A \cup U C=1.0 / 0 \mathrm{P}\)
GU TOc11
IF（UP：GI：20．0）GO TO 204
GU1＝1．25U／DP
GU TO＜11
204
\(0 \operatorname{LO}=(1.200 / D P)+0.002\)
GU TO 11

\(U L U C=1.65 \mathrm{G} / \mathrm{OP}\)
GO TO 211
206 ULDC＝（1．200／UP）＋0．0U2
GUTO 2よ1
CU 7 AJOI＝AUJK1／DP
GOTO \(\angle 11\)
CLB AULZ＝AUJKZ／DP
GUTO 211
くし9
－M＝UEUK／／DP
\(\mathrm{G}=0 \mathrm{TO}=\mathrm{Z}=\mathrm{Z} 1 \mathrm{~K} 2 / \mathrm{DP}\)
211 CONTINU＝
21 IF（1LATA．EQ．U）GOTO 520
WKITL（u，bju）
WKITL \((0,6 \pm 4)\)
WKITE（0，0j6）
WRITE（0，064）
WKITE（0，051）CYCLE
WFITE \((0,652)\) RELI
WRITE（6，U53）TEMP
WRITE \((6,655)\) UKI VEN，DRIVER WKITL \((0,0,07)\) ULR WNITE（0，65 5 ）ULL
WFITE \((6,659)\) ULU
WRITE（0，060）ULR
WRITE 0,000 ）NLUAU
WRITL（0，061）NUUTI，NCUTZ
WFITL \((0,062)\) NQUAL WRITE（0， 075 ）
WRITE（0，070）CUMAX
WRITE（0， 677 ）UUMIN WFITL \((0,678)\) FWNAX WRITE（ 0,679 ）FWHLIN WRTTE（ 0,0 o 0 ）PADMA WRITE（0；O OGS）PAUHIN
WRITE \((6, b 0 U) S H A F I I\)
WKITL \((6,681)\) SHAFTO
IF（NN．E2：U）GU TU 310
WKITL \((0,7 j u)\)
```

301 WRITE(0,701)I
GO TO Suy
302 WRITE(0,702)I
GC TO 3J9
3U3 WR1TE(6,703)I
G0T0 3J9
3L4 WR1TE(6,7U4)I
GUTO vJG
ЗU5 WKITL(0,7U6)I
GO TU 3.j9
306 WNITE(0,7U5)I
GCTO Sjy
3\&7 WrITE(0,7uT)1
GLTO 3Ug
3U8 WFITL(0,708)I
3GCCUNT INUS
SN IFNNNOCN.O)NOPT=1
RETUKN
5JOFONGAT(1H1,9X,2GHSPUR GEAR UESIGN. . INPUT OATA/10X,29(1H-)/10X,
1<G(1H-))
bU1 FORUAT(///110X, IOHPUHER REQUIREMENTS/E0X,18(1H-1//1)

```

```

112X,t16.8)

```

```

 11<X,EaGe O/)
 504 FURNAT(1UX,4YHOJTPUT SPEED (NPM). NPMO
bU5 FORGAT(%//10X,24HGEAR,NATERIAL PROPERTIES,31X,GHPINION,1GX,

```

```

 LE10.8,8x, E16,6/)
 5LT FONHAT(LUX,ZGHMAXIMUM ALLOWABLE COMPRESSIUE/1OX,49HSTRESS (PSIJ. -

```

```

1E゙10.8;\&x, (16.0\&)

```

```

5iU F

```

```

1\&16.8,8k,=16,8/%
OUU F
143x,6(1-1-),1YX,4(1H-)/7)
UU1 FORIAT(1UX,O1HPKKSSURL ANGLE (DEGREES) PAD

```


```

1E10.8,8x,E16.8/)

```


```

6U6 FORMAT(IOX,74HCENTRE DISTANCE (INCHES)........CCO =
1 VARIABLE/)

```


```

$677^{\text {i }}$ FURMAT (1UX, 4 GHMINIMUM LENTRE DISTANCE (INCHES) 。 . - CUMIN =
$112 x, E 16.8 \%$
678 FURMAT (IUX, 4YHMAXIMUM FACE WIDTH (INCHES) • • • . FWMAX =

```

```

 \(112 \mathrm{~F}, \mathrm{E} 1 \mathrm{G}, 3 /)\)
 G80 FORAAT (10X, 4 GHINPUT SHAFT DIAMETER. SHAFTI =
$112 X$, EIG。 8 ()
bol FGRIAT I UX, 4 GHUUTPUT SHAFT UIAMETER SHAFTO =

```

```

683 FURGAT $110 X, 49 H A I N I M U M$ PRESSURE ANGLE (DEGREES) . . . PAUMIN =
$112 X$, 上 10.81$)$

```



```

$114 \times, \angle H X(, I C, \Delta H))$

```



```

$\left.114 X, 2 H X\left(, \frac{1}{2}, 1 H\right)\right)$

```


```

 \(114 x, 2 h x(, I 2,1 H))\)
 708 FURAATSIOX, 4 GHNUMBER OF PINION TEETH. TEETH1 =

```

```

 END
 SUSROUTLNE VAKY (X)
OIMENSIJN $x(1)$
COMMON/ 3 LKO IIUATA, IPRINT, LWRITE,NTYPE

```

```

CUMMCN/OLK2 /HP, SHAI,RFMO, SHAFTL,SHAFTO,CD,FW,PAD,TEETH1

```

```

COMHUN 3 LKSA/CUMAX, CUMIN, FWMAX,FWHIN, PADMAX, PAUMIN
CUHAUN/3LK3B/BLL, GLU,GLR,CUR
CUAMUN/BLK4 /CYELE, OKIVEN, DKIVER, NUUT1,NCUTZ,NLOAD,NQUAL, RELI, TEMP
CUHIUN/ ELK4A/ISTRT, STRT(8), NOFI, NUF 2 , NOF 3 , NOF 4

```

```

CUMMCN/SLK5 /BP, CP, UP, PAR, PLV,RATIU,RPM1, RPMZ,SHAFT1,SHAFTZ, TEETH2

```

```

COMMUN/ $3 L K 7$ /AUOL1, ADUL2, CCC1, CCC $2, C R A T I U, E F F$

```


COMTUN/3LKG/COU,COUL1,CODL2,QCD, GOOL1,GODL2

CUHHOH/GLKIUA/PAEL,PAEC, PAW 1 , PANC, TUKQ1, TOKQL, WA, WR, WT, WIN
COMHUNTBLKI1/J,K, N, NN, NCU, NFW, NT SOTH, NUKIVE, NNLOAD, NGPT, NOFN, PI
COHMUN/BLK1IA/NVAR ( 8 ), NSTD ( 8 ), NOF (4)
COHUN/SLK13 JUBA1, BEAC, BBX1, BEX2, BBY1, BBY2, 2T1, RT2

CUHHOW/3LK14A/TTCT1, TTLT2,TCT1,TCT2,TPTL1, TPTL2,TPTU1, JPTU2
CUHMUN/SLK14DJTPTEI, TPTEZ,TPTVI, TPTV 2 , COTOLL, CDTOLU,ERR
COMMON/JLK15 16 MIN, BLMINT, ELMAX, BLMAXT, BLMAXU, GELBL, ELI, BL2
If (NN.EXOU) GOTO YG
\(00 \quad 9 \quad I=1, \mathrm{NN}\)
GO TU (1, \(2,3,4,5,6,7,8)\), NNNNN
1 AUOI=ABS'(X \((I)\}\)
GOTO 9
\(24 \mathrm{~A} U 2=\mathrm{A} S(X(I))\)
GU TUY
ULDi=ABS (X(I))
GOT09
4 OEUZ=ABS (X(I))
GU TO 9
\(F W=A B S(x(1))\)
GU 10 y
Cu=aBS (x(1))
Gu to y
7 PAU=ABS(X(1))
PAR=(PAD/180.0)*PI
GOTOY
8 TetTH1=43S(X(1))
9 continja
צY CALL PITCH KRATIO,CD, TEETH1, TEETH2,RPM1,PAR,PI,PR1,PR2,RB1,RB2,BP, \(1 \mathrm{CP}, \mathrm{I}^{2}\left(\mathrm{U}_{0}, \mathrm{CQ}_{-}-V\right)\) GU TO 21
\(0020 \quad i=1, j\)
hindinn=nstu(I)
GU TU (14, 11, 12,14,16,17,18,19), NNNNN
10 AUO1=1.0/0P
GO TO 20
11 AUDC=1.0/UP
GU 10 <
ULU1=1.250/ CP
601020
\(130 \mathrm{CO}=(\mathrm{G} \circ(\mathrm{LUO} / \mathrm{OP})+0.002\) GUTU \(2 j\)
14 If(UP.G1.20.03) GO TO 13 QtU2=1.250/0P GU 0
\(150 \mathrm{EOCO}=\left(\frac{1}{2}, 200 / 0 P\right)+0.002\)
16 AUD \(1=A D U K 1 / D P\)
17 AUD2 \(=\) AO゙JK2
17 AGDZ 2 ADJKC/DP
```

18 BLOL=DEDK1/OP
GO TO <

```

```

CO UUNTINU=
<1 If(AUU1-GT.DEDC) ALUI=UEDZ
IF(AUDC,GT,DEU1) AUU2=UED1
R11=PK1-DED1
R22=PR2=UEU2
RU1 = FKL+AOU1
RO2=PK2+AUU2
CCCI=DEJ1-ADU2
CCCZ=UEU2*ACDI
RETURN
ENG

```

THIS ROJTINE PRINTS SPUR GEAR DESIGN OUTPUT IN A STANUARD FORMAT
COMMUN/3LKU/IUATA,IPRINT, IWRITE, NTYPE
CUMTUN/3LK1 /BHN1, UHN2,E1, 2 , RHU1,RHO2,SAC1, SAC \(2, S A F 1, S A F 2, U 1, U 2\)
COHADINJLK2 /HP, RFMI, REHO, SHAFTI, SHAFTC,CD, FW, PAO, TEETHI
CUMIUN/BLKS /AUOK1, AUUK2, ULUK1, UEDK2, AUU1, ADJC, DEO1, DEUC
COMMCN, \(3 L K B A / C O M A X, C D M I N, F W H A X, F W M I N, P A U M A X, P A O N I N ~\)
CUMHUNJOLK \(3 B / B L L, B L U, B L R, C D R\)
COMTIUN/3LK 4 心YELE, URIVEN, URIVER,NCUT1,NCUT2,NLOAD,NQUAL, RELI,TEMP COHHON/BLK4A/ISTRT, STRT( 8), NOF1, NOF 2, NUF 3 , NUF 4
LUMHUN/3LKL/EF, LP, UP, PAR, PLV,RATIU,RPMI, RPMZ, SHAFT1, SHAFT2, TEETH2
CUMIUN/BLK6/PR1, PR2, RB1, REZ, RII,RI2, RM1,RM2 RU1, RO2, RU1, RU2
CUHMOI/3LK? /AUULI, AUUL2, CCC1, CCUL,CRATIU, EFF
CUMHON/BLKTA/HUBL1, HUEL2; HUBK1, HUBR2, RIM1, RIA2, WEB1, WEB2, VOL1, VOL 2
CLHEON/GLK7B/ANGL1, ANGLL, ANGL1, ANGL2,RL1, RLC, RLLI, RLLE, RLM1, RLM2
CUMMUN/ LK KC/KKEY1, XKEYZ, VOLHIN, VOLMAX,XLA, XLR, TO1, TU2, TP1, TP2
CUMMUN/BLKO \(\mathrm{CL}, \mathrm{CF}, \mathrm{CH}, \mathrm{LJ}, \mathrm{CL} 1, \mathrm{CL}, \mathrm{CM}, \mathrm{CO}, \mathrm{CR}, \mathrm{CS}, \mathrm{CT}, \mathrm{CV}\)



CUMMON/DLK1UA/PAB1, PABL, FAW1, PAW2, TORQ1, TORQ2, WA, WR, WT, WI
CUHAUN/ \(3 L K 11 / J, K, N, N N, N C D, N F W, N T O U T H, N O K I V E, N N L O A U, N U P T, N O F N, P I\)
CUHMON/ SLK \(11 A / N V A R(8)\), NSTD ( 6 ), NOF (4)
COMLON/3LK12 \(X(5)\), XSTRT ( 8 ), RHAX ( 8), RMIN( 8), PHI (25), PSI( 1)

CUHHON/3LK14 /TULR1,TULR2, TOLP1, TOLPL, PTOL1, PTOLK, TOLLI,TOLL2
COWHON/BLK14A/TTCT1, TTCT2,TCT1,TCT2,TPTL1, TPTL2, TPTU1,TRTUZ
CUHTUN/SLK14O/TPTE1, TPTEZ,TPTV1, TPTUZ, CUTOLL, CO\}OLU, ERR
COMHUN/3LK15/OLMIN, BLMINT, BLMAX, BLMAXT,BLMAXU,DELBL, BL1, BL 2
```

IF(IWRITE.EQ.U) RETURN
WKITL(b,8iUG)
WFITE (6,801)PAU
WK1TE(U,OUC)CU
WKITE (6,8uj) Fb
WKITE(6,8U4)TEETH1,TEETH2
WKITL(0,0\5)AUU1,AUU2
HKITE (6,8U6) ULDI,UED2
WkITE(0,84c)CLC1,U心C2
WK1GE(0,84<)CLC1,QLC
WRITE (O,8J8)RG1,KB2
WKLTE (6,809)RU1,RO2
WKLTL(0,0Lu)RLL,RLE
WRITE(0,811)RM1,RM2
WRKITE (0;8112)RU1, KU2
WRITE (0,844)TP1,TP2
WRITE (0,840)TOL,TUC
WFITE (0, 813)BP
WKITE(5,814)EP
WKITE (6,815)UP
WRITE (0,810)CFF
WKITE(6,81%)NATIO

```
```

WRITL(5,818)CRAT10
WRITC(0,8CU)
WR1Tc(0,8<1)HP
WKITE(0,d45)PAB1,PAB2
WK1tE (0,84D)PAB1,PAB2
WRIEE(0,840)PA
WHITE (0,822)WT
WKLTE (0,823) WN
WKLTE(6,824)WA
WKITE (0,8<0) PLV
WKITE (0, 82G) RFM1, RPM2
WKITE (0, \&27) TURQ1;TORQ2
WFITL(E,82O)ANGL1,ANGLZ
WK1TE (6,8<g) RLI,RL2
GU TO (1,2),NNLOAU
1 WRITE(0;850)
GUTO}
2 WKITE (6,851)
} WFITE(t,8u u)
WFITL(6,031)E1,E2
WRITE (0,832)51,t2
WKITE(E,832)UN,U2
WRITE (6,833)RHU1,RHO2
WKITL (6,835) SAF1,SAF2
WKITH (0,836)SEM1, SAM2
WR1E (O, O
WFITE (0,808)SHCL,SAC?
WFITE (0,83B)SAC1,SAC?
WHITE (0,83y)SSMI,SSM
WKLTL(0,900)
WKLTE(0,gu1)QJI
WRITE (0,guz) Qu_
WF.1TE(0,9003)Ou
WKITE (0,903)C0
WKITE (0,gu4)UE
WFITE (0,9U2)CF
WK1TE (0,yu7) UO,Q0
WR1EEO,gU7)LO,WU
WFIEE(b,guo)CS,GS
WFILL(6,yUg)(V,QV
WKITL (6,911u) UOU,QUO
WKITL (0,911)UH
WHITE(6,y12)CL1, QL1
WFITE (0,913)UL2,GLC
WKITE (0,9314) CR,QR
WKITE (0, 3144) UR,QR
WRITE(0,91b)UT,LT
WRITE (5,91G) COUL1,QODL1
WNITE(0,87U)
WFITE (0,871) BLMIN
WRITL(0,8(2)SLMAX
WRITE (0,9874) BLMAXI
WRITE (0,875) BLMAXU
WKITE (0,876) BLI,BL2
WKITE(ó,1000)

```
```

 WKITE(6,1UU1)TOLR1,TOLKZ
 NRLTE (0,1UUZ)TULP1,TOLPZ
 WFITE (0,1003) PTUL1,PTOL2
 WKITE (O, IUUY)TOLLI,TOLLE
 WRITL (0, 1UU4) TTGT1,TTCTZ
 WRITE(6;100っ)TCT1,TCT2
 WKITL (0, iUUU)TPTU&,TPTUZ,TPTLI,TPTLZ
 WKITE (o,1u10)TPJV1;TPTVZ
 WKITE (6,1U11)IPTL1,TPTE2
 WKITE (0;1007)CUTULU, CDTOLL
 WRITE (6,1008)ERR
 WKLTE (0,804)
 WRITE (0, ४01)HUBL1,HUBLC
 WKITL (0,802)HUQK1,HUBR2
 WRITE (6,803) R1H1,RIM2
 WRITE (0,804)WEBL,WEEL
 j
800 FURHAT(1HU,9X,11HGEAR LAYOUT,44X,OHPINIUN,19X,4HGEAR,/10X,11(1H-),
144X,6(1+-),1yX,4(1H-)//)
8U1 FORHAT(10X,49HPRESSURE ANGLE (OEGREES). PAD =
802FORHAT(IUX,49HCENTRE DISTANCE (INCHES)........CCDO

```


```

 805 1-16.8,OX,E16.E/)
 8UG FLGGMAGOX,G1G.8/)
    ```

```

 808 1E1G. B%&X,EIG.8/S
 1L10.8,bx,516.0/)
 8UG FOFINAT(IUX,4SHAUDENUUM CIRCLE RAUIUS (INCHES) RO =
    ```

```

 1上10. B, 5x, 位系.6/)
 U11 FUKNAT(1UX,SUHMIAXIHUM ADOENDUM CIRCLE RAUIUS/1OX,49HBEFORE INTERFE
    ```


```

1\mp@code{1\#1CX,E16.8/)}
CP =

```

```

 O15 FORQAT(IUX,4YHOLAMETRAL PITCH (TEETH/INCH). DP =
    ```

```

 817%ORMAT(1UX,4YHGEAR RATIO (GEAR TEETH /PINION TEETH) & RATIO =
 112X,E16.8%)
    ```
818 FORIATILLX,49HCONTACT KATIO
\[
112 x,-10.8 / 1
\]
-21 FORMATYOX,4 GHHOKSEPOWER TKANSMI
\[
\begin{aligned}
& 1 \text { FORATGUX, } \\
& 112 X, E \text { GHOKSEONER TRANSMITTED. }
\end{aligned}
\]
\[
H P=
\]
\[
822 \text { F ORNAT } 10 \times, 49 H T A N G E N T I A L ~ L O A U ~(L B S) ~
\]
\[
W T=
\]
\[
823 \text { FUKATTiUX,4GHRAUIAL LUAD (LBS) . . . . . . . . . WR = }
\]
\[
112 x, E 16: 80)
\]
\[
8 \angle 5 \text { FORTHAT (i0x, 4yHPITCH LINE VELUCITY (FPM) . . . . . . . PLV }
\]
\[
112 \times, E 16.87 \%
\]
\[
1616.0 \text { orx, } 168 \%
\]
827 FURMAT(IUX,4GHTURQUE (FT-LBS) . . . . . . . . . . . . TORQ =
\[
1 \mathrm{c} 10.0 \text { obx, } 16,81
\]
\&ZBFURiAh(1)X,4YHLUAU ANGLE (RAUIANS). .......... ANGL =
OCG FORMAT(1UX,23HRADIUS TO LOAO ON TOOTH/10X, 49HCENTRELINE (INCHES)
\[
\text { INIUN, IYx, } 4 H G E A R, 11 U X, 3 G(1 H-), 16 X ; 6(1 H-), 19 X, 4(1 H-) / 1)
\]
\[
1 \text { 1 } 16.8,0 \times 2=16.8 /)
\]
\[
835 \text { FURNATBXOX, } 8 \text { OHAXINUM ALLOWABLE FATIGUE STRESS (PSI). SAF = }
\]
\[
839 F O R 1 A \dot{T}(\dot{1} 0 \dot{X}, \dot{4} \text { YHAXIMUM ALLOWABLE WEAR STRESS ESGI). . SSM = }
\]
\[
1516.8,8 \times, \in 16.01)
\]
\[
840 \text { ORiAT }
\]
\[
\text { O4C FURIGATI } 1
\]
\[
\operatorname{ccc}=
\]
\[
\text { B43 FORHAT(1UX, } 27 \text { HTUOTH THICKNESS AT AUOENDUM/ } 10 \times, 4 \text { GHCIRCLE (INCHES) }
\]
\[
840 \text { FURNAT(SX,49MMAXIMUN ALLOWABLE POWER...WEAR (HP) . . PAW = }
\]
    1E16.8, ox, E10.8/)
850 FURIIAT (IUX, \(38 H^{* * *}\) LUAUING ANALYSIS FOR TIP LOADING***/)
851 FURHAT ( \(1 U X, 7 \angle H^{*} * * L O A D I N G\) ANALYSIS FOR POINT OF HIGHEST SINGLE TOOT
1H Cuntas LOAUING***/)

    \(1 / 1 \cup X,<1(1 H-), 34 X, 6(1 H-), 19 X, 4(1 H-) / /)\)

8 \&2 FURIAT(1JX, 4 GHOUTLR HUB RAUIUS (INCHES) . . . . . . . HUBR =

063 FURTAT (AX, 4YHINNER RIM RAUIUS (INCHES) . . ..... RIM =


\(80^{1510.828 x, ~ t 16.0 /) ~}\)
870 FUPHAT( \(2 \mathrm{H} 1,9 \mathrm{X}, 17 \mathrm{HBACKLASH}\) ANALYSIS/10X,17(1H-)/)
871 FURHAT(10X,3UHDLSIKLU MINIMUM BACKLASH AT STANOARO/10X,49HCENTRE D

1ISTANCE (INCHLS)..... BLMAX \(=, 12 X, E 16.8 \%\) )
873 FOR1AAT (10X, 3 SHACTUAL HINIMUN BACKLASH AT STANQARU;10X,49HCENTRE DI
674 FTANCE (INCHES)
674 FORMATLUX, 35 HACTUAL MAXIMUM BACKLASH AT STANDAKI/ \(10 \times 49\) HCENTRE DI
-75 FURNAT (IUX, 35 HMAXIMUM BACKLASH AT CENTRE URSTANCE/10X, 49HTOLERANCE
O F LMMT (INUHES).
\(876^{1}\) FURHAT (INXHESMAXIMUM TUOTH THINAING FGR BACKLASHJ10X,49HINCLUDING
    1 HACHINING TULERANCE (INCHES). \(8 L=, 2 x, E 16.8,6 x, E 16.81\) )
900 FUKilAT \(1 \mathrm{H} 1,3 \mathrm{X}\), ZUHMUUIFICATION FACTORS/10X, \(20(1 \mathrm{H}-1,1 /, 10 \mathrm{X}, 42 \mathrm{HC}-F A C T\)
    IOKS EIT - OYED IN WEAK SIRESS ANALYSIS/10X, \(45 H 2-F A C T O R S\) EMFLOYED IN
    IOKS EIA - OYEOSN WEARSSIRESS
GU1 FORMATG10X, 3 CHELNUING ANALYSIS GCUMETRY FACTOR/10X,49HFOR THE PINI
    GLZ FORMATCIUX; SCHEEEUING ANALYSIS GJONETRY FACTOR/IOX,49HFOR THE GEAR


gu4 FORMATCIUX,49HELASTIC LOEFFICIENT FACTOR. . . . . . . CE =

GUO FURIAT (IUX, 4YHLOAU UISTRIBUTION CURRECTION FACTOR . . CN,QM =
SUO 1E16.8.8X, L16.8/)
GU7 FURMAT (1UX, 4 GHUVERLOAD CORRECTION FACTOR. . . . . . CO,QO =



1LIb. B28X, EIG.8//J)

912 FORMATI \(110 X, 2 \angle H L I F E\) CORRECTIUN FACTOR/10X, \(49 H F O R\) THE FINION. . . .

