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Abstract

This thesis examines available x-ray absorption spectroscopy (XAS) data for
NiO, NaNiQO,, and LiNiO;. The XAS examined is the Ni L-edge, 3d"2p® —
3d"+12p5. The experimental spectra are compared to spectra calculated using
a configuration interaction approach. This approach reproduces the spectra
accurately. The NaNiO, spectrum is shown to be sensitive to the Jahn-Teller
distortion, while the LiNiO, spectrum is reproduced by a hybridized d” — d®
state that explains the lack of Jahn-Teller distortion in LiNiOs.
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Chapter 1

Introduction and Description of

Problem

1.1 Statement of the Jahn-Teller Problem

The materials NaNiO, and LiNiO, have been of interest to the condensed
matter community for some time. LiNiO, is considered a candidate system for
several exotic states, including frustrated quantum magnetism and resonating
valence bonds. The central problem that has led to these suggestions is that, if
one assumes that LiNiO, has a formal valency Li'*Ni**O2~, and further that
the Ni is in the low spin configuration, then LiNiO; satisfies the criteria to
undergo a Jahn-Teller distortion, wherein the degeneracy of the single unpaired
electron is lifted by a crystal distortion and the formation of an orbitally
ordered state. LiNiO,, however, does not undergo any observed ordering.
Furthermore, NaNiO, does in fact undergo such a distortion, starting from
the same crystal structure as LiNiOy. This unlifted degeneracy is what has
given rise to the various suggestions of exotic states in LiNiQO,, and is the

motivation for the work done in this thesis.



MSc Thesis - E. A. Mills - McMaster - Dept of Physics & Astronomy

-

13 13

Figure 1.1: Schematic of the energy levels of the 3d Ni orbitals in NaNiOs.
The crystal field splitting removes the lower three orbital, which are filled,
leaving a single electron in a state degenerate in both spin and orbital degrees
of freedom (left) which is broken below 480 K by the Jahn-Teller distortion
(right).

1.2 Review of the Literature

Recent work in NaNiO, has determined conclusively its magnetic structure.
ESR and magnetization work [1, 7] and inelastic neutron scattering [8] have
formed a consistent picture of a triangular spin-1/2 lattice with FM spin-
spin exchange in-plane and AFM exchange inter-plane. An orbital ordering
accompanied by a Cooperative Jahn-Teller distortion occurs at 480 K, and a
Neel ordering occurs at 23 K. This is consistent with the Hamiltonian derived
by Mostovoy and Khomskii [9], which predicts that the orbital and spin degrees
of freedom are decoupled. A schematic of the energy levels of the 3d Ni orbitals
in NaNiO, is shown in Fig. 1.1. The lower levels are occupied and largely
removed, leaving, in the high temperature case, a single electron degenerate
in spin and orbit, degeneracies broken by the orbital ordering at 480 K and
spin-orbit coupling.

The ground state of LiNiOs has been debated for some time now. An-

2
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derson, in proposing the resonating valence bond, theorized that a triangular
lattice anti-ferromagnet system would form a quantum liquid state[10], and
LiNiO; has been proposed by Hirakawa as a candidate system for this to
occur[11]. Whether or not LiNiO; actually forms a quantum liquid, though,
depends crucially on the specific form of the magnetic interaction between Ni
sites. Specifically, a ferromagnetic interaction leads to ferro-ordering, while an
anti-ferromagnetic interaction leads to geometric frustration, and possibly for-
mation of a resonating valence bond (RVB) state [10]. In the case of LiNiOs,
the interactions of interest are the orbital interactions, as the orbital degree
of freedom in a d shell with 7 electrons becomes a two-state system when the
crystal field splitting is large enough to force the system into a low spin con-
figuration. This has sparked interest in determining the magnetic interactions
in LiNiO,. Hirakawa et al. [12] and Yoshizawa et al. [13] both reported fea-
tureless neutron data consistent with a lack of long range magnetic order, and
anomalous behaviour in the magnetization, which Yoshizawa et al. attribute
to the formation of a spin glass, as does Hirota et al. [14]. Reimers et al.
[15], however, showed that there is a certain amount of exchange between Ni
and Li sites, which occurs in all samples, regardless of stoichiometry. This
site exchange can frustrate the ordering in LiNiO,, [16], if the in-plane and
inter-plane spin magnetic interactions are the same as those found in NaNiO,
[8], which has FM in-plane interactions and AFM inter-plane. Mostovoy and
Khomskii, [9], and Holzapfel et al. [2] support this interpretation by pointing
out that, in LiNiO,, the orbital and spin degrees of freedom decouple, implying

that frustration of the magnetic ordering by spin-orbit interaction is unlikely.

Another approach, though, has found the lack of orbital order in LiNiO,
to be intrinsic to the electronic structure of the compound. Kitaoka et al.,
[17] attribute the lack of orbital order to quantum fluctuations melting a FM
ordered state, based on NMR measurements. Reynaud et al. [18] propose a
model with FM spin-spin interactions between electrons in the same orbital
on two different sites, and AFM interactions between electrons on different

orbitals, contradicting Mostovoy and Khomskii’s calculation that the orbit and
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spin are decoupled. Dare et al. [19] propose the crystal field splitting of the
O 2p orbitals as a mechanism for introducing an AFM exchange path between
Ni sites. Penc et al. [20] and Vernay et al [21] use a spin-orbit model on a
cluster in a mean field extrapolated out to large cluster size to conclude that
the orbitally ordered state in NaNiO, and a spin-dimer quantum fluid state
in LiNiO, can exist close enough in parameter space to explain the differences
between NaNiQO, and LiNiO,.

A third line of thinking has focussed on the hole-doped Mott insulator
Li,Ni;_,O, using optical absorption measurements. Sawatzky and co-workers,
[4, 5, 3] present a series of x-ray absorption spectroscopy (XAS), x-ray pho-
toemission spectroscopy (XPS) and bremsstrahlung isochromat spectroscopy
(BIS) measurements on the O 2p and Ni 3d electrons to establish that, in
Li;Ni;_,O, the holes introduced by the Li go onto the O 2p orbitals, not the
Ni 3d orbitals, leaving Ni with the valency d®L, where L refers to a hole on
the ligand orbital. Montoro et al. [6] and Kang et al. [22] have applied this
to LiNiO,, however their data may not be accurate (see section 4.3), and they

do not attempt to calculate the LiNiO,y spectrum.

