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ABSTRACT

This thesis develops the Riemannian Geometry of the real and complex Grassmann Man-
ifolds in a notationally accessible way. The canonical volume form is related to explicit
Jacobi Field calculations. The implementation of a packing algorithm based on repulsive
forces is proposed. Standard packing bounds and bounds on the volumes of geodesic balls

are used to test the performance of the algorithm.
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1 Introduction

Telecommunication engineers have happened upon motivation to study the Grassmann
Manifold in connection with multi-antenna wireless schemes. To sketch the connection con-
sider the case of a transmitter equipped with £ antennas and a receiver having ¢ antennas.
Let sy, be a complex-valued vector representing a symbol to be sent. In the absence of

noise the sent symbol s and the received symbo!l s* have the relationship
s*=sM

where M, is called the matrix of fading coefficients between the antennas. When antennas
are moving it is difficult to know exactly what the coefficients are for any extended time, so
M is taken to be a matrix that is approximately valid for some time block consisting of T
symbol periods. In the Rayleigh flat-fading model M is assumed to be Rayleigh distributed.

When noise is considered, sending the block of symbols Sz, results in receiving the block
S*=SM+W

where the Gaussian distributed Wr., is called the additive white Gaussian noise. In an
important paper by [19] it was shown that there is no gain if £ > T/2 so it is assumed
that £ < T/2. The ¢ -dimensional subspace col S is preserved by the transformation when
no noise is present. This is because there is a probability of one that the matrix M is
invertible, ie. it is very likely that the column spaces col SM and col S are the same. col S
may be viewed as a point in the Grassmannian Gr,r(C). Consider a finite basic alphabet
of signal blocks {S;}. One way to increase the reliability of error checking is to ensure
that the points col S; are, in a sense to be made clear within, well spread out on Gr,7(C).
Intuitively, if the points are well spread out before being sent then it is likely that they
will still be well spread out when they are received in which case it is easier to distinguish
them.

Section two defines the Grassmann and closely related Stiefel manifolds and deals with

1
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the form of tangents and canonical metrics on each manifold. Section 3 develops the
necessary Riemannian-geometric tools for Gr such as parallel translation, covariant and
Lie derivatives, curvature, and the volume form with emphasis on explicit computation.
Section 4 proposes an algorithm to spread out points on Gr using repulsive forces and

compares some preliminary results with standard packing bounds.
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2 The Stiefel and Grassmann Manifolds

2.1 Definitions, Dimensions, and Coordinates

In the following R™ may be replaced by C™ and the group of orthogonal n x n matrices
O,, by the unitary matrices U,, without changing the essential development. For simplicity

the real case is discussed and extended later to the complex case.

Definition 2.1. The Stiefel Manifold St ,(R) is defined to be the set of all orthonormal

(abbreviated ON) matrices of size n x k, that is
Sty .(R) ={P € R™*: PTP = [, }.

St will stand for St ,(R) at first but will later stand for Sty , () where F = R or C.
Writing the #** column of P as py;, the condition
plipy - Phpw
I=PTP= : :
Pﬂpu Tt Plrkpik
shows that P7 P = I represents k(L;l—) independent restrictions on the n x k matrix P.
Since R™** « R™* this suggests that St is an nk — ik;—l) -dimensional manifold. The proof
of this will be included in Section 2.4. St may be equivalently defined by taking certain

equivalence classes of matrices in O,,:

Sto>[Q={S€0,:s51=q1,---,5 = &}

Ik 0 -[k 0
—{Pc0,:P=Q UEO, v =0Q
0 U 0 On—k

In other words a point [@Q] € St can be taken to be all ON bases of R™ where the first &

I 0
basis vectors are identical. The matrix ¢ here is called an isotropy group.
0 On—k

In this form it is clear that St = 0,/0,, .



P. KEENAN MCMASTER - MATHEMATICS

Definition 2.2. The Grassmannian Manifold Gry,(R) is defined to be the set of all

k-dimensional subspaces of R".

Gr will stand for Gry,.(R) at first but will later stand for Gry, (F), in any case the
meaning of Gr should be taken in context. It is assumed that k£ < n/2, otherwise the roles
of n and k may be switched. That k < n/2 is not always assumed in the Stiefel case, for
example, St, ,(R) = O,.

A convenient way to represent points in Gr by n x k matrices is to identify matrices
P, € St whose columns span a given k-dimensional subspace of R®. This suggests the
equivalence class [P] = POy. Since the representative P will often be used to specify
the point span {p;1,...,px} it will sometimes be convenient to write span P instead of
col P = span{p,1,...,pk}- As with the Stiefel case, points in Gr can be represented by
equivalence classes of n x n orthogonal matrices under the identification

O, 0
0 O,

Gra[Q]=Q

where span{q,;,...,qx} is the k-plane being specified so that Gr = O,/ (Or x O,_i).
This identification makes intuitive sense: Let @ be partitioned as @ = ( P P, ), and

let M = My 0 € O 0 , where P, is any orthogonal n x n — k matrix
0 M, 0 On

for which span P, = (spanP),, or P"P, = 0. Then QM = < PM, P, M, > € O,

and span PM; = span P. Typically in both St and Gr points [Q,«»] and [P,«x]| will be

denoted @ and P. To see that Gr is a manifold of dimension k(n — k), pick a point Q =

( P P, ) € Gr. If z € R" lies in span P, then z7 P, = 0. Since rank P, = n—k, there is
Doy

an invertible submatrix P,, = : of P,. If P, denotes the matrix that remains

pOln_k—)

when the rows p,,_, are deleted, then the condition 0 = z7 P, =Y z;p;, =z P la+:v[73-P v
=1
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can be written — ( Tp v Tp, ) P P} = < Toy *° Loy, > The k x n — k matrix

Z = —P, 5P, provides a coordinate system on the set Us, .5 of all k-planes whose

equation can be written in the form ( Tg, - Tp, )Z = ( Toy 0 Za,_, ) The
proof that dim Gr = k(n — k) will be included in Section 2.5. In the complex case the
is that used in the classical developments by [3]. Although the Riemannian Geometry of
Gr can be developed in terms of these coordinates it will be more convenient to represent
k-planes by the matrices P,«x or Qnxn as in the relatively recent developments by [8].

Both St and Gr are of the form G/K where G is the compact Lie group O, and K
is the appropriate isotropy group. G/K is called a homogeneous space because G is a
connected Lie group and K is a closed subgroup of G.

Gr can be defined using only oriented representations @ € SO, the special orthogonal
matrices, resulting in Gr « SO,/ (SO x SO, _) but this leads to less intuitive results
when defining what are called the principal angles between subspaces of R™ and causes
complications in computation. Similarly Gr can also be defined with invertible matrices

using Gr «» GL,,/ (GL; x GL,_) resulting in correction factors in calculation. This is

illustrated in the case of projecting a vector a € R™ onto the k-dimensional subspace P.

Proposition 2.1. Consider the matriz P,.x, not necessarily ON, that specifies the

point span P € Gr.

1) If a € R™ and the orthogonal projection of a onto span P s denoted by ap =
Ilp (a) then IIp = P(PTP)'P7 which reduces to llp = PPT when P is an

orthogonal matriz.

i) If Tlp, denotes projection onto (spanP), then Ilp, = (I — P(PTP)"'P7) which

reduces to Ilp, = (I, — PPT) when P is an orthogonal matriz.

Proof. Assume that P is possibly not orthogonal. Let 8 = {b1,...,bx} be an ON basis of

5
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span P and let B := ( by --- by ), then B = PM where M ¢ GL; and
BB7 = B(B"B)'BT = PM((PM)" (PM))"Y(PM)" = PM(M"PTPM) M7 PT
= PMM'P P TM-TMTPT = P(PTP)1PT
so it may be assumed that P — < by --- by ) Now

& <a: b1> brlr

aP:Z<a,bi>bi:<b1 bk> : :<b1 bk) : o |a
=1
<a” bk> b[
= PP7a = P(PTP) P7a.
Note that if the underlying field is C, then 7 is replaced by H, the Hermitian conjugate,
and (a, b;) is defined as » " a;b;;. Since ap, = a — ap = (I, — P(P7P)"'P7)a, it must be

=1

that [Ip, = I, — P(PTP)"1PT. O

Henceforth representative matrices will be assumed ON.

2.2 Principal Angles and Angle Directions

An important way of specifying the relationship between two k-dimensional subspaces

of R™ is to use principal angles.
Definition 2.3. The principal angles
g:m:m =0, >0,41> >80, >8,,=--=0,=0 (rpossibly 0, £ possibly k)
between two k-dimensional subspaces U and V are defined by the following process:
cos 6, = max {|(u, v)| : |lu|| = ||v|| = 1,u € U,v € V}, or equivalently,
6 = min {cos™ [(u, v)| : ||ul]| = ||v|]| = 1,u € U,v € V},
Or—i = min {cos™ [(u,v)| : [jull = |lv|| = 1,u € U N (span {uk, -1, .., U—i+1}) 1,

6
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v € VN (span {vk, Vi_1,-- -, Vk—it1})L}-

The angles {6;}_ , are produced in reverse order simply so that the final list is ordered
from greatest to least. Any u;, v; that furnish these minimums are called angle directions
corresponding to the angle 8,. When 0, # 0, u; and v; span a 2-dimensional plane called
the i angle 2-plane . When 6; = 0, span {u;, v;} is a line. There are £ angle 2-planes and

k — £ angle 1-planes. This method of generating {(u.,v;, 6;)}5_, will be termed method 1.

The inconvenient convention of generating {6;}*_, in reverse order with method 1 is
justified since it is in agreement with the predominant notation in the literature when
dealing with representations of points in terms of principal angles. Consider the following
example where U,V € Gra,.

Example 2.1.

C=th =

.&4

Cer=uy Ba= 3 o

Figure 1: Principal Angles Between Subspaces of R*

1

0 1 ° 5

1

U — - 0 0 V= . 0 —
- Uy Uz - 1 0 | - V1 VU2 — V2

0

0 0 0 0

Since dim UNV = 1, there is one zero angle. In general if dimUNV = k—¢, there are k—¢
zero angles. Notice also that u; ¢ span {u,, v} and v; ¢ span{uz, v,}. When using method
1 in other dimensions, because of the conditions u; € U N (span {ug, ux_1,-..,Uir1})1 and

v; € V N (span {vg, Vk_1,...,Vir1})1, it is easy to see that when

7
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(uir (47 91) € {(ukn Vg, 0)1 (uk—la Ve-1, 0)) DR} (ul+11 Vet1, 0)7 (ue) Uy, 9@)}1

|(us, uz)| = |(vi, vj)| = d;j, where §;; is the Kronecker delta. It is in fact possible to choose
ON bases {u;}*_; and {v;}f_, of U and V so that |{u;, v;)| = cos§; and

span {u;,v;} | span {u;,v;} when ¢ # j. With these bases there is the convenient identity
|{u;, vj)| = d;; cosB;. This claim is easily seen once it is established that there is a rotation

R € O,, and representations U and V such that

cos By 0
Ik 0 cos 8y
RU = and RV = | singy 0 ,
0 )
0 sin 8

0

1

so that [(uy,vy;)| = [ulv;| = [u];RT Ruy;| = |(Ruy:)” (Ruy;)| =

le7 (cos b, e; + sinb; e; )| = d;; cos b;.

