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Abstract 

Techniques from algebra and matrix theory are employed to study the total progeny 

of a multitype branching process from the point of probability generating functions. 

A result for the total progeny of different types of individuals having identical off­

spring distribution is developed, which extends the classic Dwass formula from single 

case to multitype case. An example with Poisson distributed offspring having differ­

ent distributions of children is given to illustrate that total progeny does not preserve 

similar structure as Dwass' formula in general. 
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Chapter 1 

Introduction 

The purpose of this thesis is to extend to multitype branching processes the result 

of M. Dwass; he obtained a very beautiful formula for the total progeny for single 

type branching process with k initial ancestors in 1969, which is in general called 

Dwass' formula. I.J. Good obtained a formula for multitype (say d-type) branching 

process with initial (k1 , k2 , · · · , kd) individuals in 1960, but his result, having different 

structure from Dwass', is not very useful computationally. Based on the work of 

Good, my result has similar structure to Dwass'. When reduced to single type case, 

it's consistent with Dwass'. 

1.1 Background and Motivation 

The proposed work is motivated by F.M. Hoppe. His work [2007] concerns the 

analysis of the effect of parlaying bets in lotteries. In that paper, a single type 

discrete-time branching process model for the effects has been presented, and the 
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duration of parlay derived. 

In Lotto Super 7, a single $2 ticket gives three sets of seven numbers each 

from 1 to 47. The player will win whenever at least three of the numbers in any of 

the sets of the player's ticket match some of the numbers drawn by the lottery. The 

parlaying occurs when a ticket wins a free ticket for a succeeding game or a small 

dollar prize that is used to purchase tickets for future games. 

It is necessary to determine the distribution of the number of tickets available 

for each game subsequent to the first that are generated by par laying. This corre­

sponds to what is known as the total progeny. The appropriate tool for determining 

the distribution of the total progeny is a result of Dwass[1969], who gave a very nice 

formula of total progeny in a single type branching process with initial population 

size k. 

Sometimes people maybe continue play the game when they win $10 or more. 

It is interesting to extend the result of Hoppe to multitype case. This motivated us 

to find a formula similar to Dwass' for multitype branching process. In the present 

thesis, we discuss this problem. 

1. 2 Overview of Branching Processes 

Branching processes were introduced by Francis Galton in the nineteenth century as a 

simple mathematical model for the propagation of family names in British peerage. 

The subject of branching processes is well-developed, and has lead to successful 

applications in the areas of population dynamics, molecular biology, cell ecology, 

medicine, algorithms, combinatorics and others. 
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1.2.1 Branching Processes: Single Type 

Let {Zn}~ be a branching process with initial population size Z0 and offspring dis­

tribution (Pi, i = 0, 1, · · · ). Here individuals may represent people, organisms, etc., 

depending on the context. We interpret Zn as the number of individuals in the nth 

generation. Each nth generation individual produces a random number of individ­

uals (called offspring) in the (n + 1)th generation with identically and independent 

distribution {pi}i;:::o· 

1.2.2 Branching Process: Multitype 

Definition 1.1. LetT denote the set of all d-dimensional vectors whose components 

are nonnegative integers. Let f.i, 1 ~ i ~ k, denote the vector whose ith component 

is 1 and whose other components are 0. 

Definition 1.2. The multitype (d-type) branching process is a temporally homoge-

neous vector Markov process {Zn},n = 0,1,2,···, whose states are vectors in T. 

We write 

Zn = (Zn,b · · · , Zn,d) (1.1) 

where zn,j> j = 1, 2, ... , d, denotes the number of type j objects in the nth generation. 

If the process is initiated in state i, we will be denote it by z~). 

Definition 1.3. If b = f.i, then Z 1 have the generating function 

00 

f(i)(~) = L p(i) (r1, · · · , rd) s~1 · · · s~d (1.2) 
r1,··· ,rd=O 

where p(i) (r1 , · · · , rd) is the probability that an object of type i has r 1 children of 

type 1, · · ·, rd children of type d. We sometimes write f(i)(~) = !?)(~) 

3 



If initially there are it,··· , id individuals of types 1, · · ·, d, respectively, that 

is, b = i, then the generating function for Z 1 is 

(1.3) 

The generating function of Z n, when b = !4,, will be denoted by 

1.2.3 Total Progeny in a Branching Process 

Definition 1.4. LetS.. be total progeny in a branching process {Zn}, then 

(1.5) 

Lemma 1.1. (Good[1955]) Let there be d types, and let w(i)(.§.) be the generating 

function for the total numbers of the various types in all generations, starting with 

one object of type i. Then the w(i)(.§.) satisfy the functional equations 

For d= 1, this reduces to 

w(s) = sf(w(s)) 

Lemma 1.2. If the branching process starts with i 1 individuals of type 1, i 2 individ­

uals of type 2,· · ·, id individuals of type d, then the generating function for the total 

numbers of the various types in all generations is given by 

(1.6) 
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Theorem 1.3. (Dwass[1969]) 

P (S = m I Zo = i) = _i_[sm-i]fm(s) 
m 

= _i_p (Zt = m- i I Zo = m) 
m 

or let Nm = X 1 + · · · + Xm, where XJ are iid. Then 

i . 
P(S = m) = -P (Nm = m- z) 

m 

The relationship (1.8} is called Dwass' formula. 