Broadly speaking, then, the literature on LiNiO, is divided into the follow-
ing three categories: (1) intrinsic frustration of orbital ordering, either caused
by competing FM and AFM exchange channels between Ni sites or quantum
fluctuations arising from the degeneracy; (2) frustration caused by Ni ions in
the Li layer, either as impurities or an exchange of Ni and Li sites; and (3) Ni
2+ ions dominating due to O 2p hole occupancy, a possibility that most of the
literature in the first two categories ignores. The explanation of why NaNiO,
and LiNiQOs, while isostructural, behave differently, is given, respectively, as:
(1) the Jahn-Teller distortion is sensitive to small changes in parmeters arising
from crystal structure; (2) Li is closer in size to Ni than Na is, thus mak-
ing exchange of Li and Ni more likely; (3) the different crystal environment
changes the electronegativity of the O ions, thus making the Ni?* state more
likely in LiNiOs. This thesis applies a sophisticated configuration interaction
(CI) routine, XTLS 8.30 [23], to new XAS data on LiNiO,, to determine the

4
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formal valency of Ni in this compound. We also examine NaNiO, and NiO for

comparison.



MSc Thesis - E. A. Mills - McMaster - Dept of Physics & Astronomy



Chapter 2

Description of Materials and

Measurement

2.1 Crystal Structure

The NiO crystal forms a NaCl structure, with alternating Ni and O sites[24].
The formal valency in this situation is Ni?*, O?~. In the materials LiNiO,
and NaNiQO,, above 480 K, every other layer of Ni ions is replaced by a layer
of Li or Na ions, respectively, distorting the crystal structure and removing
the fourfold rotation symmetries of the cubic symmetry, leaving a three-fold
rotation and the point group Dsq in the space group R3m, as visualized in
Fig. 2.1[25]. The symmetry operations in this case are a three-fold rotation
axis down the c-axis, three two-fold rotation axis perpendicular to the c-axis,
and inversion (which generates a series of mirror planes). In NaNiO,, there is
a further lowering of symmetry due to a cooperative Jahn-Teller distortion at
480K, to a Cyy, point group with a C2/m space group, which removes all orbital
degeneracy [1, 7]. This transition elongates the O octehedra surrounding the
Ni ion along one axis. Thus the nearest neighbour Ni-O bonds go from six of
equal length (1.98 A) to four shorter (1.91 A) and two longer (2.14 A) bonds][1].

The R3m phase can be viewed as a four-atom unit cell, with the following

7
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Figure 2.1: Crystal structure of MNiQO,, in the R3m symmetry, clearly showing
the stacked triangular planes of M, Ni, O.

primitive translation vectors:

a, = (aV3/6,a/2,¢/3)
a; = (aV3/6,—a/2,¢c/3)
ag = (—2aV3/6,0,c/3)

In the same coordinate system, the other three ions not at the origin are

all on the z (c) axis:

(0,0,0)

™ = (0,0,¢/2)

o1 = (0,0,2(0)c)
(0,0,(1 = z(0))e)

™i =

To2 =

It is often useful to approximate a lower symmetry by a higher one, which
simplifies the crystal field and hopping terms that will be discussed later.

However one should ask what the effect will be of making this approximation.

8
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Material a(A) b(A) c(A) Jé] z(0) 2(0)
NaNiO, 5.31 2.84 5.57 11044 0.282 0.799
LiNiO, 498 287 5.01 1093 026 0.77

Table 2.1: Room temperature crystal parameters. The NaNiQO, parameters
were taken from [1], while LiNiOy was taken from [2]. Both are given in terms
of the C2/m structure.

For the purposes of this thesis, the approximation we want to consider is
modeling the transition D3y — C, as the transition O — Dy,. Physically,
this can be pictured as assuming that the six surrounding O ions around a
given Ni ion are in a regular octehedral arrangement, instead of the distorted
one which is the real case, and then viewing the Jahn-Teller distotion as an
elongation of the octehedra along one axis. Since in both the Dsy; — Cy and
Oy — Dy, cases, the O ions go from six equidistant ions to a set of four
equidistant ions and a set of two equidistant ions, what we want to look at is
how the bond angle changes. From [2], we have the following bond angles: for
LiNiOg, there are 6 angles of 93.2, and a corresponding six at 86.6, while for
NaNiQO,, there four at 94.8, and two at 95.1, again with their complimentary
angles. The difference between this and the octehedral case, is a 0.003 A
difference in the position of the nearest neighbour O ions. We will discuss the

effects that this approximation has in the sections on the relevant terms below.

2.2 Materials Synthesis and Measurement

The data for NaNiO, and NiO was taken from [3]. The LiNiO, samples mea-
sured were provided by the neutron scattering group of Bruce Gaulin at Mc-
Master.

The data analysed in this thesis is x-ray absorption spectra (XAS) of
LiNiOy, NaNiO,, and NiQ. The absorption processes we look at are the Ni
L edge and the O K edge. The Ni L edge consists of an absorption pro-
cess that excites a 2p core electron on the Ni ion to the 3d valence shell,

2p°3d™ — 2p®3d™*!. This process is expected to occur in the energy range

9
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835-850 eV. T'wo broad peaks are expected, due to the large core spin-orbit
coupling, with finer details present in each that depend on the available 3d
states [3]. The O K edge consists of an absorption process that excites a 1s
electron on the O ion into a valence state just above the 2p levels. In both
cases what is measured are the decay products of the core hole, either Auger
electrons (TEY) or emitted photons (TFY).

The Ni L edge and O K edge measurements were performed at the SGM
beamline of the Canadian Light Source. The sample was at room temperature,
in a vacuum with a presure of 5 x 10~° mbar. The TFY measurements require
a self-absorption correction, which was done following [26], using the data
tabulated in [27].

The samples of LiNiO; used in this thesis were measured with both total
electron yield (TEY) and total flouresence yield (TFY). Measurements taken
from [3, 6] used TEY measurements and, to our knowledge, did not perform
TFY measurements for comparison. The TEY technique measures all electrons
escaping the sample for a given incident photon energy. It is assumed that the
majority of the electrons emitted are Auger electrons coming from the decay
of the 2p hole created by the incident photon. Whether this assumption is
valid is the source of ongoing controversy, but the ease of measurement makes
this a widely used technique in XAS. For our purposes, more relevant is the
probing depth of the procedure. The depth is limited to the mean free path of
the emitted electrons in the substance studied, which, for NiO, NaNiO,, and
LiNiO,, is ~20 Angstroms [28]. For NiO and NaNiO,, both of which can be
made in high quality, this is probably not a significant limitation. For LiNiOs,
however, the tendency of Li;O to precipitate out of the sample and collect on
the surface, which, for a powder sample, cannot be adequately cleaned, makes
a probe of the bulk sample desireable. TFY is limited only by the mean free
path of the x-rays emitted, which is large enough to ensure probing of the bulk

sample.