The existence of this popular normal form, however, is most easily proven with the identity

|(u;,v;)| = d;; cosB; at hand.

Claim 2.1. There ezist ON bases {u;}}_, and {v;}}’_, of U and V satisfying
span {u;, v;} .Lspan{u;,v;} when i # j.

Proof. Consider the (k — % + 1)** step in method 1 that produces (u;,v;,0;) where the

angle between

u; € U N (span {uk, Ue—1,.- -, Uit1}) 1
=Sy
and v; € V N (span {vg, V-1, - - - ’vi“l)l
=Sy
is as small as possible. If u; € Sy say u; = ¢; Q@  te \ﬁ/ , where ¢;,c, € R,
€UNSy 1 NSy CUNSp LSy L

then since v; € Sy, ,
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+cos; = (v, u;) = ¢ {v;, @) + c2(v;, B) = ca{w;, B).

]

angle with v; as u,, is of length one, and is still in Sy, so it may replace ;. Similarly v;

has the same

So if u} = B € UN Sy NSy, C (span{vk, Vk—1,...,Vit1})1 then

may be chosen to have the desired properties. This shows that the required bases exist. O

Of course by replacing some of the u;’s or v;’s with —u; or —v;, bases can be found
so that (u;,v;) = 6;; cosf;. The relationship between {u,}* ; and {v;}* , can be clarified

further.

Proposition 2.2. If the angles 6; and 8; are not both g—, then the angle planes
span{u;,v;} and span{u,,v,;} are orthogonal regardless of the choice of u;,v; min-

wmazing 6; and u;,v; manimazing 0;.

Proof. Assume that j < so that u; and v; are produced by method 1 later than u; and
v; and that 6; and 6§, are not both g Suppose, since (u;,u;) = 0, that u; = cya + cu;
where o € (span {u;,v;});. Then 0 = (u;,u;) = ¢ (u;,v;) = £ cycosf;. This implies that
either ¢ =0 orcosf;, =0 — 64, = g = 0; = —g contrary to the hypothesis. Therefore
c; = 0 and u; € (span{u;,v;}),. Similarly v; € (span{u;,v;}), so that the planes are

orthogonal. 1

61 0 cos 61 1] sin 8, 0
Let © = , COs© = ,and sin® =

0 M 0 cos 8y, 0 sin 6

Theorem 2.1. Let spanU, spanV € Gr. There exists representations Uy, and Vix,

and a rotation R of R™ that takes

cos©
I
Utol,.— andV to | gin®
0
0
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where {6;}%_, are the principal angles between spanU and spanV. In other words
cos ©

there exists R € O, with RU =1, and RV = | sin®

0
Proof. Assume that U = < upy o U ) and V = ( Voot Uk > where (uy;,v;;) =
UT
d0;; cos ;. R must be of the form R = ; where the columns of U, are ON and span
UL

(spanU),. Now

ur I uT UTv
RU = U= and RV = V=
uT 0 uT uTv

First, UV =| ... wlv; -+ | =cos®.
Now the freedom in choosing U; = ( Upkrr " 0 Ul ) may be exploited.
A Uy A Uy o= Yy
9“
‘ug;ﬂ.i Uigss
cd e d
1<i<t t+1<i<n-—k

Figure 2: Choosing u

10



P. KEENAN MCMASTER - MATHEMATICS

k
i = (Vs Uie) U

N -
For 1 < /£ let Uy pts = M = a;1
fvys — Hyvyl]
vy — > (Vi Uya) Ugall
=1
U —cosB;uy; B vﬁ—cos@iuu vy —cosb;uy;
vy —cos@uyll (1 —2cos?6; + cos?8;)2 sing;

Ifj<k+1and 1 <1</ then
8 (1 — cos®6;)
sinBi

(uik“,vlj) = = (Sij sin 9,‘.

If1<i<kand1<j<{,

1 Ois
(vy; — cosb;uy;)) = sinjej

Uys, Uipgs) = (Ups, —— cos@; —cosf,) =0,
< g5 UH—J) < b Sln9j ( J ])
andif 1 <z<{Zand 1<7 </,
B 1

~ sin6;siné;

5i;
=Y (1-—2cos?6; 20;) =4
im0, 5m8, s°6. + cos™0y) =0

(Wbt Upkets) (i — cos B uys, vy; — cosd; uy;)
which shows that the set {u;;,..., % x1¢} is ON. Now

span {u;y, ..., Uk, Ujki1y-- - Ulkie}
= span {uj1, ..., Uk, Uy1y-- -, Vet
=span{uUj1,..., Uk, Vy1,---, Vet (SIDCE ULt = Vyprr, -, Uk = Upk).
Extend the set {u,i,...,u k4, arbitrarily to an ON basis {u1,...,u;,} of R* with the
property that u,,; € spanV, for 1 <1 < n — k — £. Notice for future reference that if

the roles of ( U U, ) and ( v v, ) are reversed here after u);,,,; are chosen then
Ul ottti = UVlkteti (1<i<n—-k—-1¥
would be a valid choice for v, ,.; since then v sy; € spanU,. This gives
(Uikretis Vikrers) = 0ij 1<4,5<n—-k-10).
Now for j <k, 1<1i<n—k, the identity (urys, v;) = d;;sin6; still holds so that

11
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- - ‘ sin ©
ULV: ulk-f—i’ulj PR = .
) 0
cos©
uTv ur \ ] )
Therefore = 1| sin® |,and R = is the required orthogonal matrix.
ulv Ul
0

(]

After a basis for span U, is chosen, in the same way as the basis of span U, was found

above, except with the first £ basis vectors multiplied by —1 and the last n — k — £ set to

—sin©
Upkreq:, @ basis {Vjx11,...,v,} of span V| can be found to satisfy VU =
0

will be convenient later that V| and U have this relationship.
Definition 2.4. Bases {ui,...,u,} and {v;1,...,v,,} of R" satisfying
cos ©
ur . —sin®
V=] sne |[,V/U= )
uT 0
0

and Ulk+e+i = Vlk+e+i for 1 < 1 <n-— k—1¢
will be called angle direction ( abbreviated AD ) bases.

.
In this case UTV, = (VI U)T = ( _sin® 0 ) Since( U U, ) c o, and( vV v ) €

-
O,, ( U U, ) < vV Vv, ) € O, so AD bases of this form must satisfy

T u'v U7v,
(U Ui> (V VL): = | sin® cos®© 0

cos® —sin® 0
UIV UIVL )

0 0 In—2k

12
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The above theorem is closely related to the singular value decomposition. Let Ap«x =
U7V, where U and V are the same matrices as in the proof. In using the singular value
decomposition to decompose A as A = Q;£Q] where Q;,Q, € Oy, the first step is to look

for the eigenvalues of AT A.

(Ui, un) -0 (U, ugk) (Ui, vpn) - {wn, vik)
ATA=VTUUTV = . .
(Ui, un) -0 (Vg k) (Ui, vja) o (U, Vik)
('uil,ull)z 0 COS2 91 0
0 <’UU<:7 ulk>2 0 COS2 9k
which has eigenvalues
O0=cos?Oy =A== A <A1 < <A< Ay =1 =+ = A = cos? by,

(which are real in the complex case), and singular values o; = 4/A;. This shows that

¥ = cos ©. The next step is to find an ON basis {w, ..., wr} of R¥ consisting of eigen-

1
vectors of A7 A and to set @, = ( wy - Wy ) Then the set {;Awi tr+1 <
1 < k} is ON and once this set is extended to an ON basis {s1,...,Sr,Sr41,---, Sk} =
1 1 .
{51,---,5n, > Aw,yq, ..., B_Awk} of R, then Q) is set to Q; = ( S, -+ Sk ) In this
r+1 k

case, because the bases of span U and span V' are AD bases, a valid choice for Q» is @, = Ii.

This is illustrated by the equation (cos® © — cos?6; Iy ) w; = 0. When r +1 <1 <k,

(uyi,vpn)
1 1

1 .
5 = —Aw; = —ay; = — : =e;
ag; ag; o;

(s, Vik)
so that a valid choice for Q; is Q; = I;. Now U'V = A = QT AQ, = & = cos ©. Next, the

*

singular value decomposition is repeated for B, .\ := U]V to get B = Q} 3T

where Q7 € O,_; and Q3 € Ok.

13
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B"B = (UTV)T(UTV) =VTUUTV = VTl V

k
:VT< HU,L’Ulj >: .. ( Z’Ul],’ula uia)

Slnz 61 0
= . 6ij(1_cos29i) =
: 0 sin? @y,
which has eigenvalues
1=sin?8, = A = - = X> A, > > A > A, =0=-- =) =sin’ 6,

and singular values o = 1/Xr. This shows that £* = sin® = (I}, —cos? ©)Y/2 = (I, — £2)Y/2.
It is easy to show that again I; is a valid choice for @5 but even if the bases used to
represent span U and spanV , say U and V, are not AD bases, and Q, # I, it is still
true that Q3 = Q. is a valid choice for Q5. To see this assume U=UW, V =VWs,
U, =UW, A=UTV, B=0UTV, and that w; is an eigenvector of A7 A corresponding

to the eigenvalue \; <—

0 =WJ (I — 32 — I + oI, )Wz w;

= (M — AT A) w; =WI (I — %) — (1 — 6?)[)Ws w;
= M = VTOUTV) w; = W] (Z*? - X L)W w;

= (Ml — WIVTUW,WTVWs) w; =WT(VTUUTV — X L)Wsw;

= WJ (NI — VTUUTV)Ws w; = (VTU, 0TV — X1 L) w;

= W] (0?1, — Z*)Ws w; =(B"B - Xt L) w;

. . =~ = . 1
<=> w; is an eigenvector of B” B corresponding to A!. In any case the set {=Bw;:1<
o;
i < £} is ON and once this set is extended to an ON basis {s},...,5;,5,,1,---,Sh_x} =
1 1
{FBwl,...,;ng,s;ﬂ,...,s;_,c} of R**, Q% can be set to Q = ( st s, >
1

¢
The vectors completing the basis now appear on the right side of Q} in contrast to Q;

14
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because now the eigenvalues A} are ordered from greatest to least whereas A; are ordered
in the opposite direction. Of course in the present case Q7 = I, is a valid choice. It is
easy to see that the singular values of U7V and U7V do not depend on the choice of ON
representatives U, V, or U, . This establishes that there exists 1,Q2€0rand QF € O,

with
5T 0 cos®
1% ;1 O
_ = sin® | Q7.
oTv 0 Q;
~—_— —— 0
€K

These observations indicate a computationally practical way of producing the prin-
cipal angles and even AD bases with respect to spanU and span V' given arbitrary ON
representatives U and V, where U and V are AD representatives to be determined.
Algorithm 2.1
Step 1:

The first step is to use the singular value decomposition to get

-
e Q1cos© Q)

. = . sin®© - |
ulv Q@1 0 Q;

which immediately yields ; = cos! 4/);, where ), are the eigenvalues of ( o’y >T ( UoTv
Step 2:
Now, since Q7T7VQ, = cos®, UQ; € [U], and VQ, € [V], letting U = UQ, and
V = VQz gives UTV = cos©. Similarly, since U 1@t € [Uy], letting U, = U 1 Q7 gives
sin ©

Ulv = 70TV Q, = . Already the AD basis {u1,...,u;,} and the partial

AD basis {v}1,...,vx} have been found. The next step shows that taking V = VQ, is in

fact unnecessary.

