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ABSTRACT 

This thesis develops the Riemannian Geometry of the real and complex Grassmann Man­

ifolds in a notationally accessible way. The canonical volume form is related to explicit 

Jacobi Field calculations. The implementation of a packing algorithm based on repulsive 

forces is proposed. Standard packing bounds and bounds on the volumes of geodesic balls 

are used to test the performance of the algorithm. 
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P. KEENAN MCMASTER - MATHEMATICS 

1 Introduction 

Telecommunication engineers have happened upon motivation to study the Grassmann 

Manifold in connection with multi-antenna wireless schemes. To sketch the connection con­

sider the case of a transmitter equipped with l antennas and a receiver having l antennas. 

Let s1xt be a complex-valued vector representing a symbol to be sent. In the absence of 

noise the sent symbol s and the received symbol s* have the relationship 

s* = sM 

where Mtxl is called the matrix of fading coefficients between the antennas. When antennas 

are moving it is difficult to know exactly what the coefficients are for any extended time, so 

M is taken to be a matrix that is approximately valid for some time block consisting of T 

symbol periods. In the Rayleigh fiat-fading model M is assumed to be Rayleigh distributed. 

When noise is considered, sending the block of symbols STxl results in receiving the block 

S* = SM + W 

where the Gaussian distributed WTxl is called the additive white Gaussian noise. In an 

important paper by [19) it was shown that there is no gain if l > T /2 so it is assumed 

that l::; T /2. The l -dimensional subspace col S is preserved by the transformation when 

no noise is present. This is because there is a probability of one that the matrix M is 

invertible, ie. it is very likely that the column spaces col S M and col S are the same. col S 

may be viewed as a point in the Grassmannian Grl,T(<C). Consider a finite basic alphabet 

of signal blocks {Sj}· One way to increase the reliability of error checking is to ensure 

that the points col Sj are, in a sense to be made clear within, well spread out on Grt,T(<C). 

Intuitively, if the points are well spread out before being sent then it is likely that they 

will still be well spread out when they are received in which case it is easier to distinguish 

them. 

Section two defines the Grassmann and closely related Stiefel manifolds and deals with 

1 



P. KEENAN MCMASTER - MATHEMATICS 

the form of tangents and canonical metrics on each manifold. Section 3 develops the 

necessary Riemannian-geometric tools for Gr such as parallel translation, covariant and 

Lie derivatives, curvature, and the volume form with emphasis on explicit computation. 

Section 4 proposes an algorithm to spread out points on Gr using repulsive forces and 

compares some preliminary results with standard packing bounds. 

2 



P. KEENAN MCMASTER - MATHEMATICS 

2 The Stiefel and Grassmann Manifolds 

2.1 Definitions, Dimensions, and Coordinates 

In the following JR.n may be replaced by en and the group of orthogonal n x n matrices 

On by the unitary matrices Un without changing the essential development. For simplicity 

the real case is discussed and extended later to the complex case. 

Definition 2.1. The Stiefel Manifold Stk,n(JR.) is defined to be the set of all orthonormal 

(abbreviated ON) matrices of size n x k, that is 

Stk,n(lR.) = {P E lR.nxk : pT p = h}. 

St will stand for Stk,n(lR.) at first but will later stand for Stk,n (IF) where IF = JR. or <C. 

Writing the ith column of P as Pti, the condition 

I= pTp = 

T PnPtl 

shows that P7 P = I represents k(kil) independent restrictions on the n x k matrix P. 

Since JR.nxk ~ JR.nk this suggests that St is an nk- k(kil) -dimensional manifold. The proof 

of this will be included in Section 2.4. St may be equivalently defined by taking certain 

equivalence classes of matrices in On: 

St 3 [Q) = {S EOn : sn = qtl, ... , Stk = qtk} 

={pEOn: P = Q ( h O ) , U E On-k} = Q ( Ik O ) 
0 U 0 On-k 

In other words a point [Q] E St can be taken to be all ON bases of JR.n where the first k 

basis vectors are identical. The matrix ( h 
0 

) here is called an isotropy group. 
0 On-k 

In this form it is clear that St ~ On/On-k· 

3 



P. KEENAN MCMASTER- MATHEMATICS 

Definition 2.2. The Grassmannian Manifold Grk,n(JR) is defined to be the set of all 

k-dimensional subspaces of JRn. 

Gr will stand for Grk,n(JR) at first but will later stand for Grk,n (IF), in any case the 

meaning of Gr should be taken in context. It is assumed that k ::; n/2, otherwise the roles 

of n and k may be switched. That k ::; n/2 is not always assumed in the Stiefel case, for 

example, Stn,n(lR) =On. 

A convenient way to represent points in Gr by n x k matrices is to identify matrices 

Pnxk E St whose columns span a given k-dimensional subspace of JRn. This suggests the 

equivalence class [P] = POk. Since the representative P will often be used to specify 

the point span {Pn, ... , Ptk} it will sometimes be convenient to write span P instead of 

colP = span{p11 , ... ,p1k}· As with the Stiefel case, points in Gr can be represented by 

equivalence classes of n x n orthogonal matrices under the identification 

Gr 3 [Q] = Q ( ok o ) 
0 On-k 

where span {q11 , ... , q1k} is the k-plane being specified so that Gr ~ On/ (Ok x On-k). 

This identification makes intuitive sense: Let Q be partitioned as Q = ( p p 1_ ) , and 

let M = ( M
1 0 

) E ( 
0

k 
0 

) , where P1_ is any orthogonal n x n- k matrix 
0 M2 0 On-k 

for which spanP1_ (spanP)j_, or P7 P1_ = 0. Then QM = ( PM1 P1_M2 ) E On, 

and span P M1 = span P. Typically in both St and Gr points [Qnxn] and [Pnxk] will be 

denoted Q and P. To see that Gr is a manifold of dimension k(n- k), pick a point Q = 

( p P1_) EGr.lfxElRnliesinspanP,thenx7 Pj_=O. SincerankPj_=n-k,thereis 

an invertible submatrix P1_01. = of P 1_. If P j_f3 denotes the matrix that remains 

n 

when the rows P01.i-+ are deleted, then the condition 0 = x 7 P1_ = L XiPi-+ = x~ Pj_01.+xJ; P1_13 
i=l 

4 



P. KEENAN MCMASTER - MATHEMATICS 

can be written - ( xf3
1 

• • • xf3k ) P~f3P;}; = ( Xa
1 

• • • Xcxn-k ) . The k X n- k matrix 

Z := -P~f3P;_}; provides a coordinate system on the set Uf31 , ••. ,f3k of all k-planes whose 

equation can be written in the form ( Xf3
1 

• • • xf3k ) Z = ( Xa
1 

• • • xcxn-k ) . The 

proof that dim Gr = k(n- k) will be included in Section 2.5. In the complex case the 

same reasoning can be used to see that dimiR Gr(C) = 2k(n- k). The atlas {(Z, Uf3 1 , ... ,f3J} 

is that used in the classical developments by [3]. Although the Riemannian Geometry of 

Gr can be developed in terms of these coordinates it will be more convenient to represent 

k-planes by the matrices Pnxk or Qnxn as in the relatively recent developments by [8]. 

Both St and Gr are of the form G/K where G is the compact Lie group On and K 

is the appropriate isotropy group. G /K is called a homogeneous space because G is a 

connected Lie group and K is a closed subgroup of G. 

Gr can be defined using only oriented representations Q E SOn, the special orthogonal 

matrices, resulting in Gr ~ SOn/ (SOk x SOn-k) but this leads to less intuitive results 

when defining what are called the principal angles between subspaces of .!Rn and causes 

complications in computation. Similarly Gr can also be defined with invertible matrices 

using Gr ~ GLn/ (GLk x GLn-k) resulting in correction factors in calculation. This is 

illustrated in the case of projecting a vector a E .!Rn onto the k-dimensional subspace P. 

Proposition 2.1. Consider the matrix Pnxk, not necessarily ON, that specifies the 

point span P E Gr. 

i) If a E .!Rn and the orthogonal projection of a onto span P is denoted by ap = 

Ilp (a) then Ilp = P(PT P)-1 pT which reduces to Ilp = P pT when P is an 

orthog anal matrix. 

ii) If Ilp.L denotes projection onto (spanPL then Ilp.L =(I- P(P7 P)-1P 7 ) which 

reduces to Ilp.L = (In - P P 7 ) when P is an orthogonal matrix. 

Proof. Assume that Pis possibly not orthogonal. Let f3 = {b1, ... , bk} be an ON basis of 

5 



P. KEENAN MCMASTER - MATHEMATICS 

spanP and let B := ( b1 . . . bk ), then B =PM where ME GLk and 

BB7 = B(B7 B)-1B7 = PM((PM)7 (PM))- 1(PM)7 = PM(M7 P 7 PM)-1M 7 P 7 

= PMM-lp-lp-TM-TMTpT = P(PTP)-lpT 

so it may be assumed that P = ( b1 . . . bk ) . Now 

b[ 

= ( b1 · · · bk ) a 
k 

ap = 2Ja, bi)bi = ( b1 · · · bk ) 
•=1 

b[ 

Note that if the underlying field is <C, then Tis replaced by 1-l, the Hermitian conjugate, 
n 

and (a, bi) is defined as L ajbij· Since apj_ = a- ap = (In - P(P7 P)-1 P 7 )a, it must be 
j=l 

that Ilpj_ =In- P(P7 P)-1 P 7 . D 

Henceforth representative matrices will be assumed ON. 

2.2 Principal Angles and Angle Directions 

An important way of specifying the relationship between two k-dimensional subspaces 

of JRn is to use principal angles. 

Definition 2.3. The principal angles 

1f 2 = 81 = · · · =Or > Br+I 2: · · · 2: Ol > Ol+l = · · · = Ok = 0 (r possibly 0 , l possibly k) 

between two k-dimensional subspaces U and V are defined by the following process: 

cos Ok =max {I (u, v) I :!lull= II vii = 1, u E U, v E V}, or equivalently, 

Ok = min{cos-1 l(u, v)l: !lull= llvll = 1, u E U, v E V}, 

(}k-i =min {cos-1 l(u,v)l: !lull= livli = 1,u E Un (span{uk>Uk-l,···,Uk-i+I})J_, 

6 



P. KEENAN MCMASTER - MATHEMATICS 

The angles {Bi}7=1 are produced in reverse order simply so that the final list is ordered 

from greatest to least. Any ui, Vi that furnish these minimums are called angle directions 

corresponding to the angle Bi. When ei "f::. 0, ui and vi span a 2-dimensional plane called 

the ith angle 2-plane . When ei = 0, span { ui, vi} is a line. There are l angle 2-planes and 

k -l angle 1-planes. This method of generating {( ui, vi, 8i)}7=1 will be termed method 1. 