10



Chapter 3

Theory of Configuration

Interaction

3.1 The Hamiltonian

In analysing the XAS data, we use a configuration interaction (CI) Hamilto-
nian, which considers, in the intial state, the 3d orbitals of a single Ni ion.
Electrons occupying the ten states in the 3d orbital sit in an external poten-
tial created by the crystal field, and interact with each other via the Coulomb
interaction. To take into account the surrounding ligand orbitals (the O 2p
band), we introduce a hopping term between the Ni site and the ligand band,
which we consider to be at some energy A relative to the Ni orbitals. In the
excited state, we consider the Ni 2p core electrons; both the spin-orbit coupling
in those states, and the Coulomb interaction between the 2p electrons and the

3d electrons.
Thus we have the following [3]:

H = Hy + Hy + H,, (3.1)

11
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where

Ho = Z ea(H #I)deu’ + Z &p(v, Vl)p;r/,ipu’,i
I Uy

+ Z [tpd(/’l’i I/)dey + H.C.} (3'2)
v
Hy = Z Udd(:u'laﬂ27,u3a,u4)dL1du2dL3du4 (33)
H1,142,43, 44
Hy = Gl sh)ce,
vy
+ Z UPd(ﬂ) ’YJ )u‘/) ’Y,)deu/Cj;,C,yl (34)
woy 'y

where p indexes orbit and spin of the Ni d-orbitals and v indexes the O p-
orbitals. We want to work out the matrix elements in the configuration in-
teraction scheme of a cluster consisting of a Ni ion and a surrounding oxygen
octehedron, which we will account for as a ligand orbital. To do so, we use the

following basis:

|y )i = Aty |47°)[p)
|y L )i = dudypy|d')[p)
)i
)i

H

(L3 )i = dupupr|d'®)|p'0)
IleLV ]G =Dy p,,/p,///'dl())lp ) (35)

for the initial state, and, for the final state, with a 2p electron excited into the
3d shell,

|d5 ) £ = dudyrcy|d™®)p'%) p°)
IdgL )f,'y = dupucvldm)lpmﬂpe)
|d'°L2 ) 17 = Dupwrcy|d™®) [p'%) D% (3.6)

where [p'®) refers to the ligand p orbitals, and |p°) refers to the Ni core 2p
orbital. Here the combination of ligand O 2p orbitals is taken to be a d

12



MSc Thesis - E. A. Mills - McMaster - Dept of Physics & Astronomy

A+U

T uloLs
dm]—“j T A++2UT
A+U Jr
NiO | l @Lz

Figure 3.1: Energy level diagrams for the configuration interaction calculations
for NiO and MNiO,. Diagram based on those in {3, 4, 5]. The levels for a given
n are broadened by the multiplet and crystal field terms, and mixed by the
hopping terms.

orbital labelled as |p'®); this approximation is equivalent to a priori taking
into account the selection rules governing hopping from the O 2p band to the
Ni 3d orbital.

3.2 The single particle matrix elements

First we consider the matrix elements of 3.2: ¢;, and t,4. €4, will be deter-
mined by the crystal field splitting, and A, the charge-transfer energy. The ¢,4

terms will consist of Slater-Koster integrals. We will consider each of these.

13
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3.2.1 The crystal field

For the potential at the origin due to the crystal ions, we have

1
GEDI =
27

To find the matrix of the Hamiltonian in the single particle basis, we use the

following identity:

oo l

where R = (R,0,®), Y, ,, is the usual spherical harmonics, and where we have

assumed that R > r, to get

V(i) = z¢ ZZ > 2 T YO, 8Yin0,9)  (39)

=0 m=-1

In this form, we can cast the problem in terms of perturbation theory, with
H= Hatom +V

where H;om, is the hamiltonian of the atom in free space, for which we want

to consider the degenerate 3d orbitals, which will have the form

[¥m) = F(1)Y2m

where f(r) is the radial depence.

Thus, to use first order degenerate perturbation theory, we consider the

14
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integral:

Y. (0,0 1 .
W |VIYper) = Z€? ZZ (24 - me )) T

=0 m=—1

X / Yy Yy Yo mr sin 0d0dc (3.9)

‘We know that

/ Yo, Vi Yo, sin 0d0dp = \/ 4+ D 47; D(A+1)

21 2 2 [ 2
X (3.10)
00O -m' m m’
i 1o I3
my Mg M3

are the Wigner 35 symbols [29]. From the properties of the Wigner 35 symbols[29],

Where

namely,
[l + |2} 2 |ls]

we can see that
2-1<2<2+]1

0<I<4

2 1 2
=0
(o00)

for 2+ 1 + 2 odd, then I must be even. Sol = 0,2,4 are the only non-zero

Also, since

terms. In addition, we have the condition that

mi+mg+mg=0

So that, for a given m, the only non-zero terms are those matrix elements for

15
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which
m +m’=m
So, defining
47 2 1 2 2 I 2
5 = Wim! mam”
2l+1 0 0 0 _m/ m m// [
we have
.Yl*ml m/l(@,@) m,
<’€/)m’lvl¢m"> = Z Z ’-FT' (_1) (Tl>wl,m’,m’+m”,m”
1=0,2,4 i
I>m/+m"

(3.11)

Since the values of the various Wigner 3-j symbols are known, we are left

with two things we need to calculate: the radial moments of the wavefunctions,

*
3 Yim

Rl+1
R

and the term

(3.12)

from Eq. (3.11), for I = 0,2, 4.

There are two approaches we will consider for this thesis. In the first,
we use tabulated values for the many electron atomic wavefunctions in the
Hartree-Fock approach [30] to estimate the radial integrals, and use the Ewald
summation (see appendix A) to calculate the terms Eq. (3.12) over the infinite
crystal. The consensus in the literature [31] is that this method will give the
ordering of the eigenstates and a rough guess as to the magnitude of the
splitting, in cases where the splitting is well defined. The second approach,
which will be taken up in the next section in more detail, is to use the apparatus
of group theory to reduce the crystal field terms to one or two parameters based
on the (approximate) symmetry of the crystal that can be varied to determine

an empirical best fit to some measured spectrum.

16



MSc Thesis - E. A. Mills - McMaster - Dept of Physics & Astronomy

3.2.2 Group Theory and the symmetry specific form for
the crystal field

To put the crystal field into a form that explicitly takes into account the sym-
metry of the lattice, we make use of group theory. Specifically, if R, some
rotation and/or reflection operator, commutes with H, the Hamiltonian, then
there are no matrix elements of H between states which are eigenstates of R
with different eigenvalues of R [32]. Thus, classifying our orbital wavefunctions
in terms of their properties under symmetry operations of the lattice, which
commute with the crystal field Hamiltonian, will greatly simplify the Hamilto-
nian by allowing us to set many of the matrix elements to zero. To make use

of this analysis, we will work in a basis that makes the angular dependence on

Yoo = 14/2 (Z-1)=wopsr-m @

z,y, z explicit:

=50 =) = /7 (5) = 6u0le2) (3.14)
5 (a4 ¥i) = 7/ 25 = (0.0l (315)
st ta) = 1 PESE gt - 319
5 (2= Yaa) = 1/ 2 ¥ = 0,k (3.17)

We can now examine which group representations each of these forms trans-

forms under, which have been tabulated for convenience [32].