15
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Step 3:
To generate ( v v ) simply multiply the matrix

cos® -—sin® 0
-
sin® cos®© 0 :(U UL) (V VL)
0 0 I o

by < U U, )
Stop.

This method of generating {(u;, v, 8;)}* ; will be called method 2. Even in the context
of Gr(C) method 2 gives a way to produce AD bases and real ;.

2.3 Tangent Spaces of St and Gr

The representations of points in St and Gr using matrices in R®** and R"** are
computationally and intuitively appealing but these so called extrinsic coordinates are
not bona fide coordinates because the dimension of each space is less than the number
of scalars used in the representation of a point. For this reason it is essential to identify
which parts of the derivatives %PM x(t) = P(t) and %ann(t) = Q(t) are relevant tangent
vectors in the usual sense. In St and Gr differentiating the condition P7 P = I, leads

k(k + 1)
2

. kE(k+1
to isolating independent conditions on P, leaving a nk — —i—;—)(: dim St) -

dimensional horizontal space. By projecting an arbitrary nx k matrix onto this horizontal

k(k +1)

space a general form for P can be found that highlights it’s nk — -dimensional

nature. In the case of Gr however, since dim Gr < nk — —k(k +1)

, part of this tangent
must be removed corresponding to the equivalence classes of points in Gr « St/Oy. The
remaining relevant tangent will be called the horizontal component of P for Gr. The
horizontal spaces Hp St and Hp Gr or Hp St and Hg Gr will have dim H, St = dim St

and dim H, Gr = dim Gr.

16
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Let P,«x(t) be a curve in St with P = P(0) and let T = P(0). Differentiating the
condition P(t)” P(t) = I and evaluating at ¢ = 0 gives T7 P + P7T = 0 so that P7T is

k(k+1)
2

skew-symmetric. This can be expressed by the independent conditions

tz;plj = —pfitij for = > 7, and tEPij =0fort=j70nT.

k(k+1) . .
-(——+—) -dimensional vector space, as

n(n — 1)

This suggests the horizontal space Hp St is an nk —

expected. When k = n this gives that dim 75 O,, = . Using the representations
P, € M = St or Gr gives a natural embedding of M into R*** -« R™. Using the
identification Tp R™** «» R™** TpM can be thought of as a subspace of R*** where
the origin is at the point P. The notation TpM here is meant to denote the space
of all tangents that occur as derivatives of curves P(t) and is not to be confused with

the horizontal space. If U,V € R™* then using the natural inner product (U, V),.x =

k
trUTV =5 ulv; = > w;vi; corresponds to the usual inner product in R™.

j=1 1<i<n
155k

Definition 2.5. The normal space LpM C R™** is defined as 1 p M = (Tp M), .

Proposition 2.3. The normal spaces | p M for n x k representatives have the form
k(k + 1)

1lp M= {N : N = PS where Sk is symmetric} so that dim 1p M = 5

Proof. Let T € Tp M be arbitrary and assume N = PS where S is symmetric, then
(N, T)pnxr =tr(PS)T

=tr STPTT

=tr SPTT (S is symmetric)

= —tr STTP (P7T is skew — symmetric)

= —trT7PS (TTP and S are both k x k)

= +trTTN = —~(N,T)pxr
Therefore (N, T)nxx = 0and N € L p M. {PS : Sis symmetric } is clearly a vector space
of dimension @ which completes the proof. O

17
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For n x n representatives 1o Gr = LoSt = 150, is -dimensional. This is

n(n + 1)
2
because g O, is isomorphic to the n x n symmetric matrices.
1 1
Definition 2.6. If X € R*** define symm (X) := E(X—I—XT), and skew (X) := §(X—XT).
Any time Sy, is symmetric and Wy is skew-symmetric,
<S, W>k><k =tr STW = —tr SWT = —tr WTS = —(S, W>k><k
so that (S, W)ixx = 0. For any Xy,
1 1
symm (X ) + skew (X) = §(X +XT)+ §(X - XT)y=X
so R¥** — symm, , @ skewx
where symm, , := symm (R¥*¥) and skewy := skew (RF*¥).

If Pe R,xx then

(PS,PW),xx =ttt STPTPW =trSTW = (S, W)ixr =0
and Psymm (X)+ Pskew(X)=PX

which shows PR*** = Psymm, , @ P skewy -

The following formulas, which can be found in [8], for projecting matrices X, «x onto Tp M

and LM are very simple.
Proposition 2.4. Let X ¢ R™*, then

H_LP('X) = HJ_PM(X) = Psymm (PTX)
and Ty, (X) =: g, M(X) = Pskew (P"X) +1Ip, X.

Proof. If

Eaﬁ = PR 51.(!6]ﬁ o - eaeg,"

18
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.....

T T

Note that

|P(Bap + Epe)llaxs = tT (Bap + Bpga)” PT P(Eap + Epa)
= 31 (Ega + Eap)(Eap + Epa)
=tr (Bop + Bpa)?
= tr (eqe] + egel)?

=tr eaegeaeg +tr eaegeﬁe;r +tr eﬁe;reaeg +tregelegel = {4, if a=f

2, if a£f
=1 =1
_li,ifa=p {1, ifa=p
{O, if a#0 {0, if a#83
1 & (X, P(Bap + Epa))nxk P(Bop + Epa)
Now IT, (X) = =
7 2 a%; |P(Bap + Epa)ll
_P Z (tr (X7 PEag) + tr (X7 PEgq)) (Eas + Ega)
2 5 |P(Bap + Epa)llzxk
P ko4t XTPEaa EBoa tr (X7 PE, tr (X7 PEs,)) (Bag + Eaa
_P 2}: I( ) JrzZ(r( ) +tr ( pa)) (Bap + Epa)
2 B 2
P i T T T
=5 2> (#]aP1o) Baa + Y (2]sD1a + Z]oDip)(Bap + Epa)
a=1 a<p
— p T T T T
=3 Oij (plizy; +2lpy;) -+ |+ -0 (1= 05) (pizy; + 2(py)

19
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|y

.
PZ;%' + ;D5

P
5 (PTX + X7 P) = Psymm (P7 X).

Since Pskew (P7X) + I, ,(X) + Ip, X = P(symm (P7X) + skew (P7 X)) + Ip, X =
PPTX + (I, - PPT)X = X, it must be that IIz,(X) = Pskew (P7X) + IIp, X. 0

2.4 Vertical and Horizontal Spaces of St

The last section gave a general form of tangent vectors in Tp St and Tp Gr in terms of

n X k representatives:
A
TpMaTnxk:PAJrPiB:(P pl) .
B

More information about the character of St can be gained by using the equivalence classes

[@Q], where Q = ( P P ), and tangent vectors T),., € Tg St. Using the general form

Ty = P PL)(z)’Q(z)

where A is skew-symmetric and B is arbitrary, the general form of a tangent 7T’,., to the

curve Q(t) = < P(t) P.(t) ) is easily found.

sesrm-ar(a( 1) () )= (o(3) o(3))

(A Xl) X, = —BT, and
= >

B X X € SkeWn~an_k

A
sothatT._Q(

-
is the desired general form.
B X

20
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Definition 2.7. The horizontal space Hg St is defined to be the subspace of Ty St
that is invariant under choice of representation curve W (t) € [Q(t)]. The vertical space

VQ St .= TQ St N (HQ St)L

R Lg 8t = 140, = RY-dm0, - g*5=
_ Hg St v RUmOw-dimOy  prk-52

St

Figure 3: Horizontal and Normal Spaces of St

Theorem 2.2. The horizontal space

A —-BT ) )
Hg St=4Q : Apxr skew — symmetric, B, i« arbitrary »,
B 0 _

0
and the vertical space Vo St = Q : Xn_kxn_k Skew — symmetric

0 X

Proof. Let W(t) be another representation of the curve Q(t), say
I 0
W(t) =Q()
0 M()

where M(t) € O, , for all t. Note that since M € O,y = St,_nk, Iy, M = 0 so
M(0) = M(0)X, for some X, € skeW,_jxn_. Now at t =0

. . Iy O 0 O
W=aQ +Q .
0 M 0 M
A —B7 I, O 0 0 I, O
B X 0 M 0 MX,MT 0 M
A —-BT I, O A —BT
=Q €|Q
B X+ MXMT 0 M B X+MX,MT

21
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Depending on the choice of M(t), MX,M” and hence X + M X, M7 may be any skew-

symmetric n — k x n — k matrix but the blocks A, B, and —B” remain invariant which

A —-BT
shows that the horizontal space is the set < @ . An alternative way to see
B 0

this is to simply observe that the matrix X does not even appear in the general n x k form

0 O
of a tangent in St. It is clear that the vertical space is the set < @ . O

0 X

When using @ in calculations the matrix X will be set to 0. Intuitively, movements
in the vertical direction correspond to changes in representation while movements in the

horizontal direction correspond to movements on the manifold. Counting the independent

k(k—1
elements in A and B suggests that dim Hp St = dim Hyp St = Kk —1) + k(n — k) =

2
k(k+1
nk — u which is the proposed dimension of St. Verifying that every tangent of this

k(k+1)

form occurs as the tangent to some curve in St confirms that dim St = nk — To

A —-BT

do this let W be arbitrary of the form W = € skew,, .. eV € O, because
B 0

(eM)T = e = e~ = (e")L. Therefore Qe?"” is a curve in St passing through @, and

d
finally, a—thtW li=o= QW.

