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Abstract 

The prevailing theory of Migdal for predicting the excitation probabilities of 

an atom from a-decay of the nucleus, considers the a-particle, after it has been 

emitted by the nucleus, as following a classical trajectory and interacting with 

the atom quantum mechanically. Recently an attempt was made to properly 

model this quantum mechanical phenomenon, in one dimension, with a quantum 

wavefunction treatment of the decaying a-particle, but a discrepancy was found 

between the new predictions and that of the traditional method. In light of this 

discrepancy, we have studied the various approximations made in that work. Our 

results concur with recent follow up work suggesting that agreement should be 

found between a fully quantum mechanical model and with the classical model of 

a-particle propagation where the a-particle is treated as a point particle. 
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Chapter 1 

Introduction 

The state of scientific knowledge has developed to the point where very accu

rate theories are in place to explain the very small and the very large. In every 

day life though, we rely on classical physics for such things as the physics of 

baseball or the scattering of billiard balls. It may then come as a surprise that 

classical physics is still used in predicting atomic excitations due to a-decay of 

a nucleus. This is an inherently quantum mechanical and time-dependent phe

nomenon whereby an a-particle leaks or tunnels out of a nucleus, and between 

leaving the nucleus and leaving the atom, has a probability of interacting with the 

atomic electrons and exciting them to higher energy levels. The half life for decay 

may, in some cases, be long, with much of the a-particle wavefunction remaining 

within the nucleus, long after the tunnelling process begins. However, the pre

vailing theory by Migdal (Migdal 1941), dating back to the 1940's, assumes that 

after the decay process begins, the particle is instantaneously at the outside edge 

of the nucleus, localized as a point, and moving outward with a definite classi

cally defined velocity. Technically this model is a hybrid of quantum and classical 

physics as the tunnelling process is quantum mechanical and the interaction be

tween the classical particle and the atom is treated through the time-dependent 

Schrodinger equation. The atom is always treated quantum mechanically, but the 

trajectory and propagation of the particle is treated classically so we sometimes 

refer to this as the classical treatment. The ionization probability predicted by 
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this theory agrees well with experiment (Levinger 1953; Fischbeck and Freedman 

1975; Fischbeck and Freedman 1977). 

Conceptually it is hard to imagine that a classical model should give the correct 

result. The a-decay process obeys an exponential decay law, meaning that for the 

case of a long half-life, its quantum mechanical wavefunction leaks very slowly 

out of the nucleus. This wavefunction has an abrupt wavefront followed by a long 

exponential tail and has been approximated well with a heuristic form (Breit 1959; 

van Dijk, Kataoka, and Nogami 1999). This heuristic form has been corroborated 

using an exact analytical model (van Dijk and Nogami 1999; van Dijk and Nogami 

2002; van Dijk and Nogami 2004). The wavefront moves out with the classical 

velocity, but for long decay times the expectation value of the position of the 

particle initially moves very slowly, as most of the wavefunction remains in the 

nucleus. In the same vein, the nuclear charge number when treated classically 

changes abruptly from Z to Z - 2, but in the wavefunction treatment would have 

the same slow change as the expectation value. The slow rates in the quantum 

mechanical treatment of the a-particle, suggests that the interaction would be 

adiabatic, with the atom only mildly perturbed by the passing wavefunction, 

leading to low excitation probabilities. However, as we said above the classical 

treatment agrees with the experiment so the process is not adiabatic. 

Recently an attempt was made to accurately model this phenomenon with a 

proper time-dependent quantum mechanical (QM) treatment by Kataoka, et al. 

(Kataoka, Nogami, and van Dijk 2000; Kataoka 1998) (hereafter referred to as 

KNvD). In this work the classical a-particle propagation result was compared to 

two approximate QM models. The models are simplified, one dimensional versions 

of the problem. In their first QM model (model IIa), an electron is bound in 

the atom by a potential represented by the Poschl-Teller potential (Poschl and 
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Teller 1933; Fliigge 1974) at the origin, in one dimension, with parameters such 

that there were 2 bound states for the electron. The a-particle, represented by 

the leaking wavefunction of the heuristic form, then interacts with the electrons 

through a delta-function and the probability of transition to the higher bound 

state or to the continuum of scattering states was calculated exactly, and with 

perturbation theory. In this model, the approximation was made that the a

particle's wavefunction was not affected by the transition. This approximation 

was made based on the a-particle being much more massive than the electron. 

The second QM model of KNvD (model lib) was similar in structure to their 

first QM model, but took account of the correlation between the a-particle and 

the electron and the excitation to scattering states is also accounted for, so this 

model is more complete. Because of the complexity of the second model it was 

only solved using first-order perturbation theory, which assumes that the interac

tion was weak. The two QM models in this work are consistent with each other in 

their prediction of the excitation probability, but differ from the classical model 

by giving a result between two and six orders of magnitude lower, depending on 

the interaction and binding strengths assumed. In this sense they agree with 

the adiabatic argument above, but not with the experimental result. This led 

to speculation that this excitation process could not be properly described with 

this wavefunction method (Nogami and van Dijk 2001). In the classical way of 

thinking, this is a single-particle event, with a single a-particle exciting a sin

gle electron, and it was thought that the ensemble of events described by the 

wavefunction did not properly describe the excitation. 

A follow up work (van Dijk, Kiers, Nogami, Platt, and Spyksma 2003), used 

a more schematic model of the atom as simply a one dimensional, 2-level system 

centered around the origin where the interaction potential was represented by 

3 
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a Gaussian form. The a-particle was treated both quantum mechanically as an 

incident wavepacket and classically as a spatially extended object. It is not treated 

as a decaying particle as in the KNvD work, but as a free particle incident on the 

atom from the left, along a straight line. There is no possibility of ionization 

in this model, as the interaction causes either a transition to the higher state or 

leaves the atom in the lower state. The wavepacket was assumed to be either 

in the form of a Gaussian or in the form of a wavefront with an exponentially 

decaying tail, mimicking the heuristic wavefunction for the a-particle. When 

treated quantum mechanically, the transition probabilities after a long time, for 

a given interaction strength, were found to be essentially independent of the size 

and shape of the wavepacket, although the intermediate time dependence is highly 

variable. The important result of this work was that when the incident particle 

was treated quantum mechanically, agreement with the classical point particle 

result was found. In the classical treatment of the extended particle, however, 

the predicted transition probabilities were highly dependent on the size of the 

particle and agreement with the classical point particle result occurred only for 

very narrow distributions. The narrow distributions are effectively point particles, 

so this agreement is not surprising. For wider distributions the interaction with 

the atom is adiabatic and very small transition probabilities are predicted. 

The goal of the present work is to try to determine the reason for the discrep

ancy between the Migdal theory and the result from KNvD, especially considering 

that in the follow up work (van Dijk, Kiers, Nogami, Platt, and Spyksma 2003) 

there was no discrepancy. We apply the approximations made by KNvD to a 

schematic model of the particle-atom system, similar to that used in the follow 

up. We use one-dimensional models for simplicity, but the dimension can be con

sidered as the radial coordinate when using partial waves. We also investigate 
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the form of the KNvD models, with some changes that make the models easier to 

solve. One change was to reduce the problem to only having one spatial variable, 

the coordinate of the a-particle, and another was to ignore excitation into scatter

ing states, in other words the atom is an excitable two-level system. By applying 

the same approximations to the schematic model of the follow up work, as well 

as to the more realistic decay model of KNvD, we hoped to see what led to the 

wrong result. It was found that one of the approximations made in KNvD should 

indeed lead to incorrect results. It was also found that our version of KNvD's 

more exact second model does agree with the classical result. 

This document is organized as follows: chapter 2 presents an extension we 

have made to a powerful numerical modelling method for solving the Schrodinger 

wave equation. This improved model is necessary for a fast and efficient treatment 

of the 2-level QM models used. 

Chapter 3 further investigates the schematic model of the quantum excitation 

of an atom by the passage of a particle. The approximations used in KNvD are 

applied to a schematic model and comparisons are made with the classical result. 

In chapter 4, an a-decay model is presented that has some simplifications on 

the KNvD model. We compare the new results with the previous results and with 

the classical theory. 

Chapter 5 has some concluding remarks and suggestions for future work. 
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Chapter 2 

Modelling Transitions 

2.1 Introduction 

An important part of modern quantum mechanics is the ability of computers 

to solve complex algorithms implemented to solve time-dependent wave equations 

that, lacking analytic solutions, must be solved numerically. In this chapter we 

present a further extension to a powerful algorithm recently updated by Moyer 

(Moyer 2003). This algorithm is capable of solving wave packet propagation prob

lems in one dimension, for a one-channel system, under the influence of a potential. 