Under the Oy, group, character tables in [32] show that the quadratic forms
(322 — 72, 2% —y?) transform into each other under the E reprensentation, while
the forms (zy,zz,yz) transform into each other under the T3 representation.
One way of visualizing this physically is to consider the permutation of the
coordinate axes, which leaves the Hamiltonian invariant for the Oy, case. Send-

ing £ — y,y — 2,z — x obviously sends the set (zy,zz,yz) onto itself, and,
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2 1% —y?) also

also, under this permutation, it can be seen that the set (322 —r
transforms onto itself.

Following standard notation, the eigenstates (3.13) and (3.16) are referred
to as the e, orbitals (transforming like F), and the states 3.14, 3.15, and 3.17
are the tp, orbitals (transforming under 7). ‘While symmetry considerations
determine only the degeneracies, and not the actual energy levels of these
states, general physical arguments show that, for an atom surrounded by an
octehedron of negatively charged atoms, the e, level will be at a higher energy
than the ty, level. So for this case there are two energy levels, and applying the
condition that the energies add to 0 reduces this to one splitting parameter,
traditionally referred to as 10Dq. The condition that the energy sums to zero
is simply the condition that it is the [ = 2,4 sums in Eq. (3.12) that are of
consequence, as the [ = 0 sum will be taken into account in A.

For the symmetry Dy, the fact that the reflection planes in the zy,zz, and
yz planes remain implies that the eignestates of O remain, but the degen-
eracies have been removed (as permutation of axes no longer commutes with
the Hamiltonian), except for the degeneracy of the |zz), |yz) states that arises
from the remaining four-fold rotation axis. This leaves three parameters, as
there are four energy states and the condition that the energies add up to zero.

For Ds,, the situation is more complicated. The character table implies
that, in distorting from Oy, to Dsq, there will still be two states transforming
under the F representation, while the T5 representation will be split into E and
Ajy; thus there will be three energy levels. There will also be a free parameter
that determines the eigenstates of the system, which will be dependent on the
choice of coordinates. Of course, the eigenstates of O are also dependant
on the choice of coordinates, but in that case there is an obvious and widely
used choice, which is not the case for Dzg. In this work the Dzy symmetry
will be taken into account via the Madelung sum over an infinite crystal in a
point-charge approximation; the general form will not be used.

For the Cy;, symmetry, very little can be determined from group theoret-

ical calculations, on account of the low number of symmetry transformations
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(namely, one two-fold rotation and one mirror plane). There are no degen-
eracies in the general case. However as Cy, is contained in Dsg, Dy, and
Oy, certain parameters for a crystal with a Cy, point group will lead to the

situations discussed above.

3.2.3 The Hopping terms

H; describes the hopping from one ion to another. Here, we restrict hopping to
O-Ni hopping. The hopping elements will be the overlap of the wavefunction

on one site with the wavefunction on another; that is, we want the integral

b, v) = / 10 H, (r — Ri)dr (3.18)

where H in 3.18 represents the kinetic and external potential energy operators.
We simplify this integral by making the approximations that the wavefunctions
involved are atomic orbitals, and furthermore, that the only potential we cons-
dider is the potential due to the ions at the origin and at the site R;; ¢.e., we
neglect the crystal field. Doing this allows us to take the vector R; as our e,
vector and quantize the angular momentum around it. The standard notation
for this is to label the orbital angular momentum eigenstates with respect to
the axis joining the atomic centres as, for the p orbital, po and pry for m; =0
and m; = +£1, respectively, and for the d orbital, do, dn.., and dé.., for m; = 0,
my; = 1, and m; = £2, respectively. Once so labeled, we can note that, as
the two centre approximation has rotational symmetry about the inter-atomic
axis, [ along that axis is a good quantum number, and thus there will be no
mixing of orbitals with different m; values. So, we can label the integrals like
Eq. (3.18) with m; = 0 as (pdo), and the components with m; = +1 as (pdr)
(for hopping from a d orbital to a p orbital), and leave these integrals, which
will in general be difficult, to be fitted empirically. Then, the only remaining
task is to determine the coefficients for these integrals for some general hopping
from a d orbital at the origin to a p orbital at an arbitrary direction. These

coefficients have been tabulated in terms of direction cosines [33]. The result
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of most interest to this thesis is that for the case in which the surrounding
ions form a regular octehedra, for which we can take each of the ions to lie on
one of the z,y, z axes. Considering the ions that lie on the z axis, our usual
spherical harmonics are already quantized with respect to the axis between the
atoms. To use this we need, in addition to Eq. (3.13-3.17) for the d orbitals,
the following for the p orbitals:

mﬁ=§J§@)=www (3.19)

_ 2 (2) = 6.9l (3.20)

\—/—5 Y1—-Y )= Va5
2 wari =52 () = e 3:21)
V2 ’ 4V 7w \r
So, upon inspection, we can see that the only two orbitals with m; = 0
are |32 — r?) and |z). Thus the only overlap involving the integral (pdo)
is Es2_,2, = (pdo) (using Slater’s notation [33]). Also, the orbitals |zy)
and |22 — y?) are composed of |m;| = 2 harmonics, and thus will not have
any overlap with the p orbitals. Also, we can see that, if we assume that
(pdr). = (pdwy) = (pdm), then the matrix elements between orbitals like
Y; +Y_; and Y; — Y_; will be zero, which leaves, as the only non-zero ele-
ments,

E .y = FEy. = (pdr)

We could now consider the general rotation from this case, but it will suffice
to consider permutations of the axes. Note that all permutations of z, y, z will
take ty, orbitals onto other ty, orbitals, and e, orbitals onto other e, orbitals.
Thus in the octahedral case, only e, orbitals participate in & bonding, while

only o, orbitals participate in 7 bonding.

For the t,, orbitals, the permutations leave, for an atom on the x axis, the

non-zero elements are:
E:cz,z - Ea:y,y = (pdﬂ-)
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and, for an atom on the y axis,
Ezy,.’t = Eyz,z = (pdﬂ.)