(1.7) 

(1.8) 

The proof by Dwass is quite complicated. The technique he used involved 

the probability generating function of an infinitely divisible distribution. In fact, 

we can get his result by using Lagrange-Biirmann inversion formula. Harris[1963] 

mentioned that the distribution of the total progeny can be determined by using 

Lagrange's expansion, but he did not give any related results. 

1.3 Organization of this Thesis 

This thesis is organized as follows. Chapter 1 provides background information 

on branching processes. Chapter 2 describes formal power series and coefficient 

extraction. Chapter 3 describes the Lagrange Inversion Theorem and its application 

to branching processes. In Chapter 4 and 5, we give the determinant of one special 

matrix and the distribution of the total progeny for multi type branching process with 

same offspring distribution. We discuss total progeny for multitype branching process 

with independent but not identical offspring distribution (Poisson). In chapter 6 we 

give an application of Dwass' formula. 
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Chapter 2 

The Method of Coefficients 

The aim of this chapter is to present the method of extracting the coefficient of 

formal power series. These techniques will be used in the proof of our main results 

(Theorem 4.1 and 4.5). 

2.1 Formal Power Series 

In this section, we will discuss how to construct the ring of formal power series in n 

complex variables from the ring of formal power series in one complex variable, so 

that the technique of coefficient extraction for the ring of formal power series in one 

complex variable can be extended to the case of n complex variables. For the presen­

tation and examples below, we have benefited from the book of Shafarevich[1997]. 

Definition 2.1. Let lK be a (non-empty) set with two operations, addition (denoted 

by a * b) and multiplication (denoted by a · b). lK is said to be a field if the operation 

satisfy the following conditions for any a, b, c in lK: 
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• Addition 

- Commutativity: a * b = b * a 

- Associativity: a* (b *c) = (a* b)* c 

- Existence of zero: there exists an element 0 E lK with a * 0 = a for every 

a (it can be shown that this element is unique) 

- Existence of negative: there exists an element -a with a * (-a) = 0 for 

any a (it can be shown that this element is unique) 

• Multiplication 

- Commutativity: a · b = b · a 

- Associativity: a· (b ·c) = (a· b) · c 

- Existence of unity: there exists an element 1 E lK with a · 1 = a for every 

a (it can be shown that this element is unique) 

- Existence of inverse: there exists an element a-1 with a· a-1 = 1 for any 

a f. 0 (it can be shown that for given a, this element is unique) 

• Addition and Multiplication 

- Distributivity: a· (b *c)= a· b *a· c 

If the requirements of both commutativity and existence of inverse are re­

moved, then lK is said to be a ring. If only the requirements of existence of inverse 

is removed, lK is said to be a commutative ring. 
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The above conditions are generally called the field axioms. They will be 

referred to as the commutative ring axioms if the existence of an inverse and the 

condition 0 =f 1 omitted. 

Example 2.1. (Shafarevich{1991}, P.16} Consider the set of all Laurent series 

l:~=-k anzn which are convergent in an annulus 0 < izi < R (where different series 

may have different annuli of convergence). With the usual definition of operations 

on series, these form a field, the field of Laurent series. If we use the same rules to 

compute the coefficients, we can define the sum and product of two Laurent series, 

even if these are nowhere convergent. We thus obtain the field of formal Laurent 

series. If the coefficients an belong to an arbitrary field JK, the resulting field is called 

the field of formal Laurent series with coefficients in JK, and is denoted by JK( ( z)), 

Definition 2.2. Let A be a commutative ring. The set of formal symbols 

A[z] = { anzn + an-1Zn-1 + · · · + a1z + aoiai E A, n is nonnegative integer} 

is called the ring of polynomials over A in the indeterminate z. 

If we denote the sequence (ao, ab · · · , an) as a polynomial anzn + an-1Zn-1 + 

· · · + a1z + a0 , then sum and product are given by formulas 

L akzk + L bkzk = L(ak + bk)zk (2.1) 
k k k 

(L akzk) · (2:::: b1z1) = L CmZm where Cm = L akbl. (2.2) 
k l m k~=m 

Consider any infinite sequence (a0 , a1, · · · , an,···) of elements of a ring A, which 

consist of zeros from some term onwards (this term may be different for different 
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sequences), then addition of sequences can be defined as 

Clearly, all the ring axioms concerning addition are satisfied. As for multiplication, 

we define first the multiplication of sequences by elements of A: 

a(ao a1 .. · a .. · ) = (aao aa1 .. · aa .. · ) 
' ' ' n' ' ' ' n' 

Let Ek = (0, · · · , 1, 0, · · ·) denote the sequence consisting of 1 in the kth place and 0 

everywhere else. Then, 

(ao, all··· , an,···) = L akEk 
k 

Now define multiplication as follows 

= L akblEk+l 
k+l=n 

(2.3) 

(2.4) 

It follows from (2.4) that Eo is the unit element of the ring, and Ek = Ef. A 

unity in a ring is nonzero element u such that there exists a multiplication inverse 

u-1 where u · u-1 = 1. 