Moyer updated the Crank-Nicolson algorithm used by Goldberg (Goldberg, Schey, 

and Schwartz 1967) for wavepacket propagation by adding in the so-called Nu

merov approximation. With this approximation the accuracy of the calculations 

in the spatial increment is increased by three orders of the spatial step size. 

Moyer also extended the algorithm to include transparent boundary condi

tions (TBCs). This special form of boundary conditions behaves essentially as 

a transparent or non-existent boundary whereby the propagating wave or energy 

will go right through without reflecting. This is important in problems that evolve 

slowly with time as a large amount of computational resources can be wasted on 

calculations in the spatial dimension, away from the interesting physics of the 

problem. An example of such a problem would be a wave packet slowly leaking 

away from a potential well at the origin. In this case the potential is localized 

6 
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near the origin so it becomes unnecessary to calculate propagation of the wave far 

from the potential. 

In this work, we extend the Moyer algorithm with the N umerov approximation 

and TBCs to allow it to solve N-channel transition problems. The model was also 

updated to allow for a non-homogeneous term in the Schrodinger equation that 

occurs when perturbation theory is applied to the coupled equations arising from 

quantum interactions. As a minor note, this formulation also includes the mass 

m as a parameter rather than removing it early in the derivation as was done in 

the previous derivation (Moyer 2003). 

2.2 Formulation 

The problem amounts to propagating the wavefunction \ll(x, t) forward in time 

from some initial condition, or more succinctly, finding \ll(x, t) at the next time 

step, based on the physics of the problem and its value at an earlier time. We 

need a numerical method to solve Schrodinger's equation of the form 

(i! -H) \ll(x, t) = N (x, t). (2.1) 

N(x, t) is a non-homogeneous source or driving term and the Hamiltonian is 

1 fP 
H =-2m8x2 + U(x, t). (2.2) 

The factor m is the mass, and the potential term U(x, t) contains the atomic ener

gies, the background a-particle potential, and the interaction potentials. Through

out this work we use atomic units so that 1t = 1 and the electron mass and charge 

are also equal to 1. The units of length, mass and energy are the Bohr radius, 

the electron mass and 1 Hartree=27.21 eV, respectively. This leads to a speed of 
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light of c = 137 which is much larger than the speed we use for the particles in 

this work (v ~ 1). The units of time and speed are respectively 2.419 x 10-17 sec 

and 2.189 x 108 em/sec. 

To adapt this model to N channels we use a matrix formulation. For each 

value of x and t, w(x,t) and N(x,t) are Nx1 vectors and His an NxN matrix. 

For the case of transition problems in this work, the Hamiltonian takes the 

specific form 

H Hkin + Ho + Hint 

= ~ (:: + Ei) Ji)(il + if;l Vi,i(x)Ji)(jJ, 

(2.3) 

(2.4) 

where Hkin is the kinetic energy part of the Hamiltonian and H0 simulates the 

N-level atom such that H0 Ji) = Eiji) for i = 1, ... , N and (iJj) = 8ii· Hint covers 

the interaction between the particle and the atom through the potential Vi,i( x). 

Then w(x, t) takes the form w(x, t) = 2:~=1 '1/Ji(x, t)Ji). The '1/Ji(x, t)'s are scalars 

for each x and t and the ket I i) is an N x 1 vector of zeros except for a 1 in the 

i-th row, representing the i-th bound state. 

Thus U(x, t) in (2.2) is 

N N 

U(x, t) = :~::>ili)(il + L Vi,j(x)Ji)(jJ. (2.5) 
i=l i,j=l 

Inserting (2.2) into (2.1) and rearranging, we have 

[i! + 2~ ::2 - U(x, t)] w(x, t) N(x, t) {2.6) 

[- 2~ ::2 + U(x, t)] w(x, t) = /7\11~~· t) - N(x, t) {2.7) 

8 
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We now make substitutions for the main functions in (2.7) by replacing \ll(x, t) 

and N(x, t) by their averages over the time step tl.t, and 8\ll(x, t)j8t by the finite 

difference form: 

\ll(x, t) -t [w(x, t) + \ll(x, t + tl.t)] /2 

N(x, t) -t [N(x, t) + N(x, t + tl.t)] /2 
8w(x, t) -t [w(x, t + tl.t) - w(x, t)J 1 tl.t 

8t 

This leads to 

[ 1 82 .2] .4 
-

2
m 8x2 + U(x, t) - z tl.t y(x, t) = -z tl.t \ll(x, t) + M(x, t) 

where 

y(x, t) = \ll(x, t) + \ll(x, t + tl.t) 

(2.8) 

(2.9) 

and M(x, t) = - [N(x, t) + N(x, t + tl.t)]. Equation (2.8) can be derived more 

rigourously as shown by Puzyin, et al. (Puzyin, Selin, and Vinitsky 2000). 

Rearranging (2.8) further leads to 

::2 y(x, t) = [2mU(x, t)- i~~J y(x, t) + [i~~w(x, t) + 2mM(x, t)] .(2.10) 

We can proceed using the N umerov method since at a given time, the spatial 

dependence is of the form y"(x) = g(x)y(x) + f(x). In this case 

g(x, t) = 2mU(x, t)- i~~ 

f(x, t) i~~\ll(x, t) + 2mM(x, t). 

(2.11) 

(2.12) 

For the N-channel problem, g(x, t) is an NxN matrix, while f(x, t) is an Nx 1 

vector, for each value of x and t. 

9 
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We want the next order term over the regular centered-difference so we expand 

y(x +h) and y(x- h), where his the spatial mesh size. 

1 1 1 
y(x +h)= y(x) + y'(x)h + -y"(x)h2 + -y"'(x)h3 + -y(4)(x)h4 

2 3! 4! 

+ ..!:..yC5)(x)h5 + O(h6
) (2.13) 

5! 
1 1 1 

y(x +h)= y(x) y'(x)h + -y"(x)h2
- -y"'(x)h3 + -y(4)(x)h4 

2 3! 4! 

..!:..yC5)(x)h5 + O(h6 ) (2.14) 
5! 

Adding the two gives 

2 
y(x +h)+ y(x- h)= 2y(x) + y"(x)h2 + 

4
!y(4)(x)h4 + O(h6

), (2.15) 

where the first two terms on each side are the usual second order centered differ-

ence. We now compress the notation as follows: Yi = y(x0 + jh) and similarly for 

g(x) and f(x). The factor j indexes the spatial steps from the left-most spatial 

grid point x0 . Then (2.15) becomes 

(2.16) 

Recognizing that y)4
) = (9iYi +h)" and using the central difference method 

[yjh2 ~ Yi+1 + Yi-1- 2yi] again, we rewrite (2.16) as 

Yi+l + Yi-1 - 2yi 
h2 

12 [(9i+1Yi+1 + fi+1) + 9i-1Yi-1 + fi-1- 29iYi- 2h]. (2.17) 

Substituting yj = 9iYi + fi into (2.17) and rearranging gives 

( di+1Yi+1 - ~~h+1) + ( di-1Yi-1 - ~~h-1) 
2 ( djyj- ~~h) = (gjyj +h) h2

, (2.18) 

10 
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where di =I- ~~gi, and I is the identity matrix of the appropriate size. 

Defining wi = diYi- ~~fi, (2.18) can be rewritten 

(2.19) 

We emphasize that the order of multiplication here (and throughout) is important 

as both 9i and di are N x N matrices. 

Now suppose we can represent wi+l• the next value of w to the right in space 

as a linear function of the value to its left: 

Substituting (2.20) into (2.19) leads to 

Wj+1 = [21 + h29j+ldJ~1- ej+lr
1 

Wj 

+ [21 + h2gj+ldj~1- ej+lr
1 

(qj+l- h2dj~di+l). 

Comparing this with (2.20) we see that 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

where (2.23) was found from (2.22) by rearranging terms and shifting the index 

by 1. 

Similarly 

-1 + h2d-1f ei-1qi-1 i i· (2.24) 

11 
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We can rearrange (2.20) 

(2.25) 

where the superscript n has been added to keep track of the time steps such 

that tn = t0 + nD..t. These superscripts are always assumed, but are only stated 

explicitly when necessary for clarity. 