For the e, orbitals, we need the following:

W2 =2 == (822 -2 +a® — ) (3.22)
2 —g?) = (32@|3z2 2 |z — y2>) (3.23)

from which we can conclude that terms we want are:

Ep_p. = =L3(pdo) (3.24)
Ep_ 2y = 2(pdo) (3.25)

Thus, adding the contributions from the ions on the positive and negative

axis, for the case with cubic symmetry, we can take our hopping elements to
be[33]:

tpa(32% — r2) = V/3(pdo) (3.26)
tpa(@” — %) = V3(pdo) (3.27)
tpa(zy) = 2(pdm) (3.28)
tpa(z2) = 2(pdr) (3.29)
tpa(yz) = 2(pdr) (3.30)

3.3 The two particle matrix elements

Since we have more than one hole on the Ni d orbitals, we must consider
the terms in our Hamiltonian that correspond to interaction terms between
different configurations of putting three holes on the ten possible sites on the
d-orbital. We consider only the electrostatic interaction between electrons.

The derivation that follows will roughly follow [34], with notations updated for
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consistency. Disregarding the magnetic interaction leaves both orbital angular
momentum and spin angular momentum as good quantum numbers for the
central field problem, so we can diagonalize the multiplet Hamiltonian by
choosing angular momentum eigenstates. To enumerate then the states, we
simply have to count the number of combinations of states with My and Mg
allowed by the number of electrons present and the angular momentum states
that they are in. So, considering the state with one electron, or equivalently,
one hole, in the d-orbital, the state must be a spin-1/2, [ = 2 state. For two or
electrons or holes, we can have singlet states (spin-0) or triplet states (spin-1).
Considering the possible combinations of orbital occupations, the singlet states
will have angular momenta given by [ = 0, [ = 2, or [ = 4, while the triplet
state allows [ = 1 or [ = 3. Less obvious is the possible states given by three
electrons or holes: for the doublet (S =1/2),1 =1, | = 2 (two different ways)
! = 3, and | = 4, while for the quadruplet (S = 3/2),1 =1 and [ = 3 [34].
Starting from this point, we can use wave mechanics to reduce the interaction

integrals between the various wavefunctions that make up these eigenstates.

The two electron term, e?/r;;, is non-trivial for multiple electron (hole)

states. In wave notation, we have:

sl lwzzt / / (el rz)—wr(rlm(m) (3.31)

To do this integral we expand the potential by means of the identity used

previously:

oo I
4r < v
Y2 3.32
D) D 55
where 7« and 7, are the lesser and greater of r; and r;. Since our wavefunc-
tions are atomic orbitals, the angular components will be given by spherical
harmonics, so the properties used in section 3.2.1 will apply here as well. Doing
so, and recalling the properties of the Wigner 35 symbols, allows us to reduce

Eq. (3.31) to the form:
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2
.., €
</".7 IEW) = 6msiym8'r 6msj7m3t 6mzz'+mtj,m”+mu

X Z F(lmg; Loy ) F (Lmy; ljmj)Rk(ij; 1) (3.33)

k=0

where we define

_ [ A7 [yimidyimeymiem,
lmz, P ) 2l+1/ n YTy dQ2

1) (mstlmsltmetime [ (ms —me)-+ims —me ) /2 (3.34)

and

R (ij;rt) = / / n i (r2) Rt (11) Ryt (T2)

X —=-riridridr, (3.35)

k+l
>

where R(r) and Y;™(, ¢) are the usual radial and angular components of the
wavefunction. Now, since we label our states by angular momentum, in which
basis the electron-electron Hamiltonian is diagonal, we will be considering

matrix elements that look like:
(17| Hlij)

while, for the terms betweeen the d electrons and those in the core p orbitals,
which we will want to consider for the XAS comparison, we will have terms of

the form
(i7|Hlig) £ (5] H|j3)

i.e., the direct energy and the exchange energy. So, we can define the following
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F2(dd) | F(dd)
"58/441 | 5/441
77/441 | -70/441
50/441 | 15/441
-13/441 | 50/441
140/441 | 140/441

= N
oo o+~m=8

Table 3.1: Diagonal matrix elements for d2.

m | F2(dd) | F*(dd)
3/2 | -93/441 | -30/441
3/2 | 42/441 | -105/441
1/2 | -12/441 | 30/441
1/2 | -57/441 | 55/441
1/2 | 123/441 | -45/441
1/2 | 105/441 | 105/441
1/2 | 69/441 | -15/441
1/2 | -12/441 | 30/441

=N N W o Ot DN W) —

Table 3.2: Diagonal matrix elements for d3.

Slater integrals:

FHmaliingly) = RMij;ij) (3.36)
G*(nil;nyl;) = RE(ig; ji) (3.37)
so that
2 oo
€
(ZJIE;W) = Zc’“lm,,lmZ ) (lymy; Limy) F*(nilisngl;)  (3.38)

k=0

[ (Limg; im)] G (nilisnily)  (3.39)

NgE

Il
o

Mgi,Mgj

315 i)

E
Il

0

Now, as we saw in section 3.2.1, the angular integrals are known (since the
angular wavefunctions are), while the radial integrals are, in general, not. The
angular integrals are sums of Wigner 3; coefficients, which are tabulated in

[34], and listed here in Tables 3.1 and 3.2.

The parameter U is the energy difference of the lowest energy state of
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one multiplet to the next[35]; ie, instead of including F°(dd), explicitly, we
determine it implicitly as being the value that makes the lowest energy of
some multiplet state we choose, as in Fig. 3.1.

A commonly used convention in multiplet calculation is the Racah param-

eters. These are given by:

49,

A= Ay~ - F4(dd) (3.40)
L mggy - 2

B = 5F(dd) — 7= F*(dd) (3.41)
35,
= o F(dd) (3.42)

where A is a multiple of F°, and hence determined by Uyy. These parameters
have, in addition to the removal of some unwieldly coefficients in Table 3.2,
the property that the ratio B/C is expected to be largely independent of the

radial distribution, and hence the specific material.

3.4 Calculating the Spectra

Enumerating the possible occupations of 2-3 holes on the 10 3d orbital states
and the corresponding 10 ligand states produces an enormous number(~10000)
of basis states. To take these into account, some groups have simplified the
states; e.g., [36] takes into account only whether the orbital is e, or ¢4, not
which orbital it is. In this work, the calculation uses the full basis, with a
Lanczos-type large matrix diagonalization routine (referred to as the Haydock
Recursion method) to obtain the lowest energies and eigenstates [28]. This
requires using the theory outlined above to calculate H|y) for a given state
vector [¢0). The Lanczos algorithm repeatedly applies H to a randomized
vector to generate a subspace of n basis vectors, where n is much less than
the original number of basis states, and where, for increasing n, the procedure
produces the ground state with arbitrary accuracy. While this has the benefit

of presumably being more accurate, as it considers all states as unique, as
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well as allowing crystal field symmetries lower than those possible in [36],
the drawback is that one cannot confine the calculation to a specific angular
momentum manifold without determining a priori what basis states belong to

that manifold.

