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Abstract 

This thesis examines available x-ray absorption spectroscopy (XAS) data for 

NiO, NaNi02 , and LiNi02 . The XAS examined is the Ni L-edge, 3dn2p6 
-t 

3dn+12p5 
. The experimental spectra are compared to spectra calculated using 

a configuration interaction approach. This approach rep!'oduces the spectra 

accurately. The NaNi02 spectrum is shown to be sensitive to the Jahn-Teller 

d8distortion, while the LiNi02 spectrum is reproduced by a hybridized d7 ­

state that explains the lack of Jahn-Teller distortion in LiNi02 • 
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Chapter 1 

Introduction and Description of 

Problem 

1.1 Statement of the Jahn-Teller Problem 

The materials NaNi02 and LiNi02 have been of interest to the condensed 

matter community for some time. LiNi02 is considered a candidate system for 

several exotic states, including frustrated quantum magnetism and resonating 

valence bonds. The central problem that has led to these suggestions is that, if 

one assumes that LiNi02 has a formal valency Lil+Ni3+o~-, and further that 

the Ni is in the low spin configuration, then LiNi02 satisfies the criteria to 

undergo a Jahn-Teller distortion, wherein the degeneracy of the single unpaired 

electron is lifted by a crystal distortion and the formation of an orbitally 

ordered state. LiNi02 , however, does not undergo any observed ordering. 

Furthermore, NaNi02 does in fact undergo such a distortion, starting from 

the same crystal structure as LiNi02 • This unlifted degeneracy is what has 

given rise to the various suggestions of exotic states in LiNi02 , and is the 

motivation for the work done in this thesis. 
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Figure 1.1: Schematic of the energy levels of the 3d Ni orbitals in NaNi02 • 

The crystal field splitting removes the lower three orbital, which are filled, 
leaving a single electron in a state degenerate in both spin and orbital degrees 
of freedom (left) which is broken below 480 K by the J ahn-Teller distortion 
(right). 

1.2 Review of the Literature 

Recent work in NaNi02 has determined conclusively its magnetic structure. 

ESR and magnetization work [1, 7] and inelastic neutron scattering [8] have 

formed a consistent picture of a triangular spin-1/2 lattice with FM spin­

spin exchange in-plane and AFM exchange inter-plane. An orbital ordering 

accompanied by a Cooperative Jahn-Teller distortion occurs at 480 K, and a 

Neel ordering occurs at 23 K. This is consistent with the Hamiltonian derived 

by Mostovoy and Khomskii [9], which predicts that the orbital and spin degrees 

of freedom are decoupled. A schematic of the energy levels of the 3d Ni orbitals 

in NaNi02 is shown in Fig. 1.1. The lower levels are occupied and largely 

removed, leaving, in the high temperature case, a single electron degenerate 

in spin and orbit, degeneracies broken by the orbital ordering at 480 K and 

spin-orbit coupling. 

The ground state of LiNi02 has been debated for some time now. An­

2 
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derson, in proposing the resonating valence bond, theorized that a triangular 

lattice anti-ferromagnet system would form a quantum liquid state[10], and 

LiNi02 has been proposed by Hirakawa as a candidate system for this to 

occur[ll]. Whether or not LiNi02 actually forms a quantum liquid, though, 

depends crucially on the specific form of the magnetic interaction between Ni 

sites. Specifically, a ferromagnetic interaction leads to ferro-ordering, while an 

anti-ferromagnetic interaction leads to geometric frustration, and possibly for­

mation of a resonating valence bond (RVB) state [10]. In the case of LiNi02 , 

the interactions of interest are the orbital interactions, as the orbital degree 

of freedom in a d shell with 7 electrons becomes a two-state system when the 

crystal field splitting is large enough to force the system into a low spin con­

figuration. This has sparked interest in determining the magnetic interactions 

in LiNi02 . Hirakawa et al. [12] and Yoshizawa et al. [13] both reported fea­

tureless neutron data consistent with a lack of long range magnetic order, and 

anomalous behaviour in the magnetization, which Yoshizawa et al. attribute 

to the formation of a spin glass, as does Hirota et al. (14]. Reimers et al. 

[15], however, showed that there is a certain amount of exchange between Ni 

and Li sites, which occurs in all samples, regardless of stoichiometry. This 

site exchange can frustrate the ordering in LiNi02 , [16], if the in-plane and 

inter-plane spin magnetic interactions are the same as those found in NaNi02 

[8], which has FM in-plane interactions and AFM inter-plane. Mostovoy and 

Khomskii, [9], and Holzapfel et al. [2] support this interpretation by pointing 

out that, in LiNi02 , the orbital and spin degrees of freedom decouple, implying 

that frustration of the magnetic ordering by spin-orbit interaction is unlikely. 

Another approach, though, has found the lack of orbital order in LiNi02 

to be intrinsic to the electronic structure of the compound. Kitaoka et al., 

[17] attribute the lack of orbital order to quantum fluctuations melting a FM 

ordered state, based on NMR measurements. Reynaud et al. [18] propose a 

model with FM spin-spin interactions between electrons in the same orbital 

on two different sites, and AFM interactions between electrons on different 

orbitals, contradicting Mostovoy and Khomskii's calculation that the orbit and 

3 
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spin are decoupled. Dare et al. [19] propose the crystal field splitting of the 

0 2p orbitals as a mechanism for introducing an AFM exchange path between 

Ni sites. Penc et al. [20] and Vernay et al [21] use a spin-orbit model on a 

cluster in a mean field extrapolated out to large cluster size to conclude that 

the orbitally ordered state in NaNi02 and a spin-dimer quantum fluid state 

in LiNi02 can exist close enough in parameter space to explain the differences 

between NaNi02 and LiNi02 . 

A third line of thinking has focussed on the hole-doped Mott insulator 

LixNh-xO, using optical absorption measurements. Sawatzky and co-workers, 

[4, 5, 3] present a series of x-ray absorption spectroscopy (XAS), x-ray pho­

toemission spectroscopy (XPS) and bremsstrahlung isochromat spectroscopy 

(BIS) measurements on the 0 2p and Ni 3d electrons to establish that, in 

LixNh-xO, the holes introduced by the Li go onto the 0 2p orbitals, not the 

Ni 3d orbitals, leaving Ni with the valency d8L, where L refers to a hole on 

the ligand orbital. Montoro et al. [6] and Kang et al. [22] have applied this 

to LiNi02 , however their data may not be accurate (see section 4.3), and they 

do not attempt to calculate the LiNi02 spectrum. 

Broadly speaking, then, the literature on LiNi02 is divided into the follow­

ing three categories: (1) intrinsic frustration of orbital ordering, either caused 

by competing FM and AFM exchange channels between Ni sites or quantum 

fluctuations arising from the degeneracy; (2) frustration caused by Ni ions in 

the Li layer, either as impurities or an exchange of Ni and Li sites; and (3) Ni 

2+ ions dominating due to 0 2p hole occupancy, a possibility that most of the 

literature in the first two categories ignores. The explanation of why NaNi02 

and LiNi02 , while isostructural, behave differently, is given, respectively, as: 

(1) the Jahn-Teller distortion is sensitive to small changes in parmeters arising 

from crystal structure; (2) Li is closer in size to Ni than Na is, thus mak­

ing exchange of Li and Ni more likely; (3) the different crystal environment 

changes the electronegativity of the 0 ions, thus making the Ni2+ state more 

likely in LiNi02 . This thesis applies a sophisticated configuration interaction 

(CI) routine, XTLS 8.30 [23], to new XAS data on LiNi02 , to determine the 

4 
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formal valency of Ni in this compound. We also examine NaNi02 and NiO for 

comparison. 
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Chapter 2 

Description of Materials and 

Measurement 

2.1 Crystal Structure 

The NiO crystal forms a NaCl structure, with alternating Ni and 0 sites[24]. 

The formal valency in this situation is Ni2+, 0 2-. In the materials LiNi02 

and NaNi02 , above 480 K, every other layer of Ni ions is replaced by a layer 

of Li or Na ions, respectively, distorting the crystal structure and removing 

the fourfold rotation symmetries of the cubic symmetry, leaving a three-fold 

rotation and the point group D3d in the space group R3m, as visualized in 

Fig. 2.1[25]. The symmetry operations in this case are a three-fold rotation 

axis down the c-axis, three two-fold rotation axis perpendicular to the c-axis, 

and inversion (which generates a series of mirror planes). In NaNi02 , there is 

a further lowering of symmetry due to a cooperative Jahn-Teller distortion at 

480K, to a C2h point group with a C2/m space group, which removes all orbital 

degeneracy [1, 7]. This transition elongates the 0 octehedra surrounding the 

Ni ion along one axis. Thus the nearest neighbour Ni-0 bonds go from six of 

equal length (1.98 A) to four shorter (1.91 A) and two longer (2.14 A) bonds[1]. 

The R3m phase can be viewed as a four-atom unit cell, with the following 

7 
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Figure 2.1: Crystal structure of MNi02 , in the R3m symmetry, clearly showing 
the stacked triangular planes of M, Ni , 0. 

primitive translation vectors: 

a1 (av'3/6, a/2 , c/3) 

a2 (av'3/ 6, -a/ 2, c/ 3) 

a3 ( -2av'3/ 6, 0, c/ 3) 

In the same coordinate system, the other three ions not at the origin are 

all on the z (c) axis: 

TNi (0 , 0, 0) 

TM (0 , 0, c/ 2) 

TQl (0 , 0, x(O) c) 

TQ2 (0, 0, (1- x(O)) c) 

It is often useful to approximate a lower symmetry by a higher one, which 

simplifies the crystal field and hopping terms that will be discussed later. 

However one should ask what the effect will be of making this approximation. 

8 
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Material a(A) b(A) c (A) {3 x(O) z(O) 
5.31 2.84 5.57 110.44 0.282 0.799 
4.98 2.87 5.01 109.3 0.26 0.77 

Table 2.1: Room temperature crystal parameters. The NaNi02 parameters 
were taken from [1], while LiNi02 was taken from [2]. Both are given in terms 
of the C2/ m structure. 

For the purposes of this thesis, the approximation we want to consider is 

modeling the transition D3d -+ C2 as the transition Oh -+ D4h· Physically, 

this can be pictured as assuming that the six surrounding 0 ions around a 

given Ni ion are in a regular octehedral arrangement, instead of the distorted 

one which is the real case, and then viewing the Jahn-Teller distotion as an 

elongation of the octehedra along one axis. Since in both the D3d -+ C2 and 

Oh -+ D4h cases, the 0 ions go from six equidistant ions to a set of four 

equidistant ions and a set of two equidistant ions, what we want to look at is 

how the bond angle changes. From [2], we have the following bond angles: for 

LiNi02, there are 6 angles of 93.2, and a corresponding six at 86.6, while for 

NaNi02, there four at 94.8, and two at 95.1, again with their complimentary 

angles. The difference between this and the octehedral case, is a 0.003 A 
difference in the position of the nearest neighbour 0 ions. We will discuss the 

effects that this approximation has in the sections on the relevant terms below. 