The inconvenient convention of generating {Bi}7=1 in reverse order with method 1 is 

justified since it is in agreement with the predominant notation in the literature when 

dealing with representations of points in terms of principal angles. Consider the following 

example where U, V E Gr2,4· 

Example 2.1. 
~ :=: ~1. = 111 

u························f·~;v 
• e4 

··.·.·.: .· 

t/2" 

Figure 1: Principal Angles Between Subspaces of IR4 

Since dim U n V = 1, there is one zero angle. In general if dim U n V = k -l, there are k -l 

zero angles. Notice also that u1 (j. span { u 2 , v2} and v1 (j. span { u 2 , v2}. When using method 

1 in other dimensions, because of the conditions ui E U n (span {uk, uk_ 1 , ... , ui+d ).i and 

vi E V n (span { vk, vk_1, ... , vi+l} ).L, it is easy to see that when 

7 



P. KEENAN MCMASTER - MATHEMATICS 

l(ui, uj)l = l(vi, vj)l = Dij, where Dij is the Kronecker delta. It is in fact possible to choose 

ON bases {ui}7=1 and {vi}7=1 of U and V so that l(ui,vi)l = cosei and 

span { ui, vi} .l span { Uj, Vj} when i -:f. j. With these bases there is the convenient identity 

I (ui, Vj) I = Dij cos Bi. This claim is easily seen once it is established that there is a rotation 

R E On and representations U and V such that 

cos81 0 

RU ~ ( ~) 
0 cosBk 

and RV= sinB1 0 

0 sinBk 

0 

so that l(uJ.i, vh)l = lu[ivlil = lu[iR1 Rvul = I(Ru!i)1 (Rvli)l = 

leT(cosBjej +sinBjej+k)l = DijCosBj. 

The existence of this popular normal form, however, is most easily proven with the identity 

l(ui,vj)l = DijcosBi at hand. 

Claim 2.1. There exist ON bases { ui}7=1 and { vi}7=1 of U and V satisfying 

span { ui, vi} .lspan { Uj, Vj} when i -:f. j. 

Proof. Consider the (k - i + l)th step in method 1 that produces ( ui, vi, Bi) where the 

angle between 

:=Su 

and viE Vn(span{vk,vk-t,···,vi+t})j_ 

:=Sv 

is as small as possible. If ui tJ. Sv 1_ say ui = c1 {3 , where c1 , c2 E IR, 
~ 

EUnSuj_nSv_j_ 

then since Vi E Sv 1_ , 

8 



P. KEENAN MCMASTER - MATHEMATICS 

u* 
So if ui := c2{3 E U n Su .l n Sv .l C (span { vk! vk-1, ... , vi+l} h then l!ut II has the same 

angle with vi as ui, is of length one, and is still in Su .l so it may replace ui. Similarly Vi 

may be chosen to have the desired properties. This shows that the required bases exist. D 

Of course by replacing some of the u/s or vi's with -ui or -vi, bases can be found 

so that (ui,VjJ = Oijcosei. The relationship between {ui}7=1 and {vi}7=1 can be clarified 

further. 

7f 
Proposition 2.2. If the angles ei and ej are not both "2, then the angle planes 

span { Ui, vi} and span { Uj, Vj} are orthogonal regardless of the choice of ui, Vi min­

imizing Oi and Uj 1 Vj minimizing Bj. 

Proof. Assume that j < i so that Uj and Vj are produced by method 1 later than ui and 

Vi and that ei and ej are not both ~- Suppose, since (ui, UjJ = 0, that Uj = cla + C2Vi 
2 

where a E (span{ui,vi}).i· Then 0 = (ui,UjJ = c2 (ui,vi) = ±c2cosei· This implies that 

either c2 = 0 or cos ei = 0 ==:::} ei = ~ ==:::} ej = ~ contrary to the hypothesis. Therefore 
2 2 

c2 = 0 and Uj E (span{ui,vi}).i· Similarly Vj E (span{ui,vi}).l so that the planes are 

orthogonal. D 

( 

e1 

Let 8 = 

0 

o ) , cos 8 = ( cos e1 

ek o 

0 

) , and sin 8 = 

cosek 
( 

sinB1 0 ) • 

0 sin ek 

Theorem 2.1. Let span U, span V E Gr. There exists representations Ukxn and Vkxn 

and a rotation R of JRn that takes 

U to Inxk ~ ( ~ ) and V to sin8 

cos8 

0 

9 
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where {Bi}f=1 are the principal angles between span U and span V. In other words 

cos8 

there exists R E On with RU = Inxk and RV = sin 8 

0 

Proof. Assume that U = ( u.u . . . u1k ) and V = ( v11 . . . v1k ) where (uti• Vtj) = 

0,1 cos 8,. R must be of the form R = ( ~; ) where the columns of U 1 are ON and span 

(span U)_1_. Now 

First U7 V = , = cos8. 

Now the freedom in choosing uj_ = ( Utk+l Utn ) may be exploited. 

Figure 2: Choosing Utk+i 

10 
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For i ~ llet Utk+i 
Vti - iluVti 

llvti- iluVtill 

Vti - COS ()i Uti 

llvti- cos ()i Utili 

If j < k + 1 and 1 ~ i ~ l, then 

k 

Vti- L (vti, Uta) Uta 
a=l 

k 

llvti- L (vti, Uta) Uta II 
a=l 

Vti -COS ()i Uti 

( 
Oij (1 - cos2 ()i) . 

Utk+i,VtJ)= . () =Oijsm()i· 
sm i 

If 1 ~ i ~ k and 1 ~ j ~ l, 

and if 1 ~ i ~land 1 ~ j ~ i, 

Vti -COS ()i Uti 

sin ()i 

1 
(utk+i,Utk+j) . () . () (Vti-cos8iUti,Vtj-COS()jutJ) 

sm ism j 

Oij ( 2 e 2 e ) x = . (} . 1 - 2 COS i + COS i = Uij 
sm ism()j 

which shows that the set {ut1 , ... ,utkH} is ON. Now 

Span { U_J_l, ... , Utk, Utk+l, ... , Utk+l} 

=span { Utt, ... , Utk, Vtl, ... , vtl} 

=span { Ut1 , ... , Utk, Vt1 , ... , Vtk} (sinceutHl = VtHl, ... , Utk = Vtk)· 

Extend the set { Ut1 , ..• , UtkH} arbitrarily to an ON basis { Ut1 , .•• , Utn} of IRn with the 

property that Utk+Hi E span v_l for 1 ~ i ~ n- k -i. Notice for future reference that if 

the roles of ( U U .l ) and ( V V1_ ) are reversed here after Utk+l+i are chosen then 

Utk+l+i = Vtk+l+i ( 1 :::; i :::; n - k - l) 

would be a valid choice for v tk+Hi since then v tk+l+i E span U 1_. This gives 

(1 ~ i,j ~ n- k- i). 

Now for j ~ k, 1 ~ i ~ n- k, the identity (uk+i,vj) = Oijsin()i still holds so that 

11 
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Therefore ( uTv) 
u7 v l_ 

MCMASTER - MATHEMATICS 

U[V= 

sin8 , and R = ( ~; ) is the required orthogonal matrix. 

cos8 

0 
D 

After a basis for span U _1_ is chosen, in the same way as the basis of span U _1_ was found 

above, except with the first l basis vectors multiplied by -1 and the last n - k - l set to 

u tk+t ti, a basis { Vtk+I, ... , v tn} of span V, can be found to satisfy VJU o• ( ··s: 
8 

} It 

will be convenient later that V1_ and U have this relationship. 

Definition 2.4. Bases {u.J.1, ... ,U.J.n} and {v.J.1, ... ,V.J.n} oflRn satisfying 

sin8 7 _ ( -sin8) , vl_ u- , 
0 

cos8 

0 

and u.l.kH+i = V.J.k+l+i for 1:::; i:::; n- k -l 

will be called angle direction ( abbreviated AD ) bases. 

In this case U7 V1_ = (VJU)7 = ( -sin8 0 )· Since ( U U_1_ ) T EOn and ( V V_1_ ) E 

On, ( U U_1_ ) 
7 

( V V_1_ ) EOn so AD bases of this form must satisfy 

cos8 -sin8 0 

sin8 cos8 0 

0 0 In-2k 

12 
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The above theorem is closely related to the singular value decomposition. Let Akxk = 

UTV, where U and V are the same matrices as in the proof. In using the singular value 

decomposition to decompose A as A= Q1EQ[ where Q1 , Q2 E Ok the first step is to look 

for the eigenvalues of AT A. 

0 0 

which has eigenvalues 

(which are real in the complex case), and singular values CJi = .)Xi. This shows that 

E = cos 8. The next step is to find an ON basis { w1 , ... , wk} of JRk consisting of eigen­

vectors of AT A and to set Q2 = ( w1 . . . wk ). Then the set {:i Awi : r + 1 :; 

i :; k} is ON and once this set is extended to an ON basis {s1 , ... , sr, sr+l, ... , sk} = 

{s1 , •.. ,sr,-
1
-Awr+1,···,2._Awk}ofiRk,thenQ1 issettoQ1 = ( s1 ... sk ). Inthis 

(J r+l CTk 

case, because the bases of span U and span V are AD bases, a valid choice for Q2 is Q2 = h. 

This is illustrated by the equation ( cos2 8 - cos2 (}i h) wi = 0. When r + 1 :; i :; k, 

1 1 1 
si = -Awi = -a1i =-

(Ji CJi CJi 

(u.J.i, V.J.k) 

so that a valid choice for Q1 is Q1 = Ik· Now UTV =A= Q[ AQ2 = E =cos 8. Next, the 

singular value decomposition is repeated for Bn-kxk := U[V to get B = Q; ( :· ) Q;'r 

where Q~ E On-k and Q; E Ok. 

13 
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= vT ( . . . IIu j_ v tj . . . ) = 

which has eigenvalues 

and singular values cr; =.JAY. This shows that L:* = sin8 = (Ik-cos2 8)112 = (h-L:2
)

112
. 