The configuration interaction calculation provides initial and final states
and energies for the process of absorption of an x-ray with the excitation
2p83d™ — 2p°3d™t!, referred to as the Ni L edge. The difference in energy
between the initial and final states will determine the energies of the possible
transitions, while the amplitude of the transitions will be determined by the

transition matrix; that is, we will have the following spectral function [23]:
F(w) =Y _{fIT@)|)6(w + E; — E) (3.43)
b

where w is the energy of the absorbed photon, T(w) the transition matrix. For

XAS, we can take the transition matrix to simply be the dipole operator. So:

T(w)=T= z r; (3.44)

Since the dipole operator is a sum of single particle operators, then we
need only consider the matrix elements ((r)|r|¢w (r)). The transitions we
are considering are those from the 2p shell to the 3d shell, which means that

we want elements of the form (11 1,m,m, (*)|T|%2,2,m;ms (T))-

These elements can be greatly simplified by use of the Wigner-Eckart the-
orem, which states that the matrix elements of the dipole operator (or any

tensor operator) will obey the following[37]:

(o/5'|T*|o)

27+ 1

where j and m are the usual angular momentum labels, and « refers to all

(o, §'m'|T®|a, jm) = (jk; mq|jk; 'm’) (3.45)

other quantum numbers. k& refers to the rank of the tensor operator, which,

for the dipole operator is 1, and ¢ runs from —k to +k, and is the spherical
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component of the tensor. The two parts of the left hand part of Eq. (3.45)
are the Clebsh-Gordan coefficient, and the so called reduced matrix element
of T', which depends only on a, o/, j, and j'. What this theorem does is reduce
the elements that need to be calculated. In this case, since the only non-
angular momentum quantum number in this problem is the pricinple number,
and we are only considering the 2p — 3d transition, we only need to look
at the possible transitions of total angular momentum j of the single particle
wavefunctions. Since the electrons in this system are spin 1/2 particles in either
the p (I = 1) orbital or the d (I = 2) orbital, we have possible transitions from
states with j = 1/2,3/2 to 7 = 3/2,5/2 states. Since T is a rank 1 tensor,
the difference in j between the states must be 1 or less, which leaves the only

elements that need to be calculated as:

{r=3/2|ITlj = 1/2) (3.46)
(gr=3/2|IT\lj = 3/2) (3.47)
(g1 = 5/2|T1lj = 3/2) (3.48)

as all others are determined from these three and the relevant Clebsh-Gordan
coefficients. These elements themselves are obtained numerically from a Local

Density Approximation calculation [23].

The broadening comes from two sources: screening of the core hole (valence
electron) by the many-body system, and the finite lifetime of the excitation,

which will be taken into account here following [38].

If we re-write the spectral function in terms of ¢ rather than w, it takes the

form, for a given final state f,

F(w) = / " dtexpli(Ey — Et/R)(FOITH)

which, for the case of | f(t)) = constant, reduces to Eq. (3.43). In the presence
of screening by the lattice, though, the function (f(¢)|T(w)|¢) will decay with
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a Gaussian lifetime,

v - (57)

which, upon the Fourier transform, implies that

F(w) = exp (211“)122-) (3.49)

The lifetime of the excitation can be taken as an exponential, so that

. ~t
(T = e ()
which, upon Fourier transform, leaves a Lorentzian,

h 1

TR T

(3.50)

Thus, both of these effects can be taken into account from known values
for excitation lifetimes and charge screening in the crystal, by broadening
the spectrum from eq 3.43 with a Gaussian convoluted with a Lorentzian.
As the characteristic times for these processes are known from other work,
the Gaussian and Lorentzian broadening can be determined. In this thesis
the values used are (FWHM) 1.0 eV and 0.4 eV for the Gaussian and the
Lorentzian, respectively|[3].

Once the spectrum has been calculated, is is compared to the experimental
spectra to determine the x? fit. The parameters in H are then varied system-
atically, using the Nelder-Mead simplex algorithm to minimize x? and arrive

at a set of best-fit parameters.
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Chapter 4

Results and Discussion

4.1 NiO

To test the methods described above, we examine NiO, for which the literature
provides a wealth of data and theory, and for which we expect the XAS to
be clean, without contaminating spectra from displaced Ni ions, due to the
relative ease in synthesizing the high quality samples of this compound.

The two methods discussed for taking into account the crystal field poten-
tial are identical for NiO, as the symmetry of the crystal is Oy, so there is no
approximation needed to reduce the crystal field to one parameter.

The spectrum of NiQO is seen to be a good fit with calculations that assume
a d® occupation of the 3d orbital. Using XTLS 8.30, with a fitted O, crystal
field symmetry, we vary U, 10Dg, A, and (pdo) to fit the measured data,
taken from [3]. Minimizing the error between the calculated spectrum and
experiment results in the parameters listed in Table 4.1. Looking at Fig. 4.1,
we see that the procedure reproduced the qualitative features of the spectrum
quite well. Comparing values we obtained with those cited in the literature,
Table 4.1, we see that the values listed are reasonable.

We might expect that the Coulomb repulsion energy will depend solely on
the Ni ion and be fairly insensitive to the specific environment, so that we

should keep that fixed throughout the calculations; however, determining this
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NiO Experiment compared to Calculated Spectra

T 1 1 T 1 L
z
c
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Experiment
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845 850 855 860 865 870 875 880
Energy (eV)

Figure 4.1: Measured NiO XAS from [3], and calculated spectrum from this
work. The features of the experimental spectrum are well reproduced in the
calculated spectrum.

10Dg U A (pdo) &

Thiswork | 1.0 6.0 5.0 1.7 11.33
[36] 6.8 52 13
[39] 50 46 1.0

Table 4.1: Parameters obtained for NiO in this thesis, with comparison to
parameters obtained by other groups on the same compound. All values given

in eV.
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value from the NiO spectrum is problematic. The problem is that, for a wide
range of energies of U and A, the d'°L? state is energetically removed from
the problem, leaving the two states d® and d°L. But, when only considering
two states, the only relevant energy is A, and U does not play a large role.
Thus the spectrum contains limited information about U, which is born out

in calculations in Fig. 4.2, which vary U over a range of 2 eV.

Calculated Spectra of NiO for various Values of U

.