```

.

```

```

 1610. \(8,8 \times, 810.8 / 5\)
 G15 FORMATIAX, 4 GHTLMPERATURE CORRECTIUN FACTOR CT,QT =
1ciu. 8, 8x, 七10. 8//)
g16 FORHATI 1 UX, 'zơHOVERALL LIFE UERATING FAGTOR/10X, 49HFOR THE PINION.

```


```

 \(\left.147 x, 6(17-), 17 x, 4\left(1 H^{-}\right) / 1\right)\)
 1UU1 FURHAT $10 \times \mathrm{x}, 5 \mathrm{LHRUNUUT}$ TULERANCE (INCHES) TOLR =

```


```

(064 15 $10.8 .0 \mathrm{~K}, \mathrm{t} 10.81)$
1004 FURMATIUX,24HTOOTH TO TOOTH COMPOSITE/1UX,51HTOLERANCE (INCHES).

```



```

1007 FUKMAT(1OX,4YHCENTRE DLSTANCL TOLERANCE (INCHES). . CDTOLU =

```

```

$10 \cup 9$ FORGAT(iOX, SIHLEAU TOLERANCE (INCHES)
$10 \cup 9$ FORMAT (iOX, SIHLEAU TOLERANCE (INCHES)........ TOLL =
12E16.8, 0 K, E16.81)
1410 FURHATI 10×30 OHTOOTH THICKNESS VARIATION FROM TOOTH/10X,51HELEMENT
1ERRURS (INCHES) © ${ }^{\circ}$.
1011 FORIVAT (IOX, $36 H T O U T H$ THICKNESS VARIATION FROM TOOTHK10X,51HELEMENT

```

```

 no
    ```

SUBROUTINE HINT(PHI)
THIS ROJTINE PRINTS OUT SUGGESTED REMEDILS FOR VIOLATED CONSTRAINTS UONSTRAINT VIOLATEU WNN=1 ANO SUGGESTIONS WILL BE PRINTED AFTER EACH SET OF CONSTRAINTS CHECKED
OIMLNSIJN PHI(1)
WRITE \((6,1)\)
\(\geq>\)
NiN \(=\)
UO S S P I \(=1,4\) (I). GE.0.0) GO TO 50
NAN=1
NUNNAN=1
```

 GO TO (10, 20,30,40), NNNNN
 10 WRITE{6,11)
 GO 1O 2U
 20 WFITE (6,21)
 30 WRLTE (6,31)
 GUTU DU
 40 WFITE (0,41)
 SO CUNTINU
 IF (NNN. =Q.1) WRITE (6,51)
 NNN=U
 UU(YUHI=5,&
 NiNN=1
 NWWINN=I-4
 GU TU (bU,7u), NNNNN
 60 WKITE (6,bi)
 GUTU &J
 7U W&ITL(6,71)
 80 CONTINU
 IF (NNN.EQ.1) WRITE (6,81)
 NINN=0
 DO 110,I=7,8
 DG(110,I=7,GE.U.J) GO TO 110
 NNN=1
 NINNTNN=I-6
 GO TO (90,1JU), NNNNN
 g0 WFITTE (6,91)
 100 WFITE (0,101)
IIU CONTINU=
IF (NNN.EQ.1) WRITE (6,111)
NiNN=O
DC \&40 1=9,1u
IF(PHI(I).GE.U.U) GO TO 140
NNN=1
N:UNNN=I-8
G(UTO (i<U,iau), NNNNN
120 WRITE(6,921)
GU TO 1+0
130 WRTTE(0,131)
140 CONTINU=
IF (NNN.EQ,1) WKITE (6,141)
N NN=U
NAN=U
IF(PHY(F)=11,12
NNN=1
NINNNN=I-10
GC TO (15U,10U), NNNNNN
150 WKITE (6, 151)
1も0 WFITE(6,161)
17U CONTINU - WRITE (6,171)
IF(NNN\& =Q.1) WRITE (6,17i)
NNN=4

```
    \(D\)

OO 220 \(\quad=13,16\)
IF（PHI（1）．GE．U．0）GO TO 220
NINN＝1
NWNNN＝T－12
GU TO（180，190，204，210），NINANIN
WRITE（6，181）
GUTO ću
190 WRITt（0，191）
GU TO 220
200 WFITE（0，201）
GOTU 220
く10
20 WRITE（0，211）
20 CUNTINU：
If（NNN． NQ ．1）WRITE \((6,221)\)
NNIV＝0
UG 6 UU \(1=18,19\)
IF（FHI（N）\＆GE．U．U）GO TO 250
\(N N N=1\)
GU TO（23U，24U），NINNNN
200 WKITE（0， 231\()\)
GOTO 230
240 WRITE（0，241）
250 CUNTINU
IF（NNN。三Q．1）WRITE（6，251）
NiNN \(=0\)
UC \(2901=19,21\)
It（ \(\mathcal{H} H I(i) \cdot G E \cdot U .0)\) GO TO 290
NNN＝1
NNNNN＝I－18
GC TO \((250,270,280)\) ，NNNNN
260 WFITE 6,261\()\)
GUTU \(<30\)
WKITE（ 0,271 ）
280
GC TO 290
280 WRITL（ 2,281 ）
290 UNTINUE
IF（NNN．\(=Q .1) \quad W K 1 T E(6,291)\)
NIN \(=U\)
U0 32，\(I=22,23\)
IF（PHI（I）．GE．U．U）GOTO 320
NINN＝1
NINNNN＝T－21
GU TU（300，310），NNNNN
300 WRITE \((6,301)\)
310 WPITL（ 5,311 ）
GU TO \(3 \leq 0\)
320 CUNT ANU
IF（NNN． N Q．1）WRITE \((6,321)\)
\(N N N=4\)
UU \(350 I=24,25\)
IF（PHI（1）。GE．U．U）GU TO 350
NAN＝1
NNNNH＝I－23
NNNNI \(=1-23\)
\(G O T O(33 U, 340)\) ，NNNNN

WK1TE \((0,331)\)
350
WK1 C（0，041）
IF（NNN EQ，1）WRITE（6，351）
NiNOU
RETUKN
1 FOKNAT（／／／1UX，SUHVIOLATED CONSTRAINT EVALUATION／10X，30（1H－）／／10X， \(142 H F U R\) YOR UUHPLETE EXPLANATIUN．OSEE MANUAL／／

11 FURMAT（1UX，51HiPHI（1）
1 FOMAT（ UX \({ }^{2}\) UHPH1 1 ）
\＆1 FORMAT（LUX，2UHPHI（c）GEAR FORHAT（IUX，4THPHI（ 3\()\) PINION FURMAT（1UX，4／HPHL（4）GEAR
    FURIAT \(/ 1.9 \times 24\) UHHUKSLPOWER TOO LARGE FOK TRANSMISSION UN/19X, 41 HGIV
    IEN CENTRE USTANCE ANU FACE WIOTH WITH/IYX, COHGIVEN MATERIAL PROPE
    \(2 R T I E S . / 19 X, 4 \angle H T K Y\) A) LAKGER CENTRE DISTANCE ANUJOR FACE/27X, 35 HW
    3ILIH. IF VALUES ALREAUY VAKIA GLE, IVTX, JUHINEREASE THEIR LIMITING

    01 FORNAT(1Ux, 24 HPHI(5) PINIUN UNUERCUT/)
    71 FURHAT ( \(10 x, 24 H P H 1(6)\) GEAR UNUERCUT/
    81 FORMAT(/19X, 3YHTKY A) LARGER RATIO OF NUMBER OF TEETH/27X, \(22 H V E R S\)
    IUS CENTRE UISTANEE/24X, \(34 H B\) SR SHALLER DEUENUUN SIZE CRITERIUNA A
    Y1 FURHAT (LUX, 4 H HPHI (7) PINION TEETH INTEKFERENCE WITHGEAR/S
101 FUKMAT (10X,4とHPHI(8) GEAR TEETH INTEKFERENCE WITH PINION/)
111 FORIAT(/13X, 3YHTRY A) LARGEK FATIO UF NUMUER OF TEETH/2TX,22HVERS
    IUS CLNTRE UISTANCL/24X,34HB) SMALLER ADUENUUM SIZE CRITERION/24X,
    \(333 H C J\) LARGER UEUENUUM STZE CRITERIUN/27X, IDHFOR MATING GEAR/A
\(1<1\) FORMAT(1.JX, \(43 H P H I(9)\) PINION TEETH BEYOND POINTING LIMIT/)
131 FURHAT(10X,4SHPHIG1O) GEAR TEETH BEYOND POINTING LIMIT/J
141 FUKHAT (/19X,SgHTRY A) LARGER RATIO OF NUMOES OF TEETHJZ7X, 22HVERS
    IUS UENTRE UISTANCE/C4X, 44 HB ) SMALLER AUULNUUM SIZE CRITERION//)
IL 1 FORAAT (IOX, 5 BHPHI(II) PINION DEUENUUM SMALLER THAN GEAR AUDENDU
    1i/)
1E1FGNHAT (10X,53HPHI(12) GEAR DEUENDUM SHALLER THAN FINION ADDENDU
    14/)
171 FORMAT (/19x, sYHTRY A) CHANGING AOUENDUM-DEDENDUM SIZE/Z7X,
    19HCRITERIUN//)
181 FORTAT ( \(10 \mathrm{x}, 4 \mathrm{LHPHI}(13)\)
141 FORMAT(10X,4うHPHI (14)
cul FURMAT(iux,4 UHPHi (1b)
211 FORIAT (1UX,4UHPHI(16) LOWER FALE WIUTHLIMIT EXCEEDEUA)
                                UPPER CENTRE DISTANCE LIMIT EXCLEDED/)
                                LOWER CENTRE DISTANCE LIMIT EXLEEUED/)
        LOWCR GENTRE OISTANCE LIMITEXUEE
221 FURHAT(19X, STHTRY A) HOLDING VARIABLES CONSTANT AT ZTX, 3GHUPPER

    ことムX, \(35 H 31\) EXTENU RANGE OF LIMITS IF STRESS/27X, 25HCONSTRAINTS NOT

4hLSE CJVSTRALNTS ViULATEU./J
231 FORFAT(1UX,40HPHI (17)
C4I FCRMAT ( \(4 X, \Varangle O H P H I(18)\) MINIMUM PRESSURE ANGLE LIMIT EXLEEDED/J


    IEUEUA
Pinion rooth ihickness tolerance kange exce
281 FORHAT(1UX,5OHPHI(21) GEAR TOOTH THICKNESS TOLERANCE RANGE EXCE
291 드́UAT ( \(19 \times, 33 H T R Y\) A) INCREASING BACKLASH RANGE/24X,37HB) INCREASI
```

 1NG A G.Y A GUALITY NUTIBEK//
 301FURAAT(1OX,כOHPHI(2Z) MINIMUM TIP THICKNESS OF PINIUN TOOTH EXCEE
1U(U/)
O1 FUK\&T(LUX,5jHPHI(GU) MINIMUM TIP THICKNESS OF GEAR TOOTH EXCEE
1ULU/)
321 FUKHAT(1Igx,39HTRV A) CHANGING AUDENDUM-DEDENOUM SIZE/Z7X,GHCRITE
1NIOH/C4X,SGHBS SHALLER RATIO OF NUMBER OF TEETHJ27X,Z2HVERSUS CENT
ZRE UISTANCE//)
331 FURGAT (1UX,52HPHI(24) MINIMUM RAUIUS TO POINT OF LOAU APPLICATION
1/19X,3JHON PINIUN TOOTH CENTRELINE EXCEEDED/)
341 FOKHAT(IOX,5LHPHL(2b) MINIHUM RAUIUS TO POINT OF LOAD APPLICATION
O1.9X,55HON'GEAR TOOTH CENTRELINE EXCEEUEUN
351 FORMAT(/19X,3OHT RY A) CHANGING PKESSURE ANGLE LIMITS/24X,34H8) CH
1ANGLNG ATUENUUN-UEUENOUM SIZE/27X,YHCRITERION//)
END

```
    SUEROUTINE SPUR
    O WE WSIUN WORK1 ( 8), WORK2 (8), WORK3 ( 8), WORK4 ( 8), WORK5 (o 0)
    COHFUN/BLKU IUATA, IPRINT, IWRITE NTYPE

    COMMUNJLK2/HP, RPMI,RPMO,SHAFTI, SHAFTO, CD,FW, PAD. TEETH1

    COMMUN/BLKBA/LUMAX, CDMIN, FWMAX, FWMIN, PAUMAX, PAUMIN
    CUMHON/ 3 LK \(3 B / \mathrm{GLL}, \mathrm{BLU}\), BLR, CDR

    COLHONK 3LK4 AGYCLE, URIVENBORIVER, NCUT1 NCUT2, NLO
    CUHTUNASLKS/OP, CP, DP, PAR, PLV, RATIU, RPM1, RPM2, SHAFT1, SHAFT2, TEETH2
    COHNON/3LK0/PR1, PR2,RE1, RZ2,RI1,RI2,RM1,RHC,RO1,R02,RU1,RU2
    CUMHON/JLK7/AUUL1, AUOLZ, CCC1, CCC2, CRATIO, EFF
    COMHONBLKTA/HUOL1, HUEL2, HUER1, HUBR2,RIM1, RLM2, WEB1, WEB2, VOL1, VOL2


    COMION/BLKB \(\mathrm{CE}, \mathrm{CF}, \mathrm{CH}, \mathrm{CJ} ; \mathrm{CLI}, \mathrm{CL} 2, \mathrm{CM}, \mathrm{CO}, \mathrm{CK}, \mathrm{QS}, \mathrm{C}\}, \mathrm{CV}\)
    CUMHUN/3LKBA/QJ1,QJ2,QL1,QL2,QM,QU,QR, QS,QT,QV
    COHMUN/BLKG/CUU,COUL1,COUL2,QOD,QODL1,QUDL2



    COMMUN/BLKIIARNVAR (B), NSTD (8), NOF (4)

    CUMHCN/BLK13 /BGA1, BBAZ, BBX1, \(3 B \times 2, B B Y 1,3 G Y 2, R T 1, R T 2\)



    COMHON/3LKIL/BLMIN, BLMINT,BLMAX, BLMAXT,BLMAXU, DELBL, GL1, BL2
    Cumion/JPTi/KU, NiNE
    DATA F, TQR, REUUCE, NSHOT,NTEST, MAXM/0.01,0.01,1.0,0.05,2,1.30,300/ >
    DATA NE UUS,NCUNST U, \(25 /\)
\(\mathrm{P}=4 . \mathrm{U} \mathrm{CTAN}(1 . \cup)\)
IF (RPMI.GE.RPMO) GO.TO 1
NORIVE=?
RPM1 \(=\) RPYO
```

 RPM2 =RPMI
 SHAFT1=SHAFTO
 SHAFT2=SHAFTI
 GO TO <
 NURIVE=1
 RHM1=RPMI
 2FH2=KPMO
 SHAFTI=SHAFTI
 SHAFT2=SHAFTO
 RaTIU=RPM1/RPMC
 CALL VAZYI
 K0=1
 SLTUP OF OPTIMIZATION CRITERION FLAGS
 NOFIN=U
 RRR=((RATIO**2)+1.U)/((RATIU*1.U)**2)
 VOLUHE LINIT UETERMINED AT PITCH CIRCLE RADIUS INSTEAD OF ADDENDUM
 CIRCLE रAUIUS AS IN SUBROUTINE **VOLUME**. THIS WILL NOT AFFECT
 THE OPTIMYLATION TO ANY GREAT EXIENT.
 VOLAAX= IT*FWMAX* (CDMAX**2)*RRR
 ULMIN= 1*FWMIN* (COMIN**
 IF(VULMAX,EQ.VULVIN)NOF1=0
 IF(NOF1.EQ.O) GU TO 3
 IF(NCD.VE.0)NOF S=1
 IF(NFW,VE.O)NOF }4=
 NOFN=NOFN+1
 NUF(NOFV)=1
 3 IF(NOFZ.EQ.O) GO TO }
 NOFN=NU=N+1
 NOR (NUFV)=
 4F(NOFB.EQ.0)GO TO 5
 NUFN=NJ=N+1
 NOF(NUFV)=3
 5 IF(NOF4:EQ.U)GO TO 6
 NOFN=NOFN+1
 NOF (NOFV =4
 6 ~ I F ~ (N O F V . E Q . J) N O P T = 1
 CALL TORQUE (HP,PI,KPM1,TURQ1)
CHLL TORQUE (HP,PE,RPMC,TORQE)
CALL EFACT (LE,Ei,EG,P\perp,UI,U<)
CALL FFACT (GF)
CALL HFACT (JHN1,BHN2,KATIO,CH)
CYCLE1=JYCLE
CYCLEC=`YCLE1/RATIO
CALL LFACT (UHN1,CYCLE1,CL1,QL1)
CALL LFACT SHNR,CYCLEC,CL2,GL2)
CALL OFACI (SO,QO,ORIULN,DRIVER,NDRIVE,RATIO)
CALL RFACT (CR,GR;RELI)

```


IF（NOPT．EQ．1）GU TO 50
IFENCO．\(E Q 0\) G GU TO 10
CALL UPTIFI（XSTRT，U，UART，PHI，PSI，NC ONS，NEQUS，NVIOL）
60709
8 CALL OPTIF＜（XSTRT，U，UART，PHI，PSI，NCONS，NEQUS，NVIOL，R）
9 CUECUFSNRT（CUU／CUULI）
\(X S T K T(N C O)=C D\)
10 IF（IUATA。EQOJ）GOTO 20 \(I=1\)
WFITE（ 6,1010 ） \(1, X \operatorname{STRT}(1)\)
IF NOLT：2）GOTO 20
DU \(15 I=2\) ，N
WRIIt（o，iUi 1 ）I，XSTKT（I）
15 CUNTINUS
20 IF（ivCU。EQ。U）GU TO 21
CI IF（NFW． I （Q．U）GU TO \(\angle \mathrm{C}\)
IF（XSTKI（NFW）．GT，FWMAX）XSTRT（NFW）\(=F W M A X\)
22
\(I=1\)
WRITE（E，1014）I，XSTET（I）
IF（N．LT：2）GU TO 30
\(00<5 \quad I=2, N\)
WKITE（6，1U15）I，XSTRT（I）
25 CUNTINU
3U IF（ISTRT。EQ。U）GOTO 40
［U \(35 \quad 1=1, N\)
XSTKT（I）\(=\) STRT（I）
35 CGNTINUE
IFADATA。EQ．j）GOTO 4 L
\(1=1\)
WRITE（ 0,1012 ）I，STRT（I）
IF（N．LT： 2 ）GOTO 40
UU \(O U 1=C, N\)
WRITE（b，1U13）I，STRT（I）
36
40 GO TU \((42,44,40)\) ，NTYPE
42 CALL SEEK1（X，PHI，PSL，RHAX，RHIN，XSTRT，N，NCONS，NEQUS，IDATA，
1 IPKINT，VSHUT，NTEST，MAXM，F，G；U，WORK1；WORK2，WOKK3，WORK 4 ）
44 CALL SE KS（X，PHI，PSI，RMAX，RMIN，XSTRT，N，NCONS，NEQUS，IDATA，
IIPRINT，MAXI，INDEX，NVIOL，F，G，R，REUUCE，U，WORK1，WORKŹ，WORK3＇，WORK4） GOTO4
\(46 \quad 1 A X i=100\)
\(F=1.0 E-04\)
\(G=1.0 E-14\)
CALL NO MIN（X，PHI，PSI，XMAX，RMI N，XSTRT，N，NCONS，NEQUS，IUATA，
IIPRINT，MAXM，F，G，R，REDUCE，U，WORKI，WORK2，WORKZ，WORK4，WORKS）
48 IF（NTOOTH．EQ．U）GO TO 50
IF（IWRITE．NE U）CALL ANSWER（U，X，PHI，PSI，N，NCONS，NEQUS）
50 GU TO（55，05，65）GTYPE
55 IF（NTOOTH，EQ．U）GOTO 00
```

 X(NTUOTH)=AINT(TclTH1)
 CALL OPTIF1 (X,UU1,UARTF1,PHI,PSI,NCONS,NEQUS,NVIOL)
 x(NTOOT-1) = x(NTOUTH: +1.
 CALL UPTIF1 (X,UUZ,UARTFZ,PHI,PSI,NCONS,NEQUS,NVIOL)
 IF(UAKTFIELT.UARTF2) X(NTOUTH) =X(NTOOTH)-1.U
 60 CALL UPIIFI (X,O,UART,PHI,PSI,NCONS,NEGUS,NVIOL)
 Gl TO7%
 65 IF(NTOOIH.LO.0) GO TO 70
 X(NTOUTH)=ANNT(TELTHI)
 CALL UFTIF2 (X,UU1,UARTF1,PHI,PSI,NCONS,NEQUS,NVIOL,R)
 x(NTOUTA) =x(NTOOTH) +1.4
 CALL UPTIF2 (X,UUZ,UARTFZ,PHI,FSI,NCONS,NEQUS,NVIOL,R)
 IF(UARTF1,LT.UARTHZ) X(NTOUTH) =x(NTOOTH)-1.0
 OCALL UPTIF2 (X,U,UART,PHI,PSI,NCONS,NEQUS,NVIOL,R)
 75 F(NVIO-NE.0)KO=1
 CALL TO-CU(BLMAXU,CO,COR,CDTOLL,COTOLU,NQUAL,PAR,PI,PR1,PR2,
 1NAT1O,RJ1,RB2,TEETH1;TP1,TP2S
 IF(IWRITE:EQ.U) RETURN
 CALL ANSWEK(U,X,PHI,PSI,N,NCONS,NEQUS)
 IFKKOLW.U.ANE.NVIOL.EQ.0)GO TO 8U
 WKlTE(E,iuj1)
 If (NVIO.OEQ.0) GO TO 90
 CALL HIVT(PHI)
 WHITL(6,10U0)
 GC TO yj
 80 WKITE (b,1002)
 90 CALL PRINT
 WKITL(0,10U3)
 KLTURN
 1HUO FORMAT(1H1)
1UU1 FORHAT(1H1,9X,44HSPUR GEAR UESIGN....RESULTS OF LAST ITERATION,
/ +uX,44(1H-)/1ux,44(1H-)//)
1U0Z FOKHAT(IH1,9X,35HSPUR GEAR DESIGN...OPTIIUM SOLUTION,
1/1ux,3b(1H-)/10x,3上(1H-)//)
1UU3FURGAT!/////1UX, CZHSPUR GEAR DESIGN....COMPLETE,
1U10 FURMATGIFIOX,4SHCOMPUTED STARTING VALUES.XSTRTI,I2,
14H)}=,12x,七10.8
1U11 FURNAT'(}+7\times,6HXSTRT(,I2,4H)=,12X,E16.8
iliL FORMAT(//IUX,4SHUSER STARTING VALUES. STRTI,I2,
1013 24HOR1AT(12 (4X,5HSTR) (,I2,4H) =, 12X,E16.8)
2014 FORTAAT(//10X,43HMOUIFTED STARTING VALUES.XSTRTG,I2,
14H) =, 12X, (10.8)
FORMAT(+7X,6HXSTRT(,I2,4H) =,12X,E16.8)
ENU

```

SUBROUTLNE URLAL \((x, U)\)
DIMLMSIJN X（1）
GOIHON／BLKO／IUATA，IPRINT，IWRITE，NTYPE

COMMON／OLK？／HP，RPMI，RFMO，SHAFII，SHAFTO，LD，FN，PAU，TEETH1
COMHCN／3LK3／AUUK1，AUUK2，BL゙UK1，UEDK2，AUO1，ADU2，UEU1，D上D2
COMIOH／ЗLK \(3 A / C U H A X, G U H L N\) ，FWHAX，FWHIN，PADITAX，PADMIN
CUMIUN／ \(3 L K J E / B L L, B L U, B L R, C U K\)
COMMON／SLK4 CYEGL，URIVLN，URIVER，NCUT1，NCUT2，NLOAO，NQUAL，RELI，TEMP
CUlIIUN／3LK4A／ISTRT，STRT（8），NOF1，NOF 2 ，NOF 3 ，NUF 4
COHIMON／GLK／EP，CP，UP，PAR，PLV，RATIO，KPM1，RPM2，SHAFT1，SHAFT2，TEETH2