Setting E 1 = z, the sequence (2.3) can be written in the form L: akzk. Ob­

viously this expression for the sequence is unique. It is easy to check that the 

multiplication (2.4) satisfies the axioms of a commutative ring, so that the ring we 

have constructed is the polynomial ring A[x]. 

Remark 2.1. The polynomial ring A[z1 , z2] is defined as A[z1][z2], or by generalising 

the above construction. In a similar way one defines the polynomial ring A[z11 • • • , Zn] 

in any number of variables. 
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Definition 2.3. An isomorphism of two fields IK' and IK" is a 1-to-l correspondence 

a' +-t a" between their elements such that a' +-t a" and b' +-t b" implies that a' * b' +-t 

a" * b" and a' · b' +-t a" · b"; we say that two fields are isomorphic if there exists 

an isomorphism between them. An isomorphism of fields IK' and IK" is denoted by 

IK' ~ JK". 

Example 2.2. (Shafarevichf1997j, P.19} All linear differential operators with con­

stant (real) coefficients can be written as polynomials in the operators 8~1 , • • • , 8~1 • 

Hence they form a ring 

lR [~ ... ~] 
OZl' ' OZl 

Sending 8~; to ti defines an isomorphism 

Definition 2.4. A subset § of a ring lK is a subring of lK if § is itself a ring with 

operations of K 

Definition 2.5. A commutative ring with the properties that for any elements a, b 

the product a· b = 0 only if a = 0 or b = 0 , and that 0 -=/= 1, is called an integral 

ring or an integral domain. Thus a subring of any field is an integral domain. 

Theorem 2.1. For any integral domain A, there exists a field lK containing A as 

a subring, and such that every element of lK can be written in the form a · b-1 with 

a, b E A and b-=/= 0. A field lK with this property is called the field of fraction of A: it 

is uniquely defined up to isomorphism. 

Remark 2.2. All rational functions form a field, called the rational function field; it 

is denoted by IK( z). 
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Remark 2.3. The field of fractions of the polynomial ring IK[z] is the field of rational 

functions IK(z), and that of IK[zb · · · , Zn] is IK(z1, · · · , Zn) 

Definition 2.6. Let lR be the field of real numbers and let z be any indeterminate 

over JR, i.e., a symbol different from any element in R A formal power series over lR 

in the indeterminate z is an expression: 

for real-valued coefficients fn- In this case, fn is called the nth coefficient of F(z), 

write [zn]F = fn· If fo = 0, F(z) is called a nonunit. 

Two formal power series can be added by adding the coefficients of like powers: 

(2.5) 
n~O n~O n~O 

Two formal power series can be multiplied: 

(2.6) 

Example 2.3. (Shafarevich(1997}, p.20} The ring of functions of one complex vari-

able holomorphic at the origin is an integral domain, and its field of fractions is 

the field of Laurent series. Similarly to Example 2.1 we can define the ring of 

formal power series L:~=O anzn with coefficients an in any field K This can also 

be constructed as in Example 2.1, if we just omit the condition that the sequences 

(a0 , a 1, · · · , an,···) are 0 from some point onwards. This is also an integral domain, 

and its field of fractions is the field of formal Laurent series IK((z)). The ring of 

formal power series is denoted by IK[[z]]. 
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Definition 2.7. Let F be a ring, let dEN be given, a formal power series on F is 

defined to be a map F : Nd --t F 

As above, We will write [~ll]F to refer to the coefficient of ~!1 in F. 

Given two formal power series A(~) and B(~) we will define their sum and 

product respectively as 

where 

A+B - L:u z!l !1-

.!! 

AB - LV z!l !1-

.!! 

u!l := all+ b!l and 11.!1 := L a!ibn-1£ 
fi: Q::;&::::n 

(2.7) 

(2.8) 

Example 2.4. (Shafarevich[1997}, P.21} The ring On of functions in n complex 

variables holomorphic at the origin, that is of functions that can be represented as 

power series 

'""" a. . zi1 ••. zin L...J H· .. ~n 1 n 

convergent in some neighbourhood of the origin. By analogy with Example 2.3 we 

can define the rings of formal power series C[[z1, · · · , Zn]] with complex coefficients, 

and OC[[z1, • · · , zn]] with coefficients in any field OC 
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2.2 Composition 

Consider two formal power series G(z) = b0 + b1z + b2z2 + · · · and F(z) = a1z + 

a2z2 + · · ·, it is well known that the composition of G with F , G(F(z)), is again 

a formal power series. If the constant term of F is not zero, then the composition 

G(F(z)) may not exist. 

