
SAMPLED-DATA SUPERVISORY

CONTROL

By

Yu WANG, B.ENG

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Master of Applied Science
Department of Computing and Software

McMaster University

© Copyright by Yu Wang, January 15, 2009

ii

MASTER OF APPLIED SCIENCE(2006)
(Software Engineering)

TITLE: Sampled-data Supervisory Control

AUTHOR: Yu Wang, B.Eng(McMaster University)

SUPERVISOR: Dr. Ryan Leduc

NUMBER OF PAGES: i, 390

McMaster University
Hamilton, Ontario

Abstract

This thesis focuses on issues related to implementing theoretical Discrete-Event Sys
tems (DES) supervisors, and the concurrency and timing delay issues involved.

Sampled-data (SD) supervisory control deals with timed DES (TDES) systems
where the supervisors will be implemented as SD controllers. An SD controller is
driven by a periodic clock and sees the system as a series of inputs and outputs. On
each clock edge (tick event), it samples its inputs, changes states, and updates its
outputs.

In this thesis, we identify a set of existing TDES properties that will be useful
to our work, but not sufficient. We extend the TDES controllability definition to
a new definition, SD controllability, which captures several new properties that will
be useful in dealing with concurrency issues, as well as make it easier to translate a
TDES supervisor into an SD controller.

We then establish a formal representation of an SD controller as a Moore Finite
State Machine (FSM), and describe how to translate a TDES supervisor to a FSM, as
well as necessary properties to be able to do so. We discuss how to construct a single
centralized controller, as well as a set of modular controllers and show that they will
produce equivalent output.

Next, we capture the enablement and forcing action of a translated controller in
the form of a TDES supervisory control map, and show that the closed-loop behavior
of this map and the plant is the same as that of the plant and the original TDES
supervisor. We also show that our method is robust with respect to nonblocking and
certain variations in the actual behavior of our physical system.

We also introduce a set of predicate-based algorithms to verify the SD controlla
bility property, as well as certain other conditions that we require. We have created
a software tool for verifying these conditions and provide the source code in the
appendix. We have implemented these algorithms using binary decision diagrams
(BDD).

For illustrative purpose, we have produced a set of examples which fail the key
conditions discussed in this thesis, as well as a successful application example based
on a Flexible Manufacturing System. We also presented the corresponding FSM,

iii

iv

translated from the example's supervisors.

Acknowledgment

I will definitely first give my thanks to my supervisor, Dr. Ryan Leduc, who I have
been working for since I was an undergraduate. I would have never been able to
accomplish this task without the great great amount time, constant guidance, and
support he has given me. His expertise in the area of discrete event control systems
is the most valuable source of help for the whole period of this work.

I'd also like to thank Raoguang Song for his preceding work on the BDD based
symbolic verification tool for HISC. His code base saved me a lot of effort in under
standing and starting the software implementation.

At last my thanks go to my beloved father Xuhong Wang, and mother Baoxi
ang Yun for their unlimited support and Wen Xie for her great understanding and
confidence in me. This thesis is dedicated to them.

v

vi

Contents

Contents

List of Figures

1 Introduction
1.1 Objective
1.2 Related Work

2 Discrete-Event Systems Preliminaries
2.1 Algebraic Preliminaries .

2.1.1 Strings
2.1.2 Languages
2.1.3 Nerode Equivalence Relation .

2.2 Discrete Event Systems
2.2.1 Generator
2.2.2 Synchronization and Product DES
2.2.3 Controllability and Supervision

2.3 Timed Discrete Event Systems
2.3.1 Basic Structure
2.3.2 Controllability and Supervision

3 Sampled-Data Systems
3.1 Sampling Inputs . . .
3.2 SD Controllable Languages .
3.3 Future Work

4 Moore Synchronous Finite State Machines
4.1 Formal Model
4.2 Translation Method

4.2.1 Event Mapping Functions
4.2.2 Output Equivalence . .

vii

vii

xi

1
4
7

11
11
11
12
12
13
13
17
19
21
22
22

31
33
37
45

47
48
52
53
54

viii

4.2.3 Centralized Controller
4.2.4 Modular Controllers .

5 Control and Nonblocking Verification
5.1 Supervisory Control Construction . . .
5.2 Map VIs Well Defined
5.3 Supervisory Control and SD Supervisors
5.4 Concurrent Supervisory Control Equivalent .

6 Symbolic Verification for SD System
6.1 Predicates and Predicate Transformers

6.1.1 State Predicates
6.1.2 Predicate Transformers .

6.2 Symbolic Representation
6.2.1 State Subsets .
6.2.2 Transitions . . .

6.3 Symbolic Computation .
6.3.1 Transitions and Inverse Transitions
6.3.2 Computation of Predicate Transformers

6.4 Symbolic Verification
6.4.1 Untimed Controllability
6.4.2 Plant Completeness .
6.4.3 Non-blocking
6.4.4 Activity Loop Free . .
6.4.5 Proper Time Behavior

CONTENTS

57
63

73
73
80
83

100

6.4.6 SD Controllability and S-Singular Prohibitable Behavior

113
113
113
115
116
116
117
119
119
121
123
124
126
127
127
128
129

7 Examples
7.1 Examples

7 .1.1 Plant Completeness .
7.1.2 Activity Loop Free .
7.1.3 Proper Time Behavior
7.1.4 SD Controllability ..

7.2 SD Controlled Flexible Manufacturing System
7 .2.1 FMS Plants
7.2.2 Buffer Supervisors
7.2.3 B4 to Lathe Path
7.2.4 Moving Parts from B4 to B6/B7.
7.2.5 AM to Exit Path .
7.2.6 System Shutdown

143
144
144
146
147
148
156
156
157
161
164
164
169

CONTENTS ix

7.2.7 Algorithm Runtime Statistics 171
7.3 Translating FSM Supervisors to Moore FSM 17 4

7.3.1 Adding More Timing Information . . 174
7.3.2 FSM Controllers for Flexible Manufacturing System . 176

8 Conclusions 183

Bibliography 187

A SD Software Program 191
A.1 FMS Example Input Files 191

A.l.1 FMS Plants 191
A.l.2 Helper Plants . . . 195
A.l.3 Buffer Supervisors 197
A.l.4 Additional Supervisors 201

A.2 Source code 208
A.2.1 Main 209
A.2.2 Global Functions, Typedefs, Variables, Preprocessors symbols 216
A.2.3 DES Class . . 235
A.2.4 Sub Class . . 256
A.2.5 LowSub Class 299

X CONTENTS

List of Figures

1.1 The Occurrences of Two Events 2

2.1 An Example DES 15
2.2 An Example Failing ALF Property 24
2.3 An Example Failing the Proper Time Behavior Property 27

3.1 Nonminimal Example. . . . 37
3.2 An Example for Point ii . . 42
3.3 An Example for Point iii.l 43
3.4 An Example Failing Point iv 43
3.5 SD Controllability and Arbitrary Union. 44

4.1 FSM Translation Example 51
4.2 Centralized Control Equivalence Diagram . 60

5.1 An Example Failing S-singular Prohibitable Behavior Property . 7 4
5.2 Part of a TDES plant. 80
5.3 An Example for Concurrent Supervisory Control Equivalence . 102

7.1 Legend Used to Display DES 143
7.2 Plant Completeness Example: Plant . . . 145
7.3 Plant Completeness Example: Supervisor . 145
7.4 Activity Loop Example 146
7.5 Proper Time Behavior Example 147
7.6 SD Controllability i, ii Example: Plant . . 149
7.7 SD Controllability Point i, ii Example: Supervisor 150
7.8 SD Controllability Point iii.l Example: Plant . . 152
7.9 SD Controllability Point iii.l Example: Supervisor . 152
7.10 SD Controllability Point iii.2 Example: Plant . . . 153
7.11 SD Controllability Point iii.2 Example: Supervisor . 153
7.12 SD Controllability Point iv Example: Plant 155

xi

xii LIST OF FIGURES

7.13 SD Controllability Point iv Example: Supervisor . 155
7.14 Flexible Manufacturing System Overview . 156
7.15 Conveyor- Con2 157
7.16 Robot 157
7.17 Lathe 158
7.18 Finishing Machine- AM . 158
7.19 Conveyor- Con3 158
7.20 Painting Machine - PM 158
7.21 Supervisor B2 . 159
7.22 Supervisor B4 . 160
7.23 Supervisor B6 . 160
7.24 Supervisor B7 . 160
7.25 Supervisor B8 . 160
7.26 TakeB2 . . 162
7.27 B4Path 162
7.28 LathePick . . 163
7.29 TakeB4PutB6 . 165
7.30 TakeB4PutB7 . 165
7.31 Plant AddNo963 166
7.32 Plant AddNo965 166
7.33 Force963 . . 167
7.34 Force961 . . 167
7.35 AMChooser 168
7.36 Force965 . . 168
7.37 Plant SystDownNup 170
7.38 Supervisor handleSystDown . 170
7.39 Plant AddNo921 170
7.40 Histogram for Memory Usage (Kbytes vs. seconds) 173
7.41 New B4 175
7.42 New B6 . . . 175
7.43 New B7 . . . 175
7.44 New B4Path . 175
7.45 FSM B2 . . . 178
7.46 FSM Force963 . 178
7.4 7 FSM Force965 . 178
7.48 FSM B4 178
7.49 FSM B6 179
7.50 FSM B7 179
7.51 FSM B8 180
7.52 FSM LathePick 180

LIST OF FIGURES

7.53 FSM TakeB2
7.54 FSM B4Path .
7.55 FSM Force961
7.56 FSM handleSystDown
7.57 FSM TakeB4PutB6 ...
7.58 FSM TakeB4PutB7
7.59 FSM AMChooser

xiii

180
180
181
181
181
181
182

xiv LIST OF FIGURES

Chapter 1

Introduction

In the area of Discrete-Event Systems (DES) [23], [29], [30], a lot of effort has been

devoted to studying standard properties such as nonblocking (a form of deadlock de

tection) and controllability (a check on whether we can actually realize our desired

control law) in a theoretical setting. However, limited effort has been made in inves

tigating what an implementation of a DES supervisor would be like, how to do the

conversion automatically, whether we can guarantee that it will retain the control

lability and nonblocking properties of the theoretical supervisor, and how to handle

timing delay and concurrency issues inherent in an implementation. This thesis will

be attacking these problems, although issues with respect to timing delay will only

be partially dealt with due to time limitations.

A logical implementation method for DES supervisors would be sampled-data (SD)

controllers. An SD controller is driven by a periodic clock and sees the system as a

series of inputs and outputs. On each clock edge, it samples its inputs, changes state,

and updates its outputs. An example of an SD controller might be a programmable

logic controller (PLC) [4] or a Moore synchronous finite state machine (FSM) [7]. In

this thesis, we will focus on FSM SD controllers as they are a complete specification

of an SD controller, yet still quite generic allowing an FSM to be implemented in

digital logic, or as a computer program. For simplicity, we will assume inputs and

outputs of an FSM can take the value of true or false.

When we are using an SD controller to manage a given system, we associate an

input with each event, and output with each controllable event. We consider an

1

2 1. Introduction

event to have occurred when its corresponding input has gone true during a given

clock period. We consider a controllable event to be enabled when its corresponding

output has been set true by the controller, disabled otherwise.

As mentioned above, an SD controller samples the value of its inputs on each clock

edge, and uses this value to decide what its next internal state will be. This means

the SD controller knows nothing about its inputs until the clock edge, and then all it

learns is whether a given input is true or false, signifying that the corresponding event

has occurred sometime in the clock period that just ended. This means that for the

given clock period, all information about event ordering (which event occurred first

etc) is lost, as well as how often a given event occurred if it has occurred more than

once. The only ordering information that remains is which sampling period (clock

period) a given event occurred in.

As an example, consider Figure 1.1. Here we have inputs Event 1 and 2, as well

as our sampling clock. The diagram on the left shows when the inputs changed their

value, in particular that Event 1 occurred first iri the second sampling period. When

Event 1

I I • •

Clock ______n_n___n
Data ' I I

Sampled 0 1 2 3
_lL____lL Event 1 _,....

Event 2
Event 2

II •

' ' I

0 1 2 3

Figure 1.1: The Occurrences of Two Events

the SD controller samples its inputs, it simply gets a true or false value, based on

the value of the input at the clock edge.1 As we can see in the diagram on the right,

1 In our example, we are sampling our inputs when the clock signal rises from low to high (the
rising edge of the clock).

1. Introduction 3

the controller simply knows that both Event 1 and 2 occurred in the last sampling

period, nothing more.

Another important aspect of an SD controller is that it only changes state on a

clock edge, and the value of its outputs are a function of its current state. That means

its outputs can only change at a clock edge, and then must stay constant for the rest

of the clock period.

For DES supervisors, we generally assume that a supervisor knows immediately

when an event occurs, that it can change enablement information right away, and

that events occur in an interleaving fashion so the supervisor can always determine

the order events occurred in. Based on the above discussion, it is clear that an SD

controller implementation violates these assumptions. First, the controller must wait

until the next sampling instance (clock edge) before it will know if a given event has

occurred. If the control law said something like "once event a occurs, controllable

event {3 must not occur." However if {3 can occur in the same sampling period as a,

{3 may have already occurred before we even know that a has occurred. Of course,

even if we did know right away that alpha had occurred, we would not be able to

update the enablement information for {3 until the next clock edge anyway, which

could be too late. If we wanted to make sure {3 did not occur in this clock period,

we would have to disable it at the start of the sampling period. This means that we

cannot enforce a policy where an event is initially enabled (disabled) at the start of a

clock period, and we then disable (enable) the event somewhere in the middle. Our

supervisor must have a policy that is correct and constant for the entire sampling

period.

Another important issue is event ordering. If we could get either string 'a{3' or

'{3a' in the same clock period, our SD controller would only know that at least one

a and at least one {3 had occurred. It would not know which of the two had actually

occurred. If our DES supervisor enabled event 'Y when string 'a{3' occurs, but disables

'Y when string '{3a' occurs, we could not implement this using an SD controller as it

would not be able to determine which of the two strings had occurred. This means

that a supervisor must always do the same thing for two concurrent strings containing

the same individual events, both immediately after the strings have occurred and in

the future. Of course, this raises the question of how to determine if two strings are

concurrent.

4 1. Introduction

1.1 Objective

Clearly, untimed DES does not provide a rich enough modeling method to allow us

to work with an SD controller, and its inherent timing information. Therefore, we

will base our work on the timed DES (TDES) theory developed by Brandin et al. [5]

[6]. TDES extends untimed DES theory by adding a new tick event, corresponding to

the tick of a global clock. The event set of a TDES contains the tick event as well as

other non-tick events called activity events. The occurrence of a tick event provides

us with a concept of time passing, allowing us to model upper and lower time bounds

for the occurrence of activity events. It also allows us to introduce a new type of

events called forcible events, which we can guarantee to occur and preempt the next

clock tick. This means that now we cannot only prevent some events (referred to as

prohibitable events in TDES terminology) from occurring by disabling them, but we

can also choose to have certain events occur before the next clock tick.

To make the TDES theory work with SD controllers, we identify a tick event

occurring with the clock edge that the SD controller uses for sampling and state

change. That means that once a tick event occurs, any two strings that are now

possible in the system and only contain a single tick at the end of the string, are

considered concurrent. We will refer to such strings as concurrent strings. If one

of these strings contains at least one different event from the other string, we can

distinguish between them. Otherwise, we must treat them the same.

Now that we can force an event to occur in a specific clock period, we have a new

concern with respect to nonblocking. The plant model might say that we can do either

an 'aj]T' concurrent string, or a 'j]aT' string, where T = tick. Both might be safe

to do, but depending on our implementation, only one of the two might ever occur.

Some reasons this could occur are due to time delay, or our implementation might be

a sequential program that must choose one version or the other to perform. It might

be the case that for some implementations, when two or more concurrent strings are

possible and they contain the same events but in a different order or numbers, not all

variations might ever actually occur. The problem is that one of the variations that

does not occur might have been the only path in the TDES back to a marked state.

Basically, if an SD controller cannot tell the difference between concurrent strings,

they should have the same marked future. This also means that marked strings can

1. Introduction 5

only be the empty string (represents the initial state of the system which is always

observable), or strings ending in a tick as these are the points in the system's behavior

that are observable to an SD controller. We refer to such strings as sampled strings.

The next problem we intend to address is the issue of when a forced event should

occur. As noted by Balemi in [2] for untimed systems, controllable events tend to

be events fully under the control of our controller implementation. 2 They may be

a software function we call, an output we set to true, or a message we send. That

means that we can make these events occur whenever we want. It is not unusual

that a plant might be modeled such that these events are suppose to only occur

under certain situations. This might be for flexibility (some implementations have

these restrictions, for example) or to make the system easier to model or understand.

However, the reality for some controller implementations is that these events could

occur even when the plant said they cannot. This also applies to forcible events. When

we are forcing an event to occur in a given clock period, we have no information on

when it will actually occur. Depending on our implementation, it could occur right

away, or in the middle or end of the clock period. We need to make sure that when it

finally does occur, it does not contradict the plant model so that our implementation

will correspond to the theoretical model in this respect.

The last issue we intend to address is the issue of when a forcible event should

actually occur. We want our supervisor specified in such a way that it is straightfor

ward to convert it into an SD controller. Normally for DES systems, we are interested

in maximally permissive behavior. We enable all controllable events except for when

they must be disabled to enforce our control law, and to ensure the system is non

blocking. However, controller implementations are usually much more procedural.

We would disable all controllable events until we want them to occur, and then dis

able the event again once it has occurred. In our setup, we will be assuming that

the set of prohibitable events and forcible events are the same3 and that we disable

the event until we wish to force it, and then disable it once it has occurred. This

2This is generally a matter of how a system is modeled. We can always model the sending of
our enable/disable signal as the controllable event, and the occurrence of the actual action as the
uncontrollable event. Of course, the occurrence of the enablement event would toggle the eligibility
of the uncontrollable event.

3 Again, this is a matter of modeling. We can always model our forcing signal as the controllable
event, and then model the event corresponding to the actual action as an uncontrollable event that
must occur before the next clock tick, once the forcing event has occurred.

6 1. Introduction

requires our supervisor to specify exactly which clock period the event should occur

in and this makes it very straight forward to translate to a controller. Currently,

a supervisor could say something like controllable event a is now enabled, and will

stay enabled for the next three clock cycles, but must occur before the fourth. You

could potentially force it sooner, but that might cause blocking. Such an ambiguous

supervisor will be a lot harder to translate to an SD controller.

In this thesis, we will develop a new property for TDES systems that will address

the above issues, as well as make our TDES supervisor more consistent with SD

controllers, making them easy to translate. First, we will provide the preliminaries of

untimed and timed DES in Chapter 2, which is required to understand the following

chapters.

Then in Chapter 3 we will introduce the sampled-data setting based on timed

DES. The sampled-data setting will be formally defined, and we will develop a new

property called SD controllability to address the issues we identified above.

In Chapter 4, we will provide the definition of Moore FSM [17] and a method to

translate a CS deterministic supervisor (defined in Chapter 3) into a Moore FSM con

troller. We will present both a centralized translation method and a modular method.

We will then show that they will both produce equivalent output information.

Then in Chapter 5 we capture the enablement and forcing action of a translated

controller in the form of a TDES supervisory control map, and show that the closed

loop behavior of this map and the plant is the same as that of the plant and the

original TDES supervisor. We also show that our method is robust with respect to

nonblocking and certain variations in the actual behavior of our physical system.

In Chapter 6 we will introduce logic predicates and predicate transformers, as well

as symbolic representation and computation based on [26]. Then we will introduce a

set of algorithms to verify SD controllability and other properties of interest to us.

Then in Chapter 7 we will present examples which fail the key conditions in

this thesis, to help understand the definitions. We will then present a successful

application example inspired by the untimed Flexible Manufacturing System from

[11], including the Moore FSM controllers translated from the supervisors developed

in the example.

We will close the thesis with our conclusions and a brief discussion of future work.

Also, in the appendix we will present the input files used for the FSM example

1. Introduction 7

given in Chapter 7, as well as the source code for our software tool that we have

developed that implements the algorithms presented in Chapter 6. The software tool

makes use of binary decision diagrams (BDD) [8].

1.2 Related Work

Supervisory control of DES with timing information, known as timed DES (TDES),

was firstly introduced in [5], [6], based on the timed transition model from [19], [20],

and [21]. The theory added timing information to supervisory control allowing one

to specify lower and upper time bounds for events. It also introduced a forcing

technology to ensure certain events occur when we desired. We will use this as the

basis of our SD supervisory control theory.

Balemi [2] pointed out that typically, controllable events are part of the supervisor

implementation, and often can occur whenever we want them to. For simplicity, the

plant may be modeled such that these events are assumed to only occur at certain

times. Balemi's plant completeness condition helps ensures that the implementation

of the supervisor will be consistent with the plant model so that controllable events

do not occur when the plant model says that they cannot.

In the sampled-data setting, if the same event occurs once or multiple times in

the same sampling period, an SD controller will not be able to detect a difference.

In [3], the authors require that the system has the property that an event cannot be

generated more than once during a sampling period. The paper also discussed the loss

of ordering information when events occur in the same sampling period. To handle

these timing related issues, the author adds a dispatcher to the existing supervisor

to solve the problems that could occur when event ordering cannot be ignored. The

model is implemented based on Petri Nets [16, 33] and an algorithm to translate the

Petri Net implementation into computer language is provided.

Translating abstract model into a computer understandable form is an interest

ing topic for researchers. In [12], Leduc discusses the modeling and implementation

of real-life DES problems as well. Theorems for model reduction were created and

applied to the DES designed for a programmable logic controller (PLC) based man

ufacturing testbed. The author investigated implementing DES as Moore finite state

machines (FSM) and created an implementation by hand for the testbed. As men-

8 1. Introduction

tioned earlier, FSM can be converted to other forms of state based logic sequences,

such as a relay ladder logic program for the testbed. The idea of implementing SD

controllers as FSM is motivated by this thesis.

Similarly, [18] also discusses translating DES into PLC programs. The difference

is that they first convert automata into the Grafcet language, which describes the

specification of logic controllers. They then translate the Grafcet language into a PLC

program. Both [12] and [18] uses automated manufacturing testbeds as examples.

In [9], DES theory is used as a tool to assist programming in the system con

trol area. The authors describe an approach to generate Java code for concurrency

control automatically. The approach formalizes each individual code portion without

concurrency control into specifications, builds the DES model, and then generates

the code with verifications.

A real world application of DES supervisory control is given in [10], where Petri

Nets are used to model railway networks and ensure controllability and liveness.

An important tool to allow supervisory control methods to be applied to larger

systems, is the use of binary decision diagrams (BDD) [8]. BDD methods have been

applied to standard DES [32], [27], state tree structures [14], Hierarchical Interface

based Supervisory Control [26], and state based control of TDES [24].

When synthesizing controllers there is often a need to consider other components

in the system, which lower the flexibility and increase the cost of synthesis in changing

environments. With the I/0 based hierarchical structure from [22], each controller

can be designed independently, and controllability and nonblocking is retained when

the controllers are combined.

However, even if the DES supervisor is nonblocking for the DES plant does not

mean that the controller implementation is nonblocking as well. To ensure a controller

is nonblocking, [15] studied several different systems for implementing controllers.

The author suggested conditions to be satisfied for the implemented controllers to be

nonblocking.

Another practical issue in implementing controllers based on DES is communica

tion. In [25], the authors study the communication between modular and decentral

ized supervisors on switch networks. A communication model is then introduced for

a large distributed controller network where communication delay and collisions are

a concern. In [31], the authors resolve communication issues by introducing an asyn-

1. Introduction 9

chronous implementation. The work formalizes the delay between the controller and

the plant, and defines bounded-delay implementability, in addition to the standard

controllability and nonblocking properties.

10 1. Introduction

Chapter 2

Discrete-Event Systems

Preliminaries

Supervisory control theory provides a framework for the control of discrete-event

systems (DES), systems that are discrete in space and time. For a detailed exposition

of DES, see [29]. Below, we present a summary of the terminology that we use in this

thesis.

2.1 Algebraic Preliminaries

2.1.1 Strings

An alphabet ~ is defined to be a finite set of distinct symbols. A string over ~ is a

finite sequence of symbols a1a2 .. ak, where ai E ~ for i = 1, 2, .. , k. Given a string

s = a1a2 .. ak, lsi = k is the length of the string. The string € is called the empty string

with lEI = 0. Let~* be the set of all finite symbol sequences and define~+ be

Definition 2.1.1. Let s1, s2 E ~*, where s1 = a1a2··am and s2 = TIT2··Tn· The
catenation of s1 and s2 is define to be cat : ~* x ~* -+ ~* such that

cat(sb E) = cat(€, s1) = St = O't0'2··0'm

cat(s1, s2) = s1s2 = O'I0'2··0'mTIT2··Tn

11

12 2. Discrete-Event Systems Preliminaries

As ls1l = m and ls2l = n, the length of concatenated string is ls1s21 = ls11 + ls2l =
m+n.

Definition 2.1.2. Lets, t E :E*. We says is a prefix oft, denoted ass~ t, if

(:3u E :E*)su = t

By definition, we can see that a string s E :E* is a prefix of itself, as s ~ s. Also,

E is a prefix of all strings, as (Vs E :E*)E ~ s.

2.1.2 Languages

Definition 2.1.3. Let L ~ :E*. The prefix closure of L, denoted as L, is defined as

L = {s E :E*I(:Jt E L)s ~ t}

By definition, we can see that a language L is a subset of the prefix closure of

itself, i.e. L ~ L. We say a language L ~ :E* is prefix closed if L = L. Let K ~ L.

We say K is £-closed if K = K n L.

Definition 2.1.4. Let L ~ :E*. The eligibility operator, Elig£ : :E* --+ Pwr(:E), is

defined for s E :E* as,

2.1.3 N erode Equivalence Relation

Definition 2.1.5. Let X be a nonempty set. Let E ~X x X be a binary relation

on X. The relation E is an equivalence relation on X if

1. (Vx E X)xEx (reflexivity)

2. (Vx, x' E X)xEx' ===? x' Ex (symmetry)

3. (Vx, x', x" E X)xEx' & x' Ex" ===? xEx" (transitivity) 1

1We use'&' to stand for logical AND here to avoid confusion with later definitions in this section.

2. Discrete-Event Systems Preliminaries 13

Here we are using standard infix notation, where we use xEx' to represent the

ordered pair (x, x') E E. For xEx', we may also write x = x'(modE).

For x EX, let [x]E ~X represent the subset of elements that are equivalent mod

E to x. That is

[x]E := { x' E Xlx' Ex}

If relation E is understood by the context, we will just write [x]. We will also refer

to [x] as the coset or the equivalence class of x with respect to E.

Let s, t E 1.':*, and L ~ 1.':*. We say s and t are Nerode equivalent with respect to

language L, if and only if they can be extended by any string u E 1.':* such that the

two extended strings are either both in Lor neither in L. In this case, we writes= t
(mod L) or s =L t. The formal definition is given below.

Definition 2.1.6. Let L ~ E*. Lets, tEE*.

s =L tors= t(modL)

iff

(Vu E E*)su E L ¢::::} tu E L

Essentially, if strings sand tare equivalent mod L, then they can both be extended

in the same way by right concatenation.

Example 2.1. Let E = {a,,B,')'}, L = {E,a,,B,a')'*,,B'I'*}, then a =L ,B.

2.2 Discrete Event Systems

2.2.1 Generator

We model DES formally as a generator G, which is a five tuple

G = (Q, 1.':, 8, qo, Qm)

where

Q is the state set.

14 2. Discrete-Event Systems Preliminaries

~ is the finite set of distinct symbols representing event labels. We par

tition ~ into two parts

where

~c is the set of controllable events, which can be enabled or

disabled by an external agent. A controllable event can only

occur when it is enabled.

~u is the set of uncontrollable events, which cannot be disabled

by any external agent. Once the DES has reached a state

where an uncontrollable event can occur, the event cannot

be prevented.

8: Q x ~-+- Q is the (partial) transition function where each transition is

a tuple (q, CJ, q'), where 8(q, CJ) = q'. We refer to q as the exit (source)

state, and q' as the entrance (destination) state. We write 8 (q, CJ)! if

8 (q, CJ) is defined.

We can extend the transition function to 8 : Q x ~* -+- Q as

8 (q, E) = q for q E Q.
8(q,sCJ) = 8(8(q,s),CJ) for s E ~*, CJ E ~'and q E Q.

as long as q' = 8(q, s)! and 8(q', CJ)!.

q0 E Q is the initial state.

Qm ~ Q is the subset of marked states.

We can extend the transition function to 8 : Q x ~* -+- Q as

8 (q, E) = q for q E Q.

8(q,sCJ) = 8(8(q,s),CJ) for s E ~*, CJ E ~'and q E Q.

as long as q' = 8 (q, s)! and 8 (q', CJ)!.

Example 2.2. Let G = (Q, ~' 8, q0 , Qm) be the DES shown in Figure 2.1. By con

vention, a controllable event is graphically represented by a slash across its transition

2. Discrete-Event Systems Preliminaries 15

arrow. Marked states are represented by a black dot. The state pointed at by an arrow

with no exit state, is the initial state. For the DES shown we have:

Q ={I, W,D};

'E = 'Ec U 'Eu, where 'Ec = {a, J.L} and 'Eu = {,8, ..\};

8 ={(I, a, W), (W, ,8, I), (W, ..\,D), (D, J.L, I)};

Qo =I; Qm ={I}

mach

~ I
Event

a = start
f3 = finish
A. = break
],.1 = repa1r

w D

Figure 2.1: An Example DES

Given DES G = (Q, 'E, 8, q0 , Qm), we have the following definitions.

Definition 2.2.1. A state q E Q is reachable if

(::Js E 'E*)8(qo, s)! and q = 8(qo, s)

Definition 2.2.2. A state q E Q is coreachable if

(:3s E 'E*)8(q, s)! and 8(q, s) E Qm

To simplify the following discussions, we will always assume a given DES is reach

able unless explicitly stated otherwise.

Definition 2.2.3. The closed behavior of DES G is

L(G) = {s E 'E*j8(qo, s)!}

16 2. Discrete-Event Systems Preliminaries

Definition 2.2.4. The marked behavior of DES G is

Clearly, Lm(G) ~ L(G).

Definition 2.2.5. The control action for some q E Q for DES G is defined to be

a mapping (: Q --+- Pwr(:Ec) that takes q and returns a set of controllable events

enabled at q.

Definition 2.2.6. DES G is said to be nonblocking if every reachable state is also

coreachable. This can be expressed as

L(G) = Lm(G)

Definition 2.2.7. Let G = (Q, :E, 8, q0 , Qm) and let>. be an equivalence relation on

Q such that for q, q' E Q, q q' mod >. if and only if

1. (Vs E :E*)8(q, s)! ~ 8(q', s)!

2. (Vs E :E*)[8(q, s)! & 8(q, s) E Qm] ~ [8(q', s)! & 8(q', s) E Qm]

Basically, for states q and q' such that q = q' mod >., they have the same future with

respect to L(G) and Lm(G). Based on this, for strings E L(G), a state q = 8(q0 , s)

represents all strings in :E* that are equivalent to s mod L(G) and mod Lm (G).

Definition 2.2.8. DES G is said to be minimal, if

(Vq, q' E Q)q = q' (mod>.) ~ q = q'

It says that for all states q, q' E Q, if q is equivalent to q' mod>., then q and q' are

the same state. DES G is minimal if it does not have two distinct states in Q that

are >. equivalent.

2. Discrete-Event Systems Preliminaries 17

2.2.2 Synchronization and Product DES

In real world, it is often easier to model a system as several smaller components. For

a DES plant, we use the synchronous product operator to combine the individual DES

components instead of modeling the whole system at once. We first need to define

the natural projection operator and its inverse.

Let G = (Q, ~' 8, q0 , Qm) be a DES. Take ~o ~ ~ to be the set of observable

events through some filtering channel of the events generated by G.

Definition 2.2.9. The natural projection P : ~* ---+ ~~ is defined as follows. For

s E ~*,a E ~'

P(E) = €

P(u) = {;
if a tt ~o
if a E ~o

P(sa) = P(s)P(a)

Example 2.3. For~= {o:,,B,/}, ~o = {o:,,B} and s = a,Ba,,Ba,

P(s) = P(a)P(,B)P(a)P(T)P(,B)P(a) = a,Ba,Ba

Let L ~ ~*. We define P(L) ~~~as an extension of the natural projection as

P(L) := {P(s)is E £}

We also define its inverse image p-l : Pwr(~~) ---+ Pwr(~*) such that, for H ~ ~~

p-1(H) := {s E ~*IP(s) E H}

Example 2.4. For~ = {o:,,B,/,JL}, ~o = {o:,,B} and s0 = a,Ba,Ba, the inverse

projection is

18 2. Discrete-Event Systems Preliminaries

Definition 2.2.10. For i = 1, 2, let Li ~ r;;, r; = r;1 U r;2 and Pt : r;* ~ r;; be

natural projections. The synchronous product of L 1 and L2 is defined to be

L1iiL2 = p1-1(L1) n p2-1(L2)

= {s E r;*ig(s) E L1&P2(s) E L2}

Definition 2.2.11. Let G1 = (Qb r;, 81, Qo,b Qm,l) and G2 = (Q2, r;, 82, Qo,2, Qm,2)

be two DES defined over the same event set r;. The product of two DES is defined as

By Definition 2.2.11, we have L(G1 x G 2) = L(G1) n L(G2) and Lm(Gl x G2) =

Lm(GI) n Lm(G2)

Definition 2.2.12. The meet of G 1 and G2, or meet(G1, G2), is defined to be the

reachable subautomaton of the product DES G 1 x G 2 .

Definition 2.2.13. The synchronous product of DES Gi = (Qi, r;i, 8i, Qoi' QmJ (i =

1, 2), denoted G 1IIG2, is defined to be a reachable DES G with event set r; = r;1 ur;2
and properties:

Definition 2.2.14. Let G be a DES defined over r; and r;' be another set of events

such that r; n r;' = 0. The selfioop operation on G is defined as

selfloop(G, r;') = (Q, r; U r;', 8', q0 , Qm)

where 8' : Q x (r; U r;') ~ Q is a partial function defined as

{

8(q, a-) a- E r;, 8(q, a-)!

8'(q, a-) := q a- E r;'

undefined otherwise

2. Discrete-Event Systems Preliminaries 19

For DES G~ (i = 1, 2) defined over event set L:i, we will always assume that the

synchronous product operator is implemented by first extending each DES to be over

L: by adding selfloops, and then using the meet operator. More formally, we take

L: = L:1 UL:2, and Gi = selfloop(G~, L:- L:i)· We then have G~IIG~ = meet(Gt, G2).

In the algorithms we develop in this thesis, we will always assume all DES are

combined with the product DES operator. If a portion of the system is actually

combined together using the synchronous product operator as is commonly done for

plant components, we will first add selfloops as above, and then use these new DES

from then on in our algorithms.

2.2.3 Controllability and Supervision

We will take language K to represent the desired safe behavior of our plant represented

by DES G = (Q, I:, 8, q0 , Qm)· We want to make sure that the closed loop behavior

of the system - that is the behavior of plant G under control of K - is a subset of K.

As we mentioned earlier, our system's event set L: is partitioned into controllable

and uncontrollable events. If an undesirable controllable event is possible in G that

will cause the system to leave the behavior represented by K, we disable it and prevent

it from occurring. We cannot do this with an uncontrollable event, so we need to make

sure the plant never reaches a state where it can leave the desired behavior by an

uncontrollable event. We now express this formally below.

Definition 2.2.15. K is said to be controllable with respect to G if

(Vs E K)(Va E L:u)sa E L(G) ~ sa E K

We typically give this definition in the form of KL:u n L(G) ~ K where KL:u

denotes the string sa for s E K and a E L:u. In other words, if the plant reaches a

state where uncontrollable event a is possible, then a must also be accepted by K.

By definition, 0, L(G) and L:* are all controllable with respect to G.

Another way to express this definition is

which is used in Point i of Definition 3.2.1 in Section 3.2.

20 2. Discrete-Event Systems Preliminaries

As we prefer to work with finite state automata than typically infinite languages,

we want to be able to express K as a DES supervisor.

Definition 2.2.16. Let G = (Q, ~' 8, q0 , Qm) be a DES. Let K ~ ~*. We say G

represents K if

K = Lm(G) and K = L(G)

Definition 2.2.17. Let S - (X,~'~' X 0 , Xm) be a DES. Let K C ~*, we say S

implements K, if

K = Lm(S) n Lm(G) and K = L(S) n L(G)

Recall that ~ = ~c U ~u, where ~c is a set of controllable events which can be

enabled or disabled by external agents; and ~u is a set of uncontrollable events which

cannot be disabled. We refer to such an external agent as a supervisor, which will

formally define shortly.

Definition 2.2.18. Let L(S) be the language represented by DES S. We sayS is a

supervisor for G, if

1. L(S) is controllable with respect to G, and

2. Lm(S) n Lm(G) = L(S) n L(G)

For convenience, we sayS is controllable for G if L(S) is controllable with respect

to G.

We can think of a supervisorS= (X,~'~' X 0 , Xm) as a state machine that tracks

all the events generated by plant G. Together with current state x E X as source

state, it takes each event as an input to its transition function~' then moves to the

destination state x' E X. Events in G are only allowed to occur when the event is

not disabled inS. We refer to the closed loop behavior of the system as the behavior

of our plant G under the control of supervisor S. This is typically represented as

the meet of G and S. If we modeled the system only using the synchronous product,

then this would be represented as G II S.

2. Discrete-Event Systems Preliminaries 21

As noted by Balemi in [2], controllable events tend to be events fully under the

control of our supervisor's implementation. They may be a software function we call,

an output we set to true, or a message we send. That means that we can make these

events occur whenever we want. It is not unusual that a plant might be modeled

such that these events are suppose to only occur under certain situations. This

might be for flexibility (some implementations have these restrictions, for example)

or to make the system easier to model or understand. However, the reality for some

supervisor implementations is that these events could occur even when the plant said

they cannot. We refer to such situations as illegal transitions. The requirement is

formally defined in [2] as follows.

Definition 2.2.19. A plant G is complete for its supervisorS if

(Vs E L(G) n L(S))(Vu E ~c)su E L(S) ~ so- E L(G)

The definition states that, at each state in plant G, every controllable event

enabled by supervisor S must be accepted by G as well. This condition can be seen

as a dual to the definition of a supervisor S being controllable for plant G. This

definition will be very useful for implementing DES supervisors, as it says that they

do not require additional supplementary information from the plant to decide when

a controllable event can occur and not violate the plant model.

2.3 Timed Discrete Event Systems

So far we have only discussed untimed DES. As we wish to use a richer modeling

framework that includes timing requirements of our system, we will now discuss Timed

DES (TDES) introduced by Brandin et al [5] [6].

TDES extends untimed DES theory by adding a new tick event, corresponding to

the tick of a global clock. The event set of a TDES contains the tick event as well

as other non-tick events called activity events (~act)· The occurrence of a tick event

provides us with a concept of time passing, allowing us to model upper and lower

time bounds for the occurrence of activity events. A lower time bound for a given

activity event can be modeled as requiring a certain number of tick events to first

occur before the activity event is eligible. Once an activity event is eligible to occur

22 2. Discrete-Event Systems Preliminaries

in the TDES and the desired number of tick events have occurred, we can model an

upper bound for the event by not allowing a tick event to occur until either the event

has occurred, or another activity event has occur such that the first event is no longer

eligible.

The addition of a tick event also allows us to introduce a new type of events called

forcible events (:E for), which we guarantee to occur and preempt the next clock tick.