For rigid walls w0 = 0 for all n, but wj and qj_1 in (2.25) are not necessarily 

equal. Therefore (e0)-
1 must force it to be zero, resulting in e0 taking the form 

of a diagonal matrix with all diagonal elements being infinity and 

(2.26) 

For a spatial dimension divided into J steps, e; can be found by forward recursion 

from j = 1 to j = J. If the potential is time-independent, 9i and di do not vary 

with time and the e; 's only need to be calculated once. 

The values of qj are also found in a forward recursion. From (2.24) we see 

that 

qn- e-1qn+h2d-1fn 
1-0 0 1 1' (2.27) 

From the above arguments though, e01 = 0 x I so if q0 is finite qf = h2di1 ff. 

Note that fj changes at each time step, so qj must be calculated at each time 

step regardless of the time-dependence of the potential. 

We are now prepared to calculate the values of wj. From (2.20), wj+l = 

e;wj + qj, but because of the form of e0 assumed above we cannot start from the 

j = 0 boundary since we would have oo x 0. Using (2.25), starting from j = J 

and noting that w1 = 0 on the right boundary as well, we can calculate wj in a 

backwards recursion down to j = 1, with w0 = 0 on the left boundary as above. 

12 
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After Wj is calculated, we can unfold all of the transformations we have applied 

to recover the wavefunction at the next time step. Start by rewriting (2.9) 

yj 

Yn- \11'!
J J 

d • - d h2J ad n- (dn)-1 ( n h2J ) an rearrangmg wi = iYi - 12 i to re Yi - i wi + 12 in . 

Now, from (2.12) fin = i~";Wj + 2mMj so finally 

(2.28) 

(2.29) 

(2.30) 

and we have an equation for w(x, t) at the next time step. This cycle is repeated 

allowing \II ( x, t) to be easily found over many time steps. 

2.3 Transparent Boundary Conditions 

The derivation and addition of the transparent boundary conditions (TBCs) is 

quite involved so we included it by reference to Moyer's paper (Moyer 2003). The 

basic idea with TBCs is to limit the computational domain so that simulations 

run faster. The accuracy can then also be improved since there is additional 

free memory. In the present formulation without the TBCs we can think of our 

boundary conditions as rigid walls where the solution is forced to go to zero at 

these points. This causes reflections (in the same way as a string fixed to a wall), 

and is not ideal for long propagation times since the energy being propagated 

may reflect off the rigid wall and interfere with the problem. Because of these 

reflections it is necessary to keep the propagating wave and potential regions far 

away from the walls and consequently there is a large computational domain going 

to waste. With a TBC the wall can be moved much closer to the region of interest 
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in the problem as the propagating wave does not reflect off this type of wall, but 

effectively goes right through it. 

In this formulation the TBCs enter through the boundary conditions w8 and 

w} shown earlier. Moyer's formulation stays identical since TBCs are only applied 

away from any interaction or potential regions. All matrices in the present formu

lation then become diagonal matrices since there is no coupling between channels 

at the TBC, and so TBCs are essentially just applied to each channel individually. 

All formulas for the TBCs can be applied as stated in Moyer's paper, but note 

that since we have included the mass m explicitly in this formulation, Moyer's 

variable c for the TBCs becomes c =I- i>.;d-1 • 

2.4 Verification of Numerical Method 

The homogeneous model (N(x, t) = 0) will be verified for a 2-channel prob

lem by recalculating recently published results (van Dijk, Kiers, Nogami, Platt, 

and Spyksma 2003), which used the Crank-Nicolson method and a fast Fourier 

transform method (Tal-Ezer and Kosloff 1984; Leforestier 1991). For more on 

2-channel problems see the well-written text by Griffiths (Griffiths 1995). This 

problem is similar to the one we investigate in the next chapter. We consider a 

wavepacket impinging on a quantum 2-level system from the left and interacting 

through a potential V ( x). The system is initially in the ground state with energy 

E1 = 0 and has a possibility of being excited to energy E2 = 1 by the passage of 

the wavepacket. 

We begin with the form of the wavefunction 

\ll(x, t) = 1/J1(x, t)11) + 1/J2(x, t)l2). (2.31) 
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Continuing with the model of van Dijk, et al. we substitute (2.31) into (2.3) and 

(2.1) with N(x, t) = 0. This leads to the following coupled equations for 1/Ji(x, t) 

and 1/Ji(x, t) (i, j = 1 or 2) 

(2.32) 

The interaction between the wavepacket and the system is governed by the po

tential V(x) = Vi,2(x) = V2,1(x) = >.(f3/V'ff)e-f3
2
x

2 
and Vi,i(x) = 0. 

We assume the initial condition at t = t0 , 

'l/J1(x, to) = f(x- xo)eik(x-xo), 'I/J2(x, to) = 0. (2.33) 

The function f(x - x0 )eik(x-xo) specifies the initial shape of the incident wave 

packet. It is localized around x = x0 « 0 and moves with initial speed v = 

kjm > 0 toward the origin. For f(x- x0 ) we assume the Gaussian form 

(2.34) 

where u0 > 0 is the initial width, and x0 is the initial center of the wavepacket. We 

assume the same values for the various parameters as those used in the work of van 

Dijk et al. (van Dijk, Kiers, Nogami, Platt, and Spyksma 2003). Specifically we 

choose v = 1, m = 100, and {3 = 1 and vary the parameters u0 and x0 according 

to the problem. We choose x0 « -u0 and x0 « -1/ {3 so that the incident wave 

packet at t = t0 is well outside the interaction region. The initial time is t0 = x0 jv, 

chosen such that a non-interacting wavepacket would be centered at the origin at 

t = 0. 

Throughout this chapter and the next we assume ~: 1 = 0 and ~:2 = 1. The mass 

is set to m = 100 to simulate the a particle being much more massive than the 
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electrons. With the velocity typically around 1, the kinetic energy for the incident 

particle is then mv2 /2 ~=::J 50 and is much larger than the excitation energy between 

the 2 states of the atom. 

The probability for the transition 1---+ 2 is given by 

(2.35) 

which starts with P21 (to) = 0 and approaches a constant as t---+ oo. 

Figure 2.1 shows the result of our calculations, which agrees with Figure 2 

of van Dijk et al. (van Dijk, Kiers, Nogami, Platt, and Spyksma 2003). Our 

a0 corresponds to D. in that work. We see the identical behaviour, with the 

transition probability for large t virtually independent of the wavepacket size or 

starting position. Our results converge to the same result as in the paper. The 

time dependence around t = 0 also shows the same form. The numerical method 

described in this chapter appears to be capable of solving these types of problems. 

The non-homogeneous model (N(x, t) -=/= 0) will be tested in chapter 3. 
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Figure 2.1: Verification of numerical method by a new calculation of published 
results for a wavepacket interacting with a 2-level system. >. = 2, v = f3 = 1 
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Chapter 3 

Excitation by the Passage of a Particle 

3.1 Introduction 

We consider a schematic model of the excitation process where a 2-level atom 

is located at the origin and a particle impinges on it from the left, with the 

possibility of exciting it from the lower state to the higher. The particle can 

be a point particle, or extended in space, or a quantum mechanical wavepacket. 

For the spatially extended particle, we also consider the case where the particle's 

distribution changes with time. The point particle and the extended particle 

follow classical trajectories through space with well-defined velocities. We look at 

different forms of the classically behaving particles to see if we can recreate the 

independence on particle shape seen in the recent work by van Dijk, et al. (van 

Dijk, Kiers, Nogami, Platt, and Spyksma 2003). 

The schematic model itself is the same as the follow up work on the KNvD 

(Kataoka, Nogami, and van Dijk 2000) result by van Dijk, et al. (van Dijk, Kiers, 

Nogami, Platt, and Spyksma 2003), although we also include spreading of the size 

of the wavepacket for the classical extended particles. We apply the approxima

tions used by KNvD to this schematic model with the hope of finding where the 

discrepancy lies. The first part of this chapter, Approximation A, corresponds to 

model Ila of KNvD and the second part, Approximation B, corresponds to their 

model Ilb. 
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We start from the Schrodinger equation as before. We consider a situation 

such that the atom is initially in the ground state 11). A wave packet is incident 

from the left and it interacts with the atom which is fixed at the origin. The atom 

may be excited to level 12). We solve the time-dependent Schrodinger equation 

where the Hamiltonian is given by 

H = Hkin + Ho + Hint 

= ~ (:: + Ei) li)(il + i,jt,t.i Vi,j(x)li)(jl. 