2.5 Vertical and Horizontal Spaces of Gr

Since the tangent space T» Gr = Tp St the general form of an n x n tangent vector
_RBT

on Grisstil T = Q . The way in which the horizontal and vertical spaces
B X

differ between St and Gr is easy to predict.

Theorem 2.3. The horizontal space

0 -B7 ,
HyGr=4Q : B, _xxx arbitrary »,
B 0
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0

and the vertical space Vo Gr = {Q D Arxky, Xn_kxn_k Skew — symmetric}.

0 X

Proof. Let W(t) be another representation of the curve Q(t), say

M(t) 0
W(t) = Q(¢)
0 M, (t)
where M;(t) € O, and M,(t) € O, for all t. Note that, as in the the proof of Theorem
2.2, Ml(O) = M(0)X,; for some X; € skewg., and MQ(O) = M(0)X, for some X, €
skew,_rxn_ . Differentiating and evaluating at ¢ = 0 gives

M, 0 M, 0
+Q

W=0Q .
0 M, 0 M,
_Q<(ABT)(M1 0)+<M1X1M17 0 )(Ml o))
B X 0 M, 0 MXoMJ 0 M,
A+ My X MT _BT
Q( B X + MyXoM] ﬂ

Therefore only the blocks B and —B” remain invariant which shows that the horizontal

_ 0 -B7
space is the set < Q
B 0

) :

This theorem shows that when dealing with n x k tangents on Gr,

0
Hp Gr = {Q ( ) t B kxk arbitrary} and
B

A
Ve Gr = {Q ( ) : Apxr skew — symmetric}.
0

The matrix A in the representation 7' = PA + P, B corresponds to changes in represen-

)} It is then clear that the vertical space is the set

tation and should be set to zero while the matrix B corresponds to movements on Gr.
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The same argument as the one used in the Stiefel case shows that all such tangents occur.
Counting the elements in B shows that dim Hp Gr = dim Hgy Gr = k(n — k), therefore the
dimension of Gr is k(n — k).

In general a horizontal tangent T to the point P,.; € M (= O,, St, or Gr) has the
form
PA , M=0,
T'=4¢ PA+P B, M=St

PlB , M = Gr.

2.6 Canonical Metrics

Definition 2.8. The canonical metrics on St and Gr denoted (-, -)s; and (-, - ), are

defined at the point P,y (or Q,x.) as

1 -
(Th, To)st = §<A1:A2>kxk + (B1, B2)n-kxk  (T1,T2 € Hp St (Hg St)) and
(Th, Ta)ar = (B1, Ba)nkxk (11, T2 € Hp Gr (Hg Gr)).

1
In particular (-, -)o, = Etr AT A,. These Riemannian metrics correspond to the usual

RmSt and RU™Gr inner products applied to the independent elements of tangents in

Hp St and Hp Gr. Some useful identities for (-, - )g, are:

i) (Tynxks Tonxk)ar = tt Bf By = tt B PTPB, = tr T/ T,

= (Th T2>n><k S50 ('; ')Gr - < ) '>n><k~

. 1 0 BT 0 —B7
11) <T1n><n:T2n><n>Gr = tr BirB2 = —tr
2 B 0 B 0
T T T
1 0 -B 0 —-B 1
— Etr QTQ — _<T1;T2>n><n
B 0 B 0 2

so (-, “)ar = 5( -, * Jnxn When applied to horizontal vectors.
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It is an important observation that the metric for O,, is the same as the metric for Gr
when applied to vectors (or conjugates of vectors) in the horizontal space of Gr. When
the metrics are understood to be equivalent the notation (-, -) will replace (-, - )g, and
(-, Vo,

The canonical metric (71, T2)gr(c) = %tr(Tg"Tl) where the matrix T, is conjugated so

that (-, -)gr(c) is conjugate-linear in it’s second argument ([12] takes this convention).

2.7 Geodesics in O,, St, and Gr and Geodesic Distance in Gr

Let M = O, St, or Gr. Assume C,, i1s a geodesic in M. Differentiating the condi-

tion C7C = I, twice gives
CTC+2C7C+C7C =0,

When a Riemannian Manifold is submersed in Euclidean space the condition that the
acceleration vector C € 1M characterizes geodesics (see [6] pg. 68). C must therefore

have the form
C(t) = C(t)S(t) where S(t) € symm,
Substituting this into the above equation,
S+CTC=0
CS+C(CTC)=0
C+C(CTC)=0.
This is the geodesic equation analogous to the equation
S B0+ 3T di4, | 2 — 0
k * 1.7 v Oz

in general Riemannian Manifolds where {z,}; is a usual coordinate system and {I'};}: ;« are

the Christoffel symbols (see [5] pg. 62). [8] defines a Christoffel function I' (A4, A) = CA” A.

25



P. KEENAN MCMASTER - MATHEMATICS

Theorem 2.4. In M = O,, St, and Gr the curve
C(t) = CoetBo (B() € Hy M)

(modulo the appropriate isotropy group) is a geodesic emanating from C, in the

direction CoBy with constant speed ||Bo||ns-

Proof. Substituting C into the left side of the geodesic equation,
C+C(CTC) = Coet®ByBy + C(BICTCB,) = CBoBy + CBI By = —CBI By + CBI B, = 0.

Therefore C is a geodesic. The initial direction C(0) = CyB,. The speed of C is easily
seen to be ||Bo|m- O

When B, € H/M, C = CBy € HcM. In other words, in each manifold the curve
CoetPe has a tangent vector that belongs to Ho M for all .

The orthogonal group geodesics right multiplied by the isotropy group for Gr are
geodesics in Gr. This is in agreement with the general theory of homogeneous spaces (see
[6] pg. 68). Suppose C(t) is a geodesic in Gr with C(0) = I,,, since any representative of
C(t) may be used it may be assumed that the vertical components of C(0) are 0 so that

Consider a geodesic C;(t) in Gr with
Ci(0) = Qu = ( U U, ) and Ci(t) = Qv = ( %4 VL>

where {u;}7 , and {v;;}7, are AD bases and let {6;}% , be the principal angles between

U and V. It is easy to rotate the geodesic C;(t) to a geodesic C(t) with end points

cos® —sin® 0
C(0) =1, and C(t,) € sin® cos® 0 = [QFQv]
0 0 In—2k
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and vise-versa, explicitly, C(t) = QT C(t) (see Figure 4).
When dealing with C(t) the most natural choice for C(0) is the tangent

0 -© 0
. . 1 ..
CO)=Cr,=-——]| ©® 0 0 |:=7giving C(t) = ¢'?.
1©1]kxx
0 0 O
0 -© 0
Consider the geodesic Cy(t) =expt| © 0 0 | emanating from I, in the direction of
0 0 O
V. The speed of C,(t) is constant since
T 1/2
0 —-© 0 0 - © 0
1
(G, Cthdi= |5l @ 0 0| | @ o0 o
0 0 0 0 0 0 ’
1/2
® 0 0
1
=5t || 0 e o = (tr8%)"? = [|©]lexi-
0 0 O

Because ||©||xxx Will appear often it will be denoted ||©||. The arc length s(¢) along Cs(t)

is

t
s= [ lIeller = @]

sot = ﬁ Re-parametrize C,(t) with the change of variable ¢t — el ®|| then C,(t)
becomes
0 -© 0
Cot)=exp—1| © 0 0 |=C(t)
H9H
0 0 O
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so C(t) is already parametrized according to arc length. The following proposition, to-
gether with the fact that the arc length along C;(¢) for a given ¢ is the same as that along
C(t) (because tr (¥Y7C7Q}QuC¥) = tr (¥7¥)), establishes the famous formula (see [3])
for the geodesic distance d (U, V) between U and V;

V) =lel = /56

Engineering papers often use what is called the distortion or chordal distance defined by

d.(U, V)= | Z sin §;. For small 8; the chordal distance converges to the usual distance.

Qv

" 88 singG 0§
QE:QU fovsd e...“@ﬂ“;' = ( -5nd cos® 0 J Q{:_//C"l(t) = QUC(t)
o o !

%

‘ eos®  —sin® 0 \
1 C(t) QEQy = elPl¥ = ( $in® cotB 0
o0 1,

Figure 4: Translating Geodesics

0 - © 0
. 1
Proposition 2.5. If C(0) ts chosen to be e ®@ 0 0 | then
0 0 0

cos® -—sin® 0

c(llel)=1] sin® cos® 0 =QlQv.
0 0 In——2k
0 -6 0 o
> (||e]|c(o))y
Proof. C(||®|])=exp | ® 0 0 :In+zw
=1 :
0 0 O
0 -© 0 -2 0 o 0 3% o0 e* 0 o0
—7 1 2 1 . 1 .
=I,+]| @ 0 O +§ 0 -4 0 +§ -0 0 O +E 0 ©t o |[+---
0] 0 0 0 0 0 0] 0 0 0 0 O
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© (1 1)7+1

w3 e 3 ((27 7 0 o
— | (—‘1)”1 o2+ Ik+z—‘.—e2j 0

= (27 +1)! s (27)!

0 0 I, o

cos@ -—sin® 0

= sin® cos® 0 :QZQV- O
0 0 I, ok

Using the same calculation,

t
n——6 0
, [0 o neu nten
Ct)=expr—=]| © 0 0 |= 0
el H@Il *fer®
0 0 O 0 0 I, o

A consequence of this is that any two points Qy and Qv may be joined by a geodesic C
& 9 1/2

having total length < <Z (g-) ) =k g By retracing some steps it can be seen that
i=1

everything in this section applies as stated to the complex case.

2.8 The Cut Locus on Gr

Definition 2.9. For a Riemannian Manifold M, the cut locus of a point p € M is defined

to be the set of points
Cut, = {C’(tc) : C ageodesic with ||C|| = 1,C(0) = p, tc = sup {t : dp(C(0), C(t)) = t}}
(see [5] pg. 266).
The following theorem can be found without proof in [3].
Theorem 2.5. In Gr the cut locus at I is the set
Cut; = {P : The matrix © corresponding to I and P has at least one §; = 7/2}.
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Proof. Let P,y be a point in Gr and let {(‘)z-}i-“:1 be the principal angles between I and
P. A geodesic joining I to P is

t
cos ——©
el

¢
C(t)=1 sin—©
el

0
. . el +e¢ m
Without loss of generality assume that only §; = 7/2 and let € be such that el 0; < 5
for 2 > 1.
O]l +¢
cos ————06
el
Let P, := | g 1€l T
el
0

ey

>
Figure 5: A Smaller Angle Between e, and p;;

The strategy of the proof will be to produce a geodesic (t) from I, to P, having length

shorter than ||©|| + &. Define © = (Hel)||("9—|||_ 6) © and let
el +6) (HGH+8) 7r
Oi=m— | ——|bh=7— -
1 ( e/ el /2
Now define ©* to be © but with (%) 6, replaced with 6;.

