OXIDE AND OXIDE FLUORIDES OF XENON(IV) AND NEW DEVELOPMENTS IN XENON(II), AND KRYPTON(II) CHEMISTRY

OXIDE AND OXIDE FLUORIDES OF XENON(IV) AND NEW DEVELOPMENTS

IN XENON(II), AND KRYPTON(II) CHEMISTRY

.

By

DAVID S. BROCK

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Doctor of Philosophy

McMaster University

© Copyright by David S. Brock, 2011

DOCTOR OF PHILOSOPHY

(Chemistry)

McMaster University

Hamilton, Ontario

TITLE: OXIDE AND OXIDE FLUORIDES OF XENON(IV) AND NEW DEVELOPMENTS IN XENON(II), AND KRYPTON(II) CHEMISTRY

AUTHOR: David S. Brock, B. Sc. (McMaster University)

SUPERVISOR: Professor Gary J. Schrobilgen

NUMBER OF PAGES: 409, xxviii

ABSTRACT

This Thesis extends the fundamental chemistry of the noble-gas elements, namely, xenon and krypton. More specifically, the chemistry of Xe(IV) has been extended by the synthesis and characterization of Xe(IV) oxide and oxide fluoride derivatives. The syntheses of XeOF₂, $F_2OXeN = CCH_3$, and XeOF₂·*n*HF and their structural characterizations are described. All three compounds are endothermic and explosive at temperatures approaching 0 °C. Although XeOF₂ had been previously reported, it had not been isolated as a pure compound. Xenon oxide difluoride has now been characterized in CH₃CN solution by ¹⁹F, ¹⁷O, and ¹²⁹Xe NMR spectroscopy and XeOF₂, F₂OXeN=CCH₃, and $XeOF_2 \cdot nHF$ have been characterized in the solid-state by Raman spectroscopy. The lowtemperature X-ray crystal structure of F₂OXeN≡CCH₃ reveals a long Xe–N bond trans to the Xe–O bond and a geometrical arrangement about xenon in which the atoms directly bonded to xenon are coplanar and $CH_3C \equiv N$ acts as a fourth ligand in the equatorial plane. The geometry about xenon is consistent with an AX₂YZE₂ VSEPR arrangement of bond pairs and electron lone pairs and represents a rare example of a Xe(IV)-N bond.

The missing Xe(IV) oxide, XeO₂, has been synthesized at 0 °C by hydrolysis of XeF₄ in water and 2.00 M H₂SO_{4(aq)} and characterized by low-temperature Raman Spectroscopy. The Raman spectra of XeO₂ amend prior vibrational assignments of xenon doped SiO₂ and are in accordance with prior speculation that xenon depletion from the Earth's atmosphere could occur by xenon insertion at high temperatures and high pressures into SiO₂ in the Earth's crust.

The XeOF₃⁻ anion has been synthesized as its Cs⁺ and N(CH₃)₄⁺ salts, and structurally characterized in the solid state by low-temperature Raman spectroscopy. The calculated anion geometry is based on a square planar AX₃YE₂ VSEPR arrangement with the longest Xe–F bond trans to the oxygen atom. The F–Xe–F angle is bent away from the oxygen atom to accommodate the greater spatial requirement of the oxygen double bond domain. The XeOF₃⁻ anion of the Cs⁺ salt is fluorine-bridged in the solid-state, whereas the anion of the N(CH₃)₄⁺ salt approximates the gas-phase anion.

The $[H(OXeF_2)_n][AsF_6]$ and $[FXe^{II}(OXe^{IV}F_2)_n][AsF_6]$ (n = 1, 2) salts have been synthesized and structurally characterized in the solid state by low-temperature Raman spectroscopy. The chain length of each cation is limited to one or two OXeF₂ subunits, which are oxygen-bridged and are strongly ion-paired with the AsF_6^- anion. The reaction of XeOF₂·xHF in superacidic HF/SbF₅ solvent mixtures resulted in a mixture of $([XeF_3 \cdot HF][Sb_2F_{11}])_2 \cdot [H_5F_4][SbF_6], [XeF_3 \cdot HF][Sb_2F_{11}], and [XeF_3][SbF_6].$ The XeF₃⁺ cations in each structure are very similar, displaying T-shaped coordination of three fluorine and short contact to the fluorine atoms, а atom of HF. in ([XeF₃·HF][Sb₂F₁₁])₂·[H₅F₄][SbF₆] and [XeF₃·HF][Sb₂F₁₁], or to a fluorine atom of SbF₆⁻ in $[XeF_3][SbF_6]$.

Vibrational frequency assignments for the aforementioned compounds were aided by comparison with frequencies derived from quantum-chemical calculations, by ¹⁸O enrichment, and, where appropriate, by ²H enrichment.

The syntheses and structural characterizations of $[XOF_2][AsF_6]$ (X = Cl, Br), the XeF₂ adduct-salts, $[BrOF_2][AsF_6] \cdot nXeF_2$ (n = 1, 2), and the KrF₂ adduct-salt,

[BrOF₂][AsF₆]·2KrF₂, are also described. The crystal structure of [BrOF₂][AsF₆] shows a positional disorder among the oxygen atom and the fluorine atoms. The low-temperature Raman spectra of [XOF₂][AsF₆], the complex cation salts, [BrOF₂][AsF₆]·*n*XeF₂ (n = 1, 2), and [BrOF₂][AsF₆]·2KrF₂ have been assigned on the basis of the crystal structures and with the aid of quantum-chemical calculations. The low-temperature (-173 °C) X-ray crystal structure of [BrOF₂][AsF₆]·2KrF₂ consists of isolated molecular units and represents an example of KrF₂ coordinated to a main-group atom. The contact distances between bromine and fluorine atom of NgF₂ (Ng = Kr, Xe) is shorter in [BrOF₂][AsF₆]·2XeF₂ than in the KrF₂ analogue, which is attributed to the more polar nature of the Xe–F bonds. The ELF and QTAIM analyses of [BrOF₂][AsF₆]₃²⁻ and [BrOF₂][AsF₆]·2KrF₂ to better understand the effect of Br(V) coordination number on the localization domain of the Br(V) valence electron lone pair.

The syntheses of FXeON¹⁶O₂ and FXeON(¹⁸OO) has shed light on the mechanism leading to the formation of FXeONO₂. Raman spectroscopy indicated the absence of ^{16/18}O isotopic scrambling among the oxygen sites of FXeONO₂ which was confirmed by factor-group analyses of the 16 isotopomeric crystallographic unit cells that result from *syn-/anti*-isomerization, FXe¹⁶ON(¹⁶O_A¹⁸O_S)/FXe¹⁶ON(¹⁶O_S¹⁸O_A), among the four FXeONO₂ molecules of the unit cell. The intermediate oxide fluoride, O(XeF)₂, was observed in the synthesis of FXeONO₂, providing valuable insight into the reaction pathway. A reinterpretation of the solid-state ¹⁶O- and ¹⁸O-enriched Raman spectra of O(XeF)₂ was also carried out.

ACKNOWLEDGEMENTS

I wish to sincerely thank Professor Gary J. Schrobilgen as my primary mentor in learning the day-to-day operations of the laboratory, for providing me with interesting and exciting avenues of research, as well as for his insight, guidance, enthusiasm, patience, and confidence in me both inside and outside of the laboratory.

I would also like to thank the other members of my supervisory committee, Dr. Raman Chirakal, Dr. Ronald J. Gillespie and Dr. Robert G. Syvret, for their support, useful discussions, and interest in my research projects.

A heartfelt thanks to Dr. Hélène P. A. Mercier for her expertise, advice, encouragement, and friendship throughout the course of this work, as well as for the numerous hours spent in helping solve various crystal structures and writing contributions for our publications together.

A special thanks to Dr. Bernard Silvi for his collaboration in several studies involving ELF and QTAIM analyses. His expertise and explanations were most pleasant and enlightening.

I am also very grateful to Dr. Matthew D. B. Moran, Dr. Bernard E. Pointner and Dr. John F. Lehmann for their expertise, advice, and support during my first years of graduate school.

Thanks also to other past and present members of the Schrobilgen research group, namely Dr. Michael Hughes, Dr. Gregory Smith, Dr. Kazuhiko Matumoto, Dr. Vural Bilir, Jonathan J. Casalis de Pury, Babak Behnam-Azad, Maria Ivanova, Rezwan Ashique,

vi

Jonathan Paxon, Dr. Karsten Koppe, and Saurabh S. Chitnis for all of their help and encouragement. I am also grateful to Dr. Jennilee Gavina, Erik Youngson, Dr. Bonnie Leung, Dr. Jason Traer, Dr. Heather Cuthbert and Rev. Dieter Reda for useful discussions, good times, and for their friendship.

For their help in their respective fields, I would like to thank Dr. Jim Britten (Xray crystallographic facilities), Dr. Steve Kornic (NMR and Spectroscopy facilities), and Michael Palme (Chemistry Glassblowing Shop).

I would like to acknowledge the Ontario Ministry of Education and Training -Ontario Graduate Scholarships in Science & Technology program (OGSST), the McMaster University Internal Prestige "Ontario Graduate Fellowships" Program, the James A. Morrison Memorial Scholarship program, and the McMaster University Department of Chemistry for financial support in the form of bursaries and scholarships over the years.

Finally, I would like to thank my wife and inspiration, Lindsey, for her unwavering love, endless understanding, amazing support, and full confidence in my abilities. As well, special thanks to my parents, Tom and Connie, my grandparents Tom and Bubs Brock, and Russ and Eve Baer, my brother and sister-in-law, Iain and Christie, my brother Michael, and my "adopted" family Paul, Francine, Matthew, and Sarah Askett for all of their financial and emotional support throughout my post-secondary education.

PREFACE

The following Chapters have been published, in part or in whole, by the American Chemical Society (ACS). All experimental and computational work was conducted by the author.

- Chapter 3: Brock, D. S.; Bilir, V.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc. 2007, 129, 3598–3611.
- Chapter 4: Brock, D. S.; Schrobilgen, G. J. J. Am. Chem. Soc. 2011, accepted.
- Chapter 5: Brock, D. S.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc. 2010, 132, 10935–10943.
- Chapter 6: Brock, D. S.; Mercier, H. P. A.; Schrobilgen, G. J. submitted.
- Chapter 7: Brock, D. S.; Casalis de Pury, J. J.; Mercier, H. P. A.; Schrobilgen, G. J.; Silvi, B. J. Am. Chem. Soc., 2010, 132, 3533–3542.
- Chapter 8: Brock, D. S.; Casalis de Pury, J. J.; Mercier, H. P. A.; Schrobilgen, G. J.; Silvi, B. *Inorg. Chem.*, 2010, 49, 6673–6689.
- Chapter 9: Moran, M. D.; Brock, D. S.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc., 2010, 132, 13823–13839.

LIST OF ABBREVIATIONS AND SYMBOLS

General

BDH	British Drug Houses
SAE	Society of Automotive Engineers
ax	axial
eq	equatorial
CCD	charge-coupled device
FT	Fourier transform
FEP	perfluoroethylene/perfluoropropylene copolymer
IR	infrared
Kel-F	chlorotrifluoroethylene polymer
PTFE	tetrafluoroethylene polymer
VSEPR	valence shell electron pair repulsion
N.A.	natural abundance (isotopic)
aHF	anhydrous HF

Raman Spectroscopy

Δν	frequency
cm^{-1}	wavenumber
ν	stretching mode
δ	bending mode
$ ho_w$	wagging mode

ρ_r	rocking mode
ρt	twisting mode
o.o.p.	out-of-plane
i.p.	in-plane

Nuclear Magnetic Resonance Spectroscopy

NMR	nuclear magnetic resonance
ppm	parts per million
δ	chemical shift
Ι	nuclear spin quantum number
J	scalar coupling constant, in Hz
Hz	Hertz, or cycles per second
FID	free induction decay
SF	spectral frequency
SW	sweep width
TD	time domain
PW	pulse width
$\Delta v_{\frac{1}{2}}$	line width at half height
WF	width factor

X-ray Crystallography

.

 $a, b, c, \alpha, \beta, \gamma$ unit cell parameters

•

V	unit cell volume
λ	wavelength
Ζ	molecules per unit cell
mol. wt.	molecular weight
ρ	density
μ	absorption coefficient
F	structure factor
R_1	conventional agreement index
wR_2	weighted agreement index

.

Computational and Thermochemical

.

DFT	density functional theory
MP2	Møller-Plesset, second order perturbation
HF	Hartree-Fock
RLC	relative large core
NBO	natural bond orbital
NPA	natural population analysis
ΔH^{o}	standard enthalpy of reaction
$\Delta H_{ m f}^{ m o}$	standard enthalpy of formation

TABLE OF CONTENTS

1.1.	Introdu	ction to Noble-Gas Reactivity	1
1.2.	Xe(IV)	Chemistry	2
	1.2.1.	Xe(IV) Fluorides	2
	1.2.2.	OTeF ₅ Derivatives of Xe(IV)	9
	1.2.3.	C ₆ F ₅ and OIO ₄ Derivatives of Xe(IV)	12
	1.2.4.	Oxide Fluoride Species of Xe(IV).	15
1.3.	Recent	Aspects of Xenon(II) Chemistry	16
	1.3.1.	Xenon(II) Oxide-Fluorides, Xe ₃ OF ₃ ⁺ and O(XeF) ₂	16
	1.3.2.	Xenon(II) Nitrates	17
	1.3.3.	XeF ₂ as a Ligand	17
1.4.	Krypto	n(II) Chemistry	21
1.5.	Purpos	e and Scope of the Present Work	26

CHAPTER 2: EXPERIMENTAL SECTION

2.1.	Standard	l Techniques	28
	2.1.1.	Dry Box and Vacuum Line Techniques	28
	2.1.2.	Preparative Apparatus and Sample Vessels	31
2.2.	Preparat	ion and Purification of Starting Materials	33
	2.2.1.	Sources and Purification of Gases; N ₂ , Ar, F ₂ , Xe, and Kr	33
	2.2.2.	Purification of Solvents; Anhydrous HF, BrF ₅ , SO ₂ ClF, CH ₃ CN,	
		SO_2 , XeOF ₄ , $H_2^{16}O$, $H_2^{18}O$, and $D_2^{16}O$	33
	2.2.3.	Preparation and Purification of Starting Materials; CsF,	
		$[N(CH_3)_4][F], CaF_2, D_2SO_4, XeF_2, XeF_4, PnF_5,$	
		$[XeF][PnF_6], [H_3^{16/18}O][PnF_6], and [Xe_3^{16/18}OF_3][PnF_6]$	
		(Pn = As, Sb)	39
	2.2.4.	Preparation of KrF ₂	41
	2.2.5.	Synthesis of High-Purity Deuterium Fluoride	43
	2.2.6.	Syntheses of Nitryl Fluoride, O ₂ NF, and Nitrosyl Fluoride, ONF	45
	2.2.7.	Preparation of FXeOTeF ₅ and [XeOTeF ₅][AsF ₆]	46
	2.2.8.	Preparation of [ClOF ₂][AsF ₆] Precursors; ClF, ClONO ₂ , ClOF ₃	47
	2.2.8.1.	CIF	47
	2.2.8.2.	ClONO ₂	47
	2.2.8.3.	ClOF ₃	48
	2.2.9.	Synthesis of [ClOF ₂][AsF ₆]	48
2.3.	Synthese	es of XeOF ₂ , $F_2OXeN = CCH_3$, and XeOF ₂ · <i>n</i> HF	49
	2.3.1. F	Preparation of F ₂ OXeN=CCH ₃	49

	2.3.2.	Preparation of Xe ^{16/18} OF ₂	50
	2.3.3.	Preparation of $Xe^{16/18}OF_2 \cdot n^{1/2}HF$	50
	2.3.4.	Crystal Growth of F ₂ OXeN≡CCH ₃	51
2.4.	Synthe	esis of XeO ₂	52
	2.4.1.	Aqueous Preparation of XeO ₂	52
	2.4.2.	Synthesis of XeO ₂ in Non-aqueous Media	52
2.5.	Synthe	esis and Characterization of the XeOF ₃ ⁻ Anion	53
	2.5.1.	Syntheses of $[M][Xe^{16/18}OF_3]$ (M = N(CH ₃) ₄ , Cs)	53
	2.5.2.	Attempted Syntheses of $[M'][XeOF_3]$ (M' = NO, NO ₂)	54
	2.5.3.	Reactivities of [M][XeOF ₃] with SO ₂ and XeOF ₄	55
2.6.	Synthe	eses of New Xe(IV) Cations	55
	2.6.1.	Preparation of $\int_{1/2}^{1/2} H^{16/18} OXeF_2 [AsF_6]$	55
	2.6.2.	Preparation of $[^{1/2}H^{16/18}OXe(F)_2^{16/18}OXeF_2][AsF_6]$	56
	2.6.3.	Preparation of $[FXe^{16/18}OXeF_2][PnF_6]$ (Pn = As, Sb)	57
	2.6.4.	Preparation of $[FXe^{16/18}OXe(F)_2^{16/18}OXeF_2][AsF_6]$	57
	2.6.5.	Crystal Growth of $([XeF_3 \cdot HF][Sb_2F_{11}])_2 \cdot [H_5F_4][SbF_6],$	
		$[XeF_3 \cdot HF][Sb_2F_{11}]$ and $[XeF_3][SbF_6]$	58
2.7	Synthe	esis and Characterization of [BrOF ₂][AsF ₆]·2KrF ₂	58
	2.7.1.	Preparation of [BrOF ₂][AsF ₆]	58
	2.7.2.	Preparation of [BrOF ₂][AsF ₆]·2KrF ₂	59
	2.7.3.	Crystal Growth of [BrOF ₂][AsF ₆]·2KrF ₂	59
2.8.	Synthe	eses of $[BrOF_2][AsF_6] \cdot nXeF_2$ ($n = 1, 2$) and $[XOF_2][AsF_6]$	
	$(\dot{X} = C)$	Cl, Br)	60
	2.8.1.	Preparation of [BrOF ₂][AsF ₆]·XeF ₂	60
	2.8.2.	Preparation of [BrOF ₂][AsF ₆]·2XeF ₂	60
	2.8.3.	Preparation of [BrOF ₂][AsF ₆]	61
	2.8.4.	Crystal Growth of [BrOF ₂][AsF ₆]·2XeF ₂	61
	2.8.5.	Crystal Growth of [BrOF ₂][AsF ₆]	62
	2.8.6.	Crystal Growth of [ClOF ₂][AsF ₆]	62
2.9.	Synthe	esis of Xe(II) Derivatives	63
	2.9.1.	Preparation of FXeONO ₂ and FXe ¹⁶ ON(¹⁶ O ¹⁸ O)	63
	2.9.2.	Preparation of O(XeF) ₂	64
	2.9.3.	Attempted Crystal Growth of O(XeF) ₂	65
2.10.	X-ray	Crystallography	65
	2.10.1.	Crystal Growth	65
	2.10.2.	Low-Temperature Crystal Mounting	68
	2.10.3.	Data Collections	71
		2.10.3.1. Siemens P4 Diffractometer	71
		2.10.3.2. Bruker SMART APEX II Diffractometer	72
	2.10.4.	Solution and Refinement of Structures	72
2.11.	Ramar	n Spectroscopy	73
2.12	Nuclea	ar Magnetic Resonance Spectroscopy	74
2.13.	Electro	onic Structure Calculations	75

CHAPTER 3: XeOF₂, F₂OXeN≡CCH₃, AND XeOF₂·*n*HF; RARE EXAMPLES OF XE(IV) OXIDE FLUORIDES

3.1.	Introduc	tion	77
3.2.	Results a	and Discussion	78
	3.2.1.	Syntheses and Properties of $XeOF_2$, $F_2OXeN \equiv CCH_3$, and	
		XeOF ₂ · <i>n</i> HF	78
	3.2.2.	¹²⁹ Xe, ¹⁹ F, and ¹⁷ O NMR Spectroscopy	80
	3.2.3.	X-ray Crystal Structure of F ₂ OXeN≡CCH ₃	84
	3.2.4.	Raman Spectroscopy	90
	3.2.4.1.	XeOF ₂	103
	3.2.4.2.	F ₂ OXeN≡CCH ₃	104
	3.2.4.3.	XeOF ₂ · <i>n</i> HF	107
	3.2.5.	Computational Results	110
	3.2.5.1.	Geometries	110
		i) $(XeOF_2)_n (n = 1-3)$	110
		ii) $F_2OXeN \equiv CCH_3$	111
		iii) XeOF ₂ · <i>n</i> HF	112
	3.2.5.2.	Natural Bond Orbital (NBO) Analyses	113
3.3.	Conclus	ions	117

CHAPTER 4: SYNTHESIS OF THE MISSING OXIDE OF XENON, XeO₂, AND ITS IMPLICATIONS FOR EARTH'S MISSING XENON

4.1.	Introd	uction	119
4.2	4.2 Results and Discussion		121
	4.2.1.	Synthesis of XeO ₂	121
	4.2.2.	Hydrolyses of [Cs][XeOF ₃] and XeOF ₂	122
	4.2.3.	Raman Spectroscopy	123
4.3.	Conclu	usions	134

CHAPTER 5: XeOF₃⁻, AN EXAMPLE OF AN AX₃YE₂ VSEPR ARRANGEMENT; SYNTHESES AND STRUCTURAL CHARACTERIZATIONS OF [M][XeOF₃] (M = Cs, N(CH₃)₄)

5.1.	Introduc	tion	136
5.2.	Results	and Discussion	137
	5.2.1.	Syntheses of $[M]$ [XeOF ₃] (M = N(CH ₄), Cs)	137
	5.2.1.1.	[M][XeOF ₃] in CH ₃ CN Solvent	137
	5.2.1.2.	Attempts to Replicate the Prior Synthesis of "[Cs][XeOF ₃]" in aHF	138
	5.2.1.3.	An Alternative Synthesis of [Cs][XeOF ₃]	143

	5.2.2.	Hydrolytic and Thermal Stabilities of [M][XeOF ₃]	
		$(M = N(CH_4), Cs)$	144
	5.2.3.	Reactivities of XeOF ₃ Salts	145
	5.2.4.	Raman Spectroscopy	146
	5.2.4.1.	$[N(CH_3)_4][XeOF_3]$	150
	5.2.4.2.	[Cs][XeOF ₃]	152
	5.2.5.	Computational Results	152
	5.2.5.1.	Geometries	154
	5.2.5.2.	Natural Bond Orbital (NBO) Analyses	155
	5.2.5.3.	Thermochemistry	157
5.3.	Conclus	ions	163

CHAPTER 6: $[H(OXeF_2)_n][AsF_6]$ and $[FXe^{II}(OXe^{IV}F_2)_n][AsF_6]$ (n = 1, 2): Examples of Xenon(IV) Hydroxy and Oxide Fluoride Cations; and the Crystal Structures of $[XeF_3 \cdot HF][Sb_2F_{11}]$ and $([XeF_3 \cdot HF][Sb_2F_{11}])_2 \cdot [H_5F_4][SbF_6]$

6.1.	Introduc	tion	165
6.2.	Results a	and Discussion	167
	6.2.1.	Syntheses and Properties	167
	6.2.1.1.	[HOXeF ₂][AsF ₆]	167
		i) Synthesis	167
		ii) Reactivity of [HOXeF ₂][AsF ₆]	168
	6.2.1.2.	$[HOXe(F)_2OXeF_2][AsF_6]$	170
	6.2.1.3.	$[FXe^{II}OXe^{IV}F_2][PnF_6]$ (Pn = As, Sb) and	
		$[FXe^{II}OXe^{IV}(F)_2OXe^{IV}F_2][AsF_6]$	172
	6.2.1.4.	$[XeF_3 \cdot HF][Sb_2F_{11}].$	176
	6.2.2.	X-ray Crystallography	176
	6.2.2.1.	The XeF ₃ ·HF ⁺ Cation	178
		i) $([XeF_3 \cdot HF][Sb_2F_{11}])_2 \cdot [H_5F_4][SbF_6]$	178
		ii) $[XeF_3 \cdot HF][Sb_2F_{11}]$	182
	6.2.2.2.	[H ₅ F ₄][SbF ₆]	185
	6.2.3.	Raman Spectroscopy	185
	6.2.3.1.	[HOXeF ₂][AsF ₆]	195
	6.2.3.2.	$[F^{II}XeO^{IV}XeF_2][PnF_6] (Pn = As, Sb)$	198
	6.2.3.3.	$[HOXe(F)_2OXeF_2][AsF_6]$ and $[F^{II}XeO^{IV}Xe(F)_2O^{IV}XeF_2][AsF_6]$	199
	6.2.4.	Computational Results	201
	6.2.4.1.	Geometries	203
		i) $HOXeF_2^+$, $[HOXeF_2][AsF_6]$, and $FXeOXeF_2^+$	203
		ii) $HOXe(F)_2OXeF_2^+$ and $FXeOXe(F)_2OXeF_2^+$	204
		iii) $XeF_3^+ HF$ and $[XeF_3][SbF_6]$	204
6.3.	Conclus	ions	205

CHAPTER 7: A RARE EXAMPLE OF A KRYPTON DIFLUORIDE COORDINATION COMPOUND; $[BrOF_2][AsF_6] \cdot 2KrF_2$

7.1.	Introduc	tion	207
7.2.	Results a	and Discussion	208
	7.2.1.	Synthesis and Properties of [BrOF ₂][AsF ₆]·2KrF ₂	208
	7.2.2.	X-ray Crystal Structure of [BrOF ₂][AsF ₆]·2KrF ₂	210
	7.2.3.	Raman Spectroscopy	219
	7.2.4.	Computational Results	227
	7.2.4.1.	Geometries	228
	7.2.4.2.	Natural Bond Orbital (NBO) Analyses	229
	7.2.4.3.	QTAIM and ELF Analyses	231
7.3.	Conclus	ions	236

CHAPTER 8: XeF_2 COORDINATION TO A HALOGEN CENTER; RAMAN SPECTRA (n = 1, 2) AND X-RAY CRYSTAL STRUCTURES (n = 1) OF [BrOF₂][AsF₆]· $nXeF_2$ AND [XOF₂][AsF₆] (X = Cl, Br)

8.1.	Introduc	tion	238
8.2.	Results :	and Discussion	239
	8.2.1.	Syntheses of $[BrOF_2][AsF_6]$, $[BrOF_2][AsF_6] \cdot XeF_2$, and	
		$[BrOF_2][AsF_6] \cdot 2XeF_2$	239
	8.2.2.	¹²⁹ Xe and ¹⁹ F NMR Spectroscopy	245
	8.2.3.	Attempted Syntheses of $[ClOF_2][AsF_6] \cdot 2XeF_2$, and XeF_4	
		Coordination Complexes of [ClOF ₂][AsF ₆] and [BrOF ₂][AsF ₆]	247
	8.2.4.	X-ray Crystallography	248
	8.2.4.1.	$[BrOF_2][AsF_6] \cdot 2XeF_2$	248
	8.2.4.2.	[BrOF ₂][AsF ₆]	259
	8.2.4.3.	[ClOF ₂][AsF ₆]	260
	8.2.5.	Raman Spectroscopy	263
	8.2.5.1.	[BrOF ₂][AsF ₆]	280
	8.2.5.2.	[ClOF ₂][AsF ₆]	281
	8.2.5.3.	[BrOF ₂][AsF ₆]·XeF ₂ and [BrOF ₂][AsF ₆]·2XeF ₂	284
	8.2.6.	Computational Results	288
	8.2.6.1.	Geometries	293
		i) $[BrOF_2][AsF_6]_3^{2^-}$ and $[ClOF_2][AsF_6]_3^{2^-}$	293
		ii) $[BrOF_2][AsF_6] \cdot XeF_2$	295
		iii) $[BrOF_2][AsF_6] \cdot 2XeF_2$	296
	8.2.6.2.	Natural Bond Orbital (NBO) Analyses	297
		i) $[BrOF_2][AsF_6]_3^{2-}$ and $[ClOF_2][AsF_6]_3^{2-}$	297
		ii) $[BrOF_2][AsF_6] \cdot 2XeF_2$	298
	8.2.6.3.	QTAIM and ELF Analyses	299
8.3.	Conclus	ions	303

CHAPTER 9: Xe₃OF₃⁺, a Precursor to a Noble-Gas Nitrate and the First Neutral Oxide Fluoride of Xe(II); Syntheses and Structural Characterizations of FXeONO₂ and O(XeF)₂

9.1.	Introduc	tion	305
9.2.	Results a	and Discussion	307
	9.2.1.	Synthesis and Decomposition of FXeONO ₂	307
	9.2.2.	Reactions of XeF ₂ with HNO ₃	314
	9.2.3.	Reactions of XeF ₂ and [XeF][AsF ₆] with N ₂ O ₅	315
	9.2.4.	Reactions of XeF ₂ with N ₂ O ₄	315
	9.2.5.	Reactions of FXeONO ₂ with AsF ₅	316
	9.2.6.	Synthesis and Reactivity of O(XeF) ₂	318
	9.2.7.	Raman Spectroscopy	319
	9.2.7.1.	FXeONO ₂	326
	9.2.7.2.	O(XeF) ₂	331
9.3.	Conclusi	ions	333

CHAPTER 10: CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

10.1.	Conclusi	ons	335
10.2.	Future W	/ork	337
	10.2.1	OTeF ₅ Derivatives of Xe(IV)	337
	10.2.2	XeF ₂ , XeF ₄ , and KrF ₂ Adducts to Transition Metal Centers	338
	10.2.2	Syntheses of Oxofluoro-Anions and Neutral Oxofluorides of	
		Xe(VIII)	339
REFI	ERENCES.		341
4 0 0 1			257
APPI	ENDIX I		357
			368
AFFI	$2 \mathbf{NDIA} \mathbf{Z} \dots$		200
APPI	ENDIX 3		371
APPI	ENDIX 4		388
APPI	ENDIX 5		395
APPI	ENDIX 6		404

LIST OF TABLES

1.1.	Coordination Compounds Involving XeF ₂ as a Ligand	19
2.1.	Summary of Parameters Typically Used for NMR Data Acquisition	75
3.1.	Summary of Crystal Data and Refinement Results for F ₂ OXeN≡CCH ₃	85
3.2.	Experimental and Calculated (C_1) Geometrical Parameters for $F_2OXeN \equiv CCH_3$	86
3.3.	Experimental and Calculated Vibrational Frequencies for Xe ^{16/18} OF ₂	94
3.4.	Experimental and Calculated Vibrational Frequencies for $F_2^{16/18}OXeN = CCH_3$	95
3.5.	Experimental and Calculated Vibrational Frequencies for $F_2Xe^{16/18}O \cdot nHF$ and $F_2Xe^{16/18}O \cdot nDF$	97
3.6.	Experimental Raman frequencies for XeOF ₂ , $F_2OXeN \equiv CCH_3$, $F_2OXeN \equiv CCH_3/CH_3CN/CH_3CN \cdot mHF$ mixtures and XeOF ₂ / $F_2OXeN \equiv CCH_3$ mixtures.	98
3.7.	Factor-Group Analysis for F ₂ OXeN≡CCH ₃	94
3.8.	NBO Valencies, Bond Orders, and Charges (NPA) for XeOF ₂ , F ₂ OXeN=CCH ₃ and CH ₃ CN	114
4.1.	Vibrational Frequencies for XeF ₄ , Xe ¹⁶ O ₂ , Xe ^{16/18} O ₂ , and Xe ¹⁸ O ₂	125
4.2.	Site Symmetry Analyses for the XeO ₄ Moiety in the Polymeric Structure of XeO ₂	129
5.1.	Reassigned Raman Spectra of Products Attributed to [Cs][XeOF ₃] in Prior Work	140
5.2.	Experimental Raman Frequencies and Intensities for $XeOF_3^-$ in Cs[XeOF_3] and [N(CH_3)_4][XeOF_3]	141
5.3.	Raman Spectrum of the Products Formed in the Reaction of $XeOF_2$ with O_2NF	147

5.4.	Calculated Vibrational Frequencies and Infrared and Raman Intensities for the Xe ^{16/18} OF ₃ ⁻ Anion	151
5.5.	Calculated Geometrical Parameters for the XeOF ₃ ⁻ Anion	154
5.6.	NBO Valencies, Bond Orders, and Natural Population Analysis (NPA) Charges for the XeOF ₃ ⁻ Anion	156
5.7.	Calculated Geometrical Parameters, NBO Valencies, Bond Orders, and Natur Population Analysis (NPA) Charges for XeOF ₂	al 156
5.8.	Estimated Volumes, Lattice Enthalpies, and Entropies for $N(CH_3)_4^+$ and $Cs^+ S$ of F^- , $XeOF_3^-$, and $XeO_2F_3^-$	Salts 159
5.9.	Values of ΔH° , ΔS° , and ΔG° Calculated for the Decomposition Reactions of [M][XeOF ₃] (X = N(CH ₃) ₄ , Cs)	161
6.1.	Values of ΔH , ΔS , and ΔG Calculated for the Decomposition Reactions of [XeOF][AsF ₆], [HOXeF ₂][AsF ₆], [HOXe(F) ₂ OXeF ₂][AsF ₆], [FXeOXeF ₂][AsF ₆], and [FXeOXe(F) ₂ OXeF ₂][AsF ₆].	F ₆], 169
6.2.	Summary of Crystal Data and Refinement Results for β -[XeF ₃][SbF ₆], ([XeF ₃ ·HF][Sb ₂ F ₁₁]) ₂ ·[H ₅ F ₄][SbF ₆], and [XeF ₃ ·HF][Sb ₂ F ₁₁]	177
6.3.	Experimental and Calculated Bond Lengths (Å) and Bond Angles (deg) for the XeF_3^+ ·HF Adduct	179
6.4.	Experimental Raman Frequencies and Intensities for $[^{1/2}H^{16/18}OXeF_2][AsF_6]$.	191
6.5.	Experimental Raman Frequencies and Intensities for [FXe ^{16/18} OXeF ₂][AsF ₆].	192
6.6.	Experimental Raman Frequencies and Intensities for $[H^{16/18}OXe(F)_2^{16/18}OXeF_2][AsF_6]$	193
6.7.	Experimental Raman Frequencies and Intensities for [FXe ^{16/18} OXe(F)2 ^{16/18} OXeF2][AsF6]	⁻ 194
7.1.	Summary of Crystal Data and Refinement Results for [BrOF ₂][AsF ₆]·2KrF ₂	211
7.2.	Experimental and Calculated (C_1) Geometrical Parameters for [BrOF ₂][AsF ₆]·2KrF ₂	212

7.3.	NBO Valencies, Bond Orders, and Charges (NPA) for $BrOF_2^+$, [BrOF ₂][AsF ₆]·2KrF ₂ , and KrF ₂	217
7.4.	Experimental and Calculated Vibrational Frequencies for [BrOF ₂][AsF ₆]·2KrF ₂	221
7.5.	Factor-Group Analysis for [BrOF2][AsF6]·2KrF2	224
8.1.	Raman Spectra Acquired During the Removal of BrF_5 (-50 °C) from a BrF_5 Solution of $[BrOF_2][AsF_6] \cdot XeF_2$, and the Raman Spectra of Uncoordinated XeF ₂ , BrF ₅ , and $[BrOF_2][AsF_6] \cdot XeF_2$	241
8.2.	Summary of Crystal Data and Refinement Results for $[BrOF_2][AsF_6]$, $[ClOF_2][AsF_6]$, and $[BrOF_2][AsF_6] \cdot 2XeF_2$	249
8.3.	Complete List of Experimental and Calculated Geometrical Parameters for [BrOF ₂][AsF ₆]·2XeF ₂	250
8.4.	Complete List of Geometrical Parameters for $[ClOF_2][AsF_6]$ (Exptl) and $[ClOF_2][AsF_6]_3^{2-}$ (Calcd)	254
8.5.	Complete List of Vibrational Frequencies for $[BrOF_2][AsF_6]$ (Exptl) and $[BrOF_2][AsF_6]_3^{2-}$ (Calcd)	268
8.6.	Complete List of Vibrational Frequencies for $[BrOF_2][AsF_6]$ (Exptl) and $[BrOF_2][AsF_6]_3^{2-}$ (Calcd)	271
8.7.	Complete List of Experimental and Calculated Vibrational Frequencies for [BrOF ₂][AsF ₆]·XeF ₂	274
8.8.	Complete List of Experimental and Calculated Vibrational Frequencies for [BrOF ₂][AsF ₆]·2XeF ₂	276
8.9.	Factor-Group Analysis for [ClOF ₂][AsF ₆]	282
8.10.	Factor-Group Analysis for [BrOF ₂][AsF ₆]·2XeF ₂	285
8.11.	NBO Valencies, Bond Orders, and Charges (NPA) for $[ClOF_2][AsF_6]_3^{2-}$ and $[BrOF_2][AsF_6]_3^{2-}$.	289
8.12.	NBO Valencies, Bond Orders, and Charges (NPA) for $[BrOF_2][AsF_6] \cdot 2XeF_2$, $[BrOF_2][AsF_6] \cdot 2KrF_2$ and XeF_2	291

9.1.	Gas-phase ΔH° , ΔG° , $\Delta H_{195,15}$, and $\Delta G_{195,15}$ for the Synthesis and Decompositive Reactions of FXeONO ₂ , Xe(ONO ₂) ₂ , XeONO ₂ ⁺ , and N ₂ O ₆	ion 313
9.2.	Experimental Raman Frequencies and Intensities for $FXe^{16}O^{14}N^{16}O_2$, $FXe^{16}O^{14}N(^{16}O^{18}O)$, and $FXe^{16}O^{15}N^{16}O_2$	323
9.3.	Calculated Vibrational Frequencies, Raman and Infrared Intensities for $FXe^{16}O^{14}N^{16}O_2$, $FXe^{18}O^{14}N^{16}O_2$, $FXe^{16}O^{14}N^{18}O_A^{16}O_S$, $FXe^{16}O^{14}N^{16}O_A^{18}O_S$, $FXe^{18}O^{14}N^{16}O_S$, $FXe^{18}O^{14}N^{16}O_A^{18}O_S$ and $FXe^{16}O^{15}N^{16}O_2$	324
9.4.	Experimental and Calculated ^a Frequencies for O(XeF) ₂	325
9.5.	Factor-Group Analysis for FXeONO2	326
9.6.	Factor-Group Analyses for FXe ¹⁶ ON ¹⁶ O ₂ and FXe ¹⁶ ON ¹⁶ O ¹⁸ O	329
A1.1.	Experimental and Calculated ($C_{3\nu}$) Vibrational Frequencies for CH ₃ C=N	357
A1.2.	Experimental Vibrational Frequencies for CH ₃ CN· <i>m</i> HF	358
A1.3.	Calculated Vibrational Frequencies and Geometries for Xe ^{16/18} OF ₂ ·HF (OH Coordinated)	359
A1.4.	Calculated Vibrational Frequencies for Xe ^{16/18} OF ₂ ·DF (OD Coordinated)	360
A1.5.	Calculated Vibrational Frequencies and Geometries for F ₂ ^{16/18} OXe·HF (FH Coordinated)	361
A1.6.	Calculated Vibrational Frequencies for $F_2^{16/18}OXe \cdot DF$ (FD Coordinated).	362
A1.7.	Calculated Vibrational Frequencies and Geometries for F2 ^{16/18} OXe·2HF	363
A1.8.	Calculated Vibrational Frequencies for F2 ^{16/18} OXe 2DF	364
A1.9.	Calculated Vibrational Frequencies for $(F_2^{16/18}OXe)_2$ Dimer	365
A1.10.	Calculated Vibrational Frequencies and Geometries for $(Xe^{16/18}OF_2)_3$	366
A1.11.	Comparison of Calculated Vibrational Frequencies and Geometries for XeOF ₂ Using Different Levels of Theory and Basis Sets	² 367
A1.12.	Calculated Vibrational Frequencies and Geometries for XeF_4 (D_{4h})	367

•

1

A2.1.	Calculated Vibrational Frequencies and Infrared and Raman Intensities for the $Xe^{16/18}OF_3^-$ Anion	368
A2.2.	Experimental and Calculated Vibrational Frequencies and Infrared and Ramar Intensities for Xe ^{16/18} OF ₂	1 369
A2.3.	Calculated Geometrical Parameters for the XeOF ₃ ⁻ Anion	370
A3.1.	Estimated Volumes, Lattice Enthalpies, and Entropies for [XeOF][AsF ₆], [HOXeF ₂][AsF ₆], [HOXe(F) ₂ OXeF ₂][AsF ₆], [FXeOXeF ₂][AsF ₆], [FXeOXe(F) ₂ OXeF ₂][AsF ₆], [XeF][AsF ₆], [Xe ₂ F ₃][AsF ₆], [Xe ₃ OF ₃][AsF ₆], and [H ₃ O][AsF ₆]	374
A3.2.	Calculated Bond Lengths (Å) and Bond Angles (deg) for the XeF_3^+ ($C_{2\nu}$) Catio and XeF_3^+ ·HF Adduct and a Complete List of Experimental and Calculated Geometrical Parameters for ([XeF_3 ·HF][Sb_2F_{11}]) ₂ ·[H_5F_4][SbF_6], [XeF_3 ·HF][Sb_2F_{11}], and the [XeF_3][SbF_6] Ion Pair	on 375
A3.3.	Calculated Vibrational Frequencies and Infrared and Raman Intensities for the $HOXeF_2^+$ Cation	377
A3.4.	Calculated Vibrational Frequencies and Infrared and Raman Intensities for the [HOXeF ₂][AsF ₆] Ion Pair	379
A3.5.	Calculated Vibrational Frequencies and Infrared and Raman Intensities for the $FXeOXeF_2^+$ Cation	382
A3.6.	Calculated Vibrational Frequencies and Infrared and Raman Intensities for the $HOXe(F)_2OXeF_2^+$ Cation	383
A3.7.	Calculated Vibrational Frequencies and Infrared and Raman Intensities for the $FXeOXe(F)_2OXeF_2^+$ Cation	384
A3.8.	Calculated Bond Lengths (Å) and Bond Angles (deg) for the $HOXeF_2^+$, [HOXeF ₂][AsF ₆], FXeOXeF ₂ ⁺ , HOXe(F) ₂ OXeF ₂ ⁺ and FXeOXe(F) ₂ OXeF ₂ ⁺ Cations	385
A4.1.	Experimental and Calculated Frequencies for KrF ₂	388
A4.2.	ELF Basin Population and Covariance Matrix Elements of KrF ₂	392

ų

A4.3.	ELF Basin Population, $\overline{N}[\Omega]$, Covariance Matrix Elements, $\langle cov(\overline{N}[\Omega], \overline{N}[\Omega']) \rangle$, and Bromine Atomic Basin Contribution, $(\overline{N}[\Omega Br])$, of BrOF ₂ ⁺	394
A5.1.	Experimental and Calculated Vibrational Frequencies for XeF ₂	395
A5.2.	Calculated Geometrical Parameters for [BrOF ₂][AsF ₆] ₃ ²⁻	396
A5.3.	Calculated Geometrical Parameters for [BrOF ₂][AsF ₆]·XeF ₂	398
A5.4.	NBO Valencies, Bond Orders, and Charges (NPA) for [BrOF ₂][AsF ₆]·XeF ₂	399
A5.5.	QTAIM Atomic Populations, Delocalization Indexes, ELF Basin Population a Covariance Matrix Elements of Free NgF ₂ (Ng = Xe, Kr) NgF ₂ Coordinated to Bromine Atom in [BrOF ₂][AsF ₆]·2NgF ₂	nd o the 401
A6.1.	Calculated Vibrational Frequencies, Raman and Infrared Intensities for $FXe^{16}O^{14}N^{16}O_2$, $FXe^{18}O^{14}N^{16}O_2$, $FXe^{16}O^{14}N^{18}O_A^{16}O_S$, $FXe^{16}O^{14}N^{16}O_A^{18}O_S$, $FXe^{18}O^{14}N^{18}O_A^{16}O_S$, $FXe^{18}O^{14}N^{16}O_A^{18}O_S$ and $FXe^{16}O^{15}N^{16}O_2$	407
A6.2.	Experimental and Calculated Frequencies for O(XeF) ₂	408
A6.3.	Calculated Vibrational Frequencies (cm^{-1}) for NO ₂ ⁺	409

.

.

.

LIST OF FIGURES

page

1.1.	Geometry and thermal motion of the XeF ₄ molecule	4
1.2.	A perspective view (a) of the packing of the $[XeF_3][SbF_6]$ units within the unit cell as viewed down the <i>a</i> -axis and (b) of the $[XeF_3][SbF_6]$ structural unit with the atoms as 50% probability thermal ellipsoids. Interatomic distances are in angstroms. (c) An approximate model for the fluorine bridging in $[XeF_3][SbF_6]$.	6
1.3.	(a) Bond lengths (Å) and angles (deg) for XeF_5^- at $-86 \ ^\circ C$ in $[N(CH_3)_4]$ [XeF ₅]. Projection of the XeF ₅ ⁻ anion on (111). (b) Projections of the XeF ₅ ⁻ anion on (130) and (010)	8
1.4.	The X-ray crystal structure of Xe(OTeF ₅) ₄	10
1.5.	Pentagonal-planar geometry around xenon in [C ₆ F ₅ XeF ₂][BF ₄]	13
1.6.	(a) Square-Planar and (b, c) Pentagonal-planar geometries and thermal motion around xenon in the three crystallographically independent molecules in $[C_6F_5XeF_2\cdot1.5(NCCH_3)][BF_4]$	14
1.7.	Crystal structures of (a) $[Cd(XeF_2)_8]]SbF_6]_2$ and (b) $[Cd_2(XeF_2)_{10}][SbF_6]_4$ showing XeF ₂ coordinated to metal cations as terminal and bridging ligands, respectively.	20
1.8.	Packing diagrams for (a) β -KrF ₂ and (b) α -KrF ₂ viewed along the <i>a</i> -axis	23
1.9.	Structures of (a) [KrF][AsF ₆], (b) [KrF][SbF ₆], and (c) [KrF][BiF ₆]	24
1.10.	Structures of (a) $[Kr_2F_3][SbF_6] \cdot KrF_2$ and (b) $[Kr_2F_3]_2[SbF_6]_2 \cdot KrF_2$	24
2.1.	Schematic Diagram of Metal Vacuum Line System	29
2.2.	Glass vacuum line used for the manipulation of non-corrosive volatile materials	30
2.3.	Hydrogen fluoride distillation apparatus	35
2.4.	Apparatus used for the vacuum transfer of SO ₂ ClF solvent	37
2.5.	Apparatus used for the vacuum transfer of CH ₃ CN solvent	38

2.6.	The stainless steel hot-wire reactor used for the preparation of KrF ₂	42
2.7.	Low-temperature crystal growing apparatus	67
2.8.	Low-temperature crystal mounting apparatus	69
2.9.	Enlarged view of the crystal mounting apparatus	70
3.1.	The ¹⁹ F NMR spectrum (470.599 MHz) of (a) $Xe^{16}OF_2$ and (b) $Xe^{16,18}OF_2$, and (c) the ¹²⁹ Xe NMR spectrum (138.339 MHz) of $Xe^{16}OF_2$	81
3.2.	Crystal packing for $F_2OXeN \equiv CCH_3$ viewed along the <i>a</i> -axis	87
3.3.	The X-ray crystal structure of $F_2OXeN \equiv CCH_3$ showing (a) two independent structural units and (b) the long contacts to Xe(2)	88
3.4.	Raman spectra recorded at -150 °C using 1064-nm excitation for natural abundance (lower trace) and 98.6% ¹⁸ O-enriched (upper trace): (a) XeOF ₂ , (b) F ₂ OXeN=CCH ₃ , and (c) XeOF ₂ · <i>n</i> HF	91
3.5.	Calculated geometries (SVWN/(SDB-)cc-pVTZ) of (a) XeOF ₂ , (b) $F_2OXeN \equiv CCH_3$, (c) XeOF ₂ ·HF, O···H coordinated, (d) XeOF ₂ ·HF, F···H coordinated, (e) (XeOF ₂) ₂ , (f) (XeOF ₂) ₃ , and (g) XeOF ₂ ·2HF	100
4.1.	Raman spectra of natural abundance (lower trace), 50% (middle trace) and 97.8% ¹⁸ O-enriched (upper trace) XeO ₂ recorded under frozen water at -150 °C using 1064-nm excitation	124
4.2.	Raman spectra of yellow-orange incompletely polymerized product(s) (black trace) and yellow, macromolecular XeO ₂ (red trace) recorded under solid water at -150 °C using 1064-nm excitation	131
5.1.	Calculated geometries [B3LYP/aug-cc-pVTZ(-PP)] for (a) XeOF ₃ ⁻ and (b) XeOF ₂	142
5.2.	Raman spectra of natural abundance (lower trace) and 97.8% ¹⁸ O-enriched (upper trace) $[N(CH_3)_4][XeOF_3]$ recorded at –150 °C using 1064-nm excitation	r 148
5.3.	Raman spectra of natural abundance (lower trace) and 97.8% ¹⁸ O-enriched (upper trace) Cs[XeOF ₃] recorded at -150 °C using 1064-nm excitation	149
6.1.	The XeF_3^+ cations in the X-ray crystal structures of (a) ([XeF_3·HF][Sb_2F_{11}])_2 \cdot [H ₅ F ₄][SbF ₆], (b) [XeF_3·HF][Sb_2F_{11}], and (c) [XeF_3][SbF ₆]	180

6.2.	Crystal packing for $([XeF_3 \cdot HF][Sb_2F_{11}])_2 \cdot [H_5F_4][SbF_6]$ viewed along the <i>b</i> -axis	181
6.3.	Crystal packing for $[XeF_3 \cdot HF][Sb_2F_{11}]$ viewed along the <i>b</i> -axis	183
6.4.	Secondary coordination sphere of the $XeF_3^+ \cdot HF$ adduct-cation subunit in the X-ray crystal structures of (a) ([XeF_3 \cdot HF][Sb_2F_{11}])_2 \cdot [H_5F_4][SbF_6] and (b) [XeF_3 \cdot HF][Sb_2F_{11}]	184
6.5.	The $[H_5F_4][SbF_6]$ unit in the X-ray crystal structure of $([XeF_3 \cdot HF][Sb_2F_{11}])_2 \cdot [H_5F_4][SbF_6]$	186
6.6.	Raman spectra of natural abundance (lower trace) and 97.8% ¹⁸ O-enriched (upper trace) of $[HOXeF_2][AsF_6]$ recorded at -150 °C under HF solvent using 1064-nm excitation.	187
6.7.	Raman spectra of natural abundance (lower trace) and 97.8% ¹⁸ O-enriched (upper trace) of [FXeOXeF ₂][AsF ₆] recorded at -150 °C under HF solvent using 1064-nm excitation.	188
6.8.	Raman spectra of natural abundance (lower trace) and 97.8% ¹⁸ O-enriched (upper trace) of $[HOXe(F)_2OXe(F)_2][AsF_6]$ recorded at -150 °C under HF solvent using 1064-nm excitation.	189
6.9.	Raman spectra of natural abundance (lower trace) and 97.8% ¹⁸ O-enriched (upper trace) of $[FXeOXe(F)_2OXe(F)_2][AsF_6]$ recorded at -150 °C under HF solvent using 1064-nm excitation.	190
6.10.	Calculated geometries $[B3LYP/aug-cc-pVTZ(-PP)]$ for (a) $HOXeF_2^+$, (b) $FXeOXeF_2^+$, (c) $HOXe(F)_2OXeF_2^+$, (d) $FXeOXe(F)_2OXeF_2^+$, and (e) $[HOXeF_2][AsF_6]$	196
6.11.	Calculated geometries [B3LYP/aug-cc-pVTZ(-PP)] for (a) XeF_3^+ , (b) $XeF_3^+ \cdot HF$, (c) $[XeF_3][AsF_6]$	202
7.1.	(a) The structural unit in the X-ray crystal structure of $[BrOF_2][AsF_6] \cdot 2KrF_2$; thermal ellipsoids are shown at the 50% probability level and (b) the calculated geometry (PBE1PBE/aug-cc-pVTZ(-PP)) of $[BrOF_2][AsF_6] \cdot 2KrF_2$ showing the pseudo-octahedral coordination around bromine(V)	214
7.2.	Raman spectrum of [BrOF ₂][AsF ₆]·2KrF ₂ recorded at -150 °C using 1064-nm excitation.	220

-

7.3.	ELF localization domains for (a) $[BrOF_2][AsF_6] \cdot 2KrF_2$ compared with those of (b) $BrOF_2^+$	233
8.1.	The structural unit in the X-ray crystal structure of [BrOF ₂][AsF ₆]·2XeF ₂	252
8.2.	The calculated geometry (PBE1PBE/aug-cc-pVTZ(-PP)) of [BrOF ₂][AsF ₆]·2XeF ₂ showing the pseudo-octahedral coordination around bromine(V)	253
8.3.	The X-ray crystal structure of [ClOF ₂][AsF ₆] showing the pseudo-octahedral coordination around chlorine(V)	256
8.4.	The calculated geometry (PBE1PBE/Stutt Huzpolar 2) of $[ClOF_2][AsF_6]_3^{2-}$ (<i>C</i> ₁) showing the pseudo-octahedral coordination around chlorine(V)	257
8.5.	The crystal packing of $[ClOF_2][AsF_6]$ (along the <i>b</i> -axis)	261
8.6.	Raman spectrum of [BrOF ₂][AsF ₆] recorded at -150 °C using 1064-nm excitation	264
8.7.	Raman spectrum of [ClOF ₂][AsF ₆] recorded at -150 °C using 1064-nm excitation	265
8.8.	Raman spectrum of [BrOF ₂][AsF ₆]·XeF ₂ recorded at -150 °C using 1064-nm excitation	266
8.9.	Raman spectrum of [BrOF ₂][AsF ₆]·2XeF ₂ recorded at -150 °C using 1064-nm excitation	1 267
8.10.	The calculated geometry (PBE1PBE/Stutt Huzpolar 2) of $[BrOF_2][AsF_6]_3^{2-}$ (<i>C</i> ₁) showing the pseudo-octahedral coordination around bromine(V)	278
8.11.	The calculated geometry (PBE1PBE/aug-cc-pVTZ(-PP)) of $[BrOF_2][AsF_6] \cdot XeF_2$ (C_1) showing the pseudo-octahedral coordination around bromine(V).	279
8.12.	ELF localization domains for [BrOF ₂][AsF ₆]·2XeF ₂	302
9.1.	Raman spectra of FXeONO ₂ recorded at -160 °C using 1064-nm excitation. Lower trace: recorded after 5 h at -50 °C. Upper trace: recorded after five days -78 °C.	311

.

.

9.2.	Raman spectrum of FXeONO ₂ recorded at -160 °C using 1064–nm excitation for natural abundance (lower trace) and 98.6% ¹⁸ O-enriched (upper	
	trace)	321
9.3.	Raman Spectra of ¹⁶ O(XeF) ₂ and ¹⁸ O(XeF) ₂	322
A4.1.	ELF localization domains of KrF ₂	391
A4.2.	ELF localization domains of AsF_6^-	394
A5.1.	ELF localization domains of XeF ₂	402
A5.2.	ELF localization domains of $[BrOF_2][AsF_6]_3^{2-}$	403

CHAPTER 1

Introduction

1.1. Introduction to Noble-Gas Reactivity

This Thesis has as its primary focus, the chemistry of xenon(IV). Thus, the present Chapter is mainly concerned with the status of xenon(IV) chemistry prior to the onset of the present Thesis research.

The events leading up to the discovery of noble-gas reactivity have been chronicled previously in a number of excellent review $articles^{1-12}$ as well as historical reviews that include experiments preceding the discovery and span over 100 years.^{13,14}

In 1895, Henri Moissan attempted the reaction of newly discovered noble-gas, argon, with fluorine gas at room temperature and under the action of an induction spark, without success.¹⁵ Attempts were also made in 1933 to induce reactivity between krypton and bromine,¹⁶ krypton and chlorine,¹⁶ and xenon and fluorine,¹⁷ however, all failed. These failures, especially the attempted reaction of xenon and fluorine,¹⁷ led to the noble-gases being regarded as chemically inert for the next three decades, and entrenched the so-called octet rule.^{13,14} The first credible report of noble gases reactivity was made in 1962 by Neil Bartlett when he reacted deep red-brown PtF₆ vapor with xenon gas at room temperature. The product was a yellow-orange solid, then formulated as [Xe][PtF₆].¹⁸ The product has since been reformulated as a XeF⁺ salt, [XeF][PtF₆], in admixture with PtF₅ which, when warmed to \leq 60 °C, gave [XeF][Pt₂F₁₁].^{19,20} This discovery was reported just

a few months before the synthesis of XeF_4^{21} and an erroneous report of XeF_2^{22} , although the latter was definitivly synthesized in 1963.²²

Since the discovery of noble-gas reactivity, numerous other noble-gas compounds have been synthesized and structurally characterized, and are described in several reviews.^{1–12} Among these compounds, the chemistry of xenon is the most diverse, forming compounds in the $+\frac{1}{2}$, +2, +4, +6, and +8 oxidation states. In contrast, krypton is only known to form compounds in the +2 oxidation state.¹² Radon compounds also exist but have only been obtained at the radiotracer level and their oxidation states are uncertain.^{23–25} There are also several reports in the literature of matrix-isolated argon compounds,^{26–30} however, no argon compound has been synthesized to date in macroscopic amounts.

Xenon in the +2 oxidation state has been shown to form bonds with F, Cl, O, N, and C.^{1–11} Consequently, numerous compounds of Xe(II) have been synthesized and characterized. Rather fewer Xe(VI) species are known because of the higher oxidative potential of Xe(VI) relative to Xe(II) and the greater likelihood of Xe(VI) oxidizing N- or C-coordinating ligands rather than forming bonds. The number and diversity of Xe(IV) compounds, prior to the present work, is even more sparse and largely restricted to wellcharacterized fluoride species. The factors that contribute to the paucity of Xe(IV) compounds are discussed below.

1.2. Xe(IV) Chemistry

1.2.1. Xe(IV) Fluorides

The first Xe(IV) compound, discovered mere months after Bartlett's discovery of

noble-gas reactivity, was synthesized by the reaction of Xe and F_2 in a 1:5 molar ratio at 400 °C (~2 to 3 atm.; eq 1.1).³¹ The product, XeF₄, is stable indefinitely at room

$$Xe + 2F_2 \xrightarrow{400 \,^{\circ}C} XeF_4 \tag{1.1}$$

temperature under anhydrous conditions and is the synthetic precursor for all other Xe(IV) species. The crystal structure,^{32–34} Raman spectrum,^{35–37} and NMR spectra^{37–40} show that XeF₄ is consistent with an AX_4E_2 VSEPR⁴¹ arrangement of bond pairs and valence electron lone pairs, giving it a square-planar geometry (Figure 1.1) with Xe–F bond lengths of 1.953(2) Å.³² An example in which XeF₄ functions as a ligand to a metal center, [Mg(XeF₂)(XeF₄)][AsF₆]₂,⁴² has recently been reported. The salt was characterized by X-ray crystallography and by Raman spectroscopy and is also novel because it is the only known example in which XeF₂ and XeF₄ are simultaneously coordinated to the same metal center.

The fluoride ion donor and acceptor properties of XeF₄ have been studied, resulting in the formation of XeF₃⁺ and XeF₅⁻ salts. When compared with XeF₂, XeF₄ is a weaker fluoride ion donor⁴³ and requires a stronger fluoride-ion acceptor to form the corresponding cation. In contrast with XeF₂, which donates a fluoride ion to AsF₅,^{44,45} XeF₄ forms a weak adduct with AsF₅ that is only stable at low-temperatures (< -78 °C).⁴⁶ In the presence of a stronger Lewis acid such as SbF₅, XeF₄ has been shown to form stable [XeF₃][SbF₆] and [XeF₃][Sb₂F₁₁] salts.

The direct interaction of XeF₄ and SbF₅ results in yellow [XeF₃][Sb₂F₁₁] (eq 1.2) when an excess of SbF₅ is allowed to react with XeF₄ at room temperature and yellow α -

$$XeF_4 + SbF_{5 (excess)} \xrightarrow{RT} [XeF_3][Sb_2F_{11}]$$
(1.2)

Figure 1.1. Geometry and thermal motion of the XeF_4 molecule. From ref 32.

[XeF₃][SbF₆] is formed when [XeF₃][Sb₂F₁₁] is fused with an excess of XeF₄ at 80 °C (eq 1.3).⁴⁷ A low-temperature phase of [XeF₃][SbF₆] has been synthesized by the reaction of a stoichimoetric excess of XeF₄ with SbF₅ in HF solvent at room temperature (eq 1.4) and has been designated as β -[XeF₃][SbF₆].⁴⁶ The XeF₃⁺ cation has been fully characterized

$$[XeF_3][Sb_2F_{11}] + XeF_{4 (excess)} \xrightarrow{80 \,^{\circ}C} 2 \alpha - [XeF_3][SbF_6]$$

$$(1.3)$$

$$XeF_{4 (excess)} + SbF_{5} \xrightarrow{HF} \beta [XeF_{3}][SbF_{6}]$$
(1.4)

in SbF₅ solution by ¹⁹F and ¹²⁹Xe NMR spectroscopy.^{47–49} The ¹⁹F spectrum consists of a doublet and triplet centered at 39.7 and 23.0 ppm, respectively, in SbF₅ solvent with ¹²⁹Xe satellites and ${}^{1}J({}^{19}F-{}^{129}Xe)$ couplings of 2620 and 2440 Hz, respectively, and a $^{2}J(^{19}\text{F}-^{19}\text{F})$ coupling of 174 Hz. The ^{129}Xe spectrum consists of a single resonance centered at 595 ppm which is split into a doublet of triplets as a result of coupling to the equatorial and two axial fluorine atoms, consistent with a T-shaped geometry. The cation geometry was confirmed for $[XeF_3][Sb_2F_{11}]$ and α - and β - $[XeF_3][SbF_6]$ by Raman spectroscopy^{46,50} and by the X-ray crystal structure of β -[XeF₃][SbF₆].^{45,51,52} The primary coordination sphere of xenon in XeF_3^+ consists of a T-shaped arrangement of fluorine ligands in accordance with an AX₃E₂ VSEPR⁴¹ arrangement of three bonding electron pairs and two valence electron lone pairs (Figure 1.2). The mutually trans Xe-F bond lengths for $[XeF_3][Sb_2F_{11}]$ (1.88(1), 1.89(1) Å;⁵¹ 1.883(4), 1.908(4) Å⁴⁵) and β - $[XeF_3][SbF_6]$ (1.906(13), 1.907(15) Å)⁵² are elongated relative to the cis Xe-F bond length $(1.83(1))^{51}$ 1.832(4)⁴⁵ and 1.835(10) Å,⁵² respectively) but the corresponding bond lengths are equal to within $\pm 3\sigma$ when the two structures are compared. In both structures, two relatively short secondary contacts (SbF₆⁻, 2.485(10) and 2.715(13) Å;⁵²

Figure 1.2. A perspective view (a) of the packing of the [XeF₃][SbF₆] units within the unit cell as viewed down the *a*-axis and (b) of the [XeF₃][SbF₆] structural unit with the atoms as 50% probability thermal ellipsoids. Interatomic distances are in angstroms. (c) An approximate model for the fluorine bridging in [XeF₃][SbF₆]. From ref 52.

 $Sb_2F_{11}^{-}$, 2.50(1) and 2.94(1) Å;⁵¹ 2.490(4)⁴⁵) occur with the anions. These contacts are situated in the XeF_3^+ molecular plane and form an irregular pentagonal planar arrangement around xenon (Figure 1.2.b).

The XeF₅⁻ anion forms a regular pentagonal planar (D_{5h}) arrangement⁵³ around xenon in accordance with an AX₅E₂ VSEPR⁴¹ arrangement of five bonding electron pairs and two lone valence electron lone pairs (Figure 1.3). The XeF₅⁻ anion has been synthesized (eq 1.5) as the N(CH₃)₄⁺, Cs⁺, Rb⁺, K⁺, and Na⁺ salts and has been

$$XeF_4 + MF \xrightarrow{190 \,^{\circ}C} [M][XeF_5] \quad (M = N(CH_3)_4, Cs, Rb, K, Na)$$
 (1.5)

characterized by Raman and infrared spectroscopy, by ¹⁹F and ¹²⁹Xe NMR spectroscopy, and by an X-ray crystal structure determination of the N(CH₃)₄⁺ salt.⁵³ The ¹²⁹Xe NMR spectrum of [N(CH₃)₄][XeF₅] dissolved in CH₃CN and containing a one molar excess of [N(CH₃)₄][F] displayed a well-resolved binomial sextet, consistent with the coupling of the ¹²⁹Xe nucleus to five chemically equivalent ¹⁹F nuclei in the XeF₅⁻ anion [δ (¹²⁹Xe), -527.0 ppm from XeOF₄; ¹J(¹⁹F-¹²⁹Xe), 3400 Hz]. The ¹⁹F NMR spectrum showed a narrow singlet flanked by ¹²⁹Xe satellites [δ (¹⁹F), 38.1 ppm ¹J(¹⁹F-¹²⁹Xe), 3398 Hz].

In the crystal structure, the average Xe–F bond length of the anion (2.012(2) Å) is elongated relative to that of XeF₄ (1.953(2) Å³²). The XeF₅⁻ anion represents the first example of a pentagonal planar geometry. This contrasts with the equatorial fluorine atoms of IF₇, which are puckered by 7.5°.⁵⁴ The reason why XeF₅⁻ apparently does not exhibit puckering is attributed to the presence of the two axial electron lone pairs which exert greater repulsive forces than the two axial fluorines in the IF₇ molecule, thus forcing the XeF₅⁻ anion to be planar.⁵³ However, the planar arrangement imparts

Figure 1.3. (a) Bond lengths (Å) and angles (deg) for XeF₅⁻ at -86 °C in [N(CH₃)₄] [XeF₅]. Projection of the XeF₅⁻ anion on (111). Esds are given in parentheses; thermal ellipsoids are shown at the 50% probability level. (b) Projections of the XeF₅⁻ anion on (130) (left) and (010) (right). Thermal ellipsoids are shown at the 50% probability level. From ref 53.

congestion to the fluorine atoms where the intramolecular F…F distances range from 2.35 to 2.38 Å,⁵³ which are significantly less than twice the van der Waals radius for fluorine (2.94 Å 55).

1.2.2. OTeF₅ Derivatives of Xe(IV)

The chemistry of Xe(IV) has also been extended by the use of the pentafluoroorthotellurate ligand, OTeF₅. The OTeF₅ group has an electronegativity of 3.87^{56} which is comparable to that of fluorine, $3.98.^{57}$ The most efficient synthesis of Xe(OTeF₅)₄ has been accomplished by the reaction of XeF₄ with B(OTeF₅)₃ (eq 1.6).⁵⁸

$$3XeF_4 + 4B(OTeF_5)_3 \xrightarrow{\text{Freon-113}} 3Xe(OTeF_5)_4 + 4BF_3$$
(1.6)

The Xe(OTeF₅)₄ molecule has been characterized in the solid state by Raman^{38,59} and Xray crystallography.⁶⁰ Both methods of characterization show the local environment around Xe is square-planar but the crystal structure (Figure 1.4) shows that the TeF₅ groups are bent out-of-plane, as a result of the steric requirements of the valence electron lone pairs on oxygen, and bend with two groups up and two groups down to minimize steric interactions between the bulky OTeF₅ ligands.⁶⁰

The ¹⁹F and ¹²⁹Xe NMR spectra of Xe(OTeF₅)₄ have been recorded in CFCl₃^{38,56} and C₄F₉SO₂F⁵⁸ solvents and show that the four OTeF₅ groups are equivalent. The mixed compounds, Xe(OTeF₅)_{4-x}F_x (x = 0–3), have also been synthesized, by ligand exchange between XeF₄ and Xe(OTeF₅)₄, and the characterizations of the resulting species by ¹⁹F and ¹²⁹Xe NMR spectroscopy.³⁸ The ¹²⁹Xe chemical shifts of the compounds increase linearly when the OTeF₅ groups are replaced by fluorine (211 ppm/OTeF₅ group). The

Figure 1.4. The X-ray crystal structure of $Xe(OTeF_5)_4$. Thermal ellipsoids are shown at the 50% probability level. From ref 60.

low-frequency shift with decreasing numbers of fluorine ligands reflect the higher effective electronegativity of fluorine compared to that of the OTeF₅ group³⁸ and is a consistent trend that has been observed for other OTeF₅ derivatives of Xe.⁵⁶ A similar trend is also observed in the ¹²⁹Xe NMR spectrum of the related family of cations, $F_xXe(OTeF_5)_{3-x}$ (x = 0–2), but the difference is 182 ppm/OTeF₅ group.⁶¹ The cations were synthesized by the reaction of Xe(OTeF₅)₄ in excess SbF₅. Antimony pentafluoride acts as a Lewis acid as well as a source of fluoride ions which scramble with the OTeF₅ groups giving rise to the mixed cation series, $F_xXe(OTeF_5)_{3-x}^+$.

Although the entire family of cations was observed in solution, none have been isolated or characterized in the solid state. The difficulty lies in the reluctance of Xe(IV) to act as a ligand donor. As noted above, XeF₄ will only donate a fluoride ion in the presence of an exceptionally strong Lewis base, such as SbF_5 . However, with fluorine atoms present, the ligands scramble to give a random distribution of all possible mixed cations, XeF_3^+ , $XeF_2(OTeF_5)^+$, $XeF(OTeF_5)_2^+$, and $Xe(OTeF_5)_3^+$. A possible solution that the authors proposed was to use the corresponding $OTeF_5$ analogue of SbF_5 , Sb(OTeF₅)₅.⁶¹ Unfortunately, the latter molecule is unstable, decomposing to Sb(OTeF₅)₃ and F₅TeOOTeF₅ and therefore must be synthesized in situ at low temperatures. A solution of "Sb(OTeF₅)₅" in SO₂ClF was prepared by adding an equimolar amount of $Xe(OTeF_5)_2$ to $Sb(OTeF_5)_3$ (eq 1.7) and was shown to contain an equimolar mixture of $[XeOTeF_5][Sb(OTeF_5)_6]$ and $Sb(OTeF_5)_3$ which behaves as though it were $Sb(OTeF_5)_5$ (eq 1.8).⁶¹ Such a reaction has been successful in forming the $O=Xe(OTeF_5)_3^+$ cation $2Xe(OTeF_5)_2 + 2Sb(OTeF_5)_3 \xrightarrow{SO_2CIF} [XeOTeF_5][Sb(OTeF_5)_6] + Sb(OTeF_5)_3 + Xe (1.7)$

$$[XeOTeF_5][Sb(OTeF_5)_6] + Sb(OTeF_5)_3 \xrightarrow{SO_2CIF} "Sb(OTeF_5)_5" + Xe \qquad (1.8)$$

from neutral O=Xe(OTeF₅)₄ (eq 1.9) but similar attempts to form the Xe(OTeF₅)₃⁺ cation from neutral Xe(OTeF₅)₄ were unsuccessful.⁶¹ Therefore, to date, no OTeF₅ ligated

"Sb(OTeF₅)₅" + O=Xe(OTeF₄)₄
$$\xrightarrow{SO_2CIF}$$
 [O=Xe(OTeF₅)₃][Sb(OTeF₅)₆] (1.9)
cation of Xe(IV) has been isolated or characterized in the solid state.

1.2.3. C₆F₅ and OIO₄ Derivatives of Xe(IV)

The only example of a C–Xe(IV) bond that is presently known is the $C_6F_5XeF_2^+$ cation. The BF_4^- salt was obtained by the reaction of stoichiometric amounts of $C_6F_5BF_2$ and XeF₄ in CH₂Cl₂ at -55 °C and the product, $[C_6F_5XeF_2][BF_4]$, was precipitated as a pale yellow solid (eq 1.10).⁶² Pure, solid $[C_6F_5XeF_2][BF_4]$ was found to be very shock

$$XeF_4 + C_6F_5BF_2 \xrightarrow[-55 \circ C]{C_6F_5XeF_2} [BF_4]$$
(1.10)

sensitive. The crystal structure shows a pentagonal planar arrangement around Xe (Figure 1.5) when the short contacts to the anion are also considered. The longer contacts are puckered out of the molecular plane presumably to alleviate steric congestion within the plane.⁶³ This salt was also characterized by solution ¹⁹F, ¹¹B, and ¹²⁹Xe NMR spectroscopy in CH₃CN at -40 °C and aHF at -40 and -80 °C to provide a complete interpretation of the NMR spectra. In solution, CH₃CN molecules coordinate to xenon, forming the adduct cation, $[C_6F_5XeF_2\cdot(NCCH_3)_n]^+$. Crystallization from CH₃CN yielded $[C_6F_5XeF_2\cdot1.5(NCCH_3)][BF_4]$ in which three crystallographically independent structural units were observed. In one case, a single CH₃CN ligand is N-coordinated to xenon giving a square planar coordination around xenon (Figure 1.6.a). In each of the other

Figure 1.5. Pentagonal-planar geometry around xenon in $[C_6F_5XeF_2][BF_4]$. Thermal ellipsoids are shown at the 50% probability level. From ref 63.

а

Figure 1.6. (a) Square-planar and (b) pentagonal-planar geometries and thermal motion around xenon in the three crystallographically independent molecules in $[C_6F_5XeF_2\cdot1.5(NCCH_3)][BF_4]$. Thermal ellipsoids are shown at the 50% probability level. From ref 63.

independent structural units, two CH₃CN ligands are N-coordinated to xenon giving rise to a pentagonal-planar arrangement around xenon (Figure 1.6.b,c). In each of the latter cases, the steric requirements in the molecular plane distort the longer contacts to CH₃CN out of the plane and to a greater extent than was observed for $[C_6F_5XeF_2][BF_4]$.⁶³

A preliminary study of a mono-substituted OIOF₄ derivative, $F_3XeOIOF_4$, has been reported.⁶⁴ The ¹⁹F and ¹²⁹Xe NMR study of $F_3XeOIOF_4$ (eq 1.11) indicates that OIOF₄ group is slightly more electronegative than the OTeF₅ group based on the ¹²⁹Xe

$$XeF_4 + (IO_2F_3)_2 \xrightarrow{CFCI_3} F_3XeOIOF_4 + IOF_3 + \frac{1}{2}O_2$$
(1.11)

chemical shift of 24.4 ppm for monosubstituted $F_3XeOIOF_4$ relative to -25.5 ppm for $F_3XeOTeF_5$, suggesting that the OIOF_4 group the most highly electronegative ligand known next to fluorine itself.⁶⁴ The study also indicated that $F_3XeOIOF_4$ has a square planar arrangement around xenon, similar to XeF_4, but with one of the fluorine ligands replaced by the OIOF_4 group. To date, there has been no characterization of a Xe(IV) compound containing the OIOF_4 group in the solid state.

1.2.4. Oxide Fluoride Species of Xe(IV)

In contrast with the Xe(IV) fluoro-species, XeF_4 , XeF_3^+ , and XeF_5^- , which have been extensively characterized in solution and in the solid state (see Section 1.2.1), knowledge of Xe(IV) oxide fluoride species is much more limited. This stems from several issues including a reliable, high-yield synthesis for XeOF₂.

While there are previous reports of $XeOF_2^{65-67}$ and $XeOF_3^{-67}$ in the literature, which will be elaborated on in Section 3.1, none have proven to be definitive. Although

inconclusive, these studies clearly show that the oxides and oxide fluorides of Xe(IV) are inherently unstable and decompose either explosively by redox elimination of O_2 (eq 1.12) or by disproportionation to Xe(VI) and Xe(II) (eq. 1.13 and 1.14).⁶⁷ A related disproportionation is also encountered when XeF₄ hydrolyzes in water to form XeO₃, HF, Xe, and O_2 (eq 1.15).^{68,69}

$$XeOF_2 \longrightarrow XeF_2 + \frac{1}{2}O_2$$
(1.12)

$$2XeOF_2 \longrightarrow XeO_2F_2 + XeF_2$$
(1.13)

$$2[Cs][XeOF_3] \longrightarrow [Cs][XeO_2F_3] + XeF_2 + CsF$$
(1.14)

$$2XeF_4 + 4H_2O_{(excess)} \xrightarrow{H_2O} XeO_3 + 8HF + Xe + \frac{1}{2}O_2$$
 (1.15)

1.3. Recent Aspects of Xenon(II) Chemistry

1.3.1. Xenon(II) Oxide-Fluorides, Xe₃OF₃⁺ and O(XeF)₂

With a relative abundance of known Xe(II) compounds, it is somewhat surprising that there have been no definitive reports of a neutral oxide, or oxide-fluoride, of Xe(II). Xenon(II) oxide, XeO, which has been shown to have an unstable ³ Π ground state is therefore unlikely to exist as a monomer in the solid-state.⁷⁰ The first oxide-fluoride of Xe(II), Xe₃OF₃⁺, has recently been synthesized by the reaction of XeF₂ with [H₃O][PnF₆] in HF solvent (Pn = As, Sb; eq 1.16).⁷¹ The resulting salts have been characterized in the

$$3XeF_2 + [H_3O][PnF_6] \xrightarrow{HF} [Xe_3OF_3][PnF_6] + 3HF$$
 (1.16)

solid state by Raman spectroscopy and single-crystal X-ray diffraction. Subsequently, $O(XeF)_2$ has been synthesized by the neat reaction of $[Xe_3OF_3][AsF_6]$ with NOF (eq 1.17).⁷² The ¹⁹F and ¹²⁹Xe NMR spectra of $O(XeF)_2$, in conjunction with the ¹⁶O-, ¹⁷O-,

$$[Xe_3OF_3][AsF_6] + NOF \xrightarrow{\text{neat}} O(XeF)_2 + XeF_2 + [NO][AsF_6]$$
(1.17)

and ¹⁸O-enriched Raman spectra, and calculated vibrational frequencies,⁷² indicate that the structure is analogous to that of the isoelectronic $F(XeF)_2^+$ cation.^{19,71,73-79} However, the previous Raman spectra were wrongly assigned and incorrectly assigned bands to a non-existent (XeO)_n cyclic polymer.⁷²

1.3.2. Xenon(II) Nitrates

The $O(XeF)_2$ molecule has played a role in the synthesis of the first nitrate of xenon, FXeONO₂. The mono-nitrate has been previously postulated as an intermediate formed by HF displacement of XeF₂ by anhydrous HNO₃ solvent.^{80,81} These results were reexamined when FXeONO₂ was successfully synthesized by the reaction of [Xe₃OF₃][AsF₆] with O₂NF (eq 1.18).⁷² The crystal structure of FXeONO₂ was

 $[Xe_3OF_3][AsF_6] + 2NO_2F \xrightarrow{neat} FXeONO_2 + 2XeF_2 + [NO_2][AsF_6]$ (1.18) determined and FXeONO_2 was also characterized in SO_2ClF and CH_3CN solvents by ^{14}N , ^{19}F , and ^{129}Xe NMR spectroscopy.⁷² However, the interpretations of the solid-state ^{16}O - and ^{18}O -enriched Raman spectra were over-simplified.⁷² As a result, the proposed mechanism was incorrect and the possible intermediacy of O(XeF)₂ was also missed.

1.3.3. XeF₂ as a Ligand

Another important category of Xe(II) compounds are XeF₂ coordination complexes with metal cation centers, which have been synthesized according to eq $1.19.^{82,83}$ A list of XeF₂ coordination complexes with metal cation centers is given in $[M^{n+}][PnF_6]_n + mXeF_2 \xrightarrow{HF} [M(XeF_2)_p^{n+}][PnF_6]_n + (m-p)XeF_2 (1.19)$ Table 1.1 in addition to the aforementioned XeF₄ adduct, $[Mg(XeF_2)(XeF_4)][AsF_6]_2^{42}$ (Section 1.2.1).

The number of XeF₂ molecules coordinated to the metal center ranges from one to nine, with only an example of a seven-coordinate complex missing.^{82,83} In these complexes, XeF₂ coordinates to a metal cation center either as a terminal ligand (Figure 1.7.a) or as a bridging molecule between two metal centers (Figure 1.7.b). If the XeF_2 molecule coordinates as a terminal ligand, a single fluorine atom coordinates to the Lewis acidic metal center and results in a lengthening of the bridging Xe-F bond and a shortening of the terminal Xe-F bond. In contrast, when XeF₂ bridges between two metal centers, both Xe-F bond lengths typically increase.^{82,83} Some requirements that should be fulfilled in order to obtain homoleptic compounds include an electron affinity of 15 eV for the cation, a weakly basic anion (e.g., SbF₆) and the coordination number of the cation should be 6. The latter gives rise to an optimum arrangement with regards to repulsions between the negative F-ligands of the coordinating XeF₂ molecule and their more positive xenon domains.⁸² It has also noted that it is difficult, or even impossible, to predict what kind of structure a newly isolated coordination compound will adopt.⁸²

The Raman spectra of the aforementioned XeF₂ coordination compounds display intense Xe–F stretching modes while the A–F (A = B, P, As, Sb) and M–F vibrations are usually far less intense.^{82,83} When XeF₂ coordinates to one or two metal centers, there is a transfer of electron density from the ligand to the metal center, rendering Xe more electropositive and shifting v(Xe–F) to higher frequency relative to the symmetric

<u>M⁺</u>	M ²⁺ (alkaline earth metal)	M ²⁺ (transition or main-group metal)	M ³⁺ (lanthanide metal)
$[Li(XeF_2)_3][AsF_6]$	$[Mg(XeF_2)_4][AsF_6]_2$	$[Cu(XeF_2)_6][SbF_6]_2$	[La(XeF ₂) _{2.5}][AsF ₆] ₃
$[Ag(XeF_2)_2][AsF_6]$	$[Mg(XeF_2)_2][AsF_6]_2$	[Zn(XeF ₂) ₆][SbF ₆] ₂	[Nd(XeF ₂) _{2.5}][AsF ₆] ₃
$[Ag(XeF_2)_2][PF_6]$	$[Mg(XeF_2)_2][SbF_6]_2$	$[Cd(XeF_2)][BF_4]_2$	[Nd(XeF ₂) ₃][SbF ₆] ₃
	$[Ca(XeF_2)_5][PF_6]_2$	$[Cd(XeF_2)_5][PF_6]_2$	
	$[Ca_2(XeF_2)_9][AsF_6]_4$	$[Cd(XeF_2)_4][AsF_6]_2$	
	$[Ca_2(XeF_2)_4][AsF_6]_2$	$[Cd_2(XeF_2)_{10}][SbF_6]_4$	
	$[Ca(XeF_2)_{2.5}][AsF_6]_2$	$[Cd_2(XeF_2)_6][SbF_6]_4$	
	$[Sr(XeF_2)_3][PF_6]_2$	$[Cd_3(XeF_2)_4][SbF_6]_6$	
	$[Sr(XeF_2)_3][AsF_6]_2$	[Pb ₃ (XeF ₂) ₁₁][PF ₆] ₆	
	$[Ba(XeF_2)_4][PF_6]_2$	[Pb(XeF ₂) ₃][PF ₆] ₂	
	[Ba(XeF ₂) ₅][AsF ₆] ₂	$[Pb(XeF_2)_3][AsF_6]_2$	
	[Ba(XeF ₂) ₅][SbF ₆] ₂		

•

Table 1.1.Coordination Complexes Involving XeF2 as a Ligand ^a

^{*a*} From ref 82.

Figure 1.7. Crystal structures of (a) $[Cd(XeF_2)_8][SbF_6]_2$ and (b) $[Cd_2(XeF_2)_{10}][SbF_6]_4$ showing XeF₂ coordinated to metal cations as terminal and bridging ligands, respectively. From ref 84. stretching band of free XeF₂ at 497 cm⁻¹. When XeF₂ is terminally coordinated, the band corresponding to XeF₂ is replaced by two bands: the band at higher frequency corresponds to the terminal vibration v(Xe-F) and occurs between 544 and 584 cm⁻¹. The band at lower frequency, occurring between 411 and 479 cm⁻¹, corresponds to the stretching vibration of the Xe---F brindge bond, v(Xe--F).^{82,83} Typically for a bridging XeF₂ molecule, a single $v(XeF_2)$ band is observed and occurs in the range from 500 to 535 cm^{-1.82,83} It is interesting to note that no mention was made or inferred that would indicate whether or not the v(Xe-F) stretching modes are in any way coupled, either intra- or intermolecularly.

1.4. Krypton(II) Chemistry

Krypton is the only noble gas other than xenon to form isolable compounds in macroscopic amounts.¹² The chemistry of krypton is limited because the only stable oxidation states known are 0 and +2, although there was an early spurious report of KrF₄⁸⁵ that was subsequently disproven.⁸⁶ Krypton difluoride was the first krypton compound to be synthesized and represents the starting point for all other krypton chemistry. Unlike XeF₂, KrF₂ cannot be synthesized using high-temperature, high-pressure methods because KrF₂ is an endothermic compound ($\Delta H_f = 60.2$ kJ mol⁻¹, gas at 93 °C).^{87,88} Macroscopic quantities of KrF₂ can be synthesized by using high-energy particle beams (e⁻, protons, α),^{89,90} electric discharges,^{86,91,92} UV irradiation,^{93–97} or hot wire reactors^{97–99} as means to generate fluorine atoms at low temperatures (eq 1.20). The latter two methods are currently preferred. In all cases, highly reactive fluorine radicals

react with solid krypton at low temperatures to form the metastable KrF· radical (eq 1.21) which then likely reacts according to eqs 1.22-1.24 to form KrF₂.

$$F_2 \longrightarrow 2F$$
 (1.20)

$$F + Kr \longrightarrow KrF$$
 (1.21)

$$KrF + F_2 \longrightarrow KrF_2 + F$$
 (1.22)

$$KrF + KrF \longrightarrow KrF_2 + Kr$$
(1.23)

$$KrF + F \longrightarrow KrF_2$$
 (1.24)

In the solid state, KrF₂ is dimorphic with a high-temperature β -phase that was obtained at -80 °C (Figure 1.8.a) that reversibly converts to a low-temperature α -phase (Figure 1.8.b) upon cooling to -125 °C.^{99,100} The Kr-F bond length in α -KrF₂ is 1.894(5) Å⁹⁹ and is in excellent agreement with that determined for β -KrF₂ (1.89(2) Å, -80 °C) by X-ray diffraction¹⁰¹ and for gaseous KrF₂ by electron diffraction (1.889(10) Å, -40 °C).¹⁰² The dimorphism is also apparent in the Raman spectra where α -KrF₂ possesses a single v(KrF₂) stretching band and β -KrF₂ is factor-group split into two v(KrF₂) stretching bands.^{99,100}

Like XeF₂, KrF₂ has been reacted with strong Lewis acid pentafluorides in order to synthesize salts having the formulations [KrF][MF₆] (eq 1.25 and 1.26) and [Kr₂F₃][MF₆] (eq 1.27) where M = Nb, Ta, Ru, Pt, As, Sb, V, Rh, Pt, Au, and/or Bi.¹² In the crystal structures of [KrF][AsF₆], [KrF][SbF₆], and [KrF][BiF₆] (Figure 1.9)⁹⁹ the

$$KrF_2 + 2MF_5 \longrightarrow [KrF][Pn_2F_{11}]$$
 (Pn = As, Sb, Bi) (1.25)

$$KrF_2 + PnF_5 \longrightarrow [KrF][PnF_6]$$
(1.26)

$$2KrF_2 + PnF_5 \longrightarrow [Kr_2F_3][PnF_6]$$
(1.27)

а

b

Figure 1.8. Packing diagrams for (a) β -KrF₂ (ref 101) and (b) α -KrF₂ viewed along the *a*-axis (ref 99).

Figure 1.9. Structures of (a) [KrF][AsF₆], (b) [KrF][SbF₆], and (c) [KrF][BiF₆]; thermal ellipsoids are shown at the 50% probability level. From ref 99.

Figure 1.10. Structures of (a) [Kr₂F₃][SbF₆]·KrF₂ and (b) [Kr₂F₃]₂[SbF₆]₂·KrF₂; thermal ellipsoids are shown at the 50% probability level. From ref 99.

 KrF^+ bond lengths (1.765(2)-1.774(6) Å) are significantly shorter than in free KrF_2 (1.89(2) Å,¹⁰¹ 1.889(10) Å⁹⁹) and, while the cation in each case is ion paired to the anion, the Kr---F_b bond lengths are sufficiently long (2.090(6)-2.140(3) Å) to be considered contacts and not adducted. The crystal structures of $[Kr_2F_3][SbF_6]\cdot KrF_2$ and $[Kr_2F_3]_2[SbF_6]_2\cdot KrF_2$ (Figure 1.10)⁹⁹ show that the $Kr_2F_3^+$ cations are more isolated than KrF^+ cations in their salts. In both cases, as with the $Xe_2F_3^+$ cations in their salts,^{73,78,79} the cation is bent at the bridging fluorine to give a V-shaped cation. The bent angle is a consequence of the steric requirements of the valence electron lone pairs on fluorine.

Several other Kr(II) derivatives have been synthesized, including the only oxygen bonded species, Kr(OTeF₅)₂, which has been synthesized at low-temperature by the reaction of KrF₂ and B(OTeF₅)₃ (eq 1.28).¹⁰³ A family of nitrogen bonded cations R_FCNKrF^+ ($R_F = CF_3$, C_2F_5 , *n*- C_3F_7) has also been synthesized (eq. 1.29)¹⁰⁴ as has HCNKrF⁺ (eq. 1.30).¹⁰⁵ All of the aforementioned species have Xe(II) analogues and

$$3KrF_2 + 2B(OTeF_5)_3 \xrightarrow{SO_2CIF} 3Kr(OTeF_5)_2 + 2BF_3$$
 (1.28)

$$KrF_{2} + R_{F}CNAsF_{5} \xrightarrow{BrF_{5}} [R_{F}CNKrF][AsF_{6}]$$
(1.29)

$$KrF_{2} + [HCNH][AsF_{5}] \xrightarrow{HF} [HCNKrF][AsF_{6}] + HF \qquad (1.30)$$

have been characterized by low-temperature NMR spectroscopy.¹⁰³⁻¹⁰⁵ At present, no crystal structure has been determined for either a Kr–O or Kr–N bonded species because they are only somewhat stable in solution at low temperature and decompose rapidly when warmed to -78 °C and -50 to -60 °C, respectively.

In contrast to the large number of XeF_2 adducts with metal centers that are known, KrF_2 has only been shown to form Lewis acid-base adducts with group 6 d⁰

transition metal centers, namely $MOF_4 \cdot KrF_2$ (M = Cr,¹⁰⁶ Mo,¹⁰⁷ W¹⁰⁷). The structural characterizations of these adducts were limited to solution ¹⁹F NMR¹⁰⁷ and solid-state Raman spectroscopy^{106,107} and indicate that the adducts result from weak coordination of KrF₂ through a fluorine bridge to the metal atom. In the absence of X-ray crystal structures, an assessment of the degree of coordination, based on the relative bond lengths of terminal and bridge Kr–F bonds cannot be presently made. In addition, there are no examples known in which KrF₂ acts as an adduct to a main-group center.

1.5. Purpose and Scope of the Present Research

The overall goal of this Thesis is to extend and deepen our knowledge of the fundamental chemistry of the noble-gas elements, namely, xenon and krypton. More specifically, a major focus of the research is to extend the chemistry of Xe(IV) by the synthesis and characterization of Xe(IV) oxide and oxide fluoride derivatives. A reliable synthetic route to bulk amounts of the precursor oxide fluoride, XeOF₂, and a thorough characterization of the compound was lacking in the literature. The development of a reliable synthetic protocol would offer the possibility to extend Xe(IV) oxide fluoride chemistry by studying the Lewis donor and acceptor properties of XeOF₂. Reaction of XeOF₂ with fluoride ion sources such as CsF or the so-called "naked fluoride ion source," [N(CH₃)₄][F], are expected to yield the corresponding anion, XeOF₃⁻, while the reaction of XeOF₂ with an oxidatively resistant nitrogen base, such as CH₃CN, might be expected to yield the first example of a Xe(IV)–N bond. The electron-pair donor abilities of XeOF₂ towards Lewis acids such as [XeF][AsF₆] and in superacidic media such as

 HF/AsF_5 are also of interest because significant electron density should exist on the oxygen atom of XeOF₂ rendering it moderately basic. The aforementioned focus on Lewis donor and acceptor properties of XeOF₂ is of interest because of the anticipated instability of the Xe(IV) oxide-fluorides relative to their Xe(VI) analogues.

In related noble-gas adduct chemistry, another facet of the research is the syntheses and characterization of XeF_2 adducts with non-metal main-group centers such as Br(V) and Cl(V) with an emphasis on their characterization by single-crystal X-ray diffraction. The chemistry may also be expected to be extendable to the more reactive KrF_2 molecule, thereby providing the first KrF_2 adducts to non-metal main-group center. In addition, studies of these systems are expected to shed light on the stereochemical activity of the valence electron lone pair of Br(V) and how it is affected by coordination (steric crowding).

The final area of study in this Thesis is a more complete characterization of the only example of a xenon nitrate, FXeONO₂. The syntheses of FXeON¹⁶O₂ and FXeON(¹⁸OO) require a fuller reinvestigation by vibrational spectroscopy and the resulting solid-state ¹⁶O- and ¹⁸O-enriched Raman spectra require reinterpretation. The intermediate oxide fluoride, O(XeF)₂, was expected to play a role in the reaction and therefore also required reinterpretation of its solid-state ¹⁶O- and ¹⁸O-enriched Raman spectra.

CHAPTER 2

EXPERIMENTAL SECTION

2.1. Standard Techniques

2.1.1. Dry Box and Vacuum Line Techniques

The compounds used and prepared during the course of this work were moistureand temperature-sensitive, and were handled under rigorously anhydrous conditions on glass and metal vacuum line systems or in an inert atmosphere (N₂ gas) dry box (Vacuum Atmospheres Model DLX, oxygen and moisture <0.1 ppm) equipped with a glass cryowell for low-temperature work. Preparative work inside the dry box requiring low temperatures was accomplished using a metal Dewar filled with 4.5 mm copper-plated spheres (air rifle BBs) that had previously been cooled to ca. -140 °C in the glass cryowell (-196 °C) of the dry box.

Preparative work involving volatile fluorides that attack glass (e.g., HF) were carried out on metal vacuum lines constructed primarily from 316 stainless steel and nickel and fitted with 316 stainless steel valves (Autoclave Engineers, Inc., Figure 2.1). Pressures were measured at ambient temperatures using MKS Model PDR-5B pressure transducers having wetted surfaces constructed of Inconel. The pressure transducer possessed a range of 0–1150 Torr, which was accurate to ± 0.5 Torr.

Reactions that did not involve transfer of materials that attack glass were carried out on Pyrex glass vacuum lines equipped with grease-free 6-mm J. Young glass stopcocks outfitted with PTFE barrels (Figure 2.2). Pressures inside the glass manifold

Figure 2.1. The metal vacuum line used for the manipulation of corrosive materials. (A) Outlet to liquid nitrogen and soda lime traps followed by a two-stage direct-drive rotary vacuum pump (Edwards E2M8) – roughing vacuum. (B) Outlet to soda lime and liquid nitrogen traps followed by a two-stage direct-drive rotary vacuum pump (Edwards E2M8) – high vacuum. (C) Dry N₂ inlets. (D) F₂ inlet. (E) Bourdon pressure gauge (0–1500 Torr). (F) MKS Model PDR-5B pressure transducers (0–1000 Torr). (G) MKS Model PDR-5B pressure transducers (0–1000 Torr). (G) MKS Model PDR-5B pressure transducer (0–10 Torr). (H) Ultra-high purity argon inlet. (I) ¼-in. o.d. (¹/₈-in. i.d.) nickel reaction vessel port. (J) High-pressure stainless steel valve (Autoclave Engineers). (K) 316 stainless steel X-, T-, and L-connections employing ³/₈-in. o.d. (¹/₈-in. i.d.) threaded nickel tubing. (L) Submanifold. From ref 108.

Figure 2.2. Glass vacuum line used for the manipulation of non-corrosive volatile materials. (A) Main vacuum manifold.
(B) Dry N₂ inlet. (C) 15-mm greaseless glass J. Young stopcock with PTFE barrel. (D) 6-mm greaseless J. Young stopcock with PTFE barrel. (E) Mercury manometer. (F) Liquid N₂ cold trap. (G) Outlet to vacuum pump. From ref 108.

were monitored using a mercury manometer.

Vacuum on the glass vacuum lines (ca. 10^{-3} – 10^{-4} Torr) was accomplished using Edwards two-stage internal vane E2M8 direct-drive vacuum pumps. Vacuum was maintained on the metal line using two E2M8 vacuum pumps; the first, a roughing pump, was used primarily for the removal of volatile fluoride and oxide fluoride compounds. The rough pump was used to pump reactive, volatile fluorine compounds through a fluoride/fluorine trap consisting of a stainless steel tube (ca. 60 cm, 15 cm dia.) packed with soda lime absorbent (Fisher Scientific, 4–8 mesh), followed by a final trapping procedure, utilizing a glass liquid nitrogen trap to remove CO₂ and water formed by reaction of fluoride materials with soda lime and other volatile materials that were unreactive towards soda lime. The second vacuum pump provided the high vacuum (ca. 10^{-4} Torr) source for the manifold and was fitted with a glass liquid nitrogen trap.

2.1.2. Preparative Apparatus and Sample Vessels

All synthetic work was carried out in reactors constructed from lengths of $\frac{1}{4}$ -in. o.d. FEP tubing which were heat-sealed at one end and heat-flared (45° SAE) at the other. The tubing was connected to Kel-F valves, encased in aluminum housings, using brass flare fittings. All vessels were then connected to a glass vacuum line using $\frac{1}{4}$ -in. stainless steel Swagelok Ultratorr unions and were rigorously dried by pumping (a minimum of 6 h) under dynamic vacuum. Vessels were then connected to the metal vacuum line using a $\frac{1}{4}$ -in. PTFE Swagelok union and passivated with ca. 1000 Torr of F₂ for ca. 12 h. Once passivated, vessels were evacuated under dynamic vacuum to remove all volatile impurities and back-filled with dry N_2 (ca. 1000 Torr) prior to use. Similarly, connections made to a metal vacuum line were dried under dynamic vacuum and passivated with F_2 gas overnight. Connections made to a glass vacuum line were dried under dynamic vacuum overnight. The glass vessels used were dried under dynamic vacuum for a minimum of 8 hr and were periodically heated with a Bunsen burner.

Nuclear magnetic resonance spectra were acquired using sample tubes prepared from lengths of ¼-in. o.d. FEP tubing. One end of each tube was heat-sealed using the end of a heated thin-walled 10-mm o.d. glass NMR tube, while the other end was fused to ca. 5 cm of ¼-in. o.d. thick wall tubing. The remaining end of the thick wall was heatflared (45° SAE) for connection to a Kel-F valve. Prior to acquisition of the NMR data, the sample tubes were heat-sealed under dynamic vacuum using a nichrome wire resistance furnace of appropriate diameter. Otherwise, NMR samples were prepared in 5mm o.d. thin wall precision glass NMR tubes (Wilmad) fused to ¼-in. o.d. lengths of glass tubing which were, in turn, attached to 4-mm J. Young PTFE/glass stopcocks by use of ¼-in. stainless steel Swagelok Ultratorr unions fitted with Viton O-rings. The NMR tubes were then vacuum-dried for 8–12 h before use, and once sample and solvent were added, the tubes were heat-sealed under dynamic vacuum.

Low-temperature Raman spectra of solids (ca. -160 °C) were recorded on samples prepared in thin-walled ¹/₄-in. FEP tubing as well as 5-mm o.d. glass tubes fused to ¹/₄-in. o.d. lengths of glass tubing which were in turn attached to 4-mm J. Young PTFE/glass stopcocks by use of ¹/₄-in. stainless steel Swagelok Ultratorr unions fitted with Viton O-

32

rings. The Raman sample tubes were then vacuum-dried for 8–12 h before use, and once the sample was added, the tube was heat-sealed under dynamic vacuum.

All connections to vacuum lines were made using thick-walled ¹/₄-in. FEP tubing in conjunction with either a ¹/₄-in. PTFE Swagelok connector outfitted with PTFE compression fittings (front and back ferrules) or ¹/₄-in. stainless steel Swagelok Ultra-Torr connectors outfitted with stainless steel compression fittings and Viton rubber O-rings.

2.2. Preparation and Purification of Starting Materials

2.2.1. Sources and Purification of Gasses; N2, Ar, F2, Xe, and Kr

House nitrogen gas was generated by boiling off liquid nitrogen (Air Liquide) and was further dried through a freshly regenerated bed of type 4Å molecular sieves. High purity argon gas (VitalAire), also employed for the back pressuring of reaction vessels, was used without further purification. Technical grade fluorine gas (Air Products) and ultra-high purity Xe (Air Products, 99.995%) and Kr (Air Products, 99.995%) were used without further purification.

2.2.2. Purification of Solvents; Anhydrous HF, BrF₅, SO₂ClF, CH₃CN, SO₂, XeOF₄, $H_2^{16}O$, $H_2^{18}O$, and $D_2^{16}O$.

HF. Anhydrous hydrogen fluoride, HF (Harshaw Chemical Co.), was purified by addition of ca. 5 atm of fluorine gas to a commercial HF sample contained in a nickel can for a period of approximately one month prior to use, converting residual water to HF and O_2 . The HF was then distilled into a Kel-F storage vessel equipped with a Kel-F valve

and stored at room temperature for future use. Transfer of HF was accomplished by vacuum distillation from the Kel-F storage vessel, on a metal vacuum line, through connections constructed from FEP, as shown in Figure 2.3.

BrF_{5.} Bromine pentafluoride (Ozark-Mahoning Co.) was purified in an FEP vessel equipped with a Kel-F valve and loaded with 20 g of KF (to complex HF as $[K][HF_2 \cdot nHF]$). Bromine and BrF₃ impurities were eliminated by the direct fluorination of these species to BrF₅ at ambient temperature as previously described.¹⁰⁹ The product was stored in the purification vessel under 1000 Torr of a 2:1 mixture of N₂ and F₂ at -78 °C and transferred under dynamic vacuum when required.

SO₂CIF. Sulfuryl chloride fluoride (Allied Chemical Co., Baker and Adams Division, >90%, ca. 100 g crude material) was purified by fractional distillation through two FEP U-tube traps cooled to -78 and -90 °C, respectively, effectively removing the inert impurity SO₂F₂. The remaining SO₂CIF was then condensed into an FEP U-tube containing ca. 80 g of SbF₅ at -78 °C and slowly warmed to room temperature with vigorous mixing to remove SO₂, which is known to rapidly reduce xenon(II) species. The purified SO₂CIF was then transferred to an FEP U-tube cooled to -78 °C and containing dried KF. Again, the mixture was slowly warmed to room temperature with vigorous mixing and allowed to stand with periodic mixing at room temperature for ca. 2 h to remove any residual HF. The sample was again cooled to -78 °C and condensed into a 1.25-in. FEP reaction vessel containing XeF₂ (1.7 g) for 24 h to ensure all impurities with reducing properties (i.e., SO₂) were removed. Finally, the liquid was distilled by dynamic pumping at -78 °C into a glass vessel, outfitted with a 6-mm J. Young all glass stopcock,

Figure 2.3. Hydrogen fluoride distillation apparatus. (A) Kel-F storage vessel containing HF. (B) FEP reaction vessel fitted with a Kel-F valve. (C) Kel-F valve connected to vacuum manifold. (D) Kel-F Y-connection with ¹/₄-in. PTFE Swagelok unions. From ref 108.

over a bed of dry KF. The purity of the sample was assessed by ¹H, ¹⁷O, and ¹⁹F NMR spectroscopy of a neat sample recorded at -80 °C, in which only trace amounts of SO₂F₂ (2.2%) were found. Transfers were performed using a glass vacuum line by vacuum distillation of SO₂ClF through a sub-manifold comprised of a Y-shaped glass connection to the reaction vessel (Figure 2.4). The sample was stored at room temperature until used. CH₃CN. Acetonitrile (Caledon, HPLC Grade) was purified according to the literature method,¹¹⁰ stored over molecular sieves in a glass vessel outfitted with a grease-free 6-mm J. Young glass/PTFE stopcock, and was transferred under vacuum using a glass vacuum line and a glass Y-piece into a smaller glass dispensing vessel outfitted with a grease-free 6-mm J. Young glass/PTFE stopcock. Acetonitrile was then dispensed under vacuum using a glass vacuum line and a glass Y-piece into individual reaction vessels. (Figure 2.5).

SO₂. Sulfur dioxide (Aldrich) was stored over P_4O_{10} in a glass vessel, outfitted with a grease-free 6-mm J. Young PTFE/glass stopcock. Transfers were performed under vacuum using a glass vacuum line and a glass Y-piece.

XeOF₄. Xenon oxide tetrafluoride was prepared and purified according to the literature method by the hydrolysis of XeF_6 .³⁸

 $H_2^{16/17/18}O$ and D_2O . Both H_2O (Caledon, HPLC grade) and $H_2^{18}O$ (Isotec, 98.6 atom % ¹⁸O) were used without further purification and were also used to prepare 2.00 M $H_2^{16/18}O$ solutions in CH₃CN. An ¹⁷O-enriched sample of H₂O (Office de Rayonnements Ionisants, Saclay, France; 35.4% ¹⁶O, 21.9% ¹⁷O, 42.7% ¹⁸O) and D₂O (MSD Isotopes, 99.8 atom% D) were also used without further purification.

36

Figure 2.4. Apparatus used for the vacuum transfer of SO₂ClF solvent. (A) 250-mL glass vessel equipped with a grease-free 6-mm J. Young PTFE/glass stopcock outfitted with PTFE barrel. (B) Bed of dry, powdered KF. (C) Glass Y-connector. (D) 6-mm J. Young PTFE/glass valve. (E) FEP reaction vessel fitted with a Kel-F valve. (F) Stainless steel Swagelok Ultratorr Union. From ref 108.

Figure 2.5. Apparatus used for the vacuum transfer of CH₃CN solvent. (A) 200-mL glass vessel equipped with a grease-free 6-mm J. Young PTFE/glass stopcock outfitted with PTFE barrel. (B) CH₃CN. (C) Glass Y-connector. (D) 6-mm J. Young PTFE/glass valve. (E) FEP reaction vessel fitted with a Kel-F valve. (F) Stainless steel Swagelok Ultratorr Union. From ref 108.

2.2.3. Preparation and Purification of Starting Materials; CsF, $[N(CH_3)_4][F]$, CaF₂, D₂SO₄, XeF₂, XeF₄, PnF₅, [XeF][PnF₆], $[H_3^{16/18}O][PnF_6]$, and $[Xe_3^{16/18}OF_3][PnF_6]$ (Pn = As, Sb)

CsF and $[N(CH_3)_4][F]$. Cesium fluoride (CsF, ICN-KCK Laboratories Inc., 99.9%) was dried by fusion in a platinum crucible, followed by immediate transfer of the melt to a drybox port which was immediately evacuated. Upon transferring to a nitrogen atmosphere drybox, the sample was ground to a fine powder and stored in a PFA container inside the drybox until used. The naked fluoride ion source, $[N(CH_3)_4][F]$, was prepared according to the literature method¹¹¹ and was stored in an FEP tube inside a drybox until used.

CaF₂. Calcium fluoride powder (J.T. Baker, 98.2%) was dried in a glass vessel under dynamic vacuum at 200–250 °C for 24 h and stored in a drybox until used. Sulfuric acid- d_2 (Aldrich, 99.5 atom % ²H) was used without further purification.

AsF₅. Arsenic pentafluoride was prepared as previously described^{112,113} by direct fluorination of purified AsF₃ with purified F₂ (see Syntheses of O₂NF and ONF) in a nickel can. The AsF₅ was used from the reaction can without further purification.

SbF₅. Antimony pentafluoride (Ozark Mahoning) was purified by vacuum distillation as previously described⁶¹ and stored in a glass vessel inside a desiccator until used. Subsequent transfers of SbF₅ were performed by use of a dry all-glass syringe in the inert atmosphere of a glove bag which had previously been purged with dry nitrogen for at least 12 h.

XeF₂ and XeF₄. Xenon difluoride¹¹² and XeF_4^{31} were prepared according to the literature methods and stored in a Kel-F tube inside a dry box until needed.

[XeF][PnF₆]. The salts, [XeF][PnF₆], were prepared by the reaction of XeF₂ with PnF₅. In a typical preparation for $[XeF][AsF_6]$ ⁷⁴ anhydrous HF was condensed into an FEP vessel containing a pre-weighed amount of XeF₂ (2.7798 g, 16.42 mmol). A stoichiometric excess of AsF₅ (18.95 mmol, ca. 15% excess) was condensed into the vessel and the contents were warmed to ambient temperature and thoroughly mixed. On cooling the sample to -78 °C, a large amount of pale vellow solid precipitated from the HF solution. The solvent, and residual AsF₅, were then removed by evacuating the sample at -78 °C through an FEP U-tube cooled to -196 °C. The HF free sample was then back pressured to ca. 1 atm with dry nitrogen and stored inside a drybox. For [XeF][SbF₆], aHF was condensed into an FEP vessel containing a pre-weighed amount of SbF₅ (1.0463g, 4.8274 mmol). Inside a drybox, the sample was frozen at -145 °C and a stoichiometric amount of XeF₂ (0.81737 g, 4.8283 mmol) was added to the vessel. The reactor was removed from the drybox and the contents were warmed to ambient temperature and thoroughly mixed. On cooling the sample to -78 °C a large amount of yellow solid precipitated from the HF solution. The HF solvent was then removed by evacuating the sample at -78 °C through an FEP U-tube cooled to -196 °C. The HF free sample was then back pressured to ca. 1 atm with dry nitrogen and stored inside a drybox. The purities of the [XeF][PnF₆] samples were verified by FT-Raman spectroscopy and all subsequent transfers of $[XeF][PnF_6]$ were carried out in the drybox.

 $[H_3^{16/18}O][PnF_6]$. Literature methods were used for the syntheses of $[H_3^{16/18}O][AsF_6]$,¹¹⁴ and $[H_3^{16/18}O][SbF_6]^{114}$ by the reaction of $H_2^{16}O$ or $H_2^{18}O$ with AsF₅ or SbF₅, respectively, in HF solvent.

[Xe₃^{16/18}OF₃][PnF₆]. The syntheses of high-purity [Xe₃^{16/18}OF₃][PnF₆] involved dissolution at -50 °C of near-equimolar amounts of [H₃^{16/18}O][PnF₆] and XeF₂ (up to ca. 20 mol % excess XeF₂) at ca. 0.2–3 M H₃O⁺ in a 0.25-in. FEP reactor which had a side arm fused to it. The solution was rapidly warmed to -35 °C for ca. 30 s and immediately cooled to -50 °C. After 5 min at -50 °C, a voluminous deep red-orange microcrystalline precipitate of [Xe₃^{16/18}OF₃][PnF₆] formed. The reaction mixture was maintained at -50 °C for an additional 20–30 min to ensure the reaction was complete. Unreacted XeF₂ and/or [H₃^{16/18}O O][PnF₆], as well as [Xe₂F₃][PnF₆] byproduct, were soluble and were decanted from the settled precipitate at -50 °C into the side arm of the reactor at -78 °C. The product, [Xe₃^{16/18}OF₃][PnF₆], decomposed under HF above -30 °C with Xe gas evolution.

2.2.4. Preparation of KrF₂

Krypton difluoride was prepared by use of a 316 stainless steel hot-wire reactor (Figure 2.6) equipped with a nickel filament, similar to that originally described⁹⁸ and subsequently modified.⁹⁷ The filament was fabricated from a $^{1}/_{16}$ -in. dia. nickel wire tightly wound about a second length of $^{1}/_{16}$ -in. nickel wire that was, in turn, coiled and stretched into a helix. In a typical preparation, the hot-wire reactor was pressurized with 1000 Torr (50 mmol) of krypton and then cooled to -196 °C in a 20-L Dewar. After

Figure 2.6. The stainless steel hot-wire reactor used for the preparation of KrF₂. (a) External view and dimensions of a hotwire reactor submerged in a liquid nitrogen coolant bath. (b) A perspective drawing of the hot-wire reactor showing the flange assembly and nickel filament (cut away region). Reproduced with permission from ref 115.

reaching thermal equilibrium, the reactor was pressurized with 25 Torr of F₂ and the DC power supply for the nickel filament was adjusted to ca. 6 V and 30 A (the filament was dull red in color under these conditions). The F2 pressure increased to ca. 45 Torr after the power supply was turned on and was regulated between 25 and 45 Torr by the periodic addition of F₂ during the synthesis. The decreasing F₂ pressure was used to qualitatively monitor the production of KrF₂, and additional Kr (1.0 to 2.0 mmol) was condensed into the reactor when the rate of KrF₂ production slowed or ceased. Upon completion of the reaction (ca. 12 h), excess F_2 was removed under dynamic vacuum at -196 °C. The excess Kr and crude KrF₂ were recovered as a pink solid (the coloration arises from chromium oxide fluoride contamination) by allowing the reactor to slowly warm to room temperature while dynamically pumping the volatile contents through a $\frac{1}{2}$ in. o.d. FEP U-trap (-196 °C). The Kr/KrF₂ mixture was then warmed to -78 °C under dynamic vacuum to remove the unreacted Kr. The crude KrF₂ was purified by briefly warming the sample to 0 °C and flash distilling off the more volatile chromium oxide fluorides. The remaining colorless KrF2 was finally warmed to room temperature and rapidly sublimed into a ³/₈-in. o.d. FEP tube equipped with a Kel-F valve, where it was stored under 1000 Torr of N₂ or Ar at -78 °C until used. This synthesis is highly reproducible and typically yields 2.5 to 3.0 g of purified KrF₂ over a 12 h period.

2.2.5. Synthesis of High-Purity Deuterium Fluoride

Deuterium fluoride was prepared by the reaction of 25.59 g (0.2556 mol) of D_2SO_4 with 20.09 g (0.3400 mol) of CaF₂ powder. The reaction was carried out in a ³/₄-in.
o.d. FEP reaction vessel fitted with a Kel-F valve. The DF was initially vacuum distilled from the reaction slurry at room temperature into a -196 °C cold trap comprised of a U-tube constructed from $\frac{1}{2}$ -in. o.d. FEP tubing and equipped with Kel-F valves.

Throughout, the reaction vessel was periodically agitated until the slurry solidified, whereupon the reaction vessel was incrementally heated to no more than 105 °C in a silicone oil bath over a period of 2 h and the DF was collected in the U-tube until DF evolution ceased. The crude DF was then statically distilled at room temperature into an FEP vessel containing 1.06 g of XeF₂ at -196 °C. Upon warming to room temperature, XeF₂ dissolved and any D₂O that had transferred or SO₂ that formed in the course of the acid displacement reaction was converted to DF and O₂, and SO₂F₂, respectively. After standing at room temperature for 1 h, the mixture was cooled to -78 °C and DF was distilled under dynamic vacuum into a second FEP U-tube at -196 °C. The sample was warmed to room temperature and a portion was condensed into a 4-mm o.d. FEP NMR tube at -196 °C. The room temperature ¹⁹F NMR spectrum revealed a small amount (1.3 mole %) of SO_2F_2 ($\delta(^{19}F)$, 29.3 ppm; $^1\Delta^{19}F(^{34/32}S)$, -0.0482 ppm) but no fluorine containing species other than DF could be detected under high-gain conditions. The remaining DF was stored by condensing it into a Kel-F vessel containing 0.140 g of resublimed BiF₅ (Ozark Mahoning Co.) to remove trace amounts of D₂O that may still be present. The yield of pure anhydrous DF was 8.93 g (83.1% based on D₂SO₄ as the limiting reagent). Transfer of DF was accomplished by vacuum distillation from the Kel-F storage vessel, on a metal vacuum line, through connections constructed of FEP.

2.2.6. Syntheses of Nitryl Fluoride, O₂NF, and Nitrosyl Fluoride, ONF

 O_2NF . The syntheses of O_2NF^{116} and ONF^{117} are based on the published methods using more rigorously purified starting materials. In a typical preparation, NO_2 (0.1005 mmol) was allowed to expand into a metal vacuum line manifold and ballast can (total volume 2.062 L) pre-passivated with NO₂, and then condensed into a nickel reactor (ca. 65 mL) at -196 °C. Fluorine gas was then used to passivate the vacuum manifold and ballast can, followed by removal under dynamic vacuum. The manifold was repressurized with F_{2} , which was condensed into the measuring can at -196 °C (0.0961 mmol). After the line was evacuated, the measuring can was warmed to -183 °C using a liquid O₂ bath, and F₂ gas, free of non-volatile contaminants such as HF, was allowed to expand into the manifold and condensed into the reactor containing NO2 at -196 °C (0.05473 mmol; 8.9 mol % excess). The reaction vessel was then warmed to -78 °C for 4–5 h, followed by warming to room temperature and was allowed to stand overnight. Second additions of NO₂ (0.1049 mmol) and F₂ (0.0551 mmol; 5.1 mol % excess) were made to the reaction vessel at -196 °C and allowed to react in the same manner. Excess F₂ gas was removed under dynamic vacuum at -196 °C. The ¹⁹F NMR spectrum of the neat liquid product at -80 °C showed a small amount of ONF as the only fluorine-containing impurity (2.5 % by integration).

ONF. Nitrosyl fluoride, ONF, was prepared in a manner similar to that used for the preparation of O_2NF . Twice reacting NO (0.0905 mol) and F_2 (0.0417 mol) in a nickel reactor (65 mL) gave a combined yield of 8.63 g (0.176 mol) of ONF. Trace amounts of

 O_2NF (0.22%) and ONF_3 (0.85%) found in the sample were estimated by recording the ¹⁹F NMR spectrum of a sample of the neat liquid product at -80 °C.

Transfers of ONF and O_2NF were carried out using a fluorine-passivated FEP submanifold (dedicated to this use) that was passivated once with the corresponding fluoride (ONF or O_2NF) prior to transfer to an intermediate FEP vessel. This served to verify passivation of the submanifold was complete in the case of ONF. In the event of incomplete passivation, a distinct blue to light blue color appeared in the intermediate vessel that resulted from reaction of ONF with residual moisture and/or unpassivated metal surfaces, giving intense blue N_2O_3 . This procedure also allowed a controlled amount of ONF/O₂NF to be metered into the reaction vessel.

2.2.7. Preparation of FXeOTeF₅ and [XeOTeF₅][AsF₆]

The mixed FXe(OTeF₅) species was synthesized according to the literature method.¹¹⁸ In the drybox, 1.697 g (2.789 mmol) Xe(OTeF₅)₂ was added to a $\frac{1}{2}$ -in. FEP reaction vessel followed by the addition of 0.4721g (2.822 mmol) of XeF₂. The reactor was removed from the drybox and slightly warmed by hand whereupon the solids melted and formed a pale yellow solution. The reactor was allowed to sit for two days at room temperature with periodic mixing to ensure complete reaction.

The XeOTeF₅⁺ was synthesized by the reaction of FXeOTeF₅ with AsF₅ according to the literature method.¹¹⁹ A $\frac{1}{2}$ -in. FEP reaction vessel containing 2.169 g (5.578 mmol) FXeOTeF₅ was cooled to -196 °C and approximately 7.00 mmol of AsF₅ was condensed into the reaction vessel. The reactor was warmed and mixed at -50 °C for

several hours and allowed to react at -78 °C for three days to ensure the reaction was complete. The excess AsF₅ was removed under dynamic vacuum at -78 °C and the reactor containing [XeOTeF₅][AsF₆] was transferred and stored in the drybox.