It is easy to show that again h is a valid choice for Q; but even if the bases used to 

represent span U and span V , say tJ and if, are not AD bases, and Q2 f. h, it is still 

true that Q; = Q2 is a valid choice for Q;. To see this assume U = UW1, V = VW3, 

[jl_ = ul_w2, A= U7 V, B = urv, and that Wi is an eigenvector of _AT A corresponding 

to the eigenvalue Ai ¢::::::::} 

0 
- -y-- (>.Jk- A A)wi 

= ().Jk - tfT[j[jTtf) Wi 

= (>.Jk - w[V7 UW1 w[vw3) wi 

= w[(>.Jk- V 7 UU7 V)W3 wi 

= w[(crr h- L:2 )W3 wi 

= W[(h- L:2
- h + crr h)W3 Wi 

= W[((h- L:2
)- (1- crl)h)W3 wi 

= W[(L:*2- >-ih)W3 Wi 

= w[(v7 ul_urv- >-ih)W3 wi 

= (tfT[jl_fJIV- Aih) Wi 

= (B7 B- >.ifk)wi 

¢::::::::} Wi is an eigenvector of f3T B corresponding to >-i. In any case the set { ~ Bwi : 1 ~ 
(J· 

t 

i ~ .e} is 0 N and once this set is extended to an 0 N basis { s~, ... , s;, s;+l, ... , s~-k} = 

{:iBw1 , ... , :;Bwl,s;+1 , ••• ,s~_k} ofllln-k, Q~ can be set to Q~ = ( s~ ... s~-k )· 

The vectors completing the basis now appear on the right side of Q~ in contrast to Q1 

14 
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because now the eigenvalues A.~ are ordered from greatest to least whereas A.i are ordered 

in the opposite direction. Of course in the present case Q~ = In-k is a valid choice. It is 

easy to see that the singular values of [!Tv and U[V do not depend on the choice of ON 

representatives U, V, or UJ.. This establishes that there exists Q1 , Q2 E Ok and Q~ E On-k 

with 

cos8 

sin8 Q'[. 

0 

These observations indicate a computationally practical way of producing the prin­

cipal angles and even AD bases with respect to span U and span V given arbitrary ON 

representatives U and V, where U and V are AD representatives to be determined. 

Algorithm 2.1 

Step 1: 

The first step is to use the singular value decomposition to get 

Ql cos8Qf 

* ( sin8) T Ql Q2 
0 

which immediately yields (}i = cos-1 .JX:", where A.i are the eigenvalues of ( [!Tv ) T ( f]Tv ) . 

Step 2: 

Now, since Q[UTVQ2 = cos 8, UQ1 E [U], and VQ2 E [V], letting U = UQ1 and 

v = VQ2 gives U7 V = cos8. Similarly, since UJ.Qt E [U.d, letting UJ. = Ul.Qt gives 

UJV = Q;TfJI V Q2 = ( si: e )- Already the AD basis { u,,, ... , u !n} and the partial 

AD basis { Vt1, ... , Vtk} have been found. The next step shows that taking V = VQ2 is in 

fact unnecessary. 

15 
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Step 3: 

To generate ( V V_1_ ) simply multiply the matrix 

cos 8 -sin8 0 

sin 8 cos 8 0 

0 0 In-2k 

by(u ul_)· 
Stop. 

This method of generating {( ui, Vi, ei)}i=1 will be called method 2. Even in the context 

of Gr(<C) method 2 gives a way to produce AD bases and real ei. 

2.3 Tangent Spaces of Stand Gr 

The representations of points in St and Gr using matrices in JRnxk and JRnxk are 

computationally and intuitively appealing but these so called extrinsic coordinates are 

not bona fide coordinates because the dimension of each space is less than the number 

of scalars used in the representation of a point. For this reason it is essential to identify 

which parts of the derivatives !!:_pnxk(t) = P(t) and !!:_Qnxn(t) = Q(t) are relevant tangent 
dt dt 

vectors in the usual sense. In St and Gr differentiating the condition pT P = h leads 

. 1 . k(k + 1) . d d d" . p" 1 . k k(k + 1) ( d" s ) to 1so atmg m epen ent con 1tlons on , eavmg a n - = 1m t -
2 2 

dimensional horizontal space. By projecting an arbitrary nx k matrix onto this horizontal 

space a general form for P can be found that highlights it's nk - k( k + 1) -dimensional 
2 

nature. In the case of Gr however, since dim Gr < nk- k(k + 1), part of this tangent 
2 

must be removed corresponding to the equivalence classes of points in Gr'""" St/Ok. The 

remaining relevant tangent will be called the horizontal component of P for Gr. The 

horizontal spaces Hp St and Hp Gr or HQ St and HQ Gr will have dim Hp St = dim St 

and dim HP Gr =dim Gr. 

16 
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Let Pnxk(t) be a curve in St with P = P(O) and let T = F(O). Differentiating the 

condition P(t)1 P(t) =hand evaluating at t = 0 gives T 1 P + P1 T = 0 so that P 1 T is 

skew-symmetric. This can be expressed by the k( k; 
1

) independent conditions 

t[iPtj = -p[ittj fori> j, and t[ip1j = 0 fori= jon T. 

This suggests the horizontal space H P St is an nk- k( k + 1) -dimensional vector space, as 
2 

expected. When k = n this gives that dim Tp On = n( n -
1
). Using the representations 

2 
Pnxk E M = St or Gr gives a natural embedding of M into llrxk """' ffi.nk. Using the 

identification Tp ffi.nxk """' ffi.nxk, Tp M can be thought of as a subspace of ffi.nxk where 

the origin is at the point P. The notation Tp M here is meant to denote the space 

of all tangents that occur as derivatives of curves P(t) and is not to be confused with 

the horizontal space. If U, V E ffi.nxk then using the natural inner product (U, V)nxk := 
k 

tr U1 V = L u J;v Jj = L uijVij corresponds to the usual inner product in ffi.nk. 
j=l l~i~n 

l~j~k 

Definition 2.5. The normal space ..lp M C ffi.nxk is defined as ..lp M = (Tp M).1. 

Proposition 2.3. The normal spaces ..lp M for n x k representatives have the form 

{ 
. } . k(k + 1) 

..lp M = N: N = PS where Skxk is symmetnc so that d1m ..lp M = 
2 

. 

Proof. LetT E Tp M be arbitrary and assume N = PS where Sis symmetric, then 

(N, T)nxk = tr (PS)1 T 

= trS1 P1 T 

= tr S P1 T ( S is symmetric) 

= - tr ST1 P ( P1 T is skew - symmetric) 

= -trT1 PS (T1 P and S are both k x k) 

= -trT1 N = -(N, T)nxk· 

Therefore (N, T)nxk = 0 and N E ..lp M. {PS: Sis symmetric} is clearly a vector space 

of dimension k(k + 1) which completes the proof. D 
2 

17 
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. 0 . n(n + 1) d. . l h. . For n x n representatives _l_Q Gr = l_Q St = l_Q n IS 
2 

- 1menswna . T IS IS 

because l_Q On is isomorphic to the n x n symmetric matrices. 

1 1 
Definition 2.6. If X E JRkxk define symm (X):= 2(x +X7 ), and skew (X) := 2(x -X7 ). 

Any time Skxk is symmetric and Wkxk is skew-symmetric, 

so that (S, W)kxk = 0. For any Xkxk! 

1 1 
symm (X)+ skew (X) = .2(X + X 7 ) + .2(X- X 7 ) =X 

so JRkxk = symmkxk El1 skewkxk 

where symmkxk := symm (JRkxk) and skewkxk :=skew (JRkxk). 

If P E lRnxk then 

(PS, PW)nxk = tr S 7 pT PW = tr S 7 W = (S, W)kxk = 0 

and Psymm(X)+Pskew(X) = PX 

which shows PJRkxk = Psymmkxk El1 Pskewkxk· 

The following formulas, which can be found in [8), for projecting matrices Xnxk onto Tp M 

and l_p M are very simple. 

Proposition 2.4. Let X E JRnxk, then 

I1_1_AX) =: II_LpM(X) = Psymm(P7 X) 

and IIrp(X) =: IIrpM(X) = Pskew (P7 X) + IIp.L X. 

Proof. If 

18 
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then { Ea./3 + E13a}a,/3E{l, ... ,k} forms a spanning set of the k x k symmetric matrices and 

{P(Ea./3 + E13a)}a,/3E{l, ... ,k} forms a spanning set of ..lp St. It is easily seen that the distinct 

elements of these sets are orthogonal as in the example 

Note that 

IIP(Ea./3 + Ef3a.)ll~xk = tr (Ea./3 + Ef3a.)7 
pT P(Ea./3 + Ef3a.) 

= tr (E13 a. + Ea.13 )(Ea.f3 + E13a.) 

= tr (Ea./3 + E13a.f 

= { 1, if a.=/3 
0, if a.#/3 

P k (tr (X7 P Ea./3) + tr (X7 P E13a.))(Ea.f3 + E13a.) 

2 a.~l IIP(Ea./3 + Ef3a.)ll~xk 
= P ( 2 t 4tr (X7 PEa.a.) Ea.a. + 2 L (tr (X7 PEa.13 ) + tr (XT P E13a.))(Ea.f3 + Ef3a.)) 

2 a.=l 4 a.</3 2 

p 

2 + 

19 



P. KEENAN 

p 

2 
T ·+ T . P.j.iX.J.; X .j.iP.J.; 

p 
=- (PTX + XTP) = Psymm(PTX). 

2 

MCMASTER - MATHEMATICS 

Since Pskew(PTX) + IIj_p(X) + IIp.tX = P(symm(PTX) + skew(PTX)) + IIp.tX = 

ppTx +(In- ppT)X =X, it must be that IIrp(X) = Pskew (PTX) + IIpj_ X. D 

2.4 Vertical and Horizontal Spaces of St 

The last section gave a general form of tangent vectors in Tp St and Tp Grin terms of 

n x k representatives: 

More information about the character of St can be gained by using the equivalence classes 

[Q], where Q = ( p pj_ ) , and tangent vectors Tnxn E Tq St. Using the general form 

where A is skew-symmetric and B is arbitrary, the general form of a tangent Tnxn to the 

curve Q(t) = ( P(t) Pj_(t) ) is easily found. 

skewnxn 3 Q
7

Tnxn = Q
7 

( Q (;) U::) ) := Q
7 

( Q (;) Q ( ~ ) ) 

( 

; ~ ) ==} { XX 1 = - BT, and 

E skewn-kxn-k 

(
A -BT) so that T = Q B X is the desired general form. 

20 
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Definition 2. 7. The horizontal space HQ St is defined to be the subspace of TQ St 

that is invariant under choice of representation curve W(t) E [Q(t)]. The vertical space 

VQ St := TQ St n (HQ Sth. 

Figure 3: Horizontal and Normal Spaces of St 

Theorem 2.2. The horizontal space 

Hq St ~ { Q ( ; - :T ) : Akxk skew- symmetric, Bn-kxk arbitrary}, 

and the vertical space Vq St ,, { Q ( : ; ) : Xn-kxn-k skew - symmetric}. 