(3.1) 

(3.2) 

(3.3) 

Hkin is the kinetic energy part of the Hamiltonian and H0 simulates the 2-level 

atom such that H 0 li) = Eili) fori= 1, 2 and (ilj) = &ii· Hint covers the interaction 

potential between the particle and the atom. This potential, centered around the 

origin, is given by 

(3.4) 

where 1/ {3 determines the potential width, A the potential strength and the diag

onal terms of the potential Vi,i ( x) = 0. 

We proceed by testing two different models using different forms of \ll(x, t). We 

label these two approximations, A and B, and they are similar to the KNvD models 

IIa and lib, respectively. Model A assumes that the a-particle wavefunction is 

unaffected by the interaction with the atom and uses a simplified form of w(x, t). 

Model B, accounts for changes to the a-particle wavefunction, by using the proper 

X and t dependent form for the states of w(x, t). Since this model is similar, but 

simpler we hope to shed some light on which approximations could have caused 

problems in models IIa and lib. 
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3.2 Approximation A 

In approximation A, we assume a wavefunction of the form 

WA(x, t) = <P(x, t)[c1(t)j1) + c2(t)j2)], (3.5) 

where <P(x, t) is determined by 

( a 1 a2 
) 

i 8t +2m 8x2 <P(x, t) = 0. (3.6) 

The assumption here is that the spatial distribution of the wavefunction is not at 

all affected by an interaction with the atom. 

Substituting (3.5) into (3.1) with Has given in (3.2) leads to 

<P(x, t)i! [c1(t)j1) + c2(t)j2)] = <P(x, t) [E1c1(t)j1) + E2c2(t)j2)] 

+ <P(x, t)V(x) [c1(t)j2) + c2(t)j1)]. (3.7) 

We can multiply (3.7) by <P*(x, t) and integrate over all x to obtain the following 

coupled equations for c;(t) with i = 1, 2 and i /= j 

(3.8) 

where 

WA(t) = j_: p(x, t)V(x)dx, (3.9) 

and p(x, t) = <P*(x, t)<P(x, t). Note that any phase information for the a-particle 

is now lost since this is the only place the a-particle wavefunction enters the 

equations and p(x, t) is the magnitude squared of the wavefunction. 
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We continue by rewriting c1,2(t) as c1,2(t) = ''Yl,2(t)e-i€I,2t, so that (3.8) simpli

fies to 

{) 
{)t ''Yl(t) = -iWA(t)'y2(t)ei(€I-€2)(t-to) 

! 'Y2(t) -iWA(t)'yl(t)ei(€2-€I)(t-to)' 

(3.10) 

(3.11) 

where t0 is the initial time. Note that all spatial information in the problem is 

contained within the integral in WA(t). 

The probability of transition to state 2 for the coupled equation (CE) solution 

within approximation A, as a function of time is then 

(3.12) 

To proceed we must define ¢( x, t). We use the form given in Liboff (Liboff 

1991) for a Gaussian wavepacket evolving, or spreading, in time. 

(3.13) 

In (3.13), T = 2m<T5, x0 is the initial center of the wavepacket and k is the 

momentum wavenumber such that ktjm = vt. Since 1i = 1, k is identical to the 

momentum. The wavepacket width is set by <To and the mass m = 100 to simulate 

the heavy a particle. 

We can now calculate p(x, t) so that we can find WA(t) 

2 1 [ (x - Xt)
2

] p(x, t) = i¢(x, t)l = rn= exp 
2 2 , 

<TtY 27r <Tt 
(3.14) 

where Xt = x0+ktjm = x0+vt. The new time dependent width <Tt =<To (1 + t2/r2)112 = 

<To (1 + t2/ ( 4m2<T6) )112 so <Tt = <T5 + t2/ ( 4m2<T6). 
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Inserting (3.14) and (3.4) into (3.9) gives 

(3.15) 

where u~ = Ju'f + 1/(2(32) 

The coupled equations (3.10) and (3.11) are solved using the internal Matlab 

function ode45 and results are shown in the next section. The function ode45 is 

an step-size adjusting Runge-Kutta integration method designed to solve coupled 

differential equations of type (3.10) and (3.11). 

3.2.1 Approximation A: Perturbation theory 

For small potential strength A, (3.8) should be approximately solvable using 

perturbation theory. Begin by assuming 

(3.16) 

and insert this into (3.8) 

(3.17) 

Then c2(t) is determined by rearranging (3.17) and integrating over the desired 

time interval: 

(3.18) 

Equation (3.18) was calculated numerically using Simpson's rule. Note that 

c2(to) = 0. 

The probability of transition is found in the same way as before: 

(3.19) 
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3.2.2 Results of Approximation A 

We now look at results for the coupled equations (3.10), (3.11) and for the 

perturbation theory (3.18). The following parameters are constant between the 

different figures: {3 = 1, m = 100, €1 = 0, €2 = 1. For Figures 3.1, 3.2, 3.3, and 

3.4 we look at a range of initial widths u0 , with v = 1, for 2 strengths of the 

potential, >.. The results are plotted for a range of the starting wavepacket center, 

x0 . By decreasing x0 , the incident particle starts farther away from the atom (at 

the origin), and so evolves for a longer time before reaching it. 

A comparison is made with the non-spreading (subscript ns) particle result 

obtained for the simpler version of Pns(x, t) inserted into the coupled equations 

through (3.9): 

1 [ (x- x0 )
2

] Pns(X, t) = Pns(x) = ..j2i exp -
2 

2 • 
O"o 21r O"o 

(3.20) 

The non-spreading particle result after t = oo is independent of x0 since the width 

of the particle does not change with time. 

The classical point particle model is dealt with more thoroughly in the next 

chapter, but amounts to substituting V(vt) for WA(t), (or p(x, t) = 8(vt) where 

vt is the position of the point particle at time t), in (3.9). Since the interacting 

particle is assumed to have no size, this corresponds to u0 = 0. The expected 

result for the transition probability at t = oo is Pffnt = 0.006044 for>.= 0.1 and 

{3 = 1. For>.= 2 and {3 = 1, Pffnt = 0.44526. Figures 3.1 and 3.2 correspond 

to >. = 0.1 and we see a trend towards the classical result as u0 decreases to 0.1. 

For u0 smaller than 0.1, the wavepacket broadens too quickly and the transition 

probability does not approach the classical result. A similar pattern is seen for 

Figures 3.3 and 3.4 with >. = 2. 
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The perturbation theory (PT) result is given in Figures 3.1 and 3.2 where 

>. = 0.1, but not in Figures 3.3 and 3.4 as>.= 2 is too large and the perturbation 

theory approximation breaks down. For Figures 3.1 and 3.2 there is very good 

agreement between the results of the coupled equations and PT with better results 

for smaller O'o. 

The results are close to the non-spreading particle result, as shown in Figure 

3.2, for larger initial widths 0'0 , since a larger packet spreads less rapidly. For 

narrower packets, as in Figure 3.1, the packet spreads more rapidly and so is 

much wider than its non-spreading counterpart when it reaches the potential near 

the origin, leading to a lower transition probability. As the wavepacket width is 

increased the interaction becomes adiabatic and the transition probability tends 

towards zero. For clarity in Figures 3.1 and 3.3, only one line is plotted for the 

non-spreading result as the values for all three cases of O'o (0'0 = 0.001, 0.01, 0.1) 

are the same in the first two significant digits. The reason for this is that as 

O'o decreases for the non-spreading case, the wavepacket approaches a 8-function 

potential (0'0 = 0) and the transition probability values are asymptotic to the 

point particle limit. 

In all cases the physics breaks down when the starting point x0 is too small 

as a portion of the wavepacket is already in the interaction region. In most cases 

this is seen as a rapid decrease in P21 ( oo). 

Figure 3.5 shows a comparison of the percentage difference between the result 

of the coupled equation solution and the PT solution for two different initial 

wavepackets and starting positions, and a range of velocities. As shown by the 

arrows the 10% and 20% points are similar in each case and we see that reliable 

results depend greatly on the velocity. From this result we see that for v = 1 as 

used above, the difference would be very great at >. = 2. 

24 



M.Sc. Thesis -- lan G. Breukelaar -- McMaster University - Physics and Astronomy -- 2006 

x10-3 
7.------.------.------.------.------,------.-------.-----~ 

4 

1 3 
o..:;;. 

2 

- CE solution: spreading 
o Perturbation Theory 

· - · CE solution: non-s readin 

-20 -15 -10 -5 0 

Figure 3.1: Comparison oft= oo transition probabilities, P21 (oo), forCE solution 
and perturbation theory of the spreading particle, with the CE solution for the 
non-spreading particle for a range of starting positions x0 • ..\ = 0.1. For non
spreading line a0 = 0.001, 0.01, 0.1. 