2.2.8. Preparation of [ClOF₂][AsF₆] Precursors; ClF, ClONO₂, ClOF₃

2.2.8.1. CIF

Chlorine monofluoride was synthesized according to the literature method.¹²⁰ Chlorine gas (Air Liquide) was dried and purified by bubbling the gas through concentrated H₂SO₄ and collecting it in a glass trap maintained at -78 °C. Chlorine trifluoride (40.0 mmol) was condensed into a 70 mL nickel vessel followed by condensing 38.0 mmol Cl₂ into the reaction vessel. The reaction vessel was warmed to -78 °C for ca. 20 min. followed by warming the vessel to room temperature for ca. 20 min. and finally warmed to 200 °C for 15 h. The ClF was isolated and impurities were removed by passing the contents of the reaction vessel (maintained at -78 °C) through a pair of FEP U-tubes, the first cooled between -130 and -140 °C to remove unreacted ClF₃ and the second cooled to -196 °C to recover ClF.

2.2.8.2. ClONO₂

Chlorine nitrate was synthesized according to the literature method¹²¹ by the reaction of ClF with Pb(NO₃)₂. Lead nitrate (BDH) was dried under dynamic vacuum for 72 h at 100 °C. In the drybox, 6.80 g (20.5 mmol) of Pb(NO₃)₂ was added to a 40 mL steel reaction vessel. Approximately 1.76 g (32.3 mmol) of ClF was condensed into the

reaction vessel at -196 °C. The reaction vessel was warmed stepwise to -78 °C and then to 0 °C. The resulting ClONO₂ was isolated and purified by passing the contents of the reaction vessel through a pair of FEP U-tubes, the first cooled to -120 °C to collect ClONO₂ and the second cooled to -196 °C to collect unreacted ClF.

2.2.8.3 ClOF₃

Direct fluorination of ClONO₂ according to the literature method¹²² was used to synthesize ClOF₃. Approximately 0.110 mol of ClONO₂ was condensed into a 70 mL nickel vessel, followed by condensing 0.110 mol of F₂. The reaction vessel was warmed to -35 to -40 °C for 4 h. The non-condensables were first removed from the vessel at -196 °C followed by warming the vessel stepwise to -78 °C and then to room temperature while collecting the products in a pair of FEP U-tubes, the first cooled to between -95 and -100 °C to collect ClOF₃ and the second cooled to -196 °C to collect the remaining products, FNO₂, Cl₂, ClO₂F.

2.2.9. Synthesis of [ClOF₂][AsF₆]

The title salt, $[ClOF_2][AsF_6]$, was synthesized according to the literature method^{123,124} by the reaction of ClOF₃ with AsF₅. Approximately 1.353 g (12.48 mmol) of ClOF₃ was condensed into a ¹/₂-in. FEP reactor followed by condensing in 2.121 g (15.6 mmol, 25% excess) AsF₅. The reactor was warmed to -55 to -60 °C for several minutes. The reaction did not appear to be complete so the reactor was maintained at -78

 $^{\circ}$ C for 2 days. The excess AsF₅ was removed at -78 $^{\circ}$ C under dynamic vacuum and the reactor was transferred and stored in the drybox.

2.3. Syntheses of XeOF₂, F₂OXeN≡CCH₃, and XeOF₂·*n*HF

2.3.1. Preparation of F₂OXeN≡CCH₃

In a typical synthesis, 60.6 mg of XeF_4 was added, inside a drybox, to a $\frac{1}{4}$ -o.d. FEP reaction tube attached to a ¹/₄-in. stainless steel Swagelok Ultra-Torr union fitted with Viton O-rings which was, in turn, attached to a Kel-F valve through a short length of thick-wall ¹/₄-in. o.d. FEP tubing that was compression fitted to the valve. The reactor was disassembled outside the drybox at the union and quickly replaced with a Kel-F plug having two $\frac{1}{16}$ -in. holes drilled through its top which opened into the reaction vessel. A $\frac{1}{16}$ -in. o.d. Teflon tube, with a slow stream of dry argon passing through it, was threaded through one hole and positioned well above the XeF_4 . This permitted nitrogen in the reaction vessel to be displaced by argon through the second hole in the Kel-F plug. The vessel was cooled to -78 °C while maintaining the argon flow. The argon flow was halted and 150 μ L of 2.00 M solution of H₂^{16/18}O in CH₃CN was syringed into the reactor through the argon outlet hole and frozen onto the walls of the reaction vessel to give a 3-5% stoichiometric excess of $H_2^{16/18}O$. The argon flow was recommenced and the solution was melted onto the XeF_4 at -42 °C and thoroughly mixed, resulting in the immediate formation of a yellow solution and precipitate. The solution was cooled to -45 °C whereupon more vellow solid precipitated. The union and valve assembly was reconnected and the solvent was immediately removed at -45 to -42 °C under dynamic vacuum, leaving a pale yellow microcrystalline powder. Completeness of solvent removal was monitored by Raman spectroscopy (Table 3.6).

2.3.2. Preparation of Xe^{16/18}OF₂

A 66.1 mg sample of $F_2^{16/18}OXeN \equiv CCH_3$ was pumped under dynamic vacuum for 5 h with frequent agitation while maintaining the sample between -45 to -42 °C. This resulted in a bright yellow powder corresponding to $Xe^{16/18}OF_2$, which was shown to be free of coordinated CH₃CN by Raman spectroscopy (-150 °C). The compound is stable indefinitely when stored at -78 °C.

A solution of ¹⁷O-enriched XeOF₂ in CH₃CN was prepared for ¹⁷O NMR spectroscopy by in situ hydrolysis of XeF₄ (0.0219 g, 0.106 mmol) with ¹⁷O-enriched H₂O (2.0 μ L, 0.10 mmol) at -45 °C in a 4-mm o.d. FEP NMR tube.

2.3.3. Preparation of $Xe^{16/18}OF_2 \cdot n^{1/2}HF$

Approximately 0.3 mL of anhydrous ^{1/2}HF was distilled into an evacuated reactor containing 54.1 mg of freshly prepared Xe^{16/18}OF₂ and frozen on the vessel walls at –196 ^oC. **Caution:** *If condensation is too rapid and liquid HF condenses directly onto XeOF₂, rapid, decomposition/detonation is likely to occur.* The ^{1/2}HF was melted onto the Xe^{16/18}OF₂ sample at –78 ^oC and was frequently mixed, over a 12–72 h period, by suspending the entire sample in ^{1/2}HF at this temperature and periodically monitored by recording the Raman spectrum of Xe^{16/18}OF₂/ Xe^{16/18}OF₂·n^{1/2}HF under a frozen layer of

 $^{1/2}$ HF. Once solvation was complete, the resulting very pale yellow powder was isolated by removal of the $^{1/2}$ HF solvent under dynamic vacuum at -78 °C.

2.3.4. Crystal Growth of F₂OXeN=CCH₃

Crystals of F₂OXeN=CCH₃ were grown as described in Section 2.10.1 by slow cooling of a CH₃CN solution of XeOF₂, previously saturated at ca. -35 °C, from -35 to -45 °C over the course of 5 h in a ¹/₄-in. o.d. FEP reactor as described in the synthesis of F₂OXeN≡CCH₃. When crystal growth was deemed complete, the reactor was maintained at -45 °C and was disassembled at the Swagelok Ultra-Torr union and quickly replaced with a Kel-F plug and $\frac{1}{16}$ -in. o.d. Teflon tubing which had a slow stream of argon slowly passing through it (see Section 2.3.1). A second length $\frac{1}{16}$ -in. o.d. Teflon tubing was inserted through the outlet hole of the Kel-F cap while maintaining the argon flow. Lowering the outlet tube into the solution expelled the yellow supernatant through it into a second ¹/₄-in. o.d. FEP tube cooled to -78 °C. The union and valve assembly were replaced and the crystals were dried under dynamic vacuum at -45 to -42 °C and stored at -78 °C until a suitable crystal could be selected and mounted on the diffractometer. In addition to having a propensity to twin, the crystalline adduct proved difficult to handle because dry samples exploded at temperatures approaching 0 °C and had a tendency to slowly loose CH₃CN under dynamic vacuum at -45 °C (see Syntheses and Properties of XeOF₂, $F_2OXeN \equiv CCH_3$, and XeOF₂·*n*HF). Crystalline $F_2OXeN \equiv CCH_3$ and its solutions were handled under low lighting conditions throughout crystal growth, crystal mounting, and data collection to minimize photodecomposition.

2.4. Synthesis of XeO₂

2.4.1. Aqueous Preparation of XeO₂

Under a head of high-purity Ar. 0.400 mL of $H_2^{16}O$ ($H_2^{18}O$; $H_2^{16}O/H_2^{18}O$; D_2O) was syringed into a ¹/₄-in. FEP reactor, which was plugged with a Teflon cap, and cooled to 0 °C in an ice/water bath. Once cooled, the cap was briefly removed and 40-50 mg of crystalline XeF₄ was added to the reactor, a few crystals at a time. NOTE: When water was added directly to solid XeF_4 , or XeF_4 crystals were added too rapidly, heat generated by the reaction could not be adequately dissipated, resulting in extensive decomposition of XeO_2 to Xe and O_2 which ejected the remaining water and product from the reactor. A bright, yellow-orange suspension immediately formed upon contact, but upon mixing for ca. 20 s at 0 °C, the color of the suspension changed to yellow. The yellow solid was found to be XeO₂ (see Section 4.2) while the yellow-orange product was possibly a mixture of molecular XeO₂ and/or lower molecular weight polymorphs resulting from incomplete polymerization. The reactor containing the yellow solid was then placed in an ice/water bath in a centrifuge and centrifuged for 10 s at 7000 rpm at a radial distance of 13 cm. The sample was removed and immediately quenched at -78 °C and the Raman spectrum was recorded at -160 °C.

2.4.2. Synthesis of XeO₂ in Non-aqueous Media

A 46.6 mg (0.225 mmol) [56.0 mg (0.270 mmol)] sample of $XeOF_2^{125}$ ([Cs][XeOF₃])¹²⁶ was synthesized as previously described (using finely divided CsF for [Cs][XeOF₃]). A 115 µL (135 µL) aliquot of 2.00 M H₂O in CH₃CN was syringed into an

FEP reactor as described above (see Section 2.3.1), freezing it onto the walls at -78 °C. The solution was melted onto the solid at -42 °C and thoroughly mixed. In the case of XeOF₂, a yellow suspension resulted that, upon pumping at -42 °C under dynamic vacuum, began to bump leaving droplets of the suspension on the vessel walls that evaporated to thin films of pale-yellow solid. The latter subsequently detonated with the emission of blue light. The sample was quenched at -78 °C and its stability under CH₃CN was confirmed by quenching at -196 °C and recording its Raman spectrum at -150 °C. The spectrum confirmed that small amounts of XeO₂ were present along with large amounts of F₂OXeNCCH₃ and CH₃CN. In the case of the [Cs][XeOF₃] hydrolysis, a vellow solid also formed that remained suspended in CH₃CN; however, unlike the XeOF₂ reaction, it was possible to remove CH₃CN at -42 °C under dynamic vacuum. The Raman spectrum of the dry solid, recorded at -150 °C, showed an appreciable quantity of XeO₂. The Raman band at 570 cm⁻¹ arising from XeO₂ is in agreement with that recorded in aqueous media (Table 4.1).

2.5. Synthesis and Characterization of the XeOF₃⁻ Anion

2.5.1. Syntheses of $[M][Xe^{16/18}OF_3]$ (M = N(CH₃)₄, Cs)

In typical syntheses, a ¹/₄-in. o.d. FEP reactor containing 0.306 mmol $(N(CH_3)_4^+$ salt) or 0.166 mmol (Cs⁺ salt) of Xe^{16/18}OF₂ was cooled to -196 °C, and sufficient CH₃CN was condensed onto the walls of the reactor so that upon warming to -42 °C the solvent thawed, contacting, without detonation, and dissolving Xe^{16/18}OF₂. Alternatively, CH₃CN was syringed into the reactor in a manner identical to that used for the synthesis

of XeOF₂ (see Section 2.3.1) Note: In the event that the amount of CH₃CN added is insufficient to dissolve XeOF₂, the former method requires refreezing the sample at -196 °C, which often leads to sample detonation. The latter method is far less likely to result in detonation and is preferred because CH₃CN is added at a higher temperature (-78 °C). The solution was quickly frozen at -78 °C and introduced into a drybox through a cold port, and 0.319 mmol of [N(CH₃)₄][F] (0.171 mmol of CsF) was added while maintaining the reactor below -78 °C. The cold reactor was removed from the drybox and warmed to -42 °C, and the contents were thoroughly mixed, whereupon a pale yellow solid precipitated from solution. The solvent was removed under dynamic vacuum while maintaining the sample between -45 and -42 °C. The completeness of solvent removal was monitored by Raman spectroscopy and required several hours for the last traces of CH₃CN to be removed, resulting in pale yellow Cs⁺ and N(CH₃)₄⁺ salts.

2.5.2. Attempted Syntheses of $[M'][XeOF_3]$ ($M' = NO, NO_2$)

Approximately 0.2 mL of ONF or O_2NF was condensed into an evacuated sample tube containing XeOF₂ (43.3 mg for the ONF reaction; 49.7 mg for the O_2NF reaction) and frozen onto the vessel walls at -196 °C. The ONF or O_2NF was melted onto XeOF₂ at -78 °C. In the case of ONF reaction, an immediate explosion ensued upon contact with XeOF₂. In the case of the O_2NF reaction, the solid immediately changed from yellow to white upon contact with liquid O_2NF (see Section 5.2.3).

2.5.3. Reactivities of [M] [XeOF₃] with SO₂ and XeOF₄

In an effort to solubilize $[N(CH_3)_4][XeOF_3]$, ca. 0.2 mL of SO₂ was distilled into an evacuated sample tube containing 72.1 mg of $[N(CH_3)_4][XeOF_3]$ by freezing the condensate onto the walls of the reaction vessel at -196 °C. Upon warming the sample to -78 °C, contact of SO₂ vapor with the $[N(CH_3)_4][XeOF_3]$ resulted in an immediate explosion. In a second attempt, ca. 0.2 mL of XeOF₄ was frozen onto the upper walls of an evacuated 4-mm o.d. FEP sample tube containing 11.9 mg (0.0353 mmol) of $[Cs][XeOF_3]$ at -196 °C. The XeOF₄ was melted onto $[Cs][XeOF_3]$ at ca. 20 °C, and upon contact the solid rapidly turned from yellow to white. The XeOF₄ was removed under dynamic vacuum at ca. 20 °C, and a Raman spectrum of the white powder was recorded, revealing it to be a mixture of XeF₄, XeO₂F₂, and $[Cs][F(XeOF_4)_m]$.¹²⁷

2.6. Syntheses of New Xe(IV) Cations

2.6.1. Preparation of [^{1/2}H^{16/18}OXeF₂][AsF₆]

In a typical synthesis, 25.4 mg (0.124 mmol) of Xe^{16/18}OF₂· $n^{1/2}$ HF was prepared in situ according to the literature method¹²⁵ and was suspended in approximately 0.3 mL of anhydrous ^{1/2}HF in a ¹/₄-in. o.d. FEP T-reactor that was joined to a Kel-F valve by means of compression fittings. The suspension was frozen at -196 °C and 0.140 mmol of AsF₅ was condensed into the reactor. The reaction mixture was then warmed to -78 °C and mixed and allowed to stand at -78 °C for 12 h to ensure complete reaction. The solvent was then removed under dynamic vacuum at -78 °C, leaving behind a white microcrystalline powder that was stable for at least four weeks when stored at -78 °C in the absence of moisture. It is important to ensure that $XeOF_2$ was fully solvolyzed to $XeOF_2 \cdot nHF$ prior to the addition of AsF_5 , otherwise extensive decomposition to $[XeF][AsF_6]$ is observed.

2.6.2. Preparation of $[^{1/2}H^{16/18}OXe(F)_2^{16/18}OXeF_2][AsF_6]$

The most efficient synthesis of the title compound was achieved by initially suspending 33.1 mg (0.161 mmol) of $Xe^{16/18}OF_2 \cdot n^{1/2}HF$, prepared in situ, in ca. 0.3 mL of anhydrous ^{1/2}HF in a ¹/₄-in. o.d. FEP T-reactor that had been connected to a Kel-F valve by means of compression fittings. The sample was introduced into the drybox without allowing the sample to warm above -78 °C, whereupon the ^{1/2}HF was frozen in a cryowell (-120 °C), the sample was opened and 16.8 mg (0.0805 mmol) of [^{1/2}H₃^{16/18}O][AsF₆] was added. The sample was resealed and removed cold from the drybox. The sample was warmed to -78 °C and the reagents were thoroughly mixed and allowed to react for 12 h. Within minutes, the yellow color of the sample began to intensify and after the reaction was complete, the color had intensified to bright yellow. Removal of the solvent under dynamic vacuum at -78 °C resulted in a yellow powder. The attempted synthesis of the SbF_6^- analogue using the same procedure resulted in decomposition within several minutes to [Xe₃OF₃][SbF₆] salt with no evidence for $HOXe(F)_{2}OXeF_{2}^{+}$.

2.6.3. Preparation of $[FXe^{16/18}OXeF_2][PnF_6]$ (Pn = As, Sb)

A ¹/₄-in. o.d. FEP T-reactor was connected to a Kel-F valve and 46.3 mg (0.226 mmol) of $Xe^{16/18}OF_2 \cdot nHF$ was prepared in situ in ca. 0.3 mL of aHF. The sample was transferred cold into the drybox and was maintained at ca. -120 °C in a cryowell. To a reactor, 86.0 mg (0.253 mmol) [93.4 mg (0.242 mmol) for the Sb salt] of [XeF][PnF₆] was added and the reactor was removed from the drybox cold. The reactor was warmed to -78 °C and over the course of 5–10 min, the color of the undissolved solid began to intensify to bright yellow. The reaction required approximately one week, with periodic agitation, to reach go to completion and resulted in a bright yellow solid under HF. In contrast, samples containing ¹⁸O required up to one month to go to completion. Removal of the solvent under dynamic vacuum at -78 °C resulted in yellow powders.

2.6.4. Preparation of [FXe^{16/18}OXe(F)₂^{16/18}OXeF₂][AsF₆]

The synthesis of $[FXe^{16/18}OXe(F)_2^{16/18}OXeF_2][AsF_6]$ is analogous to that of $[FXe^{16/18}OXeF_2][AsF_6]$, however, in a typical synthesis 60.5 mg (0.295 mmol) of $Xe^{16/18}OF_2 \cdot nHF$, was allowed to react with 26.5 mg (0.0782 mmol) of $[XeF][AsF_6]$. Unlike $[FXe^{16}OXeF_2][AsF_6]$, $[FXe^{16}OXe(F)_2^{16}OXe(F)_2][AsF_6]$ required two weeks to go to completion with periodic agitation, while ¹⁸O-enriched samples required at least one month. In each case, removal of the solvent under dynamic vacuum at -78 °C resulted in yellow powders. Attempts to synthesize the analogous SbF_6^- salts using $[XeF][SbF_6]$ proved unsuccessful, resulting in a mixture of $[FXeOXeF_2][SbF_6]$ and $XeOF_2 \cdot nHF$.

2.6.3. Crystal Growth of $([XeF_3 \cdot HF][Sb_2F_{11}])_2 \cdot [H_5F_4][SbF_6]$, $[XeF_3 \cdot HF][Sb_2F_{11}]$ and $[XeF_3][SbF_6]$

Crystals of $([XeF_3 \cdot HF][Sb_2F_{11}])_2 \cdot [H_3F_4][SbF_6]$, $[XeF_3 \cdot HF][Sb_2F_{11}]$, and $[XeF_3][SbF_6]$ were grown in ¹/₄-in. o.d. FEP T-shaped reaction vessels. Approximately 0.15 mL (~17 mol %) of SbF₅ in HF was cooled to -78 °C and poured through a ¹/₄-in. Teflon Swagelok union onto frozen HF (0.15 mL; -196 °C) containing 11.7 mg (0.0569 mmol) of XeOF₂·*n*HF. The sample was warmed to -78 °C and well mixed before warming to -50 °C to dissolve the solid. The solution was cooled to -78 °C and over the course of 24 h, colorless crystals formed. The reaction vessel was maintained at -78 °C, while the supernatant was decanted into the side arm of the reaction vessel, which was also maintained at -78 °C. The side arm containing the supernatant was then cooled to -196 °C and heat-sealed under dynamic vacuum. The remaining crystals were dried under dynamic vacuum at -78 °C and stored at -78 °C until a suitable crystal could be selected and mounted on the X-ray diffractometer.

2.7. Synthesis and Characterization of [BrOF₂][AsF₆]·2KrF₂

2.7.1. Preparation of [BrOF₂][AsF₆]

In a typical synthesis, 62.1 mg (0.126 mmol) of $[BrOF_2][AsF_6]$ ·XeF₂ that had been prepared in a ¹/₄-in. o.d. FEP reaction tube was pumped under dynamic vacuum for 12–18 h at 0 °C. The resulting white powder was shown to be $[BrOF_2][AsF_6]$ by lowtemperature Raman spectroscopy¹²⁸ and, in contrast with a previous report,¹²⁸ was stable for at least 12 h at room temperature with no signs of decomposition.

2.7.2. Preparation of [BrOF₂][AsF₆]·2KrF₂

Approximately 0.3 mL of aHF was condensed into an evacuated ¼-in. o.d. FEP reaction tube containing 40.7 mg (0.126 mmol) of freshly prepared [BrOF₂][AsF₆] at -196 °C. The frozen HF was melted onto the [BrOF₂][AsF₆] sample at -78 °C and was then refrozen at -196 °C. Krypton difluoride (45.0 mg, 0.369) was sublimed into the reactor at -196 °C, followed by warming to -78 °C, whereupon KrF₂ immediately reacted as evidenced by the increased volume of the white solid that had remained undissolved at -78 °C. The reactants were well mixed, and the product was isolated after 2 h by removal of the HF solvent under dynamic vacuum at -78 °C.

2.7.3. Crystal Growth of [BrOF₂][AsF₆]·2KrF₂

Crystals of $[BrOF_2][AsF_6] \cdot 2KrF_2$ were grown by the general crystal growth procedure described in Section 2.10.1 and entailed slow cooling of an HF solution of $[BrOF_2][AsF_6] \cdot 2KrF_2$, previously saturated at ca. -40 °C, from -51 to -55 °C over the course of 5 h in a ¹/₄-in. o.d. FEP reactor equipped with a side arm. When crystal growth had ceased, the reactor was maintained at -55 °C, and the supernatant was decanted into the side arm cooled to -78 °C. Once the majority of the supernatant had been decanted, the contents of the side arm were frozen at -196 °C, and the side arm was heat sealed off under dynamic vacuum. The crystals were dried under dynamic vacuum at -60 °C and stored at -78 °C until a suitable crystal could be selected and mounted at low temperature on the diffractometer.

2.8. Syntheses of $[BrOF_2][AsF_6] \cdot nXeF_2$ (n = 1, 2) and $[XOF_2][AsF_6]$ (X = Cl, Br) 2.8.1. Preparation of $[BrOF_2][AsF_6] \cdot XeF_2$

In a typical synthesis, 70.5 mg (0.126 mmol) of [XeOTeF₅][AsF₆] was added, inside a drybox, to a ¹/₄-in. o.d. FEP reactor that was fitted to a Kel-F valve by means of a compression fitting. The solid was dissolved in ca. 0.3 mL of BrF₅ at -52 °C and warmed to room temperature as previously described.¹²⁹ The solution was cooled to -52 °C, and the solvent was immediately removed between -52 and -50 °C under dynamic vacuum, leaving behind a white microcrystalline powder that contained adducted BrF₅. Completeness of solvent removal was monitored by Raman spectroscopy (see Table 8.1). The solid was pumped under a dynamic vacuum for 12 h with frequent agitation while maintaining the sample at -52 to -50 °C. This resulted in a fine white powder corresponding to [BrOF₂][AsF₆]·XeF₂, which was shown by Raman spectroscopy to be free of coordinated BrF₅. The compound was stable indefinitely when stored under anhydrous conditions at -78 °C.

2.8.2. Preparation of [BrOF₂][AsF₆]·2XeF₂

In a typical synthesis, 45.6 mg (0.269 mmol) of XeF₂ was added, inside a drybox, to a ¹/₄-in. o.d. FEP reactor containing 0.130 g (0.265 mmol) of $[BrOF_2][AsF_6]$ ·XeF₂. The solids were dissolved in ca. 0.3 mL of aHF at -20 °C. Upon cooling the solution to -78 °C, a white microcrystalline powder, corresponding to $[BrOF_2][AsF_6]$ ·2XeF₂, precipitated from solution and was isolated by removal of the HF under a dynamic vacuum at -78 °C.

2.8.3. Preparation of [BrOF₂][AsF₆]

Crystals of $[BrOF_2][AsF_6]$ were isolated from a solution of $[BrOF_2][AsF_6] \cdot XeF_2$ in BrF₅ solvent (see Section 2.8.5). In a typical synthesis, a 60.1 mg sample of $[BrOF_2][AsF_6] \cdot XeF_2$ was pumped under dynamic vacuum for 20 h while maintaining the sample at 0 °C. This resulted in a fine, white powder corresponding to $[BrOF_2][AsF_6]$, which was shown to be free of coordinated XeF₂ by Raman spectroscopy. The compound was stable indefinitely when stored at -78 °C.

2.8.4. Crystal Growth of [BrOF₂][AsF₆]·2XeF₂

Crystals of $[BrOF_2][AsF_6] \cdot 2XeF_2$ were grown by the general crystal growth procedure described in Section 2.10.1 using a ¹/₄-in. o.d. FEP T-shaped reaction vessel. A 124 mg (0.252 mmol) sample of $[BrOF_2][AsF_6] \cdot XeF_2$ was dissolved at ca. -18 °C in ca. 0.3 mL of HF. The solution was cooled from -28 to -32 °C over the course of 12 h, yielding crystals of $[BrOF_2][AsF_6] \cdot 2XeF_2$. When crystal growth was deemed complete, the reaction vessel was adjusted to and maintained at -35 °C, while the supernatant was decanted into the side arm of the reaction vessel, which was maintained at -78 °C. The side arm containing the supernatant was then cooled to -196 °C and heat-sealed under dynamic vacuum. The remaining crystals were dried under dynamic vacuum at -35 °C and stored at -78 °C until a suitable crystal could be selected and mounted on the X-ray diffractometer.

2.8.5. Crystal Growth of [BrOF₂][AsF₆]

The attempted growth of $[BrOF_2][AsF_6] \cdot XeF_2$ crystals by the general crystal growth procedure described in Section 2.10.1 yielded crystalline $[BrOF_2][AsF_6]$ instead. A solution (0.1 mL) of BrF₅ containing 67.0 mg (0.136 mmol) $[BrOF_2][AsF_6] \cdot XeF_2$ was slowly pumped under a dynamic vacuum at -60 °C. Small, clear, needle-shaped crystals of $[BrOF_2][AsF_6]$ grew over a period of 2 h and were isolated by rapidly pumping the remaining solvent off under a dynamic vacuum at -35 °C. The crystals were stored at -78 °C until a suitable crystal could be selected and mounted on the X-ray diffractometer.

2.8.6. Crystal Growth of [ClOF₂][AsF₆]

Attempts to grow crystals of a XeF₂ adduct with [ClOF₂][AsF₆] by the general crystal growth procedure described in Section 2.10.1 resulted in the growth of [ClOF₂][AsF₆] and [Xe₂F₃][AsF₆] crystals instead. A ¹/₄-in. o.d. FEP T-shaped reaction vessel containing 0.3 mL of HF, 33.2 mg (0.115 mmol) of [ClOF₂][AsF₆], and 19.5 mg (0.122 mmol) of XeF₂ was warmed to ca. 25 °C in order to dissolve the solids. Slow cooling of the solution from -59 and -62 °C resulted in the formation of block-shaped crystals over the course of 4 h, which were found to be [Xe₂F₃][AsF₆] (trigonal phase,⁷³ vide infra). When crystal growth was deemed complete, most of the supernatant (-62 °C) was decanted into the side arm of the reaction vessel (-78 °C), and the side arm was frozen at -196 °C and sealed off under dynamic vacuum. When the residual solvent surrounding the [Xe₂F₃] [AsF₆] crystals was removed under dynamic vacuum at -65 °C, numerous thin, brittle, plate-shaped crystals corresponding to [ClOF₂][AsF₆] (vide infra)

instantly grew in admixture with crystalline $[Xe_2F_3][AsF_6]$. The crystals were stored at -78 °C until suitable crystals could be selected and mounted on the diffractometer. The block-shaped crystals had a unit cell consistent with the trigonal phase of $[Xe_2F_3][AsF_6]$,⁷³ whereas the thin plates were shown to be $[ClOF_2][AsF_6]$.

2.9. Synthesis of Xe(II) Derivatives

2.9.1. Preparation of FXeONO₂ and FXe¹⁶ON(¹⁶O¹⁸O)

In a typical synthesis, ca. 100 mg of [Xe₃OF₃][AsF₆] ([Xe₃¹⁸OF₃][AsF₆]) was synthesized (vide supra) in a ¹/₄-in. o.d. FEP reaction vessel outfitted with a Kel-F valve. The reaction vessel also had a section of ¹/₄-in. o.d. FEP tubing fused to it, forming a side arm that was bent to form an h-shaped reactor. The h-shaped reactor and a ¹/₄-in. o.d. FEP transfer vessel fitted with a Kel-F valve were connected by means of 45° SAE compression fittings to a three-way FEP connector. A nickel vessel outfitted with a 316 stainless steel valve and containing NO₂F was connected to the remaining port of the three-way connector by means of a ¹/₄-in. stainless steel Swagelok Ultratorr union fitted with Viton O-rings. All connections and the FEP reaction vessels were passivated with F_2 for several hours prior to use. The nickel NO₂F sample vessel was cooled to -78 °C, and a portion of NO₂F was condensed into a second ¹/₄-in. o.d. FEP vessel at -196 °C, followed by warming to -78 °C to control the amount of NO₂F added to [Xe₃OF₃][AsF₆]. The NO₂F in the auxiliary vessel (-78 °C) was then condensed onto [Xe₃OF₃][AsF₆] at -196 °C, followed by warming the reaction mixture to -50 °C, where, after 5 h, the solid slowly changed from a magenta or red-orange color to a white suspension in excess

liquid NO₂F. Excess NO₂F was removed under vacuum at -110 °C to yield a white, microcrystalline, solid mixture of FXeONO₂, XeF₂, and [NO₂][AsF₆]. Sulfuryl chloride fluoride (ca. 0.75 mL) was then condensed onto the mixture at -196 °C. The solution was warmed to -30 °C and agitated for several seconds to effect dissolution of FXeONO₂ and XeF₂. The solid was allowed to settle (ca. 1 min), and the supernatant was then decanted into the side arm of the reaction vessel at -78 °C. After the solid had settled to the bottom of the side arm, the supernatant was decanted into the main tube of the reactor, and the process was repeated. Longer extraction times (ca. 5–10 min) and/or more agitation in attempts to improve product yield resulted in partial [NO₂][AsF₆] extraction, thereby contaminating the final product. The main portion of the reactor, containing [NO₂][AsF₆], was removed by heat-sealing it off under dynamic vacuum, and the FXeONO₂/XeF₂ mixture was dried under dynamic vacuum at -78 °C and stored at that temperature until studied by Raman spectroscopy.

2.9.2. Preparation of O(XeF)₂

A sample of ca. 100 mg of $[Xe_3OF_3][AsF_6]$ in a ¹/₄-in o.d. FEP tube fitted with a Kel-F valve was connected to a metal vacuum line through an h-shaped FEP connection that was in turn connected to an empty ¹/₄-in o.d. FEP tube fitted with a Kel-F valve. Nitrosyl fluoride was condensed into the empty tube at -196 °C. The solid NOF was white in color, confirming the high purity of the compound. A small amount of NOF was then condensed into the top of the reaction vessel at -196 °C. The solid NOF was warmed to -78 °C whereupon it melted, contacting and reacting with [Xe₃OF₃][AsF₆] to

form a bright yellow solid over the red-orange solid precipitate. The sample was titrated with NOF at -78 °C until no red color persisted, resulting in a faint aqua-coloured solid-liquid mixture. Excess NOF was then removed under dynamic vacuum at -78 °C, yielding a pale yellow solid.

The ¹⁸O-enriched samples of $O(XeF)_2$ were prepared from $[Xe_3^{18}OF_3][AsF_6]$ in a manner similar to that used for the preparation of ¹⁶ $O(XeF)_2$.

2.9.3. Attempted Crystal Growth of O(XeF)₂

Numerous attempts were made to grow crystals of $O(XeF)_2$ from CH₃CN solution at low temperature. However, complete dissolution could only be achieved at temperatures ranging from -15 to -25 °C. Prolonged times at this temperature (ca. 2–3 hours) failed to crystallize any material, and further cooling failed to produce any solid material, indicative of decomposition which is commensurate with the solid-state decomposition temperature. When the solution was quickly cooled to temperatures at or below -30 °C, crystals immediately formed, but detonated after drying at -42 °C, emitting blue light. Attempts to mount crystals grown quickly at -35 °C and slightly wet with CH₃CN gave a diffraction pattern, but no unit cell could be determined, and was likely because the fast crystal growth yielded multiple crystals rather than single crystals.

2.10. X-ray Crystallography

2.10.1. Crystal Growth

Unless otherwise noted, crystals for structure determination by single crystal X-

ray diffraction were grown in the low-temperature crystal growing apparatus depicted in Figure 2.7. The following procedure summarizes the general approach used to grow crystals from solutions using the temperature gradient method.

Solvent (ca. 1 mL) was condensed onto the compound (ca. 0.3 mmol) at -196 °C that had been synthesized in situ in one arm of a ¹/₄-in o.d. FEP T-shaped reactor fitted with a Kel-F valve. The reactor was warmed so as to just effect dissolution, and while maintained at that temperature, the reactor was attached to a vacuum line and pressurized to ca. 1 atm with dry nitrogen. The arm containing the solution was inclined at ca. 5° from the horizontal inside the glass dewar of a crystal growing apparatus⁹⁹ that had been previously adjusted to the same temperature. The temperature was then lowered over a period of time, usually several hours, whereupon crystals began to grow on the walls of the FEP vessel. The reactor was then held for a further period of time to allow for more complete crystallization. Crystals were isolated by decanting the solvent under dry nitrogen into the side arm of the FEP vessel which was immersed in liquid nitrogen, followed by evacuation and vacuum drying of the crystalline product under dynamic vacuum at -80 °C before the side-arm containing the supernatant was heat-sealed off. A crystal having dimensions less than 0.35 x 0.35 x 0.35 mm³ was selected at -104 ± 2 °C for low-temperature X-ray structure determination and was mounted in a cold stream (-173 °C) on a goniometer head as described in the next section.¹³⁰

Figure 2.7. Low-temperature crystal growing apparatus. (A) Glass-jacketed dewar. (B) Nitrogen cold flow. (C) Thermocouple lead. (D) T-shaped FEP reaction vessel with side arm. (E) Sample region. (F) Kel-F valve. (G) FEP U-trap. (H) Vacuum manifold. (I) Greaseless J-Young valve with PTFE barrel. (J) ¼" PTFE Swagelok or ¼-in. stainless steel Swagelok Ultra-Torr connector. From ref 108.

2.10.2. Low-Temperature Crystal Mounting

Because most of the samples investigated in this work were thermally unstable and/or moisture sensitive, all of the samples investigated were mounted at low temperature using the apparatus depicted in Figures 2.8 and 2.9. The reaction vessels containing the samples were first cut open below the Kel-F valve under a flow of dry argon gas, using an inverted glass funnel, while maintaining the sample at -78 °C. The sample was then quickly dumped into to the aluminum trough of the crystal mounting apparatus under a stream of dry argon, precooled (-104 ± 2 °C) by the regulated passage of dry nitrogen gas flow through a 5-L dewar filled with liquid N_2 (Figure 2.8). The temperature inside the trough was measured using a copper-constantan thermocouple positioned in the sample region of the trough. Using an additional glass sleeve, which was fitted into a concentric position around the silvered cold-flow dewar, an ambient nitrogen gas flow was slowly passed through the sleeve in order to maintain a laminar flow, thereby reducing atmospheric moisture build up in the trough. Crystals were then selected using a stereo-zoom microscope and mounted on a glass fibre (0.05 to 0.1-mm o.d.) using perfluorinated polyether oil (Ausimont Inc., Fomblin Z15 or Z25) which served as an adhesive upon freezing at low temperature. The glass fibre was previously mounted with epoxy cement to a copper pin fitted to a magnetic base and affixed to the end of a magnetic wand (Hampton Research). The magnetic wand could be fastened to an adjustable support stage such that samples could be inspected under the stereo-zoom microscope once affixed to the glass fibre. The mounted crystal and magnetic pin were quickly (ca. 5 s) transferred from the crystal mounting apparatus to the magnetic mount

Figure 2.8. Low-temperature crystal mounting apparatus. (A) Nitrogen inlet. (B) Glass sleeve for ambient nitrogen flow. (C) Liquid N₂ dewar. (D) Adjustable support stage. (E) Silvered dewar (glass). (F) Aluminum trough. (G) Stereo-zoom microscope. From ref 108.

Figure 2.9. (a) Enlarged view of the crystal mounting apparatus; (A) Ambient nitrogen gas flow inlet. (B) Glass sleeve for ambient nitrogen gas flow. (C) Adjustable support stage. (D) Aluminum trough. (E) Silvered glass jacketed dewar. (F) Magnetic-tipped wand affixed to (G) the magnetic-based copper pin-fibre assembly. (H) Glass fibre. (I) Stereo-zoom microscope. (b) A set of cryotongs employed in the transfer of the copper pin-fibre assembly with adhered crystal from the support stage to the goniometer head. From ref 108.

of the goniometer by means of cryotongs (Hampton Research) which were precooled in liquid N_2 prior to use. The crystals were maintained at low temperature on the goniometer head by a cold N_2 gas flow provided by a Oxford Cryosystems low-temperature cryostream accessory.

2.10.3. Data Collections

The crystallographic data acquired during the course of this Thesis were collected using two different diffractometers, which are each described in detail in the subsequent sections. Both instruments were equipped with a Oxford Cryosystems low-temperature cryostream accessory that provided a stream of cold, gaseous N₂ for low-temperature data collection. Both molybdenum instruments were controlled by a Cryostream Controller 700 (Oxford Cryosystems).

2.10.3.1. Siemens P4 diffractometer.

The Siemens diffractometer was equipped with a Siemens 1K CCD area detector controlled by SMART¹³¹ and a rotating anode (molybdenum) emitting K α radiation monochromated ($\lambda = 0.71073$ Å) by a graphite crystal. Diffraction data collection (-173 °C) consisted of a full φ -rotation at $\chi = 0^{\circ}$ using 0.3° (1040 + 30) frames, followed by a series of short (80 frames) ω scans at various φ and χ settings to fill the gaps. The crystalto-detector distance was 4.994 cm, and the data collection was carried out in a 512 × 512 pixel mode using 2 × 2 pixel binning. Processing of the raw data was completed using SAINT+,¹³² which applied Lorentz and polarization corrections to three-dimensionally integrated diffraction spots.

2.10.3.2. Bruker SMART APEX II diffractometer.

The Bruker SMART APEX II diffractometer was equipped with an APEX II 4K CCD area detector and a 3-axis goniometer, controlled by the APEX2 Graphical Use Interface (GUI) software,¹³³ and a sealed tube X-ray source (Mo target) emitting K α radiation monochromated ($\lambda = 0.71073$ Å) by a graphite crystal. Diffraction data collection was typically done at -173 °C and consisted of a full ϕ -rotation at a fixed $\chi = 54.74^{\circ}$ with 0.36° (1010) frames, followed by a series of short (250 frames) ω scans at various ϕ settings to fill the gaps. The crystal-to-detector distance was 4.959–4.989 cm, and the data collection was carried out in a 512 × 512 pixel mode using 2 × 2 pixel binning. Processing of the raw data was completed using the APEX2 GUI software,¹³³ which applied Lorentz and polarization corrections to three-dimensionally integrated diffraction spots.

2.10.4. Solution and Refinement of Structures

The program SADABS¹³² was used for the scaling of diffraction data, the application of a decay correction, and an empirical absorption correction based on the intensity ratios of redundant reflections. The XPREP program was used to confirm the unit cell dimensions and the crystal lattices. The final refinements were obtained by introducing anisotropic parameters for all the atoms except hydrogen, an extinction

parameter, and the recommended weight factor. The maximum electron densities in the final difference Fourier maps were located around the heavy atoms. All calculations were performed using the SHELXTL package for the structure determination, refinement, and molecular graphics.^{134,135} Structure solutions were obtained by direct methods which located the As, Br, Kr, Sb and/or Xe atoms. Successive difference Fourier syntheses revealed the positions of the carbon, nitrogen, oxygen, and fluorine atoms. The PLATON¹³⁶ program could not suggest additional or alternative symmetries. For $F_2OXeN = CCH_3$, the positions of the hydrogen atoms were calculated and a relatively satisfactory model could be obtained, however, the refinement as a single-crystal remained at an overall agreement factor of about 32%, with unsatisfactory behaviour for some parameters. With the introduction of the twin matrix $(1010\overline{1}000\overline{1})$ characteristic of a pseudomerohedral twin, the refinement converged. The volume fractions of the twin individuals are $t_{\rm I} = 0.87$ and $t_{\rm II} = 0.13$. A positional disorder arises for the BrOF₂⁺ cation in [BrOF₂][AsF₆] in which the oxygen and fluorine atoms could not be distinguished from one another.

2.11. Raman Spectroscopy

All Raman spectra were recorded on a Bruker RFS 100 Fourier transform Raman spectrometer employing a quartz beam splitter and a liquid-nitrogen cooled Ge diode detector. The 1064-nm line of a Nd-YAG laser was used for excitation with a laser spot of <0.1 mm at the sample and configured such that only the 180°-backscattered radiation was detected. The scanner velocity was 5 kHz and the wavelength range was 5894 to

10394 cm⁻¹ relative to the laser line at 9394 cm⁻¹, resulting in a spectral range of 3501 to -999 cm^{-1} . Fourier transformations were processed using a Blackman Harris 4-term apodization and a zero-filling factor of 2. Typical acquisitions used 1.0 cm⁻¹ resolution, 300–350 mW power, and involved 600 scans for strongly scattering samples and 1200–1600 scans for weakly scattering samples. Low-temperature spectra were acquired using a Bruker I0121 low-temperature accessory which provided temperatures ranging from -150 to -160 °C for routine samples, with an estimated error of ±1 °C.

2.12. Nuclear Magnetic Resonance Spectroscopy

High-field nuclear magnetic resonance spectra were recorded unlocked (field drift $< 0.1 \text{ Hz h}^{-1}$) on a Bruker DRX-500 (11.744 T) spectrometer using XWINNMR. The spectrometer was equipped with a Bruker 5-mm combination ¹H/¹⁹F probe, or a Bruker 5-mm broad band inverse probe. Low-temperature spectra were acquired using a cold nitrogen gas flow and a variable temperature controller (BV-T 3000). The ¹⁹F and ¹²⁹Xe spectra were referenced externally at 30 °C using neat samples of CFCl₃ and XeOF₄, respectively. The chemical shift convention used is that a positive (negative) sign indicates a chemical shift to high (low) frequency of the reference compound. A summary of typical spectroscopic parameters used for the spectra acquired for this Thesis are provided in Table 2.1. Spectra in the present study often used Gaussian multiplication to enhance spectral resolution.

Acquisition	¹⁹ F	¹²⁹ Xe
Parameter ^a		
B _o = 11.744 T		
SF (MHz)	470.593	139.051
TD (K)	32	16
SW (kHz)	25	20
Hz/pt	0.76	2.44
PW (µs)	1.00	18.0
RD (s)	0	0.1
NS	200	1,000

Table 2.1. Summary of Parameters Typically Used for NMR Data Acquisition

^a The abbreviations denote: B_o, applied magnetic field; SF, spectral frequency; TD, time domain; SW, sweep width; PW, pulse width; RD, relaxation delay; NS, number of scans

2.13. Quantum-Chemical Calculations

All calculations were performed using the Gaussian 03¹³⁷ or Gaussian 09¹³⁸ software packages. Geometries were fully optimized using density functional theory (SVWN, SVWN5, BP86, B3LYP, B3PW91, MPW1PW91, and/or PBE1PBE) and Møller-Plesset (MP2) methods using (SDB-)cc-pVTZ, aug-cc-pVDZ(-PP), and/or aug-cc-pVTZ(-PP) basis sets. The standard all-electron cc-pVTZ, aug-cc-pVDZ, or aug-cc-pVTZ basis sets, as implemented in the Gaussian program, were utilized for all elements except Kr, Br, Xe and As, for which the semirelativistic large core (RLC) pseudopotential basis set SDB-cc-pVTZ (with cc-pVTZ), aug-cc-pVDZ-PP (with aug-cc-pVDZ), or aug-cc-pVTZ-PP (with aug-cc-pVTZ) were used.¹³⁹ The combined uses described are indicated by (SDB-)cc-pVTZ, aug-cc-pVDZ(-PP), and aug-cc-pVTZ(-PP), respectively.

EMSL Exchange Basis obtained online from the Basis Set sets were (https://bse.pnl.gov/bse/portal).^{140,141} Fundamental vibrational frequencies were calculated along with Raman intensities, and Natural Bond Orbital (NBO) analyses were obtained for the optimized local minima. The program GaussView¹⁴² was used to visualize the vibrational displacements that form the basis of the vibrational mode descriptions presented.

CHAPTER 3

XeOF₂, F₂OXeN≡CCH₃, and XeOF₂·*n*HF; Rare Examples of Xe(IV) Oxide Fluorides

3.1. Introduction

Among the principal formal oxidation states of xenon, +2, +4, +6, and +8, the +4 oxidation state has been little studied and is presently limited to $XeF_5^{-,53} XeF_4^{,32,35,38} Xe(OTeF_5)_4^{,38,58,60} Xe(OTeF_5)_{4-x}F_x (x = 0-3)^{,38} several XeF_3^+ salts^{,48,51,52} and [C_6F_5XeF_2][BF_4]^{,62} and to preliminary reports of F_3XeOIO_4^{,64} F_xXe(OTeF_5)_{3-x}^+ (x = 0-2)^{,61} XeOF_2^{,65-67} and XeOF_3^{-,67} The modest and slow progress that has been made in the syntheses and structural investigations of xenon(IV) oxide fluoride species contrasts with that of xenon(VI)^{5,143} and stems from the explosive nature of the synthetic precursor, XeOF_2, and the need to find a reliable, high-yield synthesis for XeOF_2.$

Although vibrational spectroscopic evidence for $XeOF_2$ has been communicated on three prior occasions, none of these studies resulted in the unambiguous characterization or the isolation of pure $XeOF_2$. In two studies, $XeOF_2$ was reported as the product of the co-condensation of H₂O and XeF₄ vapors at low temperatures. Codeposited thin films were characterized by infrared spectroscopy,^{65,66} yielding infrared spectra that were in good agreement with each other. In one of these studies, samples were also prepared by a bulk co-condensation procedure and characterized by Raman spectroscopy.⁶⁶ Both the bulk co-condensation product⁶⁶ and the infrared spectra obtained from thin films^{65,66} are shown by the present work to be mixtures of XeOF₂ and XeOF₂·*n*HF. One of the components in the latter studies, XeOF₂·*n*HF, was subsequently synthesized as the sole product by the hydrolysis of finely divided XeF₄ in HF but was erroneously attributed to XeOF₂.⁶⁷

The inconsistencies related to the vibrational spectra of the reaction products of XeF₄ and H₂O in the prior published work, the lack of corroborating structural evidence for the products obtained in these early studies, and the absence of a facile synthesis of synthetically useful amounts of pure XeOF₂ motivated the present study, which describes reproducible high-yield and high-purity routes to XeOF₂, F₂OXeN=CCH₃, and XeOF₂·*n*HF and their structure determinations, offering the potential to extend the range of oxo-derivatives of xenon(IV).

3.2. Results and Discussion

3.2.1. Syntheses and Properties of XeOF₂, $F_2OXeN \equiv CCH_3$, and XeOF₂·*n*HF. Reaction progress and the purities of all products were routinely monitored by recording the low-temperature Raman spectra (-150 °C) of the solids which were isolated as their natural abundance, ¹⁸O-enriched (98.6 atom %), and ²H-enriched (99.5 atom %) isotopomers.

Xenon oxide difluoride was initially obtained as the CH₃CN adduct by lowtemperature hydrolysis of XeF₄ in CH₃CN solution containing 2.00 M H₂O according to eq 3.1. Water was added in ca. 3-5% stoichiometric excess to avoid unreacted XeF₄

$$XeF_4 + H_2O + CH_3CN \xrightarrow{CH_3CN} F_2OXeN \equiv CCH_3 + 2HF$$
(3.1)

contaminant in the product. A 2-fold stoichiometric excess of H₂O yielded only XeOF₂ and did not result in the formation of other xenon-containing products such as OXe(OH)F, OXe(OH)₂, or XeO₂. Although HF resulting from the hydrolysis of XeF₄ forms an adduct with CH₃CN (see 3.2.4, Raman Spectroscopy), it could be removed under dynamic vacuum along with the solvent at -45 to -42 °C. The F₂OXeN=CCH₃ adduct crystallized as pale yellow blades at -35 to -45 °C which were isolated by removal of the bulk solvent under dynamic vacuum at -45 to -42 °C while periodically monitoring its removal by low-temperature Raman spectroscopy.

Further pumping on polycrystalline $F_2OXeN \equiv CCH_3$ for several hours at -45 to - 42 °C, resulted in slow removal of adducted CH₃CN (eq 3.2), with the time depending on the sample size, leaving behind XeOF₂ as a bright yellow amorphous powder. Neither $F_2OXeN \equiv CCH_3$ nor XeOF₂ were soluble in SO₂ClF up to -78 °C and were recovered unchanged upon removal of SO₂ClF under vacuum at -78 °C.

$$F_2 OXeN \equiv CCH_3 \qquad \xrightarrow{\text{dynamic vac.}}_{-45 \text{ to } -42 \text{ °C}} \qquad XeOF_2 + CH_3CN \qquad (3.2)$$

Addition of anhydrous HF to XeOF₂ at -78 °C resulted in a very pale yellow and insoluble powder having a new Raman spectrum in which several bands were sensitive to ^{1/2}H isotopic substitution (see 3.2.4, Raman Spectroscopy). The results indicated that XeOF₂·*n*HF was formed according to eq 3.3. When XeOF₂·*n*HF was pumped under dynamic vacuum at -78 °C, with frequent agitation, bound HF was slowly removed over

$$XeOF_{2(s)} + nHF \qquad \xrightarrow{HF} \qquad XeOF_{2} \cdot nHF \qquad (3.3)$$

a period of several hours, regenerating unsolvated XeOF₂.
All three compounds, $F_2OXeN \equiv CCH_3$, XeOF₂, and XeOF₂ · *n*HF, are kinetically stable at -78 °C for indefinite periods of time, but decompose rapidly to explosively with emission of blue light upon warming to 0 °C. The major gas-phase decomposition pathway is O₂ elimination according to eq 3.4 while the minor pathway is disproportionation to Xe(II) and Xe(VI) according to eq 3.5. Both decomposition pathways have been observed in CH₃CN solutions of XeOF₂ and inferred from the

$$XeOF_{2 (g)} \longrightarrow XeF_{2(g)} + \frac{1}{2}O_{2(g)}$$
(3.4)

$$\Delta H^{o}_{rxn} = -245.8 \text{ kJ mol}^{-1} \qquad \Delta G^{o}_{rxn} = -259.3 \text{ kJ mol}^{-1} \qquad MP2/(SDB-)cc-pVTZ$$

$$2XeOF_{2 (g)} \longrightarrow XeF_{2(g)} + XeO_{2}F_{2(g)} \qquad (3.5)$$

$$\Delta H^{\circ}_{rxn} = -98.8 \text{ kJ mol}^{-1} \qquad \Delta G^{\circ}_{rxn} = -86.9 \text{ kJ mol}^{-1} \qquad \text{MP2/(SDB-)cc-pVTZ}$$

formation of small, but unequal, molar amounts of XeF_2 and XeO_2F_2 (see 3.2.2, NMR Spectroscopy).

3.2.2. ¹²⁹Xe, ¹⁹F, and ¹⁷O NMR Spectroscopy. In contrast with HF, XeOF₂ has appreciable solubility in CH₃CN, allowing the low temperature (-42 °C) ¹⁹F, ¹⁷O, and ¹²⁹Xe NMR spectra to be recorded.

The ¹⁹F NMR spectrum of a solution of XeOF₂ prepared by the hydrolysis of XeF₄ in CH₃CN consisted of a singlet (-48.8 ppm) with accompanying ¹²⁹Xe ($I = \frac{1}{2}$, 26.44%) satellites corresponding to ¹J(¹⁹F-¹²⁹Xe) = 3446 Hz (Figure 3.1a). In addition, a weak singlet (-179.2 ppm) corresponding to XeF₂ (~2% or less) with accompanying ¹²⁹Xe ($I = \frac{1}{2}$, 26.44%) satellites (¹J(¹²⁹Xe-¹⁹F) = 5641 Hz), a second weaker singlet (83.2 ppm) corresponding to XeO₂F₂ (~1% or less) with accompanying ¹²⁹Xe satellites

Figure 3.1. The ¹⁹F NMR spectrum (470.599 MHz) of (a) $Xe^{16}OF_2$ and (b) $Xe^{16,18}OF_2$, and (c) the ¹²⁹Xe NMR spectrum (138.339 MHz) of $Xe^{16}OF_2$. Spectra were recorded in CH₃CN at -45 °C.

 $({}^{1}J({}^{129}Xe{}^{-19}F) = 1320$ Hz), and an intense singlet corresponding to HF ($\delta({}^{19}F)$, -179.8 ppm,¹⁴⁴ $\Delta v_{\frac{1}{2}} = 83$ Hz) were observed. The ¹²⁹Xe NMR spectrum of XeOF₂ in CH₃CN consisted of a triplet (δ (¹²⁹Xe), 242.3 ppm) arising from ¹J(¹²⁹Xe–¹⁹F) = 3447 Hz (Figure 3.1c). Weak XeF₂ [δ (¹²⁹Xe), -1779.0 ppm, ¹J(¹⁹F-¹²⁹Xe) = 5648 Hz] and XeO₂F₂ $[\delta(^{129}\text{Xe}), 227.4 \text{ ppm}, {}^{1}J(^{19}\text{F}-^{129}\text{Xe}) = 1324 \text{ Hz}]$ resonances were also visible as triplets in the ¹²⁹Xe NMR spectrum. In several preparations, small amounts (ca. 0.01 %) of unreacted XeF₄ [δ (¹⁹F), -20.5 ppm; δ (¹²⁹Xe), 336.7 ppm; ¹J(¹²⁹Xe-¹⁹F) = 3911 Hz] were also observed. The increased shielding (lower frequency) of the ¹²⁹Xe resonance of XeOF₂ relative to that of XeF₄ is opposite to the decreased shielding (high-frequency shift) that occurs upon increasing oxygen substitution observed for Xe(VI): XeF₆, XeOF₄, XeO₂F₂, XeO₃ and for Xe(VIII): XeO₃F₂, XeO₄.⁷ The trend reversal may arise because one or more CH₃CN molecules are nitrogen coordinated to the Lewis acidic xenon center of XeOF₂ (see 3.2.3, X-ray Crystal Structure of F₂OXeN=CCH₃), contributing added shielding to ¹²⁹Xe and ¹⁹F. Upon donation of nitrogen electron lone pair electron density into the xenon valence shell, the ¹²⁹Xe nuclear shielding is enhanced and the effective electronegativity of Xe(IV) is decreased, resulting in increased ¹⁹F shielding relative to that of XeF₄. Failure to observe separate resonances for bound and free CH₃CN in the low-temperature ¹H and ¹⁴N NMR spectra of XeOF₂ solutions in CH₃CN indicates that the Xe-N donor-acceptor interaction(s) is (are) labile under these conditions.

A solution of XeOF₂ in CH₃CN was also prepared by the reaction of XeF₄ with ¹⁷O-enriched water (35.4%, ¹⁶O; 21.9%, ¹⁷O; 42.77%, ¹⁸O) dissolved in CH₃CN at -45 ^oC. The central line and the ¹²⁹Xe satellites of the ¹⁹F resonance [δ (¹⁹F), -48.6 ppm;

 ${}^{1}J({}^{129}Xe{}^{-19}F) = 3448$ Hz] were split as a result of the secondary isotope shift $[^{2}\Delta^{19}F(^{18/16}O) = -0.0136 \text{ ppm}]$ between Xe¹⁶OF₂ and Xe¹⁸OF₂ (Figure 3.1b). The observation of the isotope shift confirms the assignment of the singlet and its satellites to XeOF₂ and represents the only two-bond isotope shift that has been observed for a xenon compound. The ¹⁷O NMR spectrum showed an intense broad resonance at $\delta(^{17}O) = 209$ ppm ($\Delta v_{\frac{1}{2}} = 1300$ Hz), assigned to XeOF₂, but was too broad, owing to quadrupolar relaxation, to show ${}^{2}J({}^{19}F-{}^{17}O)$ coupling or ${}^{129}Xe$ satellites arising from ${}^{1}J({}^{129}Xe-{}^{17}O)$ coupling. These couplings also were not visible in the ¹²⁹Xe [$\delta = 240.1$ ppm; ¹ $\mathcal{J}(^{129}$ Xe– 19 F) = 3448 Hz] and the 19 F NMR spectra because guadrupolar relaxation by the 17 O, and its attendant broadening, made it impossible to distinguish the equi-intense components of the anticipated sextets $(I = \frac{5}{2})$ from the spectral baselines. A weak, broad resonance at $\delta(^{17}O) = 3.4$ ppm, which likely arises from excess H₃O⁺, and a weak, but very sharp resonance at $\delta(^{17}\text{O}) = 77.7 \text{ ppm} (\Delta v_{1/2} \approx 10 \text{ Hz})$ were also observed in the ¹⁷O NMR spectrum. The latter resonance likely results from the decomposition of XeOF₂ in CH₃CN at -45 °C. Although XeOF₂ was shown to decompose according to eq 3.6 in CH₃CN solvent, it may also act as a source of atomic oxygen (eq 3.7) which is expected to react

$$XeOF_2 \xrightarrow{CH_3CN} XeF_2 + \frac{1}{2}O_2$$
(3.6)

$$XeOF_2 \xrightarrow{CH_3CN} XeF_2 + [O]$$
(3.7)

$$CH_{3}C \equiv N + [O] \xrightarrow{CH_{3}CN} CH_{3}C \equiv N^{+} - O^{-}$$
(3.8)

with CH_3CN to give acetonitrile *N*-oxide according to eq 3.8. The reaction of CH_3CN with atomic oxygen, $O({}^{3}P)$, generated by laser flash photolysis of pyridine *N*-oxide in

CH₃CN solvent, has been previously documented.^{145,146} The narrow ¹⁷O line width is consistent with the axial symmetry of CH₃C= N^+ - O^- .

3.2.3. X-ray Crystal Structure of F_2OXeN \equiv CCH_3. A summary of the refinement results and other crystallographic information are given in Table 3.1. Important bond lengths, bond angles, and contacts are listed in Table 3.2.

The structure of $F_2OXeN = CCH_3$ consists of XeOF₂ molecules and CH₃CN ligands that interact by means of short Xe···N contacts (Figures 3.2 and 3.3). Two crystallographically independent adduct conformations define the asymmetric unit in which four molecules of each conformer comprise the contents of the unit cell. The Xe–N–C angles are bent in both conformers with the CH₃CN ligand lying in the XeOF₂ plane for one conformer and out of the XeOF₂ plane for the other conformer.

The primary coordination of the XeOF₂ moiety is a planar, T-shaped arrangement of two valence electron lone pairs and an oxygen double bond domain in the equatorial plane and two mutually *trans*-fluorine atoms perpendicular to that plane. The nitrogen electron pair donor atom of CH₃CN is coordinated trans to the oxygen atom and is coplanar with the XeOF₂ moiety in both conformers so that the geometry of the F₂OXeN moiety is consistent with an AX_2YZE_2 VSEPR⁴¹ arrangement of three single bond domains (X and Z), one double bond domain (Y), and two electron lone pair domains (E), placing the valence electron lone pairs trans to one another.

Table 3.1. Summary of Crystal Data and Refinement Results for F₂OXeN=CCH₃

space group	<i>P2₁/c</i> (No. 14)
<i>a</i> (Å)	8.7819(4)
<i>b</i> (Å)	13.9862(6)
<i>c</i> (Å)	11.0182(6)
β (deg.)	128.476(2)
$V(Å^3)$	1059.47(1)
Z (molecules/unit cell)	8
mol. wt. $(g mol^{-1})$	1810.83
$ ho_{ m calc} ({ m g \ cm^{-3}})$	2.838
<i>T</i> (°C)	-173
$\mu (\mathrm{mm}^{-1})$	6.43
λ (Å)	0.71073
D	0.000
Λ	0.0299
wR_2	0.0299 0.0675

 $R_{1} \text{ is defined as} = \sum \left\| F_{o} \right\| - \left\| F_{c} \right\| / \sum \left\| F_{o} \right\| \text{ for } I > 2\sigma(I); wR_{2} \text{ is defined as}$ $\left[\sum \left[w(F_{o}^{2})^{2} - (F_{c}^{2})^{2} \right] / \sum w(F_{o}^{2})^{2} \right]^{1/2} \text{ for } I > 2\sigma(I).$

	e	xptl ^a			SVWN ^b N	
		Bo	nd Lengths (Å)			
bent in-plane str	ucture ^a	bent out-of-plane	structure ^a			
Xe(1)-O(1)	1.778(4)	Xe(2)-O(2)	1.782(4)	Xe(1)-O(1)	1.813	1.774
Xc(1)-F(1)	1.958(3)	Xe(2)-F(3)	1.975(3)	Xe(1)-F(1)	2.013	1.993
Xe(1)-F(2)	1.952(3)	Xe(2)-F(4)	1.981(3)	Xe(1)-F(2)	2.013	1.993
Xe(1)N(1)	2.808(5)	Xe(2)-N(2)	2.752(5)	Xe(1)N(1)	2.702	2.883
N(1)-C(10)	1.142(7)	N(2)-C(20)	1.127(7)	N(1)-C(1)	1.152	1.167
C(10)-C(11)	1.448(8)	C(20)-C(21)	1.453(8)	C(1)-C(2)	1.428	1.455
				С(2)–Н	1.099	1.087
		Bon	d Angles (deg)			
F(1)-Xe(1)-F(2)	174.2(2)	F(3)-Xe(2)-F(4)	171.9(1)	F(1)-Xe(1)-F(2)	167.6	168.9
F(1)-Xe(1)-O(1)	92.4(2)	F(3)-Xe(2)-O(2)	94.1(2)	F(1)-Xe(1)-O(1)	96.2	95.6
F(2)-Xe(1)-O(1)	93.4(2)	F(4)-Xe(2)-O(2)	94.0(2)	F(2)-Xe(1)-O(1)	96.2	95.6
F(1)-Xe(1)N(1)	90.1(2)	F(3)-Xe(2)N(2)	84.5(1)	F(1)-Xe(1)N(1)	83.7	84.4
F(2)-Xe(1)-N(1)	84.1(2)	F(4)-Xe(2)N(2)	87.3(1)	F(2)-Xe(1)N(1)	83.8	84.4
Xc(1)-N(1)-C(10)	164.9(4)	Xe(2)N(2)-C(20)	134.6(4)	Xe(1)N(1)-C(1)	179.2	179.4
N(1)-C(10)-C(11)	178.9(6)	N(2)-C(20)-C(21)	178.4(6)	N(1)-C(1)-C(2)	179.9	179.9
		Lon	g Contacts (Å)			
		Xe(2)N(1)	3.635(5)			
		Xe(2)N(1A)	3.526(5)			

Table 3.2. Experimental and Calculated (C_1) Geometrical Parameters for $F_2OXeN = CCH_3$

98

^{*a*} Bent in-plane and out-of-plane structures and their labeling schemes are given in Figure 3.3. ^{*b*} (SDB-)cc-pVTZ basis set. The labeling scheme corresponds to that used in Figure 3.5b.

Figure 3.2. Crystal packing for $F_2OXeN \equiv CCH_3$ viewed along the *a*-axis; thermal ellipsoids are shown at the 50% probability level.

Figure 3.3. The X-ray crystal structure of $F_2OXeN \equiv CCH_3$ showing (a) two independent structural units and (b) the long contacts to Xe(2); thermal ellipsoids are shown at the 50% probability level.

The Xe–O bond lengths of both conformers are equal, within 3σ (1.778(4), 1.782(4) Å) and are somewhat longer than those observed in the neutral Xe(VI) and Xe(VIII) oxides and oxide fluorides XeOF₄ (1.713(3) Å),¹⁴⁷ XeO₂F₂ (1.714(4),¹⁴⁸ 1.734(9)¹⁴⁹ Å), XeO₃ (1.74(3)–1.77(3) Å),³³ and XeO₄ (1.736(2) Å).¹⁵⁰ Overall, the Xe–F bond lengths of F₂OXeN=CCH₃ are comparable to those in XeF₄ (1.953(2) Å).³² The Xe-F bond lengths of those of the in-plane conformer (1.952(3), 1.958(3) Å), where the longer Xe–F bond lengths correspond to the shorter Xe–N bond in the out-of-plane conformer. The equatorial F–Xe–F angles (171.9(1)°, out-of-plane; 174.2(2)°, in-plane) are slightly bent away from the Xe–O the out-of-plane conformer (1.975(3), 1.981(3) Å) are slightly longer when compared with double bond domain towards the Xe–N bond, in accord with the greater steric requirement of the double bond domain relative to that of a single bond domain. This angle is reproduced in the calculated structure (see 3.2.5, Computational Results).

The in-plane conformer (Figure 3.3a) has a Xe(1)–N(1) distance of 2.808(5) Å and a Xe(1)–N(1)–C(10) angle of 164.9(4)°. The xenon atom of this conformer has no additional long contacts that are at, or less than the sum of the van der Waals radii of Xe and F (3.63 Å)⁵⁵ or Xe and N (3.71 Å).⁵⁵ In the case of the out-of-plane conformer (Figure 3.3a), the nitrogen atom lies out of the XeOF₂ plane by 0.23 Å. The NCC moiety is rotated 57.8° out of the XeOF₂ plane and subtends an angle of 11.1° with the OXeNaxis. This conformer has a slightly shorter Xe(2)–N(2) distance (2.752(5) Å) and a smaller Xe(2)–N(2)–C(20) angle (134.6(4)°) than the in-plane conformer. The xenon atom of this conformer has two additional longer Xe(2)…N contacts, 3.526(5) [Xe(2)…N(1A)], and 3.635(5) [Xe(2)…N(1)] Å (Figure 3.3b), which are close to the sum of the Xe and N van der Waals radii and occur on opposite sides of the F₂OXeN plane with dihedral angles of 63.6° and 117.4° , respectively. The shorter Xe(IV)–N distances in the present adducts are significantly less than the sum of the Xe and N van der Waals radii (3.71 Å),⁵⁵ but are significantly longer than all known Xe(II)–N bond lengths, namely, [Xe(N(SO₂F)₂][Sb₃F₁₆] (2.02(1) Å),¹⁵¹ [F₅TeN(H)Xe][AsF₆] (2.044(4) Å),¹⁵² FXeN(SO₂F)₂ (2.200(3) Å),¹⁵³ [F₃S=NXeF][AsF₆] (2.236(4) Å),¹⁵⁴ and [C₆F₅XeN=CCH₃][AsF₆]·CH₃CN (2.681(8) Å).¹⁵⁵ Although the primary coordination of Xe(IV) in XeOF₂ is unsaturated and is expected to exhibit significant Lewis acidity, the Xe(IV)–N bond of F₂OXeN=CCH₃ is significantly longer and weaker than the Xe(II)–N bonds of F₃S=NXeF⁺ and C₆F₅XeN=CCH₃⁺.

3.2.4. Raman Spectroscopy. The low-temperature Raman spectra of solid Xe^{16/18}OF₂, $F_2^{16/18}OXeN \equiv CCH_3$, and Xe^{16/18}OF₂·*n*HF are shown in Figure 3.4. The observed and calculated frequencies and their assignments are listed in Tables 3.3–3.6. The modes associated with coordinated CH₃CN in $F_2^{16/18}OXeN \equiv CCH_3$ differ slightly from those of the free ligand, but could be easily identified (Tables 3.4, 3.6, A1.1 and A1.2).

The spectral assignments for $Xe^{16/18}OF_2$, $F_2^{16/18}OXeN \equiv CCH_3$, and $Xe^{16/18}OF_2 \cdot n^{1/2}HF$ were made by comparison with the calculated frequencies and Raman intensities (Tables 3.3–3.5 and A1.3–A1.10) of the energy-minimized geometries (Figure 3.5), and in the case of CH₃CN modes, by comparison with those of the free ligand and other CH₃CN adducts. The spectra of CH₃CN and CH₃CN·*m*HF, prepared from a 2:1 molar ratio of HF and CH₃CN (no free CH₃CN was observed; also see 3.2.2, NMR

Figure 3.4. Raman spectra recorded at -150 °C using 1064-nm excitation for natural abundance (lower trace) and 98.6% ¹⁸Oenriched (upper trace): (a) XeOF₂, (b) F₂OXeN=CCH₃, and (c) XeOF₂·*n*HF. Symbols denote FEP sample tube lines (*), instrumental artifact (†), and XeOF₂ (‡).

ex	kptl ^b		cal	assgnts f		
		SV	WN ^d	M	22 °	· <u> </u>
_Xe ¹⁶ OF ₂	$\underline{Xe^{18}OF_2}$	Xe ¹⁶ O F ₂	Xe ¹⁸ OF ₂	Xe ¹⁶ OF ₂	Xe ¹⁸ OF ₂	$(C_{2\nu})$ symmetry
749.9(83)	712.8(84)	795.4(16)[22]	756.2(14)[21]	939.1(9)[60]	892.5(9)[55]	v(XeO)
n.o.	n.o.	572.3(<<1)[213]	573.8(<<1)[214]	582.5(<<1)[252]	583.8(<1)[253]	$v_{as}(XeF_2)$
467.8(100)	467.8(100)	505.3(25)[7]	505.3(25)[7]	509.1(37)[7]	508.9(37)[7]	$\nu_{s}(XeF_{2})$
298.1(13)	289.0(14)	244.4(4)[3]	235.1(4)[3]	283.0(4)[3]	272.1(4)[3]	prock(XeOF2) ip
256.2(2) 251.4(1)	256.2(2) 251.8(1)	} 200.0(<<1)[21]	200.3(<<1)[20]	217.7(<<1)[25]	218.1(<<1)[25]	$\delta(XeF_2)$ oop
175.7(1) 154.0(6)	172.8(1) 153.5(7)	} 154.9(<1)[14]	154.9(<1)[14]	176.1(<1)[19]	176.1(<1)[19]	δ(XeF2) ip
108.2(32)	102.4(35)					lattice mode

^a Frequencies are given in cm⁻¹. The abbreviation denotes not observed (n.o.). ^b The Raman spectrum of Xe^{16/18}OF₂ was recorded in an FEP sample tube at -150 °C using 1064-nm excitation. Values in parentheses are relative Raman intensities. ^c Values in parentheses are Raman intensities (Å⁴ amu⁻¹) and values in square brackets denote infrared intensities (km mol⁻¹). ^d SVWN/(SDB-)cc-pVTZ. ^e MP2/(SDB-)cc-pVTZ. ^f Abbreviations denote symmetric (s), asymmetric (as), stretch (v), bend (δ), rock (ρ_{rock}), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). The in-plane and out-of-plane mode descriptions are relative to the XeOF₂ plane.

ех	cpt ^b		Ci	alc °		assgnts f
		SV	WN ^d	M	P2 °	
F ₂ ¹⁶ OXeNCCH ₃	F ₂ ¹⁸ OXeNCCH ₃	F2 ¹⁶ OXe NCCH ₃	F ₂ ¹⁸ OXeNCCH ₃	F2 ¹⁶ OXeNCCH3	F2 ¹⁸ OXeNCCH3	(C_1) symmetry
3009.1(10)	3008.7(10)	3067.6(78)[4]	3067.6(78)[4]	3198.7(60)[<1]	3198.7(60)[<1]	
2999.0(10)	2999.0(11)	3066.7(79)[4]	3066.6(79)[4]	3198.2(60)[<1]	3198.2(60)[<1]	$V_{as}(CH_3)$
2937.8(59)	2937.8(60)	2983.7(266)[3]	2983.6(266)[3]	3101.9(185)[<<1]	3101.9(185)[<<1]	ν _s (CH ₃)
2726.1(1)	2726.1(1)					g
2297.1(2)	2297.1(2)					L
2287.0(7)	2287.0(6)					п
2253.7(51)	2254.1(51)	2347.2(287)[68]	2347.5(286)[67]	2234.7(96)[8]	2234.7(96)[8]	ν(C≡N)
1437.4(1), br	1436.0(2), br	1383.5(9)[15]	1383.5(9)[15]	1491.1(7)[11]	1491.1(7)[11]	
1406.6(1), br	1409.9(1), br	1383.4(9)[15]	1383.4(9)[15]	1491.1(7)[11]	1491.1(7)[11]	$\delta_{as}(CH_3)$
1370 4(5)	1370 4(6)					
1356.9(6)	1357.1(6)	1333.5(14)[8]	1333.4(14)[8]	1416.6(4)[1]	1416.6(4)[1]	δ _s (CH ₃)
1034.3(1)	1034.0(1)	995.7(<1)[7]	995.7(<1)[7]	1065,5(<1)[2]	1065.5(<1)[2]	
		995.6(<1)[7]	995.7(<1)[7]	1065.4(<<1)[2]	1065.4(<1)[2]	ρ _{rock} (CH ₃)
926.3(5)	925.9(5)	074 1/15153	072 7/15161	042 7/10/61	042 7(10)[7]	
924.0(9)	924.0(8)	974.1(15)[5]	975.7(15)[5]	942.7(10)[0]	942.7(10)[7]	V(C-C)
766.8(5)	728.6(8)					
762.4(51)	724.1(47)	795.9(54)[64]	756.7(49)[61]	938.4(19)[100]	892.0(17)[92]	v(XeO)
754.7(43)	717.1(38)					. ,
525.2(2)	525.0(2)	549.0(<<1)[214]	550.4(<<1)[214]	565.0(<<1)[250]	566.5(<<1)[251]	$v_{as}(XeF_2)$
499.1(12)	498.7(13)					
494.4(21)	494.5(21)	496 2(34)[2]	406 2/24/221	402 1/27)[6]	402 1/27\[5]	
488.1(100)	488.1(100)	400.3(24)[3]	480.3(24)[3]	493.1(37)[3]	493.1(37)[3]	V _s (ACr ₂)
481.8(46)	481.8(46)					

Table 3.4. Experimental and Calculated Vibrational Frequencies^a for $F_2^{16/18}$ OXeN=CCH₃

397.4(4) 392.6(2) 390.2(3)	397.2(4) 392.6(3) 389.7(4)	387.0(2)[1] 384.8(2)[~0]	386.7(2)[<1] 384.7(2)[~0]	374.0(2)[1] 372.6(2)[<1]	374.0(2)[1] 372.6(2)[<1]	δ(CCN)
283.2(11) 277.4(8)	272.3(10) 267.0(8)	242.7(4)[20]	233.3(3)[2]	282.0(4)[3]	271.2(4)[2]	$\rho_{rock}(XeOF_2)$ ip
n. o.	n. o.	215.5(<1)[26]	214.9(<1)[26]	226.9(<1)[29]	226.8(<1)[28]	δ(OXeF2N) oop
164.1(5) 147.9(9)	162.9(5) 144.3(10)	177.7(~0)[28]	177.6(~0)[28]	187.7(<1)[30]	187.9(<1)[30]	$v(XeN) + \delta(XeF_2)$ ip
133.7(9) 116.4(5)	130.4(9) 117.1(6)	119.6(2)[<1]	119.4(2)[~0]	101.1(1)[1]	101.1(1)[1]	$v(XeN) - \delta(XeF_2)$ ip
		108.8(2)[2]	106.7(2)[2]	97.2(2)[5]	95.0(2)[5]	δ(OXeN) ip + minor δ(XeF ₂) oop
		83.6(<<1)[4]	83.9(<1)[4]	81.4(<1)[4]	81.3(<1)[4]	δ(XeNC) ip
		31.0(<<1)[2] 14.9(<1)[~0] 6.0(2)[2]	30.5(<<1)[2] 21.3(<<1)[<1] 7.9(2)[2]	34.4(<<1)[1] 16.6(2)[1] 8.9(<<1)[<<1]	33.7(<<1)[1] 16.4(2)[1] 8.9(<<1)[<<1]	coupled deformations

^a Frequencies are given in cm⁻¹. The abbreviation denote broad (br), and not observed (n.o.). Additional abbreviations are given in footnote f of Table 3.3. ^b The Raman spectrum of $F_2^{16/18}OXeN \equiv CCH_3$ was recorded in an FEP sample tube at -150 ^oC using 1064-nm excitation. Values in parentheses are relative Raman intensities. ^c Values in parentheses are Raman intensities (Å⁴ amu⁻¹), and values in square brackets are infrared intensities (km mol⁻¹). ^d SVWN/(SDB-)cc-pVTZ. ^e MP2/(SDB-)cc-pVTZ. ^f Bond elongations and angle openings are denoted by plus (+) signs and bond contractions and angle closings are denoted by minus (-) signs. ^g Overtone corresponding to 2 x 1357 cm⁻¹. ^h Combination bands corresponding to 1370 + 926 and 1357 + 924 cm⁻¹.

	ex	pt ^b			assgnts (C_1)
$\frac{Xe^{16}OF_{2} \cdot nHF}{2854(<1), br}$	$\frac{Xe^{18}O F_2 \cdot nHF}{2854(<1), br}$	$\frac{Xe^{16}OF_2 \cdot nDF}{2164(1), br}$	$\frac{\text{Xe}^{18}\text{OF}_2 \cdot n\text{DF}}{2165(1), \text{ br}}$	ν ₁	ν(H[D]F) + minor ν(OH[D]–F)
n.o. 733.5(34)	n.o. 696.4(25)	n.o. 734.0(46)	n.o. 697.3(27)	$ u_2 $ $ u_3 $	δ(OH[D]–F) ν(XeO)
n.o. n.o. 498.2(100) 299.1(2) 286.6(8) 200.2(2) 187.2(6)	n.o. n.o. 497.7(100) 294.8(1) 276.4(8) 199.8(2) 186.3(6)	n.o. n.o. 497.7(100) 293.8(2) 285.1(10) 201.2(2) 187.2(7)	n.o. n.o. 497.7(100) 289.8(2) 275.9(8) 199.8(2) 186.3(7)		HF 0.0.p. wag $v_{as}(XeF_2) + minor H[D]F 0.0.p. wag$ $v_s(XeF_2)$ $\delta(F_{H[D]}XeO)$ $\rho_{rock}(XeOF_2) i.p. + minor H[D]F 0.0.p. wag$ $\delta(XeF_2) 0.0.p.$
166.0(5)	164.6(5)	165.5(6) 127.5(5)	164.1(6)	V ₁₀	$\delta(XeF_2)$ i.p.
89.9(2) 65.3(1)	$89.8(2) \\ 64.3(1) $	119.3, sh J	123.0(0)	v_{11}	$\rho_{rock}(XeOF_2)$ o.o.p. + $\nu(H[D]F$ Xe)
n.o.	n.o.	n.o .	n.o .	ν_{12}	XeF ₂ torsion about Xe–O bond

Table 3.5. Experimental Vibrational Frequencies^a for $F_2Xe^{16/18}O \cdot nHF$ and $F_2Xe^{16/18}O \cdot nDF$

^a Frequencies are given in cm⁻¹. Abbreviations are given in footnote f and a of Table 3.3 and 3.4, respectively. ^b Raman spectra of $F_2Xe^{16/18}O\cdot nHF$ and $F_2Xe^{16/18}O\cdot nDF$ were recorded in an FEP sample tube at -150 °C using 1064-nm excitation. Values in parentheses denote relative Raman intensities. ^cLattice modes and/or instrumental artifacts.

Ph.D. Thesis – David S. Brock

	F ₂ UXeN≡CCH ₃ r	nixtures			
F ₂ OXeN≡CCH ₃ CH ₃ CN.mHF CH ₃ CN	F₂OXeN≡CCH₃	F₂OXeN≡CCH₃ XeOF₂	XeOF ₂	assgnts ^b	-
3018.1(3)				v _{as} (CH ₃)	Ī
2949.0(9)				v _s (CH ₃)	
2309.6(2) 2282.1(6)				v(C≡N)	CH ₃ CN·mHF
1451.9(2)				CH ₃ def. as	(
1361.7(3)				CH₃ def. s)
932.5(2)				v(C-C))
2247.4(2)				v(C≡N)	
1457.0sh				CH ₃ def. as	CH ₃ CN
1375.8(1)				CH ₃ def. s)
3009.1(8) 2998.8(8)	3009.0(7) 2999.3(7)	3008.9(7) 2999.1(7)		v _{as} (CH ₃)	
2937.5(44) 2726.2(1)	2937.6(40) 2726.2(2)	2937.7(43) 2726.1(1)		v _s (CH ₃)	
2297.1(2) 2286.1(5)	2297.1(2) 2286.9(5)	2296.6(2) 2286.9(6)		v(C≡N)	{
2254.3(39)	2254.2(39)	2254.2(42)		v(C≡N)	{
1438.0(1) 1407.3(1)	1438.8(2) 1409.4(2)	1438.3(1) 1407.0(1)		CH ₃ def. as	(
1370.6(5) 1356.9(6)	1370.3(5) 1356.9(5)	1370.3(5) 1357.0(5)		CH ₃ def. s	
1034.6(2)	1034.4(2)	1034.1(1)		$\rho_{\text{rock}}(CH_3)$	
926.6sh 923.9(8)	926.6(sh) 923.7(8)	926.2(sh) 923.7(8)		ν(C-C)	F ₂ OXeNCCH ₃
767.0(4) 762.3(46) 754.4(41)	767.0(4) 762.3(45) 754.4(41)	767.0(5) 762.3(47) 754.5(45)		v(XeO)	
525.2(2)	525.2(3)	525.3(2)		$v_{as}(XeF_2)$	
498.8(12) 494.5(21) 487.6(100) 481.8(44)	498.8(12) 494.6(20) 487.6(100) 481.8(49)	498.8(12) 494.5(20) 487.8(100) 481.8(52)		v _s (XeF ₂)	
397.4(5) 392.8(3) 390.2(4)	397.4(4) 392.8(3) 390.2(4)	397.4(4) 392.6(2) 390.0(4)		δ(CCN)	

Table 3.6.Experimental Raman frequencies for XeOF2,
 $F_2OXeN \equiv CCH_3/CH_3CN/CH_3CN \cdot mHF$ mixtures and XeOF2/
 $F_2OXeN \equiv CCH_3$ mixtures a

Table 3.6. (continued ...)

283.0(11) 277.2(8)	283.0(11) 277.2(9)	283.1(11) 277.4(8)		ρ _{rock} (XeOF ₂) i.p.)
164.7(5) 148.9(9)	164.7(4) 148.9(7)	164(4) 148.6(8)		$v(XeN) + \delta(XeF_2)$ i.p.	
133.8(9)	133.8(7)	133.8(6)		$v(XeN) - \delta(XeF_2)$ i.p.	F ₂ OXeNCCH ₃
	116.4(3)			$v(XeN) - \delta(XeF_2)$ i.p.	
71.5(6)	71.5(5)			lattice modes)
		750.2(42)	750.0(60)	v(XeO))
		468.0(57)	468.0(100)	v _s (XeF ₂)	
		297.8(8)	297.8(11)	ρ _{rock} (XeOF ₂) i.p.	
			256.1(1)	δ(XeF ₂)0.0.p.	XeOF ₂
		253.2(1)	251.6(sh)	δ(XeF ₂)0.0.p.	
		174.6(1)	175.5(1)	$\delta(XeF_2)$ i.p.	
			153.3(6)	$\delta(XeF_2)$ i.p.	
		108.1(15)	108(22)	lattice modes	,

^a Frequencies are given in cm⁻¹. The abbreviation denotes broad (br) and shoulder (sh). ^b The original sample was a mixture consisting of $F_2OXeN \equiv CCH_3$, CH_3CN and $CH_3CN \cdot mHF$ (column 1). Slow removal of uncoordinated CH_3CN and $CH_3CN \cdot mHF$ under dynamic vacuum gave $F_2OXeN \equiv CCH_3$ (column 2). Gradual pumping of $F_2OXeN \equiv CCH_3$ first gave a mixture of $F_2OXeN \equiv CCH_3$ and $XeOF_2$ (column 3) while prolonged pumping resulted in unsolvated $XeOF_2$ (column 4). ^b The abbreviations denote symmetric (s), asymmetric (as), stretch (v), bend (δ), rock (ρ_{rock}), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). The in-plane and out-of-plane mode descriptions are relative to the XeOF_2 plane.

Figure 3.5. Calculated geometries (SVWN/(SDB-)cc-pVTZ) of (a) XeOF₂, (b) $F_2OXeN \equiv CCH_3$, (c) XeOF₂·HF, O···H coordinated, (d) XeOF₂·HF, F···H coordinated, (e) (XeOF₂)₂, (f) (XeOF₂)₃, and (g) XeOF₂·2HF.

Spectroscopy), were also recorded at -150 °C and assigned (Tables A1.1 and A1.2) for comparison with those of $F_2^{16/18}OXeN=CCH_3$. Assignments of modes involving the oxygen and hydrogen atoms were also supported by experimental and calculated $^{16/18}O$ and $^{1/2}H$ isotopic shifts. Vibrational frequencies calculated at both the MP2 (values in parentheses in the present discussion and throughout) and SVWN levels of theory reproduced the observed frequency trends across the series of compounds.

3.2.4.1. XeOF₂. The XeOF₂ molecule $(C_{2\nu})$ possesses six fundamental vibrational modes belonging to the irreducible representations $3A_1 + 2B_1 + B_2$ (the *xy*-plane is the molecular plane) that are Raman and infrared active. Although, there is overall good agreement between the observed and calculated frequency trends for XeOF₂, the stretching frequencies are overestimated whereas those of the deformation modes are slightly underestimated. Discrepancies are expected to arise, in part, because the low coordination number and large valence shell of xenon in XeOF₂ are conducive to association in the solid state.

The highest frequency mode at 749.9 cm⁻¹ is assigned to the v(Xe-O) stretch, and displays a substantial low-frequency shift (37.1 cm⁻¹ or 4.95%) upon substitution of ¹⁸O and is in good agreement with the calculated percentage ^{16/18}O isotope shift [39.2 (46.6) cm⁻¹ or 4.93 (4.96)%]. The mode at 298.1 cm⁻¹ displays a smaller ^{16/18}O isotope shift of 9.1 cm⁻¹ (3.05%) [calculated 9.3 (10.9) cm⁻¹ or 3.81 (3.85)%] and is assigned to the inplane $\rho_{\text{rock}}(\text{XeOF}_2)$ mode. Similar isotope shifts were observed and calculated for the Xe^{16/18}OF₂·n^{1/2}HF and F₂^{16/18}OXeN=CCH₃ adducts (vide infra). It is clear from the high frequency of v(Xe-O) that the formal Xe-O bond order is close to two, ruling out the

polymeric infinite chain structure, $[-O-Xe(F_2)-]_n$, predicted by Gillespie.¹⁵⁶ However, the calculated v(Xe-O) and v_s(XeF₂) frequencies of XeOF₂ are significantly higher than the experimental values, and the experimental frequencies are 9 and 20 cm⁻¹, respectively, lower than those of F₂OXeN=CCH₃ (vide infra), suggesting that weak oxygen and/or fluorine coordination to adjacent xenon atoms occurs in the solid (cf. gas-phase dimer and trimer in the Computational Results).

As predicted from the calculated Raman intensities, the $v_s(XeF_2)$ stretch at 467.8 cm⁻¹ is the most intense mode in the Raman spectrum. Because the XeF₂ moiety is near linear and near centro-symmetric, mutual exclusion applies. Thus, $v_{as}(XeF_2)$ is expected to be very weak and was not observed, but is predicted to occur at 572.3 (582.5) cm⁻¹ compared to $v_{as}(XeF_4)$ of XeF₄ (586 cm⁻¹, infrared spectrum).³⁵ The weak modes at 251.4 and 256.2 cm⁻¹ are assigned to the out-of-plane XeF₂ bending mode, and the modes at 154.0 and 175.7 cm⁻¹ are assigned to the in-plane XeF₂ bending mode.

3.2.4.2. F₂**OXeN=CCH**₃. A solution sample of F₂OXeN=CCH₃, generated in CH₃CN according to eq 3.1, was pumped under dynamic vacuum at -45 to -42 °C until a slurry of F₂OXeN=CCH₃ wetted with CH₃CN had formed. Removal of the remaining CH₃CN and HF was then monitored by low-temperature Raman spectroscopy after every 5–10 min pumping interval. This permitted distinction and unambiguous assignment of the CH₃CN modes associated with the solvent, F₂OXeN=CCH₃, and CH₃CN·*m*HF [v_{as}(CH₃), 3018.1; v_s(CH₃), 2949.0; v(CN), 2282.1, 2309.6; δ_{as} (CH₃), 1451.9; δ_{s} (CH₃), 1361.7; v(CC), 932.5 cm⁻¹; also see Tables 3.6, A1.1 and A1.2].

All vibrational modes (24 A) of F₂OXeN=CCH₃ (C₁) are predicted to be Raman and infrared active. The $v_s(CH_3)$, $v_{as}(CH_3)$, v(CN), $\delta_{as}(CH_3)$, $\delta_s(CH_3)$, v(XeO), $v_s(XeF_2)$, $\delta(CCN)$, and $\delta_{rock}(XeOF_2)$ ip bands are split into two to four components (Table 3.4). To account for these splittings, a factor-group analysis was performed based on the single crystal X-ray structure. The analysis reveals that each Raman and infrared band is split, as a result of coupling within the unit cell, into a maximum of four components, $2A_g +$ $2B_g$ in the Raman spectrum and $2A_u + 2B_u$ in the infrared spectrum (Table 3.7).

The frequencies associated with the XeOF₂ moiety have been assigned by analogy with those of XeOF₂ as discussed above, and require no further commentary except to note that the $v_s(XeF_2)$ stretching frequency is shifted to higher frequency when compared with that of XeOF₂, which is also observed for the HF adduct (vide infra).

Table 3.4 shows that the XeOF₂ group modes are affected by the adduct formation, with both the v(Xe-O) and v_s(XeF₂) modes being shifted to higher frequencies by 9 and 20 cm⁻¹, respectively. In contrast, the calculated frequencies indicate that v_s(XeF₂) should decrease [19 (16) cm⁻¹] and that v(Xe-O) should remain unchanged when adduct formation takes place in the gas phase. The discrepancy may result from XeOF₂ association in the solid state which likely occurs by means of asymmetric oxygen bridges (vide supra). Formation of the CH₃CN adduct presumably disrupts solid state association, forming discrete monomers, as shown in its crystal structure, resulting in increases in Xe–O bond order and v(XeO).

In contrast with XeOF₂ and XeOF₂·*n*HF, the low symmetries of the two conformations observed for F₂OXeN=CCH₃ in its crystal structure allow the $v_{as}(XeF_2)$

Table 3.7. Factor-Group Analysis for F₂OXeN=CCH₃

There are two crystallographically unique $F_2OXeN \equiv CCH_3$ molecules in the asymmetric unit of the unit cell, both having C_1 site symmetry. Each structure type is distinguished by its non-linear Xe-N-C angle which lies either in or out of the XeOF₂ plane. The present factor-group analysis correlates the gas-phase molecular symmetry of both conformations (C_1) to their site symmetries (C_1) which, in turn, are correlated to the unit cell symmetry (C_{2h}) for a total of 8 molecules per unit cell. The present analysis has been simplified by assuming a single adduct conformation. Consequently, no provision has been made for coupling between different conformers. The analysis reveals that each Raman and infrared band will be split, as a result of coupling within the unit cell, into a maximum of four components, $2A_g + 2B_g$ in the Raman spectrum and $2A_u + 2B_u$ in the infrared spectrum. mode to be observed as a weak line at 525.2 cm⁻¹. The in-plane $\delta(XeF_2)$ deformation mode is symmetrically and anti-symmetrically coupled to the v(XeN) stretch, occurring at 147.9, 164.1 cm⁻¹ [v(XeN) + v(XeF_2) i.p.] and 116.4, 133.7 cm⁻¹ [v(XeN) - v(XeF_2) i.p.].

All frequencies associated with coordinated CH₃CN were readily assigned by comparison with those of the free base. The modes at 2253.7 and at 390.2, 392.6, and 397.4 cm⁻¹ are assigned to the v(CN) stretch and the δ (NCC) bend, respectively, and are shifted to higher frequencies when compared with those of the free ligand. The experimental v(CN) (5.3 cm⁻¹) and δ (NCC) (2.1 cm⁻¹, average) complexation shifts are much smaller than those associated with other Lewis acid adducts of CH₃CN (CH₃CNSbF₅, 80 and 36 cm⁻¹;¹⁵⁷ CH₃CNBF₃, 114 and 58 cm⁻¹;¹⁵⁸ and CH₃CNBCl₃, 118 and 80 cm⁻¹,¹⁵⁹ respectively), and are indicative of a comparatively weak donor–acceptor bond in F₂OXeN≡CCH₃. While the calculated v(CN) [15.2 (16.7) cm⁻¹] and δ (NCC) [8.9 (9.8) cm⁻¹) complexation shifts are much less, the ratios of the stretching to bending complexation shifts are similar.

3.2.4.3. XeOF₂•*n***HF**. When HF was added to XeOF₂ at -78 °C, a Raman spectrum that was more complex than that of XeOF₂ resulted, which was identical to that previously reported for, and erroneously assigned to XeOF₂.⁶⁷ In an attempt to more fully understand the nature of the interaction between HF and XeOF₂, the deuterium substituted ^{16/18}O isotopomers were also synthesized.

When the Raman spectra of all four isotopomers are considered (Table 3.5), only one of the eight XeOF₂·*n*HF modes that could be observed exhibited both ^{16/18}O and ^{1/2}H dependencies that were > 2 cm⁻¹. In addition, three modes exhibited only ^{16/18}O dependence, one mode exhibited only ^{1/2}H dependence (this mode is very broad, ~100 cm⁻¹, and is not expected to exhibit a discernable ^{16/18}O isotope shift), and three were unshifted. In order to account for the isotopic dependencies of the experimental vibrational frequencies and to determine the manner in which HF is coordinated in XeOF₂·*n*HF, several simplified models were calculated (see 3.2.5, Computational Results).

The vibrational assignments for $Xe^{16/18}OF_2 \cdot n^{1/2}HF$ were based upon a comparison of two energy-minimized structures in which a single HF molecule coordinates to XeOF₂. In one case, the HF molecule occupies a plane perpendicular to the XeOF₂ plane and is coordinated to xenon through fluorine and is cis to the oxygen atom so that HF is hydrogen-bonded to oxygen (Figure 3.5c). The second energy-minimized model (Figure 3.5d) in which HF is also fluorine-coordinated to xenon differs in that HF is hydrogenbonded to the fluorine on xenon and lays in the XeOF₂ plane. The latter structure is favored by 7.8 (1.6) kJ mol⁻¹ over the O…H bonded structure in Figure 3.5c.

The O…H bonded model, in which bicoordinate HF increases the xenon coordination number by bonding through fluorine, gives twelve modes: five ^{16/18}O- and ^{1/2}H-dependent modes (v_1 , v_2 , v_4 , v_7 , v_8), one ^{16/18}O-dependent mode (v_3), one ^{1/2}H-dependent modes (v_5), and five unshifted modes (v_6 , v_9-v_{12}). In contrast, the F…H bonded structure gives one ^{16/18}O- and ^{1/2}H-dependent mode (v_1), two ^{16/18}O-dependent

modes (v_3 , v_8), three ^{1/2}H-dependent mode (v_2 , v_4 , v_7), and six (v_5 , v_6 , v_9-v_{12}) unshifted modes. Overall, the calculated vibrational frequencies derived from the slightly less stable O…H-bonded structure, when compared with the calculated XeOF₂ and F₂OXeN=CCH₃ frequencies, best reproduces the experimental frequency trends and isotopic shifts patterns. Consequently, the ensuing vibrational assignments and descriptions (Table 3.5) are based on this structure.

The modes at 2854 and 2164 cm⁻¹ are readily assigned to v(HF) and v(DF). where their lower frequencies relative to those in a neon matrix (HF 3992; DF 2924 $(m^{-1})^{160}$ and in the solid phase (HF 3056, 3408; DF 2284, 2524 $cm^{-1})^{161,162}$ are consistent with coordinated HF and DF. The v(XeO) stretching frequency of XeOF₂·nHF (733.5 cm⁻¹) shows the expected ^{16/18}O isotopic dependence and is shifted to lower frequency relative to that of XeOF₂ (749.9 cm⁻¹). The most intense mode at 498.2 cm^{-1} corresponds to $v_s(XeF_2)$, which is comparable to that in F₂OXeN=CCH₃ (481.8, 488.1, 494.4, 499.1 cm⁻¹) but higher than in XeOF₂ (467.8 cm⁻¹). The asymmetric mode $v_{as}(XeF_2)$ is again expected to be very weak and was not observed. Upon ¹⁸O enrichment, the modes at 286.6 and 299.1 cm⁻¹ shift to 276.4 and 294.8 cm⁻¹, respectively. Upon ²H enrichment, these modes shift to even lower frequencies, and are assigned to $\rho_{\text{rock}}(\text{XeOF}_2)$ i.p. + minor HF o.o.p. wag and $\delta(F_H \text{XeO})$, respectively. The in-plane XeF₂ (166.0 cm⁻¹) and the out-of-plane XeF₂ (187.2, 200.2 cm⁻¹) bends are shifted to higher and lower frequency, respectively, when compared with those of XeOF₂ and show only small (< 2 cm⁻¹) ^{16/18}O isotopic dependencies. The mode at 129.4 cm⁻¹ shifts to lower frequency upon ²H and ¹⁸O enrichment and is assigned to a coupled mode involving the coordinated HF molecule, $\rho_{rock}(XeOF_2)$ oop + $\nu(HF\cdots Xe)$.

An energy-minimized structure for $XeOF_2 \cdot 2HF$ was also obtained, but provided vibrational frequencies that were in poor agreement with the experimental values (see 3.2.5, Computational Results).

3.2.5. Computational Results. The electronic structures of $(Xe^{16/18}OF_2)_n$ (n = 1-3), $F_2^{16/18}OXeN = CCH_3$ and $Xe^{16/18}OF_2 \cdot n^{1/2}HF$ (n = 1, 2) were optimized starting from C_1 symmetries and resulted in stationary points with all frequencies being real. Only the SVWN/(SDB-)cc-pVTZ and MP2/(SDB-)cc-pVTZ (MP2 values in the present discussion are given in parentheses) results are reported in this paper (Tables 3.2–3.4, Figure 3.5 and Tables A1.3–A1.11; also see Chapter 2, Experimental Section). Xenon tetrafluoride was used to benchmark calculations (Table A1.12).

3.2.5.1. Geometries. (i) (XeOF₂)_n (n = 1-3). The geometry of XeOF₂ optimized to $C_{2\nu}$ symmetry with an Xe–O bond length of 1.809 (1.770) Å and Xe–F bond length of 1.996 (1.980) Å, compared to 1.971 (1.960) Å in XeF₄ and its experimental bond length, 1.953(2) Å.³² The fluorine atoms are bent away from the oxygen atom, with an O–Xe–F angle of 96.4 (96.0) ° and an F–Xe–F angle of 167.1 (168.2)°. The calculated structure is in accord with that predicted by the VSEPR model of molecular geometry (see 3.2.4 Raman Spectroscopy).

The geometries of $(XeOF_2)_2$ and $(XeOF_2)_3$ were also calculated (Tables A1.9 and A1.10) to study the effects of oligomerization on the vibrational frequencies and to assess

the relative merits of XeOF₂ association in the solid state. In both cases, two starting models were used with all Xe–O bonds collinear: one with all XeOF₂ groups coplanar, as originally proposed by Gillespie,¹⁵⁶ and one with the XeOF₂ planes alternating so that they subtend dihedral angles of 90°. All systems converged to a single twisted dimer (Figure 3.5e) and open-chain, twisted trimer (Figure 3.5f). Both the dimer and trimer possess Xe…O and Xe…F contacts that are significantly less than the sum of the van der Waals radii (3.68 and 3.63 Å, respectively).⁵⁵ The formal Xe-O double bond involved in the contact elongates, allowing the F–Xe–F angle to open up. As well, the Xe–F bonds elongate and both v(XeO) and v_s(XeF₂) decrease significantly relative to those of the calculated monomer.

(ii) $F_2OXeN=CCH_3$. The geometry of $F_2OXeN=CCH_3$ optimized to C_1 symmetry in which the NCC moiety lay in the XeOF₂ plane and the Xe–N–C angle is nearly linear. Overall there is a good agreement between the observed and the calculated Xe–O and Xe–F bond lengths as well as the F–Xe–F and O–Xe–F bond angles (Table 3.2). The most notable differences occur between the observed and calculated Xe–N–C bond angle and Xe–N bond length. The Xe–N bond length, which is slightly underestimated by the SVWN calculation, has a calculated value of 2.702 (2.884) Å when compared with 2.752(5) (out-of-plane conformer) and 2.808(5) (in-plane conformer) Å in the crystal structure. Unlike the experimental Xe–N–C bond angles (164.9(4)°, in-plane conformer; and 134.6(4)°, out-of-plane conformer), the calculated Xe–N–C angle is essentially linear [179.2 (179.4)]. The energies of the two experimental adduct conformations were calculated at the MP2 level and are 78.2 (out-of-plane) and 86.9 (in-plane) kJ mol⁻¹

higher in energy than the energy-minimized geometry. The conformational differences are likely a consequence of solid state packing.

Upon adduct formation, the calculated Xe–O bond length (1.809 to 1.813 Å) and v(XeO) remain essentially unchanged. The Xe–F bond lengths are elongated (1.996 to 2.013 Å) and the v(XeF) decreases accordingly. In contrast, the experimental v(XeO) and v(XeF) frequencies increase (Tables 3.3 and 3.4).

(iii) XeOF₂·*n*HF. Because an experimental structure for XeOF₂·*n*HF is unavailable, it was not possible to directly establish the number of HF molecules coordinated to XeOF₂. Energy-minimized structures and their vibrational frequencies were calculated in order to better comprehend how HF interacts with XeOF₂. It was decided to limit the models to a XeOF₂ monomer interacting with only one or two HF molecules. These results are given in Tables A1.3 to A1.8.

Four starting geometries were used in which a single HF molecule, H-bonded to either oxygen or fluorine, lay either in the XeOF₂ plane and collinear with the Xe–O bond, or perpendicular to the XeOF₂ plane. A single energy-minimized structure was found for each pair of O···H–F and F···H–F bonded starting geometries. In both minimized geometries, the fluorine of HF is coordinated to xenon. In the F···H–F---Xe structure, the HF molecule lies in the XeOF₂ plane (Figure 3.5d), and in the O···H–F---Xe structure, it occupies the plane perpendicular to the XeOF₂ plane (Figure 3.5c). Although the F···H–F···Xe structure is 7.8 (1.6) kJ mol⁻¹ more stable than the O···H–F···Xe structure, the calculated frequencies of the latter are in better agreement with the experimental frequencies (see 3.2.4, Raman Spectroscopy). In the O···H structure, both the Xe–O bond length and F–Xe–F axial bond angle increase when compared with those of XeOF₂, whereas the Xe–F bond lengths decrease. In the F…H structure, both the Xe–O bond length and the F–Xe–F bond angle remain unchanged, whereas the Xe–F bond involved in the F…H contact increases and the other Xe–F bond decreases. In both cases, the O…H and F…H distances are significantly shorter than the sum of their respective van der Waals radii.

Initial geometries in which two HF molecules were orientated in or out of the XeOF₂ plane and were H…O or H…F coordinated or had mixed H…O/H…F coordination for both orientations were used. Of these ten initial geometries, only one energy-minimized geometry having non-imaginary frequencies was obtained. This geometry has two F…H—F and two Xe…F—H interactions that lie in the XeOF₂ plane (Figure 3.5g). Both the Xe—F distance and F—Xe—F angle have increased relative to that of XeOF₂ whereas Xe—O has decreased. The Xe…F and F…H contact distances are significantly longer than those in the calculated structure containing one coordinated HF molecule (Figure 3.5d). The geometry calculated for XeOF₂·2HF, however, provided vibrational frequencies that were in poor agreement with the experimental values (Tables A1.7 and A1.8).

3.2.5.2. Natural Bond Orbital (NBO) Analyses. The NBO^{163–166} analyses were carried out for the MP2- and SVWN-optimized gas-phase geometries of XeOF₂, $F_2OXeN=CCH_3$, and CH₃CN. The NBO results are given in Table 3.8. The MP2 and SVWN results are similar; only the MP2 results are referred to in the ensuing discussion.

Charges												
[Valencies]	XeOF ₂			F₂OXeN≡CCH₃			CH3CN					
·	S	/WN	N	AP2	S	VWN	N	/IP2	SV	WN		MP2
Xe(1)	1.971	[1.478]	2.112	[1.473]	2.011	[1.437]	2.065	[1.450]			<u> </u>	
O(1)	-0.807	[0,777]	-0.897	[0.782]	-0.853	[0.722]	-0.887	[0.754]				
F(1)	-0.582	[0.317]	-0.608	[0.304]	-0.598	[0.277]	-0.599	[0.286]				
F(2)	-0.582	[0.317]	-0.608	[0.304]	-0.598	[0.277]	-0.599	[0.286]				
N(1)					-0.410	[2.035]	-0.405	[1.988]	-0.310	[1.958]	-0.313	[1.892]
C(1)					0.374	[3.014]	0.359	[2.979]	0.271	[3.014]	0.283	[2.879]
C(2)					-0.791	[3.295]	-0.781	[3.288]	-0.786	[3.299]	-0.678	[3.290]
н					0.288	[0.786]	0.283	[0.791]	0.275	[0.788]	0.236	[0.805]
Bond Orders												
Xe(1)-O(1)	0.812		0.825		0.752		0.789					
Xe(1)-F(1)	0.333		0.324		0.290		0.301					
Xe(1)-F(2)	0.333		0.324		0.290		0.301					
O(1)F(1)	-0.017		-0.021		-0.015		-0.017					
Xe(1)N(1)					0.099		0.059					
N(1)-C(1)					1.926		1.924		1.951		1.882	
C(1)-C(2)					1.024		1.000		1.012		0.951	
С(2)-Н					0.753		0.760		0.758		0.775	

Table 3.8. NBO Valencies, Bond Orders, and Charges (NPA) for XeOF₂, F₂OXeN=CCH₃ and CH₃CN

Ph.D. Thesis - David S. Brock

Single point calculations were carried out for geometries that were constrained to those of the experimental conformers and reveal that the NBO analyses (Table 3.7) are very similar to that of the fully optimized C_1 structure and insensitive to the Xe–N–C bond angle.

The NBO analysis gives natural charges of 2.11 and 2.06 for Xe in XeOF₂ and $F_2OXeN \equiv CCH_3$, respectively. These charges, which are approximately the average of the formal charge 0 (covalent model) and formal oxidation number 4 (ionic model) for Xe in both molecules, are in accord with the natural charges for O (-0.90, -0.89) and F (-0.61, -0.60) in XeOF₂ and $F_2OXeN \equiv CCH_3$, respectively. In both cases, the charges are also about half of their respective oxidation numbers, and indicate that the bonds in free and adducted XeOF₂ are polar covalent. Among the plausible valence structures I–IV for

XeOF₂, the calculated charges are best represented by structure IV, where the near linear XeF₂ moiety can be described as a 3 center-4 electron bond.¹⁶⁷ The Xe–O/Xe–F bond order ratio (2.55) and Xe/O/F valencies (1.47/0.78/0.30) are in overall agreement with this localized description of polar covalent bonding in XeOF₂.

Upon adduct formation with CH₃CN, the nitrogen electron pair density donated into the xenon valence shell results in essentially no change in the O and F ligand charges but small decreases in their bond orders and valencies, whereas Xe maintains its positive
charge very close to 2. Thus, the Xe–O and Xe–F bonds are only slightly more ionic in $F_2OXeN \equiv CCH_3$. The charge distribution of the CN group is polarized toward the positive xenon center, with 0.10 e charge shifting from carbon to nitrogen upon coordination with a corresponding polarization charge on the CH₃ group towards the positively charged carbon atom of the CN group.

The most plausible valence bond contributions that contribute to a description of $F_2OXeN\equiv CCH_3$ are those that retain the charge distribution and Xe-O and Xe-F bond orders of structure IV and also account for the very low Xe-N bond order (0.05) and polarization of the CH₃CN ligand to give an enhanced negative charge on nitrogen. These criteria are met by valence structures V and VI, where structure V is dominant and yields a picture of adduct formation between XeOF₂ and CH₃CN that is similar to that of XeF⁺ and HCN.¹⁶⁸ In this depiction, mutual penetration of outer diffuse non-bonded densities of the Xe and N atoms occurs which, unlike a covalent interaction, produces no substantial shared density as reflected in the very low Xe–N bond order and small changes in Xe and N valencies.

The calculated gas-phase xenon-ligand dissociation energy for $F_2OXeN \equiv CCH_3$ at the MP2 level of theory is 41.8 kJ mol⁻¹, which is significantly less than the donor-acceptor adduct dissociation energies of $F_3S \equiv NXeF^+$ (157.2 kJ mol⁻¹) and HC=NXeF⁺ (157.1 kJ mol⁻¹).¹⁵⁴ The F₂OXeN=CCH₃ donor-acceptor interaction is in better agreement with those calculated for HC=NAsF₅ (38.6 kJ mol⁻¹) and F₃S=NAsF₅ (27.8 kJ mol⁻¹).¹⁵⁴ These findings also support a valence bond description of F₂OXeN=CCH₃ that is dominated by the nonbonded structures V and VI and a bonding description in which the CH₃C=N is weakly coordinated to XeOF₂.

3.3. Conclusion

Long-standing discrepancies among the published vibrational assignments ascribed to XeOF₂ are now accounted for and the synthesis of pure XeOF₂ in synthetically useful quantities has been achieved. Comparisons of the present experimental frequencies for XeOF₂ and XeOF₂·*n*HF with those assigned to XeOF₂ in the previous three early communications^{65–67} show that the spectra obtained from H₂O/XeF₄ co-condensation experiments^{65,66} arose from mixtures of XeOF₂·*n*HF and XeOF₂ while the product described in the latter report⁶⁷ consisted of only XeOF₂·*n*HF. In these accounts, HF produced in the co-condensation reactions either coordinated to XeOF₂ or was pumped off, yielding mixtures of XeOF₂·*n*HF and XeOF₂ that were erroneously ascribed to a single component, XeOF₂.

The solid state vibrational spectrum of $XeOF_2$ and the calculated energyminimized dimer and trimer geometries, and their vibrational frequencies, point to an extended structure in which neighboring $XeOF_2$ molecules weakly interact by means of asymmetric oxygen-xenon-oxygen bridges and Xe^{...}F contacts. The Lewis acid properties of XeOF₂ are demonstrated by the syntheses of $F_2OXeN \equiv CCH_3$ and XeOF₂ $\cdot n$ HF. The crystal structure of $F_2OXeN \equiv CCH_3$ provides a rare example of a Xe(IV)–N bond which is among the weakest Xe–N bonds known. It has been shown by calculation of energy-minimized structures of XeOF₂ HF and XeOF₂ $\cdot 2$ HF, in combination with calculated and experimental vibrational frequencies resulting from ^{16/18}O and ^{1/2}H isotopic substitution, that most likely n = 1, and that HF, in this instance, is coordinated to XeOF₂ by means of weak O…H and Xe…F bonds.

The present syntheses of $XeOF_2$ and its HF and CH_3CN adducts, along with their detailed structural characterizations, represent a significant extension of Xe(IV)chemistry and account for most of what is presently known about the oxide fluoride chemistry of Xe(IV). The present findings may be expected to facilitate the extension of Xe(IV) oxide fluoride chemistry into areas such as the fluoride ion donor-acceptor properties of $XeOF_2$ and derivatives with other highly electronegative ligands, as well as offer the possibility to synthesize presently unknown XeO_2 .

CHAPTER 4

Synthesis of the Missing Oxide of Xenon, XeO₂, and Its Implications for Earth's Missing Xenon

4.1. Introduction

Atmospheric studies of Earth and Mars have shown that xenon is depleted by a factor of approximately 20 relative to the lighter noble gases (Ne. Ar. Kr).¹⁶⁹ More recent studies have found that as much as 90% of the Earth's primordial xenon is absent from its atmosphere,¹⁷⁰ and that more than 99% of xenon has been degassed from the Earth's mantle.¹⁷¹ It has also been shown that the Earth's core is unlikely to function as a xenon reservoir.^{172,173} These findings have aroused the curiosity of researchers from across a broad range of disciplines spanning planetary, mineralogical, geological, nuclear, and other physical sciences as well as theoretical and computational sciences who have attempted to account for atmospheric xenon depletion. Among the explanations that have been advanced to account for xenon depletion are entrapment in ices.¹⁷⁴ water clathrates,¹⁷⁵ sediments,¹⁷⁶ and early escape from the atmosphere;¹⁷⁷ however, all four hypotheses have been shown to be untenable.^{174–177} It has also been proposed that xenon displaces silicon from quartz (SiO₂) at the high pressures (0.7-5 GPa) and temperatures (500-1500 K) that are encountered in the continental crust, with the implication that xenon may be retained within silicate minerals and SiO₂ as XeO₂.⁷⁸ The high abundance of SiO₂ would make it a significant and readily available reservoir for xenon.

In addition to offering a potential explanation for the Earth's missing xenon, the

possible formation of XeO₂ in the Earth's crust is of fundamental chemical interest because XeO₂ represents the missing oxide of xenon. Shortly after the discovery of noble-gas reactivity,¹⁸ solid, colorless XeO₃ was synthesized by hydrolysis of XeF₆ (eq 4.1)^{179,33} and was followed shortly thereafter by the discovery of XeO₄, a pale yellow, volatile solid (eq 4.2 and 4.3).^{180,181} Both oxides are highly endothermic and shock

$$XeF_6 + 3H_2O \longrightarrow XeO_3 + 6HF$$
 (4.1)

$$2XeF_6 + 10NaOH \xrightarrow{NaOH_{(aq)}} [Na]_4[XeO_6] + Xe + O_2 + 2H_2O + 6[Na][HF_2] (4.2)$$

$$[Na]_{4}[XeO_{6}] + 2H_{2}SO_{4} \xrightarrow{H_{2}SO_{4}(conc)} XeO_{4} + 2[Na]_{2}[SO_{4}] + 2H_{2}O$$
(4.3)

sensitive ($\Delta H_{\rm f}$ XeO₃, 402 kJ mol⁻¹; XeO₄, 643 kJ mol⁻¹).¹⁸² In contrast, xenon monoxide, XeO, has not been synthesized and has been shown by gas-phase quantum-chemical calculations to have an unstable ³ Π ground state and, therefore, is unlikely to exist as a monomer.⁷⁰ It was initially postulated that the hydrolysis product of XeF₄ was either Xe(OH)₄ or XeO₂·2H₂O,¹⁸³ but subsequent studies showed the final product to be XeO₃, which arose from the redox disproportionation given in eq 4.4.^{68,69} Another early study

$$4XeF_4 + 8H_2O \xrightarrow{H_2O} 2XeO_3 + 2Xe + O_2 + 16HF$$

$$(4.4)$$

reported the hydrolysis of XeF₄ and the formation of a transient yellow solid at 0 °C. The reaction conditions, which influenced the stability of this species, were optimized by adjusting the acidity of the aqueous medium, but the yellow product was never isolated or characterized.¹⁸⁴ A subsequent study in which XeF₄ and H₂O were co-condensed at -80 °C yielded a pale-yellow product that was incorrectly equated with the aforementioned transient yellow species, and purported to be XeOF₂.⁶⁵ This proposal was subsequently refuted when XeOF₂ was synthesized and unambigously characterized, showing the pale-

yellow co-condensed product to be a mixture of $XeOF_2$ and $XeOF_2 \cdot nHF$,¹²⁵ and by the current study which shows the transient yellow species possesses a Raman spectrum that does not correspond to that of either $XeOF_2$ or $XeOF_2 \cdot nHF$.

4.2. Results and Discussion

4.2.1. Synthesis of XeO₂. In the present study, the aforementioned transient yellow solid was synthesized at 0 °C by the addition of crystalline XeF₄ to either water or 2.00 M $H_2SO_{4(aq)}$. In both cases, intense, yellow-orange suspensions initially formed which, upon mixing for ca. 20 s at 0 °C, produced bright yellow suspensions. The "aged" bright yellow solids are consistent with macromolecular XeO₂ (vide infra) while the initial yellow-orange products are possibly a mixture of molecular XeO₂ and/or lower molecular weight polymorphs resulting from incomplete polymerization (eq 4.5). The products were

$$nXeF_4 + 2nH_2O \longrightarrow [nXeO_2 \text{ and/or } n/m(XeO_2)_m] + 4nHF \longrightarrow (XeO_2)_n + 4nHF$$

(n>m) (4.5)

precipitated by briefly centrifuging the reaction mixture at 0 °C followed by immediate quenching at -78 °C and recording the Raman spectrum in situ at -150 °C. At no time were the supernatants discoloured, indicating that the yellow products are insoluble in acidified aqueous media. The Raman spectra of the products formed in water and 2.00 M H₂SO_{4(aq)} were identical, indicating that HSO₄⁻ is not involved in the product.

The yellow product is kinetically stabilized at low-temperatures but decomposes rapidly near ambient temperature. At the reaction temperature, 0 °C, the yellow color persisted for ca. 2 min, whereas samples that had been quenched and stored at -78 °C

were stable for considerably longer periods with most decomposition occurring over the first 72 h as evidenced by fading of the original color to pale yellow, with a very faint yellow color persisting after 1 week. In each case, Raman spectra of partially decomposed samples revealed only mixtures of the yellow product and small amounts of XeO_3^{185} (i.e., the totally symmetric XeO₃ stretch, A₁, was observed as a weak, broad band at 780 cm⁻¹).