Definition 2.8. Let F(z) = L:~=o fnzn be a formal power series. The order ofF is 

the least integer n for which fn # 0, and is denoted by ord(F). The norm, II · II, ofF 

is defined as II F II= 2ord(F), except that the norm of the zero formal power series is 

defined to be zero. 

Definition 2.9. Let :F be a ring and let IF be the set of all formal power series over 

F. Let G(z) E IF be given, say G(z) = L:~=o9nZn. We define a subset IFa C IF to be 

IF a~ { F(z) E IF I F(z) ~ t,j.z•, t.g.J~') E F n ~ 0, I, 2, · · ·} 

where Fk(z) = L:~=o f~k) zn for all k E N, created by the product rule in Definition 

2.6. We will see that IFa # 0 by Proposition 2.2. Then the mapping Tc : IFa ---+ IF 

such that 
00 

Tc(F)(z) = L CnZn 
n=O 

where Cn = L::o gkf~k), n = 0, 1, 2, ···,is well defined. We call Ta(F) the composi­

tion of G and F ; Ta(F) is also denoted by Go F . 

Example 2.5. {Gan and Knox{2002]} Let :F = R Let G(z) = L:~=O zn and F(z) = 

1+z. We cannot calculate even the first coefficient of the series L:~=O (F(z)t under 

Definition 2.8. Thus, the composition G{F(z)) does not exist. 
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Under these definitions, a composition was established as follows. 

Proposition 2.2. {Roman[1992]) Let F(z) = ~':=o fnzn be a formal power series 

in z. If G is a formal power series, such that, 

then the ~ fnGn converges to a power series. This series is called the composition 

ofF and G and is denoted by FoG. 

Clearly, the requirement limn--+oo lifnGnll = 0 implies that the only candi­

dates for such G are formal power series such that G(O) = 0 unless F is a polyno-

mial. The most recent progress on the existence of the composition of formal power 

series can be found in Chaumat and Chollet [2001] where they discussed the radius of 

convergence of composed formal power series and obtained some very good results. 

In our case, we have 

w(i) (Q) = sd(i) ( w(l) (.~), · · · , w(d) (2)) i = 1, ... ,d 

=0 

2.3 Coefficient Extraction 

A formal power series can be seen as a sequence of its coefficients. The composition 

of formal power series is eventually determined by its coefficients. 

Given a formal power series F(z) = ~':=o fnzn, it is often important to be 

able to determine the coefficient of zn in F(z) for some n. The notation [zn]F(z) 

indicates the extraction of the coefficient of zn from F(z), therefore, [zn]F(z) = fn· 

The following results are well-known and appear in various papers. We don't 

know who first gave proofs, but it is easy to prove them. 
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Theorem 2.3. Let F(z) = 'L-nfnzn and G(z) = 'L-ngnzn be formal power series. 

Then 

1. Linearity: [zn] (F(z) + G(z)) = ([zn]F(z)) + ([zn]G(z)). 

2. Let c E JR, then [zn] (cF(z)) = c[zn]F(z). 

3. Scaling: If c is a constant, [zn]F(cz) = cn[zn]F(z) 

4. Right-shifting: [zn]zkF(z) = [zn-k]F(z) 

5. Left-shifting 

For one-sided series, we can create a new series by 

That is, [zn]H(z) = [zn+m]F(z)for n ~ 0. This is a truncated left shift, and 

the sum above cannot in general be extended over all integers. A two-sided 

left-shift is obtained by [zn]F(z)jzm = [zn+m]F(z); this is valid for all m but 

usually less useful. 

6. Differentiation: Let F'(z) = 'L_nfnzn-l, then [zn-l]F'(z) = n[zn]F(z) 

We define the partial derivative ofF(~) with respect to z3 as the formal power 

series defined as 

L f n-e. n· z- -1 J .!1.- (2.9) 

where f.J is the vector that has all its coordinates identically zero, however, its yth 

coordinate equals 1. 

15 



Corollary 2.4. 

If we regard C[[~]] as a vector space over C then 8~. is a linear operator. 
3 

Since the operators 8~i and 8~k commute we can unambiguously define, for all /s., the 

pseudo-derivative 

{)kF 0k1 0kd n' 
F "' -· J n-k {)~ = {)zkl ... {)zkd = L...J (n- k)! '!!~- -

- 1 1 !!'I!"2:k - -

(2.10) 

In particular, for all /s., we have the identity 

Corollary 2.5. 

(2.11) 
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Chapter 3 

Lagrange Inversion Theorem with 

Application to Branching 

Processes 

Given a formal power series, the determination of its compositional inverse is one of 

the most interesting problems; it was solved by Lagrange and we will discuss it in 

the following sections. 