Proof. Let W(t) be another representation of the curve Q(t), say 

W(t) = Q(t) ( Ik 0 ) 
0 M(t) 

where M(t) E On-k for all t. Note that since M E On-k = Stn-k,n-k, IIMJ. M = 0 so 

M(O) = M(O)X2 for some x2 E skewn-kxn-k· Now at t = 0 

. ·(h 0) (0 0) W=Q +Q . 
0 M 0 M 

= Q ( ( A -BT ) ( h 0 ) + ( 0 0 ) ( Ik 0 ) ) 
B X 0 M 0 MX2 MT 0 M 

( 
A -BT ) ( h 0 ) [ ( A 

= Q B X + M X
2
MT 0 M E Q B 

21 
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Depending on the choice of M(t), MX2M 7 and hence X+ MX2M 7 may be any skew-

symmetric n- k x n- k matrix but the blocks A, B, and -B7 remain invariant which 

shows that the horizontal space is the set { Q ( ; - :T ) } . An alternative way to see 

this is to simply observe that the matrix X does not even appear in the general n x k form 

of a tangent in St. It is clear that the vertical space is the set {Q( oo xo)}· 0 

When using Q in calculations the matrix X will be set to 0. Intuitively, movements 

in the vertical direction correspond to changes in representation while movements in the 

horizontal direction correspond to movements on the manifold. Counting the independent 

elements in A and B suggests that dimHp St = dimHQ St = k(k-
1
) + k(n- k) = 

2 

nk- k(k: 
1
) which is the proposed dimension of St. Verifying that every tangent of this 

form occurs as the tangent to some curve in St confirms that dim St = nk - k ( k + 1) . To 
2 

do this let W be arbitrary of the form W ~ ( ; -:T ) E skew.,n. e'w E On because 

(etw)T = etwr = e-tw = (etw)-1 . Therefore Qetw is a curve in St passing through Q, and 

d twi finally, dt Qe t=o= QW. 

2.5 Vertical and Horizontal Spaces of Gr 

Since the tangent space Tp Gr = Tp St the general form of an n x n tangent vector 

(
A -BT) on Gr is still T = Q B X . The way in which the horizontal and vertical spaces 

differ between St and Gr is easy to predict. 

Theorem 2.3. The horizontal space 

{ ( 
0 -BT) 

HQ Gr= Q B 
0 

: Bn-kxk arbitrary}, 
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and the vertical space Vq Gr = { Q ( : ; ) :A.,., Xn-kxn-k skew- symmetric}. 

Proof. Let W(t) be another representation of the curve Q(t), say 

W(t) = Q(t) ( M1(t) 0 ) 
0 M2(t) 

where M1 (t) E Ok and M2 (t) E On-k for all t. Note that, as in the the proof of Theorem 

2.2, M1(0) = M(O)X1 for some X1 E skewkxk and M2(0) = M(O)X2 for some X2 E 

skewn-kxn-k· Differentiating and evaluating at t = 0 gives 

. . ( M1 o ) ( M1 o ) W=Q +Q . 
0 M2 0 M2 

=Q ( (; -;T )( :1 :, ) + ( M1:1M{ M,;,M[ )( :1 :, ) ) 
E[Q(A+M

1
X

1
M[ -B

1 

)]· 

B X +M2X2M[ 

Therefore only the blocks B and - B1 remain invariant which shows that the horizontal 

space is the set { Q ( : - :T ) } . It is then clear that the vertical space is the set 

{ Q (: ; ) }· D 

This theorem shows that when dealing with n x k tangents on Gr, 

Hp Gr = { Q ( :) : Bn-kxk arbitrary} and 

Vp Gr = { Q ( : ) : Akxk skew - symmetric} 

The matrix A in the representation T = PA + P1_B corresponds to changes in represen­

tation and should be set to zero while the matrix B corresponds to movements on Gr. 
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The same argument as the one used in the Stiefel case shows that all such tangents occur. 

Counting the elements in B shows that dimHp Gr = dimHq Gr = k(n- k), therefore the 

dimension of Gr is k(n- k). 

In general a horizontal tangent T to the point Pnxk EM (=On, St, or Gr) has the 

form 

PA , M =On 

T = PA + P.1_B , M = St 

2. 6 Canonical Metrics 

Definition 2.8. The canonical metrics on St and Gr denoted ( ·, · )st and ( ·, · )Gr are 

defined at the point Pnxk (or Qnxn) as 

1 -
(T1, T2)st = 2(A1, A2)kxk + (B1, B2)n-kxk (T1, T2 E Hp St (Hq St)) and 

(T1, T2)Gr = (B1, B2)n-kxk (T1, T2 E Hp Gr (Hq Gr)). 

1 
In particular ( ·, ·)on = 

2
tr A[ A2. These Riemannian metrics correspond to the usual 

JR. dim St and JRdim Gr inner products applied to the independent elements of tangents in 

Hp St and Hp Gr. Some useful identities for ( ·, · )Gr are: 

i) 

SO ( ·, · )Gr = ( ·, · )nxk· 

ii) 

1 ( ( 0 - BT ) T ( 0 - BT ) ) 1 
= 2tr B 0 QTQ B 0 = 2(Tl, T2)nxn 

so ( ·, · )Gr = ~( ·, · )nxn when applied to horizontal vectors. 
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It is an important observation that the metric for On is the same as the metric for Gr 

when applied to vectors (or conjugates of vectors) in the horizontal space of Gr. When 

the metrics are understood to be equivalent the notation ( ·, ·) will replace ( ·, · )Gr and 

( ·' ·)on· 

The canonical metric (T1, T2)Gr(C) = ~tr(T]iT1 ) where the matrix T2 is conjugated so 
2 

that (-, ·)Gr(C) is conjugate-linear in it's second argument ([12] takes this convention). 

2.7 Geodesics in On, St, and Grand Geodesic Distance in Gr 

Let M = On, St, or Gr. Assume Cnxn is a geodesic in M. Differentiating the condi­

tion C7 C = In twice gives 

When a Riemannian Manifold is submersed in Euclidean space the condition that the 

acceleration vector 6 E j_c M characterizes geodesics (see [6] pg. 68). 6 must therefore 

have the form 

6(t) = C(t)S(t) where S(t) E symmnxn 

Substituting this into the above equation, 

S+C7 C=O 

CS + C(C7 C) = 0 

6 + C(C7 C) = 0. 

This is the geodesic equation analogous to the equation 

in general Riemannian Manifolds where {xi}i is a usual coordinate system and {r~j}i,j,k are 

the Christoffel symbols (see [5) pg. 62). [8] defines a Christoffel function r (A, A)= CA7 A. 

25 



P. KEENAN MCMASTER - MATHEMATICS 

Theorem 2.4. In M = On, St, and Gr the curve 

(Bo E Hr M) 

(modulo the appropriate isotropy group) ts a geodesic emanating from C0 m the 

direction C0 B0 with constant speed IIBoiiM· 

Proof. Substituting C into the left side of the geodesic equation, 

Therefore C is a geodesic. The initial direction C(O) = C0 B0 . The speed of C is easily 

seen to be IIBoiiM· D 

When B0 E H 1 M, C = CB0 E HeM. In other words, in each manifold the curve 

C0etBo has a tangent vector that belongs to HeM for all t. 

The orthogonal group geodesics right multiplied by the isotropy group for Gr are 

geodesics in Gr. This is in agreement with the general theory of homogeneous spaces (see 

[6] pg. 68). Suppose C(t) is a geodesic in Gr with C(O) = In, since any representative of 

C(t) may be used it may be assumed that the vertical components of C(O) are 0 so that 

C(O) = (Bo -B
0
T)· 

Consider a geodesic C1(t) in Gr with 

where {uti}i=1 and {vti}i=1 are AD bases and let {Bi}7=1 be the principal angles between 

U and V. It is easy to rotate the geodesic C1(t) to a geodesic C(t) with end points 

cose -sine 0 

C(O) =In and C(tt) E sine cos e 0 = [Qij'Qv] 

0 0 

26 



P. KEENAN MCMASTER - MATHEMATICS 

and vise-versa, explicitly, C(t) = Q~C1 (t) (see Figure 4). 

When dealing with C(t) the most natural choice for C(O) is the tangent 

0 -8 0 
. . 1 

C(O) C 8 0 0 := '±! giving C(t) = et>¥. = In = jj8jjkxk -
0 0 0 

0 -8 0 

Consider the geodesic C2 (t) = exp t 8 0 0 emanating from In in the direction of 

0 0 0 

'±!. The speed of C2 ( t) is constant since 

. . 1/2 
(C2(t), C2(t))Gr = 

1 
-tr 
2 

1 
-tr 
2 

0 -8 

8 0 

0 0 
1/2 

T 1/2 
0 0 -8 0 

0 8 0 0 

0 0 0 0 

Because ll8llkxk will appear often it will be denoted 11811. The arc length s(t) along C2 (t) 

is 

s t 
so t = 

11811
. Re-parametrize C2(t) with the change of variable t ---? 

11811 
then C2(t) 

becomes 

0 -8 0 
t 

C2(t) = exp ll8 ll 8 0 0 = C(t) 

0 0 0 

27 



P. KEENAN McMASTER - MATHEMATICS 

so C(t) is already parametrized according to arc length. The following proposition, to­

gether with the fact that the arc length along C1 (t) for a given tis the same as that along 

C(t) (because tr ('1!7 C7 QJ;QuC'I!) = tr ('i'7 '!!)), establishes the famous formula (see [3]) 

for the geodesic distance d ( U, V) between U and V; 

d (U, V) = 11811 = Jl( Of. 

Engineering papers often use what is called the distortion or chordal distance defined by 

dc(U, V) = Jl( sin2 
()i· For small ()i the chordal distance converges to the usual distance. 

Qv 

(
. roaB sinS 0~ J' Q'[,Qu:::: e-118ll'ir:::: -sine case 
\ 0 0 

C1(t) = QuC(t) 

I 

Figure 4: Translating Geodesics 

0 -8 0 

Proposition 2.5. If C(O) is chosen to be ll~ll 8 0 0 then 

0 0 0 

cos8 -sin8 0 

C(ll811) = sin 8 cos 8 0 

0 0 

Proof. C(ll8ll) = exp 

0 0 0 

=I.+r: -~8: l+~,r -:' +: J+:,r + ~3: l+~,r ~· :· : l+··· 
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<X> (-1)J 
I + '\"""' -- 8 2j 

k L ( ·)r 
j=l 2J . 

<X> ( 1)j+l I: - 82j+l 
j=O {2j + 1)! 

0 

cos8 
( 

c~s8 
= sm8 

0 

-sin8 

0 

<X> (-1)j+l -I: 82j+l 
j=O (2j + 1)! 

<X> ( -1 )j 2 

h+ I:-( .) 1 8
1 

j=l 2J . 

0 

Using the same calculation, 

0 -8 0 
t 

C(t) = exp ll8 ll 8 0 0 

0 0 0 

0 

0 

D 

t . t 8 
cos 11811 8 -sm 11811- 0 

. t 8 t 
sm 11811- cos 118118 0 

0 0 In-2k 

A consequence of this is that any two points Qu and Qv may be joined by a geodesic C 

( 

k 2) 1/2 
having total length ::::; ~ (~) = .Jk ~- By retracing some steps it can be seen that 

everything in this section applies as stated to the complex case. 