4.2.2. Hydrolyses of [Cs][XeOF₃] and XeOF₂

arr an

Hydrolysis of $[Cs][XeOF_3]$ or XeOF₂ in CH₃CN solvent also led to XeO₂ formation, albeit in smaller amounts than afforded by the direct hydrolysis of XeF₄ in aqueous media. It has been previously noted that hydrolysis of $[Cs][XeOF_3]$ in CH₃CN solvent in the presence of an excess of CsF resulted in a complex product that could not be definitively identified, but which included Raman bands attributable to XeO₃ modes.¹⁸⁵ It has now been shown that when $[Cs][XeOF_3]$ is synthesized by the reaction of stoichiometric amounts of XeOF₂ and CsF (eq 4.6) and subsequently hydrolyzed in CH₃CN with a stoichiometric amount of H₂O, a significant amount of XeO₂ is formed (eq 4.7). As a non-metallic oxide, XeO₂ is acidic and insoluble under acidic conditions, but

$$XeOF_2 + CsF \xrightarrow{CH_3CN} [Cs][XeOF_3]$$
(4.6)

$$[Cs][XeOF_3] + H_2O \xrightarrow{CH_3CN} XeO_2 + [Cs][F(HF)_2]$$

$$(4.7)$$

under basic conditions, it rapidly decomposes to Xe and O_2 . This is in accordance with the stabilization of the yellow solid under acidic conditions in an earlier hydrolysis study,¹⁸⁴ and likely accounts for the absence of XeO₂ under the fluoro-basic conditions that result from the use of excess fluoride in the synthesis of $XeOF_3^{-}$.³² The HF produced in the stoichiometric reaction (eq 4.6 and 4.7) would undoubtedly react with CsF to form $[Cs][F(HF)_x]$, thereby decreasing the basicity of the solution and preventing HF from back reacting with XeO₂.

It has been previously noted that reaction of XeF₄ with two equivalents of H₂O in CH₃CN produced only XeOF₂.¹²⁵ While this observation is correct, it has been shown in the present work that when XeOF₂ is isolated and then reacted with one equivalent of H₂O in CH₃CN, the bulk precipitated sample had a Raman spectrum that showed only a weak XeO₂ band at 570 cm⁻¹. The difference between the two sets of results likely arises from an equilibrium between XeOF₂ and XeO₂ (eq 4.8) that favours the left side of eq 4.8 unless the HF formed in the reaction is removed.

$$F_2OXeNCCH_3 + H_2O \xrightarrow{CH_3CN} XeO_2 + 2HF + CH_3CN$$
 (4.8)

4.3. Raman spectroscopy. The yellow species was identified and structurally characterized by Raman spectroscopy using ¹⁸O and D isotopic enrichment. Reaction of XeF₄ with $H_2^{18}O$ resulted in a Raman spectrum that was similar to that obtained from the reaction of XeF₄ with $H_2^{16}O$ (Figure 4.1); however, all vibrational bands were shifted to lower frequencies (Table 4.1). The presence of a single, intense band in the Xe–O/Xe–F stretching region, and the absence of unshifted modes, indicates there are no Xe–F bonds in the compound and that the compound is an oxide and/or hydroxy derivative of Xe(IV).¹⁸⁷ When XeF₄ was allowed to react with $D_2^{16}O$, the Raman spectrum of the product was identical to that of $H_2^{16}O$ reaction product, and devoid of any bands that

Figure 4.1. Raman spectra of natural abundance (lower trace), 50% (middle trace) and 97.8% ¹⁸O-enriched (upper trace) XeO₂ recorded under frozen water at -150 °C using 1064-nm excitation. Symbols denote FEP sample tube lines (*), instrumental artifact (†), and minor, incompletely polymerized (yellow-orange) product(s) (‡).

XeF ₄ ^b	$Xe^{16}O_2^{c}$	$Xe^{16/18}O_2^{c,d}$	$Xe^{18}O_2^{c}$	D_{2d}^{e}	assgnts $(L = F, O)^{f}$
586 v_6 , $v(E_u)$	632.3(1)	626.5sh	625.8(1)	$\nu(E)$	$v_{as}(XeL_t - XeL_t)$
554 v ₁ , $\nu(A_{1g})$	570 3(100)	550.9(100)	542 6(100)	$\int \mathbf{v}(\mathbf{A}_1)$	$\nu_{s}(XeL_{4})$
524 v ₄ , v(B _{2g})	570.5(100)	550.7(100)	542.0(100)	$v(B_2)$	$v_{as}(XeL_{2t} - XeL_{2t})$
291 v ₃ , $v(A_{2u})$	283.9(3)	276.9(2)	270.0(3)	$v(B_2)$	δ(XeL ₄) o.o.p., umbrella mode
218 v ₂ , v(B _{1g})	$ \left\{\begin{array}{c} 239.1(2) \\ 227.9(4) \end{array}\right. $	231sh 221.3(4)	226.6(2) 216.9(6)	$\left. \right\} v(B_1)$	$\delta(XeL_{2c} + XeL_{2c})$
n.o. v_5 , $v(B_{2u})$	n.o.	n.o.	n.o.	$\nu(A_2)$	$\delta(\text{XeL}_{2t}) \text{ o.o.p.} - \delta(\text{XeL}_{2t}) \text{ o.o.p.}$
161 v ₇ , v(E _u) ^g	168.9(13)	165.0(19)	161.1(13)	ν (Ε)	δ(XeL _{2t}) i.p.
	99.5(14)	99.3(17)	99.5(15)		lattice mode

Table 4.1. Vibrational Frequencies for XeF₄, Xe¹⁶O₂, Xe^{16/18}O₂, and Xe¹⁸O₂^{*a*}

^{*a*} Frequencies are given in cm⁻¹. ^{*b*} From ref 186. The symmetries refer to the D_{4h} point symmetry of XeF₄. ^{*c*} Values in parentheses denote Raman intensities. ^{*d*} The sample was prepared by hydrolysis of XeF₄ in an equimolar mixture of H₂¹⁶O and H₂¹⁸O. ^{*e*} The symmetries refer to the local D_{2d} point symmetry of the XeO₄ units in the extended structure of XeO₂. ^{*f*} The abbreviations denote trans (t), cis (c), symmetric (s), asymmetric (as), stretch (v), bend (δ), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). The in-plane and out-of-plane mode descriptions are relative to the molecular planes of XeF₄ and the XeO₄-unit. ^{*g*} This mode was not directly observed. The frequency was obtained from the 2v₇ overtone at 322 cm⁻¹.

displayed H/D isotopic dependencies, ruling out a hydroxy compound. The most intense band in the spectrum (570.3 cm⁻¹) is assigned to a symmetric stretching mode that is too low to be associated with the symmetric stretch of XeO₃ (780 cm⁻¹)¹⁸⁵ but too high for a Xe(II) oxide fluoride or oxide.¹⁸⁸ The spectrum is therefore most consistent with the formation of the Xe(IV) oxide, XeO₂. Moreover, monomeric XeO₂ is predicted to have a bent geometry based on an AX₂E₂ (X = bond pair, E = valence electron lone pair) VSEPR⁴¹ arrangement of bond pairs and lone pairs (structure I) and would consequently

be a polar molecule. This expectation contrasts with the insolubility of this material in aqueous media, suggesting that XeO_2 likely has an extended (chain or network) structure.

The Raman spectra of Xe¹⁶O₂ and Xe¹⁸O₂ (Figure 4.1) also support extended structures. The vibrational frequencies of gas-phase monomeric XeO₂ have been calculated at the CCSD(T) level of theory using the 6-311 g* and aug-cc-PVTZ basis set for oxygen, giving three Raman-active modes at 647 (668), 205 (206), and 703 (716) cm⁻¹, where the aug-cc-PVTZ values are given in parentheses.¹⁸⁹ The bands in the experimental Raman spectra of XeO₂ number six and are broad ($\Delta v_{1/2} \approx 20$ cm⁻¹), which is consistent with vibrational coupling and bridge-bonding in an extended structure. A 1:1 molar mixture of $H_2^{16}O$ and $H_2^{18}O$ was also used to synthesize XeO₂, as described above, in an attempt to resolve the independent spectra corresponding to the ^{16/18}O isotopomers of monomeric XeO₂, namely, Xe¹⁶O₂, Xe^{16/18}O₂, and Xe¹⁸O₂. Instead of three discrete overlapping isotopomeric spectra, the Raman spectrum was comprised of broadened bands that occurred at frequencies that were intermediate with respect to the spectra of Xe¹⁶O₂ and Xe¹⁸O₂ (Figure 4.1 and Table 4.1). This result is also in accordance with an extended XeO₂ structure in which vibrational coupling extends beyond the primary coordination sphere of xenon. The aforementioned behavior of XeO₂ is not unlike SiO₂, which forms discrete monomeric units with double bonds to oxygen in the gas phase, and extended networks in the solid state which display extensive vibrational coupling.¹⁹⁰

There is a notable similarity between the Raman frequencies of XeO_2 and those of XeF_4 (Table 4.1), which are in closest agreement for $Xe^{18}O_2$, where the atomic mass of ¹⁸O is closest to that of ¹⁹F. This leads to the conclusion that the extended XeO_2 structure has a local square-planar geometry around xenon (structure II). The square-planar

structural unit is consistent with the VSEPR model of molecular geometry,⁴¹ which is an AX_4E_2 arrangement of four bond pairs and two valence electron lone pairs. This is in

accordance with other Xe(IV) compounds which have square-planar (XeF4,³² $F_2OXeNCCH_3$,¹²⁵ XeOF₂,¹²⁵ XeOF₃^{-,126} Xe(OTeF₅)₄⁶⁰) or pentagonal-planar (XeF₅^{-,53} $[XeF_3][SbF_6]$,⁵² $[XeF_3][Sb_2F_{11}]^{51}$ xenon coordination spheres in the solid state when short secondary contacts are taken into account. However, the bent angles at the oxygen atoms in the extended structure of XeO_2 result in reduction of the local D_{4h} symmetry at xenon and three additional vibrations that are otherwise associated with rotation of the free molecule¹⁹¹ (see Table 4.2). The observed bands in the Raman spectrum are most consistent with symmetry lowering to D_{2d} symmetry where the planar XeO₄ moiety is predicted to give rise to nine vibrational bands belonging to the irreducible representations $A_1 + 2A_2 + B_1 + 2B_2 + 3E$, where modes of A_1 , B_1 , B_2 , and E symmetry are Raman active (seven bands); those of B1, B2, and E symmetry are infrared active (six bands); and those of A₂ symmetry are Raman and infrared inactive. The vibrational assignments for XeO₂ are therefore made by analogy with the square-planar D_{4h} symmetry of XeF₄ with the understanding that the vibrational mode descriptions under local D_{2d} symmetry will be very similar

The most intense Raman band of XeO₂ occurs at 570.3 cm⁻¹ and displays an ¹⁸Oisotopic shift of -27.7 cm⁻¹. The band occurs at a frequency that is much lower than the symmetric and asymmetric Xe–O stretches predicted for the gas-phase molecule.¹⁸⁹ This is consistent with coordination of the oxygen atoms to neighboring xenon atoms, which imparts single bond character to the Xe–O bonds and lowers the frequencies of the Xe–O stretching modes. A similar trend has been observed for XeOF₂.¹²⁵ The 570.3 cm⁻¹ band is assigned to the combined v_s(XeO₄) and v_{as}(XeO_{2t} – XeO_{2t}) modes, where t represents

_	$Xe^{18}O_2^{b}$	XeF4 c	D_{4h}	D_4	$D_{2d}(C_2)$	$D_{2d}(C_2'')$	C_{4y}	C_{4h}	$D_{2h}(C_2')$	$D_{2h}(C_2'')$	C_4	S_4	$D_2(C_2)$	$D_2(C_2'')$	$C_{2v}(C_2, \sigma_v)$
	625.8	586	E_u (IR)	E(R,IR)	E (R,IR)	E(R,IR)	$E(\mathbf{R},\mathbf{IR})$	E _z (IR)	$\frac{B_{2u}(IR)}{B_{3u}(IR)} +$	B_{2n} (IR) + B_{3n} (IR)	$E(\mathbf{R},\mathbf{IR})$	E (R,IR)	B_2 (R,IR) + B_3 (R,IR)	B_2 (R,IR) + B_3 (R,IR)	B_1 (R,IR) + B_2 (R,IR)
	5126 1	554	$A_{1g}(\mathbf{R})$	$A_1(\mathbf{R})$	$A_1(\mathbf{R})$	$A_1(\mathbf{R})$	A_1 (R,IR)	$A_{g}(\mathbf{R})$	$A_{g}(\mathbf{R})$	$A_g(\mathbf{R})$	A(R,IR)	$A(\mathbf{R})$	A (R)	A (R)	A_1 (R,IR)
	342.0 1	524	$B_{1g}(\mathbf{R})$	$B_1(\mathbf{R})$	$B_1(\mathbf{R})$	$B_2(\mathbf{R},\mathbf{IR})$	B_1 (R)	$B_{g}(\mathbf{R})$	$\mathcal{A}_{g}(\mathbf{R})$	$B_{1g}(\mathbf{R})$	$B(\mathbf{R})$	$B(\mathbf{R},\mathbf{IR})$	$A(\mathbf{R})$	B_1 (R,IR)	A_1 (R,IR)
	270.0 226.6 d 1	291	$A_{2\mu}$ (IR)	A_2 (IR)	B_2 (R,IR)	$B_2(\mathbf{R},\mathbf{IR})$	A_1 (R,IR)	$A_{\rm H}$ (IR)	$B_{1\mu}$ (IR)	B_{1n} (IR)	$A(\mathbf{K},\mathbf{IK})$	$B(\mathbf{K},\mathbf{IK})$	B_1 (R,IR)	$B_1(\mathbf{K},\mathbf{IK})$	$A_1(\mathbf{R},\mathbf{I}\mathbf{K})$
	216.9 d	218	$B_{2g}(\mathbf{R})$	$B_2(\mathbf{R})$	B_2 (R,IR)	$B_1(\mathbf{R})$	$B_2(\mathbf{R})$	$B_{g}(\mathbf{R})$	$B_{1g}(\mathbf{R})$	$A_g(\mathbf{R})$	$B(\mathbf{R})$	$B(\mathbf{R},\mathbf{IR})$	B_1 (R,IR)	$A(\mathbf{R})$	$A_2(\mathbf{R})$
	n.o.	n.o.	$B_{2u}(n.o.)$	$B_2(\mathbf{R})$	A_{2} (n.o.)	A_1 (R)	B_1 (R)	B_{μ} (n.o.)	$B_{1\mu}$ (IR)	$A_{\mu}(\mathbf{n.o.})$	<i>B</i> (R)	A (R)	B_1 (R,IR)	A (R)	A_1 (R , IR)
	161.1	161 ^e	E _s (IR)	E(R,IR)	E (R,IR)	E(R,IR)	$E(\mathbf{R},\mathbf{IR})$	E _s (IR)	B_{2u} (IR) + B_{3u} (IR)	B_{2u} (IR) + B_{3u} (IR)	E (R,IR)	E(R,IR)	B_2 (R,IR) + B_3 (R,IR)	$\frac{B_2 (\mathbf{R}, \mathbf{IR}) +}{B_3 (\mathbf{R}, \mathbf{IR})}$	$\frac{B_1(\mathbf{R},\mathbf{IR})}{B_2(\mathbf{R},\mathbf{IR})}$
		R.	$A_{2a}(n, o)$	A_{2} (IR)	$A_{\rm b}({\rm n.o.})$	$A_2(\mathbf{n},\mathbf{o}_1)$	$A_{2}(\mathbf{n},\mathbf{o}_{1})$	$A_{r}(\mathbf{R})$	$B_{1a}(\mathbf{R})$	$B_{1a}(\mathbf{R})$	$A(\mathbf{R},\mathbf{IR})$	$A(\mathbf{R})$	B_1 (R.IR)	B_1 (R.IR)	A_2 (R.IR)
	226.6 d	D D	$E(\mathbf{p})$	E (P IP)	E (D ID)	E (D ID)	E (D ID)	E (D)	$B_{2g}(R) +$	$B_{2g}(R) +$	E (P IP)	E (P IP)	B_2 (R,IR) +	$B_2(R,IR) +$	$B_1(R, IR) +$
	216.9 ^a	Λ_x, Λ_y	L _g (K)	E (K,IK)	E (K,IK)	L (KIK)	$\mathcal{L}(\mathbf{K},\mathbf{K})$	$L_g(\mathbf{R})$	$B_{3g}(\mathbf{R})$	$B_{3g}(\mathbf{R})$	E (K,IK)	E (R,IR)	B_3 (R,IR)	B_3 (R,IR)	B_2 (R,IR)
	$Xe^{18}O_2^{b}$	D_{4h}	$C_{2\nu}(C_2, \sigma_d)$	$C_{2\nu}(C_{2}')$	$C_{2\nu}(C_{2}'')$	$C_{2h}(C_2)$	$C_{2h}(C_{2})$	$C_{2h}(C_{2}'')$	$C_2(C_2)$	$C_2(C_2')$	$C_2(C_2'')$	$C_{s}(\sigma_{h})$	$C_{z}\left(\sigma_{y}\right)$	$C_{\varepsilon}(\sigma_d)$	C_{I}
_	Xe ¹⁸ O ₂ ^b 625.8	D_{4h} E_{h}	$\frac{C_{2\nu}(C_2, \sigma_d)}{B_1(\mathbf{R}, \mathbf{IR}) + B_2(\mathbf{P}, \mathbf{IR})}$	$C_{2\nu}(C_2')$ A_1 (R , IR) + R (P IP)	$\frac{C_{2\nu}(C_2'')}{A_1(\mathbf{R},\mathbf{IR}) + \mathbf{R}_2(\mathbf{P},\mathbf{IR})}$	$\frac{C_{2h}(C_2)}{2B_{\mu}(\mathbf{IR})}$	$\frac{C_{2h}(C_2')}{A_{\mathbf{g}}(\mathbf{IR}) + B_{\mathbf{g}}(\mathbf{IR})}$	$\frac{C_{2h}(C_2'')}{A_{\mu}(\mathbf{IR}) + B_{\mu}(\mathbf{IR})}$	C ₂ (C ₂) 2B (R,IR)	$\frac{C_2(C_2')}{A(\mathbf{R},\mathbf{IR})+B(\mathbf{P},\mathbf{IR})}$	$\frac{C_2(C_2'')}{A(\mathbf{R},\mathbf{IR}) + B(\mathbf{P},\mathbf{IR})}$	$\frac{C_{s}(\sigma_{h})}{24'(\mathbf{R},\mathbf{IR})}$	$\frac{C_{z}(\sigma_{y})}{A'(\mathbf{R},\mathbf{IR})+A''(\mathbf{R},\mathbf{IR})}$	$\frac{C_{\varepsilon}(\sigma_d)}{A'(\mathbf{R},\mathbf{IR}) + A''(\mathbf{R},\mathbf{IR})}$	C ₁ 2A _# (IR)
-	Xe ¹⁸ O ₂ ^b 625.8	D_{4h} E_{h} A_{1s}	$\frac{C_{2\nu}(C_2, \sigma_d)}{B_1(\mathbf{R}, \mathbf{IR}) + B_2(\mathbf{R}, \mathbf{IR})}$ $\mathcal{A}_1(\mathbf{R}, \mathbf{IR})$	$\frac{C_{2\nu}(C_2')}{A_1 (\mathbf{R},\mathbf{IR}) + B_1 (\mathbf{R},\mathbf{IR})}$ $A_1 (\mathbf{R},\mathbf{IR})$	$\frac{C_{2\nu}(C_2^{\prime\prime})}{A_1(\mathbf{R},\mathbf{IR}) + B_1(\mathbf{R},\mathbf{IR})}$ $\frac{A_1(\mathbf{R},\mathbf{IR})}{A_1(\mathbf{R},\mathbf{IR})}$	$\frac{C_{2h}(C_2)}{2B_x(\mathbf{IR})}$ $A_x(\mathbf{R})$	$\frac{C_{2h}(C_2)}{A_{g}(\mathbf{IR}) + B_{g}(\mathbf{IR})}$	$\frac{C_{2h}(C_2")}{A_{\mathbf{x}}(\mathbf{IR}) + B_{\mathbf{x}}(\mathbf{IR})}$ $A_{2}(\mathbf{R})$	$\frac{C_2(C_2)}{2B(\mathbf{R},\mathbf{IR})}$	$\frac{C_2(C_2')}{A (\mathbf{R},\mathbf{IR}) + B (\mathbf{R},\mathbf{IR})}$	$\frac{C_2(C_2'')}{A (\mathbf{R},\mathbf{IR}) + B (\mathbf{R},\mathbf{IR})}$ $\frac{A (\mathbf{R},\mathbf{IR})}{A (\mathbf{R},\mathbf{IR})}$	$\frac{C_{\varepsilon}(\sigma_h)}{2A'(\mathbf{R},\mathbf{IR})}$ $A'(\mathbf{R},\mathbf{IR})$	$\frac{C_{z}(\sigma_{y})}{A'(\mathbf{R},\mathbf{IR}) + A''(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$	$\frac{C_{s}(\sigma_{d})}{A'(\mathbf{R},\mathbf{IR}) + A''(\mathbf{R},\mathbf{IR})}$ $A''(\mathbf{R},\mathbf{IR})$ $A'(\mathbf{R},\mathbf{IR})$	C_t $2A_x$ (IR) A_z (R)
-	$\frac{Xe^{18}O_2^{b}}{625.8}$ 542.6	$\frac{D_{4h}}{E_u}$ \mathcal{A}_{1g} \mathcal{B}_{1g}	$\frac{C_{2\nu}(C_2, \sigma_d)}{B_1(\mathbf{R},\mathbf{IR}) + B_2(\mathbf{R},\mathbf{IR})}$ $A_1(\mathbf{R},\mathbf{IR})$ $A_2(\mathbf{R})$	$\frac{C_{2\nu}(C_2')}{A_1 (\mathbf{R},\mathbf{IR}) + B_1 (\mathbf{R},\mathbf{IR})}$ $A_1 (\mathbf{R},\mathbf{IR})$ $A_1 (\mathbf{R},\mathbf{IR})$ $A_1 (\mathbf{R},\mathbf{IR})$	$\frac{C_{2\nu}(C_2'')}{A_1(\mathbf{R},\mathbf{IR}) + B_1(\mathbf{R},\mathbf{IR})} + B_1(\mathbf{R},\mathbf{IR}) + B_1(\mathbf{R},\mathbf{IR})}{A_1(\mathbf{R},\mathbf{IR})}$	$\frac{C_{2h}(C_2)}{2B_{st}(\mathbf{IR})}$ $A_g(\mathbf{R})$ $A_g(\mathbf{R})$	$\frac{C_{2h}(C_2)}{A_{g}(\mathbf{IR}) + B_{g}(\mathbf{IR})}$ $A_{g}(\mathbf{R})$ $A_{g}(\mathbf{R})$ $A_{g}(\mathbf{R})$	$\frac{C_{2h}(C_2'')}{A_{g}(\mathbf{IR}) + B_{g}(\mathbf{IR})}$ $A_{g}(\mathbf{R})$ $B_{g}(\mathbf{R})$	$C_2(C_2)$ $\frac{2B(\mathbf{R},\mathbf{IR})}{A(\mathbf{R},\mathbf{IR})}$ $A(\mathbf{R},\mathbf{IR})$	$\frac{C_2(C_2')}{A (\mathbf{R},\mathbf{IR}) +}$ $\frac{B (\mathbf{R},\mathbf{IR})}{A (\mathbf{R},\mathbf{IR})}$ $\frac{A (\mathbf{R},\mathbf{IR})}{A (\mathbf{R},\mathbf{IR})}$	$C_2(C_2'')$ $A (\mathbf{R},\mathbf{IR}) +$ $B (\mathbf{R},\mathbf{IR})$ $A (\mathbf{R},\mathbf{IR})$ $B (\mathbf{R},\mathbf{IR})$	$\frac{C_{\varepsilon}(\sigma_{h})}{2A'(\mathbf{R},\mathbf{IR})}$ $A'(\mathbf{R},\mathbf{IR})$ $A'(\mathbf{R},\mathbf{IR})$	$\frac{C_{z}(\sigma_{y})}{A'(\mathbf{R},\mathbf{IR}) + A''(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$ $\frac{A'(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$	$\frac{C_{\varepsilon}(\sigma_d)}{A'(\mathbf{R},\mathbf{IR}) + A''(\mathbf{R},\mathbf{IR})}$ $\frac{A'(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR})}$	$\frac{C_{t}}{2A_{\pi} (\mathbf{IR})}$ $\frac{A_{g} (\mathbf{R})}{A_{g} (\mathbf{R})}$
-	$\frac{Xe^{18}O_2^{b}}{625.8}$ 542.6 270.0	D_{4h} E_{u} A_{1g} B_{1g} A_{2u}	$\frac{C_{2\nu}(C_2, \sigma_d)}{B_1(R,IR) + B_2(R,IR)} + \frac{B_2(R,IR)}{A_1(R,IR)} + \frac{A_2(R)}{A_2(R)} + \frac{A_2(R)}{A_1(R,IR)} $	$C_{2\nu}(C_{2}')$ A₁ (R,IR) + B₁ (R,IR) A₁ (R,IR) A₁ (R,IR) A₁ (R,IR) B₂ (R,IR)	$C_{2\nu}(C_{2}'')$ $A_{1}(R,IR) + B_{1}(R,IR)$ $A_{1}(R,IR)$ $B_{1}(R,IR)$ $B_{2}(R,IR)$	$\frac{C_{2h}(C_2)}{\mathbf{2B}_{\mathbf{x}}(\mathbf{IR})}$ $\mathcal{A}_{g}(\mathbf{R})$ $\mathcal{A}_{g}(\mathbf{R})$ $\mathcal{A}_{g}(\mathbf{IR})$	$\frac{C_{2h}(C_2)}{A_{g}(\mathbf{IR}) + B_{g}(\mathbf{IR})}$ $\frac{A_{g}(\mathbf{R})}{A_{g}(\mathbf{R})}$ $\frac{A_{g}(\mathbf{R})}{B_{g}(\mathbf{IR})}$	$C_{2h}(C_2")$ $A_{\mathbf{x}}(\mathbf{IR}) + B_{\mathbf{y}}(\mathbf{IR})$ $A_g(\mathbf{R})$ $B_g(\mathbf{R})$ $B_g(\mathbf{R})$ $B_{\mathbf{x}}(\mathbf{IR})$	$\frac{C_2(C_2)}{2B (\mathbf{R},\mathbf{IR})}$ $\mathcal{A}(\mathbf{R},\mathbf{IR})$ $\mathcal{A}(\mathbf{R},\mathbf{IR})$ $\mathcal{A}(\mathbf{R},\mathbf{IR})$	$C_{2}(C_{2}')$ A (R , IR) + B (R , IR) A (R , IR) A (R , IR) B (R , IR)	$C_{2}(C_{2}'') = A (R,IR) + B (R,IR) + B (R,IR) = B (R,IR) = B (R,IR) = B (R,IR) = B (R,IR)$	$\frac{C_{z}(\sigma_{h})}{2A'(\mathbf{R},\mathbf{IR})}$ $A'(\mathbf{R},\mathbf{IR})$ $A'(\mathbf{R},\mathbf{IR})$ $A''(\mathbf{R},\mathbf{IR})$	$C_{\varepsilon}(\sigma_{\gamma})$ $A'(\mathbf{R},\mathbf{IR}) +$ $A''(\mathbf{R},\mathbf{IR})$ $A'(\mathbf{R},\mathbf{IR})$ $A'(\mathbf{R},\mathbf{IR})$ $A'(\mathbf{R},\mathbf{IR})$ $A'(\mathbf{R},\mathbf{IR})$	$C_{\varepsilon} (\sigma_d)$ $\mathcal{A}' (\mathbf{R},\mathbf{IR}) +$ $\mathcal{A}'' (\mathbf{R},\mathbf{IR})$ $\mathcal{A}' (\mathbf{R},\mathbf{IR})$ $\mathcal{A}'' (\mathbf{R},\mathbf{IR})$ $\mathcal{A}' (\mathbf{R},\mathbf{IR})$	$\frac{C_{t}}{2A_{x} (\mathbf{IR})}$ $A_{\xi} (\mathbf{R})$ $A_{\xi} (\mathbf{R})$ $A_{x} (\mathbf{IR})$
-	$\begin{array}{c} Xe^{18}O_2{}^{b} \\ \hline 625.8 \\ 542.6 \\ 270.0 \\ 226.6 \\ 216.9 \\ d \end{array}$	$\begin{array}{c} D_{4h} \\ E_{u} \\ A_{1g} \\ B_{1g} \\ A_{2u} \\ B_{2g} \end{array}$	$\frac{C_{2\nu}(C_2, \sigma_d)}{B_1(\mathbf{R}, \mathbf{IR}) + B_2(\mathbf{R}, \mathbf{IR})} + \frac{B_2(\mathbf{R}, \mathbf{R})}{A_1(\mathbf{R}, \mathbf{IR})} + \frac{A_2(\mathbf{R})}{A_1(\mathbf{R}, \mathbf{IR})} + \frac{A_1(\mathbf{R}, \mathbf{R})}{A_1(\mathbf{R}, \mathbf{R})} + \frac{A_1(\mathbf{R}, \mathbf$	$\frac{C_{2\nu}(C_2')}{A_1(\mathbf{R},\mathbf{IR}) + B_1(\mathbf{R},\mathbf{IR})}$ $\frac{A_1(\mathbf{R},\mathbf{IR})}{A_1(\mathbf{R},\mathbf{IR})}$ $\frac{A_1(\mathbf{R},\mathbf{IR})}{B_2(\mathbf{R},\mathbf{IR})}$ $\frac{B_1(\mathbf{R},\mathbf{IR})}{B_1(\mathbf{R},\mathbf{IR})}$	$\frac{C_{2V}(C_2')}{A_1(\mathbf{R},\mathbf{IR}) + B_1(\mathbf{R},\mathbf{IR})}$ $\frac{A_1(\mathbf{R},\mathbf{IR})}{B_1(\mathbf{R},\mathbf{IR})}$ $\frac{B_1(\mathbf{R},\mathbf{IR})}{B_2(\mathbf{R},\mathbf{IR})}$ $\frac{A_1(\mathbf{R},\mathbf{IR})}{A_1(\mathbf{R},\mathbf{IR})}$	$\frac{C_{2h}(C_2)}{2B_{\pi}(\mathbf{IR})}$ $\frac{A_{g}(\mathbf{R})}{A_{g}(\mathbf{R})}$ $\frac{A_{g}(\mathbf{R})}{A_{\mu}(\mathbf{IR})}$ $\frac{A_{g}(\mathbf{R})}{A_{g}(\mathbf{R})}$	$\frac{C_{2h}(C_2)}{A_g(IR) +}$ $\frac{B_g(IR)}{A_g(R)}$ $\frac{A_g(R)}{A_g(R)}$ $\frac{B_g(IR)}{B_g(R)}$	$\frac{C_{2h}(C_2'')}{A_g(IR) +}$ $\frac{B_g(IR)}{A_g(R)}$ $\frac{B_g(R)}{B_g(R)}$ $\frac{B_g(IR)}{B_g(IR)}$ $A_g(R)$	$\frac{C_2(C_2)}{2B (\mathbf{R},\mathbf{IR})}$ $\mathcal{A}(\mathbf{R},\mathbf{IR})$ $\mathcal{A}(\mathbf{R},\mathbf{IR})$ $\mathcal{A}(\mathbf{R},\mathbf{IR})$ $\mathcal{A}(\mathbf{R},\mathbf{IR})$ $\mathcal{A}(\mathbf{R},\mathbf{IR})$	$\frac{C_2(C_2')}{A (R,IR) +} \\ \frac{B (R,IR)}{B (R,IR)} \\ A (R,IR) \\ A (R,IR) \\ B (R,IR) \\ B (R,IR) \\ B (R,IR) $	$\frac{C_2(C_2'')}{A (\mathbf{R},\mathbf{IR}) +}$ $\frac{B (\mathbf{R},\mathbf{IR})}{A (\mathbf{R},\mathbf{IR})}$ $\frac{B (\mathbf{R},\mathbf{IR})}{B (\mathbf{R},\mathbf{IR})}$ $\frac{A (\mathbf{R},\mathbf{IR})}{A (\mathbf{R},\mathbf{IR})}$	$\frac{C_{\varepsilon}(\sigma_h)}{2A'(\mathbf{R},\mathbf{IR})}$ $\frac{A'(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR})}$	$C_{z}(\sigma_{y})$ $A'(\mathbf{R},\mathbf{IR}) +$ $A''(\mathbf{R},\mathbf{IR})$ $A'(\mathbf{R},\mathbf{IR})$ $A'(\mathbf{R},\mathbf{IR})$ $A'(\mathbf{R},\mathbf{IR})$ $A''(\mathbf{R},\mathbf{IR})$	$\frac{C_{\varepsilon}(\sigma_d)}{A'(\mathbf{R},\mathbf{IR}) + A''(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$ $\frac{A'(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$	$\frac{C_{I}}{2A_{g}(\mathbf{R})}$ $\frac{A_{g}(\mathbf{R})}{A_{g}(\mathbf{R})}$ $\frac{A_{g}(\mathbf{R})}{A_{g}(\mathbf{R})}$ $\frac{A_{g}(\mathbf{R})}{A_{g}(\mathbf{R})}$
-	$\begin{array}{c} Xe^{18}O_2{}^{b} \\ 625.8 \\ 542.6 \\ 270.0 \\ 226.6 \\ 216.9 \\ d \\ 10.0 \\ \end{array}$	$ \begin{array}{c} D_{4h} \\ E_{ti} \\ A_{1g} \\ B_{1g} \\ A_{2u} \\ B_{2g} \\ B_{2u} \end{array} $	$\frac{C_{2V}(C_2, \sigma_d)}{B_1(\mathbf{R}, \mathbf{IR}) + B_2(\mathbf{R}, \mathbf{IR})}$ $A_1(\mathbf{R}, \mathbf{IR})$ $A_2(\mathbf{R})$ $A_1(\mathbf{R}, \mathbf{IR})$ $A_1(\mathbf{R}, \mathbf{IR})$ $A_1(\mathbf{R}, \mathbf{IR})$ $A_1(\mathbf{R}, \mathbf{R})$	$\frac{C_{2\psi}(C_2')}{A_1 (\mathbf{R}, \mathbf{IR}) + B_1 (\mathbf{R}, \mathbf{IR})}$ $\frac{A_1 (\mathbf{R}, \mathbf{IR})}{A_1 (\mathbf{R}, \mathbf{IR})}$ $\frac{A_1 (\mathbf{R}, \mathbf{IR})}{B_2 (\mathbf{R}, \mathbf{IR})}$ $\frac{B_1 (\mathbf{R}, \mathbf{IR})}{B_2 (\mathbf{R}, \mathbf{IR})}$	$\frac{C_{2v}(C_2'')}{A_1(\mathbf{R},\mathbf{IR}) + B_1(\mathbf{R},\mathbf{IR})}$ $\frac{A_1}{A_1}(\mathbf{R},\mathbf{IR})$ $\frac{B_1}{B_1}(\mathbf{R},\mathbf{IR})$ $\frac{B_1}{B_2}(\mathbf{R},\mathbf{IR})$ $\frac{A_1}{A_1}(\mathbf{R},\mathbf{IR})$ $\frac{A_2}{A_2}(\mathbf{R})$	$\frac{C_{2h}(C_2)}{2B_{\alpha}(\mathbf{IR})}$ $\frac{A_{g}(\mathbf{R})}{A_{g}(\mathbf{R})}$ $\frac{A_{\alpha}(\mathbf{IR})}{A_{\alpha}(\mathbf{IR})}$ $\frac{A_{\delta}(\mathbf{R})}{A_{\alpha}(\mathbf{IR})}$	$\frac{C_{2h}(C_2')}{A_g(IR) +}$ $\frac{B_g(IR)}{A_g(R)}$ $\frac{A_g(R)}{B_g(IR)}$ $\frac{B_g(IR)}{B_g(R)}$ $B_g(R)$ $B_u(IR)$	$\frac{C_{2h}(C_2")}{A_{g}(\mathbf{IR}) + B_{g}(\mathbf{IR})}$ $\frac{A_{g}(\mathbf{R})}{B_{g}(\mathbf{R})}$ $\frac{B_{g}(\mathbf{R})}{B_{g}(\mathbf{IR})}$ $\frac{A_{g}(\mathbf{R})}{A_{g}(\mathbf{R})}$ $\frac{A_{g}(\mathbf{R})}{A_{u}(\mathbf{IR})}$	$C_{2}(C_{2})$ $2B (R,IR)$ $A (R,IR)$ $A (R,IR)$ $A (R,IR)$ $A (R,IR)$ $A (R,IR)$	$C_2(C_2')$ $A (\mathbf{R},\mathbf{IR}) +$ $B (\mathbf{R},\mathbf{IR})$ $A (\mathbf{R},\mathbf{IR})$ $A (\mathbf{R},\mathbf{IR})$ $B (\mathbf{R},\mathbf{IR})$ $B (\mathbf{R},\mathbf{IR})$ $B (\mathbf{R},\mathbf{IR})$	$C_{2}(C_{2}'')$ $A (\mathbf{R},\mathbf{IR}) +$ $B (\mathbf{R},\mathbf{IR})$ $A (\mathbf{R},\mathbf{IR})$ $B (\mathbf{R},\mathbf{IR})$ $B (\mathbf{R},\mathbf{IR})$ $A (\mathbf{R},\mathbf{IR})$ $A (\mathbf{R},\mathbf{IR})$	$\frac{C_{\varepsilon}(\sigma_h)}{2A'(\mathbf{R},\mathbf{IR})}$ $\frac{A'(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR})}$	$\frac{C_{s}(\sigma_{v})}{A'(\mathbf{R},\mathbf{IR}) + A''(\mathbf{R},\mathbf{IR})}$ $\frac{A'(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$ $\frac{A'(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$	$\frac{C_{\varepsilon}(\sigma_d)}{A'(\mathbf{R},\mathbf{IR}) +}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR})}$	C_{t} $2A_{x} (IR)$ $A_{g} (R)$ $A_{x} (R)$ $A_{z} (R)$ $A_{z} (R)$ $A_{u} (IR)$
	$\begin{array}{c} \underline{\text{Xe}^{18}\text{O}_2}^{b} \\ 625.8 \\ 542.6 \\ 270.0 \\ 226.6 \\ 216.9 \\ d \\ 16.9 \\ n.0 \\ 161.1 \end{array}$	$\begin{array}{c} D_{4h} \\ E_{1i} \\ A_{1g} \\ B_{1g} \\ A_{2u} \\ B_{2g} \\ B_{2u} \\ E_{1i} \end{array}$	$\frac{C_{22}(C_2, \sigma_d)}{B_1(\mathbf{R}, \mathbf{IR}) + B_2(\mathbf{R}, \mathbf{IR})} + A_2(\mathbf{R}, \mathbf{IR}) + A_2(\mathbf{R}, \mathbf{IR}) + A_1(\mathbf{R}, \mathbf{IR}) + A_2(\mathbf{R}) + A_1(\mathbf{R}, \mathbf{IR}) + B_2(\mathbf{R}, \mathbf{IR}) + B_2(\mathbf{R}, \mathbf{IR})$	$C_{2\psi}(C_2')$ $A_1 (R,IR) + B_1 (R,IR)$ $A_1 (R,IR)$ $A_1 (R,IR)$ $B_2 (R,IR)$ $B_1 (R,IR)$ $B_2 (R,IR)$ $A_1 (R,IR) + B_1 (R,IR)$	$\frac{C_{24}(C_2'')}{A_1(\mathbf{R},\mathbf{IR}) +} \\ \frac{B_1(\mathbf{R},\mathbf{IR})}{B_1(\mathbf{R},\mathbf{IR})} \\ \frac{B_1(\mathbf{R},\mathbf{IR})}{B_2(\mathbf{R},\mathbf{IR})} \\ \frac{B_2(\mathbf{R},\mathbf{IR})}{A_1(\mathbf{R},\mathbf{IR})} \\ \frac{A_2(\mathbf{R})}{A_1(\mathbf{R},\mathbf{IR}) +} \\ \frac{B_1(\mathbf{R},\mathbf{IR})}{B_1(\mathbf{R},\mathbf{IR})} $	$\frac{C_{2h}(C_2)}{2B_{\pi}(IR)}$ $\frac{A_{\chi}(R)}{A_{\chi}(R)}$ $\frac{A_{\chi}(R)}{A_{\chi}(IR)}$ $\frac{A_{\chi}(R)}{A_{\chi}(IR)}$ $\frac{2B_{\pi}(IR)}{2B_{\pi}(IR)}$	$\frac{C_{2h}(C_2)}{A_{\pi}(\mathbf{IR}) + B_{\pi}(\mathbf{IR})}$ $\frac{A_{\chi}(\mathbf{R})}{A_{\chi}(\mathbf{R})}$ $\frac{A_{\chi}(\mathbf{R})}{B_{\pi}(\mathbf{IR})}$ $\frac{B_{\chi}(\mathbf{IR})}{B_{\chi}(\mathbf{IR})}$ $\frac{A_{\pi}(\mathbf{IR}) + B_{\pi}(\mathbf{IR})}{A_{\pi}(\mathbf{IR})}$	$\frac{C_{2h}(C_2")}{A_{u}(\mathbf{IR}) + B_{u}(\mathbf{IR})} + B_{u}(\mathbf{IR}) + B_{u}(\mathbf{IR}) + B_{u}(\mathbf{IR}) + A_{u}(\mathbf{IR}) + A_{u}(\mathbf{IR}) + A_{u}(\mathbf{IR}) + B_{u}(\mathbf{IR}) + B_{u}(\mathbf{IR})$	$C_{2}(C_{2})$ 2B (R,IR) A (R,IR) A (R,IR) A (R,IR) A (R,IR) A (R,IR) 2B (R,IR)	$\frac{C_2(C_2')}{A (\mathbf{R},\mathbf{IR}) + B (\mathbf{R},\mathbf{IR})}$ $\frac{A (\mathbf{R},\mathbf{IR})}{A (\mathbf{R},\mathbf{IR})}$ $\frac{A (\mathbf{R},\mathbf{IR})}{B (\mathbf{R},\mathbf{IR})}$ $\frac{B (\mathbf{R},\mathbf{IR})}{A (\mathbf{R},\mathbf{IR}) + B (\mathbf{R},\mathbf{IR})}$	$\frac{C_2(C_2'')}{A (\mathbf{R},\mathbf{IR}) + B (\mathbf{R},\mathbf{IR})}$ $\frac{A (\mathbf{R},\mathbf{IR})}{B (\mathbf{R},\mathbf{IR})}$ $\frac{B (\mathbf{R},\mathbf{IR})}{B (\mathbf{R},\mathbf{IR})}$ $\frac{A (\mathbf{R},\mathbf{IR})}{A (\mathbf{R},\mathbf{IR}) + B (\mathbf{R},\mathbf{IR})}$	$\frac{C_{z}(\sigma_{h})}{2A'(R,IR)}$ $\frac{A'(R,IR)}{A'(R,IR)}$ $\frac{A''(R,IR)}{A''(R,IR)}$ $\frac{A''(R,IR)}{2A'(R,IR)}$	$\frac{C_4(\sigma_{s})}{A'(\mathbf{R},\mathbf{IR}) + A''(\mathbf{R},\mathbf{IR})}$ $\frac{A'(\mathbf{R},\mathbf{R})}{A'(\mathbf{R},\mathbf{R})}$ $\frac{A'(\mathbf{R},\mathbf{R})}{A'(\mathbf{R},\mathbf{R})}$ $\frac{A'(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$ $\frac{A'(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})} + A''(\mathbf{R},\mathbf{IR})$	$\frac{C_{\varepsilon}(\sigma_d)}{A'(\mathbf{R},\mathbf{IR}) +}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR}) +}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR}) +}$	$\frac{C_{i}}{2A_{s}(IR)}$ $\frac{A_{g}(R)}{A_{g}(R)}$ $\frac{A_{g}(R)}{A_{g}(IR)}$ $\frac{A_{g}(R)}{A_{u}(IR)}$ $\frac{2A_{s}(IR)}{2A_{s}(IR)}$
-	$\begin{array}{c} Xe^{18}O_2{}^{b} \\ 625.8 \\ 542.6 \\ 270.0 \\ 226.6 \\ 216.9 \\ d \\ 161.1 \end{array}$	$ \begin{array}{c} D_{4h} \\ E_{u} \\ A_{1g} \\ B_{1g} \\ A_{2u} \\ B_{2g} \\ B_{2u} \\ E_{u} \\ E_{u} \end{array} $	$\frac{C_{22}(C_2, \sigma_d)}{B_1(\mathbf{R}, \mathbf{IR}) + B_2(\mathbf{R}, \mathbf{IR})}$ $A_1(\mathbf{R}, \mathbf{IR})$ $A_2(\mathbf{R})$ $A_1(\mathbf{R}, \mathbf{IR})$ $A_1(\mathbf{R}, \mathbf{IR})$ $A_1(\mathbf{R}, \mathbf{IR})$ $A_1(\mathbf{R}, \mathbf{IR})$ $A_2(\mathbf{R})$ $B_1(\mathbf{R}, \mathbf{IR}) + B_2(\mathbf{R}, \mathbf{IR})$	$\frac{C_{20}(C_2')}{A_1(\mathbf{R},\mathbf{IR}) + B_1(\mathbf{R},\mathbf{IR})}$ $\frac{A_1(\mathbf{R},\mathbf{IR})}{A_1(\mathbf{R},\mathbf{IR})}$ $\frac{A_1(\mathbf{R},\mathbf{IR})}{B_2(\mathbf{R},\mathbf{IR})}$ $\frac{B_1(\mathbf{R},\mathbf{IR})}{B_2(\mathbf{R},\mathbf{IR})}$ $\frac{B_2(\mathbf{R},\mathbf{IR})}{A_1(\mathbf{R},\mathbf{IR})}$ $\frac{B_1(\mathbf{R},\mathbf{IR})}{B_1(\mathbf{R},\mathbf{IR})}$	$\frac{C_{24}(C_2'')}{A_1(\mathbf{R},\mathbf{IR}) +} \\ \frac{A_1(\mathbf{R},\mathbf{IR})}{B_1(\mathbf{R},\mathbf{IR})} \\ \frac{B_1(\mathbf{R},\mathbf{IR})}{B_2(\mathbf{R},\mathbf{IR})} \\ \frac{B_2(\mathbf{R},\mathbf{IR})}{A_1(\mathbf{R},\mathbf{IR})} \\ \frac{A_2(\mathbf{R})}{A_1(\mathbf{R},\mathbf{IR}) +} \\ \frac{B_1(\mathbf{R},\mathbf{IR})}{B_1(\mathbf{R},\mathbf{IR})} \\ \frac{B_2(\mathbf{R},\mathbf{IR})}{B_1(\mathbf{R},\mathbf{IR})} \\ \frac{B_2(\mathbf{R},\mathbf{IR})}{B_1(\mathbf{R},\mathbf{IR})} \\ \frac{B_2(\mathbf{R},\mathbf{IR})}{B_1(\mathbf{R},\mathbf{IR})} \\ \frac{B_2(\mathbf{R},\mathbf{IR})}{B_2(\mathbf{R},\mathbf{IR})} \\ \frac{B_2(\mathbf{R},\mathbf{IR})}{B_2(\mathbf{R},\mathbf{IR})$	$\frac{C_{2h}(C_2)}{2B_x(IR)}$ $\frac{A_g(R)}{A_g(R)}$ $\frac{A_g(R)}{A_g(R)}$ $\frac{A_g(R)}{A_g(R)}$ $\frac{A_g(R)}{2B_x(IR)}$	$\frac{C_{2h}(C_2)}{A_{g}(\mathbf{IR}) + B_{g}(\mathbf{IR})}$ $\frac{A_{g}(\mathbf{R})}{A_{g}(\mathbf{R})}$ $\frac{A_{g}(\mathbf{R})}{B_{g}(\mathbf{R})}$ $\frac{B_{g}(\mathbf{R})}{B_{g}(\mathbf{R})}$ $\frac{B_{g}(\mathbf{R})}{A_{g}(\mathbf{IR}) + B_{g}(\mathbf{IR})}$ $B_{g}(\mathbf{R})$	$\frac{C_{2h}(C_2'')}{A_{w}(IR) + B_{w}(IR)} + B_{w}(IR) + B_{w}(IR) + B_{g}(R) - B_{g}(R) - A_{g}(R) - A_{g}(R) - A_{g}(R) - A_{g}(IR) + B_{w}(IR) + B_{w}(IR) + B_{w}(IR) - B_{g}(R) - B_{g}$	$\frac{C_2(C_2)}{2B (R,IR)}$ A (R,IR) A (R,IR) A (R,IR) A (R,IR) A (R,IR) 2B (R,IR) A (R,IR)	$\frac{C_2(C_2')}{A (\mathbf{R},\mathbf{IR}) + B (\mathbf{R},\mathbf{IR})}$ $\frac{A (\mathbf{R},\mathbf{IR})}{A (\mathbf{R},\mathbf{IR})}$ $\frac{A (\mathbf{R},\mathbf{IR})}{B (\mathbf{R},\mathbf{IR})}$ $\frac{B (\mathbf{R},\mathbf{IR})}{A (\mathbf{R},\mathbf{IR}) + B (\mathbf{R},\mathbf{IR})}$ $\frac{B (\mathbf{R},\mathbf{IR})}{B (\mathbf{R},\mathbf{IR})}$	$\frac{C_2(C_2'')}{A(\mathbf{R},\mathbf{IR}) + B(\mathbf{R},\mathbf{IR})}$ $\frac{A(\mathbf{R},\mathbf{IR})}{B(\mathbf{R},\mathbf{IR})}$ $\frac{B(\mathbf{R},\mathbf{IR})}{B(\mathbf{R},\mathbf{IR})}$ $\frac{A(\mathbf{R},\mathbf{IR})}{A(\mathbf{R},\mathbf{IR}) + B(\mathbf{R},\mathbf{IR})}$ $\frac{B(\mathbf{R},\mathbf{IR})}{B(\mathbf{R},\mathbf{IR})}$	$\frac{C_{\varepsilon}(\sigma_h)}{2A'(\mathbf{R},\mathbf{IR})}$ $\frac{A'(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{2A'(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{2A'(\mathbf{R},\mathbf{IR})}$	$\frac{C_4(\sigma_2)}{A'(\mathbf{R},\mathbf{IR}) + A''(\mathbf{R},\mathbf{IR})}$ $\frac{A'(\mathbf{R},\mathbf{R})}{A'(\mathbf{R},\mathbf{R})}$ $\frac{A'(\mathbf{R},\mathbf{R})}{A'(\mathbf{R},\mathbf{R})}$ $\frac{A'(\mathbf{R},\mathbf{R})}{A'(\mathbf{R},\mathbf{IR})}$ $\frac{A'(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR}) + A''(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR})}$	$\frac{C_{e}(\sigma_{d})}{A'(\mathbf{R},\mathbf{IR}) +}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR}) +}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR})}$	C_{I} $2A_{x} (IR)$ $A_{\xi} (R)$ $A_{\chi} (R)$ $A_{g} (IR)$ $A_{\xi} (R)$ $A_{\chi} (IR)$ $2A_{g} (IR)$ $2A_{g} (IR)$
	$\begin{array}{c} Xe^{16}O_2{}^{b} \\ \hline \\ 625.8 \\ 542.6 \\ 270.0 \\ 226.6 \\ d \\ 216.9 \\ d \\ \end{array} \right\}$	D_{4h} E_{μ} A_{1g} B_{1g} $A_{2\mu}$ B_{2g} $B_{2\mu}$ E_{μ} A_{2g}	$\frac{C_{22}(C_{22},\sigma_d)}{B_1(\mathbf{R},\mathbf{IR}) + B_2(\mathbf{R},\mathbf{IR})}$ $\frac{A_1(\mathbf{R},\mathbf{IR})}{A_1(\mathbf{R},\mathbf{IR})}$ $\frac{A_1(\mathbf{R},\mathbf{IR})}{A_1(\mathbf{R},\mathbf{IR})}$ $\frac{A_2(\mathbf{R})}{B_1(\mathbf{R},\mathbf{IR}) + B_2(\mathbf{R},\mathbf{IR})}$ $\frac{A_2(\mathbf{R})}{B_1(\mathbf{R},\mathbf{IR}) + B_2(\mathbf{R},\mathbf{IR})}$	$\frac{C_{2\nu}(C_2)}{A_1(\mathbf{R},\mathbf{IR}) + B_1(\mathbf{R},\mathbf{IR}) + B_1(\mathbf{R},\mathbf{IR})}$ $A_1(\mathbf{R},\mathbf{IR}) + B_2(\mathbf{R},\mathbf{IR})$ $B_2(\mathbf{R},\mathbf{IR}) + B_2(\mathbf{R},\mathbf{IR}) + B_1(\mathbf{R},\mathbf{IR}) + B_1(\mathbf{R},\mathbf{IR}) + B_2(\mathbf{R},\mathbf{IR})$ $A_1(\mathbf{R},\mathbf{IR}) + B_2(\mathbf{R},\mathbf{IR})$	$\frac{C_{2v}(C_2')}{A_1(\mathbf{R},\mathbf{IR}) + B_1(\mathbf{R},\mathbf{IR})}$ $\frac{A_1(\mathbf{R},\mathbf{IR})}{A_1(\mathbf{R},\mathbf{IR})}$ $\frac{B_1(\mathbf{R},\mathbf{IR})}{B_2(\mathbf{R},\mathbf{IR})}$ $\frac{A_2(\mathbf{R})}{A_1(\mathbf{R},\mathbf{IR}) + B_1(\mathbf{R},\mathbf{IR})}$ $\frac{B_1(\mathbf{R},\mathbf{IR})}{A_2(\mathbf{R}) + B_2}$	$C_{2\lambda}(C_2)$ $2B_{\pi}(\mathbf{IR})$ $A_{\xi}(\mathbf{R})$ $A_{\chi}(\mathbf{R})$ $A_{\chi}(\mathbf{R})$ $A_{\chi}(\mathbf{R})$ $A_{\mu}(\mathbf{IR})$ $2B_{\pi}(\mathbf{IR})$ $A_{\xi}(\mathbf{R})$	$\frac{C_{2\delta}(C_2)}{A_{\pi}(\mathbf{IR}) + B_{\pi}(\mathbf{IR})}$ $\frac{A_{\kappa}(\mathbf{R})}{A_{\kappa}(\mathbf{R})}$ $\frac{A_{\kappa}(\mathbf{R})}{B_{\kappa}(\mathbf{IR})}$ $\frac{B_{\kappa}(\mathbf{IR})}{A_{\pi}(\mathbf{IR}) + B_{\pi}(\mathbf{R})}$ $\frac{B_{\kappa}(\mathbf{R})}{A_{\pi}(\mathbf{R}) + (\mathbf{R})}$	$\frac{C_{2k}(C_2'')}{A_{\mathbf{x}}(\mathbf{IR}) + B_{\mathbf{x}}(\mathbf{IR})}$ $\frac{A_{\xi}(\mathbf{R})}{B_{\xi}(\mathbf{R})}$ $\frac{B_{\xi}(\mathbf{R})}{B_{\xi}(\mathbf{R})}$ $\frac{A_{\xi}(\mathbf{R})}{A_{u}(\mathbf{IR}) + B_{\mathbf{x}}(\mathbf{IR})}$ $\frac{B_{\xi}(\mathbf{R})}{A_{u}(\mathbf{R}) + (\mathbf{R})}$	$C_{2}(C_{2})$ 2B (R,IR) A (R,IR) A (R,IR) A (R,IR) A (R,IR) A (R,IR) 2B (R,IR) A (R,IR)	$C_2(C_2')$ $A (\mathbf{R},\mathbf{IR}) + B (\mathbf{R},\mathbf{IR})$ $A (\mathbf{R},\mathbf{IR})$ $B (\mathbf{R},\mathbf{IR})$ $B (\mathbf{R},\mathbf{IR})$ $B (\mathbf{R},\mathbf{IR})$ $B (\mathbf{R},\mathbf{IR})$ $B (\mathbf{R},\mathbf{IR}) + B (\mathbf{R},\mathbf{IR})$ $B (\mathbf{R},\mathbf{IR}) + B (\mathbf{R},\mathbf{IR})$	$\frac{C_2(C_2'')}{A(\mathbf{R},\mathbf{IR}) + B(\mathbf{R},\mathbf{IR})}$ $\frac{A(\mathbf{R},\mathbf{IR})}{B(\mathbf{R},\mathbf{IR})}$ $\frac{B(\mathbf{R},\mathbf{IR})}{B(\mathbf{R},\mathbf{IR})}$ $\frac{A(\mathbf{R},\mathbf{IR})}{A(\mathbf{R},\mathbf{IR}) + B(\mathbf{R},\mathbf{IR})}$ $\frac{B(\mathbf{R},\mathbf{IR})}{B(\mathbf{R},\mathbf{IR}) + B(\mathbf{R},\mathbf{IR})}$	$C_{z}(\sigma_{h})$ 24' (R,IR) A' (R,IR) A'' (R,IR) A'' (R,IR) A'' (R,IR) 24' (R,IR) 24' (R,IR)	$\frac{C_{4}(\sigma_{2})}{A'(\mathbf{R},\mathbf{IR}) +}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{R})}$ $\frac{A'(\mathbf{R},\mathbf{R})}{A'(\mathbf{R},\mathbf{R})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR})} + $ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR})} + $	$C_{\epsilon}(\sigma_{d})$ $A'(\mathbf{R},\mathbf{IR}) +$ $A''(\mathbf{R},\mathbf{IR})$ $A''(\mathbf{R},\mathbf{IR})$ $A''(\mathbf{R},\mathbf{IR})$ $A''(\mathbf{R},\mathbf{IR})$ $A''(\mathbf{R},\mathbf{IR})$ $A''(\mathbf{R},\mathbf{IR}) +$ $A''(\mathbf{R},\mathbf{IR})$ $A''(\mathbf{R},\mathbf{IR}) +$ $A''(\mathbf{R},\mathbf{IR}) +$	C_{I} $2A_{g} (\mathbf{IR})$ $A_{\chi} (\mathbf{R})$ $A_{\chi} (\mathbf{R})$ $A_{\chi} (\mathbf{IR})$ $A_{\chi} (\mathbf{IR})$ $2A_{u} (\mathbf{IR})$ $A_{\chi} (\mathbf{R})$
-	$\begin{array}{c} \underline{\text{Xe}^{15}\text{O}_2{}^b} \\ 625.8 \\ 542.6 \\ 270.0 \\ 226.6 \\ d \\ 16.1 \\ 161.1 \\ \\ 226.6 \\ d \\ 216.9 \\ d \\ \end{array} \right\}$	$egin{array}{c} D_{4h} & & \ E_u & \ & \ & \ & \ & \ & \ & \ & \ & \ & $	$\frac{C_{22}(C_2, \sigma_d)}{B_1(\mathbf{R}, \mathbf{IR}) + B_2(\mathbf{R}, \mathbf{IR})}$ $A_1(\mathbf{R}, \mathbf{IR}) + A_2(\mathbf{R})$ $A_1(\mathbf{R}, \mathbf{IR})$ $A_1(\mathbf{R}, \mathbf{IR})$ $A_1(\mathbf{R}, \mathbf{IR})$ $A_1(\mathbf{R}, \mathbf{IR})$ $A_2(\mathbf{R})$ $B_1(\mathbf{R}, \mathbf{IR}) + B_2(\mathbf{R}, \mathbf{IR})$ $A_2(\mathbf{R})$ $B_1(\mathbf{R}, \mathbf{IR}) + B_2(\mathbf{R}, \mathbf{IR})$	$\frac{C_{20}(C_2')}{A_1 (\mathbf{R}, \mathbf{IR}) + B_1 (\mathbf{R}, \mathbf{IR})}$ $\frac{A_1 (\mathbf{R}, \mathbf{IR})}{A_1 (\mathbf{R}, \mathbf{IR})}$ $\frac{A_1 (\mathbf{R}, \mathbf{IR})}{B_2 (\mathbf{R}, \mathbf{IR})}$ $\frac{B_1 (\mathbf{R}, \mathbf{IR})}{B_1 (\mathbf{R}, \mathbf{IR}) + B_1 (\mathbf{R}, \mathbf{IR})}$ $\frac{B_1 (\mathbf{R}, \mathbf{IR})}{A_2 (\mathbf{R}) + B_2}$ (R , IR)	$\frac{C_{2v}(C_2'')}{A_1(\mathbf{R},\mathbf{IR}) + B_1(\mathbf{R},\mathbf{IR})}$ $\frac{A_1}{A_1}(\mathbf{R},\mathbf{IR})$ $\frac{A_1}{A_1}(\mathbf{R},\mathbf{IR})$ $\frac{B_2}{B_2}(\mathbf{R},\mathbf{IR})$ $\frac{A_1}{A_1}(\mathbf{R},\mathbf{IR})$ $\frac{A_2}{A_1}(\mathbf{R},\mathbf{IR})$ $\frac{A_2}{A_1}(\mathbf{R},\mathbf{IR})$ $\frac{B_1}{A_2}(\mathbf{R}) + B_2$ (R,IR)	$\frac{C_{2h}(C_2)}{2B_{u}(IR)}$ $\frac{A_{\chi}(R)}{A_{\chi}(R)}$ $\frac{A_{\chi}(R)}{A_{u}(IR)}$ $\frac{A_{\chi}(R)}{2B_{u}(IR)}$ $\frac{A_{\chi}(R)}{2B_{\chi}(R)}$	$\frac{C_{2h}(C_2)}{A_{\pi}(\mathbf{IR}) + B_{\pi}(\mathbf{IR})}$ $\frac{B_{\pi}(\mathbf{IR})}{A_{\chi}(\mathbf{R})}$ $\frac{A_{\chi}(\mathbf{R})}{A_{\chi}(\mathbf{R})}$ $\frac{B_{\pi}(\mathbf{IR})}{B_{\pi}(\mathbf{IR})}$ $\frac{B_{\chi}(\mathbf{IR})}{B_{\pi}(\mathbf{IR}) + B_{\pi}(\mathbf{R})}$ $\frac{B_{\chi}(\mathbf{R})}{B_{\chi}(\mathbf{R}) + B_{\chi}(\mathbf{R})}$	$\frac{C_{2A}(C_2'')}{A_w(\mathbf{IR}) + B_w(\mathbf{IR})}$ $\frac{A_g(\mathbf{R})}{B_g(\mathbf{R})}$ $\frac{B_g(\mathbf{R})}{B_g(\mathbf{R})}$ $\frac{A_g(\mathbf{R})}{A_g(\mathbf{R})}$ $\frac{A_g(\mathbf{R})}{A_w(\mathbf{IR}) + B_w(\mathbf{IR})}$ $\frac{B_g(\mathbf{R})}{A_g(\mathbf{R}) + B_g(\mathbf{R})}$	$C_{2}(C_{2})$ 2B (R,IR) A (R,IR) A (R,IR) A (R,IR) A (R,IR) 2B (R,IR) 2B (R,IR) 2B (R,IR)	$\frac{C_2(C_2')}{A (R,IR) +} \\ \frac{B}{B (R,IR)} \\ \frac{A}{A (R,IR)} \\ \frac{A}{A (R,IR)} \\ \frac{B}{B (R,IR)} \\ \frac{B}{B (R,IR)} \\ \frac{B}{B (R,IR) +} \\ \frac{B}{B (R,IR)$	$\frac{C_2(C_2'')}{A (R,IR) +} \\ \frac{B}{B (R,IR)} \\ \frac{A}{A (R,IR)} \\ \frac{B}{B (R,IR)} \\ \frac{B}{B (R,IR)} \\ \frac{A}{A (R,IR)} \\ \frac{A}{A (R,IR) +} \\ \frac{B}{B (R,IR)} \\ \frac{B}{A (R,IR) +} \\ \frac{B}{B (R,IR) +} \\ B$	$\frac{C_{c}(\sigma_{h})}{24' (R,IR)}$ $\frac{A' (R,IR)}{A' (R,IR)}$ $\frac{A'' (R,IR)}{A'' (R,IR)}$ $\frac{A'' (R,IR)}{24' (R,IR)}$ $\frac{A'' (R,IR)}{24' (R,IR)}$	$\frac{C_{a}(\sigma_{v})}{A'(\mathbf{R},\mathbf{IR}) + A''(\mathbf{R},\mathbf{IR})}$ $\frac{A'(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$ $\frac{A'(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR}) + A''(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR}) + A''(\mathbf{R},\mathbf{IR})}$	$\frac{C_{e}(\sigma_{d})}{A'(\mathbf{R},\mathbf{IR}) +}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR})}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A'(\mathbf{R},\mathbf{IR}) +}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR}) +}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR}) +}$ $\frac{A''(\mathbf{R},\mathbf{IR})}{A''(\mathbf{R},\mathbf{IR}) +}$	C_{i} $2A_{x} (IR)$ $A_{\xi} (R)$ $A_{x} (R)$ $A_{x} (IR)$ $A_{\xi} (R)$ $A_{u} (IR)$ $2A_{u} (IR)$ $2A_{x} (R)$ $2A_{g} (R)$

Table 4.2. Site Symmetry Analyses for the XeO₄ Moiety in the Polymeric Structure of XeO₂ a

^{*a*} The irreducible representations and activities in bold red correspond to modes having Raman activities that are incompatible with the observed Raman bands of XeO₂. The abbreviations denote Raman-active (R) and infrared-active (IR) bands and not observed (n.o.). The only local XeO₂ symmetry that is consistent with the observed Raman activities is D_{2d} (C_2'). ^{*b*} The vibrational frequencies of Xe¹⁸O₂ are compared with XeF₄ to minimize the mass difference between F and O. The spectral assignments of Xe¹⁸O₂ are for square-planar oxygen-bridged Xe¹⁸O₄ moieties. ^{*c*} From ref 186. The translatory modes of XeF₄ belong to the A_{2u} (T_z) and E_u (T_x , T_y) representations but their counterparts do not contribute vibrational modes in the extended structure of XeO₂. ^{*d*} The two bands either arise from splitting of the B_{2g} mode normally observed for XeF₄, or from a rotational mode that is rendered Raman active upon symmetry lowering. ^{*e*} This mode was not directly observed, but was obtained from the 2v₇ overtone at 322 cm⁻¹.

atoms trans to one another. These modes are normally associated with $v_1(A_{1g})$ and $v_4(B_{2g})$ in an isolated square-planar molecule but are rendered degenerate in an extended lattice (structure II) because the elongation of four Xe-O bonds results in the compression of four Xe–O bonds of the four next nearest neighbor XeO_4 groups. The $v_2(B_{1g})$ mode of a square-planar molecule appears as two bands at 227.9 and 239.1 cm^{-1} . These bands exhibit ¹⁸O isotopic shifts of -11.0 and -12.5 cm⁻¹, respectively, which are assigned to $\delta(XeO_{2c} + XeO_{2c})$.¹⁹¹ The extended lattice of XeO₂ also renders modes Raman-active that would otherwise be exclusively infrared active in an isolated centrosymmetric squareplanar molecule. A case in point is the weak band at 283.9 cm^{-1} , which is assigned to the out-of-plane XeO₄ bend, $v_3(A_{2u})$, and displays a low-frequency shift (-13.9 cm⁻¹) upon ¹⁸O-enrichment. Similarly, the otherwise Raman-inactive modes, XeO_t - XeO_t, and the in-plane bend, XeO_{2t}, corresponding to $v_6(E_u)$ and $v_7(E_u)$, respectively, are observed at 632.3 cm⁻¹ and 168.9 cm⁻¹ with ¹⁸O isotopic shifts of -6.5 and -7.8 cm⁻¹, respectively. The out-of-plane coupled bending mode, $\delta(XeO_{2t})o.o.p. - \delta(XeO_{2t})$, corresponding to $v_5(B_{2u})$, which is formally both Raman and infrared inactive in isolated square-planar centrosymmetric molecules, is also not observed for XeO₂.

The Raman spectrum of the yellow-orange, incompletely polymerized product (Figure 4.2) is very similar to that of the fully polymerized yellow solid with the exception of a broadened 570 cm⁻¹ band, which tails off to higher frequency (~680 cm⁻¹), and a weak band at 310 cm⁻¹. These features may be attributed to shorter oligomers or smaller network structures that have not fully condensed.

131

Figure 4.2. The natural abundance Raman spectra of yellow-orange incompletely polymerized product(s) (black trace) and yellow, macromolecular XeO_2 (red trace) recorded under solid water at -150 °C using 1064-nm excitation. Symbols denote FEP sample tube lines (*) and instrumental artifacts (†).

Prior work¹⁷⁸ reporting xenon doped SiO₂ has been re-examined in light of the present findings. The study assumed that xenon substitution for silicon in a SiO₂ lattice resulted in xenon occupancy at a tetrahedral site. For this reason, the local xenon geometry was compared with that of XeO₄,¹⁹³ assuming that the Xe–O bond lengths and vibrational frequencies of the gas-phase XeO₄ molecule are transferable.¹⁷⁸ Consequently, the latter assumption and ensuing comparisons are flawed. The valence shell of Xe(IV) in XeO₂ possesses two valence electron lone pairs. If Xe(IV) were to form bonds to four oxygen atoms in a silicate environment, they would be single bond domains and would adopt a local square-planar AX₄E₂ VSEPR⁴¹ arrangement around Xe(IV) as in structure II. Xenon in tetrahedral XeO₄ is in the +8 oxidation state, forming four double bonds to the oxygen atoms.¹⁹³ The prior argument¹⁷⁸ ignores the formal oxidation state of xenon, formal Xe-O single bond orders and stereochemical activities of the two valence electron lone pairs on Xe(IV). Therefore, the bond lengths and Raman frequencies observed for gas-phase XeO₄ are not valid comparisons. The present arguments are supported by a recent report that provides several calculated models for xenon insertion into SiO₂ networks.¹⁹⁴ One such model positioned xenon at a tetrahedral site which, when energy optimized, gave a local square-planar geometry at xenon. Unfortunately, the steric effects of the free valence electron lone pairs on Xe(IV) and relevant VSEPR arguments were not considered and the optimized square-planar geometry was attributed to packing constraints and stabilization by the surrounding environment.194

Thermodynamic considerations in the prior reports of xenon doped SiO₂¹⁷⁸ attribute the formation of XeO₂ to *PV* work that resulted from an increase in unit cell size and to the high pressures attained in the experiment.¹⁷⁸ The PV work was estimated to be -700 kJ mol^{-1} , noting that it "favors the reaction that is otherwise inhibited at ambient conditions because of the high formation enthalpy predicted for XeO₂¹⁸⁹ compared with that of SiO₂". Although -700 kJ mol^{-1} is sufficient to overcome $\Delta H^{\circ}_{f} \text{ XeO}_{2(g)}$ (487 kJ mol⁻¹),¹⁸⁹ an ambiguity arises when $\Delta H^{\circ}_{f} \text{ SiO}_{2(quartz)}$ (-910.94 kJ mol⁻¹)¹⁹⁵ and ΔH°_{sub} Xe_(s) (-15.0(2) kJ mol⁻¹)¹⁹⁶ are also considered in eq 4.9, resulting in a highly endothermic (713 kJ mol⁻¹) process when the volume reduction work is included.

 $SiO_{2(quartz)} + Xe_{(s)} \longrightarrow Si_{(s)} + XeO_{2(g)}$ $\Delta H^{0} = 1413 \text{ kJ mol}^{-1}$ (4.9) Equation 4.9 neglects the lattice enthalpy of XeO₂, which is unknown, but were it to exceed 713 kJ mol⁻¹, when coupled with the error in the estimated *PV* work, the process could be rendered spontaneous. The plausibility of reaction 4.9 is supported by a recent computational study relating to xenon insertion into SiO₂ networks.¹⁹⁴ This study concluded that xenon could be incorporated into the interstitial spaces of SiO₂ lattices under ambient conditions and that xenon could replace silicon at higher pressures in a two-step process. The initial step requires a substantial amount of energy and involves a redox process in which Si atoms are removed from the lattice and Si–O–O–Si peroxilinkages are formed (eq 4.10). The xenon incorporation step (eq 4.11) has an energy barrier of 177 kJ mol⁻¹.¹⁹⁴

$$(Si-O-)_2-Si-(-O-Si)_{2(quartz)} \longrightarrow 2 Si-O-O-Si_{(s)} + Si_{(s)}$$

$$(4.10)$$

$$2 \operatorname{Si-O-O-Si}_{(s)} + \operatorname{Xe}_{(s)} \longrightarrow (\operatorname{Si-O-})_2 \cdot \operatorname{Xe}_{(-O-Si)}_{2(s)}$$
(4.11)

In view of the aforementioned computational results, which support xenon substitution into SiO₂ networks, the previous Raman spectrum of xenon doped SiO₂ obtained from a high-pressure and high-temperature study¹⁷⁸ was re-examined in light of the present findings. The spectrum is consistent with the presence of covalently bound xenon, but the vibrational bands were incorrectly assigned. A band at 588 cm^{-1} was assigned "to the main Raman band of SiO units, located at 596.4 cm⁻¹ at room temperature in the gas phase".¹⁷⁸ The reference alluded to by the authors actually quotes SiO stretches ranging from $460.2 - 627.9 \text{ cm}^{-1}$ for $(SiO)_n$ (n = 2-4) in a solid methane matrix at 25 K.¹⁹⁷ The 588 cm⁻¹ band is in good agreement with the experimental frequency for bulk XeO_2 (570.3 cm⁻¹) obtained in the present study and more likely arises from modes whose descriptions approximate $v_s(XeO_4)$ and $v_{as}(XeO_{2t} - XeO_{2t})$. Bands at 814 and 356 cm^{-1} were also previously assigned to XeO₂,¹⁷⁸ but most likely arise from Si-Oxe stretching and O-Si-Oxe bending modes, respectively, where Oxe denotes oxygen bound to xenon. These bands are in good agreement with the E and A₁ modes observed for solid SiO₂ at 795 and 356 cm⁻¹, respectively,¹⁹⁸ and are reassigned accordingly.

4.3. Conclusion

The present study has provided the synthesis and characterization of macroscopic amounts of XeO₂. Raman spectroscopic studies employing ¹⁶O/¹⁸O isotopic enrichment indicate that XeO₂ possesses an extended structure having a local square-planar XeO₄ geometry around Xe(IV). Xenon dioxide presently represents the only known covalent

network structure for a noble-gas compound that exists under near-ambient conditions. The present Raman spectroscopic studies of XeO_2 also correct prior vibrational assignments of xenon-doped SiO₂ containing covalently bound xenon (2.2%) that had been substituted for silicon in a quartz matrix under high-temperature and high-pressure conditions.¹⁷⁸ Such xenon-doped SiO₂ lattices offer the possibility that covalently bound xenon occurs in natural silicates that have been cycled deep into Earth's crust. This could serve to deplete the amount of xenon relative to the lighter noble gases in the atmosphere, providing a plausible explanation for the Earth's missing xenon.

CHAPTER 5

XeOF₃⁻, an Example of an AX_3YE_2 VSEPR Arrangement; Syntheses and Structural Characterizations of [M][XeOF₃] (M = Cs, N(CH₃)₄)

5.1. Introduction

Although the xenon(IV) fluoride species, XeF_3^+ , 48,51,52 XeF_4 , 32,35,38 and XeF_5^- , 53 have been well characterized spectroscopically and by single-crystal X-ray diffraction, the absence of a facile synthetic route to high-purity $XeOF_2$ had prevented extensive exploration of its fluoride ion donor-acceptor properties. The recent synthesis of pure $XeOF_2^{125}$ has provided an opportunity to extend the oxide fluoride chemistry of Xe(IV) and to study the fluoride ion acceptor properties of $XeOF_2$ with the view to synthesize and characterize salts of the $XeOF_3^-$ anion.

A prior publication has reported the synthesis of $[Cs][XeOF_3]$ and its characterization by low-temperature Raman spectroscopy.⁶⁷ The synthesis (eqs 5.1 and 5.2) utilized aHF as the solvent medium which was complicated by the fact that both F⁻

$$CsF + mHF \xrightarrow{HF} [Cs][F(HF)_m]$$
(5.1)

$$[Cs][F(HF)_m] + XeOF_2 \xrightarrow{dynamic vac.} [Cs][XeOF_3] + mHF$$
(5.2)

and $XeOF_2^{125}$ form HF solvates. Removal of HF under dynamic vacuum at -78 °C produced a mixture of $XeOF_2$ and $[Cs][F(HF)_n]$. Slow warming of the product mixture to room temperature under dynamic vacuum resulted in further removal of HF. The authors concluded that upon solvent removal, the reaction proceeded to the formation of

[Cs][XeOF₃], along with traces of [Cs][XeO₂F₃]; the latter was attributed to a disproportionation (eq 5.3).⁶⁷ The present work will show that a mixture of XeF₂, XeOF₂,

$$2[Cs][XeOF_3] \xrightarrow{HF} [Cs][XeO_2F_3] + XeF_2 + CsF$$
(5.3)

[Cs][XeF₅], and [Cs][XeO₃F] was actually formed in the earlier reported work and that the $XeOF_3^-$ anion has eluded synthesis until the present work.

The XeOF₃⁻ anion is of special interest because, to the best of the authors' knowledge, it represents the only example of an AX_3YE_2 VSEPR⁴¹ arrangement in which the valence electron lone-pair domains and a double bond domain occupy positions where they are approximately 90° to one another (Structure I).

The present paper details the syntheses of the Cs^+ and $N(CH_3)_4^+$ salts of the XeOF₃⁻ anion and their characterization by Raman spectroscopy. Quantum-chemical calculations and ¹⁸O-enrichment have been employed to assign the Raman spectra of the Xe^{16/18}OF₃⁻ anion and to aid in the assessment of its chemical bonding.

5.2. Results and Discussion

5.2.1. Syntheses of $[M][XeOF_3]$ (M = N(CH₄), Cs). 5.2.1.1. $[M][XeOF_3]$ in CH₃CN Solvent. Reactions and the purities of all products were routinely monitored by

recording the low-temperature Raman spectra (-150 °C) of the natural abundance and ¹⁸O-enriched (98.6 atom %) $XeOF_3^-$ salts.

The XeOF₃⁻ anion was obtained as the N(CH₃)₄⁺ and Cs⁺ salts by the lowtemperature reaction of XeOF₂ with [N(CH₃)₄][F] (CsF) in dry CH₃CN solvent according to eq 5.4, where $M = N(CH_3)_4$, Cs. Tetramethylammonium fluoride or CsF was added in

$$XeOF_2 + [M][F] \xrightarrow{CH_3CN} [M][XeOF_3]$$
(5.4)

ca. 3-5% excess to circumvent possible XeOF₂ contamination of the product. The $[N(CH_3)_4][XeOF_3]$ salt precipitated from solution as a very pale yellow, amorphous powder and was isolated by removal of the solvent under dynamic vacuum at -45 to -42 ^oC over a period of several hours. The synthesis of [Cs][XeOF₃] was complicated by the low solubilities of CsF and [Cs][XeOF₃] in CH₃CN solvent. Upon warming, XeOF₂ reacted in varying degrees with CsF, forming insoluble [Cs][XeOF₃] in admixture with unreacted CsF. Unreacted XeOF₂, which imparted a yellow color to the supernatant, remained in solution and was removed by use of a cannula as previously described.¹²⁵ The residual solvent was removed under dynamic vacuum at -45 to -42 °C over a period of several hours, leaving behind a pale yellow powder. Reaction of [M][F] with XeOF₂ in 2:1 molar ratios yielded only $[M][XeOF_3]$ and did not result in the formation of [M]₂[XeOF₄]. Conversely, reaction of the fluoride salts with XeOF₂ in 1:2 molar ratios did not result in the formation of F₂OXe---F---XeOF₂ salts, yielding only [M][XeOF₃] and unreacted XeOF₂.

5.2.1.2. Attempts to Replicate the Prior Synthesis of " $[Cs][XeOF_3]$ " in aHF. A 1:1 molar ratio of CsF and XeOF₂ was prepared in aHF and dried under dynamic vacuum at

-78 °C. The product was shown by Raman spectroscopy to be $XeOF_2 \cdot nHF$, but presumably also contained $[Cs][F(HF)_m]$. With further pumping, vigorous mixing, and slow warming to -10 °C to remove additional bound HF, the original pale yellow color of the sample intensified. The Raman spectrum of the resulting solid revealed a mixture of XeOF₂ and [Cs][XeOF₃] (and presumably [Cs][F(HF)_n], where $n \ll m$).

The previously reported synthesis of "[Cs][XeOF₃]", which was carried out at 0 $^{\circ}C$, 67 closely resembles the present synthesis which was carried out at -10 $^{\circ}C$. However, the Raman spectra of their respective products are significantly different. The Raman spectrum of the previously reported product mixture⁶⁷ has now been reassigned to XeF₂. $XeOF_2$, [Cs][XeF_5], and [Cs][XeO_3F] (Table 5.1). It is likely that none of the reactions leading to the latter products involve [Cs][XeOF₃] as an intermediate because none of its vibrational bands were observed in the Raman spectra of the product mixtures based on the present Raman assignments for [Cs][XeOF₃] (cf. Tables 5.1 and 5.2). The neutral molecules, XeOF₂ and XeF₂, likely form upon removal of HF from XeOF₂·nHF (eq 5.5),¹²⁵ followed by either xenon(IV) reduction to xenon(II) (eq 5.6)¹²⁵ or disproportionation (eq 5.7).^{67,125} The previous report also noted that the reaction of XeF₄ and H₂O in HF solvent at -60 °C, which was used to synthesize XeOF₂, was incomplete and therefore contained unreacted XeF₄ and H₂O.⁶⁷ Xenon tetrafluoride, which has been shown to react with CsF to form $[Cs][XeF_5]$,⁵³ presumably reacts with $[Cs][F(HF)_n]$ according to eq 5.8.¹⁹⁹ Water and $[Cs][F(HF)_n]$ would form $[Cs][XeO_3F]$ by either hydrolysis of XeO_2F_2 (eq 5.9),²⁰⁰ followed by fluoride ion addition²⁰¹ (eq 5.10), or by fluoride ion addition to $XeO_2F_2^{202}$ (eq 5.11), followed by hydrolysis (eq 5.12). Equations

		ass	sgnts b	
exptl	XeF ₂	XeOF ₂	[Cs][XeF ₅]	[Cs][XeO ₃ F]
856(2) ^c				$v_{as}(Xe^{16}O^{18}O_{eq})$
837(2) ^c				$v_{as}(Xe^{18}O_{2eq})$
825(<1) ^c				$v_{s}(Xe^{16}O_{2eq})$
805(4) ^c				$v_{s}(Xe^{16}O^{18}O_{eq})$
793(3) ^{<i>c</i>}				$v_{s}(Xe^{18}O_{2eq})$
768(17)				$\nu(Xe^{16}O_{ax})$
755(3) ^c		$v(Xe^{16}O)$		
727(32)				$v(Xe^{18}O_{ax})$
716(5) ^c		$\nu(Xe^{18}O)$		
503(61)			v _s (XeF ₅) i.p.	
497(35) ^c	$v_{s}(XeF_{2})$			
487(10)				
464(100)		$v_{s}(XeF_{2})$		
434(4) ^c			v _s (XeF _c) i p	
425(5) ^c			v _a (xer 5) i.p.	
381(5)			δ _s (XeF ₅) i.p.	
370(6)			- 3 (5) - F	
292(1)		$\rho_{\text{rock}}(\text{XeOF}_2)$ 1.p.		
270(5)				
260(8)				
219(1)				
10/(0)				
$145(11)^{c}$		$\delta(\text{XeF}_2)$ i.p.		
138(3) ^c				
124(19) ^c			lattice vibration	
118(3) ^c	lattice vibration			

Table 5.1.Reassigned Raman Spectra of Products Attributed to $[Cs][XeOF_3]$ in Prior
Work^a

^{*a*} From ref 67. ^{*b*} The abbreviations denote symmetric (s), asymmetric (as), stretch (v), bend (δ), rock (ρ_{rock}), and in-plane bend (i.p.). The in-plane mode descriptions are relative to the XeOF₂ and XeF₅ planes for XeOF₂ and XeF₅⁻, respectively. The mode assignments were based on comparison with ref 203 (XeF₂), ref 125 (XeOF₂), ref 53 ([Cs][XeF₅]), and ref 201 (Cs][XeO₃F]). ^{*c*} Weak Raman bands that were present but were not reported in the prior work; ⁶⁷ G. J. Schrobilgen, private communication.

	Cs ⁺ salt ^{c,d,e}			$N(CH_3)_4^+$ salt ^{c,df}			assgnts ^k
Xe ¹⁶ OF ₃	Xe ¹⁸ OF ₃	Δν	Xe ¹⁶	OF_3 $Xe^{18}OF_3^{-g}$	Δν		$(C_{2\nu})$ symmetry
759.6(100) 757.2 sh 748.9(20)	721.4(100) 719.0 sh 711.3(17)	-38.2 -38.2 -37.6	} 730.1(100) 694.0(100)	-36.1		v(XeO)
512.8(6) 509.7(4) 498.9(5)	512.7(6) 508.9(4) 498.9(6)	0.1 0.8 0.0	} n.o.	n.o.			$\nu_{as}(XeF_{2a})$
487.7(46) 483.8(20)	487.6(45) 483.7(22)	0.1 0.1	<pre> 471.3(457.3(</pre>	12) 472.0(16) 31) 457.4(34)	0.7 -0.1	}	$v_s(XeF_{2a}) + v(XeF_b)$
474.5(26) 470.2(65)	474.5(28) 470.2(65)	0.0 0.0	} 447.60	63) 447.5(66)	0.1		$v_s(XeF_{2a}) = v(XeF_b)$
n.o.	n.o.		332.0(2) 332.4(1)	0.4		$\delta(\text{XeOF}_3) \text{ o.o.p.}$
301.6(8) 283.2(7)	292.0(8) 273.6(6)	-9.6 -9.6	<pre> 271.5(268.7(</pre>	10) 261.9(11) 9) 259.4(9)	-9.6 9.3	}	ρ _{rock} (OXeF _{2a}) i.p.
276.4(7) 250.9(2) 246.6(3) 241.4(1) 223.4(2)	263.2(6) 249.6(3) 244.5(3) 239.7 sh 223.0(2)	-13.2 -1.3 -2.1 -1.7 -0.4	}				fluorine bridge modes
201.2(3) 186.8(4)	200.3(2) 186.4(5)	0.9 0.4	<pre> } 193.9(189.5(</pre>	1) 193.1(1) 1) 189.0(1)	0.8 0.5	}	$\delta(XeF_{2a})$ i.p.
170.2(3) 154.9(6)	166.7(2) 147.5sh	-3.5 -7.4	} 156.5(2) 152.9(1)	3.6		$[\delta(OXeF_b) - \delta(XeF_{2a})] \text{ o.o.p.}$
144.9(8) 138.8 sh	140.5(10) 134.9 sh	-4.4 3.9	} 137.8((2) 137.7(3)	-0.1		$[\rho_{rock}(OXeF_{2a}) + \delta(F_bXeF_a)]$ i.p.
119.8(6) 108.7(4)	119.1(7) 108.7(5)	-0.7 0.0	64.0(<	(1) 63.8(<1)	-0.2	}	lattice modes

Table 5.2. Experimental Raman Frequencies^{*a*} and Intensities^{*b*} for $XeOF_3^-$ in $Cs[XeOF_3]$ and $[N(CH_3)_4][XeOF_3]$

^{*a*} Frequencies are given in cm⁻¹. ^{*b*} Values in parentheses denote relative Raman intensities. ^{*c*} Raman spectra were recorded in FEP sample tubes at -150 °C using 1064-nm excitation. ^{*d*} The abbreviations denote shoulder (sh) and not observed (n.o.). ^{*e*} Weak bands at 454.7(4) and 763.1(sh) in the ¹⁶O spectrum and at 454.5(7) and 724.8(sh) in the ¹⁸O spectrum are attributed to a hydrolysis product(s). ^{*f*} The N(CH₃)₄⁺ cation modes were observed at: v₈(E), 377(2); v₁₉(T₂), 460(2); v₃(A₁), 761(13); v₁₈(T₂), 951(10); v₇(E), 1176(2), 1187(1); v₁₇(T₂), 1287(1); v₁₆(T₂), 1405(2), 1408(2); v₂(A₁), v₆(E), 1462(12), 1479(1), 1487(10); v(CH₃) and combination bands, 2800(2), 2881sh, 2908(3), 2938(3), 2957(12), 2978sh, 2999sh, 3038(18) cm⁻¹. ^{*g*} Weak bands at 756.2(8), 749.4(5), 744.7(3), 721.3(5) 710.0(6), 702.1sh, 488.8(1), 481.9(3), and 478.2(6) in the ¹⁸O spectrum are attributed to a hydrolysis product(s). The band at 472.0(16) also partially overlaps with a hydrolysis product band. ^{*h*} The abbreviations denote symmetric (s), asymmetric (as), stretch (v), bend (δ), rock (ρ_{rock}), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). The in-plane and out-of-plane mode descriptions are relative to the XeOF_{2a}F_b plane, i.e., the anion lies in the *xz*-plane with the Xe–O bond colinear with the *z*-axis (see Figure 5.1).

Figure 5.1. Calculated geometries [B3LYP/aug-cc-pVTZ(-PP)] for (a) XeOF₃⁻ and (b) XeOF₂.

5.11 and 5.12 represent the most likely route to $[Cs][XeO_3F]$ because $[Cs][XeO_2F_3]$ was often observed in the Raman spectra of product mixtures but XeO₃ was not.⁶⁷ The hydrolysis of XeF₅⁻ in the presence of unreacted H₂O, which competes with Xe(VI) species in eqs 5.9 and 5.12, does not occur and is consistent with the higher oxophilicities of Xe(VI) species (see 5.2.3, Reactivities of XeOF₃⁻ Salts).

$$XeOF_2 \cdot nHF \longrightarrow XeOF_2 + nHF \uparrow$$
(5.5)

$$XeOF_2 \longrightarrow XeF_2 + \frac{1}{2}O_2$$
(5.6)

$$XeOF_2 \longrightarrow \frac{1}{2}XeF_2 + \frac{1}{2}XeO_2F_2$$
(5.7)

$$XeF_4 + [Cs][F(HF)_n] \longrightarrow [Cs][XeF_5] + nHF \uparrow$$
(5.8)

$$XeO_2F_2 + H_2O \longrightarrow XeO_3 + 2HF$$
 (5.9)

$$XeO_3 + [Cs][F(HF)_n] \longrightarrow [Cs][XeO_3F] + nHF \uparrow$$
(5.10)

$$XeO_2F_2 + [Cs][F(HF)_n] \longrightarrow [Cs][XeO_2F_3] + nHF \uparrow$$
(5.11)

$$[Cs][XeO_2F_3] + H_2O \longrightarrow [Cs][XeO_3F] + 2HF$$
(5.12)

5.2.1.3. An Alternative Synthesis of [Cs][XeOF₃]. High-purity [Cs][XeOF₃] was obtained when HF solvent was removed from a stoichiometric mixture of CsF and XeOF₂ at -78 °C, followed by warming the reaction mixture to -45 °C under dynamic vacuum. Solid XeOF₂, which forms an insoluble HF solvate,¹²⁵ appeared to liquify and became intense yellow in color prior to formation of a dry yellow powder under dynamic vacuum. The Raman spectrum of this intermediate mixture showed only XeOF₂. It is presumed that [Cs][F(HF)_m] was also present but could not be observed in the Raman spectrum because the bands were too broad and weak. Extraction of residual HF with an

aliquot of CH₃CN at -20 °C resulted in high-purity [Cs][XeOF₃]. The present method avoids decomposition arising from higher reaction temperatures and heterogeneous reaction conditions that result from the synthetic procedure outlined in the section above by using CH₃CN to partially or completely solubilize XeOF₂ and CsF.

5.2.2. Hydrolytic and Thermal Stabilities of [M][XeOF₃] (M = N(CH₄), Cs). Dry $[N(CH_3)_4][XeOF_3]$ is shock sensitive at low temperatures but does not exhibit shock sensitivity under CH₃CN upon standing at room temperature for 10 min. Dry $[N(CH_3)_4][XeOF_3]$ is kinetically stable at -78 °C for indefinite periods of time but begins to slowly decompose upon warming from 0 to 10 °C. The low-temperature (-150 °C) Raman spectra of samples briefly warmed to 25 °C and then quenched at -150 °C show the growth of the v_s(XeF₂) band of XeF₂ at 498 cm⁻¹,²⁰³ and the v(CH₃) bands of $[N(CH_3)_4][F]$ at 2957 and 3038 cm⁻¹.²⁰⁴⁻²⁰⁶ The [Cs][XeOF₃] salt is also stable at -78 °C for indefinite periods of time but slowly decomposes at room temperature to XeF₂, XeO₂F₃⁻, O₂, and CsF. Although [Cs][XeOF₃] appears to be less shock sensitive than the N(CH₃)₄⁺ salt, detonations have occurred when attempting to transfer the finely-powdered salt in a drybox.

Two decomposition pathways have been inferred for $XeOF_3^-$ based on these observations. The major decomposition pathway is through reduction to Xe(II) (eq 5.13), and the minor decomposition pathway is through disproportionation (eq 5.14) to Xe(II) and Xe(VI) (see 5.2.5.3, Thermochemistry).

 $[M][XeOF_3] \longrightarrow XeF_2 + \frac{1}{2}O_2 + [M][F]$ (5.13)

$$[M][XeOF_3] \longrightarrow \frac{1}{2}XeF_2 + \frac{1}{2}[M][XeO_2F_3] + \frac{1}{2}[M][F]$$
(5.14)

While [Cs][XeOF₃] and [N(CH₃)₄][XeOF₃] can be obtained as pure salts when exact stoichiometric ratios of XeF₄ and H₂O are used for the synthesis of XeOF₂, both salts hydrolyze when H₂O is used in excess. Characterization of the hydrolysis products by Raman spectroscopy showed several bands in the frequency range 720–785 cm⁻¹. The bands appearing between 720 and 765 cm⁻¹ correspond to the v(XeO) regions for XeOF₂,¹²⁵ F₂OXeNCCH₃,¹²⁵ XeOF₂·*n*HF,¹²⁵ and XeOF₃⁻⁻ while the bands appearing between 745 and 785 cm⁻¹ correspond to the v_s(XeO₃) regions for XeO₃F⁻⁻²⁰¹ and XeO₃.¹⁷⁹ The findings indicate that the decomposition pathway resulting from hydrolysis involves disproportionation to Xe(VI)-containing species that likely occurs according to eqs 5.15 and 5.16. Although the exact nature of the decomposition product(s) could not be established, it is likely to be a compound(s) having the general formulation(s) [Cs]_x[(XeO₃)_yF_x(XeOF₂)_x].

$$XeOF_3^- + H_2O \xrightarrow{CH_3CN} [XeO_2F^-] + 2HF$$
 (5.15)

$$[XeO_2F^-] \xrightarrow{CH_3CN} \frac{1}{2}XeO_3F^- + \frac{1}{2}Xe + \frac{1}{2}O_2 + \frac{1}{2}F^-$$
(5.16)

5.2.3. Reactivities of $XeOF_3^-$ Salts. The insolubilities and/or reactivities of the $N(CH_3)_4^+$ and Cs^+ salts in CH_3CN , SO_2 , SO_2ClF , HF, $XeOF_4$, ONF, and O_2NF have prevented crystal growth and NMR characterization.

Attempts to dissolve $[N(CH_3)_4][XeOF_3]$ in SO₂ at -78 °C resulted in sample detonation, and it is proposed that XeOF₃⁻ oxidizes SO₂ to SO₃ according to eq 5.17. An

$$[N(CH_3)_4][XeOF_3] + SO_2 \xrightarrow{neat} XeF_2 + SO_3 + [N(CH_3)_4][F]$$
(5.17)

attempt to dissolve [Cs][XeOF₃] in XeOF₄ at ca. 20 °C resulted in oxygen/fluorine metathesis to give XeF₄, XeO₂F₂, and [Cs][F(XeOF₄)_m]¹²⁷ according to eq 5.18.

$$[Cs][XeOF_3] + (m+1)XeOF_4 \xrightarrow{\text{neat}} XeF_4 + XeO_2F_2 + [Cs][F(XeOF_4)_m] \quad (5.18)$$

The syntheses of the NO⁺ and NO₂⁺ salts of $XeOF_3^-$ were attempted. Contact of ONF with $XeOF_2$ at -78 °C resulted in an explosion in which $XeOF_2$ likely oxidizes ONF to O₂NF (eq 5.19). The white residue that remained and coated the fractured FEP reaction

$$ONF + XeOF_2 \xrightarrow{neat} O_2NF + XeF_2$$
(5.19)

vessel had an odor reminiscent of XeF₂. Addition of O₂NF to XeOF₂ at -78 °C resulted in an immediate color change from yellow to white upon contact with liquid O₂NF. The Raman spectrum of the product mixture showed modes corresponding to XeF₄, N₂O₅ (the spectrum corresponded to the ionic solid-state formulation [NO₂][NO₃]²⁰⁷) and XeF₅⁻ anion bands. The Raman spectrum (Table 5.3) indicates that XeOF₂ transfers oxygen to O₂NF to give XeF₄ and N₂O₅ (eq 5.20) and a subsequent reaction of O₂NF with XeF₄ gives the XeF₅⁻ anion (eq 5.21).

$$2O_2NF + XeOF_2 \xrightarrow{neat} XeF_4 + N_2O_5$$
 (5.20)

$$XeF_4 + O_2NF \xrightarrow{\text{neat}} [NO_2][XeF_5]$$
(5.21)

5.2.4. Raman Spectroscopy. The low-temperature Raman spectra of $[N(CH_3)_4]$ $[Xe^{16/18}OF_3]$ and $[Cs][Xe^{16/18}OF_3]$ are shown in Figures 5.2 and 5.3, respectively. The observed and calculated frequencies and their assignments are listed in Tables 5.2, 5.4, and A2.1. In the absence of a crystal structure, the energy-minimized geometry of the XeOF₃⁻ anion was calculated at several levels of theory (Tables 5.4 and A2.1) using the

			assgnt a		
exptl	$[\text{NO}_2][\text{NO}_3] (D_{\alpha h}, C_{2\nu})$	$XeF_4(D_{4h})$	$[NO_2][XeF_5] (D_{mh} D_{5h})$	$XeOF_2(C_{2\nu})$	$O_2 NF(C_{2\nu})$
1411(3)		· <u> </u>	$\overline{\nu_1(\sum_{g}^+), \nu_s(NO_2^+)}$		
1397(69)	$\nu_1(\sum_{a}^+), \nu_s(NO_2^+)$				
1385(4)			$v_1(\Sigma^+_{\alpha}), v_{\alpha}(NO_2^+)$		
1349(3)	$v_2(E'), v_2(NO_2)$				
1300br(5)	·) · · / · · · · · · · · · · · · · · ·				$v_1(A_1), v_2(NO_2)$
1078(1)	2ν ₂ (Π.). δ(NO ₂ ⁺)				1(4 =1)5 · 3(4 + = 2)
1064(2)	$2v_2(\Pi_{\star}), \delta(NO_{\bullet}^{\dagger})$				
1047(68)	$\chi_{(A, \gamma)} \times (NO_{\alpha})$				
750(4)				$v_{i}(A_{i}) v(XeO)$	
721(7)	VIED SONG			v ((/ L]), v (/ LOO)	
554(15)	44(12); 0(1(0); 1),p.	$v(A_{i}) v(XeF_{i})$			
548(6)		· (1 1/2), · S(1201 4)	$2v_{2}(A, \gamma) \delta(XeF_{c})$		
545(100)		$v(A_{1}) v(XeF_{1})$	2.2(1), 0(1201))		
533(12)	$v_{2}(\Pi_{n}) \delta(NO_{2}^{+})$, (1g), · s(1-01 4)			
512(12)	• 2(=-0); 0(=+02)		$v_1(A_1), v_2(XeF_5)$		
508(28)		$v(B_{1})$, $v_{a}(XeF_{\alpha} - XeF_{\alpha})$. 1(1); . 5(-1))		
504(83)		$v(B_1) v_2(XeE_2 - XeE_2)$			
A68(5)		(Dig), as the A The A		$v_{A} (A) v_{A} (V_{A}E)$	
100(J) 28/(3)			W (A D S(VAE)	$v_2(n_1), v_s(n_1)$	
280(3)			$v_2(A_1), o(A_1, S_2)$		
239(2)		$v(\mathbf{B}_{1}) v (\mathbf{Y}_{\mathbf{e}}\mathbf{F}_{-} - \mathbf{Y}_{\mathbf{e}}\mathbf{F}_{-})$	$v_2(\pi_1), v(\pi_1, s)$		
235(2) 215(2)		$v(B_{1g}), v_{as}(XeF_{2}) - \delta(XeF_{2})$			
160(23)	lattice vibrations	Y(1)21, 0(1201 2)0.0.p. 0(1201 2)0.0.p.			
155sh	lattice vibrations				
105(35)	lattice vibrations				

 Table 5.3.
 Raman Spectrum of the Products Formed in the Reaction of XeOF₂ with O₂NF

^{*a*} The abbreviations denote symmetric (s), asymmetric (as), stretch (v), bend (δ), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). The in-plane and out-of-plane mode descriptions are relative to the molecular planes for XeF₄ and NO₃⁻. The mode assignments are based on comparison with ref 127 ([NO₂][NO₃]), refs 32,35,38 (XeF₄), ref 53 ([NO₂][XeF₅]), ref 125 (XeOF₂), and ref 116 (O₂NF).

Figure 5.2. Raman spectra of natural abundance (lower trace) and 97.8% ¹⁸O-enriched (upper trace) [N(CH₃)₄][XeOF₃] recorded at -150 °C using 1064-nm excitation. Symbols denote FEP sample tube lines (*), instrumental artifact (†), and minor hydrolysis product(s) (‡).

149

Figure 5.3. Raman spectra of natural abundance (lower trace) and 97.8% ¹⁸O-enriched (upper trace) Cs[XeOF₃] recorded at -150 °C using 1064-nm excitation. Symbols denote FEP sample tube lines (*), instrumental artifact (†), and minor hydrolysis product(s) (‡).

aug-cc-pVDZ(-PP) and aug-cc-pVTZ(-PP) basis sets. The calculated vibrational frequencies, intensities, and ^{16/18}O-isotopic shifts were used to assign the Raman spectra of Xe¹⁶OF₃⁻⁻ and Xe¹⁸OF₃⁻⁻ in their Cs⁺ and N(CH₃)₄⁺ salts. Regardless of the level of theory or basis set used, the frequency, intensity, and isotopic shift trends are similar and consistent. The frequency ranges cited in the ensuing discussion refer to isotopic shifts and are the values obtained for the entire range of theory levels, showing good agreement with experiment regardless of the level of theory used. The experimental and calculated vibrational frequencies for monomeric XeOF₂ and their assignments (Table A2.2) have been previously discussed¹²⁵ and were also used to aid in the vibrational assignments of XeOF₃⁻⁻. The Xe^{16/18}OF₃⁻⁻ anion possesses $C_{2\nu}$ symmetry which results in nine fundamental vibrational modes that span the irreducible representations $4A_1 + 3B_1 + 2B_2$ (the *xz*-plane

is the molecular plane and the Xe–O bond lies along the z-axis) which are both Raman and infrared active.

5.2.4.1. [N(CH₃)₄][XeOF₃]. The frequencies associated with the N(CH₃)₄⁺ cation have been assigned based on comparisons with the previous literature.²⁰⁴⁻²⁰⁶ The XeOF₃⁻ anion of [N(CH₃)₄][XeOF₃] is in overall good agreement with the calculated gas-phase anion. As predicted from the calculated frequencies and Raman intensities, the highest frequency and most intense XeOF₃⁻ band occurs at 730.1 cm⁻¹ and is assigned to v(XeO). This mode displays a large low-frequency shift (-36.1 cm⁻¹) upon ¹⁸O substitution that is in very good agreement with the calculated values (-33.5 to -42.8 cm⁻¹). The asymmetric v_{as} (XeF_{2a}) mode is expected to be weak to very weak in the Raman spectrum and was not observed. The bands at 457.3/471.3 and 447.6 cm⁻¹ are of medium intensity

Xe¹⁶OF₃ assgnt d MP2 SVWN5 BP86 PBE1PBE **B3LYP** B3PW91 MPW1PW91 867.9(25)[241] 735.8(48)[163] 690.1(50)[150] 771.2(59)[160] 729.6(62)[152] 752.9(58)[157] 767.8(59)[157] v(XeO) 493.6(<1)[283] 491.2(<0.1)[340] 482.9(<1)[285] 439.6(<1)[265] 467.3(<0.1)[319] v. (XeF2.) 479.3(<0.1)[324] 489.8(<0.1)[339] 460.7(27)[152] 447.6(29)[88] 405.5(34)[92] 460.5(34)[54] 432.7(37)[66] 445.8(35)[62] 458.7(34)[55] $v_s(XeF_{2a}) + v(XeF_b)$ 379.2(20)[34] 389.2(15)[59] 347.8(21)[42] 372.3(10)[131] 356.9(13)[106] 366.6(12)[113] 371.2(10)[129] $v_s(XeF_{2a}) - v(XeF_b)$ 286.8(<1)[54] 256.9(<1)[41] 242.7(<1)[39] 269.4(<1)[48] 256.3(<1)[47] 263.8(<1)[47] 268.8(<1)[48] δ(XeOF₃) 0.0.p. 250.6(4)[<1] 222.7(5)[<1] 259.9(3)[<1] 227.2(4)[1] 246.9(4)[<1] prock(OXeF2a) i.p. 253.1(4)[<1] 260.2(3)[1] 171.2(<1)[2] 166.5(<<1)[3] 163.8(<<1)[3] 183.6(<1)[1] 177.2(<1)[2] 180.5(<1)[1] 183.9(<1)[1] δ(XeF22) i.p. 132.6(<1)[<0.1] 125.9(<1)[<0.1] 115.4(<1)[<0.1] 136.6(<1)[<1] 127.5(<1)[<1] $[\delta(OXeF_{5}) - \delta(XeF_{2*})] 0.0.p.$ 131.6(<1)[<1] 135.8(<1)[<1] 150.5(<1)[2] 125.1(<1)[2]128.9(<1)[2] 115.6(1)[1] $[\rho_{mck}(OXeF_{2a}) + \delta(F_bXeF_a)]$ i.p. 119.8(1)[1] 120.0(1)[1] 115.9(<1)[<1] Xe¹⁸OF₃-MP2 SVWN5 BP86 PBE1PBE B3PW91 B3LYP MPW1PW91 assent d 825.1(22)[224] 700.1(42)[155] 656.6(43)[143] 733.4(53)[51] 694.0(54)[145] 716.1(51)[149] 729.9(52)[149] v(XeO) 494.8(<1)[284] 484.1(<1)[286] 440.7(<1)[266] 492.5(<0.1)[341] 468.5(<0.1)[319] 480.5(<0.1)[325] 490.9(<0.1)[339] $v_{\infty}(XeF_{2n})$ 461.0(27)[151] 447.5(29)[85) 405.3(35)[90] 460.6(10)[129] 432.8(38)[65] 445.9(36)[61] 458.7(35)[54] $v_s(XeF_{2a}) + v(XeF_b)$ 379.3(20)[33] 389.2(15)[58] 347.8(21)[42] 372,3(10)[129] 356.8(13)[104] 366.6(12)[111] $v_{s}(XeF_{2s}) - v(XeF_{b})$ 370.9(10)[127] 283.0(<1)[52] 253.7(<1)[39] 239.6(<1)[38] 266.6(<1)[46] 253.4(<1)[46] 260.9(<1)[45] 266.0(<1)[46] δ(XeOF₃) 0.0.p. 242.6(4)[<1] 219.5(4)[1] 215.2(5)[<1] 250.8(3)[<1] 238.4(4)[<1] 244.3(4)[<1] 250.9(3)[<1] prock(OXeF2a) i.p. 171.2(<1)[2] 166.5(<0.1)[3] 163.8(<0.1)[3] 183.6(<1)[1] 177.2(<1)[2] 180.5(<1)[1] 183.9(<1)[1] δ(XeF_{2a}) i.p. 131.1(<1)[0] 124.4(<1)[<0.1] 114.0(<1)[<0.1] 134.7(<1)[<1] 125.8(<1)[<1] 129.8(<1)[<1] $[\delta(OXeF_b) - \delta(XeF_{2a})]$ o.o.p. 133.9(<1)[<1] 149.3(<1)[2] 124.4(<1)[2] 128.1(<1)[2] 115.0(1)[1] 119.2(1)[1] $[p_{rock}(OXeF_{2a}) + \delta(F_bXeF_a)]$ i.p. 119.4(<1)[1] 115.8(1)[1]

Table 5.4. Calculated Vibrational Frequencies^{*a*} and Infrared and Raman Intensities^{*b*} for the $Xe^{16/18}OF_3^-$ Anion^{*c*}

^{*a*} Frequencies are given in cm⁻¹. ^{*b*} Values in parentheses denote calculated Raman intensities (Å⁴ u⁻¹). Values in square brackets denote calculated infrared intensities (km mol⁻¹). ^{*c*} The aug-cc-pVTZ(-PP) basis set was used. ^{*d*} The abbreviations denote symmetric (s), asymmetric (as), stretch (v), bend (δ), rock (ρ_{rock}), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). The in-plane and out-of-plane mode descriptions are relative to the XeOF_{2a}F_b plane (see Figure 5.1 and footnote *h* of Table 5.2).
and are assigned to the in-plane stretching modes $v_s(XeF_{2a}) + v(XeF_b)$ and $v_s(XeF_{2a}) - v_s(XeF_b)$ $v(XeF_b)$, respectively. Their frequencies are essentially unshifted upon ¹⁸O-enrichment, which is expected for modes that do not involve oxygen atom displacements. The band at 332.0 cm⁻¹ is assigned to the out-of-plane deformation mode, $\delta(\text{XeOF}_3)$, and appears as a weak band, in agreement with the calculated Raman intensity, and shows no ¹⁸O dependence although the calculations predict a small isotopic shift (-2.8 to -3.8 cm⁻¹). The split band at 268.7, 271.5 cm^{-1} is sensitive to isotopic substitution and is assigned to the in-plane deformation mode, $\rho_{rock}(XeOF_{2a})$. The experimental ¹⁸O isotopic shift for this mode, -9.3, -9.6 cm⁻¹, is in good agreement with the calculated values (-7.5 to -9.3 cm^{-1}). The weak bands at 189.5, 193.9 cm^{-1} are insensitive to ¹⁸O substitution and are assigned to the in-plane XeF_2 bending mode. The band at 156.5 cm⁻¹ is assigned to the out-of-plane $\delta(\text{XeOF}_b) - \delta(\text{XeF}_{2a})$ mode and shows a small isotopic shift (-3.6 cm⁻¹) in agreement with the calculated values (-1.4 to -1.9 cm⁻¹). The lowest frequency band at 137.8 cm⁻¹ is also weak, displaying no isotopic shift, in accordance with the small calculated values (-0.1 to -1.2 cm⁻¹), and is assigned to the in-plane deformation mode, $\rho_{\text{rock}}(\text{OXeF}_{2a}) + \delta(F_b \text{XeF}_a).$

The low-frequency shifts of the stretching modes relative to their counterparts in $XeOF_2$ and $F_2OXeNCCH_3^{125}$ are consistent with anion formation and increased Xe–O and Xe–F bond polarities in the anion. These low-frequency shifts are reproduced by the quantum-chemical calculations.

5.2.4.2. [Cs][XeOF₃]. The Raman spectrum of the Cs^+ salt is very similar to that of the $N(CH_3)_4^+$ salt, although the bands are shifted to higher frequencies, which likely results from significant cation-anion contacts. The bands that are the most affected are shifted by as much as 30 cm^{-1} and correspond to modes that involve oxygen atom displacements, i.e., v(XeO) and $\rho_{rock}(XeOF_{2a})$, indicating that the Cs⁺ cation likely coordinates most strongly to the oxygen atom. These findings are in agreement with the NBO analysis (see 5.2.5.2, Computational Results), which assigns most of the negative charge to the oxygen atom. Weak bands between 223 and 276 cm⁻¹ in the Cs⁺ salt are absent in the N(CH₃)₄⁺ salt. These bands are in the appropriate region and are of appropriate intensity for stretching modes associated with fluorine-bridges,¹²⁷ suggesting an oligomeric or chain structure for [Cs][XeOF₃]. Such long contacts most likely result in coupling between XeOF₃⁻ units which would not only account for the splittings of the vibrational bands but may also result in symmetry reduction and observation of the $v_{as}(XeF_{2a})$ stretching mode at 498.9, 509.7, and 512.8 cm⁻¹ which was not observed in the N(CH₃)₄⁺ salt.

5.2.5. Computational Results. Because a crystal structure for a $XeOF_3^-$ salt is not available, a series of quantum-chemical calculations at different levels of theory with different basis sets were carried out (Tables 5.4, 5.5, A2.1 and A2.3). All calculations resulted in stationary points with all frequencies real. The calculations established that trends in the vibrational frequencies persisted at all levels of theory and for all basis sets used. The calculated frequencies and their trends were then compared with the observed trends, allowing reliable assignments of the experimental Raman frequencies to be made.

	MP2	SVWN5	BP86	PBE1PBE	B3LYP	B3PW91	MPW1PW91
			boi	nd lengths (Å)			
Xe-F _a	2.060	2.064	2.106	2.032	2.064	2.048	2.034
Xe-O	1.821	1.859	1.881	1.830	1.852	1.840	1.831
Xe-F _b	2.129	2.143	2.188	2.173	2.195	2.178	2.175
			bor	nd angles (deg)			
O-Xe-Fa	94.8	93.7	93.7	92.9	93.1	93.0	92.8
F _a -Xe-F _b	85.2	86.3	86.3	87.1	86.9	87.0	87.2
F _a -Xe-F _a	170.3	172.6	172.5	174.3	173.9	173.9	174.4

Table 5.5.Calculated Geometrical Parameters for the $XeOF_3^-$ Anion^a

^a The aug-cc-pVTZ(-PP) basis set was used.

The parent compound, $XeOF_2$,¹²⁵ was used as a benchmark for the calculations (Table A2.2). Values for the aug-cc-pVDZ(-PP) basis set are given in square brackets.

5.2.5.1. Geometries. The geometry of the XeOF₃⁻ anion optimized at $C_{2\nu}$ symmetry, yielding a planar structure that is in accord with that predicted by the VSEPR model of molecular geometry⁴¹ (see 5.2.4, Raman Spectroscopy). As noted for XeOF₂,¹²⁵ the use of a larger basis set tends to give shorter bond lengths and smaller O–Xe–F_a bond angles. With the exception of the BP86 method, where the bonds are significantly elongated, all bond lengths fall within relatively narrow ranges (Xe–O, 1.821–1.859 [1.854–1.890] Å; Xe–F_a, 2.032–2.064 [2.061–2.096] Å; Xe–F_b, 2.129–2.195 [2.131–2.205] Å). As predicted by the VSEPR rules,⁴¹ the Xe–F_a bonds are shorter than the Xe–F_b bond. In general, all bond angles are also within a narrow range, with the exception of the MP2 value, which gives a larger O–Xe–F_a angle than other levels of theory. The fluorine atoms, F_a, are bent away from the oxygen atom with an O–Xe–F_a angle of 92.8–93.7

 $[93.1-94.2]^{\circ}$ and an F_a -Xe- F_a angle of 172.5-174.4 $[171.7-173.9]^{\circ}$. When compared with XeOF₂, the net -1 charge of XeOF₃⁻ results in longer Xe- F_a and Xe-O bonds and a F_a -Xe- F_a angle that is closer to linearity than in XeOF₂ (164.8-170.8°).

5.2.5.2. Natural Bond Orbital (NBO) Analyses. The NBO¹⁶³⁻¹⁶⁶ analyses were carried out for all optimized gas-phase geometries of XeOF₃⁻ and XeOF₂ for comparison and are summarized in Tables 5.6 and 5.7. The results, at all levels of theory, are similar and therefore only the MP2 values are referred to in the ensuing discussion.

The natural population analysis (NPA) charges of 2.11 and 2.13 for Xe in XeOF₃⁻ and XeOF₂, respectively, show that the charge on xenon remains essentially unchanged upon anion formation and is approximately half of the formal charge that is given by a purely ionic model, indicating that the anion bonds are polar covalent. Upon formation of XeOF₃⁻ from XeOF₂, the net negative charge of the anion is dispersed among the more electronegative atoms, yielding natural charges for O (-1.038), F_a (-0.762 each), and F_b (-0.654) that are higher than the corresponding values in XeOF₂. The charge on O is about half of its formal oxidation number, while the F charges are approximately two-thirds of their formal oxidation number, indicating that the bonds are more ionic in the anion than in neutral XeOF₂. Among the plausible valence bond Structures I–IX for XeOF₃⁻, the calculated charges are best represented by Structure V, which is an average of Structures II–IV, with a somewhat larger contribution from Structure II. The Xe–O/Xe–F_a and Xe–O/Xe–F_b bond order ratios, 3.43 and 2.65 respectively, and

	MP2	SVWN5	BP86	PBE1PBE	B3LYP	B3PW91	MPW1PW91
			Charge	s [valencies]			
Xe	2.108 [1.509]	1.945 [1.561]	1.958 [1.549]	2.064 [1.527]	2.065 [1.509]	2.047 [1.519]	2.065 [1.523]
0	-1.038 [0.703]	-0.969 [0.672]	-0.974 [0.668]	-1.000 [0.673]	-1.001 [0.663]	-0.995 [0.670]	-1.000 [0.672]
$\mathbf{F}_{\mathtt{a}}$	-0.762 [0.213]	-0.721 [0.223]	-0.725 [0.219]	-0.768 [0.213]	-0.765 [0.206]	-0.761 [0.212]	-0.768 [0.213]
Fb	-0.654 [0.257]	-0.627 [0.290]	-0.629 [0.288]	-0.648 [0.283]	-0.650 [0.275]	-0.646 [0.282]	-0.649 [0.283]
			bon	d orders			
Xe-O	0.737	0.712	0.707	0.706	0.703	0.703	0.704
Xe-Fa	0.215	0.225	0.221	0.214	0.210	0.214	0.214
_Xe-F _b	0.278	0.313	0.310	0.303	0.298	0.301	0.302

Table 5.6. NBO Valencies, Bond Orders, and Natural Population Analysis (NPA) Charges for the XeOF₃⁻ Anion^a

^a The aug-cc-pVTZ(-PP) basis set was used.

Table 5.7. Calculated Geometrical Parameters, NBO Valencies, Bond Orders, and Natural Population Analysis (NPA) Charges for XeOF₂^{*a*}

	MP2	SVWN5	BP86	PBE1PBE	B3LYP	B3PW91	MPW1PW91
			bond lengtl	hs (Å)			
Xe-O	1.770	1.806	1.834	1.800	1.821	1.807	1.802
X e- F _a	1.971	1.987	2.028	1.968	1.997	1.981	1.968
			bond angles	s (deg)			
O-Xe-Fa	95.9	96.7	97.6	94.9	95.8	95.5	94.6
F_a -Xe- F_a	168.2	166.7	164.8	170.1	168.5	169.1	170.8
			Charges [val	encies]			
Xe	2.134 [1.480]	1.962 [1.580]	1.920 [1.485]	2.052 [1.561]	2.021 [1.498]	2.028 [1.539]	2.049 [1.555]
0	-0.893 [0.788]	-0.807 [0.800]	-0.775 [0.755]	-0.837 [0.763]	-0.813 [0.745]	-0.823 [0.760]	-0.834 [0.758]
F_a	-0.620 [0.292]	-0.578 [0.351]	-0.572 [0.328	-0.607 [0.350]	-0.604 [0.333]	-0.602 [0.345]	-0.607 [0.349]
			bond ord	lers			
Xe-0	0.848	0.845	0.795	0.813	0.790	0.807	0.809
Xe-Fa	0.316	0.368	0.344	0.374	0.354	0.366	0.373

^a The aug-cc-pVTZ(-PP) basis set was used.