25 



M.Sc. Thesis--lanG. Breukelaar -- McMaster University- Physics and Astronomy-- 2006 

8 

x10-3 
2.35,-------;----.-----r----.------,,------;----.--.-., 

2.3 

2.25 

- CE solution: spreading 
- - Perturbation Theory 

(a) 

· - · CE solution: non-spreadin 

-·-·-·-·-· -· -·- ·- ·- ·- ·-·-·-·-·-·-·-·-~---=-·--~--=-~·=·-----

j 

I 

2.1~--~---~--~---~---L---~---~--~ 
-40 

X10-4 
1.15 

(b) 

1.1 1-- -· 

-35 -30 

- -: -

-25 -20 -15 -10 -5 0 

------------- ·-· ·-·-·-
I 
I 
I 
I 

~ 1.05 

~ - CE solution: spreading 

1 

I I 
- - Perturbation Theory I 
·- · CE solution: non-lipreading 

-40 -35 -30 -25 -15 -10 -5 0 

Figure 3.2: Comparison oft = oo transition probabilities, P21 ( oo), for CE solution 
and perturbation theory of the spreading particle, with the CE solution for the 
non-spreading particle for a range of starting positions xo . .X = 0.1, (a) o-o = 1, 
(b) o-0 = 2. 

26 



M.Sc. Thesis -- Jan G. Breukelaar -- McMaster University - Physics and Astronomy -- 2006 

0.8 .-----,---.-----.--...,---..,.---.-----,r---.-----,----, 

0.7 

0.6 

0.5 

8 

- Spreading, a
0
=0.1 

- - Spreading, a
0
=0.01 

Spreading, a
0
=0.001 

· - · Non-spreading 

~ 0.4 

0.3 

0.2 

0.1 

0 ..... 
-10 

----... ...... . 

-9 

--- ---
-8 -7 -6 

/ 
/ 

-4 -3 

/ 
/ 

/ 

/ 
/ 

/ 

-2 

I 
/ 

I 

-1 0 

Figure 3.3: Comparison oft = oo transition probabilities, P21 ( oo), for CE solution 
of the spreading particle, with the CE solution for the non-spreading particle for 
a range of starting positions x0 . .X = 2. For non-spreading line u0 = 0.001, 0.01, 
0.1. 

27 



M.Sc. Thesis -- lan G. Breukelaar -- McMaster University - Physics and Astronomy -- 2006 

(a) 

0.13 r----,-----,,.----,-----,---.------r--J-,-..----, 

8 0.125 b=-'..=..:..=..:..=-:..:::...:..:::...:...:~"-' =-"'-'' ~-~-~·~· ~~-~~~--=-=-'='-=..:..;' =--· . -.-.- -.-
~ 0.12 

0.115 
1

- Spreading I 
· - · Non-spreading 

0.11 '----.....1...-----1---....I....-----1---__._ __ -~. ___ ....L..,_ __ __J 

-10 -9 -8 -7 -5 -4 -3 -2 

x10"" 
4.2,-----.----.----.------.------;::==~=:;.::==~ 

(b) -Spreading 
4.1 · - · Non-spreading 

4 

8 
~ 3.91=--------------~::-:-:::-: 

3.8 

3.7 

-12 -11 -10 -8 -7 -6 

Figure 3.4: Comparison oft = oo transition probabilities, P21 ( oo), for CE solution 
of the spreading particle, with the CE solution for the non-spreading particle for 
a range of starting positions x0 • A= 2, (a) u0 = 1, (b) u0 = 2. 

28 



M.Sc. Thesis-- lanG. Breukelaar --McMaster University- Physics and Astronomy-- 2006 

0.1 0.2 0.3 0.4 0.5 0.6 
A. 

0.7 

I 
I 

I 0.8 0.9 
I 

0.8 0.9 

-e-v=0.5 
----*"-- V=1 
---'ii"- V= 1.5 

I 
I 

----*"-- v-1 
---'ii"- V= 1.5 

I 
I 

1.1 

1.1 

Figure 3.5: Percentage difference in transition probability between CE solution 
and 1st order PT, using the spreading particle and varying the potential strength 
>.. (a) u0 = 0.1, x 0 = -10, m = 100, (b) u0 = 2, Xo = -30, m = 100. 

29 



M.Sc. Thesis--lanG. Breukelaar --McMaster University- Physics and Astronomy-- 2006 

3.3 Approximation B 

This approximation resembles model lib of KNvD in that the general form 

of the wavefunction is used. The particle is treated as a quantum wavepacket 

rather than as a spatially extended wave. The resulting equations are not solved 

exactly, they are solved using perturbation theory. Since PT worked well for the 

potential strength>. :::; 0.1 in the previous section, we can be confident in applying 

perturbation theory here. The general form of the wavefunction is 

\lf(x, t) = '1/JI(X, t)l1) + 'l/J2(x, t)l2). (3.21) 

Putting (3.21) and the Hamiltonian (3.2) into the time-dependent Schrodinger 

equation (3.1) leads to the coupled equations (seen earlier in chapter 2, (2.32)): 

(3.22) 

Begin by assuming the initial conditions 

(3.23) 

where f/>(x, t) is the same as in Approximation A, (3.13). By first-order PT then, 

after substituting (3.23) into (3.22), 'lj;2 (x, t) is found by solving 

(3.24) 

This equation is similar in form to the one solved in chapter 2, but now is only 

1 channel (N=1). It can thus be solved using the non-homogeneous formulation 

presented in chapter 2. 

The initial condition is 'lj;2(x, t0 ) = 0. The transition probability for 1 --+ 2 in 

this approximation is given by 

(3.25) 
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Figure 3.6 shows a new calculation, using this method, of the result reported 

by van Dijk, et al. (van Dijk, Kiers, Nogami, Platt, and Spyksma 2003) in Figure 

1 of that paper. In that work the results were obtained using a more complicated 

2-channel model which solved the coupled equations exactly, but we see here that 

the behaviour around t = 0 and results for P21 ( oo) can be obtained using a simpler 

1-channel model, if the potential strength A is kept small. Recall that our u0 is~ 

in the quoted paper. 

The expected result is P21 ( oo) = 0.00607, so the difference is less than 10%, 

which is acceptable for a perturbative method. Agreement should be even better 

with A < 0.1. We see also that P21 (t = oo) is essentially independent of the 

wavepacket width u0 • Recall that the classical result for this value of A = 0.1 is 

Pffnt = 0.006044. 

Approximation B clearly captures enough of the physics to give accurate pre

dictions. It agrees with the classical result and with exact quantum mechanical 

calculations. The issue appears to be with the form of the wavefunction used in 

Approximation A (and hence KNvD model IIa). This calculation was done partly 

as a test of the non-homogeneous formulation and partly to mimic model lib of 

KNvD where PT was used in solving the coupled equations. Showing that the 

non-homogeneous formulation works in this case strengthens our confidence in 

applying it to the more rigorous model in the next chapter. 

31 



M.Sc. Thesis--lanG. Breukelaar --McMaster University- Physics and Astronomy-- 2006 

0.01 

0.009 

0.008 

0.007 

0.006 

~ 0.005 
a.. 

0.004 

0.003 

0.002 

0.001 

0 
-5 -4 -3 -2 

Transition Probability. A-=0.1, v=1 

-1 0 
t 

2 

___ a
0
=0.5, x

0
=-5 

....... a
0 
.. 1.0, x

0
=-10 

__ a
0
=0.1, x

0
=-5 

3 4 5 
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Chapter 4 

Excitation Caused by a-Decay of the 

Nucleus 

4.1 Introduction In this chapter we consider the incident particle not 

as a Gaussian wave packet as in the previous chapter, but as a wavepacket slowly 

leaking out of the nucleus. The problem is posed for the spatial region x > 0 

corresponding to the radial direction away from the nucleus. The potential V ( x) 

in this case simulates the a-particle interaction with the atom and so its range is 

on the atomic scale. 

We again consider two different versions of the model, similar to the last chap

ter, as well as the classical model for comparison. One version again corresponds 

to KNvD model Ila which we dub here the Factorization Approximation. The 

second model uses the general form of the wavefunction with the solution to the 

coupled equations obtained using perturbation theory, corresponding to KNvD 

model lib. 