3.1 Lagrange Inversion Formula 

Definition 3.1. A function f(z) of one complex variable is analytic in a connected 

open set A C C if in a small neighborhood of every point w E A, f(z) has an 

expansion as a power series 

00 

f(z) = L an(z- wt, an= an(w) (3.1) 
n=O 
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that converges. 

Definition 3.2. A function f(z) is called meromorphic in A if it is analytic in A 

except at a (countable isolated) subset A' C A, and in a small neighborhood of every 

w E A', f ( z) has an expansion of the form 

00 

f(z) = L an(z- wt, an= an(w) 
n=-N(w) 

Thus meromorphic functions can have poles. 

Theorem 3.1. Lagrange's Theorem 

(3.2) 

Let f(z) and cp(z) be function of z analytic on and inside a contour C surrounding a 

point a, and let t be such that the inequality 

lt¢(z)l < lz- ai 

is satisfied at all points on the perimeter of C; then the equation 

(=a+ t¢(() 

regard as an equation in (, has one root in the interior of C; and further any function 

of ( analytic on and inside C can be expanded as a power series in t by the formula 

(3.3) 

Theorem 3.2. Lagrange-Biirmann Inversion Formula 

Let f(z) be defined implicitly by the equation f(z) = z<p (f(z)), where cp(u) is a series 

with <p(O) i- 0. Then the coefficients of f(z); its powers Jk(z), and an arbitrary 

composition g (f(z)) are related to the coefficients of the powers of cp(u) as follows: 

(3.4) 
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(3.5) 

(3.6) 

Many different versions of multivariate Lagrange inversion formulas have been 

found, such as those of Jacobi, Stieltjes, Good, Joni and Abhyankar (Gessel [1987]). 

The following two theorems are due to Good[1960]. 

Theorem 3.3. If h(~) is analytic in a neighborhood of~ = g_, if 

where fJl (g_) =I 0, then 

h (~(())="""'((I- al)ml ... ((d- ad)md { o:I+ .. +m:d [H(t) (JI(t))ml ... (fd(t))mdJ} 
- LJ m 1! · · · md! 8t1 · · · 8td £=!! 

where 

Theorem 3.4. Multivariable Lagrange Inversion Formula 

If (Jl = 1:(!.), where fll (~) is analytic in a neighbourhood of the origin and fll (Q) =I 0 

for f.L = 1, · · · , d), and h(~) is meromorphic in a neighbourhood of the origin, then 

where 8~ is the Kronecker delta, and llajkll denotes the determinant of the matrix 

(ajk). 

We note that for d = 1 

(3.7) 
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3.2 Application 

When Theorems 2.3 and 3.2 are applied to a single type branching process, it is 

easy to obtain Dwass' formula. Let the branching process start with k individuals 

in the zeroth generation. Let g(s) = si and w = sf(w). By Lemma 1.2, g(w) is the 

generating function for the total numbers of the various types in all generations. 

1 
-[um-l]r(u)g'(u) 
m 

_i_ [um-l]ui-1 fm( u) 
m 

_i_[um-i]fm(u) 
m 

Good[1960] gave the following result. Let the branching process start with 

i 1 , · · · , id individuals in the zeroth generation, of types 1, 2, · · ·, d. Let h(2) = 

si1 
• • • s~d and w = §., by Lemma 1.2, h( w) is the generating function for the total 

numbers of the various types in all generations. Apply theorem 2.2 and 4.4, then 

obtain 

Proposition 3.5. (Good{1960]} If the branching process starts off with i 1 individuals 

of type 1, i 2 of type 2, · · ·, id of type d, then the probability that the whole process 

will contain precisely m1 individuals of type 1, · · · , md of type d, is equal to the 

That is, 

p (S.. = m I b = i) = [sml-il ... smridl (j(1)(2))ml ... (j(d)(2))md 118~- f(::(§.) of;~v(§.) II 

(3.8) 
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The conditions f(J.t) (Q) =I= 0 (J.t = 1, · · · , d) are required for Theorem 3.4. Good 

also pointed out that if the branching process is finite we must not have f(J.t) (Q) = 0 

for all J.l· 

In fact, Good almost found the same result as Dwass. When d = 1, we have 

Note that 

P (S = m I Zo = i) = [sm-i]fm(s) (1- sf' (s)) 
f (s) 

Jm ( S) ( 1 - S j ~?) = Jm ( S) - S Jm-l ( S) J' ( S) 

fm(s)- !._ (fm(s))' 
m 

By Theorem 2.3 , we have 

Therefore, we obtain 
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Chapter 4 

Main Results 

It is of course natural to ask whether a multitype case has a similar formula to Dwass. 

When each type has identical offspring distributions, the following theorem extends 

Dwass' formula to multitype branching process, but I can not yet extend it to case 

of different offspring distribution in this thesis. 