2.2 Materials Synthesis and Measurement 

The data for NaNi02 and NiO was taken from [3]. The LiNi02 samples mea­

sured were provided by the neutron scattering group of Bruce Gaulin at Mc­

Master. 

The data analysed in this thesis is x-ray absorption spectra (XAS) of 

LiNi02, NaNi02, and NiO. The absorption processes we look at are the Ni 

L edge and the 0 K edge. The Ni L edge consists of an absorption pro­

cess that excites a 2p core electron on the Ni ion to the 3d valence shell, 

2p6 3dn -+ 2p53dn+l. This process is expected to occur in the energy range 

9 




MSc Thesis- E. A. Mills- McMaster- Dept of Physics & Astronomy 

835-850 eV. Two broad peaks are expected, due to the large core spin-orbit 

coupling, with finer details present in each that depend on the available 3d 

states [3]. The 0 K edge consists of an absorption process that excites a ls 

electron on the 0 ion into a valence state just above the 2p levels. In both 

cases what is measured are the decay products of the core hole, either Auger 

electrons (TEY) or emitted photons (TFY). 

The NiL edge and 0 Kedge measurements were performed at the SGM 

beamline of the Canadian Light Source. The sample was at room temperature, 

in a vacuum with a presure of 5 x 10-9 mbar. The TFY measurements require 

a self-absorption correction, which was done following [26], using the data 

tabulated in [27]. 

The samples of LiNi02 used in this thesis were measured with both total 

electron yield (TEY) and total fiouresence yield (TFY). Measurements taken 

from [3, 6] used TEY measurements and, to our knowledge, did not perform 

TFY measurements for comparison. The TEY technique measures all electrons 

escaping the sample for a given incident photon energy. It is assumed that the 

majority of the electrons emitted are Auger electrons coming from the decay 

of the 2p hole created by the incident photon. Whether this assumption is 

valid is the source of ongoing controversy, but the ease of measurement makes 

this a widely used technique in XAS. For our purposes, more relevant is the 

probing depth of the procedure. The depth is limited to the mean free path of 

the emitted electrons in the substance studied, which, for NiO, NaNi02 , and 

LiNi02 , is rv20 Angstroms [28]. For NiO and NaNi02 , both of which can be 

made in high quality, this is probably not a significant limitation. For LiNi02 , 

however, the tendency of Li20 to precipitate out of the sample and collect on 

the surface, which, for a powder sample, cannot be adequately cleaned, makes 

a probe of the bulk sample desireable. TFY is limited only by the mean free 

path of the x-rays emitted, which is large enough to ensure probing of the bulk 

sample. 

10 




Chapter 3 

Theory of Configuration 

Interaction 

3.1 The Hamiltonian 

In analysing the XAS data, we use a configuration interaction ( CI) Hamilto­

nian, which considers, in the intial state, the 3d orbitals of a single Ni ion. 

Electrons occupying the ten states in the 3d orbital sit in an external poten­

tial created by the crystal field, and interact with each other via the Coulomb 

interaction. To take into account the surrounding ligand orbitals (the 0 2p 

band), we introduce a hopping term between the Ni site and the ligand band, 

which we consider to be at some energy ~ relative to the Ni orbitals. In the 

excited state, we consider the Ni 2p core electrons; both the spin-orbit coupling 

in those states, and the Coulomb interaction between the 2p electrons and the 

3d electrons. 

Thus we have the following [3]: 

H = Ho + Hu + Hso (3.1) 

11 
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where 

+ L [tpd(/L, v)dJyv + H.c.] (3.2) 
p,,v 

(3.3) 

Hso = L (p(//1· sJ1')c~c1' 
,,,' 


+ L Upd(/L, {, fL1 
, 1')d~d~t'c~c1, (3.4) 

J.t,/,J.t' ,,, 

where IL indexes orbit and spin of the Ni d-orbitals and v indexes the 0 p­

orbitals. We want to work out the matrix elements in the configuration in­

teraction scheme of a cluster consisting of a Ni ion and a surrounding oxygen 

octehedron, which we will account for as a ligand orbital. To do so, we use the 

following basis: 

Jd;,p,',p,")i = dp,dp,'dp,"/d10 )/p10 
) 

/d~.~t'Lv)i = d~td~t'Pv/d10 )/p10 ) 

/d!L~,v,)i = dp,PvPv'/d10)/p10 
) 

/d
10L~,v',v" )i = PvPv1Pv11 /d

10
) /P10

) (3.5) 

for the initial state, and, for the final state, with a 2p electron excited into the 

3d shell, 

/d~,p,') /,-y = d~td~t'c-y/d10 ) Jp10 
) Jp6) 

/d!LJ J,-y = dp,pvc,/dlO) JplO) Jp6) 

/d
10

J2,v') /,/ = PvPv'c,/d10 
) /p10

) /p6
) (3.6) 

where Jp10
) refers to the ligand p orbitals, and Jp6) refers to the Ni core 2p 

orbital. Here the combination of ligand 0 2p orbitals is taken to be a d 

12 
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T T~lOJ,ldlO) T 
"'IuMu 

NiO 
~+U 

I lGL'­
~++U 

MNi02d•D 
~ 

_Vl J: fG'1 
l j_u~ 


Figure 3.1: Energy level diagrams for the configuration interaction calculations 
for NiO and MNi02 • Diagram based on those in [3, 4, 5]. The levels for a given 
n are broadened by the multiplet and crystal field terms, and mixed by the 
hopping terms. 

orbital labelled as \p10); this approximation is equivalent to a priori taking 

into account the selection rules governing hopping from the 0 2p band to the 

Ni 3d orbital. 

3.2 The single particle matrix elements 

First we consider the matrix elements of 3.2: Ed,p and tpd· Ed,p will be deter­

mined by the crystal field splitting, and~' the charge-transfer energy. The tpd 

terms will consist of Slater-Koster integrals. We will consider each of these. 

13 
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3.2.1 The crystal field 

For the potential at the origin due to the crystal ions, we have 

1
V(f') ex L _, 

R Jr- RJ 

To find the matrix of the Hamiltonian in the single particle basis, we use the 

following identity: 

where R = (R, 8, <I>), Yz,m is the usual spherical harmonics, and where we have 

assumed that R > r, to get 

00 l l 4 
V(f') =Ze2 LL L _;+l 2z: Yi~m(8,<I>)Yz,m(O,¢) (3.8)1R l=O m=-l 

In this form, we can cast the problem in terms of perturbation theory, with 

H= Hatom+ V 

where Hatom is the hamiltonian of the atom in free space, for which we want 

to consider the degenerate 3d orbitals, which will have the form 

J'l/Jm) = f(r)l2,m 

where f(r) is the radial depence. 

Thus, to use first order degenerate perturbation theory, we consider the 

14 
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integral: 

X JY2,-m'Yz,mY2,m" sin OdOdcp (3.9) 

We know that 

( 4 + 1)(2Z + 1) ( 4 + 1)j Y2,-m'Y'i,mY2,m" sin OdOdcp = 
41r 

Where 

are the Wigner 3j symbols [29]. From the properties of the Wigner 3j symbols[29], 

namely, 

we can see that 

/2 - l/ ~ 2 ~ 2 + l 

O~l~4 

Also, since 

2 l 2)=0
( 0 0 0 

for 2 + l + 2 odd, then l must be even. So l = 0, 2, 4 are the only non-zero 

terms. In addition, we have the condition that 

So that, for a given m, the only non-zero terms are those matrix elements for 
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which 

m' + m" = m 

So, defining 

2 2 2 2 
5 ~ ( l ) ( ) - Wt,m',m,m11V2f+l 0 0 0 -m' m m" 

we have 

(3.11) 

Since the values of the various Wigner 3-j symbols are known, we are left 

with two things we need to calculate: the radial moments of the wavefunctions, 

and the term 

(3.12) 

from Eq. (3.11), for l = 0, 2, 4. 

There are two approaches we will consider for this thesis. In the first, 

we use tabulated values for the many electron atomic wavefunctions in the 

Hartree-Fock approach [30] to estimate the radial integrals, and use the Ewald 

summation (see appendix A) to calculate the terms Eq. (3.12) over the infinite 

crystal. The consensus in the literature [31] is that this method will give the 

ordering of the eigenstates and a rough guess as to the magnitude of the 

splitting, in cases where the splitting is well defined. The second approach, 

which will be taken up in the next section in more detail, is to use the apparatus 

of group theory to reduce the crystal field terms to one or two parameters based 

on the (approximate) symmetry of the crystal that can be varied to determine 

an empirical best fit to some measured spectrum. 
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3.2.2 	 Group Theory and the symmetry specific form for 

the crystal field 

To put the crystal field into a form that explicitly takes into account the sym­

metry of the lattice, we make use of group theory. Specifically, if R, some 

rotation and/or reflection operator, commutes with H, the Hamiltonian, then 

there are no matrix elements of H between states which are eigenstates of R 

with different eigenvalues of R [32]. Thus, classifying our orbital wavefunctions 

in terms of their properties under symmetry operations of the lattice, which 

commute with the crystal field Hamiltonian, will greatly simplify the Hamilto­

nian by allowing us to set many of the matrix elements to zero. To make use 

of this analysis, we will work in a basis that makes the angular dependence on 

x, y, z explicit: 

Y2,o = 41y ; (5 (3zr 2 

2 
- 1) = ((), cp I3z

2 
- r 

2) (3.13) 

-1 	 -1 {15 (xz)v'2 (Y2,1- 12,-1) =TV-; ?i = (e, c/Jixz) (3.14) 

i 	 1[¥5yzrn (121 +12 -1) = - --2 = (e, c/Jiyz) (3.15)
v2 ' ' 4 7T r 

1 1 {15x2- y2
v'2 (12,2 +12,-2) = sV-; r2 = (e, c/Jix2- y2) (3.16) 

i 	 1fj5xyrn (12 -2-12 2) = - --2 = (e, c/Jixy) (3.17)
v2 ' ' 8 7T r 

We can now examine which group representations each of these forms trans­

forms under, which have been tabulated for convenience [32]. 

Under the Oh group, character tables in [32] show that the quadratic forms 

(3z2 
- r2, x2- y2) transform into each other under the E reprensentation, while 

the forms (xy, xz, yz) transform into each other under the T2 representation. 

One way of visualizing this physically is to consider the permutation of the 

coordinate axes, which leaves the Hamiltonian invariant for the Oh case. Send­

ing x ~ y,y ~ z,z ~ x obviously sends the set (xy, xz, yz) onto itself, and, 
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also, under this permutation, it can be seen that the set (3z2 - r 2 , x2 - y2) also 

transforms onto itself. 

Following standard notation, the eigenstates (3.13) and (3.16) are referred 

to as the e9 orbitals (transforming like E), and the states 3.14, 3.15, and 3.17 

are the t 29 orbitals (transforming under T2). While symmetry considerations 

determine only the degeneracies, and not the actual energy levels of these 

states, general physical arguments show that, for an atom surrounded by an 

octehedron of negatively charged atoms, the e9 level will be at a higher energy 

than the t 29 level. So for this case there are two energy levels, and applying the 

condition that the energies add to 0 reduces this to one splitting parameter, 

traditionally referred to as 10Dq. The condition that the energy sums to zero 

is simply the condition that it is the l = 2, 4 sums in Eq. (3.12) that are of 

consequence, as the l = 0 sum will be taken into account in ~-

For the symmetry D4h, the fact that the reflection planes in the xy,xz, and 

yz planes remain implies that the eignestates of Oh remain, but the degen­

eracies have been removed (as permutation of axes no longer commutes with 

the Hamiltonian), except for the degeneracy of the jxz), jyz) states that arises 

from the remaining four-fold rotation axis. This leaves three parameters, as 

there are four energy states and the condition that the energies add up to zero. 