COMHON／3LK7／AUUL1，AUUL2，CCCi，CEC2，CRATIO，EFF


CUMMON／JLKTC／XKLYI；XKLYC，VOLMIN，VOLMAX，XLA，XLR，TOI，TOL，TP1，TP2
\(\mathrm{COMHUN} / 3 \mathrm{LKO} / \mathrm{CE}, \mathrm{CF}, \mathrm{CH}, \mathrm{CJ}, \mathrm{CL}, \mathrm{CL}, \mathrm{CM}, \mathrm{CO}, \mathrm{CK}, \mathrm{CS}, \mathrm{CT}, \mathrm{CV}\)
COMMUN／ \(3 L K B A / G J 1, Q J 2, Q L 1, Q L C, Q M q Q O, Q R, W S, Q T, Q V\)


CORHON／ 3 LKIUA／PAE1，PABC，PAW1，PAWZ，TORQ1，TORQ2，WA，WR，WT，WN
COMHUN／SLK11，J，K，N，NN，NGD，NFW，NTOOTH，NORIVE，NNLOAD，NUPT，NOFN，PI CUMION／ 3 LK．114／NVAR（8），NSTO（8），NOF（4）
COMmOM／BLK13／DBA1，BBAC，BBX1，BBX ，BBY1，BBY2，RT1，RT2
COMMON／GLK14 TTOLK1，TULR2，TULPL，TOLP2，PTOL1，PTOLE，TOLLI，TOLL2
CUMIUN／BLK14A／TJUT1，TTET2，TCT1，TCTE，TPTLI，TPTL2，TPTU1，TPTU2
COMION／SLK14B／TPTE1；TPTE2；TPTV1，TPTV2，CUTOLL，CUTOLU，EKK
CUMMUN，JLKI5／BLMIN，BLMINT，BLMAX，BLMAXT，BLMAXU，DELBL，BL1，BL2
UALL VARY（X）
CHLL TLUAD（HP，PLV，PAR，WA，WR，WT，WN）
CALL EK
ITCTL）
CALL ERरOR（UP，FW，NQUAL，PR2，TEETH2，TOLRZ，TOLPZ，PTOL2，TOLL2，TTCT2，
1Tしたく
ChLL BLASH（BLHIN，BLMINT，BLMAX，BLMAXT，BL1，BL2，BLL，BLU，BLR，CP，
IUP，UELZL，NQUAL，PAK，TPTLI，TPTLCTTPTU1，TPTUL，TPTEI，TPTEL，

CALL CUTTEK（ANGU1，UL \(1, C C C 1, C O, G P, D E D 1, N C U T 1, P A R, P R 1, R B 1, R M 1, R U 1\),
1 THI，GUAL，\(B B X 1, ~ U Q Y 1, K T 1\) ）
CALL CUT \(\begin{gathered}\text { ER（ANGCZ，BL2，CCC2，CU，CP，DEDZ，NCUTZ，PAR，PR2，RBC，RM2，RU2，}\end{gathered}\)
1 TH2，\(B B A 2, B B X(B G Y C, R T C)\)
CALL AUJLKU（AUUL1；PAR，PR1，RU1，RO1，TO1，TP1）
CALL AUJENU（AUULZ，PAR，PK2，RB2，ROZ，TO2，TP2）
CALL CUNKAT \(A N G E 1, A N G E C, B P, C R A T I U, N C U T I, N C U T Z, N D R I V E\)


CALL EF＝LC（LFF，RB1，RBC，PAR，PLV，RATIO，NDRIVE，XLA，XLR）
CALL SIZE GDU1，UEU1，FW，HUBL1，HUER1，RI1，RIM1，SHAFT1，SAF1，
1 TUKQ1，WEE1，XKEYIJ
CALL SILE AUUC，UEUC，FW，HUBL2，HUBR2，RI2，RIM2，SHAFT2，SAF2，
1 TURQ2，WE 32 ，XKEY2）
GALL VO＿UHE（FW，HUBL1，HUBR1，PI，RIM1，R01，SHAFT1，VOL1，WEE1）
CALL VULUME（FW，HUBLE，HUBRZ，PI，RIML，ROZ，SHAFTL；VOLZ，WEELS
CALL IFACT（BP，CJ，PAR，PR1，PR2，RATIO，RB1；RO1）
CALL MFACT（CM，GM，FW，NGUAL）

GALL VFAUT（CVGV，NGUAL，PLV）
CALL FASTUK CUF，CH，CLI，CL2，QLI，QL2，CH，QM，CO，QO，CR，QR，CS，QS，CT，QT，

LOAUING ANALYSIS
ERR＝TULD \(1+\) TOLP2＋（ \((\) PTOL1＋PTOL2）／2．0）
IF（NLUAJ．EL．U）GU TO 1
NILUAJ＝VLUAD
ChLL LO4D（RL1，ANGL1，RLL1，ANGLL1，NNLOAD，BP，PAR，PR1，PR2，RB1，RB2，
1RU1，RU2，TP1）
CALL LJAU（RL2，ANGL2，RLL2，ANGLL 2，NNLOAU，BP，PAR，PR2，PR1，RB2，RB1，

1RT1，H1，T1，QJ1，Y1
CALL JFACT（ANGC2，ANGL2，BBY2；DP，NCUT2，PAD，PAR，PI，PR2，RI2，RL2，RLM2，
LRTく，HC，Tく，QJL，Yく
DLTERHINE IF LUAU SHARING EXISTS
1 CALL SHARE（ANGC1，ANGC2，ANGL1，ANGL2，BBY1，BBY2，BP，DP，E1，E2，

3TPI，TP2；WiN）

1SAFI，SA \(=2\) ）
CALL WEAR（COU，COUL1，COUL2，CE，CJ，FW，PR1，SAC1，SAC2，SS1，SS2，
1SSM1，SSyz，WT
CALL PUNER（CE，CJ，COD，CUDL1，CODL2，QJ1，QUC，QOD，QODL1，QOUL2，
1DP，FW，PAB1，PAB2，PAW1，PAW2，PI，PR1，RPM1，SAC1，SAC2，SAF1，SAF2）
OPTIMILATIUN CRITERI ON
\(U=0.0\)
IF（NOFV．EQ．U）GO TO 101
UU 1 UU I＝1，NUFN
NINANAN \(=N\) F（i）
GO TU（1U，20，30，40），NNINNN
10 VOL＝VOLI＋VUL2
\(\cup \cup U=1 . U=(\)（VOL－VULMIN）／（VOLMAX－VOLMIN））
IF（UUU．EE：ZERO）GO TO Y9
UU＝1．0jJUu
\(u=u+U u\)
GOTO 100
2U UUU＝CRATIO－1．0
IF（UUU．E．ZERO）GO TO 99
UU＝1．© J J U
\(u=U+U U\)
GO 10200
\(30 \cup \cup U=1.0-((C D-C U M I N) /(C U M A X-C D M I N))\)
```

IF(UUU.LE.ZERU) GO TO 99
UU=1,0/JUU
$U=U+U U$
gu TO 100
IF (UUU.-L:ZERU) GU TO Yg
UU=I. U/JU
$u=u+U U$
GO TO IUO

RETURN

ENO

SUBROUTINE CONST (X,PHI,NCONS)
UIMENSIDN $X(1), F H I(1)$
COHAON/3LKU IIUATA, IPRINT, IWRITE,NTYPE

CLITUN/BLK2 /HP, RPIII,RPMO, SHAFII, SHAFTC,CD, FW, PAU, TEETH1

COH1UNI ЭLK A A/CUMAX, CUMIN, FWHAX,FWMIN; PAUMAX, PABMIN
CUHMUH/3LK3B/BLL, OLU,BLR,CDR
CUHHUN/BLK4 CYYLLE, DRIVEN, DRIVER, NCUT1, NCUTZ, NLUAU,NGUAL, RELI, TEMP
COMMUN/3LK4A/ 15 IRT, STRT (8), NUF1, NOF \mathcal{C}, NOF 3 , NOF 4
OOMON/BLK5 /EP, CP, UPP, PAR, PLV, RATIO, RPM1, RPMZ, SHAFT1, SHAFT2, TEETH2
COMMON/3LKO /PR1, PR2, RU1, KU2,RI1,RI2,RM1,RM2,R01, RU2, RU1, RU2
COHHON/ BLK? /AUUL1, AUUL2, CCC 1, CUCZ, CRATIU, EFF
CUMUN/ 3LK ZA/HUDLI, HUBLC, HUGKI, HUBRL, RIM1, RIIC, WEE1, WEBZ, VOL1, VOL2

GOMMUNYOLK7C/XKEY1, XKEY2, VOLMIN, VOLMAX,XLA, XLR, TO1,TO2,TPI, TP2
COMHNJSKO 心E, CF, CH,CJ, CL1,CL2, CH, CO, CR, CS, CT, CV
COHMUNJLKBA/QJI, QUZ, QLI; QLE, QA, QO, QR, QS, QT, QV
COMMUN/ $2 L K G / C O U, C O L L 1, C O U L Z, Q O U, Q U D L 1, Q U D L 2$
COHICH/3LK10 /SU1,SB2, SUM1, SBM2,SS1, SS2, دSM1,S SM2
COMION/3LK10A/PAB1,PABL,PAW1,PAW2, TORQ1,TORGL, WA,WR, WT, WN
COMHUN/ CLKII /J, K, N, NN, NCU, NFW, NTOUTH, NUKIVE, NNLOAU, NUPT, NOFN, PI
COHIIUN/3LK11A/NVAR (8), NSTU(8), NOF (4)

COHMON/bLK14 /TULR1, TULR2, TULP1,TOLP2, PTOL1, PTOLZ, TOLL1, TOLL2
COMUUN $3 L K 14 A / T$ TCT1, TTCT2, TCT1, TCT2, TPTL1, TPTL2, TPTU1, JPTU2
COHHON/3LK14B/TPTL1, TPTE2,TPTV1,TPTV2, COTOLL, CDTOLU, ERR
COMHON/BLK15/BLMIN, BLMINT, BLMAX, BLMAXT, BLMAXU, DELBL, ELL1, BLL
BLNUING STRESS
PHI (1) $=$ SBM1-SB1
PHI (2$)=$ SBM2-SB3
SURFACE OR CUNTACT STRESS
PHI(3) $=$ SSM1-SSI

```
    PHI( 4)=SsM2-SS2
    UNDERCUTTING ANO INTERFERENCE
    PHI(5) =(RII-(UL1/(2.U*TAN(FAR)))})-RU
    PHII (b)=(RI2-(BL2/(2.0*TAN(PAR))))-RU2
    2HI( 7) =RM1-RO1
    PHI( %) =RM\2-RO2
    GEOMETRICAL
    PHI (9) =AUDLI-AUDI
    PHI(10)=AUUL2-AUOL
    PHI(11)=0rvi-ADUC
    PHI(12)=DED2-AUU1
    USER LIYITATIONS
    PHI(13) = CD|AX-CU
    PHI(14)=CD-COHIN
    PHI(15) = FWMAX-FN
    PHI (15) = FW-FWMIN
    Pril (1%)=PAOMAX-PAO
    PHI(18)=PAU-PAUHIN
    BACKLAS\ AND ERROR ANALYSIS
    PHI(19)=PELEL-(TPTE1+TPTE2)
    PHIT(20)=TPTV1-TPTU1
    PHI(21)=TPTV2-TPTU2
    SIZE LIMITATIONS
    PHI(22)=T01-(0.25/0P)
    PHI(23)=T0C-(4.< 5/UP)
    PHI(<4)=RLL1-RLM1
    PHI(25)=RLL2-KLM2
    RETURN
```


THIS ROUTINE IS A UIRELT SEARCH OPTIMIZATION TECHNIQUE USING
THE HOOXE ANO JEEVES ALGORITHM

OLMLNSI)N X (1), PHI (1), PSI (1), RMAX (1), RMIN(1), XSTRT(1)
UIMEWSI JN WORKI (1), WORK2 (1), WORK3 (1), WORK4 (1)
CUMVUN/OPTI/KO, WNUEX
IF(IUATA.EQ. J) GO TO 1
WOITE (0, 2UU)
WKITL (0, 201)
WRITL (6, 202) W
WKITE ($5, \dot{G} U$ U)NCONS
WRITE (o,2U4) NEQUS
WKITL (5, 20 j) IUATA
WKITE (O, 20 O$) \perp P R I N T$
WRITE $(0,2 U 7)$ NSHOT
WRITE (0,2U甘)NTEST
WKITE (6,209)MAXM
WRITE (0, 21u)F
WFITE $(0,211) G$
WKITE $(0,2 \perp c)(R M A X(I), I=1 ; N)$
WKITE (O, 21 3) (RMIN(L), $=1, N$)
WRITL (0, 214) (XSTRT (I), $1=1, N$)
IF (FRINT.EQ. O) GO TO' 2
WkITE (b,215)
WKITE (0, 216)
GOTO2
1 IF(IFRINT, EG:O) GO TO 2
WFITE (0, $2 U U)$
$2 K U=U$
KUUNT $=U$
INUE $X=1$
NWUE $X=1$
INDEX $=1$ IF * SUEROUTINE SEARCH** CALLED BY EITHER **SUBROUTINE $=0$ SLER1 SUUBROUTINE SEARCH** CALLED BY * * SUBROUTINE FEASBL**
$X U B=T=I T N(T)$
3 CUNTINU:
4 CHLL SEARCH X, PHI,PSI,RMAX,RMIN, X, N, NCONS, NEQUS, IPRINT, INOEX, 1NVIUL SHAXI,F, BH1, PSI, RMAX, RMIN, N, NCONS, NEGUS, NSHOT, NTEST,KK,F,G,U, 1WURK1,WコRK2,WOKK3)
IF (KK.E2.1) GOTO 5
IF (KO.EA.0) RETURN


```
        WKITE 6,217 )
```



```
    CALL OPTIFI ( \(X, U\), UAKT, PHI, PSI, NCONS, NEQUS, NVIOL)
        WKI \((0,21 Z) \cup U A R T,(X(I), I=1, N)\)
    6 KUUNT二KJUNTt1
        IF (KOUNI.LEONSHOT) GO TO 4
        WRITE (O, 219 )NSHOT
        \(K O=1\)
\(R L T U R G\)
CUO FORNAT(1H1, 47 HOPTIMIZATION USING UIRECT SEARZH METHOD....SEEKI/IX,
201 FURHAT(1X, 1UHUATA INPUT/1X,1U(1H-)//)
202 FORAAT(1X, b日HiNUMBER OF INOEPENUENT VARIAGLES . . . . . . . .
\(12 \quad N=, 10 \%\)
\(2 U 3\) FORMAT ( \(1 \times\), GOHNUMBLK OF INEQUALITY (.GE.0.0) こONSTRAINTS. . . . N
204 FOKilatíi, GUHNUMEER OF EQUALITY CONSTRAINTS. . . . . . . . . N
```



```
206 FURilatíx, bohinteratoiate output Every Iprint Iterations . . . IP
ZU7 FORMAT(ix, GUHNUMBER OF DIRECTEU RANDOM SEARCHES PERMITTEU. . . N
    \(15 H O T=\), Tb/
208 FURIATIIX,gUHNUABER OF TEST POINTS IN DIRECTED RANDOM SEARCH • N
2U9 FORMATIX, OUHMAXIMUM NUMBER OF TTERATICNS. . . . . . . . . . .
    1HAXA =, IO/
```



```
215 FURMAT(1H1)
Ci G FORMAT (21HOINTLRMELIATL RESULTS/1X,20(1H-)//17X,1HU,13X,4HUART,
\(17 X, 27\) HIYUEPENLENI VARIABLES \(x(I) / \rho\)
C17 FORAAT G OHUULRELT SEARUH HAS HUNG UP ANU DIRECTEO RANUOM SEARCH CA
    INHUT FIVU A BETTEK. POINT/ 1X, \(44 H T R Y\) A ENSURING THAT FEASIBLE REG
    \(2 I O N\) LXISTS/6X, З二HB) MORE FEASIBLE STARTING VALUES/6X,2GAGSCHANGIN
    \(3 G\) VALUES UF F AND G/ 1 )
\(\therefore 18\) FORMAT(3HU.SHUT. , OE \(10.8 /(40 \mathrm{X}, 4 \mathrm{E} 16.8)\) )
Z19 FORMAT(JGHODIKECTED RAADOM SEARCH FOUND AN IMPROVEMENT BUT NSHOT
    \(1, I G, 18 H\) HAS BEEN EXCEEDED/IX, \(45 H T R Y ~ A) ~ U S I N G ~ L A S ~\)
ING
    2 İNG VA.UES/OX, <ÖHB) INCREASING VALUE OF NSHOT//)
```


THIS ROJTINE IS A UIRELT SEARCH OPTIMIZATION TECHNIQUE USING The huUke and jeeves algorithm

IF INUEX $=0$ THEN **SUBROUTINE SEEK3** CALLED BY **SUBROUTINE

```
UIMLNSIJH X(1),PHI (1),PSI(1),RMAX (1),RMIN(1),XSTRT(1)
```

UIMLNSIJH WORK1 (1), WORK2 (1), WORK3 (1), WORK4 (1)
COMAON/JPTI/KO, NNDEX

WFIINEX: NE,
WKIIE $(0,202)$ in
WKITE ($0,2 \cup 0$) NCONS
WRITE (0, 2 L 4) NEUUS
WRITE (S, 2Uj) ILATA
WRITE ($0,2 \mathrm{c} \cup 0$) IPRINT
WRITE $(0, c \cup j)$ MAXM
WFITE ($0,2 j_{0}$) F
WFITE (0,209) G
WKITE $(6,209) G$
WRITE (0, 211)REUUCE
WRITE ($0,2 i<)$ (RMAX (1), $I=1, N$)
WRITE $(0,213)($ RHIN $(1), I=1, N)$
WRITE $(0,214)$ (XSTRT $(I), I=1, N)$
WRITE(SG14) (XSTRT (I), $\frac{1}{2}=1, N$)
IF (TPRIVT•EREU) GO TO $\frac{1}{2}$
WRITE (0, 015$)$
WFITE (0, 210)
GU TO?
1 If (1PRIVT.EQ.0) GO TO 2
IF (INUEX. NE, j) WRITE $(0,200)$
WRITL $(6,215)$
$2003 \quad I=1, N$
$X(I)=X S T R T(I)$
3 CUNTINJE
$\mathrm{KU}=\mathrm{J}$
KOUNT=0
KOUNT $=0$
NINGEX $=2$

ULAST $=1 U \cdot U E+4 U$
4 CHLL SEARCHIX,PHI,PSI, KMAX,RMIN, X,N, NCONS, NEQUS, IPRINT,
11 NUEX, WVIOL, HAXH, F,G,RK, U, WORK1, WURK2, WORK3, WORK4)
11 NUEXBEX.EQ:U) RETURN
IF (KNDEX: EQ. U) RETUR

KUUNT二KOUNT+1 (IPRIVT:LQ.U) GO TO 5
IF(HOU(KOUNT, IPRINT).NE.0) GO TJ
CALL UPTIF2(X,U, UART, PHI,PSI,NCONS,NEQUS,NVIOL, RR)
WRITE (0, 217$)$ RR, UARI,PHI,PSI,NCONS,NEQUS,NVIUL,RR) A
WRITE (0,217) RR, 218)URT, (X(I), $I=1, N$)

```
    5 If(ABS(J-ULAST)
    ULAST
    R2,
    RR=NR*R三DUCE
    GUTUT(4, 219)RR
    KO=1
    GU TO 8
    7 WRITE (6,22u)
    KO=1
    8 CHLL UPTIFZ(X,U,UART,PHI,PSI,NCONS,NEQUS,NVIOL,RR)
    RLTURN
CUU FOKMAT(LHL,&7HOPTINIZATION USING DIRECT SEARSH METHOD...SEEK3/IX,
    147(1H-)//)
2UI FORITAT(IX,1JHOATA INPUT/1X,1U(1H-)//)
2U2 FURMAT(1X,GOHNUMBER OF INDEFENDENT VARIABLES . . . . . . . . . 
203 FON =,IO/)
    FORHAT(IX,GOHNUNBER OF INEQUALITY (.GE.0.0) SONSTRAINTS. . . N
    ICUNS =,Ib/)
ZU4 FORHAT(1XX,GOHNUNEER OF EQUALITY GONSTRAINTS. . . . . . . . . . N
\angleU5 FEQUSMAT(íX,GOHINPUT OATA PRINTED OUT FOR (IUATA.NE.O) . . . . . I I
2UG FORNAT`IX,OOHINTERMEUIATE OUTPUT EVERY IPRINT ITERATIONS . . . IP
```



```
208 FORMAT(iX,GUHFRACTION UF RANGE USED AS STEP SIZE . . . . . . . 
2U9
1 G =,3X,E10.8/)
210 FURMAT(1X,bUHINITIAL PENALTY MULTIPLIER FOR CONSTRAINTS. * *
```



```
    100HEACH M
CI2FORMAT (OZHULSTIMATED UPPLR BOUND ON KANGE DF X(I). . . . . . RMA
213 FORMAT (G1HUESTIMATED LOWER BOUND ON RANGE OF X(I). . . . . . . RMI
    1N(I) =,//(bE16.0))
<<4 FUPaAT (OMFUSTARTING VALUES OFX(I) . . . . . . . . . . . . . XSTR
1T(I) =,/(6510.0))
215 FOKNAT(1H1)
216 FURIAAT(21HUINTLRMLUIATL RESULTS/1X,20(1H-)//17X,1HU,13X,4HUART,
    I 7x, ᄃ7HI VUGPENLENT VARIABLES X (I) %/)
217 FORMAT(4X,4HRK =,510.0)
218 FORMAT (3X,6E16.8/(40X,4E16.8))
219 FUKMAT ( }4H\mathrm{ HNO CONVLRGENCE WITH R F,E16.8/)
```



```
    2STARTING VALULS/GX,29HCS CHANGING VALUES OF F'AND G/%)
        ENU
```

SUBROUTINE NFFMIN(X,PHI,PSI,RMAX,RMIN,XSTRT,N,NCONS, NLLUS,IDATA,
THIS ROJTINE WAS AUAPTED FOR OPTISEP FROM FLETCHERS FROGRAM. THEURY FOR THE HETHODCAN BE FOUND IN ** THE COMPUTER JOURNAL VOLUHIE 13 NUMEEK 3 AUGUST 1970 **

QIMENSIJN X(i) XSTRT(1),RMAX(1),RMIN(1),PHI(1),PSI(1)
ogical conv
cumbonjoptiku, NHOEX
if(ivati.eto.j) gu TO 1
WKIIt $(0,200)$
WKITE $(0,201)$
WRIE 6,202$) N$
WKITL(0, 240)NLONS
WRITE (5,204) NLQUS
WHITL(0, 2U5) LPRINT
wRITE (0, 2v6) Iuata
WRETE $(0,2 \cup 7)$ MAXM
WRITL $(0,2 \cup 4)$ F
WKIIt $(0,209) \mathrm{l}$
KIIE(b,21U)
WHITE $(b, 211)$ REUUCE

WKITE (0,213) (RMIN(I), $1=1$, N)
WRITE $(5,214)$ (XSTRT (I) , $1=1, N)$
it (iPRIVT.EU0.u) 60 TO 996
WRITE (0, (13)
WKITE (6, 300)
0 TO Y96
1 IF (IPRIVT. 2 (.0) GO TO 996
WFITE (o, zuU)
WKITE (b, 300)
$996 \mathrm{KO}=\mathrm{U}$
ITN= 0
NFNS $=1$
NSTRT=1
KR=R
ULAST $=1.0 \dot{0}+4 山$
U0 く $1=10 \mathrm{~N}$
$x(I)=\operatorname{xSTRT}(I)$
$x \times x \times x=A \Rightarrow S(R M A x(I)-R M I N(I))$
$\mathrm{UU}(\mathrm{I})=\mathrm{F}^{\mathrm{F}} \times \mathrm{XXXXX}$
$\varepsilon L(1)=6 * x \times X x x$
2 CONTINU:
997 CALL OPTIF2(X,U, VART, PHI, PST,NCONS,NEQUS,NVIOL,RR)
CALL SLJPE (X,PH1,PSI, N, NC ONS, NEQUS,GG, DI, रR)
$\mathrm{KO}=\mathrm{J}$
$S T E P=1.3$
$10 \mathrm{CX}=\mathrm{N}$
$10 G=N+N$
$I H=I U G+V$