This model is much closer to the KNvD model than that of the last chapter, but 

has been simplified. This model contains only one spatial variable corresponding 

to the a-particle and does not contain the electron coordinate explicitly. The 

model considers only excitation to a higher state, while coupling to scattering 

states is not accounted for. It is hoped that the simplification will allow a more 
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accurate and transparent solution, possibly leading to an explanation of where the 

approximations in KNvD went wrong. The details of the a-particle's behaviour 

within the nucleus are ignored here as that is on a much smaller scale than the 

rest of the problem and would introduce difficulty into the numerical solution if 

the two different length scales are introduced into the same problem. A heuristic 

version of the a-particle wavefunction is assumed which simulates the slow decay 

of the particle from the nucleus, in this case located at the origin. Since there is 

no interaction between the a-particle and the atom while it is still in the nucleus 

the potential is chosen so that it is zero at the origin. 

4.2 Model 

To treat this problem properly we solve the time-dependent Schrooinger equa

tion for the wavefunction \II(x, t) for the atom-a particle system. 

(in gt -H) w(x, t) = o. (4.1) 

The Hamiltonian for this problem takes the form 

(4.2) 

where 

2 

Hatom = LEili)(il, Hint= L Vi,i(x)li)(jl. (4.3) 
i,j=l;itfj 

Ha describes the behaviour of the a particle, Hatom simulates the two-state atom 

and Hint covers the interaction between the a-particle and the atom through 

the interaction potential V(x). In this work we only consider the off diagonal 

components of Vi,i ( x). 
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We introduce a new potential that simulates the interaction of the atom with 

the a-particle, so the range of the function is of the order of the atomic radius. 

(4.4) 

where as before..\ and {3 are constants and \li,i(x) = 0. We assume {3 = 1 through

out. 

The exact form for the wavefunction of the system of the a-particle and the 

atom is written as 

w(x, t) = </Ja(x, t)[x1(x, t)l1) + X2(x, t)l2)], (4.5) 

where each state is assumed to have its own spatial dependence as well. In the 

Factorization Approximation the x-dependence of Xi(x, t) is ignored. 

<Pa(x, t) is the solution of 

(4.6) 

We assume that ( 4.6) is solved and give an approximated heuristic form for it 

later. 

Before proceeding further we look at the simpler classical approximation. 

4.3 Migdal's Method for a-Decay 

We now simulate the result for excitation probability by a decay proposed by 

Migdal (Migdal1941) which was based on the classical trajectory of the a-particle, 

and is supported by experiment (Levinger 1953; Fischbeck and Freedman 1975; 

35 



M.Sc. Thesis -- lan G. Breukelaar -- McMaster University - Physics and Astronomy -- 2006 

Fischbeck and Freedman 1977). This model assumes a very simple form of the 

wavefunction for a 2-level atom in one dimension: 

(4.7) 

The particle is treated classically by having a set position and velocity at a 

given time, but the interaction with the atom is treated quantum mechanically 

with the time-dependent Schrodinger equation. The coefficients in ( 4. 7) are found 

by solving 

(4.8) 

where V(x(t)) = V(vt) = 2>..vtf32e-(f3vt)
2 and x(t) = vt is the position of the point 

particle. As explained in KNvD, the potential enters the coupled equations in this 

way for the point particle because the interaction between the a-particle and the 

atomic electron is a 8-function potential. 

Again we assume c1,2(t) is of the form: c1,2 (t) = C1,2 (t)e-ie1•2t and the above 

coupled equations simplify to: 

(4.9) 

(4.10) 

The initial condition is 

(4.11) 

The probability of transition from the first state to the second is the magnitude 

squared of the coefficient 

(4.12) 
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This result can also be obtained approximately for small values of the potential 

strength parameter >., using perturbation theory. 

c2(t) -ie-iE2t lot V(vt')e*2-€1 )t' dt' 

= -ie-iE2t(2>.f32v) lot t'e-(f3vt')2 eiCE2-EI)t' dt' (4.13) 

The coupled equations are solved for the initial condition using a variable step 

size Runge-Kutta integration method in Matlab, as in the previous chapter. The 

integral (4.13) in the perturbation method can be calculated numerically for a 

given t. 

An example of the good agreement between these two methods, for increasing 

time, is shown in Figure 4.1. Perturbation theory is seen to work very well for 

>. = 0.1. 
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Figure 4.1: Simulation of Migdal's method: Comparison of transition probability 
using perturbation theory and solution of coupled equations for .X= 0.1, v = f3 = 
1. 
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A comparison between the exact and perturbative solution to the coupled 

equations for increasing A is shown in Figure 4.2. For A equal to 1 and greater, 

the results diverge, but agree well for A smaller than 1. It is important to know 

the appropriate values of A for this new potential before calculating new results 

later in this chapter based on perturbation theory. 

0.9 

0.8 

0.7 .......... ·' 

- Coupled Equations · 
Perturbation Theory 

Figure 4.2: Migdal's method: Comparison of P21 (oo) using perturbation theory 
and solution of coupled equations, for varying potential strength A with v = f3 = 1 
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4.4 Fully Quantum Mechanical Model 

4.4.1 Structure of the Model 

This model uses the general form of the wavefunction for the a-atom system 

with the heuristic form for the a-particle wavefunction proposed by Breit (Breit 

1959) and van Dijk, et al. (van Dijk, Kataoka, and Nogami 1999), and the general 

form for the the states. This model corresponds closely to model lib in KNvD as 

outlined earlier. No significant approximations are made until the end where the 

solution is obtained using perturbation theory. We begin by inserting 

'll(x, t) = ¢a(x, t)[XI(x, t)l1) + X2(x, t)l2)], 

into the wave equation ( 4.1) 

(i! -H) w(x, t) = o. 

Recall that Ha¢a(x, t)=i-£¢a(x, t). This leads to the substitution 

Ha¢a(x, t)[Xl(x, t)11) + X2(x, t)l2)] = 

[ ;~ + Ua(x)] ¢a(x, t)[x1(x, t)l1) + X2(x, t)l2)]. 

(4.14) 

(4.15) 

(4.16) 

Some cancellations can then be made and we arrive at the coupled equations 

for the x's. 

(4.17) 

where i =I= j and 

F(x, t) = 2 8¢a(x, t) 
¢a(x, t) ox 

(4.18) 
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It is now appropriate to give the assumed form of ¢a(x, t). The exact solution 

to the Schrodinger equation for the a-particle (4.1) is generally highly complicated, 

but we assume it can be well approximated by the heuristic form. Its validity 

is confirmed by the exact form of the a-particle wavefunction of van Dijk and 

Nogami (van Dijk and Nogami 2002; van Dijk and Nogami 2004). The heuristic 

wavefunction is 

(4.19) 

where 

Pa(X, t) J¢a(x, tW 

= e-rtPa(x,O)+fexp[-r(t-;)]o(t-;). (4.20) 

where O(t) is a step function, equal to zero for t < 0 and equal to one for t > 0. 

At t = 0, Pa(x, 0) is confined to the nucleus, effectively between x = 0 and x = o+ 

on the atomic scale of this problem. The parameter r controls the width of the a 

wavefunction, and also defines the rate of decay of the a-particle from the nucleus. 

It is inversely proportional to the decay half-life: r = (ln2)/Tl/2· 

Then, inserting (4.19) into (4.18) gives 

F(x, t) i2k + / ) 
0
° Pa(x, t) = i2k + 

0
° lnpa(x, t) 

Pa X, t X X 

CY i2k + "£- '1 f( -t + xjv), 
v v 

(4.21) 

where we have approximated the step function O(x) in Pa(x, t) by the function 

f(x) = 1/(1 + e-"~x), with 1 chosen so that the step function is steep on the scale 

of the problem. The second line in (4.21) uses the fact that f- 1(x)df(x)fdx = 

If( -x). 
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Equation {4.17) for Xi,j(x, t) is similar to the non-homogeneous coupled Schrodinger 

equation discussed in chapter 2 with the exception of the first derivative term in 

x. We need to remove this term before proceeding. Begin by rewriting Xi(x, t) as 

Xi(x, t) = ~i(x, t) exp [-~~a: F(x, t)dx] . {4.22) 

The lower limit of x = o+ is arbitrary, but was chosen in this way so that the 

Pa(x,O) terms in {4.20) can be ignored when calculating the integral. 

Substituting Xi(x, t) into {4.17) leads to first derivative terms in Xi(x, t), but 

these cancel out after the first step. Then the exponential of the integral cancels 

out of all the terms but the time derivative one and we are left with 

[
. {) 1 {)2 ] 
z{)t - Ei + 

2
m ax2 - G(x, t) ~i(x, t) = V(x)~i(x, t), {4.23) 

where 

1 8F(x, t) 1 2 i 8 ( fX ) 
G(x, t) = 4m ax + Sm F (x, t) + "2 8t lo+ F(x, t)dx {4.24) 

The function G(x, t) acts as a time-dependent potential that restrains the extent 

of the wavefunction. It is essentially an expanding well that moves out from the 

origin at velocity v = 1. 