1©l| +6) . - (H@H +6>
cos 87 = cos ¢, and sin 87 = —sin 7]
' ( el ' ' el '
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*

t
0os —0©
lex|

-
so y(t) :z(e1 cr€p —€pp1 €pan - en) sin ——©*
liell
0

is a geodesic with (0) € [I,] and (||©*|]) = P,. It remains to show that ||©*|| < ||8]].

o1 (£ (12 - 2 (B (811 )

©
. E 1/2 i
(Z (1o 92) = ]| + < = 6]

el
Therefore sup {t : d(C(0),C(¢t)) =t} <||9]].

1/2
On the other hand the distance between I and P is (Z 912) which is the length of
C so sup{t:d(C(0),C(t)) =t} > ||©]|. This completes the proof. O

The following ﬁgure_ shows intuitively why subspaces having some principal angle be-

tween them equal to 7/2 no longer have a unique minimizing geodesic joining them.

Figure 6: Subspaces With 8, = 7/2

Theorem 2.5 together with the fact that a unit speed geodesic between points U and
V can be rotated to a unit speed geodesic between I and U? V shows that for any point

P the cut locus with respect to P is the set

Cutp = {U : The matrix © corresponding to P and U has at least one §; = 7/2}
{U : The matrix © corresponding to P and U has 6, = w/2}.
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Definition 2.10. The injectivity radius iy of a Riemannian Manifold M is defined as

This 1s the radius within which the exponential function is guaranteed to be injective.
In other words, for all P, expp |p(p;,,) is injective. On Gr the injectivity radius is given

by

Plen(g d(P,Cutp) = d(I,Cuty)
= min {||©]| : © corresponds to I and P, and §; = 7/2 for some 7}
=7/2.
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3 Derivatives, Curvature, and Volume on Gr

3.1 The Gradient gradg, f

Let f : Gr — R be a function invariant under the choice of representation in Gr.

The gradient gradg, f is defined to be the tangent in Hg Gr such that for all T € HpGr,
(gradgnxn f, Thnxn = {gradg, f, T)ar-

Proposition 3.1. The gradient

grade, f = fq -~ Qf3Q = Q(Q7 fo — f5Q) = 2Qskew (Q fo)

8. f

where fo = Bas = gradgnxn f.
Proof. Let T = QBy € HpGr. .
<fQ7 T>n><n )
=tr ((QQ7 fo)" QBy) = E(tr (fEQBo) - tr(Q7 foBo))
= 2 ((Q7 fo) Bo) =t (L(3Q - Q" fo)Bo)
= tr (f{QB,) = tr ((skew (Q7 f))7 Bo)
= l(tr (fZQ—QBO) +tr (B()fZ)-Q)) = 2<Q(SkeW‘(Qqu), T>Gr
= §(tr(férQBo) +tr (Q7 foB])) = (2Q(skew (Q7 fo), T)r
Therefore gradg, f = 2Qskew (Q7 fo) = fo — Qf3Q. O

Since the Lie Derivative Lx f = df(X) = (gradg, f, X)c.. It is now possible to easily
compute Lie derivatives of functions. Defining X f = Lx f gives a way to view how vector
fields act on functions. Given a finite collection of vector fields {X;},c; the Lie derivative

(ZX> gfadGrf»ZX Z(gradGrf X;) Z(X f)

J

as expected. Lie derivatives of vector fields will be discussed in Section 3.5.
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3.2 Parallel Translation Along Geodesics

The condition that geodesics parallel translate their own tangent vectors (V:C = 0)
and the fact that when C(t) = Coet®e | C = CB, suggests the following proposition which

can be found in [8].

Theorem 3.1. Let T = CoWy, W, € skew,«n, be a tangent in He, St or He, Gr and
let C(t) = CyetP°. The parallel translate Tco4, (T) of T along C fromt =0 to t =t; is
gwen by

Teom (T) = Coe"®oW,.
Proof. Assume first that T € T, O,. Let 7 (T') denote 7¢o: (T). At t =10
7(T) =T — 1, (T).

7(T) is obtained by translating T in R™*" and infinitesimally removing the normal com-

d d
ponent so at ¢ = 0 the formula — T(T)=—- — I1, (T) holds.

dt t—0 dt t=0
im (T) = ECE(CTT +T7C) = o (C’T+7T7C) +01(CTT +C"T+T7CHTTC)
dt dt 2 22— 2 2 hun sl sund

=0 when ¢t=0 =0 =0

S0
d

1, . : 1
% T(T) e —COE(Cg-TO + T(;TCO) == _COE(B;)TC(’)TCOWO + Wg-cg-CoBo) = —CoBg-Wo
t=0

Since 7 (T) € Tc O, let 7(T') = CA(t) where A(t) € skew,, .,
then % 7 (T) = Colo-+ Cad(0) = Coodo-+ CoA(0).
Now —~CoBI Wy = CoBo Ay + Co. A(0)
s0  A(0) = —B]Ws — By Ay = BoWy — BoWo =0 (since Wy = Aq).

The same argument may be applied anywhere along C with T replaced by the parallel
translated tangent 7 (T') therefore A(t) = 0 for all ¢ so A(t) = Ay so that 7 (T') = CW,. [
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Notice that if T € Hc M where M = St or M = Gr then 7(7') € HcM for all ¢. This
shows that parallel translation along geodesics in either of these manifolds is given by the

same equation.

3.3 Covariant Derivatives of Vector Fields Along Geodesics

The form of the covariant derivative of a vector field along a geodesic in Gr is very

simple.

Theorem 3.2. Let C(t) = €'Y be a geodesic emanating from I, and reaching Q}Qv at
t=||©||. Let
‘BtT

HC(t) GroY, = YC(t) = C(t)Bt = C(t)
B; 0

be a vector field along C(t). The covariant derivative VY (to) = e®¥ B(t,).

Proof. By definition,
.1,
VeY(to) = 1m 5(76h son(Yiotn) — Yio)

.1
= jm (etO:Btﬁh D d -
_ Ato¥ 13 it _ — to¥
=e }}E}% h (Btg+h Bto) € dt I’t:t0 Bt.

Note that the geodesic condition V;C = 0 is consistent with this result; VC =

fo¥ 7 ¥ = 0. The condition V7 (T) = 0 on the parallel translated vector 7(T') is
t=tg

similarly consistent.

€

3.4 Normal Coordinates

An ON basis B; ={eap: 1 <a<n-—k, 1< <k} of my := H; Gr(R) will now be
described that will prove to be very convenient because of its relation to the eigenspace

of the tensor (R(-,¥)¥, -)gr. (R(-,¥)¥, -)gr is symmetric and positive semi-definite
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because of the non-negative sectional curvature of Gr which will be established in Section
3.5. This guarantees (see [13]) that the tensor is diagonalizable with real, non-negative

eigenvalues. B; will consist of the natural bases of

0 ( —symm],, 0 > 0 ( ~skew] , O )
Symmmy g o ’ skewr xk 0 )
0 0
0 ( 0 _ (Rn—Zlcxk)T

and 0
Rn——2k>< k 0

The indices 1 < 8 < a < k will be used to describe the matrices with symmetric subma-

trices in the lower left blocks, for example if @ = 2, 8 = 1 then define
0 -1 0 0
0 -1 0 00
0 0 6 0

1
€ = —=
75} \/5

0 0
o 0
0 0
0 0

o o =

Tedious calculations that are easily verified with a computer algebra system show that for
(65 — 6a)°
el
having a 1 on the diagonal in the (aa)™ position in the lower left block —[[e.q, ¥], ¥] =

these matrices, when o # 8, —[[eqss, ¥], ¥] = eqp- For each of the matrices eqq

0. Similarly, matrices with skew-symmetric submatrices in the lower left blocks, can be

defined for 1 < a < B8 < k as in the following example where o =1 and 8 = 3.

0 0 1 0

0 0 0 0 0

1 1.0 0 0
€ap = —F= 0 0 @

V2 o 0 o o
-1 0 0
o 0 0
: (6o + 6p)°
Calculations show that here —[[e,g, ¥], ¥] = W—eaﬁ. There are k(n — 2k) tangent

matrices e,s that have a 1 somewhere in the (k + ¢)** row of the lower left block and 0’s

elsewhere. For instanceif a = k+ 1 and 8 = 2,
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0 0 0 o
0 0 0 ¢ -1
0 0 0 O

eaﬁ =

o o o o
B o o o
o o o o

92
In these cases —|leqs, Y|, ¥| = —P_ e.5. These relationships can be expressed by
i TE]a

—[[eaﬁ, \I’], \I/] = )\aﬁ((-)) €ap where

(0 — 0. , 1<B<a<k

0 , 1<a=p8<k
181*Xap(©) =
(9a+9ﬁ)2 , 1<a<pB<k

63 , a>k+1.

In the complex case the role of skew-symmetric matrices is replaced with skew-Hermitian
. . 1 .

matrices. Recall that the canonical metric (T, T2)r(c) = Etr(Tz”Tl), and that dim Gr(C) =

2dim Gr(R). The ON basis B, of m, := H; Gr(C) consisting of skew-Hermitian matrices

0 BT
that corresponds to %B; = {e,s} can be described in terms of €up 1= A
B.s 0
0 -Bl 0 iB], —il, O
By = o g = 3 €5, ¢ €ap
Baﬁ 0 'iBaﬁ 0 0 'I;In_k

= {eaﬁla eaﬁz}

For this basis —[[eagy, ¥], ¥] = Aap,(©) €ap, Where
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vy=1 v=2
(913—*601)2 (0ﬁ+9a)2 s 1§,@<Ol§k
1©11”Aas,(®) = 4 0 462 L 1<a=B<k

6.+ 65 (ba—65)2 , 1<a<fB<k

03 03 , a>k+1

Normal or Geodesic Coordinates (see [5] pg. 83) at a point @, are defined on Gr
by taking any ON basis (say B;), applying the exponential to some linear combination
anﬁeaﬁ and taking QoeZ#s®# as coordinates. As in a general Riemannian Manifold

exponential coordinates satisfy

VQeas@eis | o = 0~ ;=0 where Q = Qqe’e=s.

d
d
_ ET
The ON basis < Qg of Hg, Gr could also be used for exponential coordi-

nates according to convenience.