```
    00 3 j=I,N
    HH(IJ)=U.0
    IF(I.LG&J)HH(IJ)=1.0
    IJ=2 J+1
    3 CNNTINJ=
    999 LONV=,TZUE.
    GUX=0.U
    UU ○ I=1,N
    Z=4.0
    IF=(1H+1. 1) GO TO 41
    IF(1-c2.1) GU TO 4
    00 + J=1,11
    Z=Z-HH(IJ)*GG(J)
    i j=1 j+iN-J
    coivtlinu
    00,5 j=E,N
Z=Z-HH(IJ)*GG(J)
I v=1 v+1
    IF(AES(\overline{Z}).GT.EE(I)) CONV=.FALSE.
    IF(ALS(Z):GT.EE(I)) CONV=.FALSE
    HH(1UX+1)GEZ
    6 ~ C O N T 1 N U :
    IF(IPRIVT,EQ.U)GO TO 7, GO TO 7
    WKITE (0,3U1)RR N,NFNS,U,UART, (X(I),I=1,N)
    7 1EXAT=1
    IF(CONV) GO TO 24
    IEXIT=3
    IF(GUX.SE.U.0) GO T0 24
    Z=1.U
    IF(ITNOT,N)Z=STEP
    W=2.0*(J-UART)/GUX
    TF(WOLU.0) W=Z
    STEP=Z
    8GUX=GUX*Z
    UU 9 i=1,N
    HH(IUXX}I=HH(10X+I)*
    FF(I)=X(I)+HH(IUX+I)
    9 CONTINU=
    CALL (FIIF2(FF,UI,UART1,PHI,PSI,NCONS,NEQUS,NVIOL,RR)
    CHLLL SLJPE(FF,PHI,PSI,N'NCONS,NEQUS,HH,OU,RR)
    NFNS=NFVS+1
    IEXIT=2
    IF(ABS(JART1-UART).LT.1.OE-O7*ABS(UART)) GO TO 24
    IEXIT=5
    IF(ITNOEQ.MAXM) GO TO 24
    GPUX=0.0
    DU 10 I=1,N
    HH(IDG+I)}=HH(I)-GG(I
    HH(IDG+I)=HH(I)-GG(I)
O CONTINU:
\(\mathrm{DGUX}=\mathrm{GP}) \mathrm{X}-\mathrm{GDX}\)
IF (UAKT: GT. (UARTI-0. U0U1*GDX)) GO TO
11
\(\frac{1}{T} E X T=4\)
IF (GPGX:LT: O.U.AND.ITN.GT.N) GOTO 24
\(Z=3.0\) * (JART-UART 1\()+G P D X+G U X\)
\(W=S Q R T(1: U-(G U X / Z)+(G P U X / Z)) * A B S(Z)\)
\(Z=1.0-(弓 P \mathrm{P} x+w-Z) /(0 G \Delta x+2.0 * W)\)
IF \(\bar{\prime}(Z, L T, U .1) \quad Z=0.1\)
GO TO 14
11
\(U G R T=U A र T 1\)
-
UU \(12 L=1, N\)
\(G G(1)=A+(I)\)
\(X(I)=F F(I\)
CUNTINU:
IF (UGU.
GT.O. G) GO TO 15
\(G L X=G P U X\)
\(\angle=4\). 0
14 STEP=Z*STEP
GOTO \&
15 IF (GPOX,LT.0.5*GOX) STEP=と, U*STEP
UGHUG=U:U
\(00 \quad 19 \quad I=1\), \(N\)
\(\angle=0.1\rfloor\)
\(\frac{1}{2}=i H+1\)
IF (I.LQ. 1) GO TO 17
\(I_{i}=1-1\)
UO \(16 J=1\), II
\(Z=Z+H H(1 J) \neq H H(I U G+J)\)
I \(J=I J+N=J\)
16 CUNTINU

\(\bar{I} J=I J+1\)
18 CUNTINU
UGHUG=UOHDG+Z*HH(1UG+1)
\(H H(I)=\angle\)
19 CUNTINU:
IF (UGHOJ.LT.U.U) DGHOG=0GDX*0. 01
IF (UGUX. LT. DGHUG) GO TO 21
\(W=\perp \cdot U+D G H O G / U G U X\)
[) 0 © \(I=1, N\)
\(H H(I U X+i)=W * H(I U X+I)-H H(I)\)
\(\angle 0\) CUNTINUE
BLDX \(=\) UGUX O UGHUG
D GHGG=U5UX
©1 IJ=1H

\(W=H H(1 \cup X+1) / 0 G O X\)
\(Z=H H(I) / U G H O G\)
UU \(22, j=I, N\)
\(1 \mathrm{j}=1 \mathrm{~J}+1\)
HH(IJ) \(=\mathrm{dH}(I J)+W * H H(I D X+J)-Z^{*} H H(J)\)
```

 G0 TO 999, 26,28,28,29), IEXIT
    ```

```

 ULAST=UART
 NSTKT=1
 IF(RK.GT.1.0E-2U) GO TO 30
 KU=1
 WKITE(b,40b)RR
 Kcturiv
 26 IF(ABS(JART1-ULAST).LT.G*ABS(UART1)) GOTO 27
ULAST=UART1
NSTRT=1
IF(KR.ET.I.UE-<U) GO TO 3U
KO=1
WKITE (5,40b)RR
RETUKN
<7 KO=u
CALL UPTIF2(X,U,UART,PHI,PSI,NGONS,NEQUS,NVIOL,RR)
IF(NVIO-.NE.US KU=1
IF(KU.EX:1) GO TO S1
RETUKN
C8 IF(NSTNT.EQ.S) GO TO 32
NSTRT=NSTRT+1
ULAST=UART
gu TO Su
C9 WEITE (6,404)MAXM
k0=1
RETUKN
OU RLS=RR*ROQUCE
G0 T0 937
31 WRITIC(E,401) ItXIT,RR
WKITE(6,40%)
RETURN
32 KU=1
WKITE(O,403)
RLTURN
200 FORHIAT 1H1,52HOPTIMIZATION USING THE NEW FLETCHER POWELL TEGHNIQUE
1/1X,5c(1H-3/7)
201 FORHAT(1X,10HOATA INPUT/1X,10(1H-)//)
EU2 FORMAT(IX,GOHNUMBER OF INULFENDENT VARIABLES
N =,I6%
CU3FORMATIIX,OOHNUMBLR OF INEQUALITY (.GE.0.0) SONSTRAINTS. . . . N
204 FORMAT(ix,gonNUMBER OF EQUALITY CONSTRAINTS. N
1tQUS =,IO/) IP
Zu5 FURHAT(iX,gOHINTLRMLDIATE OUTPUT EVERY IPRINT ITERATIUNS . . . IP

```

```

CU7 FORAMAT(iX,0JHMAXIMUM NJMBER OF ITERATIONS.
2U8FORVATIIX,49HFRACTION OF RANGE USED FOR GRADIENT DETERMINATION/1X,
GOURMAT(iX,GOHFRACTION OF RANGE USED FOR CONVERGENCE CRITERION.

```
CIO FORINAT(IX,GOHINITIAL PGNALTY MULTIPLIER FOR CONSTRAINTS. . . -
1 R R=3X,E16.8/)
211FURMATIIX,45HKEUUCTION FACTOR FOR PENALTY MULTIPLIER AFTER/IX,
```



```
    23\lambda,(10.5)
2I2FORMAT COIHULSTIFATEO UPPLR BOUND ON RANGE OF X(I). . . . . RMA
    1\times(I) =, (f(5:10.8) )
213 FURMAT' (OIHUESTIMATED LOWER BUUND ON RANGE OF X(I). . . . . . RMI
```



```
1T(1)}=,//(5010.0)
<15 FORHAT(1H1)
SUU FORHATG,X,1UHITERATIONS, CX, IUHFUNCTIONAL, 1UX,1HU,13X,4HUART,7X,
12OHINUGPENDENT VARIAGLES X(I)/13X,11HEVALUATIONS/%)
3U1 FORMAT(20X,4HRR =, 516.0)
3U2 FURHAT( + X, 13,1UX,13,4X,6E16.8/(50X,4E16.6))
4UI FCRHAT COUHUPKOGRAM HAS CONVERGED TO AREA IN INFEASIELE REGION WIT
    1H IEXIT =, I 3,/01X,SHR =,E10.8/1IX,36HTRY A). A MORE OPTIHUM STARTI
    2NG POINT, /5X, <8HB) SMALLER VALUES OF F ANO G, ()
4U2 FORLATGO1HUWHERE IEXIT = 1 STEP EENGTH CONVERGENCE CRITERION/7X,
```



```
    ISINGULAR,/IX,SGHTKY A) A MORE, OPTIMUM STARTING POINT,/bX, 28HB) SMA
    2LEER VALUESOF F ANO G2/5X,37HC) A UIFFERENT OPIINIZZATION TECHNIQU
    OE,/1IX,47HNOTE...LLAST ITERATION MAY GE CLOSE TO OPTIMUM/)
4U4 FORMAT''9HOMAXIMUM NUMUER OF ITERATIONS EXCEEDED...S MAXIA =,I6/)
445 FGRMAT(///10X,23HNO CONVERGENCE WITH R =,E16.8)
        ENO
```

SUBROUIINE SEARCH(X,PHI,PSI, RMAX,RMIN, XSTRT,N, NCONS, NEQUS, IPRINT,

INULX = O WHEN * *SUGRUUTINE SEARCH** CALLED BY * FUORUUTINE
NNOEX = 1 WHESUL** SUGROUTINE SEARCH** CALLED EY *\&SUBROUTINE
NNDEX $=2$ WHEN * SUEROUTINE SEAREH** CALLED BY **SUBROUTINE

DX $\quad=$ FRACTION OF KANGE USED AS STEP SIZE
TX = FPACTION OF RANGE USED AS CONVERGENCE CRITERION

DIMENSI)N X (1), PHI (1), PSI (1) $\mathrm{RHMAX}^{(1), R M I N(1), X S T R T(1)}$
DIMENSIJN XA (1), XB(1), DX(1), $\ddagger \times(1)$
COMAON/ JPTI/KO, NNOEX

```
KO=U
\(M 1=0\)
NVIUL1=1
\(00 \perp I=I, N\)
```

$X(I)=X S T R T(I)$
$X A(I)=X(I)$
$O X(1)=F F A B S(R M A X(I)-R H I N(I))$
$T X(I)=0 * B X(I)$
1 CONTLINU:
NUALL=1
GOTO $(3,4)$, NNUEX

GOTO TOPIIF2 (X,U,UART, PHI,PSI, NCONS,NEQUS,NVIOL,R)
4 EALL OPIIF2 (X, UGART, PHI
IF (NVIU: EQ:U) NVIOLI=U
IF(iNUEX, EQ. U) GO TO 25
© GU,TU $(7,8,9,21), N C A L L$
7 NFALL=0
$\mathrm{D}(I)=\mathrm{I}=1, N$
$\mathrm{~N}(\mathrm{I})+\mathrm{UX}(I)$
NCALL=2
8 IF (UART,LT.UARTU) GO TO 10
$X(I)=X(i)-2.0 * 0 X(I)$
NCALL=3
GO TO
9 IF (UART.LT.UARTO) GO TO 10
NFAIL=NFA $I L+1$
$X(I)=X(I)+D X(I)$
GU TO 11

10 UARTO = UAKT
IF(NFAI-.EQ.N) GO TO 17

13 CONTINJ= M1= $11+1$
GO TO $(14,15)$,NNUEX
14 If (HOU(M1, IPRINT) NE.0) GO TO 15
LALL OPTLFI (X, UL, UARIL,PHI,PSI, NCONS, NEQUS, NVIOL)
WRITL ($0,3 J$)ML, UL, UARTL, (X (I) $, I=1, N$)
15 If (A1.G . 114×19 GU TO 20
DO $151=1$, N
$X(I)=x(1)+(X(I)-X A(I))$
16 CONTINUE
NCALL=4
GO 10
$17 \mathrm{UU} 16 \mathrm{I}=1 \mathrm{~N}$
8 (f)(UX(I).GI.TX(I)).GO TO 19
G0 in $=$
GO TO $20.20 \quad N$
$190020 \quad I=1, N \quad 2$
20 CUiNTINUE
$\therefore 1$ IF (UART.LT.UARTO) GO TO 23

$X(I)=X A(I)$
$\angle \mathrm{CONTINU}=$
GOT0?
C3 DO $24 \quad I=1, N$
$X A(1)=X 3(1)$
$\therefore 4$ CONTINU三
UARTO =UART
GUTO?
C5 TH (NVIOL 1 -NE. O) GO TO. 6
<O GO TO (E7, C8), NNUEX
$\angle 7$ CALL OPTIFi (X, UN, UART, PHI, PSI, NCONS, NEQUS,NVIOL)
GO TO 23
28 CELL OPIIF2(X,U,UART,PHI,PSI,NCONS,NEQUS,NVIDL,R)
¢9 If NVIO- EGロU) KETURN
IF (M1.GI.MAXM) WRITE $(6,31)$ MAXM $\mathrm{K} 0=1$
RLTURN
 229HB) IVOREASING NUMBER OF MOVES/\%)
ENO

```
SUBROUTINL SHOT(X,PHI,NSI,RMAX,RMIN,N,NCONS,NEQUS,NSHOT,NTEST,KK,
IF sG,U,WJEK1,WURK&,WORKS)
    THIS ROJTINE PRODUCES A UIRECTEU RANDOM SEARCH INTENCEO TO MOVE
    THE UIR CCT SEARUH AWAY FRUA CONSTRAINT BUUNUARIES, THUS PREVENTING
    THE SEARLH FRUUI HOVING SLOWLY ALONG A CUIVSTRAINT GOUNDARY
    LARGE SIEPS EQUAL TO IU.U IIMES THE INITIAL STEP SIZE IN
    **SUEROUTINE SEARGH** ARE IMPLEMENTED
    U = OFTIHUM OGTAINED BY DIRECT SEARGH
                IF UIKLGTEU KANDOH SEARCH IMPROVES OPTIMUM,U IS CHANGED
                TO THE IMPROVED VALUE
    KK = INULCATUR OF IMPROVEMENT IN U
    WORK1 = RANDON NUMBEKS BETWEEN U.O ANU 1.0
    WGRKC = TRIAL VALUES OF X(T) FROM OIRECTED RANDOM SEARCH
    WORK\ = FRACTIUN OF RANGE USED IN UIREUTED RANOOM SEARCHH
    DIMENSIJN X(i),PHI(1),PSI(1),RMAX(1),RMIN(1)
    IIMENSIJN WOKKI(1),WORK2(1), WORK3(1)
    KK=0
    CALL FRANLN(WORKI,N,N)
    UALL OPTIFI(X,UU,UTEST,PHI,PSI,NCONS,NEQUS,NVIOL)
    UHIN=UTEST
    U=UU
    UU 1 I=1,N
    RANGE=AOS(RMAX(I)-RMIN(I))
    WURK3(T)=10.0*F*RANGE
    IF(WORK3(I).GT.(U.I*RANGE)) WORK3(I) = 0.1*RANGE
    CUNTINU=
    JU 4 J=1,NTEST
    CHLL FRANON(WORK1,N,O)
    00 2 I=1,N
    WGRK2(I)=x(I)-WGRKv(I)*(1.0-2.0*WORK1(I))
    2 CONTINJ=
    CALL OPITF1(WORKZ,UU,UTEST,PHI,PSI,NCONS,NEQUS,NVIOL)
    IF(NVIO=.NE.U) 6OTO4
    IF(UTEST:GE.UMIN) GO TO 4
    UNIN=UT:ST
    u=UU
    QU 3 I=1,N
    CONTINUS
    Kk=1
4 CONTINUE
RITURN
END
```

SUSROUTLNE SLOPL (X,PHI,PSI,N,NCONS, NEQUS,GRAD, DELX,R)
THIS KOJTINE DETERMINES THE FINITE DIFFERENCE GRADIENT OF THE
ThE GRAJIENT UF EAGH UARIABLE IS UIVIUEU BY THE MAXIMUM ABSOLUTE

OIMENSION $X(1), \operatorname{PHI}(1), \operatorname{PSI}(1)$
OLMENSIJN GRAU(1), UELX(1)
CALL OPTIF2(X,U1,FUNC1,PHI,PSI,NCONS, NEQUS,NVIOLI,R) $00^{1} \quad I=1$, iv
 $\stackrel{X}{x}(I)=X(i)-U E L X(i)$
GRĂU(1) = (FUVUZ-FUNC1)/DELX(I)
1 cointinu
GALL MAXMUH(N,GRAL,GRAUM)
If (GRAUM.EQ.U.U) GU TO 3
U0 $2 \quad I=12$ in
GRAU(1)=GRAD(I)/GRAUM
2
R1NOUE
3 RLTURN
3 DC $4 \quad I=1,14$
4 CONTINUE
RETURN
END

SUBROUILNE MAXMUM(N,GRAD,GRADM)
this rojtine determines the maximuir absolute value in an array
UTMENSIUN GRAU(2)
GRAOH=ABS (GRAD(1))
DU $1 \quad 1=L, N$
IF(GRAUY.LT.ABS(GRAU(I))) GRAUM=ABS(GRAD(I))
1 CONTINJ:
RLTUKN
ENO

SUBROUTINE FEASBL (X, PHI, PSI,RMAX,RMIN, XSTRT, N, NCONS, NEQUS, IDATA,
THIS ROUTINE USLS **SUEROUTINE SEEK3** TO OKIVE ALL PHI(I) tQUALITr CONSTRAINTS BY MINIMIZING THE SUM OF ABS (PSI(I)) VALUES SUEJLET TO THE CONUITION THAT ALL PHI(I) VALUES REMAIN
FLASIGLE (.GE.U.U)
 UIACNSIJ N WORKI (1), WORK2 (1), WORK3 (1), WORK4 (1)
CUMHONJJPTI/KO, NNUEX
WRITE (́, 100)
$K C=0$
$K U T=U$
INOEX=0
Reuuce=0.05
R=1。U
$x^{0}(I)=X=1, N$
人(I) $=$ XSTRT(I)
1
IF (NCUNS $. E Q . J)$ GO TO 4
LaLL UR=AL (X, U)
CALL COVST (X,HHI,NCONS)
$00 \frac{1}{C} \quad 1=1$, N
IF(PhI(I).LT. B.U) GO TO 3
2
CONTINUE
3 UALL SL $=K 3(X, P H I, P S I, R M A X, R M I N, X S T R T, N, N C O N S, N E Q U S, I D A T A, ~$
1IPRINT, MAXM, INOEX,NVIOL,F,G,R,REUUCE, U,WURK1,WORK2,WORK3,WORK4) IF (NVIOL.NE:U) GO TO 14
IF **SUSROUTINE COULD NOT DRIVEAALL PHI(I):GE: OABTHEN
4 IF (NEQJS.EQ.U) KETURN
NUTE... THE FRACTION OF THE RANGE USEO AS STEP SIZE SHOULD NOT EXCLEU VEPYERCENTBLE POINT (IL. ALL PSI(I) VERY SMALL) CHOOSE F
VERY SMALL
PERCNT $=0$ O 0
IF(ABSG; :LT.U.05) PERCNT $=F$

5
CUNTINU:
CALL SUAPSI (X,PSI, NEQUS, SUMO)

- NFAIL=U

IF (NFAIL.EQ.N) GO TO 12
$00111=1$,
$\stackrel{>}{\infty}$

```
    CALL COVSTT(X,PHI,NCONS)
\
    IGNORE A MOVE WHICH MAKES ANY PHI(I).LT.O.D
    7ONTINJ
        CALL SUYPSI(X,PSI, NLEQUS,SUM1)
        IF(SUTi1.GE. SUNO) GO TO &
        SUMU =SUM1
        GU 10 11
    8 x(I) =x(1)-2.0*STEPP(I)
        CALL UREAL (X,U)
        CALL COVST(X,PHI,NCONS)
        UQ Y L=1; HCONS
        IF(PHI(_):LT.U.U) GO TO 10
    g CUNTINU
        CALL SUTIPSI(X,PSI,NEQUS,SUM2)
        IF(SUit2.GE. SUMU) GO.TO 10
        SUHU=SUME
        G0 T0 11
    10 X(I) =x(1)+STEPP(I)
    NFAIL=N=AIL+1
    11 CONTINU=
    GOTOG
cxcsus)
    RCOUCE STEPP(I) BY A FACTOR OF 4.O UP TO 4 TIMES. THIS MEANS STEFP
    REDUCES TO LESS THAN .JU0^* (RMAX(I)-RMIN(I)), OR IF F.LT. 0.05
    THEN MIVIMUM STEPP(I)=(F/256)*(RMAX(I)-RMIN(I)). THEREFOKE THE
    PSI(I) VALUES MAY GE DRIVE AS SMALL AS DESIRED BY ENTERING VERY
    SMALL valuES OF F
    IC KUT=KUT+1
    IF(KUT.jT.4) G0 TO 15
    SUTHP(I=1:NNEPF(I)/4.0
    Is CUNTINU=
    GuTO
    14 WRITE(0,101)
    KO=1
    CALL UR=AL (X,U)
    CALL EQJAL(X,PSI,NLQUS)
    IF(NCONS.NL.U)CALL CONST(X,PHI,NCONS)
    RLTURN
1JO FOR|AT(1H1,25HFEASIBLE SEARCH....FEASBL/1X,25(1H-)//)
IU1 FORMAT(syHUFEASBL COULD NOT FIND FEASIBLE REGION/)
ENU
```

```
    SUBROUTINE SUMPSI(X,PSI,NEQUS,SUIG)
    this fojtine deteritnes the sum of the asSolute value of the
    cqualitr constraints
    OTMENSIJN X(1),PSI(1)
    CALL EQUAL(X,PSI,NEQUS)
    SUM=U.U
    DUM I=1,NEQUS
    SUM=SUM + ABS(PSI(I))
    1 CONTINU
    RETURN
    ENO
    SUEROUTINE FRANLN(A,N,M)
    THIS RUJTINE GENcRATES RANUOM NJMBERS BETWEEV 0.0 AND 1.0
```



```
    DIMENSIJN A(1)
    B=16777219.
    x=M
    X = x/0.8719467
    IF(X.NE:0.U)Y =AMOD(ABS(X),3.18957)
    00 < K=1,N
    DO i J = i;N
    Y=AMOU(3**)
    1 CONTINUE
    A(K)=Y
    AVOID Y=U. ANU Y=1. TO PREVENT DIVIDING INTO ZERO
    IF(Y.LQ.U.O.OK.Y.EQ.1.0)Y=0.182818285
    2
        Coninue
        RLTUKN
    LNO
```

SUEROUTINE CPTIFI（X，U，UAKT，PHI，PSI，NCONS，NEQUS，NVIOL）
THIS ROJTINE INCORFORAIES QQUALITY ANO INEQUALITY CONSTRAINTS IN AN ARTIFICIAL UBUECTIVE FUNCTION OF THE FORM．．

UART $=J+C C C * S U M(A B S(P H I(I)))+C C C * S U M(A B S(P S I(I)))$
WHERE．．．PHI（I）$=$ INEQUALITY COINSTRAINTS
PSI（i）＝EQUALITY CUNSTRAINTS
$\begin{aligned} \text { CGC } & =\text { PENALTY FACTOR } \\ & =10 . U E+20\end{aligned}$

TO PREVENT VERY MINOR VIOLATIONS OF INEQUALITY CONSTRAINTS ASSUHE ZERO＝－1．UE－10 FACTOR IN THE ARTIFICIAL OBJECTIVE FUNCTION
UIMLNSIJN $X(1), P H I(1), P S I(1)$
NVIOL＝0
SUMA＝U．j
SU112 $=0.0$
CCL＝14： $0 E+20$
ZEKU＝－1．UE－1J
CALL UKEAL（X，U）
IF（NCUNS：EQ． J$)$ GO TO 2
CALL SUVST（X，PHI，NCONS）
$001 \begin{aligned} & 1=1 \\ & 0\end{aligned}$
1F（a）GE．LERU）GO TO 1
SUHI $=$ SUV $1+A O S(P H I(I))$
NVIOL $=N V I O L+1$
1 CONTINJ：
SUM1＝CCJ＊SUM1
（ IF（HEQJj．EQ．u）GO TO 4 CALL EZJAL（X，PSI，NEQUS） $003 \quad I=1$ ，NEQUS
SUNT＝SUV2 $+A B S(P S I(I))$
CONTINU：
SUM2＝CCう＊SUMZ
4 UART $=U+$ SUM1 + SUM 2 ReTURin
END