The transition probability for this model is 

Pfr (t) = fo'XJ !x2(x, t)l 2 Pa(x, t)dx {4.25) 

= fooo ~~2(x, t) exp [-~~a: F(x, t)dx] 1

2 
Pa(x, t)dx {4.26) 

.------,2 

= foe 6(x, t)e-ikx Pa(O+' t) Pa(x, t)dx 
lo Pa(x, t) 

{4.27) 

Pa(o+, t) fooo l6{x, t)1 2 dx. {4.28) 
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In (4.25), we used that 

(4.29) 

4.4.2 Perturbation Theory 

Equation (4.23) is simpler than the corresponding equation in KNvD. This 

removes some of the difficulty of that work so we have succeeded in that regard, 

but it is still complicated to solve, so we again turn to perturbation theory. Assume 

that 

(4.30) 

Then 

~1 (x, t) = e-ie1
t exp [~~a: F(x, t)dx], 6(x, t) = 0, (4.31) 

and ( 4.23) becomes 

[ 
8 1 82 

] . [1 rx ] i 8t- E2 +
2
m 

8
x2 - G(x, t) ~2(x, t) = V(x)e-'e1t exp '2 lo+ F(x, t)dx .(4.32) 

Comparing with the general form of the non-homogeneous equation (2. 7) shows 

that 

U(x, t) = E2 + G(x, t) 

N(x, t) = V(x)e-ie1t exp [~~a: F(x, t)dx] 

The model can thus be solved with the non-homogeneous formulation put forth 

in chapter 2. 

43 



M.Sc. Thesis--lanG. Breukelaar --McMaster University- Physics and Astronomy -- 2006 

An example of a comparison between this model and the much more simplistic 

classical approach (from the previous section) is shown in Figure 4.3. We see 

excellent agreement between the two approaches for for t ---+ oo, for a range of 

the wavefunction width parameter, r. At t = oo the agreement is about 1.5%. 

This is in contrast to the KNvD result that showed two to six orders of magnitude 

discrepancy between the two approaches. 

The result for t ---+ oo is shown to be independent of the decay rate r, similar 

to the result of van Dijk, et al. (van Dijk, Kiers, Nogami, Platt, and Spyksma 

2003), and our chapter 3, for the more schematic model. For early times there is 

large variation in the transition, with transitions occurring much slower for small 

r as one would expect as a large portion of the wavefunction still resides in the 

nucleus. As r increases, the time dependent behaviour becomes closer to the 

classical result. This can be seen as the a particle wavefunction approaching a 

&-function, representative of a point particle. We note as an aside that in KNvD, 

equation (2.12) takes into account that, although it is assumed that the alpha 

particle is emitted at t = 0 in the classical approximation, we actually do not now 

when the emission takes place. We only know the probability for the emission in 

the time interval oft and t + f).t, which is re')'tf).t. If we use KNvDs (2.12), we 

will find better time-dependent agreement 

The results are converged on this scale for the spatial and temporal mesh 

sizes of h = /).t = 0.002 with very minor changes when h = /).t = 0.001. The 

choice of 'Y = 100 used in the simulation of the step function was also found to be 

appropriate as no change was visible after changing the parameter to "f =50. 
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Figure 4.3: Comparison of fully quantum mechanical approach using perturbation 
theory with classical approach. v = 1. At t = oo the asymptotic values of P21(t) 
for the two methods agree to about 1.5%. 
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The magnitude squared of the corresponding wavefunction for this state Jw2(x, t)J2 = 

l<Pa(x, t)x2(x, t)l2 is seen in Figure 4.6. We see that the peak is approached rapidly 

in time and then remains constant. The integral of this plot (the transition prob

ability) continues to grow until the a-particle wavefunction has left the nucleus. 
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Figure 4.6: Jw2(x, t)l2 = l<Pa(x, t)x2(x, t)l2 for.\= 0.1, r = 0.25. 
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4.5 Factorization Approximation 

For this approximation we assume that the Xi are independent of x as in 

Approximation A in chapter 3. This model corresponds to model lla of KNvD, 

making the assumption that ¢a(x, t) is not affected by interactions with the atom. 

We assume 

Wp(x, t) = cPa(x, t)[Xt(t)ll) + X2(t)l2)]. (4.33) 

As in chapter 3, Approximation A, this form for the wavefunction leads to the 

coupled equations 

(4.34) 

where 

Wp(t) = koo Pa(x, t)V(x)dx. (4.35) 

As in the previous section 

(4.36) 

and 

(4.37) 

Wp(t) can be worked out explicitly as 

(4.38) 
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The last integral is 

~ e<ri•M' f exp [- (Px - 2~v) '] dx 

= e<rf2/3v)
2 .Ji [erf ((3vt- __£__) + erf (__£__)] (4.39) 

2(3 2(3v 2(3v 

where the error function erf(z) = (2/ .Ji) J; e-Y
2 
dy. 

For the coupled equation solution we use the initial condition 

X1 (0) = 1, X2(0) = 0. (4.40) 

The probability for transition 1 -+ 2 in this approximation is given by 

(4.41) 

Before looking at results we will again apply perturbation theory to the prob

lem. In this case set x1(x, t) = e-ie1t and insert into (4.34) with i = 2 and j = 1. 

The coefficient for the excited state is then 

(4.42) 

and 

(4.43) 

as before. 

We can gain some insight into the forthcoming results by looking at an approx

imate version of Wp(t) that leads to an analytic form for the transition probability 

from perturbation theory (an analytic result is also possible for Xl(t) and X2(t), 
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although not shown here, if this w;pprox ( t) is substituted into the coupled equa

tions). Wp(t) quickly peaks with increasing t, and has an exponential tail which 

can be well approximated by 

(4.44) 

The peak of the potential V(x) from (4.37) is at x = 1/({3-/2) and the front peak 

of the wavepacket (4.36) moves at a velocity v so set the edge t0 of w;pprox(t) to 

t0 = 1/(v{J-/2) so that w;pprox(t) mimics the shape of Wp(t). Figure 4.7 shows the 

Wp(t) and w;pprox(t) plotted versus time for .A= r = 0.1, ~E = E2-El = 1-0 = 1, 

and {3 = v = 1. We see excellent agreement between the two in the tail region. The 

approximate version of W F ( t) can also be used in the coupled equation formulation 

of this problem (4.34). 
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Inserting ( 4.44)into ( 4.42) gives 

X2(t) -ie-i€2t lot W(t')eitut' dt' 

~ -ie-i€2t AfO(t- to) {t e-r(t'-to)ei~•t' dt' 
ito 

Afei~do 
-ie-i€2t [1 _ e-(r-i~€)(t-to)] O(t _ t ) . 

r ...:._ i~E 0 

Then the transition probability is 

(4.45) 

pt;_•approx ( t) = ---:::-("-A-:f.:,.-)2---,-,- [1 + e-2r(t-to) - 2e-r(t-to) cos(~E(t - t ))] O(t - t ) 
f2 + (~E)2 0 0 · 

(4.46) 

As t ~ oo the exponential terms in t die off and the transition probability is 

approximately found from 

nF,approx( _ ) _ (Af)2 

.r21 t- 00 - f2 + (~E)2' (4.47) 

We now look at some results of these approximations. In these models, the 

strength of the potential is governed by the parameter A. Since we will be applying 

perturbation theory it is appropriate to examine the values of A expected to give 

good results. Figure 4.8 shows the results of the coupled equations (4.34) with 

Wp(t) versus the perturbation result (4.43) for the same Wp(t). For A< 1 there 

is excellent agreement while for A~ 5 the difference is almost 100%. 
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We now look at results for the transition probability predicted by the factoriza

tion approximation from the four versions of the model we have been discussing: 

(1) coupled equation solution (4.34) with Wp(t), (2) coupled equation solution 

(4.34) with w;wrox(t), (3) perturbation theory (4.43) with Wp(t), and (4) pertur

bation theory (4.43) with w;wrox(t). We use A= r = 0.1, ~E = E2-El = 1-0 = 1, 

and f3 = v = 1. 

The results are summarized in Figure 4.9. The oscillations die out quickly 

and are essentially indiscernible on this scale after t ~ 75, at which point the two 

curves for w;wrox(t) converge to pt;_·approx(t = oo) = 9.9 x w-5 as suggested by 

(4.47), for the values used. Perturbation theory works well for this value of A as 

the two curves (solid and dashed) for Wp(t) overlap almost perfectly. Perturbation 

theory works well for the approximate w;wrox(t) also. From the results in Figure 

4.8 this agreement is expected for A = 0.1. 