2.8 The Cut Locus on Gr 

Definition 2.9. For a Riemannian Manifold M, the cut locus of a point p EM is defined 

to be the set of points 

Cutp = {c(tc): CageodesicwithiiCII 1,C(O) =p,tc = sup{t: dM(C(O),C(t)) = t}} 

(see [5] pg. 266). 

The following theorem can be found without proof in [3]. 

Theorem 2.5. In Gr the cut locus at I is the set 

Cut1 = {P: The matrix 8 corresponding to I and P has at least one (Ji = 1rj2}. 
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Proof. Let Pnxk be a point in Gr and let {8i}7=1 be the principal angles between I and 

P. A geodesic joining I to P is 

C(t) = 

t 
cosll8118 

. t 8 
sm 11811-

0 

Without loss of generality assume that only 81 = 1r /2 and let e be such that II~~; e 8i < ~ 
fori> 1. 

ll8ll+e8 
cos 11811 -
. ll8ll+e 8 sm 11811 -

0 

Figure 5: A Smaller Angle Between e1 and PLU 

The strategy of the proof will be to produce a geodesic 1(t) from In to P1 having length 

shorter than 11811 +e. Define 8 = (II~~~; e) 8 and let 

8* = _ (11811 +e) 8 = _ (11811 +e)~ 
1 7r 11811 1 

7r 11811 2. 

Now define 8* to be 8 but with (~~~~;e) 81 replaced with 8i. 

* (118ll+e) . * . (118ll+e) cos 81 =cos 
11811 

81 and sm 81 = -sm 
11811 

81 
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t -* 
cos 118*11 8 

. t 8* 
sm 118*11-

0 

is a geodesic with 'Y(O) E [In) and 'Y(II8*11) = P1 . It remains to show that 118*11 < IIBII. 

11 8*ll = (~ ( 11811 +c) 2 

02 2 _ 21f
2 

( 11811 +c) 0 ( 11811 +c) 2 

02 ) 
112 

~ 11811 t + 1f 2 11811 1 + 11811 1 

<([,(II~~; e)' of'= 11811 +< = 11811 

Therefore sup {t: d (C(O), C(t)) = t} ~ 11811· 

On the other hand the distance between I and P is ( :>;= BI) 
112 

which is the length of 

C so sup{t: d(C(O),C(t)) = t}::::: 11811· This completes the proof. D 

The following figure shows intuitively why subspaces having some principal angle be­

tween them equal to 1r /2 no longer have a unique minimizing geodesic joining them. 

u 

Figure 6: Subspaces With 01 = 1r /2 

Theorem 2.5 together with the fact that a unit speed geodesic between points U and 

V can be rotated to a unit speed geodesic between I and U7 V shows that for any point 

P the cut locus with respect to P is the set 

Cutp = {U: The matrix 8 corresponding to P and U has at least one ei = 1r /2} 

{U: The matrix 8 corresponding to P and U has 01 = 1r /2}. 
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Definition 2.10. The injectivity radius iM of a Riemannian Manifold M is defined as 

This is the radius within which the exponential function is guaranteed to be injective. 

In other words, for all P, expp IB(P,iM) is injective. On Gr the injectivity radius is given 

by 

inf d (P, Cutp) = d (I, Cut1 ) 
PEGr 

=min {11811 : 8 corresponds to I and P, and f)i = 1r /2 for some i} 

= 7r/2. 
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3 Derivatives, Curvature, and Volume on Gr 

3.1 The Gradient grader f 

Let f : Gr -----+ lR be a function invariant under the choice of representation in Gr. 

The gradient gradGr f is defined to be the tangent in HQ Gr such that for all T E HQGr, 

(gradJRnxn J, T)nxn = (gradGr f, T)Gr· 

Proposition 3.1. The gradient 

where !Q = 

Proof. LetT= QB0 E HQGr. 

(JQ, T)nxn 

= tr((QQTJQ)TQBo) 

= tr ((QT !Q)TBo) 

= tr (f~QBo) 
1 

T T ) = ~(tr (JQQB0 ) + tr (BofQQ) 

= 2(tr (!~ QB0 ) + tr ( QT JQBl)) 

= gradJRnxn J. 

1 

!(;~ ~~~ ~B~ )Q~ ~ ~~:! qBo)) 

= tr ((skew (QT JQ))TB0 ) 

= 2(Q(skew (QT !Q), T)Gr 

= (2Q(skew (QT !Q), T)Gr 

Therefore gradGr f = 2Qskew (QT !Q) = !Q- Qf~Q. D 

Since the Lie Derivative £x f = df(X) = (gradGrf, X)Gr· It is now possible to easily 

compute Lie derivatives of functions. Defining X f = £x f gives a way to view how vector 

fields act on functions. Given a finite collection of vector fields { Xj hEJ the Lie derivative 

(Lxj) f = (gradGrf,l:Xj)Gr = L(gradGrf,Xj)Gr = L(Xjf) 
J J J J 

as expected. Lie derivatives of vector fields will be discussed in Section 3.5. 
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3.2 Parallel Translation Along Geodesics 

The condition that geodesics parallel translate their own tangent vectors (\leG = 0) 

and the fact that when C(t) = C0etBo , 6 = CB0 suggests the following proposition which 

can be found in [8]. 

Theorem 3.1. Let T = C0W0 , W0 E skewnxn, be a tangent in Hc0 St or Hc0 Gr and 

let C(t) = C0etBo. The parallel translate Tc,o,t 1 (T) ofT along C from t = 0 to t = t1 is 

given by 

Proof. Assume first that T E Tc0 On. Let T (T) denote Tc,o,t (T). At t = 0 

T(T) = T- n_l_ (T). 

T (T) is obtained by translating T in IR.nxn and infinitesimally removing the normal com­

ponent so at t = 0 the formula dd I T (T) = - !!:._ I n_l_ (T) holds. 
t t=O dt t=O 

=0 when t=O 
so 

dl ()- l(·T T')- l(TT TT )- T -d T T - -Co- C0 To+ T0 Co - -Co- B0 C0 CoWo + W0 C0 CoBo - -CoB0 Wo. 
t t=O 2 2 

Since T (T) ETc On let T (T) = CA(t) where A(t) E skewnxn, 

then dd I T (T) = C0Ao + C0 A(O) = C0 B0A 0 + C0 A(O). 
t t=O 

Now 

so A(O) = -BciWo- BoAo = BoWo- BoWo = 0 (since Wo = Ao). 

The same argument may be applied anywhere along C with T replaced by the parallel · 

translated tangent T (T) therefore A(t) = 0 for all t so A(t) A 0 so that T (T) = CW0 . 0 
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Notice that if T E HeM where M = StorM= Gr then T (T) E HeM for all t. This 

shows that parallel translation along geodesics in either of these manifolds is given by the 

same equation. 

3.3 Covariant Derivatives of Vector Fields Along Geodesics 

The form of the covariant derivative of a vector field along a geodesic in Gr is very 

simple. 

Theorem 3.2. Let C(t) = et>¥ be a geodesic emanating from In and reaching Q[;Qv at 

t = 118!1. Let 

He(t) Gr 3 yt = Ye(t) = C(t)Bt = C(t) (
o -B

0

[) 

Bt 

be a vector field along C(t). The covariant derivative \7 6Y(t0) = eto>¥ B(t0). 

Proof. By definition, 

\7 6Y(to) = lim -h
1 

( Tcio to+h(yto+h)- Yto) h---+0 .. 

= lim .!_ (eto¥ B - eto>¥ B ) h---+O h to+h to 

= eto>¥ lim -h
1 

(Bto+h - Bto) 
h---+0 

. . 
Note that the geodesic condition \7 6C = 0 is consistent with this result; \7 6 C 

0 

eto>¥ dd I '¥ = 0. The condition \7 6 T (T) = 0 on the parallel translated vector 1(T) is 
t t=to 

similarly consistent. 

3.4 Normal Coordinates 

An ON basis ~1 = {ea13 : 1:::; a:::; n- k, 1:::; {3:::; k} of m1 := H 1 Gr(IR) will now be 

described that will prove to be very convenient because of its relation to the eigenspace 

of the tensor (R( ·, '±')'±', · )Gr· (R( ·, '¥)'±', · )Gr is symmetric and positive semi-definite 
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because of the non-negative sectional curvature of Gr which will be established in Section 

3.5. This guarantees (see [13]) that the tensor is diagonalizable with real, non-negative 

eigenvalues. 93 1 will consist of the natural bases of 

The indices 1 ~ /3 ::; a ~ k will be used to describe the matrices with symmetric subma­

trices in the lower left blocks, for example if a = 2 , /3 = 1 then define 

( ~~:) 0 
0 0 0 

0 0 0 

Tedious calculations that are easily verified with a computer algebra system show that for 

these matrices, when a j:. /3, -[[ea.e, '1'], 'l'] = (O~I~If2af ea.e· For each of the matrices eaa 

having a 1 on the diagonal in the (aaYh position in the lower left block -[[eaa, '1'], 'l'] = 

0. Similarly, matrices with skew-symmetric submatrices in the lower left blocks, can be 

defined for 1 ~ a < /3 ~ k as in the following example where a= 1 and /3 = 3. 

0 ( ~ : ~ ~) 
-1 0 0 0 

. [[ ] ] (0a+O.e)2 ( ) CalculatiOns show that here - ea.e, 'lr , 'lr = IIBII2 ea.e· There are k n- 2k tangent 

matrices ea.e that have a 1 somewhere in the ( k + i)th row of the lower left block and O's 

elsewhere. For instance if a= k + 1 and /3 = 2, 
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0 

0 

e2 
In these cases -[[ea,ch '¥], '¥] = ll~l 2 ea/3· These relationships can be expressed by 

-[[ea/3> '¥), 'l') = Aaf3(8) eaf3 where 

0 , 1Sca=/3~k 

e~ , a 2 k + 1. 

In the complex case the role of skew-symmetric matrices is replaced with skew-Hermitian 

matrices. Recall that the canonical metric (T1, T2)Gr(C) = ~tr(T]iT1 ), and that dim Gr(C) = 
2 

2 dim Gr(JR). The ON basis SB 2 of m2 := H 1 Gr(C) consisting of skew-Hermitian matrices 

( 

0 -BT ) 
that corresponds to SB1 = { eaf3} can be described in terms of eaf3 := af3 . 

Baf3 0 

SJ3 2 = { ( 
0 

Baf3 

iB'f:f3 ) } _ { ( -ih 0 ) } - eaf3, eaf3 
0 0 ifn-k 

For this basis - [[ ea/31', '¥), '¥) = Aaf31' ( 8) ea/31' where 
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')'=1 ')'=2 

(8{3 - 8a)2 

II8WAaf3--r(e) = o 

(8{3 + 8a)2 
, 1 :::; {3 <a:::; k 

(8a + (){3) 2 

, a2:k+l. 