6.6 eV

Intensity (arb. units)

6.2eV

=

54¢eV
5.0eV
1 ] L 1 1
845 850 855 860 865 870 875
Energy (eV)

Figure 4.2: Calculated spectra for NiO for different values of U, illustrating
the difficulty in using the spectrum to determine values for U.

The charge transfer energy is a function of several things. Primarily, it
reflects the electronegativity of the O ion, the Ni ion, and, to a lesser extent,
the external potential from the surrounding ions. The external potential could
be addressed in an approximate way by performing a Madelung sum over the
infinite crystal within a point charge model, but as the most important effects
are almost certainly the short range and quantum in nature, it is unclear if
this is of any value. The electronegativity is not typically calculated. What

a “reasonable” difference in A between NiO, LiNiO,, and NaNiQ; is, is then

31



MSc Thesis - E. A. Mills - McMaster - Dept of Physics € Astronomy

difficult to determine. This will be taken up again in section 4.4.

For NiO, once again the value of (pdo) is difficult to determine with accu-
racy, due to the fact that the d°L state is removed in energy from the energies
of the hopping terms. As we can see in Fig. 4.3, the spectrum is insensitive to

changes in the hopping parameters.

Calculated Spectra of NiO for various Values of (pds)

1 1 T I T T T

=
=3
o 1.7 eV
8
£ 1668V
=
e
£ 15eVv J/L
14eV
1.3eV JJL
1.2
1 1 1 1 1 1 L
845 850 855 860 865 870 875

Energy (eV)

Figure 4.3: Calculated spectrum for NiO for varying values of (pdo). As
in the previous figure, we see that the spectrum is insensitive to changes in
parameters over a wide range.

So, while one might be tempted to think that NiO would provide a basis
for parameters for further calculations, this is hampered by the fact that the
spectrum is sensitive to two important parameters: the total energy of the d°L

state, given by A, and, to a lesser extend, the crystal field splitting 10Dgq.
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Energy (eV) | |zy) | 1322 —71%) | lyz) | |z2) |(z®—9?)
0.190 | 0.832 0 0554 0 0
0.165 0 0.778 0 |-0.370]| -0.507
~0.053 0 0.062 0 |-0.759 | 0.649
0.052 0 0.625 0 | 0536 | 0.567
0.355 | -0.554 0 0832] 0 0

Table 4.2: Results of the Madelung sum calculation for NaNiOs. This symme-
try here is lower than cubic, and the intra- e, and t,, splitting is of the same
order as the inter- splitting. This calls into question the validity of the point
charge model used in the Madelung sum

4.2 NaNiOy - Describing the Jahn-Teller Dis-

tortion

We reproduce the spectrum by a calculation that explicitly takes into account
the Jahn-Teller distortion of NaNiO,. This can be done using the CI software
available. The method of using the Ewald sum to find expressions for the
terms Eq. (3.12) was employed, producing Table 4.2. Unfortunately, this
procedure does not allow the experimental spectrum to be reproduced. Why
this is will be discussed below. The approximate symmetry Dy, allowing two
free parameters to vary (the total splitting, and the e, splitting induced by the
Jahn-Teller distortion) can reproduce the spectrum calculated via the Ewald
sum (fig 4.4), giving confidence that this is an acceptable approximation, as
well as the experimental spectrum for NaNiO, (fig 4.6).

Thus, the transition was modeled as O — Dy, which is expected to be a
reasonable approximation, as the energy splitting is a much more important
effect than the eigenstate mixing that is ignored in this approximation. To
test this, the spectrum generated by the Ewald sum technique was compared
with a spectrum assuming Dy, symmetry, with the energy levels taken from
the Ewald sum. Having done this, we can compare the calculated spectrum for
different Jahn-Teller splittings of the e, states, with the spectrum for NaNiO,,
and also that of PrNiOs, from [40], a Ni3* compound that does not undergo
a Jahn-Teller distortion. This provides strong evidence that the height of the
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Caiculated spectra for C2h and D4h symmetry NaNiO2

T T L T T L L
2
2
2
£
D4h symmetry
C2h symmetry
1 1 1 I J I | | I
845 850 855 860 865 870 875
Energy (eV)

Figure 4.4: Calculations for NaNiO, for the actual symmetry (via the Ewald
sum of the terms in Eq. (3.12)) and for the approximate Dy, symmetry.
The Ewald summation does not do a good job of reproducing the spectrum
here, while the approximate symmetry can reproduce the actual symmetry
calculation, as well as the experimental spectrum (see fig 4.6)
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lower energy peak is a function of the orbital order in the system.

Calculated Spectra of NaNiO2 for various Values of Jahn-Teller Splitting

1 T T T T T L T

NaNiO2
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

PrNiO3

1 L 1 — 1 i 1 ] 1

845 850 855 860 865 870 875 880

Energy (eV)
Figure 4.5: XAS for NaNiO,, with a e, splitting from 0 to 1.6 eV. This splitting
is much larger than that explained by the crystal field. This can be compared
with the XAS for PrNiQg, the features of which look more like the undistorted

spectrum.
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The reader will note, however, that the e, splittings listed in Fig. 4.5
are too large to be accounted for by the crystal field effects of the physical
distortion of the surrounding ions. This points to cooperative effect of

the orbital ordering — we are only using 1 Ni ion and surrounding ligand
orbitals, when the real Ni ion is surrounded by six nearest neighbour Ni ions.
In the ordered state, then, the energy levels of the orbitals will be determined
not only by the crystal field, but by the orbital exchange coupling between
the Ni site and the six NN Ni sites. Thus we can view the crystal field as an
effective parameter, which, for the e, splitting, is dominated by a mean field
contribution from the orbital Ni-Ni superexchange interaction.

To estimate, then, the effective splitting that the orbital states will have in

w
(921
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10Dg JT splitting (pdo) (pdn) U A G
1.5 1.5 1.7 -077 6.0 13.2 11.89

Table 4.3: Parameters determined for NaNiOs; by providing best fit between
calculated and experimental spectrum

the ordered state, we can use the orbital exchange coupling from [9]:

214U,

Jr = —m (4.1)
which, when we put in the values we have for A and ¢, and use the value for
U, estimated in [4], gives Jr = 0.06, which, for 6 nearest neighbour ions, gives
an effective splitting of 0.72 eV. With a crystal field splitting of 0.3 eV, this
gives a total effective splitting of 1.0 eV, which is still smaller than what is
found for the spectrum. However the point charge model is expected to be
least accurate in determining the magnitude of the e, splitting, so there is a
fair bit of error in the estimated crystal field splitting. So the crystal field
in this case is a combination of the physical crystal field resulting from the
coulomb potential of the ions in the crystal lattice, and an effective potential
resulting from the orbital exchange interaction with the surrounding Ni ions
in the orbitally ordered state. An interesting thing to note here is that the
crystal field is actually smaller than the orbital exchange contribution; thus we
can assume that the exchange pathways between Ni sites are more important
in determining the orbital ordering than the symmetry breaking of the local
environment. The hopping is assumed to be unaffected by the distortion.