This means that now we cannot only prevent some events (referred to as prohibitable

events (:Ehib) in TDES terminology) from occurring by disabling them, but we can

also choose to have certain events occur before the next clock tick. As a convention,

we sometimes refer to tick as T for brevity.

2.3.1 Basic Structure

We formally define a TDES as the tuple

where,

Q is the state set

:E = :Eact (J { T} is the set of all events, including activity events and the

tick event.

8 : Q x :E -+ Q is the (partial) transition function.

q0 E Q is the initial state.

Qm ~· Q is the set of marked states.

For convenience, we extend 8 to function 8 : Q x :E* --+ Q in the same way as we

did in the untimed DES definition.

2.3.2 Controllability and Supervision

Control action for timed DES is achieved in an analogous fashion as that of untimed

DES, by disabling controllable events. As for untimed DES, we also partition our

event set :E into controllable and uncontrollable events. The set of controllable events

is defined to be

2. Discrete-Event Systems Preliminaries 23

where ~hib ~ ~act the set of activity events that can disabled by an external agents.

These event are referred to as prohibitable events to distinguish them from control

lable events that include the tick event. As we will see when we define controllability

in the TDES setting, we will use disabling the tick event by the supervisor to model

forcing an event. A forcible event is an event in the system that we can make occur

before the next clock tick, assuming it is not first preempted by another event. The

set of uncontrollable events for G is then defined to be

In Section 2.2.3, we introduced Balemi's concept of completeness of a plant for

a given supervisor. Unfortunately, that definition was given in terms of controllable

events, which includes the tick event in TDES. As we are only concerned about the

occurrence of activity events, we need to define a version of this definition for TDES.

When discussing this concept, we will not specify whether or not we mean the timed

or untimed version, as this will be clear by the context.

Definition 2.3.1. Let TDES G be a plant and TDES S be a supervisor. G is TDES

complete for S if

(Vs E L(G) n L(S))(Vu E ~hib)su E L(S) ==? suE L(G)

We now need to add a technical condition that we most enforce to ensure that our

TDES does not allow the physically unrealistic situation where a tick event could be

preempted indefinitely by the continued execution of an activity event loop within a

given fixed unit time. Formally, a TDES is said to have an activity loop if it satisfies

the following definition.

Definition 2.3.2. TDES G = (Q, ~' t5, q0 , Qm) has an activity loop if

(3q E Q)(3s E ~~ct)t5(q, s) = q

We thus require that a TDES be activity loop free (ALF). We can formalize the

ALF concept as defined below.

24 2. Discrete-Event Systems Preliminaries

Definition 2.3.3. TDES G = (Q, ~' 8, q0 , Qm) is activity loop free if

(Vq E Qreach)(Vs E ~~ct)8(q, s) =/= q

We only look at states that are reachable (i.e. in Qreach), because we do not

care about unreachable states as they do not contribute to the automaton's closed

and marked behavior. These unreachable activity loops can be safely ignored. An

example that fails the ALF property is shown in Figure 2.2 where the af3 loop could

indefinitely preempt the tick event from occurring.

Figure 2.2: An Example Failing ALF Property

We will not require that supervisors be ALF, as they may contain self-loops that

are not possible in the plant. We will instead require that the system's closed loop

behavior (typically the meet of plant G and supervisorS) be ALF.

For the FSM translation of individual supervisors in Section 4.2, we need a more

specific definition as follows.

Definition 2.3.4. Let G = (Q, ~' 8, q0 , Qm) be a TDES, and let G' be G with all

activity event selfioops removed. G is non-selfioop activity loop free if G' is ALF.

Essentially, if we remove the selfioops of any activity events in the TDES, the rest .. ,. ""'-

of the TDES must be ALF. This will be a key definition that will allow us to translate

the TDES to a Moore finite state machine.

The proposition below states that if individual DES are all ALF, it implies that

the synchronous product of these DES is also ALF. This means that we can simply

check the individual DES.

Proposition 2.1. For TDES G 1 = (QI, ~1, 81, Qo,b Qm,1) and G2 = (Q2, ~2, 82, Qo,2, Qm,2),
if G 1 and G2 are each ALF, then their synchronous product G = G1 IIG2, is ALF.

2. Discrete-Event Systems Preliminaries 25

Proof Let G1 = (Q11 ~11811 Qo,b Qm,d and G2 = (Q2, ~2, 82, Qo,2, Qm,2) be two TDES
and let H : ~*--+ ~i and P2 : ~*--+ ~2 be natural projections.

Define ~act,i =~act n ~i, i = 1, 2.

By ALF Definition 2.3.3, fori= 1, 2

where Qreach,i is the set of reachable states for Gi

Let G = G1IIG2 = (Q, ~' 8, Qo, Qm)
Must show

(Vq E Qreach)(Vs E ~~ct)8(q, s) =f q

We will use proof by contradiction. Assume

(3q E Qreach)(3s' E ~;1d)8(q, s') = q

Let q = (qb Q2) E Qreach be this state and let s' E ~;1ct such that 8(q, s') = q.

We know that q is a reachable state if and only if q1 E Q1 and q2 E Q2 are

reachable states in G 1 and G 2 , respectively, by Definition of the II operator. We thus

have

8(q, s') = q ==:} 8((qll Q2), s') = (q11 Q2)

==:} 8((qb q2), s') = (8I(Qb H(s')), 82(q2, P2(s')))

This implies

81(qb P1(s')) = Q1

82(Q2, P2(s')) = Q2

by Definition of II-

Ass' E ~!:t we thus haves' =f E. As~= ~1 U ~2 , it follows that either P1(s') =f E or

P2(s') =f E This implies that either G 1 or G 2 is not ALF, which contradicts(*).

Therefore it must be that

(Vq E Qreach)(Vs E ~;1d)8(q, s) =f q

0

\

26 2. Discrete-Event Systems Preliminaries

The above proposition can be applied to two TDES combined using the meet

operator as meet is a special case of the synchronous product.

We next present a proposition that says that to ensure the synchronous product

is ALF, it is sufficient that only one of the two TDES is ALF, as long as the event

set of the ALF TDES contains all of the events in the event set of the second TDES.

It means that if plant is over ~ and the supervisor introduces no new events, then we

can just check if the plant is ALF. As indicated by Proposition 2.1, we can check that

the plant is ALF by checking if each individual plant component is ALF. Therefore

an ALF algorithm does not have to check that the closed loop system is ALF, but

can check that the event set of the plant is a superset of the supervisor's event set,

then do an ALF check on each individual TDES that makes up the plant. If the check

passes, then we are done. Otherwise, we do an ALF check on the entire system.

Proposition 2.2~ Let G1 = (Qr, ~r, 8r, Qo,r, Qm,1) and G2 = (Q2, ~2, 82, Qo,2, Qm,2)

be two TDES. If G1 is ALF and ~1 :2 ~2 , then G1IIG2 is also ALF.

Proof. Assume G 1 is ALF and ~1 :2 ~2 . (1)

Let G = G1IIG2 = (Q, ~' 8, Q0 , Qm) with ~ = ~1 U ~2 and Pi ~* --+ ~; for

i = 1, 2. Must show G is ALF.

We will do so by proof of contradiction.

Assume G is not ALF, then

(3q E Qreach)(3s' E ~+act)8(q, s') = q

Let q = (q1, Q2) E Qreach, and s' E ~;tct such that 8(q, s') = q. (2)
We first note that q is reachable in G, which implies q1 is reachable in G 1 and q2

is reachable in G2.

We next note that as ~1 :2 ~2 , we have ~ = ~1 U ~2 = ~1 . This implies that

P1-
1 L(G1) = L(G1). (3)
From (2), we have

8(q, s') = q ==} 8((q1, Q2), s') = (qr, Q2)

==} 81(qr, P1(s')) = Q1

This contradicts (1) as it implies G 1 is not ALF.

We thus conclude that G must be ALF.

by (3)

D

2. Discrete-Event Systems Preliminaries 27

We are also want to make sure that the plant is not modeled in such a way that

our closed loop system could reach a state where no more tick events are possible, as

this "stopping the clock" would be physically unrealistic. To help prevent this, we

will require that our plant TDES have proper time behavior, as defined by 'Kai Wong 1

et al. (28].

Definition 2.3.5. TDES G has a proper time behavior if

(\f s E L(G))EligL(G) (s) n ~u = 0 ==} T E EligL(G) (s)

This definition can be rewritten as

(\fq E Qreach)(3a E ~u U {T})o(q,a)!

In other words, this TDES must guarantee that at all of its reachable states, either

a tick event or an uncontrollable event must be possible. This serves two purposes.

Combined with TDES G being ALF and having a finite state space, this ensures that

we call always reach a state where a tick is possible after at most a finite number

of activity events. We prove this shortly in Proposition 2.3. This condition will

also ensure we do not stop the clock when we combine our plant with a controllable

supervisor. An example that fails the proper time behavior property is shown in

Figure 2.3 where after the first tick event, neither an uncontrollable event or a tick

are possible, only the prohibitable event {3.

__:_.0

Figure 2.3: An Example Failing the Proper Time Behavior Property

Consider the case where we have a reachable state where tick was ineligible, but

only controllable events were possible. If the supervisor disabled these controllable

events, there would now be no events possible at all. Proper time behavior ensures

that if tick was not possible at this state in the plant, there would be an uncontrollable

event possible, even if all the controllable events were disabled. The restriction of

proper time behavior applies only to plant TDES. It does not apply to supervisor

TDES or the meet of the plant and supervisor (i.e. the closed loop behavior of the

system).

28 2. Discrete-Event Systems Preliminaries

If a TDES G has a finite state space, is activity loop free and has proper time

behavior, then we expect that at any reachable state, we can always do a tick event

after at most a finite number of activity events. In other words, we will never "stop

the clock." The following proposition shows that this is indeed the case.

Proposition 2.3. If a TDES G = (Q, :E, 8, q0 , Qm) has a finite statespace, is activity

loop free and has proper time behavior, then

(\fq E Qreach)(3s E :E*)8(q, sr)!

where Qreach is the set of reachable states.

Proof Assume that G has a finite statespace, is activity loop free, and has proper

time behavior

Let q E Qreach·
Must show implies (:3s E :E*)8(q, sr)!

We first note that as G has a finite statespace and is non-empty, there exists

n E {1, 2, ... } such that n = IQI.
As G is ALF and has n states, it follows that

(:3s E :E~ct)lsl :::; n- 1

(:3q' E Qreach)8(q, s) = q'

(\fa E :Eact)8(q', a) J

and

and

(1)

The above follows from the fact that starting at q, we can do at most n- 1 activity

event transitions before we have visited all n states. At this point, there must be no

activity event transition or we would have to visit a state twice, creating an activity

loop and failing the ALF definition.

As :Eu ~ :Eact, (1) asserts that there are no uncontrollable events at state q'. It

thus follows that 8 (q', T)!) as G has proper time behavior.

We thus have:

8(q, sr)!

as required. 0

2. Discrete-Event Systems Preliminaries 29

We now present the controllability definition for timed DES. Normally, we drop

the "TDES" and just say "controllable" as the meaning is clear from the context.

Definition 2.3.6. We define the arbitrary language K ~ L(G) to be TDES control

lable with respect to G if,

if EligK(s) n L-tor = 0
if EligK(s) n L,for =1- 0

Definition 2.3.6 says that a K must accept an uncontrollable event if the event

is possible in the plant, and it must accept a tick event if it is possible in the plant,

unless there exists an eligible forcible event that can preempt the tick.

Note that the closed and marked behavior of a TDES is defined in the same way as

for an untimed DES. A TDES is said to be nonblocking if Definition 2.2.6 is satisfied.

Proposition 2.4. If TDES plant G and TDES supervisor S both have finite states

paces, G has proper time behavior, Gel = meet(G, S) = (Q, L., ~' q0 , Qm) is ALF,

and S is controllable for G, then

(Vq E Qreach)(3s E L-*)~(q, ST)!

Proof Assume:

• G and S have finite statespaces

• G has proper time behavior

• Gel is ALF

• S is controllable for G

Let q E Qreach· Must show (3s E L-*)~(q, ST)!

As G and S have finite statespaces, it follows from Definition 2.2.12 of the meet

operator, that Gel has a finite statespace. Let n = IQI.

30 2. Discrete-Event Systems Preliminaries

As Gel is ALF and has n states, it follows that

(3s E ~~ct)lsl :S n- 1

(3q' E Qreach)b(q,s) = q'

(Vo- E ~act)b(q', 0") J

and

and

(1)

The above follows from the fact that starting at q, we can do at most n- 1 activity

event transitions before we have visited all n states. At this point, there must be no

more activity event transitions or we would have to visit a state twice, creating an

activity loop and failing the ALF definition.

We now need to show tick is defined at q'. From (1), we know that there are no

untimed events possible in Gel at q' as ~u ~ ~act· As S is controllable for G, this

implies there are no untimed events possible at the corresponding state in G. As G

has proper time behavior, this implies that T is possible at this state in G. As (1)

asserts there are no activity event at q' and thus no forcible events, S must accept

that tick event as S is controllable for G.

==} b(q', T)!

==? b(q, ST)!

0

Chapter 3

Sampled-Data Systems

In this thesis, we will focus on implementing our TDES supervisors as sample-data

(SD) controllers. An SD controller is driven by a periodic clock and sees the system

as a series of inputs and outputs. On each clock edge, it samples its inputs, changes

states, and updates its outputs. For simplicity, we will assume inputs and outputs of

an FSM can only take the value of true or false.

When we are using an SD controller to manage a given system, we associate an

input with each event, and an output with each controllable event. We consider an

event has occurred when its corresponding input has gone true during a given clock

period. We consider a controllable event to be enabled when its corresponding output

has been set true by the controller, disabled otherwise.

As mentioned above, an SD controller samples the value of its inputs on each clock

edge, and uses this value to decide what its next internal state will be. This means

the SD controller knows nothing about its inputs until the clock edge, and then all it

learns is whether a given input is true or false, signifying that the corresponding event

has occurred sometime in the clock period that just ended. This means that for the

given clock period, all information about event ordering (which event occurred first

etc) is lost, as well as how often a given event occurred if it has occurred more than

once. The only ordering information that remains is which sampling period (clock

period) a given event occurred in.

Another important aspect of an SD controller is that it only changes state on a

clock edge, and the value of its outputs are a function of its current state. That means

31

32 3. Sampled-Data Systems

its outputs can only change at a clock edge, and then must stay constant for the rest

of the clock period.

In this chapter, we will define the sampled-data setting formally, and develop a

new condition to address the issues we identified in Section 1.1.

We will be making a few assumptions about the systems we work with. They are:

• The set of prohibitable events is exactly equal to the set of forcible events for

our system. This is a reasonable assumption that will greatly simplify things.

As discussed in the introduction, this is basically a matter of how the system is

modeled.

• Our SD controllers will be implemented centrally with a common clock, such

that they all sample inputs, and update outputs at the same time. Furthermore,

their source of inputs and outputs is common such that their outputs exit to the

system at the same place, and their inputs enter from the system at the same

place. For their inputs, this means they will always all receive the same results

from the sampling inputs. We will never have the case that one controller sees

input a go true in a given sampling period, while another does not.

• When a prohibitable event is enabled, we will interpret this to mean we should

force the event once in the current clock period. Even if we could cause it to

occur twice in one clock period, we will not do that.

• To partially address timing issues, we will assume an event has occurred when

its input to the controllers goes true. One exception is if the input goes true

so close to a clock edge that it is missed and shows up in the next sampling

period. In this case, the event is considered to have occurred at the start of the

next sampling period. This should be taken into account in the modeling of the

system.

• We are also assuming that when we decide to force an event in a given sampling

period, not only will the event physically occur in that sampling period, but

it will reach our controller's inputs in time to be detected as occurring in that

sampling period, and never in the following one. It is up to the designer and

3. Sampled-Data Systems 33

user of this theory to make sure that the system they apply it to satisfies these

assumptions.

• The input signal should be of an appropriate length so that it will not be missed

by the SD controllers (i.e. if its pulse width is shorter than the clock period), nor

should it be so long that it is seen at multiple clock edges, unless it is suppose

to represent that number of sequential occurrences. For example, if the input is

true for two clock edges in a row, it will be considered to have occurred twice,

once per clock period. It is the designers responsibility to make sure that the

inputs are properly conditioned to ensure this.

3.1 Sampling Inputs

To make the TDES theory work with SD controllers, we identify a tick event occurring

with the clock edge that the SD controller uses for sampling and state change. This

means for a TDES Gover event set~' the strings an SD controller can observe from

the closed behavior of G are strings ending with a tick and the empty string, €. We

will refer to such strings as sampled strings. The reason the empty string is included

is that it represents the initial state of the system, which is usually known. Note also

that a non-empty sampled string may contain one or more tick events in addition to

the tick event at the end of the string.

Definition 3.1.1. Given a event set~' the set of sampled strings is denoted by Lsamp

and is define as

Lsamp = ~*.T U {€}

As an SD controller will change from state at each clock edge (tick occurring), the

next state of the SD controller will thus be determined by the strings containing a

single tick at the end that are possible in the system immediately after the last tick

event that brought us to our current state. We will refer to such strings as concurrent

strings, defined as below. Essentially, an SD controller starts at its initial, or reset

state (corresponding to the empty string), and then transitions from state to state as

concurrent strings occur in the corresponding TDES.

34 3. Sampled-Data Systems

Definition 3.1.2. Given an event set L:, we denote the set of concurrent strings as

Leone, defined as

Leone = L::et· tick C Lsamp

Obviously, Leone is a strict subset of Lsamp since the empty string is not found in

Leone·

Next, we want to capture the idea that an SD controller cannot tell the difference

between two nonidentical concurrent strings if they contain exactly the same activity

events but in a different order, and/ or one or more event have a different number of

occurrences. For example, strings af3r, f3ar and af3ar would all appear the same

to an SD controller. We now give the definition of the occurrence operator. It

takes a string and returns the set of events (the occurrence image) that make up the

string. Essentially, if two concurrent strings have the same occurrence image, they

are indistinguishable to an SD controller.

Definition 3.1.3. For s E L:*, the occurrence operator is a function Occu : L:* ----+

Pwr(L:) defined as below

Occu(s) := {o- E L: Is E L:*.o-.L:*}

As an SD controller only gets information about the system it is controlling at

sampling instances (ticks), sampled strings represent observable points in the system.

Considering a TDES S = (X, L:, ~' X 0 , Xm), states reached by sampling strings rep

resents states in S that are at least partially observable. We refer to such states as

sampling states, and define them formally below.

Definition 3.1.4. A state x E X from TDES S = (X, L:, ~' X 0 , Xm), is a sampling

state for S if

(3s E L(S) n Lsamp) x = ~(x0 , s)

We refer to Xsamp s;;; X as the set of sampling states for S. Note that since

t E Lsamp' X 0 E Xsamp by definition. In other words, the initial state is always

observable at least once. It is worth noting that their could exist strings in L(S) that

take us to a sampled state x, but the strings are not sampled strings. These do not

3. Sampled-Data Systems 35

represent observable points, and means that a given sampled state may not always

be observable relative to L(S). As far as an SD controller is concerned, the system it

is observing starts in its initial state, and then goes from sampled state to sampled

state via concurrent strings.

If we wished to convert a TDES S into an SD controller, we make the initial state

of S the start state of the SD controller. We would then determine which concurrent

strings are possible from this state. The sampled states of S reached by these strings

will become states of the controller, and the occurrence image of the concurrent strings

would define our next state conditions.

Our translation has a problem if we have two concurrent strings with the same

occurrence image, but that take us to different states of S. This would mean our

SD controller would be nondeterministic. To prevent this, we introduce the concept

of CS deterministic, stated formally below. In essence, it requires that if the two

concurrent strings possible at a sampled state in S have the same occurrence image,

they take us to the same next state inS. It's possible that the two strings could take

us to two different states, but the states are A-equivalent. If we determine that the

strings satisfy the nerode equivalence portion of the requirement, but do not take us

to the same state, we can simply merge these states inS as they are equivalent. Note

that we do not require that S be minimal, just minimal with respect to the states

we care about which is a cheaper condition to check. The CS deterministic definition

will also be useful in making sure a given TDES has the correct structure such that

we can represent its sampled-data behavior.

Definition 3.1.5. A TDES S = (X,~'~' X 0 , Xm) is concurrent string deterministic

or CS deterministic, if

('is E L(S) n Lsamp)('is', s" E Leone)

[ss', ss" E L(S) 1\ Occu(s') = Occu(s")] ===*

[ss' =L(S) ss" 1\ ss' =Lm(S) ss" 1\ ~(x0 , ss') = ~(xo, ss")]

It is worth noting that SD controllers are concerned with enabling and forcing

prohibitable events, and not with marking strings. All an SD controller cares about

is that two strings have the same future with respect to the system's closed behavior.

36 3. Sampled-Data Systems

Following Definition 3.1.5 will ensure our controller is deterministic, but we may end

up with some redundant states that we can later minimize using standard digital logic

techniques [7] for synchronous finite state machines.

For CS deterministic TDES, we now wish to define some of the tools we will need

to express the sampled-data behavior of a TDES. This will be useful when we want to

talk about the behavior of a plant under the control of an SD controller, and compare

it to the TDES behavior of the plant under the control of its TDES supervisor. The

first thing we need to do is define for a given TDES, a next sampling state function.

This will represent how a TDES will move from sampling state to sampling state via

concurrent strings.

Definition 3.1.6. For the CS deterministic TI:)ES--8 = (X,~'~' X 0 , Xm), we define

the partial function, next sampling state function

~ : Xsamp X Pwr(~act) ---+ Xsamp

as follows. For x E Xsamp and~' s;;; ~act,

~(x, ~') := { ~(x, s)
undefined

if (::Is E Lcanc)~(x, s)! & Occu(s) n ~act=~'
otherwise

For the special case~' = 0, ~(x, ~') can still be defined according to the definition.

It just returns a sampling state x' = ~(x, T), which means that no event except a tick

has occurred during the last sampling period. In analogy to the DES transition

function, we write ~(x, ~')! if ~(x, ~') is defined.

As a precondition for the definition of ~' we require that the TDES be CS de

terministic. This means that two concurrent strings with the same occurrence image

will take us to exactly the same state in S. For CS deterministic TDES, this means

that ~ is well defined.

To see how a non CS deterministic TDES would cause problems, consider Figure

3.1. For this example, let a, f3 E ~act and Xn, x', x" E Xsamp for some TDES S =

(X,~'~' X 0 , Xm)· In Figure 3.1, part (a) shows the only portion of S that is not

minimized, such that s' = a(3T and s" = (3aT end up at two different states, x' and

x" respectively. But (b) shows the minimized version where x' and x" have been

3. Sampled-Data Systems 37

equivalent states

merged state

(a) on-minimized supervisor (b) minimized supervisor

Figure 3.1: Nonminimal Example

merge into a single state X. Clearly in (a), Occu(s') n ~act = Occu(s") n ~act but

~(xn, s') i= ~(xn, s"), which would mean that 8 is not well-defined. However in (b),

everything is fine. Another problem would be if x' and x" were not ..\-equivalent.

This would mean that we cannot merge the two states, and again 8 would not be well

defined.

3.2 SD Controllable Languages

So far, we have required that our TDES system have a finite statespace, be ALF

and nonblocking, that our plant have proper time behavior and be complete for our

supervisor. and that our supervisor be controllable for our plant. However, these

conditions are not sufficient to address the concerns that we raised in Section 1.1. In

particular, we saw that even though the above conditions are met, our actual system

behavior under the control of the corresponding SD controller could block, violate

our control law, or even exhibit behavior not contained in our plant model.

To address these issues, we now introduce a new concept called SD controllable

languages, defined below. Let G = (Q, ~' 8, q0 , Qm) be a TDES where~= ~c U ~u for

controllable and uncontrollable events. Of course, for a TDES system, ~c = ~hibU{ T }.

As we will see, this new condition implies TDES controllability, thus we do not have

to test for this condition separately.

38 3. Sampled-Data Systems

It should be noted that the condition we are presenting is a bit conservative. If

a system fails it, there may be some situations where things are still fine. Our goal

here is to provide a set of conditions that should ensure correct behavior when we

implement our TDES supervisors, and be general and flexible enough to apply to a

wide range of systems, yet be reasonable conditions to evaluate.

Definition 3.2.1. A language K ~ ~* is SD Controllable with respect to G -

(Q, ~' 8, q0 , Qm) if, Vs E K n L(G), the following statements are satisfied:

i) EligL(G)(s) n ~u ~ EligK(s)

ii) If r E EligL(G)(s) then

T E EligK(s) {:::} EligKnL(G)(s) n ~hib = 0

iii) If S E Lsamp then

1. (Vs' E ~~ct)[ss' E K n L(G)] ::::?

[EligKnL(G)(ss') u Occu(s')] n ~hib = EligKnL(G)(s) n ~hib

2. (Vs', s" E Leone) [ss', ss" E K n L(G) 1\ Occu(s') = Occu(s")] ::::?

ss' =KnL(G) ss" 1\ ss' -KnLrn(G) ss"

iv) K n Lm(G) ~ Lsamp

Point i This is the standard untimed controllability definition and is part of TDES

controllability. Intuitively, any uncontrollable events eligible in G may not be

disabled.

Point ii If both a prohibitable event and tick event are enabled and eligible, it will be

ambiguous in which clock period the event should occur in. Also, a supervisor

must not disable a tick unless there exists a prohibitable (forcible) 1 event to

preempt the tick. The if and only if part only applies if the tick event is eligible

in the plant.

The ::::? part states that a tick event must be disabled by K if there is an eligible

prohibitable event. This is done to ensure that prohibitable events are disabled

1 Remember, we have required that the set of prohibitable events be equal to the set of forcible
events.

3. Sampled-Data Systems 39

until they should occur and then they are immediately forced. In other words, it

means forcing and enabling are essentially one and the same. This is to make it

clear which clock period a prohibitable event should occur in. This in turn will

make translating to an SD controller much simpler and straightforward. Part

of the goal of this definition is to make the behavior specified by the TDES as

close as possible to that which is possible with the actual SD controller. In this

case, the SD controller needs to know exactly when to force an event. A range

of possible clock periods is no good to it.

The -¢:= part states that a tick event cannot be disabled unless there exists an

eligible prohibitable event to preempt the tick. Together with Point i, this is

equivalent to TDES controllability (Definition 2.3.6).

Point iii The following two points are needed when s is a sampled string.

1) This condition says that the set of prohibitable events eligible in K and

L(G) after sampled strings (i.e. immediately after a tick occurs (clock edge))

must stay equal to the union of the prohibitable events still eligible, and the

prohibitable events that have already occurred since the last tick. In other

words, the prohibitable events eligible after the tick must stay eligible until

they occur, and no new prohibitable events may become eligible until after the

next tick.

This condition is meant to capture two concepts. The first is that since an

SD controller only can observe the system at a clock edge (tick event), its en

ablement and forcing decisions are determined by its current state, and must

be constant until the next tick occurs. These cannot change during the cur

rent clock cycle in response to events occurring, as it will not know they have

occurred until after the next tick, which would be too late.

The second concept is that an SD controller decides to force an event immedi

ately after a tick, based on the information it has at that point (i.e. whether

the event is currently enabled and eligible in the plant). Once it decides to force

the event, it will occur at some point during the current clock period. So as

to not violate the control law or the plant model, this event must stay eligible

40 3. Sampled-Data Systems

and enabled until it occurs. This is important as we do not know exactly when

this event will actually occur, due to the fact that different implementations

of our controller could have different timing characteristics. We thus have to

ensure that when it does occur, it does not violate our control law, nor exceed

the behavior of our plant model.

A side effect of this condition is that it means that we only have to look at the

eligibility and enabling information for prohibitable events at the state reached

by a tick, and this determines the information for the clock cycle. This makes

the conversion to an SD controller easier.

2) This condition says that if sampled string s can be extended by concurrent

strings s' and s" which have the same occurrence image (and thus indistinguish

able to an SD controller), then string ss' will be Nerode equivalent to string

ss" with respect to the system's closed and marked behavior. In other words

strings ss' and ss" will have the same closed and marked future. From a TDES

perspective, this means that strings ss' and ss" will go to states that are >..
equivalent. If the TDES is minimal, this will mean the same state. Otherwise,

we may need to check that the two states are >..-equivalent.

This condition is intended to address two issues. The first is the fact that since

the SD controller cannot tell the difference between strings s' and s", it must

take the same control action following either string, both now and in the future. ·

We can capture this by requiring them to have the same future with respect to

the system's closed behavior.

The second issue has to do with nonblocking. Depending on the implementation

of our SD controller, it maybe the case that we may either always get the string

s' and never s", or vice-versa. If s" never actually occurs in the physical system

and it is part of the only path back to a marked state, the physical system

would block despite the fact the TDES system is nonblocking. By requiring the

two strings to have the same marked future, it will not matter which one we

actually get, as long as all of the marked strings in the system are also sampled

strings (see Point iv for more info on this). In a way, we are ensuring that our

system will still be nonblocking for a set of possible closed loop behaviors, that

3. Sampled-Data Systems 41

differ by which of these concurrent strings can actually happen in the physical

system.

Point iv This point says that all marked strings in the closed loop system must be

sampled strings. The primary reason is that sampled strings represent observ

able points in the system. This makes sure that we do not mark a non empty

strict substring of a concurrent string accepted by the system. We saw in Point

iii.2 that two concurrent strings with the same occurrence image have the same

marked future, but the condition says nothing about ~~ct substrings of these

concurrent strings. Point iii.2 basically says that even if we only get one of

the two concurrent strings, we can still get to a new sampled state with an

equivalent marked future. i.e. we might lose one of the paths to this sampled

state, but we can still get there. However, if we allow marking along the path

between sampled states and that is the path we lose, we may no longer be able

to reach a marked state. Hence, we require all marked strings to take us to

sam pled states.

So far, we have only discussed controllable languages. To extend this concept to

a TDES supervisor S = (X,~' e, X 0 , Xm), we identify K = Lm(S) and K = L(S)
in Definition 3.2.1.2 This gives us the definition below. Note that the definition is

implicitly assuming that G and S are combined using the meet operator. If instead

we had a plant G' and supervisor S' combined using the synchronous product operator

resulting in system event set ~'we would first construct plant G from G' by adding

selfloops of any events missing from ~' anq supervisor S from S' by again adding

needed selfloops. We can then apply the definition below to the these new TDES.

Definition 3.2.2. A supervisor s = (X,~' e, Xo, Xm) is said to be SD controllable

with respect toG= (Q, ~' 8, q0 , Qm) if, \::Is E L(S) n L(G), the following statements

are satisfied:

i) EligL(G) (s) n ~u ~ EligL(S) (s)

ii) If T E EligL(G)(s) then

T E EligL(S)(s) <=> EligL(S)nL(G)(s) n ~hib = 0
2By ''identify," we mean make the indicated replacements in the original definition to get the

new definition. We do not mean to imply that we require that S be nonblocking.

42 3. Sampled-Data Systems

iii) If S E Lsamp then

1. (Vs' E E;ct)[ss' E L(S) n L(G)] ==}

[EligL(S)nL(G)(ss') u Occu(s')] n Ehib = EligL(S)nL(G)(s) n Ehib

2. (Vs', s" E Leone) [ss', ss" E L(S) n L(G) 1\ Occu(s') = Occu(s")] ==?

Ss' - " 1\ ' - s " =L(S)nL(G) SS SS =Lm(S)nLm(G) S

iv) Lm(S) n Lm(G) s;;; Lsamp

We now discuss a few examples to illustrate the above definition, starting with

Point ii. We do not give an example for Point i or Point iii.2 since the first is

essentially untimed controllability, and the second is similar to the CS Deterministic

property discussed in Section 3.1.

Figure 3.2 shows an example where prohibitable event a and a tick are both

possible at the same state in the plant. When our supervisor decided to enable a

here, Point ii required that tick must be disabled. Also, Point ii only allowed us to

disable tick here as forcible event a was possible in both the plant and supervisor to

preempt the tick.

0

,,,;/
~

0
Plant G Supervisor S

Figure 3.2: An Example for Point ii

Figure 3.3 shows an example for Point iii.l. In the diagram, we see that the only

prohibitable event possible after the tick is (3. We see that (3 stays possible until it

occurs on both paths, and no new prohibitable events become eligible before the next

tick.

Figure 3.4 shows an example that fails Point iv. Here we see that the state

reached by the first tick is marked which is allowed, but then the state reached by a

is also marked, which is not.

3. Sampled-Data Systems 43

0~ •
IT,.Y~ ~7 y~ ,r. •

~a/r ~/a
0 •O 0

meet(G, S) meet(G, S)

Figure 3.3: An Example for Point iii.l Figure 3.4: An Example Failing Point
iv

Note that Definition 3.2.2 is not closed under arbitrary union. An example is

shown in Figure 3.5, where (a) and (b) are two TDES supervisors that enable and

force only one event respectively. In (a), a is forced and f3 is disabled. In (b), f3 is

forced and a is disabled. It can be shown that both (a) and (b) are SD controllable

for our plant shown in (d), but the union of these two languages, shown in (c), is

not. The supervisor in (c) fails Point iii.l as both a and f3 are possible at the initial

state, but once one occurs, the other is disabled before the next tick has occurred.

This example suggests that in general, there may not exist a suprema! SD control

lable sublanguage. For this example, there appears to be two maximal sublanguages

but no suprema! sublanguage. This likely follows from the fact that in normal TDES

controllability, the maximally permissive supervisor might allow several choices as

they are each safe, and leave it up to an unmodeled agent to decide which option

occurs. As they are all possible, eventually we should get all choices. However for

SD controllers, we make the choice with respect to which clock cycle an event gets

forced in, meaning that some of these choices might vanish. If two choices are mutual

disjoint yet equal in terms of size of behavior we would get, we end up with two or

more maximal solutions, and no suprema! solution.

We now add another tool that we will need to express the sampled-data behavior of

a TDES. We will now define the control action that will take place at a sampling state

for our TDES. This is the action the SD controller will take during the corresponding

sampling period.

Definition 3.2.3. Let TDES supervisor S - (X,~'~' X 0 , Xm) be SD controllable

44 3. Sampled-Data Systems

with respect to plant G = (Q, :E, 0, Qo, Qm)· The control action (: Xsamp---+ Pwr(:Ehib)

is defined for x E Xsamp ~ X as follows:

((x) :={a E :Ehibl~(x,a)!}

Proposition 3.1. For TDES supervisor S = (X, :E, ~' X 0 , Xm) which is SD control

lable with respect to plant G = (Q, :E, o, q0 , Qm), we have

(Vs E L(S) n Lsamp)((x) = EligL(s)(s) n :Ehib

where x = ~(x0 , s).

Proof. This follows immediately from the definition of L(S) and the Elig operator. 0

•• 13 .
<

(a) (b)

(c) (d)

Figure 3.5: SD Controllability and Arbitrary Union.

We close this chapter with a proposition pointing out the connection of our CS

deterministic definition and Point iii.2 of the SD controllability definition.

Proposition 3.2. If TDES supervisor S = (X, :E, ~' X 0 , Xm) is SD controllable for

plant G = (Q, :E, o, q0 , Qm), then meet(S, G) is CS deterministic if it is minimal.

Proof. Follows automatically from Point iii.2 in Definition 3.2.2. 0

However, an SD controllable supervisor S with respect to plant G does not imply

that S is CS deterministic by itself, because of the dependency of plant G in the

definition of SD controllability. We use the CS deterministic property when we wish

to only discuss the supervisor, instead of the closed loop behavior of the system.

3. Sampled-Data Systems 45

3.3 Future Work

In this thesis, we have presented some new conditions and methods that are intended

to address the concurrency and implementation issues raised in Section 1.1. However,

we only partly dealt with time delay issues which we have left as future work due to

time considerations.

We have tried to mitigate potential time delay problems by the assumptions we

have made at the beginning of Chapter 3. Here, we have required that our controllers

be implemented on a single machine, that they use a common clock, that they all see

the result of a common sampling of the inputs, and that their outputs change at about

the same time. These restrictions should protect against time delay issues caused by a

distributed implementation of controllers, where they could sample inputs at different

times, update enablement information at different times, and this information could

reach the plant at different times.

Another potential time delay problem is the difference between when an event

physically occurs (say a part arrives at a machine), and when a controller sees that

the event has occurred. For instance, the event might physically occur in sampling

period k, but due to transmission delay, it does not reach the input of the controller

until the next clock cycle, so the controller "sees" it one clock cycle late. It is even

possible that the signal could reach the input right at the clock edge, and thus is not

noticed till the next clock edge. All of these issues could cause the system that the

controller "sees" to have slightly different timing information from the formal model.

We have tried to compensate for this by assuming that an event has occurred

when its corresponding input goes true at the controller, with one exception. The

exception is when the input goes true so close to the clock edge, it does not show up

till the next sampling period. In this case, the event is assumed to happen just after

the clock edge. We then model the system with this interpretation of what it means

for an event to occur, in particular with respect to the timing of the events.

Whereas the steps we have taken to compensate for timing delay are not ideal,

they should handle the more pressing issues. However, research needs to be done to

identify the existing timing delay issues, and address them directly in a more flexible

manner.

46 3. Sampled-Data Systems

Chapter 4

Moore Synchronous Finite State

Machines

A Moore state machine is a type of finite state machines introduced by Edward F.

Moore in [17]. It chooses its next states based on its current state and inputs. Its

outputs are determined by its current state only. We will use Moore state machines

with clocked systems whose states change only on a rising or falling edge of the clock.

Its current output remains the same until the state is changed again. A Moore state

machine used in this way is called a Moore Synchronous Finite State Machine. In the

following discussion, we simply use Moore machine or FSM for convenience.

By the properties defined in Chapter 3, an SD Controller can be modeled as a

Moore machine. In the following pages, we will first define a formal model for our

SD controller in Section 4.1. Then, in Section 4.2 we will introduce translations

methods for a centralized controller and for modular controllers. The translation

methods require that the given supervisors be CS deterministic and non-selfioop ALF,

as defined in Section 3.1 and Section 2.3. Note that we can translate a supervisor

as long as its CS deterministic, but it would likely be very hard to evaluate the CS

deterministic condition if the TDES is not ALF or non-selfioop ALF, as we would

essentially have an infinite number of concurrent strings to evaluate. It is also quite

likely such a system would fail the CS deterministic condition. Requiring that the

TDES also be ALF or the weaker non-selfioop ALF makes everything easier, and still

gives us a general solution as a non ALF system is not physically realistic.

47

48 4. Moore Synchronous Finite State Machines

4.1 Formal Model

In this chapter, we will often be discussing vectors of information that will change

periodically with respect to some clock. Let k E {0, 1, 2, .. }. We will say "at time k"

to indicate the point of time at which k clock ticks have gone by since our starting

reference point, which we represent as k = 0. For any vector v = [vt, v2 , ... , vn] E V

or any of its element vi , we write "v(k)" and "vi(k)" to denote the value of v and

Vj at time k. Note that v(k) is not a function of k, but a notation to differentiate

the value of v at different points in time. For k = 0, v(O) represents the initial or

starting value of v. When we are discussing an SD controller, we can think of k = 0

as representing the time when the controller has just been turned on.

We can think of when k is incremented as the occurrence of a tick from our clock.

With respect to a TDES system, this would correspond to the occurrence of the tick

event. As such, k induces a sequence for vector v with respect to these clock ticks,

which we define to be {v(k)lk = 0, 1, ... },and is denoted as {v(k)} as a shorthand.

Assumption 4.1. For convenience, we assume every controller is operating based on

the same global clock, so that they change state at the same time.

Given a TDES supervisorS= (X, :E, ~' X 0 , Xm), we will refer to the implementa

tion of S as its corresponding SD controller. We now give a formal definition of SD

controllers.

Definition 4.1.1. An SD controller Cis represented by a Moore machine defined as

follows.