SUBROUIINE OPTIFZ（ $X, U, U A R T, P H I, P S I, N C O N S, N E Q U S, N V I O L, R)$
THIS ROJTTNE INCORPURATES EQUALITY ANO LNEQUALITY CONSTRAINTS
$U A R T=U+R^{*} S U M(1 . U / P H I(D))+\operatorname{SUM}((P S I(U) * * \leq) / S Q R T(R))$
WHERE．．PPHI（I）$=$ INEQUALITY CONSTRATNTS
to peevent very minor violatiuns of inequality consteaints assume $2 E R U=-1: 0 E-1 U$
POKTTUN UF THE ATT SY APPROX OETE
PORTIGN UF THE AKTLFICIAL OBJELTIVE FUNGTION，ASSUME THAT
VIULATLUNS OF INEUUALITY CONSTRAINTS AKE MULTIPLIED BY A LARGE
CONSTANT ASSUNEE HEKE TU BE 10．OE＋20
THIS FJRM OF AKTIFICIAL OBUECTIVE FUNCTION SEEPS THE SEARCH AWAY
FKOM INFEASIBLE KEGIONS OURING THE INITIAL SEARCH
DIMENSIJN $X(1)$, PHI（1），PSI（1）
NVTUL＝0
SUMI＝U．J
$S U M 2=0.0$
$Z \angle K U=-1 \cdot 0 E-10$
$C A L L U R=A L(X, U)$
IF（NCUNS．EQ．U）GO TO 3
Chll CUNST（X，PHI，NCONS
$00, ~ I=1$ ，NCONS
IF（PHI（I）．GT•－ZとRU）GO TU I
IF（PHI（I）：GT：ZERO）GO TO 2
NVIOL＝NVIUL＋1
GOTO？
1 SUM1＝SJM1＋R／ABS（PHI（I））
2 CONTINU：
3 If（NLQUS．tQ．U）GO TO 5
UIV＝SQRI（K）
CALL EUJAL（X，PSI，NLQUS）
$004 \quad j=1$ ，NEGUS
SUM2＝SUサ2＋（AラS（PSI（J））＊＊2）／DIV
4 COUNTINU＝
5 UART $=U+5 \cup M+$ SUM
RETURN
ENU

SUQRUUTINE ANSWER(U,X,PHI,PSI,N,NCONS,NEQUS)
THLS RJUTINE UUTPUTS THE FINAL SOLUTION IN A
SIANUARJ FURM.
IF OPTIVUM IS NUT RLACHED (ILGIKO =1), THEN
DIAENSIJN X(1),PHI(1),PSI(1)
CUHMON/JPTI/NO,NNUEX
CALL UREAL (X,U)
IF(KO.EN.J) GO TU 1
WKITE (6,5)
WWITE (0,0)U
GOTOC
1 WR1TE (0,7)
WRITC (6,8)U
2 IF(N.EW.0) GO TO ב
WKITE (O,G)(I,X(I), 1=1,N)
3 IF(NCONS:CQ:U)GO TO 4
CALL CONST (X,FHI,NCONS)
WKITE(0,1U)
WKITL (b,11)(I,PHI(I),I=1,NCONS)
4 IF(NEQUS.EQ.J) RLTURN
CALL EQJAL(X,PSI,NLQUS)
wkite(o,1c)
WKITE (E,13)(I,PSI(I),I=1,NEQUS)
R\&TURN
5 \mp@code { F U R M A T (I H 1 , 2 2 X , 2 \zeta H R E S U L T S ~ A T ~ L A S T ~ I T E R A T I O N , /) }
O FURMAT(CYX,SHU =, 510.8/)
FOORMAT(1H1,22X,2ZHUPTIMUM SULUTION FOUND,1)
8 FORMAT (2UX,1睢\perpNIMUM U =, E16.8%)
9 FORMAT (2SX, 2HX(,IC,3H) =, E, E16.8)
iU F(RMAT(//<UX,C\angleHINLQUALITY CONSTRAINTS/)
11 FORMAT (23X,4HPHI(, IC,3H)=,E16.8)
12 FGRMAT(//ZUX,ZZH EQUALITY'CONSTRAINTS/)
13 FORMAT(23X,4HFSI (, I2,3H) =, E16.8)
ENO

```

\section*{APPENDIX B}

Seen by Step Search Plus False Position Method of Root Determination

In some cases of the gear design analysis it was found that over a certain range used to determine the roots of an equation, the equation would become discontinuous. Application of gradient methods could not guarantee convergence in these cases. To overcome this problem of discontinuity, a step by step search technique followed by a false-position technique was utilized in root determination.

Figure B. 1 represents a functional possibility that arises in the gear analysis.


FIGURE B. 1 Example Discontinuous Function

Two points were usually known from limits of physical conditions. With these limits specifying a range, a step size of approximately \(10 \%\) of this range furnished the means for a sten-by-step search by increasing the lower point by this increment.
\[
\begin{equation*}
X_{K+1}=X_{K}+\triangle \text { RANGE } \tag{B.1}
\end{equation*}
\]

Althouah this techniaue does not ensure converaence for all cases, the method seems to work quite well for gear design in the nackage.

\section*{Parabola as Constant Stress Beam}

The whole premise of the Lewis technique depends on the assumption that a narabola represents a constant stress beam. The followina presentation is offered as proof of this premise.

We assume a beam, Fiqure C.l.1 with constant stress on its ton and bottom surface. With the bending moment specified as
\[
\begin{equation*}
m=w X \tag{c.1.1}
\end{equation*}
\]
the stress is given as
\[
\begin{aligned}
\sigma & =\frac{m c}{I}=\text { constant } \\
& =\frac{(w x)(y / 2)}{\left|\frac{b y^{3}}{12}\right|} \\
& =\frac{6 w x}{b y^{2}}
\end{aligned}
\]
which transposed yields
\[
\begin{equation*}
X=\underbrace{\left|\frac{b \sigma}{6 w}\right|}_{\text {constant }} Y^{2} \tag{c.1.2.}
\end{equation*}
\]

This represents a parabola.


FIGURE C.1.1. Constant Stress Beam

\author{
Method of Establishing Size of Parabola Reoresentino Constant Stress Beam Inside Tooth Profile
}

Knowing the \(\quad\) parabola represents a constant stress beam, a geometric relationship between gear tooth dimensions and this parabola aids in determining the points of maximum stress on the tooth profiles. A stress equivalent may be made to the tooth by inscribing the largest possible parabola in the tooth for analysis. Figure C.2.1 illustrates that stress points \(A\) and \(B\) may be found with the relation that \(D E=E B\) or \(D C=C F\),


FIGURE C.2.1. Layout of Parabola in Tooth
when the correct parabola is inscribed in the tooth.
In general the formula of a parabola illustrated in Figure C. 2.2 is
\[
\begin{equation*}
y=a x^{2} \tag{c.2.1}
\end{equation*}
\]


FIGURE C.2.2 Properties of a Parabola

With the function soecified for two points, the following conditions must be satisfied
\[
\begin{equation*}
\left|f\left(x_{K+1}\right)\right|<\left|f\left(x_{K}\right)\right| \tag{B.2}
\end{equation*}
\]
and
\[
\begin{equation*}
F\left(X_{K}\right) \cdot f\left(X_{K+1}\right)<0 \tag{B.3}
\end{equation*}
\]

Making the initial test (B.2) prevents the search from diverging if the step length puts the variable beyond the discontinuity, as lona as the functional value beyond the discontinuity is greater than the functional value of the variable before. If this test is not satisfied the step length is reduced by half and the process repeated. In mast cases the step lenath of \(10 \%\) of the ranae proved suitable for the search. Once the variable straddled the root (B.3), then the false position technique, Fiqure B.2, was employed.


FIGURE B. 2 False Position Technique
This process may be iterated by using the approximation to the root of
\[
\begin{equation*}
X_{K+1}=\frac{X_{K-1} F\left(X_{K}\right)-x_{K} F\left(X_{K-1}\right)}{F\left(x_{K}\right)-F\left(x_{K-1}\right)} \tag{B.4}
\end{equation*}
\]
and at the same time renuirino that
\[
\begin{equation*}
F\left(X_{K}\right) \cdot F\left(X_{K-1}\right)<0 \tag{B.3}
\end{equation*}
\]
at each step.
with the aradient or slope B eaual to
\[
\begin{equation*}
\left(\frac{d y}{d x}\right)_{B}=2 a x_{1} \tag{c.2.2}
\end{equation*}
\]

But at B
\[
\begin{equation*}
y_{1}=a x_{1}{ }^{2} \tag{C.2.3}
\end{equation*}
\]
or
\[
\begin{align*}
\frac{2 y_{1}}{x_{1}} & =\frac{2 a x_{1}^{2}}{x_{1}}  \tag{C.2.4}\\
& =2 a x_{1}
\end{align*}
\]

Therefore,
\[
\begin{equation*}
\left(\frac{d y}{d X}\right)_{B}=\frac{2 y_{1}}{X_{1}} . \tag{C.2.5}
\end{equation*}
\]
which proves by similar trianale in Figure C.2.2 that
\[
D E=E B \text { or } D C=C F
\]

Thus, the noint of tangency on the fillet profile fulfilling this property represents the doint of hiahest stress concentration on the tooth during bending.

Extracts from the OPTISEP Manual

The information presented in the appendix depicts the general arrangement of the OPTISEP [47] technique of optimization, with the user description of three optimization methods.

The following layout is typical of an OPTISEP ontimization. The PROGRAM MAIN card is a CDC 6400 comnuter control card.

PROGRAM MAIN (INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT)
DIMENSION X(N), PHI (NCONS), PSI (NEQUS), RMAX (N), RMIN(N), XSTRT(N)
DIMENSION WORK1 (N), HORK2 (N), WORK3(N), WORK (N)
DATA F,G,NSHOT,NTEST,MAXM/0.01,0.01,2,100,300/
DATA N,NCONS, NEOUS/
READ ( 5,1 )( RMAX (I), RMIN(I), XSTR'T(I), \(I=1, N\) )
1 FORMAT (3E16.8)
-••
-•
CALi SEEK1 (X,PHI, PSI, RMAX, RMIN,XSTRT,N,NCONS, NEQUS,
IIDATA, IPRIMT, NSHOT, NTEST, MAXM,F,G,U,WORK1, WORK2,WORK2, WORK4)
CALL ANSWER (U,X,PHI,PSI,N,NCONS,NEQUS)

STÖp
END

SURROUTINE UREAL ( \(X, U\) )
DIMENSION X(T)
...
\(U=\)
PETURN
END
SUBROUTINE CONST (X,PHI,NCONS)
DIMENSION X(1), PHI(1)
\(\mathrm{PHI}(1)=\)
PHI(2) \(=\)

\section*{PHī \((\) MCONS \()=\)}

RETURN
END

SUBROUTINE EQUAL (X,PSI, MEQUS)
DII?ENSION X (1).,PSI(1)
\(\operatorname{PSI}(1)=\)
\(\operatorname{PSI}(2)=\)
...
...
PSI(NEQUS) =
RETURN.
END

These user inserted routines would then be followed by the necessary auxiliary routines to operate Subroutine SEEKT, or these routines could be stored in binary on permanent files inserted into the program with the use of control cards.

Purnose
To calculate the value of the objective function at a point
\[
u=u\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\]
where \(U=\) minimum at the optimum
Method
The objective function may be defined by
(a) a simple FORTRAN arithmetic assionment statement
(b) a complex analysis coded to include any legal fORTRAN statements and/or CALL's to one or more auxiliary subroutines.

Whatever the method of analysis, the final value of the objective function must be placed in \(U\).

\section*{Inout Variables}
\(X(I) \quad\) the current values of the independent variables
Output Variables
\(U\) the value of the objective function corresponding to the innut values \(X(I)\)

How to Set un Subroutine UPEAL
The followina cards must be punched by the user
SUBROUTINE UREAL \((X, U)\)
DIMENSION \(\times(1)\).
...
...
\(U=\) results of objective function analysis. RETURN
END

If additional data is required to perform the analysis, the necessary information should be transformed from the MAIN proaram or the appropriate subroutine to UREAL through labelled COMMON blocks.

Where possible, the user should include conditional STOP's or loaical by-passes of erroneous analysis in his coding to prevent invalid results from beina returned to the optimization procedure.

\section*{SUBROUTINE EQUAL(X,PSI,NEQUS)}

\section*{Purpose}

To calculate the values of the equality constraints at a point
\[
\psi_{j}=\psi_{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad j=1, m
\]
where \(\psi_{j}=0\) at a feasible point.
Method
The equality constraint functions may be defined by
(a) simple FORTRAN arithmetic assignment statements
(b) a complex analysis coded to include any legal fORTRAN statements and/or CALL's to one or more auxiliary subroutines.

Whatever the method of anaiysis, the final values of the constraints must be stored in the PSI(I) array.

Note: If the user's problem has no equality constraints, then
Subroutine EQUAL may be omitted altogether.
Input Variables
\(X(I)\) the current values of the independent variables
NEQUS the number of equality constraints.
Output Variables
PSI(I) the value of the equality constraints corresponding to
the input values \(X(I)\).
How to Set Un Subroutine EQUAL
The following cards must be punched by the user
SUBROUTINE EQUAL (X,PSI,NEQUS)
DIMENSION X(1),PSI(1)
PSI(1) = result of equality constraint (1) analysis
PSI(2) = result of equality constraint (2) analysis

PSİ(NEQUS) = result of equality constraint (NEQUS) analysis RETURN
END
Miscellaneous
If additional data is required to perform the analysis, the necessary information should be transferred from the MAIN program or the appropriate subroutine to EQUAL through labelled COMMON blocks.

Where possible, the user should include conditional STOP's or logical by-passes of erroneous analysis in his coding to prevent invalid results from being returned to the optimization procedure.

SUBROUTINE CONST(X,PHI,NCONS)
Purdose
To calculate the values of the inequality constraints at a point
\[
\phi_{K}=\phi_{K}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad k=1, p
\]
where \(\phi_{k} \geq 0\) at a feasible point.
Method
The inequality constraint functions may be defined by
(a) simple FORTRAN arithmetic assianment statements
(b) a complex analysis coded to include any legal FORTRAN statements and/or CALL's to one or more auxiliary subroutines.

Whatever the method of analysis, the final values of the constraints must be stored in the PHI(I) array.

Note: If the user's problem has no inequality constraints, then Subroutine CONST may be omitted altogether.

Inout Variables
\(X(I) \quad\) the current values of the independent variables
NCONS the number of inequality constraints
Output Values
PHI(I) the value of the inequality constraints corresponding to the input values \(X(I)\).

How to Set un Subroutine CONST
The following cards must be punched by the user.
SUBROUTINE CONST (X,PHI, NCONS)
DIMENSION X(1), PHI (1)
PHI (1) = result of inequality constraint (1) analysis
PHI (2) = result of inequality constraint (2) analysis
...
PHí(MCONS) = result of inequality constraint (NCONS) analysis RETURN END

\section*{Miscellaneous}

If additional data is required to perform the analysis, the necessary information should be transfered from the MAIN program or the appropriate subroutine to CONST through labelled COMMON blocks.

Where possible, the user should include conditional STOP's or logical by-passes of erroneous analysis in his codina to prevent invalid results from being returned to the optimization procedure.

> SUBROUTINE SEEKI (X,PHI, PSI, RMAX, RMIN, XSTRT N,NCONS, NEDUS, IDATA,IPRINT, NSHOT, NTEST, MAXM,F,G,U WORKT, HORK2,WORK 3, WORK4)

\section*{Purnose}

To minimize
\[
\begin{aligned}
& u=u\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \psi_{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \quad j=1, m \\
& \phi_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq 0 \quad k=1, p
\end{aligned}
\]

Method
A direct search method [42] followed by a directed random search is used with the constraints incorporated in an unconstrained artificial objective function of the form: UART \(=v\left(x_{1}, x_{2}, \ldots, x_{n}\right)+10^{20} \sum\left|\phi_{K}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right|+10^{20} \sum_{j=1}^{m} \mid \psi_{j}\left(x_{1}, x_{2}\right.\),


Starting with an initial base point, an exploratory search is made by incrementing a variable by a small amount. The incremented value of the variable is retained, if UART is improved. However, if the move does not improve UART, then a: neative step is tried. If this also fails then the variable is returned to its base point value. Each variable is checked in this manner and if no move imoroves UART, the step lengths are halfed and the search repeated. If all step lengths are already less than their user-specified minimum values, then an optimum is assumed.

If the search yields a lower value of UART, then a new base point is established and a pattern move equal to the
vector joinina the original and new base points is attempted. If the pattern move is successful, the new search is started from that point. Otherwise, the search starts from the new base point. This procedure is repeated until MAXM cycles have been exceeded, or until no improvement can be found with all step lengths less than their user specified minima.

It is possible for this type of method to hang up on constraints, or to achieve a local rather than qlobal optimum. For this reason, the final optimum is checked by generating NTEST random values of the artificial objective function in the vicinity of the assumed optimum. If an improved point is found, it becomes the new base point for another search procedure. Only NSHOT complete iterations through the search and directed random check are permitted.

\section*{Innut Variables}

The following program parameters must be set by the user.

N
NCONS number of inequality constraints
NEQUS number of equality constraints
IDATA \(\quad=0\) input data is not printed out \(=1\) input data is printed out

IPRINT \(\quad=0\) intermediate results not printed out = integer value to print out intermediate results for every IPRINT cycles.

NSHOT maximum number of complete cycles through search and. directed random search.

NTEST number of random points to be generated in directed random search.
\begin{tabular}{|c|c|}
\hline MAXM & maximum number of search cycles \\
\hline F & fraction of rance used as initial step size \\
\hline \(\cdot \mathrm{G}\) & fraction of initial step size used as minimum step length \\
\hline RMAX (I) & estimated upper bounds on \(X(I)\), dimensioned with value of \(N\) \\
\hline RMIN(I) & estimated lower bounds on \(X(I)\), dimensioned with value of \(N\) \\
\hline XSTRT ( I ) & input starting values of \(X(I)\), dimensioned with value of \(N\) \\
\hline
\end{tabular}

\section*{Output Variables}

U
optimum value of the objective function, evaluated in UREAL
\(x\) (I)
optimum values of the independent variables, dimensioned with value of \(N\)

PHI(I) inequality constraint functions, evaluated in CONST, dimensioned with value of NCONS

PSI(I) equality constraint functions, evaluated in EQUAL, dimensioned with value of NEQUS

Working Arrays
WORKI dimensioned with value of \(N\)
WORK2 dimensioned with value of \(N\)
WORK3 dimensioned with \(N\)
WORK4 dimensioned with value of \(N\)
Proorammina Information
Generallyadequate values for the input variables are
\begin{tabular}{rl} 
NSHOT & \(=2\) \\
NTEST & \(=100\) \\
MAXM \(=\) & 300 \\
F & \(=.01\) \\
\(G\) & \(=.01\) \\
\(\operatorname{XSTRT}(I)=\) & \((\operatorname{RMAX}(I)+\operatorname{RMIN}(I)) / 2.0 ;\) a known \\
& feasible start is preferable.
\end{tabular}

If the input value of NCONS or NEQUS is zero, the argument value of PHI or PSI in the calling program dimension statement must be set to one.

SEEKI is a very fast method but tends to hang up, especially with equality constraints.

SEEKI has full variable dimensioning. The calling program must provide dimensioning as given above.

If printout of the ontimum is desired directly from SEEK1, then the statement CALL SEEK1 in the calling program may be followed immediately by

CALL ANSWER(U,X,PHI,PSI,N,NCONS,NEQUS)
This prints the optimum point and the value of the \(\phi^{\prime} s\) and \(\psi^{\prime} s\). However, there is no way of knowing if SEEKI has hung up on a constraint or valley and is indicating a false optimum.

If the method has not converaed, an appropriate error message is printed and SEEK1 returns to the calling program. The labelled COMMON block [COMMON/OPTI/KO,NNDEX] may be placed in the calling proaram to detect \(K 0=1\) (i, e, non 0 optimum solution) if the standard printout of subroutine ANSWER is not desired.

Subroutines called are SEARCH,SHOT,FRANDN,OPTIFI, UREAL,CONST EQUAL, ANSWER.

SUBPOUTIME SEEK3 (X,PHI, PSI, RMAX, RMIN, XSTRT, N, NCONS,
NEQUS, IDATA, IPPINT, MAXM, INDEX,
HVIOL,F,G, R, REDUCE, U, HORKI, WORK2, :HORK3, HORK4)

Purpose
To minimize
\[
\begin{aligned}
& u=u\left(x_{1} x_{2}, \ldots, x_{n}\right) \\
& \psi_{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \quad j=1, m \\
& \phi_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq 0 \quad k=1, p
\end{aligned}
\]
subject to

\section*{Method}

SEEK 3 employs the same search procedure as SEEKI except for the artificial, unconstrained objective function defined as
\[
\begin{aligned}
& u\left(x_{1}, x_{2}, \ldots, x_{n}, r_{i}\right)=u\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\sum_{\phi_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)}^{\left[f o r \phi_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq\right.} \\
& \quad+10^{20} \sum\left|\phi_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right|+\sum_{j=1}^{m} \frac{\psi_{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{2}}{\left(r_{i}\right)^{1 / 2}} \\
& \quad\left[\text { for } \phi_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)<0\right]
\end{aligned}
\]

The inequality constraint portion of the function is broken into two parts to account feasible or infeasible starting point conditions. To permit an infeasible starting point (i.e. \(\left.\phi_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)<0\right)\), the absolute value of the violated constraint is multiplied by a large number to drive the solution feasible rapidly. In the feasible region (i.e. \(\phi_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq 0\) ) the first inequality constraint term controls the function for the \(K=1,0\) inequality constraints. The minimization is controlled by the constant \(r_{i}\) which reduces after each minimization by
a constant factor "REDUCE" (i.e. \(r_{i+1}=\) REDUCE * \(r_{i}\) where \(0<r_{i+1}<r_{i}\) ). If a feasible point is not found during the first minimization
(i.e. min. \(U\left(x_{1}, x_{2}, \ldots, x_{n},{ }_{1}\right)\) where \(r_{1}=1.0\) is reasonable starting value), then it is assumed that no feasible solution exists for the problem and an error messaae is printed out. With the optimization forced feasible initially, a feasible starting point for minimizing \(U\left(x_{1}, x_{2}, \ldots, x_{n}, r_{i+1}\right)\) should be obtained from the feasible solution for \(U\left(x_{1}, x_{2}, \ldots, x_{n}, r_{i}\right)\). Innut Variables

The following program parameters must be defined by the calling program.

N
NCONS number of inequality constraints

NEQUS number of equality constraints
IDATA \(\quad=0\) inout data is not printed out \(=1\) input data is printed out

IPRINT \(\quad=0\) intermediate results not printed out = integer value to print out intermediate results for every IPRINT cycles.

MAXM maximum number of search cycles.
INDEX set equal to one
F fraction of range used as initial step size
G fraction of initial step size used as minimum step length

R
REDUCE reduction factor for penalty multiplier after each minimization.
RMAX(I) estimated upper bounds on \(X(I)\), dimensioned with value of \(N\)
\begin{tabular}{ll} 
RMIN(I) \(\quad\) & estimated lower bounds on \(X(I)\), dimensioned with \\
& value of \(N\) \\
XSTRT(I) \(\quad\) & input starting values of \(X(I)\), dimensioned with \\
& value of \(N\)
\end{tabular}

Output Variables
NVIOL counter of the number of inequality constraints violated

RR current value of the penalty function multiplier (RR printed out only when IPRINT > 0)

U minimum value of the objective function, evaluated in UREAL
\(X(I) \quad\) optimum values of the independent variables, dimensioned with value of \(N\)

PHI(I) inequality constraint functions, evaluated in CONST, dimensioned with the value of NCONS

PSI(I) equality constraint functions, evaluated in EQUAL, dimensioned with the value of NEQUS

\section*{Working Arrays}

WORKI dimensioned with value of \(N\)
WORK2 dimensioned with value of \(N\)
WORK3 dimensioned with value of \(N\)
WORK4 dimensioned with value of \(N\)

\section*{Programming Information}

R, REDUCE - The values used for \(R\) and REDUCE can affect the rate of convergence but are otherwise fairly problem independent. A detailed discussion of criteria for choosing \(R\) and REDUCE is qiven in reference [44], section 8.5.

SEEK3 terminates when either
(a) \(\frac{u_{i+1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)-u_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{u_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)}<10^{-7}\) or
(b) \(\quad R R<10^{-20}\)

Generally adequate values for the input variables are
\begin{tabular}{rl}
\(F\) & \(=.01\) \\
\(G\) & \(=.01\) \\
\(R\) & \(=1.0\) \\
REDUCE \(=\) & .05 \\
MAXM \(=\) & 300 \\
\(\operatorname{XSTRT}(I)=\) & \((\) RMAX(I) + RMIN(I)/2.0; a known \\
& feasible start is preferable.
\end{tabular}

If the input value of HCONS or \(N E \cap U S\) is zero, the argument value of PHI or PSI in the callina program dimension statement must be set to one.

SEEK3 has full variable dimensioning. The calling.program must provide dimensioning as given above.

If printout of the ontimum is desired directly from SEEK3, then the statement CALL SEEK3 in the callina program must be followed immediately by

CALL ANSWER ( \(U, X\), PHI, PSI, N, HCONS, NEOUS)
This prints out the optimum point and the value of the \(\phi\) 's and \(\psi^{\prime} \mathrm{s}\). However, there is no way of knowing if SEEK3 has hung up on a constraint or valley and is indicating a false optimum.

If the method has not converged, an appropriate error message is printed out and SEEK3 returns to the calling program.

The labelled common block [COMMON/OPTI/KO,NNDEX] may be placed in the callina program to detect \(K 0=1\) (i.e. non-optimum solution) if the standard printout of subroutine ANSWER is not desired.

Subroutines called are SEARCH,OPTIF2,ANSWER,UREAL,CONST and EQUAL.
\[
\begin{aligned}
\text { SUBROUTINE NPFMIN } & (X, P H I, P S I, R M A X, R M I N, X S T R T, \\
& \text { N,NCONS,NEQUS,IDATA,IPRINT, } \\
& M A X M, F, G, R, R E D U C E, U, D D, E E, F F,
\end{aligned}
\]

Purpose
To minimize
\[
\begin{aligned}
& U=U\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \psi_{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \\
& \phi_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq 0
\end{aligned}
\]

Method
NPFMIN employs the same artificial unconstrainted objective function as SEEK3 coupled with a gradient search alogarithm [45]. This method of search evaluates the new value of an independent variable at the \(K+1\) step as
\[
x_{i}^{k+1}=x_{i}^{k}+h_{i}^{k}
\]
where \(h_{i}{ }^{k}\) defines a step length which is a function of the partial derivatives at \(X_{i}{ }^{k}\) and all the derivatives at the previous steps.

The search is considered optimum if the value of \(U\) does not change significantly in two successive steps.

Subroutine SLOPE, uses the finite difference technique to evaluate the gradients which are then normalized to prevent the wide disparity in gradients magnitudes created by the artificial objective function.

Input Variables
The following program parameters must be defined by the calling program.

N number of design or independent variables
\begin{tabular}{|c|c|}
\hline NCONS & number of inequality constraints \\
\hline nequs & number of equality constraints \\
\hline IDATA & \(=0\) input data is not printed out \\
\hline & \(=1\) input data is printed out \\
\hline IPRINT & \(=0\) intermediate results not printed out \\
\hline & = integer value to print out intermediate results for every IPRINT iterations. \\
\hline MAXM & maximum number of search iterations \\
\hline F & fraction of range used a step length for finite difference gradient determination \\
\hline G & fraction of range used as step size minima for optimum termination. Should not be less than value of \(F\). \\
\hline R & penalty multiplier for constraints \\
\hline Reduce & reduction factor for penalty multiplier after each minimization. \\
\hline RMAX ( I ) & estimated upper bounds on \(X(I)\), dimensioned with value of \(N\) \\
\hline RMIN(I) & ```
estimated lower bounds X(I), dimensioned with
value of N
``` \\
\hline XSTRT (I) & initial starting values of \(X(I)\), dimensioned with value of \(N\) \\
\hline Output Va & \\
\hline RR & current value of the penalty function multiplier (RR printed out only when IPRINT>0) \\
\hline U & minimum value of the objective function, evaluated in UREAL \\
\hline \(x\) (I) & optimum values of the independent variables, dimensioned with value of \(N\) \\
\hline PHI(I) & inequality constraint functions, evaluated in CONST, dimensioned with the value of NCONS \\
\hline PSI(I) & equality constraint functions, evaluated in EQUAL dimensioned with the value of NEQUS \\
\hline
\end{tabular}