The parameters in Table 4.3 are those which produce the best fit between
the measured spectrum and the calculated spectrum. Here, A is larger than
U by 5.2 eV, which represents the energy of the d®L state above the d” ground
state. The spectrum, though, is somewhat insensitive to changes in A and
(pdo), as seen in figs. 4.7. This is a consequence of the fact that the spectrum
is most sensitive to the orbital ordering, as seen above, so that a certain amount
of mixing with the d®L state, the magnitude of which is determined by the

parameters A and (pdo), will not change the overall shape significantly. To
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pursue this further, we can examine two spectra with very different values
of the Ni occupation. In Fig. 4.8, we have a calculated spectrum with a Ni
3d occupation of 7.25, which results from the parameters listed in Table 4.3,
-and another in which we have removed all states except the d’ state, thus
forcing a 3d occupation of 7.0. The spectrum are the same, illustrating that

the spectrum is insensitive to the presence of the d°L state.

NaNiO2 calculated vs. experiment

L T 1 1 T L L
g
c
=
g
8
Z
2
2
=
— | Calculated

Experimental
1 1 1 1 I
845 850 855 860 865 870 875
Energy (eV)

Figure 4.6: Final calculated spectrum for NaNiO,, compared to experimental
data from [3].

4.3 LiNiOj - Determining the Formal Valency

The XAS presented here has a different shape than that of other groups. The
two spectra are compared in Fig. 4.11, and while the TEY spectrum matches
with that obtained in [3, 6], shown in Fig. 4.10, the TFY spectrum, which we
expect to be a better probe of the bulk sample, is significantly different.
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Calculated Spectra of NaNiO2 for various Values of Deita
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Figure 4.7: NaNiO, spectra for various values of A. Of particular interest is
the movement of the shoulder peak of the 872 eV feature.
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NaNiO2 at different 3d occupations
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Figure 4.8: Calculated NaNiO,, with and without inclusion of the d® state,
which raises the 3d occupation.
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In addition, one can also note that the spectrum here is not a combination
of spectra for NiO and NaNiQO,, or even other Ni 3+ low-spin compounds such
as PrNiOs, as suggested in [6, 22]. Instead, the shape of the spectrum cannot

be reproduced by a linear combination of d” and d® spectra.

Measured Spectra for Total Electron Yield and Total Flourescence Yield

T ~—T T —r :
£
2
2| TFY
£
TEY
1 1 1 1 1
840 850 860 870 880
Energy

Figure 4.9: XAS data obtained via TEY and TFY measurements, for compar-
ison to Fig. 4.11

The procedure outlined in sec. 3.4 produced the calculated spectrum in
Fig. 4.11, produced from the parameters listed in Table 4.4, which is compared
to the experimental spectrum. One can immediately see that the calculated
spectrum does not reproduce the features of the measurement as well as for

the previous two compounds. This will be discussed below.

10Dg Ni 10Dg ligand U A (pdo) (pdw)
0.7 -0.6 60 56 195 -1.25 1149

Table 4.4: Best fit parameters for LiNiO,
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x= 0.0 EF

850 860

LiNIO,

i
845 850 855 860 865 870 875 880 885

Figure 4.10: XAS obtained by [3], [6]. These data, which are TEY data, are
consistent with the TEY data obtained here, and hence different than the TFY
data that is a more accurate probe of the bulk electronic structure.
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LiNiO2 calculated compared to experiment
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Figure 4.11: Calculated and Experimental spectra for LiNiO, The qualitative
features are reproduced, although less accurately than for NiO and NaNiOs,.
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To reproduce the spectrum here, a very small Ni 10Dg (< 0.1eV) was
necessary. This could be the result of the large hybridization with the O 2p
states, as those states are in a crystal field whose splitting we expect to be
opposite to that of the Ni site. Indeed, including a negative splitting on the
ligand orbital has the same effect on the calculated spectrum as a vanishing
splitting on the Ni site, shown in Fig. 4.12. In addition, the magnitudes
for (pdo) and (pdw) are at the very high end of what is reasonable given the
corresponding values for NaNiO, and standard procedures for estimating these
values. However, given the fact that the effective crystal field splitting has been
reduced by the hybridization, lowering the magnitude of the hopping elements
would result in a high-spin state for the Ni ion, and a spectrum that is certainly
not correct, in addition to conflicting with other experimental evidence about

the compound [25].

LiNiO2 for splittings with and without splitting of the O sites
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Figure 4.12: Calculated spectrum for LiNiO, for the case of 10D¢ = 0, and for
the case of a splitting of 0.7 eV on the Ni site and -0.6 eV on the ligand site.

The most obvious deviation of the calculated spectrum from the experi-
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Calculated Spectra of LiNiO2 for various Values of Delta
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Figure 4.13: LiNiO; vs. A. The movement of the feature between the two
main peaks is what is of interest here. As expected, it is somewhat sensitive
to A.

mental is in the feature at 865 eV, which is not seen at all in the experiment.
This feature appears in other XAS calculations [41], and is expected to be
dependent on A, as shown in Fig. 4.13. If then, one assumes that the spec-
trum consists of a sum of Ni ions in slightly different environments, due to the
exchange of Ni and Li ions which is known to take place in this compound [15],
then the addition of these spectra could smear out features between the two
main peaks, while the features in the main peaks do not change and would be

unaffected. Whether this is actually the case is difficult to determine.

One issue with the parameters and spectrum presented here is that the
hopping parameters are larger than those for comparable compounds [23, 36].
An argument for why they are large here is as follows: The splitting (or effective
splitting) on the Ni site must be small to give even a qualitative fit to the data,

as seen in Fig. 4.14. That being the case, the hopping values found here are
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Calculated Spectra of LiNiO2 for various Values of 10Dq
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Figure 4.14: LiNiO; vs. 10Dqg. What is seen here is that the features of the
857 eV peak change as a function of 10Dq, with a second shoulder peak at
lower energy emerging as 10Dgq is increased.

the smallest that will keep the system in the low spin configuration, as the
effective splitting from the crystal field and the hopping terms must be larger
than the Hund'’s coupling, which favours the high spin state.

Given that the hybridization is large, one question that can be asked is
whether the assumption of a single ion surrounded by a ligand orbital is justi-
fied. The O 2p band in Eq. (3.2) is assumed to be flat, however obviously this
is not actually the case, and we might expect effects coming from the 2p band
structure to play a role in a system with a large degree of hybridization. Since,
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