C = (I, Z, Q, 0, <I>, qres)

where,

I is the set of possible Boolean vectors that the inputs to our controller

can take on. Each vector i E I has v input variables, such that

i = [io,il, .. ,iv-1]; ij E {0, 1}; j = 0, 1, .. ,v -1

4. Moore Synchronous Finite State Machines

Each input vector i(k') E {i(k)} is sampled at the occurrence of a tick

event, except for k = 0 which occurs when the controller is turned

on.

Each element of I corresponds to a unique activity event in our sys

tem. If that element equals "1" at time k, then that means the event

has occurred at least once since that last clock tick. If it equals zero,

then it means the corresponding event has not occurred at all since

the last clock tick.

Z is the set of possible Boolean vectors that the controller outputs can

take on. Each vector z E Z has r output variables, such that

Z = [zo, ZI, .. , Zr-I]; Zj E {0, 1}; j = 0, 1, .. , r- 1

Each input vector z(k') E {z(k)} is generated at the occurrence of

the tick event, except for k = 0 which occurs when the controller is

turned on. Note that we do not provide separate outputs for forcing,

because the forcing of an event is already implied by enabling the

event.

The values of vector Z represent enablement information for our

prohibitable events. A value of '1' means the event is enabled, while

'0' means the event is disabled.

Q is the set of possible Boolean vectors that the state of our controller

can take on. Each vector q E Q has l state variables for state iden

tification, such that

q = [qo,QI, .. ,Ql-I]; Qj E {0, 1}; j = 0, 1, .. ,l-1

Each state q(k') E { q(k)} changes to next state q(k' + 1) E { q(k)}
at the occurrence of the tick event, starting at k = 1.

Qres is the default state when the machine is reset or initialized. We take

q(O) = Qres·

49

50 4. Moore Synchronous Finite State Machines

0 : Q x I -+ Q is a next state function which takes the current state

q(k) E Q and an input vector i(k + 1) E I, and returns the next

state q(k + 1) E Q.

q(k + 1) = O(q(k), i(k + 1))

<I> : Q -+ Z is the state to output map. For state q E Q, the output z E Z

at this state is:

A few comments are worthwhile here to clarify our notation. We will discuss the

notation used for states, but the same applies for input and output variables. If we

use q by itself (i.e. q E Q), then it represents a single instance of Q (i.e. some specific

vector of zeros and ones with j elements). When we use q(k'), then this is the k'-th

element of the sequence {q(k)} where each element of the sequence is some member

of Q. Obviously, we can construct many different possible {q(k)} sequences. If we

wish to label different sequences, we will use different labels for q, such as { q (k)} and

{q'(k)}.

With respect to our input, a specific sequence {i(k)} would represent a specific

pattern of inputs we received for a specific run of the system. If we ran the system

again, we could get a completely different sequence. From our definition of C, we see

that our state sequence is completely determined by qres, 0, and {i(k)}. If we get a

different input sequence, we could get a different state sequence, depending on how

our next state function responds to the input values. As our output is a function of

our current state, this means we could also get a different output sequence as well. In

other words, input sequence { i(k)} might induce state and output sequences { q(k)}
and {z(k)}, while input sequence {i'(k)} might induce state and output sequences

{q'(k)} and {z'(k)} which may or may not be the same as the other sequences of the

same type ..

Example 4.1. Inspired by the DES shown in Figure 2.1, we take Figure 4.1 as an

example to see how to apply our formal SD controller model.

Figure 4.1(a) shows an example of a TDES and Figure 4-1(b) shows the Moore ma-

chine representing this TDES. Our ordering for the input variables is I= [at, a 2 , f-tll J-t2 , /3t, .\1]

4. Moore Synchronous Finite State Machines

1'

(a) Original TDES

D

Reset

(c) Abbreviated FSM

eset

(b) FSM Translation

[ru_l]. [mu_2]

Figure 4.1: FSM Thanslation Example

51

and for our outputs is Z = [all a 2, Jlb JL2]. We have also added a DEF or default

transition to cover input combinations that we have not explicitly specified. The rea

son is that the transition function for a TDES is a partial function, but that of a FSM

must be a complete function. The actual translation from the TDES in (a) to the con

troller in {b) will be presented after the translation method for centralized controllers

is introduced in the next section.

In (b), we showed the SD controller for our example in the format of the formal

52 4. Moore Synchronous Finite State Machines

SD controller model we just defined. Typically when we give a diagram of an FSM,

we use the more compact and readable notation shown in Figure 4.1 (c). Here we have

given states meaningful names, and we only list at a state those prohibitable events

whose outputs are true (1} at that state. Also, rather than listing input vectors on

transitions, we use boolean equations that are true for the required input vector. We

use '!'as NOT, '+'as OR, and '·'as AND1 • We also only use in the equations those

events that could occur at a given state, to simplify the equations.

4.2 Translation Method

To translate a supervisor to Moore FSM, we require that the supervisor be CS deter

ministic. CS deterministic is necessary because, for SD systems, we lose the ordering

information for the events that occur during a given sampling period. Event sequences

that have the same occurrence image must all go to the same next state in the state

machine implementation or our controller will be nondeterministic. We can ensure

this if we require the supervisors to be CS deterministic before being translated.

We also require that the supervisor be non-selfl.oop ALF. The reason is to make

sure we have a manageable set of next state conditions. If we have activity loops

that are not selfl.oops, then our supervisor does not have enough information for us

to determine a reasonable set of concurrent strings to use to define our next state

condition. We would thus potentially have a large choice of strings, most of which

are not possible in the closed loop system. By requiring that the supervisor be non

selfl.oop ALF, we should have a reasonable set of possible concurrent strings at a

given state. As we discussed earlier, technically the CS deterministic condition is

strong enough, however, this condition is hard to evaluate if the system is not ALF

or non-selfl.oop ALF. So, what we would do in practice is first check that our TDES

is ALF or non-selfloop ALF, and if so, we will then check if it is CS deterministic.

We note that we require that a supervisor S be CS deterministic before we can

translate it to a controller, but we do not need the supervisor be SD controllable for

our plant G for the conversion process itself. We also note that if we are translating

S to a controller, the fact that S is SD controllable for G is not sufficient to be able to

1In the following FSM graphs, this operator is represented by '.(period)' instead of'·' due to a
technical difficulty.

4. Moore Synchronous Finite State Machines 53

do the conversion, as it implies that SIIG is CS deterministic if SIIG is minimal, not

S itself. If G is not complete for S, we may wish to instead convert SIIG instead of S,

but typically we prefer to construct modular controllers for the component supervisors

that make upS, as they usually are far more compact.

In the following sections, we introduce event mapping functions, and how to trans

late a CS deterministic TDES supervisor into a centralized controller. We then discuss

the translation of modularized CS deterministic supervisors.

4.2.1 Event Mapping Functions

As we will often be discussing vectors of boolean values whose elements refer to

specific events in Eact' we will need a way to map events to a vector's elements and

vice versa. Let G = (Y, E, 8, Yo, Ym) be the TDES plant to be controlled and let

S =(X, E8 , e, x0 , Xm) be an arbitrary CS deterministic TDES supervisor for G. We

define Eact C E to be the set of all the activity events and Ehib ~ Eact to be the set

of all prohibitable events. We consider E, Eact and Ehib to be global event sets that

can always be referred to in the following discussion.

We first define a bijective map between an activity event set and an index set we

will use for labeling the events.

Definition 4.2.1. Let bijective map "(g : Eact ---+ {0, .. , IEactl - 1} be the canonical

event mapping function such that

For the controller implementation C = (I, Z, Q, n, q>, qres) of S, we include its

event mapping information in our translation methods in the following sections, which

are the two event mapping functions defined below. The reason we impose the or

dering requirement is so that essentially the function "fg will induce a single way to

define the mapping functions.

Definition 4.2.2. The input event mapping function for Cis defined to be a bijective

map 'Y: Es n Eact---+ {0, 1, .. , v- 1} where v = IEs n Eactl· It is defined such that

54 4. Moore Synchronous Finite State Machines

Definition 4.2.3. The output event mapping function for Cis defined to be a bijective

map 'f/: ~s n ~hib---+ {0, 1, .. , r- 1} where r = l~s n ~hibi· It is defined such that

Since rg is globally available, two input event mapping functions for different

controllers will always have the same mapping pairs for the same event domain. In

other words, because of the ordering requirement, there is only one way to define the

input mapping. Similar logic applies to the output mapping for same event domain.

An example is shown below.

Example 4.2. For different controllers C 1 and C 2 whose supervisors S1 and S2 are

defined over~= ~act U { T} = {a, {3, >., T }. If r9 (a) < r9 (/3) < r9 (>.), then we always

have the input event mapping function rl = 12 = {(a, 0), ({3, 1), (>., 2)} for C 1 and

Cz.

Sometimes we want to find out which event an index in an input or output vector

corresponds to. This can be easily done by applying the inverse event mapping

function, since the event mapping functions we have defined are all bijective. i.e. to

find the index of event a in the input event index used by the controller, use ,-1 (a).
For event a E ~s n ~act, we can use the inverse event mapping functions to locate

the element in a vector that corresponds to a. For example, the corresponding element

for a in the input vector would be il'-l(u). For convenience, we may write iu instead

of iri(u) and Zu instead of z11-I(u)·

4.2.2 Output Equivalence

If we have two or more controllers for system G, we may wish to determine if they will

produce equivalent output (i.e. enablement information) for the same input sequence.

The problem is that each controller may care about a slightly different event set, thus

we likely cannot use a single {i(k)} input sequence for them. As defined in our formal

model, for n controllers C 1 , C 2 , ... , Cn, each controller Ci for 1 ~ j ~ n has its

own input vector ij E Ii and will generate its own output vector based on the input

sequence {ij(k)} it receives.

4. Moore Synchronous Finite State Machines 55

Before we check that their output sequences are equivalent, we need each input

sequence {ii (k)} to contain equivalent input information. However, their input vectors

might be incompatible with each other, because their event mapping for the inputs

can be different. Therefore, we will provide a single input vector i9 globally available

to every controller, and let each controller extract its own input vector ii from i9 •

Essentially, i9 represents the inputs the system sees, where each ij represents the

inputs that each controller sees (which may be a strict subset of the system inputs)

and is formatted for the input index that controller is using.

Definition 4.2.4. Let ~act C ~ be the set of global activity events, we require

i9 = [i9 ,o, i9 ,t, .. , i9 ,v
9
-1] to be defined over ~act where v9 = l~actl· That is, for any

event a E ~act. there is an element in i9 corresponds to a and only a. We call {i9 (k)}

a canonical input sequence and i9 E { i9 (k)} a canonical input vector2 •

To extract input vector ij = [ij,O, ij,I, .. , ij,Vj-1] from iy for controller cj, for 0 ~

l < Vj we have ij,l = iy,l' where l' = ')'g(('yi-1(1))).

Definition 4.2.5. For j = 1, 2, let Ci = (Ii, Zi, Qi, ni, <Pi, Qres,i) be a controller. We

say C1 and C2 are output equivalent if for any canonical input sequence {i9 (k)} and

induced output Zj(k') = [zj, 1(k'), Zj,2 (k'), .. , Zj,r3 (k')] E Zi at time k' = {0, 1, 2, ... },
the follow conditions are satisfied.

3. (Vk' E {0, 1, .. })z1(k') = z2(k')

In the above definition, by Point 1, 2 we are essentially requiring the outputs of the

two controllers be of the same size, and represent the same events in the same order.

We could have been more general and only required that they represent the same

events but in possibly different order, but this does not gain much and complicates

our notation. In Point 3, we are requiring that one controller enables a prohibitable

event if and only if the other does, for any value of k'. In other words, they agree at

the reset state, and will continue to agree in the future.

2Note that our use of "canonical" here refers to the size and ordering of the inputs, not to the
actual values of the input sequence or a given vector.

56 4. Moore Synchronous Finite State Machines

A common situation is that controllers C1 and C2 have been defined relative to

a cs deterministic supervisors= (X, 2:s, e, Xo, Xm), and we are only interested that

they generate the same output with respect to input sequences that represent valid

input strings to the supervisor (i.e. s E L(S) n Lsamp). We first provide a definition

for valid input sequences relative to TDES S, and then a form of output equivalence

definition for these sequences.

Definition 4.2.6. For system event set 2:, with canonical event mapping function "(g,

activity event set 2:aet, and cs deterministic TDES supervisors= (X, 2:s, e, Xo, Xm),
we say a canonical input sequence {ig(k)} is input valid for S, if

(Vk E {1, 2, ... })(:3sl, s2, ... 'Sk E Leone)

[s1s2 .. sk E L(S)] 1\ [(Vn E {1, 2, ... , k})(VCJ E 2:aet) ig,-y
9
(u)(n) = 1 iff CJ E Occu(sn)]

Essentially in the above definition, we are requiring the sequence {ig(k)} to cor

respond to a sequence of concurrent strings that supervisor S will accept. We are

specifically excluding input sequences that our supervisor says will never occur. As

we will see in the next section, when we translate a CS deterministic supervisor into

a controller we will define next state information in an arbitrary manner for invalid

input sequences. We will thus not be interested in whether two controllers generate

the same output sequences for invalid input sequences.

We now provide a new output equivalence definition that is only concerned about

input sequences that are valid for our supervisor.

Definition 4.2.7. For system event set 2:, with canonical event mapping function "(g,

activity event set 2:aet, and cs deterministic TDES supervisors= (X, 2:s, e, Xo, Xm),

let Ci = (Ii, Zi, Qi, Oi, <I>i, qres,j), j = 1, 2 , be a controller. We say C 1 and C2 are

output equivalent with respect to S if for any canonical input sequence {ig(k)} that

is input valid for S, and induced output Zj(k') = [zj,l(k'), Zj,2(k'), .. , Zj,ri(k')j E Zj at

time k' = {0, 1, 2, ... }, the follow conditions are satisfied.

3. (Vk' E {0, 1, .. })z1(k') = z2(k')

4. Moore Synchronous Finite State Machines 57

4.2.3 Centralized Controller

We will now discuss how to translate a TDES supervisor into a centralized controller.

Let TDES supervisor S = (X,~' e, X 0 , Xm) be CS deterministic and non-selfloop

ALF. To translateS into a controller C = (I, Z, Q, n, <P, qres), we need to introduce

a few definitions.

We start by defining how many state variables are needed for Q. Let Xsamp ~X

be the set of sampling states for S. To map each sampling state to a state in the

controller, we define the state size of Q, l, to satisfy 2z-t < IXsampl ::::; 2z. There are l

state variables in vector q E Q. A state in S which is not found in Xsamp, does not

correspond to any state variable assignment in Q.
We now define a function to map the sampling states of our TDES supervisor,

onto states of the controller.

Definition 4.2.8. Let s = (X,~' e, Xo, Xm) be a cs deterministic supervisor. Let

A: Xsamp ---t Q be an arbitrary injective map where Xsamp ~X. We say A is a state

mapping function for controller C if, for all x E Xsamp, A(x) returns a vector of state

variables q = [q0 , Qt, .. , Qz-t] such that,

Recall that the initial state is also a sampling state, and it is mapped to be

A(xo) = qres = q(O).

We now define a function that will map subsets of ~act to a particular assignment

of the variables for I (called a valuation of I) that will represent the events present

in the subset, according to the mapping defined by /, the controller's input event

mapping function. This will be useful for taking the occurrence image of a concurrent

string and identifying the corresponding valuation that represents that subset in I.

Definition 4.2.9. Let C = (I, Z, Q, n, <P, qres) be the corresponding controller for

cs deterministic supervisors= (X,~' e, Xo, Xm)· The size of each input vector i E I
is defined to be v = I ~act 1-

Let 1 be the input event mapping function for controller C. Then we have a

bijective map

58 4. Moore Synchronous Finite State Machines

defined as follows. For arbitrary "E1 ~ "Eact, we have ri("EI) = [i0 , i 1 , .. , iv_1] such that

for j = 0, 1, .. , v- 1,

. {1
'tj := 0

if (::Ia E "E1)1'(a) =j

otherwise

We call f 1 the input set mapping function for controller C.

The motivation for the above mapping is that at each sampling state, it will

be observed which activity events have occurred, and which have not. Since the

order of event occurrences is not stored, activity events are observed as if they are

concurrent. Thus the occurrence of each event can be represented as a binary value

in the corresponding position of the input vector i.

We now define a function that will map subsets of "Ehib to a particular assignment

of the variables for Z that will represent the events present in the subset, according to

the mapping defined by TJ, the controller's output event mapping function. This will

be useful for taking the set of prohibitable events eligible at a sampling state of the

supervisor, and identifying the corresponding valuation that represents that subset

in Z.

Definition 4.2.10. Let C = (I, Z, Q, 0, <P, Qres) be the corresponding controller for

CS deterministic supervisor S = (X, "E, ~' X 0 , Xm)· The size of each vector in z E Z

is defined to be r = I"Ehibl· Let TJ be the output event mapping function for controller

C. Then we have a bijective map

defined as follows. For arbitrary "Ez ~ "Ehib, we have fz("Ez) = [z0 , Z1, .. , Zr-1] such

that for j = 0, 1, .. ,r -1,

if (::Ia E "Ez)TJ(a) = j

otherwise

We call fz the output set mapping function for controller C.

4. Moore Synchronous Finite State Machines 59

We now discuss how to define the next state function n for our controller, using

our CS deterministic supervisor as our starting point. Note that the~ function was

defined in Section 3 .1.

Definition 4.2.11. Let C = (I, Z, Q, n, tP, Qres) be the corresponding controller for

CS deterministic supervisorS= (X,E,e,xo,Xm)· Let Xsamp ~X. For state q E Q

and arbitrary input i E I, the next state function n is defined to be

fl(q, i) = A(~(x, f[1(i))) if (3x E Xsamp)q = A(x) & ~(x, f[1(i))!

All remaining values of n are assigned arbitrarily.

Essentially, we define n in terms of e, the next state function of TDES S. For

the given state q of our controller and input i which are some valuations of sets Q
and I, we define the next state of the controller to match that of the supervisor. We

define n(q, i) arbitrarily unless our state q corresponds to a sampled state x in S,

there exists a concurrent strings whose occurrence image matches the set of activity

events represented by i, and e(x, s)! in our supervisor. In that case, our new state is

q' = A(e(x, s)) as per the definition of~. If there does not exist such an x and s,
that means q and i do not correspond to possible behavior of our system, so we can

define the next state as we like (note e is a partial function, but n must be a total

function).

In practice, we would not assign the next state randomly. Most likely, we would

choose q' to either make our controller simpler, or we would choose q' in a failsafe

manner. By failsafe, we mean that we do not believe the combination q and i should

ever be seen in the physical system, but we will choose our next state in a way to

maximize safety should it actually ever occur.

We now discuss how to define the output map tP for our controller, using our CS

deterministic supervisor as our starting point. Note that the (function was defined

in Section 3.2.

Definition 4.2.12. Let C = (I, Z, Q, n, tP, Qres) be the corresponding controller for

cs deterministic supervisor s = (X, E, e, Xo, Xm)· Let ((x) be the control action for

any sampling state x E Xsamp ~ X as defined in Definition 3.2.3. For any q E Q, the

output map tP is defined to be

60 4. Moore Synchronous Finite State Machines

<P() := {rz(((x))
q rz(0)

if (3x E Xsamp)q = A(x)
otherwise

The definition states that if state q in controller C has a corresponding state

x E Xsamp inS, then <P(q) specifies an output vector based on the control action ((x).
((x) is equal to the set of prohibitable events enabled at state x in S. Otherwise,

<P(q) leaves all prohibitable events disabled at state q.

Let TDES S =(X,~'~' X 0 , Xm) be a CS deterministic supervisor. Then Figure 4.2

shows the control equivalence diagram for Sand its controller C =(I, Z, Q, 0, <P, qres),

as defined in this section. If, for arbitrary~' ~ ~act and state x E Xsamp of S, ~(x, ~')

is defined, it is easy to see that this diagram commutes.

Xsamp X Pwr(Lact) Xsamp

A r A [z

Q X I Q z
Figure 4.2: Centralized Control Equivalence Diagram

Essentially, the diagram says that as long as ~(x, ~')!, then rz(((~(x, ~'))) =

<P(O(A(x), r1 (~')) meaning that we can just use the next state function and output

map of the controller, and we will produce the correct enablement. Note that the

~' represent the occurrence image (minus tick) of the concurrent strings defined at

the given sampled state. The figure also says that if ~(x, ~')!,then A((~(x, ~'))) =

O(A(x), ri(~'), meaning that we can simply use the controller's next state function

to determine the correct next state.

4. Moore Synchronous Finite State Machines 61

Example 4.3. Let C = (I, Z, Q, n, <I>, Qres) be represented by the Moore machine

shown in Figure 4.1{b). We see from Figure 4.1{a), that our set of activity events is

{ a 1, a 2, f3, f.LI, J.L2, ..\}, and our set of prohibitable events are { a 1, a2, J.L1, J.L2}. We can

also see that the TDES is ALF, and CS deterministic.

We have each i E I in the form of

For j = 0, 1, .. , 5, ii corresponds to the occurrence of events [all a 2, J.L1, J.L2, /3, ..\] re

spectively, when ii = 1.

We have each z E Z in the form of

For j = 0, 1, .. , 3, Zj corresponds to the enablement of prohibitable events [a1, a2, f.Lb J.L2],

when zi = 1.

We see from Figure 4.1{a) that our TDES has three sampled states. Our state

size, l, must thus satisfy 2l-I < 3 ~ 2l. As only l = 2 satisfies this equation, our state

set must have two binary elements. We thus have each q E Q in form of

q = [qo, q1]

We will let state (q0 , q1) E {(0, 0), (0, 1), (1, 0)} represent states {I, W, D} respectively.

The fourth state (1, 1) is unused and will be unreachable, so we can define transition

leaving this state arbitrarily.

Examining Figure 4.1 (a), we can determine which concurrent strings are defined

at each sampled state. For instance, at state I we could only get strings a 1 a 2r or

a 2a 1r. Both have occurrence image {a1,a2,r} and take us to sampled state W. As

this subset corresponds to i = [1, 1, 0, 0, 0, OJ, we can see where the transition at state

(0, 0) in Figure 4.1 {b) comes from. Continuing this logic, we can derive the remaining

transitions for the SD controller shown in Figure 4.1(b). Note, that we have added

the DEF default transitions as we discussed in Section 4.1.

Next,

Qres = q(O) = [0, OJ

62 4. Moore Synchronous Finite State Machines

Using the information we have derived for Figure 4.1(b), we can define the next

state function, 0, as below:

q(k + 1) =O(q(k), i(k + 1)) = O([q0 (k), q1(k)], [i0 (k + 1), i 1(k + 1), .. , i 5(k + 1)])

such that

o([o, o], [1, 1, o, o, o, o]) = (o, 1]

0([0, 0], i) = [0, 0] for all other i E I

o([o, 1], (o, o, o, o, 1, o]) = (o, o]
0([0, 1], [0, 0, 0, 0, 0, 1]) = [1, 0]

0([0, 1], i) = [0, 1] for all other i E I

0([1, o], (o, o, 1, 1, o, o]) = (o, o]
0([1, 0], i) = [1, 0] for all other i E I

and 0([1, 1], i), for any i E I, can be defined arbitrarily as state [1, 1] is unreachable.

Lastly, we define the output function to be

such that

z = <I>(q)

<I>([O, 0]) = [1, 1, 0, 0]

<I>([O, 1]) = (0, 0, 0, OJ

<I>([1, 0]) = [0, 0, 1, 1]

We can define <I>([1, 1]) arbitrarily, say <I>([1, 1]) = [0,0,0,0].

The execution of a centralized controller C is as follows.

1. Initialize the controller by setting q(O) = qres, z = <I>(qres)· We have k = 0.

2. At the next clock pulse

i) sample inputs and set i(k + 1) equal to these values.

ii) calculate our new state and output as follows:

i.e. q(k + 1) = O(q(k), i(k + 1)) and z(k + 1) = <I>(q(k + 1))

4. Moore Synchronous Finite State Machines 63

3. Set k = k + 1. Go to step 2.

We say C acts on G when controller C enables or disables events from plant G.

Also, since an SD controller forces a prohibitable event as soon as its enabled, the

controller is also forcing these events to occur in that clock period. To be consistent, if

any controller C is discussed from now on, we will assume that it has been converted

from some CS deterministic supervisor S, using the translation method defined in

this section.

Before we close this section, we would like to briefly discuss the case that our TDES

supervisor S is defined over a subset :Es of the system event set, :E. This would mean

that some activity events would not affect the next state of the controller and could

be ignored, thus simplifying the next state logic of the controller. The output for the

controller would still cover all events in :Ehib· The difference would be that for all

u E :Ehib - :Es, their corresponding output would always be set to 1.

4.2.4 Modular Controllers

For large systems, the centralized supervisor for the system is quite likely large and

complex. This would mean that its corresponding controller would also be large and

complex, making implementing it directly undesirable. Just as we design modular

TDES supervisors for systems to make the design more manageable, we can also

implement our controllers by directly translating these modular supervisors into their

own controllers. We can then combine the outputs of these controllers together,

to create the overall output that would be equivalent to the output provided by a

centralized controller.

To implement the composition of modular controllers, we need the following two

operations on vectors.

Definition 4.2.13. Let V be the set of Boolean vectors with each vector of size n.

For u = [u1, u2, .. , un], v = [v1, v2, .. , Vn] E V, the logical AND operator 1\ : V x V---+ V

is

64 4. Moore Synchronous Finite State Machines

Definition 4.2.14. Let u be a Boolean vector of i variables, and v be another

Boolean vector of j variables. The concatenation operator . : V x V ----+ V is defined

as follows.

For convenience, we will often just write uv instead.

Let the TDES S = S1 IIS2 II .. IISn be a supervisor where each modular supervisor

si, for 1 :S i :S n, is cs deterministic.

To avoid implementing the likely large S directly, we wish to implement each

supervisor Si as controller Ci, then combine the controllers C1, C2 , .. , Cn (referred to

as the composite controller) to generate the actual final output. We call each Ci the

modular controller for supervisor Si. To be able to reuse the implementation technique

discussed in the previous section, we assume each supervisor Si is CS deterministic.

When comparing a centralized controller implementation to a modular controller

implementation, all we care about is the output equivalence of the centralized con

troller and the composite controller created from Cll C 2 , ... , Cn. If we take S and

implement it directly as a controller C, we want the composition of the outputs from

Cll C2 , .. , Cn to be equivalent to the output from C.

We will now discuss how to implement the modular supervisors as individual

controllers, and then combine them into a composite controller to handle the system.

It is key to note that the modular supervisors may be defined over strict subsets of the

system event set, ~. Essentially, supervisor Si will have activity event set ~act,j ~ ~act

and prohibitable event set ~hib,j ~ ~hib· To translate the CS deterministic supervisor

Si to a controller, we will use the method defined in Section 4.2.3, but the key

difference is that we replace every ~act in the definitions with ~act,j, and each ~hib

with ~hib,j· This means that the input and the output sets for the controller may

only represent a subset of ~act and ~hib, respectively.

Definition 4.2.15. Let G be the plant to be controlled, '"'fg be the canonical event

mapping function, ~ be the system event set, ~act the system activity event set, and

~hib the prohibitable event set. For j = 1, 2, .. , n, let sj = (Xj, ~j, ~j, Xo,j, Xm,j) be the

j-th CS deterministic supervisor, where ~i = ~act,jU{ r} ~ ~. Here we have ~act,j ~

4. Moore Synchronous Finite State Machines 65

.Eact the activity event set for supervisor Si, .Ehib,i ~ .Ehib the prohibitable event set

for Si. We also require that .E = U .Ei. Then we define the composition of
jE{1,2, .. ,n}

modular controllers as follows.

Let Ci = (Ii, Zi, Qi, ni, <Pi, Qres,i) be the controller for Si with the following con

figuration:

• li is the number of state variables for each Q.j = [qj,o,Qj,1 , .. ,qi,lj-1] E Qi

• vi= I.Eact,il is number of input variables for each ii = [ij,o, ij,b .. , ii,vr1] E Ii

• ri = I.Ehib,il is number of output variables for each Zj = [zj,o, Zj,l, .. , Zj,ri-1] E Zi

The composition oJC1, C2, .. , Cn,

C =(I, Z, Q, n, <P, Qres) = comp(C1, C2, .. , Cn)

is defined as follows.

1. .Eact = U .Eact,j and .Ehib = U .Ehib,j, thus .Ehib ~ .Eact C .E is guaran-
i=1,2, .. ,n j=1,2, .. ,n

teed.

2. The number of state variables for vectors q E Q is defined to be l = E;=1 li.

The state vector q is defined to be

Q = Q1Q2··Qn

= [q1,0, Q1,b .. , Q1,h -1HQ2,0, Q2,1' .. , Q2h-1] ·· [qn,o, Qn,b .. , Qn,ln-1]

= [q1,0,Q1,b .. ,Q1,h-b Q2,o,Q2,b .. ,q2,l2-b .. , Qn,o,Qn,b .. ,Qn,ln-1]

3. The size of each input vector i E I is defined to be v = I.Eactl·
Then we define "'(: .Eact --+- { 0, 1, .. , v -1} to be the input event mapping function

for C such that

4. The size of each output vector z E Z is defined to be r = I.Ehibl·

Then we define 'fJ : .Ehib --+- {0, 1, .. , r- 1} to be the output event mapping

function for C such that

66 4. Moore Synchronous Finite State Machines

5. The next state function 0 : Q x I --+ Q is defined such that, for q(k) =

ql(k)q2(k) .. qn(k) E Q and i(k + 1) E I,

q(k + 1) = O(q(k), i(k + 1))

= 01(q1(k), i1(k + 1)) 02(q2(k), i2(k + 1)) .. On(qn(k), in(k + 1))

For above, the input vector i(k + 1) is in canonical form with respect to rg·
To use it as an input to each controller Cj, we need to map it to input vector

ii(k + 1) using rj, the input event mapping function for Controller Ci. To do

this, we need to map input vector

i(k + 1) = [io(k + 1), i1 (k + 1), .. , iv-I(k + 1)]

onto input vectors ii(k + 1) = [ij,o(k + 1), ii,l (k + 1), .. , ij,v1- 1 (k + 1)] for modular

controller cj' as follows

6. The output map <T? : Q --+ Z is defined as follows.

Given q = q1q2 .. qn E Q, let

For each Zj we expand it to

such that,

(
w ~)' {~~M ilaE~~~ va E .whib z · () =

NJ u 1 otherwise

In above, rJi is the output event mapping for controller Ci. Essentially, what

we are doing is mapping the output value for Ci to the corresponding position

in zj if a E ~hib,j, else we always set the value equal to 1.

4. Moore Synchronous Finite State Machines 67

With expanded output vectors z~, z~, .. , z~ E Z defined, the next state function

is then defined to be

<I>(q) = 1\ z~
jE{1,2, .. ,n}

We simply logically AND each zj together to obtain the output vector.

In Definition 4.2.15, we assumed that when the supervisors are combined together,

they are defined over L:, the systems event set (i.e. U L:j)· As for the centralized
j=1,2, .. ,n

supervisor, it may be the case that the supervisors only care about a subset of L:. This

would mean that some activity events would not affect the next state of the controller

and could be ignored, thus simplifying the next state logic of the controller. The

output for the composite controller would still cover all events in L:hib· The difference

would be that for all a E L:hib but not covered by any modular supervisor, their

corresponding output would always be set to 1.

We now present a theorem that shows that we can either implement our supervisor

centrally or modularly, and we will get the same enablement information for valid

input sequences.

Theorem 4.1. Let G be the plant to be controlled, 'Yu be the canonical event mapping

function, L: be the system event set, L:act the system activity event set, and L:hib the

prohibitable event set. Also, let CS deterministic supervisorS= (X, L:, ~' X 0 , Xm) be

composed of n component cs deterministic supervisor sj = (Xj' L:j' ~j' Xo,j' Xm,j) for

j = 1, 2, .. , n, such that S = S1ll S211 .. 11 Sn. Let L:act,j ~ L:act and L:hib,j ~ L:hib be the
activity event set and prohibitable event set for Sj.

For j = 1, 2, .. , n, let Ci = (Ii, Zi, Qi, ni, <I>i, Qres,i) be the controller translated
from Si using translation method defined in Section 4.2.3 but replacing every L:act in

the definitions with L:act,h and each L:hib with L:hib,i· Let C' = comp(C1, C2, .. , Cn)

be the composed controller of C1, C2, .. , Cn. Let C = (I, Z, Q, n, <I>, Qres) be the

controller translated from S using the translation method defined in Section 4.2.3.

Then C and C' are output equivalent with respect to S.

Proof. Assume the required initial conditions for the proof.

68 4. Moore Synchronous Finite State Machines

Next, we need to define the following items for our proof, to ensure clarity.

Let Xsamp ~ X and Xsamp,i ~ Xi be the sets of sampling states for S and Si,

respectively.

Let ~ : Xsamp X Pwr(:Eact) ---+ Xsamp and ~j : Xsamp,j X Pwr(Eact,j) ---+ Xsamp,j be

the next sampling state functions for S and Sj, respectively.

Let A: Xsamp ---+ Q and Aj : Xsamp,j ---+ Qj be the state mapping functions for C

and cj' respectively.

Let f 1 : Pwr(.Eact) ---+ I and ri,j : Pwr(.Eact,j) ---+ Ij be the input set mapping

functions for c and cj, respectively.

Let fz : Pwr(.Ehib) ---+ Z and fz,j : Pwr(.Ehib,j) ---+ Zi be the output set mapping

functions for c and cj, respectively.

Let I : .Eact ---+ {0, 1, .. , v-1 }, 1 1
: .Eact ---+ {0, 1, .. , v' -1 }, lj : .Eact,j ---+ {0, 1, .. Vj-1}

be the input event mapping functions for C, C', and Cj, respectively. We note that

since 1 and 1' have domain .Eact, they must both equal19 due to how they are defined

i.e. given a specific 19 , there is only one way to define the other two functions and it

must be the same as 19 , if Definition 4.2.2 is to be satisfied. (1)

Let f/ : .Ehib ---+ {0, 1, .. , r -1 }, f/1
: .Ehib ---+ {0, 1, .. r' -1 }, 'r/j : .Ehib,j ---+ {0, 1, .. ri -1}

be the output event mapping functions for C, C', and Ci, respectively. We note that

since f1 and ry' have domain .Ehib, they must be equal due to how they are defined (see

Definition 4.2.3). This means that Z and Z' represent the same prohibitable events,

in the same order, and can be directly compared. (2)

Given the above setting, we will now show that C and C' are output equivalent

with respect to S.

Let {i(k")} be a canonical input sequence with respect to 19 , the canonical event

mapping function for the system, and let the sequence be input valid with respect to

S. From (1), we have 1 = 1' = lg· This means that {i(k")} can be used as an input

for both C and C' directly, without any mapping required.

Let z'(k) = [z~(k), z~(k), .. , z~,(k)] E Z' be the induced output vector inC' at time

k, from input sequence {i(k")}.

Let z(k) = [z1 (k), z2(k), .. , Zr(k)] E Z be the induced output vector inC at time

k, from input sequence {i(k")}.

4. Moore Synchronous Finite State Machines 69

We now need to show the following three points from Definition 4.2.7.

1. Show r' = r

As both C and C' are defined relative to~' their outputs are both defined rela

tive to ~hib· It follows immediately from the definition of r' and r in Definition

4.1.1 that r' = r.

2. Show (VO ~ i < r) TJ(i) = TJ'(i)

Let i E {0, 1, .. , r- 1}, show TJ(i) = TJ'(i).

This follows immediately from (2).

3. Show (Vk E {0, 1, .. }) z(k) = z'(k)

(A) First we will show that if C is in state q = A(x) for some x E Xsamp'

and each Ci is in state ~ = Ai(xi) for some Xj E Xsamp such that x =

(x1, x 2 , •• , Xn), then C at state q and C' at state q1~ .. qn will have the

same output.

(B) Then we will show for all k E {0, 1, .. } that after inputs i(1), i(2), .. , i(k)

from our input sequence {i(k")}, C will be in state q(k) = A(x(k)) for

some x(k) E Xsamp, and Cj will be in state ~(k) = Ai(xi(k)) for some

Xj(k) E Xsamp,j such that x(k) = (x1(k),x2(k), .. ,xn(k)).

Combining the two points will give the desired result.

Claim A: We will now prove point (A).

Let C be in state q = A(x) for some x E Xsamp·

Let each cj be in state~= Aj(Xj) for some Xj E Xsamp,j·

We thus have C' at state q' = qlq2··qn.

Let z = ci>(q) and z' = ci>'(q'). Must show z' = z.

By Definition 4.2.12 of the output map, we have for C that ci>(q) = fz(((x))

70 4. Moore Synchronous Finite State Machines

The set of prohibitable events enabled at q can be represented as

~z =((x)

={ O" E ~hibl~(x, O")!} by definition of ((x)

- n {0" E ~hibi(O" fj_ ~j) V (~j(Xj, O")!)}
jE{l,2, .. ,n}

by definition of synchronous product

We next note that by point (1) and (2), C and C' represent exact the same

events in ~hib in exactly the same order. It is sufficient to show that C' enables

the same event as C.

By Definition 4.2.15, we have

z' = <I>'(q') = 1\
iE{1,2, .. ,n}

' z.
J

where zj is the expanded output from controller cj.
As defined, an event is enabled in zj if the event is enabled in Zj = <I> i (~), or

the event is not in ~hib,j and thus not in ~i. Otherwise, the event is disabled.

Therefore, the set of events enabled by zj can be represented as

~~,j =(j(Xj) U {~hib- ~hib,j}

={O" E ~hibi(O" ¢ ~i) V (~;(xj,O")!)}

The set of events enabled by z' and thus C' can be represented as

~~ = n ~~.j
jE{1,2, .. ,n} n {0" E ~hibi(O" fj_ ~j) V (~j(Xj, O")!)}
jE{l,2, .. ,n}

=~z

Claim A proven.

Claim B: We will now prove point (B).

4. Moore Synchronous Finite State Machines 71

We first consider k = 0

By definition, q(O) = Qres = A(xo) and for each Ci, Q,j(O) = Qres,j = Ai(xo,i)

We next note that initial states are always sampled states, so we have x(O) = X 0

and Xj(O) = Xo,j· Also, X0 = (xo,b X 0 ,2, .. , Xo,n) by definition of the synchronous

product. We note that input i(O) is ignored as the controller always starts at

its reset state.

We now consider k E {1, 2, .. }

As {i(k")} is input valid for S, we know by definition that:

(Vk E {1, 2, ... })(::ls1, s2, ... , sk E Leone) (s1s2 .. sk E L(S)]/\
[(Vt E {1, 2, ... , k})(Va E ~act)i9,-y9 (u) (t) = 1 ¢?a E Occu(st)] (3)

This implies that fortE {1, 2, .. , k }, Occu(st) = r:[1(i(t))

We thus have ~(x(O), fj1(i(l))) = x(1) E Xsamp·

We note that asS is CS deterministic, x(1) = ~(x0 , s1) as any concurrent string

with same occurrence image would come to the same state. We thus have

x(2) = ~(x(1), fj1(i(2))) with x(2) = ~(x0 , s1s2) E Xsamp and so on, until we

have x(k) = ~(x(k- 1), fj1(i(k))) with x(k) = ~(X0 , s1s2 .. sk) E Xsamp·

Let Pi : ~* ---+ ~j, where j = 1, 2, .. , n, be a natural projection.