\section*{Working Arrays}
\begin{tabular}{ll}
DD & dimensioned with value of \(N\) \\
EE & dimensioned with value of \(N\) \\
FF & dimensioned with value of \(N\) \\
GG & dimensioned with value of \(N\) \\
\(H H\) & dimensioned with value of \(N(N+7) / 2\)
\end{tabular}

Programming Information
R,REDUCE - The values used for \(R\) and REDUCE can affect the rate of convergence but are otherwise fairly problem independent. A detailed discussion of criteria for choosing \(R\) and REDUCE is given in reference [44], section 8.5.

NPFMIN terminates when either
(a)

(b) \(R R<10^{-20}\)

Generally adequate values for the input variables
are
\begin{tabular}{rl}
\(F\) & \(=.0001\) \\
\(G\) & \(=.0001\) \\
\(R\) & \(=1.0\)
\end{tabular}

REDUCE \(=.05\)
MAXM \(=100\)
\(\operatorname{XSTRT}(I)=(\operatorname{RMAX}(I)+\operatorname{RMIN}(I)) / 2.0\); a known feasible start is preferable

If the input value of NCONS or NEQUS is zero, the argument value of PHI or PSI in the calling program dimension statement must be set to one.

NPFMIN has full variable dimensioning. The calling program must provide dimensioning as given above.

If printout of the optimum is desired directly from NPFMIN, then the statement CALL NPFMIN in the calling program must be followed immediately by

CALL ANSWER (U,X,PHI,PSI,N,NCONS,NEQUS)
This prints out the optimum point and the value of the \(\phi^{\prime} s\) and \(\psi\) 's. However, there is no way of knowing if NPFMIN has hung up on a constraint or valley and is indicating a false optimum.

If the method has not converged, an appropriate error message is printed out and NPFMIN returns to the calling program. The labelled COMMON block [COMMON/OPTI/KO,NNDEX] may be placed in the calling program to detect \(K 0=1\) (i.e. non optimum solution) if the standard printout of Subroutine ANSWER is not desired. Subroutine called are SLOPE,MAXMUM,OPTIF2,ANSWER,UREAL, CONST and EQUAL.

SUBROUTINE FEASBL (X,PHI,PSI, RMAX,RMIN,XSTRT, N, NCONS, NEOUS, IDATA, IPRINT, MAXM,F,G,U,STEPP, WORK1,WORK2, WORK3, WORK4)

\section*{Purpose}

Subroutine \(F E A S B L\) is used to obtain a feasible starting point. Initially subroutine SEEK3 is employed to drive the inequality constraints feasible, without continuing to an optimum after which a direct search in the feasible region drives the equality constraints feasible, using the sum of the equality constraints as the objective function. Inout Variables

The following program parameters must be defined by the calling program.
\(N \quad\) number of desian or independent variables
NCONS number of inequality constraints
NEQUS number of equality constraints
IDATA \(\quad=0\) input data is not printed out
\(=1\) input data is printed out
\(=0\) intermediate results not printed out
= integer value to print out intermediate results after every IPRINT cycles.

MAXM maximum number of search cycles
\(F \quad\) fraction of range used as initial step size
G
fraction of initial step size used as minimum step length

RMAX(I) estimated upper bounds on \(X(I)\), dimensioned with value of \(N\)

\section*{Workina Arrays}

STEPP dimensioned with value of \(N\)
WORKI dimensioned with value of \(N\)
WORK2 dimensioned with value of \(N\)
WORK3 dimensioned with value of \(N\)
WORK4 dimensioned with value of \(N\)
Proaramming Information
Generally useful input values are
MAXM \(=300\)
\(F=.01\)
\(G \quad=.01\)
\(\operatorname{XSTRT}(\mathrm{I})=(\operatorname{RMAX}(\mathrm{I})+\operatorname{RMIN}(\mathrm{I})) / 2.0\)
If the input value of NCONS or NEOUS is zero, the arguments of PHI or PSI in the callina program dimension statement must contain one.

FEASBL has full variable dimensioning. The calling program must orovide dimensioning as given above.

If printout of the feasible solution is desired directly from \(F E A S B L\), then the statement \(C A L L\) FEASBL in the calling program may be followed immediately by

CALL ANSWER (U,X,PHI,PSI,N,NCONS,NEQUS)
This prints out the feasible point and the values of the \(\phi^{\prime}\) s and \(\psi^{\prime} s\).

Subroutines called are SEEK3, SEARCH,OPTIF2,SUMPSI, UREAL, EQUAL, CONST, ANSWER.

\section*{APPENDIX E}

\section*{AUXILIARY ROUTINES}

A number of subroutines have been incorporated into the computer which are not related to either the optimization technique or the actual spur gear design. These routines have been developed to arrange the independent and dependent variables, to write out appropriate data and error messages and generally provide the controlling mechanism of the overall package. The following presents a brief summary of the purpose and operation of these routines.

SUBROUTINE SPUR
Use : Main calling program for the gear design from which the optimization routines are called

Calling Sequence : The user's calling routine made of the appropriate labelled common blocks, the input variable list and the CALL SPUR . statement call this routine.

Special Features (1) It determines if system is pinion or gear drive, (2) It uses Subroutine VARYI to suggest starting values for design variables. (3) It defines optimization criteria control array. (4) It defines constant dependent variables of design. (5) It redefines starting values if user specified. (6) It calls optimization routine, if required.
(7) It has output results and message printed if requested.

SUBROUTIME VARYI
Use : To determine the design variables in the probiem, organize control arrays, establish initial starting values and print input data if required.

Calling Sequence : Subroutine SPUR calls this routine

Special Features ; ; (1) It prints out input data, if requested. (2) It determines status of design variables (i.e. constant, standard or variable). (3) It prints out status, if requested. (4) It initializes values of variables and standard quantities. (5) It prints out relative positions of design variable pseudonyms in optimization independent variable array \(X(I)\).

SUBROUTINE VARY (\(X\))
Use : To equivalence pseudonyms of gear design with variable array \(X(I)\) during optimization search.

Calling Sequence : First routine called in Subroutine UREAL
Special Features : To keep all variables positive the gear design pseudonyms are equated to the absolute value of the variable array X(I). In effect the objective function of a negative variable becomes the mirror images of its positive variable equivalent.
The addendum and dedendum values snecify the addendum dedendum circle radii and the clearance at the end of this routine ensuring that clearance will never be negative.

SUBROUTINE PRINT
Use : To print out the spur gear design output in a standard format.

Calling Sequence : Subroutine SPUR calls this program after the analysis is complete.

Special Features : The format for all printing has not been established for terminal typewriter or scope output.
subroutine hint (Phi)
Use : To print out suggested remedies for violated constraints for non-optimum results

Callina Sequence : Subroutine SPUR calls this routine before entering Subroutine PRINT.

Social Features : If violations occur in the constraints each constraint is checked, with error message and suggested remedy printed for each violation. These suggested remedies are not the only method of achieving a feasible solution. Close examination of the output results may indicate an easier solution.

\section*{APPENDIX F}

\section*{index of subroutines}

The following information enables the reader to find the related theory and the program listing for a particular subroutine. After a brief description of each subroutine, brackets [] will enclose the section containing the appropriate theory and parenthesis () will indicate the program listing location in Appendix A.

ADDEND determines the addendum length of pointed and tooth thickness at addendum circle [2.4] (A.3)
-ANSWER

BEND
prints output final solution from optimization routines in a standard format (A.53)
determines the actual and allowable bending stresses in a gear tooth [2.7A] (A.9)

BLASH

CONRAT

CONST

CUTTER

CWALL

EFACT

EFFIC
determines efficiency of gear mesh [2.11] (A.28)
ERROR

FACTOR

FEASBL determines AGMA suggested manufacturing errors [2.12] (A.29)
determines the overall derating factors for stress analysis [2.8L] (A.25)
evaluates feasible starting point for optimization search (A.48)
\begin{tabular}{|c|c|}
\hline FFACT & determines surface finish factors for stress analysis [2,8G] (A.20) \\
\hline FILLET & determines radius to point of intersection of the fillet and involute profiles [2.4] (A.2) \\
\hline FRANDN & random number generator (A.50) \\
\hline HFACT & determines hardness ratio factor for stress analysis [2.84] (A.21) \\
\hline HINT & prints sugqested remedies for violated constraints [Appendix E] (A.37) \\
\hline IFACT & determines geometry factor for wear stress analysis [2.8A] (A.14) \\
\hline JFACT & determines geometry factor for bending stress analysis [2.8A] (A.12) \\
\hline LENGTH & determines length of approach and length of recess for undercut conditions [2.10] (A.27) \\
\hline LFACT & determines life factors for stress analysis [2.81] (A.22) \\
\hline LOAD & determines radius to load application on the gear tooth centre line [2.7A.1] (A.7) \\
\hline MAXMUM & determines maximum value of an array (A.47) \\
\hline MFACT & determines the load distribution factors for stress analysis [2.8D] (A.17) \\
\hline NPFMIN & \[
\begin{aligned}
& \text { gradient method optimization routine [Appendix D] } \\
& (A .43)
\end{aligned}
\] \\
\hline OFACT & determines onverload factor for stress analysis [2.8E] (A.18) \\
\hline \[
\begin{aligned}
& \text { OPTIF1\} } \\
& \text { OPTIF2 }
\end{aligned}
\] & determine two different artificial unconstrained optimization functions (A.51, A.52) \\
\hline PITCH & determines some fundamental geometric relations in the gear design [2.5] (A.4) \\
\hline POWER & determines the maximum permissible power transmission for bending and wear analysis [2.7C] (A.11) \\
\hline PRIMT & \begin{tabular}{l}
prints design output in standard format [Appendix \\
E] (A.36)
\end{tabular} \\
\hline
\end{tabular}

RFACT determines reliability factor for stress analysis [2.8J] (A.23)

SEARCH
SEEKI SEEK 3)

SFACT
direct search optimization technique (A.44)
direct search optimization techniques with artificial unconstrained optimization functions [Appendix D] (A.41, A.42)
determines size connection factor for stress analysis [2.8F] (A.19)

SHARE determines if load sharing exists between successive pairs of mating teeth [2.7A.] (A.8)

SHOT

SIZE
SLOPE

SPUR

SUMPSI

TFACT

TLOAD

TOLCD
tORQUE

VARY

VARYI

UREAL
determines the optimization criterion as well as computing analysis of gear design [Appendix D] (A. 39)

VFACT
determines velocity correction factor for stress analyses [2.8C] (A.16)

VOLUME
WEAR
determines volume of gear blank [2.14] (A.33) determines the actual and allowable wear stresses [2.7B] (A.10)

USER'S GUIDE

\subsection*{1.1 INTRODUCTION}

This package is one of a series for the automatic optimum desian of engineering components or devices. Its burpose is the optimum design of external spur gears. The package is user oriented and requires no knowledge of computer programming (FORTRAN) or optimization. While the package can be used with a minimal knowledge of, or experience in, gear desionn, this practice is risky. Judgement cannot be completely removed from any design, nor can a successful design be quaranteed by any theoretical analysis if the design assumptions do not match the real life situation. The user exercises his judgement by options available in the input coding.

The program is basically self-sufficient, offering the gear designer the conglomeration of information from various accepted design sources brought together into one package. To assist in the event of difficulties with the package or as a reference for further development, the user should see reference [1] which develops all aspects of the package.

\subsection*{1.2 CONFIGURATION}

Figure 1.1 illustrates the basic gear geometry on which the independent or design variables are listed.

\subsection*{1.3 OPTIMIZATION CRITERION}

The user can select some or all of the following as the optimization criterion, in any combination:
(a) minimum volume of gear set
(b) maximum contact ratio

FIGURE 1.1 Gear Layout.
(c) minimum centre distance
(d) minimum face width

If the volume is optimized, then the centre distance and face width will be optimized also if they have been defined as desian variables.

Since the above criteria may be used in any combination, multifactor optimization was implemented to achieve the overall criterion. Each criteria is developed in terms of a linear utility function between zero and one which expresses the importance of dependent variables over the range of its minimum and maximum values. For example, high desirability or utility (e.g. utility \(=1\)) occurs for minimum volume specified as function of face width and centre distance minima, for maximum contact ratio arbitrarily chosen as 2 , and for minimum face width and minimum centre distance specified by the user. On the other hand, low utility (e.g. utility \(=0\)) occurs for maximum volume expressed as function of face width-centre distance maxima, for minimum contact ratio arbitrarily chosen as 1 , and for maximum face width and maximum centre distance specified by the user. (See Figure 1.3.1 and 1.3.2)

The overall criterion is achieved by minimizing the sum of the reciprocals of these individual utilities. No attempt has been made to make one criteria more important in the program. However, the user may partially weight the importance of face width and centre distance and, therefore, volume, by employing a large minimum-maximum range for either variable. This approach tends to give less importance to the variable as it approaches

FIGURE 1.3.1 Utility Function (Contact Ratio)

FIGURE 1.3.2 Modified Inverse Utility (Contact Ratio)
a feasible reaion near the lower portion of its ranae. However, by compressing the range, the variable takes on greater importance over most values, especially if the variable is near the maximum limit. Note that these limits also specify step lengths for the direct search optimization techniques and, therefore, their values should be chosen with discretion. See reference [1] for further details on multifactor optimization.

\subsection*{1.4 INPUT DATA}

The user must define quantities for all the following input variables utilizina FOPTPAN DATA statements, READ statements, or individual arithmetic assignment statements. The format of the numbers (i.e. integer or floatina point) must be specified correctly where noted. An integer number is expressed with no decimal point (e.g. 2i), while floating point numbers are expressed with a decimal point (e.g. 21.6 or 2.16E+01). Note that the number of teeth in a gear is an integer value, but must be specified in floating point notation (e.g. 21.0). Printout Control (integer numbers)
\begin{tabular}{rl}
IDATA & \(=1\) input data printed out \\
& \(=0\) input data not printed out \\
IPRINT & \(=\) inteqer value for printing every IPRINT cycles of \\
& intermediate results \\
& \(=0\) intermediate resuits not printed out \\
IWRITE & \(=1\) final results printed out \\
& \(=0\) final results not printed out \\
NTYPE & \(=1\) optimization by Subroutine SEEK1 \\
& \(=2\) optimization by Subroutine SEEK3 \\
& \(=3\) optimization by Subroutine NPFMIN \\
& NOTE: A value for NTYPE must be specified even \\
& when no optimization willoccur. For consistency \\
& set NTYPE \(=1\) in these cases.
\end{tabular}

Material Properties (floating point numbers)

NOTE: An allowable contact stress number for 10 million cycles of load anplication is determined by field exnerience, for each material and condition of that material. This number varies considerably with heat treatment. The designer should consult any new American Gear Manufacturers Association (AGMA) ratina practices as they come available, and use these contact stress numbers whenever anolicable. The contact stress numbers listed in Table 1.1 may be used as a ouide, with the lower values of the chart suaqested for aeneral desian purposes. The upoer values mav be used when hiah quality material is used, when section size and design allows maximum response to heat treatment, and when proper control is effected by adequate inspection.

TABLE 1.1 Allowable Contact Stress Number - \(S_{a c}\)

Note 1. For minimum case depths at the pitch diameter as shown in Figure 1.2
\begin{tabular}{|c|c|c|}
\hline Material & Material hardness Min. & \(\mathrm{s}_{\text {af }}\)-psi \\
\hline \multicolumn{3}{|c|}{Steel} \\
\hline Case Carburized and Hardened & 55 R c & 55-65,000 \\
\hline Induction or flame Hardened & & \\
\hline Hard Root & 300 Bhn & use values from Figure 1.3 \\
\hline Unhardened Root & - & 22,000 \\
\hline \multicolumn{3}{|c|}{Cast Iron} \\
\hline AGMA Grade 20 & - & 5,000 \\
\hline AGMA Grade 30 & 175 Bhn & 8,500 \\
\hline AGMA Grade 40 & 200 Bhn & 13,000 \\
\hline
\end{tabular}

TABLE 1.2 Allowable Fatigue Design Stress - Saf

FIGURE 1.2 Depth of Case at Pitch Line

Pinion allowable fatiaue stress, or
SAF2
Gear allowable desian bendina stress (psi)
NOTE: An allowable desian bending (fatigue) stress for 10 million cycles of load application is determined by field experience, for each, material and condition of that material. This stress varies considerably with heat treatment, foraina or castina practice, material composition and with various surface treatments. Frequently, shot peenina permits a hiaher allowable stress to be used. The allowable fatiaue design stresses for steel, shown in Fiqure 1.3 are values sugaested for oeneral desion purposes, while values for surface hardened steel and other materials are shown in Table 1.2. Use 70 percent of the allowable fatigue design stress values for idler gears and other gears where the teeth are loaded in both directions.

Desian Requirements (floating point numbers)

HP
RPMI
RPMO
SHAFTI
SHAFTO

Horsepower transmitted
Indut shaft speed (RPM)
Output shaft speed (RPM)
Input shaft diameter (inches)
Output shaft diameter (inches)
NOTE: The shaft diameters are only required as part of the aear blank volume determination. No constraints affectina gear size or radial loadina as a function of shaft diameter have been incornorated. If the final solution results in a gear of smaller diameter than the shaft, the aear and shaft must be made as one, or the shaft has been overdesigned.