Theorem 4.1. If the branching process starts off with i1 individuals of type 1, i2 

of type 2, · · · , id of type d, and suppose that the distributions of children are in the 

sense that 

with f(~<)(O, · · · , 0) i- 0. Then the probability that the whole process will contain 

precisely m 1 individuals of type 1, · · ·, md of type d, is given by 
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From the above theorem, we immediately have 

w(j)(s1,··· ,sd) 
1 ( 4.1) 

------P(Z1 = (mb · · · ,mj-1,mj -1,mj+b · · · ,md) I b = (mb · · · ,md)) 
m1 + ··· +md 

To prove Theorem 4.1, we need the following result. 

Theorem 4.2. Let A= (a1, · · · , anf and S = (sb · · · , sn), Define 

then 

and so 

M(n) =I- AS= 

n 

1- L:a1s1 
1=2 
. 1 ( -1)3- a1s1 j = 2,3, · · · ,n 

n 

det(I - AS) = IIM(n) II = 1 - A • S = 1 - L a1s1 
1=1 

(4.2) 

(4.3) 

(4.4) 

First, we review some definitions and properties of determinants, which are 

found in most linear algebra textbooks. They will be needed for the proof of Theorem 

4.2. 

Denote by Mmxn the set of m X n complex matrices and by M(n) the set Mnxn· 

Before discussing the computation of determinants using cofactors a few definitions 

concerning matrices and submatrices will be useful. 

Definition 4.1. A submatrix is a matrix formed from a matrix M by taking a subset 

consisting of j rows with column elements from a set of k columns. 
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Definition 4.2. A minor is the determinant of a square submatrix of the matrix M. 

Definition 4.3. The minor associated with the element mij of a square matrix M(n), 

denoted by Mi~n), is obtained by including all but the ith row and the lh column, or 

alternatively the minor that is obtained by deleting the ith row and the lh column. 

Lemma 4.3. The determinant of a square matrix M(n) = (m~j)) can be defined over 

M(n-1) 
' n 

IIM(n)ll = L) -l)i+jm~j) Mi~n) 
j=l 

where i denotes the ith row of the matrix M. This is called an expansion of liM II by 

column i of M. The result is the same for any other row. This can also be done for 

columns letting the sum range over i instead of j. 

Lemma 4.4. The sign of the determinant will change if we interchange two rows 

(or two columns). 

Proof of Theorem 4.2. We use induction to prove it. 

1. First check n = 1, 2, 3 

• n = 1, Clearly we have 

III- ASII = 1 -as 

•n=2 

Clearly we have 
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and 

•n=3 

M(3) =I -AS= 

Clearly we have 

M (3)-
21 -

M (3)_ 
31 -

By Lemma 4.3, we have 

2. Next, suppose that (4.2),(4.3) and (4.4) are true for n = k. We need to show 
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that they are also true for n = k + 1. We write 

Again, by Lemma 4.3, we have 

k+l 

IIM(k+l)ll = (1- a1s1)Mg+1) + :~:)-1)1+i(-alsj)Mj~+l) 
j=2 

where 

M (k+l)-
11 -

M(k+l)-21 -

-a2s1 

-a2s3 

-a2sk+l 

-a3s1 -ak+lsl 

1 - a3s3 -ak+ls3 

-a3sk+l 1- ak+lsk+l 
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For 3 ~ j ~ k 

and j = k + 1 
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Since 

-a2s1 -a3s1 ak+lsl 

M(k+l)-
-a2s3 1 - a 3s3 -ak+ls3 

21 -

-a2sk+l -a3sk+l 1- ak+lsk+l 

1 - a3s3 -a4s3 -ak+ls3 

-a3s4 1 - a4s4 -ak+ls4 
= -a2sl 

-a3sk+l -a4sk+l 1- ak+lsk+l 

-a3sl -a4sl 

1 -a3s3 -a4s3 

k 

+ :~:::) -1)1
-

1
a2s1 -a3s1-1 -a4s1-1 1- at-lSl-l 

l=3 

-a3sl+l -a4sl+l 

1 - a3s3 -a4s3 
+ ( -1)ka2sk+l 

28 
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-ak+ls3 

-ak+lsl-l 

-alsl+l -ak+lsl+l 



Put 

1 - a3s3 -a4s3 

-a3s4 1 - a4s4 
Nn = 

For l = 3, · · · , k 

-a3s1 -a4s1 

1 - a3s3 -a4s3 

Nll = -a3s1-1 -a4s1-1 

-a3s1+1 -a4sl+l 

and 

-a3s1 -a4s1 

1 - a3s3 -a4s3 
N(k+l)l = 

-a3sk -a3sk 

Suppose that 

1- a2s1 -a3sl 

w<k) = 
-a2s3 1 - a 3s3 

29 
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-a4s3 

-ak+lsl-1 

-ak+lsl+l 



We observe that 

Nu 

Therefore 

k+l 

wg) = 1- L:alsl 
1=3 

W (k) - ( 1)1-2 
(1-1)1 - - als1 

k+l k+l 

l = 3, ... ,k + 1 

M~~+l) = -a2s1(1- L a1s1) + L( -1)
21

-
1

a2s1a1s1 = -a2s1 

1=3 1=3 

We now consider Mg+l) for j = 3, 4, · · · , k + 1. We observe that Mj~+l) has 

the form of M~~+l) after j - 2 column interchanges. That is, the (j - 1 )th 

column, with the entry -aisi+l> is interchanged with the (j - 2)th column. 