By (3) and definition of the synchronous product, it follows that fortE {1, 2, .. , k },

Occu(.Fj(st)) = fJ,j(ii(t)) and Pi(s1)Pi(s2) .. Pi(st) E L(Si)

By a similar logic as above, we have

until we get

~i(x(O), fJ,}(ii(1)))

=xi(1)

=~j(X0,j, .Fj(sl)) E Xsamp,j

xi(k) =~i(x(k- 1), fJ,}(ii(k)))

with Xj(k) = ~j(Xo,j, Pj(sl)Fj(s2) .. Pj(Bk)) E Xsamp,j

By Definition 4.2.11 for n, it is easy to see that (Vt E {1, 2, .. , k})q(t) = A(x(t))

and Q,j(t) = Ai(xi(t)).

72 4. Moore Synchronous Finite State Machines

By definition of the synchronous product

x(k) =~(xo, s1s2 .. sk)

=(6(xo,l, g(sl)g(s2) .. g(sk)),

6(xo,2, P2(s1)P2(s2) .. P2(sk)), .. ,

~n(Xo,n' Pn(sl)Pn(s2) .. Pn(sk)))

=(xl (k), x2(k), .. , Xn(k))

Claim B proven.

Let k E {0, 1, .. }

We are now ready to show that z(k) = z'(k)

as required.

We next note that by Claim B, that after inputs i(O), i(1), ... i(k) from {i(k") },

controller Cis in state q(k) = A(x(k)) for some x(k) E Xsamp and each Cj is in

state QJ(k) = Aj(Xj(k)) for some Xj(k) E Xsamp,j and x(k) = (x1 (k), X2 (k), .. , Xn(k)).

We can now apply Claim A with q = q(k) and each Q.j = QJ(k) for j = 1, 2, .. , n,

and conclude that for Cat state q(k) and C' at state q 1(k)q2(k) .. qn(k), they

will produce the same output. In other words, z(k) = z'(k), as required.

By steps 1., 2., and 3., we can thus conclude that C and C' are output equivalent

with respect to S.

0

Chapter 5

Control and Non blocking

Verification

A controller is more constrained than a supervisor. Every time an event occurs, the

supervisor changes its state, but a controller reacts only on sampling instances (tick

event). This means it is possible that the enablement information from the controller

may not always be exactly the same as that of the supervisor's, as a supervisor can

be more expressive in this regard. We want to make sure that the corresponding en

ablement information that the controller applies to the plant is such that the system's

closed loop behavior (the actual behavior of the plant reacting to the controller's en

ablement information and the event forcing initiated by the controller) stays a subset

of the desired behavior specified by the supervisor.

5.1 Supervisory Control Construction

First we have the following definition from [6].

Definition 5.1.1. A TDES supervisory control for G = (Y, ~' 8, y0 , Ym) is any map

V: L(G) ---? Pwr(~), such that,

(!Is E L(G))V(s) ::2 { E, U ({ r} ~~ligL(G)(s)) if V(s) n EligL(a)(s) n ~hib = 0
if V(s) n EligL(a)(s) n ~hib =I= 0

From now on, we will just use the term supervisory control when it is clear by our

context that we are referring to TDES.

73

74 5. Control and Nonblocking Verification

We will be requiring that prohibitable events can only occur at most once per

sampling period. This is to simplify things a bit, but is primarily as we only decide

to force an event once per clock cycle, it makes sense that the event only occurs once

per clock cycle. If the controller has full control over when the event occurs, this is

what will happen so the TDES behavior should reflect this. It makes it easier to keep

track of things. Also, Point iii.l of the SD controllability definition does not say

anything about eligibility of ~hib events after they have occurred once. As we will see

in the proofs in this section, this assumption will be a key part in making the proofs

work.

Definition 5.1.2. For TDES G = (Y, ~' 8, Yo, Ym), we say that G has singular pro

hibitable behavior if,

('is E L(G) n Lsamp)('is' E Lcanc)ss' E L(G)

==::;. (\fa E Occu(s') n ~hib)(:3sl, S2 E (~act- {a})*)s' = slas2r

In other words, the above condition says that for TDES G, a prohibitable event

is allowed to occur at most once per sampling period.

If TDES G is our plant and TDES Sis our supervisor, we likely only care about

checking this condition for strings in L(S) n L(G). We thus introduce the definition

below. An example that fails the S-singular prohibitable behavior property is shown

in Figure 5.1. Here we see the prohibitable event a occurring twice in a sampling

period.

Definition 5.1.3. For TDES G = (Y, ~' 8, Yo, Ym) and TDES S = (X,~'~' x 0 , Xm),
we say that G has S-singular prohibitable behavior if

('is E L(S) n L(G) n Lsamp)('is' E ~:ct)ss' E L(S) n L(G)

==::;. (\fa E Occu(s') n ~hib) a (j_ EligL(G)(ss')

Figure 5.1: An Example FailingS-singular Prohibitable Behavior Property

Let G = (Y, ~' 8, y0 , Ym) be a TDES plant. For the rest of this chapter, we will

require plant G to be complete for our supervisor S, have proper time behavior and

5. Control and Nonblocking Verification 75

S-singular prohibitable behavior, and that meet(G, S) be ALF. This will ensure that

for any strings E L(G) (or L(V/G) if G is not ALF on its own), we will always be

able to reach a state where tick is possible after at most a finite number of activity

events. In other words, we will not "stop the clock." This is important as it ensures

that after every sampled string in our system has occurred, all new behavior can be

represented as a series of concurrent strings.

Definition 5.1.4. We write V /G to represent G = (Y, ~' 8, Yo, Ym) under the su

pervision of V. The closed behavior of V/G is defined to be L(V/G) ~ L(G) such

that

1. E E L(V/G);

2. if s E L(V/G), o- E V(s) and so- E L(G), then so- E L(V/G);

3. no other strings are in L(V/G).

It follows from the above definition, that L(V /G) is prefix closed.

Let supervisor S = (X,~'~' X 0 , Xm) be CS deterministic and SD controllable

with respect to our plant G. Let C = (I, Z, Q, n, <I>, Qres) be a centralized controller

translated from S using the method described in Section 4.2.3, with input and output

event mapping functions 'Y (see Definition 4.2.2) and 'f/ (see Definition 4.2.3), and input

and output set mapping functions r1 (see Definition 4.2.9) and rz (see Definition

4.2.10).

To verify that our controller C will generate the correct enablement information

for our plant, we construct the corresponding supervisory control V for G. The idea is

to express the enablement information that the controller would provide to the plant

as a supervisory control. In particular, we wish to capture the idea that enablement

information only changes after a tick, and then stays constant till the next tick. We

also want to express the forcing information the controller provides to the plant, in

particular the fact that as soon as a prohibitable event is enabled, the controller will

force the event to occur within the current sampling period.

The construction of our supervisory control V will be presented as an algorithm.

We will use the logic in the algorithm to do the verification. First, we need to have the

following definition. An important aspect of sampled strings is that they delineate

76 5. Control and Nonblocking Verification

the concurrent behavior of G, which interprets how G moves from one sampling state

to another.

Definition 5.1.5. For TDES G = (Y, ~' 8, Yo, Ym), the concurrent behavior of G is

defined to be a map CBa : L(G) n Lsamp--+ Leone, such that for s E L(G) n Lsamp,

CBa(s) := {s' E Leonelss' E L(G)}

It states that the possible concurrent behavior for a TDES G after sampled string

s E L(G) n Lsamp' is the set of concurrent strings that can extends to a string in the

closed behavior of G.

We now discuss our conversion algorithm, labeled Algorithm 5.1. Given G and the

controller C acting on G, our algorithm constructs our supervisory control map V,

by keeping track of how our controller changes state in response to strings generated

by our plant. In our next section, we will show the map V is well defined. We first

describe some variables that we will use in our algorithm.

Pend ~ Lsamp x Q is the set of pending (s, q) pairs to be analyzed, where

s is a sampled string in L(G), and q is the corresponding state

in the controller that the sequence of inputs that would match the

concurrent strings that make up s, unless of course s = E. If s = E,

then q would be our reset state.

~v is the set of prohibitable events enabled by V (s), for current sampled

string s that we are processing.

~temp is a copy of ~v that we make when we are processing a concurrent

string that extends the sampled string, s, that we are currently pro

cessing. This will be used to keep track of which prohibitable events

in ~v have not yet occurred in substrings of the concurrent strings

that extends in L(G).

Next, we will explain the statements in Algorithm 5.1 in detail. Note that Algo

rithm 5.1 may never terminate as the language L(G) may not be finite, thus giving us

a non-finite number of string-state pairs to evaluate. The algorithm merely describes

abstractly how map V is related to controller C. We will then use this to compare

the control behavior of V to that of our supervisor, S, that C was translated from.

5. Control and Nonblocking Verification

Algorithm 5.1 Obtaining V from controller C, acting plant G
1: for all s E L(G) do

2: V (S) f- Eu U { 7}
3: end for

4: Pend f- {(t:, qres)}

5: while Pend =I 0 do

6: (s, q) f-a member from Pend

7: Pend f- Pend- {(s, q)}
8: Zf-q,(q)

9: Ev f- r:z1(z)

10: if Ev =I 0 then

11: V(s) f- (V(s) U Ev)- {7}
12: end if

13: for all s' f- u1u2 .. ui E CBa(s) do I I ui = 7 by definition

14: if (Occu(s') n Ehib ~ Ev) 1\ (ss' E L(S)) then

15: Etemp f- Ev

16: if- rJ(Occu(s') - { 7})

17: q'f-O(q,i)

18: Pend f- Pend U {(ss', q')}
19: if j > 1 then

20: for i f- 1 to j - 1 do

21: Etemp f- Etemp - Ui

22: if Etemp =I 0 then

23: V(su1u2 .. ui) f- (V(su1u2 .. ui) U Ev)- {7}
24: else

25: V(su1u2 .. ui) f- (V(su1u2 .. ui) U Ev)

26: end if

27: end for

28: end if

29: end if

30: end for

31: end while

32: return V

77

78 5. Control and Nonblocking Verification

Initially, the for-loop from line 1 to line 3 includes all events a E :Eu U { T} in

V (s) for all s E L(G), to ensure all uncontrollable events are eligible in V (s). This

is needed to satisfy the controllability definition. This is the default setting for each

possible strings. The tick event will be removed later, if we are suppose to be forcing

an event.

A controller always starts operating at its reset state, so this will be the first state

we will examine. As this corresponds to the empty string, our starting place is thus

the tuple (t:, q). On line 4, we thus initialize our set of pending tuples to (t:, q).

The set Pend contains all the state-string pairs that have not been analyzed, and

its members will be extracted one by one in the while-loop running from line 5 to

line 31. There are two parts in the while-loop, where we process V(s) and then

V(sa1a2 .. ai) fori< ls'l, s' E CBa(s).

At line 6 in the while-loop, a member (s, q) is extracted from the set Pend.

This is the next tuple to be analyzed.

At line 8 output vector z is obtained from the current controller state q by

applying output function q>. Vector z represents all the prohibitable events that the

controller enables while it is at state Q. Then at line 9, all the prohibitable events

enabled by the controller at current state q are included in :Ev. This is done by using

the inverse of the output set mapping function r:z1(q) from Definition 4.2.10.

At line 11 the enablement information :Ev is included in V(s) for current sampled

strings. As mentioned, the tick event included at line 2 is removed here in accordance

to Point ii of the SD controllability definition (Definition 3.2.2). Basically, it says

if we have eligible prohibitable events enabled, we must disable a tick and force the

event. Of course, when we later show that the map V we have defined is indeed a

TDES supervisor control, we will have to show that these prohibitable events were

eligible in L(G) at this point.

The for-loop from line 13 to line 30 loops through all possible concurrent strings

s' = a1a 2 .. ai E CBa(s) (i.e. those that can extends in L(G)). First, it calculates

the input vector, i, that would correspond to s' occurring. This is done by using the

controller's input event mapping function, r 1 . We then use the controller's next state

function, n, to calculate q', the state reached from q by input vector i. Recall that

CBa(s) from Definition 5.1.5 is the concurrent behavior at state 8(y0 , s) in G.

At line 14, we ignore concurrent strings whose occurrence images contain pro-

5. Control and Nonblocking Verification 79

hibitable events that are not in Ev. The reason is that these events have been disabled

by the controller, so this represents behavior that will not occur in the closed loop

system, so we just leave it at the default enablement information specified at line 2.

We also ignore concurrent strings that do not represent behavior in L(S), thus

restricting the strings we can change from their line 2 defaults, to strings in L(S) n
L(G). The reason is that we later need to prove that our V satisfies Definition 5.1.1.

We will do this later by first showing that L(V/G) = L(S) n L(G), and then use the

fact that S is SD controllable for G.

At line 15, all prohibitable events in Ev are copied to Etemp, which stores pro

hibitable events in Ev that have not yet occurred in this sampling period. At line

18, the new string-state pair (ss', q') is added to set Pend.

At line 19, the if statement checks if s' contains events other than tick. Since

the only tick event in a concurrent string is the ending event, it only checks if j > 1

for j = Is'!. If so, we execute lines 20 to 27.

In the inner most loop from line 20 to line 27, we analyze each substring u1u2 .. ui,

i < j.
For lines 22 to line 26, if there are still prohibitable events in Etemp that have

not yet occurred, the map V(su1u2 •• ui) has to remove the tick event since in our

setting, enabling a prohibitable event also means we want to force it. Otherwise we

leave the tick event in V(suw2 •• ui)· In either case, we add Ev to V(suw2 .• ui) since

the enablement information of a controller is constant until the next tick event.

In the rest of the chapter, when we are discussing a system with plant G, and CS

deterministic TDES supervisorS that is SD controllable for G, we will be concerned

about the SD controller C that is constructed from S using the translation method

described in Section 4.2, and TDES supervisory control V 1 that is constructed from

C using Algorithm 5.1.

Definition 5.1.6. For plant G, and CS determ~nistic supervisorS that is SD control

lable for G, let C be the SD controller that is constructed from S using the translation

method described in Section 4.~, and V be the map that is constructed from C using

1 We still need to prove that our map V is indeed a TDES supervisory control, and that the map
is well defined. We will prove this in the following sections.

80 5. Control and Nonblocking Verification

Algorithm 5.1. The marked behavior of V/G is defined to be

Lm(V/G) := L(V/G) n Lm(S) n Lm(G)

We say V is nonblocking for G if

Lm(V/G) = L(V/G)

That is, a nonblocking supervisory control V for G can always reach a marked

state in both G and S by extending the current strings E L(V /G).

5.2 Map VIs Well Defined

We want to show that the map V constructed using Algorithm 5.1 is well defined for

any possible string s E £(G) so that it can be considered as a possible supervisory

control.

For example, Let TDES G be a plant defined over .E = {a, ,8, J', w, T} where

T = tick. Let .Ehib = {a, ,8, I'}. Let C be the controller acting on G. Imagine a part

of G as shown in Figure 5.2.

a

Figure 5.2: Part of a TDES plant

In the figure, let s E £(G) be the string taking us to the left most sampling state.

We see there are two concurrent strings s~ = a,B')'WT and s~ = a,BWJ'T extending s in

different paths so that ss~, ss~ E L(G). Lets= a,B to be the prefix of both s~ and

s~. Since Algorithm 5.1 will evaluate V(ss) twice (lines 22 to 26), we want to make

sure each time V(ss) is assigned the same control action for both paths in the figure.

We also need to make sure that every string s E Lsamp n L(G) is either evaluated

once, or is always associated with the same state q of the controller. We then have

the following proposition to be proven.

5. Control and Nonblocking Verification 81

Proposition 5.1. For plant G = (Y, ~' t5, Yo, Ym), and CS deterministic supervisor

s = (X,~' e, Xo, Xm) that is SD controllable for G, let c be the SD controller that is

constructed from S using the translation method described in Section 4.2.3, and V be

map that is constructed from C using Algorithm 5.1. Then, map V is well defined.

Proof. Assume initial conditions for proposition.

To show that V is well defined, we need to show that for every 8 E L(G), our

algorithm will define V(8) in only one way.

From the definition of Algorithm 5.1, it is clear that for all s ¢ L(S) n L(G) n Lsamp'

the algorithm only defines V(s) exactly once on line 2.
~~--~~------

This means we only have to examine strings s E L(S) n L(G) n Lsamp·

Let 8 E L(S) n L(G) n Lsamp·

Further examination of Algorithm 5.1 shows that V(8) is only updated on line

11, line 23 and line 25, if at all.

Examining these cases, we see that if s E Lsamp' it will only be updated at line

11. Otherwise, it could be updated once or more at line 23 or line 25.

Case A) S E Lsamp

We first note that we only care about sampled strings that are added to Pend. If

s is never added to Pend, it is only defined at line 2 and is never updated, thus is

uniquely defined. We can thus assume that s is added at some point to Pend, without

loss of generality.

To show that there is only one way to define V (s), it is sufficient to show that

whenever line 11 was executed for s, ~v was always the same. Clearly, as long as

~v is the same, then executing line 11 again will produce the same result as the

first time. As ~v is uniquely defined by state q of controller C, it is thus sufficient

to show that strings will always be paired with state q.

If s = €, then by definition this is always paired with state Qres· Studying the

algorithm, it is easy to see this is the case. We thus need only consider the case of

s E ~*.r.

Examining Algorithm 5.1, we can see that every such string in Pend, is constructed

by concatenating one or more concurrent strings together.

82 5. Control and Nonblocking Verification

For s, we thus have:

(:ln E {1, 2, .. })(:lsb s2, .. , Sn E Leone)sls2··Sn = S

As Leone= ~;ct.T, there is only way to define strings s1 to Sn·

Examining line 16 and line 17 of the algorithm, we see how starting with Qres,

each new state would be calculated using the next concurrent string in the list. Ex

amining the definition of r 1 and n from Section 4.2.3, and~ from Section 3.1, we can

see that since supervisorS is CS deterministic and s E L(S) n Lsamp, this sequence of

states is unique, meaning the final state q associated with s is unique for controller

c.
We thus conclude that we will always associate the same state q with s, thus the

same set ~v.

Case B) S fi Lsamp
This implies (:lt E Lsamp)(:Ji E Leone)t < s < ti
We note that this implies (:lj > 1)(:3ab a2, .. , ai E ~)i = a1a2 .. ai

We thus have (:Ji E {1, 2, .. , j- 1})ta1, a2, .. , ai = s

Note that in above, we have j > 1 since as t < s < ti, j = 0, 1 would cause a

contradiction. Basically, j = 0 would mean i = c, thus ti = t and we could not have

t < s < t. If we had j = 1, we would have i = T as i E Leone· As we require t < s, s
must contain at least one event more than t, but that would not also allows< ti as

i only contains one event. We thus must have j > 1.

We note if for all such i they fail the condition on line 14, or if twas never added

to Pend, then V (s) will never be updated again, and will retain the value it was

assigned on line 2. Thus, with no loss of generality, we can assume that twas added

to Pend and our i passes the condition on line 14. We thus have t, tiE L(S) nL(G).
Given the definition of Leone and sampled strings, it is easy to see that there is

only one way to define all a2 , •• , ai, and thus sampled string t.
From Part A, we saw that for a given sampled string, there is only one way to

define the corresponding ~v set. Of course, it is possible that there are multiple ways

to define ai+l··ai.

Examining Algorithm 5.1, we see that the portion that we are concerned with

corresponds to line 19 to line 28. Examining these lines, we see that the definition

of V(s) is determined only by ~v and ta1, a2, .. , ai, which are unique for s.

5. Control and Nonblocking Verification 83

It thus follows that V(s) is unique defined for ours.

By Case A and Case B, we have shown that Vis well defined. D

5.3 Supervisory Control and SD Supervisors

Given the map V constructed from C by Algorithm 5.1, we want show that the closed

loop behavior L(V/G) equals the behavior of meet(G, S), i.e.

L(V/G) = L(S) n L(G)

By Definition 5.1.4 for L(V/G), we find that {E} ~ L(V/G) ~ L(G). We thus

need to make sure that L(G) =f:. 0. This is automatic as long as G has an initial state.

Theorem 5.1. For plant G = (Y, 'E, 8, Yo, Ym), and CS deterministic supervisorS=

(X, 'E, 8, X 0 , Xm) that is SD controllable for G, let both TDES have finite statespaces,

let G be complete for S, have proper time and S-singular prohibitable behavior,

let meet(G, S) be ALF, let C = (I, Z, Q, n, <I>, Qres) be the SD controller that is

constructed from S using the translation method described in Section 4.2.3, and let

V be the map that is constructed from C using Algorithm 5.1. Then,

L(V/G) = L(S) n L(G)

Proof. A~sume assumptions in proposition setup.

To show L(V/G) = L(S) n L(G), we must

1. show L(V/G) ~ L(S) n L(G)

2. show L(V/G) 2 L(S) n L(G)

To show 1, must show 1.1 and 1.2 as follows.

1.1 show L(V/G) ~ L(G)

This is automatic by Definition of L(V/G) and the fact G contains an initial

state.

84 5. Control and Nonblocking Verification

1.2 show L(V/G) ~ L(S)

To show this, we must show

(Vs E L(V/G))s E L(S) (1)

Lets E L(V/G). We can show it by induction as follows.

base case s =c.

As S contains an initial state, it follows that c E L(S).

inductive step We assume that s = u 1 .. uk E L(V/G) n L(S) and suk+l E

L(V/G) for some k :2: 0. We will now show this implies that

suk+l E L(S)

Since :E = :Eu U :Ec = :Eu U :Ehib U { T} by definition of TDES, we have 3

cases for uk+l E :E

(i) fJk+l E :Eu

As SC7k+l E L(V/G), it follows that (Jk+l E EligL(G)(s) n :Eu As s is

SD controllable for G, it follows that uk+1 E EligL(S) (s), thus suk+l E

L(S)

(ii) fJk+l = T

To show T E EligL(s)(s), by Point ii in Definition 3.2.2 of SD control

lability (since S is SD controllable for G) we need to show

(T E EligL(G) (s)) 1\ (EligL(S)nL(G) (s) n :Ehib = 0)

Since L(V/G) ~ L(G) as shown in 1.1, we have

Now we need to show

T E EligL(V/G)(s)

~ T E EligL(G)(s)

EligL(S)nL(G) (s) n :Ehib = 0

5. Control and Nonblocking Verification 85

By default, the tick event is included in V(8) at line 2. In the algo

rithm, tick is only removed if Ev =J 0 at line 11 or Etemp =J 0 at line

23.

We thus have four possibilities: a) 8 E Lsamp' Ev = 0 and 8 was

added to Pend, b) 8 ¢ Lsamp, Etemp = 0, and V(8) is re-evaluated c)

8 E Lsamp and 8 was not added to Pend, or d) 8 ¢ Lsamp and V(8) is

not re-evaluated. We now examine these cases.

(ii.a) 8 E Lsamp, Ev = 0, and 8 was added to Pend.

As 8 E Lsamp' either it is the empty string, or 8 E E* .T. For the

case 8 = E, we have A(xo) = Qres (see Definition 4.2.8), which

matches the state-string association that Algorithm 5.1 makes.

Otherwise, 8 is composed of one or more concurrent strings. We

thus have

As Leone= E;!ct.r, there is only way to define strings 81 to 8n·

Based on the definitions from Section 4.2.3, we can determine the

state in C that will correspond to string 8, by starting with Qres,

and evaluating

As s is cs deterministic, it follows from the definitions of r I and

n that Ql = A(xi), where XI = e(xo, 81). Note that we have

8 1 E L(S) as the language is closed.

By the same logic we have

86 5. Control and Nonblocking Verification

Extending this logic to the end, we have

and Qn = A(xn), where Xn = e(xo, sls2··sn)· To simplify the nota

tion, we will take q = Qn and x = Xn.

We thus have q the state the controller C will be in after string

s, and x E Xsamp the state that Swill be in, while q = A(x). It

is easy to see by the logic of Algorithm 5.1, that string s will be

paired with state q. See proof of Proposition 5.1 for more details.

We next note that the outputs at state q are z = <I>(q). We thus

have by Definition 4.2.12 that z = fz(((x)).

By the definition of control action given in Definition 3.2.3, it

follows that ((x) = {a E ~hibJe(x, a)!}. As ~v = f:Z 1(z) as per

line 9 of Algorithm 5.1, we thus have ~v ={a E ~hible(x, a)!}.
As we have ~v = 0 by assumption, we thus have

{a E ~hible(x, a)!} = 0

which implies

EligL(s) (s) n ~hib = 0
==::;. EligL(S)nL(G)(s) n ~hib = 0

as required.

Part (ii.a) complete.

(ii.b) sf/ Lsamp, ~temp= 0 and V(s) is re-evaluated.

As V(s) is re-evaluated and s tJ. Lsamp, then it follows from the

logic of Algorithm 5.1 that

(:Jt E Lsamp n L(S) n L(G))(:J£ E Leone)

(t < s < tf) 1\ (tt E L(S) n L(G)) (1)

5. Control and Nonblocking Verification 87

It also follows that:

(::Jl E {1, 2, .. })(::Ja1, 0"2, .. , 0"! E ~act C ~) ta1a2 .. al = S

Now, from the logic of part (ii.a), we know that string t will

be paired in Pend with a state q, such that q = A(x), where

x = ~(x0 , t). We thus have

~v = EligL(s)(t) n ~hib
==} EligL(S)nL(G)(t) n ~hib ~ ~v

We now note that asS is SD controllable for G, we have by Point
iii.l of Definition 3.2.2,

(EligL(S)nL(G)(s) u Occu(ai0"2 .. 0"!)] n ~hib

= EligL(S)nL(G)(t) n ~hib ~ ~v

::::} (EligL(S)nL(G)(s) u Occu(ai0"2 .. 0"!)) n ~hib ~ ~v
::::} EligL(S)nL(G)(s) n ~hib ~ ~v (2)

It follows from the logic of Algorithm 5.1 and fact that ~temp= 0,
that

In other words, every prohibitable event in ~v has occurred at

least once since t (i.e. this sampling period).

As t E L(S) n L(G) by (1), and G has S-singular prohibitable

behavior by our initial assumptions, it follows that the prohibitable

events in ~v cannot occur again in i (i.e. not until after next tick).

This implies

EligL(G)(s) n ~v = 0

Since EligL(S)nL(G)(s) n ~hib ~ ~v by (2), it follows that

EligL(S)nL(G)(s) n ~hib = 0

as required.

Part (ii.b) complete.

88 5. Control and Nonblocking Verification

(ii.c) s E Lsamp and s not added to Pend

We will show that s E Lsamp causes a contradiction and thus s

must be added to Pend. This means that case (ii.a) represents

the only valid possibility, if s E Lsamp

We note that Lsamp =~*.tick U {c}. If s = E, then we know E is

always added to Pend (line 4 of Algorithm 5.1), so this section

does not apply. We can thus assumes =I= E, and thus s E ~* .T

Our goal is to show that s will always be added to Pend, thus

(ii.c) never applies.

Ass E ~* .T, if follows

To show that s must be added to Pend, we need to show:

(\fl E {1, 2, ... , n})
(s1s2 .. sz E L(S) n L(G)) 1\ (Occu(sz) n ~hib ~ ~v(sls2 .. sz-I))

where ~v(s1 s2 .. sz_1) is the value of ~vat line 14 in the algorithm

when sampled string s1s2 .. s1_ 1 is being evaluated.

Let l E { 1, 2, ... , n}.

Ass E L(S) nL(G) by assumption, and L(S) and L(G) are closed

languages, s1s2 .. sz E L(S) n L(G) is automatic.

All that remains is showing

We know from part (ii.a) that sampled string s1s2 .. s1_ 1 will always

be paired with state q of the controller, with q = A(x), where x =

~(x0 , s1s2 .. sz_1). This state q is the state the controller will be in

after this string, thus ~v(s1 s2 .. sz_1) will be the enablement output

(as per definition of Algorithm 5.1) of the controller until after the

5. Control and Nonblocking Verification 89

next tick occurs. That means for all a E Ehib- Ev(sls2 .. sl-1), a
will be disabled until after concurrent string sl has occurred. As

s E L(V/G) by assumption, we also have s1s2 .. sl E L(V/G) as

L(V/G) is closed and s1s2 .. sl :::; s. This means sl cannot contain

any events in Ehib- Ev(sls2··sl-1), thus

We have thus shown that for s =for s E E* .T, it must have been

added to Pend. This means that (ii.c) does not apply to sat all,

so strings must be covered by case (ii.a).

Part (ii.c) complete.

(ii.d) s ~ Lsamp and V(s) is not re-evaluated.

We now examine case of s ~ Lsamp and show that it must have

been re-evaluated at line 23 or line 25, thus case (ii.b) is the

only valid possibility for s ~ Lsamp·

As S ~ Lsamp' it follows that: (::Jt E Lsamp)(3t E Lconc)t < S < ti

It also follows that

(3l E {1,2, .. })(::Ja1,a2, .. ,alE Eact C E)ta1a2 .. al = s (3)

To show that V(s) must have been re-evaluated at line 23 or line

25, it is sufficient to show that t must be added to Pend, and that

there exist a i that will pass the condition on line 14.

We first note that ass E L(S) n L(G), it follows that t E L(S) n
L(G) as L(G) and L(S) are closed languages. Similarly, as s E

L(VfG), we also have t E L(V/G).

We can thus apply the logic from (ii.c), and conclude that t must

be added to Pend, and it will be paired with state q of the con

troller with q = A(x) where x = ~(x0 , t). State q is the state the

90 5. Control and Nonblocking Verification

controller will be in after string t, thus L:v will be the enablement

output of the controller, where

(4)

We now need to show:

(3£ E Leane)
(s < ti) 1\ (tin L(S) n L(G)) 1\ Occu(i) n L:hib ~ L:v

We start by constructing a string f E Leone that satisfies the first

two conditions.

We note that by assumption, G and S have finite statespaces,

G has proper time behavior, meet (G, S) is ALF, and that S is

controllable for G (this is implied by fact S is SD controllable for

G). We can thus apply Proposition 2.4 and conclude

(3s' E L:*)ss'T E L(S) n L(G)

We can thus take f = 0'10'2 .. 0'1s'T and we haves < ti (by (3)) and

tiE L(S) n L(G).

All that remains is to show

From (4), we have

L:v = EligL(S)(t) n L:hib

===? EligL(S)nL(G)(t) ~ L:v

We now note that asS is SD controllable for G, we have by Point
iii.l of Definition 3.2.2

(Vt' E I::et) (t' < i) ===?

[EligL(S)nL(G)(tt')UOccu(t')]ni:hib = EligL(S)nL(G)(t)nL:hib ~ L:v

5. Control and Nonblocking Verification

If we take t' = (JI(J2 .. (Jls' < t we have

[EligL(S)nL(G)(tt') u Occu(t')] n ~hib ~ ~v
=:::::} Occu(t') n ~hib ~ ~v

As t' T = i, we thus have Occu(i) n ~hib ~ ~v

91

We have now shown, that for s fl. Lsamp' we must have re-evaluated

V(s) at line 23 or line 25, so (ii.d) does not apply. This means

that strings must be covered under (ii.b).

Part (ii.d) complete.

We thus have shown by (ii.a-d), that

EligL(S)nL(G)(s) n ~hib = 0 1\ T E EligL(G)(s)

=:::::} T E EligL(s)(s) by Point ii of Definition 3.2.2

=:::::} S(Jk+I E L(S)

ForsE L(S) nL(G) and s E L(V/G), we know there exists t E Lsamv
and t' E ~~ct such that s = tt'.

From (ii.a), we know that Algorithm 5.1 will pair sampled string t

with state q in the controller, with q = A(x), where x = ~(x0 , t).

Also, we have

~v = EligL(s) (t) n ~hib

:::} EligL(S)nL(G) (t) n ~hib ~ ~v

We now will show that (Jk+I E ~v.

We note that as S(Jk+I E L(V/G), we have (Jk+I E V(s).

From line 2, we see V(s) is initially set to ~u U { T }. This means that

(Jk+I must have been added at line 11 if t' = € and t = s, or at line

92 5. Control and Nonblocking Verification

23 or line 25. In either case it implies our prohibitable event is in

~V·

We thus have

O"k+l E ~v ==} O"k+l E EligL(S) (t)

==} O"k+l E EligL(G)(t) as G is complete for S. (5)

AsS is SD controllable for G, we have from Point iii.l of Definition

3.2.2 that

[EligL(S)nL(G)(tt') u Occu(t')] n ~hib = EligL(S)nL(G)(t) n ~hib (6)

We note that as sak+l E L(V/G), we have sak+l E L(G). As G has S

singular prohibitable behavior, this implies O"k+l has not yet occurred

in this sampling period. Thus

ak+l ¢:. Occu(t')

From (5), we have O"k+l E EligL(S)nL(G)(t).

From (6), we thus have

O"k+l E [EligL(S)nL(G)(tt') U Occu(t')]

As O"k+l ¢:. Occu(t') from (7), it follows that

O"k+l E EligL(S)nL(G) (s)

==} SO"k+l E L(S)

(7)

(as tt' = s)

as required

By (i), (ii) and (iii), we have shown sak+l E L(S) for any ak+l E ~' thus

our inductive step is complete.

Thus by our base case and our inductive step, we have s E L(S) for arbitrary

s E L(V/G). Therefore, 1.2 is complete.

By step 1.1 and 1.2, we have shown L(V/G) ~ L(S) n L(G).

5. Control and Nonblocking Verification (93

2. Show L(V/G) 2 L(S) n L(G)

Let s E L(S) n L(G). We need to show this implies

s E L(V/G)

We will show this using proof by induction.

base case s = E

Automatic that s E L(V/G), by Definition 5.1.4 for L(V/G).

inductive step We assume that s = u1u2 .. uk E L(V/G) nL(S) nL(G) and suk+I E

L(S) n L(G) for some k ~ 0.

We will now show this implies suk+l E L(V/G).

Sufficient to show uk+l E V(s) by Definition of L(V/G), and fact we already

have suk+l E~
Again, since 'E = 'Eu U 'Ehib U { T} by definition of TDES, we have 3 cases for

Uk+l E 'E.

(i) Uk+l E 'Eu

This is automatic by line 2 in Algorithm 5.1, where all uncontrollable

events are included in V(s) for each possible strings by default. Examining

the algorithm, it is clear that uncontrollable events are never later removed.

(ii) Uk+l = T

~ we have ST E L(G) and S is SD controllable for G by assumption, we

'can conclude by Point ii in Definition 3.2.2 that

T E EligL(S)(s) {::::::::} EligL(S)nL(G)(s) n 'Ehib = 0

'fe we have ST E L(S) by assumption, we thus have

(8) EligL(S)nL(G)(s) n 'Ehib = 0
===? EligL(s) (s) n 'Ehib = 0 as G is complete for S (9)

94 5. Control and Nonblocking Verification

Essentially, G complete for S means that if a prohibitable event was ac

cepted by S, it must also be accepted by G, thus in L(S) n L(G). Thus,

the only way there could be no eligible prohibitable events in both, is if

there are none in L(S), otherwise we would have a contradiction.

We next note that Tis initially added to V(S) at line 2 of Algorithm 5.1,

thus we would have T E V(s) unless it is removed at line 11 or line 23.

Now, it is possible that s will never be added to Pend if s is a sampled

string, or that it will never be processed in the for-loop from line 20 to

line 27 if s is not a sampled string. If that was the case, V (s) would have

the default value and we have T E V(s) as required. We can thus, without

any loss of generality, assume that sis added to Pend if s E Lsamp, or sis

processed by the for-loop from line 20 to line 27 if s rt Lsamp·

It is thus sufficient to show that the tick event is not removed at line 11

when s E Lsamp or at line 23 when s ~ Lsamp· The two situations are

discussed individually below.

(ii.a) S E Lsamp

If s E Lsamp, T could only be removed at line 11. To show that it is

not, it is sufficient to show that :Ev = 0.

As we know from (ii.a) in the proof of part 1, Algorithm 5.1 will always

associate with sin Pend, the state q in the controller with q = A(x)

where X= ~(xo, s) E Xsamp· Also, we will have :Ev = EligL(S)(s) n:Ehib

From (9) we know EligL(s)(s) n :Ehib = 0, thus :Ev = 0, as required.

(ii.b) S ~ Lsamp

Ass ~ Lsamp, we know: (::Jt E Lsamp)(::Ji E Lconc)t < s < ti.

As s is being processed by the for-loop from line 20 to line 27, by

assumption we have t£ E L(S) n L(G).

5. Control and Nonblocking Verification 95

Examining from line 22 to line 26 of Algorithm 5.1, we see that to

show T is not removed, it is sufficient to show that when s is processed,

~temp= 0

From the logic of Algorithm 5.1, we see that initially ~temp= ~v, and

~temp= :Ev- {at, a2, .. , ai} by the times is evaluated.

s we know from the logic of (ii.a) in part 1, Algorithm 5.1 will pair

rom the contro er, where q = A(x) an

:Ev = EligL(S) (t) n ~hib
==} EligL(S)nL(G)(t) n ~hib ~ :Ev

.t a ~£7= EligL(s)(t) n ~hib

As a is prohibitable, we immediately know a E EligL(G)(t) as G is

complete for S, which implies a E EligL(S)nL(G)(t) n :Ehib·

::::} ~v = EligL(S)nL(G)(t) n ~hib (10)

As t < 8 < ti, and EligL(S)nL(G)(8)n~hib = 0 by (8), it thus follows that

all prohibitable events that were possible at t, are no longer possible

at 8 in meet(G, S).

AsS is SD controllable for G, we can apply Point iii.l of Definition

3.2.2, and conclude

(EligL(S)nL(G)(8) u Occu(ala2··ai)) n ~hib = EligL(S)nL(G)(t) n ~hib

::::} (EligL(S)nL(G)(8) u Occu(ala2··ai)) n ~hib = ~v by (10).

As EligL(S)nL(G)(8) = 0, by (8) we have

96 5. Control and Nonblocking Verification

This means, after string ta1a 2 .• ai has occurred, every event in Ev has

occurred at least once in a1a 2 .• ai· Thus, by the time s is evaluated,

Etemp = Ev- {a1, a2, .. , ai} = 0

This means that for s, line 25 is executed in Algorithm 5.1, not line

23, so tick is not removed from V(s). Thus T E V(s), as required.

Part (ii. b) complete.

By (ii.a) and (ii.b) we have shown sak+l E V(s) and thus

sak+l E L(V/G)

(iii) ak+l E Ehib

We thus have by assumption

(jk+l E EligL(S)nL(G)(s) n Ehib

Examining Algorithm 5.1, we see no prohibitable event is added to V(s)

at line 2. This means, ak+l could only be added at line 11 if s E Lsamp,

or at line 23 or line 25, if s (j. Lsamp· We thus have two cases to examine.

(iii.a) S E Lsamp
First, we have to show that s will be added to Pend, or it will never

get to line 11.

As we haves E L(S) n L(G) n L(V/G) by assu~ption, we can apply

the same logic that we used in (ii.c) in part 1, to show that s will

always be added to Pend.

We next note that from the logic of (ii.a) in part 1, Algorithm 5.1

will always associate with s in Pend the state q in the controller with

q = A(x), where x = ~(x0 , s) E Xsamp· Also we will have

Ev = EligL(s) (s) n Ehib

As ak+l E EligL(S)nL(G)(s)nEhib, we thus have ak+l E Ev. This means

that the condition at line 10 of Algorithm 5.1 is satisfied, and thus

V(s) +- (V(s) U Ev)- {r}.

Therefore, ak+l E V (s) as required.

5. Control and Nonblocking Verification 97

{iii.b) S ~ Lsamp

First, we need to show that we will reach line 23 or line 25 for s, or

s could only be assigned the default value at line 2.

As we haves E L(S) n L(G) n L(V/G) by assumption, we can apply

the logic of (ii.d) in part 1, and conclude

~mp)W=)t < S < ti

such that twill be added to Pend and associated with state q in the

controller with q = A(x), where X= e(xa, t). Also, Ev = EligL(s)(t) n
@ (11)

Also, i is such that the condition at line 14 will be satisfied, and thus

line 23 or line 25 will be reached.