 $Xe/O/F_a/F_b$ valencies (1.509/0.703/0.213/0.257) are in overall agreement with a composite of these resonance contributions.

Upon anion formation, donation of electron density by the fluoride ion into the xenon valence shell results in substantial decreases in the Xe–O and Xe–F bond orders and Xe valency and increases in the O and F valencies relative to those of $XeOF_2$. Thus, the Xe–O and Xe–F bonds are somewhat more ionic in $XeOF_3^-$ when compared with $XeOF_2$.

5.2.5.3. Thermochemistry. To account for the different decomposition routes for $[N(CH_3)_4][XeOF_3]$ and $[Cs][XeOF_3]$, quantum-chemical calculations and established

semi-empirical methods^{208–212} were used in conjunction with known thermodynamic quantities to estimate ΔH° , ΔS° , and ΔG° for eqs 5.13 and 5.14.

The standard enthalpies for the decomposition reactions were determined by analyzing their Born–Fajans–Haber cycles. The enthalpy changes for the gas-phase reduction (eq 5.22) and disproportionation (eq 5.23) reactions were calculated using the

$$XeOF_{3}^{-}_{(g)} \longrightarrow XeF_{2(g)} + \frac{1}{2}O_{2(g)} + F^{-}_{(g)}$$

$$\Delta H^{0} = +52.6 \text{ kJ mol}^{-1} \qquad MP2/aug-cc-pVTZ(-PP)$$
(5.22)

$$XeOF_{3^{-}(g)} \longrightarrow \frac{1}{2}XeF_{2(g)} + \frac{1}{2}XeO_{2}F_{3^{-}(g)} + \frac{1}{2}F^{-}(g)$$

$$\Delta H^{0} = +56.3 \text{ kJ mol}^{-1} \qquad MP2/aug-cc-pVTZ(-PP)$$
(5.23)

MP2 method. The experimental value for the enthalpy of sublimation (ΔH_{sub}) for XeF₂ (55.71 kJ mol⁻¹) was used.²¹³ The lattice enthalpies of [M][F], [M][XeOF₃], and [M][XeO₂F₃] (Table 5.8) were estimated by use of the volume-based method of Bartlett et al.^{208,209} as generalized by Jenkins et al.^{210,211} in eq 5.24, where *R* is the gas constant

$$\Delta H^{\circ}_{L} = 2I \left(\frac{\alpha}{\sqrt[3]{V_{m}}} + \beta \right) + pRT$$
(5.24)

(8.314 J K⁻¹mol⁻¹), *I* is the ionicity of the salt and the constants, α , β , and *p*, depend on the nature of the salt. For the salts under investigation, which are singly charged and nonlinear, the following values were used: I = 1, $\alpha = 117.3$ nm kJ mol⁻¹, $\beta = 51.9$ kJ mol⁻¹, and p = 2. In this formalism, ΔH^{o}_{L} is the lattice enthalpy and is defined as the energy required to break the crystal lattice, and therefore has a positive value. This approach is generally accurate to ~4% for salts with ΔH^{o}_{L} less than 5000 kJ mol⁻¹,²¹¹ and is

Table 5.8. Estimated Volumes, Lattice Enthalpies, and Entropies for $N(CH_3)_4^+$ and Cs^+ Salts of F⁻, XeOF₃⁻, and XeO₂F₃⁻

Salt	$V_{\rm m} ({\rm nm}^3)$	$\Delta H^{o}_{L} (\text{kJ mol}^{-1})^{a}$	$S^{o} (J \text{ mol}^{-1} \text{ K}^{-1})^{b}$
[N(CH ₃) ₄][F]	0.1460 ^c	554.4	213.5
N(CH) IVOE 1	∫ 0.2168 ^d	499.3	309.9
	^e 0.2192	497.9	313.1
$[N(CH_3)_4][XeO_2F_3]$	0.2302 ^f	491.6	328.0
е			
[Cs][F]	0.0573 ^c	717.3	92.9
	∫ 0.1282 ^d	574.1	189.3
	<i>L</i> 0.1305 ^e	571.3	192.5
$[Cs][XeO_2F_3]^e$	0.1415 ^f	559.0	207.4

^{*a*} The lattice enthalpies (ΔH^{o}_{L}) were calculated as described in ref 210. ^{*b*} The standard entropies were calculated as described in ref 212. ^{*c*} The formula unit volumes, V_{m} , for [N(CH₃)₄][F] and CsF, were obtained from their crystallographic unit cells at -163 °C (ref 111) and 25 °C (ref 214), respectively. ^{*d*} The values for V_{m} [M][XeOF₃] were estimated by: V_{m} (F₂OXeNCCH₃; 0.1324 nm³, ref 125) – V_{m} (CH₃CN; 0.0616 nm³, ref 215) + V_{m} ([M][F]). ^{*e*} The V_{m} values for [M][XeOF₃] were estimated by: V_{m} ([M][F]) + [V_{m} (XeF₂; 0.0622 nm³, ref 216) + V_{m} (XeO₂F₂; 0.0842 nm³, ref 148)]/2. ^{*f*} The V_{m} values for [M][XeO₂F₃] were estimated by: V_{m} ([M][F]) + V_{m} (XeO₂F₃] were estimated by: V_{m} ([M][F]) + V_{m} (XeO₂F₃; 0.0842 nm³, ref 148).

particularly useful because the formula unit volume ($V_{\rm m}$) of an unknown salt can be estimated with reasonable accuracy using several methods.^{211,217} The net enthalpies of decomposition (eq 5.25 and 5.26) calculated for the reductions ($\Delta H^{o}_{\rm red}$) and disproportionations ($\Delta H^{o}_{\rm dis}$) of [M][XeOF₃] (M = N(CH₃)₄, Cs) are summarized in Table 5.9.

$$\Delta H^{o}_{red} = \Delta H^{o}_{L}([M][XeOF_{3}]) - \Delta H^{o}(eq \ 5.22) - \Delta H^{o}_{L}([M][F]) - \Delta H^{o} \ (sub \ XeF_{2})$$
(5.25)
$$\Delta H^{o}_{dis} = \Delta H^{o}_{L}([M][XeOF_{3}]) - \Delta H^{o}(eq \ 5.23) - \frac{1}{2}\Delta H^{o}_{L}([M][F]) - \frac{1}{2}\Delta H^{o}_{L}([M][XeO_{2}F_{3}])$$
(5.26)
$$-\Delta H^{o}(sub \ XeF_{2})$$
(5.26)

A method for estimating the absolute standard entropy of a salt from its unit volume has been reported by Jenkins and Glasser (eq 5.27) where $k = 1360 \text{ JK}^{-1} \text{mol}^{-1}$

$$S^{\circ} = kV_{\rm m} + c \tag{5.27}$$

(nm⁻³ formula unit⁻¹) and $c = 15 \text{ JK}^{-1}\text{mol}^{-1}$.²¹² Entropies for the [M][F], [M][XeOF₃], and [M][XeO₂F₃] salts under consideration are provided in Table 5.8. When coupled with the experimental standard entropies of O_{2(g)} (206 J mol⁻¹ K⁻¹)¹⁹⁵ and XeF_{2(s)} (115.09 J mol⁻¹ K⁻¹),²¹³ this method allows ΔS° (eq 5.28, 5.29) and ΔG° (eq 5.30) to be calculated for the

$$\Delta S^{o}_{red} = \frac{1}{2} S^{o}(O_2) + S^{o}([M][F]) + S^{o}(XeF_2) - S^{o}([M][XeOF_3])$$
(5.28)

$$\Delta S^{o}_{dis} = \frac{1}{2}S^{o}([M][F]) + \frac{1}{2}S^{o}(XeF_{2}) + \frac{1}{2}S^{o}([M][XeO_{2}F_{3}]) - S^{o}([M][XeOF_{3}])$$
(5.29)
$$\Delta G^{o} = \Delta H^{o} - T\Delta S^{o}$$
(5.30)

reactions of interest. The ΔS° and ΔG° values obtained for these reactions are summarized in Table 5.9. Estimates of the unit volume of XeOF₂ using either the difference method ($V_{\rm m}$ (F₂OXeNCCH₃) – $V_{\rm m}$ (CH₃CN) = 0.0708 nm³) or an average of the

Table 5.9. Values of ΔH° , ΔS° , and ΔG° Calculated for the Decomposition Reactions of [M][XeOF₃] (X = N(CH₃)₄, Cs)

	ΔH°		ΔS°		ΔG^{o}	
	(kJ m	iol ⁻¹) ^{<i>a</i>}	(J mol	$(1 K^{-1})^{a}$	<u>(kJ m</u>	ol ⁻¹) ^a
$[N(CH_3)_4][XeOF_3]_{(s)} \rightarrow XeF_{2(s)} + \frac{1}{2}O_{2(g)} + [N(CH_3)_4][F]_{(s)}$	-58.2	-59.6	121.3	118.1	-94.3	-94.7
$[N(CH_3)_4][XeOF_3]_{(s)} \rightarrow \frac{1}{2}XeF_{2(s)} + \frac{1}{2}[N(CH_3)_4][XeO_2F_3]_{(s)} + \frac{1}{2}[N(CH_3)_4][F]_{(s)}$	4.9	3.5	18.4	15.2	-0.6	-1.1
$[Cs][XeOF_3]_{(s)} \rightarrow XeF_{2(s)} + \frac{1}{2}O_{2(g)} + [Cs][F]_{(s)}$	-146.3	-145.1	121.3	118.1	-182.4	-184.3
$[Cs][XeOF_3]_{(s)} \rightarrow \frac{1}{2}XeF_{2(s)} + \frac{1}{2}[Cs][XeO_2F_3]_{(s)} + \frac{1}{2}[Cs][F]_{(s)}$	-35.6	-38.4	18.4	15.2	41.1	42.9

^{*a*} The first column under the headings ΔH^0 , ΔS^0 , and ΔG^0 was obtained from $V_m([M][XeOF_3]) = V_m(F_2OXeNCCH_3) - V_m(CH_3CN) + V_m[M][F]$, whereas the second column was obtained from $V_m([M][XeOF_3]) = V_m[M][F] + [V_m(XeF_2) + V_m(XeO_2F_2)]/2$.

unit volumes of XeF₂ and XeO₂F₂ (0.0731 nm³) only differ by 0.0023 nm³ and lead to essentially the same ΔH° and ΔG° values.

Based on the aforementioned thermochemical calculations, both the gas-phase reduction and disproportionation pathways are endothermic, and the decompositions of the [M][XeOF₃] salts are largely driven by lattice enthalpies. This is illustrated by the greater ΔH° and ΔG° values for the Cs⁺ salt relative to those of the N(CH₃)₄⁺ salt which result from the smaller size of Cs⁺ and greater lattice enthalpies of CsF and [Cs][XeO₂F₃].

The entropy term is also a major contributor in the reduction pathways because O_2 gas is evolved. The liberation of O_2 greatly increases the entropy of the reaction (119.7 J mol⁻¹ K⁻¹) relative to the small entropy gain in the disproportionation pathways (16.8 J mol⁻¹ K⁻¹). This results in the contribution of an additional -30.7 kJ mol⁻¹ to the Gibbs free energies for the reduction pathways which, combined with the lattice enthalpies, renders the reduction pathways significantly more favorable than the disproportionation pathways for both salts.

Although the disproportionation of $[Cs][XeOF_3]$ is less favorable than reduction, the former is spontaneous. In contrast, ΔH° and ΔG° of the corresponding disproportionation reaction for $[N(CH_3)_4][XeOF_3]$ are close to zero. The larger size of the $N(CH_3)_4^+$ cation lowers the lattice enthalpies of $[N(CH_3)_4][F]$ and $[N(CH_3)_4][XeO_2F_3]$ such that they no longer overcome the gas-phase disproportionation enthalpy. The thermochemical calculations are in accordance with the observed decomposition products $([N(CH_3)_4][F]$ and XeF_2) for $[N(CH_3)_4][XeOF_3]$, which can only decompose by the reduction pathway (eq 5.13). In contrast, [Cs][XeOF₃], which can decompose by either the reduction (eq 5.13) or disproportionation (eq 5.14) pathway, resulted in the formation of predominantly XeF_2 and a small amount of [Cs][XeO₂F₃].

5.3. Conclusion

The fluoride ion acceptor properties of XeOF₂ have been demonstrated by the high-yield syntheses of the endothermic salts, [M][XeOF₃] (M = N(CH₃)₄, Cs), in high purity. Both salts are kinetically stable at -78 °C but slowly decompose at 10–25 °C. Their decomposition pathways, inferred from their decomposition products, are supported by their thermochemical cycles. The latter show that the proposed disproportionation and reduction pathways are mainly driven by lattice energy contributions, with entropy playing a significant role in the pathways that lead to reduction of Xe(IV) to Xe(II) and O₂ evolution. The thermochemical cycles also reveal that disproportionation of Xe(IV) to Xe(II) and Xe(VI) is favored for [Cs][XeOF₃] but not for [N(CH₃)₄][XeOF₃], in accordance with experiment.

Comparison of the solid-state vibrational spectrum of $[N(CH_3)_4][XeOF_3]$ with that of the calculated gas-phase XeOF₃⁻ anion indicates little interaction between the anion and cation. The Raman spectra of the Cs⁺ and N(CH₃)₄⁺ salts of XeOF₃⁻ also show that significant interactions occur between the Cs⁺ cation and the oxygen atom of the XeOF₃⁻ anion and that the anions interact with one another by means of fluorine bridges. The XeOF₃⁻ anion is presently the only example of an AX₃YE₂ VSEPR arrangement known in which a double-bond domain subtends angles of ca. 90° with two valence electron lone pair domains. Comparisons of the experimental frequencies of $[Cs][XeOF_3]$ with those previously reported for $[Cs][XeOF_3]^{67}$ reveal that the product obtained in an earlier study was a mixture of XeF₂, XeOF₂, $[Cs][XeF_5]$, and $[Cs][XeO_3F]$. Thus, the present work represents the first bona fide synthesis and characterization of the XeOF₃⁻ anion.

Ph.D. Thesis – David S. Brock

CHAPTER 6

$[H(OXeF_2)_n][AsF_6] \text{ and } [FXe^{II}(OXe^{IV}F_2)_n][AsF_6] (n = 1, 2):$ Examples of Xenon(IV) Hydroxy and Oxide Fluoride Cations; and the Crystal Structures of [XeF_3·HF][Sb_2F_{11}] and ([XeF_3·HF][Sb_2F_{11}])_2·[H_5F_4][SbF_6]

6.1. Introduction

While many compounds containing xenon in the +2 or +6 oxidation states are known, relatively few compounds exist where xenon is in the +4 oxidation state.^{1,7} Among the factors that contribute to the relative scarcity of Xe(IV) compounds is the propensity for the oxides and oxide-fluorides to undergo reduction to Xe(II) and O₂ and redox disproportionation to Xe(II) and Xe(VI).^{68,69,125,126} Examples of Xe(IV) cations are presently limited to $C_6F_5XeF_2^+$, $^{62}XeF_3^+$, $^{45-52}$ and $F_xXe(OTeF_5)_{3-x}^+$ (x = 0-2). 61 Although di- and trixenon cations of Xe(II), $(Xe_2F_3^{+45,73} \text{ and } Xe_3OF_3^{+,71})$ and Xe(VI) $(Xe_2F_{11}^{+10,218})$ and $F(O)_2Xe-F-Xe(O)_2F^{+219}$ are known and XeF_2 form adducts with XeF_5^+ ($XeF_2 \cdot XeF_5^+$, $2XeF_2 \cdot XeF_5^+$ and $XeF_2 \cdot 2XeF_5^{+220}$) attempts to synthesize polynuclear cations of Xe(IV) have, to date, proven unsuccessful. With the exception of the $Xe_3OF_3^+$ cation, all of the aforementioned dixenon cations contain fluorine-bridged xenon atoms, even when the option to form oxygen bridges is available, e.g., $F(O)_2Xe-F-Xe(O)_2F^{+,219}$ Fluorine-bridge formation is also observed in the polynuclear xenon anion, [Cs][(XeOF₄)₃F], in preference to oxygen-bridge formation.^{221,222}

The only confirmed hydroxy derivative of xenon is perxenic acid, H₄XeO₆,²²³ which has only been observed in solution, and several speculative reports of xenic acid (H₂XeO₄).^{185,224–227} To date, no other hydroxy derivatives of xenon have been reported, and none have been characterized in the solid state. Similarly, HF adducts of main-group and transition-metal centers are known which have been the subject of a recent review,⁸² e.g., $[La(HF)_2][AsF_6]_3$ $[Pb(HF)][AsF_6]_2,$ $[Ca(HF)][AsF_6]_2$ $[Cd(HF)][AsF_6]_2$ $[Mg(HF)_2][SbF_6]_2$ $[Ca(HF)_2][SbF_6]_2,$ $[Hg(HF)][SbF_6]_2,$ $[OsO_3F(HF)_2][AsF_6].$ [OsO₃F(HF)][SbF₆], [Au(HF)₂][SbF₆]₂·2HF, and Mg(HF)AuF₄AuF₆, but none exist where HF is coordinated to a non-metal center. The reaction conditions that are used to synthesize HF adducts are also of interest because the adducts are often times formed in superacidic media.⁸² The HF/SbF₅ superacid medium is of particular interest because acidium ion salts having the formulations [H₂F][Sb₂F₁₁], [H₃F₂][Sb₂F₁₁], [H₂F][SbF₆], [H₃F₂][SbF₆], [H₄F₃][SbF₆], and [H₇F₆][SbF₆], have been proposed,²²⁸ however, only $[H_2F][Sb_2F_{11}]$,²²⁹ $[H_3F_2][Sb_2F_{11}]$,²²⁹ and $[H_7F_6][SbF_6]^{228}$ have been isolated and characterized by X-ray crystallography.

The syntheses and characterizations of several new Xe(IV) cations derived from HF/AsF_5 and HF/SbF_5 superacid media are described in the present paper, and provide the first examples of isolated hydroxy derivatives of xenon, the first Xe(IV)-containing mixed-oxidation state polynuclear compounds, and the first examples of HF coordinated to xenon. Quantum-chemical calculations and $^{1/2}H_{-}$ and $^{16/18}O$ -enrichment have been employed to assign the Raman spectra of the aforementioned cations and to aid in the assessment of their chemical bonding.

6.2. Results and Discussion

6.2.1. Syntheses and Properties. The reactions and the purities of all products were routinely monitored by recording the low-temperature Raman spectra (-150 °C) of the natural abundance, ¹⁸O-enriched (98.6 atom %), and ²H-enriched (99.5 atom %) salts.

6.2.1.1. [HOXeF₂][AsF₆]. (i) Synthesis. The salt, [HOXeF₂][AsF₆], was obtained by the low-temperature reaction of XeOF₂·*n*HF with AsF₅ in anhydrous HF (aHF) according to eq 6.1. The reaction proceeds to a significant degree with only slight mixing but was

$$XeOF_2 \cdot nHF + AsF_5 \xrightarrow{HF} [HOXeF_2][AsF_6] + (n-1)HF$$
(6.1)

allowed to stand for 12 h at -78 °C to ensure complete reaction, yielding an insoluble white solid. The solvent and any residual AsF₅ were removed under dynamic vacuum at -78 °C, yielding [HOXeF₂][AsF₆] as a friable, white powder.

Prior to reaction with AsF₅, it was necessary to ensure that XeOF₂ was fully solvolyzed to the HF adduct and not merely suspended in HF, otherwise extensive decomposition to [XeF][AsF₆] was observed. Formation of XeOF₂·*n*HF was confirmed by Raman spectroscopy.¹²⁵ The XeF⁺ cation likely resulted from the formation of the unstable intermediate, XeOF⁺ (eq 6.2), which then decomposed by O₂ elimination to yield XeF⁺(eq 6.3). This decomposition pathway also consistent with the large negative

$$XeOF_2 + AsF_5 \xrightarrow{HF} ([XeOF][AsF_6])$$
(6.2)

$$([XeOF][AsF_6])_{(s)} \xrightarrow{HF} [XeF][AsF_6]_{(s)} + \frac{1}{2}O_{2(g)}$$
(6.3)

 $\Delta G_{194.15}$ is for eq 6.3 (-313.0 kJ mol⁻¹) obtained from a Born-Fajans-Haber thermochemical cycle using available experimental thermodynamic parameters and values derived from volume-based thermodynamics (VBT). The calculated exothermicity is consistent with explosive behavior of the reaction of $XeOF_{2(s)}$ with $AsF_{5(1)}$.⁶⁷

Solid [HOXeF₂][AsF₆] is stable indefinitely at -78 °C in the absence of moisture but outgases rapidly upon warming to -35 °C. The resulting film, coating the reactor walls, was shown by Raman spectroscopy to be [XeF][AsF₆]. It is likely that the hydroxy salt decomposed according to eq 6.4 which has a $\Delta G_{194.15}$ of -288.6 kJ mol⁻¹ (Table 6.1).

$$[HOXeF_2][AsF_6]_{(s)} \longrightarrow [XeF][AsF_6]_{(s)} + \frac{1}{2}O_{2(g)} + HF_{(l)}$$
(6.4)

Attempts to dissolve [HOXeF₂][AsF₆] were unsuccessful. Warming a suspension of [HOXeF₂][AsF₆] to -40 °C in aHF showed no apparent solubility and gave a Raman spectrum at -150 °C that showed it had completely decomposed to [XeF][AsF₆]. A suspension of [HOXeF₂][AsF₆] in AsF₅ that had been warmed to -40 °C showed the onset of decomposition to [XeF][AsF₆], but no xenon-containing products were formed and no solubility was detected. Dissolution in a superacid media was also attempted in which [HOXeF₂][AsF₆] was suspended in a 1:3 v/v of HF:AsF₅. On warming to -56 °C no solubility was discernable and the compound decomposed to [XeF][AsF₆] upon warming to -50 °C.

(ii) Reactivity of [HOXeF₂][AsF₆]. The decomposition of HOXeF₂⁺ to XeF⁺ may be induced by the heat of reaction resulting from the formation of HOXeF₂⁺ (eq 6.1). In an attempt to isolate a sample of [HOXeF₂][AsF₆] that is free of [XeF][AsF₆], a half equivalent of AsF₅ was added to a reactor containing XeOF₂·*n*HF and allowed to react for 12 h at -78 °C. Instead of pale yellow [HOXeF₂][AsF₆], the product was a bright yellow

Table 6.1.	Values of ΔH , ΔS , and ΔG Calculated for the Decomposition Reactions of [XeOF][AsF ₆], [HOXeF ₂][AsF ₆],
	[HOXe(F) ₂ OXeF ₂][AsF ₆], [FXeOXeF ₂][AsF ₆], and [FXeOXe(F) ₂ OXeF ₂][AsF ₆]

	Δ <i>H</i> (kJ	mol ⁻¹)	ΔS (J mo	$l^{-1} K^{-1}$)	∆G (kJ	mol ⁻¹)	
	298.15 K	194.15 K	298.15 K	194.15 K	298.15 K	194.15 K	_eq
$[XeOF][AsF_6]_{(3)} \longrightarrow [XeF][AsF_6]_{(3)} + \frac{1}{2}O_{2}_{(6)}$	-294.6	-294.8	93 .7	93.7	-322.5	-313.0	3
$[HOXeF_2][AsF_6]_{(s)} \longrightarrow [XeF][AsF_6]_{(s)} + \frac{1}{2}O_{2(s)} + HF_{(t)}$	-148.3	-260.7	242.1	143.7	220.5	-288.6	4
$3[HOXe(F)_2OXeF_2][AsF_6]_{(5)} + 3H_2O_{(0)} \longrightarrow 2[Xe_3OF_3][AsF_6]_{(5)} + 3O_{2(6)} + 6HF_{(0)} + [H_3O][AsF_6]_{(5)}$	-1845.5	-1326.8	1341.5	817.3	-2245.5	-1485.5	6
$[HOXe(F)_2OXeF_2][AsF_6]_{(s)} \longrightarrow [Xe_2F_3][AsF_6]_{(s)} + O_{2(g)} + HF_{(t)}$	549.9	-421.1	362.7	264.3	-658.0	-472.4	7
$[FXeOXeF_2][AsF_6]_{(s)} \longrightarrow [Xe_2F_3][AsF_6]_{(s)} + \frac{1}{2}O_{2}_{(g)}$	-202.6	-205.7	120.6	120.6	-238.6	-229.1	11
$[FXeOXe(F)_2OXeF_2][AsF_d]_{(s)} \longrightarrow [Xe_2F_3][AsF_d]_{(s)} + O_{2(g)} + XeF_{2(s)}$	544.1	-385.1	242.4	242.4	616.4	-432.2	12
$3[FXeOXeF_2][AsF_6]_{(s)} + 3H_2O_{(1)} - 2[Xe_3OF_3][AsF_6]_{(s)} + \frac{3}{2}O_{2}_{(s)} + 3HF_{(1)} + [H_3O][AsF_6]_{(s)}$	-611.3	-670.4	615.3	386.2	-794.8	-745.4	13
$[FXeOXe(F)_2OXeF_2][AsF_6]_{(s)} + H_2O_{(1)} \longrightarrow [Xe_3OF_3][AsF_6]_{(s)} + O_{2(s)} + 2HF_{(1)}$	-630.4	-438.6	446.6	271.9	-763.2	-491.4	14

Values of ΔH , ΔS , and ΔG were calculated as decrobed in Appendix 3.

solid having a Raman spectrum that was consistent with the formation of the mixed oxidation state salt, $[FXe^{II}OXe^{IV}(F)_2][AsF_6]$ (vide infra).

6.2.1.2. [HOXe(F)₂OXeF₂][AsF₆]. When samples containing XeOF₂·*n*HF and HF were allowed to stand for ~3 weeks at -78 °C, traces of water apparently diffused through the FEP reactor walls. Reaction of half an equivalent of AsF₅ for 12 h resulted in a bright yellow solid that was consistent with the formation of [HOXe(F)₂OXeF₂][AsF₆]. Although this compound was also synthesized from a stoichiometric amount of XeOF₂·*n*HF, H₂O, and AsF₅ in HF, a more controlled approach involved the low-temperature (-78 °C) reaction of half an equivalent of [H₃O][AsF₆] with XeOF₂·*n*HF in aHF (eq 6.5). Both reactions are essentially the same because H₂O forms [H₃O][AsF₆] in

$$2XeOF_{2} \cdot nHF + [H_{3}O][AsF_{6}] \xrightarrow{HF}_{-78 \ ^{\circ}C}$$

$$[HOXe(F)_{2}OXeF_{2}][AsF_{6}] + H_{2}O_{(HF)} + 2nHF \qquad (6.5)$$

the presence of AsF_5 and HF, but the direct use of $[H_3O][AsF_6]$ allowed for a more precise titration to be carried out under similar reaction conditions. Raman spectra of the solid products were recorded under HF solvent. Reaction of a 4:1 molar ratio of $XeOF_2 \cdot nHF$ with $[H_3O][AsF_6]$ revealed a mixture of $XeOF_2 \cdot nHF$ and $[HOXe(F)_2OXeF_2][AsF_6]$ while 2:1 and 1:1 molar ratios of reactants revealed only $[HOXe(F)_2OXeF_2][AsF_6]$. In the latter reaction, it was presumed that unreacted $[H_3O][AsF_6]$ remained dissolved in the HF solvent and could not be observed in the Raman spectrum. It is noteworthy that oxygen isotope scrambling was not observed when $Xe^{18}OF_2 \cdot nHF$ reacted with $[H_3^{16}O][AsF_6]$, producing only $[H^{18}OXe(F)_2^{18}OXeF_2][AsF_6]$. This indicates that the acidium ion is only involved in protonation and is not otherwise involved in the reaction pathway.

Solid [HOXe(F)₂OXeF₂][AsF₆] was stable when isolated and stored under HF for several days at -78 °C. However, over the course of a month, samples that were maintained at -78 °C under HF formed deep red-orange colored crystals that were shown by Raman spectroscopy and unit cell determinations of several crystals to be [Xe₃OF₃][AsF₆].⁷¹ Gas evolution was also observed in the samples. It is presumed that the HOXe(F)₂OXeF₂⁺ cation decomposes to a xenon(II) intermediate, XeF₂ and/or XeF⁺, with the release of O₂, which is followed by its reaction with residual water (eq 6.6) resulting from the synthesis of [HOXe(F)₂OXeF₂][AsF₆] (eq 6.5). The same

$$3[HOXe(F)_{2}OXeF_{2}][AsF_{6}]_{(s)} + 3H_{2}O_{(l)} \xrightarrow{HF}_{-78 °C}$$

$$2[Xe_{3}OF_{3}][AsF_{6}]_{(s)} + 3O_{2 (g)} + 6HF_{(l)} + [H_{3}O][AsF_{6}]_{(s)} \qquad (6.6)$$

decomposition products were observed when samples of $[HOXe(F)_2OXeF_2][AsF_6]$ were warmed to -50 °C in aHF. The thermochemical cycle for eq 6.6 indicates the proposed reaction is spontaneous, with a $\Delta G_{194,15}$ of -1485.5 kJ (Table 6.1).

The reaction of an additional equivalent of AsF_5 with $[HOXe(F)_2OXeF_2][AsF_6]$ at -78 °C did not lead to $[HOXeF_2][AsF_6]$ as expected, but instead, catalyzed its decomposition to $[Xe_2F_3][AsF_6]$ (eq 6.7) ($\Delta G_{194,15} = -420.0$ kJ mol⁻¹; Table 6.1). In addition, AsF_5 also reacted with HF and H₂O, the latter was produced in the synthesis of $[HOXe(F)_2OXeF_2][AsF_6]$, and formed $[H_3O][AsF_6]$ (eq 6.8).

Ph.D. Thesis – David S. Brock

$$[HOXe(F)_{2}OXeF_{2}][AsF_{6}]_{(s)} \xrightarrow{HF/AsF_{5}} [Xe_{2}F_{3}][AsF_{6}]_{(s)} + O_{2}_{(g)} + HF_{(l)} \quad (6.7)$$

HF + H₂O + AsF₅ $\xrightarrow{HF/AsF_{5}} [H_{3}O][AsF_{6}] \quad (6.8)$

In an effort to solubilize the HOXe(F)₂OXeF₂⁺ cation, an attempt was made to synthesize the SbF₆⁻ salt from [H₃O][SbF₆] and XeOF₂·*n*HF by analogy with the synthesis of the AsF₆⁻ salt (eq 6.5). Instead, the SbF₆⁻ salt proved to be unstable, rapidly decomposing to [Xe₃OF₃][SbF₆] within a matter of minutes when [H₃O][SbF₆] and XeOF₂·*n*HF were mixed in HF at -78 °C. This result indicates that the AsF₆⁻ anion plays a major role in stabilizing the HOXe(F)₂OXeF₂⁺ cation because of its greater fluorobasicity relative to that of SbF₆⁻.⁴⁶

6.2.1.3. $[FXe^{II}OXe^{IV}F_2][PnF_6]$ (Pn = As, Sb) and $[FXe^{II}OXe^{IV}(F)_2OXe^{IV}F_2][AsF_6]$. The propensity of the Xe–O bond of XeOF₂ to protonate and the existence of several unidentified peaks in the Raman spectrum of $[HOXeF_2][AsF_6]$ led to attempts to synthesize an XeOF₂ adduct with XeF⁺ containing a Xe–O–Xe bridge.

Both [FXeOXeF₂][AsF₆] and [FXeOXe(F)₂OXeF₂][AsF₆] were synthesized by the reaction of [XeF][AsF₆] with stoichiometric amounts of fully solvated XeOF₂·*n*HF suspended in aHF at -78 °C (eq 6.9). Over the course of 5–10 min, the pale yellow solid

$$mXeOF_{2} \cdot nHF + [XeF][AsF_{6}] \xrightarrow{HF} -78 \circ C$$

$$[FXe(OXeF_{2})_{m}][AsF_{6}] + mnHF \quad (m = 1, 2) \quad (6.9)$$

turned bright yellow; however, occasional agitation and reaction times of approximately one week (two weeks for $[FXeOXe(F)_2OXeF_2][AsF_6]$) were required for complete reaction. Oxygen-18 enriched samples that had been similarly prepared exhibited significant kinetic isotope effects, requiring as long as a month for complete reaction at -78 °C. The products were isolated by removal of HF under dynamic vacuum at -78 °C, leaving behind bright yellow powders. In both stoichiometric reactions, when XeOF₂ was merely suspended in aHF and not fully solvolyzed, a mixture of $XeOF_2 nHF$, [XeF][AsF₆], [FXeOXeF₂][AsF₆], and [FXeOXe(F)₂OXeF₂][AsF₆] resulted which required reaction times of approximately one month or more to go to completion. It is therefore important to completely solvolyze XeOF₂ in aHF to XeOF₂·nHF prior to reaction. The results also showed that [FXeOXeF₂][AsF₆] and $[FXeOXe(F)_2OXeF_2][AsF_6]$ interconvert when additional XeOF₂·*n*HF or [XeF][AsF₆] are present.

Several studies were carried out under the aforementioned conditions using 4:1, 2:1, 4:3, 1:1, and 1:2 molar ratios of $XeOF_2 \cdot nHF$ and $[XeF][AsF_6]$ to determine if longer chain length cations could be formed. In the 4:1 reaction, the Raman spectrum showed only $[FXeOXe(F)_2OXeF_2][AsF_6]$ and unreacted XeOF₂·*n*HF. The 2:1 ratio gave pure $[FXeOXe(F)_2OXeF_2][AsF_6]$ while the 4:3 yielded mixture ratio a of [FXeOXe(F)₂OXeF₂][AsF₆] and [FXeOXe(F)₂][AsF₆]. Finally, the 1:1 and 1:2 ratios yielded [FXeOXe(F)₂][AsF₆], with unreacted [XeF][AsF₆] also being present when a 1:2 ratio was used. The results indicated that no cations other than $[FXeOXeF_2][AsF_6]$ and $[FXeOXe(F)_2OXeF_2][AsF_6]$ were formed and stable at -78 °C.

The FXeOXeF₂⁺ cation can also be obtained by the reaction of XeOF₂·*n*HF with half an equivalent of AsF₅ in aHF solvent at -78 °C. It is presumed that the superacidic

conditions catalyze O_2 elimination to give the mixed oxidation state cation according to eq 6.10.

$$2XeOF_{2} \cdot nHF + AsF_{5} \xrightarrow{HF/AsF_{5}} [FXeOXeF_{2}][AsF_{6}] + \frac{1}{2}O_{2} + 2nHF \quad (6.10)$$

Both [FXeOXeF₂][AsF₆] and [FXeOXe(F)₂OXeF₂][AsF₆] are stable under HF solvent and as dry powders for several weeks at -78 °C under anhydrous conditions but began to decompose to [Xe₂F₃][AsF₆] upon warming to -40 °C (eqs 6.11 and 6.12). The

$$[FXeOXeF_2][AsF_6]_{(s)} \xrightarrow{-40 \,^{\circ}C} [Xe_2F_3][AsF_6]_{(s)} + \frac{1}{2}O_{2(g)}$$
(6.11)

$$[FXeOXe(F)_2OXeF_2][AsF_6]_{(s)} \xrightarrow{-40 \, {}^{\circ}C} [Xe_2F_3][AsF_6]_{(s)} + O_{2\,(g)} + XeF_{2\,(s)} \quad (6.12)$$

factors contributing to the negative $\Delta G_{194,15}$ values for both reactions (-229.1 kJ mol⁻¹ and -432.2 kJ mol⁻¹; Table 6.1) are dominated by the higher lattice energy associated with the formation of $[Xe_2F_3][AsF_6]$ and the increase in entropy associated with O₂ formation. Sample storage for approximately one month at -78 °C resulted in water diffusion through the FEP walls of the reactor and hydrolysis of both samples to $[Xe_3OF_3][AsF_6]$ (eq 6.13 and 6.14) as evidenced by the formation of deep red-orange

$$3[FXeOXeF_2][AsF_6]_{(s)} + 3H_2O_{(l)}$$

$$[Xe_{3}OF_{3}][AsF_{6}]_{(s)} + O_{2(g)} + 2HF_{(l)}$$
(6.14)

crystals which were shown to be $[Xe_3OF_3][AsF_6]$ by Raman spectroscopy.⁷¹ This decomposition pathway is also supported by thermochemical cycles which give negative $\Delta G_{194,15}$ values for both reactions (-745.4 kJ and -491.4 kJ mol⁻¹; Table 6.1). Further reaction of $[FXeOXeF_2][AsF_6]$ with one equivalent of AsF₅ yielded a mixture of

 $[HOXeF_2][AsF_6]$ and $[XeF][AsF_6]$ (eq 6.15), showing that AsF₅ must be added in a single amount to prevent $[XeF][AsF_6]$ formation. Two-step additions also lead to formation of the hydroxy cation.

$$[FXeOXeF_2][AsF_6] + AsF_5 + HF \xrightarrow{HF/AsF_5} [HOXeF_2][AsF_6] + [XeF][AsF_6] (6.15)$$

In an attempt to solubilize the FXeOXeF₂⁺ and FXeOXe(F)₂OXeF₂⁺ cation salts, the syntheses of the SbF₆⁻ salts were attempted in reactions analogous to those given in eq 6.9, using [XeF][SbF₆]. The reactions proceeded more rapidly than in the cases of the arsenic analogues, requiring only 24 h to go to completion. However, only [FXeOXeF₂][SbF₆] formed, which had a more intense yellow color than [FXeOXeF₂][AsF₆]. When the synthesis of the longer chain cation was attempted, a mixture of [FXeOXeF₂][SbF₆] and XeOF₂·*n*HF resulted, which was observed by Raman spectroscopy, even after the sample had been warmed to -50 °C for 2 h. These results indicate the anion plays a significant role in stabilizing the cations. Unfortunately, [FXeOXeF₂][SbF₆] also exhibited behavior that was similar to that of the arsenic analogue, and began to decompose to [Xe₂F₃][SbF₆] when warmed to -40 °C with no discernable solubility in aHF.

In a further attempt to solubilize a salt of $FXeOXeF_2^+$, the formation of the CH₃CN adduct of this cation was attempted in a manner similar to that used for the formation of $FXe-NCCH_3^+$.¹⁰⁴ However, CH₃CN displaced XeOF₂ and the reaction resulted in the formation of the longer chain salt, [FXeOXe(F)₂OXeF₂][AsF₆] (eq 6.16).

$$2[FXeOXeF_2][AsF_6] + CH_3CN \xrightarrow{HF}_{-78 °C}$$

$$[FXeOXe(F)_2OXeF_2][AsF_6] + [FXe-NCCH_3][AsF_6] (6.16)$$

6.2.1.4. [XeF₃·HF][Sb₂F₁₁]. In an effort to obtain a soluble salt of the HOXeF₂⁺ cation for crystal growth, the synthesis of an SbF₆⁻ salt was attempted. Because SbF₅ freezes at 7 °C,²³⁰ it could not be added in a manner analogous to AsF₅ (eq 6.1). An aHF solution of SbF₅ (~17 mol %) was decanted into the reactor containing XeOF₂·*n*HF under aHF and was warmed to -78 °C and thoroughly mixed. The sample was then warmed to -50 °C until all the solid dissolved, and was followed by cooling to -78 °C. Over the course of 24 h, colorless crystals formed that were found to be a mixture of ([XeF₃·HF][Sb₂F₁₁])₂·[H₅F₄][SbF₆], [XeF₃·HF][Sb₂F₁₁], and [XeF₃][SbF₆]. Under highly superacidic conditions (~17 mol % SbF₅ in HF) the hydroxyl group of the cation is displaced, yielding XeF₃⁺ and H₃O⁺ (eqs 6.17, 6.18 or 6.19, 6.20), with the latter

$$XeOF_{2} \cdot nHF + SbF_{5} \xrightarrow{HF/SbF_{5}} ([HOXeF_{2}][SbF_{6}]) + (n-1)HF$$

$$([HOXeF_{2}][SbF_{6}]) + (m+1)SbF_{5} + 3HF \xrightarrow{HF/SbF_{5}} -78 ^{\circ}C \qquad (6.17)$$

$$[XeF_3 \cdot HF][Sb_2F_{11}] + [H_3O][F(SbF_5)_m] \quad (m = 1, 2) \quad (6.18)$$

$$XeOF_{2} \cdot nHF + 3HF + mSbF_{5} \xrightarrow{HF/SbF_{5}} XeF_{4} + [H_{3}O][F(SbF_{5})_{m}] + nHF \quad (6.19)$$

$$XeF_4 + HF + 2SbF_5 \xrightarrow{HF/SbF_5} [XeF_3 \cdot HF][Sb_2F_{11}]$$
 (6.20)

remaining in solution. The high acidity of this medium resulted in the formation of Sb_2F_{11} , which is not readily observed in unacidified HF,²³¹ and the formation of the previously unobserved acidium ion salt, $[H_5F_4][SbF_6]$.

6.2.2. X-ray Crystallography. A summary of the refinement results and other crystallographic information for $([XeF_3 \cdot HF][Sb_2F_{11}])_2 \cdot [H_5F_4][SbF_6]$, $[XeF_3 \cdot HF][Sb_2F_{11}]$, and $[XeF_3][SbF_6]$ is given in Table 6.2. Important bond lengths, bond angles, and

Ph.D. Thesis – David S. Brock

	$([XeF_3 \cdot HF][Sb_2F_{11}])_2$ $\cdot [H_5F_4][SbF_6]$	[XeF ₃ ·HF][Sb ₂ F ₁₁]	β-[XeF3][SbF6]
space group	P1 (No. 2)	C2/c (No. 15)	$P2_1/c$ (No. 14)
a (Å)	7.5604(8)	13.4120(4)	5.2321(2)
b (Å)	8.4967(9)	8.4709(4)	15.6025(5)
c (Å)	13.017(1)	10.4543(4)	8.6225(3)
a (deg)	85.469(4)	90	90
β (deg)	78.082(3)	110.493(2)	102.825(1)
γ (deg)	66.350(3)	90	90
$V(Å^3)$	749.44(14)	1112.56(8)	686.33(4)
Z (molecules/unit cell)	2	4	4
mol. wt. (g mol^{-1})	977.60	660.81	424.05
$ ho_{ m calc} ({ m g cm}^{-3})$	4.332	3.945	4.104
<i>T</i> (°C)	-173	-173	-173
μ (mm ⁻¹)	7.87	8.04	8.99
λ (Å)	0.71073	0.71073	0.71073
R_1^a	0.0389	0.0251	0.0281
wR_2^{b}	0.1011	0.0582	0.0612

Table 6.2. Summary of Crystal Data and Refinement Results for β -[XeF₃][SbF₆], ([XeF₃·HF][Sb₂F₁₁])₂·[H₅F₄][SbF₆], and [XeF₃·HF][Sb₂F₁₁]

^{*a*} $R_1 = \Sigma ||F_o|| - |F_c|| / \Sigma |F_o|$ for $I > 2\sigma(I)$. ^{*b*} wR_2 is defined as $\{\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma w(F_o^2)^2\}^{\frac{1}{2}}$ for $I > 2\sigma(I)$. contacts for $([XeF_3 \cdot HF][Sb_2F_{11}])_2 \cdot [H_5F_4][SbF_6]$, $[XeF_3 \cdot HF][Sb_2F_{11}]$, and $[XeF_3][SbF_6]$ are listed in Tables 6.3 and A3.2. The crystal structure of $[XeF_3][SbF_6]$ has been reported previously⁵² but the present low-temperature (-173 °C) crystal structure of $[XeF_3][SbF_6]$ was obtained in admixture with the aforementioned salts and has been included in the Supporting Information because of its higher precision and to allow for a more suitable comparison with the structural parameters of the XeF_3 \cdot HF⁺ cation in the present study.

6.2.2.1 The XeF₃·HF⁺ Cation. The XeF₃·HF⁺ cation can either be described as an HF adduct of the XeF₃⁺ cation, or as a protonated XeF₄ molecule. Both are valid descriptions (see Computational Results), however, as a result of the similarity of the geometric parameters of XeF₃·HF⁺ to those of XeF₃⁺ in [XeF₃][SbF₆] (Figure 6.1) and [XeF₃][Sb₂F₁₁],^{45,51} the adduct description is used in the ensuing discussion.

(i) $([XeF_3 \cdot HF][Sb_2F_{11}])_2 \cdot [H_5F_4][SbF_6]$. Both $[XeF_3 \cdot HF][Sb_2F_{11}]$ ion pairs in the unit cell of $([XeF_3 \cdot HF][Sb_2F_{11}])_2 \cdot [H_5F_4][SbF_6]$ are related by symmetry and pack in alternating planes of $Sb_2F_{11}^-$ anions with $XeF_3^+ \cdot HF$ and $H_5F_4^+$ cations (Figure 6.2). The Xe-F_e bond length (1.838(2) Å) is equal to that of the SbF_6^- salt (1.839(2) Å), but is significantly shorter than the Xe-F bonds in XeF_4 (1.953(2) Å).³² Similarly, the Xe-F_a bond lengths (1.880(2) and 1.890(2) Å) are comparable to those of the SbF_6^- salt (1.894(2) and 1.901(2) Å), and are also shorter than in XeF_4. In contrast to other salts of the XeF_3^+ cation, which make contacts to their corresponding anions,^{45,51,52} the XeF_3^+ cations of ([XeF_3 \cdot HF] [Sb_2F_{11}])_2 \cdot [H_5F_4][SbF_6] each have a short (2.462(2) Å) secondary contact to a HF molecule that lies in the XeF_3^+ molecular plane. This contact is similar to the short secondary contact (2.485(1) Å) that occurs between the cation and anion in

XeF ₃ ⁺ ·HF							
	exp						
	$([XeF_3 \cdot HF][Sb_2F_{11}])_2$ $\cdot [H_5F_4][SbF_6]$	[XeF3·HF][Sb ₂ F ₁₁]	B3LYP	PBE1PBE	MP2		
Xe(1)-F(1)	1.880(2)	1.865(1)	1.916	1.894	1.892		
Xe(1)-F(2)	1.838(2)	1.865(1)	1.870	1.847	1.839		
Xe(1)-F(3)	1.890(2)	2.186(2)	1.916	1.894	1.892		
Xe(1)F(10)	2.462(2)	2.186(2)	2.556	2.537	2.550		
F(10)-H			0.937	0.933	0.934		
F(1)-Xe(1)-F(2)	81.4(1)	81.40(8)	84.7	84.1	83.7		
F(1)-Xe(1)-F(3)	162.3(1)	161.12(6)	169.3	168.3	167.4		
F(1)-Xe(1)F(10)	78.8(1)	79.72(6)	95.3	95.8	96.3		
F(2)-Xe(1)-F(3)	81.0(1)	79.72(6)	84.7	84.1	83.7		
F(2)-Xe(1)F(10)	160.2(1)	161.12(6)	176.7	176.8	177.1		
F(3)-Xe(1)F(10)	118.77(9)	119.15(9)	95.4	95.9	96.3		
Хе(1)F(10)-Н		·	141.9	141.9	152.8		

Table 6.3.Experimental and Calculated Bond Lengths (Å) and Bond Angles (deg) for the XeF_3^+ ·HF Adduct.

^{*a*} The aug-cc-pVTZ(-PP) basis set was used.

Figure 6.1. The XeF₃⁺ cations in the X-ray crystal structures of (a) ([XeF₃·HF][Sb₂F₁₁])₂·[H₅F₄][SbF₆], (b) [XeF₃·HF][Sb₂F₁₁], and (c) [XeF₃][SbF₆]; thermal ellipsoids are shown at the 50% probability level.

Figure 6.2. Crystal packing for ([XeF₃·HF][Sb₂F₁₁])₂·[H₅F₄][SbF₆] viewed along the *b*-axis; thermal ellipsoids are shown at the 50% probability level.

[XeF₃][SbF₆]. The F_e-Xe-F_a (81.4(1)°, 81.0(1)°), F_a-Xe-F_a (162.3(1)°), and F_a-Xe-F_{HF} (78.8(1)°, 118.77(9)°) bond angles of XeF₃·HF are also comparable to those in [XeF₃][SbF₆] [F_e-Xe-F_a, 79.72(8)°, 79.74(7)°; F_a-Xe-F_a, 159.45(8)°; F_a-Xe-F_{SbF6} 73.06(6)°, 127.47(6)°].

(ii) $[XeF_3 \cdot HF][Sb_2F_{11}]$. The $[XeF_3 \cdot HF][Sb_2F_{11}]$ salt was also isolated in the absence of the acidium ion salt, $[H_3F_4][SbF_6]$. However, in the crystal structure of $[XeF_3 \cdot HF][Sb_2F_{11}]$ (Figure 6.3), there is a two-fold positional disorder about the diagonal that bisects the F_1 -Xe- F_2 angle where the equatorial fluorine atom (F_1) and one of the axial fluorine atoms (F_2) are indistinguishable from one another and the remaining axial fluorine atom (F_3) cannot be distinguished from the fluorine atom (F_{10}) of the coordinated HF molecule (Table 6.3 and Figure 6.1). The positionally averaged bond lengths are 1.865(1) and 2.186(1) Å, respectively, and are in good agreement with the averages of the corresponding bond lengths in ($[XeF_3 \cdot HF][Sb_2F_{11}]$)₂· $[H_5F_4][SbF_6]$, 1.859(3) and 2.176(3) Å, respectively.

The secondary coordination spheres are very similar in the crystal structures of $[XeF_3 \cdot HF] [Sb_2F_{11}]$ and $([XeF_3 \cdot HF] [Sb_2F_{11}])_2 \cdot [H_5F_4] [SbF_6]$ (Figure 6.4) with the contacts ranging from 2.935(1) to 2.967(1) Å and 2.847(3) to 3.088(3) Å, respectively. There is an additional contact (3.088(3) Å) in the ordered structure, $([XeF_3 \cdot HF] [Sb_2F_{11}])_2 \cdot [H_5F_4] [SbF_6]$, that occurs between the XeF_3^+ cation and the $Sb_2F_{11}^-$ anion which presumably better anchors the cation to give an ordered structure.

Figure 6.3. Crystal packing for $[XeF_3 \cdot HF][Sb_2F_{11}]$ viewed along the *b*-axis; thermal ellipsoids are shown at the 50% probability level.

Figure 6.4. Secondary coordination sphere of the XeF₃⁺·HF adduct-cation subunit in the X-ray crystal structures of (a) ([XeF₃·HF][Sb₂F₁₁])₂·[H₅F₄][SbF₆] and (b) [XeF₃·HF][Sb₂F₁₁]; thermal ellipsoids are shown at the 50% probability level.

6.2.2.2. [H₅F₄][SbF₆]. The hydrogen atoms of the acidium ion in the crystal structure of $([XeF_3 \cdot HF][Sb_2F_{11}])_2 \cdot [H_5F_4][SbF_6]$ could not be observed in the difference map, which is also the case for the H₃F₂⁺ and H₂F⁺ cations,²²⁹ but not for H₇F₆⁺, where the hydrogen atoms were observed.²²⁸ The SbF₆⁻ anion and fluorine atoms of the H₅F₄⁺ cation form a chain structure (Figure 6.5) that is consistent with the other acidium ion salts.^{228,229} The F---F distances between the SbF₆⁻ anion and the closest fluorine atom of the cation decrease from 2.444(4) Å to 2.337(3) Å, between the next closest fluorine atoms, and finally to 2.293(5) Å between the two central fluorine atoms of the H₅F₄⁺ cation. These distances are in excellent agreement with previously observed F---F interatomic distances in H₇F₆⁺ (2.284(4)-2.450(2) Å),²²⁸ H₃F₂⁺ (2.30(1)-2.41(1) Å),²²⁹ and H₂F⁺ (2.64-2.78 Å).²²⁹

6.2.3. Raman Spectroscopy. The low-temperature Raman spectra of solid $[^{1/2}H^{16/18}OXeF_2][AsF_6]$, $[H^{16/18}OXe(F)_2^{16/18}OXeF_2][AsF_6]$, $[FXe^{16/18}OXeF_2][AsF_6]$, and $[FXe^{16/18}OXe(F)_2^{16/18}OXeF_2]$ [AsF₆], are identical to low-temperature spectra recorded under solid HF solvent, with the latter providing better signal to noise ratios. Consequently, the Raman spectra depicted in Figures 6.6–6.9 and the observed and calculated frequencies and their assignments listed in Tables 6.4–6.7 and A3.3–A3.7 are for spectra recorded under HF.

The spectral assignments for $[^{1/2}H^{16/18}OXeF_2][AsF_6]$, $[H^{16/18}OXe(F)_2^{16/18}OXeF_2]$ [AsF₆], [FXe^{16/18}OXeF₂][AsF₆], and [FXe^{16/18}OXe(F)₂^{16/18}OXeF₂][AsF₆] were made by comparison with the calculated frequencies and Raman intensities (Tables 6.4–6.7) of the

Figure 6.5. The $[H_5F_4][SbF_6]$ unit in the X-ray crystal structure of $([XeF_3 \cdot HF][Sb_2F_{11}])_2 \cdot [H_5F_4][SbF_6]$; thermal ellipsoids are shown at the 50% probability level.

Figure 6.6. Raman spectra of natural abundance (lower trace) and 97.8% ¹⁸O-enriched (upper trace) of $[HOXeF_2][AsF_6]$ recorded at -150 °C under HF solvent using 1064-nm excitation. Symbols denote FEP sample tube lines (*), instrumental artifact (†), and $[XeF][AsF_6]$ impurity (‡).

188

Figure 6.7. Raman spectra of natural abundance (lower trace) and 97.8% ¹⁸O-enriched (upper trace) of $[FXeOXeF_2][AsF_6]$ recorded at -150 °C under HF solvent using 1064-nm excitation. Symbols denote FEP sample tube lines (*), instrumental artifact (†), and $[FXe^{18}OXe(F)_2]^{18}OXe(F)_2][AsF_6]$ impurity (‡).

Figure 6.8. Raman spectra of natural abundance (lower trace) and 97.8% ¹⁸O-enriched (upper trace) of $[HOXe(F)_2OXe(F)_2][AsF_6]$ recorded at -150 °C under HF solvent using 1064-nm excitation. Symbols denote FEP sample tube lines (*) and instrumental artifact (†).

Figure 6.9. Raman spectra of natural abundance (lower trace) and 97.8% ¹⁸O-enriched (upper trace) of $[FXeOXe(F)_2OXe(F)_2][AsF_6]$ recorded at -150 °C under HF solvent using 1064-nm excitation. Symbols denote FEP sample tube lines (*), instrumental artifact (†), and XeOF₂·*n*HF(‡).

¹ H ¹⁶ O	¹ H ¹⁸ O	16/18Δν	² H ¹⁶ O	² H ¹⁸ O	16/18Δν	¹ (16)/2(16)Δν	^{1(18)/2(18)} Δν	assgnt ^d
n.o.	n.o.	n.o.	n.o.	n.o.	n.o.	n.o.	n.o.	v(O ₁ H)
1264.6(2)	1261.2(2)	-3.4	927.6(1)	922.0(1)	-5.6	-337.0	-339.2	$\delta(Xe_1O_1H)$
692.0(52)	692.0(52)	0.0	692.0(66)	691.9(55)	0.1	0.0	-0.1	
689.7(30)	689.6(29)	-0.1	689.2(32)	689.1(31)	-0.1	-0.5	-0.5	$\int V_1(A_{1g})(ASF_6)$
646.7(59)	615.8(62)	-30.9	640.9(66)	611.0(68) ^f	-29.9	-5.8	-4.8	$v(Xe_1O_1)$
602.0(6)	601.9(8)	-0.1	600.5(7)	600.3(9)	-0.2	-1.5	-1.6	$v(Xe_1F_1) - v(Xe_1F_2)$
588.8(12)	588.4(14)	-0.4	588.1(16)	587.8(18)	-0.3	-0.7	-0.6	
577.0(7)	576.3(7)	-0.7	567.8(7)	567.1(9)	- 0.7	-9.2	-9.2	$\int V_2(E_g)(Asr_6)$
554.7(100)	554.6(100)	-0.1	554.6(100)	554.5(100)	-0.1	-0.1	-0.1	$\int y(\mathbf{Y}_{\mathbf{x}} \mathbf{F}) \pm y(\mathbf{Y}_{\mathbf{x}} \mathbf{F})$
543.6(71)	543.5(64)	-0.1	543.5(66)	543.1(62)	-0.4	-0.1	-0.4	$\int V(\mathbf{A}\mathbf{e}_1\mathbf{\Gamma}_1) + V(\mathbf{A}\mathbf{e}_1\mathbf{\Gamma}_2)$
380.2(4) ^e	379.2(6) ^e	-1.0	379.2(4)	378.9(6)	-0.3	-1.0	-0.3)
371.6(7)	371.0(7)	-0.6	371.1(7)	370.7(9)	-0.4	-0.5	-0.3	$\sim v_5(T_{2g}) (AsF_6)$
362.3(3)	362.3(3)	0.0	362.4(3)	362.2(4)	-0.2	0.1	-0.1	J
328.0(2),br	327.5(2),br	0.5	260.8(3),br	259.2(3),br	-1.6	-67.2	-68.3	$\rho_{w}(Xe_{1}O_{1}H)$
307.0(14)	296.9(13)	-10.1	313.1(9)	301.9(9)	-11.2	6.1	5.0	$\delta(OXe_1F_1) - \delta(OXe_1F_2)$
235.6(1)	236.1(1)	0.5	235.5(1)	236.2(1)	0.7	0.1	0.1	$\delta(F_1Xe_1F_2)_{o.o.p.}$
210.4(2)	210.3(2)	-0.1	208.8(2)	208.4(3)	-0.4	-1.6	-1.9	$\delta(F_1Xe_1F_2)_{i.p.}$
194.6(4),br	186.4(4),br	-8.2	187.6(4),br	181.6(4),br	-6.0	-7.0	-4.8	$\rho_{r}(HO_{1}Xe_{1}F_{1}F_{2})_{o.o.p.}$
122.3(3)	121.0(4)	-1.3	121.8(5)	120.3(7)	-1.5	-0.5	-0.7	
106.3(14)	106.1(14)	-0.2	106.2(15)	106.1(15)	-0.1	0.1	0.0	

Table 6.4. Experimental Raman Frequencies^{*a*} and Intensities^{*b*} for $[^{1/2}H^{16/18}OXeF_2][AsF_6]^c$

^{*a*} Frequencies are given in cm⁻¹. ^{*b*} Values in parentheses denote relative Raman intensities. ^{*c*} Raman spectra were recorded in FEP sample tubes at -150 °C using 1064-nm excitation. The abbreviations denote broad (br) and not observed (n.o.). Weak bands at 611.7(5) and 607.6(5) in the spectra (not listed) are assigned to [XeF][AsF₆].^{154 d} The abbreviations denote stretch (v), bend (δ), wag (ρ_w), rock (ρ_r), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). The in-plane and out-of-plane mode descriptions are relative to the XeOF₂ plane (Figure 6.10). ^{*e*} The band intensity has been corrected for overlap with a FEP band. ^{*f*} The band intensity has been corrected for overlap with a [XeF][AsF₆] band.

¹⁶ O	$18O^d$	$16/18\Delta v$	assgnt ^e
691.2(12)	691.3(13)	0.1	$(\Lambda) (\Lambda = 1)$
673.7(2)	673.5(3)	-0.2 · ∫	$V_1(A_{1g})(ASF_6)$
645.4(10)	615.6(12)	-29.8	$v(Xe_1O_1) - v(Xe_2O_1)$
586.2(1)	587.1 sh	0.9 լ	$(\mathbf{E})(\mathbf{A}_{\mathbf{F}}\mathbf{E}^{-})$
577.1(2)	577.2(3) ^f	0.2 J	$V_2(E_g)(ASF_6)$
556.0(3)	555 sh	–1.0 l	
545.6(84)	545.6(89)	ر 0.0	$V(Ae_2\Gamma_3)$
513.5(100)	511.1(100)	-2.4	$v(Xe_1F_1) + v(Xe_1F_2)$
409.4(5)	390.3(5)	-19.1	$(\mathbf{Y}_{2}, \mathbf{O}) + (\mathbf{Y}_{2}, \mathbf{O})$
405.1(6)	384.0(6)	-21.1	$V(Xe_1O_1) + V(Xe_2O_1)$
397.0(2)		J	
373.9(3)	373.8 sh	0.1 }	$v_5(T_{2g}) (AsF_6)$
360.1(1)	359.8(1)	_0.2 J	
300.6(8)	290.0(7)	-10.6	$\delta(OXe_1F_1) - \delta(OXe_1F_2)$
229.9(2)	229.6(3)	–0.3 l	S/E V ~ E)
225.6(1)	225.6(1)	0.0 J	$O(\Gamma_1 A e_1 \Gamma_2)_{0.0.p.}$
187.7(2)	187.6(2)	ך 0.1–	S(E Va E)
181.3(4)	181.1(4)	_0.2 ∫	$O(F_1Ae_1F_2)_{i.p.}$
174.7(2)	173.9(2)	-0.8)	
155.7(1)	155.5(1)	-0.2	
132.9(3)	132.4(3)	-0.5	
119.8(2)	120.3(2)	0.5	
114.2(4)	114.3(4)	0.1	coupled deformation modes
106.2(4)	105.4(7)	-0.8	
97.2(5)	96.9(7)	-0.3	
76.0(8)	75.7(12)	-0.3	
71.3(7)	71.6(9)	0.3	

Table 6.5.Expense

Experimental Raman $[FXe^{16/18}OXeF_2][AsF_6]^c$

Frequencies^a and

Intensities^b for

^{*a*} Frequencies are given in cm⁻¹. ^{*b*} Values in parentheses denote relative Raman intensities. ^{*c*} Raman spectra were recorded in FEP sample tubes at -150 °C using 1064-nm excitation. The abbreviation denotes a shoulder (sh). ^{*d*} A weak band at 498.5(3) in the ¹⁸O spectrum is attributed to [FXe¹⁸OXe(F)₂¹⁸OXeF₂][AsF₆]. ^{*e*} The abbreviations denote stretch (v), bend (δ), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). The in-plane and out-of-plane mode descriptions are relative to the XeOF₂ plane (Figure 6.10). ^{*f*} The band intensity has been corrected for overlap with the FEP band occurring at 578 cm⁻¹.

16O <i>d</i>	¹⁸ O ^d	16/18Δν	assgnt ^e
695.6(3)	695.7(2)	<u> </u>	
688.6(11)	688.7(8)	0.1	
681.4(6) ^f	681.3(5)	-0.1	$V_1(A_{1g})$ (ASF ₆)
675.4(4)	676.0 sh	0.6 J	
658.1(3), br	624.6(1), br	-33.5	$[v(Xe_3O_2) - v(Xe_1O_2)] + v(Xe_1O_1)$
586.8(2)	586.8(2)	ך 0.0	
579.2(7)	579.2(7)	0.0	
573.6(5)	573.8(4)	-0.2	$V_2(E_g)$ (ASF ₆)
569.1(7)	569.1(6)	0.0 J	
559.4(82)	558.9(62)	–0.5 J	
549.7(9)	549.8(9)	0.1	$(\mathbf{Y}_{\mathbf{z}}, \mathbf{E}) + (\mathbf{Y}_{\mathbf{z}}, \mathbf{E})$
545.9(13)	546.1(11)	0.2	$V(Ae_1F_1) + V(Ae_1F_2)$
536.1(22)	535.6(21)	_0.5 J	
510.5 sh	510.2 sh	0.3 l	$\mathbf{v}(\mathbf{Y}_{\mathbf{z}},\mathbf{E}) + \mathbf{v}(\mathbf{Y}_{\mathbf{z}},\mathbf{E})$
507.3(100)	506.8(100)	_0.5 J	$V(Ae_3r_4) + V(Ae_3r_5)$
436.4(2)	438.1(1)	1.7	
422.9(9)	406.5(4)	-16.4 <u> </u>	$S(O, \mathbf{V}_2, \mathbf{E}) = S(O, \mathbf{V}_2, \mathbf{E})$
418.2(4)	395.2(2)	23.0 ∫	$O(O_2 A e_3 r_4) - O(O_2 A e_3 r_5)$
374.5(4)	373.9(3)	–0.6)	
370.0(2)	370.4(3)	0.4 }	$v_5(T_{2g})$ (AsF ₆)
366.6(2)	366.4(1)	-0.2 J	
281.4(2)	278.8(1)	–2.6]	
268.5(3)	265.3(2)	-3.2 }	$\delta(O_1Xe_1F_1) - \delta(O_1Xe_1F_2)$
241.4(2)	237.5(3)	_3.9 J	
221.5(1)	221.9(1)	0.4	$\delta(F_4Xe_3F_5)_{i.p.} + \delta(F_1Xe_1F_2)_{o.o.p.}$
173.5(7), br	171.4(6), br	-2.1	$\delta(F_1Xe_1F_2)_{i.p.} + \delta(F_4Xe_3F_5)_{i.p.}$
142.2(5)	140.7(5)	1.5	
118.2(8)	116.9(8)	-1.3	

Table 6.6.Experimental
 $[H^{16/18}OXe(F)_2^{16/18}OXeF_2][AsF_6]^c$ andIntensitiesfor

^{*a*} Frequencies are given in cm⁻¹. ^{*b*} Values in parentheses denote relative Raman intensities. ^{*c*} Raman spectra were recorded in FEP sample tubes at -150 °C using 1064-nm excitation. The abbreviations denote shoulder (sh) and broad (br). ^{*d*} Weak bands observed at 598.1(1), 554.4 sh, 479.7(2) in the ¹⁶O spectrum and at 479.3(1) in the ¹⁸O spectrum are assigned to Xe₃OF₃⁺. ^{*e*} The abbreviations denote stretch (v), bend (δ), inplane bend (i.p.), and out-of-plane bend (o.o.p.). The in-plane and out-of-plane mode descriptions are relative to the local XeOF₂ plane (Figure 6.10). ^{*f*} The band intensity has been corrected for overlap with the AsF₆⁻ band of [Xe₃OF₃][AsF₆] occurring at 681 cm^{-1.71}

¹⁶ O		^{16/18} Δν	assgnt ^d
700.8(3)	700.8(3)		
679.1(7)	679.1(15)	0.0 J	$V_1(A_{1g})(ASF_6)$
662.4(1) br	632.1(1) br	-30.3	$[v(Xe_{3}O_{2}) - v(Xe_{1}O_{2})] + [v(Xe_{1}O_{1}) - v(Xe_{2}O_{1})]$
577.1(4)	576.9(7)	-0.2	$v_2(E_g) (AsF_6)$
550.3(46)	550.2(45)	-0.1	$v(Xe_2F_3)$
539.4(5)	539.3(5)	-0.1)	$\mathbf{F}_{\mathbf{Y}}(\mathbf{Y}_{\mathbf{Y}} \mathbf{E}) + \mathbf{F}_{\mathbf{Y}}(\mathbf{Y}_{\mathbf{Y}} \mathbf{E}$
534.0 sh	533.5 sh	-0.5 }	$[v(Ae_1F_1) + v(Ae_1F_2)] + [v(Ae_3F_4) + v(Ae_1F_2)]$
526.7(16)	525.5(15)	-1.2 J	$V(Xe_3F_5)$
513.6(3) ^e	$510.6(3)^{e}$	-3.0 J	$[v(Xe_1F_1) + v(Xe_1F_2)] - [v(Xe_3F_4) +$
498.6(100)	498.7(100)	0.1 J	$v(Xe_3F_5)]$
409.9(1)	409.9(1)	0.0	
375.5(5)	375.6(4)	0.1 l	
366.6(2)	366.7(2)	0.1 J	$v_{5}(1_{2g})(ASF_{6})$
344.7(3) br	329.7(3) br	-15.0	$\delta(O_2 X e_3 F_4) - \delta(O_2 X e_3 F_5)$
299.2 sh	287.8 sh	-11.4	$\delta(O_1Xe_1F_1) - \delta(O_1Xe_1F_2)$
214.7(2)	214.9(2)	0.2	$\delta(F_4Xe_3F_5)_{i.p.} + \delta(F_1Xe_1F_2)_{o.o.p.}$
201.7(2)	201.9(4)	0.2	$\delta(F_4Xe_3F_5)_{i.p.} + \delta(F_1Xe_1F_2)_{i.p.}$
165.8(1) ^f	164.2(2)	-1.6	$\delta(F_3Xe_2O_1)_{i.p.} + \delta(F_1Xe_1F_2)_{i.p.}$
159.0(1)	159.0(1)	0.0	$\delta(F_3Xe_2O_1)_{i.p.} - [\delta(F_1Xe_1F_2)_{i.p.}]_{small}$
117.5(2)	117.0(2)	-0.5	
104.0(6)	103.6(6)	-0.4	

Table 6.7. Experimental Raman Frequencies^a and Intensities^b for $[FXe^{16/18}OXe(F)2^{16/18}OXeF_2][AsF_6]^{c}$

^{*a*} Frequencies are given in cm⁻¹. ^{*b*} Values in parentheses denote relative Raman intensities. ^{*c*} Raman spectra were recorded in FEP sample tubes at -150 °C using 1064-nm excitation. The abbreviations denote shoulder (sh) and broad (br). ^{*d*} The abbreviations denote stretch (v), bend (δ), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). The inplane and out-of-plane mode descriptions are relative to the local XeOF₂ plane (Figure 6.10). ^{*e*} These bands may arise from FXe¹⁶OXeF₂⁺. ^{*f*} The band intensity has been corrected for overlap with the Xe¹⁶OF₂.*n*HF band occurring at 166.0 cm^{-1.125}

energy-minimized geometries (Figure 6.10). Vibrational frequencies calculated at the PBE1PBE, B3LYP, and MP2 levels of theory (Tables A3.3–A3.7) reproduced the observed frequency trends across the series of compounds and therefore only the PBE1PBE values are referred to in the ensuing discussion. It should be noted that the calculated Raman intensities of the to Xe–O stretching bands are consistently overestimated for each system when compared with the experimental intensities, as observed for Xe₃OF₃^{+,71} In all cases, symmetry lowering splits the three Raman-active modes expected for octahedral AsF₆⁻, namely v₁(A_{1g}), v₂(E_g), and v₅(T_{2g}). The additional splittings, which include the A_{1g} band, can only be accounted for by vibrational coupling within the unit cell (factor-group splitting). The anion bands were assigned by comparison with other AsF₆⁻ salts in which there are significant interactions by means of fluorine bridging between the cations and the anions.^{43,154,232}

6.2.3.1. [HOXeF₂][AsF₆]. The Raman spectra of $[^{1/2}H^{16/18}OXeF_2]$ [AsF₆] exhibit two bands that are ^{1/2}H-dependent, and four bands that are both ^{1/2}H- and ^{16/18}O-dependent, in good agreement with the calculated spectra where one band is predicted to be ^{1/2}H-dependent, and five bands are both ^{1/2}H- and ^{16/18}O-dependent. The minor vibrational differences that arise between experimental and calculated frequencies of modes involving the hydrogen atom presumably arise because the calculated ion-pair models, $[^{1/2}H^{16/18}OXeF_2]$ [AsF₆], are for isolated gas-phase ion pairs (see Computational Results), whereas it is also expected that there will be significant hydrogen bonding between nearest neighbor ion pairs in the solid state.

Figure 6.10. Calculated geometries [B3LYP/aug-cc-pVTZ(-PP)] for (a) $HOXeF_2^+$, (b) $FXeOXeF_2^+$, (c) $HOXe(F)_2OXeF_2^+$, (d) $FXeOXe(F)_2OXeF_2^+$, and (e) $[HOXeF_2][AsF_6]$.

The most intense bands in the spectra occur at 543.6 and 554.7 cm^{-1} and do not show isotopic shifts. These bands correspond to the factor-group split symmetric XeF₂ stretching mode, $v(Xe_1F_1) + v(Xe_1F_2)$, in excellent agreement with the calculated value of 562.8 cm⁻¹, and with the symmetric stretching mode of the axial Xe–F bonds in $[XeF_3][SbF_6]$ (573(88); 564(94), 576(94) cm⁻¹).⁴⁶ The out-of-phase v(Xe_1F_1) - v(Xe_1F_2) mode is assigned to the weaker band at 602.0 cm^{-1} and is also well modelled by calculations (618.9 cm⁻¹). The most substantial ^{16/18}O-isotopic shift (-30.9 cm⁻¹) occurs for the band at 646.7 cm⁻¹. This band also shows a $^{1/2}$ H-isotopic shift (-5.8 cm⁻¹) and is assigned to $v(Xe_1O_1)$, which is postulated to show ^{1/2}H- and ^{16/18}O-isotopic shifts of -27.6 and -6.8 cm^{-1} , respectively. The in-plane bend, $\delta(OXe_1F_1) - \delta(OXe_1F_2)$, is also expected to show a $^{16/18}$ O-isotopic shift (-10.3 cm⁻¹) and is assigned to the band at 307.0 which shows an isotopic shift of -10.1 cm^{-1} . The broad band at 194.6 cm⁻¹ also shows ^{1/2}H- and ^{16/18}O-sensitivity and is assigned to $\rho_{r}(HOXe_{1}F_{1}F_{2})_{0,0,p,}$ in agreement with the calculated values.

The highest frequency mode expected for the HOXeF₂⁺ cation is $v(O_1H)$. It is predicted to occur at 3763.9 cm⁻¹ and is expected to show significant ^{1/2}H- and ^{16/18}Osensitivities (-1023 and -12.5 cm⁻¹, respectively). However, the Raman band corresponding to this mode could not be observed, which is likely the result of the low polarizability change associated with the O–H stretch, causing the band to be weak. The XeOH bending and wagging modes are observed as a weak band at 1264.2 cm⁻¹ and a broad, weak band at 328.0 cm⁻¹ which display ²H-isotopic shifts of -337.0 and -67.2 cm⁻¹, respectively, with the bending mode also displaying a ¹⁸O-isotopic shift of -3.4 cm⁻¹. While the isotopic shifts are well modeled by the calculations [2 H: -306.2, -61.5 cm⁻¹; 18 O: -3.3 cm⁻¹], the XeOH wagging mode is likely underestimated because the simplified model neglects hydrogen bonding involving neighboring ion pairs which would shift the mode to higher frequency.²³³

The in-plane and out-of-plane XeF_2 bending modes occur at 210.4 and 235.6 cm⁻¹, respectively, and display neither ^{1/2}H- nor ^{16/18}O-isotopic shifts, in agreement with the calculated ion pair frequencies.

6.2.3.2. $[F^{II}XeO^{IV}XeF_2][PnF_6]$ (Pn = As, Sb). The Raman spectra of $[FXeOXeF_2][AsF_6]$ and $[FXeOXeF_2][SbF_6]$ are almost identical, with the exception of the anion modes. In general, the spectra of $FXe^{16/18}OXeF_2^+$ resemble those of $H^{16/18}OXeF_2^+$, although the latter frequencies are slightly higher, and they are in accord with the frequency trend that is modeled by the calculations.

The Xe^{II}–O and Xe^{IV}–O bonds of FXeOXeF₂⁺ are not symmetric (see Calculated Geometries) and therefore the coupled v(Xe₁O₁) – v(Xe₂O₂) and v(Xe₁O₁) + v(Xe₂O₂) modes occur at significantly different frequencies. The former mode occurs at 645.4 cm⁻¹ and displays a ^{16/18}O-isotopic shift of –29.8 cm⁻¹ which is in agreement with the calculated values and with v(XeO) in HOXeF₂⁺ (646.7, ^{16/18} Δ v: –30.9 cm⁻¹). The inphase mode, v(Xe₁O₁) + v(Xe₂O₁) is factor-group split and occurs at 405.1 and 409.4 cm⁻¹ with ^{16/18}O-isotopic shifts of –21.1 and –19.1 cm⁻¹, which are in good agreement with the calculated frequencies and isotopic shifts. The only other band that displayed a ^{16/18}O-isotopic shift (–10.6 cm⁻¹) occurred at 300.6 cm⁻¹ and is assigned to δ (OXe₁F₁) –

 $\delta(OXe_1F_2)$ which also agrees well with the calculated frequency and isotopic shift, and with the corresponding band in [HOXeF₂][AsF₆] (307.0, ^{16/18} Δv : -10.1 cm⁻¹).

The bands at 545.6 and 556.0 are assigned to the terminal $v(Xe_2F_3)$ stretch which occur to significantly lower frequency than v(XeF) in $[XeF][AsF_6]$ (608 and 610 cm⁻¹)¹⁵⁴ and is indicative of significant bonding between O₁ and Xe₂, which renders Xe₂ less electropositive. The symmetric stretch, $v(Xe_1F_1) + v(Xe_1F_2)$, of FXeOXeF₂⁺ occurs at lower frequency (513.5 cm⁻¹) relative to HOXeF₂⁺ (543.6, 554.7 cm⁻¹) but is higher than in XeOF₂ (467 cm⁻¹),¹²⁵ which is consistent with cation formation. The bands corresponding to the in-plane and out-of-plane F₁-Xe₁-F₂ bending modes are each factor-group split and are observed at 181.7 and 187.7 cm⁻¹ and 225.6 and 229.9 cm⁻¹, respectively. Both modes are also in good agreement with the calculated values.

6.2.3.3. [HOXe(F)₂OXeF₂][AsF₆] and [F^{II}XeO^{IV}Xe(F)₂O^{IV}XeF₂][AsF₆]. The Raman spectra of [HOXe(F)₂OXeF₂][AsF₆] and [F^{II}XeO^{IV}Xe(F)₂O^{IV}XeF₂][AsF₆] are very similar to each other, as is the case for the HOXeF₂⁺ and FXeOXeF₂⁺ cations discussed above. In general, the vibrational frequencies of the longer chain cations occur at frequencies similar to the corresponding modes in the shorter chain cations. Only three bands display ^{16/18}O-isotopic dependencies in [FXeOXe(F)₂OXeF₂][AsF₆] and belong to three distinct vibrational modes. The related three modes are observed in [HOXe(F)₂OXeF₂][AsF₆], however, the lower frequency bands, which correspond to bending modes, are factor-group split. The highest frequency, isotopically dependent modes occur at 658.1 and 662.4 cm⁻¹ for the HOXe(F)₂OXeF₂⁺ and FXeOXe(F)₂OXeF₂⁺ cations, respectively, and

are assigned to the coupled Xe–O stretches, $[v(Xe_3O_2) - v(Xe_1O_2)] + v(Xe_1O_1)$ and $[v(Xe_3O_2) - v(Xe_1O_2)] + [v(Xe_1O_1) - v(Xe_2O_1)]$, respectively. The calculated Xe₁-O₁ Xe₃-O₂ stretching frequencies occur at significantly different values and $(HOXe(F)_2OXeF_2^+: 626.2, 685.1 \text{ cm}^{-1}; FXeOXe(F)_2OXeF_2^+: 671.4, 708.1 \text{ cm}^{-1}).$ The gas-phase calculations of the cation, however, do not take into account ion-pairing of the cations with the AsF₆⁻ anions which would render Xe₃ significantly less electropositive and lower $[v(Xe_3O_2) - v(Xe_1O_2)]$ to an extent where the stretches would be expected to couple more strongly. The remaining two bands that display ^{16/18}O-isotopic dependencies are $\delta(O_2Xe_3F_4) - \delta(O_2Xe_3F_5)$ and $\delta(O_1Xe_1F_1) - \delta(O_1Xe_1F_2)$ with the former occurring at higher frequencies. The bands are factor-group split in $[HOXe(F)_2OXeF_2][AsF_6]$. appearing at 418.2 and 422.9 cm^{-1} and at 241.4, 268.5, and 281.4 cm^{-1} , respectively, with the corresponding bands occuring at 344.7 and 299.2 cm^{-1} , respectively, in [FXeOXe(F)₂OXeF₂][AsF₆]. Both the greater frequency difference for these modes in the hydroxy salt relative to those of $FXeOXe(F)_2OXeF_2^+$ and the ^{16/18}O-isotopic shift trends for $\delta(O_2Xe_3F_4) - \delta(O_2Xe_3F_5)$ and $\delta(O_1Xe_1F_1) - \delta(O_1Xe_1F_2)$ are reproduced by the calculations.

All the remaining bands are insensitive to ${}^{16/18}$ O-isotopic enrichment. The bands at 536.1, 545.9, and 549.7 cm⁻¹ in the spectrum of HOXe(F)₂OXeF₂⁺ are assigned to the factor-group split v(Xe₁F₁) + v(Xe₁F₂) mode while those at 507.3 and 510.5 cm⁻¹ are also factor-group split and are assigned to v(Xe₃F₄) + v(Xe₃F₅). The corresponding modes in FXeOXe(F)₂OXeF₂⁺ are also factor-group split but are coupled in-phase and out-ofphase, appearing as bands at 526.7, 534.0 and 539.4 cm⁻¹ and at 498.6 and 513.6 cm⁻¹, respectively, with the terminal Xe₃-F₃ stretch occuring at 550.3 cm⁻¹. The only other modes whose bands are observed for either cation are the in-plane F-Xe-F bends, which are coupled in both salts. The bands at 221.5 and 214.7 cm⁻¹ are assigned to $\delta(F_4Xe_3F_5)_{ip}$ + $\delta(F_1Xe_1F_2)_{oop}$ and those appearing at 173.5 and 201.7 cm⁻¹ and are assigned to $\delta(F_1Xe_1F_2)_{ip} + \delta(F_4Xe_3F_5)_{ip}$ for the HOXe(F)₂OXeF₂⁺ and FXeOXe(F)₂OXeF₂⁺ cations, respectively.

It is interesting to note that $^{1/2}$ H-isotopic substitution in [HOXe(F)₂OXeF₂][AsF₆] did not show any isotopic dependencies in the Raman spectrum. It is likely that the hydrogen-dependent modes are too weak and broad to be observed by Raman spectroscopy.

geometries of $^{1/2}$ H $^{16/18}$ OXeF $_2^+$, The 6.2.4. Computational **Results.** $[^{1/2}H^{16/18}OXeF_2][AsF_6],$ $H^{16/18}OXe(F)_2^{16/18}OXeF_2^+$, $FXe^{16/18}OXeF_2^+$, $FXe^{16/18}OXe(F)_2^{16/18}OXeF_2^+$, $XeF_3^+ HF$, and $[XeF_3][AsF_6]$ were optimized starting from C_1 symmetries. All of the structures resulted in stationary points with all frequencies real. The PBE1PBE/aug-cc-pVTZ(-PP), B3LYP/aug-cc-pVTZ(-PP), and MP2/aug-cc-pVTZ(-PP) results all reproduce the vibrational frequency trends across the series of compounds reported in the present work (Figures 6.10 and 6.11 and Tables A3.2–A3.8; also see Experimental Section). In the case of XeF_3^+ ·HF, two different starting geometries were optimized, one starting from an optimized XeF₄ geometry with a nearby (2.840 Å) H^+ ion, and the second starting from an optimized XeF_3^+ geometry with a nearby (2.941 Å) HF molecule. Both starting geometries optimized to the same final geometry suggesting

that $XeF_3^+ HF$ can be described as either an HF adduct of XeF_3^+ or a protonated XeF_4 molecule.

6.2.4.1. Geometries. (i) $HOXeF_2^+$, $[HOXeF_2][AsF_6]$, and $FXeOXeF_2^+$. The Xe₁-O₁ bond in $FXeOXeF_2^+$ (1.837–1.885 Å) is elongated relative to that of $XeOF_2$ (1.770–1.821 Å),¹²⁶ however, the bond is lengthened even more in $HOXeF_2^+$ (1.880–1.929 Å) and in the ion-pair, [HOXeF₂][AsF₆], (1.931-1.965 Å) which is consistent with the transfer of electron density from oxygen to the Lewis acid centers. The increased bond lengths result in greater single-bond character which is also manifested in the Raman spectra by lower Xe–O stretching frequencies relative to that of $XeOF_2$ (vide supra). The greater Xe_1-O_1 single bond characters also result in decreased O₁-Xe₁-F bond angles as a result of the reduced steric requirements of the Xe_1-O_1 single bond domains in the cations (FXeOXeF₂⁺: 89.3–89.9°; HOXeF₂⁺: 87.1–87.7°; [HOXeF₂][AsF₆]: 87.2–88.0°) relative to the Xe–O double bond domain in XeOF₂ (94.9–95.9°).¹²⁶ However, the O_1 –Xe₁–F bond angles are still greater than the F_{ax} -Xe₁- F_{eq} bond angles in XeF₃⁺ (83.3-84.2°) where the formal Xe-F bond order is one which indicates some Xe-O double bond character remains. In contrast with the Xe_1-O_1 bond lengths, the Xe_1-F bond lengths follow the reverse trend and are shorter in the cations (FXeOXeF₂⁺: 1.921-1.946 Å; HOXeF₂⁺: 1.903-1.927 Å; [HOXeF₂][AsF₆]: 1.938-1.963 Å) relative to XeOF₂ $(1.968-1.997 \text{ Å})^{126}$ but are longer than the related Xe–F_{ax} bonds of XeF₃⁺ (1.883-1.906) Å). It is noteworthy that the Xe₂–O₁ bond (2.240–2.296 Å) in FXeOXeF₂⁺ is significantly longer than the Xe_1-O_1 bond (1.837-1.885 Å) which can be attributed to the greater electronegativity of Xe(IV) relative to Xe(II). The Xe₁-O₁-Xe₂ bond angle $(123.8-129.7^{\circ})$ is also greater than the Xe₁-O₁-H bond angle (108.1°), which is likely a consequence of the Xe-Xe (3.460-3.588 Å) steric interaction of the XeF group relative to that of hydrogen, as well as the greater electron lone pair – electron bond pair interaction present in the more covalent O-H bond relative to the more polar covalent Xe-F bond (see Table A3.9).

(ii) $HOXe(F)_2OXeF_2^+$ and $FXeOXe(F)_2OXeF_2^+$. Coordination of a second XeOF₂ molecule has very little impact on the geometries of these cations in the remainder of their chains. In both cations, the Xe, O₁, O₂, F₁, and F₂ atoms are coplanar. The Xe₁-O₁ and Xe₁-F bonds in HOXe(F)₂OXeF₂⁺ (1.914-1.945 Å and 1.929-1.958 Å, respectively) and FXeOXe(F)₂OXeF₂⁺ (1.863-1.899 Å and 1.922-1.962 Å, respectively) are slightly elongated relative to those of the shorter chain cations whereas the related bond angles remain essentially unchanged. Upon coordination, the geometric parameters of the terminal XeOF₂ moieties follow the same trends as observed in HOXeF₂⁺ and FXeOXeF₂⁺, leading to Xe₁-O₁ bond elongation and the Xe₁-F bond shortening, although to a lesser extent, and are almost unchanged relative to those of free XeOF₂.¹²⁶

(iii) $XeF_3^+ HF$ and $[XeF_3][SbF_6]$. Coordination of HF to XeF_3^+ has very little effect on the geometry of XeF_3^+ . The Xe–F_e (1.839–1.870 Å) and Xe–F_a (1.892–1.916 Å) bond lengths of the adduct are the same as those in XeF_3^+ (Xe–F_e: 1.838–1.867 Å; Xe–F_a 1.883–1.906 Å) but slightly shorter than in $[XeF_3][SbF_6]$ (Xe–F_e: 1.894–1.921 Å; Xe–F_a 1.926–1.950 Å). The F_e–Xe–F_a bond angles (XeF₃⁺: 83.3–84.2°; XeF₃⁺·HF: 83.7–84.7°; [XeF₃][SbF₆]: 86.0–86.8°). The poorest agreement between the calculated XeF₃⁺·HF and [XeF₃][SbF₆] geometries and experimental geometries occurs for the contact angles and distances. In both models, the F_e–Xe---F bond angles are ~180° instead of the ~160° angle observed in their respective crystal structures. The Xe---F distances are overestimated and underestimated for XeF₃⁺·HF and [XeF₃][SbF₆], respectively (XeF₃⁺·HF: 2.537–2.556 Å; [XeF₃][AsF₆]: 2.127–2.136 Å), relative to their crystal structures (XeF₃⁺·HF: 2.462(2); [XeF₃][AsF₆]: 2.485(1) Å). These discrepancies presumably result from the deformability of these angles which are strongly influenced by crystal packing.

6.3. Conclusion

The Lewis base properties of oxygen in XeOF₂ have been demonstrated by the $[^{1/2}H^{16/18}OXeF_2][AsF_6],$ noble-gas salts. high-yield syntheses of the $[H^{16/18}OXe(F)_2^{16/18}OXeF_2][AsF_6],$ $[FXe^{16/18}OXeF_2][AsF_6],$ and [FXe^{16/18}OXe(F)₂^{16/18}OXeF₂][AsF₆], in high purity. The salts represent the first new Xe(IV) cations to have been synthesized in over 35 years, with the $[^{1/2}H^{16/18}OXeF_2][AsF_6]$ and $[H^{16/18}OXe(F)_2]^{16/18}OXeF_2][AsF_6]$ salts also representing the only examples of xenon hydroxides to have been isolated and characterized in the solid state. All of the aforementioned salts are kinetically stable at -78 °C (with the exception of [H^{16/18}OXe(F)₂^{16/18}OXeF₂][AsF₆], which slowly decomposes at -78 °C) but slowly decompose upon warming to between -50 and -35 °C. Their decomposition pathways, inferred from their decomposition products, are supported by their thermochemical

205

cycles. The latter show that the proposed reduction pathways of Xe(IV) to Xe(II) and O_2 are mainly driven by lattice energy contributions with entropy change associated with O_2 evolution also playing a significant role.

In an attempt to synthesize [HOXeF₂][SbF₆], crystals of [XeF₃·HF][Sb₂F₁₁], ([XeF₃·HF][Sb₂F₁₁])₂·[H₅F₄][SbF₆], and [XeF₃][SbF₆] were grown in admixture. The crystal structure of ([XeF₃·HF][Sb₂F₁₁])₂·[H₅F₄][SbF₆] contains the previously unknown acidium ion, H₃F₄⁺. The secondary coordination spheres of xenon are very similar in the crystal structures of [XeF₃·HF] [Sb₂F₁₁] and ([XeF₃·HF][Sb₂F₁₁])₂·[H₅F₄][SbF₆], however, the former cation displays a 2-fold positional disorder. An additional contact in ([XeF₃·HF][Sb₂F₁₁])₂·[H₅F₄][SbF₆], between xenon of the XeF₃⁺ cation and a fluorine atom of the SbF₆⁻ anion in the acidium salt affects the crystal packing sufficiently to give an ordered structure. Quantum-chemical calculations indicate that the XeF₃⁺·HF cation can be described as either a protonated XeF₄ molecule or a HF adduct of XeF₃⁺. The experimental and calculated geometries of the XeF₃⁺ cation in [XeF₃·HF][Sb₂F₁₁], ([XeF₃·HF][Sb₂F₁₁])₂·[H₅F₄][SbF₆], and [XeF₃][SbF₆]XeF₃⁺·HF are very similar.

CHAPTER 7

A Rare Example of a Krypton Difluoride Coordination Compound; [BrOF₂][AsF₆]·2KrF₂

7.1. Introduction

The precursor to all known krypton compounds, KrF₂, has been structurally well characterized¹² and has been the subject of several theoretical studies.^{99,168} The chemistry of krypton is restricted to the +2 oxidation state, presently consisting of several KrF⁺ and Kr₂F₃⁺ salts,^{3,75,109,234–239} Kr(OTeF₅)₂,¹⁰³ a number of nitrile adducts of KrF⁺, namely, FKrN=CR⁺ (R = H, CF₃, C₂F₅, *n*-C₃F₇),^{104,105} preliminary evidence, but no structural characterization, for KrF₂·VF₅²⁴⁰ and KrF₂·MnF₄,²⁴¹ and a series of KrF₂ Lewis acid–base adducts with group 6 d⁰ transition metal centers, namely MOF₄·KrF₂ (M = Cr,¹⁰⁶ Mo,¹⁰⁷ W¹⁰⁷). The structural characterizations of the latter KrF₂ adducts were limited to solution ¹⁹F NMR and solid-state Raman spectroscopy. In all three cases, the Raman and ¹⁹F NMR spectra indicate that the adducts result from weak coordination of KrF₂ through a fluorine bridge to the metal atom. In the absence of X-ray crystal structures, an assessment of the degree of coordination, based on the relative bond lengths of terminal and bridge Kr–F bonds could not be made.

To date, there is no X-ray crystal structure in which KrF_2 serves as a ligand towards a metal atom, nor are there any examples in which KrF_2 coordinates to a maingroup atom. Two criteria are required for KrF_2 coordination: (1) KrF_2 must interact with a Lewis acid center which is not sufficiently strong to "completely" abstract a fluoride ion from KrF₂ and (2) the Lewis acid must be resistant to oxidation by the powerful oxidative fluorinator, KrF₂. These criteria are met in the aforementioned low-temperature studies of the MOF₄·KrF₂ adducts.^{106,107} Earlier studies have shown that the BrOF₂⁺ cation meets these criteria for the less strongly oxidizing XeF₂ ligand in $[BrOF_2][AsF_6]$ ·XeF₂,¹²⁹ which has been characterized in solution by ¹⁹F and ¹²⁹Xe NMR spectroscopy and in the solid state by Raman spectroscopy, offering promise for the synthesis of a KrF₂ analogue.

The present study extends the little studied coordination chemistry of krypton to the synthesis and characterization of the first main-group coordination compound of KrF_2 , namely, $[BrOF_2][AsF_6] \cdot 2KrF_2$. In addition to structural characterization by solidstate Raman spectroscopy and single-crystal X-ray diffraction, the nature of the adduct bonding is examined using quantum-chemical calculations in conjunction with electron localization function (ELF) calculations.

7.2. Results and Discussion

7.2.1. Synthesis and Properties of $[BrOF_2][AsF_6] \cdot 2KrF_2$. Reaction progress and the purities of all products were routinely monitored by recording the low-temperature Raman spectra (-150 °C) of the solids.

The $[BrOF_2][AsF_6] \cdot XeF_2$ adduct was synthesized as previously described.¹²⁹ Rather than through the direct combination of BrOF₃ and AsF₅, the salt, $[BrOF_2][AsF_6]$, was synthesized in high purity by removal of XeF₂ from $[BrOF_2][AsF_6] \cdot XeF_2$ under dynamic vacuum at 0 °C (eq 7.1). This synthetic route to $[BrOF_2][AsF_6]$ circumvents

Ph.D. Thesis – David S. Brock

$$[BrOF_2][AsF_6] \cdot XeF_2 \xrightarrow{\text{dynamic vac.}} [BrOF_2][AsF_6] + XeF_2$$
(7.1)

difficulties associated with the synthesis and isolation of $BrOF_3$ from the reaction of $K[BrF_4O]$ and $[O_2][AsF_6]$ in $HF^{242,243}$ and the possibility of explosion during the hydrolysis of BrF_5 to form $BrOF_3$.²¹⁶

Addition of KrF₂ to $[BrOF_2][AsF_6]$ (2:1 molar ratio) that had been precipitated and suspended in aHF at -78 °C resulted in a significant volume increase with respect to the original volume of suspended $[BrOF_2][AsF_6]$. The Raman spectra of the solid product under frozen HF solvent and of the product isolated by removal of HF at -78 °C were identical. Both spectra revealed that the bands corresponding to $BrOF_2^+$ were shifted to lower frequencies relative to those of $[BrOF_2][AsF_6]$ and that the KrF₂ stretching band, associated with uncomplexed KrF₂, was replaced by two pairs of Kr–F stretching bands (see 7.2.3., Raman Spectroscopy). The spectrum was consistent with the formation of $[BrOF_2][AsF_6]\cdot 2KrF_2$, according to eq 7.2. The adduct is stable for at least five days at

$$[BrOF_2][AsF_6] + 2KrF_2 \xrightarrow{HF} [BrOF_2][AsF_6] \cdot 2KrF_2$$
(7.2)

-78 °C as a solid and under aHF solvent. The adduct is also stable in aHF up to 25 °C for at least 1 h, with Raman spectroscopy showing no discernable decomposition when the adduct was isolated by removal of the solvent under dynamic vacuum at -78 °C.

Attempts to form the 1:1 adduct, $[BrOF_2][AsF_6] \cdot KrF_2$, by reaction of a 1:1 molar ratio of $[BrOF_2][AsF_6]$ and KrF_2 in aHF at -78 °C yielded only a mixture of $[BrOF_2][AsF_6] \cdot 2KrF_2$ and $[BrOF_2][AsF_6]$ upon removal of the solvent under dynamic vacuum at -78 °C. Similar attempts to form a 3:1 adduct yielded only $[BrOF_2][AsF_6] \cdot 2KrF_2$ and unreacted KrF_2 . 7.2.2. X-ray Crystal Structure of $[BrOF_2][AsF_6]\cdot 2KrF_2$. A summary of the refinement results and other crystallographic information are given in Table 7.1. Important bond lengths, bond angles, and contacts are listed in Table 7.2.

The structure of $[BrOF_2][AsF_6] \cdot 2KrF_2$ consists of a $BrOF_2^+$ cation that interacts by means of short Br---F contacts with a single fluorine atom of the AsF_6^- anion and a fluorine atom from each of two KrF_2 ligands (Figure 7.1a). The $[BrOF_2][AsF_6] \cdot 2KrF_2$ structural units are relatively isolated, with the shortest intermolecular contacts (3.134 – 3.404 Å) occurring between the fluorine and krypton atoms of neighboring KrF_2 molecules, which are near or slightly under the sum of the fluorine and krypton van der Waals radii (3.49).⁵⁵

The primary coordination sphere of Br(V) in $BrOF_2^+$ is trigonal pyramidal. The secondary coordination sphere comprises a fluorine atom of the AsF_6^- anion coordinated trans to the oxygen atom of $BrOF_2^+$, and the fluorine atoms of two KrF₂ molecules coordinated trans to the fluorine atoms of $BrOF_2^+$ so that the geometry of the F₂OBrF₃ moiety is pseudo-octahedral.

The Kr–F bond lengths of both coordinated KrF₂ molecules are distorted relative to those of free KrF₂ (1.894(5) Å),⁹⁹ with elongated bridge bonds (1.943(4), 1.933(4) Å) and terminal bonds that are shortened by nearly equal amounts (1.840(5), 1.847(4) Å). The differences between the terminal and bridging Kr–F bond lengths are significantly less than in KrF⁺ and Kr₂F₃⁺ salts: [KrF][AsF₆] (Kr–F_b, 2.131(2) Å; Kr–F_t, 1.765(2) Å),⁹⁹ [Kr₂F₃][AsF₆]·[KrF][AsF₆] (Kr–F_b, 2.061(6), 2.049(6), 2.106(6) Å; Kr–F_t, 1.780(7), 1.803(6), 1.783(6) Å),³ [KrF][SbF₆] (Kr–F_b, 2.140(3) Å; Kr–F_t, 1.765(3) Å),⁹⁹

chem formula	AsBrOF ₁₂ Kr ₂
space group	<i>P2₁/c</i> (No. 14)
a (Å)	5.7166(6)
<i>b</i> (Å)	13.644(1)
<i>c</i> (Å)	15.105(2)
β (deg.)	111.446(4)
<i>V</i> (Å ³)	1096.6(2)
Z (molecules/unit cell)	4
mol. wt. (g mol ^{-1})	2265.72
$ ho_{ m calc}~(m g~ m cm^{-3})$	3.431 .
<i>T</i> (°C)	-173
$\mu(\mathrm{mm}^{-1})$	14.91
λ (Å)	0.71073
R_1^{a}	0.0693
wR_2^{b}	0.1715

Table 7.1. Summary of Crystal Data and Refinement Results for [BrOF₂][AsF₆]·2KrF₂

^a $R_1 = \Sigma ||F_o|| - |F_c|| / \Sigma |F_o|$ for $I > 2\sigma(I)$. ^b wR_2 is defined as $\{\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma w(F_o^2)^2\}^{\frac{1}{2}}$ for $I > 2\sigma(I)$.

exptl ^a			PBE1PBE ^a	B3LYP ^a
		Bond Lengths (Å)		
Br(1)O(1)	1.564(5)	Br(1)-O(1)	1.556	1.569
Br(1)–F(1)	1.727(4)	Br(1) - F(1)	1.731	1.757
Br(1)–F(2)	1.723(4)	Br(1)–F(2)	1.730	1.757
Br(1)F(3)	2.318(4)	Br(1)F(3)	2.350	2.363
Br(1)F(5)	2.356(4)	Br(1)F(5)	2.302	2.338
Br(1)F(7)	2.576(4)	Br(1)F(7)	2.579	2.529
Kr(1)–F(3)	1.943(4)	Kr(1)–F(3)	1.951	1.984
Kr(1)–F(4)	1.840(5)	Kr(1)–F(4)	1.814	1.843
Kr(2)–F(5)	1.933 <u>(</u> 4)	Kr(2)–F(5)	1.957	1.984
Kr(2)–F(6)	1.847(4)	Kr(2)–F(6)	1.808	1.837
As(1)–F(7)	1.742(4)	As(1)–F(7)	1.789	1.813
As(1)–F(8)	1.711(4)	As(1)–F(8)	1.709	1.722
As(1)–F(9)	1.732(4)	As(1)–F(9)	1.743	1.752
As(1)–F(10)	1.732(4)	As(1)–F(10)	1.724	1.742
As(1)–F(11)	1.712(4)	As(1)–F(11)	1.705	1.720
As(1)–F(12)	1.709(4)	As(1)–F(12)	1.761	1.773
		Bond Angles (deg)		
F(1)–Br(1)–F(2)	89.3(2)	F(1)-Br(1)-F(2)	89.1	89.8
F(1)–Br(1)–O(1)	103.3(3)	F(1)–Br(1)–O(1)	102.0	102.0
F(1)–Br(1)F(3)	85.1(2)	F(1)-Br(1)F(3)	83.9	85.7
F(1)–Br(1)F(5)	162.4(2)	F(1)–Br(1)F(5)	166.9	166.5
F(1)-Br(1)F(7)	80.5(2)	F(1)-Br(1)F(7)	89.9	86.1
F(2)–Br(1)–O(1)	102.8(3)	F(2)–Br(1)–O(1)	100.0	100.1
F(2)–Br(1)F(3)	166.7(2)	F(2)–Br(1)F(3)	172.5	173.7
F(2)–Br(1)F(5)	84.9(2)	F(2)–Br(1)F(5)	82.4	83.4

Table 7.2.Experimental and Calculated (C_1) Geometrical Parameters for
 $[BrOF_2][AsF_6] \cdot 2KrF_2$

Table 7.2. continued...

F(2)–Br(1)F(7)	83.5(2)	F(2)–Br(1)F(7)	72.1	74.1
O(1)–Br(1)F(3)	90.2(2)	O(1)-Br(1)F(3)	84.1	85.3
O(1)-Br(1)F(5)	94.2(2)	O(1)-Br(1)F(5)	89.3	90.7
O(1)–Br(1)F(7)	172.6(2)	O(1)-Br(1)F(7)	165.7	170.2
F(3)Kr(1)F(4)	179.9(2)	F(3)Kr(1)F(4)	177.2	176.9
F(3)F(5)	96.9(2)	F(3)Br(1)F(5)	104.0	100.1
F(3)F(7)	83.7(2)	F(3)Br(1)F(7)	105.3	101.1
F(5)-Kr(2)-F(6)	178.7(2)	F(5)-Kr(2)-F(6)	177.5	177.7
F(5)Br(1)F(7)	82.3(2)	F(5)Br(1)F(7)	78.0	80.8
Br(1)F(3)–Kr(1)	132.1(2)	Br(1)F(3)–Kr(1)	138.9	139.6
Br(1)F(5)–Kr(2)	139.9(2)	Br(1)F(5)–Kr(2)	129.4	129.4
Br(1)F(7)–As(1)	131.1(2)	Br(1)F(7)–As(1)	114.8	123.7
F(7)–As(1)–F(8)	179.4(2)	F(7)–As(1)–F(8)	175.8	176.6
F(7)–As(1)–F(9)	89.1(2)	F(7)–As(1)–F(9)	86.8	87.4
F(7)–As(1)–F(10)	88.8(2)	F(7)–As(1)–F(10)	88.6	87.9
F(7)–As(1)–F(11)	88.4(4)	F(7)–As(1)–F(11)	90.1	89.6
F(7)–As(1)–F(12)	89.5(2)	F(7)–As(1)–F(12)	85.6	85.6
F(8)-As(1)-F(9)	90.4(2)	F(8)–As(1)–F(9)	91.5	91.9
F(8)–As(1)–F(10)	91.6(2)	F(8)–As(1)–F(10)	92.9	92.6
F(8)–As(1)–F(11)	91.2(2)	F(8)–As(1)–F(11)	93.8	93.8
F(8)–As(1)–F(12)	90.8(2)	F(8)–As(1)–F(12)	90.5	91.0
F(9)-As(1)-F(10)	177.9(2)	F(9)–As(1)–F(10)	174.5	174.5
F(9)-As(1)-F(11)	90.4(2)	F(9)–As(1)–F(11)	91.1	91.2
F(9)–As(1)–F(12)	89.1(2)	F(9)–As(1)–F(12)	87.6	87.9
F(10)-As(1)-F(11)	90.1(2)	F(10)–As(1)–F(11)	91.9	91.6
F(10)-As(1)-F(12)	90.4(2)	F(10)-As(1)-F(12)	89.1	88.9
F(11)–As(1)–F(12)	177.8(2)	F(11)–As(1)–F(12)	175.5	175.1

^{*a*} The aug-cc-pVTZ(-PP) basis set was used. The symmetry of the energy-minimized geometry is C_1 . The labeling scheme corresponds to that used in Figures 7.1a and 7.1b.

215

Figure 7.1. (a) The structural unit in the X-ray crystal structure of $[BrOF_2][AsF_6] \cdot 2KrF_2$; thermal ellipsoids are shown at the 50% probability level and (b) the calculated geometry (PBE1PBE/aug-cc-pVTZ(-PP)) of $[BrOF_2][AsF_6] \cdot 2KrF_2$ showing the pseudo-octahedral coordination around bromine(V).

[KrF][BiF₆] (Kr–F_b, 2.090(6) Å; Kr–F_t, 1.774(6) Å),⁹⁹ [Kr₂F₃]₂[SbF₆]₂·KrF₂ (Kr–F_b, 2.041(4), 2.065(4), 2.052(5), 2.056(4) Å; Kr–F_t, 1.805(5), 1.799(4), 1.797(5), 1.787(4) Å),⁹⁹ and [Kr₂F₃][SbF₆]·KrF₂ (Kr–F_b, 2.027(5), 2.046(5) Å; Kr–F_t, 1.800(5), 1.790(5) Å).⁹⁹ This indicates that the Kr–F_b bonds in [BrOF₂][AsF₆]·2KrF₂ have considerably more covalent character relative to those of KrF⁺ and Kr₂F₃⁺ salts and that the KrF₂ molecules behave as coordinating ligands rather than as fluoride ion donors.

The KrF₂ molecules coordinate to the cation by means of Br---F(3) and Br---F(5) contacts of 2.318(4) and 2.356(4) Å, respectively, which are relatively short and significantly less than the sum of the van der Waals radii of Br and F (3.32 Å). The fluorine bridges, Br(1)---F(3)-Kr(1) and Br(1)---F(5)-Kr(2), are bent as a consequence of the AX₂E₂ VSEPR⁴¹ arrangement of bond pair and electron lone pair domains of the bridging fluorine atom, resulting in angles of 132.1(2)° and 139.9(2)°, respectively. The NBO analysis (PBE1PBE and B3LYP values are taken from Table 7.3; B3LYP values are in parentheses) assigns a bond order of 0.10 (0.08) for Br---F compared to 0.50 (0.39) for the Br-F bond of the $BrOF_2^+$ cation in the complex and 0.38 (0.37) for the terminal and 0.25 (0.24) for the bridge Kr-F bonds of the coordinated KrF₂ molecules. Because the lone pair-bond pair repulsions are less for these long and very ionic bridge bonds, the angles will be significantly more open than the ideal tetrahedral angle of an AX_2E_2 VSEPR arrangement. Similar reasoning applies to the Br(1)---F(7)-As(1) angle where the Br---F and As-F bond orders are 0.04 (0.04) and 0.47 (0.46), respectively. The Br--- F_b -Kr angles appear to be little influenced by steric interactions, with F_b - F_b distances of 3.25–3.50 Å and F_b…F_{Br} distances of 2.77–2.93 Å compared to the van der Waals sum of

BrOF ₂ ⁺				[BrOF ₂][A	sF ₆]·2KrF ₂		KrF ₂					
Charges [Valencies]												
	PB	EIPBE	B3	BLYP	PBE	1PBE	B3	LYP	PBE	IPBE	B3	LYP
Br(1)	2.326	[1.325]	2.298	[1.294]	2.411	[2.270]	2.381	[1.893]				
O(1)	-0.586	[0.594]	-0.563	[0.602]	-0.715	[0.953]	-0.695	[0.843]				
F(1)	-0.370	[0.271]	-0.368	[0.257]	-0.446	0.457	-0.445	0.357				
F(2)	-0.370	[0.271]	-0.368	[0.257]	-0.445	0.455	-0.446	0.355				
Kr(1)					1.081	0.645	1.065	[0.619]	1.032	[0.619]	1.013	[0.588]
F(3)					-0.579	[0.351]	-0.570	[0.326]	-0.516	[0.326]	-0.506	0.309
F(4)					-0.432	[0.394]	-0.420	[0.378]	-0.516	[0.326]	-0.506	[0.309]
Kr(2)					1.084	[0.667]	1.065	[0.635]	1.032	[0.619]	1.013	[0.588]
F(5)					-0.576	[0.372]	-0.566	[0.341]	-0.516	[0.326]	-0.506	[0.309]
F(6)					-0.422	[0.404]	-0.414	[0.380]	-0.516	[0.326]	-0.506	[0.309]
As(1)					2.638	[3.222]	2.640	[3.152]				
F(7)					-0.634	[0.464]	-0.636	[0.443]				
F(8)					-0.573	[0.502]	-0.571	[0.490]				
F(9)					-0.612	[0.466]	-0.606	[0.460]				
F(10)					-0.589	[0.490]	-0.593	[0.473]				
F(11)					-0.566	[0.506]	-0.565	[0.492]				
F(12)					-0.626	[0.467]	-0.623	[0.447]				
Bond Orders												
Br(1)-O(1)	0.670		0.674		1.023		0.905					
Br(1)-F(1)	0.328		0.310		0.493		0.389					
Br(1)- $F(2)$	0.328		0.310		0.497		0.391					
Br(1)F(3)					0.092		0.075					
Br(1)F(5)					0.103		0.081					
Br(1)F(7)					0.042		0.041					
Kr(1)-F(3)					0.244		0.234		0.310		0.294	
Kr(1)-F(4)					0.380		0.365		0.310		0.294	
Kr(2)-F(5)					0.250		0.241		0.310		0.294	
Kr(2)-F(6)					0.389		0.368		0.310		0.294	
As(1)-F(7)					0.474		0.455					
As(1)-F(8)					0.574		0.564					
As(1)-F(9)					0.530		0.526					
As(1)-F(10)					0.555		0.539					
As(1)-F(11)					0.580		0.567					
<u>As(1)-F(12)</u>					0.508		0.502					

Table 7.3. NBO Valencies, Bond Orders, and Charges (NPA) for $BrOF_2^+$, $[BrOF_2][AsF_6] \cdot 2KrF_2$, and KrF_2

2.94 Å.⁵⁵ The only other short intramolecular contacts are Kr(1)---F(9) (3.22 Å) and Kr(2)---F(10) (3.40 Å), which are near the van der Waals sum for krypton and fluorine (3.49 Å). The KrF₂ ligands retain their linearity with F(3)–Kr(1)–F(4) and F(5)–Kr(2)–F(6) angles of 179.9(2)° and 178.7(2)°, respectively. One fluorine atom of the AsF₆⁻ anion forms a relatively short Br---F_b bridge bond (2.576(4) Å) with the BrOF₂⁺ cation, giving rise to a distorted octahedral arrangement around arsenic in which the As–F_b bond (1.742(4) Å) is elongated relative to the As–F bond trans to it (1.711(4) Å) and with the equatorial bond lengths ranging from 1.709(4) to 1.732(4) Å.

The Br–O bond length (1.564(5) Å) is equal, within $\pm 3\sigma$, to that of BrOF₄⁻ in [NO][BrOF₄] (1.575(3) Å),²⁴⁴ and the neutral parent molecule, BrOF₃, in [NO₂][BrF₄]·2BrOF₃ (1.569, 1.606 Å),²⁴⁴ but is significantly shorter than in the neutral species O₂Br-O-BrO₂ (1.606 (12), 1.611(2), 1.613(2), 1.606(2) Å),²⁴⁵ and O₂BrOTeF₅ (1.595(4), 1.608(3) Å),²⁴⁶ and in the BrO₂⁺ cation of [BrO₂][SbF₆] (1.595(2) Å).²⁴⁷ The Br-O bond length is also comparable to the Se-O bond length in isoelectronic SeOF₂ (1.576 Å), which was measured in the gas phase by microwave spectroscopy.²⁴⁸ The Br-F bond lengths in $[BrOF_2][AsF_6] \cdot 2KrF_2$ (1.727(4), 1.723(4) Å) are equal, within $\pm 3\sigma$, to the axial Br-F bond lengths of the BrF4⁺ cation in [BrF4][Sb2F11] (Br-Fax, 1.728(3), 1.729(3) Å (Br-F_{eq}, 1.664(3), 1.667(2) Å)),²⁴⁹ the equatorial Br-F bond lengths in the neutral parent molecule, BrOF₃, in [NO₂][BrF₄]·2BrOF₃ (Br-F_{ax}, 1.820, 1.839, 1.822, 1.836 Å; Br-Feg, 1.725, 1.692 Å),²⁴⁴ and to the Se-F bond lengths of the isoelectronic SeOF₂ molecule (1.7295 Å).²⁴⁸ They are, however, significantly shorter than the Br-F bonds in [NO][BrOF₄] (1.846(2), 1.912(2) Å).²⁴⁴

The valence electron lone pair of bromine in [BrOF₂][AsF₆]·2KrF₂ is expected to occupy a region opposite the three primary bond domains, giving a tetrahedral AX₂YE VSEPR⁴¹ arrangement at Br(V). Thus, a stereochemically active valence electron lone pair is expected to occupy a region at the center of the triangular arrangement defined by the three long contacts that comprise the more open face of the pseudo-octahedron. The sum of the F(3)---Br(1)---F(5) (96.9(2)°), F(3)---Br(1)---F(7) (83.7(2)°), and F(5)---Br(1)---F(7) (82.3(2)°) angles is 262.9(6)°, whereas the face of the octahedron containing the contacts significantly more (F(1)-Br(1)-O(1), $103.3(3)^{\circ};$ primary is open F(1)-Br(1)-F(2), 89.3(2)°; F(2)-Br(1)-O(1), 102.8(3)°) with an angle sum of 295.4(8)°. The angle sums are attributable to the greater steric requirement of the Br-O double bond domain. The short secondary contact distances observed in [BrOF₂][AsF₆]·2KrF₂ render the valence electron lone pair domain of bromine more compact and localized around the bromine atom relative to that of free $BrOF_2^+$. The steric crowding of the Br(V) valence electron lone pair represents an example of a "weakly active" electron lone pair²⁵⁰ (see 7.2.4, Computational Results).