For D 3d, the situation is more complicated. The character table implies 

that, in distorting from Oh to D 3d, there will still be two states transforming 

under the E representation, while the T2 representation will be split into E and 

A1 ; thus there will be three energy levels. There will also be a free parameter 

that determines the eigenstates of the system, which will be dependent on the 

choice of coordinates. Of course, the eigenstates of Oh are also dependant 

on the choice of coordinates, but in that case there is an obvious and widely 

used choice, which is not the case for D3d. In this work the D3d symmetry 

will be taken into account via the Madelung sum over an infinite crystal in a 

point-charge approximation; the general form will not be used. 

For the C2h symmetry, very little can be determined from group theoret­

ical calculations, on account of the low number of symmetry transformations 
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(namely, one two-fold rotation and one mirror plane). There are no degen­

eracies in the general case. However as C2h is contained in D3d, D4h, and 

oh, certain parameters for a crystal with a c2h point group will lead to the 

situations discussed above. 

3.2.3 The Hopping terms 

Ht describes the hopping from one ion to another. Here, we restrict hopping to 

0-Ni hopping. The hopping elements will be the overlap of the wavefunction 

on one site with the wavefunction on another; that is, we want the integral 

(3.18) 


where H in 3.18 represents the kinetic and external potential energy operators. 

We simplify this integral by making the approximations that the wavefunctions 

involved are atomic orbitals, and furthermore, that the only potential we cons­

dicier is the potential due to the ions at the origin and at the site Ri; i.e., we 

neglect the crystal field. Doing this allows us to take the vector ~ as our ez 

vector and quantize the angular momentum around it. The standard notation 

for this is to label the orbital angular momentum eigenstates with respect to 

the axis joining the atomic centres as, for the p orbital, pO" and p1f± for m 1 = 0 

and mz = ±1, respectively, and for the d orbital, dO", dn±, and d8±, for m1 = 0, 

mz = ±1, and mz = ±2, respectively. Once so labeled, we can note that, as 

the two centre approximation has rotational symmetry about the inter-atomic 

axis, l along that axis is a good quantum number, and thus there will be no 

mixing of orbitals with different mz values. So, we can label the integrals like 

Eq. (3.18) with m 1 = 0 as (pdO"), and the components with m1 = ±1 as (pdn) 

(for hopping from ad orbital to a p orbital), and leave these integrals, which 

will in general be difficult, to be fitted empirically. Then, the only remaining 

task is to determine the coefficients for these integrals for some general hopping 

from a d orbital at the origin to a p orbital at an arbitrary direction. These 

coefficients have been tabulated in terms of direction cosines [33]. The result 

19 




MSc Thesis- E. A. Mills- McMaster- Dept of Physics & Astronomy 

of most interest to this thesis is that for the case in which the surrounding 

ions form a regular octehedra, for which we can take each of the ions to lie on 

one of the x, y, z axes. Considering the ions that lie on the z axis, our usual 

spherical harmonics are already quantized with respect to the axis between the 

atoms. To use this we need, in addition to Eq. (3.13-3.17) for the d orbitals, 

the following for the p orbitals: 

Yi,o = ~~ (~) = (e, ¢1z) (3.19) 

1 1 {3 (X)J2 (Yi,1- Yi,-1) = -4V; -:;: = (B, ¢1x) (3.20) 

i 1 {3 (Y)J2 (Y1,1 + Y1,-1) = "4V; -:;: = (e, ¢1Y) (3.21) 

So, upon inspection, we can see that the only two orbitals with mt = 0 

are l3z2 - r 2 ) and lz). Thus the only overlap involving the integral (pd()) 

is E3z2-r2,z = (pd()) (using Slater's notation [33]). Also, the orbitals lxy) 
2and lx2 

- y ) are composed of lmd = 2 harmonics, and thus will not have 

any overlap with the p orbitals. Also, we can see that, if we assume that 

(pdn)_ = (pdn+) = (pdn), then the matrix elements between orbitals like 

Yi + Y_1 and Y1 - Y_ 1 will be zero, which leaves, as the only non-zero ele­

ments, 

Eyz,y = Exz,x = (pd1r) 

We could now consider the general rotation from this case, but it will suffice 

to consider permutations of the axes. Note that all permutations of x, y, z will 

take t29 orbitals onto other t29 orbitals, and e9 orbitals onto other e9 orbitals. 

Thus in the octahedral case, only e9 orbitals participate in () bonding, while 

only t 29 orbitals participate in 1r bonding. 

For the t29 orbitals, the permutations leave, for an atom on the x axis, the 

non-zero elements are: 

Exz,z = Exy,y = (pd1r) 
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and, for an atom on they axis, 

Exy,x = Eyz,z = (pdn) 

For the eg orbitals, we need the following: 

\y2- z2) =- (-~\3z2- r2) + \x2- y2)) (3.22) 

\z2- x2) = ( ~\3z2- r2) -\x2- y2)) (3.23) 

from which we can conclude that terms we want are: 

ExLy2,x = -f(pdG') (3.24) 

ExLy2 ,y = .J.; (pdG') (3.25) 

Thus, adding the contributions from the ions on the positive and negative 

axis, for the case with cubic symmetry, we can take our hopping elements to 

be[33]: 

tpd(3z2 - r2) = v'3(pdG') (3.26) 

tpd(x2 - y2) = v'3(pdG') (3.27) 

tpd(xy) = 2(pdn) (3.28) 

tpd(xz) = 2(pdn) (3.29) 

tpd(yz) = 2(pdn) (3.30) 

3.3 The two particle matrix elements 

Since we have more than one hole on the Ni d orbitals, we must consider 

the terms in our Hamiltonian that correspond to interaction terms between 

different configurations of putting three holes on the ten possible sites on the 

d-orbital. We consider only the electrostatic interaction between electrons. 

The derivation that follows will roughly follow [34], with notations updated for 

21 




MSc Thesis- E. A. Mills- McMaster- Dept of Physics & Astronomy 

consistency. Disregarding the magnetic interaction leaves both orbital angular 

momentum and spin angular momentum as good quantum numbers for the 

central field problem, so we can diagonalize the multiplet Hamiltonian by 

choosing angular momentum eigenstates. To enumerate then the states, we 

simply have to count the number of combinations of states with ML and Ms 

allowed by the number of electrons present and the angular momentum states 

that they are in. So, considering the state with one electron, or equivalently, 

one hole, in the d-orbital, the state must be a spin-1/2, l = 2 state. For two or 

electrons or holes, we can have singlet states (spin-0) or triplet states (spin-1). 

Considering the possible combinations of orbital occupations, the singlet states 

will have angular momenta given by l = 0, l = 2, or l = 4, while the triplet 

state allows l = 1 or l = 3. Less obvious is the possible states given by three 

electrons or holes: for the doublet (S = 1/2), l = 1, l = 2 (two different ways) 

l = 3, and l = 4, while for the quadruplet (S = 3/2), l = 1 and l = 3 [34]. 

Starting from this point, we can use wave mechanics to reduce the interaction 

integrals between the various wavefunctions that make up these eigenstates. 

The two electron term, e2 /rij, is non-trivial for multiple electron (hole) 

states. In wave notation, we have: 

(3.31) 

To do this integral we expand the potential by means of the identity used 

previously: 

(3.32) 

where r< and r> are the lesser and greater of ri and rj· Since our wavefunc­

tions are atomic orbitals, the angular components will be given by spherical 

harmonics, so the properties used in section 3.2.1 will apply here as welL Doing 

so, and recalling the properties of the Wigner 3j symbols, allows us to reduce 

Eq. (3.31) to the form: 
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X L
00 

ck(limi; lrmr )ck(ltTnt; ljmj )Rk(ij; rt) (3.33) 
k=O 

where we define 

ck(l·m··l m) = J 4n Jy;[m;[y;[mry;m;-mrdD, 
~ ~' r r 2z+ l l; lr k 

X (-l)(m;+[m;[+mr+[mr[+(m;-mr)+[m;-mr[)/2 (3.34) 

and 

(3.35) 

where R(r) and Y,m(O, ¢) are the usual radial and angular components of the 

wavefunction. Now, since we label our states by angular momentum, in which 

basis the electron-electron Hamiltonian is diagonal, we will be considering 

matrix elements that look like: 

(ij!Hiij) 

while, for the terms betweeen the d electrons and those in the core p orbitals, 

which we will want to consider for the XAS comparison, we will have terms of 

the form 

(ij!Hiij) ± (ij!Hiji) 

i.e., the direct energy and the exchange energy. So, we can define the following 
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1 m F 2 (dd) F 4 (dd) 
3 1 -58/441 5/441 
1 1 77/441 -70/441 
4 0 50/441 15/441 
2 0 -13/441 50/441 
0 0 140/441 140/441 

Table 3.1: Diagonal matrix elements for d2 . 

1 m F 2 (dd) 
3 3/2 -93/441 
2 3/2 42/441 
5 1/2 -12/441 
4 1/2 -57/441 
3 1/2 123/441 
2 1/2 105/441 
2 1/2 69/441 
1 1/2 -12/441 

F4 (dd) 
-30/441 

-105/441 
30/441 
55/441 
-45/441 
105/441 
-15/441 
30/441 

Table 3.2: Diagonal matrix elements for d3
. 

Slater integrals: 

Fk(nili; njlj) Rk(ij; ij) (3.36) 

Gk(nili; njlj) - Rk(ij;ji) (3.37) 

so that 

2 

(ij/~/ij) - L
00 

ck(limi; limi)ck(ljmj; ljmj)Fk(nili; nili) (3.38) 
r12 k=O 

2 

(ij/~/ji) - Om.;,msi L
00 

[ck(limi; ljmj)t Gk(nili; njlj) (3.39) 
r12 k=O 

Now, as we saw in section 3.2.1, the angular integrals are known (since the 

angular wavefunctions are), while the radial integrals are, in general, not. The 

angular integrals are sums of Wigner 3j coefficients, which are tabulated in 

[34], and listed here in Tables 3.1 and 3.2. 

The parameter U is the energy difference of the lowest energy state of 
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one multiplet to the next[35]; ie, instead of including F0 (dd), explicitly, we 

determine it implicitly as being the value that makes the lowest energy of 

some multiplet state we choose, as in Fig. 3.1. 

A commonly used convention in multiplet calculation is the Racah param­

eters. These are given by: 

(3.40) 

(3.41) 

(3.42) 

where Ao is a multiple of F0 ' and hence determined by udd· These parameters 

have, in addition to the removal of some unwieldly coefficients in Table 3.2, 

the property that the ratio B / C is expected to be largely independent of the 

radial distribution, and hence the specific material. 