Continue this process until the original (j - 1 )th column locates to the first 

column. There are a total of j - 2 column interchanges. So we get 

Also, by our assumption 

k+l 
(k+l) '"""' M 11 = 1 - L..J a1s1 

1=2 

Therefore 

k+l k+l 
(k+l) '"""' '"""' 1+. '-1 liM II = (1- a1s1)(1- L..J a1s1) + L..J( -1) 3( -a1si)( -1)3 ais1 

1=2 j=2 

k+l k+l 

= (1- a1st)(1- L a1s1)- L a1ajs1si 
1=2 j=2 

k+1 k+1 k+1 

= 1- L:a1s1 + L:a1a1s1s1- L:a1ajs1si 
1=1 1=2 j=2 

k+l 

= 1- L:a1s1 
1=1 
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This validates our assumption for n = k + 1 and completes the proof. 

Proof of Theorem 4.1. Note from Theorem 3.4 

1- !!.1.8F _!!.1. 8F 
F 8s1 F 8s2 

11
81/- --.!!.J!_~11 J.t j(l')(!!) 8sv 

_!!:J.8F 1- !!:J.8F 
F 8s1 F 8s2 

_!!.1.8F 
F 8sd 

_!!:J.8F 
F 8sd 

where the last equality comes from Theorem 4.2. We also know that 
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Therefore 

P (S. = m I b = i) 

D 

Theorem 4.5. If the branching process starts off with i1 individuals of type 1, i2 

of type 2, · · ·, id of type d, and suppose that the distributions of children are in the 

sense that 

with f(")(O, · · · , 0) i= 0. Then the probability that the whole process will contain 

precisely m 1 individuals of type 1, · · ·, md of type d, is given by 
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Proof of Theorem 4.5. Note from Theorem 3.4 

1 _ ...ll..,OFP1 _...ll..,8FP1 
FP1 081 FP1 082 

_ ...!2.__ 8FP2 1 _ ...!2.__ 8FP2 
FP2 081 FP2 082 

1 _ P181 aF _P!!!. oF 
F 881 F 882 

-~oF 1 _~aF F 881 F 082 

_Pp8d oF _l!.d!.d. oF 
F 881 F 082 

_ 1 _ tPtSt8F 

1= 1 F 8s1 

As in the proof of Theorem 4.1, we have 

[ m1-i1 md-id] (F( ))P1m1 +···+pdmd PtSl 8F s "'8 s --
- F 8s1 

= [sm1-i1 ... 8mt-it-1 ... 8mrid]Pt (F(.§.))P1m1+··+pdmd-1 8F 

asl 

_...ll..,8FP1 
FP1 08d 

_...!2.__8FP2 
FP2 08d 

_P!!!. oF 
F 88d 

-~aF 
F o8d 

1 _ l!.d!.d. a F 
F o8d 

8 (F( ))p1m1+··+pdmd 
_ [ m1 -i1 mt-it-1 md-id] Pl .§. - s ... s ... s _________ __;___;___;_~----

P1m1 + · · · + Pdmd 8st 

= [sm1-i1 ... 8m1-i1 ... 8mrid] Pl (ml- it) (F{.§.))P1m1+··+pdmd 

P1m1 + · · · + Pdmd 

Pt(mt-it) . . 
__ _;__ _ ___:. __ p (Z1 = {m1- z1, · · · , md- zd) I b = (m1, · · · , md)) 
P1m1 + · · · + Pdmd 

Therefore 

P (S.. = m I b = i.) 
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Chapter 5 

Independent Poisson Case 

In this chapter, we consider different offspring probability generating function (p.g.f) 

but each type produces Poisson offspring. 

Definition 5.1. Let a random variable X take on values 0, 1, · · · with probabilities 

where >. > 0. We say that X has a Poisson distribution with mean >.. Its generating 

function is given by 

fx(s) = e.\(s-l) 

Lemma 5.1. Suppose that the distributions of children are independent Poisson with 

p.g.f 
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Then 

And so 

Lemma 5.2. For Poisson: b = (mb 0), the distribution of ( zPl' Zi2)) is indepen­

dent Poisson with means (m1an, m1a12). For Poisson: b = (0, m2), distribution of 

( Zi1l, Zi
2l) is independent Poisson with means (m2a21, m 2a22 ). Therefore, for Pois­

son: b = ( m 1, m2), distribution of ( zil), zi2
)) is independent Poisson with means 

(m1an + m2a21, m 1a12 + m 2a 22 ), and then 

(mlall + m2a21)ml-il e-(mlau+m2a21) X (mlal2 + m2a22)m2-i2 e-(mlal2+m2a22) 

(m1 - i1)! (m2- i2)! 