7.2.3. Raman Spectroscopy. The low-temperature Raman spectrum of $[BrOF_2][AsF_6] \cdot 2KrF_2$ is shown in Figure 7.2. The observed and calculated frequencies and their detailed assignments are listed in Table 7.4. The spectral assignments for $[BrOF_2][AsF_6] \cdot 2KrF_2$ were made by comparison with the calculated vibrational frequencies and Raman intensities (Table 7.4) of the energy-minimized geometry (Figure 7.1b), as well as those of KrF₂ (Table A4.1). In both the crystal structure and the

220

Figure 7.2. Raman spectrum of $[BrOF_2][AsF_6] \cdot 2KrF_2$ recorded at -150 °C using 1064-nm excitation. Symbols denote FEP sample tube lines (*), unreacted KrF₂ (†), and instrumental artifact (‡).

exptl ^b	PBE1PBE ^c	B3LYP ^c	assgnts $(C_1)^d$ [BrOF ₂][AsF ₆]·2KrF ₂		AsF_6 (O_h)
1053(19) 1047(1)	} 1071(68)[69]	1021(80)[69]	v(BrO)		
702(3)	$ \left\{\begin{array}{c} 745(6)[174] \\ 729(3)[165] \\ 724(<1)[232] \end{array}\right. $	718(6)[167] 707(4)[157] 698(<1)[229]	$\mathbf{v}(AsF_{11}) - \mathbf{v}(AsF_{12})$ $\mathbf{v}(AsF_8)$ $\mathbf{v}(AsF_9) - \mathbf{v}(AsF_{10})$	}	$v_3(T_{1u})$
675(6) 644(22)	662(18)[71] 683(58)[85]	637(56)[45] 644(32)[45]	$\mathbf{v}(\mathrm{AsF}_{7}) + \mathbf{v}(\mathrm{AsF}_{9}) + \mathbf{v}(\mathrm{AsF}_{10}) + \mathbf{v}(\mathrm{AsF}_{12})^{e}$ $\mathbf{v}(\mathrm{BrF}_{1}) + \mathbf{v}(\mathrm{BrF}_{2})^{f}$	-	$v_1(A_{1g})$
625(13) 549(7) 533(5)	652(26)[68] 610(28)[182] 587(21)[295]	612(31)[67] 577(20)[194] 549(12)[295]	$ \begin{aligned} & \mathbf{v}(\mathrm{Br}F_1) - \mathbf{v}(\mathrm{Br}F_2) \\ & \mathbf{v}(\mathrm{Kr}_2\mathrm{F}_6) + [\mathbf{v}(\mathrm{Kr}_1\mathrm{F}_4) - \mathbf{v}(\mathrm{Br}\mathrm{F}_1)]_{\mathrm{small}} \\ & \mathbf{v}(\mathrm{Kr}_1\mathrm{F}_4) - [\mathbf{v}(\mathrm{Kr}_2\mathrm{F}_6) + \mathbf{v}(\mathrm{Br}\mathrm{F}_2)]_{\mathrm{small}} \end{aligned} $		
597(1) 587(1) 565(1)	<pre>571(4)[6]</pre>	557(6)[70]	$[v(AsF_9) + v(AsF_{10})] - [v(AsF_{11}) + v(AsF_{12})]$	}	ν ₂ (E _g)
558(1)	<pre>536(5)[31]</pre>	504(20)[50]	$\nu(AsF_7) - \nu(AsF_{12})_{small}$	J	
472(100), br 443(17)	489(76)[124] 467(33)[270] (401(<1)[45]	473(87)[84] 450(43)[231] 391(<1)[49]	$\nu(Kr_1F_3) + [\nu(Kr_2F_5) - \nu(AsF_7)]_{\text{small}}$ $\nu(Kr_2F_5) - \nu(Kr_1F_3)_{\text{small}}$ $\delta(F_2AsF_{12}) - \delta(F_{12}AsF_{13}) + 2 - (F_2AsF_2)$	٦	
401(2)	396(<1)[26] 394(<1)[39]	385(<1)[32] 383(<1)[31]	$\delta(F_8AsF_9) - \delta(F_7AsF_{10}) + \rho_w(F_{11}AsF_{12}) \\ \delta(AsF_7F_9F_{11})_{oop} - \delta(AsF_8F_{10}F_{12})_{oop}$	}	$v_4(T_{1u})$
397(2)	386(4)[123]	368(4)[103] 359(1)[<1]	$\delta(OBrF_1F_2)$ $\delta(F_0AsF_{12}) + \delta(F_{10}AsF_{11})$	ר	
366(1)	$\begin{cases} 362(1)[1] \\ 356(<1)[<1] \end{cases}$	352(1)[3] 344(<1)[<1]	$\delta(F_7AsF_{12}) + \delta(F_8AsF_{11})$ $\delta(F_7AsF_9) + \delta(F_8AsF_{10})$	}	$\nu_5(T_{2g})$
377(4) 371(5)	} 334(5)[84]	319(4)[69]	$\rho_{w}(OBrF_{2}) + \rho_{t}(F_{1}BrF_{2})$		
314(4) 301(1)	304(<1)[7] 291(1)[44]	283(<1)[9] 274(1)[34]	$\delta(F_1BrF_2)$ $\delta(F_5Kr_2F_6)_{000}$		
266(1) 254(2)	269(2)[67] 256(<1)[7]	258(1)[53] 243(<1)[8]	$\delta(F_3Kr_1F_4)_{ip} \\ \delta(F_5Kr_2F_6)_{ip}$		

Table 7.4.Experimental and Calculated Vibrational Frequencies^a for $[BrOF_2][AsF_6] \cdot 2KrF_2$

l a die 7.4.	(continued)				
	246(<0.1)[5]	241(<0.1)[4]		$\rho_w(F_7AsF_8) - \rho_w(F_9AsF_{10}) + [\delta(F_3Kr_1F_4)_{oop}]_{small}$	
	244(1)[9]	234(1)[12]		$\delta(F_3Kr_1F_4)_{oop} + [\rho_w(F_7AsF_8) - \rho_w(F_9AsF_{10})]_{small}$	٦
	235(<1)[<1]	227(<0.1)[<1]		$\rho_{w}(F_{11}AsF_{12}) - \rho_{w}(F_{7}AsF_{8}) + \rho_{w}(F_{9}AsF_{10})$	$\nu_6(T_{2u})$
	230(<0.1)[<1]	221(<0.1)[<1]		$\rho_{w}(F_{9}AsF_{10}) - \rho_{w}(F_{11}AsF_{12}) + \rho_{w}(F_{7}AsF_{8})$	J
161(3)	174(2)[5]	166(4)[5]		$\rho_{r}(OBrF_{2}) + \rho_{t}(F_{5}Kr_{2}F_{6})$	
153(1)	169(2)[22]	165(<1)[19]		$\rho_t(F_1BrF_2) + \rho_t(F_5Kr_2F_6)$	
	148(<1)[7]	146(1)[9]		$\rho_t(OBrF_1F_2) + \rho_t(F_5Kr_2F_6)_{smail}$	
	127(<1)[7]	119(1)[6]		$\rho_r(OBrF_1F_2)$	
	109(4)[27]	106(3)[16]		$\rho_{\rm r}({\rm OBrF_1F_2}) + \rho_{\rm t}({\rm F_3Kr_1F_4})$	
	101(2)[1]	100(3)[2]		$\rho_r(F_5Kr_2F_6) - \rho_r(F_3Kr_1F_4) + \rho_t(OBrF_1F_2)_{small}$	
	89(2)[<1]	86(<1)[<1])		
	80(1)[5]	82(2)[2]	Í		
	72(<1)[<1]	64(<1)[<1]			
	62(<1)[1]	61(1)[<1]	ļ		
	51(<1)[1]	48(<1)[<1]	<u> </u>	deformation and torsional modes of	
	48(<1)[<1]	44(<1)[<1]	f	$[BrOF_2][AsF_6] \cdot 2KrF_2$	
	42(2)[<1]	40(3)[<1] 22(<1)[1]			
	39(<1)[<1]	33(<1)[1] 10(1)[<1]			
	30(<1)[<1]	19(1)[~1]			
132(11)	22(1)[-1]	11(<0.1)[<1])		
132(11) 113(8)	ļ			lattice modes	
96(6)	j				

^a Frequencies are given in cm⁻¹. ^b The Raman spectrum was recorded in an FEP sample tube at -150 °C using 1064-nm excitation. Values in parentheses denote relative Raman intensities. An additional band observed at 465(21) cm⁻¹ was assigned to unreacted KrF₂. ^c The aug-cc-pVTZ(-PP) basis set was used. Values in parentheses denote Raman intensities (Å⁴ amu⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹). ^d Vibrational assignments were based on modes calculated at the PBE1PBE level of theory. The abbreviations denote stretch (v), bend (δ), rock (ρ_r), twist (ρ_t), wag (ρ_w), in-plane bend (ip), and out-of-plane bend (oop). ^e This band is assigned to v(BrF₁) + v(BrF₂) at the B3LYP level. ^f This band is assigned to v(AsF₁₃) + v(AsF₁₄) + v(AsF₁₀) + v(AsF₉) at the B3LYP level.

calculated geometry, the [BrOF₂][AsF₆]·2KrF₂ structural unit possesses C_1 symmetry and the Raman spectrum has been assigned under that symmetry. Vibrational frequencies calculated at both the PBE1PBE and B3LYP (values in parentheses) levels of theory reproduced the observed frequency trends. The AsF₆⁻ anion, under ideal octahedral symmetry (O_h), has three Raman-active bands, $v_1(A_{1g})$, $v_2(E_g)$, and $v_5(T_{2g})$, two infraredactive bands, $v_3(T_{1u})$ and $v_4(T_{1u})$, and one inactive band, $v_6(T_{2u})$. In the present instance, the fluorine-bridged AsF₆⁻ anion is distorted, with local C_1 symmetry which gives rise to 15 Raman- and infrared-active bands. Only eight bands were observed in the Raman spectrum for AsF₆⁻ and their assignments were guided by comparison with other coordinated AsF₆⁻ anions having local C_1 or C_s symmetries.^{71,154}

All 45 vibrational modes of $[BrOF_2][AsF_6] \cdot 2KrF_2$ belong to A irreducible representations and are predicted to be Raman- and infrared-active. Additional bands appear in the Raman spectrum that cannot be accounted for by site symmetry lowering alone because correlation of the gas-phase adduct symmetry (C_1) to the crystal site symmetry (C_1) results in no additional band splitting (Table 7.5). The additional bands are associated with vibrational coupling within the crystallographic unit cell. Correlation of the site symmetry to the centrosymmetric unit cell symmetry (C_{2h} with Z = 4) results in equal apportioning of the 4(3N - 6) vibrational modes among A_g , A_u , B_g , and B_u symmetries. Thus, of the 180 coupled vibrational modes for $[BrOF_2][AsF_6] \cdot 2KrF_2$ in its unit cell, 45 A_g and 45 B_g Raman-active and 45 A_u and 45 B_u infrared-active components are predicted. Of the predicted 90 Raman bands, only 25, including eight AsF_6^- bands,

223
Table 7.5.Factor-Group Analysis for [BrOF2][AsF6]·2KrF2

^a The crystallographic space group is $P2_1/c$ with Z = 4 structural units per unit cell.

were observed, implying vibrational coupling within the unit cell is, except in a few instances, too weak to be observed.

Upon coordination of KrF₂, the cation stretching frequencies shift to lower frequency relative to those of $[BrOF_2][AsF_6]$.¹²⁸ The highest frequency bands at 1047, 1053 cm⁻¹ are assigned to the factor-group split Br–O stretching mode. The in-phase and out-of-phase BrF₂ stretching bands occur at 644 and 625 cm⁻¹, respectively, and show no factor-group splitting. The in-phase band occurs at higher frequency and is more intense, in agreement with the trends expected from the calculated values. The two bands are also slightly shifted to lower frequency compared to those observed for free BrOF₂⁺.¹²⁸ The trends in the cation stretching frequencies can be accounted for by donation of electron density from the KrF₂ ligands to the bromine atom, rendering bromine less electropositive (see 7.2.4.2, Natural Bond Orbital Analyses) and shifting the modes to lower frequency. The cation bands at 314, 371/377, and 397 cm⁻¹ are assigned to BrOF_2^+ deformation modes and are in good agreement with the calculated values.

The most intense modes in the spectrum of $[BrOF_2][AsF_6] \cdot 2KrF_2$ are those of the KrF_2 ligand. Coordination of KrF_2 to $BrOF_2^+$ results in removal of the center of symmetry at krypton, which is manifested in the Raman spectrum by the appearance of bands to high and to low frequency of free KrF₂ (v(KrF), 465 cm⁻¹),¹⁰⁰ with the higher frequency band assigned to the terminal Kr-Ft stretch and the lower frequency and more intense band assigned to the bridging Kr-F_b stretch. These trends have been observed in XeF₂ adducts with metal cations.^{82,83} The vibrational displacements calculated at the PBE1PBE and B3LYP levels reveal that while there is no intraligand coupling for the Kr-F_t and Kr-F_b stretching modes, interligand coupling occurs giving rise to in-phase $(KrF_t) + v(Kr'F_t)$ and out-of-phase $(KrF_t) - v(Kr'F_t)$ modes at 549 and 533 cm⁻¹, respectively, where the KrFt and Kr'Ft displacement amplitudes are unequal in both coupled modes. These modes occur at similar frequencies, in accordance with their calculated frequencies, 610 (577) and 587 (549) cm⁻¹, respectively. The bands at 443 and 472 cm^{-1} are associated with analogous interligand coupling of the Kr–F_b bridging stretching modes and are in good agreement with the calculated values, 467 (450) and 489 (473) cm⁻¹. In contrast to the coupled Kr–F_t and Kr'–F_t modes, the coupled Kr–F_b and Kr'-F_b displacement amplitudes are nearly equal. The Kr-F_t stretching frequencies are comparable to $v(KrF_t)$ of $KrF_2 \cdot CrOF_4$ (550 cm⁻¹)¹⁰⁶ but are somewhat lower than those of KrF₂·MoOF₄ (566, 579 cm⁻¹),¹⁰⁷ and KrF₂·WOF₄ (571, 581 cm⁻¹).¹⁰⁷ The value

is, however, much lower than that of v(KrF) in β -[KrF][AsF₆] (615, 619 cm⁻¹),⁹⁹ [KrF][SbF₆] (615 cm⁻¹),⁹⁹ and [KrF][BiF₆] (604, 610 cm⁻¹),⁹⁹ indicating that the coordinated KrF₂ molecules in [BrOF₂][AsF₆]·2KrF₂ are adducted and do not behave as fluoride ion donors towards the Lewis acid, BrOF₂⁺, as inferred from their relative crystallographic bond lengths (see X-ray Crystallography).

The Kr–F_b bridging frequencies are in better agreement with those of KrF₂·WOF₄ (450, 469 cm⁻¹)¹⁰⁷ than with those of KrF₂·CrOF₄ (486 cm⁻¹)¹⁰⁶ or KrF₂·MoOF₄ (462, 479 cm⁻¹).¹⁰⁷ Comparison of the frequency differences between the Kr–F_t and Kr–F_b modes reveals an increase over the series: KrF₂·CrOF₄ (64 cm⁻¹),¹⁰⁶ KrF₂·MoOF₄ (102 cm⁻¹),¹⁰⁷ and KrF₂·WOF₄ (116 cm⁻¹),¹⁰⁷ following the anticipated Lewis acidity trend of the metal oxide tetrafluorides. This trend suggests that the strengths of the Br---F adduct bonds in [BrOF₂][AsF₆]·2KrF₂, with a frequency difference between the Kr–F_t and Kr–F_b modes of 84 cm⁻¹, are intermediate with respect to those of KrF₂·CrOF₄ and KrF₂·MoOF₄.

The present vibrational assignments of coordinated KrF₂ are in accordance with those reported for XeF₂ homoleptically coordinated to a variety of metal cations.^{82,83} In these coordination complexes, the high-frequency Xe–F stretching bands are assigned to Xe–F_t stretches and the low-frequency ones are assigned to Xe–F_b stretches without invoking intramolecular coupling in the vibrational mode descriptions of coordinated XeF₂. The calculated vibrational displacements of coordinated KrF₂ in [BrOF₂][AsF₆]·2KrF₂ also do not show intramolecular coupling. Instead, the vibrational coupling of the Kr–F stretches is interligand in nature occurring between Kr–F_b stretching modes that have near-equal displacement amplitudes, and between $Kr-F_t$ stretching modes which have unequal displacement amplitudes.

The double degeneracy of the KrF₂ bending mode of free KrF₂ (v_2 , Π_u) is removed when it is fluorine bridged to bromine, resulting in splitting into out-of-plane and in-plane Ft-Kr-Fb bending modes with respect to the plane containing the two KrF2 molecules and the bromine atom. The vibrational bands are shifted to higher frequency relative to that of free KrF₂ (236 cm⁻¹),⁹³ and occur at slightly different frequencies because one KrF₂ ligand is somewhat more strongly bound than the other in the crystal structure and in the calculated gas-phase structure (see 7.2.2, X-ray Crystal Structure and 7.2.4.1, Computational Results). The δ (FKrF) modes are not coupled (Table 7.4), where $\delta(F_5KrF_6)_{ip}$ and $\delta(F_5KrF_6)_{oop}$ are observed at 254 and 301 cm⁻¹, respectively, and $\delta(F_3KrF_4)_{ip}$ is observed at 266 cm⁻¹. The $\delta(F_3KrF_4)_{oop}$ bend was not observed but is calculated at 244 (234) cm^{-1} and is expected to be weak. The calculated frequencies are also in excellent agreement with the experimental frequencies. These bands occur at much higher frequencies than those that are assigned for the MOF_4 adducts, i.e., 176 cm⁻¹ (KrF₂·CrOF₄),¹⁰⁶ 170 cm⁻¹ (KrF₂·MoOF₄),¹⁰⁷ and 172 cm⁻¹ (KrF₂·WOF₄),¹⁰⁷ suggesting that the latter may have been erroneously assigned in the earlier work and likely should be re-assigned to the bands reported at 256/283, 303/312, and 301/312, respectively.

7.2.4. Computational Results. The geometry of $[BrOF_2][AsF_6] \cdot 2KrF_2$ was energy minimized starting from the crystallographic coordinates and resulted in stationary points with all frequencies real. The PBE1PBE/aug-cc-pVTZ(-PP) and B3LYP/aug-cc-pVTZ(-

PP) (B3LYP values are in parentheses) results are reported in Tables 7.2 and 7.43, and Figure 7.1b.

7.2.4.1. Geometries. The gas-phase geometry of $[BrOF_2][AsF_6] \cdot 2KrF_2$ optimized at C_1 symmetry at both levels of theory and did not deviate significantly from that observed in the X-ray crystal structure (Figure 7.1a). The largest angle discrepancies occur for F(3)---Br(1)---F(7) and Br(1)---F(7)-As(1) which are over- and underestimated, respectively, with respect to the experimental values (Figure 7.1b).

The calculated Br–O bond length was 1.556 (1.569) Å and the Br–F bond lengths were 1.731 (1.757) Å and 1.730 (1.757) Å, in very good agreement with the experimental Br–O (1.564(5) Å) and Br–F (1.727(4), 1.723(4) Å) bond lengths. The calculated O–Br– F_1 (102.0 (102.0)°) and O–Br– F_2 (100.0 (100.1)°) angles are more open than the F–Br–F angle of (89.1 (89.8)°), and all three bond angles are in good agreement with the experimental values. The three contact distances, Br--- $F_{3,5,7}$, 2.350 (2.363) Å, 2.302 (2.338) Å, and 2.579 (2.529) Å, respectively, reproduce the observed distances (2.318(4), 2.356(4), 2.576(4) Å), with the contact opposite the oxygen atom, Br--- F_7 , being the longest.

The KrF₂ ligand geometries are also well modeled by the calculations, i.e., the bridging krypton-fluorine bond lengths, Kr-F_{3,5}, 1.951 (1.984) Å and 1.957 (1.984) Å, respectively, are longer than the terminal krypton-fluorine bond lengths, Kr-F_{4,6}, 1.814 (1.843) Å and 1.808 (1.837) Å, respectively. The KrF₂ ligands are also predicted to be near linear (177.2 (176.9)°, 177.5 (177.7)°), as observed experimentally.

The bond lengths, bond angles, and their trends for the pseudo-octahedral fluorine-bridged AsF_6^- anion are also well reproduced but not as well as for the cation. The arsenic-fluorine bridge bond length, $As-F_7$, 1.789 (1.813) Å, is elongated relative to the other As-F bonds. The remaining calculated As-F bond lengths range from 1.705 (1.720) Å to 1.761 (1.773) Å.

7.2.4.2. Natural Bond Orbital (NBO) Analyses. The NBO^{163–166} analyses were carried out for the PBE1PBE- and B3LYP-optimized gas-phase geometries of $[BrOF_2][AsF_6] \cdot 2KrF_2$ and KrF_2 with the results given in Table 7.3. Both the PBE1PBE and B3LYP results are very similar; only the PBE1PBE results are referred to in the ensuing discussion.

The natural population analysis (NPA) charges given by the NBO analysis for Br (+2.41), O (-0.72), and F(-0.45) in the BrOF₂⁺ cation of [BrOF₂][AsF₆]·2KrF₂ total +0.79 and are approximately half of the formal charges that are given by a purely ionic model (+5, -2, and -1, respectively), indicating that the cation bonds are polar covalent. The natural charges are also consistent with a cation having a net charge of +1 where the charge difference, -0.21, is primarily transferred from the KrF₂ ligands and, to a lesser extent, from the AsF₆⁻ anion (-0.05), providing a total anion charge of -0.95. Of the plausible valence bond contributions that can be considered for the BrOF₂⁺ cation (Structures I–IV), Structure IV best represents the calculated charges, the Br–O/Br–F bond order ratio (2.06), and Br/O/F/ valencies (2.27/0.95/0.46).

Among the three plausible valence bond structures for KrF₂, V, VI, and VII, the calculated charges (Kr: 1.08, 1.08; F: -0.58, -0.43, -0.58, -0.42), bond orders (0.24, 0.38, 0.25, 0.39), and valencies (Kr: 0.64, 0.67; F: 0.35, 0.39, 0.37, 0.40) of the coordinated molecules are best represented by $^{-1/4}$ F--Kr⁺--F^{-1/4}, the average of Structures VI and VII, which are customarily used to describe the bonding in KrF₂.⁹⁹ Upon adduct formation, the total of the fluorine atom charges of KrF₂ remains essentially unchanged, however, the charge distributions of the KrF₂ molecules are polarized towards the positive bromine atom, with ~0.07 e transferred from F_t to F_b. A minor contribution from Structure VI accounts for the charge drift and also accounts for the decreased Kr–F_b bond order, increased Kr–F_t bond order, and increased F_t valence. In addition, upon coordination, the krypton atoms become somewhat more positively charged and there is an overall charge transfer of 0.08 e from each KrF₂ ligand to the [BrOF₂][AsF₆] ion pair.

$$\mathbf{F} - \mathbf{K} \mathbf{r} - \mathbf{F} \qquad \mathbf{F} - \mathbf{K} \mathbf{r} - \mathbf{F} \qquad \mathbf{F} - \mathbf{K} \mathbf{r}^{\dagger} \mathbf{F}$$

V

The valence bond description of $BrOF_2^+ 2KrF_2$, which takes Structures IV and VI/VII into account, is represented by Structures VIII and IX, where Structure VIII is the dominant contributor and best accounts for the bonding in the adduct. A minor contribution from Structure IX accounts for the small increase in positive charge on the krypton atoms, the low $Br-F_b$ bond orders (0.09, 0.10), and a small degree of charge transfer from the KrF₂ ligands.

7.2.4.3. QTAIM and ELF Analyses. The bonding was investigated by complementary use of the quantum theory of atoms in molecules $(QTAIM)^{251}$ and the topological analysis²⁵² of the Becke and Edgecombe electron localization function (ELF).²⁵³ Both methods partition molecular space into adjacent nonoverlapping regions with the help of the gradient dynamical system theory, a technique very similar to that used in hydrology to determine drainage basins and drainage divides. An outline of QTAIM and ELF is provided in Appendix 4. For the ensuing discussion, the following abbreviations denote atomic populations, $\overline{N}(A)$; electron localization function, $\eta(\mathbf{r})$; core basins, C(A); valence basins, V(A, B, ...); monosynaptic basins, V(A); disynaptic basins, V(A, B); and closed isosurfaces, $\eta(\mathbf{r}) = f$, where f is defined as the isosurface contour. The QTAIM and ELF analyses of KrF₂, BrOF₂⁺, and AsF₆⁻ fragments are provided in Appendix 4.

Bonding in [BrOF₂][AsF₆]·2KrF₂. The NBO, AIM and ELF bonding analyses provide a consistent picture of the reorganization of electron density that result from formation of the KrF₂ complex, i.e., the net electron density transfer towards the $BrOF_2^+$ group and the polarization of the KrF₂ ligands. The very large electronegativity differences between $BrOF_2^+$ and KrF_2 (7.6 eV) and between $BrOF_2^+$ and AsF_6^- (14.2 eV) using Parr's definition of electronegativity,²⁵⁴ accounts for the direction of the charge transfer, whereas the hardness values²⁵⁴ of KrF₂ (6.5 V) and AsF₆⁻ (10.1 V) account for the magnitudes of the contributions. The NPA and QTAIM populations provide global charge transfer values that are in agreement within a few hundredths of an electron. About 0.1 e is transferred from each KrF₂ and 0.05 e from AsF₆. In the complex molecular graph, the bromine atom is linked to the two bridging fluorines, F₃ and F₅, of the KrF groups and to F_7 of AsF_6 . The values of the Laplacian of the electron density at the bond critical points are positive and decrease with the Br-F internuclear distance, i.e., 0.166 (Br- F_3), 0.157 (Br- F_3) and 0.122 (Br- F_7). Moreover, there is a degenerate critical point between Br and F₉. The delocalization indexes between Br and the weakly bonded fluorine atoms show almost the same trends: $\delta(Br, F_3)$, 0.24; $\delta(Br, F_5)$, 0.22; $\delta(Br, F_7)$, 0.14; and $\delta(Br, F_9)$, 0.02. The localization domains of the complex at $\eta(\mathbf{r}) = 0.75$ are shown in Figure 7.3a whereas the hierarchy of the ELF basins is given in Scheme 7.1. Although the bromine coordination number has increased to 6, the V(Br) ("valence

Figure 7.3. ELF localization domains for (a) $[BrOF_2][AsF_6] \cdot 2KrF_2$ compared with those of (b) $BrOF_2^+$. The isosurface value is $\eta(\mathbf{r}) = 0.75$. Color code: magenta = core, brick-red = monosynaptic basin.

Scheme 7.1. Reduction of localization diagram for $[BrOF_2][AsF_6] \cdot 2KrF_2$ showing the ordering of localization nodes and the boundary isosurface value, $\eta(\mathbf{r})$, at which the reducible domains split. The labeling scheme corresponds to that used in Figures 7.3a.

electron lone pair on Br") basin population remains unchanged in the complex while its $\eta(\mathbf{r}) = 0.75$ localization domain appears to be contracted in the complex (Figure 7.3a) compared to the free BrOF₂⁺ cation (Figure 7.3b). In fact, the V(Br) basin accommodates its shape and volume to the environment. In the complex it is confined within the cage formed by the F₁, F₂, F₃, F₅ and F₇ atoms, whereas there are no constraints in the free cation. In contrast to the classical AX₆E arrangement predicted by VSEPR rules,⁴¹ the bond pair and electron lone pair arrangement around Br appears to be a hybrid of distorted octahedral, square pyramidal, and trigonal pyramidal geometries that are predicted for AX₆, AX₅E and AX₃E arrangements. The angles subtended at bromine have the following values: O-Br-F₁, 102.0°; O-Br-F₂, 100.1°; O-Br-F₃, 90.7°; O-Br-F₅, 85.3°; O-Br-V(Br), 133.2°; and O-Br-F₇, 170.3°.

The deviations from the octahedral (or square pyramidal) value occur for those angles involving F_1 and F_2 , which correspond to the shortest F–O internuclear distances (largest repulsions), and for F_7 , which is close to the V(Br) basin. It is worth noting that the degenerate critical point mentioned above lies on a line linking F_9 to V(Br).

The interaction of the different groups also induces a redistribution of their electronic densities among their basins. The $BrOF_2^+$ cation attracts 0.25 e which is almost equally distributed among the V(F) and V(O) basins, whereas the V(Br) population remains unchanged. In the AsF_6^- anion, the V(As, F) basins vanish in the complex and merge into the corresponding V(F) basins. Within the KrF₂ ligands, there is a density flow from the terminal fluorine and the krypton atomic basins towards the bridging fluorine whose net population is increased by 0.08 e. Paradoxically, the populations of

the V(F₄) and V(F₆) basins increase with respect to the uncomplexed KrF₂ molecule at the expense of V(Kr). This polarization increases the covalent character of the Kr–F₄ and Kr–F₆ interactions; the Kr atomic basin contributions to V(F₄) and V(F₆) are 0.63 and 0.93 e whereas the V(F₃) and V(F₅) basins only belong to the F₃ and F₅ atomic basins. This effect explains the contraction of the Kr–F₄ and Kr–F₆ internuclear distances with respect to uncomplexed KrF₂.

7.3. Conclusion

The Lewis acid properties of the $BrOF_2^+$ cation and its resistance to oxidation have provided the avenue to the synthesis of a KrF_2 coordination complex with a maingroup atom. The synthesis and crystal structure of $[BrOF_2][AsF_6] \cdot 2KrF_2$ provide a rare example in which KrF_2 functions as a ligand and represents a significant extension of krypton chemistry, accounting for much of what is presently known about the coordination chemistry of KrF_2 . The vibrational assignments of the KrF_2 ligands and their descriptions substantiate those of known homoleptic XeF_2 coordination complexes with metal cations. The present findings may be expected to facilitate the extension of KrF_2 coordination chemistry to the syntheses of KrF_2 complexes with other main-group and metal centers.

The NBO, AIM and ELF bonding analyses indicate that $[BrOF_2][AsF_6] \cdot 2KrF_2$ is organized around $BrOF_2^+$ and its stabilization is due to its Coulomb interaction with the AsF_6^- anion and to electron delocalization and charge transfers involving the KrF_2 ligands. This charge transfer increases the ionic character of the Br–O and Br–F_{1,2} bonds. The polarization of the KrF₂ ligands is a result of the electric field imposed by the BrOF₂⁺ cation. Its main effect is to enhance the anionic character of each bridging fluorine atom, thereby giving rise to an electrostatic interaction with the positively charged bromine atom of the [BrOF₂][AsF₆] ion pair. However, the stabilization energy is not large enough to enable significant local rearrangement of the ligands around the bromine atom and consequently the two KrF₂ ligands are adjacent to one another. The study has provided two structurally related examples that illustrate strong (BrOF₂⁺) and weak ([BrOF₂][AsF₆]·2KrF₂) valence electron lone pair behavior.²⁵⁰

Ph.D. Thesis – David S. Brock

CHAPTER 8

XeF₂ Coordination to a Halogen Center;

Raman Spectra (n = 1, 2) and X-ray Crystal Structures (n = 2) of

 $[BrOF_2][AsF_6] \cdot nXeF_2$ and $[XOF_2][AsF_6]$ (X = Cl, Br)

8.1. Introduction

Xenon difluoride behaves as a fluoride ion donor toward strong fluoride ion acceptors such as AsF₅, SbF₅, and BiF₅ forming XeF⁺ and Xe₂F₃⁺ salts.^{19,44,74,76,255} Relatively few examples are known in which XeF₂ behaves as a coordinating ligand towards weaker Lewis acid centers. Coordination of a weak to moderate strength, oxidatively resistant Lewis acid to a fluorine atom of XeF₂ may also occur without "complete" fluoride ion transfer. A considerable number of metal cations satisfy these criteria, and their XeF₂ coordination complexes have been synthesized and structurally characterized, e.g., Li⁺, Mg²⁺, Ca²⁺, Cu²⁺, Zn²⁺, Sr²⁺, Ag⁺, Cd²⁺, Ba²⁺, La³⁺, Nd³⁺, Pb^{2+,82,83} Xenon difluoride coordination complexes with the neutral metal oxide tetrafluorides, WOF₄ and MoOF₄, have also been synthesized and characterized in the solid-state by Raman spectroscopy and by solution ¹⁹F and ¹²⁹Xe NMR spectroscopy.^{107,256} A number of molecular addition compounds of XeF₂ are also known in which XeF_2 exhibits no tendency to coordinate. These are exemplified by $IF_5 \cdot XeF_2$,²⁵⁷ $XeF_4 \cdot XeF_2$,²⁵⁸ and $XeOF_4 \cdot XeF_2$,²⁵⁹ which show that the vibrational frequencies of XeF_2 and the Xe-F bond lengths are essentially unaffected relative to solid XeF₂.

Presently, the only examples known in which XeF₂ coordinates to a nonmetal center are $2XeF_2 \cdot [XeF_3][AsF_6]$, $XeF_2 \cdot [XeF_3][AsF_6]$, and $XeF_2 \cdot 2([XeF_3][AsF_6])$, where XeF₂ coordinates to the Xe(VI) atom of XeF₅^{+, 220} and [BrOF₂][AsF₆]·XeF₂, where XeF₂ coordinates to BrOF₂⁺ through Br(V).¹²⁹ In both cases, XeF₂ coordinates end-on through fluorine to the electropositive atom of the cation. Although the XeF₅⁺ adducts have been characterized by X-ray crystallography, [BrOF₂][AsF₆]·XeF₂ has only been characterized by Raman spectroscopy and by solution ¹⁹F and ¹²⁹Xe NMR spectroscopy. In a recent related study, [BrOF₂][AsF₆]·2KrF₂²³² has been synthesized and structurally characterized, showing that the KrF₂ molecules are each coordinated to Br(V) through a single fluorine bridge. The study suggested that the synthesis of [BrOF₂][AsF₆]·2KeF₂ should also be possible.

The present study describes the syntheses and structural characterizations of $[BrOF_2][AsF_6]$, $[ClOF_2][AsF_6]$, $[BrOF_2][AsF_6] \cdot XeF_2$, and $[BrOF_2][AsF_6] \cdot 2XeF_2$. The extension of this chemistry to the $ClOF_2^+$ analogue is also considered, as well as its Lewis acid behavior toward the less fluoro-basic and more strongly oxidizing XeF₄ molecule.

8.2. Results and Discussion

8.2.1. Syntheses of $[BrOF_2][AsF_6]$, $[BrOF_2][AsF_6] \cdot XeF_2$, and $[BrOF_2][AsF_6] \cdot 2XeF_2$. The progress of each reaction and the purities of all products were routinely monitored by recording the low-temperature Raman spectra of the solids at -150 °C.

Low-temperature solvolysis of $[XeOTeF_5][AsF_6]$ in liquid BrF₅ resulted in an XeF_2 adduct of $BrOF_2^+$ that also contained BrF₅ (eq 8.1). This compound was isolated as

$$[XeOTeF_5][AsF_6] + (n+1)BrF_5 \xrightarrow{neat}_{20 \circ C}$$

$$[BrOF_2][AsF_6] \cdot XeF_2 \cdot nBrF_5 + TeF_6 \qquad (8.1)$$

a very pale yellow powder upon removal of the bulk solvent under a dynamic vacuum at -52 to -50 °C. Continued pumping on the polycrystalline solid for several hours at -52 to -50 °C was shown by Raman spectroscopy (Table 8.1) to result in slow removal of BrF₅ from the crystal lattice, leaving behind [BrOF₂][AsF₆]·XeF₂ as an amorphous white powder (eq 8.2). Further pumping at 0 °C for several hours resulted in slow removal of adducted XeF₂ (eq 8.3), forming [BrOF₂][AsF₆] as a white powder.

$$[BrOF_2][AsF_6] \cdot nBrF_5 \cdot XeF_2 \xrightarrow[-52 \text{ to } -50 \text{ oC}]{} [BrOF_2][AsF_6] \cdot XeF_2 + nBrF_5 \qquad (8.2)$$

$$[BrOF_2][AsF_6] \cdot XeF_2 \xrightarrow{\text{dynamic vac.}} [BrOF_2][AsF_6] + XeF_2$$
(8.3)

The Raman spectrum of the product was in agreement with the previously reported spectrum,¹²⁸ however, contrary to the earlier report, samples of $[BrOF_2][AsF_6]$ that were left at room temperature overnight showed no signs of decomposition to Br_2^+ either visually or by Raman spectroscopy, i.e., the Br–Br stretching mode at 360 cm⁻¹ was absent.²⁶⁰ Hydrogen fluoride solutions of $[BrOF_2][AsF_6]$ were also warmed to 50 °C for several minutes followed by slow cooling to 22 °C over 24 h, and showed no signs of decomposition.

Addition of aHF to $[BrOF_2][AsF_6] \cdot XeF_2$ and dissolution at -20 °C resulted in a clear, colorless solution. Upon cooling to -78 °C, a white precipitate formed. The Raman spectrum of the solid under HF and the Raman spectrum recorded after HF had been removed under dynamic vacuum at -78 °C were identical and revealed that a mixture of $[BrOF_2][AsF_6] \cdot 2XeF_2$ and $[BrOF_2][AsF_6]$ had formed according to eq 8.4. Under similar

		BrF_3 -Solvate (approximate pumping time in hours)									
XeF ₂ ^b	BrF ⁵	0.25 ^{c,d}	0.50 ^{d,e}	0.75 (pure BrF ₅ - solvate) ^f	1.0 g	4.0 ^g	9.0 ^g	$\frac{13.0}{[BrOF_2][AsF_6] \cdot XeF_2^{h}}$			
		1051(8)	1065(3) 1048(39)	1047(32)	1063(1) 1048(31)	1063(10) 1049(41) 1043(23)	1067(2) 1050(38) 1043(22)	1062(3) 1050(34) 1043(22)			
			751(4)	751(5)	750(3) 745(2)	751(10) 744(11) 739(10) 733(35)	749(3) 744(6)	752(3) 744(7)			
				718(2)	700(2)	722(14)	707(2)	706(3)			
		697(20)		108(2)	697(2)	697(9)	698(2)	698(2)			
	681(81)	687sh ' 681(100)	686(90) ⁺ 681(19)	686(66)	686(60)'	686(36)*	686(5)'				
				678(4)	679(4) 674(5)	674(14)	674(11)	674(11)			
			660(3)				668(4)	669(4)			
	(4(1))		000(3)	655(5)				651 sh			
	040(1)	651br(4)	645(57) 630(22)	644(51) 630(21)	645(61) 633(29) 630 sh	646(96) 633(46)	646(79) 633(41)	646(75) 634(38)			
	628(2)	627(2)		(05(0)	(04.1)	(01/11)					
				625(9)	624 sh	621(11) 614(12)					
	601(7)	602(5)	598(3) ^{<i>i</i>} 589(4) ^{<i>i</i>}	598(2)' 589(4)'	598(2) ¹ 588(4) ¹	599(9) ¹ 589(9) ¹		586(2)			
	581(26)	581(26) 570br(43) ⁱ	574(99) ⁱ 568(30) ⁱ	574(69)'	574(60) ¹	574(47)1	574(18) ⁱ	575(14)			
	561(100)	561(86)			565(1)	566(12)	565(6)	565(7)			
			549(100)	549(100)	560(10) 549(100) 543(45)	559(44) 548(80) 543(100)	559(44) 547(60) 543(100)	559(45) 546(51) 543(100)			
	538(39)	538(82) ⁱ	538(78) ⁱ	538(50) ^{<i>i</i>}	538(48)	539(40)	5-5(100)	531(11)			
496(100)	523(68)	523(72)				5 <i>55</i> (17)		551(11)			
720(100)											

Ph.D. Thesis - David S. Brock

Raman Spectra^{*a*} Acquired During the Removal of BrF₅ (-50 °C) from a BrF₅ Solution of [BrOF₂][AsF₆]·XeF₂, and the Raman Spectra of Uncoordinated XeF₂, ^{*b*} BrF₅, ^{*b*} and [BrOF₂][AsF₆]·XeF₂ Table 8.1.

(100)

477(1)

Table	8.1.	(continued))

XeF ₂ ^b	BrF5 ^b	0.25 °.4	0.50 ^{d,e}	0.75 (Pure BrFs-Solvate) ^{f}	1.0 ^g	4.0 ^g	9.0 ^g	13.0 [BrOF ₂][AsF ₅]·XeF ₂ ^h
	· · · · · · · · · · · · · · · · · · ·		467(72) ^j	466(80) ^j	466(78) ^j	466(49) ^j	466(24)	466(17) 447(8) hr
					422(1)	425(13)	428(7)	426(10) br
	421(12)	421(17)						
		417sh	418(9)	418(2)	417(2)			
			416(7)		412(3)	412(13)	412(8)	411(11)
	412(8)	412(7)						
	~ ~ ~		407(13)	407(16)	407(15)	407(15)		408 sh
			402(3)		403(4)	402(15)	402(9)	402(12)
		396(1)	395(2)	394(4)	394(5)	392(17)	391(12)	392(14)
					391(4)	()	/	
			387(4)	387(8)	387(5)	387(19)	387(12)	387(7)
				(-)		381(11)	()	
		373sh	372(22)	372(18)	372(20)	373(29)	373(19)	373(21)
			369(15)	368(13)	369(13)	()	()	
	371(4)	371(10)			200 (12)			
	364(20)	363(25)		364(59)	364(10)	364(22)	364(14)	364(17)
			362(13)	361(8)	361(12)			
					326(4)	325(11)	325(6)	325(10)
	317(11)	317(22)	318(19)	318(13)	318(12)	318(11)		
	311(13)	311(28)	311(17)	310(12)	310(11)	313(11)	314(2)	314(4)
		294(3)	294(6)	293(9)	293(6)	292(13)	293(7)	293(8)
		~ ~ ~	288(4)		286(4)			(-)
	244(2)	245(5)	242(4)	243(1)	242(2)			244(3)
	237(3)	237(5)						
	234(3)	234(5)						
	232(2)							
			223(3)	223(2)	223(2)			
			162(2)	162(2)	160(3)			
					153(4)	153(11)	153(6)	152(11)
					140(3)	140(10)	139(4)	140(9)
	121(1)				122(8)	122(10)	~ ~ ~	
		117(7)	117(8)	117(5)	.,		119(4)	
110(10)			~ /				~ /	
		95(14)		95(9)	96(11)	97(15)		98(11)

.

•

Table 8.1.(continued...)

^{*a*} Frequencies are given in cm⁻¹. The Raman spectra were recorded in an FEP sample tube at -150 °C using 1064-nm excitation. Values in parentheses denote relative Raman intensities. The abbreviations denote a shoulder (sh) and broad (br). ^{*b*} The frequencies and intensities were obtained in this work for the pure solids. ^{*c*} A saturated frozen BrF₅ solution, produced by removal of excess BrF₅. ^{*d*} Free BrF₅ is more readily removed in the early stages of pumping with times varying from sample to sample. ^{*e*} The solid product contained clumps resulting from residual BrF₅ solvent. ^{*f*} A pure sample of the BrF₅-solvate of [BrOF₂][AsF₆]·XeF₂ was obtained as a friable powder. ^{*g*} Removal of associated BrF₅ was slow and the samples were rarely homogenous, with the pumping time varying from sample to sample. ^{*h*} The spectrum corresponds to the spectrum in Figure 8.6 and Table 8.7. ^{*i*} These BrF₅ bands are most influenced by association with [BrOF₂][AsF₆]·XeF₂ and are similar to the bands of solid BrF₅ but are shifted to higher frequencies. ^{*j*} This band is associated with v(XeF_b) and is sensitive to BrF₅ solvation.

 $2[BrOF_2][AsF_6] \cdot XeF_2 \xrightarrow{HF} [BrOF_2][AsF_6] \cdot 2XeF_2 + [BrOF_2][AsF_6] (8.4)$ conditions, 1, 1.5, 2, and 3 equiv of XeF₂ were allowed to react with 1 equiv of [BrOF₂][AsF₆] in HF solvent. Using 1 or 1.5 equiv of XeF₂, the Raman spectrum of the isolated product showed them to be mixtures of $[BrOF_2][AsF_6]$ and [BrOF₂][AsF₆]·2XeF₂; with 2 equiv of XeF₂, the only product was [BrOF₂][AsF₆]·2XeF₂, and with 3 equiv, a mixture of [BrOF₂][AsF₆]·2XeF₂ and XeF₂ was obtained. No other adduct stoichiometries were detected.

Both [BrOF₂][AsF₆]·XeF₂ and [BrOF₂][AsF₆]·2XeF₂ are kinetically stable for indefinite periods of time under anhydrous conditions at -78 °C. Concentrated (ca. 0.6 M) and dilute (ca. 0.3 M) HF solutions of both salts that had been warmed to 20 °C and then rapidly cooled to -78 °C showed only a mixture of [BrOF₂][AsF₆] and [BrOF₂][AsF₆]·2XeF₂, and [BrOF₂][AsF₆]·2XeF₂, respectively, when their Raman spectra were recorded under frozen HF. Upon slow cooling of both concentrated solutions from 20 to -78 °C over several hours, two colorless phases formed as a result of the complex salting out of solution. Soon thereafter the denser phases in both samples rapidly crystallized to give a mixture of [BrOF₂][AsF₆] and [BrOF₂][AsF₆]·2XeF₂, as well as [BrOF₂][AsF₆]·2XeF₂, respectively. However, slow cooling of both dilute solutions from 20 to -78 °C over several hours resulted in predominantly the starting materials but also significant amounts of the fluoride ion abstraction products, $BrOF_3$ and $[Xe_2F_3][AsF_6]$ which formed according to equation 8.5. Both products were observed in the Raman spectrum and [Xe₂F₃][AsF₆] was also confirmed by several single-crystal unit cell determinations (trigonal phase⁷³). The calculated Gibbs free energy for the major gas-

BrOF₂⁺_(g) + 2XeF₂_(g)
$$\Longrightarrow$$
 Xe₂F₃⁺_(g) + BrOF_{3(g)} (8.5)
 $\Delta H^{\circ}_{rxn} = -44.3 \text{ kJ mol}^{-1}$ $\Delta G^{\circ}_{rxn} = +6.4 \text{ kJ mol}^{-1}$ MP2/(aug-)cc-pVTZ
 $\Delta H^{\circ}_{rxn} = -33.5 \text{ kJ mol}^{-1}$ $\Delta G^{\circ}_{rxn} = +4.8 \text{ kJ mol}^{-1}$ B3LYP/(aug-)cc-pVTZ

phase decomposition pathway (eq 8.5) shows that the reaction is near equilibrium so that small changes in temperature, concentration or solution conditions could account for an equilibrium shift that favors the formation of $Xe_2F_3^+$ and BrOF₃ in solution. The large positive ΔH_{rxn}° and ΔG_{rxn}° values associated with internal fluoride ion abstraction starting from the associated adduct (eq 8.6) relative to starting from its dissociated components (eq 8.5) suggests that the adduct is already at equilibrium with its dissociation products in HF solutions.

BrOF₂⁺·2XeF_{2 (g)}
$$\longrightarrow$$
 Xe₂F₃⁺(g) + BrOF_{3(g)} (8.6)
 $\Delta H^{0}_{rxn} = +158.0 \text{ kJ mol}^{-1} \qquad \Delta G^{0}_{rxn} = +124.6 \text{ kJ mol}^{-1} \qquad \text{B3LYP/(aug-)cc-pVTZ}$

8.2.2. ¹²⁹Xe and ¹⁹F NMR Spectroscopy. The ¹²⁹Xe and ¹⁹F NMR spectra of $[BrOF_2][AsF_6]\cdotXeF_2$ had been previously recorded in BrF₅ solvent at -59 °C at an external field strength of 2.349 T (¹⁹F, 94.1 MHz; ¹²⁹Xe, 27.86 MHz).¹²⁹ The study indicated that XeF₂ exchange was sufficiently fast on the NMR time scale to collapse the ¹⁹F-¹⁹F couplings between the fluorine environments of coordinated XeF₂ ("XeF₂") and BrOF₂⁺. In the present study, a sample of $[BrOF_2][AsF_6]\cdotXeF_2$ was dissolved in BrF₅ solvent, and the ¹²⁹Xe and ¹⁹F NMR spectra were recorded at -60 °C at an external field strength of 11.744 T (¹⁹F, 470.593 MHz; ¹²⁹Xe, 139.051 MHz) in an attempt to slow the chemical exchange rate sufficiently to observe the ¹ $J(^{19}F_t-^{129}Xe)$, ¹ $J(^{19}F_b-^{129}Xe)$,

 ${}^{2}J({}^{19}F_{t}-{}^{19}F_{b})$, ${}^{2}J({}^{19}F_{b}-{}^{19}F_{Br})$, and ${}^{3}J({}^{19}F_{Br}-{}^{129}Xe)$ couplings among the fluorine and xenon environments of "XeF₂" and BrOF₂⁺. The ${}^{129}Xe$ and ${}^{19}F$ NMR spectra were similar to those reported previously [$\delta({}^{19}F, 163.9 \text{ ppm})$, $\Delta v_{\frac{1}{2}} = 27 \text{ Hz}$; $\delta({}^{129}Xe, -1358 \text{ ppm})$, $\Delta v_{\frac{1}{2}} =$ 38 Hz; ${}^{1}J({}^{19}F-{}^{129}Xe) = 5680 \text{ Hz}]{}^{129}$ with the exception of broadened lines for "XeF₂" in the ${}^{19}F(\Delta v_{\frac{1}{2}} = 1180 \text{ Hz} [{}^{19}F])$ and ${}^{129}Xe(\Delta v_{\frac{1}{2}} = 230 \text{ Hz} [{}^{129}Xe])$ spectra, which indicated that "XeF₂" exchange was slowed, but not sufficiently to resolve any of the spin–spin couplings of the complex cation.

The ¹²⁹Xe and ¹⁹F NMR spectra were also recorded for [BrOF₂][AsF₆]·2XeF₂ dissolved in BrF₅ solvent (-60 °C). The spectra were similar to those of the 1:1 adduct with single ¹⁹F (-174.2 ppm) and ¹²⁹Xe (-1489 ppm) resonances for "XeF₂" but were more shielded than those of $[BrOF_2][AsF_6] \cdot XeF_2$ [$\delta(^{129}Xe, -1368 \text{ ppm}; \delta(^{19}F, -165.8)$ ppm)] and less shielded than that of XeF₂ recorded in BrF₅ solvent $[\delta(^{129}Xe), -1708]$ ppm, -40 °C;⁴⁹ δ (¹⁹F), -181.8 ppm, -20 °C¹⁰⁹]. The ¹⁹F resonance of "XeF₂" was also narrower in [BrOF₂][AsF₆]·2XeF₂ ($\Delta v_{\frac{1}{2}} = 320 \text{ Hz}$ [¹⁹F]; ¹J(¹⁹F-¹²⁹Xe) = 5660 Hz) when compared with that of [BrOF₂][AsF₆]·XeF₂ ($\Delta v_{\frac{1}{2}} = 1180$ Hz; ${}^{1}J({}^{19}F^{-129}Xe) = 5678$ Hz), indicating that "XeF₂" exchange was more rapid for [BrOF₂][AsF₆]·2XeF₂. The ¹²⁹Xe resonances of "XeF₂" were slightly broader in [BrOF₂][AsF₆]·2XeF₂ ($\Delta v_{\frac{1}{2}} = 310$ Hz) when compared with that of $[BrOF_2][AsF_6] \cdot XeF_2$ ($\Delta v_{1/2} = 230$ Hz). Exchange between coordinated "XeF₂" and free XeF₂ is expected to result in more pronounced broadening in the ¹²⁹Xe NMR spectrum than in the ¹⁹F spectrum because of the greater frequency differences between complexed and free XeF₂ [δ (¹²⁹Xe, "XeF₂") – δ (¹²⁹Xe, XeF₂) \approx 9400 Hz versus $\delta({}^{19}\text{F}, \text{``XeF}_2\text{''}) - \delta({}^{19}\text{F}, \text{XeF}_2) \approx 1500 \text{ Hz}].{}^{49,109}$ However, the significant line narrowing that occurs in the ${}^{19}\text{F}$ NMR spectrum of "XeF₂" results from collapse of the ${}^{2}J({}^{19}\text{F}_{b}-{}^{19}\text{F}_{Br})$ coupling, whereas collapse of the smaller ${}^{3}J({}^{129}\text{Xe}-{}^{19}\text{F}_{Br})$ coupling in the ${}^{129}\text{Xe}$ NMR spectrum would not be expected to have a significant effect on the ${}^{129}\text{Xe}$ line width.

8.2.3. Attempted Syntheses of $[ClOF_2][AsF_6] \cdot 2XeF_2$, and XeF₄ Coordination Complexes of $[ClOF_2][AsF_6]$ and $[BrOF_2][AsF_6]$. An attempt to synthesize a XeF₄ adduct of $[BrOF_2][AsF_6]$ proved unsuccessful when an equimolar mixture of XeF₄ and $[BrOF_2][AsF_6]$ was dissolved at 50 °C in HF and cooled to 22 °C. A white precipitate formed which was shown by Raman spectroscopy to be a mixture of the starting materials. This is not unexpected because the fluoride ion donor strength of XeF₄ is much less than that of XeF₂.²⁶¹

Attempts were made to synthesize XeF_2 and XeF_4 adducts of $[ClOF_2][AsF_6]$ in the hope that the chlorine analogue, by virtue of the greater electronegativity of chlorine, would prove to be a stronger Lewis acid. Mixtures of $XeF_2/[ClOF_2][AsF_6]$ and $XeF_4/[ClOF_2][AsF_6]$ dissolved in HF at -50 and 50 °C, respectively, were cooled to -78 °C, whereupon white solids precipitated. Raman spectra of both products were recorded under HF solvent and after the solvent had been removed under a dynamic vacuum at -78 °C. In both cases, the solids proved to be mixtures of the starting materials. In the case of the $XeF_2/[ClOF_2][AsF_6]$ system, warming of the HF solution to room temperature resulted in fluoride ion abstraction from XeF_2 by $ClOF_2^+$ to form $Xe_2F_3^+$ and $ClOF_3$ (eq 8.7). Evidence for fluoride ion abstraction is based on Raman spectroscopy of the frozen

$$[ClOF_2][AsF_6] + 2XeF_2 \xrightarrow{HF} ClOF_3 + [Xe_2F_3][AsF_6]$$
(8.7)

samples under HF and the unit cell dimensions of several of $[Xe_2F_3][AsF_6]$ crystals (trigonal phase).⁷³ Raman spectroscopy confirmed the presence of $[Xe_2F_3][AsF_6]$ but ClOF₃ presumably remained in the frozen HF solvent phase and was too dilute to be observed in the Raman spectrum.

8.2.4. X-ray Crystallography. Summaries of the refinement results and other crystallographic information for $[BrOF_2][AsF_6] \cdot 2XeF_2$, $[BrOF_2][AsF_6]$, and $[ClOF_2][AsF_6]$ are provided in Table 8.2. Important bond lengths, bond angles, and contacts for $[BrOF_2][AsF_6] \cdot 2XeF_2$ and $[ClOF_2][AsF_6]$ are listed in Tables 8.3 and 8.4.

8.2.4.1. [**BrOF**₂][**AsF**₆]·**2XeF**₂. The compound, [**BrOF**₂][**AsF**₆]·**2XeF**₂, is isomorphous with [**BrOF**₂][**AsF**₆]·**2KrF**₂²³² and belongs to the $P2_1/c$ space group with a unit cell volume that is 87.7(3) Å³ larger than that of the krypton analogue at the same temperature (-173 °C). The structure consists of well-separated [**BrOF**₂][**AsF**₆]·**2XeF**₂ units. The primary coordination sphere of the BrOF₂⁺ cation is trigonal pyramidal, as observed in the KrF₂ analogue. A fluorine ligand of the AsF₆⁻ anion is coordinated trans to the oxygen atom, while the fluorine electron pair donor atoms of two XeF₂ molecules are coordinated trans to the fluorine atoms of BrOF₂⁺ so that the coordination sphere around bromine is pseudo-octahedral (Figures 8.1 and 8.2) as observed in the KrF₂ analogue.²³²

The geometrical parameters of $BrOF_2^+$ in $[BrOF_2][AsF_6] \cdot 2XeF_2$ and $[BrOF_2][AsF_6] \cdot 2KrF_2$ are equal to within $\pm 3\sigma$. Although the Br–O bond length (1.549(5)

	[BrOF ₂][AsF ₆]	[ClOF ₂][AsF ₆]	[BrOF ₂][AsF ₆]·2XeF ₂
space group	P2/13 (No. 198)	<i>Pna</i> 2/ ₁ (No. 33)	$P2_1/c$ (No. 14)
a (Å)	8.6144(3)	14.686(2)	5.9282(3)
b (Å)	8.6144(3)	5.2072(6)	13.9789(8)
<i>c</i> (Å)	8.6144(3)	8.1070(9)	15.3983(9)
β (deg.)	90	90	111.859(2)
$V(Å^3)$	639.3(1)	620.0(2)	1184.3(1)
Z (molecules/unit	4	4	4
cell)			
mol. wt. (g mol ^{-1})	1291.32	1113.48	2645.72
$ ho_{ m calc}~({ m g~cm}^{-3})$	3.354	2.982	3.710
<i>T</i> (°C)	-173	-173	-173
μ (mm ⁻¹)	11.68	6.03	12.01
λ (Å)	0.71073	0.71073	0.71073
R_1^a	0.0198	0.0304	0.0450
wR_2^b	0.0370	0.0634	0.0932

Table 8.2.Summary of Crystal Data and Refinement Results for $[BrOF_2][AsF_6]$,
 $[ClOF_2][AsF_6]$, and $[BrOF_2][AsF_6] \cdot 2XeF_2$

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}| \text{ for } I > 2\sigma(I). {}^{b}wR_{2} \text{ is defined as}$ $\{\Sigma[w(F_{o}{}^{2} - F_{c}{}^{2})^{2}] / \Sigma w(F_{o}{}^{2})^{2}\}^{\frac{1}{2}} \text{ for } I > 2\sigma(I).$

exptl ^a			PBE1PBE ^a	B3LYP ^a
		Bond Lengths (Å)		
Br(1) - O(1)	1.549(5)	Br(1)–O(1)	1.556	1.569
Br(1) - F(1)	1.736(4)	Br(1)-F(1)	1.733	1.758
Br(1)-F(2)	1.733(4)	Br(1)-F(2)	1.734	1.760
Br(1) - F(3)	2.306(4)	Br(1)F(3)	2.303	2.323
Br(1)F(5)	2.292(4)	Br(1)F(5)	2.296	2.325
Br(1)F(7)	2.610(4)	Br(1)F(7)	2.579	2.561
Xe(1)-F(3)	2.052(4)	Xe(1)-F(3)	2.074	2.101
Xe(1)-F(4)	1.960(4)	Xe(1)-F(4)	1.948	1.971
Xe(2)-F(5)	2.053(4)	Xe(2)-F(5)	2.081	2.106
Xe(2)-F(6)	1.956(5)	Xe(2)–F(6)	1.945	1.968
As(1)-F(7)	1.746(4)	As(1) - F(7)	1.789	1.812
As(1)-F(8)	1.719(4)	As(1)-F(8)	1.710	1.723
As(1)-F(9)	1.720(4)	As(1)-F(9)	1.744	1.756
As(1) - F(10)	1.728(4)	As(1)–F(10)	1.725	1.740
As(1)-F(11)	1.719(4)	As(1)F(11)	1.706	1.720
As(1) - F(12)	1.720(4)	As(1)–F(12)	1.758	1.771
		Bond Angles (deg)		
F(1)-Br(1)-F(2)	89.6(2)	F(1)-Br(1)-F(2)	89.0	89.4
F(1)-Br(1)-O(1)	102.8(3)	F(1)-Br(1)-O(1)	101.8	101.8
F(1)-Br(1)F(3)	84.8(2)	F(1)-Br(1)F(3)	84.3	85.1
F(1)-Br(1)-F(5)	165.8(2)	F(1)-Br(1)F(5)	166.5	166.1
F(1)-Br(1)F(7)	84.9(2)	F(1)-Br(1)F(7)	88.8	88.7
F(2)-Br(1)-O(1)	102.6(3)	F(2)-Br(1)-O(1)	100.0	100.2
F(2)-Br(1)F(3)	163.2(2)	F(2)-Br(1)F(3)	171.8	171.5
F(2)-Br(1)F(5)	84.9(2)	F(2)-Br(1)F(5)	82.4	83.2
F(2)-Br(1)F(7)	81.0(2)	F(2)-Br(1)F(7)	73.0	74.9
O(1)-Br(1)-F(3)	94.1(2)	O(1)-Br(1)F(3)	86.1	87.3
O(1)-Br(1)F(5)	91.2(2)	O(1)-Br(1)F(5)	90.0	91.1
O(1)-Br(1)-F(7)	171.4(2)	O(1)-Br(1)F(7)	167.3	168.5
F(3)-Xe(1)-F(4)	178.4(2)	F(3)-Xe(1)-F(4)	174.8	174.4
F(3) $Br(1)$ $F(5)$	96.7(2)	F(3) $Br(1)$ $F(5)$	103.2	100.8
F(3) $Br(1)$ $F(7)$	82.7(2)	F(3) Br(1) F(7)	102.1	98.5
F(5)-Xe(2)-F(6)	179.8(2)	F(5)-Xe(2)-F(6)	175.9	176.3
F(5) $Br(1)$ $F(7)$	81.3(2)	F(5) $Br(1)$ $F(7)$	78.7	78.1
Br(1) - F(3) - Xe(1)	142.4(2)	Br(1) - F(3) - Xe(1)	149.5	151.0
Br(1) - F(5) - Xe(2)	134.1(2)	Br(1) - F(5) - Xe(2)	130.4	130.6
Br(1) - F(7) - As(1)	135.5(2)	Br(1) - F(7) - As(1)	116.6	123.3

Table 8.3.Complete List of Experimental and Calculated Geometrical Parameters for
 $[BrOF_2][AsF_6] \cdot 2XeF_2$

Table 8.3.(continued...)

F(7)–As(1)–F(8)	179.4(2)	F(7)–As(1)–F(8)	176.1	176.6
F(7)-As(1)-F(9)	89.2(2)	F(7)-As(1)-F(9)	86.9	87.3
F(7)-As(1)-F(10)	88.8(2)	F(7)-As(1)-F(10)	88.7	88.2
F(7)-As(1)-F(11)	88.4(4)	F(7)-As(1)-F(11)	89.9	89.6
F(7)-As(1)-F(12)	90.0(2)	F(7)-As(1)-F(12)	85.8	85.8
F(8)-As(1)-F(9)	91.2(2)	F(8) - As(1) - F(9)	91.4	91.6
F(8)-As(1)-F(10)	90.7(2)	F(8)-As(1)-F(10)	92.8	92.8
F(8)-As(1)-F(11)	91.2(2)	F(8)-As(1)-F(11)	93.6	93.7
F(8)-As(1)-F(12)	90.3(2)	F(8)-As(1)-F(12)	90.7	90.9
F(9)-As(1)-F(10)	178.0(2)	F(9)-As(1)-F(10)	174.9	174.8
F(9)-As(1)-F(11)	90.3(2)	F(9)-As(1)-F(11)	90.9	91.0
F(9)-As(1)-F(12)	90.0(2)	F(9)-As(1)-F(12)	87.8	87.9
F(10)-As(1)-F(11)	90.2(2)	F(10)-As(1)-F(11)	91.7	91.6
F(10)-As(1)-F(12)	89.4(2)	F(10)-As(1)-F(12)	89.2	89.2
F(11)-As(1)-F(12)	178.5(2)	F(11)-As(1)-F(12)	175.5	175.3

^{*a*} The aug-cc-pVTZ(-PP) basis set was used. The energy-minimized geometry was C_1 . The atom labeling scheme corresponds to that used in Figures 8.1 and 8.2.

Figure 8.1. The structural unit in the X-ray crystal structure of [BrOF₂][AsF₆]·2XeF₂; thermal ellipsoids are shown at the 50% probability level.

Figure 8.2. The calculated geometry (PBE1PBE/aug-cc-pVTZ(-PP)) of $[BrOF_2][AsF_6]$ ·2XeF₂ showing the pseudo-octahedral coordination around bromine(V).

expt1 ^a		<u> </u>	PBE1PBE'	B3LYP ^o		PBEIPBE	B3LYP ³		PBE1PBE [®]	B3LYP ⁹
	·			В	ond Lengths (Å)					
Cl(1)-O(1)	1.455(2)	Cl-O ₁	1.409	1.421						
Cl(1)-F(1)	1.522(2)	$Cl-F_1$	1.627	1.660						
Cl(1)-F(2)	1.543(2)	Cl-F ₂	1.627	1.659						
Cl(1)F(3)	2.476(2)	ClF3A	2.304	2.317						
Cl(1)F(4A)	2.523(2)				ClF _{3A} .	2.305	2.317			
Cl(1)F(5B)	2.598(2)							ClF _{3B}	2.484	2.490
As(1)-F(3)	1.740(2)	As _A -F _{3A}	1.798	1.811	As _A -F _{3A}	1.797	1.811	As_B-F_{3B}	1.772	1.782
As(1)-F(4)	1.731(2)	As _A -F _{4A}	1.732	1.740	As _A -F _{4A} .	1.732	1.740	$As_B - F_{4B}$	1.737	1.745
As(1)-F(5)	1.747(2)	As _A -F _{5A}	1.733	1.740	As _A -F _{5A} .	1.734	1.742	As _B -F _{SB}	1.737	1.745
As(1)-F(6)	1.715(2)	As _A -F _{6A}	1.736	1.744	As _A -F _{6A} .	1.736	1.744	$As_B - F_{6B}$	1.743	1.752
As(1)-F(7)	1.710(2)	As _A -F _{7A}	1.742	1.750	As _A -F7A	1.742	1.750	$As_B - F_{7B}$	1.744	1.752
As(1)-F(8)	1.709(2)	As _A -F _{8A}	1.731	1.739	As _A -F _{8A}	1.730	1.738	As_B-F_{8B}	1.736	1.744
				Вс	ond Angles (deg)					
F(1)-Cl(1)-F(2)	98.7(1)	F_1 -Cl- F_2	90.6	90.3						
F(1)-Cl(1)-O(1)	105.5(1)	F ₁ -Cl-O ₁	104.7	104.5						
F(1)-Cl(1)F(3)	163.3(1)	F_1 -Cl F_{3A}	163.9	163.7						
F(1)-Cl(1)F(4A)	91.5(1)				F1-ClF3A'	83.0	83.6			
F(1)-Cl(1)F(5B)	84.1(1)							F_1 -ClF _{3B}	76.6	77.3
F(2)Cl(1)O(1)	104.2(1)	F2-Cl-O1	104.7	104.5						
F(2)-Cl(1)F(3)	84.7(1)	F_2 -Ci F_{3A}	82.4	83.1						
F(2)-Cl(1)F(4A)	157.7(1)				F2-ClF3A	164.6	164.3			
F(2)Cl(1)F(5B)	80.29(9)							F_2 - Cl F_{3B}	77.5	78.1
O(1)-Cl(1)F(3)	89.3(1)	O ₁ ClF _{3A}	91.1	91.6						
O(1)Cl(1)F(4A)	92.1(1)				O1-ClF3A	90.6	91.1			
O(1)Cl(1)F(5B)	168.5(1)							O1-C1F3B	177.4	176.7
F(3)F(4A)	80.20(7)	F3AClF3A'	100.0	98.9						
F(3)Ci(1)F(5B)	80.41(7)							F _{3A} F _{3B}	87.7	86.7
F(4A)F(5B)	81.10(7)				F_{3A} $C_{1}F_{3B}$	87.4	86.7			

Table 8.4.Complete List of Geometrical Parameters for $[ClOF_2][AsF_6]$ (Exptl) and $[ClOF_2][AsF_6]_3^{2-}$ (Calcd)

٠

Table 8.4.(continued...)

Cl(1) - F(3) - As(1)	141.2(1)	ClF _{3A} -As _A	131.2	132.1						
Cl(1)F(4A)-As(1A)	145.0(1)				ClF3AASA-	128.9	130.4			
Cl(1)F(5B)-As(1B)	137.7(1)							ClF _{3B} -As _B	135.0	137.4
F(3)-As(1)-F(4)	88.5(1)	$F_{3A} - As_A - F_{4A}$	88.6	88.5	F_{3A} -As _A -F _{4A}	88.7	88.6	$F_{3B}-As_B-F_{4B}$	89.4	89.4
F(3)-As(1)-F(5)	88.06(9)	F_{3A} -As _A -F _{5A}	88.7	88.6	F _{3A} As _A F _{5A} .	88.4	88.4	$F_{3B}-As_{B}-F_{5B}$	89.3	89.3
F(3)-As(1)-F(6)	177.0(1)	F3A-ASA-F6A	179.6	179.6	F3A-AsA-F6A	179.4	179.5	$F_{3B}-As_B-F_{6B}$	179.7	179.8
F(3)-As(1)-F(7)	90.7(1)	F_{3A} -As _A - F_{7A}	88.2	88.1	F _{3A} -As _A -F _{7A'}	88.1	88.1	F_{3B} -As _B -F _{7B}	89.1	89.1
F(3)-As(1)-F(8)	90.4(1)	F _{3A} -As _A -F _{8A}	88.9	88.9	F_{3A} — As_A — $F_{8A'}$	89.0	89.0	F_{3B} -As _B - F_{8B}	89.4	89.4
F(4)-As(1)-F(5)	88.5(1)	F_{4A} -As _A - F_{5A}	90.2	90.3	F4A-ASA-F5A	90.3	90.3	F_{4B} -As _B -F _{5B}	90.4	90.3
F(4)-As(1)-F(6)	90.1(1)	$F_{4A} - As_A - F_{6A}$	91.8	91.9	F4A-AsA-F6A	91.8	91.8	$F_{4B}\text{-}As_{\!B}\text{-}F_{6B}$	90.9	90.9
F(4)-As(1)-F(7)	178.2(1)	F_{4A} -As _A - F_{7A}	1 76.7	176.6	F4A-ASA-F7A	176.8	176.6	F48-As8-F78	178.5	178.5
F(4)-As(1)-F(8)	90.7(1)	F4A-ASA-F8A	90.4	90.4	F4A-ASA-F8A	90,3	90.3	F_{4B} -As _B -F _{8B}	90.2	90.2
F(5)-As(1)-F(6)	89.4(1)	F5A-ASA-F6A	91.2	91.2	F5A-ASA-F6A	91.3	91.3	F5B-ASB-F6B	90.7	90.6
F(5)-As(1)-F(7)	90.0(1)	F_{5A} - As_A - F_{7A}	89.6	89.6	F5A-ASA-F7A	89.4	89.4	F_{5B} -As _B -F _{7B}	89.5	89.6
F(5)-As(1)-F(8)	178.3(1)	$F_{5A} - As_A - F_{8A}$	177.4	177.4	F _{5A} As _A F _{8A'}	177.3	177.3	$F_{5B}-As_{B}-F_{8B}$	178.6	178.7
F(6)-As(1)-F(7)	90.8(1)	$F_{6A} - As_A - F_{7A}$	91.4	91.5	F6A-ASA-F7A	91.5	91.5	F _{6B} As _B F _{7B}	90.7	90.7
F(6)-As(1)-F(8)	92.2(1)	$F_{6A}-As_A-F_{8A}$	91.3	91.3	F6A ASA F8A	91.3	91.3	$\mathbf{F}_{6B} - \mathbf{A} \mathbf{s}_{B} - \mathbf{F}_{8B}$	90.6	90.6
F(7)-As(1)-F(8)	90.8(1)	$F_{7A} - As_A - F_{8A}$	89.6	89.6	$F_{7A} - As_A - F_{8A'}$	89.9	89.8	$F_{7B}\text{-}\mathbf{As}_{B}\text{-}F_{8B}$	89.9	89.9

^{*a*} The atom labeling scheme corresponds to that used in Figure 8.3. ^{*b*} The Stutt Huzpolar 2 basis set was used. The energyminimized geometry was C_1 . The atom labeling scheme corresponds to that used in Figure 8.4.

256

Figure 8.3. The X-ray crystal structure of [ClOF₂][AsF₆] showing the pseudo-octahedral coordination around chlorine(V); thermal ellipsoids are shown at the 50% probability level.

Figure 8.4. The calculated geometry (PBE1PBE/Stutt Huzpolar 2) of $[ClOF_2][AsF_6]_3^{2-}$ (C₁) showing the pseudo-octahedral coordination around chlorine(V).

Å) is very similar to that of the KrF₂ analogue (1.564(5) Å),²³² it is significantly shorter than those of other Br(V) compounds, including the BrOF₄⁻ anion in [NO][BrOF₄] (1.575(3) Å),²⁴⁴ O₂Br–O–BrO₂ (1.606 (12), 1.611(2), 1.613(2), 1.606(2) Å)²⁴⁵ O₂BrOTeF₅ (1.595(4), 1.608(3) Å),²⁴⁶ the parent molecule, BrOF₃, in [NO₂][BrF₄]·BrOF₃ (1.569, 1.606 Å),²⁴⁴ and the related cation, BrO₂⁺, in [BrO₂][SbF₆] (1.595(2) Å).²⁴⁷ The Br–O bond length is also shorter than the Se–O bond length of isoelectronic SeOF₂ (1.576 Å).²⁴⁸ The Br–F bond lengths in [BrOF₂][AsF₆]·2XeF₂ (1.734(4), 1.736(4) Å) are intermediate with respect to the axial and equatorial Br–F bond lengths in the neutral parent molecule, BrOF₃ (Br–F_{ax} = 1.820, 1.839, 1.822, 1.836 Å; Br–F_{eq} = 1.725, 1.692 Å),²⁴⁴ shorter than in the BrOF₄⁻ anion (1.846(2), 1.912(2) Å),²⁴⁴ and are essentially equal to those of the KrF₂ analogue, [BrOF₂][AsF₆]·2KrF₂ (1.727(4), 1.723(4) Å)²³² and the axial Br–F bond lengths of BrF₄⁺ in [BrF₄][Sb₂F₁₁] (Br–F_{ax} = 1.728(3), 1.729(3) Å; Br–F_{eq} = 1.664(3), 1.667(2) Å),²⁴⁹ and the Se–F bond lengths in SeOF₂ (1.7255 Å).²⁴⁸

The fluorine bridge distances, Br---F, between the $BrOF_2^+$ cation and the coordinated XeF₂ molecules (Br---F(3), 2.306(4) and Br---F(5), 2.292(4) Å) and between the $BrOF_2^+$ cation and the AsF_6^- anion (Br---F(7), 2.610(4) Å) are significantly less than the sum of the van der Waals radii of Br and F (3.32 Å).⁵⁵

Coordination of XeF₂ to the BrOF₂⁺ cation results in asymmetric Xe–F bond lengths, with the Xe–F_b (2.052(4), 2.053(4) Å) and Xe–F_t (1.960(4), 1.956(5) Å) bonds elongated and shortened, respectively, relative to those of solid XeF₂ at -173 °C (1.999(4) Å).²¹⁶ Such asymmetries have been previously observed for the KrF₂ analogue²³² and for XeF₂ terminally coordinated to metal centers.^{82,83} The present Xe–F_b and Xe–F_t bond lengths are comparable to those in $[Ca(XeF_2)_5][PF_6]_2$,²⁶² $[Cd(XeF_2)_5][PF_6]_2$,²⁶² $[Cd(XeF_2)][BF_4]_2$,²⁶³ $[Mg(XeF_2)_4][AsF_6]_2$,²⁶⁴ $[Mg(XeF_2)_2][AsF_6]_2$,²⁶⁴ and $[Ca_2(XeF_2)_9][AsF_6]_4^{265}$ where the Xe–F_b bonds range from 2.026(7) to 2.087(8) Å and the Xe–F_t bonds range from 1.913(5) to 1.966(6) Å. The AsF₆⁻ anion in the present structure is a distorted octahedron in which the As–F_b bridge bond is elongated relative to the other As–F bonds.

The XeF₂ ligands coordinate to bromine with Br(1)---F(3)-Xe(1) and Br(1)---F(5)-Xe(2) angles of 142.4(2)° and 134.1(2)°, respectively, which are bent as a result of steric repulsion between the two valence electron lone pairs of each bridging fluorine atom and their respective bridge bond pair domains. Both XeF₂ ligands are near-linear with F(3)-Xe(1)-F(4) and F(5)-Xe(2)-F(6) angles equal to 178.4(2)° and 179.8(2)°, respectively, consistent with other XeF₂ adducts.^{82,83,262-265}

8.2.4.2. [**BrOF**₂][**AsF**₆]. The unit cell of [BrOF₂][**AsF**₆] contains four structural units and is in agreement with the previously reported cell parameters obtained from an earlier powder diffraction study.¹²⁸ The cubic space group, $P2/_13$, results in a three-fold positional disorder around the bromine atom in which the oxygen and fluorine atoms of the trigonal pyramidal BrOF₂⁺ cation are indistinguishable. The observed Br–O/F bond length (1.647(1) Å) is slightly shorter than the weighted average of the Br–O and Br–F bond lengths in [BrOF₂][AsF₆]·2XeF₂ (1.673(4) Å) (vide supra), and is consistent with the greater electronegativity of the bromine atom in [BrOF₂][AsF₆] relative to that in [BrOF₂][AsF₆]·2XeF₂. Using a weighted apportioning of the calculated Br–O to Br–F
bond length ratio (0.891) obtained from the calculated structures of $[BrOF_2][AsF_6]_3^{2-}$ (see 8.2.6.1, Computational Results), Br–O and Br–F bond lengths of 1.523 and 1.709 Å, respectively, may be assigned.

The bromine atom also makes three longer contacts with one fluorine atom of three different AsF_6^- anions, resulting in pseudo-octahedral coordination around the bromine atom. These contacts (2.506(1) Å) are significantly less than the sum of the van der Waals radii for Br and F (3.32 Å).⁵⁵

8.2.4.3. [CIOF₂][AsF₆]. The unit cell contains four $[CIOF_2][AsF_6]$ structural units and differs from that deduced previously from an X-ray powder diffraction study which reported six structural units per unit cell.¹²³ The present study represents the first single-crystal X-ray structure determination of the $CIOF_2^+$ cation and, unlike the bromine analogue, the $CIOF_2^+$ cation is ordered.

The structure of $[ClOF_2][AsF_6]$ consists of a $ClOF_2^+$ cation which interacts by means of three non-equivalent short contacts with fluorine atoms from of three $AsF_6^$ anions within the unit cell (Figure 8.3), providing the chlorine atom with a pseudooctahedral coordination sphere similar to that of bromine in $[BrOF_2][AsF_6]$ and $[BrOF_2][AsF_6] \cdot 2XeF_2$ (vide supra). Three fluorine atoms of each AsF_6^- anion coordinate to three different $ClOF_2^+$ cations, generating a two-dimensional zig-zag pattern of alternating $ClOF_2^+$ and AsF_6^- ions (Figure 8.5), which is manifested in the crystal morphology, with the salt having a propensity to crystallize in very thin plates.

260

Figure 8.5. The crystal packing of $[ClOF_2][AsF_6]$ (along the *b*-axis); thermal ellipsoids are shown at the 50% probability level.

The Cl-O bond length (1.455(2) Å) is significantly longer than those of other Cl(V) species, including the ClO_2^+ cation in $[ClO_2][SbF_6]$ (1.385(5) Å),²⁴⁷ $[ClO_2][RuF_6]$ $(1.379(9) \text{ Å})^{266}$ [ClO₂][BF₄] $(1.405(1), 1.408(1))^{267}$ 1.397(2), 1.390(2)²⁶⁸ Å), $[ClO_2][ClO_4]$ (1.406(2), 1.410(2) Å),²⁶⁹ and ClOF₃ (1.405(3) Å; gas-phase electron diffraction),²⁷⁰ and the estimated Cl–O bond length of $ClOF_2^+$ (1.41 Å) used to calculate its force constants.¹²⁴ Comparisons could not be made with the solid-state structure of $ClOF_3$ because the oxygen atom and the equatorial fluorine atom are positionally disordered. The Cl–O bond of $ClOF_2^+$ is also longer than the S–O bond in isoelectronic SOF_2 (1.412(1) Å)²⁷¹ but shorter than the Cl-O bond in the ClO₃⁻ anion of [Na][ClO₃](1.502(3) Å).²⁷² This is in accord with the average lower formal Cl–O bond order of the ClO₃⁻ anion (5/3) compared to formal Cl-O and S-O bond orders of 2 for ClOF_2^+ and SOF_2 . When compared with the calculated structure (see 8.2.6.1, Computational Results), the experimental fluorine contact distance (C1---F(5B)) opposite the oxygen atom is significantly shorter than the other Cl---F contact distances and is likely a result of crystal packing. This would account for lengthening of the Cl-O bond trans to it.

The Cl–F bond lengths (1.522(2), 1.543(2) Å) of $[ClOF_2][AsF_6]$ are comparable to the equatorial bond lengths of ClF_4^+ in $[ClF_4][SbF_6]$ (1.530(2) Å),²⁷³ but are significantly shorter than the axial bonds of ClF_4^+ in $[ClF_4][SbF_6]$ (1.618(2) Å),²⁷³ the axial and equatorial Cl–F bonds in gas-phase $ClOF_3$ (Cl–F_{ax} = 1.713(3) Å; Cl–F_{eq} = 1.603(4) Å),²⁷⁰ and the S–F bonds in SOF₂ (1.585(1) Å),²⁷¹ as well as the estimated Cl–F bond length used to calculate the force constants of $ClOF_2^+$ (1.62 Å).¹²⁴ The chlorine atom of ClOF_2^+ makes three additional long contacts with three neighboring AsF_6^- anions (Cl(1)---F(3) = 2.476(2) Å, Cl(1)---F(4A) = 2.523(2) Å, Cl(1)---F(5B) = 2.598(2) Å) that are substantially less than the sum of the van der Waals radii for Cl and F (3.22 Å).⁵⁵ As a result, the AsF_6^- anions display distorted octahedral arrangements in which the three As-F bridge bonds are elongated and the bonds trans to the As-F bridge bonds are shortened.

8.2.5. Raman Spectroscopy. The low-temperature Raman spectra of solid $[BrOF_2][AsF_6]$, $[ClOF_2][AsF_6]$, $[BrOF_2][AsF_6] \cdot XeF_2$, and $[BrOF_2][AsF_6] \cdot 2XeF_2$, are shown in Figures 8.6–8.9. The observed and calculated frequencies and their assignments are listed in Tables 8.5–8.8. The Raman spectra of $[BrOF_2][AsF_6]$ and $[ClOF_2][AsF_6]$ were assigned using the calculated $[BrOF_2][AsF_6]_3^{2-}$ and $[ClOF_2][AsF_6]_3^{2-}$ anions as models in which the cation coordinates by means of fluorine bridges to three different AsF_6^- anions, providing good approximations of the cation environments observed in their respective crystal structures (see 8.2.6.1, Computational Results). The current work also shows that the previously reported Raman spectrum of $[BrOF_2][AsF_6] \cdot XeF_2^{129}$ contained small amounts of residual BrF_5 which was incorrectly assigned to $[BrOF_2][AsF_6] \cdot XeF_2$ (Table 8.1).

The spectral assignments for $[BrOF_2][AsF_6]$, $[ClOF_2][AsF_6]$, $[BrOF_2][AsF_6]\cdot XeF_2$, and $[BrOF_2][AsF_6]\cdot 2XeF_2$ were made by comparison with the calculated frequencies and Raman intensities (Tables 8.5–8.8) of the energy-minimized geometries (Figures 8.2, 8.4, 8.10, and 8.11) and for $[BrOF_2][AsF_6]\cdot 2XeF_2$ by

264

Table 8.6.Raman spectrum of $[BrOF_2][AsF_6]$ recorded at -150 °C using 1064-nm excitation. Symbols denote FEP
sample tube lines (*) and instrumental artifact (‡).

265

Table 8.7.Raman spectrum of $[ClOF_2][AsF_6]$ recorded at -150 °C using 1064-nm excitation. Symbols denote FEP sample tube lines (*) and instrumental artifact (‡).

Table 8.8.Raman spectrum of $[BrOF_2][AsF_6] \cdot XeF_2$ recorded at -150 °C using 1064-nm excitation. Symbols denote
FEP sample tube lines (*), $[BrOF_2][AsF_6]$ (†) and instrumental artifact (‡).

Table 8.9.Raman spectrum of $[BrOF_2][AsF_6] \cdot 2XeF_2$ recorded at -150 °C using 1064-nm excitation. Symbols denote
FEP sample tube lines (*) and instrumental artifact (‡).

	exptl ^b		c	alcd ^c	assents			
Raman ^{d,e}	infrared d	Raman ^{ef}	PBE1PBE	B3LYP	$[\operatorname{BrOF}_2][\operatorname{AsF}_6]_3^{2^-}(C_1)^g$			
1059(50)	1055 m	1064(45)	1048(40)[78]	997(46)[72]	v(BrO)			
720(17)	730 sh	723(20)	729(1)[260]725(<1)[249]722(1)[489]718(1)[4]714(<0.1)[90]709(1)[97]687(26)[8]	708(1)[259] 705(<1)[227] 701(2)[475] 697(1)[4] 693(<0.1)[91] 688(1)[98] 665(25)[9]	$ \begin{bmatrix} v(As_{A}F_{5A}) - v(As_{A}F_{8A}) \end{bmatrix} + \begin{bmatrix} v(As_{A}F_{5A'}) - v(As_{A}F_{8A'}) \end{bmatrix} \\ \begin{bmatrix} v(As_{A}F_{5A}) - v(As_{A}F_{8A}) \end{bmatrix} + \begin{bmatrix} v(As_{A}F_{8A'}) - v(As_{A}F_{5A'}) \end{bmatrix} + \begin{bmatrix} v(As_{B}F_{5B}) - v(As_{B}F_{8B}) \end{bmatrix} \\ \begin{bmatrix} v(As_{A}F_{4A}) - v(As_{A}F_{7A}) \end{bmatrix} + \begin{bmatrix} v(As_{A}F_{4A'}) - v(As_{A}F_{7A'}) \end{bmatrix} + \begin{bmatrix} v(As_{B}F_{4B}) - v(As_{B}F_{7B}) \end{bmatrix} \\ \begin{bmatrix} v(As_{A}F_{4A}) - v(As_{A}F_{7A}) \end{bmatrix} + \begin{bmatrix} v(As_{A}F_{7A'}) - v(As_{A}F_{7A'}) \end{bmatrix} + \begin{bmatrix} v(As_{B}F_{4B}) - v(As_{B}F_{7B}) \end{bmatrix} \\ \begin{bmatrix} v(As_{B}F_{5B}) - v(As_{B}F_{8B}) \end{bmatrix} \\ \begin{bmatrix} v(As_{B}F_{4B}) - v(As_{B}F_{7B}) \end{bmatrix} \\ \begin{bmatrix} v(As_{B}F_{4B}) - v(As_{B}F_{7B}) \end{bmatrix} \\ \begin{bmatrix} v(As_{A}F_{6A}) + v(As_{A}F_{6A'}) + v(As_{B}F_{6B}) \end{bmatrix} + \begin{bmatrix} v(BrF_{1}) + v(BrF_{2}) \end{bmatrix} \end{bmatrix} $			
688(1)			676(2)[171]	656(2)[179]	$[\nu(As_AF_{6A}) - \nu(As_AF_{6A'})]$			
000(1)			670(<1)[253]	649(<1)[245]	v(As _B F _{6B})			
			650(1)[91]	631(1)[108]	$[v(As_AF_{3A}) + v(As_AF_{4A}) + v(As_AF_{5A}) + v(As_AF_{7A}) + v(As_AF_{8A}) - v(As_AF_{6A})] - [v(As_AF_{3A'}) + v(As_AF_{4A'}) + v(As_AF_{5A'}) + v(As_AF_{7A'}) + v(As_AF_{8A}) - v(As_AF_{6A'})] [v(BrF_1) + v(BrF_2)] - [v(As_AF_{4A}) + v(As_AF_{4A}) + v(As_AF_{5A}) + v(As_AF_{6A}) + v(As_AF_{7A})] $			
	660 w	667 sh	657(7)[35]	635(39)[<1] ^{<i>k</i>}	+ $v(As_{A}F_{8A})$] + [$v(As_{A}F_{3A})$ + $v(As_{A}F_{4A})$ + $v(As_{A}F_{5A})$ + $v(As_{A}F_{6A})$ + $v(As_{A}F_{7A})$ + $v(As_{A}F_{8A})$] + $(v(As_{B}F_{3B})$] + $v(As_{B}F_{3B})$ + $v(As_{B}F_{5B})$ + $v(As_{B}F_{6B})$ + $v(As_{B}F_{7B})$ + $v(As_{B}F_{8B})$] small			
649(100)		647(100)	649(36)[176]	61 7 (63)[81] ⁱ	$ \begin{bmatrix} \nu(BrF_1) + \nu(BrF_2) \end{bmatrix} + \begin{bmatrix} \nu(As_AF_{8A}) + \nu(As_AF_{5A}) + \nu(As_AF_{3A}) + \nu(As_AF_{4A}) + \nu(As_AF_{7A}) - \nu(As_AF_{6A}) \end{bmatrix} + \begin{bmatrix} \nu(As_AF_{8A'}) + \nu(As_AF_{5A'}) + \nu(As_AF_{5A'}) + \nu(As_AF_{4A'}) + \nu(As_AF_{7A'}) - \nu(As_AF_{6A'}) \end{bmatrix} - \begin{bmatrix} \nu(As_AF_{8A'}) + \nu(As_AF_{5A'}) + \nu(As_AF_{5A'}) + \nu(As_AF_{5A'}) - \nu(As_AF_{6A'}) \end{bmatrix} $			
			648(46)[9]	629(3)[135] ³	$[v(As_BF_{3B}) + v(As_BF_{5B}) + v(As_BF_{3B}) + v(As_BF_{4B}) + v(As_BF_{7B}) - v(As_BF_{6B})] + $			
634 sh	630 sh	634(25)	627(16)[191]	590(20)[159]	$[v(BrF_1) + v(BrF_2)]$ $[v(BrF_1) - v(BrF_2)]$			
558 ch		560(6)	∫ 592(5)[<0.1]	576(5)[<0.1]	$[v(As_{A}F_{8A}) + v(As_{A}F_{5A})] - [v(As_{A}F_{4A}) + v(As_{A}F_{7A})] + [v(As_{A}F_{8A'}) + v(As_{A}F_{5A'})] - [v(As_{A}F_{4A'}) + v(As_{A}F_{7A'})]$			
556 M		500(0)	591(2)[<1]	574(3)[3]	$[v(As_AF_{8A}) + v(As_AF_{5A})] - [v(As_AF_{4A}) + v(As_AF_{7A})] - [v(As_A\cdot F_{6A})] + [v(As_A\cdot F_{7A})] + [v(As_A\cdot F_{7A})] + [v(As_A\cdot F_{7A})]$			
			583(3)[<1]	566(3)[<1]	$[v(As_BF_{8B}) + v(As_BF_{5B})] - [v(As_BF_{4B}) + v(As_BF_{7B})]$			
		549 sh	538(18) [25]	520(22)[29]	$[\nu(As_BF_{3B}) - \nu(BrF_{3B})] + \nu(As_BF_{6B})$			
		543(10)	494(16)[146]	472(18)[150]	$[\nu(As_AF_{3A}) + \nu(As_AF_{3A'}) - \nu(As_BF_{3B})] - [\nu(BrF_{3A}) + \nu(BrF_{3A'}) - \nu(BrF_{3B})]$			
531(12)	535 m	535(14)	474(11)[224]	453(12)[218]	$[\nu(As_AF_{3A}) - \nu(As_AF_{3A'})] + [\nu(BrF_{3A'}) - \nu(BrF_{3A})]$			
398(1)	405 sh	403(2)	401(2)[122]	393(3)[106]	$ \begin{split} & [\delta(F_{4A}As_AF_{3A}) - \delta(F_{7A}As_AF_{6A}) + \rho_w(F_{8A}As_AF_{5A})] + [\delta(F_{4A'}As_AF_{3A'}) - \delta(F_{7A'}As_AF_{6A'}) \\ & + \rho_w(F_{8A'}As_AF_{5A'})] + [\delta(F_{4B}As_BF_{3B}) - \delta(F_{7B}As_BF_{6B}) + \rho_w(F_{8B}As_BF_{5B})]_{small} + \\ & \delta(BrOF_1F_2)_{mod} \end{split} $			

Table 8.5. Complete List of Vibrational Frequencies^{*a*} for $[BrOF_2][AsF_6]$ (Exptl) and $[BrOF_2][AsF_6]_3^{2-}$ (Calcd)

.

Table 8.5. (continued...)

				391(<1)[7]	384(2)[10]	$ \begin{bmatrix} \delta(F_{4A}As_AF_{3A}) - \delta(F_{7A}As_AF_{6A}) + \rho_w(F_{8A}As_AF_{5A}) \end{bmatrix} - \begin{bmatrix} \delta(F_{4A}As_AF_{3A'}) - \delta(F_{7A'}As_AF_{6A'}) \\ + \rho_w(F_{8A'}As_AF_{5A'}) \end{bmatrix} $
				388(<1)[32]	383(<1)[38]	$\delta(F_{4B}As_BF_{3B}) - \delta(F_{7B}As_BF_{6B}) + \rho_w(F_{8B}As_BF_{5B})$
				386(<1)[48]	382(<1)[57]	$[\delta(F_{4B}As_{B}F_{6B}) - \delta(F_{7B}As_{B}F_{3B}) + \rho_{w}(F_{8B}As_{B}F_{5B})]$
				382(<0.1)[80]	378(<0.1)[79]	$\delta(As_BF_{4B}F_{7B}F_{3B}F_{6B})_{o.o.p.}$
				380(<1)[42]	375(<1)[60]	$\delta(As_{A}F_{4A}F_{7A}F_{3A}F_{6A})_{o.o.p.} + \delta(As_{A'}F_{4A'}F_{7A'}F_{3A'}F_{6A'})_{o.o.p.}$
				378(<1)[138]	374(1)[125]	δ(As _B F _{4B} F _{7B} F _{8B} F _{5B}) _{0.0.p.} - δ(As _A F _{4A} F _{7A} F _{8A} F _{5A}) _{0.0.p.} - δ(As _A ·F _{4A} ·F _{7A} ·F _{8A} ·F _{5A} ·) _{0.0.p.}
387(6)	385 ms	387(6)*	{	377(1)[143]	371(2)[158]	$ \begin{bmatrix} \delta(As_AF_{4A}F_{6A}F_{8A}) - \delta(As_AF_{3A}F_{5A}F_{7A}) \end{bmatrix} - \begin{bmatrix} \delta(As_AF_{4A}F_{6A}F_{8A'}) - \delta(As_AF_{3A'}F_{5A'}F_{7A'}) \end{bmatrix} + \\ \delta(OBrF_1)_{small} $
~ ~			l	377(<0.1)[1]	373(<0.1)[13]	$\delta(\mathrm{As_{A}F_{4A}F_{7A}F_{3A}F_{6A}})_{\mathfrak{o.o.p.}} - \delta(\mathrm{As_{A'}F_{4A'}F_{7A'}F_{3A'}F_{6A'}})_{\mathfrak{o.o.p.}}$
360(18)	355 sh	366(16)		359(3)[12]	346(3)[16]	$\delta(BrOF_1F_2)$
				356(1)[<1]	351(2)[<1]	$[\delta(F_{4A}As_{A}F_{8A}) + \delta(F_{7A}As_{A}F_{5A})] + [\delta(F_{4A'}As_{A'}F_{8A'}) + \delta(F_{7A'}As_{A'}F_{5A'})]$
		•		356(<1)[<0.1]	351(<1)[<0.1]	$[\delta(F_{4A}As_AF_{8A}) + \delta(F_{7A}As_AF_{5A})] - [\delta(F_{4A'}As_AF_{8A'}) + \delta(F_{7A'}As_{A'}F_{5A'})]$
				351(1)[<1]	347(1)[<1]	$[\delta(F_{4B}As_{B}F_{8B}) + \delta(F_{7B}As_{B}F_{5B})]$
			ſ	347(<1)[7]	342(<1)[4]	$ \begin{bmatrix} \delta(F_{4A}As_AF_{6A}) + \delta(F_{7A}As_AF_{3A}) \end{bmatrix} + \begin{bmatrix} \delta(F_{4A}As_AF_{6A'}) + \delta(F_{7A}As_AF_{3A'}) \end{bmatrix} - \begin{bmatrix} \delta(F_{4B}As_BF_{6B}) + \delta(F_{7B}As_BF_{3B}) \end{bmatrix} $
		359(16)	1	347(1)[4]	341(1)[8]	$[\delta(F_{4A}As_{A}F_{3A}) + \delta(F_{7A}As_{A}F_{6A})] - [\delta(F_{4A'}As_{A'}F_{3A'}) + \delta(F_{7A'}As_{A'}F_{6A'})] + \delta(OBrF_{1})_{small}$
			l	344(3)[11]	339(3)[11]	$[\delta(F_{4B}As_{B}F_{6B}) + \delta(F_{7B}As_{B}F_{3B})]$
				339(1)[<0.1]	335(2)[<1]	$[\delta(F_{8B}As_BF_{6B}) + \delta(F_{5B}As_BF_{3B})]$
				333(1)[<1]	329(2)[<1]	$[\delta(F_{5A}As_AF_{3A}) + \delta(F_{8A}As_AF_{6A})] + [\delta(F_{5A}As_AF_{3A'}) + \delta(F_{8A'}As_AF_{6A'})]$
				332(<1)[<0.1]	328(<1)[<0.1]	$[\delta(F_{8A}As_AF_{3A}) + \delta(F_{5A}As_AF_{6A})] - [\delta(F_{8A'}As_AF_{3A'}) + \delta(F_{5A'}As_AF_{6A'})]$
311(18)		314(23)		312(3)[90]	302(3)[79]	δ(OBrF ₁)
289(6)	•	292(6)*		283(<1)[24]	270(1)[21]	$\delta(F_1BrF_2)$
239(1)		244(1)		245(<0.1)[2]	241(<1)[2]	$[\rho_w(F_{8A}As_AF_{5A}) - \rho_w(F_{3A}As_AF_{6A})] + [\rho_w(F_{8A'}As_{A'}F_{5A'}) - \rho_w(F_{3A'}As_{A'}F_{6A'})]$
				238(<0.1)[31]	234(<0.1)[30]	$[\rho_{\text{w}}(F_{\text{8A}}As_{\text{A}}F_{\text{5A}}) - \rho_{\text{w}}(F_{\text{3A}}As_{\text{A}}F_{\text{6A}})] - [\rho_{\text{w}}(F_{\text{8A'}}As_{\text{A'}}F_{\text{5A'}}) - \rho_{\text{w}}(F_{\text{3A'}}As_{\text{A'}}F_{\text{6A'}})]$
				234(<0.1)[5]	231(<0.1)[5]	$\rho_w(F_{8B}As_BF_{5B}) - \rho_w(F_{3B}As_BF_{6B})$
				229(<0.1)[<0.1]	225(<0.1)[<0.1]	$\rho_{w}(F_{4B}As_{B}F_{7B}) - \rho_{w}(F_{3B}As_{B}F_{6B})$
				229(<1)[2]	225(<1)[2]	$[\rho_{w}(F_{4A}As_{A}F_{7A}) - \rho_{w}(F_{3A}As_{A}F_{6A})] + [\rho_{w}(F_{4A'}As_{A'}F_{7A'}) - \rho_{w}(F_{3A'}As_{A'}F_{6A'})]$
				228(<0.1)[<1]	225(<0.1)[<1]	$[\rho_{\text{w}}(F_{4\text{A}}As_{\text{A}}F_{7\text{A}}) - \rho_{\text{w}}(F_{3\text{A}}As_{\text{A}}F_{6\text{A}})] - [\rho_{\text{w}}(F_{4\text{A}'}As_{\text{A}'}F_{7\text{A}'}) - \rho_{\text{w}}(F_{3\text{A}'}As_{\text{A}'}F_{6\text{A}'})]$
				216(<0.1)[<1]	212(<0.1)[<0.1]	$\rho_{w}(F_{4B}As_{B}F_{7B}) - \rho_{w}(F_{8B}As_{B}F_{5B})$
				210(<0.1)[<0.1]	206(<0.1)[<0.1]	$[\rho_{w}(F_{4A}As_{A}F_{7A}) - \rho_{w}(F_{8A}As_{A}F_{5A})] + [\rho_{w}(F_{4A'}As_{A'}F_{7A'}) - \rho_{w}(F_{8A'}As_{A'}F_{5A'})]$
				210(<0.1)[<1]	206(<0.1)[<1]	$[\rho_{\text{w}}(F_{4\text{A}}As_{\text{A}}F_{7\text{A}}) - \rho_{\text{w}}(F_{8\text{A}}As_{\text{A}}F_{5\text{A}})] - [\rho_{\text{w}}(F_{4\text{A}'}As_{\text{A}'}F_{7\text{A}'}) - \rho_{\text{w}}(F_{8\text{A}'}As_{\text{A}'}F_{5\text{A}'})]$
			ſ	162(<1)[33]	156(<1)[32]	$\rho_r(BrF_1F_2)$
119(4)		121(5)	- {	153(<1)[33]	149(<1)[18]	$\rho_r(BrOF_1F_2)$
			l	127(<1)[3]	120(<1)[5]	$\rho_{t}(BrOF_{1}F_{2})$

Table 8.5. (c	ontinued)
---------------	-----------

	125(<1)[6]	124(<1)[6]	1
0((10)	94(<1)[25]	91(<1)[24]	
96(10)	91(<1)[15]	89(<1)[15]	
	52(<0.1)[4]	50(<1)[4]	
	51(<1)[<1]	48(<1)[<1]	
	48(<1)[2]	45(<1)[2]	
	39(<1)[<1]	38(<1)[<0.1]	
	37(<1)[<0.1]	37(<1)[<0.1]	coupled deformation modes
	27(<0.1)[<0.1]	26(<0.1)[<0.1]	
	26(<1)[1]	25(<1)[<1]	
	18(<0.1)[<0.1]	16(<0.1)[<0.1]	
	17(<0.1)[<0.1]	15(<0.1)[<0.1]	
	11(<0.1)[<0.1]	12(<0.1)[<0.1]	
	10(<0.1)[<0.1]	12(<0.1)[<0.1]	
	7(<0.1)[<0.1]	7(<0.1)[<0.1]	
81(10)			/ lattice mode

270

^{*a*} Frequencies are given in cm⁻¹. ^{*b*} The abbreviations denote shoulder (sh). ^{*c*} The Stutt Huzpolar 2 basis set was used. Values in parentheses denote Raman intensities (Å⁴ u⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹). ^{*d*} From ref 128. ^{*e*} Values in parentheses denote relative Raman intensities. ^{*f*} The Raman spectrum was recorded in a FEP sample tube at -150 °C using 1064-nm excitation. An asterisk, *, indicates overlap with a FEP sample tube band; the relative Raman intensity does not include the FEP contribution. ^{*g*} Vibrational assignments were based on the modes at the PBE1PBE level. The abbreviations denote stretch (v), bend (δ), rock (ρ_r), wag (ρ_w), twist (ρ_t), and out-of-plane bend (o.o.p.). ^{*h*} [ν (As_AF_{8A}) + ν (As_AF_{5A}) + ν (As_AF_{5A}) + ν (As_AF_{6A}) + ν (As_AF_{7A})] + [ν (As_BF_{5B}) + ν (As_BF_{5B}) + ν (As_BF_{6B})]_{small} + [ν (BrF₁) + ν (BrF₂)]_{small}. ^{*i*} [ν (BrF₁) + ν (BrF₂)].

	exptl ^b			cal	cd ^c	assgnis
Raman ^d	ir ^a	exptl ^{ed}	_	PBE1PBE	B3LYP	$[\operatorname{ClOF}_2][\operatorname{AsF}_6]_3^{\mathcal{F}}(C_1)^{\mathcal{G}}$
1333(2) 1320(1)	1331 ms 1319 mw	1333(21) 1329(39) 1321(10)	}	1303(41)[136]	1228(51)[126]	v(ClO)
757(3)	750 br	757(26) br 752 (24) br		749(76)[299]	708(39)[386] ^{<i>h</i>}	$[v(CIF_1) + v(CIF_2)]$
		720(8)		729(14)[309]	702(3)[305] ⁱ	$[\nu(\text{CIF}_1) - \nu(\text{CIF}_2)] + [\nu(\text{As}_A\text{F}_{5A}) - \nu(\text{As}_A\text{F}_{8A})] - [\nu(\text{As}_A\cdot\text{F}_{5A}\cdot) - \nu(\text{As}_A\cdot\text{F}_{8A}\cdot)] + [\nu(\text{As}_B\text{F}_{5B}) - \nu(\text{As}_B\text{F}_{8B})]$
			ſ	721(2)[239]	698(13)[375] ^j	$[\nu(As_AF_{5A}) - \nu(As_AF_{8A})] + [\nu(As_AF_{5A'}) - \nu(As_AF_{8A'})]$
		710(1)	$\left\{ \right.$	716(6)[107]	691(17)[22]	$[\nu(As_AF_{5A}) - \nu(As_AF_{8A})] - [\nu(As_AF_{5A}) - \nu(As_AF_{8A'})] + [\nu(As_AF_{7A'}) - \nu(As_AF_{4A'})] + [\nu(ClF_1) - \nu(ClF_2)]_{small}$
			l	713(8)[297]	690(27)[95]	$[v(As_AF_{4A}) - v(As_AF_{7A})] + [v(As_AF_{7A'}) - v(As_AF_{4A'})]$
				709(<1)[96]	689(<1)[90]	$[v(As_A F_{7A'}) - v(As_A F_{4A'})] + [v(As_B F_{8B}) - v(As_B F_{5B})]$
(0(1))	(05	695(16)	ſ	703(4)[40]	668(11)[12] [*]	$[\nu(As_{A}F_{4A}) - \nu(As_{A}F_{7A})] + [\nu(As_{B}F_{7B}) - \nu(As_{B}F_{4B})] + [\nu(As_{B}F_{5B}) - \nu(As_{B}F_{8B})] + [\nu(ClF_{1}) - \nu(ClF_{2})]_{small}$
696(1) 695 vs	093 VS	692 sh	l	700(4)[33]	680(15)[51] ¹	$[\nu(As_A F_{4A}) - \nu(As_B F_{7A})] + [\nu(As_B F_{7B}) - \nu(As_B F_{4B})] + [\nu(As_B F_{8B}) - \nu(As_B F_{5B})] + [\nu(ClF_1) - \nu(ClF_2)]_{small}$
			٢	677(<1)[30] 670(2)[353]	653(4)[28] 648(3)[326]	$[\nu(As_AF_{6A}) + \nu(As_AF_{6A}) + \nu(As_BF_{6B})] + [\nu(CIF_1) + \nu(CIF_2)]_{small}$
		685(3)	{	667(6)[336]	641(17)[300] #	$[v(\Delta s \mathbf{E}_{1}) + v(\Delta s \mathbf{E}_{2})] = [v(C \mathbf{E}_{1}) + v(C \mathbf{E}_{1})]$
			ι	007(0)[350]	041(17)[300]	$[v(As_Ar_{6A}) - v(As_Ar_{6A'})] + [v(Cir_1) - v(Cir_2)]_{small}$ $[v(As_Br_1) + v(As_Br_1) + v(As_Br_2) + v(As_Br_2) + v(As_Br_2)] + [v(As_Br_2) + v(As_Br_2) $
674(10)	675 sh	675(100)		651(70)[4]	631(80)[5]	$ \left[v(x_{A}, T_{A}) + v(x_{A$
				648(2)[87]	629(3)[113]	$ [v(As_{A}F_{3A}) + v(As_{A}F_{4A}) + v(As_{A}F_{5A}) + v(As_{A}F_{5A}) + v(As_{A}F_{5A})] + [v(As_{A}F_{3A}) + v(As_{A}F_{4A}) + v(As_{A}F_{5A}) + v(As_{A}F_{7A}) + v(As_{A}F_{5A})] - [v(As_{B}F_{3B}) + v(As_{B}F_{4B}) + v(As_{B}F_{5B}) + v(As_{B}F_{7B}) + v(As_{B}F_{7B}) + v(As_{B}F_{7B}) + v(As_{B}F_{8B})] $
				648(2)[136]	628(4)[189]	$[v(As_AF_{3A}) + v(As_AF_{4A}) + v(As_AF_{5A}) + v(As_AF_{7A}) + v(As_AF_{8A})] - [v(As_AF_{3A'}) + v(As_AF_{4A'}) + v(As_AF_{5A'}) + v(As_AF_{7A'}) + v(As_AF_{5A'})]$
			ſ	586(4)[<1]	571(4)[1]	$[v(As_AF_{4A}) + v(As_AF_{7A})] - [v(As_AF_{5A}) + v(As_AF_{8A})] + [v(As_AF_{4A'}) + v(As_AF_{7A'})] - [v(As_AF_{5A'}) + v(As_AF_{8A'})]$
		576(9)	ł	585(3)[<1]	569(3)[1]	$[v(As_AF_{4A}) + v(As_AF_{7A})] - [v(As_AF_{5A}) + v(As_AF_{8A})] - [v(As_AF_{4A'}) + v(As_AF_{7A'})] + [v(As_AF_{5A'}) + v(As_AF_{8A'})]$
	•		l	578(3)[<1]	562(3)[<1]	$[v(As_{B}F_{5B}) + v(As_{B}F_{8B})] - [v(As_{B}F_{4B}) + v(As_{B}F_{7B})]$
		5(9/21)	ſ	552(14)[2]	533(19)[6]	$[v(As_{B}F_{3B}) + v(As_{B}F_{6B})] - [v(As_{B}F_{4B}) + v(As_{B}F_{7B})] - [v(As_{B}F_{5B}) + v(As_{B}F_{8B})]$
563(3)	561 ms	559(30)	{	525(17)[95]	501(24)[112]	$[\textit{v}(As_AF_{3A}) + \textit{v}(As_AF_{3A'}) - \textit{v}(As_BF_{3B})] - [\textit{v}(CIF_{3A}) + \textit{v}(CIF_{3A'}) - \textit{v}(CIF_{3B})] + \delta(CIOF_1F_2)_{small} $
		557(50)	l	507(14)[166]	484(18)[185]	$[\nu(\mathrm{As}_{A}\mathrm{F}_{3A}) - \nu(\mathrm{As}_{A}\mathrm{F}_{3A'})] + [\nu(\mathrm{CIF}_{3A'}) - \nu(\mathrm{CIF}_{3A})]$
511(2)	509 ms	510(22)	-	476(4)[36]	452(2)[43]	$\delta(\text{ClOF}_1\text{F}_2) + [\nu(\text{As}_A\text{F}_{3A}) + \nu(\text{As}_A\text{F}_{3A'})] - [\nu(\text{ClF}_{3A}) + \nu(\text{ClF}_{3A'})]_{\text{small}}$

Table 8.6. Complete List of Vibrational Frequencies^{*a*} for $[ClOF_2][AsF_6]$ (Exptl) and $[ClOF_2][AsF_6]_3^{2-}$ (Calcd)

Table 8.6. (continued...)

			6 406(2)[8]	391(2)[40]	$\delta(OCIF_1)$
406(2)	407 sh	411(16)	400(2)[120]	393(4)[90]	$ \begin{array}{l} \left[\delta(F_{4A}As_{A}F_{8A}) - \delta(F_{5A}As_{A}F_{7A}) + \rho_w(F_{3A}As_{A}F_{6A}) \right] + \left[\delta(F_{4A}As_{A}F_{8A'}) - \delta(F_{5A}As_{A}F_{7A'}) + \rho_w(F_{3A'}As_{A'}F_{6A'}) \right] \end{array} $
		406(5)	392(<1)[3]	386(2)[16]	$[\delta(F_{5A}As_AF_{7A}) - \delta(F_{3A}As_AF_{4A}) + \rho_w(F_{5A}As_AF_{8A})] + [\delta(F_{5A'}As_AF_{7A'}) - \rho_w(F_{5A}As_AF_{8A})] + [\delta(F_{5A'}As_AF_{7A'}) - \rho_w(F_{5A'}As_AF_{8A'})] + \rho_w(F_{5A'}As_AF_{8A'})] + \rho_w(F_{5A'}As_AF_{8A'})] + \rho_w(F_{5A'}As_AF_{8A'})] + \rho_w(F_{5A'}As_AF_{8A'}) + \rho_w(F_{5A'}As_AF_{8A'})] + \rho_w(F_{5A'}As_AF_{8A'}$
		400 sh	300(~0 1)[10]	385(~1)[12]	$\frac{\partial (F_{3A'}AS_{A'}F_{6A'}) + \rho_w(F_{5A'}AS_{A'}F_{8A'})}{[S(E \land E \land E \land S(E \land E \land$
			(390(~0.1)[10]	365(~1)[12]	$\begin{bmatrix} O(\Gamma_{6B} \frown BB^{-}7B) - O(\Gamma_{3B} \frown BD^{-}4B) + P_{W}(\Gamma_{5B} \frown BD^{-}8B) \end{bmatrix}$
		396(10)	388(<0.1)[4]	383(<1)[7]	$\delta(\mathbf{As_{4F}}_{4A}; \mathbf{F_{7A'}}_{8B'}; \mathbf{S_{B'}}_{0,0,p}, + \delta(\mathbf{As_{4'}}_{7A'}; \mathbf{S_{A'}}_{0,0,p}, + \delta(\mathbf{As_{4'}}_{7A'}; \mathbf{F_{4A'}}_{7A'}; \mathbf{S_{4'}}_{0,0,p}, + \delta(\mathbf{As_{4'}}_{7A'}; \mathbf{S_{4'}}_{0,0,p}, + \delta(\mathbf{As_{4'}}; \mathbf{S_{4'}}; \mathbf{S_{4'}}_{0,0,p}, + \delta(\mathbf{As_{4'}}; \mathbf{S_{4'}}; \mathbf{S_{4'}}, + \delta(\mathbf{As_{4'}}; \mathbf{S_{4'}}; + \delta(\mathbf{As_{4'}}; + \delta(\mathbf{As_{4'}}$
			385(1)[74]	377(2)[39]	$\begin{array}{l} \delta(F_1CIF_2)+\delta(As_BF_{4B}F_{7B}F_{8B}F_{5B})_{o.o.p.}-\delta(As_AF_{4A}F_{7A}F_{8A}F_{5A})_{o.o.p.}-\\ \delta(As_AF_{4A}F_{7A}F_{8A}F_{5A})_{o.o.p.}-\end{array}$
			383(<0.1)[76]	379(<0.1)[76]	$\delta(As_BF_{4B}F_{7B}F_{3B}F_{6B})_{o.o.p.}$
			381(<1)[87]	377(<1)[147]	$\delta(\mathrm{As}_{A}\mathrm{F}_{4A}\mathrm{F}_{7A}\mathrm{F}_{3A}\mathrm{F}_{6A})_{\mathrm{o.o.p.}} + \delta(\mathrm{As}_{A'}\mathrm{F}_{4A'}\mathrm{F}_{7A'}\mathrm{F}_{3A'}\mathrm{F}_{6A'})_{\mathrm{o.o.p.}}$
			378(<0.1)[6]	374(⊲0.1)[6]	$\delta(\mathrm{As}_{\mathbf{A}}\mathrm{F}_{4\mathbf{A}}\mathrm{F}_{7\mathbf{A}}\mathrm{F}_{3\mathbf{A}}\mathrm{F}_{6\mathbf{A}})_{\mathrm{o.o.p.}} - \delta(\mathrm{As}_{\mathbf{A}'}\mathrm{F}_{4\mathbf{A}'}\mathrm{F}_{7\mathbf{A}'}\mathrm{F}_{3\mathbf{A}'}\mathrm{F}_{6\mathbf{A}'})_{\mathrm{o.o.p.}}$
	388 s		370(<1)[141]	363(<1)[113]	$ \begin{array}{l} \left[\delta(As_{A}F_{4A}F_{6A}F_{8A}) - \delta(As_{A}F_{3A}F_{5A}F_{7A}) \right] + \left[\delta(As_{A}\cdot F_{3A}\cdot F_{5A}\cdot F_{7A}\cdot) - \\ \delta(As_{A}\cdot F_{4A}\cdot F_{6A}\cdot F_{8A}\cdot) \right] + \delta(OCIF_{1})_{small} \end{array} $
			362(<1)[40]	329(1)[33]	$\delta(F_1ClF_2) + [\delta(As_BF_{4B}F_{5B}F_{8B}) - \delta(As_BF_{3B}F_{5B}F_{7B})]_{small}$
			353(1)[9]	349(1)[8]	$[\delta(F_{4A'}As_{A'}F_{3A'}) + \delta(F_{5A'}As_{A'}F_{7A'})]$
279(1)	270 -L	279(16)	352(1)[<1]	348(1)[<1]	$[\delta(F_{4A}As_{A}F_{8A}) + \delta(F_{5A}As_{A}F_{7A})]$
3/8(1) 3/8 s	578 SH	376(10)	352(1)[6]	347(1)[8]	$[\delta(F_{4A}As_AF_{5A}) + \delta(F_{8A}As_AF_{7A})] + [\delta(F_{4A'}As_AF_{5A'}) + \delta(F_{8A'}As_AF_{7A'})]$
			349(1)[<1]	345(1)[<1]	$[\delta(F_{4B}As_BF_{5B}) + \delta(F_{8B}As_BF_{7B})]$
			344(3)[26]	349(1)[<1]	$[\delta(F_{6B}As_BF_{8B}) + \delta(F_{3B}As_BF_{5B})] + \delta(F_1ClF_2)_{small}$
371(4)		370(39)	342(3)[18]	337(2)[2]	$[\delta(F_{6B}As_BF_{8B}) + \delta(F_{3B}As_BF_{5B})]$
5,1(1)		510(57)	340(2)[47]	332(3)[38]	$ \begin{array}{l} [\delta(F_{4A}As_AF_{6A}) + \delta(F_{3A}As_AF_{7A})] + [\delta(F_{4B}As_BF_{6B}) + \delta(F_{3B}As_BF_{7B})] + \\ \delta(OCIF_2)_{stradI} \end{array} $
			338(<1)[2]	333(<1)[26]	$[\delta(F_{3A}As_{A}F_{8A}) + \delta(F_{5A}As_{A}F_{6A})]$
			337(1)[7]	335(3)[23]	$[\delta(F_{3A'}As_{A'}F_{8A'}) + \delta(F_{5A'}As_{A'}F_{6A'}) + \rho_t(F_{4A'}As_{A'}F_{7A'})]$
			247(<0.1)[2]	244(<0.1)[2]	$[\rho_{\text{w}}(F_{3\text{A}}As_{\text{A}}F_{6\text{A}}) - \rho_{\text{w}}(F_{5\text{A}}As_{\text{A}}F_{8\text{A}})] + [\rho_{\text{w}}(F_{3\text{A}'}As_{\text{A}'}F_{6\text{A}'}) - \rho_{\text{w}}(F_{5\text{A}'}As_{\text{A}'}F_{8\text{A}'})]$
			239(<1)[12]	235(<1)[16]	$ \begin{array}{l} \left[\rho_{w}(F_{3A}As_{A}F_{6A}) - \rho_{w}(F_{5A}As_{A}F_{8A})\right] + \left[\rho_{w}(F_{3A}As_{A'}F_{6A'}) - \rho_{w}(F_{4A'}As_{A'}F_{7A'})\right] \\ + \left[\rho_{w}(F_{5B}As_{B}F_{8B}) - \rho_{w}(F_{3B}As_{B}F_{6B})\right] \end{array} $
			238(<0.1)[5]	234(<0.1)[4]	$[\rho_w(F_{4B}As_BF_{7B}) - \rho_w(F_{3B}As_BF_{6B}) + \rho_w(F_{5B}As_BF_{8B})]$
			233(<1)[3]	229(<1)[2]	$[\rho_w(F_{3A}As_AF_{6A}) - \rho_w(F_{4A}As_AF_{7A})]$
			230(<1)[2]	226(<1)[1]	$[\rho_{\mathbf{w}}(F_{\mathbf{3A}'}As_{\mathbf{A}'}F_{\mathbf{6A}'}) - \rho_{\mathbf{w}}(F_{\mathbf{4A}'}As_{\mathbf{A}'}F_{\mathbf{7A}'}) - \rho_{\mathbf{w}}(F_{\mathbf{5A}'}As_{\mathbf{A}'}F_{\mathbf{8A}'})]$
			229(<0.1)[1]	225(<0.1)[1]	$[\rho_w(F_{3B}As_BF_{6B}) - \rho_w(F_{4B}As_BF_{7B})]$
			219(<0.1)[<1]	216(<1)[<1]	$[\rho_w(F_{4B}As_BF_{7B}) - \rho_w(F_{5B}As_BF_{8B})]$
			216(<0.1)[<1]	212(<0.1)[<1]	$[\rho_w(F_{4A}As_AF_{7A}) - \rho_w(F_{5A}As_AF_{8A})]$
			214(<0.1)[<1]	211(<0.1)[<1]	$[\rho_{w}(F_{4A'}As_{A'}F_{7A'}) - \rho_{w}(F_{5A'}As_{A'}F_{8A'})]$
			181(<1)[32]	175(<1)[32]	$\rho_{\rm r}({\rm ClF_1F_2})$

273

	175(<1)[14]	171(<1)[15]	$\rho_r(ClOF_1F_2)$
	154(<1)[2]	144(<1)[3]	$\rho_t(ClOF_1F_2)$
	135(<1)[6]	134(<1)[6]	}
	106(<1)[34]	102(<1)[31]	
	104(<1)[19]	100(<1)[19]	
	70(<0.1)[<1]	66(<0.1)[1]	
	64(<0.1)<1]	59(<0.1)[1]	
	56(<0.1)[<1]	52(<1)[<1]	
	44(<0.1)-<1]	40(<1)[<1]	
	41(<0.1)[<1]	38(<0.1)[<1]	coupled deformation modes
	34(<0.1)[<0.1]	31(<0.1)[<0.1]	
	27(<0.1)[<1]	25(<1)[<1]	
	21(<0.1)[<0.1]	19(<0.1)[<0.1]	
	19(<0.1)[<0.1]	16(<0.1)[<0.1]	
	16(<0.1)[<0.1]	12(<0.1)[<0.1]	
	13(<0.1)[<0.1]	9(<0.1)[<0.1]	
	8(<0.1)[<0.1]	8(<0.1)[<0.1]	1
150(3)	J		•
143(5)	}		lattice modes
122(4)			induce modes
108(5)	<u></u>		

Ph.D. Thesis – David S. Brock

^{*a*} Frequencies are given in cm⁻¹. ^{*b*} The abbreviations denote shoulder (sh) and broad (br). ^{*c*} The Stutt Huzpolar 2 basis set was used. Values in parentheses denote Raman intensities (Å⁴ u⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹). ^{*d*} From ref 124. ^{*e*} Values in parentheses denote relative Raman intensities. ^{*f*} The Raman spectrum was recorded in an FEP sample tube at -150 °C using 1064-nm excitation. Several weak bands were are also observed at 1065(2), 1045(4), 1039(1) and are assigned to combination bands. ^{*g*} Vibrational assignments were based on the modes at the PBE1PBE level. The abbreviations denote stretch (v), bend (δ), rock (ρ_r), twist (ρ_t), wag (ρ_w), and out-of-plane bend (o.o.p.). ^{*h*} [v(ClF₁) + v(ClF₂)] + [v(As_AF_{8A}) - v(As_AF_{8A})] + [v(As_AF_{8A}) - v(As_AF_{8A})] - [v(As_AF_{5A}) - v(As_AF_{5A})] - [v(As_AF_{5A}) - v(As_AF_{5A})] + [v(ClF₁) + v(ClF₂)]_{small}. ^{*j*} [v(As_AF_{5A}) - v(As_AF_{8A})] + [v(ClF₁) - v(ClF₂)]_{small}. ^{*j*} [v(As_AF_{5A}) - v(As_BF_{5B})] - (v(As_BF_{4B})] + [v(ClF₁) + v(ClF₂)]_{small}. ^{*k*} [v(ClF₁) - v(ClF₂)] + [v(As_AF_{6A})] - [v(As_AF_{6A})] - [v(As_AF_{6A}) - v(As_AF_{6A})] + [v(As_AF_{6A})] + [v(As_AF_{6A})] + [v(As_AF_{6A})] + [v(ClF₁) + v(ClF₂)]_{small}. ^{*k*} [v(ClF₁) - v(ClF₂)] + [v(As_AF_{6A}) - v(As_AF_{6A})] + [v(As_AF_{6A})] - [v(As_AF_{6A})] - [v(As_AF_{6A})] + [v(As_AF_{6A})] + [v(As_AF_{6A})] + [v(As_AF_{6A})] + [v(As_AF_{6A})] + [v(As_AF_{6A})] + [v(ClF₁) + v(ClF₂)]_{small}. ^{*k*} [v(ClF₁) - v(ClF₂)] + [v(As_AF_{6A})] - [v(As_AF_{6A})] - [v(As_AF_{6A})] - [v(As_AF_{6A})] - [v(As_AF_{6A})] + [v(As_AF_{6A})] + [v(As_AF_{6A})] + [v(ClF₁) + v(ClF₂)]_{small}. ^{*m*} [v(ClF₁) - v(ClF₂)] + [v(As_AF_{6A}) - v(As_BF_{6A})] - [v(As_AF_{6A})] + [v(As_AF_{6A})] + [v(As_AF_{6A})] + [v(ClF₁) + v(ClF₂)]_{small}] + [v(ClF₁) + v(ClF₂)] + [v(As_AF_{6A}) - v(As_AF_{6A})] + [v(As_AF_{6A})] + [v(As_AF_{6A})] + [v(As_AF_{6A})] + [v(ClF₁) + v(ClF₂)]_{small}

			calcd ^c	assgnts	
expti		PBE1PBE	B3LYP	$[BrOF_2][AsF_6] \cdot XeF_2 (C_1)^d$	ASI'6
1050(25) ^e 1043(22)	}	1090(40)[57]	1020(44)[55]	v(BrO)	
752(3)	٦	753(2)[197]	731(1)[192]	$v(AsF_5) - v(AsF_8)$)
744(7)		749(5)[137]	727(3)[135]	$v(AsF_7) - v(AsF_{10})$	$\nu_{3}(T_{1u})$
706(3)	J	745(8)[120]	724(12)[128]	v(AsF9)	J
651 sh 646(63) ^f	}	670(39)[94]	644(9)[73]	$\mathbf{v}(\mathrm{Br}\mathrm{F}_1) + \mathbf{v}(\mathrm{Br}\mathrm{F}_2)$	
674(9) ^e 669(4)	}	662(31)[76]	640(82)[79]	$\nu(AsF_5) + \nu(AsF_7) + \nu(AsF_{10}) + [\nu(BrF_1) + \nu(BrF_2)]_{small}$	$v_1(A_{1g})$
634(27) ^{ef}		632(20)[163]	603(24)[160]	$v(BrF_1) - v(BrF_2)$	
559(45)	٦				
543(100)	٦ ا	589(31)[159]	584(29)[181]	v(XeF9)	
531(11)	,	# ### (#) F# ##			
575(14)		573(3)[22]	564(3)[22]	$[\mathbf{v}(\mathrm{AsF}_5) + \mathbf{v}(\mathrm{AsF}_8)] - [\mathbf{v}(\mathrm{AsF}_7) + \mathbf{v}(\mathrm{AsF}_{10})]$	$v_2(E_g)$
447(8) br 426(10) br		463(36)[343]	472(58)[349]	$v(XeF_3) + [v(AsF_6) - v(BrF_6)]_{small}$	
420(10) 01		437(2)[18]	423(3)[22]	$v(AsF_6) + v(BrF_6)$	
		419(2)[61]	407(2)[35]	$[\mathbf{v}(\mathbf{AsF}_6) - \mathbf{v}(\mathbf{Br}_{}\mathbf{F}_6)] + \delta(\mathbf{F}_6\mathbf{AsF}_8) - \delta(\mathbf{F}_5\mathbf{AsF}_9) + \rho_w(\mathbf{F}_7\mathbf{AsF}_{10})$	
411/11	ſ	389(1)[52]	378(<1)[53]	$\delta(OBrF_1F_2) + \delta(F_5AsF_{10}) - \delta(F_7AsF_8) + \rho_w(F_6AsF_9)$	$v_4(T_{1u})$
411(11)	l	385(2)[22]	374(2)[13]	$\delta(F_5AsF_7) - \delta(F_8AsF_{10}) + \rho_w(F_6AsF_9)$	
402(12)		375(2)[25]	365(1)[5]	$\delta(F_5AsF_7) + \delta(F_8AsF_{10}) + [\delta(OBrF_1F_2)]_{small}$	
392(14)		370(1)[60]	357(2)[38]	$\delta(OBrF_1F_2) + \delta(AsF_7F_8F_9)$	
387(7) ^g		354(1)[102]	340(1)[135]	$\delta(F_5AsF_6) - \delta(F_5AsF_9) + \delta(OBrF_1)$	$v_5(T_{2g})$
		343(<1)[3]	333(<1)[7]	$\delta(F_6AsF_7) + \delta(F_9AsF_{10})$	
373(19) ^e 364(17)	}	313(5)[76]	301(4)[96]	$\rho_{\texttt{W}}(OBrF_2) + \rho_{\texttt{t}}(F_1BrF_2) + [\nu(AsF_6) - \nu(BrF_6)]_{\texttt{small}}$	
325(10)		294(<1)[11]	276(<1)[10]	$\delta(F_1BrF_2)$	

Table 8.7. Complete List of Experimental and Calculated Vibrational Frequencies^a for [BrOF₂][AsF₆]·XeF₂

.