We also note

Now, since either line 23 or line 25 will be executed, Ev will be

added to V (s). It is thus sufficient to show O"k+l E Ev.

Since by assumption O"k+l E Ehib, and O"k+l E EligL(S)nL(G)(s), it fol

lows that

O"k+l E EligL(S)nL(G) (s) n Ehib (12)

AsS is SD controllable for G, we can apply Point iii.l of Definition

3.2.2, and conclude

(EligL(S)nL(G)(s) u Occu(u10"2 .. 0"i)) n Ehib = EligL(S)nL(G)(t) n Ehib

=} O"k+l E (EligL(S)nL(G)(s) u Occu(O"I0"2 .. 0"i)) n Ehib, by (12).

Thus O"k+l E V(s), as required.

98 5. Control and Nonblocking Verification

By part {iii.a) and (iii.b), we have O"k+l E V(s), as required.

Part iii complete.

By cases i-iii, we have O"k+l E V(s). We thus have sak+l E L(V/G), thus our

inductive step is complete.

Thus by our base case and our inductive step, we have shown s E L(V/G)
for arbitrary s E L(S) n L(G).

Part 2 is complete.

We have shown 1 and 2, thus we have shown L(V/G) = L(S) n L(G). D

We are now ready to show that the V we constructed in Algorithm 5.1 with the

given system requirements, is indeed a TDES supervisory control.

Proposition 5.2. For plant G = (Y, ~' 8, Yo, Ym), and CS deterministic supervi

sor S = (X,~' 8, X 0 , Xm) that is SD controllable for G, let both TDES have finite

statespaces, let G be complete for S, have proper time and S-singular prohibitable

behavior, let meet(G, S) be ALF, let C = (I, Z, Q, 0, <I>, qres) be the SD controller

that is constructed from S using the translation method described in Section 4.2.3,

and let V be the map that is constructed from C using Algorithm 5.1. Then map V

is a TDES supervisory control for G.

Proof. Lets E L(G).

To show that V satisfies Definition 5.1.1, we need to show 1) V(s) 2 ~u and 2)

[(T E EligL(G)(s)) 1\ (V(s) n EligL(G)(s) n ~hib = 0)] ===?- T E V(s).

1) Show V(s) 2 ~u

This is automatic as V (s) = ~u U { T} is set at line 2 of Algorithm 5.1, and as

T ¢: ~u, no a E ~u is ever removed from V (s).

2) Show [(T E EligL(G)(s)) 1\ (V(s) n EligL(G)(s) n ~hib = 0)] ===?- T E V(s)

Assume T E EligL(G)(s) and V(s) n EligL(G)(s) n ~hib = 0

5. Control and Nonblocking Verification 99

We will now show this implies T E V (s)

We first note that as the assumptions of Theorem 5.1 are satisfied, we can

conclude L(V/G) = L(S) n L(G)

We next note that Tis initially added to V(s) at line 2 of Algorithm 5.1. If s

is not processed again at line 11, line 23 and line 25, we have T E V(s)

As we initializes Pend to (E, qres), and we see that only strings in L(S) n L(G)
will ever be added to Pend or processed at line 23 or line 25 (this can be seen

by line 13 and line 14). This means if s tJ. L(S) n L(G), we get the default

value from line 2 and thus have T E V (s).

We only need to still considers E L(S) n L(G).

We will now show that EligL(G)(s) n ~hib = 0.

(1)

By definition of L(V/G) (Definition 5.1.4), for a E ~hib, we would only have

sa E L(V/G) if s E L(V/G), a E V(s) and sa E L(G).

We haves E L(V/G) = L(S) n L(G) from (1), so for sa E L(V/G), we would

need a E V(s) n EligL(G)(s). However, we have V(s) n EligL(G)(s) n ~hib = 0 by

assumption, thus

(Va E ~hib)sa tj. L(V/G) = L(S) n L(G)

==> EligL(S)nL(G)(s) n ~hib = 0

As S is SD controllable for G, we can conclude by Point ii of Definition 3.2.2

that, T E EligL(s)(s). Since by assumption, we have T E EligL(G)(s), we have

T E EligL(S)nL(G)(s) = EligL(V/G)(s)

==> ST E L(V/G)

Ass E L(V/G), sT E L(G) and ST E L(V/G), it follows from Definition 5.1.4

that T E V(s), as required.

From points 1) and 2), we thus conclude that Vis a TDES supervisory control. D

100 5. Control and Nonblocking Verification

We have now captured the enablement and forcing behavior of our controller as

a map V, and shown that if G and S have the appropriate properties, V is indeed a

TDES supervisory control. We have also shown that the closed behavior of Gunder

the control of V, L(V/G), is exactly that of the closed behavior of the meet(G, S),

namely L(S) n L(G). This means that the behavior we get when our controller acts on

our plant is what we expect, at least with respect to enablement and forcing behavior.

Of course, this is assuming that none of the time delay issues we discussed in Section

3.3 occur.

We will now show that V is nonblocking for G if and only if the meet of G and

S are nonblocking.

Proposition 5.3. For plant G = (Y, ~' 8, y0 , Ym), and CS deterministic supervi

sor S = (X,~' 8, X 0 , Xm) that is SD controllable for G, let both TDES have finite

statespaces, let G be complete for S, have proper time and S-singular prohibitable

behavior, let meet(G, S) be ALF, let C = (I, Z, Q, n, <I>, Qres) be the SD controller

that is constructed from S using the translation method described in Section 4.2.3,

and let V be the map that is constructed from C using Algorithm 5.1. Then V is

non-blocking for G if and only if meet(G, S) is non-blocking.

Proof. To show this, it is sufficient to show that L(V/G) = L(S) n L(G), and

Lm(V/G) = Lm(S) n Lm(G).

As the assumptions of Theorem 5.1 are satisfied, we can conclude L(V/G) -
L(S) n L(G).

We next note that by Definition 5.1.6, we have

Lm(V/G) =L(V/G) n Lm(S) n Lm(G)

=L(S) n L(G) n Lm(S) n Lm(G) after substitution for L(V/G)

=Lm(S) n Lm(G) as Lm(G) ~ L(G) and Lm(S) ~ L(S)

as required. D

5.4 Concurrent Supervisory Control Equivalent

In general, the order that events occur in the physical plant during a given sampling

period, are that dictated by the plant model, and are allowed by the enablement

5. Control and Nonblocking Verification 101

and forcing behavior of the plant's SD controller. However, in practice time delay

restrictions and the particular implementation of our controller might mean that all

concurrent strings that should be possible in a given sampling period according to

our plant model, may not actually be possible in practice.

For instance, we may be expecting that we could either get string a{3T or {3et.T

(a, {3 E ~hib), yet it may be that only string a{3T will ever occur due to time delay or

the specific implementation of our controller. With respect to time delay, it could be

possible, for example, that a always reaches our controller's inputs first. With respect

to implementation, our controller might have to execute the events sequentially and

always chooses to first do an a then a {3 as it must choose an execution order (people

typically would not design a controller that randomly chooses an execution order each

time). Another possibility is that the controller could start a and {3 tasks at about

the same time, but {3 always takes longer (in this particular implementation of our

controller) to occur.

This could be a problem if, for example, only string {3et.T lead back to a marked

state. In such a case, our TDES system would be nonblocking and controllable, but

our implementation would block. We want to ensure that if our TDES system is

nonblocking, and in our actual controlled system where we have a set of possible

concurrent strings with the same occurrence image that could occur (according to

our TDES model) in a given sampling period, if at least one of these strings can

actually occur, our implementation would still be nonblocking. In other words, we

wish our system to be robust with respect to nonblocking and this uncertainty.

We will now show that the conditions that we have developed will in fact guarantee

this. We will frame our argument in terms of supervisory controls. Given a TDES

G = (Q, ~' c5, q0 , Qm) and supervisor control V for G, we want to be able define a

supervisor control V' such that if V allows a set of concurrent strings with the same

occurrence image to occur in G in a given sampling instance, V' will always allow at

least one of them to occur, but not necessarily all of them. We want to make sure

that as long as our actual controlled system exhibits the behavior of at least one of

these V', it will still be nonblocking. Note that we are only modeling variations in

which prohibitable events are enabled and possibly forced. We capture this notation

in the following definition.

Definition 5.4.1. Let G = (Q, ~' c5, q0 , Qm) be a TDES plant and let V and V' be

102 5. Control and Nonblocking Verification

supervisory controls for G. We say V' is concurrent supervisory control equivalent to

v if

1. (Vs E L(G))V'(s) ~ V(s)

2. (Vs E L(V' /G) n Lsamp)(Vs' E Lcanc)ss' E L(V/G)
==} (::Js" E Lcanc)ss" E L(V' /G) n Occu(s') = Occu(s")

By point 1 in the definition above, we require each event that V' (s) allows is also

allowed by V(s), so that L(V'/G) does not include unwanted behavior.

By point 2, we require that if V' /G accepts sampled strings, and V/G accepts

concurrent string s' after it accepts string s, then V' /G must accept a concurrent

strings" that has the same occurrence image as s'. We use the the term concurrent

equivalent because strings s' and s" in the definition could both occur in the same

sampling period and would be indistinguishable to an SD controller.

Figure 5.3 shows an example for the concurrent supervisory control equivalence

definition. Here we see that for V/G, we have two paths with the same occurrence

image. For V' /G, only one of the two paths are still possible, but that is enough to

satisfy the definition.

~

~0~
V'/G

Figure 5.3: An Example for Concurrent Supervisory Control Equivalence

5. Control and Nonblocking Verification 103

Proposition 5.4. For TDES plant G = (Q, E, 8, Q0 , Qm), let V and V' be supervisory

controls for G. If V' is concurrent supervisory control equivalent to V, then

L(V' /G) ~ L(V/G)

Proof Let V and V' be supervisory controls for G.

Assume V' is concurrent supervisory control equivalent to V.

Must show

(Vs E L(V' /G))s E L(V/G)

We will show this using proof by induction.

base case Let s = E

This automatically implies E E L(V/G) by definition of L(V/G).

inductive step Let s E L(V' /G) n L(V/G). Let u E E such that suE L(V' /G).

Need to show implies suE L(V/G).

As we already haves E L(V/G) by assumption, it is sufficient to show

1. u E V(s)

As suE L(V' JG), we have by definition of L(V' /G) that u E V'(s) and

s E L(G). This implies u E V(s) by point 1 of Definition 5.4.1.

2. suE L(G)

By assumption, we have su E L(V'/G), which implies su E L(G) by

definition of L(V'/G).

Thus by definition 5.1.4 of supervisory control, we have suE L(V/G).

Thus by our base case and inductive step, we conclude

(Vs E L(V'/G))s E L(V/G)

which implies

L(V' /G) ~ L(V/G)

0

104 5. Control and Nonblocking Verification

We will now show that if V is the TDES supervisor control we constructed with

Algorithm 5.1 and V' is a TDES supervisor control that is concurrent control equiv

alent to V, then V nonblocking for G implies that V' is also nonblocking for G (per

Definition 5.1.6).

Theorem 5.2. For plant G = (Q, L:, 8, q0 , Qm), and CS deterministic supervisor

S = (X, L:, ~' X 0 , Xm) that is SD controllable for G, let both TDES have finite state

spaces, let G be complete for S, and have proper time and S-singular prohibitable

behavior, let meet(G, S) be ALF, let C be the SD controller that is constructed from

S using the translation method described in Section 4.2.3, and let V be the map that

is constructed from C using Algorithm 5.1. Let V' be a supervisor control for G.
If V is nonblocking for G and V' is concurrent supervisory control equivalent to V,

then V' is also nonblocking for G.

Proof Assume the initial conditions for the proposition, including that V is non

blocking and V' is concurrent supervisory control equivalent to V.

We must show this implies

L(V' /G) = L(V' /G) n Lm(S) n Lm(G)

It is sufficient to show points 1 and 2 as follows.

1. L(V' /G) 2 L(V' /G) n Lm(S) n Lm(G)

Let s E L(V' /G) n Lm(S) n Lm(G).

Must show implies s E L(V' /G).

Since s E L(V'jG) n Lm(S) n Lm(G), there exists s" E L:* such that

ss" E L(V' /G) n Lm(S) n Lm(G)

~ ss" E L(V' /G)

~ s E L(V'jG)

~ s E L(V'/G) as L(V' /G) is prefix closed, by Definition 5.1.4

2. L(V' /G) ~ L(V' /G) n Lm(S) n Lm(G)

5. Control and Nonblocking Verification 105

Let s E L(V' /G). (1)

Must shows E L(V'/G) n Lm(S) n Lm(G).

Sufficient to show

(3s" E E*)ss" E L(V' /G) n Lm(S) n Lm(G)

For the case that

We have ss" E L(V' /G) n Lm(S) n Lm(G), with s" =E.

We now examine the case

(2)

We first note that the assumptions of Theorem 5.1 have been met, so we can

conclude that

L(V/G) = L(S) n L(G) (3)

Also, as Lm(G) ~ L(G) and Lm(S) ~ L(S), it follows that

Lm(G) n Lm(S) ~ L(V/G) (4)

We have two sub-cases for s: 1) s E Lsamp and 2) s ~ Lsamp·

2.1 S E Lsamp (5)

By Proposition 5.4 we have L(V'/G) ~ L(V/G), we thus have

s E L(V/G) by (1)

Since V is non blocking for G, we have

s E L(V/G) ~ (3s' E E*) ss' E L(V/G) n Lm(S) n Lm(G)

~ (3s' E E*) (ss' E L(V/G)) 1\ (ss' E Lm(S) n Lm(G))

106 5. Control and Nonblocking Verification

Let s1 E :E* such that

(ss1
E L(V/G)) 1\ (ss1 E Lm(S) n Lm(G)) (6)

AsS is SD controllable for G, we have by point iv in Definition 3.2.2 that

We can thus divide 8
1 into consecutive strings s~, s~, .. , s~ E Leone such that

(7)

We note that n 2:: 1 ass (j. Lm(S) n Lm(G), by (2). We thus have

ss~s~ .. s~ E L(V/G) (8)

UT .11 I I I t t t II II II E L h th t vvew1 nowuses1,s2 , .. ,sn oconsruc s1,s2 , .. ,sn eoneSUC a

ssrs~ .. s~ E L(V1/G) n Lm(S) n Lm(G)

We will use a proof by induction to show that, for all k E {2, 3, .. , n}

[ss~s~ .. s%_1 s~ .. s~ E Lm(S) n Lm(G)] 1\ [ss~s~ .. s%_1 E L(V1/G)]

=::}

(:Js% E Leone)

[ss~ s~ .. s%s~+1 .. s~ E Lm(S) n Lm(G)] 1\ [ss~ s~ .. s% E L(V1 /G)] (9)

base case Show: (:Js~ E Leone)
[ssr s~ .. s~ E Lm(S) n Lm(G)] 1\ [ssr E L(V1 /G)]

From (6), (7) and (8) we haves~, s~, .. , s~ E Leone and

ss~s~ .. s~ E L(V/G) n Lm(S) n Lm(G)

=::} ss~ E L(V/G) as L(V/G) is prefix closed

By (1) and (5), we haves E L(V1 /G) n Lsamp

Putting this together we see we have

(s E L(V1/G) n Lsamp) 1\ (s~ E Leone) 1\ (ss~ E L(V/G))

5. Control and Nonblocking Verification 107

As V' is concurrent supervisory control equivalent to V, we can apply

Definition 5.4.1 and conclude

(:Js~ E Lconc)(ss~ E L(V'/G)) 1\ (Occu(s;) = Occu(s~)) (10)

As L(V'/G) ~ L(V/G) by Proposition 5.4, we have ss~ E L(V/G)

Ass, ss~, ss~ E L(V/G), we have

s, ss;, ss~ E L(S) n L(G) ' by (3)

Ass E Lsamp and Sis SD controllable for G, we can apply Point iii.2

and conclude: ss~ =Lm(S)nLm(G) ss~.

As ss~s~ .. s~ E Lm(S) n Lm(G) from (6) and (7), we have ss~s~ .. s~ E

Lm(S) n Lm(G) as ss~ and ss~ are Nerode equivalent mod Lm(S) n
Lm(G).

We have thus shown

(:Js~ E Lconc)[ss~ s~ .. s~ E Lm(S) n Lm(G)]A (ss~ E L(V' /G)]

Ba.Se case complete.

inductive step Let k E {2, 3, .. , n }.

Assume:

(::J II II II E L) :::JS1, S2, .. , Sk-1 cone
[ss~s~ .. s%_1 s~ .. s~ E Lm(S) n Lm(G)]A [ss~s~ .. s%_1 E L(V'/G)]

We will show this implies condition (9) is satisfied for this k.

"llT fi t t th t II II II E L II II II E L vve rs no e a as s1,s2, .. ,sk-1 cone, ss1s2 .. sk-1 samp·

As Lm(S) n Lm(G) ~ L(V/G) by (4), we have ss~s~ .. s%_1 s~ .. s~ E

L(V/G).

As L(V/G) is prefix closed, we have ss~ .. s%_1 s~ E L(V/G). Also,

s~ E Leone by (7).

108 5. Control and Nonblocking Verification

We thus have:

(ss~s~ .. s%_1 E L(V1/G) n Lsamp)

t\(s~ E Leone)

t\(ss~s~ .. s%_1 s~ E L(V/G))

As V 1 is concurrent supervisory control equivalent to V, we can thus

apply point 2 of Definition 5.4.1 and conclude

(:Js% E Leone)ss~ s~ .. s% E L(V1 /G) and Occu(s~) = Occu(s%)

As L(V1/G) ~ L(V/G), we have ss~s~ .. s% E L(V/G)

We thus have

ss~ s~ .. s%_1 E L(V/G) n Lsamp

=::} ss~ s~ .. s%_1 E L(S) n L(G) n Lsamp by (3)

and

ss~s~ .. s%_1 s~, ss~s~ .. s% E L(V/G) = L(S) n L(G)

As Sis SD controllable for G, we can apply Point iii.2 of Definition

3.2.2 and conclude

As ss~s~ .. s%_1 s~ .. s~ E Lm(S) n Lm(G) by assumption, we thus have
11 11 11 1 1 E L (S) n L (G) 11 11 11 1 d 11 11 11 ss1s2 .• sksk+1 .. sn m m as ss1s2 •• sk_1sk an ss1s2 •• sk are

Nerode equivalent mod Lm(S) n Lm(G).

We have thus shown

(:Js% E Leone)

[ss~ s~ .. s%s~+1 .. s~ E Lm(S) n Lm(G)] and [ss~ s~ .. s% E L(V1 /G)]

Inductive step complete.

5. Control and Nonblocking Verification 109

Combining our base case and inductive step, we can take k - n, and

conclude

(::Js~, s~, .. , s~ E Lccmc) ss~ s~ .. s~ E Lm(S) n Lm(G) n L(V' /G)

We thus take s" = s~ s~ .. s~ and Case 2.1 is complete.

2.2 S fj. Lsamp

As we want to reuse the result from 2.1 for this part, we first need to

extends to a string in L(V' /G) n Lsamp·

As G and Shave finite statespaces, and meet(G, S) is activity loop free,

it follows that meet(G, S) will accept at most a finite number of non

tick events, before no more non-tick events can occur. Note L(V/G) =

L(S) n L(G) by (3).

This means that at the state reached by sin meet(G, S), either there are

no activity events possible, or after at most a finite number of activity

events occur, we will be in a state where no activity events are possible.

The reason is that we have a finite number of states in meet(G, S), thus

after at most a finite number of non-tick transitions, we will have either

reached a state where no activity events are possible, or we will have visited

each state once as meet(G, S) is ALF. If we have visited each state once,

we can't have another activity event possible, or it would create a loop,

violating the assumption that meet(G, S) is ALF.

As L(V'/G) ~ L(V/G) by Proposition 5.4, it thus follows

(:3t E ~:ct) (st E L(V'/G)) A (EligL(V'/G)(si) n ~act= 0)

We will now show that: siT E L(V' /G) n Lsamp·

We first note that by definition of L(V' /G),

EligL(V'/G)(si) = V'(si) n EligL(G)(si)

110 5. Control and Nonblocking Verification

As V' is a TDES supervisory control, we have V'(si) ~ :Eu. Thus

V' (si) n EligL(G) (si) n :Eact = 0

====> EligL(G)(si) n :Eu = 0
====> r E EligL(G) (si) as G has proper time behavior

We next note

V' (si) n EligL(G) (si) n :Eact = 0
====> V'(si) n EligL(a)(si) n :Ehib = 0
====> r E V'(si) as V' is a TDES supervisory control

Combining the two results, we have sir E L(V' fG).

Taking t = sir, we first note that if t E Lm (S) n Lm (G) we can take s" = ir
and we have

ss" E L(V' /G) n Lm(S) n Lm(G)

and we are done.

We then consider the case t ~ Lm(S) n Lm(G).

As t =sir, we thus have t E Lsamp n L(V' /G)

We can now apply the logic of part 2.1, but use t instead of s as our starting

place.

We can thus conclude

(3s~, s~, .. , s~ E Lconc)ts~ s~ .. s~ E Lm(S) n Lm(G) n L(V' /G)

We thus takes"= irs~s~ .. s~ and part 2.2 is complete.

By both part 2.1 and 2.2, we have constructed a string s" E :E*, where

as required.

Part 2 is complete.

ss" E Lm(S) n Lm(G) n L(V' /G)

====> s E Lm(S) n Lm(G) n L(V' /G)

5. Control and Nonblocking Verification 111

By part 1 and 2, we thus have

L(V' /G) = L(V' /G) n Lm(S) n Lm(G)

i.e. V' is non-blocking for G. D

112 5. Control and Nonblocking Verification

Chapter 6

Symbolic Verification for SD

System

In this section, we will present algorithms to verify nonblocking, untimed controllabil

ity, ALF, proper time behavior, plant completeness, S-singular prohibitable behavior,

and SD controllability. To ensure scalability, we will develop predicate based algo

rithms that are built upon the work of Song [26]. We will first introduce predicates,

and then discuss how we can use them to verify properties of interest. We then present

our new algorithms, as well as a few that we will re-use from [26].

All the data representations, computations and verifications are based on ordered

binary decision diagram [8]. For simplicity, we will just use the term BDD. In the

appendix, you will find the source code for the software tool we developed to imple

ment our algorithms. The code is based on the software developed by Song [26], and

uses his BDD variable ordering algorithm. The code also uses the BuDDy library [13]

which is a C++ library that implements standard BDD structures and operations.

6.1 Predicates and Predicate Transformers

6.1.1 State Predicates

From now on, we will use '_' to mean logical equivalence between state predicates.

We will also use 'T' and 'F' for logical true and false.

113

114 6. Symbolic Verification for SD System

Let G = (Q, I:, 8, Qo, Qm) be a TDES.

Definition 6.1.1. A predicate P defined on state set Q is a function

P : Q --t {T, F}

identified by the corresponding state subset

Q p := { q E Q IP(q) = T} ~ Q

We identify state predicate true by Q, state predicate false by 0, and state pred

icate P m by Qm.

We write q I= P if q E Qp and say "q satisfies P" or "P includes q". Thus we

have

q I= P {::=::? P(q) = T

We write Pred(Q) for the set of all predicates defined on Q; thus Pred(Q) is

identified by Pwr(Q). For P E Pred(Q), we write st(P) for the corresponding state

subset Qp ~ Q which identifies P. We write pr(Q) to represent the predicate that is

identified by Q.

Definition 6.1.2. For P, g, P2 E Pred(Q) and q E Q, we can build boolean expres

sions by using the following predicate operations.

(-.P)(q) = T {::=::? P(q) = F

(g 1\ P2)(q) = T {::=::? g(q) = T and P2(q) = T

(g V P2)(q) = T {::=::? g (q) = T or g (q) = T

(g- P2)(q) = T {::=::? g(q) = T and P2(q) = F

Definition 6.1.3. The partial order relation ~ over Pred(Q) is defined as

('VPb P2 E Pred(Q))g ~ P2 {::=::? (P1/\ g)= P1

It is obvious that Q p1 ~ Q p 2 {::=::? P1 ~ P2 • In this case,

('Vq E Q)q F g ===? q F P2

Definition 6.1.4. Let g, g E Pred(Q) for some state set Q. g is a subpredicate

of P2 if g ~ P2. We say P1 is stronger than P2 and P2 is weaker than P1.

We write Sub(P) to be the set of all the subpredicates of P E Pred(Q) such that

Sub(P) is identified by Pwr(Qp).

6. Symbolic Verification for SD System 115

6.1.2 Predicate Transformers

Let G = (Q, ~' <5, q0 , Qm) be a TDES and P E Pred(Q). A predicate transformer
is a function f : Pred(Q) ---+ Pred(Q). Here we introduce several basic predicate

transformers from [26] which are required by the following sections.

• R(G, P)

The reachability predicate R(G, P) is true for exactly the states in G that can

be reached from q0 by states satisfying P. It is inductively defined as follows.

1. Qo I= P ===;. Qo I= R(G, P)

2. q I= R(G, P) & u E ~ & <5(q, u)! & <5(q, u) I= P ===;. <5(q, u) I= R(G, P)

3. No other states satisfy R(G, P).

It says that a state q I= R(G, P) if and only if there exists a path from Q0 to q in

G and each state in that path satisfies P. To represent the set of all reachable

states in Q, we use R(G, true).

• CR(G,P)

The coreachability predicate CR(G, P) is true for exactly the states in G that

can reach a marked state by states satisfying P. It is inductively defined as

follows.

1. Pm 1\ P =false ===;. CR(G, P) =false

2. q I= Pm 1\ P ===;. q I= CR(G, P)

3. q I= CR(G, P) & q I= P & u E ~ & <5(q', u)! & <5(q', u) = q ===;. q' I=
CR(G,P)

4. No other states satisfy CR(G, P).

It says that a state q I= CR(G, P) if and only if there exists a path from q to

some marked state in G and each state in that path satisfies P. To represent

the set of all coreachable states in Q, we use C R(G, true).

116 6. Symbolic Verification for SD System

• CR(G, P', :E', P)

Let P' E Pred(Q) and :E' ~:E. Once we fix G, P' and :E', CR(G, P', 'L/, P) is

then a predicate transformer. The predicate CR(G, P', :E', P) is true for exactly

the states in G that can reach a state in G satisfying P', by states that satisfy

P and by transition with events in :E'. It is inductively defined as follows.

1. P' I\ P- false ==? CR(G, P', :E', P) =false

2. q I= P' I\ P ==? q I= CR(G, P', :E', P)

3. q I= CR(G, P', :E', P) & q' I= P & u E :E' & 8(q', u)! & 8(q', u) = q

==? q' I= CR(G, P', :E', P)

4. No other states satisfy CR(G, P', :E', P).

By comparing with definition of coreachablity predicate C R, we have

CR(G, Pm, :E, P) = CR(G, P)

6.2 Symbolic Representation

For symbolic verification of SD systems, we need to have a representation for states

and transitions. We will use the symbolic representation from Song [26], who in turn

based his work on Ma [14]. In this section, we only introduce the necessary definitions

from this representation that are needed for the computation and verification in the

following sections.

6.2.1 State Subsets

Let G = (Q, :E, 8, q0 , Qm) = G 1 x G 2 x .. x Gn be the product TDES of component

TDES Gi where Gi = (Qi, :Ei, 8i, Qo,i, Qm,i) fori= 1, 2, .. , n. For any state q E Q, we

have q = (q1, Q2, .. , Qn) where Qi E Qi.

In later sections we will be evaluating the meet of component TDES for some of the

verifications. The only difference between the meet and the product of these TDES is

that, the product might contain unreachable states but the meet does not. However,

the checking of unreachable states is expensive and therefore the reachability check is

6. Symbolic Verification for SD System 117

performed over the entire system at the end. In addition, since including unreachable

states does not effect the closed loop behavior, using the product TDES will not

introduce any error.

Definition 6.2.1. For G = G1 x G2 x .. x Gn, let i = 1, 2, .. , n and Qi E Qi. The

state variable vi for the i-th component TDES Gi is a variable of domain Qi. If vi

has assigned value Qi, then vi= Qi returns T; otherwise it returns F.

Here we use '='to if vi has been assigned value Qi, because'=' has been used for

logical equivalence between state predicates.

Definition 6.2.2. For G = G1 x G2 x .. x Gn, the state variable vector vis a vector

[vt, v2 , .. , vn] of state variables Vi from each component TDES Gi. For state subset

A ~ Q, we write predicate

or PA if vis understood.

6.2.2 Transitions

Let G = (Q, E, 8, Q0 , Qm) = G1 X G2 x .. x Gn be the product TDES of component

TDES Gi = (Qi, Ei, 8i, Qo,i, Qm,i) fori= 1, 2, .. , n as defined in previous section.

Definition 6.2.3. For G = G1 x G2 x .. x Gn, let a E E. A transition predicate

Nu : Q x Q _. {T, F} identifies all the transitions for a in G and is defined as follows.

(
w , Q)N (') ·= {T, if 8(q, a)! & 8(q, a) = q' vq,q E u q,q · .

F, otherwise.

To distinguish between source states and destination states, we need to have two

different vectors of state variables, as defined below.

Definition 6.2.4. For G = G1 x G2 x .. x Gn, let i = 1, 2, .. , n. For each Gi,

we have the normal state variable vi (source state) and the prime state variable v~

(destination state), both with domain Qi. For G, we have the normal state variable

vector v = [vt, v2 , .. , vn] and the prime state variable vector v' = [v~, ~' .. , ~].

118 6. Symbolic Verification for SD System

For each a E :E, we can write the transition predicate for a, Na, as below. Essen

tially, if we set v = q and v' = q' such that 8(q, a) = q', then Na(v, v') will return

T.

However, when designing a system with multiple component TDES defined over

different event set, such as when we use the synchronous product operator, each

component TDES must be selfiooped at each state with events that are not in its

own event set. This of course makes the transition predicate much more complicated.

A new representation to avoid this issue is defined as below. Note that the size of Va

and v: will always be the same.

Definition 6.2.5. We use the transition tuple (va, v:, Na) to represent the transition

on a, where Va ={viE viaE :Ei}, v: = {v: E v'la E :Ei} and

Although selfiooped transitions are not specified in the definition, the selfioop

information is still expressed. For those state variables that are not in v a, we know

that the corresponding component TDES must be selfiooped with event a on each

state, so we do not need to express this explicitly. Definition 6.2.5 will work fine with

systems where these self-loops have already been added.

Since BDD [8] does not support first order logic by itself, to compute state transi

tions we will need the following definition taken from the existential quantifier elimi

nation method for finite domain [1].

Definition 6.2.6. For G = G1 X G2 X .. X Gn, let a E :E and (va, v:, Na) be the

transition tuple for a in G. Fori= 1, 2, .. , n, if vi EVa and v: E v~, then define

3viNa := V Na[qi/vi] 3v~Na := V Na[qi/v:J
QiEQi QiEQi

where Na[qi/vi] is the predicate Na with each term vi substituted by qi, and Na[qi/v~]

is defined analogously.

6. Symbolic Verification for SD System 119

We use the above method to eliminate either the normal or prime variable, so

that we can express the statement using propositional logic that we can represent as

aBDD.

Let Vu = { v1 , v2 , .. , vm} form> 0. For convenience, we write 3vuNu to represent

3v1 (3v2 .. (3vmNu) ..) and the resulting predicate should contain only prime variables

in v~. For any computation of state predicates, we need all input variables to be

consistent. That is, either all predicates in the computation have to be expressed

as normal variables or prime variables. We thus need to substitute all the prime

variables by normal variables, denoted as 3v uNu [v~ -+ v u]. The substitution should

return the predicate for the set of target states for u transitions in G. This means

that each state in this set has a u transition entering it.

Let v~ = { v~, v~, .. , v:n}. For convenience, we also write 3v~Nu to represent

3v~(3v~ .. (3v:nNu) ..) and the resulting predicate should contain only normal variables

in Vu, which represents the set of source states for u transitions in G. This means

that each state in this set has au transition leaving it.

6.3 Symbolic Computation

We will now discuss symbolic computation based on the symbolic representation we

just introduced. This work is based on the work of Song (26] who in turn based his

work on Ma [14].

6.3.1 Transitions and Inverse Transitions

Let G = (Q, 'E, 8, Q0 , Qm) = G 1 x G 2 x .. x Gn be a TDES plant. For a state q E Q

and a event u E 'E, we want to compute the transition 8(q, u) using the symbolic

representation introduced previously. To do this, for Qp ~ Q, where P E Pred(Q),

we can compute

Q'p = U {8(q,u)}
qEQp

and then find P' := pr(Q'p). However, computing q' one by one is time consuming

for systems with large statespaces. Instead, we can directly compute the predicate of

the set of next states from the predicate of the set of current states.

120 6. Symbolic Verification for SD System

The computation is based on a function J : Pred(Q) x ~ - Pred(Q) defined to

be

(VP E Pred(Q))(Va E ~)J(P,a) :=pr({q' E Ql(:3q f= P)8(q,a) = q'})

As discussed in previous section, the formula :3v.,.N.,.[v~ - v.,.] returns a predicate

representing the set of target states {q' E Ql(:3q E Q)8(q, a)= q'}. We thus have the

following definition.

Definition 6.3.1. Let a E ~and (v.,., v~, N.,.) be the transition tuple for a in G. For

P E Pred(Q),

By first computing N.,. A P in the above definition, we are restricting the source

states to those satisfying P.

We also need an inverse function J-1 : Pred(Q) x ~- Pred(Q) to compute the

predicate of the set of source states from the predicate representing the set of target

states, where J-1 is defined to be

(VP E Pred(Q))(Va E ~)J-1 (P, a) := pr({q E Ql8(q, a) f= P})

Since the formula :3v~N.,. returns a predicate representing the set of source states

{q E Ql8(q, a)!}, we have the following definition.

Definition 6.3.2. Let a E ~and (v.,., v~, N.,.) be the transition tuple for a in G. For

P E Pred(Q),

In the definition, P[v.,.- v~] returns predicate P with its normal variables sub

stituted by prime variables. As prime variables represent target states, this has the

effect of restricting the target states to those satisfying P.

6. Symbolic Verification for SD System 121

6.3.2 Computation of Predicate Transformers

Let G = (Q, E, 8, q0 , Qm) = G 1 x G 2 x .. x Gn be the cross product TDES of

component TDES Gi fori= 1, 2, .. , n. Let P E Pred(Q). To compute the predicate

transformers R and C R introduced in Section 6.1.2, we have the following algorithms

which are taken from [26].

Reachability Check

Algorithm 6.1 R(G, P)
1: P1 ~ P Apr({%})

2: repeat

3: p2 ~ g
4: for i ~ 1 to n do

5: repeat

6: p3 ~ pl

7: pl ~ g v C.xi (J(g, u) A P))
8: until P1 = P3
9: end for

10: until P1 = P2
11: return g

In Algorithm 6.1, procedure R(G, P) takes a TDES G and a predicate P, then

returns a predicate which holds a set of states in G that can be reached from q0 by

states satisfying P.
At line 1, P1 is initialized to be the predicate which represents the initial state

Qo or 0 if Qo ~ p.
From line 2 to line 10, fori E 1, .. , n, we loop over u E Ei and determine states

that satisfy P, and are reachable from a state that satisfies P1 by au transition.

Due to the intermediate logic formula expansion problem described in [26], that

intermediate logic formula can become large and complicated even though the final

predicate :rllight be relatively small, the for loop on line 4 to line 9 repeatedly

modifies g on a component TDES basis. We start with a specific TDES, Gi, and

122 6. Symbolic Verification for SD System

determine next states using only events from ~i until no more changes. Then move

onto next TDES. For each component TDES Gi, g is modified until it is logical

equivalent to its previous value, P3 . We cycle through all the TDES until no further

changes.

Coreachability Check

Algorithm 6.2 CR(G, P', ~', P)
1: P1 ~ P' 1\ P

2: repeat

3: p2 ~ g
4: for i ~ 1 to n do

5: repeat
6: p3 ~ g

7: P1 ~ P1 V (V (J-I(g, l1) 1\ P))
uEI:'ni:i

8: until P1 P3
9: end for

10: until P1 = P2

11: return g

In Algorithm 6.2, procedure CR(G, P', ~', P) takes a TDES G, a predicate P',

an event set~' and a predicate P, then returns a predicate which represents a set of

states in G that can reach a state in G satisfying P' by states that satisfy P and by

transition with events in~'. We do not present an algorithm for CR(Q, P) as it is a

special case which is equivalent to CR(G, Pm, ~' P).

At line 1, P1 is initialized to be the predicate which represents the set of states

in Q P' which satisfies predicate P as well.

Like in Algorithm 6.1, line 4 to line 9 focus on one TDES event set at a time to

reduce the complexity of intermediate logic formulas. In line 7, we are adding to g
the states in P that can be reached by a state in g via an event in ~' n ~i.

We iterate until there are no more changes.

6. Symbolic Verification for SD System 123

6.4 Symbolic Verification

The TDES systems we are interested in are composed of a plant G and a supervisor

S, with system event set :E.

Given G~ = (Yi,:Ei,8i,Yo,i,Ym,i) and G' = G~JIG~JJ .. JJG~, fori= 1,2, .. ,n, let

Gi = selfloop(G~, :E- :Ei)· The plant is defined as:

Given si =(Xi, :E, ~i, Xo,i, Xm,i), the supervisor is defined as

Therefore both G and S are defined over the global event set :E. If our com

ponent supervisors were defined over subsets of :E and combined together using the

synchronous product, we would add selfloops of the missing events as we did for the

plant components, and then use these new DES from then on.

The closed-loop system, Gel, is the product of the plant and supervisor

where Q = y X X= Yi X Y2 X .. X Yn X xl X x2 X .. X Xm, :E = :EcLJ:Eu, TJ = 8 X~'

Qo =(Yo, Xo) and Qm = Ym X Xm. See Definition 2.2.11 for more details.

Note that we cannot use Gel= meet(G, S) as meet by definition only contains

reachable states, which is too restrictive. The product DES is the same as meet, but

it can include unreachable states.

Definition 6.4.1. Let Gel= GxS := (Q, :E, TJ, Q0 , Qm) where G = G 1 xG2x .. xGn =

(Y, :E, 8, Yo, Ym) and s = sl X s2 X .. X Sm = (X, :E, ~' Xo, Xm)· For a given event cr E :E,

the cr plant transition predicate Nc,u : Q x Q--+ {T, F} can be written as

and the cr supervisor transition predicate Ns,u : Q x Q--+ {T, F} can be written as

124 6. Symbolic Verification for SD System

Na,u and Ns,u are state predicates defined on Q x Q and use the v and v' variables

like Nu. We use Na,u when we wish to determine if there is a f7 defined at the plant

portion of the indicated states, say for when we are checking controllability. Similarly,

we use Ns,u when we wish to determine if there is a f7 defined at the supervisor portion

of the indicated states. They must be defined over Q x Q so the results of each can

be compared and combined with other state predicates on Q.

Definition 6.4.2. Let f7 E ~ and Na,u be the f7 transition predicate for plant G =

(Y, ~' 8, y0 , Ym)· We define 8a : Pred(Q) x ~ -+ Pred(Q), for P E Pred(Q), to be

8a(P,r7) := (3v(Na,u !\ P))[v'-+ v]

and we also define 8(;1
: Pred(Q) x ~-+ Pred(Q) to be

J(;1 (P, r7) := 3v'(Na,u !\ (P[v-+ v']))

Definition 6.4.3. Let f7 E ~ and Ns,u be the f7 transition predicate for supervisor

S = (X,~'~' X 0 , Xm)· We define €: Pred(Q) x ~-+ Pred(Q), for P E Pred(Q), to

be

€(P, f7) := (3v(Ns,u !\ P)) [v' -+ v]

and we also define €-1 : Pred(Q) x ~ -+ Pred(Q) to be

€-1(P,r7) := 3v'(Ns,u !\ (P[v-+ v']))

6.4.1 Untimed Controllability

To verify that a supervisorS= (X,~'~' X 0 , Xm) is controllable with respect to plant

G = (Y, ~' 8, Yo, Ym), we need the closed loop system Gel= (Q, ~' rJ, Q0 , Qm) as defined

in Section 6.4. For q E Q, there must exist a state x E X and y E Y such that

q = (y, x).