3.4 Calculating the Spectra 

Enumerating the possible occupations of 2-3 holes on the 10 3d orbital states 

and the corresponding 10 ligand states produces an enormous number("'10000) 

of basis states. To take these into account, some groups have simplified the 

states; e.g., [36] takes into account only whether the orbital is eg or t2g, not 

which orbital it is. In this work, the calculation uses the full basis, with a 

Lanczos-type large matrix diagonalization routine (referred to as the Haydock 

Recursion method) to obtain the lowest energies and eigenstates [28]. This 

requires using the theory outlined above to calculate HI'¢) for a given state 

vector 1'¢). The Lanczos algorithm repeatedly applies H to a randomized 

vector to generate a subspace of n basis vectors, where n is much less than 

the original number of basis states, and where, for increasing n, the procedure 

produces the ground state with arbitrary accuracy. While this has the benefit 

of presumably being more accurate, as it considers all states as unique, as 
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well as allowing crystal field symmetries lower than those possible in [36], 

the drawback is that one cannot confine the calculation to a specific angular 

momentum manifold without determining a priori what basis states belong to 

that manifold. 

The configuration interaction calculation provides initial and final states 

and energies for the process of absorption of an x-ray with the excitation 

2p63dn ---+ 2p5 3dn+l, referred to as the Ni L edge. The difference in energy 

between the initial and final states will determine the energies of the possible 

transitions, while the amplitude of the transitions will be determined by the 

transition matrix; that is, we will have the following spectral function [23]: 

F(w) = L l(fiT(w)liW6(w + Ei- E,) (3.43) 
f 

where w is the energy of the absorbed photon, T(w) the transition matrix. For 

XAS, we can take the transition matrix to simply be the dipole operator. So: 

(3.44) 

Since the dipole operator is a sum of single particle operators, then we 

need only consider the matrix elements ('¢k(r)lrl'¢k'(r)). The transitions we 

are considering are those from the 2p shell to the 3d shell, which means that 

we want elements of the form('¢1,1,m1,m.(r)lrl'¢2,2,m1,ms(r)). 

These elements can be greatly simplified by use of the Wigner-Eckart the­

orem, which states that the matrix elements of the dipole operator (or any 

tensor operator) will obey the following[37]: 

(a'liiTkllo:j)
(o:', j'm'IT~k) lo:, jm) = (jk; mqljk; j'm') J

2
j + 

1 
(3.45) 

where j and m are the usual angular momentum labels, and o: refers to all 

other quantum numbers. k refers to the rank of the tensor operator, which, 

for the dipole operator is 1, and q runs from -k to +k, and is the spherical 
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component of the tensor. The two parts of the left hand part of Eq. (3.45) 

are the Clebsh-Gordan coefficient, and the so called reduced matrix element 

ofT, which depends only on a, a', j, and j'. What this theorem does is reduce 

the elements that need to be calculated. In this case, since the only non­

angular momentum quantum number in this problem is the pricinple number, 

and we are only considering the 2p --+ 3d transition, we only need to look 

at the possible transitions of total angular momentum j of the single particle 

wavefunctions. Since the electrons in this system are spin 1/2 particles in either 

the p (l = 1) orbital or the d (l = 2) orbital, we have possible transitions from 

states with j = 1/2,3/2 to j = 3/2,5/2 states. Since T is a rank 1 tensor, 

the difference in j between the states must be 1 or less, which leaves the only 

elements that need to be calculated as: 

(jt = 3/2\\T\\j = 1/2) (3.46) 

(jt = 3/2\\T\\j = 3/2) (3.47) 

(jt = 5/2\\T\\j = 3/2) (3.48) 

as all others are determined from these three and the relevant Clebsh-Gordan 

coefficients. These elements themselves are obtained numerically from a Local 

Density Approximation calculation [23]. 

The broadening comes from two sources: screening of the core hole (valence 

electron) by the many-body system, and the finite lifetime of the excitation, 

which will be taken into account here following [38]. 

If we re-write the spectral function in terms oft rather than w, it takes the 

form, for a given final state f, 

100 

F(w) = dtexp(i(E1 - Ei)tjn)(J(t)\T\i) 

which, for the case of \f(t)) = constant, reduces to Eq. (3.43). In the presence 

of screening by the lattice, though, the function (J(t)\T(w)\i) will decay with 
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a Gaussian lifetime, 

which, upon the Fourier transform, implies that 

F(w) = exp (;;:) (3.49) 

The lifetime of the excitation can be taken as an exponential, so that 

(f(t)jTji) = exp ( ~t) 

which, upon Fourier transform, leaves a Lorentzian, 

F(w)- ~ 1 
(3.50) 

- 7f7 W2+ (n/T)2 

Thus, both of these effects can be taken into account from known values 

for excitation lifetimes and charge screening in the crystal, by broadening 

the spectrum from eq 3.43 with a Gaussian convoluted with a Lorentzian. 

As the characteristic times for these processes are known from other work, 

the Gaussian and Lorentzian broadening can be determined. In this thesis 

the values used are (FWHM) 1.0 eV and 0.4 eV for the Gaussian and the 

Lorentzian, respectively[3]. 

Once the spectrum has been calculated, is is compared to the experimental 

spectra to determine the x2 fit. The parameters in H are then varied system­

atically, using the Nelder-Mead simplex algorithm to minimize x2 and arrive 

at a set of best-fit parameters. 
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Chapter 4 

Results and Discussion 

4.1 NiO 

To test the methods described above, we examine NiO, for which the literature 

provides a wealth of data and theory, and for which we expect the XAS to 

be clean, without contaminating spectra from displaced Ni ions, due to the 

relative ease in synthesizing the high quality samples of this compound. 

The two methods discussed for taking into account the crystal field poten­

tial are identical for NiO, as the symmetry of the crystal is Oh, so there is no 

approximation needed to reduce the crystal field to one parameter. 

The spectrum of NiO is seen to be a good fit with calculations that assume 

a d8 occupation of the 3d orbital. Using XTLS 8.30, with a fitted Oh crystal 

field symmetry, we vary U, 10Dq, .6., and (pdO') to fit the measured data, 

taken from [3]. Minimizing the error between the calculated spectrum and 

experiment results in the parameters listed in Table 4.1. Looking at Fig. 4.1, 

we see that the procedure reproduced the qualitative features of the spectrum 

quite well. Comparing values we obtained with those cited in the literature, 

Table 4.1, we see that the values listed are reasonable. 

We might expect that the Coulomb repulsion energy will depend solely on 

the Ni ion and be fairly insensitive to the specific environment, so that we 

should keep that fixed throughout the calculations; however, determining this 
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NiO Experiment compared to Calculated Spectra 

Calculated 

Experiment 

845 850 855 860 865 870 875 880 
Energy (eV) 

Figure 4.1: Measured NiO XAS from [3], and calculated spectrum from this 
work. The features of the experimental spectrum are well reproduced in the 
calculated spectrum. 

10Dq u ~ (pda-) (p 
This work 1.0 6.0 5.0 1.7 11.33 
[36] 6.8 5.2 1.3 
[39] 5.0 4.6 1.0 

Table 4.1: Parameters obtained for NiO in this thesis, with comparison to 
parameters obtained by other groups on the same compound. All values given 
in eV. 
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value from the NiO spectrum is problematic. The problem is that, for a wide 

range of energies of U and D., the d10L2 state is energetically removed from 

the problem, leaving the two states d8 and d?L. But, when only considering 

two states, the only relevant energy is D., and U does not play a large role. 

Thus the spectrum contains limited information about U, which is born out 

in calculations in Fig. 4.2, which vary U over a range of 2 eV. 

Calculated Spectra of NiO for various Values of U 

U) 

1: 
::::J 
·"" 

1 

~ 
U) 
1: 

~ 

7.0eV 

6.6eV 

6.2eV 

5.8 eV 

5.4eV 

5.0eV 

845 850 855 860 865 870 875 

Energy (eV) 

Figure 4.2: Calculated spectra for NiO for different values of U, illustrating 
the difficulty in using the spectrum to determine values for U. 

The charge transfer energy is a function of several things. Primarily, it 

reflects the electronegativity of the 0 ion, the Ni ion, and, to a lesser extent, 

the external potential from the surrounding ions. The external potential could 

be addressed in an approximate way by performing a Madelung sum over the 

infinite crystal within a point charge model, but as the most important effects 

are almost certainly the short range and quantum in nature, it is unclear if 

this is of any value. The electronegativity is not typically calculated. What 

a "reasonable" difference in D. between NiO, LiNi02 , and NaNi02 is, is then 
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difficult to determine. This will be taken up again in section 4.4. 

For NiO, once again the value of (pdO') is difficult to determine with accu­

racy, due to the fact that the d?L state is removed in energy from the energies 

of the hopping terms. As we can see in Fig. 4.3, the spectrum is insensitive to 

changes in the hopping parameters. 

Calculated Spectra of NiO for various Values of (pds) 

..,. 
:t: c 
::I 

il 
.!!!. 
~ 
c "' Gl 
:§ 

845 850 855 860 865 870 875 

1.7 eV 

1.6 eV 

1.5 eV 

1.4eV 

1.3 eV 

1.2 

Energy (eV) 

Figure 4.3: Calculated spectrum for NiO for varying values of (pdO'). As 
in the previous figure, we see that the spectrum is insensitive to changes in 
parameters over a wide range. 

So, while one might be tempted to think that NiO would provide a basis 

for parameters for further calculations, this is hampered by the fact that the 

spectrum is sensitive to two important parameters: the total energy of the d9 L 

state, given by .Ll, and, to a lesser extend, the crystal field splitting lODq. 
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Energy (eV) Jxy) j3z2 - r 2) jyz) jxz) Jx2 _ y2) 

-0.190 0.832 0 -0.554 0 0 
-0.165 0 0.778 0 -0.370 -0.507 
-0.053 0 0.062 0 -0.759 0.649 
0.052 0 0.625 0 0.536 0.567 
0.355 -0.554 0 -0.832 0 0 

Table 4.2: Results of the Madelung sum calculation for NaNi02 • This symme­
try here is lower than cubic, and the intra- e9 and t 29 splitting is of the same 
order as the inter- splitting. This calls into question the validity of the point 
charge model used in the Madelung sum 

4.2 	 NaNi02 -Describing the Jahn-Teller Dis­

tortion 

We reproduce the spectrum by a calculation that explicitly takes into account 

the Jahn-Teller distortion of NaNi02 • This can be done using the CI software 

available. The method of using the Ewald sum to find expressions for the 

terms Eq. (3.12) was employed, producing Table 4.2. Unfortunately, this 

procedure does not allow the experimental spectrum to be reproduced. Why 

this is will be discussed below. The approximate symmetry D4h, allowing two 

free parameters to vary (the total splitting, and the e9 splitting induced by the 

Jahn-Teller distortion) can reproduce the spectrum calculated via the Ewald 

sum (fig 4.4), giving confidence that this is an acceptable approximation, as 

well as the experimental spectrum for NaNi02 (fig 4.6). 