274

1 able 8.7. (continued)			
	259(<1)[39]	251(<1)[50]	$ ho_w(F_7AsF_{10}) - ho_w(F_6AsF_9) + \delta(F_8AsF_9)$	
202(0)8	5 244(<1)[21]	233(<1)[4]	$\rho_{w}(F_{5}AsF_{8}) - \rho_{w}(F_{6}AsF_{9}) + \delta(F_{3}XeF_{4})_{i.p.}$	
293(8)	^L 234(<1)[19]	231(<1)[8]	$\rho_{w}(F_{5}AsF_{8}) - \rho_{w}(F_{6}AsF_{9}) - \delta(F_{3}XeF_{4})_{i.p.}$	
	221(<0.1)[1]	226(<0.1)[13]	$\rho_{w}(F_{5}AsF_{8}) - \rho_{w}(F_{7}AsF_{10})$	$v_6(T_{2u})$
244(3)	207(<1)[9]	213(<0.1)[2]	$\delta(F_3XeF_4)_{0,0,D}$	
	159(<1)[9]	154(<1)[10]	$\rho_{r}(F_{1}BrF_{2}) + \rho_{w}(OBrF_{2}) + \rho_{r}(F_{7}AsF_{8})$	
152(11)	151(<1)[3]	148(<1)[4]	$\rho_{\rm r}({\rm OBrF_2}) + \rho_{\rm r}({\rm F_8AsF_9})_{\rm small}$	
140(9)	139(1)[13]	133(1)[12]	$\rho_{w}(OBrF_{1}) + \rho_{r}(AsF_{7}F_{8}F_{10}) + \rho_{r}(F_{3}XeF_{4})$	
	103(2)[3]	106(<1)[<1]	$\rho_t(F_3XeF_4) + \rho_r(OBrF_1F_2)$	
	79(1)[2]	82(3)[4]	$\rho_{r}(OBrF_{1}F_{2}) + \rho_{r}(F_{3}XeF_{4})$	
	72(<1)[<1]	73(<1)[1]		
	63(<1)[2]	66(<1)[2]		
	47(<1)[<1]	63(<1)[<1]	deformation modes [BrOFall AsEd) XeFa	
	35(<1)[<1]	44(<0.1)[<1]	deformation modes [DFOT2][ASI 6] ACI 2	
	27(1)[<1]	40(<1)[<1])	
	14(<1)[<1]	25(<1)[<1]		
124(7)	ŀ		lattice modes	
<u></u>				

^{*a*} Frequencies are given in cm⁻¹. ^{*b*} The Raman spectrum was recorded in an FEP sample tube at -150 °C using 1064-nm excitation. Values in parentheses denote relative Raman intensities. The abbreviations denote shoulder (sh) and broad (br). Several weak bands were observed and assigned to the [BrOF₂][AsF₆] ion pair [1062(3), 723(2), 314(4) cm⁻¹] and to the [BrOF₂][AsF₆]·2XeF₂ adduct [698(2), 674(2), 614(7), 586(2), 565(7), 547(sh), 466(17), 408(sh), 314(4) cm⁻¹]; the relative intensities have been corrected for the overlap. ^{*c*} The aug-cc-pVTZ(-pp) basis set was used. Values in parentheses denote Raman intensities (Å⁴ u⁻¹) and values in square brackets denote infrared intensities (km mol⁻¹). ^{*d*} Vibrational assignments were based on the modes at the PBE1PBE level. The abbreviations denote stretch (v), bend (δ), rock (ρ_r), twist (ρ_t), wag (ρ_w), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). ^{*e*} The band overlaps with a [BrOF₂][AsF₆] band; the relative intensity was corrected for overlap. ^{*f*} The band overlaps with a [BrOF₂][AsF₆] band; the relative intensity was corrected for overlap.

exptl ^b			calcd ^c	assgnts	<u> </u>
		PBE1PBE	B3LYP	$[BrOF_2][AsF_6] \cdot 2XeF_2 (C_1)^d$	AsF_6
1051(62) 1045(1)	}	1071(67)[71]	1022(77)[69]	v(BrO)	
701 sh 697(13) 675(21) 634(63)	}	744(6)[172] 727(3)[163] 721(<1)[232] 662(21)[68] 678(62)[87]	717(6)[167] 703(4)[158] 696(<1)[223] 636(67)[52] 642(36)[97]	$v(AsF_{11}) - v(AsF_{12})$ $v(AsF_8)$ $v(AsF_9) - v(AsF_{10})$ $v(AsF_7) + v(AsF_9) + v(AsF_{10}) + v(AsF_{12})^{e}$ $v(BrF_1) + v(BrF_2)^{f}$	$\begin{cases} v_3(T_{1u}) \\ v_1(A_{1g}) \end{cases}$
614(43)	٦	646(29)[84]	609(41)[61]	$v(BrF_1) - v(BrF_2)$	
552(26) 548(100)	ł	604(46)[81]	584(41)[94]	$\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{4})+\mathbf{v}(\mathbf{X}\mathbf{e}_{2}\mathbf{F}_{6})$	
543(49) 540(69)	}	600(25)[236]	578(22)[256]	$v(Xe_1F_4) - v(Xe_2F_6)$	
591(2) 586(5)	}	573(2)[5]	556(2)[3]	$[\mathbf{v}(AsF_9) + \mathbf{v}(AsF_{10})] - [\mathbf{v}(AsF_{11}) + \mathbf{v}(AsF_{12})]$	
565(15) 561 sh	}	535(7)[95]	511(23)[210]	$v(AsF_7) + [v(Xe_1F_3) - v(AsF_{12})]_{small}$	$\int V_2(E_g)$
467(93), br 460 sh	}	503(47)[218]	485(38)[156]	$\nu(Xe_1F_3) + [\nu(Xe_2F_5) - \nu(AsF_7)]_{small}$	
409(15), br 400(4)	}	463(18)[364] 400(<1)[53] 395(<1)[27] 394(<1)[34]	434(20)[325] 390(<1)[42] 385(<1)[42] 383(<1)[25]	$v(Xe_2F_5) - v(Xe_1F_3)_{small}$ $\delta(F_9AsF_{12}) - \delta(F_{10}AsF_{11}) + \rho_w(F_7AsF_8)$ $\delta(F_8AsF_9) - \delta(F_7AsF_{10}) + \rho_w(F_{11}AsF_{12})$ $\delta(AsF_7E_9F_{11}) - \delta(AsF_8F_{10}F_{12})$	$\left. \right\} \nu_4(T_{1u})$
395(15)	2	386(3)[119]	368(3)[99]	$\delta(OBrF_1F_2)$,
372 sh 366(3)	}	366(1)[<1] 361(1)[<1] 356(<1)[<1]	357(1)[<0.1] 352(2)[2] 345(<1)[<1]	$\delta(F_9AsF_{12}) + \delta(F_{10}AsF_{11})$ $\delta(F_7AsF_{12}) + \delta(F_8AsF_{11})$ $\delta(F_7AsF_9) + \delta(F_8AsF_{10})$	$\left. \right\} \ \nu_5(T_{2g})$
375(13) 369(10)	}	338(4)[90]	322(4)[79]	$\rho_w(OBrF_2) + \rho_t(F_1BrF_2)$	
315(12)		305(<1)[6]	286(<1)[6]	$\delta(F_1BrF_2)$	

Table 8.8. Complete List of Experimental and Calculated Vibrational Frequencies^{*a*} for [BrOF₂][AsF₆]·2XeF₂

Table 8.8. (continued...)

299(3)	270(<1)[67]	258(<1)[59]	$\delta(F_5 X e_2 F_6)_{0.0,p.}$	
	248(<0.1)[8]	242(<1)[8]	$[\rho_{w}(F_{9}AsF_{10}) - \rho_{w}(F_{7}AsF_{8})] - \delta(F_{3}Xe_{1}F_{4})_{i.p.}$	
	240(<1)[15]	234(<1)[13]	$[\rho_w(F_9AsF_{10}) - \rho_w(F_7AsF_8)] + \delta(F_3Xe_1F_4)_{i.p.}$	
250(1)	238(<1)[<1]	228(<1)[1]	$\delta(F_5Xe_2F_6)_{i.p.}$	
	235(<1)[2]	226(<1)[9]	$\rho_{w}(F_{11}AsF_{12}) - \rho_{w}(F_{7}AsF_{8}) + \rho_{w}(F_{9}AsF_{10})$	
	229(<0.1)[<1]	222(<0.1)[<1]	$\rho_{w}(F_{9}AsF_{10}) - \rho_{w}(F_{11}AsF_{12}) + \rho_{w}(F_{7}AsF_{8})$	$V_6(1_{2u})$
232(3)	216(<1)[18]	198(<1)[10]	$\delta(F_{3}Xe_{1}F_{4})_{0.0,p.}$	
222(1)	181(1)[6]	175(2)[7]	$\rho_t(OBrF_1F_2) + [\rho_t(F_5Xe_2F_6) + \rho_t(F_3Xe_1F_4)]_{small}$	
166(4)	159(1)[18]	154(2)[19]	$\rho_t(F_5Xe_2F_6) + \rho_t(OBrF_1F_2)_{small}$	
161(3)	155(1)[4]	149(1)[2]	$\rho_t(OBrF_1) + \rho_t(F_5Xe_2F_6)$	
147(3)	129(1)[5]	130(2)[6]	$\rho_{\rm r}({\rm OBrF_1F_2}) + \rho_{\rm r}({\rm F_3Xe_1F_4})$	
	116(2)[4]	108(<1)[4]	$\rho_{r}(OBrF_{1}F_{2}) - \rho_{r}(F_{3}Xe_{1}F_{4})$	
	104(2)[16]	95(<1)[8]	$\rho_r(F_3Xe_1F_4) + \rho_t(OBrF_1F_2)_{small}$	
	101(<1)[4]	93(1)[4]	$\rho_r(F_5Xe_2F_6) + \rho_t(OBrF_1F_2)_{small}$	
	81(<1)[2]	73(1)[<1]		
	68(<1)[<1]	63(1)[<1]		
	61(<1)[<1]	58(<1)[<1]		
	54(<1)[<1]	46(<1)[<1]		
	46(<1)[<1]	42(<1)[1]	deformation modes $[BrOF_2][AsF_6] \cdot 2XeF_2$	
	43(<1)[1]	38(<1)[<1]		
	39(<1)[<1]	33(<0.1)[<1]		
	29(<1)[<1]	24(<1)[1])	
	21(<1)[<1]	10(1)[<1]		
127(22)				
109(18)	}		lattice modes	
91(9)	J			
61(2)				

^{*a*} Frequencies are given in cm⁻¹. ^{*b*} The Raman spectrum was recorded in an FEP sample tube at -150 °C using 1064-nm excitation. Values in parentheses denote relative Raman intensities. The abbreviations denote a shoulder (sh) and broad (br). ^{*c*} The aug-cc-pVTZ(-pp) basis set was used. Values in parentheses denote Raman intensities (Å⁴ u⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹). ^{*d*} Vibrational assignments were based on the modes at the PBE1PBE level. The abbreviations denote stretch (v), bend (δ), rock (ρ_r), twist (ρ_t), wag (ρ_w), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). ^{*e*} v(BrF₁) + v(BrF₂) also contributes at B3LYP level. ^{*f*} v(AsF₁₃) + v(AsF₁₄) + v(AsF₁₀) + v(AsF₉) also contributes at B3LYP level.

Figure 8.10. The calculated geometry (PBE1PBE/Stutt Huzpolar 2) of [BrOF₂] $[AsF_6]_3^{2-}$ (C₁) showing the pseudo-octahedral coordination around bromine(V).

Figure 8.11. The calculated geometry (PBE1PBE/aug-cc-pVTZ(-PP)) of $[BrOF_2][AsF_6]$ $\cdot XeF_2$ (C_1) showing the pseudo-octahedral coordination around bromine(V).

.

comparison with $[BrOF_2][AsF_6] \cdot 2KrF_2$.²³² Vibrational frequencies calculated at the PBE1PBE and B3LYP (values in parentheses) levels of theory well reproduced the observed frequencies across the series of compounds. In each case, the AsF₆⁻ anion is distorted from its ideal octahedral geometry. The AsF₆⁻ anion, under O_h symmetry, has three Raman-active bands, $v_1(A_{1g})$, $v_2(E_g)$, and $v_5(T_{2g})$, two infrared-active bands, $v_3(T_{1u})$ and $v_4(T_{1u})$, and one inactive band, $v_6(T_{2u})$. In the present examples, the fluorine-bridged AsF₆⁻ anions are distorted, each with local C_I symmetry, which results in a maximum of 15 Raman- and infrared-active bands. The bands that were observed in the Raman spectrum of AsF₆⁻ were assigned by comparison with other coordinated AsF₆⁻ anions having local C_I or C_s symmetries.^{71,154}

8.2.5.1. [**BrOF**₂][**AsF**₆]. Although [BrOF₂][**AsF**₆] has been previously characterized by Raman spectroscopy at room temperature,¹²⁸ the spectrum has been re-examined at low temperature to properly assess the effects of adduct formation on the $BrOF_2^+$ modes in [BrOF₂][AsF₆]·XeF₂ and [BrOF₂][AsF₆]·2XeF₂. The experimental spectrum is in overall good agreement with the previously reported spectrum.

The cubic space group in which the crystal structure was solved implies the anion and cation of $[BrOF_2][AsF_6]$ are situated on special positions with C_3 symmetry, thus imposing a 3-fold disorder on the cation. Consequently, the Raman spectrum was assigned based on the calculated C_1 geometry. Under C_1 symmetry, all vibrational modes (27 A) of the $[BrOF_2][AsF_6]$ ion pair are predicted to be Raman- and infrared-active. Minor discrepancies are expected to arise between experimental and calculated modes involving the anion because the calculated model, $[BrOF_2][AsF_6]_3^{2-}$, is for a single cation coordinated to three anions (see 8.2.6.1, Computational Results), whereas the crystal structure shows that each AsF_6^- anion is also coordinated to three other $BrOF_2^+$ cations.

In general, the cation bands are more intense than the anion bands, and little coupling occurs among their corresponding modes. The only significant exception is the in-phase Br–F stretching mode, $v(BrF_1) + v(BrF_2)$, which couples to As–F stretches of the anion (Table 8.5) and results in several bands appearing at 647, 667, and 723 cm⁻¹. In contrast, the out-of-phase $v(BrF_1) - v(BrF_2)$ stretching band appearing at 634 cm⁻¹ shows no coupling with the anion and is significantly less intense than the in-phase band, in agreement with the calculated intensities. The highest frequency band in the spectrum occurs at 1064 cm⁻¹ and is assigned to v(BrO), in agreement with the calculated value, $1048 (997) \text{ cm}^{-1}$. The Br---F₃ and As–F₃ stretches are coupled to one another and are assigned to the bands at 535, 543, and 549 cm⁻¹. The OBrF₁F₂ bending mode, $\delta(OBrF_1F_2)$, occurs at 316 cm⁻¹ and 292 cm⁻¹, respectively.

8.2.5.2. [CIOF₂][AsF₆]. The title compound has been previously characterized by Raman spectroscopy at room temperature.¹²⁴ However, a better-resolved, low-temperature spectrum is reported in the present work. The crystal structure of $[ClOF_2][AsF_6]$ has also made possible a more detailed analysis of the Raman spectrum which has been reassigned based on a factor-group analysis.

All vibrational modes (27 A) of the $[ClOF_2][AsF_6]$ ion pair (C_1) are predicted to be Raman- and infrared-active. Although only 24 Raman bands were observed, several high-frequency stretching bands were split into two or three bands that cannot be accounted for by site symmetry lowering alone because correlation of the gas-phase ionpair symmetry (C_1) to the crystal site symmetry (C_1) results in no additional band splittings. The additional bands therefore arise from vibrational coupling within the crystallographic unit cell. Correlation of the site symmetry to the centrosymmetric unit cell symmetry ($C_{2\nu}$ with Z = 4) results in equal apportioning of the 4(3N – 6) vibrational modes among A₁, A₂, B₁, and B₂ components (Table 8.9). The 27 vibrational bands split into A₁, A₂, B₁, and B₂ components, resulting in 108 coupled vibrational modes for [ClOF₂][AsF₆] in its unit cell. The A₁, B₁, and B₂ components are Raman- and infraredactive, and the A₂ components are Raman-active. The appearance of only 24 Ramanactive bands, instead of the predicted 108, implies that vibrational coupling within the unit cell is, for the most part, weak and cannot be resolved except for the highest frequency cation stretching modes.

Table 8.9.Factor-Group Analysis for [ClOF2][AsF6]

^a The crystallographic space group is $Pna2/_1$ with Z = 4 structural units per unit cell.

When compared with the analogous bands in $[BrOF_2][AsF_6]$, the ClOF₂⁺ bands are generally less intense than the AsF_6^- bands, in accordance with the lower polarizability of the Cl atom. Although the mode descriptions for $[ClOF_2][AsF_6]$ are very similar to those of the bromine analogue, there are small differences, including a general tendency for greater vibrational coupling between the cation and the anion modes in [ClOF₂][AsF₆]. The highest frequency bands at 1321, 1329, and 1333 cm⁻¹ represent three of the four bands predicted for the factor-group split v(ClO) mode which occur at higher frequencies than v(BrO), in accordance with the greater electronegativity of chlorine and greater covalencies of the Cl-O and Cl-F bonds as well as lower mass of chlorine. The coupling trends between the As-F and Br-F stretching modes of $[BrOF_2][AsF_6]$ are reversed in $[ClOF_2][AsF_6]$. The bands at 752 and 757 cm⁻¹ are assigned to the in-phase $v(ClF_1) + v(ClF_2)$ mode and show no coupling to the anion modes, whereas the out-of-phase $v(ClF_1) - v(ClF_2)$ mode displays extensive coupling to As-F stretching modes with contributions observed at 685, 692, 695, 710, and 720 cm⁻¹ with the major $v(ClF_1) - v(ClF_2)$ contribution assigned to the band at 720 cm⁻¹. The bands at 559 and 568 cm⁻¹ arise from fluorine bridge stretches and are assigned to the different $v(AsF_3) - v(Cl--F_3)$ combinations of the three anions. The deformation modes of the cation are generally underestimated by the calculations and show significant coupling to the anion deformation modes. The mode having $\delta(OC1F_1F_2)$ as its main contribution is coupled to the AsF_6^- deformation modes and is assigned to the band at 510 cm⁻¹, which appears at much higher frequency than the analogous band in [BrOF₂][AsF₆]. However, the latter mode, δ (OBrF₁F₂), is not coupled to any of the AsF₆⁻

deformation modes. The $\delta(\text{OClF}_1)$ and $\delta(\text{F}_1\text{ClF}_2)$ bending modes also appear at higher frequency than in [BrOF₂][AsF₆] and contribute to the bands at 411 and 296, 392 cm⁻¹, respectively.

8.2.5.3. $[BrOF_2][AsF_6] \cdot XeF_2$ and $[BrOF_2][AsF_6] \cdot 2XeF_2$. The current work has shown that the previously reported Raman spectrum¹²⁹ of $[BrOF_2][AsF_6] \cdot XeF_2$ contained residual BrF₅ solvent (Table 8.1). A sample of pure $[BrOF_2][AsF_6] \cdot XeF_2$ was synthesized, and the spectrum was re-assigned. The Raman spectrum of the related $[BrOF_2][AsF_6] \cdot 2XeF_2$ adduct has also been assigned.

Several modes in the $[BrOF_2][AsF_6] \cdot 2XeF_2$ spectrum are split into two components. The splittings cannot be accounted for by site symmetry lowering because correlation of the gas-phase adduct symmetry (C_1) to the crystal site symmetry (C_1) results in no additional band splittings. The splittings must therefore result from vibrational coupling within the crystallographic unit cell ($C_{2\nu}$ with Z = 4). Based on a factor-group analysis (Table 8.10), each Raman- and infrared-active band is predicted to be split into an A_g and a B_g component in the Raman spectrum and into an A_u and a B_u component in the infrared spectrum.

The most intense bands in the spectra of $[BrOF_2][AsF_6]\cdot XeF_2$ and $[BrOF_2][AsF_6]\cdot 2XeF_2$ are associated with the XeF_2 ligand modes although they are not as intense as the KrF_2 ligand bands in $[BrOF_2][AsF_6]\cdot 2KrF_2$.²³² The interaction between the XeF_2 molecule and the BrOF_2⁺ cation observed in the crystal structure renders the Xe-F bonds inequivalent for each XeF_2 molecule, giving rise to two bond types, Xe-F_b and

^a The crystallographic space group is $P2_1/c$ with Z = 4 structural units per unit cell.

Xe–F_t. The higher frequency bands of [BrOF₂][AsF₆]·XeF₂ at 531, 543, and 559 cm⁻¹ are assigned to the factor-group split terminal Xe–F_t stretch. Like the KrF₂ analogue, the occurrence of two Xe–F_t bonds in the [BrOF₂][AsF₆]·2XeF₂ adduct gives rise to factorgroup split in-phase (548 and 552 cm⁻¹) and out-of-phase (540 and 543 cm⁻¹) bands, which are in good agreement with their respective calculated values, 604 (584) and 600 (578) cm⁻¹. The split band at 426, 447 cm⁻¹ in the 1:1 adduct primarily corresponds to the bridging fluorine stretch v(XeF_b), with a small contribution from v(AsF₆) – v(Br---F₆). A factor-group split band at 460, 467 cm⁻¹ and a band at 409 cm⁻¹ are observed for the 2:1 adduct and are assigned to v(XeF_b). However, unlike the v(XeF_t) modes, the v(XeF_b) modes are only weakly coupled with each other. This contrasts with the KrF₂ adduct,²³² where the $Kr-F_b$ stretches are more strongly coupled than the $Kr-F_t$ stretches. The present assignments for the XeF₂ modes are in agreement with those reported for XeF₂ homoleptically coordinated to metal cations,^{82,83} where the higher frequency bands range from 544 to 584 cm^{-1} and are assigned to Xe-F_t stretching modes and the lower frequency bands range from 411 to 479 cm^{-1} and are assigned to Xe–F_b stretching modes. The doubly degenerate Π_u bend of free XeF₂, δ (FXeF), which is infrared-active but Raman inactive, splits into two components upon coordination, $\delta(F_tXeF_b)_{o,o,p}$ and $\delta(F_t XeF_b)_{i.p.}$, where the bends are with respect to the plane containing the two XeF_2 molecules and the bromine atom and are both Raman- and infrared-active. Both components are shifted to higher frequency relative to Π_u in the infrared spectrum of XeF_2 (213 cm⁻¹).²⁰³ In the 1:1 adduct, the $\delta(F_tXeF_b)_{o.o.p.}$ mode is observed at 244 cm⁻¹ and the $\delta(F_t XeF_b)_{i.p.}$ mode at 293 cm⁻¹. Similarly, in [BrOF₂][AsF₆]·2XeF₂, the two outof-plane bending modes are observed at 232 and 299 cm⁻¹, and an in-plane bend is observed as a weak band at 250 cm^{-1} . The second in-plane bend is predicted by calculations to be even weaker than the aforementioned modes and was not observed.

The observed and calculated frequencies for the anion and cation of $[BrOF_2][AsF_6] \cdot 2XeF_2$ are similar to those observed and calculated for the KrF₂ analogue.²³² All three adducts, $[BrOF_2][AsF_6] \cdot 2KrF_2$,²³² $[BrOF_2][AsF_6] \cdot 2XeF_2$, and $[BrOF_2][AsF_6] \cdot XeF_2$, demonstrate that, upon adduct formation, the stretching frequencies of $BrOF_2^+$ shift to lower values. When a single XeF₂ molecule coordinates to $BrOF_2^+$, $\nu(BrO)$ is lowered with respect to $\nu(BrO)$ of $[BrOF_2][AsF_6]$ (1064 cm⁻¹) and splits into two bands at 1043 and 1050 cm⁻¹. The addition of a second XeF₂ molecule does not

result in significant frequency lowering, with the factor-group split Br-O stretching band occurring at 1045 and 1051 cm⁻¹. The opposite trend is observed for the Br-F stretching frequencies upon XeF₂ coordination. Coordination of XeF₂ in [BrOF₂][AsF₆]·XeF₂ has little effect on $v(BrF_1) - v(BrF_2)$ and $v(BrF_1) + v(BrF_2)$, which are essentially unshifted at 634 and 646/651 cm⁻¹, respectively, relative to the Br-F stretching frequencies of $[BrOF_2][AsF_6]$ at 634 and 647 cm⁻¹. Coordination of a second XeF₂ molecule, however, results in low-frequency shifts of the out-of-phase and in-phase Br-F stretches to 614 and 634 cm⁻¹, respectively. The two modes are shifted to somewhat lower frequency when compared with the observed (625; 644 cm^{-1}) and calculated [652(612); 683(644) cm^{-1}] frequencies of $[BrOF_2][AsF_6] \cdot 2KrF_2$.²³² The trends in the cation stretching frequencies on going from KrF_2 to XeF_2 can be accounted for by considering the bromine coordination sphere. In both structures, the AsF₆⁻ anion is coordinated trans to the oxygen atom; hence their v(BrO) stretching frequencies are similar. Because the NgF2 ligands are coordinated trans to fluorine, the Br-F stretching modes are expected to experience a greater effect upon substitution. Because krypton is more electronegative, KrF2 is a somewhat weaker fluoride ion donor than XeF₂ (eq 8.8 and 8.9) because krypton is more electronegative,

$$XeF_{2(g)} \longrightarrow XeF^{+}_{(g)} + F^{-}_{(g)}$$
 (8.8)

$$\Delta H^{\circ}_{rxn} = 921.5, 922.3 \text{ kJ mol}^{-1}$$
 $\Delta G^{\circ}_{rxn} = 885.0, 888.9 \text{ kJ mol}^{-1}$ MP2, B3LYP aug-cc-pVTZ(-PP)

$$\operatorname{KrF}_{2(g)} \longrightarrow \operatorname{KrF}^{+}_{(g)} + \operatorname{F}^{-}_{(g)}$$
(8.9)

 $\Delta H^{\circ}_{rxn} = 951.8, 953.6 \text{ kJ mol}^{-1}$ $\Delta G^{\circ}_{rxn} = 917.4 919,4 \text{ kJ mol}^{-1}$ MP2, B3LYP aug-cc-pVTZ(-PP)

which is manifested by the shorter Br---Fb contacts in the crystal structure of [BrOF₂][AsF₆]·2XeF₂ (see 8.2.4.1, X-ray Crystallography) relative to those of [BrOF₂][AsF₆]·2KrF₂.²³² More electron density is expected to transfer to bromine in the XeF₂ adduct, shifting the Br-F stretching modes to lower frequency (vide supra). The cation deformation modes in [BrOF₂][AsF₆]·XeF₂ and [BrOF₂][AsF₆]·2XeF₂ show little change upon XeF₂ coordination relative to those of $[BrOF_2][AsF_6]$. The $\delta(F_1BrF_2)$ bending mode occurs at 325 cm⁻¹ for the 1:1 adduct and at 315 cm⁻¹ for the 2:1 adduct. observed cm^{-1} $\delta(OBrF_1F_2)$ bending mode is at 395 in Similarly, the [BrOF₂][AsF₆]·2XeF₂ and is coupled to AsF₆⁻ bending modes in [BrOF₂][AsF₆]·XeF₂, which appear at 392, 411 cm⁻¹. When compared with the KrF₂ adduct, the cation deformation frequencies of $[BrOF_2][AsF_6] \cdot 2XeF_2$ are essentially the same as those of $[BrOF_2][AsF_6] \cdot 2KrF_2$ and are in good agreement with the calculated values.

8.2.6. Computational Results. The energy-minimized geometries of the ion pairs $[BrOF_2][AsF_6]_3^{2-}$ and $[ClOF_2][AsF_6]_3^{2-}$, and the adduct $[BrOF_2][AsF_6] \cdot 2XeF_2$, were optimized at the PBE1PBE and B3LYP levels starting from their crystallographic coordinates and C_1 symmetry. The 1:1 adduct, $[BrOF_2][AsF_6] \cdot XeF_2$, although lacking a crystal structure, was optimized starting from the crystallographic coordinates of $[BrOF_2][AsF_6] \cdot 2XeF_2$, with one molecule of XeF_2 removed. All four structures resulted in stationary points with all frequencies real. The PBE1PBE and B3LYP (B3LYP values are given in parentheses) results are summarized in Tables 8.3–8.8, 8.11, 8.12, and A5.1–A5.4 and Figures 8.2, 8.4, 8.10, 8.11.

X = Cl, Br	<u> </u>	[ClOF ₂	$[AsF_6]_3^{2-}$			[BrOF ₂	$\left[\left[AsF_{6}\right]_{3}^{2^{-}}\right]_{3}$			A	sF ₆	
	PBE	1PBE	B3LYP		PB	PBE1PBE		B3LYP		EIPBE	B3LYP	
					· · · · · · · · · · · · · · · · · · ·	Char	ges [Valencie:	s]	<u> </u>		<u>-</u>	
х	2.145	[2.257]	2.091	[2.184]	2.410	[2.164]	2.364	[2.115]				
O1	-0.581	[1.125]	-0.559	[1.102]	-0.740	[0.979]	-0.719	[0.962]				
F ₁	-0.359	[0.447]	-0.353	[0.418]	-0.448	[0.413]	-0.440	[0.397]				
F ₂	-0.360	[0.446]	-0.353	[0.419]	-0.448	[0.413]	-0.440	[0.397]				
As _A	2.925	[2.834]	2.929	[2.814]	2.925	[2.832]	2.929	[2.812]	2.925	[2.868]	2.930	[3.163]
F _{3A}	-0.648	[0.385]	-0.643	[0.376]	-0.642	[0.414]	-0.641	[0.405]	-0.654	[0.416]	-0.655	[0.411]
F _{4A}	-0.638	[0.437]	-0.638	[0.432]	-0.636	[0.437]	-0.635	[0.432]	-0.654	[0.416]	-0.655	[0.411]
F _{5A}	-0.639	[0.436]	-0.638	[0.430]	-0.635	[0.438]	-0.635	[0.431]	-0.654	[0.416]	-0.655	[0.411]
For	-0.649	[0.435]	-0.649	[0.430]	-0.647	[0.437]	-0.648	[0.431]	-0.654	[0.416]	-0.655	[0.411]
F _{7A}	-0.650	[0.428]	-0.650	[0.421]	-0.640	[0.435]	-0.642	[0.429]	-0.654	[0.416]	-0.655	[0.411]
F _{8A}	-0.637	[0.434]	-0.636	[0.428]	-0.633	[0.437]	-0.633	[0.431]	-0.654	[0.416]	-0.655	[0.411]
As _A .	2.924	[2.837]	2.929	[2.816]	2.925	[2.832]	2.929	[2.812]				
F _{3A'}	-0.646	[0.385]	-0.642	[0.376]	-0.642	[0.414]	0.641	[0.405]				
F _{4A} .	-0.638	[0.437]	-0.638	[0.432]	-0.636	[0.437]	-0.635	[0.432]				
F _{5A'}	-0.640	[0.433]	-0.640	[0.428]	-0.635	[0.438]	-0.635	[0.431]				
F _{6A'}	-0.648	[0.435]	-0.649	[0.430]	-0.647	[0.437]	-0.648	[0.432]				
F _{7A} .	-0.649	[0.426]	-0.649	[0.420]	-0.641	[0.435]	-0.641	[0.429]				
F _{8A} ,	-0.636	[0.436]	-0.636	[0.430]	-0.633	[0.437]	-0.632	[0.431]				
As _B	2.928	[2.834]	2.933	[2.814]	2.929	[2.834]	2.933	[2.819]				
F _{3B}	-0.666	[0.389]	-0.666	[0.381]	-0.665	[0.405]	-0.666	[0.398]				
F_{4B}	-0.645	[0.431]	-0.646	[0.425]	-0.644	[0.429]	-0.644	[0.424]				
F _{5B}	-0.644	[0.428]	-0.645	[0.422]	-0.641	[0.430]	-0.641	[0.424]				
For	-0.654	[0.427]	-0.655	[0.421]	-0.652	[0.428]	-0.654	[0.422]				
F _{7B}	-0.652	[0.421]	-0.652	[0.414]	-0.646	[0.421]	-0.647	[0.416]				
F _{8B}	-0.644	[0.430]	-0.644	[0.423]	-0.641	[0.430]	-0.641	[0.424]				

Table 8.11. NBO Valencies, Bond Orders, and Charges (NPA) for $[ClOF_2][AsF_6]_3^{2-}$ and $[BrOF_2][AsF_6]_3^{2-}$

Bond Orders							
X-0	1.188	1.164	1.012	0.997			
X-F ₁	0.483	0.455	0.452	0.436			
X-F ₂	0.482	0.455	0.452	0.436			
XF _{3A}	0.053	0.054	0.102	0.101			
XF _{3A'}	0.053	0.055	0.102	0.101			
XF _{3B}	0.023	0.024	0.056	0.056			
As _A -F _{3A}	0.395	0.389	0.373	0.368	0.478	0.475	
As _A -F _{4A}	0.492	0.489	0.493	0.491	0.478	0.475	
$As_{A}-F_{5A}$	0.491	0.489	0.494	0.491	0.478	0.475	
As _A -F _{6A}	0.488	0.485	0.490	0.487	0.478	0.475	
$As_{A}-F_{7A}$	0.478	0.4 7 5	0.488	0.484	0.478	0.475	
As _A -F _{8A}	0.492	0.490	0.496	0.493	0.478	0.475	
As _{A'} -F _{3A'}	0.396	0.390	0.373	0.368			
$As_{A'}-F_{4A'}$	0.492	0.490	0.493	0.491			
$As_{A'}-F_{5A'}$	0.489	0.487	0.494	0.491			
As _A -F _{6A}	0.488	0.485	0.490	0.487			
As _{A'} -F _{7A'}	0.479	0.476	0.488	0.484			
$As_{A'}-F_{8A'}$	0.494	0.491	0.496	0.493			
As_B-F_{3B}	0.422	0.418	0.410	0.406			
$As_{B}-F_{4B}$	0.487	0.484	0.488	0.485			
As _B -F _{5B}	0.486	0.483	0.489	0.486			
As _B -F _{6B}	0.482	0.478	0.483	0.480			
As _B -F _{7B}	0.476	0.474	0.484	0.480			
As _B -F _{8B}	0.488	0.484	0.489	0.486			

· · · · · · · · · · · · · · · · · · ·	[BrOF ₂][AsF ₆]·2XeF ₂			[BrOF ₂][AsF ₆]·2KrF ₂ ^a			XeF ₂					
	PBE	1PBE	B3	LYP	PB	E1PBE	B3	LYP	PBE	1PBE	В	3LYP
			· · · · · · · · · · · · · · · · · · ·		Charges [Valencies]							
Br(1)	2.415	[2.257]	2.385	[1.886]	2.411	[2.270]	2.381	[1.893]				
O(1)	-0.720	[0.950]	-0.699	[0.845]	-0.715	[0.953]	-0.695	[0.843]				
F(1)	-0.448	[0.451]	-0.448	[0.350]	-0.446	[0.457]	-0.445	[0.357]				
F(2)	-0.451	[0.445]	-0.453	[0.345]	-0.445	[0.455]	-0.446	[0.355]				
Ng(1)	1.275	[0.606]	1.267	[0.582]	1.081	[0.645]	1.065	[0.619]	1.219	[0.586]	1.208	[0.562]
F(3)	0.649	[0.350]	-0.644	[0.320]	-0.579	[0.351]	-0.570	[0.326]	-0.610	[0.309]	-0.604	[0.296]
F(4)	-0.548	[0.373]	-0.540	[0.361]	-0.432	[0.394]	-0.420	[0.378]	-0.610	[0.309]	-0.604	[0.296]
Ng(2)	1.273	[0.617]	1.263	[0.600]	1.084	[0.667]	1.065	[0.635]	1.219	[0.586]	1.208	[0.562]
F(5)	-0.641	[0.355]	-0.635	[0.329]	-0.576	[0.372]	-0.566	[0.341]	-0.610	[0.309]	-0.604	[0.296]
F(6)	-0.542	[0.374]	-0.536	[0.363]	-0.422	[0.404]	-0.414	[0.380]	-0.610	[0.309]	-0.604	[0.296]
As(1)	2.639	[3.225]	2.640	[3.154]	2.638	[3.222]	2.640	[3.152]				
F(7)	-0.635	[0.438]	-0.639	[0.415]	-0.634	[0.464]	-0.636	[0.443]				
F(8)	-0.575	[0.498]	-0.573	[0.488]	-0.573	[0.502]	-0.571	[0.490]				
F(9)	-0.614	[0.466]	-0.609	[0.458]	-0.612	[0.466]	-0.606	[0.460]				
F(10)	-0.590	[0.486]	-0.591	[0.472]	-0.589	[0.490]	-0.593	[0.473]				
F(11)	-0.566	[0.504]	-0.566	[0.492]	-0.566	[0.506]	-0.565	[0.492]				
F(12)	-0.623	[0.456]	-0.621	[0.443]	-0.626	[0.467]	-0.623	[0.447]				

 Table 8.12.
 NBO Valencies, Bond Orders, and Charges (NPA) for for [BrOF₂][AsF₆]·2XeF₂, [BrOF₂][AsF₆]·2KrF₂

292

		Bond Orders					
Br(1)-O(1)	1.019	0.911	1.023	0.905			
Br(1)-F(1)	0.492	0.388	0.493	0.389			
Br(1)-F(2)	0.490	0.386	0.497	0.391			
Br(1)F(3)	0.099	0.080	0.092	0.075			
Br(1)F(5)	0.105	0.083	0.103	0.081			
Br(1)F(7)	0.035	0.031	0.042	0.041			
Xe(1)-F(3)	0.238	0.226	0.244	0.234	0.293	0.281	
Xe(1)-F(4)	0.359	0.348	0.380	0.365	0.293	0.281	
Xe(2)-F(5)	0.236	0.231	0.250	0.241	0.293	0.281	
Xe(2)-F(6)	0.360	0.350	0.389	0.368	0.293	0.281	
As(1)-F(7)	0.4 7 6	0.458	0.474	0.455			
As(1)-F(8)	0.573	0.562	0.574	0.564			
As(1)-F(9)	0.530	0.523	0.530	0.526			
As(1)-F(10)	0.554	0.541	0.555	0.539			
As(1)-F(11)	0.579	0.567	0.580	0.567			
As(1)-F(12)	0.516	0.507	0.508	0.502			

Ph.D. Thesis – David S. Brock

8.2.6.1. Geometries. (i) $[BrOF_2][AsF_6]_3^{2-}$ and $[ClOF_2][AsF_6]_3^{2-}$. The crystal structures of $[BrOF_2][AsF_6]$ and $[ClOF_2][AsF_6]$ show that both cations coordinate to a fluorine atom from each of three different AsF_6^- anions (section, 8.2.4). Models were calculated reflecting the observed structures, i.e., one cation interacting with a single fluorine atom from each of three different AsF_6^- anions. Although a simplification, these models provide close approximations of the cation environments in their respective crystal structures and a means to study the effects of ion-pairing. There are, however, some disparities between the experimental and calculated Raman frequencies and intensities and their detailed mode descriptions. These primarily occur for the anion modes because they are only singly coordinated in the models, whereas they are coordinated to three cations in their crystal lattices.

For $[BrOF_2][AsF_6]_3^{2^-}$, the calculated Br–O bond length is 1.568 (1.580) Å and the Br–F bond lengths are 1.755 (1.779) Å. The weighted average bond length, 1.693 Å, is slightly greater than the experimental bond length in the disordered BrOF₂⁺ cation (1.647(1) Å (see 8.2.4.2, X-ray Crystallography). The fluorine atoms are bent away from the oxygen atom in $[BrOF_2][AsF_6]_3^{2^-}$, with O–Br–F₁ and O–Br–F₂ angles of 101.1 (101.0) ° and 101.1 (100.9) °, respectively, and an F₁–Br–F₂ angle of 89.2 (89.3)° giving an average angle of 97.1 (97.1)°. The average angle is slightly less than the F/O–Br–O/F angle in the disordered crystal structure of $[BrOF_2][AsF_6]$ (99.89(6)°). The three contact distances are 2.306 (2.328), 2.306 (2.327), and 2.481 (2.503) Å with the contact trans to the oxygen atom being the longest, in agreement with the experimental results. All

contacts are significantly less than the sum of the bromine and fluorine van der Waals radii (3.32).⁵⁵

The VSEPR⁴¹ model of molecular geometry predicts that substitution of bromine by chlorine should result in a more localized valence electron lone pair domain on chlorine, resulting in smaller O–Cl–F and F–Cl–F angles. Instead, small increases in the O–Cl–F₁, O–Cl–F₂ and F–Cl–F angles to 104.7 (104.5)°, 104.7 (104.5)°, and 90.6 (90.3)° are observed relative to those of the bromine analogue which are likely a consequence of the shorter Cl–O bond length [1.409 (1.421) Å] and Cl–F bond lengths [1.627 (1.660) and 1.627 (1.659) Å]. These differences can be accounted for by the ligand close packing model.²⁷⁴ As expected, the three Cl---F_b contacts, 2.304 (2.317), 2.305 (2.317), and 2.484 (2.490) Å, in [ClOF₂][AsF₆] are also shorter than in the bromine analogue, and are significantly less than the sum of the chlorine and fluorine van der Waals radii (3.22).⁵⁵ As is the case for the calculated geometry of the bromine analogue and in the crystal structure of [ClOF₂][AsF₆], the longest X---F contact is trans to the oxygen atom.

In both [BrOF₂][AsF₆] and [ClOF₂][AsF₆], the AsF₆⁻ anion is distorted from its ideal octahedral geometry with the As–F_b bond lengths ranging from 1.785 (1.795) to 1.822 (1.834) Å in the BrOF₂⁺ salt and from 1.772 (1.782) to 1.798 (1.811) Å in the ClOF₂⁺ salt. Consequently, the As–F_t bond lengths are shorter, ranging from 1.728 (1.736) to 1.741 (1.750) Å in the [BrOF₂][AsF₆] and from 1.730 (1.738) to 1.744 (1.752) Å in [ClOF₂][AsF₆].

(ii) $[BrOF_2][AsF_6] \cdot XeF_2$. Although an experimental structure is unavailable for $[BrOF_2][AsF_6] \cdot XeF_2$, the Br(V) atom is expected to complete a pseudo-octahedral coordination sphere by making contacts with two different AsF₆⁻ anions in the crystal lattice. A simplified ion-pair model involving a single anion was calculated starting from the crystallographic coordinates of [BrOF₂][AsF₆]·2XeF₂ with one XeF₂ molecule removed. The energy-minimized geometry optimized to C_1 symmetry. The bromine center displays pseudo-octahedral geometry when the contacts to the bridging fluorine atom of XeF_2 and the two fluorine atoms of the AsF_6^- anion are taken into account. When compared with [BrOF₂][AsF₆], the cation is relatively unaffected by the introduction of one molecule of XeF_2 into the coordination sphere of Br(V), resulting in a Br–O bond length of 1.554 (1.567) Å and Br-F bond lengths of 1.730 (1.753) and 1.752 (1.777) Å. There is also little change in the O-Br- F_1 (102.8 (102.5)°), O-Br- F_2 (100.5 (100.5)°), and F_1 -Br- F_2 (89.0 (89.4)°) angles upon coordination. The three contact distances to the cation are, however, significantly affected by XeF₂ coordination. The longest contact to F_5 of the AsF₆ anion remains trans to the oxygen atom in [BrOF₂][AsF₆]·XeF₂, but is lengthened (2.708 (2.729) Å) relative to $[BrOF_2][AsF_6]_3^{2-}$ (2.481 (2.503) Å). The Br---F contact with XeF₂, which is trans to a fluorine atom, is 2.369 (2.397) Å and is slightly longer than in the 2:1 adduct (2.303 (2.323); 2.296 (2.325) Å). The shortest contact to bromine (2.162 (2.178) Å) is with F_6 of the As F_6^- anion, which is trans to the other fluorine atom of $BrOF_2^+$ and shorter than in $[BrOF_2][AsF_6]_3^{2-}$ (2.306 (2.327)Å).

The coordinated XeF₂ ligand is distorted relative to free XeF₂ (1.986 (2.010) Å) with the Xe–F_b bond elongated (2.068 (2.083) Å) and the Xe–F_t bond length shortened
(1.948 (1.976) Å) by equal amounts. As observed for the AsF_6^- anion in $[BrOF_2][AsF_6]$, the As- F_b bonds of the anion are elongated relative to the As- F_t bonds.

(iii) $[BrOF_2][AsF_6] \cdot 2XeF_2$. The geometry of $[BrOF_2][AsF_6] \cdot 2XeF_2$ optimized to C_1 symmetry, providing a good approximation of the structural unit in the X-ray crystal structure. The calculations predict very little effect on the cation when XeF₂ is substituted for KrF₂.²³² The Br–O bond length remains unchanged (1.556 (1.569) Å) and the Br–F bond lengths are only slightly lengthened (1.733 (1.758) and 1.734 (1.760) Å) relative to [BrOF₂][AsF₆]·2KrF₂.²³² This behavior is also observed experimentally where both the Br–O (1.549(5) Å) and Br–F (1.736(4), 1.733(4) Å) bond lengths are equal to within $\pm 3\sigma$ for the XeF₂ and KrF₂ adducts.²³² Similarly, the O-Br-F₁ (101.8 (101.8)°), O-Br-F₂ (100.0 (100.2)°), and F-Br-F (89.0 (89.4)°) angles in the calculated [BrOF₂][AsF₆]·2XeF₂ structure are essentially unaffected by XeF₂ coordination, which is also observed in the crystal structures. In addition, the longest contact to F_7 of As F_6^- (2.579 (2.561) Å), which is trans to the oxygen atom, is predicted to be unchanged. However, the two other contact distances to F_3 [2.303 (2.323) Å] and to F_5 [2.296 (2.325) Å] of the XeF₂ ligands are predicted to be shorter than in the KrF2 adduct.²³² Shortening of these contacts upon coordination of XeF₂ is also observed in the crystal structures and is attributed to the greater fluoride ion donor strength of XeF₂ (see 8.2.5.3. Raman Spectroscopy).

The XeF₂ ligands are also well modeled by the calculations. The calculated Xe– F_t bond lengths (1.948 (1.971), 1.945 (1.968) Å) are shorter than the Xe– F_b bond lengths (2.074 (2.101) Å, 2.081 (2.106) Å), in agreement with experimental values (1.960(4),

1.956(5), and 2.052(4), 2.053(4) Å, respectively). The calculated F-Xe-F angles are slightly bent (174.8 (174.4) and 175.9 (176.3)°), as observed in the crystal structure (178.4(2), 179.8(2)°).

The bond lengths and bond angles are also well reproduced for the AsF_6^- anion and are almost identical to those predicted for the AsF_6^- anion in $[BrOF_2][AsF_6] \cdot 2KrF_2^{232}$ where the AsF_6^- environment is very similar. The ideal octahedral anion symmetry is distorted by fluorine bridging to the cation. The calculated As–F_b bridge bond length is 1.789 (1.812) Å, which is elongated relative to the remaining As–F bonds (1.706 (1.720) – 1.758 (1.771) Å), as observed in the crystal structure.

8.2.6.2. Natural Bond Orbital (NBO) Analyses. The NBO¹⁶³⁻¹⁶⁶ analyses were carried out for the PBE1PBE- and B3LYP-optimized gas-phase geometries of $[ClOF_2][AsF_6]_3^{2-}$, $[BrOF_2][AsF_6]_3^{2-}$, $[BrOF_2][AsF_6] \cdot 2XeF_2$, AsF_6^- , and XeF_2 with the results given in Tables 8.10, 8.11, and A5.4. The PBE1PBE and B3LYP results are similar across the series of compounds with the exception of the AsF_6^- anion, where the PBE1PBE valencies and bond orders are lower than the B3LYP values; only the B3LYP results are referred to in the ensuing discussion.

(i) $[ClOF_2][AsF_6]_3^{2^-}$ and $[BrOF_2][AsF_6]_3^{2^-}$. The positive charge is localized on the central halogen atoms of the $ClOF_2^+$ and $BrOF_2^+$ cations of $[ClOF_2][AsF_6]_3^{2^-}$ and $[BrOF_2][AsF_6]_3^{2^-}$ and is approximately half the halogen charge in the fully ionic model. The bromine charge (2.36) is higher than that of chlorine (2.09), which is in accordance with the lower electronegativity of bromine. The higher bromine charge is also

accompanied by an increase in negative charge of the ligands that is primarily dispersed onto the oxygen atom, with the charge increased by -0.16, and onto the fluorine atoms, with the charges increased by -0.09 for each fluorine atom. The aforementioned charge differences are reflected in the greater X–O and X–F valencies and bond orders and are consistent with the greater covalent characters of the Cl–O and Cl–F bonds. Of the possible valence bond descriptions for XOF₂⁺ (structures I–IV), the charges, valencies, and bond orders are best described for ClOF₂⁺ by structure IV, with an almost equal contribution from structure I, and a minor contribution from structure III. In contrast, the NBO parameters of BrOF₂⁺ are best represented by a much greater contribution from structures I and III.

The net positive charges for the ClOF_2^+ (0.83) and BrOF_2^+ (0.76) cations are indicative of similar charge transfers of ca. 0.17 and 0.24*e*, respectively, from the anions to the cation in their ion pairs. Anion-cation charge transfers in $[\text{ClOF}_2][\text{AsF}_6]_3^{2^-}$ and in $[\text{BrOF}_2][\text{AsF}_6]_3^{2^-}$ are also consistent with the Cl---F (0.054, 0.55, 0.024) and Br---F (0.101, 0.101, 0.056) bridge bond orders and polarization of the negative charge on the anion towards the halogen atom.

(ii) $[BrOF_2][AsF_6] \cdot 2XeF_2$. The XeF₂ ligands are polarized towards bromine with ca. 0.08*e* transferred from each XeF₂ molecule. The Br---F bond orders of the bridging fluorines are 0.08, indicating that the Br---F interaction is weakly covalent. The polarization trend, magnitude of charge transfer, and the bond orders are very similar to those observed for $[BrOF_2][AsF_6]\cdot 2KrF_2$.²³² In fact, coordination of either XeF₂ or KrF₂ has no significant effect on the net charge of the cation (0.78 *e*, $[BrOF_2][AsF_6]\cdot 2XeF_2$; 0.80 *e*, $[BrOF_2][AsF_6]\cdot 2KrF_2^{232}$).

Instead of the cation experiencing the effects of the negative charge transfer from the XeF₂ and KrF₂ ligands, the charge is delocalized over the AsF₆⁻ anion, giving it a net charge of -0.96 for the XeF₂ adduct and -0.95 for the KrF₂ adduct, close to the net charge of the free AsF₆⁻ anion. In both adducts, the anion is weakly coordinated, as demonstrated by the low Br-F_b bond orders of the XeF₂ and KrF₂ adducts (0.03 and 0.04, respectively). Overall, there is little effect on the anion when xenon is replaced by krypton. Thus, the dominant valence bond structures for [BrOF₂][AsF₆]·2XeF₂ are very similar to those of [BrOF₂][AsF₆]·2KrF₂²³² with the major contribution from Structure V and a smaller contribution from Structure VI.

8.2.6.3. QTAIM and ELF Analyses. The bonding was investigated by complementary use of the Quantum Theory of Atoms in Molecules (QTAIM)²⁵¹ and the topological

analysis²⁵² of the Becke and Edgecombe Electron Localization Function (ELF).²⁵³ For the ensuing discussion, the following abbreviations denote atomic populations, $\overline{N}(A)$; electron localization function, $\eta(\mathbf{r})$; core basins, C(A); valence basins, V(A, B, ...); monosynaptic basins, V(A); disynaptic basins, V(A, B); and closed isosurfaces, $\eta(\mathbf{r}) = f$, where *f* is defined as the isosurface contour. The QTAIM and ELF analyses of the XeF₂ and [BrOF₂][AsF₆]₃²⁻ fragments are provided in Appendix 5.

Bonding in $[BrOF_2][AsF_6] \cdot XeF_2$. The QTAIM populations provide a charge transfer picture in which ca. 0.11 *e* is transferred from each XeF₂ and 0.05 *e* from AsF₆⁻ to BrOF₂⁺. These transfers are almost equal to those calculated previously for the krypton analogue.²³²

In the molecular graph of the complex, the bromine center is linked to the two bridging fluorine atoms, F₃ and F₅, of the XeF₂ groups and to F₇, which belongs to the AsF₆⁻ unit. The values of the Laplacian of the electron density at the bond critical points are positive and decrease with the Br–F internuclear distances, i.e., 0.158 (BrF₃), 0.147 (BrF₅), 0.077 (BrF₇) and 0.015 (BrF₉). The delocalization indexes between bromine and the weakly bonded fluorine atoms show almost the same trends: δ (Br,F₃) = 0.26, δ (Br,F₅) = 0.24, δ (Br,F₇) = 0.12, δ (Br,F₉) = 0.02. The η (*r*) = 0.75 localization domains of the complex are shown in Figure 8.12 whereas the hierarchy of the ELF basins is given in Scheme 8.1. Although the coordination of bromine has increased to six, the V(Br) ("valence electron lone pair on Br") basin remains in the complex while its η (**r**) = 0.75 localization domain follows a trend in which it contracts across the series BrOF₂^{+ 232} >

Scheme 8.1. Reduction of localization diagram for $[BrOF_2][AsF_6] \cdot 2XeF_2$ showing the ordering of localization nodes and the boundary isosurface value, $\eta(\mathbf{r})$, at which the reducible domains split. The labeling scheme corresponds to that used in Figures 8.1 and 8.2.

Figure 8.12. ELF localization domains for $[BrOF_2][AsF_6] \cdot 2XeF_2$. The isosurface value is $\eta(\mathbf{r}) = 0.75$. Color code: magenta = core, brick-red = monosynaptic basin.

 $[BrOF_2][AsF_6]_3^{2-}$ (Figure A5.2) > $[BrOF_2][AsF_6] \cdot 2XeF_2$ (Figure 8.12) \approx $[BrOF_2][AsF_6] \cdot 2KrF_2^{232}$ to accommodate their respective environments.

Although the bonding between the different components is very similar in the $[BrOF_2][AsF_6]\cdot 2XeF_2$ and $[BrOF_2][AsF_6]\cdot 2KrF_2$ complexes, there is a significant difference in the perturbation of the XeF₂ units relative to the KrF₂ units upon complexation. In $[BrOF_2][AsF_6]\cdot 2XeF_2$, the populations of the fluorine valence basins are almost equal and the covariance matrix elements of these populations with \overline{N} [V(Xe)] have a rather small difference. In the complex, the Xe–F bonds involved in the fluorine bridges are more ionic than the Xe–F terminal bonds, in agreement with the respective lengthening and shortening of the corresponding internuclear distances relative to those of the uncomplexed species. In contrast, in the KrF₂ complex there is a large contribution of the noble-gas atomic basin to the valence basin of the nonbridging fluorine atom, which correlates with the large increase of the absolute value of the covariance matrix element. The different behaviors of the two noble-gas atoms is likely due to the greater ionic character of the bonding in XeF₂.

8.3. Conclusion

The current study has demonstrated the propensity of the XOF_2^+ (X = Cl, Br) cations to attain pseudo-octahedral coordination spheres. The crystal structures of $[BrOF_2][AsF_6]$ and $[ClOF_2][AsF_6]$ have three fluorine-bridge contacts between the halogen atom of the cation and three nearest-neighbour AsF_6^- anions. In contrast, the $BrOF_2^+$ cation of $[BrOF_2][AsF_6]\cdot 2XeF_2$ forms only one fluorine bridge contact to the

 AsF_6^- anion and single fluorine bridges with each XeF₂ ligand. These structural features are reproduced in the calculated structures. Moreover, in the presence of HF at 78 °C, $[BrOF_2][AsF_6]$ ·XeF₂ recombines to form $[BrOF_2][AsF_6]$ and $[BrOF_2][AsF_6]$ ·2XeF₂, thus attaining a coordination number of six at Br(V).

The X-ray crystal structure, vibrational spectrum, as well as the calculated structures and frequencies for $[BrOF_2][AsF_6] \cdot 2XeF_2$ are similar to those of the krypton analogue; however, notable differences occur. The contact distances between bromine and XeF₂ are shorter when compared with those of the KrF₂ analogue, consistent with greater ionic character of the Xe–F bonds in XeF₂. The v(Xe–F_t) modes of the XeF₂ strongly couple to one another, and the bridging modes only weakly couple to one another, whereas the opposite behavior is observed for $[BrOF_2][AsF_6] \cdot 2KrF_2$. The XeF₂ adduct undergoes internal fluoride ion abstraction at room temperature in HF solution forming BrOF₃ and $[Xe_2F_3][AsF_6]$. This contrasts with the KrF₂ adduct, which is stable in HF solution for at least 1 h at 20 °C. The latter behavior is again consistent with the greater ionic character of the Ng–F bonds in XeF₂ when compared with those of KrF₂.

The ELF and QTAIM results indicate that the localization domain associated with the valence electron lone pair of bromine decreases across the series $BrOF_2^+ > [BrOF_2][AsF_6]_3^{2-} > [BrOF_2][AsF_6] \cdot 2XeF_2 \approx [BrOF_2][AsF_6] \cdot 2KrF_2$. The calculations also show that the covalencies of the Kr–F_t bonds are significantly greater than those of the Xe–F_t bond. In both adducts the Ng–F_t bonds are more covalent than their Ng–F_b bonds. Ph.D. Thesis – David S. Brock

CHAPTER 9

Xe₃OF₃⁺, a Precursor to a Noble-Gas Nitrate and the First Neutral Oxide Fluoride of Xe(II); Syntheses and Structural Characterizations of FXeONO₂ and O(XeF)₂

9.1. Introduction

The greatest variety of polyatomic ligand groups bonded to xenon occurs for xenon in the +2 oxidation state, and those bonded through oxygen are the most prevalent. Neutral mono- and disubstituted oxygen-bonded derivatives having the formulations FXeL and/or XeL₂ have been reported where $L = OC(O)CF_3$,²⁷⁵ OP(O)F₂,²⁷⁶ OSO₂CF₃,²⁷⁷ OSO₂F,^{278,279} OClO₃,²⁷⁹ OSeF₅,²⁸⁰ OTeF₅,^{118,119} and OIOF₄.²⁸¹ With the exception of OP(O)F₂²⁷⁶ and OIOF₄,²⁸¹ their syntheses have been accomplished by reaction of the parent acid, HL, with XeF₂ according to eq 9.1 (*n* = 1, 2), leading to HF formation, a significant thermodynamic driving force in these reactions. Alternative syntheses of the OSeF₅²⁸² and OTeF₅^{38,58} derivatives also exist which do not involve HF displacement.

$$XeF_2 + nHL \longrightarrow F_{2-n}XeL_n + nHF$$
 (9.1)

Two prior studies have reported the formation of xenon(II) nitrates by HF displacement. The earlier study investigated the reactions of XeF_2 with anhydrous HNO₃ containing 20% NO₂ by weight at 20 °C.⁸⁰ Red-brown solids were obtained that rapidly decomposed at 23 °C, forming an intense, transient blue color. It is likely that the blue color arose from N₂O₃.²⁸³ The formulations, FXeONO₂ and Xe(ONO₂)₂, were suggested,

but no structural characterizations were provided. When these reactions were carried out at -20 °C, the red-brown solids were not obtained. In a subsequent study, FXeONO₂ was reported to have been generated by the reaction of XeF₂ with HNO₃ in CH₂Cl₂ at -30 °C, which was, in turn, reacted in situ with various alkenes to give 1,2-disubstituted fluoronitrato alkanes (1 = F, 2 = ONO₂).⁸¹ No structural evidence was provided for the proposed intermediate, FXeONO₂, by way of in situ solution charaterization, nor was isolation attempted.

The absence of a well-characterized xenon(II) nitrate is surprising because the nitrate anion meets the general criteria that are normally associated with a ligand that is suitable for stabilization of Xe in its +2 oxidation state: (1) the least electronegative atom of the ligand (nitrogen) is in its highest oxidation state, (2) NO₃⁻ is the conjugate base of a strong monoprotic acid, and correspondingly, (3) the electronegativity of the $-ONO_2$ ligand group is high. Empirical correlations based on the ¹H chemical shift difference between the α - and β -¹H resonances of CH₃CH₂X derivatives have been previously used to assign group electronegativities²⁸⁴ based on the halogen electronegativities of Huggins.²⁸⁵ This approach has been employed here using Pauling electronegativities⁵⁷ to give a group electronegativity for ONO₂ of 3.95,²⁸⁴ which is close to those of fluorine (3.98)⁵⁷ and OTeF₅ (3.87).⁵⁶

Recent work has shown that XeF_2 and $[H_3O][AsF_6]$ react in anhydrous HF to form the only known oxide fluoride cation of Xe(II), $[FXeOXeFXeF][AsF_6]$.⁷¹ This chemistry was extended to the syntheses of FXeONO₂ and O(XeF)₂ by the reaction of FXeOXeFXeF⁺ with O₂NF and ONF, respectively.^{72,286} However, several aspects of the latter study were left unfinished and/or required reinterpretations which are described in the present Chapter. Portions of the study that were previously completed, and therefore not included in this Chapter, may be found in references 72 and 286.

9.2. Results and Discussion

9.2.1. Synthesis and Decomposition of FXeONO₂. Deep red-orange to magenta $[FXeOXeFXeF][AsF_6]^{71}$ was allowed to react as a suspension with liquid NO₂F at -50 °C. A suspension of white solid formed over a 5 h period. Removal of excess NO₂F under vacuum at -110 °C yielded a white, powder comprised of a mixture of FXeONO₂, XeF₂, and $[NO_2][AsF_6]$. The reaction also proceeded to completion at -78 °C but required reaction times of 2-3 weeks. The latter method proved useful in establishing a proposed reaction pathway (Scheme 9.1). The solid changed in color from deep magenta to yelloworange after 24 to 48 h, and finally to white. The yellow-orange color and resulting Raman spectrum of the intermediate reaction mixture showed the presence of a transient xenon oxide fluoride that is O(XeF)₂. The reaction pathway was also supported by an ¹⁸O-enrichment study which and Raman spectroscopic showed that only FXe¹⁶ON(¹⁶O¹⁸O) was formed when [FXe¹⁸OXeFXeF][AsF₆] was used as the starting material. Failure to observe FXe¹⁸ONO₂ indicated that no oxygen isotope scrambling had occurred among the bridging ¹⁶O and terminal ¹⁸O atoms (see 9.2.7.1, Raman Spectroscopy). Subsequent attempts to synthesize the FXeON(O) F^+ and FXeFNO₂⁺ intermediates by the reactions of [XeF][AsF₆] and NO₂F as a neat mixture or in HF solvent, and by the reaction of XeF₂ and [NO₂][AsF₆] in HF solvent proved unsuccessful

Scheme 9.1. Proposed pathway for the reaction of $FXe^{18}OXeFXeF^+$ with NO₂F

with only varying amounts of $[XeF][AsF_6]$, NO₂F, XeF₂, and $[NO_2][AsF_6]$ present. Therefore, a more likely reaction pathway (Scheme 9.2) has been proposed that is analogous to the decomposition pathway observed for O(XeF)₂ (see Scheme 9.4). A weak Raman band was observed at 1362 cm⁻¹ in the ¹⁸O-enriched spectrum of the $FXe^{16}ON(^{16}O^{18}O)/[NO_2][AsF_6]$ product mixture. The band is attributed to the mixed ¹⁸ON¹⁶O⁺ cation which results from a minor exchange pathway (Scheme 9.3; 9.2.7.1 Raman Spectroscopy). The polar-covalent compounds, FXeONO₂ and XeF₂, were separated from $[NO_2][AsF_6]$ and the decomposition products, N₂O₄ and N₂O₅, by rapidly extracting FXeONO₂/XeF₂ into SO₂ClF at -30 °C, followed by decanting the supernatant from solid

Scheme 9.2. New proposed pathway for the reaction of $FXe^{18}OXeFXeF^+$ with NO_2F

Scheme 9.3. Proposed pathway for the formation of the ${}^{18}ON{}^{16}O^{+}$ cation

 $[NO_2][AsF_6]$, N_2O_4 , and N_2O_5 . A mixture of FXeONO₂ and XeF₂ was then precipitated from the supernatant at -78 °C (see Experimental Section). Prolonged extraction and mixing resulted in dissolution of significant amounts of $[NO_2][AsF_6]$ and its co-extraction with XeF₂ and FXeONO₂ (see 2.9.1. Experimental Section).

The ¹⁹F NMR spectrum of a SO₂CIF solution containing extracted FXeONO₂ and XeF₂ was monitored at 0 °C and showed that FXeONO₂ was 50% decomposed after 6.5 h when the decomposition was quenched at -40 °C. The only fluorine-containing decomposition product observed was XeF₂ (-177.6 ppm, ¹*J*(¹⁹F $-^{129}$ Xe) = 5611Hz). Low-temperature Raman spectra of FXeONO₂ in admixture with XeF₂ and [NO₂][AsF₆] (Figure 9.1) revealed that some N₂O₅ either remained unreacted following Scheme 9.2, or FXeONO₂ had partially decomposed to N₂O₅ and XeF₂ (presumably masked by excess already present) at -50 °C after 5 h. In contrast, FXeONO₂ had partially decomposed to N₂O₅ and XeF₂ (resumably masked by excess of N₂O₄ and XeF₂·N₂O₄ at -78 °C after 7 days. The former decomposition pathway, leading to N₂O₅, likely proceeds through the unstable intermediate, O₂NOONO₂ (eq 9.2), which is known to rapidly decompose at -78 °C according to eq 9.3,^{287,288} and by analogy with the decomposition of FXeOSO₂F to XeF₂, FO₂SOOSO₂F, and Xe.²⁷⁹ The latter

$$2FXeONO_2 \longrightarrow XeF_2 + [O_2NOONO_2] + Xe$$
(9.2)

$$[O_2 NOONO_2] \longrightarrow N_2 O_5 + \frac{1}{2} O_2$$
(9.3)

decomposition pathway, leading to N_2O_4 and $XeF_2 \cdot N_2O_4$, may occur through the unstable *N*-nitrito or O-nitrito intermediates, FXeNO₂ (eq 9.4) and FXeONO (eq 9.5) which would likely decompose according to eqs 9.6–9.8 and eqs 9.9 and 9.10, respectively.

$$FXeONO_2 \longrightarrow [FXeNO_2] + \frac{1}{2}O_2$$
(9.4)

Figure 9.1. Raman spectra of FXeONO₂ recorded at -160 °C using 1064-nm excitation. Lower trace: recorded after 5 h at -50 °C. Upper trace: recorded after five days -78 °C. The symbols denote FXeONO₂ (*), FEP sample tube (†), and XeF₂·N₂O₄ (‡).

$$FXeONO_2 \longrightarrow [FXeONO] + \frac{1}{2}O_2$$
(9.5)

$$2[FXeNO_2] \longrightarrow XeF_2 + Xe + N_2O_4$$
(9.6)

$$XeF_2 + N_2O_4 \longrightarrow XeF_2 \cdot N_2O_4$$
(9.7)

$$[FXeNO_2] \longrightarrow Xe + NO_2F \tag{9.8}$$

$$2[FXeONO] \longrightarrow XeF_2 + Xe + N_2O_4$$
(9.9)

$$[FXeONO] \longrightarrow Xe + NO_2F \tag{9.10}$$

The gas-phase thermochemical calculations at the MP2 level (Table 9.1) support the proposed decomposition pathways. The decomposition pathway for FXeONO₂ that leads to XeF₂, N₂O₅ (via N₂O₆), and Xe (eq 9.2 and 9.3) was found to be spontaneous under standard conditions ($\Delta G^{\circ} = -75.7 \text{ kJ mol}^{-1}$) and at $-78 \degree \text{C}$ ($\Delta G_{195.15} = -71.0 \text{ kJ mol}^{-1}$) ¹) for the decomposition of 1 mol of FXeONO₂ to XeF_2 , N_2O_6 , and Xe. A further -22.5 kJ mol⁻¹ ($\Delta G_{195,15} = -17.9$ kJ mol⁻¹) is released when 0.5 mol of N₂O₆ decomposes to N_2O_5 and O_2 , giving a net $\Delta G^{\circ} = -98.1 \text{ kJ mol}^{-1}$ ($\Delta G_{195,15} = -88.9 \text{ kJ} \text{ mol}^{-1}$) for the decomposition of 1 mol of FXeONO₂. The remaining proposed pathways, which involve the non-spontaneous generation of FXeNO₂ (eq 9.4, $\Delta G^{\circ} = 26.5$ kJ mol⁻¹, $\Delta G_{195,15} = 35.7$ kJ mol⁻¹) or FXeONO (eq 9.5, $\Delta G^{\circ} = 37.9$ kJ mol⁻¹, $\Delta G_{195.15} = 46.5$ kJ mol⁻¹) as intermediates, are more than compensated for by the spontaneous decompositions to XeF₂, Xe, and N₂O₄ (FXeNO₂ [one-half eq 9.6], $\Delta G^{\circ} = -139.2$ kJ mol⁻¹, $\Delta G_{195,15} = -139.2$ 136.3 kJ mol⁻¹; FXeONO [one-half eq 9.9], $\Delta G^{\circ} = -150.6$ kJ mol⁻¹, $\Delta G_{195.15} = -147.1$ kJ mol⁻¹) or to NO₂F and Xe (FXeNO₂ [eq 9.8], ΔG° , -217.6 kJ mol⁻¹; $\Delta G_{195,15}$, -207.4 kJ mol⁻¹; FXeONO [eq 9.10], ΔG° , -229.0 kJ mol⁻¹; $\Delta G_{195,15}$, -218.2 kJ mol⁻¹).

	ΔH°	ΔΗ195.15	ΔG°	$\Delta G_{195.15}$	eq (9.)
2FXeONO ₂ \longrightarrow XeF ₂ + N ₂ O ₆ + Xe	-123.7	-124.5	-151.4	-141.9	2
$N_2O_6 \longrightarrow N_2O_5 + \frac{1}{2}O_2$	-18.4	-18.4	45.0	-35.9	3
2FXeONO ₂ \longrightarrow XeF ₂ + N ₂ O ₅ + Xe + $\frac{1}{2}O_2$	-142.1	-142.8	196.4	-177.8	2 + 3
$FXeONO_2 \longrightarrow FXeNO_2 + \frac{1}{2}O_2$	53.3	52.6	26.5	35.7	4
$FXeONO_2 \longrightarrow FXeONO + \frac{1}{2}O_2$	63.2	62.4	37.9	46.5	5
$2FXeNO_2 \longrightarrow XeF_2 + Xe + N_2O_4$	-261.5	-261.0	-278.5	-272.6	6
$FXeNO_2 \longrightarrow NO_2F + Xe$	-188.4	-187.6	-217.6	-207.4	8
2FXeONO \longrightarrow XeF ₂ + Xe + N ₂ O ₄	-281.2	-280.5	-301.2	-294.2	9
$FXeONO \longrightarrow NO_2F + Xe$	-198.3	-197.4	-229.0	-218.2	10
$Xe(ONO_2)_2 \longrightarrow Xe + N_2O_6$	-122.2	-122.5	-151.4	-141.4	13
$Xe(ONO_2)_2 \longrightarrow Xe + N_2O_5 + \frac{1}{2}O_2$	-140.6	-140.9	-196.4	-177.2	4 + 13
$XeF_2 + HNO_3 \longrightarrow FXeONO_2 + HF$	-17.9	-21.3	-17.6	-20.2	11
$FXeONO_2 + HNO_3 \longrightarrow Xe(ONO_2)_2 + HF$	-19.3	-23.3	-17.5	-20.8	12
$FXeONO_2 + AsF_5 \longrightarrow XeONO_2^+ + AsF_6^-$	359.0	358.7	365.0	362.9	19
$XeONO_2^+ \longrightarrow Xe + \frac{1}{2}O_2 + NO_2^+$	-142.7	-143.0	-189.5	-173.4	21
$XeF_2 + AsF_5 \longrightarrow XeF^+ + AsF_6^-$	493.2	493.4	499.9	497.7	
$FXeONO_2 + AsF_5 \longrightarrow XeF^+ + AsF_5ONO_2^-$	522.0	521.8	527.4	525.5	25

Table 9.1.Gas-phase ΔH° , ΔG° , $\Delta H_{195.15}$, and $\Delta G_{195.15}$ for the Synthesis and Decomposition Reactions of FXeONO2,
Xe(ONO2)2, XeONO2⁺, and N2O6 (MP2/aug-cc-pVTZ and aug-cc-pVTZ(-PP))

Ph.D. Thesis - David S. Brock

313

9.2.2. Reactions of XeF₂ with HNO₃. Attempts were made to prepare FXeONO₂ and Xe(ONO₂)₂ by reaction of XeF₂ with HNO₃. Xenon difluoride was allowed to react with 2 equiv of 100% HNO₃ in SO₂ClF solution. NMR spectroscopy at -30 °C in SO₂ClF solution revealed XeF₂ (-1684 ppm, ${}^{1}J({}^{19}F-{}^{129}Xe) = 5630$ Hz) and Xe gas (-5374 ppm) in the ${}^{129}Xe$ spectrum, and only XeF₂ (-183.4 ppm, ${}^{1}J({}^{19}F-{}^{129}Xe) = 5633$ Hz) and HF (-180.2 ppm, $\Delta v_{\frac{1}{2}} = 550$ Hz) in the ${}^{19}F$ spectrum. Although the gas-phase syntheses (Table 9.1) for FXeONO₂ (eq 9.11, $\Delta G^{\circ} = -17.6$ kJ mol⁻¹, $\Delta G_{195.15} = -20.2$ kJ mol⁻¹) and Xe(ONO₂)₂ (eq 9.12, $\Delta G^{\circ} = -17.5$ kJ mol⁻¹, $\Delta G_{195.15} = -20.8$ kJ mol⁻¹) are near equilibrium, their rapid decompositions (FXeONO₂, eqs 9.2 and 9.3 or eqs 9.4–9.10; Xe(ONO₂)₂, eq 9.13 followed by eq 9.3) may preclude their observation by NMR

$$XeF_2 + HNO_3 \longrightarrow FXeONO_2 + HF$$
 (9.11)

$$FXeONO_2 + HNO_3 \longrightarrow Xe(ONO_2)_2 + HF$$
(9.12)

$$Xe(ONO_2)_2 \longrightarrow O_2NOONO_2 + Xe$$
 (9.13)

spectroscopy. Although FXeONO₂ and/or Xe(ONO₂)₂ could account for the decomposition products observed by NMR spectroscopy, in either case, the degree of reaction must have been small because neither decomposition product, N₂O₄ or N₂O₅, was observed in the Raman spectrum. Rather, XeF₂·HNO₃ crystallized between –40 to –60 °C from SO₂ClF solution and was characterized in the solid state by Raman spectroscopy and by single-crystal X-ray diffraction.^{72,286} These findings indicate that if Xe(ONO₂)₂ forms, it is inherently unstable toward decomposition. The gas-phase thermochemical calculations (Table 9.1) show a large negative Gibbs free energy for the

spontaneous decomposition of Xe(ONO₂)₂ to Xe and the unstable intermediate, N₂O₆ (eq 9.13, $\Delta G^{\circ} = -151.4 \text{ kJ mol}^{-1}$, $\Delta G_{195.15} = -141.4 \text{ kJ mol}^{-1}$).

9.2.3. Reactions of XeF₂ and [XeF][AsF₆] with N₂O₅. Attempts to react XeF₂ or [XeF][AsF₆] with N₂O₅ in SO₂ClF to give FXeONO₂ and/or Xe(ONO₂)₂ were monitored by Raman spectroscopy. A 1.5:1 mixture of XeF₂ and N₂O₅ that was warmed stepwise from -40 to 10 °C showed essentially no reaction, with only a small amount of N₂O₅ decomposition to N₂O₄ and subsequent formation of XeF₂·N₂O₄.^{72,286} However, at -78 °C, equimolar amounts of [XeF][AsF₆] and N₂O₅ formed a transient orange, clumpy mixture which was consistent with [Xe₃OF₃][AsF₆] formation (eq 9.14). Gradual warming of the reaction mixture above -30 °C to dissolve N₂O₅ resulted in a white product. Low-temperature Raman spectroscopy showed a mixture of XeF₂, [NO₂][AsF₆], and unreacted N₂O₅ and the absence of FXeONO₂. The [Xe₃OF₃][AsF₆] salt, which is known to be unstable above -30 °C⁷¹ likely decomposed (eq 9.15) to form XeF₂, O₂, Xe, and [XeF][AsF₆]. The latter would then re-enter the cycle (eqs 9.14 and 9.15) until completely consumed.

$$3[XeF][AsF_6] + N_2O_5 \longrightarrow [FXeOXeFXeF][AsF_6] + 2[NO_2][AsF_6] (9.14)$$

$$[FXeOXeFXeF][AsF_6] \longrightarrow XeF_2 + \frac{1}{2}O_2 + Xe + [XeF][AsF_6] \qquad (9.15)$$

9.2.4. Reaction of XeF₂ with N₂O₄. Dissolution of XeF₂ in liquid N₂O₄ at 0–30 °C resulted in NO₂F formation (eq 9.16; δ (¹⁹F), 397.8 ppm at 30 °C). A small, steady-state concentration of FXeONO₂ was also observed which apparently arose as a result of the

self-ionization of N_2O_4 (eq 9.17) and the reaction of XeF₂ with NO_3^- (eq 9.18). The self-ionization of N_2O_4 has been inferred by electrical conductivity

$$N_2O_4 + XeF_2 \longrightarrow 2NO_2F + Xe$$
 (9.16)

$$N_2O_4 \quad \longleftarrow \quad NO^+ + NO_3^- \tag{9.17}$$

$$XeF_2 + NO^+ + NO_3^- \longrightarrow FXeONO_2 + NOF$$
(9.18)

measurements $(2.36 \times 10^{-13} \Omega^{-1} \text{ cm}^{-1} \text{ at } 17 \text{ }^{\circ}\text{C})^{289}$ and by measurement of the selfionization constant of N₂O₄ in sulfolane at 30 $^{\circ}\text{C}$ (K_{N₂O₄ = 7.1 × 10⁻⁸ mol L⁻¹).²⁹⁰ The small steady-state concentration of the NO₃⁻ anion (eq 9.17) and the instability of FXeONO₂ (eqs 9.2–9.10) at room temperature (vide supra), account for the low product concentrations.}

Dissolution of XeF₂ in liquid N₂O₄ at 35 °C also resulted in the formation of XeF₂·N₂O₄, which was observed by Raman spectroscopy of the frozen mixture at -160 °C (see 9.2.7.1, Raman Spectroscopy). The molecular addition compound, XeF₂·N₂O₄, crystallized from a solution of XeF₂ in N₂O₄ at -3 °C and was characterized by single-crystal X-ray diffraction.^{72,286}

9.2.5. Reaction of FXeONO₂ with AsF₅. In an attempt to form a salt of the XeONO₂⁺ cation, a mixture of FXeONO₂ and XeF₂ was allowed to react with excess liquid AsF₅ at -78 °C. The reaction was monitored by low-temperature Raman spectroscopy over a period of 24 h and showed that AsF₅ reacted with XeF₂ to yield [XeF][AsF₆], but FXeONO₂ did not react. Warming the reaction mixture to -50 °C for 12 h with periodic quenching and monitoring of the spectrum by Raman spectroscopy at -160 °C showed

[XeF][AsF₆] and [NO₂][AsF₆] were the only products. The findings are consistent with the formation of an unstable XeONO₂⁺ salt (eq 9.19) that rapidly decomposed according to eq 9.20.

$$FXeONO_{2(s)} + AsF_{5(l)} \longrightarrow [XeONO_2][AsF_6]_{(s)}$$

$$(9.19)$$

$$[XeONO_2][AsF_6]_{(s)} \longrightarrow [NO_2][AsF_6]_{(s)} + Xe_{(g)} + \frac{1}{2}O_{2(g)}$$
(9.20)

Thermochemical calculations for the gas-phase reactions (Table 9.1) show there is a considerable barrier to fluoride ion abstraction from FXeONO₂ by AsF₅ to form XeONO₂⁺ and AsF₆⁻ (eq 9.19 in the gas phase, $\Delta H^{0} = 359.0$ kJ mol⁻¹, $\Delta G^{0} = 365.0$ kJ mol⁻¹; $\Delta H_{195,15} = 358.7$ kJ mol⁻¹, $\Delta G_{195,15} = 362.9$ kJ mol⁻¹), but this barrier is considerably less than that for the gas-phase abstraction of fluoride ion from XeF₂ by AsF₅ ($\Delta H^{0} = 493.2$ kJ mol⁻¹, $\Delta G^{0} = 499.9$ kJ mol⁻¹; $\Delta H_{195,15} = 493.4$ kJ mol⁻¹, $\Delta G_{195,15} =$ 497.7 kJ mol⁻¹). Volume-based thermochemical (VBT) calculations have been used to arrive at the thermodynamic properties of these systems in the solid state (see Solid-State Thermochemistry in Appendix 6), and show that the fluoride ion abstraction is essentially mitigated by the lattice enthalpy of [XeONO₂][AsF₆]. Once formed, the gas-phase XeONO₂⁺ cation has a large negative Gibbs free energy that accompanies its spontaneous decomposition to Xe, O₂, and NO₂⁺ (eq 9.21, $\Delta H^{0} = -142.7$ kJ mol⁻¹, $\Delta G^{0} = -189.5$ kJ mol⁻¹; $\Delta H_{195,15} = -143.0$ kJ mol⁻¹, $\Delta G_{195,15} = -173.4$ kJ mol⁻¹).

$$XeONO_{2}^{+}(g) \longrightarrow Xe_{(g)} + \frac{1}{2}O_{2}(g) + NO_{2}^{+}(g)$$
 (9.21)

The thermochemical parameters were also determined for eq 9.20 by application of VBT (see Solid State Thermochemistry in Appendix 6). The appropriate thermochemical cycle (eq 9.22) using the gas-phase standard enthalpy, $\Delta H^{\circ}(9.21)$) (Table 9.1), and Gibbs free energy, $\Delta G^{\circ}(9.21)$, according to eqs 9.23 and 9.24 show that the solid-state decomposition of [XeONO₂][AsF₆] (eq 9.20) is significantly more exothermic than the gas-phase decomposition of the XeONO₂⁺ cation (eq 9.21).

$$\Delta H^{\circ}(9.20) = \Delta H^{\circ}(9.21) - \Delta H^{\circ}_{L}([NO_{2}][AsF_{6}]) + \Delta H^{\circ}_{L}([XeONO_{2}][AsF_{6}])$$

= -188 kJ mol⁻¹ (9.22)

$$\Delta S^{\circ}(9.20) = S^{\circ}([NO_2][AsF_6]_{(s)}) + S^{\circ}(Xe_{(g)}) + \frac{1}{2}S^{\circ}(O_{2(g)}) - S^{\circ}([XeONO_2][AsF_6]_{(s)})$$

= 207 J mol⁻¹ K⁻¹ (9.23)

$$\Delta G^{\circ}(9.20) = \Delta H^{\circ}(9.20) - T\Delta S^{\circ}(9.20) = -250 \text{ kJ mol}^{-1}$$
(9.24)

The gas-phase reaction (eq 9.25) has also been considered and is shown to be considerably more endothermic ($\Delta H^{\circ} = 522.0 \text{ kJ mol}^{-1}$, $\Delta G^{\circ} = 527.4 \text{ kJ mol}^{-1}$; $\Delta H_{195.15} = 521.8 \text{ kJ mol}^{-1}$, $\Delta G_{195.15} = 525.5 \text{ kJ mol}^{-1}$) than the gas-phase counterpart of eq 9.19, and therefore it has not been considered as a likely alternative reaction pathway.

$$FXeONO_2 + AsF_5 \longrightarrow XeF^+ + AsF_5ONO_2^-$$
(9.25)

9.2.6. Synthesis and Reactivity of $O(XeF)_2$. The crystal structures of both Xe₃OF₃⁺ salts have been obtained in which the cation is comprised of a FXeOXe---FXeF zig-zag chain. The long contact (2.510(8) Å, As; 2.508(7) Å, Sb)⁷¹ between xenon and the bridging fluorine atom suggests that XeF₂ may be readily displaced from Xe₃OF₃⁺ by a suitable oxidatively resistant base according to eq 9.26, where M = K or NO.

Reaction of the magenta-colored solid [Xe₃OF₃][AsF₆] with liquid NOF at -78 °C afforded a pale blue-colored solid/liquid mixture, which yielded a pale yellow solid upon removal of excess NOF under dynamic vacuum at -78 °C (eq 9.27). The blue color

 $[Xe_3OF_3][AsF_6] + NOF \longrightarrow O(XeF)_2 + XeF_2 + [NO][AsF_6]$ (9.27) presumably resulted from traces of N₂O₃,²⁸³ that arose as a result of an excess of NOF, according to Scheme 9.4. The dry product mixture was found to be stable indefinitely at temperatures at or below -30 °C.

In addition, because an excess of NOF was used to react with $[Xe_3OF_3][AsF_6]$, products from the reaction of $[Xe_3OF_3][AsF_6]$ with the NO₂F impurity (ca. 3%) in the NOF sample could be observed in solution by ¹⁷O, ¹⁹F, and ¹²⁹Xe NMR spectroscopy (FXeONO₂), and in the solid state by low-temperature Raman spectroscopy (XeF₂·N₂O₄).

Syntheses that employed ¹⁸O-enriched (98.6%) [Xe₃¹⁸OF₃][AsF₆] confirmed the results derived from the natural abundance reaction, but further demonstrated that peaks assignable to the $N^{18}O^+$ cation were observed by Raman spectroscopy (see 9.2.7.2, Raman Spectroscopy). The $N^{18}O^+$ cation likely results from a minor exchange pathway in the solid state (Scheme 9.5) or in ONF solution (Scheme 9.6). Oxygen isotope scrambling was also observed in CH₃CN solution by NMR spectroscopy.

9.2.7. Raman Spectroscopy. The low-temperature, solid-state Raman spectra of $FXeONO_2$ and $O(XeF)_2$ are depicted in Figures 9.2 and 9.3, respectively. The experimental and calculated frequencies and their assignments are listed in Tables 9.2–9.4 and Tables A6.1 and A6.2. The spectra were calculated using the aug-cc-pVTZ(-PP) basis set at the B3LYP, PBE1PBE, and MP2 levels of theory and the experimental trends

Scheme 9.5. Proposed pathway for the solid-state formation of the ${}^{18}ON^+$ cation.

Scheme 9.6. Proposed pathway for the formation of the ${}^{18}ON^+$ cation in ONF solvent.

Figure 9.2. Raman spectrum of FXeONO₂ recorded at -160 °C using 1064–nm excitation for natural abundance (lower trace) and 98.6% ¹⁸O-enriched (upper trace). Symbols denote XeF₂ (†), FEP (*), laser artifact (‡) and [NO₂][AsF₆] (§).

322

Figure 9.3. Raman Spectra of ¹⁶O(XeF)₂ and ¹⁸O(XeF)₂. The symbols *, †, ‡, and §, denote bands arising from FEP, XeF₂, [NO][AsF₆], and XeF₂·N₂O₄, respectively. Lines denote Raman shifts between natural abundance and ¹⁸O-enriched O(XeF)₂.

FXe ¹⁶ O ¹⁴ N ¹⁶ O ₂		FXe ¹⁶ O ¹⁴ N(¹⁶ O ¹⁸ O)		FXe ¹⁶ O ¹⁵ N ¹⁶ O ₂		N ¹⁶ O ₂	
exptl ^{a,b}		exptl ^{a,c}	$\Delta v^{16/18 d}$	expt1 ^a		$\Delta v^{14/15 e}$	assgnt $(C_s)^f$
1578.8(12) 1571.7(16)	}	1567.4br(6) 1561.8br(7) 1278.7br(2)	$\left. \right\} \begin{array}{c} -11.4 \\ -9.9 \end{array}$	1543.2(1) 1536.6(2)	}	-35.6 -35.1	v ₁ (A'), v(NO – NO)
1285.5(5) 1262.1(17)	}	1263.2br(2) 1244.6sh 1242.5br(4)	-16.6	1246.7(8)		-15.4	ν ₂ (A'), ν(NO + NO)
882.9(3) 769.4(2)		873.4br(2) 766.1(1) 725.2(11)	-9.5 -3.3				$ u_3(A'), \nu(O_{Xe}-N) + \delta(NO_2) \nu_{10}(A''), \rho_w(NO_3) $
725.5(49)		718.4(18) 717.1(17) 701.6(11)	-9.9 (av)	723.2(8)		-2.3	$v_4(A')$, $\delta(O_{Xe}-N-O) + \rho_r(NO_2)$
685.4(15)		684.3(4) 676.6(6) 674.1(3) 663.1(3)	-10.9 (av)	690.3(100) ^g 683.5(61)	}	1.5	$\nu_5(A'), \nu(O_{Xe}-N) - \delta(NO_2)$
503.8(54) 478.1(100)	}	503.5(54) 477.0(100)	$-0.3 \\ -1.1$	503.6(14) 478.4(73)	}	0.2 0.3	ν ₆ (A'), ν(Xe-F)
318.9(23) 312.7(37)	}	315.0(17) 307.2(26)	$\left. \begin{array}{c} -3.9\\ -5.5 \end{array} \right.$	317.9(4) 310.9(14)	}	-1.0 -1.8	$v_7(A')$, $v(Xe-O) + \rho_r(NO_3)$
220.6(15) 146.9(14)		218.6(15) 145.4(11)	-2.0 -1.5	220.3(10) 146.4(8)		-0.3 -0.5	ν ₁₁ (A"), ρ _w (F–Xe–O) ν ₈ (A'), δ(F–Xe–O) + ρ _r (NO ₃)
102.2(11) 93.6(16)	}	101.1(8) 91.7(17)	$-1.1 \\ -1.9$				$\nu_{9}(A'), \delta(F-Xe-O) - \rho_{r}(NO_{3})$
64.3(11)		62.8(5)	-1.5				$v{12}(A'')$, ρ_t about Xe–O bond

323

Table 9.2. Experimental Raman Frequencies and Intensities for FXe¹⁶O¹⁴N¹⁶O₂, FXe¹⁶O¹⁴N(¹⁶O¹⁸O), and FXe¹⁶O¹⁵N¹⁶O₂

^{*a*} Relative Raman intensities are given in parentheses. Abbreviations denote shoulder (sh), and broad (br). ^{*b*} Two modes were also observed at 1448.3(<1) and 1410.3(2) cm⁻¹ and were tentatively assigned as combination modes. ^{*c*} Three modes were also observed at 1436.1(<1), 1410.7(1) and 1362.4(1) cm⁻¹ and were tentatively assigned as combination modes. ^{*d*} $\Delta v^{16/18} = v(^{18}\text{O}) - v(^{16}\text{O})$. ^{*e*} $\Delta v^{14/15} = v(^{15}\text{N}) - v(^{14}\text{N})$. ^{*f*} Abbreviations denote stretch (v), bend (δ), twist (ρ_t), wag (ρ_w),

Table 9.3. Calculated^{*a*} Vibrational Frequencies, Raman and Infrared Intensities for $FXe^{16}O^{14}N^{16}O_2$, $FXe^{18}O^{14}N^{16}O_2$, $FXe^{16}O^{14}N^{16}O_3$, $FXe^{16}O^{$

FXe ¹⁶ ON ¹⁶ O ₂	FXe ¹⁸ ON ¹⁶ O ₂	Δ ^{16/18 ε}	FXe ¹⁶ ON ¹⁸ OA ¹⁶ Os	Δ ^{16/18A d}	FXe ¹⁶ ON ¹⁶ O _A ¹⁸ O ₅	Δ ^{16/18S e}	FXe ¹⁸ ON ¹⁸ O _A ¹⁶ O ₅	Δ ^{16/18-18A} f	FXe ¹⁸ ON ¹⁶ O _A ¹⁸ O ₅	Δ ^{16/18-185 g}	FXeO ¹⁵ NO ₂	Δ ^{14/15 h}	assgnt
1657.5(63)[329]	1657.3(63)[329]	- 0.2	1640.4(58)[314]	-17.1	1647.4(65)[330]	-10.1	1640.1(58)[314]	-17.4	1647.1(65)[330]	-10.4	1619.5(61)[317]	-38.0	v1(A')
1300.9(13)[373]	1300.6(14)[379]	-0.3	1279.7(14)[388]	-21.2	1273.8(10)[381]	-27.1	1279.5(14)[394]	-21.4	1273.5(11)[386]	-27.4	1286.1(14)[331]	-14.8	v₂(A')
880.0(3)[330]	874.1(3)[302]	-5.9	869.3(3)[319]	-10.7	868.3(3)[319]	-11.7	862.6(3)[290]	-17.4	861.7(3)[290]	-18.3	867.1(3)[333]	-12.9	v3(A')
7 82.3(<0 .1)[10]	780.3(<0.1)[10]	-2.0	778.3(<0.1)[10]	-4.0	778.3(<0.1)[10]	-4.0	776.3(<0.1)[10]	-6.0	776.3(<0.1)[10]	6.0	761.9(<1)[10]	-20.4	v ₁₀ (A")
719.3(16)[16]	695.5(12)[13]	-23.8	713.0(15)[15]	-6.3	712.2(18)[22]	-7.1	688.9(11)[11]	-30.4	687.9(14)[18]	-31.4	718.0(16)[18]	-1.3	v4(A')
666.9(21)[68]	642.0(20)[70]	-24.9	659.7(23)[66]	-7 .2	659.8(19)[56]	-7.1	635.2(21)[69]	-31.7	635.6(18)[59]	-31.3	666.9(21)[69]	-0.0	ν <u>s</u> (Α')
510.2(54)[255]	510.7(54)[259]	0.5	510.8(55)[254]	0.6	510.9(54)[256]	0.7	510.6(55)[256]	0.4	510.7(54)[258]	0.5	510.9(54)[257]	0.7	ν ₆ (Α')
316.8(28)[31]	311.6(28)[30]	-5.2	310.4(26)[30]	-6.4	315.4(28)[31]	-1.4	305.2(26)[29]	-11.6	309.9(28)[31]	6.9	316.2(27)[30]	-0.6	v7(A')
203.1(<1)[9]	198.7(<1)[9]	-4.4	203.3(<1)[9]	0.2	203.5(<1)[9]	0.4	198.5(<1)[9]	-4.6	198.7(<1)[9]	-4.4	203.5(<1)[9]	0.4	v11(A")
198.0(8)[6]	197.7(8)[6]	-0.3	198.3(8)[6]	0.3	195.2(7)[6]	-2.8	197.3(8)[6]	-0.7	194.3(7)[6]	-3.7	198.0(8)[6]	0.0	v8(A')
116.1(3)[4]	116.0(3)[4]	-0.1	115.6(3)[4]	-0.5	114.7(3)[4]	-1.4	115.3(3)[4]	0.8	114.4(3)[4]	-1.7	116.1(3)[4]	0.0	v9(A')
73.9(<1)[2]	73.3(<1)[1]	-0.6	72.1(<0.1)[1]	-1.8	73.5(<1)[2]	-0.4	71.4(<1)[1]	-2.5	72.8(<1)[1]	-1.1	74.0(<1)[2]	0.1	v ₁₂ (A")
													_

^{*a*} B3LYP/aug-cc-pVTZ(-PP). Values in parentheses denote Raman intensities (Å⁴ u⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹). ^{*b*} A denotes ¹⁸O anti and S denotes ¹⁸O syn with respect to the O-Xe-F group. ^{*c*} $\Delta v^{16/18} = v(FXe^{18}ON^{16}O_2) - v(FXe^{16}ON^{16}O_2)$. ^{*d*} $\Delta v^{16/18a} = v(FXe^{16}ON^{18}O_A^{16}O_S) - v(FXe^{16}ON^{16}O_2)$. ^{*e*} $\Delta v^{16/18s} = v(FXe^{16}ON^{16}O_A^{18}O_S) - v(FXe^{16}ON^{16}O_2)$. ^{*f*} $\Delta v^{16/18-18a} = v(FXe^{18}ON^{18}O_A^{16}O_S) - v(FXe^{16}ON^{16}O_2)$. ^{*g*} $\Delta v^{16/18-18a} = v(FXe^{18}ON^{18}O_A^{16}O_S) - v(FXe^{16}ON^{16}O_2)$. ^{*f*} $\Delta v^{14/15} = v(FXeO^{15}NO_2) - v(FXe^{16}ON^{16}O_2)$.

		f	requencies, cm ⁻¹			
	expt1 ^b			calcd ^{a,b}		
$^{16}\text{O}^{c,d}$	$^{17}\mathrm{O}^{c,d}$	$^{18}\text{O}^{c}$	¹⁶ O	¹⁷ O	¹⁸ O	assignts $(C_{2\nu})^e$
558.5(4) 547.5(28)	532.3 sh	531.9(1) 519.2(36)	563.8(10)[318]	548.7(9)[317]	534.4(8)[315]	$\nu_7(B_2), \nu_{as}(XeO)_2$
498.0 sh 496.8 ^f	n.o.	496.8 ^f 493.2(3)	511.7(50)[68]	511.2(55)[66]	510.1(60)[64]	$\nu_1(A_1)$, $\nu_s(XeO)_2 - \nu_s(XeF)_2$
437.7(7) 433.1(100)	427.4(100)	422.5(100) 418.3(14)	431.4(81)[5]	421.5(73)[7]	412.1(67)[8]	$v_2(A_1), v_s(XeO)_2 + v_s(XeF)_2$
416.7(5) 406.6(20)		409.5(15) 403.2(58)	469.6(21)[402]	470.0(22)[391]	470.0(22)[380]	$v_8(B_2)$, $v_{as}(XeF)_2$
235.6(1)	228.9(5)	227.4(2)	218.1(<0.1)[25]	214.7(<0.1)[25]	211.5(<0.1)[24]	ν ₆ (B ₁), δ(FXeO) o.o.p.
193.1(10)	193.0(72)	193.1(18)	171.4(7)[5]	172.6(7)[5]	172.6(8)[5]	$v_3(A_1)$, $\delta(FXeO + \delta(FXeO)$
173.7(2)	173.7(36)	173.7(3)	151.3(2)[0]	152.0(2)[0]	151.9(2)[0]	$v_5(A_2), \rho_t(FXeO)$
159.3(6)	159.3(64)	159.3(11)	147.3(<1)[1]	148.0(<1)[1]	147.9(<1)[1]	$v_9(B_2), \delta(FXeO - \delta(FXeO))$
62.4(2)	62.2(18)	62.4(4)	60.1(9)[3]	60.2(9)[3]	60.1(8)[3]	$v_4(A_1), \delta(XeOXe)$

Ta	able	9.4	Ex.	perimental	and	Calculated ^{<i>a</i>}	Frec	juencies	for (D(XeF)2

325

^{*a*} B3LYP/aug-cc-pVTZ(-PP). ^{*b*}Values in parentheses denote Raman intensities (Å⁴ u⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹). ^{*b*} A denotes ¹⁸O anti and S denotes ¹⁸O syn with respect to the O-Xe-F group. ^{*c*} The abbreviations (sh) and n.o. denotes a shoulder and not observed, respectively. ^{*d*} The abbreviations denote stretch (ν), bend (δ), twist (ρ_t), and out-of-plane (o.o.p.). Bond elongations and angle openings are denoted by plus (+) signs and bond contractions and angle closings are denoted by minus (-) signs.

were reproduced at all levels. Calculated values referred to in the ensuing discussion are those obtained at the B3LYP method.

The spectral assignments for $FXe^{16}O^{14}N^{16}O_2$, $FXe^{16}O^{14}N(^{16}O^{18}O)$, and $FXe^{16}O^{15}N^{16}O_2$ were made by comparison with the calculated frequencies and Raman intensities for all possible ^{16/18}O-isotopomers (Table 9.3).

9.2.7.1. FXeONO₂. The FXeONO₂ molecule (C_s symmetry) possesses 12 fundamental vibrational modes that span the irreducible representations 9A' + 3A", which are Raman and infrared active. The four FXeONO₂ molecules in the crystallographic unit cell have C_1 site symmetry. A factor-group analysis for FXe¹⁶ON¹⁶O₂ (Table 9.5) predicts that each

gas-phase Raman- and infrared-active mode of FXeONO₂ is split, as a result of vibrational mode coupling within the centrosymmetric unit cell (C_{2h} unit cell symmetry), into a maximum of two Raman-active (A_g and B_g) and two infrared-active (A_u and B_u)

components. Accordingly, two components were resolved for every stretching mode of the natural abundance molecule except for $v(O_{Xe}-N) + \delta(NO_2)$.

Vibrational frequencies calculated at all levels of theory (Tables 9.3 and A6.1) reproduced experimental frequency and ^{16/18}O isotopic shift trends for FXe¹⁶O¹⁴N¹⁶O₂, FXe¹⁶O¹⁴N(¹⁶O¹⁸O), and FXe¹⁶O¹⁵N¹⁶O₂ given in Table 9.2. The calculations clearly show that the experimental ¹⁸O-enriched spectrum is not that of FXe¹⁸ON¹⁶O₂ because, in this case, near-zero isotopic shifts are predicted for $v_1(A')$, v(NO - NO) and $v_2(A')$, v(NO + NO) at 1576 and 1274 cm⁻¹, respectively. The FXe¹⁸ON(¹⁶O_A¹⁸O_S) and FXe¹⁸ON(¹⁶O_S¹⁸O_A) conformers (A denotes ¹⁸O anti and S denotes ¹⁸O syn with respect to the O–Xe–F group) are also eliminated because, in contrast with the observed average ^{16/18}O isotopic shifts of –9.9 and –10.9 cm⁻¹, respectively, a significantly larger isotopic shift (–31 cm⁻¹) is predicted for both $v_4(A')$ and $v_5(A')$. The experimental ¹⁸O-enriched spectrum has therefore been assigned to an equimolar mixture of FXe¹⁶ON(¹⁶O_A¹⁸O_S) and FXe¹⁶ON(¹⁶O_S¹⁸O_A) conformers and establishes that scrambling of ¹⁸O among the bridge site and terminal sites does not occur.

The Raman spectra of FXe¹⁶ON(¹⁶O_A¹⁸O_S) and FXe¹⁶ON(¹⁶O_S¹⁸O_A) exhibit levels of complexity that are not reproduced by the calculated spectra. The calculations show that the only modes where the *syn*- and *anti*-conformers might be differentiated are v_1 and v_2 , with calculated splittings of 7 and 6 cm⁻¹, respectively. However, these splittings are not resolved in the experimental spectra but are manifested on the factor-group split v_1 and v_2 bands as significant line broadenings (Figure 9.2). The attribution of these broadenings to equal populations of the FXe¹⁶ON(¹⁶O_A¹⁸O_S) and FXe¹⁶ON(¹⁶O_S¹⁸O_A) conformers is supported by the spectrum of $FXe^{16}ON^{16}O_2$ (Figure 9.2), which displays narrow factor-group split bands for v_1 and v_2 . Moreover, ¹⁸O isotopic enrichment does not result in similar line broadenings on bands other than the symmetric and asymmetric NO₂ stretching bands.

In the case of $FXe^{16}ON(^{16}O^{18}O)$, additional line splittings are observed for v₁, v₂, $v_4 - v_7$, and v_9 , which are attributed to lowering of the "vibrational unit cell symmetry" of $FXe^{16}ON^{16}O_2$ from C_{2h} symmetry to lower noncentrosymmetric unit cell symmetries. Symmetry lowering in the unit cell results from the combinations and permutations of $FXe^{16}ON(^{16}O_A^{18}O_S)$ and $FXe^{16}ON(^{16}O_S^{18}O_A)$ isomers that occur among the four vibrationally coupled molecules of the crystallographic unit cell, giving rise to 16 unit cells having the following symmetries (relative weights are given in parentheses): $C_{2h}(2)$, C_i (2), C_s (2), C_2 (2), and C_1 (8). With the exception of the C_{2h} and C_i symmetric cells, the remaining 12 unit cell symmetries are not centrosymmetric with respect to the syn-/anticonformations of ¹⁶O and ¹⁸O in their NO₂ groups. As a consequence, the counterparts of the formally Raman-inactive and infrared-active $A_{u}\xspace$ and $B_{u}\xspace$ components in the factorgroup analysis of $FXe^{16}ON^{16}O_2$ are both infrared and Raman active under C_s (A"), C_2 (B), and C_1 (A) unit cell symmetries (Table 9.6), potentially doubling the number of factor-group split lines that can be observed when compared with the spectrum of $FXe^{16}ON^{16}O_2$. Although the additional factor-group components that correspond to A_u and B_u under C_{2h} symmetry are not resolved for v₁, v₆, v₇, and v₉, they are resolved for v₂, v_4 , and v_5 , which exhibit the predicted four-line splittings consistent with noncentrosymmetric unit cell symmetries. The vibrational modes of the remaining two

Factor-group analyses for the symmetry-reduced unit cells resulting from ¹⁸O-substitution on the -NO₂ group of FXeONO₂ to give unit cells (Z = 4) comprised of mixtures of FXe¹⁶ON¹⁶O₄¹⁸O₅ and FXe¹⁶ON¹⁶O₅¹⁸O₄, where A denotes anti and S denotes syn about the N-O bridge bond and with respect to the O-Xe-F group.

centrosymmetric unit cells having C_i symmetry belong to A_g and A_u representations (Table 9.6). Factor-group analyses of the C_i symmetric cells predict that each vibrational band of free FXeONO₂ will be split into two Raman-active A_g and two infrared-active A_u components. As in the case of FXe¹⁶ON¹⁶O₂, the two remaining centrosymmetric unit cells possessing C_{2h} symmetry will give rise to two Raman-active (A_g and B_g) and two infrared-active (A_u and B_u) components (Table 9.6).

These observations establish that ¹⁸O is exclusively terminally bonded to nitrogen and is not scrambled among the terminal and bridge oxygen sites of FXeONO₂ when the latter molecule is synthesized by the low-temperature reaction of FXe¹⁸OXe---FXeF⁺ with NO₂F, in accordance with the reaction mechanism proposed in Scheme 9.2. A weak band at 1362 cm⁻¹ (Table 9.2 and Figure 9.2) also appears in the ¹⁸O-enriched spectrum of FXe¹⁶ON(¹⁶O¹⁸O) and the products that result from Scheme 9.2. The band is assigned to the in-phase ¹⁸ON¹⁶O stretch of the mixed cation in [¹⁸ON¹⁶O][AsF₆] which arises according to Scheme 9.3. The band is shifted 34 cm⁻¹ to low frequency of v_s(NO₂) in [N¹⁶O₂][AsF₆] and is in good agreement with the calculated ¹⁸O isotopic shift of -42 cm⁻¹ for ¹⁸ON¹⁶O⁺ (Table A6.3). Both the out-of-phase ¹⁸ON¹⁶O stretch and δ (¹⁸ON¹⁶O) are predicted to be weak, with δ (¹⁸ON¹⁶O) displaying a small isotopic shift (-6 cm⁻¹), but neither was observed.

The highest frequency modes of natural abundance FXeONO₂ occur at 1571.7, 1578.8 cm⁻¹ and 1262.1, 1285.5 cm⁻¹ and are assigned to the factor-group split v(NO – NO) and v(NO + NO) stretches, respectively. These bands exhibit the greatest sensitivity to ¹⁸O and ¹⁵N substitution, displaying substantial isotopic shifts upon ¹⁸O or ¹⁵N

enrichment (¹⁸O, -9.9, -11.4 and -16.6 cm⁻¹, respectively; ¹⁵N: -35.1, -35.6 and -15.4 cm⁻¹, respectively), which are in good agreement with the calculated isotopic shifts (¹⁸O, -13.6, and -24.2 cm⁻¹; ¹⁵N: -38.0 and -14.8 cm⁻¹, respectively). The bands assigned to $\nu(O_{Xe}-N) + \delta(NO_2)$ (882.9 cm⁻¹), $\delta(O_{Xe}-N-O) + \rho_r(NO_2)$ (725.5 cm⁻¹), and $\nu(O_{Xe}-N) - \delta(NO_2)$ (685.4 cm⁻¹) also exhibit significant sensitivities upon ¹⁸O substitution (-9.5, -9.9 and -10.9 cm⁻¹, respectively), in good agreement with the calculated shifts (-11.2, -6.7 and -7.1 cm⁻¹, respectively). The band assigned to $\rho_w(NO_3)$ (769.4 cm⁻¹) shifts only -3.3 cm⁻¹ to lower frequency, in good agreement with the calculated value of -4.4 cm⁻¹. The $\nu(Xe-F)$ stretching band is also factor-group split (478.1, 503.8 cm⁻¹) and is readily assigned because it is the most intense feature in the spectrum and because the bands are insensitive to both ¹⁵N and ¹⁸O substitution.

The bands assigned to $v(Xe-O) + \rho_w(NO_3)$ (312.7, 318.9 cm⁻¹) exhibit a significant ¹⁶O/¹⁸O isotopic shift (-5.5, -3.9 cm⁻¹), with a much smaller ¹⁴N/¹⁵N isotopic shift (-1.8, -1.0 cm⁻¹), in agreement with the calculated shifts (¹⁸O, -3.9 cm⁻¹; ¹⁵N, -0.6 cm⁻¹). The modes occurring below 221 cm⁻¹ were readily assigned with the aid of the calculated vibrational frequencies and showed no or very small isotopic dependencies, as expected for low-frequency bending and rocking modes.

9.2.7.2. $O(XeF)_2$. The $O(XeF)_2$ molecule $(C_{2\nu})$ possesses nine fundamental vibrational modes belonging to the irreducible representations 4 A₁ + A₂ + 3 B₁ + B₂, all of which are Raman active and all but the A₂ mode are infrared active. The stretching modes are each split two bands, presumably as a result of vibrational coupling within the unit cell
(Figure 9.3 and Table 9.4). The highest frequency modes at 547.4 and 558.5 cm⁻¹ are assigned to the $v_{as}(XeO)_2$ stretch, which display a substantial low-frequency shift (-28.3, -26.6 cm⁻¹) upon substitution of ¹⁸O, in good agreement with the calculated ^{16/18}O isotope shift (-29.4 cm⁻¹). The $v_s(XeO)_2$ mode is coupled to $v_s(XeF)_2$ with the out-ofphase component, $v_s(XeO)_2 - v_s(XeF)_2$, predicted at higher frequency with a negligible calculated ^{16/18}O isotopic shift (-1.4 cm⁻¹), and the in-phase component, $v_s(XeO)_2$ + $v_s(XeF)_2$, predicted to be the most intense mode in the spectrum, at lower frequency, and with a substantial calculated $^{16/18}$ O isotopic shift (-19.3 cm⁻¹). In the experimental spectrum, the shoulder at 498 cm⁻¹ and a band that overlaps with $v_s(XeF_2)$ of XeF₂ at 496.8 cm^{-1} are assigned to the out-of-phase mode which displays a small ^{16/18}O isotopic shift of $\sim 4 \text{ cm}^{-1}$ while the bands at 433.1 and 437.7 cm⁻¹ are assigned to the totally symmetric in-phase with $^{16/18}$ O isotope shifts of -15.2 and -14.8 cm⁻¹, respectively, in agreement with the calculations. The $v_{as}(XeF)_2$ mode is not significantly coupled and appears at 406.6 and 416.7 cm⁻¹, displaying small ^{16/18}O isotopic shifts of -3.4 and -7.2 cm^{-1} , respectively, in agreement with the calculated shift (0.4 cm^{-1}), as expected for a mode in which the oxygen atom is not expected to have a large displacement. However, the frequency of $v_{as}(XeF)_2$ is substantially overestimated in the calculations. The remaining modes have been assigned as bending and twisting modes, and only the bend at 235.6 cm^{-1} displays a significant isotopic shift of -8.2 cm^{-1} , compared to the expected shift of -6.6 cm⁻¹.

The ¹⁸O-enrichment experiments have also provided valuable information about the reaction pathway of $[Xe_3OF_3][AsF_6]$ with NOF, as enriched $N^{18}O^+$ was observed in the Raman spectra. The v(NO) stretch for $N^{18}O^+$ occurs at 2196.8 cm⁻¹ and displays an isotopic shifts of 56.7 cm⁻¹ relative to $N^{16}O^+$ (calculated shifts, 63.8 cm⁻¹).