3.5 Theory of Homogeneous Spaces

At this stage it is easiest to draw on the theory of homogeneous spaces and to interpret
general results in terms of the Grassmannian. The general material in this section is
developed with proof in [6] Chapter 3, and appears partially in [5] pg 187. General results
will be stated without proof (labeled Theorem) and the application of the results to O,,/K
will be described in more detail (labeled Claim). The curvature sign convention is taken

to be
R(X, Y)Z = VXVYZ - VYVXZ - V[X,y]Z.

Definition 3.1. A Riemannian submersion 7 : M™*"2 — 3 N™ between Riemannian

manifolds is a differentiable map such that rank (d7) = n, everywhere.
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Claim 3.1. Gr s submersed onto O, wvia the Riemannian submersion

m: 0, — Gr=G/K O¢ 0
where K =

Q- QK 0 Ons

Proof. If W ¢ skew,,, define W" to be W with the vertical components set to zero.
It has already been established that dm : T O, 2 QW — QW" € HgGr and that

rank (dr) = k(n — k) everywhere. Therefore 7 is a Riemannian submersion. O

Every X € H,G/K has a unique horizontal lift X € T, G. The unique lift of QW ¢
Hg Gris QW € T O,,.

Definition 3.2. On a Lie group G a left invariant vector field is a vector field X such
that dL,(X(91)) = X(gg:) where L, : g, — gg; is left multiplication by the element g € G.
The same definition is used for right invariant vector fields where right multiplication

by g is denoted by R,.

There is a one to one correspondence between left invariant vector fields on G and
tangent vectors in g := T.G where e denotes the identity element of G. g is called the Lie
algebra of G.

In O, the left invariant vector fields are fields Wy = QW where W € T; O, is fixed.
Vector fields on Gr with left invariant horizontal lifts have the form Wy = QW where
W € mis fixed. If £ = V;Gr then g = m @ €. ¢"¥ ¥ is both left and right invariant in O,
because e'¥ always commutes with ¥ (see [18]).

Let X,Y,Z, and W be left invariant vector fields on G. The Lie bracket [X,Y] =
LxY = XY — YX on a Lie group has the property that if X and Y are left invariant
vector fields then dL,[X.,Y.] = [dL,X.,dL,Y.] = [X,,Y,], that is if X and Y are left
invariant then so is [X,Y]. In the case of O, and left invariant vector fields Wy, W, €
T On, QWi, Wa] = [QW;,@QW,]. It can also be shown that on a matrix Lie group [X,Y]
acts on functions f € C*°(G) at e by applying the tangent matrix X.Y, — Y. X, to f.
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Definition 3.3. Metrics in G invariant under left and right translation are called bi-

invariant.
Claim 3.2. (-, -)p, s bi-tnvariant.

Proof. Let Wy, W, € g. Left invariance is trivial. To check right invariance,
1 1
WQ,W2Q)o,, = 5'01” (QTWirwzQ) = Etf (WzQQTWT) = (Wi, Wa)o..- 0

Notice that if X = QX is a left invariant vector field in O, then taking the conjugate
X' = QTXQ € skew,y, gives rise to a right invariant vector field X’ that has the same
length as X.
In both Gr and O,, ([X,Y],Z],W) = ([X,Y],[Z, W]) follows from the following cal-
culation.
(X, Y),[Z2,W]) =(XY -YX,ZW — W Z)
= %tr (Y'XTZW - YTX"™WZ - X"YTZW + XTY'WZ)
= %tr (-YTXTZTW +WZTY"XT + XTYTZTW - WZTX7YT)
= —(ZXY, W)+ (XYZ, W)Y+ (ZYX, W) - (YXZ, W)
={(XY-YX)Z-Z(XY -YX),W)
=(lX,Y], 2}, w)

The following results for G relate the Lie bracket to the covariant derivative and hence

the curvature tensor.

Theorem 3.3. If (-, - )¢ s bi-invariant and X,Y,Z, and W are left invariant then

on G,

1
i) Vx¥ = [X,Y]

Z?.) <R(X’Y)Z,W>G: <[[X’Y]’Z]1W>G

1
4
i) (R(X,Y)Y,X)g = %II[X, Y?

40



P. KEENAN MCMASTER - MATHEMATICS

Notice that (i) together with ([[X,Y], Z],W) = ([X,Y],[Z,W]) shows that the sec-
tional curvature of G is always non-negative.

In general the homogeneous space inherits the metric of the original group so that
(-, )e = (-, ")ag/xk when applied to horizontal vectors. It has already been observed
that (-, Yo, = (-, - )ar when applied to horizontal vectors. The subscripts G, G/K, O,,

and Gr will now be dropped. The following results relate the covariant derivatives and

curvature tensors on G and G/K.

Theorem 3.4. Let X,Y,Z, and W be left invariant vector fields on G/K and X,Y,Z,
and W be their horizontal lifts on G. Let R and R denote the curvature tensors on

G/K and G, then

= <R(X7 Y)Z7 W> + <[X’Z]U: [?’ W]U> -

1
4

On Gr this shows that VxY =
3.2.

1
§[X , Y]". Now there is another way to verify Theorem
Second proof of Theorem 8.2. Let C = ¥ be ageodesicand let X = CW = C Z aop(t)eqs

be a vector field on Gr.

da,
VC’X = Z (véaaﬁceaﬁ) = Z ( dtﬁ Ceaﬁ + aaﬁvéceaﬁ)

daqs 1 daqg d
= — ¥, e5" | = s = C—W.
Z 7 C'eaﬁ—lraaﬁCz[ , € ﬁ] Cz T €up CdtW il

=0
Claim 3.3. For vector fields X,Y, and Z on Gr with left invariant horizontal lifts on
O,, the curvature tensor R(X,Y)Z = —[[X,Y], Z].

Proof. Without loss of generality assume that X,Y,Z, W € m.
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(R(X,Y)Z,W)
= (R(X, V)2, W) ~ ({[X. 2P, [V, W]} + {7, 2", [, W)") — S{[Z, W, [X, V")
= (D6 Y], 2L, W) = (X, 2L 1Y, W) + (Y, 20,1, W) = 2 ((2, W), [X,Y)

1
Z Z([[Y)Z]»X]’W>
—%([[X, Y], Z],W)  (Jacobi identity)

= 12, XL Y], W) + (¥, 2), 1 W) - (1%, 2), YL W) +

= 21V, 2), X}, W) — (X, 2}, YL, W)~ 2([X,Y], ZL,W)  (Jacobi identity)

= (0%, 2, X1, W) + 5012, X), Y, W) + S(([¥, X), 21, W)

= — (X, ¥], 2), W) + ([, X], 2], W) (Jacobi Identity)

= (X%, 2L W)

Thereforee n;%(x, Y)Z = —[[X,Y], 2. ‘ O

It will be important for finding Jacobi fields that in particular,

R(e”’eaﬁ, et‘I’\I/)et‘I’\If = —et‘I’[[eaﬁ, ‘If], \I’]

3.6 Ricci, Sectional, and Scalar Curvatures

Definition 3.4. The Ricci curvature on Gr is given by

. 1
RIC[ (X, Y) = Vk(n — k) —1 a%;y RI (X, eaﬁ,,,eam, Y)
Usually Ric (X, X) is written Ric (X).
Proposition 3.2. On Gr,
—k—-1
PP XYy, v=1
. _ k(n—k)—1
Ric (X,Y) =
2(n—k—1)+4<X ¥y v=2
2k(n—k)—-1 “" T
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Where v = 1 corresponds to the real case and v = 2 corresponds to the complex case.

Proof. 1t is known (see [10] Proposition 3.21 ) that because Gr is an isotropy irreducible

)=

homogeneous space (meaning that the isotropy representation is irreducible), Ric (

a(-, -) where a € R is fixed. For the real case

RIC(\I’,\I’) = k(n—_lH—ZR(eaﬁ,\P,‘l’,eaﬁ)
= (n—k)—lz)\aﬁ
. Z ((6a +05)° + (8 — 65)°) + (n— 2k) > 63
o a<pB B
Ck(n—k)-1 I1e|)?

_ (k= D]SIP + (n — 28)[0)
Gn B - D]elF

Ck(n—k)—-1
- n—k—1

T k(n—k) - )

—k-1
Therefore a = h For the complex case an analogous argument shows
n —_— —_

: 1 2(n —k — 10| + 4]lO]I*
XY) = XY
2(n—k—1)+4
= X,Y).
2k(n — k) —1 KY)
n—k—1
_ kn—k) -1 ' '
Therefore Ric (X,Y) = a,(X,Y) where a, = 2n—k—1)+4 o .
2k(n—-k)y—1 '

Definition 3.5. On Gr the sectional curvature K (X,Y) is given by
RILY,Y,X) (XYLIXYD

KOV = v oo v~ XV - (% Y7

The maximum sectional curvature will be a useful quantity in roughly bounding the

volume of a geodesic ball from below.
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Proposition 3.3. On Gr

{Ko(X,Y)} =

max
IIXH=llYi=1
Proof. Tt suffices restrict attention to K;. For any [Q] € Gr there are representations Q'

1 0 -© 0o .
and I' such that I'e’¥ passes through Q' where ¥ = m( @ o0 o ) For each ¥, if
0 0 0

a # 3, then

K (eas,¥) = R(eop, ¥, ¥, €08) = Aapl€ag, €ap) = Aap

(61 + 62)°

which in the real case has the maximum value Tk

. .Now maximizing this over all

possible © gives

mélx{(el +92)2} _ (w/2+ m/2)? _

el 2m/2)?
In the complex case the same argument leads to
462 (m/2)?
max {Kg(X,Y)} = max Lt —4 = 4. O
2 e (X Y)} =mg {Hellz} (m/2)?

This latter number agrees with [12] pg. 3448. For future reference define
2 , v=1
4 , v=2

Definition 3.6. On Gr the scalar curvature Scal (Q) is given by

1 .
Scal(Q) = Kk >_Ric(Qeap).
The scalar curvature is constant, indeed for any Q € Gr,
( n—-k—1
. Rmog -1 U1
Ric(Qeas) =\ on—k-1)+4 50
=2
%k k) -1 ' 7
f n—k—1 Ly 1
_ kn—k)—-1 ' =
Scal(@) =1 on-k-1)+4 s
| 2k(n—k)—-1
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3.7 Jacobi Fields
The Jacobi equation along the geodesic C(t) connecting I, to Qf Qv is
VsVed +R(J,C)C =0

as derived in [5] pg. 111. Along C a Jacobi field J.g(t) in the direction of the parallel
translated vector 7(e,s) can be written
Jap(t) = aap(t)e™ eqp.