Thus, the transition was modeled as Oh --t D4h, which is expected to be a 

reasonable approximation, as the energy splitting is a much more important 

effect than the eigenstate mixing that is ignored in this approximation. To 

test this, the spectrum generated by the Ewald sum technique was compared 

with a spectrum assuming D4h symmetry, with the energy levels taken from 

the Ewald sum. Having done this, we can compare the calculated spectrum for 

different Jahn-Teller splittings of the e9 states, with the spectrum for NaNi02 , 

and also that of PrNi03 , from [40], a Ni3+ compound that does not undergo 

a J ahn-Teller distortion. This provides strong evidence that the height of the 
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Calculated spectra for C2h and D4h symmetry NaNi02 

D4h symmetry 

C2h symmetry 

845 850 855 860 865 870 875 
Energy (eV) 

Figure 4.4: Calculations for NaNi02 for the actual symmetry (via the Ewald 
sum of the terms in Eq. (3.12)) and for the approximate D4h symmetry. 
The Ewald summation does not do a good job of reproducing the spectrum 
here, while the approximate symmetry can reproduce the actual symmetry 
calculation, as well as the experimental spectrum (see fig 4.6) 
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lower energy peak is a function of the orbital order in the system. 

Calculated Spectra of NaNi02 for various Values of Jahn-Teller Splitting 

Cil 
:t: 

NaNi02 

<:: 1.6::I 

.e 1.4 

.!. 
~ 1.2 
U) 
<:: 1.0 
~ 0.8 

0.6 

0.4 

0.2 

0.0 

PrNi03 

845 850 855 	 860 865 870 875 880 

Energy (eV) 

Figure 4.5: XAS for NaNi02 , with a e9 splitting from 0 to 1.6 eV. This splitting 
is much larger than that explained by the crystal field. This can be compared 
with the XAS for PrNi03 , the features of which look more like the undistorted 
spectrum. 

The reader will note, however, that the e9 splittings listed in Fig. 4.5 

are too large to be accounted for by the crystal field effects of the physical 

distortion of the surrounding ions. This points to cooperative effect of 

the orbital ordering- we are only using 1 Ni ion and surrounding ligand 

orbitals, when the real Ni ion is surrounded by six nearest neighbour Ni ions. 

In the ordered state, then, the energy levels of the orbitals will be determined 

not only by the crystal field, but by the orbital exchange coupling between 

the Ni site and the six NN Ni sites. Thus we can view the crystal field as an 

effective parameter, which, for the e9 splitting, is dominated by a mean field 

contribution from the orbital Ni-Ni superexchange interaction. 

To estimate, then, the effective splitting that the orbital states will have in 
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10Dq JT splitting (pd(J") (pdn) u 
1.5 1.5 1.7 -0.77 6.0 13.2 11.89 

Table 4.3: Parameters determined for NaNi02 by providing best fit between 
calculated and experimental spectrum 

the ordered state, we can use the orbital exchange coupling from [9]: 

2t4U 
(4.1)Jr =-~3(2~: UP) 

which, when we put in the values we have for ~ and t, and use the value for 

Up estimated in [4], gives Jr = 0.06, which, for 6 nearest neighbour ions, gives 

an effective splitting of 0.72 eV. With a crystal field splitting of 0.3 eV, this 

gives a total effective splitting of 1.0 eV, which is still smaller than what is 

found for the spectrum. However the point charge model is expected to be 

least accurate in determining the magnitude of the e9 splitting, so there is a 

fair bit of error in the estimated crystal field splitting. So the crystal field 

in this case is a combination of the physical crystal field resulting from the 

coulomb potential of the ions in the crystal lattice, and an effective potential 

resulting from the orbital exchange interaction with the surrounding Ni ions 

in the orbitally ordered state. An interesting thing to note here is that the 

crystal field is actually smaller than the orbital exchange contribution; thus we 

can assume that the exchange pathways between Ni sites are more important 

in determining the orbital ordering than the symmetry breaking of the local 

environment. The hopping is assumed to be unaffected by the distortion. 

The parameters in Table 4.3 are those which produce the best fit between 

the measured spectrum and the calculated spectrum. Here, ~ is larger than 

U by 5.2 eV, which represents the energy of the dB L state above the d7 ground 

state. The spectrum, though, is somewhat insensitive to changes in ~ and 

(pd(J"), as seen in figs. 4.7. This is a consequence of the fact that the spectrum 

is most sensitive to the orbital ordering, as seen above, so that a certain amount 

of mixing with the dB L state, the magnitude of which is determined by the 

parameters ~ and (pd(J"), will not change the overall shape significantly. To 
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pursue this further, we can examine two spectra with very different values 

of the Ni occupation. In Fig. 4.8, we have a calculated spectrum with a Ni 

3d occupation of 7.25, which results from the parameters listed in Table 4.3, 

.	and another in which we have removed all states except the d7 state, thus 

forcing a 3d occupation of 7.0. The spectrum are the same, illustrating that 

the spectrum is insensitive to the presence of the d8L state. 

NaNi02 calculated vs. experiment 

Calculated 

Experimental 

845 850 855 860 865 870 875 
Energy (eV) 

Figure 4.6: Final calculated spectrum for NaNi02 , compared to experimental 
data from [3]. 

4.3 LiNi02 - Determining the Formal Valency 

The XAS presented here has a different shape than that of other groups. The 

two spectra are compared in Fig. 4.11, and while the TEY spectrum matches 

with that obtained in [3, 6], shown in Fig. 4.10, the TFY spectrum, which we 

expect to be a better probe of the bulk sample, is significantly different. 
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Calculated Spectra of NaNi02 for various Values of Delta 

(i) 
:t:: 
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Figure 4.7: NaNi02 spectra for various values of ,6.. Of particular interest is 
the movement of the shoulder peak of the 872 e V feature. 
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NaNi02 at different 3d occupations 

3d OCC=7.2 

3d oce=7.0 

845 850 
 855 860 865 870 875 


Energy (eV) 


Figure 4.8: Calculated NaNi02 , with and without inclusion of the d8 state, 
which raises the 3d occupation. 
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In addition, one can also note that the spectrum here is not a combination 

of spectra for NiO and NaNi02 , or even other Ni 3+ low-spin compounds such 

as PrNi03 , as suggested in [6, 22]. Instead, the shape of the spectrum cannot 

be reproduced by a linear combination of d! and d8 spectra. 

Measured Spectra for Total Electron Yield and Total Flourescence Yield 

-~ 
c:: 
~ TFY 
5 

TEY 

840 850 860 870 880 
Energy 

Figure 4.9: XAS data obtained via TEY and TFY measurements, for compar­
ison to Fig. 4.11 

The procedure outlined in sec. 3.4 produced the calculated spectrum in 

Fig. 4.11, produced from the parameters listed in Table 4.4, which is compared 

to the experimental spectrum. One can immediately see that the calculated 

spectrum does not reproduce the features of the measurement as well as for 

the previous two compounds. This will be discussed below. 

lODq Ni lODq ligand U ~ (pda) (pd7r) 
0.7 -0.6 6.0 5.6 1.95 -1.25 11.49 


Table 4.4: Best fit parameters for LiNi02 
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850 860 870 


845 850 855 860 865 870 875 880 885 


Figure 4.10: XAS obtained by [3], [6]. These data, which are TEY data, are 
consistent with the TEY data obtained here, and hence different than the TFY 
data that is a more accurate probe of the bulk electronic structure. 
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LiNi02 calculated compared to experiment 

Calculated 

Experiment 

840 845 850 855 860 865 870 875 
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Figure 4.11: Calculated and Experimental spectra for LiNi02 The qualitative 
features are reproduced, although less accurately than for NiO and NaNi02 • 
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To reproduce the spectrum here, a very small Ni lODq (< 0.1eV) was 

necessary. This could be the result of the large hybridization with the 0 2p 

states, as those states are in a crystal field whose splitting we expect to be 

opposite to that of the Ni site. Indeed, including a negative splitting on the 

ligand orbital has the same effect on the calculated spectrum as a vanishing 

splitting on the Ni site, shown in Fig. 4.12. In addition, the magnitudes 

for (pda) and (pd1r) are at the very high end of what is reasonable given the 

corresponding values for NaNi02 and standard procedures for estimating these 

values. However, given the fact that the effective crystal field splitting has been 

reduced by the hybridization, lowering the magnitude of the hopping elements 

would result in a high-spin state for the Ni ion, and a spectrum that is certainly 

not correct, in addition to conflicting with other experimental evidence about 

the compound [25]. 

LiNi02 for splittings with and without splitting of the 0 sites 

Ni + 0 site -----­

Ni site 

845 850 855 860 
Energy (eV) 

865 870 875 

Figure 4.12: Calculated spectrum for LiNi02 for the case of 10Dq = 0, and for 
the case of a splitting of 0.7 eV on the Ni site and -0.6 eV on the ligand site. 

The most obvious deviation of the calculated spectrum from the experi­
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Calculated Spectra of LiNi02 for various Values of Delta 

Ci) 
:t:: c 
:::1 

.e 

.!!!. 
~ 
CJ) 
c 
Q) 

'!: 

5.6 

5.2 

4.8 

4.4 

4.0 

3.6 

845 850 855 860 865 870 875 880 
Energy (eV) 

Figure 4.13: LiNi02 vs . .6.. The movement of the feature between the two 
main peaks is what is of interest here. As expected, it is somewhat sensitive 
to .6.. 

mental is in the feature at 865 eV, which is not seen at all in the experiment. 

This feature appears in other XAS calculations [41], and is expected to be 

dependent on .6., as shown in Fig. 4.13. If then, one assumes that the spec­

trum consists of a sum of Ni ions in slightly different environments, due to the 

exchange of Ni and Li ions which is known to take place in this compound [15], 

then the addition of these spectra could smear out features between the two 

main peaks, while the features in the main peaks do not change and would be 

unaffected. Whether this is actually the case is difficult to determine. 

One issue with the parameters and spectrum presented here is that the 

hopping parameters are larger than those for comparable compounds [23, 36]. 

An argument for why they are large here is as follows: The splitting (or effective 

splitting) on the Ni site must be small to give even a qualitative fit to the data, 

as seen in Fig. 4.14. That being the case, the hopping values found here are 
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Calculated Spectra of UNi02 for various Values of 1 ODq 

(i) 
-~ c: 
::I 
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1.0 eV 

0.9eV 

0.8eV 

0.7eV 

Experiment 

845 850 855 860 865 870 875 

Energy (eV) 

Figure 4.14: LiNi02 vs. lODq. What is seen here is that the features of the 
857 eV peak change as a function of lODq, with a second shoulder peak at 
lower energy emerging as lODq is increased. 

the smallest that will keep the system in the low spin configuration, as the 

effective splitting from the crystal field and the hopping terms must be larger 

than the Hund's coupling, which favours the high spin state. 

Given that the hybridization is large, one question that can be asked is 

whether the assumption of a single ion surrounded by a ligand orbital is justi­

fied. The 0 2p band in Eq. (3.2) is assumed to be flat, however obviously this 

is not actually the case, and we might expect effects coming from the 2p band 

structure to play a role in a system with a large degree of hybridization. Since, 

throughout a series of fits, the experimental spectrum is only reproduced with 

even qualitative accuracy for parameters that lead to a hybridized state with a 

mostly d8 L character, we can conclude that hybrization is essential for describ­

ing the spectrum of this compound. The features in the spectrum that are not 

reproduced in the experiment may be artifacts of the assumptions about the 
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2p band structure. 