9.3. Conclusions

The synthesis and structural characterization of FXeONO₂ confirms the ability of the nitrate ligand to stabilize the +2 oxidation state of xenon. The present synthesis of FXeONO₂ from [FXeOXeFXeF][AsF₆] and NO₂F is the only synthetic route presently known that yields isolable amounts of FXeONO₂ and provides an interesting synthetic application of the $Xe_3OF_3^+$ cation, the only known oxide fluoride cation of xenon(II). Raman and NMR spectroscopic studies, as well as an X-ray crystallographic study, show that FXeONO₂ is strongly covalently bound to xenon, which is corroborated by gas-phase quantum-chemical calculations. The mechanism leading to the formation of FXeONO₂ has also been explored using ¹⁸O-labeled [FXe¹⁸OXeFXeF][AsF₆]. The exclusive occurrence of FXe¹⁶ON(¹⁶O¹⁸O) as the labeled product is consistent with the formation of $^{18}O(XeF)_2$ as a reaction intermediate. The absence of $^{16/18}O$ isotopic scrambling among the oxygen sites of FXeONO₂ was confirmed by factor-group analyses of the 16 isotopomeric crystallographic unit cells that result from syn-/anti-isomerization, $FXe^{16}ON({}^{16}O_A{}^{18}O_S)/FXe^{16}ON({}^{16}O_S{}^{18}O_A)$, among the four $FXeONO_2$ molecules of the unit cell. A second pathway for oxygen exchange between $FXe^{16}ON(^{16}O^{18}O)$ and $N^{16}O_2^+$ led to the formation of a minor amount of ${}^{16}ON{}^{18}O^+$.

The calculated ΔH and ΔG values at 298.15 and 195.15 K show that the gas-phase decompositions of FXeONO₂ and Xe(ONO₂)₂ are spontaneous for all reaction channels

considered and are consistent with the experimental decomposition products. Although the gas-phase thermochemical parameters for the reaction of FXeONO₂ and AsF₅ to form XeONO₂⁺ and AsF₆⁻ is very endothermic and nonspontaneous, the low-temperature experimental reaction of FXeONO₂ with liquid AsF₅ is spontaneous, forming $[NO_2][AsF_6]$, Xe, and O₂. The sought-after [XeONO₂][AsF₆] salt was not observed as an intermediate by low-temperature Raman spectroscopy. The findings are consistent with volume-based thermodynamic calculations which indicate that, while the reaction of FXeONO₂ and AsF₅ to form [XeONO₂][AsF₆] is spontaneous under standard conditions, the salt is unstable with respect to the observed decomposition products.

The missing neutral oxide fluoride of xenon(II), $O(XeF)_2$, has also been synthesized, showing marked stability at temperatures at or below -30 °C. The ¹⁷O- and ¹⁸O-enrichment studies have also provided useful mechanistic data, allowing for an explanation for the redistribution of enriched oxygen among NO⁺. The compound has been characterized in the solid state by Raman spectroscopy, and shows the expected isotopic shifts upon ¹⁸O-substitution. The Raman characterization and mechanistic data from O(XeF)₂ has also assisted in establishing the formation mechanism of FXeONO₂. Ph.D. Thesis – David S. Brock

CHAPTER 10

Conclusions and Directions for Future Work

10.1. Conclusions

The missing Xe(IV) oxide, XeO₂, has been synthesized at 0 °C by hydrolysis of XeF₄ in water and 2.00 M H₂SO_{4(aq)} and characterized by low-temperature Raman spectroscopy. The Raman spectra of XeO₂ amend prior vibrational assignments of xenon doped SiO₂ and are in accordance with prior speculation that xenon depletion from the Earth's atmosphere could occur by xenon insertion at high temperatures and high pressures into SiO₂ in the Earth's crust.

A reliable synthetic route to bulk amounts of the precursor oxide fluoride, XeOF₂, and a thorough characterization of the compound was lacking in the literature but has now been obtained with XeOF₂, F₂OXeN=CCH₃, and XeOF₂·*n*HF having been characterized in the solid state by Raman spectroscopy. Xenon oxide difluoride has now been characterized in CH₃CN solution by ¹⁹F, ¹⁷O, and ¹²⁹Xe NMR spectroscopy. The low-temperature X-ray crystal structure of F₂OXeN=CCH₃ represents a rare example of a Xe(IV)–N bond.

The development of a reliable synthetic protocol for $XeOF_2$ has extended Xe(IV) oxide fluoride chemistry by the study of the Lewis donor and acceptor properties of $XeOF_2$. Reaction of $XeOF_2$ with fluoride ion sources such as CsF or the so-called "naked fluoride ion source," [N(CH₃)₄][F], have yielded the corresponding anion, $XeOF_3^-$. The calculated anion geometry is based on a square planar AX_3YE_2 VSEPR arrangement with

the longest Xe–F bond trans to the oxygen atom. The electron-pair donor abilities of XeOF₂ towards Lewis acids such as [XeF][AsF₆] and in superacidic media such as HF/AsF₅ and HF/SbF₅ were also examined and resulted in [H(OXeF₂)_n][AsF₆], [FXe^{II}(OXe^{IV}F₂)_n][AsF₆] (n = 1, 2), ([XeF₃·HF][Sb₂F₁₁])₂·[H₅F₄][SbF₆], [XeF₃·HF] [Sb₂F₁₁], and [XeF₃][SbF₆] salts. The [H(OXeF₂)_n][AsF₆] and [FXe^{II}(OXe^{IV}F₂)_n][AsF₆] have been synthesized and structurally characterized in the solid state by low-temperature Raman spectroscopy and quantum-chemical calculations while [XeF₃·HF][Sb₂F₁₁], ([XeF₃·HF][Sb₂F₁₁])₂·[H₅F₄][SbF₆], and [XeF₃][SbF₆] were characterized by single-crystal X-ray diffraction. Vibrational frequency assignments for all of the aforementioned compounds were aided by ¹⁸O enrichment, and where appropriate by ²H enrichment.

In related noble-gas adduct chemistry, the syntheses of XeF_2 and KrF_2 adducts with the $BrOF_2^+$ cation have been completed and have been characterized by singlecrystal X-ray diffraction and Raman spectroscopy with the latter providing the first KrF_2 adduct to a non-metal main-group center. In addition, ELF and QTAIM studies of these systems have shed light on the stereochemical activity of the valence electron lone pair of Br(V) and how it is affected by coordination (steric crowding). This study has convincingly demonstrated that the Kr–F bond is significantly more covalent than the Xe–F bond and that XeF_2 is a better fluoride ion donor than KrF_2 .

A more indepth study of the formation and characterization of the only example of a xenon nitrate, $FXeONO_2$ has been carried out. The syntheses of $FXeON^{16}O_2$ and $FXeON(^{18}OO)$ has shed light on the mechanism leading to the formation of $FXeONO_2$. Raman spectroscopy indicated the absence of ^{16/18}O isotopic scrambling among the oxygen sites of FXeONO₂ which was confirmed by factor-group analyses of the 16 isotopomeric crystallographic unit cells that result from *syn-/anti*-isomerization, $FXe^{16}ON(^{16}O_A{}^{18}O_S)/FXe^{16}ON(^{16}O_S{}^{18}O_A)$, among the four FXeONO₂ molecules of the unit cell. The intermediate oxide fluoride, $O(XeF)_2$, was observed in the synthesis of FXeONO₂ and a reinterpretation of its solid-state ¹⁶O- and ¹⁸O-enriched Raman spectra was carried out.

10.2. Future Work

10.2.1. OTeF₅ Derivatives of Xe(IV)

The teflate group (-OTeF₅) is known to have a chemistry similar to that of the fluorine ligand in main-group chemistry.²⁹¹ The OTeF₅ derivative of XeOF₂, $O=Xe(OTeF_5)_2$, as well as the mixed species, $O=XeF(OTeF_5)$, have been previously prepared according to eq 10.1 and 10.2 while attempting to form the OTeF₅ derivative of $Xe(OTeF_5)_4 + TMA^+F^- \xrightarrow{CH_3CN} O=XeF(OTeF_5) + F_5TeOTeF_5 + TMA^+OTeF_5^-$ (10.1)

$$2 O=XeF(OTeF_5) \longrightarrow O=Xe(OTeF_5)_2 + O=XeF_2$$
(10.2)

 $XeF_5^{-.292}$ Multi-NMR studies were carried out on these systems in CH₃CN solvent, however, the species have never been isolated in the solid state and fully structurally characterized. It would be interesting to obtain crystalline O=Xe(OTeF₅)₂ and O=XeF(OTeF₅) from these CH₃CN solutions and to compare their X-ray structures with those of F₂OXeNCCH₃¹²⁵ and O₂Xe(OTeF₅)₂.⁶⁰

The OTeF₅ analogue of [XeF][SbF₆], has been prepared according to eq 10.3.²⁹¹ The $Xe(OTeF_5)_3^+$ cation is the Xe(IV) analogue of XeF₃⁺ but has only been characterized in

$$2Xe(OTeF_5)_2 + Sb(OTeF_5)_3 \xrightarrow{SO_2CF} [XeOTeF_5][Sb(OTeF_5)_6] + Xe$$
(10.3)

 SbF_5 solutions of Xe(OTeF_5)_4 in complex mixtures of the $F_xXe(OTeF_5)_{3-x}^+$ cations.⁶¹ The Xe(OTeF_5)_3^+ cation is expected to be a stronger oxidant than XeOTeF_5^+ but less strongly oxidizing than XeF_3^+. The potential syntheses could be carried out in SO₂ClF solvent according to eqs 10.4–10.7. Owing to the thermal instability of Sb(OTeF_5)_5, the

$$3XeF_2 + 2B(OTeF_5)_3 \rightarrow 3Xe(OTeF_5)_2 + 2BF_3$$
(10.4)

$$3XeF_4 + 4B(OTeF_5)_3 \rightarrow 3Xe(OTeF_5)_4 + 4BF_3$$
(10.5)

$$Xe(OTeF_5)_2 + Sb(OTeF_5)_3 \rightarrow Sb(OTeF_5)_5 + Xe$$
(10.6)

$$Xe(OTeF_5)_4 + Sb(OTeF_5)_5 \rightarrow Xe(OTeF_5)_3^+Sb(OTeF_5)_6^-$$
(10.7)

aforementioned reactions must be carried out at low temperature (-78 °C). An alternative synthetic approach involves the low-temperature reaction of FXe(OTeF₅)₃ with Sb(OTeF₅)₅ in SO₂ClF according to eq 10.8. The latter salt is expected to form a fluorine-bridged ion

$$FXe(OTeF_5)_3 + Sb(OTeF_5)_5 \rightarrow Xe(OTeF_5)_3^+FSb(OTeF_5)_5^-$$
(10.8)

pair, $(OTeF_5)_3Xe^+$ ---F-Sb $(OTeF_5)_5^-$, which is expected to be labile in solution but should be easier to crystallize and be more stable than $Xe(OTeF_5)_3^+Sb(OTeF_5)_6^-$.

10.2.2. XeF₂, XeF₄, and KrF₂ Adducts to Transition Metal Centers

As outlined in Section 7.1, a series of KrF_2 Lewis acid–base adducts with group 6 d^0 transition metal centers, namely MOF_4 ·KrF₂ (M = Cr,¹⁰⁶ Mo,¹⁰⁷ W¹⁰⁷) have been synthesized, with XeF₂ adducts of Mo and W as well.¹⁰⁷ The structural characterizations of the adducts were limited to solution ¹⁹F NMR and solid-state Raman spectroscopy. In all cases, the Raman and ¹⁹F NMR spectra indicate that the adducts result from weak

coordination of NgF₂ (Ng = Xe, Kr) through a fluorine bridge to the metal atom. In the absence of X-ray crystal structures, an assessment of the degree of coordination, based on the relative bond lengths of terminal and bridge Ng–F bonds could not be made. The successful growth of $[BrOF_2][AsF_6]\cdot 2NgF_2$ crystals from HF solvent suggests the possibility of isolating crystals of XOF₄·nNgF₂ (X = Cr, Mo, W; n = 1, 2) (eq 10.9). It is

$$XOF_4 + nNgF_2 \xrightarrow{HF} XOF_4 \cdot nNgF_2$$
(10.9)

also possible that this chemistry may be extended to the syntheses of XeF₄ adducts with XOF₄ (eq 10.10), which would represent the only known XeF₄ adducts other than $[Mg(XeF_2)(XeF_4)][AsF_6]_2$.⁴²

$$XOF_4 + XeF_4 \xrightarrow{HF} XOF_4 \cdot XeF_4$$
(10.10)

A large class of compounds in which KrF_2 is coordinated to metal cation centers may be prepared (eq 10.11) using synthetic routes that are analogous to those that have been used to synthesize the XeF_2 adducts.^{82,83}

$$[M^{n+}][PnF_6]_n + mKrF_2 \xrightarrow{HF} [M(KrF_2)_p^{n+}][PnF_6]_n + (m-p)KrF_2 \quad (10.11)$$

10.2.3. Syntheses of Oxofluoro-Anions and Neutral Oxofluorides of Xe(VIII)

It was shown in Section 5.2.3 that O_2NF undergoes metathesis with XeOF₂ to form N_2O_5 and $[NO_2][XeF_5]$. It has been shown that solutions of XeO₄ can be prepared in the oxidatively resistant solvents SO_2ClF^{193} and anhydrous HF and that these solutions only slowly decompose at -30 °C. The use of O_2NF as a potential oxide acceptor may provide opportunities to study the reactions of XeO₄ with O_2NF (eqs 10.12 and 10.13), and could

lead to simplified procedures for the preparation of the known, but ill-characterized Xe(VIII) oxofluorides, XeO_3F_2 and XeO_2F_4 .

$$XeO_4 + 2O_2NF \longrightarrow XeO_3F_2 + N_2O_5$$
(10.12)

$$XeO_4 + 4O_2NF \longrightarrow XeO_2F_4 + 2N_2O_5$$
(10.13)

A possible approach to preparing a Xe(VIII) oxofluoro-anion involves the fluorination of perxenate salts (e.g. Na_4XeO_6)^{180,181} according to eq. 10.14. The XeO₃F₃⁻

$$XeO_6^{4-} + 3O_2NF \longrightarrow XeO_3F_3^{-} + 3NO_3^{-}$$
(10.14)

anion is expected to have a meridional geometry based on VSEPR⁴¹ theory, but may also adopt a facial geometry.

References

- Schrobilgen, G. J., Moran, M. D. "Noble Gas Compounds" in *Kirk-Othmer Encyclopedia of Chemical Technology*, 5th Ed., John Wiley & Sons, Inc., Hoboken, NJ, 2006, Chapter 17, pp 323–343.
- (2) Schrobilgen, G. J. "Noble Gas Chemistry" in *Encyclopedia of Physical Science and Technology*, 3rd ed., M.F. Hawthorne, Ed.; Academic Press: San Diego, 2002, Vol. 10, pp. 449–461.
- (3) Selig, H.; Holloway, J. H. In *Topics in Current Chemistry*; Bosche, F. L., Ed.; Springer-Verlag: Berlin, 1984; Vol. 124, pp 33–90.
- (4) Holloway, J. H. J. Fluorine Chem. 1986, 33, 149–158.
- (5) Holloway, J. H.; Hope, E. G. Adv. Inorg. Chem. 1998, 46, 51–100.
- (6) Schrobilgen, G. J. In *Synthetic Fluorine Chemistry*; Olah, G. A., Prakash, G. K. S., Chambers, R. D., Eds.; John Wiley & Sons, Inc.: New York, 1999, pp 31–42.
- (7) Gerken, M.; Schrobilgen, G. J. Coord. Chem. Rev. 2000, 197, 335–395.
- (8) Brel, V. K.; Pirkuliev, N. S.; Zefirov, N. S. Russ. Chem. Rev. (Engl. Transl.) 2001, 70, 231–264.
- (9) Schrobilgen, G. J. "Lewis Acid Properties of Noble Gas Cations", In Synthetic Fluorine Chemistry, R.D. Chambers, G.A. Olah and G.K.S. Prakash, eds., New York: Wiley and Sons, 1992, Chapter 1, pp. 1–30.
- (10) Žemva, B. Croat. Chem. Acta 1988, 61, 163–187.
- (11) Žemva, B. "The Chapter Noble Gases: Inorganic Chemistry" in Encyclopedia of Inorganic Chemistry, John Wiley & Sons, Inc., New York, 1994, Vol. 5, pp 2660–2680.
- (12) Lehmann, J. F.; Mercier, H. P. A.; Schrobilgen, G. J. Coord. Chem. Rev. 2002, 233-234, 1-39 and references therein.
- (13) Laszlo, P.; Schrobilgen, G. J. Angew. Chem. Int. Ed. Engl. 1988, 27, 479-489.
- (14) Ball, P., "Not So Noble", In *Elegant Solutions: Ten Beautiful Experiments in Chemistry*, The Royal Society of Chemistry, Cambridge, UK, 2005, Chapter 7, pp. 139–150.
- (15) Moissan, H. Compt. Rend. 1895, 120, 966–968.
- (16) von Antropoff, A.; Frauenhof, H.; Krüger, K. H. Naturwissenschaften 1933, 21, 315.
- (17) Yost, D. M.; Kaye, A. L. J. Am. Chem. Soc. 1933, 55, 3890-3892.

- (18) Bartlett, N. Proc. Chem. Soc., 1962, 218.
- (19) Sladky, F. O.; Bulliner, P. A.; Bartlett, N. J. Chem. Soc. A 1969, 2179–2188.
- (20) Graham, L.; Graudejus, O.; Jha, N. K.; Bartlett, N. Coord. Chem. Rev. 2000, 197, 321–334.
- (21) (a) Hoppe, R.; Dähne, W.; Mattauch, H.; Rödder, K. Angew. Chem. 1962, 74, 903; Angew. Chem. Int. Ed. Engl. 1962, 1, 599. (b) Hoppe, R.; Mattauch, H.; Rödder, K.; Dähne, W. Z. Anorg. Allg. Chem. 1963, 324, 214–224.
- (22) Claassen, H. H.; Selig, H.; Malm, J. G. J. Am. Chem. Soc. 1962, 84, 3593.
- (23) Fields, P. R.; Stein, L.; Ziran, M. H. J. Am. Chem. Soc. 1962, 84, 4164-4165.
- (24) Stein, L. J. Am. Chem. Soc. 1969, 91, 5396-5397.
- (25) Stein, L. Science 1972, 175, 1463–1465.
- (26) Khriachtchev, L.; Petterson, M.; Runeberg, N.; Lundell, J.; Räsänen, M. *Nature* 2000, 406, 874–876.
- (27) Runeberg, N.; Petterson, M.; Khriachtchev, L.; Lundell, J.; Räsänen, M. J. Chem. Phys. 2001, 114, 836–841.
- (28) Berkowitz, J.; Chupka, W. A.; Chem. Phys. Lett. 1970, 7, 447-450.
- (29) Khriachtchev, L.; Domanskaya, A.; Lundell, J.; Akimov, A.; Räsänen, M.; Misochko, E. J. Phys. Chem. A 2010, 114, 4181-4187.
- (30) Khriachtchev, L.; Lignell, A.; Tanskanen, H.; Lundell, J.; Kiljunen, H.; Räsänen, M. J. Phys. Chem. A 2006, 110, 11876.
- (31) Chernick, C. L.; Malm, J. G. Inorg. Synth. 1966, 8, 254–258.
- (32) Levy, H. A.; Burns, J. H.; Agron, P. A. Science, 1963, 139, 1208–1209.
- (33) Templeton, D. H.; Zalkin, A.; Forrester, J. D.; Williamson, S. M. J. Am. Chem. Soc. 1963, 85, 817.
- (34) Ibers, J. A.; Hamilton, W. C. Science, **1963**, 139, 106–107.
- (35) Claasen, H. H.; Chernick, C.L.; Malm, J. G. J. Am. Chem. Soc. 1963, 85, 1927–1928.
- (36) Yeranos, W. Mol. Phys. 1965, 9, 449–454.
- (37) Bartlett, N.; Jha, N. K. In *Noble-Gas Compounds*, Hymann, H. H., ed.; University of Chicago Press, Chicago, 1963; pp. 23–30.
- (38) Schumacher, G. A.; Schrobilgen, G. J. Inorg. Chem. 1984, 23, 2923–2929.
- (39) Brown, T. H.; Whipple, E. B.; Verdier, P.H. Science, 1963, 140, 178.
- (40) Rutenberg, A. C. Science, 1963, 140, 993–994.

- (41) Gillespie, R. J.; Hargittai, I. In *The VSEPR Model of Molecular Geometry*; Allyn and Bacon: Boston, MA. 1991.
- (42) Tavčar, G. Žemva, B. Angew. Chem. Int. Ed. 2009, 48, 1432–1434.
- (43) Brock, D. S.; Casalis de Pury, J. J.; Mercier, H. P. A.; Schrobilgen, G. J.; Silvi, B. *Inorg. Chem.* **2010**, *49*, 6673–6689.
- (44) Zalkin, A.; Ward, D. L.; Biagioni, R. N.; Templeton, D. H.; Bartlett, N. Inorg. Chem. 1978, 17, 1318–1322.
- (45) Elliott, H. A.; Lehmann, J. F.; Mercier, H. P. A.; Jenkins, D. B.; Schrobilgen, G. J. *Inorg. Chem.* **2010**, *49*, 8504–8523.
- (46) Gillespie, R. J.; Landa, B.; Schrobilgen, G. J. Inorg. Chem. 1976, 15, 1256–1263.
- (47) Gillespie R. J.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 2370-2374.
- (48) Gillespie, R. J.; Landa, B.; Schrobilgen, G. J. J. Chem. Soc. D 1971, 1543-1544.
- (49) Schrobilgen, G. J.; Holloway, J. H.; Granger, P.; Brevard, C. Inorg. Chem. 1978, 17, 980.
- (50) McKee, D. E.; Adams, C. J.; Bartlett, N. Inorg. Chem. 1973, 12, 1722-1725.
- (51) McKee, D. E.; Zalkin, A.; Bartlett, N. Inorg. Chem. 1973, 12, 1713–1717.
- (52) Boldrini, P.; Gillespie, R. J.; Ireland, P. R.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 1690–1694.
- (53) Christe, K. O.; Curtis, E. C.; Dixon, D. A.; Mercier, H. P. A.; Sanders, J. C. P.; Schrobilgen, G. J. J. Am. Chem. Soc. 1991, 113, 3351–3361.
- (54) Adams, W. J.; Thompson, H. B.; Bartell, L. S. J. Chem. Phys. 1970, 53, 4040-4046.
- (55) Bondi, A. J. Phys. Chem. 1964, 68, 441–451.
- (56) Birchall, T.; Myers, R. D.; de Waard, H.; Schrobilgen, G. J. Inorg. Chem. 1982, 21, 1068–1073.
- (57) Allred, A. L. J. Inorg. Nucl. Chem. 1961, 17, 215–221.
- (58) Jacob, E.; Lentz, D.; Seppelt, K.; Simon, A. Z. Anorg. Allg. Chem. 1981, 472, 7-25.
- (59) Lentz, D.; Seppelt, K. Angew. Chem., Int. Ed. Engl. 1978, 17, 356-361.
- (60) Turowsky, L.; Seppelt, K. Z. Anorg. Allg. Chem. 1992, 609, 153-156.
- (61) Syvret, R. G.; Mitchell, K. M.; Sanders, J. C. P.; Schrobilgen, G. J. *Inorg. Chem.* **1992**, *31*, 3381–3385.
- (62) Frohn, H. –J.; LeBlond, N; Lutar, K.; Žemva, B. Angew. Chem., Int. Ed. Engl. 2000, 39, 391–393.

- (63) Koppe, K. Ph. D. Thesis, Universität Duisburg-Essen, Duisburg, Germany, 2005.
- (64) Syvret, R. G.; Schrobilgen, G. J., J. Chem. Soc., Chem. Commun. 1985, 1529–1530.
- (65) Ogden, J. S.; Turner, J. J., Chem. Comm. 1966, 19, 693-694.
- (66) Jacob, E.; Opferkuch, R. Angew. Chem. Int. Ed. Engl. 1976, 15, 158-159.
- (67) Gillespie, R. J.; Schrobilgen, G. J. J. Chem. Soc., Chem. Commun. 1977, 595-597.
- (68) Williamson, S. M.; Koch, C. W. Science 1963, 139, 1046–1047.
- (69) Appelman, E. H.; Malm, J. G. J. Am. Chem. Soc. 1964, 86, 2141-2148.
- (70) Yamanishi, M.; Hirao, K.; Yamashita, K. J. Chem. Phys. 1998, 108, 1514–1521.
- (71) Gerken, M.; Moran, M. D.; Mercier, H. P. A.; Pointner, B. E.; Schrobilgen, G. J.; Hoge, B.; Christe, K. O.; Boatz, J. A. J. Am. Chem. Soc. 2009, 131, 13474-13489.
- (72) Moran, M. D. Ph. D. Thesis, McMaster University, Hamilton, ON, Canada, 2007.
- (73) Fir, B. A.; Gerken, M.; Pointner, B. E.; Mercier, H. P. A.; Dixon, D. A.; Schrobilgen, G. J. J. Fluorine Chem. 2000, 105, 159–167.
- (74) Gillespie, R. J.; Landa, B. Inorg. Chem. 1973, 12, 1383–1389.
- (75) Gillespie, R. J.; Martin, D.; Schrobilgen, G. J. J. Chem. Soc., Dalton Trans. 1980, 1898–1903.
- (76) Frlec, B.; Holloway, J. H. J. Chem. Soc., Dalton Trans. 1975, 535-540.
- (77) Gillespie, R. J.; Netzer, A.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 1455–1459.
- (78) Dixon, D. A.; Arduengo III, A. J.; Farnham, W.B. Inorg. Chem. 1989, 28, 4589-4593.
- (79) Sladky, F. O.; Bullinger, P. A.; Bartlett, N.; DeBoer, B. G.; Zalkin, A. Chem. Commun. 1968, 1048-1049.
- (80) Eisenberg, M.; DesMarteau, D. D. Inorg. Nucl. Chem. Lett. 1970, 6, 29-34.
- (81) Zefirov, N. S.; Gakh, A. A.; Zhdankin, V. V.; Stang, P. J. J. Org. Chem. 1991, 56, 1416–1418.
- (82) Tramšek, M.; Žemva, B. J. Fluorine Chem. 2006, 127, 1275–1284 and references therein.
- (83) Tavčar, G.; Tramšek, M.; Bunič, T.; Benkič, P.; Žemva, B. J. Fluorine Chem.
 2004, 125, 1579–1584.
- (84) Žemva, B. 234th ACS National Meeting, Boston, MA, USA, 2007.

- (85) Grosse, A.V.; Kirshenbaum, A.D.; Streng, A.G.; Streng, L.V. Science 1963, 139, 1047-1048.
- (86) Schreiner, F.; Malm, J.G.; Hindman, J.C. J. Am. Chem. Soc. 1965, 87, 25-28.
- (87) Gunn, S. R. J. Am. Chem. Soc. 1966, 88, 5924.
- (88) Gunn, S. R. J. Phys. Chem. 1967, 71, 2934–2937.
- (89) MacKenzie, D. R. Science 1963, 141, 1171.
- (90) MacKenzie, D. R.; Fajer, J. Inorg. Chem. 1966, 5, 699-700.
- (91) Prusakov, V. N.; Sokolov, V. B. At. Energ. 1971, 31, 259–268; Sov. At. Energ. 1971, 31, 990–999.
- (92) Sessa, P. A.; McGee Jr, H. A. J. Phys. Chem. 1969, 73, 2078–2080.
- (93) Turner, J. J.; Pimentel, G. C. Science 1963, 140, 974–975.
- (94) Streng, L. V.; Streng, A. G. Inorg. Chem. 1966, 5, 328–329.
- (95) (a) Slivnik, J.; Šmalc, A.; Lutar, K.; Žemva, B.; Frlec, B. J. Fluorine Chem. 1975, 5, 273–274. (b) Šmalc, A. Yugoslavian patent no. 37501 P 159/75, Jan. 23, 1975.
- (96) Šmalc, A.; Lutar, K.; Žemva, B. Inorg. Synth. 1992, 29, 11-15.
- (97) Kinkead, S. A.; FitzPatrick, J. R.; Foropoulos, Jr, J.; Kissane, R. J.; Purson, J. D. ACS Symp. Ser. 1994, 555, 40-55.
- (98) Bezmel'nitsyn, V. N.; Legasov, V. A.; Chaivanov, B.B. Dokl. Akad. Nauk. SSSR 1977, 235, 96–98; Dokl. Chem. 1977, 235, 365–367.
- (99) Lehmann, J. F.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2001, 40, 3002–3017.
- (100) Al-Mukhtar, M.; Holloway, J. H.; Hope, E. G.; Schrobilgen, G. J. J. Chem. Soc., Dalton Trans. 1991, 2831–2834.
- (101) Burbank, R. D.; Falconer, W. E.; Sunder, W. A. Science 1972, 178, 1285-1286.
- (102) Harshberger, W.; Bohn, R. K.; Bauer, S. H. J. Am. Chem. Soc. 1967, 89, 6466-6469.
- (103) Sanders, J. C. P.; Schrobilgen, G. J. J. Chem. Soc., Chem. Commun. 1989, 20, 1576-1578.
- (104) Schrobilgen, G. J. J. Chem. Soc., Chem. Commun. 1988, 1506-1508.
- (105) Schrobilgen, G. J. J. Chem. Soc., Chem. Commun. 1988, 863-865.
- (106) Christe, K. O.; Wilson, W. W.; Bougon, R. A. Inorg. Chem. 1986, 25, 2163-2169.
- (107) Holloway, J. H.; Schrobilgen, G. J. Inorg. Chem. 1981, 20, 3363-3368.
- (108) Leblond, N. Ph. D. Thesis, McMaster University, Hamilton, ON, Canada, 1998.

- (109) Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1976, 15, 22-31.
- (110) Winfield, J. M. J. Fluorine Chem. 1984, 25, 91-98.
- (111) Christe, K. O.; Wilson, W. W.; Wilson, R. D.; Bau, R.; Feng, J. J. Am. Chem. Soc. 1990, 112, 7619–7625.
- (112) Mercier, H. P. A.; Sanders, J. C. P.; Schrobilgen, G. J.; Tsai, S. S. Inorg. Chem. 1993, 32, 386-393.
- (113) Emara, A. A. A.; Lehmann, J. F.; Schrobilgen, G. J. J. Fluorine Chem. 2005, 126, 1373–1376.
- (114) Christe, K. O.; Schack, C. J.; Wilson, R. D. Inorg. Chem. 1975, 14, 2224-2230.
- (115) Gerken, M. Ph. D. Thesis, McMaster University, Hamilton, ON, Canada, 2000.
- (116) Faloon, A. V.; Kenna, W. B. J. Am. Chem. Soc. 1951, 73, 2937-2938.
- (117) Ruff, O.; Menzel, W.; Neumann, W. Z. Anorg. Allg. Chem. 1932, 208, 293-303.
- (118) Sladky, F. O. Monatsh. Chem. 1970, 101, 1571–1577.
- (119) Sladky, F. O. Monatsh. Chem. 1970, 101, 1559-1570.
- (120) Shack, C. J.; Wilson, R. D. Inorg. Synth. 1986, 24, 1-3.
- (121) Schmeisser, M.; Eckermann, W.; Gundlach, K. P. Naumann, D. Z. Naturforsch. 1980, 35b, 1143–1145.
- (122) Pilipovich, D.; Lindahl, C. B.; Schack, C. J.; Wilson, R. D.; Christe, K. O. Inorg. Chem. 1972, 11, 2189–2192.
- (123) Christe, K. O.; Schack, C. J.; Pilipovich, D. Inorg. Chem. 1972, 11, 2205-2208.
- (124) Christe, K. O.; Curtis, E. C.; Schack, C. J. Inorg. Chem. 1972, 11, 2212-2215.
- (125) Brock, D. S.; Bilir, V.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc. 2007, 129, 3598-3611.
- (126) Brock, D. S.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc. 2010, 132, 10935-10943.
- (127) There is precedent for polynuclear anions of the type F(XeOF₄)_m⁻ with the synthesis and structural characterization of the (XeOF₄)₃F⁻ anion as its Cs⁺ salt: Holloway, J. H.; Kaučič, V.; Martin-Rovet, D.; Russell, D. R.; Schrobilgen, G. J.; Selig, H. *Inorg. Chem.* 1985, 24, 678–683.
- (128) Bougon, R.; Huy, T. B.; Charpin, P.; Gillespie, R. J.; Spekkens, P. H. J. Chem. Soc., Dalton Trans. 1979, 1, 6–12.
- (129) Keller, N.; Schrobilgen, G. J. Inorg. Chem. 1981, 20, 2118–2129.
- (130) Gerken, M.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2000, 39, 4244-4255.

- (131) *SMART*, release 5.611, and *SAINT*, release 6.02; Siemens Energy and Automotive Analytical Instrumentation, Inc.: Madison, WI, 1999.
- (132) Sheldrick, G. M. SADABS (Siemens Area Detector Absorption Corrections), version 2.10; Siemens Analytical X-ray Instruments, Inc.: Madison, WI, 2004.
- (133) APEX2, release 2.0-2; Bruker AXS Inc.: Madison, WI, 1995.
- (134) Sheldrick, G. M. SHELXTL, release 5.1; Siemens Analytical X-ray Instruments, Inc.: Madison, WI, 1998.
- (135) Sheldrick, G. M. SHELXTL, release 6.14; Siemens Analytical X-ray Instruments, Inc.: Madison, WI, 2000-2003.
- (136) Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7-13.
- (137) Gaussian 03, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.: Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.
- (138) Gaussian 09, Revision A.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

- (139) Basis sets and pseudo-potentials were obtained from the Extensible Computational Chemistry Environment Basis set Database, version 2/25/04, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Science Laboratory, which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352.
- (140) Feller, D. J. Comp. Chem. 1996, 17, 1571–1586.
- (141) Schuchardt, K. L.; Didier, B. T.; Elsethagen, T.; Sun. L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T. L. J. Chem. Inf. Model. 2007, 47.
- (142) GaussView, release 3.0; Gaussian Inc.: Pittsburgh, PA, 2003.
- (143) Whalen, J. M.; Schrobilgen, G. J. Helium-Group Gases, Compounds, 4 ed.; John Wiley & Sons, Inc.: New York, 1994; Vol. 13; pp 38–53.
- (144) Fujiwara, F. Y.; Martin, J. S. J. Am. Chem. Soc. **1974**, 96, 7625–7631. This reference established that HF is molecular in CH₃CN solvent; $\delta({}^{19}\text{F}) = -181.1$ ppm and ${}^{1}J({}^{19}\text{F}-{}^{1}\text{H}) = 476$ Hz at -40 °C. In the present work, ${}^{1}J({}^{19}\text{F}-{}^{1}\text{H})$ was collapsed to a broad line which is presumably the result of exchange with residual H₃O⁺ (vide infra).
- (145) Bucher, G.; Scaiano, J. C. J. Phys. Chem. 1994, 98, 12471-12473.
- (146) Pasinszki, T.; Westwood, N. P. C. J. Phys. Chem. A 2001, 105, 1244-1253.
- (147) Pointner, B. E.; Suontamo, R. J.; Schrobilgen, G. J. Inorg. Chem. 2006, 45, 1517–1534.
- (148) Peterson, S. W.; Willett, R. D.; Huston, J. L. J. Chem. Phys. 1973, 59, 453-459.
- (149) Schrobilgen, G. J.; LeBlond, N.; Dixon, D. A. Inorg. Chem. 2000, 39, 2473-2487.
- (150) Gunderson, G.; Hedberg, K.; Huston, J. L. J. Chem. Phys. 1970, 52, 812-815.
- (151) Faggiani, R.; Kennepohl, D. K.; Lock, C. J. L.; Schrobilgen, G. J. Inorg. Chem. 1986, 25, 563–571.
- (152) Fir, B. A.; Whalen, J. M.; Mercier, H. P. A.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2006, 45, 1978–1996.
- (153) Sawyer, J. F.; Schrobilgen, G. J.; Sutherland, S. J. Inorg. Chem. 1982, 21, 4064-4072.
- (154) Smith, G. L.; Mercier, H. P. A.; Schrobilgen G. J. Inorg. Chem. 2007, 46, 1369– 1378.
- (155) Frohn, H.-J.; Jakobs, S.; Henkel, G. Angew. Chem., Int. Ed. Engl. 1989, 28, 1506–1507.
- (156) Gillespie, R. J. In Noble Gas Compounds; Hyman, H. H., Ed.; The University of Chicago Press: Chicago, 1963; pp. 333-339.

- (157) Von Ahsen, B.; Bley, B.; Proemmel, S.; Wartchow, R.; Willner, H.; Aubke, F. Z. Anorg. Allg. Chem. 1998, 624, 1225–1234.
- (158) Swanson, B.; Shriver, D. F. Inorg. Chem. 1970, 9, 1406-1416.
- (159) Swanson, B.; Shriver, D. F. Inorg. Chem. 1971, 10, 1354–1365.
- (160) Mason, M. G.; Von Holle, W. G.; Robinson, D. W. J. Chem. Phys. 1971, 54, 3491-3499.
- (161) Kittelberger, J. S.; Hornig, D. F. J. Chem. Phys. 1967, 46, 3099-3108.
- (162) Tubino, R.; Zerbi, G. J. Chem. Phys. 1969, 51, 4509-4514.
- (163) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735-746.
- (164) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1998, 88, 899-926.
- (165) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3.1; Gaussian Inc.: Pittsburgh, PA, 1990.
- (166) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, C. M.; Morales, C. M.; Weinhold, F. NBO Version 5.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, 2001.
- (167) Christe, K. O. In XXIVth International Congress of Pure and Applied Chemistry; Butterworth: London, 1974; Vol. 4, p 115.
- (168) MacDougall, P. J.; Schrobilgen, G. J.; Bader, R. F. W. Inorg. Chem. 1989, 28, 763-769.
- (169) Anders, E.; Owen, T. Science 1977, 198, 453-465.
- (170) Ozima, M.; Podosek, F. A. J. Geophys. Res. 1999, 104, 25493-25499.
- (171) Kunz, J.; Staudacher, T.; Allegre, C. J. Science 1998, 280, 877-880.
- (172) Caldwell, W. A.; Nguyen, J. H.; Pfrommer, B. G.; Mauri, F.; Louie, S. G.; Jeanloz R. Science 1997, 277, 930–933.
- (173) Nishio-Hamane, D.; Yagi, T.; Sata, N.; Fujita, T.; Okada, T. Geophys. Res. Lett. 2010, 37, L04302.
- (174) Wacker, J. F.; Anders, E. Geochim. Cosmochim. Acta 1984, 48, 2373-2380.
- (175) Sill, G. T.; Wilkening, L. L. Icarus 1978, 33, 13-22.
- (176) Matsuda, J.-I.; Matsubara, K. Geophys. Res. Lett. 1989, 16, 81-84.
- (177) Pepin, R. O. Icarus 1991, 92, 2-79.
- (178) Sanloup, C.; Schmidt, B. C.; Chamorro Perez, E. M.; Jambon, A.; Gregoryanz, E.; Mohamed Mezouar, M. Science 2005, 310, 1174–1177.
- (179) Smith, D. F. J. Am. Chem. Soc. 1963, 85, 816-817.

- (180) Selig, H.; Claassen, H. H.; Chernick, C. L.; Malm, J. G.; Huston, J. L. Science 1964, 143, 1322-1323.
- (181) Huston, J. L.; Studier, M. H.; Sloth, E. N. Science, 1964, 143, 1161-1162.
- (182) Gunn, S. R. J. Am. Chem. Soc. 1965, 87, 2290-2291.
- (183) Bartlett, N.; Rao, P. R. Science, 1963, 139, 506.
- (184) Williamson, S. M.; Koch, C. W. In *Noble Gas Compounds*; Hyman, H. H. Ed.; University of Chicago Press: Chicago, IL, 1963; pp 149–151.
- (185) Claassen, H. H.; Knapp, G. J. Am. Chem. Soc. 1964, 86, 2341-2342.
- (186) Tsao, P.; Cobb, C. C.; Claassen, H. H. J. Chem. Phys. 1971, 54, 5247-5253.
- (187) It is possible for a Xe-F stretch to couple with a Xe-O stretch and therefore show an isotopic dependence. However, this possibility was discounted because the corresponding out-of-phase mode was not observed. The latter would produce a second, intense, stretching band at a significantly different frequency in the Xe-F/Xe-O stretching region.
- (188) The bands for the symmetric Xe–O–Xe stretch of [Xe₃OF₃][AsF₆], which couple with the terminal Xe–F stretching modes, occur at 419, 430, and 480 cm⁻¹. Because they correspond to a Xe(II) cation, they are among the highest Xe–O stretching frequencies expected for a Xe(II)–O bonded species. Gerken, M.; Moran, M. D.; Mercier, H. P. A.; Pointner, B. E.; Schrobilgen, G. J.; Hoge, B.; Christe, K. O.; Boatz, J. A. J. Am. Chem. Soc. 2009, 131, 13474–13489.
- (189) Pyykkö, P.; Tamm, T. J. Phys. Chem. A 2000, 104, 3826-3828.
- (190) Nakamoto, K. In Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ 200; pp 278–279 and references therein.
- (191) Nakamoto, K. In Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ 200; pp 129–134.
- (192) Alternatively, one of the two bands at 227.9 and 239.1 cm⁻¹ may result from the extended lattice. Rotational modes that are otherwise unobserved for free XeF₄ may be observed in a XeO₂ network structure. A site-symmetry analysis (see Table 4.2) indicates that a doubly degenerate E-mode originating from a rotational mode is rendered Raman active upon symmetry lowering from D_{4h} to D_{2d} in an extended structure and could account for the presence of one of the aforementioned bands.
- (193) Gerken, M.; Schrobilgen, G. J. Inorg. Chem. 2002, 41, 198-204.
- (194) Probert, M. I. J. J. Phys.: Condens. Matter 2010, 22, 025501.

- (195) Chase, M. W. Jr. *NIST JANAF Thermochemical Tables*; American Institute of Physics: New York, 1998.
- (196) Schwalbe, L. A.; Crawford, R. K.; Chen, H. H.; Aziz, R. A. J. Chem. Phys. 1977, 66, 4493-4502.
- (197) Friesen, M.; Junker, M.; Zumbusch, A.; Schnöckel, H. J. Chem. Phys. 1999, 111, 7881-7887.
- (198) Ranieri, V.; Bourgogne, D.; Darracq, S.; Cambon, M.; Haines, J.; Cambon, O.; Leparc, R.; Levelut, C.; Largeteau, A.; Demazeau, G. *Phys. Rev. B* 2009, 79, 224304.
- (199) To confirm this assumption, an intimate mixture of XeF₄ and [Cs][F(HF)_n] was created by dissolving an equimolar mixture of XeF₄ and CsF in aHF. The solution was quenched at -196 °C, and HF was removed under dynamic vacuum at -78 °C. Warming this XeF₄/[Cs][F(HF)_n] mixture to 0 °C under dynamic vacuum yielded a small amount of [Cs][XeF₅] in admixture with XeF₄, which was verified by Raman spectroscopy at -150 °C.
- (200) Huston, J. L. J. Phys. Chem. 1967, 71, 3339-3341.
- (201) LaBonville, P.; Ferraro, J. R.; Spittler, T. M. J. Chem. Phys. 1971, 55, 631-640.
- (202) Christe, K. O.; Wilson, W. W. Inorg. Chem. 1988, 27, 3763-3768.
- (203) Agron, P. A.; Begun, G. M.; Levy, H. A.; Mason, A. A.; Jones, C. G.; Smith, D. F. Science, 1963, 139, 842–844.
- (204) Berg, R. W. Spectrochim Acta 1978, 34A, 655–659.
- (205) Kabisch, G.; Klose, M. J. Raman Spectrosc. 1978, 7, 311-315.
- (206) Kabisch, G. J. Raman Spectrosc. 1980, 9, 279-285.
- (207) Wilson, W. W. Christe, K. O. Inorg. Chem. 1987, 26, 1631-1633.
- (208) Bartlett, N.; Yeh, S.; Kourtakis, K.; Mallouk, T. J. Fluorine Chem. 1984, 26, 97-116.
- (209) Shen,C.; Hagiwara, R.; Mallouk, T.; Bartlett, N. In *Inorganic Fluorine Chemistry, Toward the 21st Century*; Thrasher, J. S., Strauss, S. H., Eds.; ACS Symposium Series 555; American Chemical Society: Washington, DC, 1994; Chapter 2, pp 26–39.
- (210) Jenkins, H. D. B.; Tudela, D; Glasser, L. Inorg. Chem. 2002, 41, 2364-2367.
- (211) Jenkins, H. D. B.; Roobottom, H. K.; Passmore, J.; Glasser, L. Inorg. Chem. 1999, 38, 3609-3620.
- (212) Jenkins, H. D. B.; Glasser, L. Inorg. Chem. 2003, 42, 8702-8708.
- (213) Osborne, D. W.; Flotow, H. E.; Malm, J. G. J. Chem. Phys. 1972, 57, 4670-4675.
- (214) Cortona, P. Phys. Rev. B: Condens. Matter 1992, 46, 2008–2014.

- (215) Torrie, B. H.; Powell, B. M. Mol. Phys. 1992, 75, 613-622.
- (216) Lehmann, J. F. Ph. D. Thesis, McMaster University, Hamilton, ON, 2004.
- (217) Jenkins, H. D. B.; Glasser, L.; Klapötke, T. M.; Crawford, M.-J.; Bhasin, K. K.; Lee, J.; Schrobilgen, G. J.; Sunderlin, L. S.; Liebman, J. F. *Inorg. Chem.* 2004, 43, 6238–6248.
- (218) Bartlett, N.; Zalkin, A.; Leary, K. Inorg. Chem. 1974, 13, 775-779.
- (219) Christe, K. O.; Wilson, W. W. Inorg. Chem. 1988, 27, 2714–2718.
- (220) Žemva, B.; Jesih, A.; Templeton, D. H.; Zalkin, A.; Cheetham, A. K.; Bartlett, N. J. Am. Chem. Soc. 1987, 109, 7420–7427.
- (221) Schrobilgen, G. J.; Martin-Rovet, D.; Charpin, P.; Lance, M. J. Chem. Soc., Chem. Commun. 1980, 19, 894-897.
- (222) Holloway, J. H.; Kaucic, V.; Martin-Rovet, D.; Russell, D. R.; Schrobilgen, G. J.; Selig, H. *Inorg. Chem.* **1985**, *24*, 678–683.
- (223) Kläning, U. K.; Appelman, E. H. Inorg. Chem. 1988, 27, 3160-3162.
- (224) Jaselskis, B. Science 1964, 146, 263-264.
- (225) Holloway, J. H. Talanta 1967, 14, 871-873.
- (226) Margraff, R.; Adloff, J. P. J. Chromatog. 1967, 26, 555-556.
- (227) Reuben, J.; Samuel, D.; Selig, H.; Shamir, J. Proc. Chem. Soc. 1963, 270.
- (228) Mootz, D.; Bartmann, K.; Z. Naturforsch., B: Chem. Sci. 1991, 46, 1659-1663.
- (229) Mootz, D.; Bartmann, K.; Angew. Chem. Int. Ed. 1988, 27, 391-392.
- (230) CRC Handbook of Chemistry and Physics, 81st ed. Lide, D.R., Ed.; CRC Press: Boca Raton, FL, 2000; Chapter 2, 177.
- (231) Dean, P. A.W.; Gillespie, R. J.; Hulme, R.; Humphreys, D. A. J. Chem. Soc. A, 1971, 341–346.
- (232) Brock, D. S.; Casalis de Pury, J. J.; Mercier, H. P. A.; Schrobilgen, G. J.; Silvi, B. J. Am. Chem. Soc. 2010, 132, 3533–3542.
- (233) Sundaraganesan, N.; Anand, B.; Meganathan, C.; Dominic Joshua, B.; Saleem, H. Spectrochim. Acta, Part A 2008, 69, 198–204.
- (234) Selig, H.; Peacock, R. D. J. Am. Chem. Soc. 1964, 86, 3895.
- (235) Frlec, B.; Holloway, J. H. J. Chem. Soc., Chem. Commun. 1973, 370-371.
- (236) Frlec, B.; Holloway, J. H. J. Chem. Soc., Chem. Commun. 1974, 89-90.
- (237) Gillespie, R. J.; Schrobilgen, G. J. J. Chem. Soc., Chem. Commun. 1974, 90-92.
- (238) Holloway, J. H.; Schrobilgen, G. J. J. Chem. Soc., Chem. Commun. 1975, 623-624.

- (239) Frlec, B.; Holloway, J. H. Inorg. Chem. 1976, 15, 1263-1270.
- (240) Žemva, B.; Slivnik, J.; Šmalc, A. J. Fluorine Chem. 1975, 6, 191–193.
- (241) Lutar, K.; Jesih, A.; Žemva, B. Polyhedron 1988, 7, 1217-1219.
- (242) Bougon, R.; Huy, T. B. Compt. Rend. 1976, C283, 461-463.
- (243) Gillespie, R. J.; Spekkens, P. J. Chem. Soc., Dalton Trans. 1977, 1539-1546.
- (244) Ellern, A.; Boatz, J. A.; Christe, K. O.; Drews, T.; Seppelt, K. Z. Anorg. Allg. Chem. 2002, 628, 1991–1999.
- (245) Leopold, D.; Seppelt, K. Angew. Chem., Int. Ed. Engl. 1994, 33, 975–976; Angew. Chem. 1994, 106, 1043–1044.
- (246) Hwang, I.-C.; Kuschel, R.; Seppelt, K. Z. Anorg. Allg. Chem. 1997, 623, 379-383.
- (247) Lehmann, J. F.; Riedel, S.; Schrobilgen, G. J. Inorg. Chem. 2008, 47, 8343-8356.
- (248) Bowater, I. C.; Brown, R. D.; Burden, F. R. J. Mol. Spectrosc. 1968, 28, 461-470.
- (249) Vij, A.; Tham, F. S.; Vij, V.; Wilson, W. W.; Christe, K. O. Inorg. Chem. 2002, 41, 6397-6403.
- (250) Pilmé, J.; Robinson, E. A.; Gillespie, R. J. Inorg. Chem. 2006, 45, 6198-6204.
- (251) Bader, R. F. W. Atoms in Molecules: A Quantum Theory, Oxford University Press: Oxford, 1990.
- (252) Silvi, B.; Savin, A. Nature 1994, 371, 683-686.
- (253) Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397-5403.
- (254) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules, Oxford University Press: Oxford, 1989; pp 90-98.
- (255) Martin, D.; Gillespie, R. J.; Schrobilgen, G. J. J. Chem. Soc., Dalton Trans. 1980, 1898–1903.
- (256) Holloway, J. H.; Schrobilgen, G. J. Inorg. Chem. 1980, 19, 2632-2640.
- (257) Jones, G. R.; Burbank, R. D.; Bartlett, N. Inorg. Chem. 1970, 9, 2264–2268.
- (258) Burns, J. H.; Ellison, R.D.; Levy, H.A. Acta Crystallogr. 1965, 18, 11-16.
- (259) Bartlett, N.; Wechsberg, M. Z. Anorg. Allg. Chem. 1971, 385, 5-17.
- (260) Gillespie, R. J.; Morton, M. J. Chem. Commun. 1968, 24, 1565-1567.
- (261) $\operatorname{XeF}_{2(g)} \longrightarrow \operatorname{XeF}^{+}_{(g)} + \operatorname{F}^{-}_{(g)}: \Delta H_{rxn}^{\circ} = +921.4 \text{ kJ mol}^{-1}; \Delta G_{rxn}^{\circ} = +885.0 \text{ kJ mol}^{-1}$ $\operatorname{MP2}/(\operatorname{aug})\operatorname{cc-pVTZ}(-\operatorname{PP}).$ $\operatorname{XeF}_{4(g)} \longrightarrow \operatorname{XeF}_{3}^{+}_{(g)} + \operatorname{F}^{-}_{(g)}: \Delta H_{rxn}^{\circ} = +951.0 \text{ kJ mol}^{-1}; \Delta G_{rxn}^{\circ} = +920.0 \text{ kJ mol}^{-1}$ $\operatorname{MP2}/(\operatorname{aug})\operatorname{cc-pVTZ}(-\operatorname{PP}).$
- (262) Bunič, T.; Tavčar, G.; Tramšek, M.; Žemva, B. Inorg. Chem. 2006, 45, 1038– 1042.

- (263) Tavčar, G.; Žemva, B. Inorg. Chem. 2005, 44, 1525–1529.
- (264) Tramšek, M.; Benkič, T.; Žemva, B. Inorg. Chem. 2004, 43, 699-703.
- (265) Tramšek, M.; Benkič, T.; Žemva, B. Angew. Chem. Int. Ed. 2004, 43, 3456-3458.
- (266) Bougon, R.; Cicha, W. V.; Lance, M.; Meublat, L.; Nierlich, M.; Vigner, J. *Inorg. Chem.* **1991**, *30*, 102–109.
- (267) Antipin, M. Y.; Ellern, A. M.; Sukhoverkhov, V. F.; Struchkov, Y. T.; Buslaev, Y. A. Dokl. Akad. Nauk SSSR 1987, 293, 1152–1155; Dokl. Akad. SSSR, Engl. 1987, 293, 354.
- (268) Mallouk, T. E.; Rosenthal, G. L.; Müller, G.; Brusasco, R.; Bartlett, N. Inorg. Chem. 1984, 23, 3167–3173.
- (269) Tobias, K. M.; Jansen, M. Z. Anorg. Allg. Chem. 1987, 550, 16–26.
- (270) Oberhammer, H.; Christe, K. O. Inorg. Chem. 1982, 21, 273-275.
- (271) Ferguson, R. C. J. Am. Chem. Soc. 1954, 76, 850-853.
- (272) Burke-Laing, M. E.; Trueblood, K. N. Acta Crystallogr., Sect. B 1977, 33, 2698–2699.
- (273) Christe, K. O.; Zhang, X.; Sheehy, J. A.; Bau, R. J. Am. Chem. Soc. 2001, 123, 6338-6348.
- (274) Gillespie, R. J.; Robinson, E. A.; Pilmé, J. Chem. Eur. J. 2010, 16, 3663-3675.
- (275) Musher, J. I. J. Am. Chem. Soc. 1968, 90, 7371–7372.
- (276) Eisenberg, M.; DesMarteau, D. D. Inorg. Chem. 1972, 11, 1901-1904.
- (277) Naumann, D.; Tyrra, W.; Gnann, R.; Pfolk, D. J. Chem. Soc., Chem. Commun. 1994, 2651–2653.
- (278) Bartlett, N.; Wechsberg, M.; Jones, G. R.; Burbank, R. D. Inorg. Chem. 1972, 11, 1124–1127.
- (279) Wechsberg, M.; Bulliner, P. A.; Sladky, F. O.; Mews, R.; Bartlett, N. Inorg. Chem. 1972, 11, 3063–3070.
- (280) Seppelt, K.; Nothe, D. Inorg. Chem. 1973, 12, 2727–2730.
- (281) Syvret, R. G.; Schrobilgen, G. J. Inorg. Chem. 1989, 28, 1564-1573.
- (282) Seppelt, K.; Lentz, D. Inorg. Synth. 1986, 24, 27–31.
- (283) Beattie, I. R. Prog. Inorg. Chem. 1963, 5, 1–26.
- (284) Dailey, B. P.; Shoolery, J. N. J. Am. Chem. Soc. 1955, 77, 3977-3981.
- (285) Huggins, M. L. J. Am. Chem. Soc. 1953, 75, 4123-4126.
- (286) Moran, M. D.; Brock, D. S.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc. 2010, 132, 13823-13839.

- (287) Khadzhi-Ogly, M. R.; Yagodovskaya, T. V.; Nekrasov, L. I. Zh. Fiz. Khim. 1981, 55, 3124–3127.
- (288) Khadzhi-Ogly, M. R.; Yagodovskaya, T. V.; Nekrasov, L. I. Zh. Fiz. Khim. 1982, 56, 1807–1809.
- (289) Bradley, R. S. Trans. Faraday Soc. 1956, 52, 1255–1259.
- (290) Wartel, M.; Boughriet, A.; Fischer, J. C. Anal. Chem. Acta 1979, 110, 211-217.
- (291) Mercier, H. P. A.; Moran, M. D.; Schrobilgen, G. J.; Steinberg, C.; Suontamo, R. J. J. Am. Chem. Soc. 2004, 126, 5533-5548, and references therein.
- (292) G.J. Schrobilgen, Final Technical Report No. PL-TR-93-3007, Aug. 1993, Contract F04611-91-K-0004, Phillips Laboratory, Propulsion Directorate, USAF Systems Command, Edwards Air Force Base, CA, vol. 1, part IV, pp. 1–11.
- (293) Whalley, E. Trans. Faraday Soc. 1957, 53, 1578-1585.
- (294) CRC Handbook of Chemistry and Physics, 81st ed. Lide, D.R., Ed.; CRC Press: Boca Raton, FL, 2000; Chapter 4, 42.
- (295) Christe, K. O.; Charpin, P.; Soulie, E.; Bougon, R.; Fawcett, J.; Russell, D. R. *Inorg. Chem.*, **1984**, *23*, 3756–3766.
- (296) Johnson, M. W.; Sándor, E.; Arzi, E. Acta Crystallogr. Sect. B 1975, B31, 1998–2003.
- (297) The entropy of solid H₂O was calculated from the $\Delta H_{\text{fusion}}(\text{H}_2\text{O})$ and melting point of water obtained from *CRC Handbook of Chemistry and Physics*, 81st ed. Lide, D.R., Ed.; CRC Press: Boca Raton, FL, 2000; Chapter 1, 10., and from the entropy of liquid water obtained from ref 195.
- (298) Runtz, G. R.; Bader, R. F. W.; Messer, R. R. Can. J. Chem. 1977, 55, 3040-3045.
- (299) Bader, R. F. W. J. Phys. Chem. A 1998, 102, 7314-7323.
- (300) Fradera, X.; Austen, M. A.; Bader, R. F. W. J. Phys. Chem. A 1998, 103, 304-314.
- (301) Savin, A.; Becke, A. D.; Flad, J.; Nesper, R.; Preuss, H.; von Schnering, H. G. Angew. Chem. Int. Ed. Engl. 1991, 30, 409-412.
- (302) Silvi, B. J. Phys. Chem. A 2003, 107, 3081–3085.
- (303) Kohout, M.; Pernal, K.; Wagner, F. R.; Grin, Y. Theor. Chem. Acc. 2004, 112, 453-459.
- (304) Silvi, B. J. Mol. Struct. 2002, 614, 3-10.
- (305) Silvi, B. Phys. Chem. Chem. Phys. 2004, 6, 256–260.
- (306) Bader, R. F. W.; Stephens, M. E. Chem. Phys. Lett. 1974, 26, 445-449.

- (307) Cances, E.; Keriven, R.; Lodier, F.; Savin, A. Theor. Chem. Acc. 2004, 111, 373-380.
- (308) Savin, A.; Silvi, B.; Colonna, F. Can. J. Chem. 1996, 74, 1088-1096.
- (309) Calatayud, M.; Andrés, J.; Beltrán, A.; Silvi, B. Theor. Chem. Acc. 2001, 105, 299–308.
- (310) Raub, S.; Jansen, G. Theor. Chem. Acc. 2001, 106, 223–232.
- (311) Shaik, S.; Maitre, P.; Sini, G.; Hiberty, P. C. J. Am. Chem. Soc. 1992, 114, 7861–7866.
- (312) Shaik, S.; Danovich, D.; Silvi, B.; Lauvergnat, D.; Hiberty, P. Chem. Eur. J. 2005, 21, 6358–6371.
- (313) Shaik, S.; Danovich, D.; Wu, W.; Hiberty, P. Nature Chemistry 2009, 1, 443-449.
- (314) Sanderson, R. T. Polar Covalence. Academic Press: New York, NY, 1983.
- (315) Preut, H.; Bernstein, D.; Minkwitz, R. Acta Crystallogr., Sect. C 1991, C47, 176-177.
- (316) Churney, K. L.; Nuttall, R. L., N.B.S. Tables of Chemical Thermodynamic Properties. Selected Values for Inorganic, C1, and C2 Organic Substances in SI uits. J. Phys. Chem. Ref. Data, Vol. 11, Supplement No. 2, **1982**, 1–392.
- (317) (a) O'Hare, P. A. G. J. Chem. Thermodyn. 1993, 25, 391–402. (b) Nagarajan, G. Bull. Soc. Chim. Belg. 1962, 71, 324–328.
- (318) Latimer, W. M. "Oxidation Potentials", 2nd Ed., Prentice Hall: Englewood Cliffs, New Jersey, **1961**, Appendix III, p. 359.
- (319) Latimer, W. M. J. Am. Chem. Soc. 1921, 43, 818-826.
- (320) Burgess, J.; Peacock, R. D.; Sherry, R. J. J. Fluorine Chem. 1982, 20, 541-554.

APPENDIX 1

Table A1.1. Experimental and Calculated $(C_{3\nu})$ Vibrational Frequencies for CH₃C=N

expt ^{b,c}	(calc	assgnts
	SVWN ^{d,e}	MP2 ^{d,f}	$(C_{3\nu})$ symmetry
2999.0(54)	3062(65)[<1]	3193.6(55)[<1]	$v_5(E), v_{as}(CH_3)$
2937.9(97)	2981(186)[<1]	3100.1(159)[2]	$v_1(A_1), v_s(CH_3)$
2911.7(1) 2885.7(2) 2849.8(1)			2v ₆
2736.3(6)			$2v_3$
2295.1(2)			$v_3 + v_4$
2248.4(100)	2332(71)[14]	2218.0(38)[~0]	$v_2(A_1), v(C\equiv N)$
1457.3(11) 1454.3(7) 1425.2(3) 1420.8(4)	1391(8)[14]	1495.8(7)[10]	$v_6(E)$, CH ₃ def. as
1375.6(15) 1370.8(3)	1335(9)[10]	1417.8(4)[2]	$v_3(A_1)$, CH ₃ def. s
1042.3(1)	999(<<1)[5]	1065.8(<<1)[2]	$v_7(E), \rho_r(CH_3)$
921.5(20)	959(4)[<1]	934.7(5)[1]	$v_4(A_1), v(C-C)$
399.9(3) 395.0(12) 392.0(9) 386.8(5)	377(2)[<<1]	361.0(2)[<1]	ν ₈ (E), δ(CCN)
116.4(18) 107.6(13) 102.3(15) 95.5(32)			lattice modes

^a Frequencies are given in cm⁻¹. ^b Present work. ^c The Raman spectrum of CH₃CN was recorded in a 5-mm glass tube at -150 °C using 1064-nm excitation. Values in parentheses denote Raman intensities. ^d SDB-cc-pVTZ. Values in parentheses denote Raman intensities (Å⁴ amu⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹). ^e Calculated bond lengths (Å): N–C, 1.155; C–C, 1.433. ^f Calculated bond lengths (Å): N–C, 1.155; C–C, 1.433.

expt ^{b,c}	assgnts ^d
3016.9(40)	v _{as} (CH ₃)
2950.2(80)	v _s (CH ₃)
2724.8(3)	overtone (2 x 1367.5)
2313.2(48)	combination mode (1367.5 + 935.9)
2286.0(100)	v(C≡N)
1449.6(14) 1414.3(31)	CH ₃ def. as
1367.5(68)	CH ₃ def. s
935.9(40)	v(C-C)
392.4(57)	δ(CCN)
131.3(22) 113.2(17) 70.8(14) 59.9(17)	lattice modes

Table A1.2. Experimental Vibrational Frequencies^a for CH₃CN·*m*HF

^a Frequencies are given in cm⁻¹. ^b Present work. The sample was prepared from a 2:1 molar ratio of HF and CH₃CN. ^c The Raman spectrum of CH₃CN·*m*HF was recorded in a ¹/₄ -in FEP tube at -150 ^oC using 1064-nm excitation. Values in parentheses denote Raman intensities. ^d Because the structure of CH₃CN·*m*HF is unknown, the vibrational mode descriptions are based on those of CH₃CN and do not take into account possible coupling with associated HF. The modes corresponding to associated HF were not observed.

	cal	c ^b			assgnts
SVV	WN °	M	P2 ^d		(C_1) symmetry
Xe ¹⁶ OF ₂ ·HF	Xe ¹⁸ OF ₂ ·HF	Xe ¹⁶ OF ₂ ·HF	Xe ¹⁸ OF ₂ ·HF		
3268.8(92)[644]	3260.8(92)[650]	3826.4(51)[468]	3831.0(51)[468]	$\overline{\nu_1}$	v(HF) + minor v(OH-F)
962.6(5)[367]	968.5(5)[366]	738.1(6)[318]	733.7(6)[326]	\mathbf{v}_2	δ(OH-F)
762.6(16)[26]	724.4(14)[25]	897.1(8)[49]	852.7(9)[39]	ν ₃	v(XeO)
747.3(<1)[101]	750.0(<1)[100]	623.8(1)[270]	620.8(1)[289]	v_4	HF o.o.p. wag
584.3(<1)[179]	585.9(<1)[180]	584.3(<1)[67]	584.0(<1)[49]	V 5	$v_{ss}(XeF_2) + minor HF 0.0.p. wag$
518.6(25)[8]	518.6(25)[8]	521.3(36)[10]	521.3(36)[10]	\mathbf{v}_6	$v_{s}(XeF_{2})$
347.6(2)[46]	336.6(1)[41]	286.9(4)[1]	276.1(4)[<1]	\mathbf{v}_7	δ(F _H XeO)
248.8(4)[1]	239.5(4)[1]	245.8(1)[62]	239.4(1)[59]	V8	$\rho_{rock}(XeOF_2)$ i.p. + minor HF o.o.p. wag
204.2(<<1)[21]	204.8(<<1)[21]	214.0(<1)[6]	213.5(<1)[4]	v 9	$\delta(XeF_2)$ o.o.p.
162.9(<1)[20]	162.7(<1)[20]	182.8(<1)[29]	182.7(<1)[29]	v_{10}	$\delta(XeF_2)$ i.p.
119.7(<1)[9]	118.9(<1)[9]	85.6(<1)[11]	84.4(<1)[11]	v ₁₁	$\rho_{rock}(XeOF_2)$ 0.0.p. + v(HFXe)
43.9(2)[<1]	44.3(2)[1]	41.1(<1)[<<1]	40.6(1)[<1]	v ₁₂	XeF ₂ torsion about XeO bond
	<u> </u>	. <u>.</u>			
	1.602	Å			1.796 Å
					/
1 824	Å O	H	1 783 Å	(D H H
		λ	1.100 / (
	58.0 °	ЖF			56.3° F
					IN A
		> 2.909 A			3.176 Å
	F	\frown		F	
				7	
1.9	81Å 170.6°`	v г	1.968	Å	171.0° 🚩 F

Table A1.3. Calculated Vibrational Frequencies^a and Geometries for Xe^{16/18}OF₂·HF (O---H Coordinated)

^a Frequencies are given in cm⁻¹. ^b Values in parentheses denote Raman intensities (Å⁴ amu⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹). ^c SVWN/SDB-cc-pVTZ. ^d MP2/SDB-cc-pVTZ.

	cal	cb			assgnts
SV	WN °	M	P2 d		(C_1) symmetry
Xe ¹⁶ OF ₂ ·DF	$Xe^{18}OF_2 \cdot DF$	Xe ¹⁶ OF ₂ DF	Xe ¹⁸ OF ₂ ·DF		
2368.4(48)[338]	2368.3(48)[338]	2776.0(27)[243]	2780.2(27)[243]	ν_1	v(DF) + minor v(OD-F)
763.2(15)[36]	724.6(14)[37]	897.6(9)[62]	851.7(9)[56]	ν_3	v(XeO)
694.2(3)[160]	693.6(3)[159]	540.0(11)[88]	537.0(14)[78]	v_2	δ(OD-F)
591.9(<<1)[243]	591.6(<<1)[242]	598.1(<1)[264]	598.0(<1)[263]	v_5	$v_{as}(XeF_2) + minor DF 0.0.p. wag$
537.1(<<1)[5]	536.0(<<1)[6]	443.3(<1)[33]	438.3(<1)[34]	v_4	DF o.o.p. wag
518.4(25)[9]	518.3(25)[10]	516.7(27)[56]	515.2(25)[70]	v_6	$v_s(XeF_2)$
342.1(2)[51]	330.5(2)[45]	240.6(1)[67]	235.0(1)[62]	v_7	$\delta(F_D XeO)$
246.7(4)[<1]	237.8(4)[<<1]	283.8(4)[<1]	273.5(4)[<1]	V8	$\rho_{\text{reck}}(\text{XeOF}_2) + \text{minor DF o.o.p. wag}$
204.7(~0)[20]	204.7(~0)[20]	213.5(<1)[4]	212.1(<1)[2]	Vg	$\delta(XeF_2)$ o.o.p.
163.0(<1)[21]	162.7(<1)[20]	182.8(<1)[31]	182.5(<1)[31]	V ₁₀	$\delta(XeF_2)$ i.p.
119.4(<<1)[8]	118.6(<1)[8]	85.5(<1)[10]	84.1(<1)[11]	v ₁₁	$\rho_{\text{rock}}(\text{XeOF}_2) \text{ o.o.p.} + \nu(\text{DF}_{}\text{Xe})$
44.3(2)[<<1]	44.2(2)[<1]	41.0(1)[<1]	40.4(1)[<1]	v_{12}	XeF ₂ torsion about XeO bond

Table A1.4. Calculated Vibrational Frequencies^a for Xe^{16/18}OF₂·DF (O---D Coordinated)

^a Frequencies are given in cm⁻¹. ^b Values in parentheses denote Raman intensities (Å⁴ amu⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹). ^c SVWN/SDB-cc-pVTZ. ^d MP2/SDB-cc-pVTZ.

	C	assgnts		
SV	SVWN °		P2 ^d	(C_1) symmetry
Xe ¹⁶ OF ₂ ·HF	Xe ¹⁸ OF ₂ ·HF	Xe ¹⁶ OF ₂ HF	Xe ¹⁸ OF ₂ ·HF	
3121.8(68)[414]	3124.7(68)[413]	3894.1(27)[246]	3894.1(27)[246]	v(HF)
1007.8(9)[404]	1006.6(9)[404]	664.6(5)[258]	664.8(5)[257]	δ(FH-F)
802.1(30)[36]	762.6(27)[35]	954.7(11)[57]	907.5(10)[51]	v(XeO)
781.8(1)[101]	780.5(1)[101]	575.5(1)[133]	575.5(8)[132]	HF o.o.p. wag
549.2(6)[178]	550.1(6)[180]	550.5(8)[330]	551.5(8)[334]	$v_{ss}(XeF_2)$
477.7(18)[12]	477.6(18)[11]	477.9(32)[52]	478.0(32)[52]	$v_s(XeF_2)$
306.0(6)[76]	305.6(6)[77]	279.2(2)[93]	278.0(1)[90]	$\delta(HFXeF) + minor \rho_{rock}(HFXeO)$
228.9(3)[10]	220.4(2)[10]	240.8(5)[7]	233.0(4)[10]	$\rho_{rock}(XeOF_2) + minor \delta(HFXeO)$
189.7(<<1)[14]	189.6(<<1)[14]	209.7(<<1)[14]	210.0(<<1)[14	δ(XeF ₂) 0.0.p.
185.6(<<1)[13]	185.3(<<1)[12]	145.9(<1)[6]	145.6(<<1)[6]	minor $\delta(XeF_2)$ i.p. + $v(HFXe)$
102.5(<1)[2]	102.0(<1)[2]	81.4(<1)[8]	81.2(<1)[8]	$\delta(XeF_2)$ i.p minor $v(HF - Xe)$
87.1(<1)[3]	84.9(<1)[3]	58.8(1)[5]	57.1(1)[4]	δ(HFXeF) 0.0.p δ(FXeO) 0.0.p.

Table A1.5. Calculated Vibrational Frequencies^a and Geometries for $F_2^{16/18}OXe \cdot HF$ (F---H Coordinated)

^a Frequencies are given in cm⁻¹. ^b Values in parentheses denote Raman intensities (Å⁴ amu⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹). ^c SVWN/SDB-cc-pVTZ. ^d MP2/SDB-cc-pVTZ.

	Ci	alc ^b		assgnts
SVWN °		M	P2 ^d	(C_1) symmetry
Xe ¹⁶ OF ₂ ·DF	Xe ¹⁸ OF ₂ ·DF	Xe ¹⁶ OF ₂ ·DF	Xe ¹⁸ OF ₂ ·DF	
2268.7(36)[217]	2268.7(36)[217]	2824.0(14)[129]	2824.0(14)[129]	v(DF)
803.2(31)[31]	762.7(28)[25]	955.6(11)[64]	907.2(10)[58]	v(XeO)
724.6(3)[3]	724.5(3)[194]	464.0(4)[254]	463.9(4)[255]	δ(FD-F)
564.4(<1)[57]	564.4(<1)[57]	417.1(<1)[76]	417.1(<1)[76]	DF o.o.p. wag
549.0(6)[188]	548.9(6)[188]	573.0(3)[159]	572.9(3)[158]	$v_{as}(XeF_2)$
476.2(19)[10]	476.1(19)[10]	482.7(35)[6]	482.7(35)[6]	$v_{s}(XeF_{2})$
302.8(6)[78]	302.5(6)[78]	272.9(2)[101]	271.6(2)[98]	δ (DFXeF) + minor ρ_{rock} (DFXeO)
228.9(3)[11]	220.5(2)[10]	240.1(5)[7]	240.0(4)[10]	$\rho_{\text{rock}}(\text{XeOF}_2) + \text{minor } \delta(\text{DF}_{}\text{XeO})$
189.4(<<1)[11]	188.5(<<1)[13]	208.9(<<1)[13]	208.5(<<1)[12]	$\delta(XeF_2)$ o.o.p.
183.7(<<1)[2]	183.1(<<1)[11]	144.1(<<1)[5]	143.4(<<1)[5]	minor $\delta(XeF_2)$ i.p. + $\nu(DF$ Xe)
102.3(<1)[2]	101.9(<1)[2]	81.2(<1)[8]	81.0(<1)[8]	$\delta(XeF_2)$ i.p minor v(DFXe)
87.0(<1)[3]	84.8(<1)[3]	58.8(1)[5]	57.0(1)[4]	δ(DFXeF) 0.0.p δ(FXeO) 0.0.p.

Table A1.6. Calculated Vibrational Frequencies^a for $F_2^{16/18}OXe \cdot DF$ (F---D Coordinated)

^a Frequencies are given in cm⁻¹. ^b Values in parentheses denote Raman intensities (Å⁴ amu⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹). ^c SVWN/SDB-cc-pVTZ. ^d MP2/SDB-cc-pVTZ.

		calc ^b		assgnts
S	VWN [°]	1	MP2 ^d	(C_1) symmetry
Xe ¹⁶ OF ₂ ·2HF	Xe ¹⁸ OF ₂ ·2HF	Xe ¹⁶ OF ₂ ·2HF	Xe ¹⁸ OF ₂ ·2HF	
3348.9(123)[564]	3348.9(123)[564]	3988.6(42)[297]	3988.6(42)[297]	v _s (HF)
3331.2(19)[51]	3331.(19)[51]	3983.4(7)[92]	3983.4(7)[92]	v _{as} (HF)
914.3(19)[524]	914.3(19)[524]	570.4(12)[351]	570.3(12)[352]	δ(F3H-F5) + δ(F4H-F7)
870.9(<<1)[228]	871.1(<<1)[227]	595.5(1)[26]	596.5(1)[25]	δ(F3H-F5) - δ(F4H-F7)
801.9(41)[41]	762.3(38)[33]	960.0(12)[56]	912.6(11)[50]	v(XeO)
705.0(<<1)[208]	705.0(<<1)[208]	498.1(<1)[243]	498.1(<1)[243]	H-F5XeF7-H o.o.p. wag
697.2(2)[~0]	697.2(2)[~0]	491.6(2)[38]	491.6(2)[38]	H-F5XeF7-H o.o.p. twist
500.3(<<1)[196]	501.0(<<1)[198]	469.2(1)[548]	469.5(1)[549]	$v_{af}(XeF_2)$.
459.3(23)[1]	459.3(23)[1]	467.6(38)[22]	467.6(38)[22]	$v_{s}(XeF_{2})$
326.5(10)[63]	326.5(10)[63]	231.1(2)[89]	231.1(2)[89]	$\delta(H-F5XeF3) + \delta(H-F7XeF4)$
325.1(3)[74]	323.6(3)[77]	286.0(5)[13]	276.8(5)[16]	$\rho_{rock}(XeOF_2)$
223.7(<<1)[25]	215.2(<<1)[21]	153.9(<1)[35]	152.8(<1)[34]	$\rho_{rock}(XeOF_{2H})$
175.0(<<1)[8]	174.6(<<1)[7]	207.6(<<1)[39]	207.3(<<1)[36]	$\delta(XeF_2)$ o.o.p.
165.0(<<1)[19]	165.1(<<1)[19]	127.8(<1)[6]	127.9(<1)[6]	v_{s} (HFXe) + minor δ (XeF ₂) i.p.
138.7(<<1)[9]	138.8(<<1)[9]	83.2(1)[4]	82.1(1)[14]	$v_{as}(HFXe)$
126.8(<<1)[<<1]	126.9(<<1)[<<1]	63.5(1)[4]	63.5(<1)[4]	$\delta(XeF_{2H})$ i.p.
86.2(1)[3]	83.7(1)[3]	-26.8(1)[16]	-26.1(<1)[15]	δ(HFXeF) 0.0.p δ(HFXeO) 0.0.p.
20.6(<<1)[0]	20.6(<<1)[0]	28.2 (<1)[<<1]	28.2(<1)[<<1]	$XeF_2 \& XeF_{2H}$ torsions about XeO bond
	1.808 Å C 2.032 Å 1.808 Å 2.032 Å	Å H F(7) 3.076 Å 4.8°	1. 1.767 Å 0 Xe 2.014 Å	870 Å H 3.062 Å 169.6°
	F(3)	' • • €	F	

Table A1.7. Calculated Vibrational Frequencies^a and Geometries for $F_2^{16/18}OXe \cdot 2HF$

^a Frequencies are given in cm⁻¹. ^b Values in parentheses denote Raman intensities (Å⁴ amu⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹). ^c SVWN/SDB-cc-pVTZ. ^d MP2/SDB-cc-pVTZ.

cal	c ^b	assgnts
SVW	/N ^c	(C_1) symmetry
Xe ¹⁶ OF ₂ ·2DF	$Xe^{18}OF_2 \cdot 2DF$	
2431.2(65)[294]	2431.2(65)[294]	v _s (DF)
2418.1(9)[28]	2418.1(9)[28]	$v_{as}(DF)$
803.0(38)[35]	762.4(34)[32]	v(XeO)
656.0(9)[263]	655.8(9)[264]	δ (F3D-F5) + δ (F4D-F7)
635.3(<<1)[57]	635.3(<<1)[57]	$\delta(F3D-F5) = \delta(F4D-F7)$
510.5(<<1)[116]	510.5(<<1)[116]	D-F5XeF7-D o.o.p. wag
502.6(<1)[<<1]	502.6(1)[<<1]	D-F5XeF7-D o.o.p. twist
497.7(<1)[214]	497.6(<1)[214]	$v_{as}(XeF_2)$
457.4(24)[3]	457.4(24)[3]	$v_s(XeF_2)$
323.7(10)[69]	323.6(10)[68]	δ (D-F5XeF3) + δ (D-F7XeF4)
319.5(3)[75]	317.5(3)[79]	$\rho_{\text{rock}}(\text{XeOF}_2)$
221.5(<1)[29]	213.0(<1)[24]	$\rho_{\text{rock}}(\text{XeOF}_{2D})$
173.6(<1)[7]	172.5(<1)[6]	$\delta(\text{XeF}_2)$ o.o.p.
164.2(<1)[18]	164.0(<1)[18]	$v_s(DF$ Xe) + minor $\delta(XeF_2)$ i.p.
138.3(<<1)[8]	138.3(<<1)[8]	v _{as} (DFXe)
125.1(<1)[<<1]	125.0(<1)[<<1]	$\delta(\text{XeF}_{2D})$ i.p.
86.3(1)[3]	83.7(1)[3]	δ(DFXeF) 0.0.p δ(DFXeO) 0.0.p.
20.5(<1)[<<1]	20.5(<1)[<<1]	$XeF_2 \& XeF_{2D}$ torsions about XeO bond

Table A1.8. Calculated Vibrational Frequencies^a for $F_2^{16/18}OXe \cdot 2DF$

^a Frequencies are given in cm⁻¹. ^b Values in parentheses denote Raman intensities (Å⁴ amu⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹). ^c SVWN/SDB-cc-pVTZ.

ca	lc ^b	assgnts
SVV	WN °	(C_1) symmetry
$(Xe^{16}OF_2)_2$	$(Xe^{18}OF_2)_2$	
790.9(82)[59]	752.0(73)[55]	v(Xe5O6)
756.8(48)[72]	719.4(48)[66]	v(Xe1O2)
586.0(2)[198]	587.5(1)[199]	v(Xe1F3 - Xe1F4)
540.9(8)[177]	542.0(8)[179]	v(Xe5F7 - Xe5F8)
516.4(32)[23]	516.3(31)[23]	v(Xe1F3 + Xe1F4)
457.3(21)[31]	457.3(22)[30]	v(Xe5F8 + Xe5F7)
260.3(3)[6]	250.2(3)[6]	$\rho_{\rm rock}({\rm Xe1OF_2})$
238.2(14)[21]	228.9(14)[15]	$\rho_{\text{rock}}(\text{Xe5OF}_2) - \nu(\text{Xe1O2} + \text{Xe5O2})$
230.0(<1)[25]	224.3(1)[34]	$\rho_{\text{rock}}(\text{Xe5OF}_2) + \nu(\text{Xe1O2} + \text{Xe5O2})$
202.8(<1)[15]	202.4(<1)[14]	$\delta(\text{Xe5F}_2)$ o.o.p.
200.5(3)[24]	198.0(4)[19]	$\delta(\text{Xe5F}_2)$ i.p. + $\delta(\text{Xe1F}_2)$ o.o.p.
191.4(1)[3]	189.6(1)[3]	$\delta(Xe1F_2)$ o.o.p. + minor $\delta(Xe5F_2)$ i.p.
169.3(<1)[17]	169.3(<1)[18]	$\delta(\text{Xe1F}_2)$ i.p.
94.6(<1)[<1]	94.1(<1)[<1]	
89.2(1)[2]	86.4(1)[1]	
63.4(<1)[1]	63.2(<1)[2]	> coupled deformations
35.8(1)[<1]	35.6(2)[<1]	
22.4(2)[<<1]	22.2(3)[<<1]	J

Table A1.9. Calculated Vibrational Frequencies^a for $(F_2^{16/18}OXe)_2$ Dimer

^a Frequencies are given in cm⁻¹. ^b Values in parentheses denote Raman intensities (Å⁴ amu⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹). ^c SVWN/SDB-cc-pVTZ.

calc^b assgnts SVWN[°] (C_1) symmetry (Xe¹⁶OF₂)₃ $(Xe^{18}OF_{2})_{3}$ 787.3(103)[66] 748.6(94)[62] v(Xe9O12) 753.9(9)[28] 716.5(8)[26] v(Xe1O4 - Xe5O4) + v(Xe9O8 - Xe5O8)734.4(345)[259] 698.4(307)[238] v(Xe1O4 - Xe5O4) - v(Xe9O8 - Xe5O8)592.1(1)[190] 593.7(1)[191] v(Xe1F2 - Xe1F3)553.3(10)[178] 554.5(10)[179] v(Xe5F6 - Xe5F7)537.3(9)[188] 538.4(9)[190] v(Xe9F10 - Xe9F11)521.9(22)[30] 521.9(22)[31] v(Xe1F2 + Xe1F3)471.2(82)[39] 471.2(84)[37] v(Xe5F6 + Xe5F7)458.0(12)[15] 457.9(12)[14] v(Xe9F10 + Xe9F11)272.5(13)[27] 261.2(11)[25] $v(Xe9O8 + Xe5O8) + \rho_{rock}(Xe1OF_2)$ 253.3(17)[12] 243.0(13)[11] $\rho_{\text{rock}}(\text{Xe1OF}_2)$ 248.6(17)[15] 239.3(16)[9] $v(Xe1O4 + Xe5O4) + \rho_{rock}(Xe5OF_2)$ 239.5(<1)[33] 231.1(<1)[39] v(Xe1O4 + Xe5O4) + v(Xe9O8 + Xe5O8)228.2(3)[8] 221.7(4)[12] $\rho_{rock}(Xe9OF_2)$ 209.6(6)[23] 209.1(6)[21] δ(Xe9F₂) o.o.p. 202.7(1)[6] 202.3(1)[5] $\delta(\text{Xe5F}_2)$ i.p. + $\delta(\text{Xe1F}_2)$ o.o.p. + $\delta(\text{Xe9F}_2)$ o.o.p. 197.8(5)[16] 195.8(6)[13] $\delta(Xe1F_2)$ o.o.p. + $\delta(Xe9F_2)$ o.o.p. 193.6(5)[24] 191.7(4)[22] δ (Xe9F₂) i.p. + δ (Xe5F₂) o.o.p. δ(Xe5F₂) o.o.p. 186.2(2)[16] 184.9(3)[14] 168.9(1)[20] 168.8(1)[20] 111.0(<1)[<1] 110.0(<1)[<1] 95.2(<1)[<1] 93.4(<1)[<1] 85.0(1)[1] 84.0(1)[1] 67.2(1)[<1] 66.9(1)[<1] 60.5(<1)[2] 60.3(1)[2] Coupled deformation modes 48.4(2)[<1] 48.1(2)[<1]37.6(3)[<1] 37.3(3)[<1] 25.6(1)[<<1] 25.6(1)[<<1]19.5(2)[<<1] 19.5(2)[<<1] 10.4(1)[<1]10.4(1)[<1]2.040 Å 2.595 Å 1.836 Å 2.002 Å F(3) F(7) F(11) O(8) 1.976 Å 1.828 Å 165.2° Xe(5) Xef 1.817 Å 170.19 72 99 1.985 (e(9 1.974 Å O(12) F(6) F(10) F(2) 2.059 Å 2.585 Å 2.793 Å 2.805 Å

Table A1.10. Calculated Vibrational Frequencies^a and Geometries for $(Xe^{16/18}OF_2)_3$

^a Frequencies are given in cm⁻¹. ^b Values in parentheses denote Raman intensities (Å⁴ amu⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹). ^c SVWN/SDB-cc-pVTZ.

Frequencies (cm -)									1.004		~~~~
expti		B3	LYP			SVV	VN			MP2		$\underline{\text{CCSD}}$
	321G	ccpVTZ	SDDAll	DZVP	ccpVTZ	ccpVQZ	SDDAll	DZVP	ccpVTZ	ccpVQZ	SDDAll	ccpVTZ
750.0(60)	727(3)	734(13)	713(12)	653(11)	795(22)	809(23)	788(23)	753(22)	939(60)	947(60)	928(64)	747
n.o.	658(34)	556(240)	558(261)	559(210)	572(213)	578(223)	573(234)	572(188)	582(252)	587(267)	582(9)	581
468.0(100)	563(3)	494(6)	496(7)	480(6)	505(7)	514(8)	506(9)	489(8)	509(7)	525(8)	507(9)	517
297.8(11)	271(6)	258(3)	253(3)	230(4)	244(3)	249(3)	240(3)	224(5)	283(3)	285(3)	279(4)	267
256.1(1) 251.6, sh	235(18)	209(23)	209(23)	211(24)	200(21)	204(19)	199(21)	193(22)	218(25)	219(22)	216(25)	217
175.5(1) 153.3(6)	218(15)	175(17)	177(18)	173(20)	155(14)	161(13)	153(14)	155(16)	176(19)	180(18)	173(20)	188
Geometrical I	Parameters											
Xe-O Å	1.885	1.817	1.828	1.881	1.809	1.795	1.818	1.851	1.770	1.763	1.782	1.811
Xe-F Å	1.978	1.999	1.999	2.050	1.996	1.975	1.998	2.039	1.980	1.963	1.990	1.974
F-Xe-F °	171.9	169.4	169.9	180.0	167.1	167.4	167.2	167.4	168.2	168.7	167.8	170.7
O-Xe-F°	94.0	95.3	95.1	94.7	96.4	963	96.4	963	95.9	957	961	94.6

Table A1.11. Comparison of Calculated Vibrational Frequencies and Geometries for XeOF₂ Using Different Levels of Theory and Basis Sets

Table A1.12. Calculated Vibrational Frequencies^a and Geometries for XeF₄ (D_{4h})

·		
_SVWN ^c	MP2 ^c	assgnts ^d
590(225)	603(245)	$v(E_u)$, $v_{as}(XeF_t-XeF_t)$
547(<<1)	545(0)	$v(A_{1g}), v_s(XeF_4)$
514(<<1)	513(0)	$v(B_{1g})$, $v_{gs}(XeF_{2t}-XeF_{2t})$
272(31)	295(39)	$v(A_{2u}), \delta(XeF_4) $ o.o.p., umbrella mode
196(0)	217(0)	$v(B_{2g}), \delta(XeF_{2c}+XeF_{2c})$
150(0)	166(0)	$v(B_{2u}), \delta(XeF_{2t}) \text{ o.o.p.} - \delta(XeF_{2t}) \text{ o.o.p.}$
140(0)	160(3)	$v(E_u), \delta(XeF_{2t}) i.p.$
1.971	1.960	
	<u>SVWN^c</u> 590(225) 547(<<1) 514(<<1) 272(31) 196(0) 150(0) 140(0) 1.971	$\begin{array}{c ccc} \underline{SVWN}^c & \underline{MP2}^c \\ \hline 590(225) & \overline{603(245)} \\ 547(<1) & 545(0) \\ 514(<1) & 513(0) \\ 272(31) & 295(39) \\ 196(0) & 217(0) \\ 150(0) & 166(0) \\ 140(0) & 160(3) \\ \hline 1.971 & 1.960 \\ \end{array}$

^a Frequencies are given in cm⁻¹. ^b From *Mol. Phys.* **1965**, *9*, 449-454. ^c Values in parentheses denote infrared intensities (km mol⁻¹). ^c (SDB-)cc-pVTZ. ^d The abbreviations denote trans (t), cis (c), symmetric (s), asymmetric (as), stretch (ν), bend (δ), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). The in-plane and out-of-plane mode descriptions are relative to the XeF₄ plane.
	·			Xe ¹⁶ OF ₃	·····		
MP2	SVWN5	BP86	PBE1PBE	B3LYP	B3PW91	MPW1PW91	assgrit ^d
880.0(37)[328]	716.2(47)[158]	670.6(47)[144]	746.3(60)[152]	706.1(62)[146]	730.2(58)[151]	742.9(60)[150]	v(XeO)
477.7(1)[297]	479.0(<1)[270]	434.0(<1)[250]	492.9(<0.1)[323]	465.7(<1)[302]	478.9(<1)[307]	491.5(<0.1)[321]	$v_{as}(XeF_{2a})$
457.7(29)[205]	443.5(29)[105]	401.9(34)[103]	454.1(38)[65]	425.4(40)[80]	439.1(38)[75]	452.4(38)[65]	$v_{s}(XeF_{2a}) + v(XeF_{b})$
352.3(37)[14]	388.2(21)[33]	343.9(28)[22]	377.5(13)[113]	358.1(18)[84]	370.1(16)[92]	375.9(13)[111]	$v_{s}(XeF_{2a}) - v(XeF_{b})$
277.3(<1)[53]	248.0(<1)[41]	234.2(<1)[40]	260.4(<1)[49]	247.7(<1)[48]	255.0(<1)[46]	260.0(<1)[49]	δ(XeOF ₃) o.o.p.
230.8(5)[<1]	214.6(5)[4]	211.2(6)[1]	245.9(4)[1]	235.0(5)[1]	240.0(4)[1]	246.4(4)[1]	$\rho_{rock}(OXeF_{2a})$ i.p.
158.9(1)[2]	161.1(<0.1)[4]	158.5(<0.1)[3]	178.8(<1)[2]	173.2(<1)[2]	176.1(<1)[2]	179.5(<1)[2]	δ(XeF _{2a}) i.p.
127.4(<1)[<1]	122.0(<1)[<<1]	111.7(<1)[<0.1]	133.1(<1)[<1]	124.3(<1)[<0.1]	128.1(<1)[<0.1]	132.4(<1)[<1]	$[\delta(OXeF_b) - \delta(XeF_{2a})]$ o.o.p.
163.6(<1)[3]	130.6(<1)[2]	132.9(<1)[2]	122.0(1)[1]	126.2(1)[1]	126.5(1)[1]	123.2(1)[1]	$[\rho_{rock}(OXeF_{2a}) + \delta(F_bXeF_a)]$ i.p.
				Xe ¹⁸ OF ₃			
MP2	SVWN5	BP86	PBEIPBE	B3LYP	B3PW91	MPW1PW91	assgnt ^c
836.4(33)[302]	681.7(40)[152]	638.3(41)[139]	709.9(53)[146]	671.8(54)[140]	694.7(51)[144]	706.7(52)[144]	v(XeO)
479.0(1)[297]	480.2(<1)[271]	435.2(<1)[250]	494.2(<<1)[324]	466.9(<1)[303]	480.2(<1)[308]	492.8(<0.1)[321]	$v_{as}(XeF_{2a})$
458.2(29)[204]	443.2(30)[101]	401.6(35)[100]	454.2(38)[64]	425.4(41)[78]	439.1(39)[74]	452.5(38)[64]	$v_{s}(XeF_{2a}) + v(XeF_{b})$
352.4(37)[14]	388.1(21)[32]	343.8(28)[21]	377.3(13)[111]	357.9(18)[82]	369.9(16)[90]	375.7(13)[109]	$v_{s}(XeF_{2a}) - v(XeF_{b})$
273.2(<1)[51]	244.7(<1)[39]	231.1(<1)[38]	257.5(<1)[47]	244.8(<1)[47]	252.0(<1)[46]	257.0(<1)[47]	δ(XeOF ₃) o.o.p.
224.0(5)[<1]	207.3(5)[1]	204.0(5)[1]	237.2(4)[1]	226.8(4)[1]	231.7(4)[1]	237.8(4)[1]	$\rho_{rock}(OXeF_{2a})$ i.p.
158.8(1)[2]	161.1(<0.1)[3]	158.5(<<1)[3]	178.9(<1)[2]	173.2(<1)[2]	176.2(<1)[2]	179.5(<1)[2]	δ(XeF _{2a}) i.p.
126.3(<1)[<1]	120.7(<1)[<0.1]	110.5(<1)[<0.1]	131.3(<1)[<1]	122.7(<1)[<0.1]	126.4(<1)[<0.1]	130.6(<1)[<1]	$[\delta(OXeF_b) - \delta(XeF_{2a})] \text{ o.o.p.}$
161.8(<1)[2]	129.8(<1)[2]	132.1(<1)[2]	121.5(1)[1]	125.5(1)[1]	125.8(1)[1]	122.6(1)[1]	$[\rho_{rook}(OXeF_{2a}) + \delta(F_bXeF_a)] i.p.$

Table A2.1. Calculated Vibrational Frequencies ^a and Infrared and Raman Intensities ^b for the Xe^{16/18}OF₃⁻ Anion^c

^{*a*} Frequencies are given in cm⁻¹. ^{*b*} Values in parentheses denote calculated Raman intensities (Å⁴ u⁻¹). Values in square brackets denote calculated infrared intensities (km mol⁻¹). ^{*c*} The aug-cc-pVDZ(-PP) basis set was used. ^{*d*} The abbreviations denote symmetric (s), asymmetric (as), stretch (v), bend (δ), rock (ρ_{rock}), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). The in-plane and out-of-plane mode descriptions are relative to the XeOF_{2a}F_b plane (see Figure 5.3 and footnote *h* of Table 5.1).

APPENDIX 2

exptl ^a				calcd ^b				assgnt c
Xe ¹⁶ OF ₂								
	MP2	SVWN5	BP86	PBE1PBE	B3LYP	B3PW91	MPW1PW91	
749.9(83)	953.2(12)[66]	798.1(19)[24]	746.0(20)[21]	784.5(18)[18]	740.5(19)[15]	772.4(18)[18]	776.6(18)[16]	v(XeO)
[525.2(2)]	582.4(<1)[279]	572.0(<1)[231]	534.2(1)[217]	583.5(<1)[275]	557.3(<1)[260]	571.2(<1)[264]	582.2(<1)[274]	$v_{as}(XeF_2)$
467.8(100)	517.3(45)[9]	505.6(32)[9]	465.8(36)[10]	528.6(35)[7]	498.3(38)[8]	513.0(36)[8]	527.1(35)[7]	$\nu_s(XeF_2)$
298.1(13)	279.0(4)[3]	241.6(4)[3]	230.2(4)[3]	269.9(4)[4]	252.0(4)[3]	261.7(4)[3]	269.1(4)[3]	$\rho_{rock}(XeOF_2)$ i.p.
256.2(2) 251.4(1)	219.3(<0.1)[23]	202.9(<0.1)[19]	195.3(<0.1)[20]	215.6(<0.1)[21]	207.3(<0.1)[22]	211.5(<0.1)[21]	228.3(<0.1)[21]	δ(XeF ₂) o.o.p.
175.7(1) 154.0(6)	174.4(<1)[19]	155.6(<1)[13]	145.2(<1)[13]	186.4(<1)[17]	172.7(<1)[17]	178.6(<1)[16]	190.5(<1)[17]	$\delta(XeF_2)$ i.p.
				Xe ¹⁸ OF ₂				
712.8(84)	905.9(11)[61]	758.7(17)[23]	709.1(18)[20]	745.6(16)[17]	703.7(17)[15]	734.0(16)[17]	776.7(18)[16]	v(XeO)
[525.0(2)]	583.9(<1)[280]	573.5(<1)[232]	535.6(1)[218]	585.0(<1)[276]	558.8(21)[261]	572.6(<1)[265]	582.2(<1)[274]	$v_{as}(XeF_2)$
467.8(100)	517.3(45)[9]	505.6(32)[9]	465.8(36)[10]	528.6(35)[8]	498.3(38)[8]	513.1(36)[8]	527.1(35)[7]	v _s (XeF ₂)
289.0(14)	268.3(3)[3]	232.4(4)[3]	221.5(4)[2]	259.6(4)[3]	242.4(4)[3]	251.7(4)[3]	269.1(4)[3]	ρ _{rock} (XeOF ₂) i.p.
256.2(2) 251.8(1)	219.7(<0.1)[23]	203.2(<0.1)[19]	195.5(<0.1)[19]	216.1(<0.1)[21]	207.7(<0.1)[22]	211.9(<0.1)[21]	228.3(<0.1)[21]	δ(XeF ₂) 0.0.p.
175.7(1) 154.0(6)	174.5(<1)[19]	155.6(<1)[13]	145.3(<1)[13]	186.6(<1)[17]	172.8(<1)[17]	178.7(<1)[16]	190.5(<1)[17]	δ(XeF ₂) i.p.

369

Table A2.2. Experimental and Calculated Vibrational Frequencies^a and Infrared and Raman Intensities for Xe^{16/18}OF₂

^{*a*} Values in parentheses denote relative Raman intensities and are from ref 125. The value in square brackets is the corresponding mode observed in F₂OXeNCCH₃. ^{*b*} The aug-cc-pVTZ(-PP) basis set was used. Values in parentheses denote Raman intensities ($Å^4 u^{-1}$). Values in square brackets denote infrared intensities (km mol⁻¹). ^{*c*} The abbreviations denote symmetric (s), asymmetric (as), stretch (v), bend (δ), rock (ρ_{rock}), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). The inplane and out-of-plane mode descriptions are relative to the XeOF₂ plane (Figure 5.1).

	MP2	SVWN5	BP86	PBE1PBE	B3LYP	B3PW91	MPW1PW91
			bond length	ns (Å)			
Xe-Fa	2.096	2.086	2.139	2.061	2.094	2.078	2.063
Xe-O	1.854	1.890	1.918	1.866	1.889	1.876	1.867
Xe-F _b	2.131	2.148	2.198	2.183	2.205	2.188	2.185
			bond angles	(deg)			
O-Xe-Fa	96.0	94.2	93.9	93.1	93.2	93.3	93.1
F_a -Xe- F_b	84 .0	85.8	86.1	86.9	86.8	86.7	86.9
F_a -Xe- F_a	168.0	171.7	172.3	173.8	173.5	173.5	173.9

Table A2.3. Calculated Geometrical Parameters for the XeOF₃⁻ Anion ^a

^{*a*} The aug-cc-pVDZ(-PP) basis set was used.

APPENDIX 3

The standard enthalpies for the solid-state decomposition of $[XeOF][AsF_6]$ (eq [HOXeF₂][AsF₆] A3.2), $[HOXe(F)_2OXeF_2][AsF_6]$ A3.1). (eq (eq A3.3). [FXeOXeF₂][AsF₆] (eq A3.4), and [FXeOXe(F)₂OXeF₂][AsF₆] (eq A3.5), as well as the hydrolyses of [HOXe(F)₂OXeF₂][AsF₆] (eq A3.6), [FXeOXeF₂][AsF₆] (eq A3.7), and $[FXeOXe(F)_2OXeF_2][AsF_6]$ (eq A3.8), were evaluated from the corresponding gas-phase $[XeOF][AsF_{6}]_{(s)} \longrightarrow [XeF][AsF_{6}]_{(s)} + {}^{1}\!{}^{2}O_{2}_{(g)}$ $[HOXeF_{2}][AsF_{6}]_{(s)} \longrightarrow [XeF][AsF_{6}]_{(s)} + {}^{1}\!{}^{2}O_{2}_{(g)} + HF_{(1)}$ (A3.2) $[HOXe(F)_{2}OXeF_{2}][AsF_{6}]_{(s)} \longrightarrow [Xe_{2}F_{3}][AsF_{6}]_{(s)} + O_{2}_{(g)} + HF_{(1)}$ (A3.3) $[FXeOXeF_{2}][AsF_{6}]_{(s)} \longrightarrow [Xe_{2}F_{3}][AsF_{6}]_{(s)} + {}^{1}\!{}^{2}O_{2}_{(g)}$ (A3.4) $[FXeOXe(F)_2OXeF_2][AsF_6]_{(s)} \longrightarrow [Xe_2F_3][AsF_6]_{(s)} + O_{2(g)} + XeF_{2(s)}$ (A3.5) $3[HOXe(F)_2OXeF_2][AsF_6]_{(s)} + 3H_2O_{(1)}$ $2[Xe_{3}OF_{3}][AsF_{6}]_{(s)} + 3O_{2(g)} + 6HF_{(l)} + [H_{3}O][AsF_{6}]_{(s)} (A3.6)$ $3[FXeOXeF_2][AsF_6]_{(s)} + 3H_2O_{(1)}$ $2[Xe_{3}OF_{3}][AsF_{6}]_{(s)} + \frac{3}{2}O_{2(g)} + 3HF_{(l)} + [H_{3}O][AsF_{6}]_{(s)} (A3.7)$ $[FXeOXe(F)_2OXeF_2][AsF_6]_{(s)} + H_2O_{(1)} [Xe_3OF_3][AsF_6]_{(s)} + O_{2(g)} + 2HF_{(1)}$ (A3.8) $[XeOF][AsF_6],$ decompositions. lattice enthalpies of [HOXeF₂][AsF₆]. $[HOXe(F)_2OXeF_2][AsF_6],$ $[FXeOXeF_2][AsF_6],$ $[FXeOXe(F)_2OXeF_2][AsF_6],$ $[XeF][AsF_6], [Xe_2F_3][AsF_6], [Xe_3OF_3][AsF_6], and [H_3O][AsF_6] (Table A3.1), \Delta H^{\circ}(sub)$ XeF_2) = 55.71 kJ mol^{-1,213} $\Delta H^{\circ}(sub H_2O)$ = 56.0 kJ mol^{-1,293} $\Delta H^{\circ}(vap H_2O)$ = 44.01 kJ mol^{-1,294} and $\Delta H^{\circ}(vap HF)$ = 28.68 kJ mol^{-1,195} The lattice enthalpies were estimated by use of the volume-based method of Bartlett et al.^{208,209} as generalized by Jenkins et

$$\Delta H^{\circ}_{L} = 2I \left(\frac{\alpha}{\sqrt[3]{V_{m}}} + \beta \right) + pRT$$
 (A3.9)

salt and the constants, α , β , and p, depend on the nature of the salt. For the salts under investigation, which are singly charged and the following values were used: I = 1, $\alpha =$ 117.3 nm kJ mol⁻¹, $\beta = 51.9$ kJ mol⁻¹, and p = 2. In this formalism, ΔH^{0}_{L} is the lattice enthalpy and is defined as the energy required to break the crystal lattice, and therefore has a positive value. This approach is generally accurate to ~4% for salts with ΔH^{0}_{L} less than 5000 kJ mol^{-1,211} and is particularly useful because the formula unit volume (V_{m}) of an unknown salt can be estimated with reasonable accuracy using several methods.²¹¹ The values of $V_{m}([H_{3}O][AsF_{6}]) = 0.1287$ nm³, $V_{m}([Xe_{3}OF_{3}][AsF_{6}]) = 0.2634$ nm³, $V_{m}([XeF][AsF_{6}]) = 0.1490$ nm³, and $V_{m}([Xe_{2}F_{3}][AsF_{6}]) = 0.2327$ nm³ were determined directly from the X-ray crystal structures of $[H_{3}O][AsF_{6}] = 0.1558$ nm³ was determined from eq A3.10. Where $V_{m}(XeOF_{2}) = 0.0708$,¹²⁶ $V_{-}(F^{-}) = 0.025(10)$,²¹¹ and $V_{-}(AsF_{6}^{-})^{211} = 0.110(7)$ nm³. The value for $V_{m}[HOXeF_{2}][AsF_{6}] = 0.1745$ nm³ was determined from eq A3.11, where $V_{m}(HF) = 0.0187$.²⁹⁶ The values for

al.^{210,211} in eq A3.9, where R is the gas constant (8.314 J mol⁻¹ K⁻¹). I is the ionicity of the

 $V_{\rm m}([{\rm HOXe}({\rm F})_2{\rm OXeF}_2][{\rm AsF}_6]) = 0.2453 \text{ nm}^3$, $V_{\rm m}([{\rm FXeOXeF}_2][{\rm AsF}_6]) = 0.2198 \text{ nm}^3$, and $V_{\rm m}([{\rm FXeOXe}({\rm F})_2{\rm OXeF}_2][{\rm AsF}_6]) = 0.2906 \text{ nm}^3$, were determined from eq A3.12–14, respectively. Application of eq A3.9 yields $\Delta H^{\rm o}_{\rm L}$ for the salts which are listed in Table

$$V_{\rm m}([{\rm KeOF}_{1}][{\rm AsF}_{6}]) = V_{\rm m}({\rm XeOF}_{2}) - V_{-}({\rm F}^{-}) + V_{-}({\rm AsF}_{6}^{-}) = 0.1558 \,\,{\rm nm} \qquad (A3.10)$$

$$V_{\rm m}([{\rm HOXeF}_{2}][{\rm AsF}_{6}]) = V_{\rm m}({\rm XeOF}_{2}) + V_{\rm m}({\rm HF}) - V_{-}({\rm F}^{-}) + V_{-}({\rm AsF}_{6}^{-})$$

$$= 0.1745 \,\,{\rm nm}^{3} \qquad (A3.11)$$

$$V_{\rm m}([{\rm HOXe}({\rm F})_2{\rm OXeF}_2][{\rm AsF}_6]) = 2V_{\rm m}({\rm XeOF}_2) + V_{\rm m}({\rm HF}) - V_{-}({\rm F}) + V_{-}({\rm AsF}_6)$$

= 0.2453 nm³ (A3.12)

$$V_{m}([FXeOXeF_{2}][AsF_{6}]) = V_{m}(XeOF_{2}) + V_{m}([XeF][AsF_{6}]) = 0.2198 \text{ nm}^{3} (A3.13)$$

$$V_{m}([FXeOXe(F)_{2}OXeF_{2}][AsF_{6}]) = 2V_{m}(XeOF_{2}) + V_{m}([XeF][AsF_{6}])$$

$$= 0.2906 \text{ nm}^{3} (A3.14)$$

A3.1.The enthalpies, $\Delta H_{298.15}$ and $\Delta H_{195.15}$, for eqs A3.1–8 are listed in Table 6.1 and have been calculated by eqs A3.15–30.

$$\Delta H_{298,15}(A3.1) = \Delta H^{\circ}_{L}([XeOF][AsF_{6}]) - \Delta H^{\circ}_{L}([XeF][AsF_{6}]) + \Delta H_{(g)(298,15)}(A3.1)$$

$$= 544.7 - 551.3 + (-288.0) = -294.6 \text{ kJ mol}^{-1}$$
(A3.15)

$$\Delta H_{195.15}(A3.1) = \Delta H^{\circ}_{L}([XeOF][AsF_{6}]) - \Delta H^{\circ}_{L}([XeF][AsF_{6}]) + \Delta H_{(g)(195.15)}(A3.1)$$

$$= 543.0 - 549.6 + (-288.2) = -294.8 \text{ kJ mol}^{-1}$$
(A3.16)

$$\Delta H_{298.15}(A3.2) = \Delta H^{0}{}_{L}([HOXeF_{2}][AsF_{6}]) - \Delta H^{0}{}_{L}([XeF][AsF_{6}]) + \Delta H_{(g)(298.15)}(A3.2)$$
(A3.17)

$$= 528.6 - 551.3 + (-125.5) = -148.3 \text{ kJ mol}^{-1}$$

$$\Delta H_{195.15}(A3.2) = \Delta H^{\circ}_{L}([HOXeF_{2}][AsF_{6}]) - \Delta H^{\circ}_{L}([XeF][AsF_{6}]) + ...$$

$$\Delta H_{(g)(298.15)}(A3.2) - \Delta H^{\circ}(vap \text{ HF}) \qquad (A3.18)$$

$$= 526.9 - 549.6 + (-209.3) - 28.68 = -260.7 \text{ kJ mol}^{-1}$$

$$\Delta H_{298.15}(A3.3) = \Delta H^{\circ}_{L}([HOXe(F)_{2}OXeF_{2}][AsF_{6}]) - \Delta H^{\circ}_{L}([Xe_{2}F_{3}][AsF_{6}]) + ...$$

$$\Delta H_{(g)(298.15)}(A3.3) \qquad (A3.19)$$

$$= 483.5 - 490.2 + (-543.2) = -549.9 \text{ kJ mol}^{-1}$$

$$\Delta H_{195.15}(A3.3) = \Delta H^{\circ}{}_{L}([\text{HOXe}(F)_{2}\text{OXeF}_{2}][\text{AsF}_{6}]) - \Delta H^{\circ}{}_{L}([\text{Xe}_{2}F_{3}][\text{AsF}_{6}]) + \Delta H_{(g)(195.15)}(A3.3) - \Delta H^{\circ}(\text{vap HF})$$

$$= 481.8 - 488.5 + (-385.7) - 28.68 = -421.1 \text{ kJ mol}^{-1}$$

$$\Delta H_{298.15}(A3.4) = \Delta H^{\circ}{}_{L}([\text{FXeOXeF}_{2}][\text{AsF}_{6}]) - \Delta H^{\circ}{}_{L}([\text{Xe}_{2}F_{3}][\text{AsF}_{6}]) + \Delta H_{(g)(298.15)}(A3.4)$$

$$= 497.5 - 490.2 + (-209.9) = -202.6 \text{ kJ mol}^{-1}$$

$$\Delta H_{195.15}(A3.4) = \Delta H^{\circ}{}_{L}([\text{FXeOXeF}_{2}][\text{AsF}_{6}]) - \Delta H^{\circ}{}_{L}([\text{Xe}_{2}F_{3}][\text{AsF}_{6}]) + \Delta H_{(g)(195.15)}(A3.4)$$

$$(A3.21)$$

$$= 497.5 - 490.2 + (-209.9) = -202.6 \text{ kJ mol}^{-1}$$

$$\Delta H_{195.15}(A3.4) = \Delta H^{\circ}{}_{L}([\text{FXeOXeF}_{2}][\text{AsF}_{6}]) - \Delta H^{\circ}{}_{L}([\text{Xe}_{2}F_{3}][\text{AsF}_{6}]) + \Delta H_{(g)(195.15)}(A3.4)$$

$$(A3.22)$$

$$= 495.8 - 488.5 + (-213.0) = -205.7 \text{ kJ mol}^{-1}$$

$$\Delta H_{298.15}(A3.5) = \Delta H^{\circ}_{L}([FXeOXe(F)_{2}OXeF_{2}][AsF_{6}]) - \Delta H^{\circ}_{L}([Xe_{2}F_{3}][AsF_{6}]) + \Delta H_{(g)(298.15)}(A3.5) - \Delta H^{\circ}(\text{sub XeF}_{2})$$

$$= 462.9 - 490.2 + (-572.5) + 55.71 = -544.1 \text{ kJ mol}^{-1}$$
(A3.23)

$$\Delta H_{195.15}(A3.5) = \Delta H^{\circ}_{L}([FXeOXe(F)_{2}OXeF_{2}][AsF_{6}]) - \Delta H^{\circ}_{L}([Xe_{2}F_{3}][AsF_{6}]) +$$

$$\begin{split} & \Delta H_{(\underline{g})(195,15)}(A3.5) - \Delta H^{2}(\operatorname{sub}\operatorname{KeF}_{2}) & (A3.24) \\ &= 461.2 - 488.5 + (-413.7) + 55.71 = -385.1 \ \mathrm{kJ} \ \mathrm{mol}^{-1} \\ & \Delta H_{298,15}(A3.6) = 3\Delta H^{0}_{1}([\operatorname{HOXe}(F)_{2}\mathrm{OXeF}_{2}][AsF_{6}]) - 2\Delta H^{0}_{1}([\operatorname{Ke}_{3}\mathrm{OF}_{3}][AsF_{6}]) + \\ & \Delta H_{(\underline{g})(298,15)}(A3.6) + 3\Delta H^{0}(\operatorname{vap} H_{2}\mathrm{O}) - \\ & \Delta H^{0}_{1}([\operatorname{H}_{3}\mathrm{O}][AsF_{6}]) & (A3.25) \\ &= 3(483.5) - 2(474.7) + (-1908.6) + 3(44.01) - 573.4 \\ &= -1845.5 \ \mathrm{kJ} \ \mathrm{mol}^{-1} \\ & \Delta H_{195,15}(A3.6) = 3\Delta H^{0}_{1}([\operatorname{HOXe}(F)_{2}\mathrm{OXeF}_{2}][AsF_{6}]) - 2\Delta H^{0}_{1}([\operatorname{Ke}_{3}\mathrm{OF}_{3}][AsF_{6}]) + \\ & \Delta H_{(\underline{g})(298,15)}(A3.6) + 3\Delta H^{0}(\operatorname{sub} H_{2}\mathrm{O}) - \\ & \Delta H^{0}_{1}([\operatorname{H}_{3}\mathrm{O}][AsF_{6}]) - 6\Delta H^{0}(\operatorname{vap} \ \mathrm{HF}) & (A3.26) \\ &= 3(481.8) - 2(473.0) + (-1250.4) + 3(56.0) - 571.7 - 6(28.68) \\ &= -1326.8 \ \mathrm{kJ} \ \mathrm{mol}^{-1} \\ & \Delta H_{298,15}(A3.7) = 3\Delta H^{0}_{1}([\operatorname{FXeOXeF}_{2}][AsF_{6}]) - 2\Delta H^{0}_{1}([\operatorname{Xe}_{3}\mathrm{OF}_{3}][AsF_{6}]) + \\ & \Delta H_{(\underline{g})(298.15)}(A3.7) + 3\Delta H^{0}(\operatorname{vap} \ \mathrm{Hz}\mathrm{O}) - \\ & \Delta H^{0}_{1}([\operatorname{H}_{3}\mathrm{O}][AsF_{6}]) & (A3.27) \\ &= 3(497.5) - 2(474.7) + (-713.0) + 3(44.01) - 573.4 \\ &= -611.3 \ \mathrm{kJ} \ \mathrm{mol}^{-1} \\ & \Delta H_{195.15}(A3.7) = 3\Delta H^{0}_{1}([\operatorname{FXeOXeF}_{2}][AsF_{6}]) - 2\Delta H^{0}_{1}([\operatorname{Xe}_{3}\mathrm{OF}_{3}][AsF_{6}]) + \\ & \Delta H_{(\underline{g})(195.15)}(A3.7) + 3\Delta H^{0}(\operatorname{vap} \ \mathrm{HF}\mathrm{O} & (A3.28) \\ &= -670.4 \ \mathrm{kJ} \ \mathrm{mol}^{-1} \\ & \Delta H_{298.15}(A3.8) = \Delta H^{0}_{1}([\operatorname{FXeOXeF}_{2}][AsF_{6}]) - \Delta H^{0}_{1}([\operatorname{Xe}_{3}\mathrm{OF}_{3}][AsF_{6}]) + \\ & \Delta H_{(\underline{g})(298.15)}(A3.8) + \Delta H^{0}(\operatorname{vap} \ \mathrm{HE}\mathrm{O} & (A3.28) \\ &= -670.4 \ \mathrm{kJ} \ \mathrm{mol}^{-1} \\ & \Delta H_{298.15}(A3.8) = \Delta H^{0}_{1}([\operatorname{FXeOXeF}_{2}][AsF_{6}]) - \Delta H^{0}_{1}([\operatorname{Xe}_{3}\mathrm{OF}_{3}][AsF_{6}]) + \\ & \Delta H_{(\underline{g})(298.15)}(A3.8) + \Delta H^{0}(\operatorname{vap} \ \mathrm{HE}\mathrm{O} & (A3.29) \\ &= 462.9 - 474.7 + (-662.4) + 44.01 = -630.4 \ \mathrm{kJ} \ \mathrm{mol}^{-1} \\ & \Delta H_{195.15}(A3.8) = \Delta H^{0}_{1}([\operatorname{FXeOXe}(F)_{2}\mathrm{OXeF}_{2}][AsF_{6}]) - \Delta H^{0}_{1}([\operatorname{Xe}_{3}\mathrm{OF}_{3}][AsF_{6}]) + \\ & \Delta H_{(\underline{g})(15.5)}(A3.8) + \Delta H^{0}(\operatorname{vap} \ \mathrm{H}_{2}\mathrm{O}) &= 2\Delta H^{0}(\operatorname{vap} \ \mathrm{HF})$$

A method for estimating the absolute standard entropy of a salt from its unit volume has been reported by Jenkins and Glasser (eq A3.31) where $k = 1360 \text{ J mol}^{-1} \text{ K}^{-1}$ (nm⁻³ formula unit⁻¹) and $c = 15 \text{ J mol}^{-1} \text{ K}^{-1}^{-1212}$ The standard entropies of the salts under $S^{\circ} = kV_{\text{m}} + c$ (A3.31) consideration are listed in Table A3.1. When coupled with the experimental standard entropies of O_{2(g)} (206 J mol⁻¹ K⁻¹),¹⁹⁵ XeF_{2(g)} (115.09 J mol⁻¹ K⁻¹),²¹³ HF_(g) (173.779 J mol⁻¹ K⁻¹),¹⁹⁵ HF_(l) (75.40 J mol⁻¹ K⁻¹),¹⁹⁵ H₂O_(l) (69.91 J mol⁻¹ K⁻¹),¹⁹⁵ and H₂O_(s) (47.91 J mol⁻¹ K⁻¹),²⁹⁷ this method allows ΔS° and ΔG° to be calculated from eqs A3.32 and A3.33, respectively, with the values listed in Table 6.1.

$$\Delta S^{\circ} = S^{\circ}(\text{products}) - S^{\circ}([\text{XeONO}_2][\text{AsF}_6]_{(s)})$$
(A3.32)
$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$
(A3.33)

Table A3.1. Estimated Volumes, Lattice Enthalpies, and Entropies for [XeOF][AsF6], [HOXeF2][AsF6],[HOXe(F)2OXeF2][AsF6], [FXeOXeF2][AsF6], [FXeOXe(F)2OXeF2][AsF6], [XeF3][AsF6], [Xe2F3][AsF6],[Xe3OF3][AsF6], and [H3O][AsF6]

Salt	$V_{\rm m} ({\rm nm}^3)$	$\Delta H_{\rm L}^{\rm o}$ (k	$J \text{ mol}^{-1}$)	S° (J mol ⁻¹ K ⁻¹)	
		298.15 K	195.15 K		
[XeOF][AsF ₆]	0.1558	544.7	543.0	226.9	
[HOXeF ₂][AsF ₆]	0.1745	528.6	526.9	252.3	
[HOXe(F) ₂ OXeF ₂][AsF ₆]	0.2453	483.5	481.8	348.6	
[FXeOXeF2][AsF6]	0.2198	497.5	495.8	313.9	
[FXeOXe(F) ₂ OXeF ₂][AsF ₆]	0.2906	462.9	461.2	410.2	
[XeF][AsF ₆]	0.149	551.3	549.6	217.6	
$[Xe_2F_3][AsF_6]$	0.2327	490.2	488.5	331.5	
[Xe ₃ OF ₃][AsF ₆]	0.2634	474.7	473.0	373.2	
[H ₃ O][AsF ₆]	0.1287	573.4	571.7	190.0	

Table A3.2. Calculated Bond Lengths (Å) and Bond Angles (deg) for the XeF_3^+ ($C_{2\nu}$) Cation and XeF_3^+ ·HF Adduct and a Complete List of Experimental and Calculated Geometrical Parameters for ($[XeF_3\cdot HF][Sb_2F_{11}]$)₂· $[H_5F_4][SbF_6]$, $[XeF_3\cdot HF][Sb_2F_{11}]$, and the $[XeF_3][SbF_6]$ Ion Pair

	XeF	3			
	calcd ^{<i>a</i>}				
	B3LYP	PBE1PBE	MP2		
Xe(1)-F(1)	1.906	1.884	1.883		
Xe(1)-F(2)	1.867	1.845	1.838		
Xe(1)-F(3)	1.906	1.884	1.883		
F(1)-Xe(1)-F(2)	84.2	83.7	83.3		
F(1)-Xe(1)-F(3)	168.4	167.3	166.6		
F(2)-Xe(1)-F(3)	84.2	83.7	83.3		

XeF₃ ⁺ ·HF								
	exp	otl		calcd ^a				
	$([XeF_3 \cdot HF][Sb_2F_{11}])_2$ $\cdot [H_5F_4][SbF_6]$	[XeF ₃ ·HF][Sb ₂ F ₁₁]	B3LYP	PBE1PBE	MP2			
Xe(1)-F(1)	1.880(2)	1.865(1)	1.916	1.894	1.892			
Xe(1)-F(2)	1.838(2)	1.865(1)	1.870	1.847	1.839			
Xe(1)-F(3)	1.890(2)	2.186(2)	1.916	1.894	1.892			
Xe(1)F(10)	2.462(2)	2.186(2)	2.556	2.537	2.550			
F(10)-H			0.937	0.933	0.934			
F(1)-Xe(1)-F(2)	81.4(1)	81.40(8)	84.7	84.1	83.7			
F(1)-Xe(1)-F(3)	162.3(1)	161.12(6)	169.3	168.3	167.4			
F(1)-Xe(1)F(10)	78.8(1)	79.72(6)	95.3	95.8	96.3			
F(2)-Xe(1)-F(3)	81.0(1)	79.72(6)	84.7	84.1	83.7			
F(2)-Xe(1)F(10)	160.2(1)	161.12(6)	176.7	176.8	177.1			
F(3)-Xe(1)F(10)	118.77(9)	119.15(9)	95.4	95.9	96.3			
Xe(1)F(10)-H			141.9	141.9	152.8			

Table A3.2. Continued...