According to Definition 2.2.15 for untimed controllability, we can express the states

that could causeS to be uncontrollable for G (if they are reachable), as follows:

Definition 6.4.4. LetS= (X,~'~' X 0 , Xm) be a supervisor. Let G = (Y, ~' 8, Yo, Ym)
be a plant, then

Qbad = {q = (y, x) E Ql(3r7u E ~u)8(y, f7u)! & ~(x, f7u) !}

6. Symbolic Verification for SD System 125

By this definition, the state set Qbad includes all states q E Q in system Gel that an

uncontrollable event is eligible at the corresponding state in plant G but not eligible

in the corresponding state in supervisor S. We consider such states bad. Of course,

not all states in Qbad are necessarily reachable. Therefore S is controllable with to

respect toG if Qbad n Qreach = 0 where Qreach is the set of reachable states.

The corresponding predicate Pbad := pr(Qbad) is defined to be

pbad = be (true, cru) 1\ ·~- (true, cru) V (A 1 A 1)

UuEEu

where tSe1 and ~-1 are the inverse transition predicate functions for G and S respec

tively. We thus have S is controllable with respect to G if Pbad 1\ Preach = false

where Preach := pr(Qreach) holds the set of reachable states. Otherwise, Pbad 1\ Preach

represents the set of bad states where supervisor S has disabled an uncontrollable

event.

Algorithm 6.3, from [26], checks untimed controllability. For each uncontrollable

event cru, it looks for the reachable composite state at which cru is eligible in G but

not eligible inS. If such a state exists, then S is not controllable with respect to G.

The algorithm returns True1 if the supervisor S is controllable with respect to G and

False otherwise.

Algorithm 6.3 CheckUntimedControllability(G, S)
1: Pbad +- false

2: for all cr u E "Eu do
A 1 A 1

3: pbad +- pbad v (be (tr:ue, cru) 1\ ·~- (true, cru))

4: end for

5: Pbad +- Pbad 1\ R(G x S, true)

6: if (Pbad i= false) then
7: return False

8: end if

9: return True

1 We use True and False here because it is a boolean returned by the algorithm, instead of a
state predicate.

126 6. Symbolic Verification for SD System

6.4.2 Plant Completeness

Similar to checking untimed controllability, we have the following definition for plant

completeness.

Definition 6.4.5. LetS= (X,~'~' X 0 , Xm) be a DES supervisor. Let G = (Y, ~' 8, Yo, Ym)
be a DES plant, then

Qincomplete = {q = (y,x) E QI(:3£T E ~hib)~(x,£T)! & 8(y,(J))'}

By this definition, the state set Qincomplete includes all states q in system Gel that

a prohibitable event is eligible at the corresponding state in supervisor S but not

eligible in the corresponding state in plant G. Plant G is complete for its supervisor

S only if Qincomplete n Qreach = 0. We only care about states in Qincomplete that are

reachable.

The corresponding predicate Pincomplete := pr(Qincomplete) is defined to be

~ncomplete = V (t-1(true, (J) 1\ ...,JG1(true, lT))
uEr:hib

where JG1 and t-1 are the inverse transition predicate functions for G and S respec

tively. Therefore the plant G is complete for its supervisor S only if ~ncomplete 1\

Preach = false. Otherwise, Pincomplete 1\ Preach represents the set of states which fail

the condition.

Algorithm 6.4 CheckPlantCompleteness(G, S)
1: ~ncomplete -false

2: for all £T E ~hib do
A-1 A-1

3: ~ncomplete - ~ncomplete V (~ (true, 0") 1\ •ba (true, 0"))
4: end for

5: ~ncomplete- Pincomplete 1\ R(G X S, true)
6: if (Pincomplete i= false) then
7: return False

8: end if

9: return True

Algorithm 6.4 checks for plant completeness. For each prohibitable event O", it

looks for reachable composite states at which £T is eligible in S but not eligible in

6. Symbolic Verification for SD System 127

G. If such a state exists, then plant G fails to be complete for supervisorS and the

algorithm returns False. Otherwise it returns True.

6.4.3 Non-blocking

Algorithm 6.5 checks for non-blocking as defined in Definition 2.2.6. It compares the

set of reachable states with the set of coreachable states, then returns True if there

is no reachable state that is not coreachable and False otherwise.

Algorithm 6.5 Nonblocking(G)
1: Preach f- R(G, true)

2: Pcoreach f- C'R(G, Preach)

3: if (Preach 1\ •Pcoreach i= false) then
4: return False

5: end if

6: return True

6.4.4 Activity Loop Free

By Definition 2.3.3 of Activity Loop Free (ALF), we require that for each reachable

state in a TDES there will not be a non-empty string of activity events leaving from

that state and back to itself. This is to prevent the TDES from "stopping the clock".

Algorithm 6.6 checks the given TDES G and returns True if it is ALF and False

otherwise.

At line 1, Algorithm 6.6 first calculates all the reachable states. Then for each

state q in Pchk, it starts from any states Pvisit reached via activity events from q at

line 4. From there, in the following loop from line 7 to line 17 it traverses to next

states Pnext until no more state can be reached by activity events.

At each iteration of the loop, the algorithm first checks if there is an overlap

between Pvisit and Pnext· Then it checks if state q has been reached again. If state q

has been reached again, then the system is not ALF. Otherwise, the loop continues.

Once the check is done for state q, this state is removed from Pchk. If there is no

overlap found in the loop, all the visited states are removed from Pchk· After that,

128 6. Symbolic Verification for SD System

Algorithm 6.6 ALF(G)

1: Pchk +-- R(G, true)

2: Ptmp +-- false

3: for (q I= Pchk) do

4: Pvisit +-- (V J(pr({ q}), u)) t\Pchk
uE:Eact

5: overlap+-- False

6: Pnext f- Pvisit

7: repeat

8: Pnext f- (V J(Pnext,O"))t\Pchk
uE:Eact

9: Ptmp f- Pvisit

10: if (Pvisit t\ Pnext ¢.false) then
11: overlap +-- True

12: end if

13: Pvisit f- Pvisit V Pnext

14: if (q I= Pvisit) then
15: return False

16: end if

17: until (Pvisit = Ptmp)

18: Pchk +-- Pchk- pr({q})

19: if (•overlap) then

20: Pchk f- Pchk - Pvisit

21: end if

22: end for

23: return True

the algorithm moves to next state in Pchk· If there was no False returned during the

loop, the algorithm will consider it to be ALF and returns True.

6.4.5 Proper Time Behavior

By Definition 2.3.5 for Proper Time Behavior, we require that at each reachable state

in a TDES plant, either an uncontrollable event or a tick event is eligible. Algorithm

6. Symbolic Verification for SD System 129

6. 7 checks the given TDES plant G and returns True if it has a proper time behavior

and False otherwise.

Algorithm 6. 7 ProperTimeBehavior(G)
1: P1 +--- V 8-1(true, a)

uEEuU{r}

2: P2 +--- R(G, true)

3: if P2 - g ¢. false then

4: return False

5: end if

6: return True

Algorithm 6.7 first calculates P1, the set of all states that have a I:uU{ T} transition

leaving it. It then compares g to the set P2 of reachable states. When there is a

state in P2 but not in g, it implies that the state is reachable and neither a tick or

an uncontrollable event is eligible at this state.

6.4.6 SD Controllability and S-Singular Prohibitable Behav

ior

Algorithm 6.8 evaluates SD controllability for supervisor S = (X, 2:, ~' X 0 , Xm) with

respect to plant G = (Y, 2:, 8, Yo, Ym), where G, S, and the closed loop system, Gel=

G x S are as defined in Section 6.4. In addition, the algorithm's subroutine, Algorithm

6.11, also checks that G has S-singular prohibitable behavior. As checking Point i

of the SD controllability definition is the same as checking untimed controllability

(Algorithm 6.3), we will not mention it explicitly here.

I: is defined to be I: = I:hib(JI:uU{ T }, where I:hib is the set of prohibitable events

in G and I:u is the set of uncontrollable events in G. The set of controllable events

is I:c = I:hib U { T}, and the set of activity events is I: act = I:hibUI:u.

The algorithm makes the following assumptions:

• The set I:hib of prohibitable events equals the set I: for of forcible events

• The plant has proper time behavior (checked by Algorithm 6. 7)

• All TDES are finite and deterministic

130 6. Symbolic Verification for SD System

• The closed loop system, Gel, is activity loop free (ALF) (checked by Algorithm

6.6)

The algorithm uses certain variables as it executes.

Preach: The predicate of the set of reachable states of Gel.

PsF: The predicate of the set that contains sampling states of Gel found

by the algorithm.

Zsp: This set contains the predicates of sampling states in Gel found and

not yet analyzed by the algorithm.

NG,u, Ns,u: Transition predicates for C7 for G and S as in Definition 6.4.1.

N17 : Transition predicate for C7 for Gel as in Definition 6.2.5.

8: Transition function for state predicates for Gel as in Definition 6.3.1.

JG: Transition function for state predicates for G only as in Definition

6.4.2.

~: Transition function for state predicates for S only as in Definition

6.4.3.

pNerFail: This set pNerFail ~ Pwr(Pred(Q)) is a set of sets of predicates

that stores information where Point iii.2 in Definition 3.2.2 of SD

controllability may have failed.

SDControllable: This flag asserts if S is SD controllable with respect to G.

Algorithm 6.8 starts at the initial state, which is always a sampling state. Then it

analyzes the concurrent behavior of this state by creating a reachability tree with the

initial state as a node. It expands the tree until all paths terminate at a tick event.

Since we first check that the closed loop system is activity loop free, the system

has a finite state space and that the plant has proper time behavior, we are either

guaranteed that we will reach a tick after a finite number of events, or the system

will fail Point ii of the SD controllability definition. Any new sampling states found

are then analyzed as above, until all reachable sampling states have been analyzed.

As the reachability tree for a given sampling period is created, conformance to

Definition 3.2.2 of SD controllability is tested. We also test here that G has S-singular

6. Symbolic Verification for SD System

Algorithm 6.8 CheckSDControllability(G, S)
1: Gel f- G X s
2: Preach f- R(G X S, true)

3: if (CheckSDContii(G, S, Preach)= False) then
4: return False

5: end if
6: SDControllable f- True

7: Psp f- pr{zo}

8: Zsp f- {pr{zo}}
9: pNerFail f- 0

10: while (Zsp =1- 0) do
11: Pss f--Pop(Zsp)

131

12: SDControllable f- AnalyseSarnpledState(G, S, Psp, Zsp, Preach, P88 ,pNerFail)

13: if (•SDControllable) then
14: return False

15: end if
16: end while
17: if (pNerFail =1- 0) then
18: SDControllable f- RecheckNerodeCells(pNerFail)

19: if (•SDControllable) then
20: return False

21: end if
22: end if

23: if (• CheckSarnplingMarkingStates(Preach)) then
24: return False

25: end if
26: return True

prohibitable behavior. With the exception of Point iii.2, evaluation stops if the test

for any of the other points fail. If the test for Point iii.2 fails, the problem area

is noted and the algorithm continues until all reachable sampling states have been

analyzed. Nerode cells will be rechecked and then Point iii.2 is tested again.

132 6. Symbolic Verification for SD System

In the algorithm, pN er Fail represents states reached by concurrent strings with

the same occurrence image, thus should belong to the same equivalence classes for

=L(S)nL(G) and =Lm(S)nLm(G)· It contains the states these strings ended up in, and

we will now check to see if these states actually represent the same equivalence cells.

i.e. they are equivalent mod A (Definition 2.2.7).

Finally, the algorithm checks Point iv in Definition 3.2.2 of SD controllability by

comparing the set of marked states, implied by Pm, with the set of states reached by

a tick event. If not all states implied by P m are reached by a tick and if that state

not reached by a tick is not the initial state Z0 , then it returns False.

If all tests pass, the algorithm returns True at the end.

See following sections for subroutines in Algorithm 6.8. The subroutine CheckS

DContii is defined in Algorithm 6.9. The subroutine AnalyseSampledState is defined

in Algorithm 6.10. The subroutine RecheckNerodeCells is defined in Algorithm 6.13.

The subroutine CheckSamplingMarkingStates is defined in Algorithm 6.15.

Point ii of SD Controllability

Algorithm 6.9 checks Point ii of the SD Controllability definition. The algorithm

takes the following three parameters: a plant G, a supervisor S and a predicate Preach

of all reachable states in Gc~.

Algorithm 6.9 CheckSDContii(G, S, Preach)
1: Pq-hib +--- V :3v' Na

aEEhib

2: Pbad +--- :3v' Ntick I\ Pq-hib

3: if Pbad I\ Preach ;f=. false then
4: return False

5: end if

6: Pbad +--- :3v' Na,tick I\ •(::lv' Ns,tick) I\ •Pq-hib

7: if Pbad I\ Preach ;f=. false then
8: return False

9: end if
10: return True

From line 1 to line 5 the algorithm checks the "::}" part of Point ii. It checks

6. Symbolic Verification for SD System 133

for any reachable states in Gel that has both a prohibitable event and tick event

enabled. If such a state exists, then it returns False.

Then from line 6 to line 9, the algorithm checks "-¢::" part of Point ii. It checks

to see if a reachable state exists in Gel where no prohibitable events are eligible, but

a tick is eligible in G but not inS. If such a state exists, then it returns False.

AnalyzeSampledState

Algorithm 6.10 analyzes the concurrent behavior for sampling state Q88 , represented

by predicate Pss· The algorithm takes seven parameters. See Algorithm 6.8 for their

definitions.

During the execution, the algorithm uses the following variables:

'EEtig: The set of prohibitable events eligible in both G and S at Q88 , the sampling

state in Gel that we are processing.

Pq: The predicate of current state in Gel.

'Eposs: The set of events eligible in both G and S at predicate Pq of current state in

Gel.

'Eaposs: The set of prohibitable events eligible in G at predicate Pq of current state in

Gel.

nextLabel: This number represents the next unused node in Bmap· It is used to name newly

discovered nodes of the reachability tree.

Bmap: This partial function Bmap: N -~o Pred(Q) maps the nodes of the reachability

tree to the predicates of the states of Gel which the nodes represent. This

function will sometimes be treated like the set Bmap ~ N x Pred(Q). Note,

N = {0, 1, 2, ... } is the set of natural numbers.

Bv: This is the set of nodes pending to be expanded in the reachability tree.

Beane: The set Beane ~ N x Pred(Q) contains nodes that represent concurrent strings

and the sampled states the strings lead to. For (b, q) E Beane, the node b is a

node at which tick is eligible in G and S, and q is the sampling state of Gel

that the tick leads to.

134 6. Symbolic Verification for SD System

Algorithm 6.10 AnalyseSampledState(G, S, Psp, Zsp, Preach, P88 ,pNerFail)
1: Bmap +-- {(0, Pss)}

2: Beane+-- 0
3: Bp +-- {0}
4: nextLabel +-- 1

5: OccuB +-- {(0, 0)}

6: while BP =f 0 do
7: b +-Pop(Bp)

8: Pq +-- Bmap(b)

9: ~poss +-- 0
10: ~Gposs +-- 0
11: for all a E ~ do

12: if (J(Pq, a) "¢false) then

13: ~poss +-- ~poss u {a}
14: end if
15: if (3a(Pq, a) "¢false) then

16: ~Gposs +-- ~Gposs U ({a} n ~hib)
17: end if
18: end for

19: if (Pq = Pss) then

20: ~Elig +-- ~poss n ~hib
21: end if

22: if ((~poss u OccuB(b)) n ~hib =f ~Elig) then
23: return False

24: end if

25: if (•NextState(b, ~poss, ~Gposs, Pq, nextLabel, Bmap, Bp, Beane, Psp, Zsp, OccuB(b)))

then
26: return False

27: end if
28: end while
29: CheckNerodeCells(Bconc, OccuB, pN er Fail)

30: return True

6. Symbolic Verification for SD System 135

Occus: The partial function Occus : N-+ Pwr(E) maps the nodes of the reachability

tree to the occurrence image of the string that they represent. This function

will sometimes be treated like the set Occus ~ N x Pwr(E).

The algorithm builds the reachability tree, starting at Q88 , until all nodes termi

nates at a tick event or one of our checks fail. As we need to evaluate the strings

taking us from the sampled state, we need to know how we got to a given state. So we

introduce nodes for the states we reach, and associate with the node the occurrence

image of the string that brought us to that node. We use map Occus to do this. The

function Bmap maps the nodes back to the states in Gel that they represent. The

information is stored per node, not per state of Gel. It means there could be two or

more nodes that corresponds to the same state, but have possibly different occurrence

images, as they were reached by different strings.

When the algorithm starts, we store the set of prohibitable events that are eligible

at our starting sampling state. Point iii.l in Definition 3.2.2 for SD controllability is

analyzed as the tree is built. In the algorithm, a concurrent string is represented by

the label b of the node it is associated with, and a sampled string is represented by

the sampling state Q88 • From line 22 to line 24, the algorithm checks this condition.

If the test fails, the algorithm returns False.

After the reachability tree is complete, Beane will represent the concurrent strings

leaving the sampling state implied by predicate P88 , and the sampling state each

string leads to. We then call CheckNerodeCells which will indicate via pNerFail

what further checks are needed. This is how Point iii.2 is checked.

In next section we will discuss subroutine NextState (Algorithm 6.11) and sub

routine CheckNerodeCells (Algorithm 6.12), as both algorithms are called from Anal

yseSampledState.

NextState

Algorithm 6.11 determines the next states to be processed for Algorithm 6.10. Subrou

tine NextStatetakes parameters b, Epo88 , Ecposs, Pq, nextLabel, Bmap, Bp, Beane, Psp, Zsp,

and Occus(b). See Algorithms 6.8 and 6.10 for their definitions.

The algorithm returns if the set of eligible events, Eposs, at state q (implied by

Pq) of Gel, is empty. If tick is possible at state q, we determine the new sampling

136

Algorithm 6.11 NextState(...)

1: if (~pass = 0) then
2: return True
3: end if

4: if (T E ~pass) then

5: Pq' ~ J(Pq, tick)

6: Push(Beane, (b, Pq'))

7: if (Pq' 1\ PsF =false) then

8: PsF ~ PsF V Pq'
9: Push(Zsp, Pq')

10: end if

11: end if

12: for all (J E ~Gpass do
13: if (Occu8 (b) n {(J} # 0) then
14: return False

15: end if

16: end for

17: for all (J E (~pass- { T}) do

18: Pq' ~ J(Pq, (J)

19: b' ~ nextLabel

20: nextLabel ~ nextLabel + 1

21: Push(Bmap,(b',Pq'))

22: Push(Bp, b')

6. Symbolic Verification for SD System

23: Push(Occu8 , (b', Occu8 (b) U {(J}))
24: end for

25: return True

state that tick takes us to, and then add b and the state to Beane· If we have not yet

encountered this state, it is added to PsF and Zsp.

In lines 12 to 16, we check that no prohibitable event is currently eligible in G
if it has already occurred this sampling period. This is part of checking if G has

S-singular prohibitable behavior.

Then for each non-tick event (J, it finds the next state implied by Pq', assigns a

6. Symbolic Verification for SD System 137

new node b' to it and pushes (b', q) onto Bmap, and b' onto the set of pending nodes,

Bp. It also associates the occurrence image of the strings that took us to b' with node

b', via Occus.

CheckNerodeCells

Algorithm 6.12 is used to determine if we have possible violations of Point iii.2 of the

SD controllability definition. Subroutine CheckNerodeCells is passed a set of sampled

states reached in the recent search, plus information on the occurrence images of the

concurrent strings that took us to that state. For more details on these parameters,

see Algorithm 6.10.

Point iii.2 of the SD Controllability definition requires that if two concurrent

strings have the same occurrence image, they must take us to states representing the

same equivalence cell of =L(S)nL(G) and =Lm(S)nLm(G)· In other words, to states that

are A-equivalent (see Definition 2.2. 7). If Gd is minimal, they must go to the same

state . If they do not, we add each set of non-equal states, represented by variable

Zeqv ~ Pred(Q), to pNerFail, and we will later check to see if they are indeed

A-equivalent. Note that every state predicate in Zeqv represents a single state.

RecheckNerodeCells

Algorithm 6.13 checks state subsets of Gd stored in pNerFail to see if the states

in a given subset actually are equivalent mod A (see Definition 2.2. 7) to each other.

Subroutine RecheckNerodeCells is passed parameter pNerFail. See Algorithm 6.8 for

the definition of pN er Fail.

At a given sampling state, if we found two or more concurrent strings that had the

same occurrence image but terminated in different states, we stored the predicates

that identified the states these strings led us to, in pNerFail. Variable pNerFail

contains all such sets found by Algorithm 6.8 as it processed all the reachable sampling

states of Gd. For the system to pass Point iii.2 of Definition 3.2.2, the states in a

given state predicate in pNerFail must all be A-equivalent to each other. If a single

set fails this test, the system fails Point iii.2 of Definition 3.2.2.

From line 1 to line 3, the algorithm first sees if there is actually any state sets

in pNerFail to be checked. If it is empty, it returns True.

138 6. Symbolic Verification for SD System

Algorithm 6.12 CheckNerodeCells(Bconc, Occus,pNerFail)

1: while (Bconc =/=- 0) do
2: (b, Pq) -Pop(Bconc)

3: Zeqv- 0
4: Push(Zeqv, Pq)

5: sa meG ell - True

6: for all (b',Pq') E Bconc do
7: if (Occus(b) = Occus(b')) then
8: Push(Zeqv, Pq')

9: Bconc- Bconc- { (b', Pq')}

10: if (Pq ¢. Pq') then
11: sameCell- False

12: end if
13: end if

14: end for

15: if (•sameCell) then

16: Push(pNerFail, Zeqv)

17: end if
18: end while
19: return

At line 4, variable Visited~ Pred(Q) x Pred(Q) is initialized to the empty set.

After each call to RecheckNerodeCell (Algorithm 6.14) that returns True, Visited

will contain tuples of state predicates, where each predicate in the tuple represents

a single state in Q. Essentially, a tuple belonging to Visited means that Recheck

NerodeCell has determined that those two states are .A-equivalent. We pass it back

into RecheckNerodeCell so that this information can be reused in future checks.

During the while loop from lines 5 to line 10, we call RecheckNerodeCell for

each element Zeqv ~ Pred(Q) in pN er Fail. If RecheckNerodeCell returns False, then

the system fails Point iii.2 of Definition 3.2.2.

6. Symbolic Verification for SD System

Algorithm 6.13 RecheckN erodeCells(pN er Fail)

1: if (pNerFail = 0) then

2: return True

3: end if

4: Visited +-- 0
5: while pN er Fail # 0 do

6: Zeqv +-Pop(pNerFail)

7: if -, RecheckNerodeCell(Zeqv, Visited) then

8: return False

9: end if

10: end while

11: return True

RecheckNerodeCell

139

For each set of state predicates Zeqv ~ Pred(Q) that Algorithm 6.14 is called with,

we will check that these states identified by the predicates are ..\-equivalent to each

other, and return False if they are not. When Subroutine RecheckNerodeCell is

called, parameter Visited ~ Pred(Q) x Pred(Q) represents tuples of states that

are known to be ..\-equivalent. See Algorithm 6.13 for further details about these

parameters.

At line 1, a state predicate is popped out of Zeqv and labeled as Pq1 •

From line 2 to line 6, the algorithm populates the Pending set with all pairs of

Pq1 and Pq2 , where Pq2 is also popped from Zeqv· Note that state predicates Pq1 and

P~ each represent a single state in Q. Set Pending represents all the state pairs that

we wish to show to be ..\-equivalent. Of course, we will likely finding new state pairs

that we will also need to test, as our algorithm progresses.

Two states q1 , q2 E Q are ..\-equivalent if they have the same future with respect

to the marked and closed behavior of Gc~. That means that both states are either

marked, or neither is marked (lines 10-12). It also means that for each u E 'E (lines

13-28), there is au transition at one state if and only if there is au transition at the

other (line 17-18). Also, if there is a u transition leaving each state, the two new

states reached must be ..\-equivalent. Obviously if q1 = q2 (line 19), then the two

140 6. Symbolic Verification for SD System

Algorithm 6.14 RecheckNerodeCell(Zeqv, Visited)

1: Pq1 +---- Pop(Zeqv)

2: Pending +---- 0
3: while Zeqv =/:- 0 do
4: Pq2 +---- Pop(Zeqv)

5: Push(Pending, (Pq1 , Pq2))

6: end while

7: while Pending =/:- 0 do
8: (Pqu Pq2) +---- Pop(Pending)

9: P +---- Pq1 V Pq2

10: if (P 1\ Pm "¥=false) & (P 1\ Pm "¥= P) then
11: return False

12: end if
13: for all a E I: do
14: P' +---- J(P, a)
15: P~1 +---- J (Pq1 , a)

16: P~2 +---- 8(Pq2 , a)
17: if (P' "¥=false) then
18: if (P~1 1\ P' "¥=false) & (P~2 1\ P' "¥=false) then

19: if (P~1 "¥= P~2) & ((P~1 , P~2) ~ Visited) then
20: Push(V isited, (P~1 , P~2))
21: Push(V isited, (P~2 , P~1))
22: Push(Pending, (P~1 , P~2))
23: end if
24: else
25: return False

26: end if
27: end if
28: end for
29: end while
30: return True

6. Symbolic Verification for SD System 141

states are A-equivalent.

Our approach to prove that q1, q2 E Q are A-equivalent will be to attempt to prove

they are not. We will check the per state conditions (lines 10-12 and lines 17-27),

and then if the states take us to two different states for a common u transition (line

19), we check to see if the new states already have a tuple in Visited (line 19). If

they do, either they are known to be equivalent or we have already processed the pair

and added their requirements to Pending. If they do not, we add the pair to Pending

and Visited (lines 20-22). This ensures that a state pair is added to pending at

most once, so we will terminate after a finite number of iterations as Get has a finite

statespace. There is no sense in adding the pair to Pending twice as processing the

pair twice would not provide new information to check.

The idea is that if the state pair are not equivalent, then we must eventually

reach a state pair that we need to be equivalent, but the states do not have the

same marking information and/ or the same possible outgoing event transitions. If we

never reach such a pair (and we have a finite number of possible state pairs to check),

then the original state pairs must be equivalent. Not only that, then every state pair

that we encountered to check, must also be equivalent to each other, or they would

have caused the test to fail. This is why all state pairs in Visited are known to be

equivalent if the algorithm returns true.

As we expect that our plant and supervisor TDES components are typically min

imal or close to it, we also expect that Get is likely minimal or close to it. As such,

we believe that when we start to check that a state pair is equivalent, we expect to

either quickly find out it is not, or have the test terminate successfully as the new

state pairs we encounter to test are actually the same state.

We now make a few additional comments to clarify a few steps of the algorithm.

For lines 14-16, predicate P' represents states reached via u from either state q1 or

state q2 , while P:
1

and P:
1

represents states reached via u only from the indicated

state. The condition on line 17 will be satisfied if either state q1 or state q2 has a u

transition leaving that state. The condition on line 18 will fail if only one of the two

states has a u transition leaving that state.

142 6. Symbolic Verification for SD System

Checking Point iv of SD Controllability

Point iv in Definition 3.2.2 for SD Controllability is checked by Algorithm 6.15.

Subroutine CheckSamplingMarkingStates is passed the state predicate Preach, which

represents the set of reachable states of Gel, when it is called by Algorithm 6.8.

Point iv of SD Controllability states that only sampled strings can be marked

strings. This implies that every reachable marked state of Gel can only have at most

incoming tick transitions from other reachable states.

Algorithm 6.15 CheckSamplingMarkingStates(Preach)

1: P ~ V 8(Preach, u)
uEI::-{r}

2: if P 1\ Pm :/:.false then
3: return False

4: end if
5: return True

At line 1, we first identify all states with an incoming non-tick transition from a

reachable state. This implies that all of these states are also reachable. At line 2,
we check to see if any of these states are also marked. If one of them is marked, then

Gel fails this condition and we return False.

Chapter 7

Examples

In this chapter we provide illustrative examples for key required conditions we have

defined for an SD system (see Section 7.1), as well as a successful example based

on Hill's Flexible Manufacturing System (FMS) from [11] (see Section 7.2). Then in

Section 7.3, we translate the FMS example into Moore FSM, using the approach we

discussed in Chapter 4.

All the DES examples have been verified to be either passing or failing using

the software tool we implemented, based on the algorithms from Chapter 6. The

examples are illustrated as per the legend shown in Figure 7.1.

Figure 7.1: Legend Used to Display DES

As shown in Figure 7.1,

• An initial state is a box shape with its border single lined.

• A marked state is a ellipse shape with its border doubled lined.

• By default, a regular state is a ellipse shape with its border single lined.

• A controllable event transition is shown as a bold arrow.

143

144 7. Examples

• An uncontrollable event transition is shown as a thin arrow.

7.1 Examples

In this section we provide some examples which fail key conditions that we require, in

order to provide a better understanding of these conditions. The conditions we cover

include plant completeness, activity loop free, proper time behavior, and SD control

lability. We have not included examples for untimed controllability and nonblocking

conditions since these two conditions are already well studied.

7.1.1 Plant Completeness

Figures 7.2 and 7.3 show a plant and a supervisor such that the plant fails to be

complete for the supervisor, as per Definition 2.3.1. This is because event repair.2

is not eligible at state down in the plant, while this event is eligible at state down

in the supervisor. This could be a problem if event repair.2 is being generated by

the controller, and can occur whenever it is enabled. This would mean that the event

could potentially occur when the plant model says it can't, resulting in unmodeled

behavior.

Checking proper timed behavior Condition ...

CLowSub::VeriBalemiBad() :306: iTick • 3

VERI_BALEHI: Oseconds.

Listing 7.1: Output

(-206) State size of the synchronous product: 7
Number of bdd nodes to store the synchronous product: 20

Computing time: 0 seconds.

failed: proper timed behavior Condition checking failed at following state(s):

<mach:dovn, sup:dovn>

Causing controllable avent:repair.2

7. Examples 145

Figure 7.2: Plant Completeness Example: Figure 7.3: Plant Completeness Example:
Plant Supervisor

146 7. Examples

7.1.2 Activity Loop Free

Figure 7.4 shows a TDES which is not activity loop free, as per Definition 2.3.3. This

is because at state (b) the event down.l is able to preempt the tick event and proceed

to state (c) and after that to state (a). This creates a tick-less cycle. This cycle of

'start.l-down.l-repair.l' can occur an unlimited number of times. This implies the

physically unrealistic situation that we can have an infinite number of these events

occur in a finite time period, and thus must not be allowed.

Figure 7.4: Activity Loop Example

7. Examples 147

7.1.3 Proper Time Behavior

Figure 7.5 shows a plant which fails to satisfy proper time behavior as per Definition

2.3.5. At state down, neither a tick event nor an uncontrollable event is eligible, just

the controllable event repair.l. This causes two problems: First, it implies that the

controllable event must occur in a particular time frame, yet the event can be disabled

forever by a supervisor, and thus never occur. Second, because its controllable, it can

be disabled by a supervisor. Since no other events are possible, if this event is disabled,

we effectively "stop the clock", which is physically unrealistic. Note that supervisor

could disable repair.l here and still be TDES controllable. i.e. this problem is not

caught by the TDES controllability definition.

Figure 7.5: Proper Time Behavior Example

148 7. Examples

7 .1.4 SD Controllability

We now examine the the various points of the SD controllability condition from

Definition 3.2.2.

Point i and Point ii

As Point i and the '~' part of Point ii are essentially equivalent to the standard

TDES controllability condition, we will not provide an example here for them. We

will instead focus on the '::::}' part of Point ii as this is a new condition introduced

bu SD Controllability.

Figure 7.6 and Figure 7.7 show a plant and a supervisor such that Supervisor fails

to satisfy the '::::}' part of Definition 3.2.2, with respect to Plant. The prohibitable

event is job and the uncontrollable events are v~rified and done. We first note that a

tick event is eligible at state 3 in the Plant. Since the prohibitable event job is eligible

at state (Plant:3, Supervisor:3) in the synchronous product, the supervisor should

disable tick at its state 3 since a prohibitable event should only be enabled when it

is to be forced. Alternately, if we do not yet wish event job to occur, it should be

disabled until we are ready for it.

Checking SD Controllability
VERI_SD: Oseconds.

Listing 7.2: Output

(-209) State size of the synchronous product: 12

Number of bdd nodes to store the synchronous product: 38
Computing time: 0 seconds.

failedl: Failed SD Controllability condition II at state:
<failed1_mach1:3, failedl_sup1:3>

Point iii.l

Figure 7.8 and Figure 7.9 show a plant and a supervisor such that Supervisor fail to

satisfy Point iii.l of Definition 3.2.2 with respect to Plant. The only prohibitable

event is job. The uncontrollable events are { verifiedl, verified2, done}.

In the system, prohibitable event job is eligible at sampling state 1 in the Plant,
so the eligible prohibitable event set for this sampling period is {job}. However when

we reach state 3, event job has not yet occurred, but is no longer eligible, violating

Point iii.l.

7. Examples 149

Figure 7.6: SD Controllability i, ii Example: Plant

This is a problem as often when a prohibitable event occurs is completely under

the control of the implementation (as discussed before, this is a modeling issue). Also,

this event may occur at different times during a sampling period, depending on the

implementation used. As an SD controller makes its forcing decisions immediately

after a tick, it will cause event job to occur at state 1 in the physical system. If the

150 7. Examples

Figure 7. 7: SD Controllability Point i, ii Example: Supervisor

implementation is such that event job is delayed and event verifiedl occurs first, we

could get event job after event verifiedl in the physical system, which does not match

our plant model.

In this example, it was the plant model that made event job become ineligible. A

related issue would have been if event job was possible at state 3 in the plant, but not

7. Examples 151

in the supervisor. This would imply that the SD controller must detect that event

verifiedl has occurred in the current sampling period, and disable event job in time

to prevent it from occurring. This of course cannot be done as the event has already

been initiated after the tick occurred and even if could be stopped, the SD controller

will not even see that event verifiedl has occurred until after the next tick, at which

point it would be too late. If the implementation is such that event verifiedl occurs

before event job, we would still get a job transition in the current sampling period in

the physical system, violating our control law. For example, if event job was ''walk

through doorway" , and event verifiedl was "door closes", this would mean we would

walk into a closed door.

A second related problem this condition can catch is when a prohibitable event

is not eligible at state 1, but becomes eligible at state 3. The supervisor is trying to

express that the event should occur this sampling period, but not until after event

verifiedl has occurred. This cannot be implemented as the SD controller would not

know event verifiedl had occurred until after the next tick, thus too late to force

a new event. If we tried to simply force the prohibitable event at state one in the

controller, we might get the situation that the event occurs before event verifiedl

(depending on our implementation). Again, this would violate our control law.

Point iii.2

Figure 7.10 and Figure 7.11 show a plant and a supervisor such that Supervisor fails

to satisfy Point iii.2 of Definition 3.2.2, with respect to Plant. The prohibitable

events are {job1,job2}. The uncontrollable events are {done1, done2}.

In the system, states 6 and 7 are reached from sampled state 1 by concurrent

strings job1- job2- tick and job2- job1- r, respectively. As these strings have the

same occurrence image, Point iii.2 requires that states 6 and 7 represent the same

Nerode equivalence cells of the closed loop system's closed and marked language's.

However, as strings reaching state 6 can be extended by a donel event, while strings

reaching state 7 can be extended by a done2 event, the states clearly do not represent

the same Nerode equivalence cell of the system's closed behavior. Similarly, as strings

reaching state 6 can be extended by a donel event to a marked string while strings

reaching state 7 can be extended by a done2 event to a marked string, they do not

represent the same Nerode equivalence cell of the system's marked language either.

152 7. Examples

Figure 7.8: SD Controllability Point iii.l Figure 7.9: SD Controllability Point iii.l
Example: Plant Example: Supervisor

7. Examples 153

one2

Figure 7.10: SD Controllability Point iii.2 Figure 7.11: SD Controllability Point iii.2
Example: Plant Example: Supervisor

This condition is important for controllability and nonblocking. The reason is

that an SD controller cannot tell the difference between the two concurrent strings,

so it does not know whether it should be in state 6 or state 7. If events donel and

done2 were controllable, it would not know if it should be enabling event donel or

event done2. Clearly, we could not enforce such a control law.

The reason this is important for nonblocking is also that we cannot tell the dif

ference between the two strings. If we had a sequence of possible concurrent strings

such that each pair had the same occurrence image and only one path of the pair ever

reached a marked state, we would never be able to determine if our system reached

a marked state.

A related issue is how our controller is implemented. The control law says that

either sequence jobl - job2 or sequence job2 - jobl is fine, but not which one will

actually occur. It might be that we will get a bit of both, but we might always get

only one due to timing issues; or perhaps we have a sequential implementation that

knows that jobl and job2 must occur, so its designers choose the order jobl- job2,

and the implementation always executes these events in this order. If the sequence

job2- jobl was the only path back to a marked state, the implementation would block

despite the fact the TDES system was nonblocking. This condition, in conjunction

154 7. Examples

with Point iv of the SD controllability definition, helps make sure nonblocking does

not depend on the order of the events and allows things to function if we only get one

of the variations of the possible concurrent strings with the same occurrence image.

One can image that we have a family of possible physical systems that we could get

based on how we implement our controllers, each differing based on which of the

possible variations of the concurrent strings can actually occur. We are assuming we

will see at least one variation, possibly more. These conditions are intended to ensure

that whichever system we get, it will still be nonblocking if the TDES system was

nonblocking.

Listing 7.3: Output

(-211) State size of the synchronous product: 8

Computing time: 0 seconds.

failed!: Failed SD Controllability condition III.2 at state:
<failed1_mach:6, failed1_sup:6>

<failedl_mach:7, failedl_sup:7>

list_NerFail is not empty and RecheckNerodeCells() Failed.

Point iv

Figure 7.12 and Figure 7.13 show a plant and a supervisor such that Supervisor

fails to satisfy Point iv in Definition 3.2.2 with respect to Plant. Since state 0 is a

marked state and is reached from state 6 by activity event done, the system does not

satisfy the condition as clearly its marked language is not a subset of the sampled

strings (empty string and strings ending in a tick).

If a marked state is reachable by a non-tick event, it means the system can reach

a marked state in a way that is invisible to the SD controller as it can only observe

sampled strings. This by itself is undesirable, as we could have a system that can only

reach marked states by non-tick events and we would never be able to tell if we had

actually reached a marked state. Also, if we have multiple concurrent strings with

the same concurrence image, we could have the situation that only some of them pass

through a marked state in that sampling period. Worse, our implementation might

be such that we only get the variations that do not pass through a marked state! Note

also, that Point iii.2 of the SD controllability definition only says that concurrent

strings with same occurrence image must have same marked future. it does not say

7. Examples 155

-Figure 7.12: SD Controllability Point iv Figure 7.13: SD Controllability Point iv
Example: Plant Example: Supervisor

much about the prefixes of these concurrent strings. That is where Point iv comes

in, making sure the :E!:t prefixes are not marked.

Listing 7.4: Output
VERI_SD: lseconds,

(-212) State size of the synchronous product: 7

Number of bdd nodes to store the synchronous product: 20

Coaputing time: 1 seconds.

failedl: Failed SD Controllability condition IV at state:

<failedl_aach:O, failedl_sup:O>

There is a reachable aarking state reached by a non-tick event.