In addition to the Ni L edge, one can examine the 0 K edge spectrum, in 

which the absorption process is one of exciting an electron from the 0 1s shell 

to the lowest levels above the fermi surface. The spectrum here is much broader 

than that of the Ni L edge, as might be expected when exciting the electron 

into a conduction band rather than a localized orbital, but the feature we are 

interested in is whether we see a 0 2p hole immediately below the conduction 

band spectrum. This feature was observed for the series LixNi1_xO in [4, 5] at 

528-530 eV, reproduced here in Fig. 4.15. 

4.4 Comparison of NaNi02 and LiNi02 

To summarize, the XAS of N aNi02 is well fitted by a calculation which predicts 

the Ni to be in the low spin, d7 state, in the presence of a Jahn-Teller distortion. 

This is consistent with other studies of NaNi02. In addition, the spectrum 

calculated here is dependent on the Jahn-Teller distortion in a way that can 

be measured. LiNi02 , on the other hand, cannot be fit by either a d7 spectrum 

or a d8 spectrum, or some linear combination of the two. LiNi02 requires a 

strongly hybridized state to achieve even qualitative agreement between the 

calculated spectrum and the experimental spectrum. This result is clear from 

the new XAS data presented here, which are qualitatively different than that 

used in [3, 6, 22]. 

Since there is a higher valency in LiNi02 , we expect that the energy gain 

from a Jahn-Teller distortion will be reduced. To quantify this, we compare 

the energy gain for a small distortion of the ground state for the parameters 

for LiNi02 and NaNi02 , Fig. 4.17. The slope of the energy vs. distortion at 0 

distortion is a factor of ten larger in magnitude for NaNi02 than for LiNi02 • 

Since the distortion costs energy by moving the ions from their equilibrium 

position, this difference in energy explains the lack of distortion in LiNi02 . 

One can now ask the question, what is different between the two materials. 

The slightly closer distance of the Ni-0 bonds in LiNi02 compared to N aNi02 

46 




MSc Thesis- E. A. Mills- McMaster- Dept of Physics & Astronomy 

Li 2 0 

··~·.v.••p..:,:/..-.:,:-,·.':"·:~·j.•.~l 

525 530 535 540 545 

Figure 4.15: 0 Kedge data from [4]. One can clearly see the feature opening 
up at 528-530 eV, below the conduction band spectrum, that is indicative of 
a hole on the 0 2p orbital 
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Figure 4.16: 0 Kedge data from this work. The feature at 530 eV observed 
in Fig. 4.15 is present in the TFY data, indicative of a hole on the 0 2p shell. 
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Energy of LiNi02 and NaNi02 as a function of Jahn-Teller Distortion 
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Figure 4.17: Energy of the ground state as a function of Jahn-Teller distortion. 
The slope at 0 distortion is given, it is a factor of 10 larger for NaNi02 than 
for LiNi02 • 
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Figure 4.18: Diagram of NiO, NaNi02 , and LiNi02 , illustrating the effect of 
l:i<U 

makes the overlap integrals (pdu) and (pdrr) slightly larger in magnitude for 

LiNi02 , which has some impact, but the biggest difference seems to be the 

value of !1. Ascribing this as the "cause" of the difference in formal valency, and 

hence in orbital ordering, is somewhat problematic, as !1 is a phenomenological 

parameter, and hence we don't know what underlying physical processes drive 

the difference between the two materials. In this analysis, !1 emerges through 

process of elimination; the difference in materials must be due to !1 as the 

hopping parameters and U cannot be very different, and the crystal field does 

not affect the spectrum or the valency enough to be of much impact. Optical 

absorption measurements comparing LiNi02 and NaNi02 above and below the 

Jahn-Teller transition in NaNi02 at 480 K may yield more information as to 

the intrinsic differences between these materials. 
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4.5 Future Work 

Susceptibility and neutron scattering measurements on LiNi02 show that the 

magnetic spins are spin 1/2. Thus, ifNi is in a spin 1 state with a spin 1/2 

hole on the surrounding 0, the Ni spin and the hole must be coupled anti­

ferromagnetically in a doublet state, reminiscent of the Zhang-Rice singlet in 

the cuprates, in which a spin 1/2 on the Cu2+ forms a singlet with a hole on a 

neighbouring 0 ion. The strength of this coupling is estimated in [4] to be on 

the order of 0.5 eV, thus determining the splitting between the total spin 1/2 

and spin 3/2 states. This splitting may be observable in high energy inelastic 

neutron scattering. In addition, the large direct Ni-0 exchange will dominate 

the effective interaction between the spin 1/2 magnetic moments. The nature 

of the effective Ni-Ni exchange will depend crucially on the interaction between 

the 0 holes. In Fig. 4.19 two possibilities are illustrated, showing how the 

Ni-Ni interaction between a given pair may be mediated by either one or 

two hole occupied 0 sites. An interaction mediated by two 0 holes is shown 

schematically in Fig. 4.20, illustrating the important role the 0-0 interaction 

has. 

Another interesting possibility arises from the fact that the presence of 

holes on the 0 sites may distort the lattice. The lattice distortion may be able 

to explain the local distortion observed in [18, 25]. 

Additionally, each Ni spin-1 site will, on average, have 3 nearest neighbour 

0 spin 1/2 holes, any one of which can couple to form the spin-1/2 doublet. 

If several coupling arrangments are degenerate, as shown schematically in Fig. 

4.21, this can lead to RVB type physics in LiNi02 
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Figure 4.19: Schematic of possibilites for the occupied 0 sites . The ground 
state will depend on the nature of the hole-hole nearest neighbour interation 
on the 0 sites. 
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Figure 4.20: Schematic of couplings in a Ni20 2 plaquette, mediated by two 
spin-1 / 2 holes on the 0 sites. The interaction J' is important here and its 
nature is unknown. 
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Figure 4.21: For a given ground state 0 hole occupation, there is t he degen­
eracy of doublet formation between the spin on the Ni and the spin on the 0 

54 




Chapter 5 

Conclusions 

We have examined XAS data for NiO, NaNi02 , and LiNi02 , both published 

and unpublished, using configuration interaction software XTLS 8.30, while 

varying parameters to find x2 best fit values. The NiO spectrum was found to 

be insensitive to all but two parameters, making it less ideal for establishing a 

baseline than had been hoped. It has been determined that NaNi02 spectrum 

is well described by a d7 state, with the presence of a Jahn-Teller distortion 

that induces an orbital ordering. The spectrum of LiNi02 cannot be described 

by a linear combination of d7 and d8 spectra, in contrast to previous work on 

the subject. LiNi02 displays features described by a large degree of hybridiza­

tion between the Ni 3d orbitals and the 0 2p orbitals. This suggests several 

promising avenues for theoretical and experimental work, with the possibility 

of a quantum liquid state in LiNi02 , and calls for more work on the interaction 

between the 0 2p holes. 
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Appendix A 

The Ewald Sum 

To evaluate the crystal field, we must consider a sum of the type 

to evaluate the Coloumb potential from every atom in the crystal, where d 
is summed over all atoms in the unit cell, Rover every lattice position in all 

space, and QJis the charge ofthe ion. The sum of QJiS zero, since the crystal 

is electrically neutral. Unfortunately, this sum is conditionally convergent, 

which presents two problems: the sum will converge slowly, and, worse, can be 

made to converge to any value by choosing a suitable ordering of summation. 

The fact that the sum can be made to converge to any value can be viewed 

physically as assigning the crsytal a net surface charge; different orderings of 

the summation correspond to different surface charges, and hence different 

crystal potentials. Fortunately, Ewald's method will allow us to address both 

these issues by recasting the sum as an absolutely convergent one. Here we 

follow [42] and [43] in the derivation of the Ewald sum. To start, we note that 
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Now we take 

and see that is must be periodic in fi. Thus we can express it in terms of the 

reciprocal lattice by means of a Fourier transform: 

(A.l) 

where 

Fg = ~J~~ e-(li-fi)2p2e-iK.JdJ (A.2) 
R 

and K are the reciprocal lattice points, and V is the volume of integration. 

We can multiply this by eiK-R = 1 (by the definition of a reciprocal lattice 

vector) to get 

F~ = ~_2_J"'""'e-(d-R)2p2-ik(li-R)dJ 
K VV1f ~ 

R 

Now, since the integeral is over all space, a transformation R- J =? d1 does 

not change the value of the integeral. Thus, transforming each term likewise, 

(A.3) 

Evaluating this integral gives: 

(A.4) 

where Vc is the unit cell volume. At this point we note that if we split the 

integral into two parts, and substitute (A.l): 

where g is termed the splitting parameter. For the R = 0 term in the real 
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sum, we note that 

00 00
2 100 -d2p2d 1- e p-- - 2 1 e-~ P2 dp- - 2 1 e-~ P2 dp

..jirg d ..jirg v'1ro 
2 1g ~ 2-- e- Pdp

v'1ro 

so that, we have, evaluating the reciprocal space integral in (A.5), 

where 

_, ""' 1S(d) = ~ _, _, 
Rfo id- Rl 

Since these terms involve e-K
2 

and erfc(R), they both converge rapidly. The 

reason why the K = 0 term is ignored is that it will be the same for each 

sublattice, which means that for a neutral unit cell, we will be cancelling it, 

since our overall sum will be something of the form S(J)- 8(0). In effect, we 

have contained all the divergence due to surface charge in the K= 0 term, and 

thus by setting it equal to 0 overall, we ensure that our crystal is electrically 

neutral. Just how fast each term converges is controlled by g; in general, there 

is a trade-off between the rate of convergence of the reciprocal space sum and 

the real space sum. If g is chosen to be on the order of ~, with R the length 

of a primitive translation vector, then both sums converge quickly. Pursuing 

a more detailed argument for setting g, we can follow [44] and [45]: 

Assume that we want the error in the real sum to fall below some value e-P, 

where p is a parameter controlling the error. Then, since we expect erfc(g · R) 

to behave as e-g
2 

R 
2 

for large R, we get 

v'Pg=- (A.7)
R 
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where R here is the cutoff value for the real space sum. 

Since the reciprocal sum terms depend on e-K
2

/ 
4Y

2 
, we have 

2p
K= 2gyp=­ (A.8)

R 

So, eqs. A.7 and A.8 give a relationship between g, R, and K that will hold re­

turn a given accuracy e-P for a given real space cutoff R. The calculations here 

typically used p = 26 and R = 10, with R in Angstroms and p dimensionless. 

It is important to note that the individual terms S(d) as calculated by 

Ewald sum do not have any physical meaning on their own. It is only when 

they are combined to form a electrically neutral unit cell that they aquire 

the meaning of the electrostatic potential at the origin[42]. This can be seen 

clearly by noting that S(J) converges for a lattice composed entirely of, say, 

positive ions. Yet in reality the energy obviously diverges; essentially we are 

no longer justified in removing the K = 0 term. Also of note is that while 

the final result will be in dependant of the splitting parameter g (at least in 

theory), each S(J) will not[43]. 