2
¥ d Qaop e
a2 °F

da,
VeVedas = Vi Bet¥e,s + Gup Ve eas | = e
dt —

=0

It has been shown that R(e'¥e,s,e¥¥)e!¥ T = A ze'¥e,p so that the Jacobi equation

becomes
0=c¢et? dzgﬁ + aapgR(e¥ enp, e ¥)etP T = e”’(d;%[z + AapGas)€ap-
This implies that
dj;gﬁ + Aaplag = 0.
The condition J,5(0) = 0 gives a,z(0) = 0 so that
tu(t) = bag Sin /Aot , Aep #0 bos € R.

bog t , otherwise

This leads to the volume elements used in [2] and [1]. The constants b,s leading to a
canonical volume form will be determined shortly. These results are summarized in the
column v = 1 in the following and the analogous complex case is described in both columns

v =1 and 2 (assuming that A,s, # 0 unless a = 8 and y = 1).
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7=1 7=2
. (65 — 6a) . (0 +ba)
sin ———=t¢ sin———=t | 1<g8<a<k,
el 2‘9||@||
——l—aa[,’,,(t) =qt sin —2-¢ , 1<a=8<k
bos oo o,
. a + ﬁ . B~ Va
sin —————¢ sim————=t |, 1<a<fB<k
el Hllell
. B . B
sin ——1 sin ——1 , a>k+1
el ell

where the a,p, correspond to orthogonal Jacobi fields Jugy = aapy € €ag, along C having
length |aqg,(t)]. In the cases that ,/A.s, = 0 the Jacobi fields become Jog, = bagy te¥eqp, .

Simple computations show that the conditions VJ,g,(0) = e,s, determine that

1 v Aapgy =0
baﬁv = 1

otherwise

vV )‘aﬁ’r ’

Figure 7: The Vectors J.5(||©]|)

3.8 Volumes of Geodesic Balls

Because K is a closed compact subset of the compact set O, there exists a unique
invariant density or volume form on Gr defined up to a multiplicative constant, this is

proven in [17] pg. 168. The fact that the volume form is defined only up to a constant

46



P. KEENAN MCMASTER - MATHEMATICS

multiple is reflected in the fact that constant multiples of J,g, still satisfy the Jacobi
equation. Loosely speaking the volume form is obtained by multiplying the lengths of the
orthogonal Jacobi fields together. Following [10] pg. 137 and [14] pg. 412, the volume
of a geodesic ball B radius R(< 7/2 = 1g,) centered at I, in Gr can be computed as

follows. Let r € R, r < R, and let &,B € m be such that v/ = B and ||[U|lg: =

1. Let N, = dimGr(F) and relabel the e,s, as e; where e; = ey, - ,€x = €gp1
0 -© 0

and the rest are labeled in any way. Since there is a vector ¥ = | @ o o | having
0o o0 o

length one such that ke'¥ € [e] for some k(t) € K it can be seen, using invariance of

length under representation, that the N, orthogonal Jacobi fields along e pointing in

the directions ee; are J; = a;ee;, where the a; are a,p, relabeled. Let {z;}}* be the
N,

normal coordinates at I so that B=">_ z;e;.
=1

vol (B;(R))

= exp”* vol; (B) dz; ---dzy,
BO(R)CHI Gr

R
_ / exp* vol; (rd) M~ 1drdsM1
0

SNV~1

= [ [ TTH1:(r )] 7 dras™
ju— SNV—I 0 TNV z:]. 1 ?

R ok Nu
— /N / ;%— [T W(r, ¥)|| »™~tdrds™ (where ¥ is related to U as above)
S y—1 0 v

1=k+1

R N
:/SN 1/ I1 lai(r, ¥)| r**drds™*
v-1 Jo

1=k+1

:/ /R ﬁ ISin\/—)‘—’iTl Tk_ldeSNV_l
sttdo ooy VA

In order to agree with [2], [1], and various other developments of the volume form, this
integration over the fiber & € m such that |[|U]|g, = 1 and U is related to ¥ must amount

to the following.
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rR N
k—1 k-1
» sin drdS
o[ [ 1t

1i=k+1

(where c, is discussed below and Ry :={m/2> 6, > --- > 6, >0} N{>_ 67 =1})

k
/ / H (sin78;)*~ ) [[(sin2r8;)** [] [sinr(6;+6;)sinr(6;—6;)|"r* 'drdS**
Ra =1

1<i<j<k

k Kk

= c,,/ [1(sin6,)"* 29 T (sin6,)** [] [sin(6; + 8;)sin (6; — 6;)[" |d©)|
Ra i=1 1<i<j<k

(where |dO| := /\d()i and Ry :={r/2>6;>---> 6, >0} N{>_ 67 < R?})

k

k
= cl,/ [1(sin6,)*™=2%) T](sin26;)** [] (sin(6; + 6,)sin (6; — 6;))" |d©|
Ra2 t=1

=1 1<i<j<k
k
/ H (sin 6;)*("~2%) ][ (sin 26;) [] (sin®6; —sin6;)” [dO] (1)
Rz i i=1 1<i<j<k

(see Appendix 5.3)
k k -
1
= g / [1(sin;)"™2*) [[(sin26:;) " [ =(cos26; —cos26,)” |dO] (2).
Rz j=1 i=1 1<i<i<k 2

The region R, is illustrated in the following figure where k£ = 3 .
83

=

6

Figure 8: The Regions {7/2 > 8,, > --- > 6,, > 0} N{>_6? < R*}

The equivalence of (1) and (2) is shown in Appendix 5.3. (1) appears in [2] pg. 2453,
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and (2) appears in [1] pg. 19. For a Riemannian Manifold M™ let |M| denote the m -
dimensional volume vol,, M. The conditions VJ;(0) = e; were imposed to give a canonical

volume form (see Appendix 5.2), meaning

1|S" (R)NIS™*(R)] - IS"*(R)]

w9 ) s wmysem) s @, 0

'G (R)l Iokl|0n~kl 1 o B

SIS HR) k=1
o 1S RISTAR) SRR,

o 27T SZk~2 R S2k—4 R .. S2 R ?
and |Gr(C)| = = o = 4 2’,1_2 (R)[[S**(R)] - - - [S*(R)] )
SIS E(R) k=1

where [S™(R)| is the usual surface area of the m -dimensional sphere. This means that
w2 [22% Ok 2 O 1 Ny
¢, = |Gr(F)| // / / / H jsin y/ir| dfxdi 1 --- By .
0 0 0 0 —kt1
Using the change of variable sin8; — y; the volume element in (1) can be written

k k
¢, [[(sin;)*™ ) [[(sin26;)* > [] (sin?#6; — sin®6;)” |dO)|

i=1 i=1 1<i<j<k

k
=, XD [P )R T (g2 - g2y /\ dy;.
=1 1<i<;5<k
This makes makes numerical computations easier. If the usual distance function is replaced

by the chordal distance (see Section 2.6) in the limits of (1), which would become valid

for small R, then the region of integration R, is replaced with the region

{12912.--26k20}n{}: sin’g; < R?}

which in terms of y; is the region {m/2 > y; > --- > y > 0} ﬂ{z y? < R%*}.

The value of ¢, can be relatively easily computed in terms of y; as

V(n 2k+1)—1

St /[ [ T T] (6 s

1<i<j<k
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In the complex case the integrand is just a polynomial in y,. Some values of ¢, for various
k and n are listed in Appendix 5.4.
Another numerically useful observation is that because of symmetries in the complex

case the integration in (1) may be made over the entire ball {> 67 < R?} by introducing

a factor of ﬁ The factor 217 corresponds to the 2* regions {+6; <O0,...,+8; <0} and
the factor % corresponds to the k! regions {w/2 > 6,, > --- > 6,, > 0}. This can also
be done in the real case if the absolute values are maintained in the integral. In the case
where F = C, k = n/2, and chordal distance is used, the integral for vol B.(R) takes the
simplified form

c k A
vol B(R) = 2 /{ - [Tv: 1 @ -2 A\ dw.
. i=1 1—1

VISEP} L1 1<idi<k
3.9 Estimates and Bounds for vol B(R)

For anything more than small values of n and k trying to directly compute volumes
is impractical. The volume of B(R) in any Riemannian Manifold can be bounded from
above and below based on the sectional and Ricci curvatures. [10] Theorem 3.101 states

the following.

Theorem 3.5. Let (M, g) be a complete Riemannian Manifold and B(R) be a geodesic
ball centered at p that does not meet the cut locus of p. Let VY(R) denote the volume of

the ball radius R in the manifold of constant curvature £ and dimension m = dim M.

Then,

i) (Bishop) If there is a constant such that
Ric(X) > ag(X, X) then vol B(R) < V2(R).

ii) (Giinther) If there is a constant b such that
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K (X,Y) < b then vol B(R) > V®(R).

The bound involving the Ricci curvature is better because it involves an average of sec-
tional curvatures where as the bound involving the maximum sectional curvature neglects
the fact that the other sectional curvatures may be much smaller. That the upper bound
on vol B(R) guaranteed by this theorem is the better bound will prove to be fortunate
later because of the implications this has on the number of spheres that can be packed
into Gr. It is well known that in a manifold of constant positive curvature £ the volume

of the geodesic ball radius R is given by

m—1 m—1
R [sinver R (sinydr
4 _ m—1 __ m—1
V{(R) = /sm—l/o ( 7 ) drdS™ " =|S l/o ( 7 ) dr.

The proof involves diagonalizing the curvature tensor. [12] applies these theorems to

Gr(C) to get bounds on B(R) but uses only that the sectional curvature is non - negative
and takes @ = 0. This theorem applied to the results for Gr in Section 3.6 together with
a <b= V(R)* > V(R)" gives,

V*(R) < volg:rB(R) < Ve (R) < V°(R).

There is also an expansion formula in terms of R and the scalar curvature for the
geodesic ball B,(R) on any Riemannian Manifold (M™,g) having dimension n,. [10]
Theorem 3.98 states, accounting for the difference in the definition of Scal, used by [10],
that:

(n1)(n; — 1)Scal,
a 6(n, + 2)

Theorem 3.6. voly B,(R) = R™ volg~ B(1) <1 R* + o(Rz)).