\section*{INDEPENDENT or DESIGN VARIABLES}

The package has been arranged so that each design variables may be incorporated into the routine in three possible modes of operation: constant, variable or standard,where applicable. If all design variables are given constant values by the user, only a feasibility analysis will be carried out. Variables specified as standard will become internal functions of other variables. When a design variable is specified as variable,
the optimization routine chooses values which enable a minimum optimization criterion to be achieved, if possible.
\begin{tabular}{|c|c|}
\hline CD & \[
\begin{aligned}
& =\text { floatina noint number for constant centre distance } \\
& \text { (inches) }
\end{aligned}
\] \\
\hline & = 3HVAR for variable centre distance \\
\hline FW & = floating point number for constant face width (inches) \\
\hline & \\
\hline PAD & \(=\) floating point number for constant pressure angle (degrees) \\
\hline & \\
\hline TEETH1 & \(=\) floating point number for constant number of teeth \\
\hline & \(=3 H V A R \quad\) for variable number. of teeth \\
\hline & NOTE: The number of gear teeth results automatically from the oresentation of the number of pinion teeth through the aear ratio. \(\left(N^{G}=m_{g} N^{P}\right)\) \\
\hline \begin{tabular}{l}
ADDK1 \\
ADDK2
\end{tabular} & \\
\hline & \[
\begin{array}{ll}
=3 H S T D \quad \text { for AGMA standard addendum snecified as } \\
& 1.0 / D p
\end{array}
\] \\
\hline & NOTE: This addendum system is used in conjunction with the \(20^{\circ}\) and \(25^{\circ}\) pressure anale systems. \\
\hline & ```
= 3HVAR for variable addendum determination.
In this case the addendum yalues are
determined directly without reference to
the diametral pitch Dp
``` \\
\hline & = 3HCON for a constant addendum. This facility is utilized only when analvsis is desired for a aiven aear desion (i.e. all desian constants) variables are user specified. The actual floating point value of the addendum must be specified in input variables ADD1 and ADD2 for the pinion and aear respectively. \\
\hline
\end{tabular}

NOTE: The addendum coefficient for pinion and gear may be selected independently of each other from the above possibilities.

DEDK1
DEDK2

ADD1
\begin{tabular}{|c|c|}
\hline \[
\left.\begin{array}{l}
\text { Pinion } \\
\text { Gear }
\end{array}\right\}
\] & \(=\) floating point number for dedendum coefficient defined by DEDKI = Dp \(x\) dedendum of pinion DEDK2 \(=\) D \(x\) dedendum of gear \\
\hline \multirow[t]{3}{*}{\(=3 \mathrm{HSTD}\)} & for \(A G M A\) standard dedendum specified as \(1.25 / D_{p}\) for \(D_{p} \leq 20\), or \\
\hline & \begin{tabular}{l}
\[
\frac{1.200}{D_{D}}+0.002 \text { for } D_{p}>20
\] \\
NOTE: \({ }^{\text {p }}\) This dedendum system is used in conjunction with the \(20^{\circ}\) pressure angle system. The \(25^{\circ}\) oressure angle is specified as \(1.25 / D\) for the whole
\end{tabular} \\
\hline & diametral pitch range. Thus for a \(25^{\circ}\) pressure angle system set DEDK1 \(=1.25\) or DEDK2 \(=1.25\). \\
\hline \(=3\) HVAR & for a variable dedendum determination. In this case the dedendum values are determined directly without reference to the diametral pitch \(D_{p}\). \\
\hline \(=3 \mathrm{HCON}\) & for constant dedendum. This facility is utilized only when analysis is desired for a aiven gear design (i.e. all design variables user specified constants). The actual floating point value of the dedendum must be specified in input variables DEDK1 and DEDK2 for the pinion and gear respectively. \\
\hline
\end{tabular}

NOTE: The dedendum coefficient for pinion and gear may be selected independently of each other from the above possibilities.
\(\left.\begin{array}{l}\text { Pinion } \\ \text { Gear }\end{array}\right\} \quad\) addendum
\(=\) floating point number for constant addendum (inches)
NOTE: \(\left.\begin{array}{c}\text { In this case we must have } \\ \\ \text { ADDK1 } \\ \text { ADDK2 } 2\end{array}\right\}=3 H C O N\)
This value need not be specified if the addendum coefficient has a notation other than \(3 H C O N\).

Pinion
dedendum
= floating point number for constant dedendum (inches) NOTE: In this case we must have

DEDK1 DEDK2
\(=3 \mathrm{HCON}\)
This value need not be specified if the dedendum coefficient has a notation other than \(3 H C O N\).

NOTE: Variable in the sense used above (i.e. 3HVAR) indicates that the values are computer determined.

SIZE LIMITS (floating point numbers)
\begin{tabular}{ll} 
CDMAX & Upper centre distance limit (inches) \\
CDMIN & Lower centre distance limit (inches) \\
FWMAX & Upper face width limit (inches) \\
FWMIN & Lower face width limit (inches) \\
PADMAX & Upper pressure angle limit (degrees) \\
PADMIN & Lower pressure angle limit. (degrees)
\end{tabular}

NOTE: Since these limit values are used to evaluate the initial step size (i.e. \(10 \%\) of range) for the direct search optimization technique, an extremely large range of the limits should not be taken even though the user does not care about the limiting values. If a feasible answer is known for the design, the values may be set to some proportion above and below the feasible solution so that the initial search will be in the middle of the range. On the other hand, if a feasible answer is not known, values of 0 and 100 inches for the lowerupper centre distance limits and \(0^{\circ}\) and \(45^{\circ}\) for the ancular limits are reasonable values. Effective face width limits may be determined by multiplying the centre distance limits by (2.0/(RATIO +1.0 )) where RATIO is the ratio of the faster shaft speed. More reasonable design limits will become evident after the initial ontimization run. Centre distance may be given a larcer weiaht relative to the face width in the ontimization criterion (see section l.3) by lowering the maximum centre distance limit and increasing the maximum face width limit.

The pressure angle step size has been arbitarily chosen as \(1^{\circ}\) so that the limits will not alter the search in the same manner as the length limits.

The final value of face width should not exceed the final centre distance value times (2.0/(RATIO \(+1.0)\), so as to remain within the load distribution analysis of the program.

\section*{DESIGN CONTROL FACTORS (floating point numbers)}

BLL Lower backlash limit modification factor
BLU Upper backlash limit modification factor
BLR Ratio of pinion tooth thinning to total tooth thinning
CDR Centre distance tolerance modification factor
NOTE: Sugaested values for minimum and maximum backlash have been incorporated in algebraic functions ( \(y=a x^{b}\) ) with the modification factors increasing or decreasing the "a" term. For normal nower gearing, BLL \(=B L U=1.0\) is suggested, while for control aearina BLL \(=B L U=0.0\) results in zero delibrate tooth thinning, but an equivalent tooth thinning to represent an error envelope over the gear tooth is produced.

The tooth thinning ratio is normally BLR \(=0.5\), with each gear accepting half of the tooth thinning allowance for minimum backlash. If the pinion has a small number of teeth which have been enlarged to avoid problems of undercut (i.e. smaller ratio of. the number of teeth to pitch circle diameter), the gear may take a greater portion of this backlash allowance in order to avoid the absurdity of increasing the tooth thickness to avoid undercut and then thinning the tooth to introduce backlash. In such cases the value of BLR may range between. 0.0 and 0.5 .

The suagested centre distance tolerances for the various AGMA quality classes have been incorporated in linear equations \((y=a x+b)\), with the resultant tolerance directly proportional to the linear result times the modification factor. The CDR factor has been introduced to provide a degree of flexibility, and it expresses the ratio of the desired centre distance tolerance to the computer suggested centre distance tolerance. Since the computer values reflect AGMA suggestions, \(C D R=1.0\) should be generally utilized.

CYCLE
Required number of life cycles of operation.
NOTE: The fatique strength of a material varies as a function of the number of loading cycles. For steel, this strength decreases with increased loading cycles until the endurance limit is reached,
after which the fatigue strenath basically remains constant for increased loading cycles. The AGMA has found that, for steels, the endurance limit occurs generally at \(10^{7}\) cycles, with the fatigue strength at lesser cycles determined by a general life factor function. Table 1.1 and 1.2 along with Figure 1.3 represent suggested fatique strength or endurance limits for various steels.

If the fatigue limits are beina used for materials not listed in these tables, the actual fatigue strength of the material at the required number of life cycles of oberation should be specified in SAF1, SAF2, SAC1 and SAC2 while the value of CYCLE should be set greater than \(10^{7}\). This procedure bypasses the life function specified in the program for the steels mentioned in the previous. charts.

DRIVEN Driven machine loading mode
\(=1.0\) load on driven machine - uniform
= 2.0 load on driven machine - moderate
\(=3.0\) load on driven machine - heavy
NOTE: Table 1.3 may aid in the selection of the loading mode of the driven machinery.

DRIVER Power source loading mode
\(=1.0\) oower source - uniform
\(=2.0\) nower source - light shock
\(=3.0\) power source - medium shock
NOTE: Table 1.4 may aid in the selection of the loading mode of the driven machinery.

RELI Reliability of design
NOTE: For general annlications set RELI \(=0.99\) while for more reliable desions set RELI \(=0.999\)

TEMP
0il or aear blank temneratures (dearees Fahrenheit)

\section*{DESIGN CONTROL FACTORS (integer numbers)}
\begin{tabular}{lll}
\begin{tabular}{ll} 
NCUT1 \\
NCUT2
\end{tabular} & \(\left.\begin{array}{l}\text { Pinion } \\
\text { Gear }\end{array}\right\}\) & Hob cutter type \\
\(=1\) & \begin{tabular}{l} 
if gear cut by rack or hob with sharp \\
cornered teeth
\end{tabular} \\
& \(=2\) & \begin{tabular}{l} 
if gear cut by rack or hob with rounded \\
corners.
\end{tabular}
\end{tabular}

TABLE 1.3 Load Classifications for Various Applications. (4)

The following table lists and classifies the character of the load in various applications for gearmotors. A gearmotor is defined as the combination of an enclosed gear drive and an elective motor. with the frame of one component supporting the other, and with the motor shaft common with or directly coupled to the input pinion shaft. Thus, these values should only be taken as minimum suggestions in classifying an application. The pitch line velocity during operation should not exceed 5000 fpm .
\[
\begin{aligned}
\text { Nomenclature } & : \\
U & =\text { uniform } \\
M & =\text { medium shock } \\
H & =\text { heavy shock } \\
\text { L.C. } & =\text { load classification }
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|}
\hline Application & L.C. & Application & L.C. \\
\hline AGITORS & & Scale Hopper & \\
\hline Pure Liquids & U & Frequent Starts & M \\
\hline Liquids and Solids & M & CAN FILLING MACHINES & U \\
\hline Liquids -- Variable & & CANE KNIVES & M \\
\hline Density & M & CAR DUMPERS & H \\
\hline ```
Semi-liquids
--Variable Density
``` & M & CAR PULLERS -- Intermittent Duty & M \\
\hline BLOWERS & & CLARIFIERS & U \\
\hline Centrifugal & & CLASSIFIERS & M \\
\hline Lobe & & CLAY WORKING MACHINERY & \\
\hline Vane & & Brick Press & H \\
\hline BREWING and DISTILLING & & Briquette Machine & H \\
\hline Bottling Machinery & U & Clay working Machinery & M \\
\hline Brew Kettles & & Pug Mill & M \\
\hline -- Continuous Duty & U & COMPRESSORS & \\
\hline Cookers -- Continuous & & Centrifugal & U \\
\hline Duty & U & Lobe & M \\
\hline Mash Tubs & & Reciprocating & \\
\hline -. Continuous Duty & U & Multi-Cylinder Single-Cylinder & \(M\)
\(H\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Application & L.C. & Application & L.C. \\
\hline CONVEYORS -- UNIFORMLY & & Man Lifts & \\
\hline LOADED OR FED & & Passenger & \\
\hline Apron & U & Service -- Hand Life & H \\
\hline Assembly & U & FANS & \\
\hline Belt & U & Centrifugal & U \\
\hline Bucket & U & Cooling Towers & \\
\hline Chain & U & Induced Draft & M \\
\hline foven & U & Forced Draft & \\
\hline Screw & U & Induced Draft & M \\
\hline CONVEYORS -- HEAVY DUTY NOT & U & Large (Mine, etc.) & M \\
\hline UNIFORMLY FED & & Large lndustrial & M \\
\hline Apron & M & FEEDERS & \\
\hline Assembly & M & Apron & M \\
\hline Belt & M & Belt & M \\
\hline Bucket & M & Disc & U \\
\hline Chain & M & Reciprocating & H \\
\hline Flight (Package) & M & Screw & M \\
\hline Live Roll (Package) & U & FOOD INDUSTRY & \\
\hline Oven & M & Beet Slicer & M \\
\hline Reciprocating & H & Cereal Cooker & U \\
\hline Screw & M & Dough Mixer & M \\
\hline Shaker & H & Meat Grinders & M \\
\hline CRANES and HOISTS & & GENERATORS -- (Not Welding) & U \\
\hline Main Hoists Heave Duty & & HAMMER MILLS & H \\
\hline Heave Duty
Medium Duty & \(H\)
\(M\) & LAUNDRY WASHERS & \\
\hline Reversing & M & Reversing & M \\
\hline Skip Hoists & M & LAUNDRY TUMBLERS & M \\
\hline Trolley Drive & M & Heavy Shock Load & H \\
\hline Bridge Drive & M & Moderate Shock Load & M \\
\hline CRUSHERS & & Uniform Load & U \\
\hline Ore & H & LUABER INDUSTRY & \\
\hline Stone & H & Barkers -- Spindle Feed & M \\
\hline DREDGES & & Barkers -- Main Drive & H \\
\hline Cable Reels & M & Carriage Drive & \\
\hline Conveyors & M & Conveyors -- Burner & M \\
\hline Cutter Head Drives & \(H\)
\(H\) & Main or Heavy & \\
\hline Jig Drives Maneuvering Winches & H & Duty & M \\
\hline Maneuvering Winches & M & Main Log & H \\
\hline Pumps & \(M\)
\(H\) & Merry-go-Round & M \\
\hline Screen Drive & H & Slab & H \\
\hline Stackers & M & Transfer & \\
\hline Utility Winches & M & Waste & \\
\hline ELEVATORS & & Chains -- Floor & M \\
\hline Bucket -- Uniform Load & U & Green & M \\
\hline Heavy Load & M & Cut-Off Saws -- Chain & M \\
\hline Continuous & U & Drag & M \\
\hline Centrifugal Discharge & U & Debarking Drums & H \\
\hline Escalators & U & Feeds -- Edger & M \\
\hline Freight & M & Gang & H \\
\hline Gravity Discharge & U & Trimmer & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Application & L. C. & Application & L.C. \\
\hline LUMBER INDUSTRY, Continued & & Constant Density & U \\
\hline Log Deck & H. & Variable Density & M \\
\hline Log Hauls -- Incline & & OIL INDUSTRY & \\
\hline -- Well Type & H & Chillers & M \\
\hline Log Turning Devices & H & 0 01 Well Pumping & M \\
\hline Planer Feed & M & Paraffin Filter Press & M \\
\hline Planer Tilting Hoists & M & Rotary Kilns & M \\
\hline Rolls -- Live-0ff Brg. & & PAPER MILLS & \\
\hline -- Roll Cases & H & Agitators (Mixers) & M \\
\hline Sorting Table & M & Barker Auxiliaries, & \\
\hline Tipple Hoist & M & Hydraulic & M \\
\hline Transfers -- Chain & M & Barker, Mechanical & M \\
\hline Transfers -- Craneway & M & Barking Drum & H \\
\hline Tray Drives & M & Beater \& Pulper & M \\
\hline Veneer Lathe Drives & & Bleacher & U \\
\hline MACHINE TOOLS & & Calenders & M \\
\hline Bending Roll & M & Calenders -- Super & M \\
\hline \[
\begin{aligned}
& \text { Notching Press -- Belt } \\
& \text { Driven }
\end{aligned}
\] & & Converting Machines, except Cutters, Platers & M \\
\hline Plate Planer & H & Conveyors & U \\
\hline Punch Press -- Gear & & Conveyors, Log & H \\
\hline Driven & H & Couch & M \\
\hline Tapping Machines & H & Cutters, Platers & H \\
\hline Other Machine Tools & & Cylinders & M \\
\hline Main Drives & M & Dryers & M \\
\hline Auxiliary Drives & U & Felt Stretcher & M \\
\hline METAL MILLS & & Felt Whipper & H \\
\hline Eridle Roll Drives & H & Jordans & U \\
\hline Draw Bench -- Carriage & H & Presses & U \\
\hline Draw Bench -- Main Drive & H & Pulp Machines, Reel & M \\
\hline Forming Machines & H & Stock Chests & M \\
\hline Pinch Dryer \& Scrubber & & Suction Roll & U \\
\hline Rolls, Reversing & & Washers and Thickeners & M \\
\hline Slitters & M & Winders & U \\
\hline Table Conveyors & & PRINTING PRESSES & U \\
\hline Non-Reversing & M & PULLERS & \\
\hline Reversing & M & Barge Haul & H \\
\hline Winding Reels -- Strip & M & PUMPS & \\
\hline Wire Drawing \& Flattening & & Centrifugal & U \\
\hline Machine & M & Proportioning & M \\
\hline Wire Wiriding Machine & M & Reciprocating & \\
\hline MILLS, ROTARY TYPE & & Single Acting & \\
\hline Bal 1 & H & 3 or more Cylinders & M \\
\hline Cement Kilns & & Double Acting & \\
\hline Dryers \& Coolers & M & 2 or more Cylinders & M \\
\hline Kilns & M & Single Acting & \\
\hline Pebble & H & 1 or 2 Cylinders & \\
\hline Rod & H & Double Acting & \\
\hline Tumbling Barrels & H & Single Cylinder & \\
\hline MIXERS & & Rotary -- Gear Type & U \\
\hline Concrete Mixers, Continuous & M & --Lobe, Vane & U \\
\hline Concrete Mixers, & & RUBBER INDUSTRY & \\
\hline Intermittent & M & Mixer & H \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Application & L.C. & Application & L.C. \\
\hline RUBBER INDUSTRY, Continued & & TEXTILE INDUSTRY & \\
\hline Rubber Calender & M & Batchers & M \\
\hline Rubber Mill (2 or more) & M & Calenders & M \\
\hline Sheeter & M & Card Machines & M \\
\hline Tire Building Machines & & Cloth Finishing Machines, & \\
\hline Tire \& Tube Press Openers & & (Washers, Pads, Tenters) & \\
\hline Tubers and Strainers & M & (Dryers, Calenders, etc.) & M \\
\hline SEWAGE DISPOSAL EQUIPMENT & & Dry Cans & M \\
\hline Bar Screens & U & Dryers & M \\
\hline Chemical Feeders & U & Dyeing Machinery & M \\
\hline Collectors, Circuline or Straightline & U & Knitting Machines (looms, etc.) & \\
\hline Dewatering Screens & M & Looms] \({ }^{\text {cotc.) }}\) & M \\
\hline Grit Collectors & U & Mangles & M \\
\hline Scum Breakers & M & Nappers & M \\
\hline Slow or Rapid Mixers & M & Pads & M \\
\hline Sludge Collectors & U & Range Drives & \\
\hline Thickeners & M & Slashers & M \\
\hline Vacuum Filters & M & Soapers & M \\
\hline SCREENS & & Spinners & M \\
\hline Air Washing & U & Tenter Frames & M \\
\hline Rotary -- Stone or Gravel & M & Washers & M \\
\hline Traveling Water Intake & U & & \\
\hline SLAB PUSHERS & M & Batchers) & M \\
\hline STEERING GEAR & M & Yarn Prepartory Machines & \\
\hline STOKERS & U & (Cards, Spinners, Slashers etc.) WINDLASS & \[
\begin{aligned}
& M \\
& M
\end{aligned}
\] \\
\hline
\end{tabular}

TABLE 1.4 General Classification of Power Sources. (5)
The following chart lists and classifies the character of general classes of prime movers for gear speed reducers. These should only be taken as minimum suggestions in classifying a power source.

Nomenclature :
\(u=u n i f o r m\)
\(\mathrm{L}=\) light shock
\(M\) = medium shock
\(H\) = heavy shock
\begin{tabular}{|l|c|c|c|}
\hline \multirow{2}{*}{ Prime Mover } & \multicolumn{3}{|c|}{ Duration of Service } \\
\cline { 2 - 4 } & \begin{tabular}{l}
Less than \\
\(3 \mathrm{hrs./day}\)
\end{tabular} & \begin{tabular}{c}
Less than \\
\(10 \mathrm{hrs./day}\)
\end{tabular} & \(24 \mathrm{hrs./day}\) \\
\hline Electric Motors & U & U & L \\
\hline \begin{tabular}{l}
Multi-Cylinder \\
Internal \\
Combustion \\
Engine
\end{tabular} & U & L & M \\
\hline \begin{tabular}{l}
Single Cylinder \\
Internal \\
Combustion \\
Engine
\end{tabular} & L & M & H \\
\hline
\end{tabular}

NOTE: In aeneral NCUT \(=2\) will represent the most realistic manufacturing method. The radius of curvature of the rounded corner of the hob teeth simulated in the program is a function of the clearance.
\begin{tabular}{rl}
NLOAD \(\quad\) & \(=0 \quad\)\begin{tabular}{l}
for computer determined load location on \\
oear tooth
\end{tabular} \\
& \(=1\)\begin{tabular}{l}
for tooth tip-loading
\end{tabular} \\
& \(=2\)\begin{tabular}{l}
for highest point of single tooth contact \\
loading
\end{tabular}
\end{tabular}

NOTE: For aeneral purboses the design should be carried out assuming tip-loading (i.e. NLOAD \(=1\)), since the theory used to determine if the actual loading is tip loading or highest point of single tooth contact loading, cannot be guaranteed in all cases. At the same time the NLOAD \(=0\) usage takes an excessive amount of computer time. The NLOAD \(=0\) and NLOAD \(=2\) facilities should only be used to analyze a aiven design. If they are imblemented in an optimization search, the starting values for the search should be feasibte results from a tip-loading solution.

NQUAL \(\quad\) AGMA quality number
NOTE: Table 1.5 suggests quality numbers for various types of machinery.

OPTIMIZATION OPTIONS (integer numbers)
ISTRT \(=0\) computer evaluated starting values employed as initial optimization values
\(=\) - 1 user suggested starting values employed as initial optimization values

STRT(I) Array containing \(n\) user suggested starting values where \(n\) specified the number of independent variables.

MOTE: Because of the options in defining which quantities are to be desion variables, it is not nossible for the user to relate design variables to elements of STRT(I) until one run has been made. Thus, for the first run, the user must accept the internal starting values. The resultant output, then relates design variables to elements of \(X(I)\), which corresponds to STRT(I).

Table 1.5 Applications and Suggested Quality Numbers
This table indicates a tabulation of many industrial and end use applications for spur gearing with typical AGMA Quality Numbers for many applications. When selecting a Quality Number for an industry or an aplication which is not shown use a similar industry or application as a guide. The AGMA Quality Number shown opposite each item of equipment identifies the quality of gearing generally used. Ther may be certain designs or operating conditions that would justify specifying gears to lower or higher Quality Number. In the interest of economy, use the lowe Quality Number shown, unless some of the conditions of the equipment or its operation indicate the use of the higher Quality Number.
\begin{tabular}{|c|c|c|c|}
\hline Application & * Quality Numbers & Application & *Quality Numbers \\
\hline AEROSPACE & & BAILING MACHINE & 5-7 \\
\hline Actuators & 7-11 & & \\
\hline Control Gearing & 10-12 & BOTTLING INDUSTRY & \\
\hline Engine Accessories & 10-13 & Capping & 6-7 \\
\hline Engine Power & 10-13 & Filling & 6-7 \\
\hline Engine Starting & 10-13 & Labeling & 6-7 \\
\hline Loading Hoist & \(7-11\)
\(10-13\) & Washer, Sterilizer & 6-7 \\
\hline Small Engines & 12-13 & \begin{tabular}{l}
BREWING INDUSTRY \\
Agitator
\end{tabular} & 6-8 \\
\hline AGRICULTURE & & Barrel Washer & 6-8 \\
\hline Baler & 3-7 & Cookers & 6-8 \\
\hline Beet Harvester & 5-7 & Filling Machines & 6-8 \\
\hline Combine & 5-7 & Mash Tubs - & 6-8 \\
\hline Corn Picker & 5-7 & Pasteurizer & 6-8 \\
\hline Cotton Picker & 5-7 & Racking Machine & 6-8 \\
\hline Farm Elevator & 3-7 & BRICK-MAKING MACHINERY & \\
\hline Field Harvester
Feanut Harvester & 5-7 & BRICK-MAKING MACHINERY & 5-7 \\
\hline Potato Digger & 5-7 & BRIDGE MACHINERY & 5-7 \\
\hline AIR COMPRESSOR & 10-11 & BRIQUETTE MACHINES & 5-7 \\
\hline AUTOMOTIVE INDUSTRY & 10-11 & & \\
\hline
\end{tabular}
*Ouality Numbers are inclusive, from lowest to highest numbers showr.