For l = 0, we know that the spherical harmonic is 

Yr* = _1_ 
0 y'4;: 

so we have 
"'_1_ _!_ = _1_S(J) (A.9)
~ y'4;: R y'4;:

R 

for each sublattice. So this sum is easily evaluated using the Ewald technique. 

In any case, at l = 0, we have that m' = m" is the only term for which the 

Wigner 3j symbols do not go to 0. Further, the Wigner symbols are all equal 

for m' = m", so the contribution of l = 0 to the Hamiltonian matrix is a 

constant addition to the diagonal elements. It is easily seen that this will shift 

the eigenvalues by a constant but not affect the splitting between them. Thus 
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we can ignore the l = 0 term when the splitting is what we are after; however, 

having the capacity to evaluate the l = 0 term, which corresponds to the point 

energy of the atom, is a useful check on the program, since these energies are 

tabulated for many common crystals[43]. 

For the l = 2 term, 

we convert the spherical harmonics into cartesian coordinates: 

(A.lO) 

(A.ll) 

(A.12) 

where 

We can see from this that 

(A.13) 

So substituting the Ewald sum and taking the required derivatives, we get[46]: 

- - 41f L Gij(K)e-K2f4g2+i:R.J 
Vc ~ 


KfO 


+ L[Slij(l- R)- S2ij(d- R)] 
f¥o 

-Yij (A.14) 
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where 

G··(K) = KiKj (A.l5)
~J K2 

2R2 _, )
Sl··(R) = [J.. 2g ~ erfc(giRI) (A.l6)~J ~J ( Viii R2 + R3 

82 ··(R) = R.R. ([~ ~] 3erfc(giRI)) (A.17)~J .LL<j J yl1rR2 + yl1rR4 + R5 

8ij 3~Rj {) ..... 
y;. = -- + --+ Sl··(d - S2··(d) (A.l8)

~J d3 d5 ~J ~J 

We also note here that in the limiting case d---+ 0, 

4g3
Y.·---8··

~J~J - 3yi7r 

These terms are relatively easy to compute since many of the factors needed 

are already calculated and stored for computing the l = 0 term For the l = 4 

terms, since the terms have a factor of R 5 in them, the individual sublat­

tices are absolutely convergent. Thus these terms can be evaluated without 

modification for each sublattice. 

The last piece necessary for the crystal field calculation is the radial ex­

pectation values, (r2
) and (r4

). These were calculated from ref [30], using 

Rootham-Hartree-Fock atomic wavefunctions. 
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Appendix B 

Detailed Ground State 

Information 

B.l NiO 

//Program input 

XCRD: 

( 

II XAS calculation Ni dB 

Dq=1.0; // 10Dq value 

pds=1.7; //hopping parameters 

pdp=-pds/2.2; 

Udd=6.0; // d-d Coulomb repulsion value 

Dt=5.0; // Charge transfer energy 

II Slater Integrals for multiplet structure 

F2dd=10.45; 

F4dd=7.35; 

F2pd=7.72; 

G1pd=5.79; 

G3pd=3.29; 

II Spin-orbit coupling 
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xi=11. 3464; 

) 

II Initial and Final Configurations considered 

CNFG: 

2p 3d Ld 

#i1 6 8 10 

#i2 6 9 9 

#i3 6 10 8 

#f1 5 9 10 

#f2 5 10 9 

XEND: 

STOP: 

====================================== 
Xtls ver. 8.30 coded by Arata Tanaka on 6th Sep. 2004 

compiled for scaler machine 

====== state #i ========= 

# 1 E= -3.04247780890822 

Orbit ==> 3d 

Sx= 0.1166654 Sy= 0.000000 Sz= -0.4938412 

Lx= -0.8772830E-16 Ly= 0.000000 Lz= 0.7216450E-15 

Mx= -0.2333309 My= 0.000000 Mz= 0.9876824 

Tx= 0.1897787E-14 Ty= 0.000000 Tz= -0.3903128E-16 

s-2= 1.869639 

SySz+SzSy= 0.000000 SzSx+SxSz= -0.3700758 

SxSy+SySx= 0.000000 

3Sx-2-S-2= -1.453095 
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3Sz-2-S-2= 0.7655436 

sy-2-Sz-2= -0.2599735E-01 sz-2-Sx-2= 0.7395463 

sx-2-sy-2= -0.7135489 

L-2= 11.37038 

LyLz+LzLy= 0.000000 LzLx+LxLz= 0.2394014E-14 

LxLy+LyLx= 0.000000 

3Lx-2-L-2= 0.4301499E-14 3Ly-2-L-2= 0.1915750E-14 

3Lz-2-L-2= -0.6217249E-14 

Ly-2-Lz-2= 0.2711000E-14 Lz-2-Lx-2= -0.3506249E-14 

Lx-2-Ly-2= 0.7952495E-15 

J-2= 13.24002 

JyJz+JzJy= 0.000000 JzJx+JxJz= -0.3700758 

JxJy+JyJx= 0.000000 

3Jx-2-J-2= -1.453095 

3Jz-2-J-2= 0.7655436 

Jy-2-Jz-2= -0.2599735E-01 Jz-2-Jx-2= 0.7395463 

Orbit ==> ld 

Sx= 0.6460210E-02 Sy= 0.000000 Sz= -0.2734587E-01 

Lx= -0.5015432E-15 Ly= 0.000000 Lz= -0.2411482E-14 

Mx= -0.1292042E-01 My= 0.000000 Mz= 0.5469174E-01 

Tx= -0.1093019E-14 Ty= 0.000000 Tz= -0.1180821E-15 

s-2= o.7951315E-o1 

SySz+SzSy= 0.000000 SzSx+SxSz= -0.6690080E-03 

SxSy+SySx= 0.000000 

3Sx-2-S-2= -0.2626846E-02 3Sy-2-S-2= 0.1242928E-02 

3Sz-2-S-2= 0.1383918E-02 
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Sy~2-Sz~2= -0.4699695E-04 Sz~2-Sx~2= 0.1336922E-02 


Sx~2-Sy~2= -0.1289925E-02 


L~2= 0.6296212 


LyLz+LzLy= 0.000000 LzLx+LxLz= 0.4247138E-14 


LxLy+LyLx= 0.000000 


3Lx~2-L~2= -0.4967632E-14 3Ly~2-L~2= -0.2581884E-14 


3Lz~2-L~2= 0.7549517E-14 


Ly~2-Lz~2= -0.3377134E-14 Lz~2-Lx~2= 0.4172383E-14 


Lx~2-Ly~2= -0.7952495E-15 


r2= 0.7091344 


JyJz+JzJy= 0.000000 JzJx+JxJz= -0.6690080E-03 


JxJy+JyJx= 0.000000 


3Jx~2-J~2= -0.2626846E-02 3Jy~2-J~2= 0.1242928E-02 


3Jz~2-J~2= 0.1383918E-02 


Jy~2-Jz~2= -0.4699695E-04 Jz~2-Jx~2= 0.1336922E-02 


Jx~2-Jy~2= -0.1289925E-02 


Orbit #1 ==>3d Orbit #2 ==>ld 

<S_2 S_1>= 0.2542372E-01<L_2 L_1>= -0.1133656E-26 

<J_2 J_1>= 0.2542372E-01 

Total moments over the orbitals specified in 11 Mag11 command. 

<S_2 S_1>= 2.000000 <L_2 L_1>= 12.00000 

<J_2 J_1>= 14.00000 

configuration mixing -------- ­

# 1 E= -3.04247780890822 


CI=#i1 89.6684119497364 % 


CI=#i2 10.1694891533274 % 
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CI=#i3 0.162098896936246 % 

====== state #i ========= 

# 1 E= -3.04247780890822 


C4 -0.0488 0.5212 


C3 0.2134 0.2257 


C2 -0.9025 0.0000 


Orbit => 3d 

----- electron occupation --- ­

m down up down up Jz J=3/2 J=5/2 

2 0.8866 0.6397 Eg u 0.7732 0.2793 5/2 0.6397 

1 1.0000 1.0000 Eg v 0.7732 0.2793 3/2 0.9093 0.9773 

0 0.7732 0.2793 T2g a 1.0000 1.0000 1/2 0. 7117 0.5676 

-1 1.0000 1.0000 T2g b 1.0000 1.0000 -1/2 0.9093 0.8639 

-2 0.8866 0.6397 T2g c 1.0000 1.0000 -3/2 0. 7117 0.9279 

sum 4.5463 3.5586 -5/2 0.8866 

total 8.1049 


Orbit => ld 


----- electron occupation --- ­

m down up down up Jz J=3/2 J=5/2 

2 0.9937 0.9800 Eg u 0.9874 0.9601 5/2 0.9800 

1 1.0000 1.0000 Eg v 0.9874 0.9601 3/2 0.9950 0.9987 

0 0.9874 0.9601 T2g a 1.0000 1.0000 1/2 0.9840 0.9761 

-1 1.0000 1.0000 T2g b 1.0000 1.0000 -1/2 0.9950 0.9925 

-2 0.9937 0.9800 T2g c 1.0000 1.0000 -3/2 0.9840 0.9960 

sum 4.9749 4.9202 -5/2 0.9937 

total 9.8951 
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B.2 NaNi02 

XCRD: 

( 

II Input of Parameters 

I I parameters we can vary 

Dq=1.5; \\ Crystal Field splitting 

pds=1.7; \\hopping term 

Jt=0.737158; \\ Jahn-Teller splitting 

Udd=6.0; \\ d-d Coulomb repulsion 

Dt=13.1894; \\Charge Transfer Energy 

xi=11.8917; \\ spin-orbit coupling 

II Slater integrals for the multiplet terms 

F2dd=10.45; 

F4dd=7.35; 

F2pd=7.72; 

G1pd=5.79; 

G3pd=3.29; 

II Configurations considered 

CNFG: 

2p 3d Ld 

#i1 6 7 10 

#i2 6 8 9 

#i3 6 9 8 

#i4 6 10 7 

#f1 5 8 10 

#f2 5 9 9 
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#f3 5 10 8 


XEND: 


STOP: 