(5.2) 

Proposition 5.3. For Poisson offspring distribution and d=2, we have 

P(S = m I b = i) = (m1an + m2a21) a12i1 + (m1a12 + m2a22) a21i2 + (aua22- a 12a21 )i1i2 
- - - (m1an + m2a21) (m1a12 + m2a22) 

x P(Z1 = (m1- i1.m2- i2) I b = (m1.m2)) 

(5.3) 
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Proof. Since 

And so 

(5.4) 

By Proposition 3.5, we have 

P(t2 = m I Zo = i) 

(5.5) 
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since 

[s;n~-i~-1 s~2-i2] (!(1) (sl' s2)) ml (!(2)( St, s2)) m2 

= m 1 - i1 P(Z1 = (m1 - it,m2- i2) I b = (mt,m2)) 
m1an + m2a21 

[s;n~-i~s~2-i2-l] (f(l)(sl,s2))ml (J(2)(st,s2))m2 

= m2 - i2 P (Z1 = (m1 - i1, m2- i2) I b = (m1, m2)) 
m1 a12 + m2a22 

[s;n~-i~-ls~2-i2-l] (J(l)(sl,s2))ml (f(2)(st,s2))m2 

(m1- i1)(m2- i2) . . ) 
( )( )

P(Z1 = (m1-z1,m2 -z2) lb = (m1,m2) 
m1an + m2a21 m1a12 + m2a22 

Then 

1 -
(m1 - it)an (m2- i2)a22 (m1 - i1)(m2- i2) ( ) 

-C..----'--- - + an a22 - a12a21 
m1an + m2a21 m1a12 + m2a22 (m1an + m2a21)(m1a12 + m2a22) 

= 
1 

_ miana12 + m1m2ana12- m1ana12i1 - m2ana22i1 
(m1an + m2a21)(m1a12 + m2a22) 

m1m2ana22 + m~a21a22- m1ana22i2- m2a21a22i2 

(m1an + m2a21)(m1a12 + m2a22) 
m1m2ana22- m1m2a12a21 - m1ana22i2 

+-~----~--~~--------~---
(mlan + m2a21)(m1a12 + m2a22) 

m 1a12a21i2- m2ana22i1 + m2a 12a21i1 + (ana22- a 12a21 )i1i2 
+---------~--------~~----~--~------~-

(mlall + m2a21)(m1a12 + m2a22) 
(m1an + m2a21) a12i1 + (m1a12 + m2a22) a21i2 + (aua22- a12a21)i1i2 

(m1a11 + m2a21) (m1a12 + m2a22) 

Therefore 

P(S = m I b = i) = (m1au + m2a21) a12i1 + (m1a12 + m2a22) a21i2 + (aua22- a 12a21)i1i2 
- - - (m1an + m2a21) (m1a12 + m2a22) 

0 

If an= a21, a12 = a22, then reduce to 
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Chapter 6 

Special Case 

We let 

{z~i) :n=O,l,···} 

denote the branching process with initial i particles. In general, write Z~1) = Zn. 

Suppose that we have a branching process { Zn} with birth law 

f(s) = E (sz1 1Zo = 1) = 1- p- ps 

which is Bernoulli with 

P(Z1 = 1) p 

P(Z1 = 0) = 1- p 

In this sense, 

P(Z1 = m- k I Zo = m) = (m r:_ k)pm-k(1- p)k 

Note that fm is the generating function of a binomial distribution B(m,p). 
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1. Given k = 1 

The total progeny S has a geometric distribution G(p) with support on the set 

{1, 2, 3, · · · }, and probability mass function (pmf) given by 

P(S = miZo = 1) = (1- p)pm-l m = 1, 2, · · · 

and generating function 

f() Leo( )mlm 11-p 1-p s s = 1- p p - s =---ex--
m=l p 1 - ps 1 - ps 

Thus 

P(S = m) = !!_P(Y = m- 1) 
m 

(6.1) 

where S"" G(p), Y"" B(m,p) 

2. Given k 2: 2 

where Xi, i = 1, · · · , k, has a geometric distribution with support on the set 

{1, 2, 3, · · · }. Therefore, the total progeny S has a negative binomial distribu-

tion 

Thus 

( )

k 1 1- p 
fs(s) =- -­

pk 1- ps 

kpk 
P(S = m) = -P(Y = m- k) 

m 

where S"" NB(k,p), Y"" B(m,p) 
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Appendix A 

Notation Index 

Symbol Description 

e. 
-t 

the vector whose ith component is 1 and whose other 

components are 0 

II · II determinant of matrix 

p.g.f probability generating function 

E(X) expectation of random variable X 

Zn single type branching process 

Z n multitype type branching process 

IR real field 

C complex field 
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