In terms of Gr, if B(R) is a ball centered at any point this formula becomes

N alVv/2 N,(N, — 1)Scal, _, .
vol B(R) = R <———P(NV/2H)) ( ~ e T D) R*+o(R ))
V(n—k—1)+(1/——1)4.

h Scal, =
where c N 1
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- N, /2 N _
Let V,(R) = R™ < 4l ) ( B N,(N, — 1)Scal,

I'(N,/2+1) 6(N, + 2)
paring V% (R), V¥ (R), and V;(R) in Gr;6(R) illustrate that V*(R) and V*(R) are good

R2>. The following graphs com-

approximations when R is small and that IZ,(R) is only a good approximation if R is not
too small and not too large.

e-05
VelR)

Be-05 v ( R)

4e-051

2e-05

JAL3)

022 024 0.26 028 03 /10
R

Figure 9: Comparison Between the Bounds on Volumes of Geodesic Balls V*'(R), V*(R),
and the Approximation V;(R)

2S5

07 075 x/4 08 085 09 085 V3
R

Figure 10: The Range of Validity of V;(R)
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4  Packings

A code C in a manifold M is any finite set of points in M. For points to be well
spaced out it is desirable that the minimum distance dy;, := anjlgc d(ci,c;) is as large as
possible. Two famous bounds on arbitrary Riemannian Manifolds without boundary that
relate vol M, vol B(R), dmin and |C| are the Hamming and Gilbert-Varshamov bounds
(see Appendix 5.5). It is clear that placing a code C having minimum distance d;, on a
manifold M is equivalent to successfully packing |C| spheres of radius du;,/2 in M. This
is the basis of the Hamming upper bound on |C|. The goal of this section is to place codes
on Gr with a large minimum distance when compared to the Gilbert-Varshamov lower
bound on |C|.

Suppose arbitrary representatives ¢1,¢é € O, of points [&], [é] € Gr are given. The
essential component of the packing algorithm to be described will be finding a B € m such

that &ell®IB ¢ [&]. 1t has been shown in Section 2.2 that there exist k;,k, € K and AD

representatives ¢; = ¢1k; and ¢; = €3k, that have the relationship

ciellel? = ¢
Gikqel®l¥ — &k,
c1k16” l kz- = Cgkgk’lr

~ T ~ ~
Cle[|@]|k1\lfk1 = Czkgkr € [Cg]

0
In Section 2.2 k; is written @ . It is easy to check that B := k; ¥ k:lT € m and that

0 @i
IIBllgr = 1. Rather than try to maximize the non-differentiable functional d,,;,(C) over

all possible C, the following algorithm assumes that each point ¢; in a code C = {c(,(}!ﬂ1

. . . 1 )
experiences an inverse square repulsive force ¢;F;; = ————c;B;; from every other point

el
cj, 7 # . It is hoped that if the points are allowed to move under these repulsive forces
they will spread out and produce a large d;,. It is computationally sensible to ignore the

effect of points that are too far apart, say beyond a distance of R. During each iteration
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each point c; is allowed to move a small distance in the direction of c; Z F;;, that is, in
J#
each iteration c; — c;e*¥#ifi where € > 0. ¢, R, and the form of the repulsive forces may

be varied to encourage convergence.

Algorithm 4.1
[cl

Step 1: Generate an approximately random code C = {c,},~; Of orthogonal matrices
representing points in Gr and pick an £ > 0.
Step 2: For each point c;, if d(c;, ¢;) < R, use Algorithm 2.1 (found in Section 2.2) to find
k;;, ©i;, and ¥;; such that

cieH@inkij‘I’iijJ—' € [¢;] (5 #1).

1
Let Bij == kij\l’ijk}g and Fij = —”WBU.
)

Step 3: Send each point ¢; to the new point c;efZi# i,
Repeat. -
Figure 11 compares a code consisting of 5 randomly placed points on Gr, 3(R) and the

initial forces on each with the perturbed code and new forces after 10 iterations.

~ Initial Placement

©, After 10 Hterations

Figure 11: Points on Gr; 3(R) and Repulsive Forces Between Them
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Smaller values of ¢ should be used when |C| is large because in these cases the forces
involved are potentially larger but the distances between points are smaller so it is im-
portant that points are not moved too far in a given iteration. The minimum distance
may decrease during an iteration, this reflects the fact that in order to move the points so
that the entire code is well spaced out it may be necessary for points to ‘float’ close to one
another. It is interesting to witness the effect of setting R to a value that d,;, can be made
larger than. Algorithm 3.1 then quickly produces a packing with d.;, > R. Gradually in-
creasing R is comparable to blowing up the radii of |C| frictionless balls within the confined
space of Gr. Figure 12 plots d,;, verses the number of iterations for a code consisting of 64
points on Grj6(R) using € = 0.005. dp;, for the initial approximately random placement

was 0.579834 and the best d,;, achieved after 1000 iterations was 1.174566.

o 200 400 600 500 1000

Figure 12: dpyin, Vs. Iteration for 64 Points on Gr;g(R)
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1M
° < |C|. Since for any 9, Ve s) =

The Gilbert-Varshamov and Hamming bound guarantees that for a given § there exists
volM
a code C on M having d;, < 0§ satisfying Yol B(3) °

one way to test if a packing |C| having a minimum distance of d;, is a relatively

volM
vol B(6)’
. .. volM . .
good one is to check if VG—(&__) < |C|. Doing this for the current example where dp;, =
min M
1.174566 and |C| = 64 gives V?YTO(”ﬁ = 10.9. This lends some evidence to claim that
i volM vol M

Algorithm 4.1 produces good packings. Of course |C| < W BdnT2) ~ Vi (dun /) =
7931.5. When Algorithm 4.1 is tested on small packings in Gr;2(R), Gr;y3(R), Gr;s(R),

and Grz4(R) the graph d,.., Vs. Iteration resembles a fly bouncing along a ceiling. This

thesis does not claim that this ceiling is the global maximum for d;,.

o &

T
1000

T
800

T
600

T T
200 400

Figure 13: dy;, Vs. Iteration for 400 Points on Grs 10(C)
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5 Appendix

5.1 [m,m] C ¢ [m, € Cm, and [¢,¢ C ¢

Let Bl, B, € m, then
_ BT BT _gT BT
[BI,BQ]:<0 Bl><0 B2>_<0 32)<0 Bl)
Bl 0 Bz 0 Bz 0 Bl 0
[ -BTB; 0 [ -BIB 0
- 0 -BBT 0 ~B;B]

_<BZBl—BlTBz 0 )EE

0 B>B] - B1B]

Let C € ¢, then
_BT BT
cor-(3 2)(2 7)-(2 7)(5 2)
0 Ca B3 0 By 0 0 Ca
0 -ciB8] | 0 —BJC2
C2B1 0 B:Cy 0

0 BT C, — 1 BT
1 1 E m.
CzBl — B101 0

Let A, B € &, then
o A1 By 0 . Bi Ay 0
[A’ B] = ( 0  A»B; > ( 0  ByA ) €t

5.2 The Volumes of S"(R), O,,,S™(C), and U,

I

It is well known, (see [9]), that the surface area of the m -dimensional unit sphere

S™(R) C R™*! denoted |S™(R)| where m > 1 is given by

ﬂ.(m—i—l)/Z

S"®) = (m+ D2 51)

The sphere S™ '(R) is the set of all vectors of length one in R™ which is the definition of

Sty m(R). This shows that S *(R) = O,,/0,,_1 . Hence the relationship
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S™(R)Om-1] = |Om]-
Applying this relation recursively gives that

Ol = [S"H(R)[IS™*(R)| - - - S*(R)]|O2] = [S™H(R)[IS™*(R)| - - [S*(R)[|S(R)] - 2.

(m+1)/2
In light of this equation and the fact that (m + 1)F ( (mﬁ+ /25 1) evaluated at m = 0

gives the value 2 it is understandable that some authors take the convention |S°(R)| = 2.

This corresponds to the discrete or 0 -dimensional measure giving a value of one to each
point. An excellent source that develops these relationships in the real case is [16]. For
reference, the surface area of the sphere radius R is known to be |[RS™(R)| = R™|S™(R)].

In the complex case
gl
IS™(C)| = 2(m + I)F(_rn—+—2)
The sphere S™ *(C) is the set of all vectors of length one in C™ which is exactly Sty ,.(C).
So that an argument entirely similar to the real case shows
Ul = IS™HOUS™ O] ISHOWU| = [S™HOWS™*(C)| -~ [S(C)| - 2
=[S (R)|IS™H(R)| - - [S*(R)] - 27

The surface area of the complex sphere radius R is |[RS™(C)| = |[RS*™(R)| = R*™|S*™(R)|.

5.3 Trigonometric Identities for sin (0; + 6;) sin (6; — 6;)
The following calculation is useful in simplifying the volume form on Gr.
sin (6; + 6,)sin(6; — 6;) = (sin8; cosf; + sin 6, cos 8;)(sin 6, cos 6; — cos 6; sin §;)
= sin® §; cos? 8, — cos? §; sin” 6,
= (1 — cos®6;) cos? §; — cos? §; (1 — cos? §;)
= cos?8; — cos?8; (=sin’f; —sin®f; > 0 when i < 7)
1 1

= ~(cos26; +1) — 5(cos 26; + 1)

= §(cos 26, — cos 26;).
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5.4 Values of ¢,

The following tables lists values of ¢, for various k£ and n.

Table 1: Values of ¢;

k\n |10 9 8 7 6 5 4 3 2
5 | 2 27 47 27 8w?/3 3 167%/15  #*/3 327%/105
4 472 8n* 87* 167°/3 87%/3 1677 /15  167%/45
3 327t 327%  12877/3 3279/3  256719/45
2 64n®  2567'0/3 1287'?/3
1 2048 7112 /9

Table 2: Values of ¢,
kK\n{10 9 8 7 6 5 4 3 2

T w w/2 7n*/6 w5/24 w8/120 «7/720  w8/5040 7°/40320
nt  w%/2 #%/12 x10/144 7'2/2880 ='*/86400 w'®/3628800

/4 gw'?/24  w'5/576 w'8/34560 7w2'/4147200

n'/144 70/3456  7w?*/414720

7%° /82944

=N W s O

5.5 Basic Packing Bounds

This section states the Hamming and Gilbert-Varshamov packing bounds.

Figure 14: The Hamming Upper Bound
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Theorem 5.1. (Hamming) Let M be a Riemannian Manifold without boundary. For

any code C having minimum distance dy;y,,

c| < volM
— vol B(dmm/2) '

The Gilbert-Varshamov bound gives a lower bound on possible [C] for a given dpm;,.

Theorem 5.2. (Gilbert — Varshamov) In a Riemannian Manifold M without bound-

ary if 6 < ipr 1S given then there exists a code C on M having dn;, < 0 satisfying

vol M

1> o B

Sketch of proof. Given a ¢ if there exists an m with m - vol B() < |M]| then there exists

a code C on M with |C| = m + 1 having a minimum distance dy,;, > J. In other words

1M M
ifm = [V‘or;)—B%cﬁJ then there is a code C on M having |C|] = m + 1. Since [VZIOB(é)J <
volM volM | . vol M
1 i M wi T and dyin > 6.
vol B(3) < [volB(é)J +1 there exists a code C on M with |C| > ol B(9) and dpi, > 6. O
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