Normal or Geodesic Coordinates (see [5] pg. 83) at a point Q0 are defined on Gr 

by taking any ON basis (say 113 1), applying the exponential to some linear combination 

L Caf3eaf3 and taking Q 0el'.c,f3eaf3 as coordinates. As in a general Riemannian Manifold 

exponential coordinates satisfy 

\1 Qe,f3Qeij I Q = Q ! I t=O eij = 0 

The ON basis { Q 0 ( ;,! -:;j ) } of Hq, Gr could also be used for exponential coordi­

nates according to convenience. 

3.5 Theory of Homogeneous Spaces 

At this stage it is easiest to draw on the theory of homogeneous spaces and to interpret 

general results in terms of the Grassmannian. The general material in this section is 

developed with proof in [6] Chapter 3, and appears partially in [5] pg 187. General results 

will be stated without proof (labeled Theorem) and the application of the results to On/K 

will be described in more detail (labeled Claim). The curvature sign convention is taken 

to be 

Definition 3.1. A Riemannian submersion 1r : Mndn 2 ----+ Nn1 between Riemannian 

manifolds is a differentiable map such that rank ( d1r) = n 1 everywhere. 
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Claim 3.1. Gr is submersed onto On via the Riemannian submersion 

1r: On---+ Gr= G/K 

QHQK 
where K = ( 

0
k 

0 
) 

0 On-k 

Proof. If W E skewnxn define Wh to be W with the vertical components set to zero. 

It has already been established that d1r : TQ On :3 QW H QWh E HQ Gr and that 

rank (d1r) = k(n- k) everywhere. Therefore 1r is a Riemannian submersion. 0 

Every X E HP G/K has a unique horizontal lift X E TP G. The unique lift of QW E 

HQGr is QW E TQOn. 

Definition 3.2. On a Lie group G a left invariant vector field is a vector field X such 

that dL9 (X(91)) = X(991) where L9 : 91 H 991 is left multiplication by the element 9 E G. 

The same definition is used for right invariant vector fields where right multiplication 

by 9 is denoted by R9 • 

There is a one to one correspondence between left invariant vector fields on G and 

tangent vectors in g := TeG where e denotes the identity element of G. g is called the Lie 

algebra of G. 

In On the left invariant vector fields are fields W Q = QW where W E Tr On is fixed. 

Vector fields on Gr with left invariant horizontal lifts have the form W Q = QW where 

W E m is fixed. If t = Vi Gr then g = m EB t. eN'l' is both left and right invariant in On 

because eN always commutes with '11 (see [18]). 

Let X, Y, Z, and W be left invariant vector fields on G. The Lie bracket [X, Y] = 

£ x Y = XY - Y X on a Lie group has the property that if X and Y are left invariant 

vector fields then dL9 [Xe, Ye] = [dL9 Xe, dL9 Ye] = [X9 , Y9 ], that is if X and Y are left 

invariant then so is [X, Y]. In the case of On and left invariant vector fields W1 , W2 E 

Tr On, Q[W1 , W2] = [QW1,QW2]. It can also be shown that on a matrix Lie group [X, Y] 

acts on functions f E c=(G) at e by applying the tangent matrix XeYe- YeXe to f. 
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Definition 3.3. Metrics in G invariant under left and right translation are called bi-

invariant. 

Claim 3.2. ( · , ·)On is bi-invariant. 

Proof. Let W1 , W2 E g. Left invariance is trivial. To check right invariance, 
1 1 

(W1Q, W2Q)on = 2tr (Q7 W[W2Q) = 2tr (W2QQ7 W[) = (W1, W2)on· 0 

Notice that if X = QX is a left invariant vector field in On then taking the conjugate 

X' = Q7 XQ E skewnxn gives rise to a right invariant vector field X' that has the same 

length as X. 

In both Gr and On, ([[X, Y), Z], W) = ([X, Y], [Z, W]) follows from the following cal­

culation. 

([X, Y), [Z, W]) = (XY- Y X, ZW- W Z) 

= ~tr(Y7x7zw- Y 7 x 7 wz- X 7 Y 7 zw + x 7 Y 7 WZ) 
2 

= ~tr(-Y7X7Z7W + WzTyTxT +X7 Y 7 Z 7 W- WZ7 X 7 Y 7 ) 
2 

= -(ZXY, W) + (XYZ, W) + (ZYX, W)- (YXZ, W) 

= ((XY- YX)Z- Z(XY- YX), W) 

= ([[X, Y), Z), W) 

The following results for G relate the Lie bracket to the covariant derivative and hence 

the curvature tensor. 

Theorem 3.3. If ( · , ·) G is bi-invariant and X, Y, Z, and W are left invariant then 

on G, 

i} 'VxY =~[X, Y] 
2 

ii) (R(X, Y)Z, W)G =-~([[X, Y], Z], W)G 

iii} (R(X, Y)Y,X)G = ~ii[X, YJW 
4 
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Notice that ( ii) together with ([[X, Y), Z), W) = ([X, Y), [Z, W]) shows that the sec-

tional curvature of G is always non-negative. 

In general the homogeneous space inherits the metric of the original group so that 

( ·, · )G = ( ·, · )G/K when applied to horizontal vectors. It has already been observed 

that ( ·, ·)on= ( ·, · )Gr when applied to horizontal vectors. The subscripts G, G/K, On, 

and Gr will now be dropped. The following results relate the covariant derivatives and 

curvature tensors on G and G/K. 

Theorem 3.4. Let X, Y, Z, and W be left invariant vector fields on G/ K and X, Y, Z, 

and W be their horizontal lifts on G. Let R and R denote the curvature tensors on 

G/ K and G, then 

i) 'VxY =~[X, Y]h 
2 

ii} (R(X, Y)Z, W) 
1 -- -- 1 -- -- 1 -- --

= (R(X, Y)Z, W) + 4([X, z]v, [Y, W]v)- 4([Y, z)v, [X, W]v) + 2"([Z, W]v, [X, Y)v). 

3.2. 

On Gr this shows that 'VxY =~[X, Y]h. Now there is another way to verify Theorem 
2 

Second proof of Theorem 3.2. Let C = et'¥ be a geodesic and let X= CW = C L aa13 (t)ea13 

be a vector field on Gr. 

\7 eX= L (\7 caapCeap) = L ( d~;/3 Cea/3 + aap \7 cCeap) 

~ (daap 1 [ h) ~ daap d 
= L..t ----;{tCea/3 + aapC2" 'll,~:/3] = C L..t ----;{leap= C dtW. 0 

Claim 3.3. For vector fields X, Y, and Z on Gr with left invariant horizontal lifts on 

On the curvature tensor R(X, Y)Z =-[[X, Y), Z]. 

Proof. Without loss of generality assume that X, Y, Z, WE m. 
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(R(X, Y)Z, W) 

----- 1 -- -- 1 -- -- 1 -- --
= (R(X, Y)Z, W)- 4"([X, z]v, [Y, W]v) + 4"([Y, z]v, [X, W]v)- 2([Z, W]v, [X, Y]v) 

1 1 1 1 
= - 4([[X, Y], Z], W)- 4"([X, Z], [Y, W]) + 4([Y, Z], [X, W])- 2([Z, W], [X, Y]) 

1 1 1 1 = 4([[Z, X], Y], W) + 4([Y, Z], [X, W])- 4([[X, Z], Y], W) + 4([[Y, Z], X], W) 
1 

-2([[X, Y], Z], W) (Jacobi identity) 

1 1 1 
= 2([[Y, Z], X], W)- 2([[X, Z], Y], W)- 2([[X, Y], Z], W) (Jacobi identity) 

1 1 1 
= 2([[Y, Z], X], W) + 2([[Z, X], Y], W) + 2([[Y, X], Z], W) 

1 1 
= - 2([[X, Y], Z], W) + 2([[Y, X], Z], W) (Jacobi Identity) 

=-([[X, Y], Z], W). 
~ 

Em 

Therefore R(X, Y)Z =-[[X, Y], Z]. 0 

It will be important for finding Jacobi fields that in particular, 

3.6 Ricci, Sectional, and Scalar Curvatures 

Definition 3.4. The Ricci curvature on Gr is given by 

Usually Ric (X, X) is written Ric (X). 

Proposition 3.2. On Gr, 

l 
n-k-1 

. _ k(n-k)-1(X,Y) ' 
RIC (X, Y)- 2(n- k- 1) + 4 

2k( n - k) - 1 (X, Y) 

v=1 

v=2 
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Where v = 1 corresponds to the real case and v = 2 corresponds to the complex case. 

Proof. It is known (see [10) Proposition 3.21) that because Gr is an isotropy irreducible 

homogeneous space (meaning that the isotropy representation is irreducible), Ric ( ·, ·) = 

a(·, ·) where a E lR is fixed. For the real case 

Ric('¥, '¥) 
1 

= k ( n - k) - 1 L R ( ea,i3, '¥, '¥' ea,i3) 
1 

= k(n- k)- 1 L Aa,6 
a,,6 

( 

L ((8a + 8,6)
2 + (8a- 8,6)

2
) + (n- 2k) L 8~) 

_ 1 a<,i3 ,6 

- k(n- k)- 1 jj8jj2 

(k- 1)118112 + (n- 2k)li8W 
(k(n- k)- 1)118112 

n-k-1 
k(n-k)-1 

- n-k-1 
= k(n-k)-1('¥,'¥). 

n-k-1 
Therefore a = ( ) . For the complex case an analogous argument shows 

kn-k -1 

= 1 (2(n- k- 1)II8W + 4ji8W) IX Y) 
Ric(X,Y) 2k(n-k)-1 II8W '' 

= 2(n- k- 1) + 4 (X, Y). 
2k(n-k)-1 

! 
n-k-1 

. k(n-k)-1 
Therefore RIC (X, Y) = av(X, Y) where av = 2(n- k- 1) + 4 

2k(n-k)-1 

v=1 

V=2 

Definition 3.5. On Gr the sectional curvature K (X, Y) is given by 

( ) 
R(X,Y,Y,X) 

K X, y = IIXIIIIYII- (X, Y)2 
([X, Y], [X, Y]) 

IIXIIIIYII- (X, Y)2. 