II Program Output 


====================================== 

Xtls ver. 8.30 coded by Arata Tanaka on 6th Sep. 2004 


compiled for scaler machine 


====== state #i ========= 


# 1 E= -5.92893328355149 


Orbit ==> 3d 

Sx= 0.6675136E-01 Sy= 0.000000 Sz= -0.4616470 

Lx= 0.1963538E-15 Ly= 0.000000 Lz= 0.2220446E-15 

Mx= -0.1335027 My= 0.000000 Mz= 0.9232939 

Tx= -0.1851441E-01 Ty= 0.000000 Tz= -0.2560883 

s~2= o.8282715 


SySz+SzSy= 0.000000 SzSx+SxSz= 0.3747003E-15 


SxSy+SySx= 0.000000 


3Sx~2-S~2= 0.4516615E-15 3Sy~2-S~2= -0.8957507E-15 


3Sz~2-S~2= 0.4440892E-15 

Sy~2-Sz~2= -0.4466133E-15 Sz~2-Sx~2= -0.2524106E-17 

Sx~2-Sy~2= 0.4491374E-15 

1~2= 17.37453 


LyLz+LzLy= 0.000000 LzLx+LxLz= 0.2513098E-13 


LxLy+LyLx= 0.000000 


3Lx~2-L~2= 3.155956 

3Lz~2-L~2= -6.311911 

Ly~2-Lz~2= 3.155956 

69 



MSc Thesis- E. A. Mills- McMaster- Dept of Physics & Astronomy 

LxA2-LyA2= -0.1487656E-14 

r2= 18. 20280 

JyJz+JzJy= 0.000000 JzJx+JxJz= 0.2831763E-13 

JxJy+JyJx= 0.000000 

3JxA2-r2= 3.155956 

3JzA2-r2= -6.311911 

JyA2-JzA2= 3.155956 

JxA2-JyA2= 0.2287661E-13 

Orbit ==> ld 

Sx= 0.4801495E-02 Sy= 0.000000 Sz= -0.3320675E-01 

Lx= 0.1076291E-14 Ly= 0.000000 Lz= -0.9366423E-15 

Mx= -0.9602990E-02 My= 0.000000 Mz= 0.6641350E-01 

Tx= -0.1841115E-02 Ty= 0.000000 Tz= -0.2546600E-01 

SA2= 0.1789278 

SySz+SzSy= 0.000000 SzSx+SxSz= -0.1214306E-15 

SxSy+SySx= 0.000000 

3SxA2-SA2= 0.6043975E-15 3SyA2-SA2= 0.8949193E-16 

3SzA2-SA2= -0.6938894E-15 

SyA2-SzA2= 0.2611271E-15 SzA2-SxA2= -0.4327623E-15 

SxA2-SyA2= 0.1716352E-15 

LA2= 1.486426 

LyLz+LzLy= 0.000000 LzLx+LxLz= -0.3269041E-14 

LxLy+LyLx= 0.000000 

31XA2-LA2= 0.2698729 

31zA2-LA2= -0.5397459 

LyA2-LzA2= 0.2698729 LzA2-LxA2= -0.2698729 

LxA2-LyA2= 0.2058267E-14 
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F2= 1. 665353 


JyJz+JzJy= 0.000000 JzJx+JxJz= -0.5336443E-14 


JxJy+JyJx= 0.000000 


3JxA2-JA2= 0.2698729 


3JzA2-JA2= -0.5397459 


JyA2-JzA2= 0.2698729 


JXA2-JyA2= 0.8587339E-16 


Orbit #1 ==>3d Orbit #2 ==>ld 

<S_2 S_1>= -0.1285996 <1_2 1_1>= -0.3683474E-01 

<J_2 J_1>= -0.1654344 

Total moments over the orbitals specified in "Mag" command. 

<S_2 S_1>= 0.7500000 <1_2 1_1>= 18.78729 

<J_2 J_1>= 19.53729 

---------- configuration mixing -------- ­

# 1 E= -5.92893328355149 


CI=#i1 76.5349337915624 % 


CI=#i2 22.1876328190364 % 


CI=#i3 1.26162666914198 % 


CI=#i4 1.580672025926590E-002 % 


====== state #i ========= 

# 1 E= -5.92893328355149 


C4 -0.7071 0.6998 


C3 -0.2499 0.4284 


C2 0.0000 -0.9897 


Orbit => 3d 


electron occupation --- ­

71 




----

MSc Thesis- E. A. Mills- McMaster- Dept of Physics & Astronomy 

m down up down up 

2 0.9932 0.5383 Eg u 0.1071 0.0939 

1 0.9960 0.9958 Eg v 0.9946 0.0848 

0 0.1071 0.0939 T2g a 0.9960 0.9958 

-1 0.9960 0.9958 T2g b 0.9960 0.9958 

-2 0.9932 0.5383 T2g c 0.9917 0.9918 

sum 4.0854 3.1621 

total 7.2476 

Orbit => ld 

electron occupation 

m down up down up 

2 0.9997 0.9608 Eg u 0.9101 0.9214 

1 0.9999 0.9999 Eg v 0.9996 0.9218 

0 0.9101 0.9214 T2g a 0.9999 0.9999 

-1 0.9999 0.9999 T2g b 0.9999 0.9999 

-2 0.9997 0.9608 T2g c 0.9999 0.9999 

sum 4.9094 4.8430 

total 9.7524 

B.3 LiNi02 

XCRD: 

( 

II Input of parameters 

I I parameters we can vary 

Dq=0.69047; II Splitting on the Ni site 

Jz 

512 

312 

112 

-112 

-312 

-512 

Jz 

512 

312 

1/2 

-112 

-312 

-512 

J=312 J=512 

0.5383 

0.9937 0.9953 

0.6352 0.4547 

0.6403 0.4626 

0.6298 0.9045 

0.9932 

J=312 J=512 

0.9608 

0.9998 0.9999 

0.9685 0.9528 

0.9640 0.9460 

0.9687 0.9921 

0.9997 

LDq=-0.570614; II Splitting on the ligand site 

pds=1.95434; II hopping parameters 

pdp=-1.25228; 
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Udd=5.98116; II d-d Coulomb repulsion 

Dt=5.58655; II Charge transfer energy 

xi=11.4922; II Spin orbit coupling 

II various Slater integrals 

F2dd=10.45; 

F4dd=7.35; 

F2pd=7.72; 

G1pd=5.79; 

G3pd=3.29; 

) 

II configurations considered 

CNFG: 

2p 3d Ld 

#i1 6 7 10 

#i2 6 8 9 

#i3 6 9 8 

#i4 6 10 7 

#f1 5 8 10 

#f2 5 9 9 

#f3 5 10 8 

II Program Output 

====================================== 

Xtls ver. 8.30 coded by Arata Tanaka on 6th Sep. 2004 

compiled for scaler machine 

====== state #i ========= 

# 1 E= -8.88102034735880 

Orbit ==> 3d 
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Sx= 0.1427638 Sy= 0.000000 Sz= -0.2478559 

Lx= -0.1021206E-14 Ly= 0.000000 Lz= 0.1332268E-14 

Mx= -0.2855276 My= 0.000000 Mz= 0.4957117 

Tx= 0.1633857 Ty= 0.000000 Tz= -0.1255188 

s-2= 1.034803 

SySz+SzSy= 0.000000 SzSx+SxSz= -0.8326673E-16 

SxSy+SySx= 0.000000 

3Sx-2-S-2= -0.2164664E-15 3Sy-2-S-2= 0.1326689E-14 

3Sz-2-S-2= -0.1110223E-14 

sy-2-Sz-2= 0.8123041E-15 sz-2-Sx-2= -0.2979189E-15 

Sx-2-Sy-2= -0.5143853E-15 

L-2= 13.36334 

LyLz+LzLy= 0.000000 LzLx+LxLz= 0.2829920E-14 

LxLy+LyLx= 0.000000 

3Lx-2-L-2= -1.836756 

3Lz-2-L-2= -0.8656700 

Ly-2-Lz-2= 1.189365 

Lx-2-Ly-2= -1.513060 

r2= 14.39814 

JyJz+JzJy= 0.000000 JzJx+JxJz= 0.4385381E-14 

JxJy+JyJx= 0.000000 

3Jx-2-J-2= -1.836756 

3Jz-2-J-2= -0.8656700 

Jy-2-Jz-2= 1.189365 

Jx-2-Jy-2= -1.513060 

Orbit ==> ld 

Sx= 0.2942500E-01 Sy= 0.000000 Sz= -0.5108550E-01 
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1x= -0.8913140E-15 1y= 0.000000 1z= -0.1623249E-15 

Mx= -0.5885001E-01 My= 0.000000 Mz= 0.1021710 

Tx= 0.6202720E-01 Ty= 0.000000 Tz= -0.4765155E-01 

s~2= 0.5411346 


SySz+SzSy= 0.000000 SzSx+SxSz= 0.5204170E-17 


SxSy+SySx= 0.000000 


3Sx~2-S~2= -0.8126534E-16 3Sy~2-S~2= -0.1962904E-15 


3Sz~2-S~2= 0.2775558E-15 


Sy~2-Sz~2= -0.1579487E-15 Sz~2-Sx~2= 0.1196070E-15 


Sx~2-Sy~2= 0.3834169E-16 


1~2= 5.184696 


1y1z+1z1y= 0.000000 1z1x+1x1z= 0.2913931E-15 


1x1y+1y1x= 0.000000 


31x~2-1~2= -1.142068 


31z~2-1~2= -0.5382611 


1y~2-1z~2= 0.7395302 


1x~2-1y~2= -0.9407992 


r2= 5.725831 


JyJz+JzJy= 0.000000 JzJx+JxJz= -0.2740863E-14 


JxJy+JyJx= 0.000000 


3Jx~2-J~2= -1.142068 


3Jz~2-J~2= -0.5382611 


Jy~2-Jz~2= 0.7395302 


Jx~2-Jy~2= -0.9407992 


Orbit #1 ==>3d Orbit #2 ==>ld 

<S_2 S_1>= -0.4129686 <1_2 1_1>= -0.2408502 

<J_2 J_1>= -0.6538188 

75 




MSc Thesis- E. A. Mills- McMaster- Dept of Physics & Astronomy 

Total moments over the orbitals specified in 11 Mag 11 command. 

<S_2 S_1>= 0.7500000 <L_2 L_1>= 18.06634 

<J_2 J_1>= 18.81634 

---------- configuration mixing -------- ­

# 1 E= -8.88102034735880 


CI=#i1 30.1088046881058 % 

CI=#i2 54.8112683537870 % 


CI=#i3 14.3896516200227 % 


CI=#i4 0.690275338084464 % 


====== state #i ========= 
# 1 E= -8.88102034735880 


C4 -0.1530 0.4348 


C3 -0.1029 0.2637 


C2 0.0000 -0.5979 


Orbit => 3d 

electron occupation --- ­

m down up down up Jz J=3/2 J=5/2 

2 0.8649 0.6312 Eg u 0.4556 0.4277 5/2 0.6312 

1 0.9953 0.9951 Eg v 0.7355 0.2681 3/2 0.8910 0.9691 

0 0.4556 0.4277 T2g a 0.9937 0.9936 1/2 0.7683 0.6548 

-1 0.9953 0.9951 T2g b 0.9970 0.9967 -1/2 0.7793 0.6714 

-2 0.8649 0.6312 T2g c 0.9943 0.9943 -3/2 0.7040 0.9225 

sum 4.1762 3.6805 -5/2 0.8649 

total 7.8566 

Orbit => ld 

electron occupation --- ­

m down up down up Jz J=3/2 J=5/2 

2 0.9378 0.8705 Eg u 0.7490 0.7813 5/2 0.8705 
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1 0.9991 0.9991 Eg v 0.8766 0.7420 3/2 0.9500 0.9869 

0 0.7490 0.7813 T2g a 0.9988 0.9989 1/2 0.9120 0.8684 

-1 0.9991 0.9991 T2g b 0.9994 0.9994 -1/2 0.8991 0.8491 

-2 0.9378 0.8705 T2g c 0.9989 0.9990 -3/2 0.8962 0.9734 

sum 4.6228 4.5206 -5/2 0.9378 

total 9.1434 
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