156 7. Examples

7.2 SD Controlled Flexible Manufacturing System

In this section we present a working example based on the untimed Flexible Manufac

turing System (FMS) from [11). The system, shown in Figure 7.14, is composed of six

plant components and five one slot buffers. We will treat the buffers as specifications,

requiring that they do not overflow or underflow. Table 7.1 below shows a mapping

from the event labels used in the diagrams to their meaning. The events labeled as

numbers are directly from the Hill untimed example. We kept the same labeling to

make it easy to see the correspondence.

t ___ _

r---------------------,
I I ' v----

AM li
~ I

~------------------------------------1

I I
I
I '.------..----.._,. ~--..... __ ..., :
I
I

-'-----'I
~=--..,.. ...___._i!2.J...IP I

I
I

I I

l------------------------------------1

Figure 7.14: Flexible Manufacturing System Overview

7.2.1 FMS Plants

The plant components consist of two conveyors (Con2 and Con3), a handling robot

(Robot), a lathe that can produce two different parts, a painting machine (PM),
and a finishing machine (AM). The flow of material is illustrated in Figure 7.14. See

Figures 7.15- 7.20 for the TDES models of the components.

7. Examples 157

Table 7.1: Explanation of Event Labels
I Label I Meaning II Label I Meaning II Label I Meaning

921 Part enters system 922 Part enters B2 933 Robot takes from B2

934 Robot to B4 937 B4 to Robot for B6 939 B4 to Robot for B7

938 Robot to B6 930 Robot to B7 951 B4 to Lathe (A)

953 B4 to Lathe (B) 952 Lathe to B4 (A) 954 Lathe to B4 (B)

971 B7 to Con3 974 Con3 to B7 972 Con3 to B8

973 B8 to Con3 981 B8 to PM 982 PM to B8

961 Initialize AM 963 B6 to AM 965 B7 to AM

966 Finished from B7 964 Finished from B6

Figure 7.15: Conveyor- Con2
Figure 7.16: Robot

7.2.2 Buffer Supervisors

We now discuss the TDES supervisors, shown in Figures 7.21- 7.25, that control the

flow of parts in and out of the buffers. Their goal is to make sure the buffers do not

overflow or underflow. They are based on the original untimed buffer specification of

[11], but extended to the SD controllable setting. In some of the supervisors in this

section such as B4 in Figure 7.22, we have activity events selflooped (i.e. event 933

at state 0 of B4). This will not cause the system to have an activity. loop, as it will

be combined with the plant TDES which only allow these events to occur once per

clock cycle.

158 7. Examples

Figure 7.17: Lathe Figure 7.18: Finishing Machine - AM

Figure 7.19: Conveyor- Con3 Figure 7.20: Painting Machine -
PM

Supervisor B2 not only prevents overflow and underflow of buffer B2, it also

decides when event 921 should occur. As soon as the system is turned on, it imme

diately enables and forces 921, causing Con2 to accept a new piece into the system.

It then waits for the piece to enter B2, before it enables event 933, allowing the

7. Examples 159

Figure 7.21: Supervisor B2

Robot to remove the part. It does not cause another 921 to occur until 933 does,

ensuring that the buffer is empty. A few things are worth noting. First, B2 enables

prohibitable event 933, but does not disable the tick at state 4. This tells us that it

wants to prevent the event from occurring too soon, but does not decide when the

event will actually occur. This is controlled by another supervisor. Second, B2 makes

sure there is a tick between 933 occurring, and enabling and forcing event 921. This

is to satisfy Point iii.l of the SD controllability definition. Third, Supervisor B2

contains a special event, no921, which we will discuss in a later section. This is a

"virtual event" that was not part of the original plant, but that we added to aid in

communication between supervisors.

Supervisors B4, B6, and B7 manage their respective buffers. They strictly disable

and enable events to prevent buffer overflow and underflow. They do not force any

events, telling us that other supervisors make these decisions. This is because the

decision of when these events should occur requires more than just a local view of

whether a buffer is empty or not. We will discuss these other supervisors in later

sections.

160 7. Examples

Figure 7.22: Supervisor B4

Figure 7.23: Supervisor B6

Figure 7.24: Supervisor B7

Figure 7.25: Supervisor B8

7. Examples 161

Supervisor B8 not only prevents overflow and underflow of buffer B8, it also

controls the flow of pieces once a part enters buffer B7 (event 930), flows to TDES

PM, and then back to buffer B7; It does this by watching the parts progress, and

then forcing events 971, 981, and 973 as needed. As B8 determines when these events

occur, it disables tick as soon as it enables these events to comply with Point ii of

the SD controllability definition. In other words, once the event is enabled by all the

supervisors and possible in the plant, the event is also forced.

The fact that the supervisor must not only decide when to enable an event, but

also when to force the event, makes things more complicated. It must not only decide

when to enable the event, but also must know that the event is not disabled by

another supervisor and that it is eligible in the plant. Otherwise, it could disable a

tick when the desired event cannot occur, either forcing the wrong event or becoming

uncontrollable.

7.2.3 B4 to Lathe Path

In addition to the buffer supervisors we represented in Section 7.2.2, we need to add

the following supervisors to resolve some nonblocking and concurrency issues on the

B4 to lathe part path of Figure 7 .14.

We first need to address a nonblocking issue with respect to buffer B4 and B2.

We see from Figure 7.14 and Figure 7.16, that Robot takes a piece from buffer B2
(event 933), and places it in B4. The piece then goes to the Lathe, and then back

to buffer B4. The robot will then take the piece from B4, and put it in either buffer

B7 (event 930), or buffer B6 (event 938).

There are two issues here. The first issue is how to decide which action the

Robot should take if both buffer B2 and buffer B4 have a part waiting. In normal

supervisory control theory, we can just enable the safe choices, and allow the plant to

somehow make the decision. However, we want to be able to convert from a TDES

supervisor to an SD controller in an easy, deterministic fashion. This means we must

dictate which prohibitable events occur, and in which sampling period they occur in.

We thus have to choose to service either buffer B2 or B4, as we cannot do both at

the same time.

This issue is handled by supervisor TakeB2, shown in Figure 7.26. It forces

162 7. Examples

Robot to first service buffer B2, then buffer B4, then back to buffer B2. It waits

until there is a piece in B2 (event 922), then it immediately enables and forces event

933 to move the piece to buffer B4. It then waits until the piece goes to the Lathe,
returns to B4, and then moved to either B6 or B7, before it allows the Robot to

service B2 again.

Figure 7.26: TakeB2 Figure 7.27: B4Path

The second issue is to prevent a conflict with respect to buffer B4. Once the

Robot puts a piece in B4 and the piece is taken by the Lathe, the Robot could

put a second piece in B4. This would mean the Lathe has no place to return its

part, and the system blocks. TakeB2 prevents this by disabling event 933 until the

current part has returned to B4, and then removed to either B6 or B7.

We now discuss supervisor B4Path. It works with buffer supervisor B4 to ensure

the proper behavior of the B4 to lathe part path. Supervisor B4 .primarily ensures

that buffer B4 does not overflow or underflow. It serves an additional role in making

7. Examples 163

sure that once a piece is put in B4, the correct action is taken when it is taken out.

When the robot initially puts a piece in B4 (event 934), it makes sure that only

events 951 and 953 can be used to take the piece out. This ensures the part goes to

the Lathe for processing. The Lathe can process the piece as type A (event 951)

or type B (event 953), producing different results. The Lathe then returns the part

to B4 using events 952 (part is type A) or event 954 (part is type B). Since type

A parts go to buffer B6 (events 937 then 938), and type B parts (event 939 then

930) must go to buffer B7, supervisor B4 ensures only the correct follow up event

is possible. B4Path contributes to the proper behavior of the B4 to lathe path, by

disabling event 933 once a part is put into B4 from B2, and disabling events 937

and 939 until a part is placed into B4 from B2.

Figure 7.28: LathePick

164 7. Examples

Supervisor LathePick, shown in Figure 7.28, also contributes to control of the

B4 to lathe part path. To satisfy Point ii of SD controllability, we cannot just enable

both event 951 and 953 and let the system "decide." We have to dictate when these

events are to occur. That means we have to make a choice. In LathePick, we have

required that the Lathe first produce a type A part, then a type B part, and then

alternate. Note that the supervisor has enough information to know when the events

are possible in the plant, so it does not try to force them at the wrong time, possibly

"stopping the clock."

7.2.4 Moving Parts from B4 to B6/B7

We now discuss some concurrency and blocking issues involved with moving pieces

from buffer B4, to either buffer B6 or B7. To move a part from buffer B4 to B6,

we use event 937. To satisfy Point ii of SD controllability, we need to decide when

to enable and force this event. This is handled by supervisor TakeB4PutB6, shown

in Figure 7.29. It waits for event 952 to occur, which signifies a piece of type A is

ready to be transferred to buffer B6. It forces event 937 and then waits for event

963 to occur, signifying that the piece has been taken by AM and that B6 is ready

for a new part.

We now consider moving a part from B4 to B7. We do this using event 939. We

have to decide when to force 939 in order to satisfy Point ii of SD controllability,

but we also have to deal with a potential blocking situation. Because a ·part placed in

B7 first goes to PM for processing, it is possible that the robot could put a part in

the now empty buffer B 7, leaving no place for the first part to return to. Supervisor

TakeB4PutB7, shown in Figure 7.30, handles both issues. It watches for event 954

to occur, signaling that a part of type B has been placed in B4, and is ready to be

transferred to buffer B7. TakeB4PutB7 forces event 939 to make the transfer. It

then waits for event 965 to occur signaling that AM has removed the part from B7,
before allowing another 939 to occur, thus preventing blocking.

7.2.5 AM to Exit Path

We now discuss the paths from B6 and B7, leading through machine AM and then to

where the parts exit the system. We have several concurrency issues to deal with here.

7. Examples 165

Figure 7.29: TakeB4PutB6 Figure 7.30: TakeB4PutB7

First, we have to specify when prohibitable events 961, 963, and 965 are suppose to

occur in order to satisfy Point ii of SD controllability. This is complicated by the

fact that a piece could be waiting for AM in both B6 and B7, so we need to specify

how to choose which buffer to service first.

The problem is that these three events are linked and we have to keep track of

several issues in order to decide when to force which event. We could create a single

supervisor to do this, but it would be quite large and complicated, thus difficult to

design correctly. It would be nice to be able to design several modular supervisors.

If we were only enabling and disabling events, this would not be that hard. However,

since we must decide when to force the events, we have to make sure we do not try to

force an event when it is not possible in the plant, or disabled by another supervisor.

It was very non-obvious how to do this modularly, without significant reuse of logic

from other supervisors.

We then came up with the solution of using prohibitable "virtual events" no963a,

no963b, no965a, and no965b. We introduced these new events to the system by adding

plants AddNo963 and AddNo965, shown in Figures 7.31 and 7.32. Note that we

166 7. Examples

made sure the plants specify that these events can only occur once per sampling

period, so that we do not have to specify this in our supervisors.

Figure 7.31: Plant AddNo963 Figure 7.32: Plant AddNo965

Let's first discuss how to handle event 963. The idea is that when we want to

disable the tick to force event 963 in one supervisor, events no963a/b can be used

as an alternate event to force if event 963 is disabled by another supervisor, or not

possible yet in the plant. The other supervisors will only enable event no963a or

no963b when they know 963 is not possible, and they will make sure only one of the

three events are possible at a given time. The reason there is an 'a' and 'b' event

is that there are three supervisors with which we need to coordinate enablement

information. This will become clear later.

The primary supervisor for event 963 is Force963, shown in Figure 7.33. It

watches for event 938 to occur, signifying that there is a part in B6 waiting to go

to AM. The supervisor then disables the tick to force 963. Note, that it is the

only supervisor that tries to force this event. However, event 963 could be ineligible

in plant component AM, or disabled by supervisors Force961 or AMChooser,

the latter two TDES shown in Figures 7.34 and 7.35. Force963 has no way of

knowing this. It handles this by adding the no963a/b-tick loop at state 2. Supervisors

Force961 and AMChooser will ensure that out of events 963, no963a, and no963b,

one and only event will be eligible and enabled immediately after a tick. If 963 is

ineligible or disabled, then no963a or no963b gets forced instead, and then we try

again after the tick. This way we signal we want 963 to occur as soon as it can, but

do not stop the clock. We also do not need to repeat information from the plant and

other supervisors about when these events are eligible/enabled.

The reason that only one ofthe three events are ever allowed to be eligible/enabled

at the start of a tick, is to avoid violating Point iii.l of the SD controllability

definition. Examining state 2 of Force963, we see that once one of the three events

7. Examples 167

occurs, the others are disabled. If more than one was enabled and eligible at state

2, this would cause one of them to change eligibility status between ticks, violating

Point iii.l of the SD controllability definition.

For event 965, we have similar behavior represented by supervisor Force965,

shown in Figure 7.36. It interacts in a similar way with plant component AM, and

supervisors Force961 and AMChooser.

Figure 7.33: Force963
Figure 7.34: Force961

We now discuss supervisor Force961, shown in Figure 7.34. Its primary task is

to determine when to force event 961 which readies AM to process parts. Force961

forces 961 right away, and then waits for events 964 or 966 (signifies AM has finished

processing the part) to occur, before forcing event 961 again.

The secondary task of Force961 is to only enable events no963a and no965a

when events 963 and 965 are not possible in the plant component AM. When they

are possible in the plant, Force961 enables no963b and no965b instead. This insures

that events no963a and no965a will always be possible after a tick when events 963

and 965 are ineligible in the plant. It also ensures that the 'a' and 'b' events are never

168 7. Examples

Figure 7.36: Force965
Figure 7.35: AMChooser

eligible at the same time. Also, as supervisor AMChooser ignores the 'a' events,

they will never be disabled when Force961 needs them. As Force961 never disables

7. Examples 169

the 'b' events when 963 and 965 are possible in the plant, this ensures that they will

not be disabled when AMChooser needs them. This means the two supervisors do

not interfere with each other with respect to these events.

Finally, please note that when we switch from the 'a' to the 'b' events in Force961,

we only do so immediately after a tick (consider states 1 to state 4 as an example).

This is to not violate Point iii.l of the SD controllability definition.

We now consider our last supervisor for this section, AMChooser, shown in

Figure 7.35. The role of this supervisor is to choose between taking a piece from

buffer B7 (event 965) or buffer B6 (event 963), when both have a waiting part. If

both receive a part in the same sampling period, we take the piece from buffer B7
first as there are other machines to keep busy along the B7 to PM path. We then

take a piece from B6. If there is already a new piece from B7 waiting, we continue in

an alternating fashion. If there is only one piece waiting in a given sampling period,

then we handle that piece. Because AMChooser sometimes disables event 963 or

965 in order to enforce this order, it enables the appropriate no963b or no965b event

as a forcing substitute. It also ensures that event 963 and no963b are never enabled

at the same time. It behaves similarly for events 965 and no965b.

7.2.6 System Shutdown

When we tested the previous supervisors (excepting supervisor B2 originally did not

have its state 6, plant component AM was not marked at its state 3, and supervisor

Force961 was not marked at its state 2) we found that the system was blocking. It

was not that the system was deadlocking or not completing its tasks, it was simply

the fact that, due to forcing events as soon as they were ready, the entire system was

never in a marked state at the same time. We could have delayed some events to

achieve this, but that would have been less efficient.

The real cause was the fact that the system did not have a shutdown mechanism.

Once started, it just kept running. A shutdown mechanism would cause the system

to empty out, allowing a non-deadlocked/livelocked system to return to its idle state.

The easiest way to cause the system to go idle, is to prevent plant component Con2
from taking new parts (event 921). Once new parts stopped coming in, the system

would process the existing ones, allow them to leave, and then the TDES should

170 7. Examples

return to their idle states which are marked.

To achieve this, we added a new plant component SystDownNup, shown in

Figure 7.37. It contains an event shutdown to empty the system, and an event restart

to bring the system back up. This could correspond to a physical switch an operator

could throw to control this behavior.

Figure 7.37: Plant SystDownNup Figure 7.38: Supervisor handleSystDown

Our next task was to stop new pieces from entering the system. The problem

was that supervisor B2 forced event 921, causing Con2 to take a new part, as soon

as buffer B2 was empty. As we wanted to keep supervisor B2 simple, we added

a new prohibitable "virtual event," no921. This was introduced by adding plant

AddNo921, shown in Figure 7.39. We then added the no921-tick loop at state 0 of

supervisor B2. We would use event no921 as an alternate event to force, when we

disabled event 921.

Figure 7.39: Plant AddNo921

Finally, we added supervisor handleSystDown, shown in Figure 7 .38. Its job

was to enable event 921 and disable no921 initially, and then disable 921 and enable

7. Examples 171

no921 once the shutdown event occurs. When the restart event occurs, the process

is reversed. We also make sure events 921 and no921 are never enabled at the same

time, and that one of the two are always eligible and enabled immediately after a

tick.

However, after the above, we were still ~locking. The culprit was supervisor

Force961. As soon as event 961 was eligible, it was forced so that AM was ready

to process a part. We could have created a no961 event like we did for B2, but this

would have been trickier as we needed to allow enough 961 events to occur to allow

the existing pieces to leave. Rather than do this, we decided that for AM, state 3

was a rest state, and it was fine to leave it there. So, we marked state 3 of AM,

and state 2 of Force961, and the system was nonblocking. Note that we could have

marked state 2 of TDES AM, and state 1 of TDES Force961, but that would have

caused Point iv of the SD controllability definition to fail.

7 .2. 7 Algorithm Runtime Statistics

To test the performance of the algorithm on this example, the following machine

configuration was used:

• 1.8GHz Dual core AMD processor

• 4GB of Dual channel DDR2 RAM

• Cygwin 1.5.25-15 with gee version 4.3.2

For testing purpose, the source code is compiled with -03 optimization 1 .

As we can see from the log output for the FMS example, shown in Listing 7.5, our

supervisor S is SD controllable for our plant. We also see that our plant has proper

time behavior, is complete for our supervisor, and has S-singular prohibitable behav

ior. Finally, we see that our closed loop system is ALF and nonblocking. From the

log, the total number of states of the synchronous product is 82,608. The verifications

take about 2 minutes and 51 seconds. The memory usage is around 183 megabytes

at the highest point, as shown in Figure 7.40. For the input files of all the DES in

this example, please see the appendix.

1 More information can be found by running man gee.

172

Listing 7.5: Output

Bdd-based TDES Verification Tool

L - Low Level verification

F - File the current project

C - Close the current project

Q - Quit

Current Project: FMS_1.sub

Procedure desired:

Show the blocking type(may take long time)(YIN)?

Verbose level (0- disable, 1- brief, 2- full)?

Computing reachable subpredicate ...

R: Iteration_! nodes: 120 time: 0 s

R: Iteration_2 nodes: 586 time: 0 s

R: Iteration_3 nodes: 1754 time: 0.031 s

R: Iteration_4 nodes: 2801 time: 0.093 s

R: Iteration_S nodes: 3265 time: 0.172 s

R: Iteration_& nodes: 3310 time: 0.109 s

R: Iteration_7 nodes: 2281 time: 0.094 s

R: Iterat ion_S nodes: 2387 time: 0.062 s

R: Iteration_9 nodes: 2132 time: 0.047 8

R: Iteration_ tO nodes: 1983 time: 0.047 s

R: Iteration_11 nodes: 1546 time: 0.015 s

R: Iteration_12 nodes: 1330 time: 0.016 s

R: Iteration_13 nodes: 1330 time: 0 s

R: Oseconds.

bddReach states:82608

bddReach Nodes: 1330

Verifying controllablity ...

VERI_ CON: Oseconds.

Verifying Nonblocking ...

CR: Iteration_! nodes: 191 time: 0 s

CR: Iteration_2 nodes: 357 time: 0.016 s

CR: Iteration_3 nodes: 488 time: 0.015 s

CR: Iteration_4 nodes: 540 time: 0.016 s

CR: Iteration_S nodes: 785 time: 0.031 •
CR: Iteration_6 nodes: 1143 time: 0.047 s

CR: Iteration_7 nodes: 1757 time: 0.093 •
CR: Iteration_S nodes: 2805 time: 0.281 s

CR: Iteration_9 nodes: 2080 time: 0.203 s

CR: Iteration_ tO nodes: 2048 time: 0.172 •
CR: Iteration_11 nodes: 1552 time: 0.109 s

CR: Iterat ion_12 nodes: 1330 time: 0.031 s

CR: Iteration_13 nodes: 1330 time: 0.047 s

VERI_NONBLOCKING: 2seconds.

Checking Plant Completeness ...

VERI_BALEMI: Oseconds.

Verifying Activity Loop Free ...

states: 10

states: 77
states: 772

states: 4531

states: 26540

states: 48300

states: 58068

states: 62420

states: 68242

states: 76780

states: 82128

states: 82608

states: 82608

states: 24

states: 70

states: 190

states: 394

states: 540

states: 173
states: 3545

states: 28173

states: 47358

states: 67045

states: 81732

states: 82608

states: 82608

Garbage collection #1: 2000003 nodes I 1996580 free I 0.1s I 0.1s total

VERI_ALF: 7seconds.

Verifying Proper Timed Behavior ...

VERI_PTB: Oseconds.

Checking SD Controllability

VERI_SD: 162seconds.

(0) This system has been verified succesfully!

State size of the synchronous product: 82608

Number of bdd nodes to store the synchronous product: 1330

Computing time: 171 seconds.

Total computing time:171 ~econds.

7. Examples

7. Examples 173

200,000 ..--· --···

~~==================================+
160,000 I- -··-----------------------------1-

1~~--+

120.000 .. '-·-·-·······-·-·······--·----·--------·------------··--······

~~---------------------------------------+

~~--------------------------------+

60,000 1- !---··-·-···· ········-··--····-·--··----·--------·-------------·-···---

~ 1- -·····---··· ··-··-···----------·-·---·------·--·----+

20,000 ············- ·········-·····-----·-----··-·-·--·-·····-·-----···--···-----·-·-··-·--·-··-·---··-·---···-·-··---··-·-···-··· .

Figure 7.40: Histogram for Memory Usage (Kbytes vs. seconds)

174 7. Examples

7.3 Translating FSM Supervisors to Moore FSM

In Section 7.2, we presented an example of a Flexible Manufacturing System with SD

controllable TDES supervisors. In this section, we apply the method in Section 4.2

to translate individual FMS supervisors into Moore finite state machines (FSM) (see

Section 4.1). This is possible because our supervisor is SD controllable, and our plant

is complete for our supervisor. If the plant was not complete, we would have had to use

additional information from the plant components to determine when the problematic

prohibitable events were not possible in the plant. This can be accomplished by

converting the plant components that contain the needed information into FSM as

well, and combining them with the FSM for the supervisors as modular controllers.

7.3.1 Adding More Timing Information

Before we can translate the individual TDES supervisors into FSM, they must be CS

deterministic as in Definition 3.1.5 and non-selfloop ALF. A TDES is non-selfloop

ALF if once any activity selfloops are removed, the resulting TDES is ALF. For

example, supervisor B4 in Figure 7.22 is neither CS deterministic or non-selfloop

ALF. This is a problem as the possible next state transitions of the FSM are too

numerous, and many of them are not actually possible in the plant. For example,

we could have according to the TDES a 934-tick sequence, a 934-951-tick, or even a

{934-951}*-tick sequence. We simply have too many choices, and this would result

in an overly complex FSM. Also, concurrent strings 934-951-tick and 934-951-934-

tick have the same occurrence image but lead to different states, which would result

in a nondeterministic controller. Examining the plant and other supervisors, we see

that there will always be a tick between events 934 and 951, so we can add this to

TDES B4, as we have done in Figure 7.41.

Making similar observations for the other non-selfloop activity loops, we get the

supervisor in Figure 7.41 which should provide us with the same over all closed loop

behavior as the original B4 supervisor. However, we note that prohibitable event 933

is still selflooped at state 0, so the TDES is not ALF. We could modify the supervisor

to remove this loop, but we do not need to as the selfloop provides enablement

information, but does not affect the next state information. As such, it does not

impede our translation. i.e. our next state information is { 933} *-934- tick to state

7. Examples 175

1 of B4. Essentially, as long as the supervisor is CS deterministic and non-selfloop

ALF, we can do the translation. As was discussed in Chapter 4, all we require is that

the TDES be CS deterministic, but typically if the TDES is not non-selfloop ALF

it will also not be CS deterministic. Also, it is often difficult to even check the CS

deterministic condition if the TDES is not non-selfloop ALF.

We then made similar changes to supervisors B6, B7, and B4Path. The new su

pervisors are shown in Figures 7.42- 7.44. All remaining supervisors can be converted

directly. We reran our software on the FMS system with these new supervisors, and

all conditions still passed.

Figure 7.42: New B6
Figure 7.41: New B4

Figure 7.43: New B7 Figure 7.44: New B4Path

176 7. Examples

7 .3.2 FSM Controllers for Flexible Manufacturing System

This section lists all the FSM Controllers for the Flexible Manufacturing System we

presented in Section 7.2 and 7.3.1, using the method developed in Section 4.2. We

first briefly discuss some implementation and modeling details, as well as introduce

some notation that we will use.

Each FSM samples its inputs on the clock edge when tick occurs, and then changes

state based on its current state, the value of each relevant input, and the next state

arcs for that state. The timing info is implicit as it only changes state on a clock edge.

If an input for an event is true when sampled on the clock edge, then it is considered

to have occurred during the last clock period. The designer must make sure that the

input for a given value has a pulse length equal to the period of our clock so that the

input will not be lost. If an input is seen at two clock edges in a row, it is considered

to have occurred twice. As such, the designer must make sure an input does not

have an overly long pulse length. Remember, except for one exception, an event is

considered to occur when its input goes true at the controller. The exception is when

the input goes true so close to a sampling edge it is detected in the next sampling

period, then it is considered to have occurred in the next clock period. This should

be taken in to account in modeling the system.

To represent the FSM visually, the following notations are defined. For the given

FSM,

• At each state in the FSM, a prohibitable event is listed if its corresponding

output is true at that state, which means the controller enables this event at

this state. An event is not listed if its output is false.

• At each transition, we use logical operators to represent the sampled input. We

use'!' as NOT,'+' as OR,'·' as AND.

• To distinguish from a DES event label and the event input being true at the

clock edge, the event name is surrounded by ' [] ' to indicate that the input was

true at the clock edge.

If the controller is following a concurrent string, for example a - (3 - r from one

sampling state to the next, we add a transition arc with '·'(AND) between the non-

7. Examples 177

tick events. For example '[a] · [,8]'.2 This would be interpreted as events a and ,B
occurred in the last sampling period, and no other activity events. Of course, there

is no implied ordering of the two events, nor do we know how many times each event

actually occurred during the last clock period.

Technically, if a supervisor has event set :E =a, ,B, "(,tick, the next state condition

for a given concurrent string should include a term for each activity event in the event

set. When the event is missing, it is negated. For string a- ,B- r, this would be

'[a] · [,B]·!['Y]'. However, we can often simplify these equations using Boolean logic.

For instance, if none of the possible strings at the current sampled state contain 'Y,

we can leave it out of the equations.

If the controller is getting to the same state by different strings which are not

occurrence equivalent, then we can use '+'(OR) to combine the conditions together.

For example '[a]+ [,B]'. This would be interpreted as event a or event ,B occurred in

the last sampling period, but no others.

If at a given state in the controller we can do concurrent string a-r and a- ,B-r,

we need to make sure their next state equations do not overlap. Using conditions '[a]'
and '[a]· [,B]' is not enough as first condition is true as long as a occurred, irrespective

of ,B. Instead, the condition for a- r should be '[a]·![,B]'.

For each FSM, the initial state is identified by a Reset signal. This Reset sig

nal represents the "power on" behavior or a restart of the controller. This state is

equivalent to the initial state of each TDES. It also explains why the initial state of

a timed DES is a sampling state that does not need to be reached by a tick, since the

FSM always starts at this state.

For each FSM state, we typically define a default transition DEF. This is because

a TDES transition function is a partial function and an FSM next state function is

a total function. Basically, it is a shorthand for all the next state equations that

we have not explicitly specified. It is equivalent to taking the logical OR of all

existing outgoing next state conditions from that state, and then negating the result.

Sometimes, when we are translating a supervisor, we end up with a specified next

state equation going to the same place as our DEF transition. That means this

transition can be removed as it will be covered by the DEF condition.
2In the following FSM graphs, this operator is represented by '.'(period) instead of'·' due to a

technical difficulty.

178 7. Examples

Our first FSM is for supervisor B2, and is shown in Figure 7.45. At state 0, we

have merged selfioop transition '![921]· [no921]' with the DEF transition. It is worth

noting how much simpler the FSM tends to be than the corresponding supervisor.

For B2, we went from a 7 state supervisor to a 3 state FSM.

eset

Figure 7.45: FSM B2 Figure 7.46: FSM Force963

We do a similar simplification for supervisors Force963 and Force965. The

translated FSM are shown in Figures 7.46 and 7.47. For Force963, we should have

a ![963]· ([no963a] + [no963b]) selfioop at state 1, but we have absorbed this into the

DEF transition. For Force965, we have absorbed the ![965] · ([no965a] + [no965b])

transition at state 1, into the DEF transition.

EF

Figure 7.4 7: FSM Force965
Figure 7.48: FSM B4

The next translation we examine is for B4, and the FSM are shown in Figure

7.48. Note at state 0, we have a transition to state 1 with condition '[934]'. Strictly

7. Examples 179

speaking this should be '[934]·![952]·![954]'. However, after examining the plant and

other supervisors, we know that these three events can never occur in the same clock

period. We can thus simplify this to '[934]' to keep our diagram simple. Similar for the

'[952]' and '[954]' transitions. A similar example is at state 1. Here we have transition

condition '[951] + [953]'. Strictly speaking, this should be '[951]·![953]+![951] · [953]'

but we know from the plant that these events can't occur in the same clock period,

so we can simplify things.

The translation of the remaining FSM are straightforward so we do not need to

discuss them individually. The translations for supervisors B6, B7, B8, LathePick,
TakeB2, B4Path, Force961, handleSystDown, TakeB4PutB6, TakeB4PutB7,
and AMChooser are shown in Figures 7.49 - 7.59.

eset

Figure 7.49: FSM B6 Figure 7.50: FSM B7

180 7. Examples

eset

eset

Figure 7.51: FSM B8 Figure 7.52: FSM LathePick

eset

Figure 7.53: FSM TakeB2 Figure 7.54: FSM B4Path

7. Examples

state: I
%3
%5

eset

state: 0
961

no963a
no965a

EF

EF

Figure 7.55: FSM Force961

eset

Figure 7.56: FSM handleSystDown

eset

Figure 7.57: FSM TakeB4PutB6 Figure 7.58: FSM TakeB4PutB7

181

182 7. Examples

! [938]. [965]

Figure 7.59: FSM AMChooser

Chapter 8

Conclusions

This thesis focuses on issues related to implementing theoretical Discrete-Event Sys

tems (DES) supervisors, and the concurrency and timing delay issues involved.

Sampled-data (SD) supervisory control deals with timed DES (TDES) systems

where the supervisors will be implemented as SD controllers. An SD controller is

driven by a periodic clock and sees the system as a series of inputs and outputs. On

each clock edge (tick event), it samples its inputs, changes states, and updates its

outputs. In our introduction, we identified several concurrency issues that are not

covered by the standard controllability and nonblocking definitions.

In this thesis, we identify a set of existing TDES properties that will be useful to

our work, but not sufficient. We require that our plant have proper time behavior,

and is complete for our supervisor. We also require that our closed loop system is

activity loop free and nonblocking. To these properties, we add two new conditions.

First, we require that the plant have S-singular prohibitable behavior, where S is

our TDES supervisor. This condition restricts plant behavior such that prohibitable

events can only occur at most once per clock cycle, but is only concerned with strings

that are also accepted by our supervisor.

The main new condition we introduce is the SD controllability definition. This

condition extends the standard TDES controllability definition by adding restrictions

so that the TDES behavior is consistent with restrictions imposed by SD controllers,

making it easier to translate a TDES into an SD controller. It includes conditions to

ensure that the enablement and eligibility information is constant across a sampling

183

184 8. Conclusions

period, and that when the controller forces an event, it will not occur when the plant

model says it can't. It also ensures that when two strings that appear identical to an

SD controller occur in the same sampling period, the strings have the same closed and

marked future in the system's closed loop behavior. This means the SD controller

will take the same control action for both, and either string will be sufficient to get us

to a marked state. Finally, we require that only the empty string or a string ending

in a tick can be marked. This ensures that marked strings will be observable to the

controller.

We then establish a formal representation of an SD controller as a Moore Finite

State Machine (FSM), and describe how to translate a TDES supervisor to a FSM.

To be able to translate a given TDES into an FSM, we require that the TDES be CS

deterministic. This new condition essentially says that if two concurrent strings can

occur in the same clock cycle and they contain the same events (possibly in different

order or number), then they must take us to the same state in the supervisor. This

ensures our FSM is deterministic. We also discuss how to construct a single centralized

controller, as well as a set of modular controllers and show that they will produce

equivalent output. This is an important result, because we prefer a modularized

design of controllers rather than a large, complex, centralized design.

Next, we capture the enablement and forcing action of a translated controller in

the form of a TDES supervisory control map, and show that the closed-loop behavior

of this map and the plant is the same as that of the plant and the original TDES

supervisor. This is important as it shows that the behavior we expect from our TDES

model is what we should actually get in the system, at least as far as enablement and

forcing goes. As a controller chooses its next state based on which events occurred

in the last clock period, this means the enablement and forcing actions the controller

takes is irrespective to event ordering or number, but will have equivalent effect as

that of our TDES supervisor. As we discuss at the end of Chapter 3, there are

several time delay issues that we only partially address, leaving the remaining issues

for future work.

We also show that our method is robust with respect to nonblocking and certain

variations in the actual behavior of our physical system. Essentially, if there are

two or more concurrent strings possible in a given clock cycle and they contain the

same events (possibly in different order or number), we showed that as long as at

8. Conclusions 185

least one of these strings is actually possible in the physical system, then the physical

system and our SD controller will be nonblocking if our TDES closed loop system is

nonblocking. This result is important as some implementations may be such that we

actually get a subset of our expect behavior. This result says that as long as we get

this minimal subset, we will remain nonblocking.

We also introduce a set of predicate-based algorithms to verify the SD controlla

bility property, as well as the other conditions that we require. The algorithms are

implemented on the top of the preceding code base of Raoguang Song and use binary

decision diagrams (BDD). BDD is an efficient structure to store systems with large

statespaces and to perform state set operations. The implemented software tool is

able to verify a system whose synchronous product has more than 80,000 states, in

less than 3 minutes. We expect that it will be able to handle quite large systems, but

we did not have time to attempt this ourselves.

Finally to test our algorithms, we have produced a set of illustrative examples

which fail the key conditions discussed in this thesis, as well as a successful application

example based on a Flexible Manufacturing System (FMS). For all the supervisors

in the FMS example, we also translated them into Moore FSM controllers using

the translation method we created. Ideally, we would like to see an algorithm that

converts these controllers into program source code in some computer language. This

is left as future work and is beyond the scope of this thesis.

The source code of the software tool and the input files for the FSM example are

included in the appendix. The software is single threaded, which limits its perfor

mance. A few choices for the next step for the software tool, are rewriting the code

to be multithreaded, and/or implement a mechanism that can distribute the verifica

tion over multiple machines. We believe that our algorithms have good parallelizing

potential. This is left as future work.

186 8. Conclusions

Bibliography

[1] D. S. Arnon, "Bibliography of quantifier elimination for real closed fields," J.

Symb. Comput., vol. 5, no. 1-2, pp. 267-274, 1988. 6.2.2

[2] S. Balemi, "Input/output discrete event processes and communication delays,"

Discrete Event Dynamical Systems: Theory and Applications, pp. 41-85, 1994.

1.1, 1.2, 2.2.3

[3] F. Basile and P. Chiacchio, "On the implementation of supervised control of

discrete event systems," Control Systems Technology, IEEE Transactions on,

vol. 15, no. 4, pp. 725-739, 2007. 1.2

[4] W. Bolton, Programmable Logic Controllers. Elsevier, 4th ed., 2006. 1

(5] B. Brandin and W. Wonham, "Supervisory control of timed discrete-event sys

tems," IEEE Transactions on Automatic Control, vol. 39, pp. 329-342, Feb 1994.

1.1, 1.2, 2.3

[6] B. A. Brandin, Real-time supervisory control of automated manufacturing sys

tems. PhD thesis, University of Toronto. Graduate Department of Electrical and

Computer Engineering, 1992. 1.1, 1.2, 2.3, 5.1

(7] S. Brown and Z. Vranesic, Fundamentals of Digital Logic with VHDL Design.

McGraw Hill Higher Education, 3rd ed., 7 2008. 1, 3.1

(8) A. E. Bryant, "Symbolic boolean manipulation with ordered binary-decision di

agrams," ACM Computing Surveys, vol. 24, pp. 293-318, 1992. 1.1, 1.2, 6, 6.2.2

[9] C. Dragert, J. Dingel, and K. Rudie, "Generation of concurrency control code

using discrete-event systems theory," in SIGSOFT '08/FSE-16: Proceedings of

187

188 BIBLIOGRAPHY

the 16th ACM SIGSOFT International Symposium on Foundations of software

engineering, (Atlanta, Georgia), pp. 146-157, ACM, 2008. 1.2

[10] A. Giua and C. Seatzu, "Modeling and supervisory control of railway networks

using petri nets," IEEE Transactions on Automation Science and Engineering,

vol. 5, no. 3, pp. 431-445, July 2008. 1.2

[11] R. C. Hill, Modular Verification and Supervisory Controller Design for Discrete

Event Systems Using Abstraction and Incremental Construction. PhD thesis,

Department of Mechanical Engineering, University of Michigan, 2008. 1.1, 7,

7.2, 7.2.2

[12] R. J. Leduc, "PLC implementation of a DES supervisor for a manufacturing

testbed: An implementation perspective," Master's thesis, Graduate Department

of Computer and Electrical Engineering, University of Toronto, 1996. 1.2

[13) J. Lind-Nielsen, BuDDy: Binary Decision Diagram Package. IT-University of

Copenhagen, 11 2002. 6

[14] C. Ma, Nonblocking supervisory control of state tree structures. PhD thesis, De

partment of Electrical and Computer Engineering, University of Toronto, 2004.

Adviser-W. M. Wonham. 1.2, 6.2, 6.3

[15] P. Malik, From Supervisory Control to Nonblocking Controllers for Discrete

Event Systems. PhD thesis, Dept. of Computer Science, University of Kaiser

slautern, Kaiserslautern, 2003. 1.2

[16] J. 0. Moody and P. J. Antsaklis, Supervisory Control of Discrete Event Systems

using Petri Nets. Kluwer Academic Publishers, 1998. 1.2

(17] E. Moore, "Gedanken-experiments on sequential machines," in Automata Studies

(C. Shannon and J. McCarthy, eds.), pp. 129-153, Princeton, NJ: Princeton

University Press, 1956. 1.1, 4

[18) M. Nourelfath and E. Niel, "Modular supervisory control of an experimental

automated manufacturing system," Control Engineering Practice, vol. 12, no. 2,

pp. 205-216, Feb. 2004. 1.2

BIBLIOGRAPHY 189

(19] J. S. Ostroff, "Deciding properties of timed transition models," IEEE Trans.

Parallel Distrib. Syst., vol. 1, no. 2, pp. 17G-183, 1990. 1.2

[20] J. S. Ostroff, Temporal logic for real time systems. New York, NY, USA: John

Wiley & Sons, Inc., 1989. 1.2

[21] J. Ostroff and W. Wonham, "A framework for real-time discrete event control,"

IEEE Transactions on Automatic Control, vol. 35(4), pp. 386-397, April 1990.