There is a small difference between the approximate and exact versions of 

Wp(t) with the transition probability being higher in the case of the approximate 

version. This possibly due to the higher peak in w;wrox(t), as seen in Figure 4.7. 

This higher peak mimics a slightly higher peak overlap between p0 (x, t) and V(x) 

in (4.35). 

The period of oscillations can be predicted from ( 4.46) where the harmonic 

cos() term contains the argument ~E( t- t0) leading to a period T = 2n"/ ~E = 21!', 

as seen in the figure. 

A comparison of the factorization approximation with the classical result using 

Migdal's method, which gives P21 ( oo) ~ 0.008, as shown in Figure 4.3, shows a 

large difference between the predicted transition probabilities of the two methods. 

Note that although Figure 4.3 uses r = 0.5, the r parameter does not appear in 
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the formulation for the classical result. The results here and in Approximation A 

in chapter 3 are both in disagreement with the classical result. The factorization 

approximation is clearly not a valid approach to calculating transition probabilities 

as the predictions are about two orders of magnitude different. 

This approximation also assumes that x2(x, t) is constant in x, but as we saw 

in the last section in Figure 4.5, x2(x, t) does alter <Po:(x, t) so there is a spatial 

dependence to X2 ( x, t). 
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Figure 4.9: A comparison between the coupled equation solution and perturbation 
theory for two versions of W F ( t) for the factorization approximation with A = r = 

0.1, .6-E = E2- E1 = 1- 0 = 1, and {3 = v = 1. 
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4.6 Relation with KNvD's calculations 

Since it appears in this work that there is agreement between the exact model, 

or at least the first order PT approximation of the exact treatment of the problem, 

with the classical result simulating Migdal's method it is important to look more 

closely at the model of KNvD to see if the source of the discrepancy is apparent. 

Recall that KNvD predicted approximate agreement between their models IIa 

and lib, but that the difference between these two models and their model I, 

corresponding to the classical point particle, was several orders of magnitude, 

depending on the interaction strength. 

It is clear from our work in chapters 3 and 4 that a large difference should be 

expected between the Factorization approximation where \ll(x, t) is of the form 

Wp(x, t) = </>a(x, t)[Xl(t)j1) + X2(t)j2)j, ( 4.48) 

and the classical result. In our schematic model of chapter 3 and the more physical 

model of chapter 4, a significant difference was seen in the predicted excitation 

probabilities arising from this approximation. In this sense we agree with the 

KNvD result for their model IIa. This is still somewhat surprising since changes 

to the a-particle wavefunction are expected to be minimal in this interaction. 

We speculate that the problem is in KNvD model lib. In this model they use 

a Poschl-Teller potential which is proportional to 1/ cosh2 (.\exe) where 1/.\e is the 

atomic radius and Xe is the coordinate of the electron. KNvD chose the electron 

bound states such that their wavefunctions vanish at the origin. KNvD assumed 

a contact interaction between the electron and the a-particle and the effective 

potential between the atom and the a-particle that follow from this vanishes at 

the origin. This aspect is well simulated by our V(x) that vanishes at the origin. 

They chose the potential strength such that there were only two bound states. 
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There is also the probability that state 1 is excited into an unbound or scattering 

state and this is accounted for in their model. 

The wavefunction at a given time then is a combination of these states as 

prescribed by the coefficients Cn and C •. 

7/J(xe, x, t) = L Cn(x, t)xn(Xe)e-i•nt + 100 

dEC,(x, t)x.(xe)e-ia, 
n=l~ 0 

(4.49) 

where Xn(xe), for example, is the time-independent (real) wave function of the 

atomic state n with energy En and Xe is the coordinate of the electron. 

Using first order PT, this leads to an equation for the coefficients similar to 

our (4.23) 

[i! -En+ 2~ ( ::2 + F(x, t)!)] Cn(x, t) 

= -gxn(x) L Xn'(x)ei(<n-•n'>tcn'(x, t), (4.50) 
n' 

where g is the strength of the 8(xe-x)-function interaction between the a-particle 

and the electron interaction. 

To recover our fully QM model from the KNvD we begin by dropping the 

integral term for the wavefunction in ( 4.49) thereby ignoring coupling to scattering 

states. If we also take only the part of the interaction that couples states n = 1 

and n = 3, ( 4.50) is reduced to the form of our coupled equation for the problem 

(4.23), with V(x) = -gx1(x)x3(x) except that there are "diagonal" terms with 

n = n' and E = E
1

• Ignoring the diagonal term with n = n' and further assuming 

that gx~(x) = gx~(x) = V(x), then KNvD's model is reduced to the one we are 

using in this work. Although the diagonal terms are larger in magnitude than 

the off-diagonal terms of n =/= n', the transition of state 1 to state 3, is directly 

caused by the off-diagonal interaction while the diagonal terms have only indirect, 
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or second-order effects. Our model clearly captures the main physics of model lib, 

and the results should correspond. KNvD claim that their model lib was more 

difficult to solve than model IIa and that instabilities were encountered in solving 

the problem for large time. This may be a symptom of problems for earlier times 

as well and the agreement between their models IIa and lib may have masked this 

problem. This agreement does not seem to be coincidental though as it was seen 

for two very different interaction strengths. Considering the drastic effect of the 

factorization approximation on the result, where this approximation was thought 

to be minor, it is still possible that some of these subtle differences between our 

fully QM model and KNvD model lib will still cause a large discrepancy. At this 

time the real cause for the difference is still unclear. 
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Chapter 5 

Conclusions 

5.1 Summary 

In conclusion we have extended a powerful numerical method capable of solving 

the Schrodinger wave equation and have reformulated it so that it can solve N

channel interaction type problems. The method is fast, accurate and efficient 

and can operate on a standard desktop computer. The method has also been 

extended to be able to solve a special class of 1-channel non-homogeneous wave 

equations that arise in interaction problems when perturbation theory is applied 

to the coupled equations. 

This model was then used to investigate some approximations that are made 

when modelling nuclear decay due to quantum particle interactions. We looked 

carefully at the approximation to the a-atom wavefunction where the a particle 

wavefunction is assumed to be unaffected by the interaction with the atom and 

found that in both cases (Approximation A in chapter 3, and the Factorization 

Approximation in chapter 4) that the results are not as expected based on the 

classical theory and experiment. It has become clear that this approximation to 

the wavefunction, though apparently mild, is invalid. For this reason it is not 

surprising that the results of KNvD for a similar model also do not correspond to 

the classical result. 
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We have also closely investigated a fully QM model of the interaction between 

a decaying particle (in this case an a-particle) and an atom. In this model we 

assume the general form of the a-atom wavefunction. Our solution to the problem 

was found to agree with the classical model, and hence with experiment. It was 

also found, similar to the schematic treatment by van Dijk, et al. (van Dijk, Kiers, 

Nogami, Platt, and Spyksma 2003), that the probability of transition after a long 

time is the same regardless of the decay rate of the a-particle, as we would expect 

classically. In a sense this is similar to the idea of flipping a coin now and again 

tomorrow; one week from now the probability of having heads will be the same. 

The a-particle classically has to leave the nucleus sometime and when it does the 

probability of excitation in the long run should be the same. It seems then that 

it is possible to properly model this quantum phenomenon. Some question still 

remains about what went wrong in model lib of KNvD. 

5.2 Suggestions for Future Work 

This work is ongoing, but since the model has been shown to work it would be 

useful to apply this model to the ,6-decay problem. This problem has also been 

treated by Migdal. That is, the ,6-particle is treated as a classical particle. If 

the ,6-decay process is very slow in the atomic scale, which is usually the case, a 

problem very similar to what we have discussed in this thesis again arises. An 

important difference between the a and ,6 cases is the ,6-particle (i.e., electron) is 

very light and its energy is large, typically of the order of a few MeVs. 

Another outstanding problem is the exact (numerical) solution to the coupled 

equations arising from the fully QM model (4.23). We have successfully treated 

this equation with perturbation theory, but have not found results that com-
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pletely agree when trying to solve the coupled equations. I believe there is some 

subtlety in the initial conditions and the other parameters that is suppressed in 

the perturbative solution. 

The model presented here can be improved incrementally in sophistication 

bringing it closer to the KNvD model. This may uncover some assumption where 

their model lib breaks down. 
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