0 

The maximum sectional curvature will be a useful quantity in roughly bounding the 

volume of a geodesic ball from below. 
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Proposition 3.3. On Gr 

{ 

2 , 
max KXY= IIXII=IIYIJ=l { Q ( , ) } 

4 

V=1 

V=2 

Proof. It suffices restrict attention to K 1 . For any [Q] E Gr there are representations Q' 

1 ( 0 -8 0 ) 
and J' such that J'eN passes through Q' where '¥ = 

11811 
: ~ ~ . For each 'l', if 

a# {3, then 

K ( eap, '¥) = R ( eap, '¥, '¥, eap) = Aaf3 ( eap, eap) = Aaf3 

h. h · th 1 h th · 1 ( 01 + 02 )2 N · · · h. 11 w IC m e rea case as e maximum va ue ll
8

ll2 . ow maximizmg t IS over a 

possible 8 gives 

max{(Ol +82)
2

} = (7r/2+1f/2f = 2 
e II8W 2( 1r /2)2 

In the complex case the same argument leads to 

max {K (X Y)} =max { 
48i } = 4 (1r/2f = 4 

IIXII=IIYII=l Q , e 11811 2 ( 1r /2)2 • 

This latter number agrees with [12} pg. 3448. For future reference define 

{ 

2 , v = 1 
bll = 

4 , v = 2 

Definition 3.6. On Gr the scalar curvature Seal ( Q) is given by 

Seal (Q) = k(n ~ k) L Ric (Qeap). 

The scalar curvature is constant, indeed for any Q E Gr, 

! 
n-k-1 

. _ k(n- k)- 1 
RIC (Qeap)- 2(n- k- 1) + 4 

2k(n- k)- 1 

v=1 

v=2 

! 
n-k-1 

Seal ( Q) = k( n - k) - 1 
2(n- k -1) + 4 

2k(n- k)- 1 

v=1 

V= 2. 
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3. 7 Jacobi Fields 

The Jacobi equation along the geodesic C(t) connecting In to QT;Qv is 

\l 0 \l 0 J + R(J C)C - 0 c c , -

as derived in [5] pg. 111. Along C a Jacobi field la13 (t) in the direction of the parallel 

translated vector 1( eaf3) can be written 

It has been shown that R(eNea13 ,eN'l')eN'l' = Aaf3et'¥eaf3 so that the Jacobi equation 

becomes 

This implies that 

The condition la/3(0) = 0 gives aa13 (0) = 0 so that 

{ 

ba13 sin j>::; t , Aaf3 :/= 0 
aaf3(t) = 

baf3 t , otherwise 

This leads to the volume elements used in [2} and [1). The constants baf3 leading to a 

canonical volume form will be determined shortly. These results are summarized in the 

column 1 = 1 in the following and the analogous complex case is described in both columns 

1 = 1 and 2 (assuming that Aaf3-r f. 0 unless a = (3 and 1 = 1). 
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1=1 1=2 

. (()/3- ()a) . (()/3 + ()a)t 
1 ::=:; f3 < a ::=:; k, sm 11811 t sm 11811 ' 

1 
t 

. 2()/3 1:Sa=f3:Sk -b -aa/3-y(t) = sm ll8llt ' af3-y 
. (()a+ ()/3) . (()/3- ()a) 

sm 11811 t sm 11811 t ' 1:Sa<f3:Sk 
. ()/3 . ()/3 

a2:k+1 sm ll8llt sm ll8llt ' 

where the aa/3-y correspond to orthogonal Jacobi fields la/3-y = aa/3-y et>¥ ea/3-y along C having 

length laa137 (t) 1- In the cases that ;>::;r = 0 the Jacobi fields become laf3-y = ba/3-y teN ea/3-y­

Simple computations show that the conditions \1 cla137 (0) = ea/3-y determine that 

otherwise 

Figure 7: The Vectors la/3(11811) 

3.8 Volumes of Geodesic Balls 

Because K is a closed compact subset of the compact set On there exists a unique 

invariant density or volume form on Gr defined up to a multiplicative constant, this is 

proven in [17] pg. 168. The fact that the volume form is defined only up to a constant 
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multiple is reflected in the fact that constant multiples of la137 still satisfy the Jacobi 

equation. Loosely speaking the volume form is obtained by multiplying the lengths of the 

orthogonal Jacobi fields together. Following [10] pg. 137 and [14] pg. 412, the volume 

of a geodesic ball B radius R( < 1r /2 = icr) centered at In in Gr can be computed as 

follows. Let r E IR, r ~ R, and let U, B E m be such that rU = B and IIUI!cr = 

1. Let Nv = dim Gr(JF) and relabel the ea137 as ei where e1 := e111 , · · · , ek := ekkl 

and the rest are labeled in any way. Since there is a vector 'lF = ( : -oe ~ ) having 
0 0 0 

length one such that keN E [etu] for some k(t) E K it can be seen, using invariance of 

length under representation, that the Nv orthogonal Jacobi fields along etu pointing in 

the directions etuei are Ji = ai etuei, where the ai are aa137 relabeled. Let {xi}f""1 be the 
Nv 

normal coordinates at I so that B = L xiei. 
i=l 

= { exp* vol1 (B) dx1 · · · dxNv 
j Bo(R)CHI Gr 

= { {R exp* vol1 (rU) rNv-ldrdSNv-l 
}gNv-1 } 0 

(where 'lF is related to U as above) 

In order to agree with [2], [1], and various other developments of the volume form, this 

integration over the fiber U Em such that IIUIIcr = 1 and U is related to 'lF must amount 

to the following. 
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(where Cv is discussed below and R l := {'7r/2;::: ()1;::: . .. ;::: ()k ;::: 0} n{l: e; = 1}) 

k k 

= Cv h [1(sineit(n- 2k) fi(sineit - 1 TI lsin(()i + e;)sin(()i- ()j )l v ld8l 
R 2 i = 1 i = 1 1<;; i < j <;; k 

k k 

= cv h [1(sineit(n- 2kl [1(sin2()it- 1 [1 (sin(()i+ ()j )sin(ei- ej)t ld8l 
R 2 i = 1 i = l 1<;; i < j <;; k 

k k 

= Cv h TI (sin eit(n- 2
k) TI (sin 2()it- 1 TI (sin2 ()i - sin2 

()j t IdS I (1) 
R 2 i = l i=1 1<;; i < j <;; k 

The region R 2 is illustrated in the following figure where k = 3 . 
93 

The equivalence of (1) and (2) is shown in Appendix 5.3. (1) appears in [2] pg. 2453, 
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and (2) appears in [1] pg. 19. For a Riemannian Manifold Mm let \M\ denote the m -

dimensional volume volm M. The conditions \1 cli(O) = ei were imposed to give a canonical 

volume form (see Appendix 5.2), meaning 

and \Gr(<C)\ 

where \Sm(lR)\ is the usual surface area of the m -dimensional sphere. This means that 

Using the change of variable sin Bi ------+ Yi the volume element in ( 1) can be written 

k k 

Cv f1 (sin Biy(n-2k) f1 (sin 2Biy-l f1 (sin2 Bi - sin2 Bj t \d8\ 
i=l l:;i<j :;k 

k k 
= 2k(v-l) TI v(n-2k+l)-1(1 _ 2)(v-2)/2 TI ( 2 2)v (\ d 

Cv Y, Y, Yi - Yj Yi· 
i=l l:;i<j:;k i=l 

This makes makes numerical computations easier. If the usual distance function is replaced 

by the chordal distance (see Section 2.6) in the limits of (1), which would become valid 

for small R, then the region of integration 'R..2 is replaced with the region 

{1 2 B1 2 · · · 2 Bk 2 0} n {L sin2Bi ::::; R2
} 

t 

which in terms of Yi is the region {1r/2 2 Yl 2 ... 2 Yk 2 0} n{L:: YI::::; R 2
}. 

t 

The value of Cv can be relatively easily computed in terms of Yi as 
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In the complex case the integrand is just a polynomial in Yi· Some values of Cv for various 

k and n are listed in Appendix 5.4. 

Another numerically useful observation is that because of symmetries in the complex 

case the integration in (1) may be made over the entire ball {L 8f ::; R 2
} by introducing 

t 

a factor of k!~k. The factor 
2

1
k corresponds to the 2k regions { ±81 ::; 0, ... , ±8k ::; 0} and 

the factor ~! corresponds to the k! regions { 1r /2 2: 8a1 2: · · · 2: 8ak 2: 0}. This can also 

be done in the real case if the absolute values are maintained in the integral. In the case 

where lF = C, k = n/2, and chordal distance is used, the integral for vol Bc(R) takes the 

simplified form 

3.9 Estimates and Bounds for vol B(R) 

For anything more than small values of n and k trying to directly compute volumes 

is impractical. The volume of B(R) in any Riemannian Manifold can be bounded from 

above and below based on the sectional and Ricci curvatures. [10) Theorem 3.101 states 

the following. 

Theorem 3.5. Let (M,g) be a complete Riemannian Manifold and B(R) be a geodesic 

ball centered at p that does not meet the cut locus of p. Let Vl(R) denote the volume of 

the ball radius R in the manifold of constant curvature l and dimension m = dim M. 

Then, 

i) (Bishop) If there is a constant such that 

Ric (X) 2: ag(X, X) then vol B(R) ::; va(R). 

ii) ( G iinther) If there is a constant b such that 
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K (X, Y) S b then vol B(R) 2 Vb(R). 

The bound involving the Ricci curvature is better because it involves an average of sec­

tional curvatures where as the bound involving the maximum sectional curvature neglects 

the fact that the other sectional curvatures may be much smaller. That the upper bound 

on vol B(R) guaranteed by this theorem is the better bound will prove to be fortunate 

later because of the implications this has on the number of spheres that can be packed 

into Gr. It is well known that in a manifold of constant positive curvature l the volume 

of the geodesic ball radius R is given by 

The proof involves diagonalizing the curvature tensor. [12] applies these theorems to 

Gr(<C) to get bounds on B(R) but uses only that the sectional curvature is non- negative 

and takes a = 0. This theorem applied to the results for Gr in Section 3.6 together with 

a< b ==? V(R)a > V(R)b gives, 

There is also an expansion formula in terms of R and the scalar curvature for the 

geodesic ball Bp(R) on any Riemannian Manifold (Mnt, g) having dimension n 1 . [10] 

Theorem 3.98 states, accounting for the difference in the definition of ScalP used by [10], 

that: 

Theorem 3.6. volMBp(R) = Rn1 voliRn1 B(l) (1- (nl)(z1
-

1 )~calP R2 + o(R2)). 
6 n 1 + 2 

In terms of Gr, if B(R) is a ball centered at any point this formula becomes 

volB(R) = RN., ( 1fN.,j2 ) (1- Nv(Nv -l)Scalv R2 +o(R2)) 
r(Nv/2 + 1) 6(Nv + 2) 

where 
v(n- k- 1) + (v- 1)4 

Scalv = N . 
v -1 
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_ ( 'ffNv/2 
) ( Nv(Nv- 1)Scalv ) 

Let Vv(R) = RN,_, ( / ) 1 - ( ) R2 
• The following graphs com-r Nv 2 + 1 6 Nv + 2 

paring Va 1 (R), Vb 1 (R), and t/i(R) in Gr3,6 (IR) illustrate that va"(R) and Vb"(R) are good 

approximations when R is small and that Vv(R) is only a good approximation if R is not 

too small and not too large. 