\footnotetext{
*Quality Numbers are inclusive, from lowest to highest numbers shown:
}
\begin{tabular}{|c|c|c|c|}
\hline Application *Qua & ty Numbers & Application & * Quality Numbers \\
\hline Analoy Computer & 10-12 & MARINE INDUSTRY & \\
\hline Antenna Assembly & 7-9 & Anchor Hoist & 6-8 \\
\hline Anti-Aircraft Detector & 12 & Cargo Hoist & 7-8 \\
\hline Automatic Pilot & 9-11 & Conveyor & 5-7 \\
\hline Digital Computer
Gun-Data Computer & 10-12 & Davit Gearing & 5-7 \\
\hline Gyro Caging Mechanism & 10-12 & Small Propulsion & \\
\hline Gyroscope-Computer & 12-13 & Steering Gear & 10-12 \\
\hline Pressure Transducer & 12-13 & Winch & \\
\hline Radar, Sonar, Tuner & 10-12 & & 5-8 \\
\hline Servo System Component & 9-11 & METAL WORKING . & \\
\hline Sound Detector & 9 & Bending Roll & 5-7 \\
\hline Transmitter, Receiver & 10-12 & Draw Bench & 6-8 \\
\hline \multicolumn{2}{|l|}{ENGINES} & Forge Press & 5-7 \\
\hline Diesel, Semi-Diesel and Internal Combustion & & Punch Press
Roll Lathe & 5-7 \\
\hline Engine Accessorias & 10-12 & & \\
\hline Supercharger & 10-12 & MINING AND PREPARATION & \\
\hline Timing Gearings & 10-12 & Agitator & \\
\hline Transmission & 8-10 & Breaker . & 5-6 \\
\hline \multicolumn{2}{|l|}{FARM EQUIPMENT} & Car Dump & 5-6 \\
\hline FARM EQulking Machine & 6-8 & Car Spotter & 5-7 \\
\hline Separator & 8-10 & Centrifugal Drier & 7-8 \\
\hline Sweeper & 4-6 & Classifier & 7-8 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{FLOUR MILL INDUSTRY}} & Coal Digger & 6-10 \\
\hline & & Concentrator & 5-6 \\
\hline Braacher
Grain Cleaner & 7-8 & Continuous Miner & 6-7 \\
\hline Grinder & 7-8 & Cutting Machine & 6-10 \\
\hline Hulling & 7-8 & Conveyor Drag Line, Open Gearing & 5-7 \\
\hline Milling, scouring & 7-8 & Drag Line, Enclosed Gearing & 3-8 \\
\hline Polisher & 7-8 & Drills & 5-6 \\
\hline Separator & 7-8 & Dirier & 5-6 \\
\hline \multicolumn{2}{|l|}{FOUNDRY INDUSTRY} & Electric Locomotive & 6-8 \\
\hline Conveyor & 5-6 & Elevator. & 5-6 \\
\hline Elevator & 5-6 & Flotation & 6-8 \\
\hline Ladle & 5-6 & Grizzly & 5-6 \\
\hline Molding Machine & 5-6 & Hoists, Skips & 7-8 \\
\hline Overhead Cranes & 5-6 & Loader (Underground) & 5-8 \\
\hline Sand Slinger & 5-6 & Rock Drill & 5-6 \\
\hline Tumbling Mill & 5-6 & Rotary Car Dump
Screen (Rotary) & 6-8 \\
\hline \multicolumn{2}{|l|}{HOME APPLIANCES} & Screen (Shaking) . & 7-8 \\
\hline HOME Alender & 6-8 & Separator & 5-6 \\
\hline Mixer & 7-9 & Sedimentation & 5-6 \\
\hline Timer & 8-10 & Shaker & 6-8 \\
\hline Washing Machine & 8-10 & Triple Gearing & 5-8 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{MACHINE TOOL INDUSTRY}} \\
\hline Hand Motion (other than Indexing and Positioning) 6-9 & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{PAPER AND PULP}} \\
\hline Feed Drives & 8 and up & & \\
\hline Speed Drives
Multiple Spindel Drives & 8 and up & Bleacher, Decker & \\
\hline Multiple Spindel Drives & 8-8 & Box Machines & 6- 8 \\
\hline Power Drives, \(\begin{aligned} & 0.800 \\ & 800-2000 ~ F P M ~\end{aligned}\) & 8-i0 & Building Paper & 6-8 \\
\hline \(2000-4000 \mathrm{FPM}\) & 10-12 & Calender & 6-8 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Indexing and Positioring - Approximate Positioning 6 -10}} & Chipper & 6-8 \\
\hline & & Digester & \\
\hline Accurate Indexing and Positoning & 12 and up & Envelope Machines Food Container & \[
\begin{aligned}
& 6-8 \\
& 6-8
\end{aligned}
\] \\
\hline
\end{tabular}
* Quality Numbers are inclusive, from lowert to highest numbers shown.

*Quality Numbers are inclusive, from lowest to highest numbers shown.

*Quality Numbers are inclusive, from lowest to highest numbers shown.

The calling program must have exactly the form of the following example with decimal points added where indicated. Labelled COMMON blocks listed below are placed in the calling proaram to transfer data to and from the package. Blocks BLKO to BLK4A inclusive are sufficient to input all required data. If, however, output results from the package are used for other analysis (e.g. ploting routines, etc.), blocks BLKO to BLKl5 inclusive are required. Following the list of input data, the CALL SPUR statement calls the package. The CALL TOCKS and CALL TOCKP statements are CDC 6400 subroutines to print out the amount of execution time between the CALL statements. An equivalent subroutine to print executive time, if desired, as well as other control cards will be required in accordance with the computer used.
```

COMMON/BLKO /IDATA,IPRINT,IURITE,NTYPE
COMMON/BLK1 /BHN1,BHN2,E1,E2,RH01,RH02,SAC1,SAC2,SAF1,U1,U2
COMMON/BLK2 /HP,RPMI,RPMO,SHAFTI,SHAFTO,CD,FW,PAD,TEETH1
COMMON/BLK3 /ADD1,ADDK2,DEDK1,DEDK2,ADD1,ADD2 DED1,DED2
COMMON/BLK3A/CDMAX,CDMIN,FWMAX,FWMIN,PADMAX,PADMIN
COMMON/BLK3B/BLL,BLU,BLR,CDR
COMMON/BLK4 /CYCLE,DRIVEN,DRIVER,NCUT1,NCUT2,NLOAD,NQUAL,RELI,TEMP
COMMON/BLK4A/ISTRT,STRT( 8),NOF1,NOF2,NOF3,NOF4
COMMON/BLK5 /BP,CP,DP,PAR,PLV,RATIO,RPM1,RPM2,SHAFT1,SHAFT2,TEETH2
COMMON/BLK6 /PR1,PR2,RB1,RB2,RI1,RI2,RM1,RM2,R01,R02,RU1,RU2
COMMON/BLK7 /ADDL1,ADDL2,CCC1,CCC2,CRATIO,EFF
COMMON/BLK7A/HUBL1,HUBL2,HUBR1,HUBR2,RIM1,RIM2,WEB1,WEB2,VOL1,VOL2
COMMON/BLK7B/ANGC1,ANGC2,ANGL1,ANGL2,RL1,RL2,RLL1,RLL2,RLM1,RLM2
COMMON/BLK7C/XKEY1, XKEY2,VOLMIN,VOLMAX,XLA, XLR,T01,T02,TP1,TP2
COMMON/BLK8 /CE,CF,CH,CJ,CL1,CL2,CM,CO,CR,CS,CT,CV
COMMON/BLK8A/QJ1,QJ2,QL1,QL2,QM,QO,QR,QS,QT,QV
COMMON/BLK9 /COD,CODL1,CODL2,QOD,QODL1,QODL2
COMMON/BLK10 /SB1,SB2,SBM1,SBM2,SS1,SS2,SSM1,SSM2
COMMON/BLK1OA/PAB1,PAB2,PAN1,PAW2,TORQ1,TORQ2,WA,WR,WT,WN
COMMON/BLK11/J,K,N,NN,NCD,NFW,NTOOTH,NDRIVE,NNLOAD,NOPT,NOFN,PI
COMMON/BLK1IA/NVAR(8),NSTD(8),NOF(4)
COMMON.BLK13 /BBA1,BBA2,BEX1,BBX2,BBY1,BBY2,RT1,RT2
COMMON/BLK14 /TOLR1,TOLR2,T0LP1,T0LP2,PTOL1,PTOL2,TOLL1,TOLL2
COMMON/BLK14A/TTCT1,TTCT2,TCT1,TCT2,TPTL1,TPTL2,TPTU1,TPTU2
COMMON/BLK14B/TPTE1,TPTE2,TPTV1,TPTV2,CDTOLL,CDTOLU,ERR
COMMON/BLK15 /BLMIN,BLMINT,BLMAX,BLMAXT,BLMAXU,DELBL,BL1,BL2

```

The following example, Table 1.6 has all data and
results printed for demonstration purposes.

\subsection*{1.6 OUTPUT INFORMATION}

The input data is reprinted in the output for reference according to the printout options, along with the variable list, initial values for the independent variables, and input data from the optimization technique. The intermediate results printed present the true optimization function; the artificial optimization function, a modified optimization function to include constraints; and the design variables after every cycle requested. On completion of the optimization procedure, the optimum value of the criterion characteristic is printed along with the corresponding design variables and the inequality
```

PKOGFAI AATN(INPUT,OUTPUT,TAPES=INPUT,TAPEO=OUTPUT)
CUNHON/SLKU/IUATA,IPRINT,IWRITE,NTYFE
COHIOH/3LK1/BHN1, UHN2;E1,E*,RHO1,RHO2,SAC1,SAC2,SAF1,SAF2,U1,U2
CUIIIUN/ELK2 /HP,KPHI,RFWO,SHAFTI,SHAFTO,CU,FW,PAO,TEETH1

```

```

COIHION/3LKZA/LUVAX,CUMLN,FWMAX,FWMIN,PAOMAX,PAUMIN
CUHWCN/ELK3B/BLL,BLU,BLR,CDR
CUHMUN/BLK4/CYCLE,ORIVEN,ORIVER,NCUT1,NCUT2,NLOAD,NGUAL,RELI,TEMP

```

```

CUMHUN/ BLK4A/ LSTRT,STRT( 8),NOF1,NOFC, NOFS,NOF4
UATA IUATA,IPKINT,IWRITE/ 1,*\frac{1}{3},1%
DATA EI,E2,KHO1,RHO2,U1,U2/E*3.UE+07,2*0.283,2*0.33/
UATA SAS1,SALZ,SAF1,SAF', BHN1,BHN2/1:28E+U5,1.15E+05,3.6E+04,
\&J*く4E+U4,SUU.U,cう5.U
IJOC4E+U
HP=b 5
RPM1=1/5U.U
RFRLO=350.0
SHAFTI=200
SHAFTU=`口O
AUDKI=3HSTD
AUUKC=3HSTD
ULUKI=S\&STD
ULLKC=3+STD
FW=SHVMK
CU}=3HWA
0)O=
T-LTH1=SHVAK
CUNAX=3U.U
CUM1N=0.0
FWIIAX=O. U
FWMLN=0.0
PAUMAX=50.U
PHUHIN=14.5
CYCLE=1,UE+1U
URIVEN=3.0
URIVER=1.0
NLOAL=1
NLUUTU=1
NCUTI=C
NCUTZ=2
RLLL=0.395
TLNP=1UU00
BLL=1.U
BLU=1.5
BLR=1.5
CUR=NU
ISTRT=0
NOFi=1
NOF2=1
NOF2=1
NUFS=1
NUF\&=1
CALL SPJR
CALL TOCKP
END

```

GEAK MATERIAL PROPERTIES
PINION
GEAR
maximum algowable fatióue stress (PSI).
\(\begin{aligned} \text { SAF } & =3.0000 J 00 U E+04 \\ S A C & =1.28000000 E+05 \\ E & =3.00000000 E+07 \\ U & =3.30000000 E-01 \\ \text { RHO } & =2.8300 J 000 E-01 \\ \text { BHN } & =3.0000 J 000 E+02\end{aligned}\)
\(3.2400000 U E+04\)
MAXIMUM ALLOWABLE COMPRESSIVE
STRLSS (PSI).
youulus of ElaStICITY (כSI).
 3.0000000VE +07
POISSONS RATIO.
uensity (l3s/cu。in。) •••••••••
bRINell hazJness.
INPUT LAYOJT
PINION
 GEAR
PRESSURE AVGLE (DEGREES) PAD =
NUGBER OF TEETH.............. TEETH =
CENTRE UISTANLE (INGHES).
 \(\mathrm{CD}=\)
FACE WIOTH (INCHES) FW =

2．0000000UE＋01
VARIABLE
variable
variable
1．256\％


```

VARIABLE LIST AND INITIAL VALUES

```

\(\left.\begin{array}{ll}X(1) \\ X & (\\ X & 2) \\ X & 0\end{array}\right)\)
1. \(80000000 E+01\) \(1.46114494 E+01\)
\(2.02152558 E+00\)
\(1.80000000 E+01\)
\(1.4011494 E+01\) 2. \(02155558 E+00\)
```

OATA INJUT

```
```

NUMBER OF INULPENOLVT VARIABLES. . . . . . . . . N N = 3
NUMBER JF INEQUALITY (.GE.0.U) CJNSTRAINTS.. . . NCONS = 25
NUMBER JF EQUALITY JJNSTRAINTS.. . . . . . . . . NEQUS = 0
INPUT DATA PRINTEU JJT FOR.(IDATA.N゙E.J) . . . . . IDATA = 1
INTERMEJIATE DUTPUT EVERY IPRINT ITERATIUNS . . . IPRINT = 1
NUMBER JF UIRECTED KANUOM SEARCHES PERMITTED. . . NSHUT = <
NUMBER JF TEST POINTS IN UIRLCTEJ RANDOM SEARCH.. NTEST = 100
MAXIIJM NUMBER OF ITERATIONS. . . . . . . . . MAXM = 300
FRACTION OF RANGE USED AS STEP SLZE . . . . . . F F = 1.00000000E-02
FRACTION OF RANGE USED FOR CUNVERGENCE CRITERION. G = 2.U0000000E-0C
ESTINATED UPPER BOUNJ ON RANSE OF X(I). . . . . . RMAX(I) =
1.0J00000UE+U2 1.50UUOU0UE+02 3.000U00U0E+01
ESTIMATED LOWER BOUVZ ON RANGE O= X(I). . .... RMIN(I) =
O. 0. 0.
STARTING VALUES OF X(I) . . . . . . . . . . . .XSTRT(I) =
1.80000000E+01 1.40114494E+01 2.02155558E+00

```
－3 3 710787ミ＋U0
\(7.247739485+40\)
\％．148y2274E＋UN
7． \(0.98<0405 E+40\)
\(7.0964<283 E+40\)
\(7.094941005+06\) 7．08875045Et U U 7． \(08721520=+06\)
－0 \(08581515 \mathrm{E}=40\)
＋．307UU762E＋25

7．14B9cくフ4E＋JU 7．09820＋65E＋u \(7.49642203 \mathrm{c}+40\) ．09494108t＋U0 7．08875045ctuU 7．U0721う2UE＋0 U 7．U8581315ctu0

\begin{abstract}
1．90000000E＋ 01
． 100 UUUUUE +01
C．IUUUUJUUE＋U1 － 1250 U0 UE＋U1 \(2 \cdot 1375030\) UE＋U1 2． 143750 JUE゙ +01 C． 1468750 UE＋U1 \(2.14765625 E+01\)
\(2.14765625+01\)
\end{abstract}

\(2.32155558 E+00\) 2.921555 う \(8 \mathrm{E}+00\) 2：9715， 2：．69655558E＋00 \(2.69655558 E+00\) \(2.69655558 E+00\) C． \(68718078 \mathrm{E}+40\) \(2.68483603 E+00\)

OPTIMUM SOLUTION FOUNO
MJNIMUM \(U=7.08\) ¢81015t＋00
\(x(1)=2.14702065 c+01\)
\(x\left(\frac{2}{3}\right)=1: 91114494 c+41\)
\(x(3)=2.6024308 t+00\)

INEQUALITY COVSTRAINTS
\begin{tabular}{|c|c|}
\hline 1 & 1．32408307上＋04 \\
\hline HI（2） & 1．20002796t＋04 \\
\hline I（3） & 1．15U5U 2 SGE＋04 \\
\hline 4） & 2．75つ5ubらč＋U0 \\
\hline PHI（b） & 6．35J5Y687t－02 \\
\hline PH1（ 5 ） & 1．55135534E＋00 \\
\hline FHI（7） & S．70（340UUE＋01） \\
\hline 8） & 1．U8U与つ413E－U1 \\
\hline 9） & 1．57 ¢ ， 5 33c－01 \\
\hline Hi（1u） & 2．6206733セt－01 \\
\hline H1（11） & 7．41う Uç4jt－Uく \\
\hline I（12） & 7．41562＜43i－02 \\
\hline 1 （13） & 1．U＇8855 UbL＋U \\
\hline H1（14） & \(1.91114494 c+01\) \\
\hline 11（1） & 3．3175，¢0．cituj \\
\hline HI（10） & \(2.08248308 L+00\) \\
\hline 1 （17） & 1．U00u0ひuひt＋01． \\
\hline HI（18） & 5．5J0UUUU0t＋00 \\
\hline \(11(19)\) & 1．くu＜0う394t－00 \\
\hline HI（20） & 6． \(19381424 i-04\) \\
\hline PHI（21） & 6．47564421t－04 \\
\hline HI（22） & 1．245ご9 4 2 bビ－01 \\
\hline FHI（cj） & \(1.54819057 E-01\) \\
\hline HI（24） & \(2.49182683 E-01\) \\
\hline PH1（25） & \(2.67033797 \mathrm{t}-01\) \\
\hline
\end{tabular}
\(U=7.07701722 E+00\)

\(\hat{x}(3)=2: 68249308 E+00\)

\section*{IVELUALITY COVSTRAINTS}

PHI（ \(12=3 \cdot 287879415+44\)
PHil 2\()=1.22811192 E+04\)
PHI（ 3）\(=1 \cdot 1807(455 E+04\)
PHI 3． \(30347128 c+02\)
PHI
PHI？
PH
PHI
PHI（ 9
PHi（10）
PHI（11
PHI（12
PHI \((13)\)
FHI \((14)\)
PHI（ -5 ）
PHI（ 20 ）
PHI（17）
PH1（18）
FH1（ 29\()\)
HHI（2U）
PHI（21）
PHI（ 2 C,
PHI（ci
PHI（24）
PHI（25）
7 － \(4740 \cup 700 L-02\)
1．55663199E＋U0
\(1.55663199 E+00\)
\(3.71+40549 E+00\)
\(3.71+40545 E+00\)
\(1.15152845 E-01\)
1．151328y5t－01
\(2 \cdot 5006037 b \varepsilon-01\)

1．08885500t＋01
1．91114494t＋01
S． \(3175 \cup 09<E+\cup U\)
\(2.682493 \cup 8 E+00\) 1．リOJU0UUUE＋01 5.500 UUUUUL＋00 － \(1 \cdot 35 y 2<1+15-04\) \(8 \cdot 47275745 E-06\) \(6.56313385 \mathrm{E}-04\) 1． \(22291374 \mathrm{E}-01\) 1． 516547 U8上ー01 \(2.431131 \cup 3 E-01\) 2．01595165E－U1

VIOLATEU CONSTRAINT EVA.UATIUN

FOR MORE COMPLETE EXPLAVATION... SEE MANUAL
PHI (19) EAÖKLASH RANGE EXCEEUEU
TRY A) INCREASING BACKLASH RANGE
B) INCREASING A.G.M.A. QUALITY NUMBER

\begin{tabular}{|c|c|c|c|c|}
\hline HORSEPONER TRANSMITTED. & HP & \(=\) & \multicolumn{2}{|c|}{5.0000000UE+01} \\
\hline MAXIMUM ALLOWABLE POWER... BENUING (HP). & PAB & \(=\) & 8.39286957E+61 & 8.74513047E+01 \\
\hline MAXIMUM allowable power... WEAR (hP) & PAW & \(=\) & \(6.23480653 E+01\) & 5.03267312E+01 \\
\hline NORAAL LOAD (LBS) & WN & \(=\) & \multicolumn{2}{|c|}{\(0.01615590 E+02\)} \\
\hline tangeintial tord (lBS). & WT & \(=\) & \multicolumn{2}{|c|}{5.6533373 UE+ 02} \\
\hline Ra@ial loaj (LBS) - & WR & = & \multicolumn{2}{|c|}{C.05764050E+02} \\
\hline axial load (lbs). - & WA & \(=\) & \multicolumn{2}{|l|}{0.} \\
\hline PITCH LINE VELOCITY (FPY) & PLV & = & \multicolumn{2}{|c|}{\(2.91863003 E+03\)} \\
\hline SHAFT SPELD (RPM) & RPM & = & \(1.75000000 E+03\) & 3.50000000E+02 \\
\hline TORQUE (FT-_BS) & TORQ & \(=\) & 1.5406U575E+02 & \(7.50301875 E+02\) \\
\hline - OAD angle (fadians) & ANGL & \(=\) & 5.04792971E-01 & 3.88322716E-01 \\
\hline RADIUS TO LOAD ON TUOTH JENTKELINE (INCHES)........... & RL & \(=\) & \(3.41966731 E+00\) & 1.61696437E + 01 \\
\hline ***LOADING ANALYSIS FOR TIP LOAOING*** & & & & \\
\hline YATERIAL PRJPERTIES AND STRESS ANALYSIS & & & PINION & GEAR \\
\hline MUDULUS OF ELASTICITY (JSI) & E & \(=\) & \(3.00000000 E+07\) & 3.000000U0E+07 \\
\hline POISSUNS RATIU. & U & = & 3.300000U0E-01 & 3.30000000E-01 \\
\hline DENSITY (LBS/CU. IN.) & R HO & \(=\) & \(2.83003000 \mathrm{E}-01\) & 2.83000000E-01 \\
\hline 3RINELL HARJIVESS. & BHN & \(=\) & 3.00000 UUOE + UC & 2.55000000E+02 \\
\hline maximum allowable fatigje stress (PSI). & SAF & \(=\) & \(3.60000000 E+04\) & \(3.24000000 E+04\) \\
\hline MAXIMUM ALLOWABLE BENUING STRESS (PSI). & SBM & = & \(3.18035955 \mathrm{E}+04\) & \(2.86772300 E+04\) \\
\hline ACTUAL BENDING STRESS (PSI) & SB & \(=\) & \(1.89848014 E+04\) & \(1.63961167 E+04\) \\
\hline \begin{tabular}{l}
MaXIMUM ALLOWABLE CUMPRESSIVE \\
STKESS (PSI)...............
\end{tabular} & S AC & \(=\) & 1.28000000E +05 & 1. 1500000 UE + 05 \\
\hline maximum allowablee wear stress (PSI) & S SM & \(=\) & 1.13292784E+05 & 1. \(01786486 E+05\) \\
\hline actual wear stress (PSI). & SS & = & 1.01455539E+05 & 1.01455539E+85 \\
\hline
\end{tabular}

HUB LENUTH (INCHES) HUBL \(=2.68249308 E+00\)
JUTER HUB RAUIUS (INCHES) HUBR = \(1.750 \cup 0000 E+00\)
INNER RIM 2ADIUS (INCHES) RIM = 2. 1717j562E400
WEB THICKNESS (INCHES)........ WEB \(=1.34144054 E+00\)
GEAR ELANK VOLUME (CUEIJ INCHES). . . VOL \(=9.47842619 E+01\)
\(2.68249308 E+00\)
1.750000UUE + 00
1.49127219E+01
1. \(34124654 E+00\)
1. \(29180388 E+03\)

SPUR GEAR DESIGN...GOMP ETE
- -
15.567 SECONOS
constraints for those users familiar with optimization theory. The printout then continues with the violated constraint evaluation, if necessary, and the independent - dependent design variable list. The output results of the example problem are printed in Table 1.7.

\section*{REFERENCES}
(1) Stratton, J.D., "Optimum Computer Design of External Spur Gears", Masters Thesis 1972, McMaster University.
(2) AGMA 210.02, "AGMA Standard for Surface Durability (Pitting) of Spur Gear Teeth", January 1965.
(3) AGMA 220.02, "AGMA Standard for Rating the Strength of Spur Gear Teeth", August 1966.
(4) AGMA 150.03, "Application Classification for Spur, Helical, Herringbone and Bevel Gear Gearmotors", April 1968.
(5) AGMA 151.02, "Application Classification for Helical Herringbone and Spiral Bevel Gear Reduces", December 1963.

NOTE: All other AGMA Publications employed in the design package have been noted in reference (1).```

[^0]: * For every set of conjugate gear-tooth profiles, a basic rack form exists with infinite diameter conjugate to the set.