	[XeF ₃][SbF ₆]		
	exptl		calcd ^{<i>a</i>}	
	β -[XeF ₃][SbF ₆]	B3LYP	PBE1PBE	MP2
Xe(1)-F(1)	1.894(2)	1.950	1.926	1.929
Xe(1)-F(2)	1.839(2)	1.921	1.894	1.895
Xe(1)-F(3)	1.901(2)	1.949	1.926	1.929
Xe(1) - F(4)	2.485(1)	2.136	2.131	2.127
Sb(1)-F(4)	1.917(1)	2.200	2.156	2.122
Sb(1)-F(5)	1.872(2)	1.906	1.890	1.888
Sb(1)-F(6)	1.855(2)	1.883	1.868	1.864
Sb(1)-F(7)	1.896(2)	1.883	1.868	1.864
Sb(1)-F(8)	1.861(1)	1.899	1.890	1.888
Sb(1)-F(9)	1.872(2)	1.875	1.861	1.857
F(1)-Xe(1)-F(2)	79.72(8)	86.8	86.0	86.3
F(1)-Xe(1)-F(3)	159.45(8)	173.3	171.7	172.4
F(1)-Xe(1)F(4)	73.06(6)	93.1	94.0	93.6
F(2)-Xe(1)-F(3)	79.74(7)	86.2	86.0	86.4
F(2)-Xe(1)F(4)	152.74(7)	178.1	177.9	177.7
F(3)-Xe(1)F(4)	127.47(6)	93.3	94.0	93.6
F(4)-Sb(1)-F(5)	87.73(7)	79.7	80.1	80.0
F(4)-Sb(1)-F(6)	89.81(7)	84.5	85.0	85.3
F(4)-Sb(1)-F(7)	89.91(6)	84.6	85.0	85.3
F(4)-Sb(1)-F(8)	87.39(7)	80.7	80.1	80.0
F(4)-Sb(1)-F(9)	178.20(7)	176.3	175.9	175.4
F(5)-Sb(1)-F(6)	92.12(8)	89.3	89.7	89.8
F(5)-Sb(1)-F(7)	177.28(7)	164.3	165.0	165.1
F(5)-Sb(1)-F(8)	91.06(7)	86.4	86.1	85.8
F(5)-Sb(1)-F(9)	90.98(7)	97.3	96.9	96.7
F(6)-Sb(1)-F(7)	87.95(7)	90.4	90.7	90.9
F(6)-Sb(1)-F(8)	175.67(8)	165.1	165.0	165.1
F(6)-Sb(1)-F(9)	90.97(7)	97.7	97.9	97.9
F(7)-Sb(1)-F(8)	88.74(7)	89.8	89.7	89.8
F(7)-Sb(1)-F(9)	91.74(7)	98.4	97.9	97.9
F(8)-Sb(1)-F(9)	91.93(7)	97.0	96.9	96.7
Xe(1) - F(4) - Sb(1)	138.95(7)	122.2	119.3	116.8

^{*a*} The aug-cc-pVTZ(-PP) basis set was used.

				PBE1PBE				
¹ H ¹⁶ O	¹ H ¹⁸ O	^{16/18} Δν	² H ¹⁶ O	² H ¹⁸ O	^{16/18} Δν	¹⁽¹⁰⁾²⁽¹⁰⁾ Δν	^{1(18)/2(18)} Δν	assgnt ^d
3636.8(52)[300]	3624.6(52)[299]	-12.2	2649.1(25)[156]	2632.2(25)[155]	-16.9	-987.7	-992.4	ν(O ₁ H)
1222.9(3)[69]	1219.2(3)[69]	-3.7	892.2(<1)[35]	886.0(<1)[35]	-6.2	-330.7	-333.2	$\delta(Xe_1O_1H)$
674.2(<0.1)[207]	675.9(<0.1)[209]	1.7	675.2(<0.1)[199]	675.1(<0.1)[199]	-0.1	1.0	-0.8	$\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{1}) - \mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{2})$
637.5(23)[2]	611.9(35)[<1]	-25.6	631.0(25)[1]	594.5(13)[3]	-36.5	-6.5	-3.8	$v(Xe_1O_1)$
603.6(29)[2]	598.3(15)[4]	-5.3	603.0(27)[2]	609.8(38)[<0.1]	6.8	-0.6	-2.1	$\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{1}) + \mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{2})$
298.0(3)[<1]	287.9(3)[<1]	-10.1	296.3(3)[4]	285.6(3)[3]	-10.7	-1.7	-2.3	$\delta(O_1 X e_1 F_1) + \delta(O_1 X e_1 F_2)$
215.0(<0.1)[14]	215.4(<0.1)[14]	0.4	215.5(<0.1)[14]	215.4(<0.1)[14]	-0.1	0.5	0.0	$\delta(F_1Xe_1F_2)_{o.o.p.}$
208.6(<1)[18]	208.8(<1)[18]	0.2	208.9(,1)[19]	208.6(,1)[18]	-0.3	0.3	-0.2	$\delta(F_1Xe_1F_2)_{i.p.}$
203.6(<1)[84]	202.8(<1)[84]	0.8	147.4(<1)[41]	147.0(<1)[42]	0.4	-56.2	-55.8	$\rho_{w}(Xe_{1}O_{1}H)$

Table A3.3. Calculated Vibrational Frequencies ^{*a*} and Infrared and Raman Intensities ^{*b*} for the HOXeF₂⁺ Cation ^{*c*}

				B3LYP				
¹ H ¹⁶ O	¹ H ¹⁸ O	^{16/18} Δν	² H ¹⁶ O	² H ¹⁸ O	^{16/18} Δν	¹⁽¹⁶⁾²⁽¹⁶⁾ Δv	1(18)/2(18) Δv	assgntd
3585.2(55)[291]	3573.2(56)[290]	-12.0	2611.6(26)[151]	2594.9(27)[150]	-16.7	-973.6	-978.3	v (O ₁ H)
1208.4(3)[69]	1204.6(3)[69]	-3.8	882.0(<1)[35]	875.8(<1)[34]	-6.2	-326.4	-328.8	$\delta(Xe_1O_1H)$
646.2(<0.1)[194]	647.8(<0.1)[196]	1.6	647.2(<0.1)[187]	647.2(<0.1)[187]	0.0	1.0	-0.6	$\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{1})-\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{2})$
590.8(28)[1]	576.2(41)[<1]	-32.0	585.1(32)[<1]	553.3(14)[2]	-31.8	-5.7	-5.5	$v(Xe_1O_1)$
572.8(28)[2]	558.8(13)[3]	3.4	571.5(23)[2]	575.9(40)[<1]	4.4	-1.3	-0.3	$\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{1})+\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{2})$
278.5(4)[<0.1]	269.4(4)[<0.1]	-9.1	275.7(4)[3]	265.9(3)[2]	9.8	-2.8	-3.5	$\delta(O_1 X \mathbf{e}_1 F_1) + \delta(O_1 X \mathbf{e}_1 F_2)$
207.9(<0.1)[14]	208.4(<0.1)[14]	0.5	208.4(<0.1)[14]	208.4(<0.1)[14]	0.0	0.5	0.0	$\delta(F_1 X e_1 F_2)_{o.c.p}$
193.7(<1)[18]	193.9(<1)[18]	0.2	193.9(<1)[18]	193.7(<1)[18]	-0.2	0.2	-0.2	$\delta(F_1 X e_i F_2)_{i.p.}$
185.7(<1)[84]	184.7(<1)[83]	-1.0	135.2(<1)[41]	134.7(<1)[42]	-0.5	-50.5	-50.0	$\rho_{w}(Xe_{1}O_{1}H)$

Table A3.3. Continued...

378

	* <u> </u>			MP2				
¹ H ¹⁶ O	¹ H ¹⁸ O	16/18Δν	² H ¹⁶ O	² H ¹⁸ O	16/18Δν	1(16)/2(16)Δv	^{1(18)/2(18)} Δν	assgnt ^d
3585(49)[290]	3573.8(49)[289]	-12.0	2614.0(23)[153]	2597.3(24)[151]	-16.7	-971.8	-981.5	v (O ₁ H)
1210.8(3)[74]	1207.2(3)[73]	-3.6	884.0(<1)[43]	877.1(<1)[41]	-6.9	-326.8	-330.1	$\delta(Xe_1O_1H)$
674.6(<0.1)[199]	676.3(<0.1)[200]	1.7	675.3(<0.1)[191]	675.3(<0.1)[191]	0.0	0.7	-1.0	$\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{1})-\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{2})$
697.1(13)[12]	663.7(13)[12]	-33.4	688.7(14)[7]	657.3(14)[8]	-31.4	-8.4	-6.4	$\mathbf{v}(\mathbf{X}\mathbf{e}_1\mathbf{O}_1)$
596.5(34)[1]	595.9(33)[2]	-0.6	596.0(34)[1]	595.3(33)[1]	0.4	-0.5	-0.6	$\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{1})+\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{2})$
309.9(3)[<1]	299.3(3)[<1]	-10.6	307.6(3)[4]	296.5(3)[3]	-11.1	-2.3	-2.8	$\delta(O_1 X \mathbf{e}_1 F_1) + \delta(O_1 X \mathbf{e}_1 F_2)$
215.9(<0.1)[14]	216.3(<0.1)[15]	0.4	216.4(<0.1)[15]	216.4(<0.1)[15]	0.0	0.5	0.1	$\delta(F_1 X e_1 F_2)_{o.o.p.}$
210.0(<1)[19]	210.3(<1)[19]	. 0.3	210.2(<1)[19]	210.0(<1)[19]	-0.2	0.2	-0.3	$\delta(\mathbf{F}_1\mathbf{X}\mathbf{e}_1\mathbf{F}_2)_{i.p.}$
188.0(<1)[84]	187.2(<1)[184]	-0.8	130.4(<1)[42]	130.0(<1)[42]	-0.4	-57.6	-57.2	$\rho_{w}(Xe_{1}O_{1}H)$

^{*a*} Frequencies are given in cm⁻¹. ^{*b*} Values in parentheses denote calculated Raman intensities (Å⁴ μ^{-1}). Values in square brackets denote calculated infrared intensities (km mol⁻¹). ^{*c*} The aug-cc-pVTZ(-PP) basis set was used. ^{*d*} The abbreviations denote stretch (v), bend (δ), wag (ρ_w), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). The in-plane and out-of-plane mode descriptions are relative to the XeOF₂ plane (Figure 6.10).

PBE1PBE								
¹ H ¹⁶ O	¹ H ¹⁸ O	^{16/18} Δν	² H ¹⁶ O	² H ¹⁸ O	^{16/18} Δν	1(10/2(10)Δv	i(18)/2(18) Δν	assgnt d
3763.9(80)[207]	3751.4(81)[204]	-12.5	2740.9(37)[117]	2723.6(37)[114]	-17.3	-1023.0	-1027.8	v (O ₁ H)
1149.6(3)[53]	1145.7(3)[50]	-3.9	843.4(1)[40]	836.6(<1)[35]	-6.8	-306.2	-309.1	$\delta(Xe_1O_1H)$
760.1(3)[156]	760.4(4)[156]	0.0	760.0(3)[159]	760.0(3)[159]	0.0	-0.1	-0.1	$\mathbf{v}(\mathbf{AsF}_{2e}) - \mathbf{v}(\mathbf{AsF}_{2e})$
757.6(1)[167]	757.7(1)[168]	0.1	757.6(1)[167]	757.6(1)[167]	0.0	0.0	0.1	$[v(AsF_e) - v(AsF_e)] + [v(AsF_e) - v(AsF_e)]$
754.1(8)[135]	754.0(7)[136]	-0.1	754.1(7)[137]	754.0(7)[138]	-0.1	0.0	0.0	v(AsF _a)
678.5(15)[38]	678.5(15)[38]	0.0	678.5(15)[38]	678.5(15)[38]	0.0	0.0	0.0	$v(AsF_{2e}) + v(AsF_{2e})$
621.5(74)[88]	593.9(69)[77]	-27.6	614.7(73)[77]	589.0(69)[64]	-25.7	-6.8	-4.9	$v(Xe_1O_1)$
618.9(1)[214]	620.3(1)[218]	1.4	619.7(1)[208]	620.0(1)[208]	-0.3	0.8	-0.3	$\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{1})-\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{2})$
597.3(1)[21]	597.5(1)[18]	0.2	597.5(1)[18]	597.4(1)[18]	-0.1	0.2	-0.1	$[\mathbf{v}(\mathrm{AsF}_{e}) + \mathbf{v}(\mathrm{AsF}_{e})] - [\mathbf{v}(\mathrm{AsF}_{e}) + \mathbf{v}(\mathrm{AsF}_{e})]$
562.8(28)[10]	561.2(25)[21]	-1.6	562.5(28)[11]	560.1(24)[24]	-2.4	-0.3	-0.1	$\mathbf{v}(\mathbf{Xe_1F_1}) + \mathbf{v}(\mathbf{Xe_1F_2})$
430.5(7)[91]	430.2(7)[88]	-0.3	430.5(7)[91]	430.1(7)[88]	-0.4	0.0	-0.1	$\mathbf{v}(\mathbf{X}\mathbf{e}_{1}$ $\mathbf{F}_{b}) - \mathbf{v}(\mathbf{A}\mathbf{s}$ $\mathbf{F}_{b})$
404.6(<1)[19]	404.5(<1)[19]	-0.1	404.3(<1)[20]	404.2(<1)[20]	-0.1	-0.3	-0.3	$[\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{b})+\mathbf{v}(\mathbf{A}\mathbf{s}-\mathbf{F}_{b})]+\delta_{umb}(\mathbf{A}\mathbf{s}\mathbf{F}_{2e}\mathbf{F}_{2e'})$
384.8(2)[1]	384.8(2)[1]	0.0	384.8(2)[1]	384.8(2)[1]	0.0	0.0	0.0	$\delta(F_eAsF_e) + \delta(F_eAsF_e)$
381.9(<1)[38]	381.9(<1)[38]	0.0	381.9(<1)[38]	381.9(<1)[38]	0.0	0.0	0.0	$\delta(F_eAsF_e) - \delta(F_eAsF_e) + \rho_w(F_bAsF_a)$
369.9(<1)[11]	369.8(<1)[11]	-0.1	369.8(<1)[11]	369.7(<1)[11]	-0.1	-0.1	-0.1	$\delta(AsF_bF_{2e}) - \delta(AsF_aF_{2e})$
324.1(<1)[<1]	324.1(<1)[<1]	0.0	324.1(<1)[<1]	324.1(<1)[<1]	0.0	0.0	0.0	$\rho_{w}(F_{e}AsF_{e'}) - \rho_{w}(F_{e}AsF_{e'}) + \rho_{t}(F_{b}AsF_{a})$
305.2(1)[239]	305.1(1)[241]	-0.1	304.7(1)[240]	304.6(1)[241]	-0.1	-0.5	0.5	$\delta(O_1 X c_1 F_b) - \delta(A s F_b F_{2e})$
278.5(2)[10]	268.2(1)[9]	-10.3	278.1(2)[6]	267.8(2)[6]	-10.3	-0.4	-0.4	$\delta(O_1Xe_1F_1) + \delta(O_1Xe_1F_2)$
276.6(1)[104]	276.7(1)[103]	0.1	276.8(1)[105]	276.7(1)[105]	-0.1	0.2	0.0	$\delta(F_bAsF_a) + \rho_w(F_eAsF_e)$
229.6(<1)[29]	230.0(<1)[29]	0.4	229.8(<1)[28]	229.6(<1)[28]	-0.2	0.2	-0.4	$\delta(F_1 X e F_2)_{oop}$
229.1(<1)[4]	229.0(<1)[4]	-0.1	228.8(<1)[<1]	228.7(<1)[<1]	-0 .1	-0.3	-0.3	$\rho_{w}(F_{b}AsF_{a}) + \rho_{w}(Xe_{i}O_{i}H)$
223.2(2)[56]	223.2(2)[56]	0.0	161.7(1)[31]	161.6(1)[33]	-0.1	-61.5	-61.6	$\rho_w(Xe_1O_1H)$
197.2(1)[3]	197.2(1)[3]	0.0	197.2(1)[3]	196.8(1)[3]	-0.4	0.0	-0.4	$\delta(F_1Xe_1F_2)_{ip}$
196.5(<0.1)[<0.1]	196.5(<0.1)[<0.1]	0.0	196.6(<0.1)[<0.1]	196.6(<0.1)[<1]	0.0	0.1	0.1	$\rho_{w}(F_{e}AsF_{e'}) - \rho_{w}(F_{e}AsF_{e'})$
135.7(<1)[3]	135.7(<1)[3]	0.0	135.5 (<1)[4]	135.2(<1)[5]	-0.3	-0.2	-0.5	$\rho_{t}(AsF_{a}F_{2e}F_{2e}) - \rho_{t}(HO_{1}Xe_{1}F_{1}F_{2})_{i.p.}$
117.7(2)[13]	114.4(1)[11]	-3.3	114.7 (1)[11]	111.6(1)[10]	-3.1	-3.0	-2.8	$\rho_{f}(HO_{1}Xe_{1}F_{1}F_{2})_{\mathfrak{s.o.p.}}$
71.4(<1)[<0.1]	71.2(<1)[<0.1]	-0.2	71.2 (<1)[0.1]	70.9(<1)[<0.1]	-0.3	-0.2	-0.3	$\rho_{t}(HO_{1}Xe_{1}F_{1}F_{2})_{i.p.}$
60.0(<1)[<1]	59.6(<1)[<1]	-0.4	59.6(<1)[<1]	59.1(<1)[<1]	-0.4	-0.4	-0.5	$\delta(AsF_bXe_1)$
47.1(<1)[<0.1]	47.1(<1)[<0.1]	0.0	47.1(<1)[<0.1]	47.1(<1)[<0.1]	0.0	0.0	0.0	$\rho_i(F_eAsF_e) - \rho_i(F_eAsF_e) + \rho_i(HO_1Xe_1F_1F_1)$
25.1(<1)[<1]	25.0(<1)[<1]	-0.1	24.9(<1)[<1]	24.8(<1)[<1]	-0.1	-0.2	-0.2	$\rho_{t}(\mathbf{AsF}_{2e}\mathbf{F}_{2e}) - \rho_{t}(\mathbf{HO}_{1}\mathbf{Xe}_{1}\mathbf{F}_{1}\mathbf{F}_{2})_{o,o,p}$

Table A3.4. Calculated Vibrational Frequencies ^a and Infrared and Raman Intensities ^b for the [HOXeF₂][AsF₆] Ion Pair ^c

379

Table	A3.4.	Continued

B3LYP								
¹ H ¹⁶ O	¹ H ¹⁸ O	^{16/18} Δν	2H16O	² H ¹⁸ O	^{16/18} Δν	1(16)2(10) AV	1(18)/X(18) Δv	assgnt ^d
3708.1(90)[197]	3695.8(91)[194]	-12.3	2700.4(41)[112]	2683.3(42)[109]	-17.1	-1007.7	-1012.5	v(O ₁ H)
1132(3)[50]	1128.2(4)[47]	-3.9	830.5(<1)[38]	823(9)<1[]34	-6.6	-301.6	-304.3	$\delta(Xe_1O_1H)$
735.6(3)[143]	735.6(3)[143]	0.0	735.5(2)[144]	735.5(3)[143]	0.0	-0.1	-0.1	$v(AsF_{2e}) - v(AsF_{2e})$
732.9(1)[161]	732.9(1)[161]	0.0	732.9(1)[160]	732.9(1)[160]	0.0	0.0	0.0	$[\mathbf{v}(\mathbf{AsF}_e) - \mathbf{v}(\mathbf{AsF}_e)] + [\mathbf{v}(\mathbf{AsF}_e) - \mathbf{v}(\mathbf{AsF}_e)]$
731.6(9)[145]	731.6(9)[147]	0.0	731.6(9)[148]	731.5(9)[148]	-0.1	0.0	-0.1	$\nu(AsF_a)$
656.3(19)[30]	656.3(19)[29]	0.0	656.3(19)[30]	656.3(19)[29]	0.0	0.0	0.0	$v(AsF_{2e}) + v(AsF_{2e})$
599.7(78)[89]	554.8(73)[73]	-24.9	573.5(77)[79]	550.4(73)[59]	-23.1	-6.2	-4.4	$v(Xe_iO_i)$
594.9(1)[163]	595.9(1)[173]	1.0	595.5(1)[163]	595.4(1)[163]	-0.1	0.6	-0.5	$\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{1}) - \mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{2})$
580.3(1)[60]	580.8(1)[51]	0.5	580.6(1)[52]	580.6(1)[52]	0.0	0.3	-0.2	$[\mathbf{v}(\mathbf{AsF}_{e}) + \mathbf{v}(\mathbf{AsF}_{e})] - [\mathbf{v}(\mathbf{AsF}_{e}) + \mathbf{v}(\mathbf{AsF}_{e})]$
532.2(30)[14]	530.5(25)[31]	-1.7	532.0(29)[16]	529.5(24)[38]	-2.5	-0.2	-1.0	$\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{1}) + \mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{2})$
419.7(12)[78]	419.2(13)[74]	0.5	419.7(12)[78]	418.9(13)[73]	-0.8	0.0	-0.3	$v(Xe_1F_b) - v(As-F_b)$
388.1(<1)[33]	388.1(<1)[33]	0.0	388.0(<1)[33]	387.9(<1)[33]	-0.1	0.1	-0.2	$[\mathbf{v}(\mathbf{X}\mathbf{c}_{1}\mathbf{F}_{b})+\mathbf{v}(\mathbf{A}\mathbf{s}-\mathbf{F}_{b})]+\delta_{umb}(\mathbf{A}\mathbf{s}\mathbf{F}_{2e}\mathbf{F}_{2e})$
376.3(2)[4]	376.2(2)[4]	-0.1	376.2(2)[4]	376.2(2)[4]	0.0	-0.1	0.0	$\delta(F_eAsF_e) + \delta(F_eAsF_e)$
372.8(<1)[36]	372.8(<1)[36]	0.0	372.8(<1)[36]	372.8(<1)[36]	0.0	0.0	-0.0	$\delta(F_{e}AsF_{e}) - \delta(F_{e}AsF_{e}) + \rho_{w}(F_{b}AsF_{a})$
357.9(1)[6]	357.8(1)[6]	-0.1	357.8(1)[6]	357.6(1)[6]	-0.2	-0.1	-0.2	$\delta(AsF_bF_{2e'}) - \delta(AsF_sF_{2e})$
309.5(<1)[<0.1]	309.5(<1)[<0.1]	0.0	309.5(<1)[<1]	309.5(<1)[<0.1]	0.0	0.0	0.0	$\rho_{\text{w}}(F_{\text{e}}AsF_{\text{e}}) - \rho_{\text{w}}(F_{\text{e}}AsF_{\text{e}}) + \rho_{\text{t}}(F_{\text{b}}AsF_{\text{a}})$
281.3(1)[122]	281.2(1)[124]	-0.1	280.7(1)[116]	280.5(1)[114]	-0.2	-0.6	-0.7	$\delta(O_1 X e_1 F_b) - \delta(AsF_b F_{2e})$
259.4(1)[15]	250.2(1)[16]	-9.2	258.2(2)[6]	248.8(2)[5]	-9.4	-1.2	-0.4	$\delta(O_1 X e_1 F_1) + \delta(O_1 X e_1 F_2)$
270.2(1)[190]	270.4(2)[190]	0.2	270.3(1)[197]	270.1(1)[201]	-0.2	0.1	-0.3	$\delta(F_bAsF_a) + \rho_{\text{w}}(F_eAsF_e)$
215.7(<1)[56]	216.0(<1)[56]	0.3	215.9(<1)[55]	215.7(<1)[54]	-0.2	0.2	-0.3	$\delta(F_1XeF_2)_{oop}$
218.6(<1)[4]	218.5(<0.1)[4]	-0.1	219.5(<1)[<1]	219.3(<1)[<1]	-0.2	0.9	0.8	$\rho_{w}(F_{b}AsF_{a}) + \rho_{w}(Xe_{1}O_{1}H)$
226.2(3)[50]	226.2(3)[48]	0.0	163.6(1)[30]	163.5(1)[30]	-0.1	-62.6	-62.7	$\rho_{\rm w}({\rm Xe_1O_1H})$
184.6(<1)[3]	184.6(1)[3]	0.0	184.6(<1)[3]	184.2(1)[3]	-0.4	0.0	-0.4	$\delta(F_1Xe_1F_2)_{ip}$
183.9(<0.1)[<0.1]	183.9(<0.1)[<0.1]	0.0	184.0(<0.1)[<1]	184.0(<0.1)[<1]	0.0	0.1	0.1	$\rho_w(F_eAsF_e) - \rho_w(F_eAsF_e)$
130.3(<1) [1]	130.2 (<1)[2]	-0.1	130.3(<1)[2]	130.1(<1)[2]	-0.2	0.0	-0.1	$\rho_{\rm f}({\rm AsF}_{a}{\rm F}_{2e}{\rm F}_{2e}) - \rho_{\rm f}({\rm HO}_1{\rm Xe}_1{\rm F}_1{\rm F}_2)_{\rm i.p.}$
114.6(2)[14]	111.3(2)[13]	-3.3	111.6(2)[13]	108.6(2)[12]	-3.0	-3.0	-2.7	$\rho_{r}(HO_{1}Xe_{1}F_{1}F_{2})_{o.o.p}$
73.3(<1)[<1]	73.0(2)[13]	-0.3	72.9(<1)[<1]	72.5(2)[12]	-0.4	-0.4	-0.5	$\rho_{\mathbf{r}}(\mathbf{HO}_{1}\mathbf{Xe}_{1}\mathbf{F}_{1}\mathbf{F}_{2})_{i.p.}$
53.0(<1)[<1]	52.6(<1)[<1]	-0.4	52.6(<1)[<1]	52.1(<1)[<1]	-0.4	-0.4	0.5	$\delta(AsF_bXe_1)$
46.8(<1)[<0.1]	46.8(<1)[<0.1]	0.0	46.8(<1)[<0.1]	46.7(<1)[<1]	0.1	0.0	-0.1	$\rho_t(F_eAsF_e) - \rho_t(F_{e'}AsF_e) + \rho_t(HO_1Xe_1F_1F_2)_{o,o,p.}$
13.9(<1)[<1]	13.9(<1)[<1]	0.0	13.8(<1)[<1]	13.8(<1)[<1]	0.0	-0.1	-0.1	$\rho_i(AsF_{2e}F_{2e}) - \rho_i(HO_1Xe_1F_1F_2)_{o.c.p.}$

.

Table	A3.4.	Continu	ed
-------	-------	---------	----

				M	P2			
¹ H ¹⁶ O	¹ H ¹⁸ O	^{16/18} Δν	2H ¹⁶ O	² H ¹⁸ O	^{16/18} Δν	¹⁽¹⁶⁾²⁽¹⁶⁾ Δν	1(18)2(18)Δv	assgnt ^d
3694.3()[198]	3682.1()[194]	-12.2	2690.10[113]	2673.1()[110]	17.0	-1004.2	-1009.0	v (O ₁ H)
1137.10[56]	1133.40[53]	-3.7	833.6()[40]	827.0([33]	-6.6	-303.5	-306.4	δ(Xe _l O _l H)
778.8()[150]	778.8()[150]	0.0	778.7()[154]	778.7()[153]	0.0	-0.1	0.0	$v(AsF_{2e}) - v(AsF_{2e'})$
775.60[161]	775.6()[162]	0.0	775.60[161]	775.60[161]	0.0	0.0	0.0	$[\mathbf{v}(\mathrm{AsF}_{e}) - \mathbf{v}(\mathrm{AsF}_{e})] + [\mathbf{v}(\mathrm{AsF}_{e}) - \mathbf{v}(\mathrm{AsF}_{e})]$
773.50[141]	773.4()[142]	-0.1	773.4()[146]	773.4()[146]	0.0	-0.1	0.0	v(AsFa)
693.5()[37]	693.5()[37]	0.0	693.5()[38]	693.5()[38]	0.0	0.0	0.0	$v(AsF_{2e}) + v(AsF_{2e'})$
626.4()[98]	597.5()[87]	-28.9	620.1()[86]	592.70[77]	27.4	-6.3	-4.8	$\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{O}_{1})$
624.8()[138]	625.60[148]	0.8	625.3()[140]	625.3()[139]	0.0	0.5	-0.3	$\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{1})-\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{2})$
607.4()[88]	608.1()[79]	0.7	607.9()[78]	607.9()[79]	0.0	0.5	-0.2	$[v(AsF_e) + v(AsF_e)] - [v(AsF_e) + v(AsF_e)]$
552.0([14]	551.20[20]	-0.8	551.90[14]	550.9()[21]	-1.0	-0.1	-0.3	$\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{1})+\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{2})$
448.7()[118]	448.8()[115]	0.1	448.8()[118]	448.60[115]	-0.2	0.1	-0.2	$\mathbf{v}(\mathbf{X}\mathbf{e}_{1}$ $\mathbf{F}_{b}) - \mathbf{v}(\mathbf{A}\mathbf{s}$ $\mathbf{F}_{b})$
415.10[10]	415.00[10]	-0.1	414.70[11]	414.60[11]	-0.1	-0.4	-0.4	$[v(Xe_1F_b) + v(As-F_b)] + \delta_{umb}(AsF_{2e}F_{2e'})$
386.2()[41]	386.2()[41]	0.0	386.20[40]	386.2()[40]	0.0	0.0	0.0	$\delta(F_eAsF_e) + \delta(F_eAsF_e)$
394.6()[3]	394.6()[3]	0.0	394.6()[3]	394.5()[3]	-0.1	0.0	-0.1	$\delta(F_eAsF_e) - \delta(F_eAsF_e) + \rho_w(F_bAsF_a)$
377.3()[21]	377.30[21]	0.0	377.30[21]	377.20[21]	-0.1	0.0	-0.1	$\delta(AsF_bF_{2e}) - \delta(AsF_aF_{2e})$
335.60[<1]	335.6()[<1]	0.0	335.60[<1]	335.6()[<1]	0.0	0.0	0.0	$\rho_{w}(F_{e}AsF_{e}) - \rho_{w}(F_{e}AsF_{e}) + \rho_{i}(F_{b}AsF_{a})$
310.3()[198]	310.1()[201]	-0.2	309.8()[198]	309.6()[198]	-0.2	-0.5	-0.5	$\delta(O_1 X \mathbf{e}_1 F_b) - \delta(\mathbf{A} \mathbf{s} F_b F_{2e'})$
272.50[12]	262.6()[12]	-9.9	271.80[5]	261.9()[5]	-9.9	-0.7	-0.7	$\delta(O_1 X e_1 F_1) + \delta(O_1 X e_1 F_2)$
279.20[155]	279.4()[154]	0.2	279.4()[157]	279.3()[158]	-0.1	0.2	-0.1	$\delta(F_bAsF_a) + \rho_{\pi}(F_eAsF_e)$
230.8()[40]	231.1()[40]	0.3	230.9()[39]	230.7()[38]	-0.2	0.1	-0.4	$\delta(F_1XeF_2)_{ocp}$
234.6()[9]	234.5()[8]	-0.1	235.70[<1]	235.50[<1]	-0.2	1.1	1.0	$\rho_w(F_bAsF_a) + \rho_w(Xe_1O_1H)$
239.5()[48]	239.5()[48]	0.0	172.80[31]	172.6()[31]	-0.2	-66.7	-66.9	$\rho_{w}(Xe_{i}O_{i}H)$
192.8()[2]	192.8()[2]	0.0	192.9()[2]	192.4()[2]	-0.5	0.1	-0.5	$\delta(\mathbf{F}_{1}\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{2})_{ip}$
204.50[<0.1]	204.50[<0.1]	0.0	204.7()[<1]	204.7()[<1]	0.0	0.2	0.2	$\rho_{\text{w}}(F_eAsF_e) - \rho_{\text{w}}(F_eAsF_e)$
138.0()[2]	137.10[3]	-0.9	137.3()[3]	136.50[4]	-0.8	-0.7	-0.6	$\rho_{t}(AsF_{a}F_{2e}F_{2e}) - \rho_{t}(HO_{1}Xe_{1}F_{1}F_{2})_{i.p.}$
116.80[21]	114.30[19]	-2.5	114.50[19]	112.10[18]	-2.4	-2.3	-2.2	$\rho_{t}(HO_{1}Xe_{1}F_{1}F_{2})_{o.o.p.}$
84.20[<0.1]	83.90[<0.1]	-0.3	84.00[<0.1]	83.60[<0.1]	-0.4	-0.2	-0.3	$\rho_{t}(HO_{1}Xe_{1}F_{1}F_{2})_{i.p.}$
72.90[<1]	72.20[<1]	-0.7	72.30[<1]	71.50[<1]	-0.8	-0.6	-0.7	$\delta(AsF_bXe_1)$
59.40[<0.1]	59.40[<0.1]	0.0	59.4()[<0.1]	59.30[<0.1]	-0.1	0.0	-0.1	$\rho_{i}(F_{e}AsF_{e}) - \rho_{i}(F_{e}AsF_{e}) + \rho_{f}(HO_{I}Xe_{I}F_{I}F_{I})$
35.5()[<1]	35.30[<1]	-0.2	35.20[<1]	35.00[<1]	-0.2	-0.3	-0.3	$\rho_t(AsF_{2e}F_{2e}) - \rho_t(HO_1Xe_1F_1F_2)_{o.o.p.}$

^{*a*} Frequencies are given in cm⁻¹. ^{*b*} Values in parentheses denote calculated Raman intensities (Å⁴ μ^{-1}). Values in square brackets denote calculated infrared intensities (km mol⁻¹). ^{*c*} The aug-cc-pVTZ(-PP) basis set was used. ^{*d*} The abbreviations denote stretch (v), bend (δ), wag (ρ_w), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). The in-plane and out-of-plane mode descriptions are relative to the local XeOF₂ plane (Figure 6.10).

	PBE1PBE			B3LYP			MP2		assgnt ^d
16O	¹⁸ O	^{16/18} Δν	¹⁶ O	¹⁸ O	16/18Δν	¹⁶ O	¹⁸ O	^{16/18} Δν	
679.1(10)[57]	647.8(6)[20]	-31.3	627.8(8)[34]	601.8(13)[3]	-26.0	780.2(12)[204]	741.6(9)[172]	-38.6	$\mathbf{v}(\mathbf{X}\mathbf{e}_1\mathbf{O}_1) - \mathbf{v}(\mathbf{X}\mathbf{e}_2\mathbf{O}_1)$
648.3(1)[203]	650.0(1)[204)	1.7	620.7(2)[193]	622.3(2)[194]	1.6	645.8(1)[196]	647.5(1)[197]	1.7	$v(Xe_1F_1) - v(Xe_1F_2)$
616.4(110)[150]	615.3(114)[168]	1.1	583.5(127)[149]	579.9(121)[158]	-3.6	598.7(110)[134]	599.2(111)[138]	0.5	$v(Xe_2F_3)$
580.2(28)[46]	579.3(28)[56]	-0.9	549.0(30)[50]	547.8(30)[65]	-1.2	567.9(36)[50]	567.5(36)[54]	-0.4	$\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{1})+\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{2})$
342.5(4)[45]	326.0(4)[42]	-16.5	325.9(5)[38]	310.3(4)[35]	-15.9	371.5(10)[63]	353.6(9)[58]	-17.9	$\mathbf{v}(\mathbf{X}\mathbf{e}_1\mathbf{O}_1) + \mathbf{v}(\mathbf{X}\mathbf{e}_2\mathbf{O}_1)$
298.2(2)[7]	286.5(2)[7]	-11.7	277.0(2)[6]	266.2(2)[6]	-10.8	314.3(2)[8]	301.9(2)[7]	-12.4	$\delta(OXe_1F_1) - \delta(OXe_1F_2)$
216.2(<0.1)[12]	216.8(<0.1)[12]	0.6	208.8(<0.1)[11]	209.3(<0.1)[11]	0.5	218.0(<0.1)[12]	218.6(<0.1)[12]	0.6	$\delta(F_1Xe_iF_2)_{c.o.p.}$
212.2(<1)[13]	212.6(<1)[13]	0.4	198.6(<1)[12]	199.0(<1)[11]	0.4	212.3(<1)[13]	212.6(<1)[12]	0.3	$\delta(\mathbf{F}_1 \mathbf{X} \mathbf{e}_1 \mathbf{F}_2)_{i.p.}$
146.4(<1)[3]	148.9(1)[14]	2.5	139.6(1)[13]	140.1(1)[14]	0.5	155.5(<1)[18]	156.1(<1)[19]	1.2	$\rho_w(O_1Xe_2F_3)$
148.4(1)[14]	146.8(<1)[3]	-1.6	138.7(<1)[3]	139.1(<1)[3]	0.4	152.1(<1)[3]	152.5(<1)[3]	0.4	$\delta(O_1 X e_2 F_3) + \delta(F_1 X e_2 F_2)_{i.p. small}$
67.0(4)[1]	67.0(4)[1]	0.0	66.6(5)[1]	66.7(5)[1]	0.1	65.6(2)[1]	65.7(2)[1]	0.1	$\delta(Xe_1O_1Xe_2)$
12.4(3)[<0.1]	12.2(3)[<0.1]	-0.2	14.9(3)[<0.1]	14.7(3)[<0.1]	-0.2	15.8(3)[<0.1]	15.7(3)[<0.1]	-0.1	$\rho_{t}(F_{1}Xe_{2}F_{2}) + \rho_{t}(O_{1}Xe_{2}F_{3})$

Table A3.5. Calculated Vibrational Frequencies^{*a*} and Infrared and Raman Intensities^{*b*} for the FXeOXeF₂⁺ Cation^{*c*}

^{*a*} Frequencies are given in cm⁻¹. ^{*b*} Values in parentheses denote calculated Raman intensities (Å⁴ μ^{-1}). Values in square brackets denote calculated infrared intensities (km mol⁻¹). ^{*c*} The aug-cc-pVTZ(-PP) basis set was used. ^{*d*} The abbreviations denote stretch (v), bend (δ), wag (ρ_w), twist (ρ_t), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). The in-plane and out-of-plane mode descriptions are relative to the local XeOF₂ plane (Figure 6.10).

382

	PBE1PBE			B3LYP			MP2		assgnt d
¹⁶ O -	¹⁸ O	^{16/18} Δν	16O	¹⁸ O	^{16/18} Δν	031	¹⁸ O	^{16/18} Δν	
3704.6(98)[364]	3692.3(99)[360]	-12.3	3646.6(107)[359]	3633.6(109)[355]	-12.0	0[]	00	-	v(OH)
1170.3(12)[58]	1166.4(13)[56]	-3.9	1159.8(16)[58]	115.3(17)[55]	-4.5	0[]	0[]	-	$\delta(Xe_iO_iH)$
685.1(55)[94]	651.9(48)[87]	-33.2	634.6(51)[86]	603.9(50)[60]	-30.7	0[]	00	-	$\mathbf{v}(\mathbf{X}\mathbf{e}_{3}\mathbf{O}_{2}) - \mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{O}_{2})$
639.9(12)[202]	641.3(16)[192]	1.4	613.1(15)[187]	614.7(12)[198]	1.6	0[]	ОП	-	$\mathbf{v}(\mathbf{X}\mathbf{e}_{3}\mathbf{F}_{4})-\mathbf{v}(\mathbf{X}\mathbf{e}_{3}\mathbf{F}_{5})$
633.9(1)[235]	635.5(1)[236]	1.6	608.7(1)[220]	610.2(1)[221]	1.5	0[]	0[]	-	$\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{1}) - \mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{2})$
626.2(201)[112]	597.5(184)[108]	-28.7	579.8(228)[103]	554.6(200)[82]	-25.2	0[]	01	-	$\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{O}_{1})$
572.9(35)[2]	572.0(29)[1]	- 0.9	543.2(35)[2]	541.4(28)[4]	-1.8	0[]	00	-	$\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{1}) + \mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{2})$
560.7(15)[27]	559.4(18)[35]	-1.3	531.3(19)[32]	529.0(32)[51]	-2.3	0[]	ОП	-	$\mathbf{v}(\mathbf{X}\mathbf{e}_{3}\mathbf{F}_{4})+\mathbf{v}(\mathbf{X}\mathbf{e}_{3}\mathbf{F}_{5})$
373.0(6)[33]	355.9(6)[30]	-17.1	357.3(5)[27]	340.6(5)[24]	-16.7	0[]	00	-	$\delta(O_2Xe_3F_4) - \delta(O_2Xe_3F_5)$
272.0(2)[4]	262.1(2)[2]	-9.9	254.0(2)[7]	244.7(3)[1]	-9.3	0[]	ОП	-	$\delta(O_1 X \boldsymbol{e}_1 F_1) - \delta(O_1 X \boldsymbol{e}_1 F_2)$
244.9(2)[77]	244.7(2)[79]	-0.2	243.8(3)[73]	242.9(1)[79]	-0.9	0[]	00	-	$\rho_w(Xe_1O_1H)$
233.3(<1)[4]	233.7(<1)[4]	0.4	223.7(<1)[5]	224.0(<1)[5]	0.3	0[]	ОП	-	$\delta(F_1 X e_i F_2)_{0.0.p.}$
221.1(<1)[13]	221.5(<1)[13]	0.4	209.1(1)[11]	209.2(1)[11]	0.1	0[]	0[]	-	$\delta(F_4Xe_3F_5)_{i.p.} +$ δ(F_1Xe_1F_2) _{0.0.9.}
216.7(<0.1)[12]	217.2(<0.1)[12]	0.5	210.4(<0.1)[12]	211.0(<0.1)[12]	0.6	0[]	OE	-	δ(F4Xe3F5)0.0.p.
199.3(1)[41]	199.4(1)[40]	0.1	188.6(2)[39]	188.6(2)[39]	0.0	OĽI	00	-	$\delta(F_1Xe_1F_2)_{i.p.} + \delta(F_4Xe_3F_5)_{i.p.}$
115.7(<1)[3]	113.6(<1)[4]	-2. 1	110.8(<1)[3]	109.0(<1)[4]	-1.8	08	OΠ	-	· · · · •
108.8(1)[5]	105.0(1)[8]	-3.8	105.1(<1)[3]	101.1(<1)[4]	-4.0	0[]	00	-	
103.5(<1)[10]	101.2(<1)[6]	-2.3	100.3(1)[11]	98.5(<1)[8]	-1.8	0[]	OΠ	_	
58.3(2)[<1]	57.5(2)[<1]	-0.8	54.6(2)[<1]	5309(2)[<1]	-0.7	0[]	00	-	
17.9(1)[2]	17.7(1)[2]	-0.2	13.5(<1)[2]	13.5(<1)[2]	0.0	0[]	ОП	-	$\rho_r(Xe_1O_1F_1F_2O_2)$
16.5(2)[<0.1]	16.2(2)[<0.1]	-0.3	23.6(3)[<1]	23.7(3)[<1]	0.1	0[]	0[]	-	

383

Table A3.6. Calculated Vibrational Frequencies^{*a*} and Infrared and Raman Intensities^{*b*} for the HOXe(F)₂OXeF₂⁺ Cation^{*c*}

^{*a*} Frequencies are given in cm⁻¹. ^{*b*} Values in parentheses denote calculated Raman intensities (Å⁴ μ^{-1}). Values in square brackets denote calculated infrared intensities (km mol⁻¹). ^{*c*} The aug-cc-pVTZ(-PP) basis set was used. ^{*d*} The abbreviations denote stretch (v), bend (δ), wag (ρ_w), rock (ρ_r), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). The in-plane and out-of-plane mode descriptions are relative to the local XeOF₂ plane (Figure 6.10).

PBE1PBE				B3LYP			MP2		assgnt d	
¹⁶ O	18 _O	^{16/18} Δν	16O	¹⁸ O	^{16/18} Δν	16 <mark>0</mark>	¹⁸ O	^{16/18} Δν		
708.1(86)[31]	673.2(78)[30]	-34.9	658.9(101)[35]	626.6(89)[35]	-32.3	835.8()[146]	794.40[134]	-41.4	$\mathbf{v}(\mathbf{Xe}_{3}\mathbf{O}_{2}) - \mathbf{v}(\mathbf{Xe}_{1}\mathbf{O}_{2})$	
671.4(240)[304]	640.3(164)[178]	-31.1	622.1(245)[239]	595.4(119)[98]	-26.7	736.1()[529]	700.40[442]	-35.7	$\mathbf{v}(\mathbf{X}\mathbf{e}_1\mathbf{O}_1) - \mathbf{v}(\mathbf{X}\mathbf{e}_2\mathbf{O}_1)$	
631.4(19)[211]	632.9(15)[220]	1.5	603.6(24)[198]	605.1(25)[198]	1.5	632.1()[207]	633.70[208]	i.6	$\nu(Xe_3F_4)-\nu(Xe_3F_5)$	
620.6(<1)[210]	622.2(<1)[211]	1.6	594.9(<0.1)[199]	596.5(<1)[199]	1.6	609.7()[216]	611.30[217]	1.6	$\mathbf{v}(\mathbf{X}\mathbf{e}_{\mathbf{i}}\mathbf{F}_{1}) - \mathbf{v}(\mathbf{X}\mathbf{e}_{\mathbf{i}}\mathbf{F}_{2})$	
594.8(248)[306]	593.7(296)[364]	-1.1	564.4(330)[320]	561.8(415)[394]	2.6	578.10[265]	578.00[282]	-0.1	$v(Xe_2F_3)$	
560.2(28)[60]	559.5(30)[78]	-0.7	530.0(32)[76]	529.1(39)[104]	0.9	553.8()[32]	553.30[41]	-0.5	$[v(Xe_1F_1) + v(Xe_1F_2)] + [v(Xe_3F_4) + v(Xe_3F_5)]$	
555.0(17)[13]	554.5(18)[15]	0.5	525.3(21)[8]	524.8(23)[10]	-0.5	535.9([45]	535.5()[48]	-0.4	$[v(Xe_1F_1) + v(Xe_1F_2)] - [v(Xe_3F_4) + v(Xe_3F_5)]$	
395.5(13)[31]	376.6(12)[29]	-18.9	375.0(13)[25]	357.1(11)[24]	-17.9	424.2()[59]	403.60[54]	20.6	$[\mathbf{v}(\mathbf{X}\mathbf{e}_{3}\mathbf{O}_{2}) + \mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{O}_{2})] = [\mathbf{v}(\mathbf{X}\mathbf{e}_{1}\mathbf{O}_{1}) + \mathbf{v}(\mathbf{X}\mathbf{e}_{2}\mathbf{O}_{1})]$	
343.0(15)[60]	327.5(13)[53]	-15.5	326.1(15)[51]	311.2(13)[45]	-14.9	362.60[80]	346.4()[71]	-16.2	$\frac{\delta(O_2 X e_3 F_4)}{\delta(O_2 X e_3 F_5)}$	
294.2(1)[6]	282.5(1)[5]	-11.7	274.9(1)[5]	264.0(1)[5]	-10.9	285.10[4]	274.00[4]	-11.1	$\frac{\delta(O_1 X e_1 F_1)}{\delta(O_1 X e_1 F_2)} =$	
230.6(1)[2]	231.4(2)[2]	0.8	219.6(1)[2]	220.4(2)[2]	0.8	230.9()[4]	231.50[4]	0.6	$\delta(F_4Xe_3F_5)_{i.p.} + \\ \delta(F_1Xe_1F_2)_{o.o.p.}$	
218.6(<1)[7]	218.9(<1)[7]	0.3	207.9(<1)[7]	208.2(<1)[7]	0.3	233.50[24]	232.30[15]	-1.2	$\delta(F_4Xe_3F_5)_{i.p.} - \\ \delta(F_iXe_iF_2)_{o.o.p.}$	
217.5(<0.1)[14]	218.0(<0.1)[14]	0.5	209.8(<0.1)[15]	210.3(<0.1)[15]	0.5	225.00[14]	224.20[19]	-0.8	δ(F4Xe3F5)0.0.p.	
208.8(<1)[45]	209.1(<1)[44]	0.3	196.6(,1)[43]	196.9(<1)[42]	0.3	206.3()[10]	204.8()[18]	-1.5	$\delta(F_4Xe_3F_5)_{i.p.} + \\ \delta(F_1Xe_1F_2)_{i.p.}$	
154.6(3)[11]	155.1(3)[11]	0.5	145.7(4)[11]	146.2(4)[11]	0.5	195.80[34]	192.2()[24]	-3.6	$\delta(\mathbf{F}_{3}\mathbf{X}\mathbf{e}_{2}\mathbf{O}_{1})_{i.p.} + \\ \delta(\mathbf{F}_{1}\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{2})_{i.p.}$	
151.9(1)[5]	152.4(1)[5]	0.5	144.3(<1)[4]	144.6(<1)[4]	0.3	159.3()[32]	159.3()[35]	0.0	$\delta(\mathbf{F}_{3}\mathbf{X}\mathbf{e}_{2}\mathbf{O}_{1})_{i.p.} - [\delta(\mathbf{F}_{1}\mathbf{X}\mathbf{e}_{1}\mathbf{F}_{2})_{i.p.}]_{\text{amati}}$	
99.2(3)[12]	97.8(5)[16]	-1.4	93.8(6)[13]	92.6(3)[5]	-1.2	153.80[7]	154.3()[6]	0.5	$\delta(F_2Xe_1O_2) + \rho_1(F_5Xe_3O_2)$	
95.4(3)[7]	92.4(2)[3]	-3.0	97.3(<1)[3]	94.2(4)[11]	-3.1	90.80[5]	91.00[5]	0.2	$\delta(\mathbf{F}_1 \mathbf{X} \mathbf{e}_1 \mathbf{O}_2) + \rho_1(\mathbf{F}_5 \mathbf{X} \mathbf{e}_3 \mathbf{O}_2)$	
87.4(3)[3]	87.3(2)[3]	-0.1	83.9(3)[4]	83.9(3)[4]	0.0	68.9()[1]	69.0()[2]	0.1	$\delta(\mathbf{X}\mathbf{e}_{3}\mathbf{O}_{2}\mathbf{X}\mathbf{e}_{1}) - \delta(\mathbf{X}\mathbf{e}_{1}\mathbf{O}_{1}\mathbf{X}\mathbf{e}_{2})$	
48.2(2)[2]	48.3(2)[2]	0.1	45.7(2)[2]	45.7(2)[2]	0.0	59.60[2]	59.30[2]	-0.3	$\begin{array}{c} o(Xe_3O_2Xe_1) + o(\\ Xe_1O_1Xe_2) \end{array}$	
23.1(2)[<0.1]	23.2(2)[<0.1]	0.1	21.7(2)[<0.1]	21.7(2)[<0.1]	0.0	47.00[<1]	46.90[<1]	-0.1		
21.6(2)[<0.1]	21.6(2)[<0.1]	0.0	22.6(3)[<1]	22.5(3)[<1]	-0.1	38.00[1]	37.60[1]	-0.4	coupled deformation	
12.8(2)[<1]	12.6(2)[<1]	-0.2	18.9(2)[<1]	18.4(2)[<1]	-0.5	17.90[<1]	17.90[<1]	0.0	modes	
8.3(<1)[<1]	8.3(<1)[<1]	0.0	9.3(<1)[<1]	9.1(<1)[<1]	-0.2	10.70[<0.1]	10.70[<0.1]	0.0	J	

Table A3.7. Calculated Vibrational Frequencies^{*a*} and Infrared and Raman Intensities^{*b*} for the FXeOXe(F)₂OXeF₂⁺ Cation^{*c*}

^{*a*} Frequencies are given in cm⁻¹. ^{*b*} Values in parentheses denote calculated Raman intensities (Å⁴ μ^{-1}). Values in square brackets denote calculated infrared intensities (km mol⁻¹). ^{*c*} The aug-cc-pVTZ(-PP) basis set was used. ^{*d*} The abbreviations denote stretch (v), bend (δ), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). The in-plane and out-of-plane mode descriptions are relative to the local XeOF₂ plane (Figure 6.10).

Table A3.8. Calculated Bond Lengths (Å) and Bond Angles (deg) for the $HOXeF_2^+$, [HOXeF_2][AsF_6], FXeOXeF_2^+, HOXe(F)_2OXeF_2^+ and FXeOXe(F)_2OXeF_2^+ Cations ^{*a*}

HOXeF ₂ ⁺							
	MP2	PBE1PBE	B3LYP				
Xe_1 - F_1	1.903	1.905	1.927				
Xe_1-O_1	1.880	1.900	1.929				
Xe ₁ -H	2.377	2.393	2.421				
O ₁ -H	0.985	0.980	0.983				
F_1 -Xe ₁ - F_2	174.0	174.3	175.2				
O_1 -Xe ₁ -F ₁	87.1	87.2	87.7				
Xe ₁ -O ₁ -H	108.1	108.1	108.1				
	[HOXeF ₂]	[AsF ₆]					
Xe ₁ -F ₁	1.942	1.938	1.963				
$Xe_1 - O_1$	1.931	1.934	1.965				
O ₁ –H	0.975	0.970	0.973				
$Xe_1 F_b$	2.183	2.202	2.199				
As-F _b	1.963	1.978	2.037				
As–F _a	1.682	1.689	1.700				
As–F _e	1.694	1.700	1.714				
As–F _e '	1.725	1.729	1.740				
$F_1 - Xe_1 - F_2$	175.8	174.3	175.4				
$O_i - Xe_i - F_1$	88.0	87.2	87.7				
$H_1 - O_1 - Xe_1$	106.8	107.7	107.7				
$O_1 - Xe_1 - F_b$	176.1	175.8	176.0				
$F_1 - Xe_1 - F_b$	91.9	92.8	92.2				
Xe ₁ F _b -As	115.0	117.4	119.8				
F _b –As–F _a	177.1	177.5	177.8				
F _b AsF _c	85.4	85.3	84.7				
F _b -As-F _e	82.8	83.1	82.8				
F _a -As-F _e	96.6	96.4	96.8				
$F_{a}-As-F_{e}$	95.1	95.1	95.6				
F _e AsF _e	91.2	91.0	90.7				
E_As_E	80 7	89.7	89.6				
re-no-re'	07./	168.3	167.5				
$F_{e'}$ -As- $F_{e'}$	86.9	87.2	87.3				

	FXeOXeF ₂ ⁺						
Xe ₁ -F ₁	1.922	1.921	1.946				
Xe_1 - F_2	1.923	1.921	1.946				
Xe ₁ -O ₁	1.837	1.859	1.885				
Xe ₂ -O ₁	2.240	2.260	2.296				
Xe ₂ -F ₃	1.920	1.916	1.940				
F_1 -Xe ₁ - F_2	177.6	177.8	178.3				
O_1 -X e_1 - F_1	89.3	89.3	89.9				
O_1 -Xe ₁ -F ₂	89.3	89.3	89.9				
$Xe_1-O_1-Xe_2$	123.8	125.7	126.7				
O_1 -Xe ₂ -F ₃	175.9	175.1	174.4				

Table A.3.8. Continued...

HOXe(F) ₂ OXeF ₂ ⁺									
	MP2	PBE1PBE	B3LYP						
Xe ₁ -F ₁	1.931	1.930	1.953						
Xe_1-F_2	1.958	1.929	1.952						
Xe ₁ -O ₁	1.914	1.915	1.945						
O ₁ -H	0.980	0.975	0.978						
Xe_1-O_2	2.318	2.392	2.417						
Xe ₃ -O ₂	1.828	1.851	1.877						
Xe ₃ -F ₄	1.938	1.949	1.972						
Xe ₃ -F ₅	1.917	1.913	1.936						
F_1 -Xe ₁ - F_2	176.1	176.7	177.4						
O_1 -Xe ₁ -F ₁	92.4	88.4	88.7						
O_1 -Xe ₁ -F ₂	91.4	88.5	88.9						
Xe ₁ -O ₁ -H	108.6	108.8	108.6						
O_1 -Xe ₁ - O_2	173.6	175.4	175.2						
$Xe_1-O_2-Xe_3$	120.5	128.3	128.5						
O ₂ -Xe ₃ -F ₄	88.5	88.5	88.9						
O ₂ -Xe ₃ -F ₅	89.2	89.1	89.4						
F ₄ -Xe ₃ -F ₅	177.3	177.7	178.3						
	FXeOXeF ₂ OXeF ₂ ⁺								
Xe ₁ -F ₁	1.941	1.937	1.962						
Xe_1-F_2	1.922	1.938	1.962						
Xe ₁ -O ₁	1.863	1.874	1.899						
Xe_2-O_1	2.190	2.206	2.241						
Xe ₂ -F ₃	1.939	1.932	1.957						
Xe_1-O_2	2.410	2.491	2.520						
Xe ₃ -O ₂	1.813	1.838	1.862						
Xe ₃ -F ₄	1.949	1.953	1.978						
Xe ₃ -F ₅	1.922	1.920	1.944						
F_1 -Xe ₁ - F_2	177.0	178.1	178.6						
O_1 -Xe ₁ -F ₁	91.6	89.3	89.8						
O_1 -Xe ₁ -F ₂	90.8	89.3	89.8						
O_1 -Xe ₁ - O_2	169.6	175.6	175.5						
$Xe_1-O_1-Xe_2$	121.3	124.3	125.3						
O ₁ -Xe ₂ -F ₃	176.7	176.1	175.5						
Xe ₁ -O ₂ -Xe ₃	120.8	128.4	128.7						
O ₂ -Xe ₃ -F ₄	89.2	89.3	89.7						
O ₂ -Xe ₃ -F ₅	90.7	90.3	90.8						
F ₄ -Xe ₃ -F ₅	179.0	179.6	179.5						

^a The aug-cc-pVTZ(-PP) basis set was used.

	Charges [Valencies]									
	HO	XeF ₂ ⁺	FXeO	$\mathbf{DXeF_2}^+$						
Xe(1)	2.175	[1.456]	2.141	[1.529]						
O(1)	-0.690	[1.167]	-0.836	[0.919]						
F(1)	-0.509	[0.406]	-0.542	[0.383]						
F(2)	-0.509	[0.406]	-0.542	[0.383]						
Н	1.268	[0.608]								
Xe(2)			1.240	[0.571]						
F(3)			-0.460	[0.356]						
	Bo	ond Orders								
Xe(1)-O(1)	0.603		0.725							
Xe(1)-F(1)	0.426		0.404							
Xe(1)-F(2)	0.426		0.404							
O(1)-H	0.613									
O(1)-Xe(2)			0.228							
Xe(2)-F(3)			0.345							

Table A3.9.	NBO Valencies, Bond Orders, and Charges (NPA) for $HOXeF_2^+$ and
	$FXeOXeF_2^{+a}$

^{*a*} B3LYP/aug-cc-pVTZ(-PP)

APPENDIX 4

Table A4.1. Experimental and Calculated Frequencies [®] for	KrF ₂
---	------------------

exptl	PBE1PBE ^b	B3LYP ^b	assgnts ^c
580 ^d	613(<1)[287]	584(<0.1)[260]	$v_3(\Sigma_u) v_{as}(KrF_2)$
465.5 ^e 469.5, 468.6 ^f	526(51)[<1]	493(52)[<0.1]	$v_1(\Sigma_g^+) v_s(KrF_2)$
236 ^{<i>d</i>}	249(<0.1)[14]	234(<0.1)[13]	$v_2(\Pi_u) \delta(\mathrm{KrF}_2)$

^{*a*} Frequencies are given in cm⁻¹. ^{*b*} The aug-cc-pVTZ(-PP) basis set was used. Values in parentheses denote Raman intensities (Å⁴ amu⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹). ^{*c*} The abbreviations denote symmetric (s), asymmetric (as), stretch (v) and bend (δ). ^{*d*} Infrared values obtained from matrix-isolated KrF₂ in ref 93. ^{*e*} Raman frequencies for the α -phase of KrF₂ are from ref 100. ^{*f*} Raman frequencies for the β -phase of KrF₂ are from ref 100.

Outline of QTAIM and ELF. The QTAIM analysis provides a partition into atomic basins over which it is possible to integrate densities of properties in order to obtain atomic properties such as atomic populations, $\overline{N}(A)$. In the QTAIM framework, bonded atoms are linked by a bond path^{298,299} which is defined as the union of the trajectories joining the bond critical point (bcp), a saddle point maximum in two directions located on the border surface of two atomic basins, to the two nuclei. The value of the Laplacian of the density at the bond critical point, as well as those of other functions, is used to further characterize the interaction: a negative value of $\nabla^2 \rho(\mathbf{r}_{bcp})$ corresponds to a shared-electron (covalent) interaction whereas a positive value indicates an unshared-electron bonding mode. Moreover, insights into the delocalization in terms of delocalization indices³⁰⁰ can be obtained by a covariance analysis of the atomic populations.

The electron localization function, denoted $\eta(\mathbf{r})$, was originally conceived as a local measure of the Fermi hole curvature around a reference point within the Hartree-Fock approximation.²⁵³ A further interpretation, in terms of a local excess of kinetic

energy due to the Pauli principle, was proposed by Savin et al.,³⁰¹ which legitimatized the calculation of the function with Kohn-Sham orbitals. More recently, it was shown that the ELF kernel can be rigorously derived by considering the same number of spin pairs contained in a sample around the reference point.^{302,303} A cosmetic Lorentz transform that confines the ELF is the [0,1] interval; where 1 corresponds to regions dominated by an opposite spin pair or by a single electron, whereas low values are found at the boundaries between such regions. The basins of ELF attractors are closely related to Gillespie's electronic domains and recover the ideas of Lewis. There are two types of basins: core basins, denoted by C(A), encompassing the nucleus of atom A and valence basins, denoted by V(A, B, ...). The valence shell of an atom, say A, in a molecule is therefore the union of valence basins having a boundary with C(A). A valence basin may belong to several atomic valence shells. The synaptic order³⁰⁴ is defined as the number of such valence shells which a valence basin participates in. There are therefore monosynaptic basins, V(A), corresponding to the lone pair, disynaptic basins V(A, B) corresponding to two center bonds, and higher polysynaptic basins for polycentric bonds. The basin populations and the associated covariance matrix are calculated by integration of the one electron and pair densities over the volumes of the basins, enabling a phenomenological interpretation of the population analysis in terms of the superposition of mesomeric structures.³⁰⁵ The weights of these structures are estimated from the populations, the covariance matrices, and for the probabilities of finding N electrons in a given basin.^{306,307} The concept of localization domain²⁵² has been introduced for graphical purposes and to also define a hierarchy of the localization basins which can be related to chemical properties. A localization domain is a volume limited by one or more closed isosurfaces denoted by $\eta(\mathbf{r}) = f$, where f is defined as the isosurface contour. A localization domain surrounds at least one attractor- in this case it is called irreducible. If the delocalization domain contains more than one attractor, it is termed reducible. Except for atoms and linear molecules, the irreducible domains are always filled volumes whereas the reducible domains can be either filled volumes, hollow volumes, or tori. Upon increasing the value of $p(\mathbf{r})$, which defines the boundary isosurface, a reducible domain splits into several domains, each containing less attractors than the parent one. The reduction of localization occurs at the turning points which are critical points of index 1 located on the separatrix of two basins involved in the parent domain. Ordering these turning points (localization nodes) by increasing $\eta(\mathbf{r})$ enables one to build treediagrams reflecting the hierarchies of the basins.^{308,309}

The QTAIM approach provides a phenomenological representation of the molecular electron density, and therefore of the bonding, close to the superposition of promolecular atomic densities, whereas ELF intends to recover the VSEPR and Lewis pictures. An interesting combination of QTAIM and ELF has been proposed by Raub and Jansen³¹⁰ who considered the contributions of the atomic basins to the ELF valence basin populations. As a general rule, the number of contributing atomic basins is equal to the synaptic order. Indeed, the QTAIM and ELF analysis are almost equivalent in unshared-electron systems.

(i) Nature of the Bonding in KrF₂. In order to understand the nature of the Kr-F interaction in KrF₂, the KrF molecule was first considered. The ground state of KrF is a ${}^{2}\Sigma$ doublet, with an optimized internuclear distance of 2.437 and 2.410 Å using the PBE1PBE and B3LYP hybrid functionals. The calculated binding energy is rather weak; 10 kJ mol⁻¹ with PBE1PBE and 16 kJ mol⁻¹ with B3LYP. The AIM analysis provided the following information: (1) the atomic populations indicate a significant charge transfer of 0.15 e towards the fluorine atom, this value coincides with the NBA net positive charges of the KrF₂ ligands (0.19 and 0.09) (Table S3), (2) the spin density is mostly in the F basin (85%), (3) the delocalization index, $\delta = 0.42$, is typical of a weak interaction; β -spin electrons contribute three times more than the α -spin electrons to this index, (4) the density value at the bond critical point is small, $\rho(r_{bcp}) = 0.036$ e bohr⁻³, and its Laplacian is positive ($\nabla^2 \rho(r_{bcp}) = 0.157$ e bohr⁻⁵).

The bonding is therefore characterized by a charge transfer and a small delocalization of the single electron over the two atoms. The QTAIM population analysis suggests a picture of the bonding represented by the following superposition of two promolecular densities:

Kr F↑ 85% Kr⁺↑ F 15%

The ELF reduction of the localization diagram of KrF (Scheme 4.1) shows that the Kr and F atoms can be considered as two independent interacting chemical systems because the separation of V(F) from V(Kr) occurs at almost the same value as the fluorine core-valence bifurcation. The population analysis is consistent with this picture and confirms the conclusions drawn from the QTAIM results: there is no disynaptic basin and the values of the basin populations, integrated spin densities, and covariance matrix elements are in complete agreement with those of QTAIM.

$$-0.07 \begin{bmatrix} C(F) \\ 0.09 \end{bmatrix} \begin{bmatrix} V(F) \\ 0.19 \end{bmatrix} \begin{bmatrix} C(Kr) \\ V(Kr) \end{bmatrix} = 0.07 \begin{bmatrix} C(F) \\ 0.18 \end{bmatrix} \begin{bmatrix} C(Kr) \\ 0.42 \end{bmatrix} \begin{bmatrix} V(F) \\ V(Kr) \end{bmatrix}$$

Scheme A4.1. Reduction of the localization diagrams for KrF (left) and KrF₂ (right) showing the ordering of localization nodes and the boundary isosurface value, $\eta(\mathbf{r})$, at which the reducible domains split.

The ground state of KrF₂ is a singlet ${}^{1}\Sigma_{\varphi}$; the Kr-F internuclear distances are significantly shorter than in KrF, 1.860 and 1.890 Å, at the PBE1PBE and B3LYP levels, respectively, and the binding energy per fluorine is much larger; 58 (PBE1PBE) and 63 mol⁻¹ (B3LYP). The atomic populations of Kr and F indicate a net density transfer of 0.48 e from Kr to each F, in good agreement with the NBO analysis which yields 0.52 e. The Kr-F and F-F delocalization indexes are 0.86 and 0.22, respectively. Finally, the Laplacian of the density at the KrF bond critical point is positive $(\nabla^2 \rho(\mathbf{r}_{her}) = 0.23 \text{ e})$ bohr⁻⁵). The ELF reduction of localization diagram of KrF₂, Scheme 1, which is at variance with KrF, shows that the separation of the molecular valence shell into its atomic components occurs at a larger ELF value than the Kr core-valence separation. Therefore, KrF_2 can be considered as a single chemical entity rather than as a cluster of interacting atoms. Figure S4.1 displays the ELF localization domains for KrF₂ at $\eta(\mathbf{r}) =$ 0.75, showing the absence of any disynaptic (bond) between Kr and F. The ELF. population analysis, reported in Table S4.2, together with the QTAIM results suggests an interpretation of the bonding in terms of a large delocalization of the electron density between the Kr and F valence shells and of an electron density transfer towards the fluorine atom. This type of bonding looks very similar to the charge-shift bonds introduced by Shaik et al.,^{311–313} but there are some important differences. If the Kr–F bond was a standard charge-shift bond, it should have almost the same properties in KrF and KrF₂. Comparison of the two molecules shows a cooperative effect that enhances the bond strength in KrF₂. The main difference between the ground states of these molecules is that KrF is a doublet and KrF₂ a singlet, therefore the addition of a second fluorine atom removes the spin density that is mostly localized on the first fluorine. Because there is no direct interaction between the two fluorine atoms, there is mediation on the part of the Kr atom which plays a role very similar to that of the non-magnetic anion in superexchange coupling. Weighted promolecular mesomeric forms can be proposed from the probabilities of finding *n* electrons in a given basin (Scheme 4.2).

Figure A4.1. ELF localization domains of KrF₂. The isosurface value is $\eta(\mathbf{r}) = 0.75$. Color code: magenta = core, brick-red = monosynaptic basin.

The spacial symmetry and the diamagnetism of KrF_2 explain the multiplicity of each kind of structure. This multiplicity and the large increase in weighting of the ionic structures with respect to KrF contribute to the stabilization of the molecule.

	aug-ce	DGDZVP	
	B3LYP	PBE1PBE	PBE1PB
\overline{N} [C(F)]	2.11	2.16	2.13
\overline{N} [C(Kr)] ^{<i>a</i>}	17.88	17.89	27.72
\overline{N} [V(F)]	7.31	7.30	7.30
\overline{N} [V(Kr)]	7.25	7.17	7.41
$\langle cov[V(Kr),V(F)] \rangle$	-0.41	-0.42	-0.40
$\langle cov[V(F),V(F')] \rangle$	-0.9	-0.8	-0.08

 Table A4.2.
 ELF Basin Population and Covariance Matrix Elements of KrF2

^a The use of pseudo-potential calculations and the all electron calculation account for the differences in the Kr basin populations.

F↓ F↑	Kr Kr	F↑ F↓	}	26%
F↑	Kr⁺↓	F⁻	Ì	
F↓	Kr⁺↑	F	l	170/
F^{-}	Kr⁺↓	F↑		41/0
F ⁻	Kr⁺↑	F↓	J	
F ⁻	Kr ²⁺	F^{-}	-	27%

Scheme A4.2. Weighted promolecular mesomeric forms of KrF₂ and their probabilities.

(ii) Nature of the Bonding in $BrOF_2^+$. The $BrOF_2^+$ cation has a trigonal pyramidal geometry according to the VSEPR rules. Because all atoms have lone pairs, the lone-pair bond weakening effect (LPBWE)³¹⁴ is expected to be important. The QTAIM electronic populations localize a large positive charge (+2.25) on bromine and partial negative charges on the oxygen (-0.52) and fluorine (-0.36) atoms. These values are in good agreement with the NPA charges +2.30, -0.57, and -0.36 for Br, O and F, respectively. The delocalization indexes (δ) indicate delocalization between the Br and O basins ($\delta = 1.84$) that is twice that of Br and F ($\delta = 0.98$) as well as rather important interactions between non-bonded atoms such as between O and F ($\delta = 0.24$), and between the two

fluorines ($\delta = 0.12$). The values of the Laplacian of the electron density are both positive at the Br–O and Br–F bond critical points (0.39 and 0.29, respectively). Therefore, the bonding can be described as belonging to the unshared-electron type.

Figure 7.3 displays the localization domains of BrOF_2^+ which either belong to core or to monosynaptic valence basins at $\eta(\mathbf{r}) = 0.75$. The reduction of localization diagram (Scheme A4.3) indicates, however, that there is only one valence shell because the core valence separations occur at ELF values lower than the division of the valence density. While the atomic valence shells of O and F can be easily identified, each of them being the union of two monosynaptic basins, only V(Br) can be unambiguously assigned to the Br valence shell. In the ELF population analysis presented in Table A4.3, the two V(O) basins as well as the V(F) basins of each fluorine have merged into single basins. The population of the V(Br) basin, 3.11 e, is larger than expected for a single lone pair, and is a consequence of the LPBWE which tends to increase the lone pair population at the expense of bonding. The covariance matrix elements between V(Br) and the other valence basins are very large although these basins belong, in principle, to different atomic valence shells. The large contributions of the Br atomic basin to V(O) and to V(F), however, suggest participation of these basins in the Br valence shell. In particular, \overline{N} [V(O)|Br] = 1.5 e, is consistent with a dative picture of the Br–O bond.

Scheme A4.3. Reduction of localization diagrams for $BrOF_2^+$ (left) and AsF_6^- (right) showing the ordering of localization nodes and the boundary isosurface values, $\eta(\mathbf{r})$, at which the reducible domains split.

(iii) Nature of the Bonding in AsF₆. Both QTAIM and ELF describe the bonding in the AsF₆⁻ anion as arising from both ionic and covalent resonance structures. Charge-shift bonding is not possible in this system because there is no lone pair on the As atom. From the QTAIM point of view, the large positive value of the Laplacian of the charge density at the As–F bond critical point, 0.613, is indicative of a dominant unshared-electron interaction whereas the fluorine net charge, -0.67 e, indicates that the weights of the contributing mesomeric structures involving covalent As–F are rather large. The ELF analysis confirms this picture because there are six V(As,F) disynaptic basins displayed in Figure A4.2. Although the population of this basin is very low, 0.16 e, the total contribution of the atomic As basin to the V(F) basins amounts to 1.26 e. Accordingly, the dominant resonance structures should be: AsF⁴⁺(F⁻)₅ (~31%), AsF₂³⁺(F⁻)₄ (~34%), and AsF₃²⁺(F⁻)₃ (~25%).

Table A4.3. ELF Basin Population, \overline{N} [Ω], Covariance Matrix Elements, $\langle cov(\overline{N} [\Omega], \overline{N} [\Omega']) \rangle$, and Bromine Atomic Basin Contribution, $(\overline{N} [\Omega|Br])$, of BrOF₂⁺

Ω	$\overline{N}\left[\Omega ight]$	$\langle cov(\overline{N} [\Omega], \overline{N} [\Omega']) \rangle$			$\overline{N}\left[\Omega Br ight]$	
		V(F)	V(O)	V(Br)	V(F')	
V(F)	7.45	1.07	-0.09	-0.26	-0.08	0.25
V(O)	7.91	-0.09	1.68	-0.45	-0.09	1.5
V(Br)	3.11	-0.26	-0.45	1.64	-0.26	3.11

Figure A4.2. ELF localization domains for AsF_6^- . The isosurface value is $\eta(\mathbf{r}) = 0.75$. Color code: magenta = core, brick-red = monosynaptic basin, green = disynaptic basin.

APPENDIX 5

 Table A5.1.
 Experimental and Calculated Vibrational Frequencies^a for XeF₂

exptl ^b	PBE1PBE [/]	B3LYP	assgnts ^g
555 ^c	572(<0.1)[261]	550(<0.1)[246]	$\overline{\nu_3(\Sigma_u^+)} \ \nu_{as}(XeF_2)$
515, ^d 497 ^e	535(44)[<0.1]	510(47)[<0.1]	$v_1(\Sigma_g^+)$ $v_s(XeF_2)$
213 ^c	214(<0.1)[15]	205(<0.1)[15]	$\nu_2(\Pi_u) \ \delta(XeF_2)$

^{*a*} Frequencies are given in cm⁻¹. ^{*b*} From ref 203. ^{*c*} Values determined for gas-phase XeF₂ by infrared spectroscopy and are reported as intense. ^{*d*} Value obtained from a weak $v_1 + v_3$ combination band for gas-phase XeF₂ by infrared spectroscopy. ^{*e*} Value obtained from solid XeF₂ by Raman spectroscopy. ^{*f*} The aug-cc-pVTZ(-pp) basis set was used. Values in parentheses denote Raman intensities (Å⁴ u⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹). ^{*g*} The abbreviations denote symmetric (s), asymmetric (as), stretch (v) and bend (δ).

	PBE1 ⁶	B3LYP		PBE1 ^b	B3LYP		PBE1 ⁶	B3LYP
			Bo	nd Lengths (Å)				
Br–O ₁	1.568	1.580						
Br-F ₁	1.755	1.779						
$Br-F_2$	1.755	1.779						
BrF _{3A}	2.306	2.328					•	
			BrF _{3A} .	2.306	2.327			
						BrF _{3B}	2.481	2.503
As _A -F _{3A}	1.822	1.834	As _A -F _{3A} ,	1.822	1.834	As _B -F _{3B}	1.785	1. 795
As _A -F _{4A}	1.731	1.739	As _A -F _{4A}	1.731	1.739	$As_B - F_{4B}$	1.736	1.744
As _A -F _{5A}	1.730	1.738	As _A -F _{5A} ,	1.730	1.738	As _B –F _{5B}	1.734	1.743
As _A -F _{6A}	1.733	1.741	As _A -F _{6A}	1.733	1.741	$As_B - F_{6B}$	1.741	1.750
As _A -F7A	1.734	1.743	As _{A'} -F _{7A'}	1. 73 4	1.743	As _B –F _{7B}	1.739	1.748
As _A -F _{8A}	1.728	1.736	As _A -F _{8A'}	1.728	1.736	As _B -F _{8B}	1.734	1.743
			Bor	id Angles (deg)				
F_1-Br-F_2	89.2	89.3						
F ₁ -Br-O ₁	101.1	101.0						
F ₁ -BrF _{3A}	165.6	165.8						
			F ₁ -BrF _{3A'}	83.9	84.6			
						F_1 -Br F_{3B}	78.6	79.1
F ₂ –Br–O ₁	101.1	100.9						
F ₂ -BrF _{3A}	83.9	84.7						
			F ₂ -BrF _{3A'}	165.6	165.8			
						F ₂ -BrF _{3B}	78.7	7 9.1
O ₁ -BrF _{3A}	92.6	92.8						
			O ₁ -BrF _{3A'}	92.6	92.8			
						O ₁ -BrF _{3B}	179.6	179.9

Table A5.2. Calculated ^a Geometrical	Parameters for [BrOF ₂][AsF ₆] ₃ ²⁻
---	---

396

Table A5.2. Continued	Fable	A5.2.	Continu	ed.
-----------------------	--------------	-------	---------	-----

F_{3A} Br $F_{3A'}$	99.9	98.3						
						F _{3A} BrF _{3B}	87.6	87.2
			$F_{3A'}$ Br F_{3B}	87.6	87.2			
BrF _{3A} As _A	135.3	136.9						
			BrF _{3A} -As _{A'}	135.3	137.0			
						BrF _{3B} As _B	141.6	143.6
F3A-AsA-F4A	87.8	87.8	F3A-AsA-F4A	87.8	87.8	F_{3B} -As _B -F _{4B}	88.8	88.9
F3A-AsA-F5A	88.1	88.1	F3A-AsA-F5A	88.1	88.1	F_{3B} -As _B -F _{5B}	89.0	89.0
F3A-AsA-F6A	179.8	179.8	F3A-AsA-F6A	1 7 9.8	179.8	F_{3B} -As _B - F_{6B}	179.8	179.9
F3A-AsA-F7A	88.1	88.0	F3A'-AsA'-F7A'	88.1	88.0	F_{3B} – As_B – F_{7B}	89.0	89.0
F3A-AsA-F8A	88.3	88.3	F3A-AsA-F8A'	88.3	88.3	F_{3B} -As _B -F _{8B}	89.0	89.0
F4A-AsA-F5A	90.1	90.1	F4A-AsA-F5A	90.1	90.1	F_{4B} -As _B - F_{5B}	90.1	90.1
F4A-AsA-F6A	92.1	92.2	F4A-AsA-F6A'	92.1	92.2	F_{4B} -As _B -F _{6B}	91.0	91.1
F4A-AsA-F7A	175.8	175.8	F4A-AsA-F7A'	175.8	175.8	F_{4B} -As _B -F _{7B}	177.8	177.8
F4A-AsA-F8A	90.0	90.1	F4A-AsA-F8A	90.0	90.1	F_{4B} -As _B - F_{8B}	90.1	90.1
F5A-ASA-F6A	91.8	91.7	F5A-AsA-F6A	91.8	91.7	F5B-AsB-F6B	91.0	91.0
F5A-ASA-F7A	89.8	89.7	F5A-AsA-F7A	89.8	89.7	F_{5B} -As _B - F_{7B}	89.8	89.8
F5A-ASA-F8A	176.4	176.4	F5A'-ASA-F8A'	176.4	1 7 6.4	$F_{5B} - As_{B} - F_{8B}$	178.0	178.1
F _{6A} –As _A –F _{7A}	92.1	92.1	F _{6A} As _A F _{7A} -	92.1	92.1	F_{6B} -As _B - F_{7B}	91.1	91.1
F _{6A} -As _A -F _{8A}	91.8	91.8	F _{6A} As _A F _{8A} .	91.8	91.8	F_{6B} -As _B - F_{8B}	91.0	91.0
F7A-AsA-F8A	89.8	89.8	F7A'-AsA'-F8A'	89.8	89.8	F7B-AsB-F8B	89.8	89.8

^{*a*} The Stutt Huzpolar 2 basis set was used. The energy-minimized geometry was C_1 . The atom labeling scheme corresponds to that used in Figure 8.10.^{*b*} PBE1PBE.

	PBE1PBE ^a	B3LYP ^a	<u></u>	PBE1PBE ^a	B3LYP ^a
		Bond Len	gths (Å)		
Br(1)O(1)	1.554	1.567	Xe(1)–F(4)	1.948	1.976
Br(1)-F(1)	1.730	1.753	As(1)–F(5)	1.762	1.770
Br(1)–F(2)	1.752	1.777	As(1)–F(6)	1.889	1.918
Br(1)F(3)	2.369	2.397	As(1)–F(7)	1.705	1.719
Br(1)F(5)	2.708	2.729	As(1)–F(8)	1.698	1.715
Br(1)F(6)	2.162	2.178	As(1)F(9)	1.695	1.707
Xe(1)-F(3)	2.068	2.083	As(1)-F(10)	1.727	1.744
		Bond Ang	les (deg)		
F(1)-Br(1)-F(2)	89.0	89.4	Br(1)F(6)As(1)	117.7	117.5
F(1)-Br(1)-O(1)	102.8	102.5	F(3)-Xe(1)-F(4)	177.8	176.8
F(1)-Br(1)F(3)	165.1	165.2	F(5)-As(1)-F(6)	83.7	83.3
F(1)-Br(1)F(5)	91.7	84.6	F(5)–As(1)–F(7)	88.7	89.1
F(1)-Br(1)F(6)	85.2	86.9	F(5)-As(1)-F(8)	170.8	170.0
F(2)-Br(1)-O(1)	100.5	100.5	F(5)-As(1)-F(9)	92.9	93.5
F(2)-Br(1)F(3)	86.1	86.4	F(5)-As(1)-F(10)	87.3	87.4
F(2)-Br(1)F(5)	109.9	108.9	F(6)–As(1)–F(7)	86.6	86.7
F(2)-Br(1)F(6)	167.0	167.4	F(6)-As(1)-F(8)	87.2	86.8
O(1)-Br(1)F(3)	92.0	92.2	F(6)-As(1)-F(9)	176.4	176.6
O(1)-Br(1)F(5)	146.6	149.9	F(6)-As(1)-F(10)	85.5	85.5
O(1)-Br(1)F(6)	92.1	92.1	F(7)-As(1)-F(8)	92.0	91.8
F(3)F(5)	76.8	83.3	F(7)-As(1)-F(9)	94.5	94.6
F(3)Br(1)F(6)	96.6	94.2	F(7)As(1)F(10)	171.5	171.7
F(5)Br(1)F(6)	58.8	58.8	F(8)-As(1)-F(9)	96.2	96.3
Br(1)F(3)-Xe(1)	141.7	150.5	F(8)-As(1)-F(10)	90.8	90.4
Br(1)F(5)-As(1)	99.7	100.2	F(9)-As(1)-F(10)	93.1	93.1

 Table A5.3.
 Calculated Geometrical Parameters for [BrOF2][AsF6]·XeF2

^{*a*} The aug-cc-pVTZ(-PP) basis set was used. The energy-minimized geometry was C_1 . The atom labeling scheme corresponds to that used in Figure 8.10.

Charges [Valencies]					
	PBE	1PBE	B3	LYP	
Br(1)	2.397	[2.296]	2.371	[1.931]	
O(1)	-0.709	[0.971]	-0.694	[0.862]	
F(1)	-0.441	[0.467]	-0.439	[0.359]	
F(2)	-0.476	[0.435]	-0.476	[0.337]	
Xe(1)	1.268	[0.608]	1.258	[0.582]	
F(3)	-0.655	[0.355]	-0.652	[0.329]	
F(4)	-0.549	[0.374]	-0.545	[0.358]	
As(1)	2.644	[3.207]	2.642	[3.136]	
F(5)	-0.617	[0.484]	-0.607	[0.466]	
F(6)	-0.596	[0.479]	-0.595	[0.436]	
F(7)	-0.561	[0.518]	-0.558	[0.495]	
F(8)	-0.553	[0.521]	-0.553	[0.504]	
F(9)	-0.560	[0.533]	-0.559	[0.511]	
F(10)	-0.590	[0.488]	-0.594	[0.470]	
	Bon	d Orders			
Br(1)-O(1)	1.038		0.927		
Br(1)-F(1)	0.506		0.399		
Br(1)-F(2)	0.472		0.371		
Br(1)F(3)	0.088		0.070		
Br(1)F(5)	0.029		0.025		
Br(1)F(6)	0.156		0.131		
Xe(1)-F(3)	0.242		0.234		
Xe(1)-F(4)	0.359		0.344		
As(1)-F(5)	0.509		0.504		
As(1)-F(6)	0.382		0.362		
As(1)-F(7)	0.579		0.570		
As(1)-F(8)	0.590		0.576		
As(1)-F(9)	0.591		0.581		
As(1)-F(10)	0.552		0.538		

Table A5.4.NBO Valencies, Bond Orders, and Charges (NPA) for
 $[BrOF_2][AsF_6] \cdot XeF_2$

Bonding in XeF₂. The QTAIM and ELF population analyses of XeF₂ are compared with those of KrF₂ in Table S14. The atomic populations of Xe and F indicate a net density transfer of 0.60 e from Xe towards each fluorine atom. The Kr-F and F-F delocalization indexes are 0.88 and 0.14, respectively. The Laplacian of the density at the XeF bond critical point is positive $(\nabla^2 \rho(\mathbf{r}_{bcp}) = 0.23 \ e \ bohr^{-5})$. With respect to KrF₂, the charge transfer is larger by 0.13 e indicating more ionic character of the system, which is consistent with the larger value of the Laplacian calculated for XeF₂ than for KrF₂. The ELF reduction of localization diagram for XeF_2 (Scheme A5.1) is consistent with more ionic bonding than in KrF_2 because the bifurcation between V(F) and V(Xe) occurs for $\eta(\mathbf{r}) = 0.26$ instead of 0.42 in KrF₂. Figure A5.1 displays the ELF $\eta(\mathbf{r}) = 0.75$ localization domains of XeF₂ showing the absence of any disynaptic (bond) between Xe and F. The ELF population analysis, reported in Table A5.5, together with the QTAIM results suggest a bonding interpretation in terms of a large delocalization of the electron density between the Xe and F valence shells and transfer of electron density towards the fluorine center, 35% versus 27%. Weighted promolecular mesomeric forms can be proposed from the probabilities of finding n electrons in a given basin. It is worth noting that the weight of the totally ionic structure is significantly larger than in KrF₂.

$$\begin{cases} F \downarrow Xe F \uparrow \\ F \uparrow Xe F \downarrow \end{cases} 21\%$$
$$\begin{cases} F \downarrow Xe^{+} \uparrow F^{-} \\ F \uparrow Xe^{+} \downarrow F^{-} \\ F^{-} Xe^{+} \uparrow F \downarrow \\ F^{-} Xe^{+} \downarrow F \uparrow \end{cases} 44\%$$

$$F^{-} Xe^{2+} F^{-} 35\%$$

- Scheme A5.1. Reduction of localization diagram for XeF₂ showing the ordering of localization nodes and the boundary isosurface value, $\eta(\mathbf{r})$, at which the reducible domains split.
- **Table A5.5:** QTAIM Atomic Populations, Delocalization Indexes, ELF Basin
Population and Covariance Matrix Elements of Free NgF2 (Ng = Xe, Kr)
NgF2 Coordinated to the Bromine Atom in [BrOF2][AsF6]·2NgF2

	XeF ₂	$[BrOF_2][AsF_6] \cdot 2XeF_2^a$	KrF ₂ ^b	$[BrOF_2][AsF_6] \cdot 2KrF_2^{a,b}$
$\overline{N}(A)$	52.80	52.70	35.03	34.96
\overline{N} (F)	9.60	9.63	9.47	9.54
\overline{N} (F')	9.60	9.55	9.47	9.39
\overline{N} (Br)		32.60		32.66
δ(Ng,F)	0.88	0.68	0.86	0.68
δ(Ng,F')	0.88	0.96	0.86	0.98
δ(Br,F)		0.26		0.24
\overline{N} [C(F)]	2.13	2.13	2.13	2.13
\overline{N} [C(Ng)]	46.04	45.40	27.72	27.62
C [V(F)]	7.45	7.47	7.30	7.38
\overline{N} [V(F')]	7.45	7.46	7.30	7.89
\overline{N} [V(Ng)]	6.83	7.26	7.41	6.75
\overline{N} [V(Br)]		3.04		3.11
$\langle cov[V(Ng),V(F)] \rangle$	-0.39	-0.31	-0.40	-0.24
$\langle cov[V(Ng),V(F')] \rangle$	-0.39	-0.42	-0.40	-0.84
$\langle cov[V(F),V(F')] \rangle$	-0.06	-0.04	-0.10	-0.08

^{*a*} In the adducts, F denotes the bridging fluorine atom and F' denotes the terminal fluorine atom. ^{*b*} From ref 232.

Figure A5.1. ELF localization domains for XeF₂. The isosurface value is $\eta(\mathbf{r}) = 0.75$. Color code: magenta = core, brick-red = monosynaptic basin.

Bonding in [BrOF₂][AsF₆]₃²⁻. Figure A5.2. displays the $\eta(\mathbf{r}) = 0.75$ localization domains of the complex anion, [BrOF₂][AsF₆]₃²⁻. The bonding between the cationic subunit and the surrounding anions is essentially ionic. However, the QTAIM analysis reveals a small electron density transfer of ca. 0.2 e from the two nearest AsF₆⁻ anions towards BrOF₂⁺. The value of the Laplacian of the charge density at the bond critical points of the bond paths linking the bromine atom to fluorines of AsF₆⁻ is positive (0.17), in agreement with the ionic picture. Moreover, the corresponding delocalization index is small, $\delta(Br, F) = 0.22$. The ELF analysis shows a bromine lone pair with a population of 3.0 e, that is 0.11 e lower than in the isolated BrOF₂⁺ cation.

Figure A5.2. ELF localization domains for $[BrOF_2][AsF_6]_3^{2^-}$. The isosurface value is $\eta(\mathbf{r}) = 0.75$. Color code: magenta = core, brick-red = monosynaptic basin, green = disynaptic basin.
APPENDIX 6

Solid State Thermochemistry. The standard enthalpies for the solid-state decomposition of $[XeONO_2][AsF_6]$ (eq A6.1) were evaluated from the lattice enthalpies of $[XeONO_2][AsF_6]$ and $[NO_2][AsF_6]$ according to eq A6.2. The lattice enthalpies were estimated by use of the volume-based method of Bartlett et al.^{208,209} as generalized by Jenkins et al.^{210,211} in eq 3, where *R* is the gas constant(8.314 J mol⁻¹ K⁻¹), *I* is the ionicity

$$[XeONO_2][AsF_6]_{(s)} \longrightarrow [NO_2][AsF_6]_{(s)} + Xe_{(g)} + \frac{1}{2}O_{2(g)}$$
(A6.1)

$$\Delta H^{\circ}(A6.1) = \Delta H^{\circ}_{L}([XeONO_{2}][AsF_{6}]) - \Delta H^{\circ}_{L}([NO_{2}][AsF_{6}])$$
(A6.2)

$$\Delta H^{\circ}_{L} = 2I \left(\frac{\alpha}{\sqrt[3]{V_{m}}} + \beta \right) + pRT$$
(A6.3)

of the salt and the constants, α , β , and p, depend on the nature of the salt. For the salts under investigation, which are singly charged and the following values were used: I = 1, $\alpha = 117.3 \text{ nm kJ mol}^{-1}$, $\beta = 51.9 \text{ kJ mol}^{-1}$, and p = 2. In this formalism, ΔH°_{L} is the lattice enthalpy and is defined as the energy required to break the crystal lattice, and therefore has a positive value. This approach is generally accurate to ~4% for salts with ΔH°_{L} less than 5000 kJ mol⁻¹,²¹¹ and is particularly useful because the formula unit volume (V_{m}) of an unknown salt can be estimated with reasonable accuracy using several methods.²¹¹ The value for $V([NO_2][AsF_6]) = 0.1330(2) \text{ nm}^3$ was determined directly from the X-ray crystal structure of $[NO_2][AsF_6]^{315}$ and that for $V([XeONO_2][AsF_6])$ was determined from eq A6.4. Where $V_m(FXeONO_2) = 0.096650(4)$ (this work), $V_-(F^-) = 0.025(10)$,²¹¹ and $V_-(AsF_6^-)^{211} = 0.110(7) \text{ nm}^3$.

$$V_{\rm m}([{\rm XeONO_2}][{\rm AsF_6}]) = V_{\rm m}({\rm FXeONO_2}) - V_{-}({\rm F}) + V_{-}({\rm AsF_6})$$

= 0.182(XX) nm³ (A6.4)

Application of eq A6.3 yields

$$\Delta H^{0}_{L}([XeONO_{2}][AsF_{6}]) = 523 \text{ kJ mol}^{-1}$$
(A6.5)

$$\Delta H^{o}_{L}([NO_{2}][AsF_{6}]) = 568 \text{ kJ mol}^{-1}$$
(A6.6)

$$\Delta H^{\circ}(A6.1) = -45 \text{ kJ mol}^{-1}$$
(A6.7)

A method for estimating the absolute standard entropy of a salt from its unit volume has been reported by Jenkins and Glasser (eq A6.8) where $k = 1360 \text{ J mol}^{-1} \text{ K}^{-1}$ (nm⁻³ formula unit⁻¹) and $c = 15 \text{ J mol}^{-1} \text{ K}^{-1}$.³⁰ The standard entropies of the salts under consideration are $S^{\circ}([\text{XeONO}_2][\text{AsF}_6]_{(s)}) =$

$$S^{\circ} = kV_{\rm m} + c \tag{A6.8}$$

262 J mol⁻¹ K⁻¹ and $S^{\circ}([NO_2][AsF_6]_{(s)}) = 196$ J mol⁻¹ K⁻¹. When coupled with the experimental standard entropies of $O_{2(g)}$ (206 J mol⁻¹ K⁻¹)¹⁹⁵ and $Xe_{(g)}$ (169.7 J mol⁻¹ K⁻¹), ³¹⁶ this method allows $\Delta S^{\circ}(A6.1)$ and $\Delta G^{\circ}(A6.1)$ to be calculated from eqs A6.9 and

A6.10, respectively, yielding $\Delta S^{\circ}(A6.1) = 207 \text{ J mol}^{-1} \text{ K}^{-1}$ and $\Delta G^{\circ}(A6.1) = -107 \text{ kJ} \text{ mol}^{-1}$. As expected, the enthalpy and Gibbs free energy of the solid-state

$$\Delta S^{\circ}(A6.1) = \frac{1}{2}S^{\circ}(O_{2(g)}) + S^{\circ}([NO_2][AsF_6]_{(s)}) + S^{\circ}(Xe_{(g)}) - S^{\circ}([XeONO_2][AsF_6]_{(s)})$$
(A6.9)

$$\Delta G^{\circ}(A6.1) = \Delta H^{\circ}(A6.1) - T\Delta S^{\circ}(A6.1)$$
(A6.10)

decomposition of $[XeONO_2][AsF_6]$ are significantly less exothermic and spontaneous than for the gas-phase decomposition of the $XeONO_2^+$ cation (eq A6.11 and Table 9.1).

Although the solid-state (eq A6.1) and gas-phase (eq A6.11) decompositions are spontaneous under standard conditions, the gas-phase reaction leading to the formation of XeONO₂⁺ and AsF₆⁻ is highly endothermic (eq A6.12 and Table 9.1). In principle, the energetics of the fluoride ion abstraction reaction under standard conditions (eq A6.13) may be explored by construction of a Born-Fajans-Haber thermochemical cycle (eq

$$XeONO_{2}^{+}(g) \longrightarrow Xe_{(g)} + \frac{1}{2}O_{2(g)} + NO_{2}^{+}(g)$$
(A6.11)

$$FXeONO_{2(g)} + AsF_{5(g)} \longrightarrow XeONO_{2(g)}^{+} + AsF_{6(g)}^{-}$$
 (A6.12)

$$FXeONO_{2(s)} + AsF_{5(g)} \longrightarrow [XeONO_2][AsF_6]_{(s)}$$
(A6.13)

A6.14), however, the absence of a value for the heat of sublimation/vaporization of FXeONO₂ precludes construction of a complete thermochemical cycle. Consideration of the incomplete thermochemical cycle (eq A6.14) establishes that, in the absence of a value for $\Delta H^{\circ}(sub/vap FXeONO_2)$ and taking $\Delta H^{\circ}(vap AsF_5) = 0$ for AsF₅ gas, eq A6.13

$$\Delta H^{0}(A6.13) = \Delta H^{0}(A6.12) - \Delta H^{0}(sub/vap FXeONO_{2}) - \Delta H^{0}(vap AsF_{5}) - \Delta H^{0}_{L}([XeONO_{2}][AsF_{6}])$$

$$= 359 - \Delta H^{0}(sub/vap FXeONO_{2}) - 0 - 523 = -164 - \Delta H^{0}(sub/vap FXeONO_{2}) kJ mol^{-1}$$
(A6.14)

$$\Delta S^{\circ}(A6.13) = S^{\circ}([XeONO_2][AsF_6]_{(s)}) - S^{\circ}(AsF_{5(g)}) - S^{\circ}(FXeONO_{2(s)})$$
(A6.15)

is expected to be exothermic ($\Delta H^{\circ}(A6.13) < -164 \text{ kJ mol}^{-1}$). The spontaneity of eq A6.13 is confirmed by an estimate of $\Delta S^{\circ}(A6.13)$ according to eq A6.15 where the experimental standard entropy value of (323.4 J mol⁻¹ K⁻¹)³¹⁷ is used for AsF_{5(g)}, that of [XeONO₂][AsF₆]_(s) was estimated from eq A6.8 (262 J mol⁻¹ K⁻¹), and that of FXeONO_{2(s)} was estimated by the method of Latimer,^{318,319} giving $S^{\circ}(FXeONO_{2(s)}) = 197$ J mol⁻¹ K⁻¹, so that $\Delta S^{\circ}(A6.13) = -259$ J mol⁻¹ K⁻¹. Reaction A6.13 is spontaneous under standard conditions based on the Gibbs free energy given by eq A6.16, with spontaneity increasing with decreasing temperature. Taking into account that the heat of vaporization

$$\Delta G^{\circ}(A6.13) = \Delta H^{\circ}(A6.13) - T\Delta S^{\circ}(A6.13) = -66 - \Delta H^{\circ}(sub/vap \ FXeONO_2) \ kJ \ mol^{-1}$$
(A6.16)

for AsF₅₍₁₎ is unknown but is expected to be less than that of SbF₅₍₁₎ (~27 kJ mol⁻¹)³²⁰ and the decrease in the magnitude of the negative T ΔS term for low-temperature reactions in

AsF_{5(l)}, [XeONO₂][AsF₆]_(s) is favored at lower temperatures but is unstable, decomposing according to eq A6.1 at lower temperatures (positive $T\Delta S$ term).

The thermochemistry for eq A6.1 was determined from the appropriate thermochemical cycle (eq A6.17) using the gas-phase standard enthalpy, $\Delta H^{\circ}(A6.11)$) (Table 9.1), and Gibbs free energy ($\Delta G^{\circ}(A6.11)$) according to eqs A6.18 and A6.19. The solid state decomposition of [XeONO₂][AsF₆] (eq A6.1) is significantly more endothermic than for the gas phase decomposition of the XeONO₂⁺ cation.

$$\Delta H^{\circ}(A6.1) = \Delta H^{\circ}(A6.11) - \Delta H^{\circ}_{L}([NO_{2}][AsF_{6}]) + \Delta H^{\circ}_{L}([XeONO_{2}][AsF_{6}])$$

$$= -188 \text{ kJ mol}^{-1}$$
(A6.17)
$$\Delta S^{\circ}(A6.1) = S^{\circ}([NO_{2}][AsF_{6}]_{(s)}) + S^{\circ}(Xe_{(g)}) + \frac{1}{2}S^{\circ}(O_{2(g)}) - S^{\circ}([XeONO_{2}][AsF_{6}]_{(s)})$$

$$= 207 \text{ J mol}^{-1} \text{ K}^{-1}$$
(A6.18)

$$\Delta G^{0}(A6.1) = \Delta H^{0}(A6.1) - T\Delta S^{0}(A6.1) = -250 \text{ kJ mol}^{-1}$$
(A6.19)

Table A6.1. Calculated^{*a*} Vibrational Frequencies, Raman and Infrared Intensities for $FXe^{16}O^{14}N^{16}O_2$, $FXe^{18}O^{14}N^{16}O_2$, $FXe^{16}O^{14}N^{16}O_3$, $FXe^{16}O^{16}N^{16}O_3$, $FXe^{16}O^$

					PBE	1PBE/aug-	cc-pVTZ(-PP)	_					
FXe ¹⁶ ON ¹⁶ O ₂	FXe ¹⁸ ON ¹⁶ O ₂	Δν ^{16/18}	FXe ¹⁶ ON ¹⁸ O _A ¹⁶ O ₅	Δv 16/18A d	FXe ¹⁶ ON ¹⁶ O _A ¹⁸ O ₅	Δv ^{16/18Se}	FXe ¹⁸ ON ¹⁸ O _A ¹⁶ O _S	Δν16/18-18Α /	FXe ¹⁸ ON ¹⁶ O _A ¹⁸ O ₅	$\Delta v^{16/18-185g}$	FXeO ¹⁵ NO ₂	Δv ^{14/15} h	assgnt
1732.2(50)[362]	1732.0(50)[361]	-0.2	1714.0(45)[344]	-18.2	1721.7(52)[363]	-10.5	1713.7(45)[344]	-18.5	1721.4(51)[363]	-10.8	1692.5(48)[346]	-39.7	v ₁ (A')
1357.8(12)[386]	1357.6(12)[390]	-0.2	1336.5(12)[404]	-21.3	1330.1(9)[394]	-27.7	1336.3(12)[408]	21.5	1329.8(9)[398]	-28.0	1341.5(12)[341]	-16.3	v2(A')
929.8(3)[360]	919.2(3)[328]	-10.6	919.6(4)[345]	-10.2	918.5(3)[346]	-11.3	908.4(3)314]	-21.4	907.4(3)[314]	-22.4	916.2(3)[367]	-13.6	v₃(A')
811.1(<0.1)[10]	808.9(<0.1)[10]	-2.2	807.0(<0.1)[10]	-4.1	807.0(<0.1)[10]	-4.1	804.8(<0.1)[10]	-6.3	804.8(<0.1)[10]	-6.3	790.0(<1)[10]	-21.1	v10(A")
747.5(16)[23]	722.3(12)[18]	-25.2	740.9(15)[23]	-6.6	740.7(19)[29]	-6.8	715.4(10)[16]	-32.1	714.9(15)[25]	-32.6	746.1(17)[25]	1.4	V4(A')
708.7(14)[36]	685.2(14)[44]	-23.5	700.0(16)[36]	-8.7	699.1(12)[27]	-9.6	676.9(16)[45]	-31.8	676.5(12)[33]	-32.2	708.6(14)[35]	-0.1	v5(A')
537.5(51)[255]	538.2(50)[259]	0.7	538.3(51)[255]	0.8	538.3(51)[257]	0.8	538.1(51)[257]	0.1	538.1(50)[258]	0.6	538.3(50)[258]	0.8	v₀(A')
322.5(51)[37]	327.3(24)[36]	4.8	325.7(22)[35]	3.2	331.1(24)[37]	8.6	320.4(22)[35]	2.1	325.6(24)[36]	3.1	331.9(23)[36]	9.4	v7(A')
214.1(<1)[9]	209.5(<1)[9]	-4.6	214.3(<1)[9]	0.2	214.5(<1)[9]	0.4	209.2(<1)[9]	-4.9	209.4(<1)[9]	-4.7	214.5(<1)[9]	0.4	v11(A")
207.8(6)[7]	207.5(6)[7]	-0.3	208.1(6)[7]	0.3	204.8(5)[7]	-3.0	207.1(6)[7]	-0.7	203.9(5)[7]	3.9	207.9(6)[7]	0.1	v8(A')
123.3(2)[4]	123.1(2)[4]	-0.2	122.7(2)[4]	-0.6	121.7(2)[4]	-1.6	122.4(2)[4]	-0.9	121.4(2)[4]	-1.9	123.3(2)[4]	0.0	Vo(A')
	74.6(<1)[75]	0.7	73.5(<1)[1]	-1.8	74.9(<1)[2]	-0.4	72.7(<1)[1]	-2.6	74:1(<1)[1]	-1.2	75.3(<1)[2]	0.0	v12(A")

					MP	2/aug-cc-p	VTZ(-PP)						
FXe ¹⁶ ON ¹⁶ O ₂	FXe ¹⁸ ON ¹⁶ O ₂	$\Delta v^{16/18c}$	FXe ¹⁶ ON ¹⁸ O _A ¹⁶ Os	Δv ^{16/18A d}	FXe ¹⁶ ON ¹⁶ OA ¹⁸ O8	Δv ^{16/18Se}	FXe ¹⁸ ON ¹⁸ O _A ¹⁶ O _S	Δv ^{16/18-18A} f	FXe ¹⁸ ON ¹⁶ O _A ¹⁸ O ₅	Δv ^{16/18-18S g}	FXeO ¹⁵ NO ₂	Δv ^{14/15} h	assgnt
1789.4(50)[200]	1789.4(50)[199]	0.0	1773.0(47)[191]	-16.4	1775.0(51)[200]	-14.4	1772.9(46)[191]	-16.5	1774.9(51)[200]	-14.5	1748.8(49)[192]	-40.6	v ₁ (A')
1269.4(17)[355]	1269.0(17)[363]	-0.4	1246.2(16)[371]	-23.2	1243.3(15)[366]	-26.1	1245.8(16)[379]	-23.6	1242.9(15)[375]	-26.5	1256.5(18)[311]	-12.9	v2(A')
848.8(5)[457]	843.6(6)[409]	-5.2	839.1(5)[450]	9 .7	838.4(5)[453]	-10.4	832.8(6)[400]	-16.0	832.3(6)[402]	-16.5	835.7(4)[453]	-13.1	v3(A')
769.5(<0.1)[6]	767.6(<0.1)[6]	-1.9	765.5(<0.1)[6]	-4.0	765.6(<0.1)[6]	-3.9	763.7(<0.1)[6]	-5.8	763.7(<0.1)[6]	-5.8	749.5(<1)[6]	-20.0	V10(A")
733.8(19)[51]	707.4(14)[44]	-26.4	727.7(19)[48]	-6.1	728.7(21)[60]	-5.1	700.8(13)[40]	-33.0	701.7(15)[54]	-32.1	732.5(19)[55]	-1.3	v4(A')
680.0(10)[96]	654.9(10)[101]	-25.1	673.9(11)[90]	-6.1	671.8(9)[74]	-8.2	649.3(12)[99]	V30.7	647.5(9)[79]	-32.5	679.9(10)[96]	-0.1	V5(A')
517.8(58)[320]	517.9(57)[328]	0.1	518.4(59)[319]	0.6	518.5(58)[321]	0.7	517.7(58)[325]	-0.1	517.8(57)[328]	-0.0	518.4(58)[323]	-0.4	v6(A')
344.2(39)[27]	339.4(39)[26]	-4.8	336.6(36)[26]	-7.6	342.5(39)[27]	-1.7	331.8(36)[25]	-12.4	337.5(39)[27]	6.7	343.4(38)[26]	-0.8	v7(A')
217.3(<1)[9]	212.6(<1)[9]	-4.7	217.6(<1)[4]	0.3	217.8(<1)[10]	0.5	212.4(<1)[9]	-4.9	212.6(<1)[9]	-4.7	217.7(<1)[9]	0.4	v11(A")
217.2(5)[4]	216.9(5)[4]	-0.3	217.5(6)[4]	0.3	213.6(5)[4]	-3.6	216.5(5)[4]	-0.7	212.7(5)[4]	-4.5	217.2(6)[4]	0.0	v8(A')
127.1(2)[4]	127.0(2)[4]	0.1	126.5(2)[4]	-0.6	125.7(2)[4]	-1.4	126.2(2)[4]	-0.9	125.4(2)[4]	-1.7	127.1(2)[4]	0.0	V9(A')
72.8(<1)[1]	72.1(<1)[1]	-0.7	71.0(<0.1)[1]	-1.8	72.3(<1)[1]	-0.5	70.2(<0.1)[1]		71.6(<1)[1]	-1.2	72.8(<1)[1]	0.0	v12(A")

^{*a*} aug-cc-pVTZ(-PP). Values in parentheses denote Raman intensities (Å⁴ u⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹). ^{*b*} A denotes ¹⁸O anti and S denotes ¹⁸O syn with respect to the O-Xe-F group. ^{*c*} $\Delta v^{16/18} = v(FXe^{18}ON^{16}O_2) - v(FXe^{16}ON^{16}O_2)$. ^{*d*} $\Delta v^{16/18A} = v(FXe^{16}ON^{18}O_A^{16}O_S) - v(FXe^{16}ON^{16}O_2)$. ^{*e*} $\Delta v^{16/18S} = v(FXe^{16}ON^{16}O_A^{18}O_S) - v(FXe^{16}ON^{16}O_2)$. ^{*f*} $\Delta v^{16/18-18A} = v(FXe^{18}ON^{18}O_A^{16}O_S) - v(FXe^{16}ON^{16}O_2)$. ^{*g*} $\Delta v^{16/18-18S} = v(FXe^{18}ON^{16}O_A^{18}O_S) - v(FXe^{16}ON^{16}O_2)$. ^{*f*} $\Delta v^{16/18-18A} = v(FXe^{18}ON^{18}O_A^{16}O_S) - v(FXe^{16}ON^{16}O_2)$. ^{*g*} $\Delta v^{16/18-18S} = v(FXe^{18}ON^{16}O_A^{18}O_S) - v(FXe^{16}ON^{16}O_2)$. ^{*f*} $\Delta v^{14/15} = v(FXe^{15}NO_2) - v(FXe^{16}ON^{16}O_2)$.

			fre	equencies, cm ⁻¹			
	exptl ^a		_		calcd ^b		
¹⁶ O ^{c,d}	¹⁷ O ^{c,d}	¹⁸ O ^c	_	¹⁶ O	¹⁷ O	¹⁸ O	assignts $(C_{2\nu})^e$
558.5(4) 547.5(28)	532.3 sh	531.9(1) 519.2(36)]	605.6(11)[327]	588.9(10)[317]	573.7(10)[306]	v ₇ (B ₂), v _{as} (XeO) ₂
498.0 sh	n .o.	493.2(3)		539.3(41)[76]	538.9(46)[74]	537.8(50)[71]	$v_1(A_1), v_s(XeO)_2 - v_s(XeF)_2$
437.7(7) 433.1(100)	427.4(100)	422.5(100) 418.3(14)	}	458.6(76)[6]	447.9(69)[8]	437.9(63)[9]	$v_2(A_1)$, $v_s(XeO)_2 + v_s(XeF)_2$
416.7(5) 406.6(20)		409.5(15) 403.2(58)	}	496.4(19)[448]	497.1(19)[444]	497.1(19)[440]	v ₈ (B ₂), v _{as} (XeF) ₂
235.6(1)	228.9(5)	227.4(2)		233.5(<0.1)[25]	229.9(<0.1)[25]	226.3(<0.1)[25]	ν ₆ (B ₁), δ(FXeO) 0.0.p.
193.1(10)	193.0(72)	193.1(18)		181.8(6)[4]	183.0(6)[4]	183.1(6)[4]	$v_3(A_1)$, $\delta(FXeO + \delta(FXeO))$
173.7(2)	173.7(36)	173.7(3)		159.7(1)[0]	160.4(1)[0]	160.4(1)[0]	$v_5(A_2), \rho_t(FXeO)$
159.3(6)	159.3(64)	159.3(11)		155.5(<1)[1]	156.2(<1)[1]	156.2(<1)[1]	$v_9(B_2), \delta(FXeO - \delta(FXeO))$
62.4(2)	62.2(18)	62.4(4)		61.8(7)[3]	61.8(7)[3]	61.7(7)[3]	$v_4(A_1), \delta(XeOXe)$

	Table A6.2.	Experimental	and Calculated	^{<i>a</i>} Frequencies	for O(XeF)
--	-------------	--------------	----------------	---------------------------------	------------

^{*a*} PBE1PBE/aug-cc-pVTZ(-PP). ^{*b*}Values in parentheses denote Raman intensities (Å⁴ u⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹). ^{*b*} A denotes ¹⁸O anti and S denotes ¹⁸O syn with respect to the O–Xe–F group. ^{*c*} The abbreviations (sh) and n.o. denotes a shoulder and not observed, respectively. ^{*d*} The abbreviations denote stretch (ν), bend (δ), twist (ρ_t), and out-of-plane (o.o.p.). Bond elongations and angle openings are denoted by plus (+) signs and bond contractions and angle closings are denoted by minus (–) signs.

N ¹⁶ O ¹⁸ O ⁺	N ¹⁸ O ¹⁸ O ⁺	assgnts
B3	LYP	
2417.8(<0.1)[368]	2396.2(0)[367]	$v_3(\Sigma_u^+) v_{as}(NO_2)$
1405.0(16)[<1]	1364.0(15)[0]	$v_1(\Sigma_g^+) v_s(NO_2)$
647.7(<0.1)[10]	642.1(0)[11]	$v_2(\Pi_u) \delta(NO_2)$
PBE	1PBE	. , . ,
2497.4(<0.1)[392]	2475.1(0)[390]	$v_3(\Sigma_u^+) v_{as}(NO_2)$
1447.5(16)[<1]	1405.3(15)[0]	$v_1(\Sigma_g^+) v_s(NO_2)$
667.9(<0.1)[11]	662.1(0)[12]	$v_2(\Pi_u) \delta(NO_2)$
	$\frac{N^{16}O^{18}O^{+}}{B32}$ 2417.8(<0.1)[368] 1405.0(16)[<1] 647.7(<0.1)[10] PBE 2497.4(<0.1)[392] 1447.5(16)[<1] 667.9(<0.1)[11]	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Table A6.3. Calculated^{*a*} Vibrational Frequencies (cm⁻¹) for NO₂⁺

^{*a*} The aug-cc-pVTZ basis set was used.