0.22 0.24 0.26 0.28 03 1r/10 

Figure 9: Comparison Between the Bounds on Volumes of Geodesic Balls Va 1 (R), Vb 1 (R), 
and the Approximation V1 ( R) 

0.7 0 75 1r/4 0.8 0.85 0.9 0.95 1 lr/3 
R 

Figure 10: The Range of Validity of t/i(R) 
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4 Packings 

A code C in a manifold M is any finite set of points in M. For points to be well 

spaced out it is desirable that the minimum distance dmin := min d (ci, c1) is as large as 
c;,cjEC 

possible. Two famous bounds on arbitrary Riemannian Manifolds without boundary that 

relate vol M, vol B(R), dmin and ICI are the Hamming and Gilbert-Varshamov bounds 

(see Appendix 5.5). It is clear that placing a code C having minimum distance dmin on a 

manifold M is equivalent to successfully packing ICI spheres of radius dmin/2 in M. This 

is the basis of the Hamming upper bound on jCj. The goal of this section is to place codes 

on Gr with a large minimum distance when compared to the Gilbert-Varshamov lower 

bound on IC j. 

Suppose arbitrary representatives Ei, c; E On of points [Ei], [c;] E Gr are given. The 

essential component of the packing algorithm to be described will be finding a B E m such 

that EJ.eiiBIIB E [t;]. It has been shown in Section 2.2 that there exist k1 , k2 E K and AD 

representatives c1 = Cik1 and c2 = t;k2 that have the relationship 

cl eiiBII'l' = c2 

EikieiiBII'l' = C2k2 

EJ.k1ell811'l'k[ = t;k2 k[ 

c;_ell8llk1'l'k[ = c;k2 k[ E [C2] 

In Section 2.2 k1 is written ( Q
1 0 

) . It is easy to check that B := k1 'Irk[ Em and that 
0 Q~ 

IIBIIGr = 1. Rather than try to maximize the non-differentiable functional dmin(C) over 

all possible C, the following algorithm assumes that each point ci in a code C = {ca}~l1 
experiences an inverse square repulsive force ciFij = -~~~~~ 2 ciBij from every other point 

c1, j # i. It is hoped that if the points are allowed to move under these repulsive forces 

they will spread out and produce a large drnin- It is computationally sensible to ignore the 

effect of points that are too far apart, say beyond a distance of R. During each iteration 
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each point ci is allowed to move a small distance in the direction of ci L Fij, that is, in 
#i 

each iteration ci H cieZl#iFij where c > 0. c, R, and the form of the repulsive forces may 

be varied to encourage convergence. 

Algorithm 4.1 

Step 1: Generate an approximately random code C 

representing points in Gr and pick an c > 0. 

{ ca}~l1 of orthogonal matrices 

Step 2: For each point ci, if d(ci, cj) < R, use Algorithm 2.1 (found in Section 2.2) to find 

kij, 8ij, and '¥ ij such that 

(j # i). 

1 
Let Bij = kij'l!ijk~ and Fij = - 118ijii 2 Bij· 

Step 3: Send each point ci to the new point cie:Zl#iFij. 

Repeat. 

Figure 11 compares a code consisting of 5 randomly placed points on Gr1,3 (JR) and the 

initial forces on each with the perturbed code and new forces after 10 iterations . 

. ; After 10 Iterations 

~ 
Figure 11: Points on Gr1,3 (JR) and Repulsive Forces Between Them 
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Smaller values of£ should be used when ICI is large because in these cases the forces 

involved are potentially larger but the distances between points are smaller so it is im­

portant that points are not moved too far in a given iteration. The minimum distance 

may decrease during an iteration, this reflects the fact that in order to move the points so 

that the entire code is well spaced out it may be necessary for points to 'float' close to one 

another. It is interesting to witness the effect of setting R to a value that dmin can be made 

larger than. Algorithm 3.1 then quickly produces a packing with dmin 2: R. Gradually in­

creasing R is comparable to blowing up the radii of ICI frictionless balls within the confined 

space of Gr. Figure 12 plots dmin verses the number of iterations for a code consisting of 64 

points on Gr3,6 (IR) using £ = 0.005. dmin for the initial approximately random placement 

was 0.579834 and the best dmin achieved after 1000 iterations was 1.174566. 

¢ 

<> 
0.8 ¢ 

0.7 

0.6 

<> 
¢ 

0 200 400 600 800 1000 

Figure 12: drnin Vs. Iteration for 64 Points on Gr3,6 (IR) 
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The Gilbert-Varshamov and Hamming bound guarantees that for a given 8 there exists 
. volM . volM 

a code c on M having dmin ::; 0 satisfymg volB(o) < ICI· Smce for any 8, vav(o) < 

val M "f k. ICI h · · · d. f d · 1 · 1 val B(o), one way to test 1 a pac mg avmg a mm1mum 1stance o min IS are ative y 

good one is to check if vat; ) < ICI- Doing this for the current example where dmin = 
vav min 

. volM 
1.174566 and ICI = 64 g1ves V ( ) = 10.9. This lends some evidence to claim that 

al dmin 

Algorithm 4.1 produces good packings. Of course ICI ::; v~l M / ) ::; b1~~ M/ ) = 
val B dmin 2 V min 2 

7931.5. When Algorithm 4.1 is tested on small packings in Gr1,2 (IR), Gr1,3 (IR), Gr1,4 (IR), 

and Gr2 ,4 (IR) the graph dmin Vs. Iteration resembles a fly bouncing along a ceiling. This 

thesis does not claim that this ceiling is the global maximum for dmin· 

1.7 

1.6 

<> 

i 
! 
<> 

1.5 ~ 
<> 

<> 
<> 
<> 
<> 
<> 
<> 

1.4 ., 
<> 
<> 
<> 

0 200 400 600 800 1000 

Figure 13: dmin Vs. Iteration for 400 Points on Gr5 ,10 (C) 
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5 Appendix 

5.1 [m, m] C €, [m, €] C m, and [€, €] C € 

Let B1 , B2 E m, then 

Let C E £, then 

0 ) 
B2A2 

E £. 

5.2 The Volumes of sm(JR), Om, sm(C), and Um 

It is well known, (see [9]), that the surface area of the m -dimensional unit sphere 

sm(JR) c JRm+l denoted ISm(JR)I where m 2 1 is given by 

7r(m+l)/2 

ISm(JR)I = (m + 1)r((m + 1)/2 + 1) 

The sphere sm- 1(JR) is the set of all vectors of length one in JRm which is the definition of 

St1,m(1R). This shows that gm- 1(1R) ...,.... Om/Om-l . Hence the relationship 
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Applying this relation recursively gives that 

7f(m+l)/2 
In light of this equation and the fact that ( m + 1) (( )/ ) evaluated at m = 0 

r m+1 2+1 
gives the value 2 it is understandable that some authors take the convention IS0 (IR)I = 2. 

This corresponds to the discrete or 0 -dimensional measure giving a value of one to each 

point. An excellent source that develops these relationships in the real case is [16]. For 

reference, the surface area of the sphere radius R is known to be IRSm(IR)I = RmiSm(IR)I. 

In the complex case 

7rm+l 
ISm(C)I = 2(m + 1)r(m + 2). 

The sphere gm- 1 (C) is the set of all vectors of length one in em which is exactly St1,m(C). 

So that an argument entirely similar to the real case shows 

IUml = ISm-l(C)IISm-2(C)I· · ·IS1(C)IIU11 = ISm-l(C)IISm-2(C)I· · ·IS1(C)I· 27f 

= IS2m-2(JR)IIS2m-4(JR)I·. ·IS2(JR)I· 27f. 

The surface area of the complex sphere radius R is IRSm(C)I = IRS2m(IR)I = R2miS2m(IR)I. 

5.3 Trigonometric Identities for sin ( Bi + Bj) sin ( Bi - Bj) 

The following calculation is useful in simplifying the volume form on Gr. 

sin (8i + 8j) sin (8i - 8j) = (sin 8i cos 8j +sin 8j cos 8i)(sin 8i cos 8j -cos 8i sin 8j) 

= sin2 8i cos2 8j - cos2 8i sin2 8j 

= (1 - cos2 8i) cos2 8j - cos2 8i (1 - cos2 8j) 

- 2 ll 2 ll (- • 2 ll • 2 ll - cos uj - cos ui - sm ui - sm uj 2: 0 when i < j) 
1 1 

= ~(cos28j + 1)- 2(cos28i + 1) 

= -(cos 28 · -cos 28·) 2 J t • 
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5.4 Values of Cv 

The following tables lists values of Cv for various k and n. 

Table 1: Values of c1 
k\n 10 9 8 7 6 5 4 3 2 

5 2 21f 41f 21f2 81f2 /3 1f3 161f3 /15 1f4/3 321f4 /105 

4 41f2 81f3 81f4 161f5 /3 87r6 /3 167r7 /15 167r8/45 

3 321f4 327r6 1281f7/3 321f9 /3 2567r10 /45 

2 641f8 2567r10 /3 1281f12 /3 

1 20481f12 /9 

Table 2: Values of c2 
k\n 10 9 8 7 6 5 4 3 2 

5 1f 1f2 1f3 /2 1f4/6 7r5/24 7r6/120 1f7 /720 1f8/5040 7r9/40320 

4 1f4 1f6 /2 7r8/12 1f10 /144 1f12 /2880 1f14 /86400 1f16 /3628800 

3 1f9/4 1f12 /24 1f15 /576 1f18 /34560 1f21 /4147200 

2 7r16 /144 1f20 /3456 1r24 1414120 

1 7r25 /82944 

5.5 Basic Packing Bounds 

This section states the Hamming and Gilbert-Varshamov packing bounds. 

Figure 14: The Hamming Upper Bound 
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Theorem 5.1. (Hamming) Let M be a Riemannian Manifold without boundary. For 

any code C having minimum distance dmin, 

ICI ::;_ vol M . 
vol B(dmin/2) 

The Gilbert-Varshamov bound gives a lower bound on possible ICI for a given dmin· 

Theorem 5.2. (Gilbert- Varshamov) In a Riemannian Manifold M without bound­

ary if o < iM is given then there exists a code C on M having dmin :S o satisfying 

volM 
ICI > vol B(o) 

Sketch of proof. Given a o if there exists an m with m · vol B(o) ::; IMI then there exists 

a code C on M with ICI = m + 1 having a minimum distance dmin 2:: o. In other words 

if m = l v:~~%)J then there is a code Con M having ICI = m + 1. Since l v:~~%)J :S 

volM l volM j _ . . volM 
vol B( o) < vol B( o) + 1 there exists a code con M With IC I > vol B( o) and dmin 2:: 0. D 
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