1.2

[22] S. Perk, T. Moor, and K. Schmidt, "Controller synthesis for an I/O-based hier

archical system architecture," Discrete Event Systems, 2008. WODES 2008. 9th

International Workshop on, pp. 474-479, May 2008. 1.2

[23] P. J. Ramadge and W. M. Wonham, "Supervisory control of a class of discrete

event processes," SIAM J. Control Optim., vol. 25, no. 1, pp. 206-230, 1987. 1

(24] A. Saadatpoor, "State-based control of timed discrete-event systems using binary

decision diagrams," Master's thesis, Department of Electrical and Computer

Engineering, University of Toronto, 2004. 1.2

[25] K. Schmidt and E. Schmidt, "Communication of distributed discrete-event su

pervisors on a switched network," Discrete Event Systems, 2008. WODES 2008.

9th International Workshop on, pp. 419-424, May 2008. 1.2

(26] R. Song, "Symbolic synthesis and verification of hierarchical interface-based su

pervisory control," Master's thesis, Dept. of Computing and Software, McMaster

University, 2006. 1.1, 1.2, 6, 6.1.2, 6.2, 6.3, 6.3.2, 6.3.2, 6.4.1

[27] A. Vahidi, B. Lennartson, and M. Fabian, "Efficient analysis of large discrete

event systems with binary decision diagrams," in Proc. of the 44th IEEE Conf

Decision Contr. and and 2005 European Contr. Conf, (Seville, Spain), pp. 2751-

2756, 2005. 1.2

[28] K. C. Wong and W. M. Wonham, "Hierarchical control of timed discrete-event

systems," Discrete Event Dynamic Systems, vol. 6, pp. Pages 275 - 306, July

1996. 2.3.2

190 BIBLIOGRAPHY

[29] W. M. Wonham, Supervisory Control of Discrete-Event Systems. Department of

Electrical Engineering, University of Toronto, 2005. 1, 2

(30] W. M. Wonham and P. J. Ramadge, "On the supermal controllable sublanguage

of a given language," SIAM J. Control Optim., vol. 25, no. 3, pp. 637-659, 1987.

1

(31] S. Xu and R. Kumar, "Asynchronous implementation of synchronous discrete

event control," Discrete Event Systems, 2008. WODES 2008. 9th International

Workshop on, pp. 181-186, May 2008. 1.2

(32] Z. Zhang and W. M. Wonham, "STCT: an efficient algorithm for supervisory

control design," in Proc. of SCODES 2001, (INRIA, Paris), pp. 82-93, July

2001. 1.2

(33] M. Zhou and F. DiCesare, Petri Net Synthesis for Discrete Event Control of

Manufacturing Systems. Kluwer Academic Publishers, 1993. 1.2

Appendix A

SD Software Program

A.l FMS Example Input Files

The input files below are all for the FMS example that we presented in Section 7.2.

A.l.l FMS Plants

#generated by pds2hsc

[States]

4 t nua of states
1

2
3

4

[InitState]

1

[MarkingStates]

1

[Events]

tick Y L

921 Y L

922 N L

[Transitions]

4
(tick 1)

1
(tick 1)

(921 2)

2

(tick 3)

3

(tick 3)

Listing A.1: Con2

191

192 A. SD Software Program

(922 4)

#generated by pds2hsc

[States]
8 # num of states

2

3

4

5

6

a

[InitState]

1

[MarkingStates]

1

[Events]

tick y L

930 II L

933 y L

934 II L

937 y L

93a II L

939 y L

[Transitions]
a
(tick 1)

1

(tick 1)

(933 2)

(937 3)
(939 4)

(tick 5)

3
(tick 6)

4
(tick 7)

5
(tick 5)

(934 a)

6

(tick 6)

(93a a)
7

(tick 7)

(930 a)

#generated by pds2hsc

[States]

6 I num of states

3
4

Listing A.2: Robot

Listing A.3: Lathe

A. SD Software Program

6

[InitStatel

1

[KarkingStates]

1

[Events]
tick y L

951 y L

952 II L

953 y L

954 II L

[Transitions]

6
(tick 1)

1
(tick 1)

(951 2)
(953 3)
2
(tick 4)
3
(tick 5)

4
(tick 4)
(952 6)

(tick 5)
(954 6)

#generated by pds2hsc

[States]
8 # num of states

2

3

4

5

6

7

8

[InitStato]
1

[KarkingStates]

1

3

[Events]

tick y

961 y

963 y

964 II

965 y

966 II

[Transitions]
8

(tick 1)

1

L

L

L

L

L

L

193

Listing A.4: AM

194

(tick 1)

(961 2)

(tick 3)
3
(tick 3)
(963 4)
(965 5)
4
(tick 6)
5
(tick 7)
6
(tick 6)
(964 8)

7
(tick 7)
(966 8)

#generated by pds2hsc
[States]
6 # num of states

3
4

6

[InitState]
1

[MarkingStates]
1

[Events]
tick y L

971 y L

972 N L

973 y L

974 N L

[Transitions]
6
(tick 1)

1

(tick 1)
(971 2)
(973 3)
2
(tick 4)
3
(tick 5)
4
(tick 4)
(972 6)
5
(tick 5)
(974 6)

I #generated by pds2hsc

A. SD Software Program

Listing A.5: Con3

Listing A.6: PM

A. SD Software Program

[States]
4 # num of states

2

3

4

[InitState]
1

[MarkingStates]
1

[Events]
tick y

981 y

982 N

[Transitions]
4
(tick 1)
1
(tick 1)

(981 2)
2
(tick 3)

3

(tick 3)

(982 4)

L

L

L

A.1.2 Helper Plants

lgenerated by pds2bsc
[States]
2 # num of states

2

[InitState]

1

[MarkingStates]
1

[Events]
tick Y L
no921 Y L

[Transitions]
1
(tick 1)
(no921 2)
2

(tick 1)

llgenerated by pds2hsc
[States]

195

Listing A. 7: AddNo921

Listing A.8: AddNo963

196 A. SD Software Program

2 # num of states

[InitState]
1

[MarkingStates]

1

[Events]
tick Y L
no963a Y L

no963b Y L

[Transitions]

1

(tick 1)

(no963a 2)

(no963b 2)

2

(tick 1)

#generated by pds2hsc

[States]
2 # num of states

[InitState]

1

[MarkingStates]

1

[Events]
tick Y L

no965a Y L

no965b Y L

[Transitions]

(tick 1)

(no965a 2)

(no965b 2)

2

(tick 1)

#generated by pds2hsc

[States]
4 I num of states

2

3

4

[InitState]
1

[MarkingStates]
1

Listing A.9: AddNo965

Listing A.lO: SystDownNup

A. SD Software Program

[Events]

shutdown N

restart N L
tick Y L

[Transitions]

1

(tick 1)

(shutdown 2)

2
(tick 3)

3

(tick 3)

(restart 4)

4
(tick 1)

L

A.1.3 Buffer Supervisors

Listing A.ll: B2
[States]

7 lnua of states
0 llist of state names. If the list is omitted, then this tool vill

2

3
4

5

6

[Ini tState]

0

[KarkingStates]

0

[Events]

921 y

t(event name, controllable, L/R/A)

L

no921 Y L

922 N L

933 Y L

tick Y L

[Transitions]

0

(921 1)

(no921 6)

1
(tick 2)

2

(tick 2)

(922 3)

3

(tick 4)

4

(tick 4)

(933 5)
5
(tick 0)

6

(tick 0)

197

198

##################################

Listing A.l2: B4
[States)

8 lnum of states
0 #list of state names. If the list is omitted, then this tool will

1

3

6

7

8

[InitState)

0

[MarkingStates)

0

[Events) t(event
933 y L

934 N L

937 y L

939 y L

951 y L

952 N L

953 y L

954 N L

tick y L

[Transitions]

0

(933 0)

(952 6)

(934 5)
(954 7)
(tick 0)

(tick 1)

(951 8)

(953 8)

2
(tick 2)
(937 8)

3
(tick 3)
(939 8)

5
(tick 1)

6

(tick 2)
7
(tick 3)

8

(tick 0)

name, controllable ,

##################################

[States)
4 #num of states

L/R/A)

Listing A.l3: B6

0 #list of state names. If the list is omitted, then this tool will

A. SD Software Program

A. SD Software Program

3

4

(lnitStato]

0

(KarkingStatos]

0

(Events] l(ovent nllllo, controllable, L/R/A)

937 Y L
938 II L
963 Y L
tick Y L

(Transitions]

0

(937 0)
(938 3)

(tick 0)

1
(963 4)
(tick 1)

3
(tick 1)
4
(tick 0)

••••••••••••••••••••••••••••••••••

(States]

7 •num of states

Listing A.14: B7

0 •list of state naaes. If the list is omitted, then this tool vill

2

5

6

7

8

(lnitStata]

0

(KarkingStatos]

0

(Events] t(event

939 y L
930 H L

965 y L

971 y L

973 y L

974 H L

tick y L

(Transitions]

0
(939 0)
(930 S)

(973 0)
(974 7)
(tick 0)
1
(971 6)

(tick 1)

name. controllable • L/R/A)

199

200

(965 8)

(tick 2)

5

(tick 1)

6

(tick 0)

7

(tick 2)

8

(tick 0)

########1#############1###########

Listing A.l5: B8
[States)
12 #num of states

#list of state names. If the list is omitted, then this tool will

2

3

4

5

6

7

8

9

10

11

[InitState)
0

[HarkingStates)

0

[Events)
930

971 y

972 N

973 y

981 y

982 N

tick

N

y

#(event name, controllable, L/R/A)

L

L

L

L

L

L

L

[Transitions]

0

(tick 0)

(930 1)

(tick 2)

2

(971 3)

3
(tick 4)

4

(tick 4)

(972 5)

(tick 6)

6

(981 7)

7

(tick 8)

8

(tick 8)

A. SD Software Program

A. SD Software Program

(982 9)

9

(tick 10)

10
(973 11)

11
(tick O)

••••••••••••••••••••••••••••••••••

A.1.4 Additional Supervisors

Listing A.l6: AMChooser
[States]

14 •num of states
0 I list of state names. If the list is omitted. then this tool vill

2

3

4

5

6

7

8

9

10

11
12
13

[InitState]

0

[MarkingStates]

0

[Events] •<event
938 II L
963 y L
965 y L
974 II L
tick y L
no963b y L
no965b y L

[Transitions]

0
(tick 0)

(no963b 0)

(no965b 0)

(974 1)

(938 2)

(no963b 1)

(no965b 1)

(tick 6)

(938 3)

2

(no963b 2)

(no965b 2)

(tick 5)

(974 3)

3

Da.Jle, controllable, L/R/A)

201

202

(no963b 3)
(no965b 3)
(tick 7)

4
(no963b 4)
(tick 5)

5
(no965b 5)
(tick 5)
(974 9)
(963 11)
6
(no963b 6)
(tick 6)
(965 12)
(938 13)
7
(no963b 7)
(tick 7)
(965 8)
8
(no963b 8)
(tick 5)
9
(no965b 9)
(tick 9)
(963 10)
10
(no965b 10)
(tick 6)
11

(no965b 11)

(974 10)
(tick 0)
12
(no963b 12)
(938 4)
(tick 0)
13
(no963b 13)
(tick 13)
(965 4)
##################################

Listing A.l7: B4Path
[States]
4 #num of states

0 #list of state names. If the list is omitted, then this tool vill

2

3

[InitState]
0

[MarkingStates]

0

[Events] #(event

933 y L
934 H L
937 y L
939 y L
tick y L

name, controllable, L/R/A)

A. SD Software Program

A. SD Software Program

[Transitions]
0

(tick 0)
(933 0)

(934 2)

(tick 1)

(937 3)
(939 3)

2
(tick 1)

3
(tick 0)

••••••••••••••••••••••••••••••••••

#generated by pds2hsc
[States)
6 t num of states
0

1

2
3

4

5

[InitState)
0

[HarkingStates)
0

2

[Events)
tick y

no963a y L
no963b y L
no965a y L

no965b y L
961 y L
963 y L

964 N L
965 y L
966 II L

[Transitions]
0

(no965a 0)
(no963a O)
(961 1)

(no965a 1)

(no963a 1)

(tick 2)
2
(no965b 2)
(no963b 2)
(t1ck 2)
(963 3)
(965 3)

3
(no965b 3)
(no963b 3)
(tick 4)

4

L

203

Listing A.l8: Force961

204

(no965a 4)

(no963a 4)

(tick 4)

(964 5)
(966 5)

(no965a 5)

(no963a 5)
(tick 0)

#generated by pds2hsc

[States]

5 # num of states

0

2

3
4

[InitStatel

0

[MarkingStates]

0

[Events]
tick y L

no963a y L

no963b y L

938 N L

963 y L

[Transitions]

0

(tick 0)

(938 1)

(tick 2)

2

(963 3)
(no963a 4)

(no963b 4)

3
(tick 0)

4

(tick 2)

#generated by pds2hsc

[States]
5 # num of states

0

1

2

4

[lnitStatel
0

[MarkingStates]

0

A. SD Software Program

Listing A.l9: Force963

Listing A.20: Force965

A. SD Software Program

[Events]
tick y L

no966a y L
no965b y L

974 II L

965 y L

[Transitions]
0

(tick 0)

(974 1)

(tick 2)

2

(no965a 4)
(no965b 4)
(965 3)
3
(tick 0)

4
(tick 2)

Listing A.21: LathePick
[States]
8 tnua of states

0 llist of state na.es. If the list is omitted, then this tool vill

2

3

4
5

6

7

[InitState]
0

[MarkingStates]
0

[Events]
934 II
951 y

l(event name, controllable, L/R/A)

L

L
953 Y L
tick Y L

[Transitions]
0
(tick 0)

(934 1)

(tick 2)

2

(951 3)
3
(tick 4)
4
(tick 4)
(934 5)
5
(tick 6)
6
(953 7)
7

205

206 A. SD Software Program

(tick 0)
##################################

[States]
8 #num of states

Listing A.22: TakeB2

0 #list of state names. If the list is omitted, then this tool will
1

3

4

5

6

7

[InitState]

0

[MarkingStates]
0

[Events]
922 N

I(event name, controllable, L/R/A)

L

930 N L

933 Y L

938

tick
N
y

L

L

[Transitions]

0

(tick 0)

(922 1)

(tick 2)

2

(933 3)

3

(tick 4)

4

(tick 4)

(922 5)

(938 6)

(930 6)

(tick 6)

(930 7)

(938 7)

(tick 0)

(922 7)

7

(tick 2)
##################################

[States]
6 #num of states

Listing A.23: TakeB4PutB6

0 I list of state names. If the list is omitted. then this tool will

3

4

5

A. SD Software Program

[InitStato]
0

[MarkingStatos]
0

[Events]
937 y

•<event naae, controllable, L/R/A)
L

952 I L

963 Y L
tick y L

[Transitions]
0

(tick 0)

(952 1)

(tick 2)

2

(937 3)

3

(tick 4)

4

(tick 4)

(952 5)

(963 0)

5

(tick 5)

(963 1)

••••••••••••••••••••••••••••••••••

[States]
6 •num of states

Listing A.24: TakeB4PutB7

0 •list of state names. If the list is omitted, then this tool vill

2

3

4

5

[InitState]
0

[MarkingStatos]
0

[Events] •<event name, controllable, L/R/A)
939 Y L
954 I L

965 Y L

tick Y L

[Transitions]
0

(tick 0)

(954 1)

(tick 2)

2

(939 3)

3

(tick 4)

4

207

208

(tick 4)
(954 5)
(965 0)

(tick 5)
(965 1)
##################################

#generated by pds2hsc
[States)
4 # num of states

0

1

2

3

[lnitState)

0

[MarkingStates)
0

[Events)
921 Y L
no921 Y L

shutdown N

restart N L
tick Y L

[Transitions)
0

(tick 0)
(921 0)
(shutdown 1)

1

(921 1)
(tick 2)

2
(no921 2)
(tick 2)
(restart 3)

3

(no921 3)

(tick 0)

L

A. SD Software Program

Listing A.25: handleSystDown

A.2 Source code

The source code files are to be compiled using gee 4. 3. 2 or higher version. Opti

mization -0 is suggested for better performance.

A. SD Software Program

A.2.1 Main

main.cpp

001 {
002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

bool bPrjLoaded = false;

char ch = '\0';

char prjfile[MAX_PATH];

string errmsg;

prjfile[O] = '\0';

int iret = 0;

char prjoutputfile[MAX_PATH];

char savepath[MAX_PATH];

savepath[O] = '\0';

HISC_SUPERINFO superinfo;

HISC_TRACETYPE tracetype;

int computetime = 0;

while (ch != 'q' && ch != 'Q')
{

ch = getchoice(bPrjLoaded, prjfile);

switch (ch)

{
case 'q':

case 'Q':

iret = close_prj(errmsg);

bPrjLoaded = false;

prjfile[O] = '\0';

break;

//Load a project

case 'P':

case 'p':

cout << "Sub name:";

209

210

033

034

035

036

037

038

039

039

040

041

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

A. SD Software Program

cin.getline(prjfile, MAX_PATH);

iret = load_prj(prjfile, errmsg);

if (iret < 0)

{
if (iret > -10000) //error

bPrjLoaded = false;

else

bPrjLoaded = true; //waring

}
else

bPrjLoaded = true;

break;

//close the current project

case 'c':

case 'C':

iret = close_prj(errmsg);

bPrjLoaded false;

prjfile[O] = '\0';

break;

//File the current project

case 'f':

case 'F':

cout << "file name:";

cin.getline(prjoutputfile, MAX_PATH);

iret = print_prj(prjoutputfile, errmsg);

break;

//Low Level verification

case '1':

case 'L':

cout « "Show the blocking type(may take long time)(Y /N)?";

tracetype = (HISC_TRACETYPE)getchoice_tracetype();

char verbosechoices[3] = {'0', '1', '2'};

cout « "Verbose level (0 - disable, 1 - brief, 2 - full)?";

const char choice[2] = { getkeystroke(verbosechoices,

A. SD Software Program 211

3), '\0' };

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

iVerbLevel = atoi(choice);

computetime = 0;

superinfo.statesize = -1;

superinfo.nodesize = -1;

superinfo.time = 0;

iret = verify_low(tracetype, errmsg, &superinfo);

cout << "("<< iret << ") ";

if (iret == 0)

cout << "This system has been verified succesfully!"

« endl;

if (superinfo.statesize >= 0)

cout << "State size of the synchronous product: " <<
superinfo.statesize << endl;

if (superinfo.nodesize >= 0)

cout << "Number of bdd nodes to store" <<
" the synchronous product: " << superinfo .nodesize

<< endl;

cout << "Computing time: " << superinfo. time <<
"seconds." << endl;

computetime += superinfo.time;

if (iret < 0)

{

}

cout << errmsg << endl;

cout << "Press any key to continue ... ";

iret = 0;

errmsg[O] = '\0';

getkeystroke(NULL, 0);

212

100

seconds."

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118 }
119

120 int

121 {
122

123

124

A. SD Software Program

cout << "Total computing time:" << computetime << "

}

« endl;

break;

}
if (iret < 0)

{

}

cout << errmsg << endl;

cout << "Press any key to continue ... ";

iret = 0;

errmsg[O] = '\0';

getkeystroke(NULL, 0);

close_hisc 0 ;

return 0;

getchoice(bool bPrjLoaded, const char *prjfile)

char allowed_choice[50];

int numofchoice = 0;

125 cout << endl << endl << endl << endl << endl;

126 cout << "***" << endl;
127 cout « " Bdd-based HISC Synthesis and Verification Tool " « endl;

128 cout << "***" << endl;
129

130

131

132

133

if

{

(! bPr j Loaded)

allowed_choice[O]

allowed_choice[1]

allowed_choice[2]

= 'p';

= 'P';

= 'q';

A. SD Software Program

134

135

136

137

138

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

}
else

{

}

allowed_choice[3] = 'Q';
numofchoice = 4;

cout « " P - Load a HISC project

allowed_choice[O] = 'c';

allowed_choice[1] = 'C';

allowed_choice[2] = 'q';

allowed_choice[3] = 'Q';

allowed_choice[4] = 'F' ;

allowed_choice[5] = 'f' ;

allowed_choice[6] = '1' ;
allowed_choice[7] = 'L';

numofchoice = 8;

cout << " L- Low Level verification

cout « " F - File the current project

cout « " C - Close the current project

cout « " Q - Quit

" << endl;

" << endl;

" << endl;

" << endl;

" << endl;

213

153 cout << "***" << endl;
154 if (bPrjLoaded)

155 {
156 cout « "Current Project: " « prj file « endl;

157 }
158 cout << endl;

159 cout << "Procedure desired:";

160 return getkeystroke(allowed_choice, numofchoice);

161 }
162

163 char getkeystroke(char *allowed_choices, int len)

164 {

165 char choice;

166 struct termios initial_settings, new_settings;

167

214

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

191

192

193

194

195

196 }
197

A. SD Software Program

tcgetattr(fileno(stdin), &initial_settings);

new_settings = initial_settings;

new_settings.c_lflag &= -rcANON;

new_settings.c_cc[VMIN] = 1;

new_settings.c_cc[VTIME] = 0;

new_settings.c_lflag &= -rsiG;

tcsetattr(fileno(stdin), TCSANOW, &new_settings);

if (len > 0)

{
do {

choice fgetc(stdin);

int i;

for (i = 0; i < len; i++)

{
if (choice == allowed_choices[i])

break;

}
if (i -- len)

choice= '\n';

} while (choice== '\n' I I choice-- '\r');

}
else

choice= fgetc(stdin);

tcsetattr(fileno(stdin),TCSANOW, &initial_settings);

cout << endl;

return choice;

198 int getchoice_savesup()

199 {

200 char allowed_choice[50];

201 int numofchoice = 0;

A. SD Software Program

202 char choice;

203

204

205

206

207

allowed_choice[O]

allowed_choice[1]

allowed_choice[2]

allowed_choice[3]

208 numofchoice = 4;

= '0';

= '1' ;

= '2' ;

= '3';

209 choice= getkeystroke(allowed_choice, numofchoice);

210 return choice- '0';

211 }

212

213 int getchoice_tracetype()

214 {

215 char allowed_choice[50];

216 int numofchoice = 0;

217 char choice;

218

219 allowed_choice[O] = 'Y';

220 allowed_choice[1] = 'y';

221 allowed_choice[2] = 'N';

222 allowed_choice[3] = 'n';

223 numofchoice = 4;

224 choice= getkeystroke(allowed_choice, numofchoice);

225

226 if (choice == 'Y' II choice -- 'y')

227 return 1;

228 else

228 return 0;

229 }
230

231

215

216 A. SD Software Program

A.2.2 Global Functions, Typedefs, Variables, Preprocessors

symbols

type.h

001

002 const string sTick = "tick";

003

004 enum DESTYPE {PLANT_DES = 0, SPEC_DES = 1};

005 enum EVENTTYPE {CON_EVENT = 0, UNCON_EVENT = 1};

006

007 #define L_EVENT 3

008

009 typedef map<string, int> STATES; //state name, index

010 typedef map<int, string> INVSTATES; //state index, name

011

012 typedef map<string, int> EVENTS; //event name, global index

013 typedef map<int, string> INVEVENTS; //event global index, name

014

015 typedef map<string, unsigned short> LOCALEVENTS; //event name,

level-wise index

016 typedef map<unsigned short, string> LOCALINVEVENTS;//event level-wise

index,name

017

018 typedef set<unsigned short> EVENTSET;

019

020 typedef list<int> MARKINGLIST; //link list to save all the marker

states index

021 typedef map<int, int> TRANS; //source state index (key), target state

index

022 #endif //_TYPE_H_

023

024

A. SD Software Program

errmsg.h

001

002 #define HISC_BAD_INTERFACE -11

003 #define HISC_TICK_NOT_FOUND -12

004

005 #define HISC_LOWERR_GENCONBAD -20

006 #define HISC_LOWERR_GENP4BAD -21

007 #define HISC_LOWERR_SUPCP -22

008 #define HISC_LOWERR_COREACH -23

009 #define HISC_LOWERR_REACH -24

010 #define HISC_LOWERR_P5 -25

011 #define HISC_LOWERR_P6 -26

012 #define HISC_LOWERR_GENBALEMIBAD -27

013 #define HISC_LOWERR_ALF -28

014 #define HISC_LOWERR_PTB -29
015 #define HISC_LOWERR_SD -30

016 #define HISC_LOWERR_SDIV -31

017
018 #define HISC_VERI_LOW_UNCON -201

019 #define HISC_VERI_LOW_BLOCKING -202

020 #define HISC_VERI_LOW_P4FAILED -203

021 #define HISC_VERI_LOW_P5FAILED -204

022 #define HISC_VERI_LOW_P6FAILED -205

023 #define HISC_VERI_LOW_CON -206

024 #define HISC_VERI_LOW_ALF -207

025 #define HISC_VERI_LOW_PTB -208

026 #define HISC_VERI_LOW_SD_II -209

027 #define HISC_VERI_LOW_SD_III_1 -210

028 #define HISC_VERI_LOW_SD_III_2 -211

029 #define HISC_VERI_LOW_SD_IV -212

030 #define HISC_VERI_LOW_ZERO_LB -213

031
032 #define HISC_HIGHERR_GENCONBAD -30

033 #define HISC_HIGHERR_GENP3BAD -31

034 #define HISC_HIGHERR_SUPCP -32

217

218

035 #define HISC_HIGHERR_COREACH -33

036 #define HISC_HIGHERR_REACH -34

037 #define HISC_VERI_HIGH_UNCON -101

038 #define HISC_VERI_HIGH_P3FAILED -102

039 #define HISC_VERI_HIGH_BLOCKING -103

040

041 #define HISC_BAD_SAVESUPER -97

042 #define HISC_BAD_PRINT_FILE -98

043 #define HISC_NOT_ENOUGH_MEMORY -99

044

045 #define HISC_WARN_BLOCKEVENTS -10000

046 #define HISC_INTERNAL_ERR_SUBEVENT -10001

047
048 #endif I I __ ERRMSG_H __

049

050

pubfunc.h

001 extern string str_upper(const string &str);

002 extern string str_lower(const string &str);

003 extern string str_itos(int ilnt);

004 extern string str_ltos(long long lLong);

005

A. SD Software Program

006 extern string str_nocomment(const string & str);

007 extern int scp_err(const string & sErr, canst int iErrCode);

008

009 extern string GetNameFromFile(const string & vsFile);

010

011 extern int Islnteger(const string &str);

012 extern int Comparelnt(const void* pa, canst void* pb);

013

014 extern void bddPrintStats(const bddStat &stat);

015 extern void SetBddPairs(bddPair *pPair, canst bdd & bddOld, canst bdd &

bddNew);

A. SD Software Program

016 extern int NumofSharedEvents(const int * pEventsArr_a, canst int

viNumofEvents_a,

017 canst int * pEventsArr_b, canst int viNumofEvents_b);

018 extern void my_bdd_gbchandler(int pre, bddGbcStat *s);

019

020 #endif I I __ PUBFUNC_H __

021

022

pubfunc.cpp

001 * PARA: str: a string (input)

002 * RETURN: trimmed string

003 * */
004 string str_trim(const string tstr)

005 {

006 string sTmp("");

007 unsigned int i = 0;

008

009 //trim off the prefix spaces

010 for (i = 0; i < str.length(); i++)

011 {

012 if (str[i] != 32 tt str[i] != 9)

013 break;

014 }

015 if (i < str.length())

016 {

017 sTmp = str.substr(i);

018 }

019 else

019 {

020 return sTmp;

021 }

022

023 //trim off the suffix spaces

219

220 A. SD Software Program

024 int j = 0;

025 for (j = sTmp.length() - 1; j >= 0; j--)

026 {

027 if (sTmp[j] != 32 && sTmp[j] != 9)

028 break;

029 }

030 if (j >= 0)

031 {

032 sTmp = sTmp.substr(O, j + 1);

033 }

034 else

034 {

035 sTmp.clear();

036 }

037

038 return sTmp;

039 }

040

041 /**
* DESCR: convert all the letters in a string to uppercase

042 * PARA: str: a string (input)

043 * RETURN: converted string

044 * */
045 string str_upper(const string &str)

046 {

047

048

049

unsigned int i = 0;

string sTmp(str);

050 for (i = 0; i < str.length(); i++)

051 {

052 if ((sTmp[i] >= 'a') & (sTmp[i] <= 'z'))

053 {

054 sTmp[i] = sTmp[i] - 32;

055 }

056 }

A. SD Software Program

057 return sTmp;

058 }

059

060 /**
* DESCR: convert all the letters in a string to lowercase

061 * PARA: str: a string (input)

062 * RETURN: converted string

063 * */
064 string str_lower(const string &str)

065 {
066 unsigned int i = 0;

067 string sTmp(str);

068

069 for (i = 0; i < str.length(); i++)

070 {
071 if ((sTmp [i] >= 'A') & (sTmp[i]

072 {
073 sTmp[i] = sTmp[i] + 32;

074 }
075 }
076 return sTmp;

077 }
078

079 /**
* DESCR:

080 * PARA:

convert an integer to a string

iint: an integer

081 * RETURN: converted string

082 * */
083 string str_itos(int i!nt)

084 {
085 char scTmp[65];

086 string str;

087 sprintf(scTmp, n%dn, i!nt);

088 str = scTmp;

089

<= 'Z'))

221

222 A. SD Software Program

090 return str;

091 }

092

093 /**
* DESCR: convert a long integer to a string

iint: a long integer 094 * PARA:

095 * RETURN: converted string

096 * */
097 string str_l tos (long long !Long)

098 {

099 char scTmp[65];

100 string str;

101 sprintf(scTmp, "%lld", !Long);

102 str = scTmp;

103

104 return str;

105 }
106

107 /**
* DESCR: trim off all the characters after a COMMENT_CHAR

108 * PARA: str : a string

109 * RETURN: processed string

110 * */
111 string str_nocomment(const string & str)

112 {
113 int i;

114 int iLen = str.lengthO;

115

116 for (i = 0; i < iLen; i++)

117 {
118 if (str [i] -- COMMENT_CHAR)

119 break;

120 }
121 if (i < iLen)

122 return str.substr(O, i);

A. SD Software Program 223

123 else

123 return str;

124 }

125

126 I**

* DESCR:

127 *
128 *

Get sub name or des name from a full path file name

129 * PARA:

130 * RETURN:

131 * *I

with extension ".sub"l".hsc"

ex: vsFile = "lhomelrogerlm1. sub" will return "m1"

vsFile: file name with path

sub name or des name

132 string GetNameFromFile(const string & vsFile)

133 {

134 assert(vsFile.length() > 4);

135 assert(vsFile.substr(vsFile.lengthO - 4) -- ".sub" II
136 vsFile.substr(vsFile.length() - 4) -- ".hsc");

137

138 unsigned int iPos = vsFile.find_last_of('/');

139

140 if (iPos == string::npos)

141 {

142 return vsFile.substr(O, vsFile.length() - 4);

143 }

144 else

144 {
145 return vsFile.substr(iPos + 1, vsFile.length() - 4 - (iPos +

1));

146 }
147 }
148

149 I**
* DESCR: Test if a string could be converted to an integer

150 * PARA: str: a string

151 *RETURN: 0: no 1: yes

152 * *I

224 A. SD Software Program

153 int Isinteger(const string &str)

154 {
155 if (str.length() == 0)

156 return 0;

157 for (unsigned int i 0; i < str.length(); i++)

158 {
159 if (str[i] >= ' 0 ' && str [i] <= '9')

160 continue;

161 else

161 return 0;

162 }
163

164 return 1;

165 }
166

167 /**

* DESCR: Compare two integers which are provided by two general

pointers.

168 * qsort, bsearch will use this function

169 * PARA:

170 * RETURN:

171 *

pa, pb: general pointers pointing to two integers

1: a>b

0: a=b

172 * -1: a<b

173 * */
174 int Compareint(const void* pa, const void* pb)

175 {
176 int a= *((int *) pa);

177 int b = * ((int *) pb);

178

179 if (a > b)

180 return 1;

181 else if (a < b)

182 return -1;

183 else

183 return 0;

A. SD Software Program

184 }

185

186

187 /**
* DESCR: To print the content of a bddStat variable.

188 * Original BDD package doesn't provide such a function.

189 * PARA: bddStat: see documents of Buddy package

190 * RETURN: None

191 * */
192 void bddPrintStats(const bddStat &stat)

193 {

194

195

196

197

198

cout << endl;

cout << "--------------bddStat----------------- 11 << endl;

cout << "Num of new produced nodes: " << stat. produced << endl;

cout << "Num of allocated nodes: " << stat.nodenum. << endl;

225

199

200

cout < < "Max num of user defined nodes: " < < stat . maxnodenum. < < endl ;

cout << "Num of free nodes: " << stat. freenodes << endl;

201

202

203

204

endl;

205

endl;

206

207 }
208

209 /**

cout << "Min num of nodes after garbage collection: " << stat .minfreenodes

« endl;

cout << "Num of vars:" << stat. varnum. << endl;

cout << "Num of entries in the internal caches:" << stat. cachesize <<

cout << "Num of garbage collections done until now:" << stat.gbcnum. <<

return;

* DESCR: Set bddpairs based on two bdd variable sets.

210 * The original function bdd_setbddpair(...) is not

211 * as the document said.

212 * PARA: pPair: where to add bdd variable pairs

213 * bddOld: variable will be replaced

214 * bddNew: new variable

226 A. SD Software Program

215 * RETURN: None

216 * */
217 void SetBddPairs(bddPair *pPair, canst bdd & bddOld, canst bdd &
bddNew)

218 {

219 assert(pPair !=NULL);

220

221 int *VOld = NULL;

222 int *VNew = NULL;

223 int nOld = 0;

224 int nNew = 0;

225

226 bdd_scanset(bddOld, vOld, nOld);

227 bdd_scanset(bddNew, vNew, nNew);

228

229 assert(nOld == nNew);

230

231 for (int i = 0; i < nOld; i++)

232 {

233 bdd_setpair(pPair, vOld[i], vNew[i]);

234 }

235

236 free(vOld);

237 free(vNew);

238

239 return;

240 }
241

242 /**

* DESCR: Compute the number of shared events between two DES

243 * PARA: pEventsArr_a: Event array for DES a (global index,

sorted)

244 *
245 *
sorted)

viNumofEvents_a: Number of events in array pEventsArr_a

pEventsArr_b: Event array for DES b (global index,

A. SD Software Program

246 * viNumofEvents_b: Number of events in array pEventsArr_b

247 * RETURN: Number of shared events

248 * *I
249 int NumofSharedEvents(const int * pEventsArr_a, const int

viNumofEvents_a,

250 const int * pEventsArr_b, const int viNumofEvents_b)

251 {

252 int iNum = 0;

253 int i = 0;

254

255 assert(pEventsArr_a !=NULL);
256 assert(pEventsArr_b !=NULL);
257

258 if (viNumofEvents_a <= viNumofEvents_b)

259 {

260 for (i = 0; i < viNumofEvents_a; i++)

261

262

{

viNumofEvents_b,

263

264

265

266

267 }
268 }
269 else

269 {
270 for

271 {
272

viNumofEvents_a,

273

274

275

276

if (bsearch(&(pEventsArr_a[i]), pEventsArr_b,

sizeof(int), Compare!nt) !=NULL)
{

iNum++;

}

(i = 0; i < viNumofEvents_b; i++)

if (bsearch(&(pEventsArr_b[i]), pEventsArr_a,

sizeof(int), Compare!nt) !=NULL)
{

iNum++;

}

227

228 A. SD Software Program

277 }

278 }

279

280 return iNum;

281 }

282

283 /**

* DESCR: Customized Garbage collection handler tor this program

284 * PARA: see document of Buddy Package

285 * RETURN: None

286 * */
287 void my_bdd_gbchandler(int pre, bddGbcStat *S)

288 {

289 if (!pre)

290 {

291 if (s->nodes > giNumofBddNodes)

292 {

293 printf ("Garbage collection #294

s-l,freenodes);

295 printf(" I %.1fs I %.1fs total\n",

296 (float)s-l, time I (float) (CLOCKS_PER_SEC),

s-l,num, s-l,nodes,

297 (float)s-l,sumtimel(float)CLOCKS_PER_SEC);

298 giNumoffiddNodes = s-l,nodes;

299 }

300 }

301 return;

302}

303

304

305

BddSd.h

001 int load_prj(const char *prjfile, std::string & errmsg);

002

A. SD Software Program

003 /**
004 * DESCR: close opened HISC project

005 * PARA: errmsg: returned errmsg (output)

006 * RETURN: 0: sucess < 0: fail

007 * */
008 int close_prj(std::string & errmsg);

009

010 /**
011 * DESCR: Save the project in the memory to a text file, just for

verifying

012 * the loaded project.

013 * PARA: filename: where to save the text file (input)

014 * errmsg: returned errmsg (output)

015 * RETURN: 0: sucess < 0: fail

016 * */
017 int print_prj(std::string filename, std::string & errmsg);

018

019 /**
020 * A structure for storing computing result information

021 * *I
022 typedef struct Hisc_Superinfo

023 {

024

025

026

double statesize;

int nodesize;

int time;

027 }HISC_SUPERINFO;

028

029 /**

/*state size*/

/*bdd node size*/

/*computing time (seconds)*/

030 * To show a path from the initial state to one bad state or not

229

031 * Currently HISC_SHOW_TRACE is only for telling if a blocking state is

032 * deadlock or livelock

033 * *I
034 enum HISC_TRACETYPE {HISC_NO_TRACE = 0, HISC_SHOW_TRACE = 1};

035

036 /**

230 A. SD Software Program

037 * To synthesize on reachable statespace or not

038 * *I
039 enum HISC_COMPUTEMETHOD{HISC_ONCOREACHABLE = 0, HISC_ONREACHABLE = 1};

040

041 I**
042 * DESCR: verity low level

043 * PARA:

(input)

044 *
(input)

045 *
046 *
047 *
mainly

048 *
049 *
050 *

showtrace: show a trace to the bad state (not implemented)

subname: low level name ("all" means all the low levels)

errmsg: returned errmsg (output)

pinto: returned system intomation (output)

pnextlow: next low level sub index(initially,it must be 0,

used tor "all") (input)

saveproduct: whether to save syn-product (input)

savepath: where to save syn-product (input)

051 * RETURN: 0: successstul < 0: error happened (See errmsg.h)

052 * *I
053 int verify_low(

054 HISC_TRACETYPE showtrace,

055

056

057

058 #endif

059

060

061

BddSd.cpp

std::string & errmsg,

HISC_SUPERINFO *pinfo);

001 * errmsg: returned errmsg (output)

002 * RETURN: 0: sucess < 0: fail

003 * *I
004 int load_prj(const char *prjfile, string & errmsg)

A. SD Software Program

005 {

006 int iRet = 0;

007

008 assert(prjfile !=NULL);

009

010 pSub =new CLowSub(prjfile);

011

012 iRet = pSub->LoadSub();

013

014 errmsg = pSub->GetErrMsg();

015 if (pSub->GetErrCode() < 0)

016 {
017 if (pSub->GetErrCode() > HISC_WARN_BLOCKEVENTS) //error

happened

018

019

020

021

{

}

delete pSub;

pSub = NULL;

022 //else only a warning

023 }
024 return iRet;

025 }
026

027 /**
028 * DESCR:

029 * PARA:

030 * RETURN:

031 * */

close opened HISC project

errmsg: returned errmsg (output)

0: sucess < 0: tail

032 int close_prj(string & errmsg)

033 {

034 int iRet = 0;

035

036 if (NULL != pSub)

037 {

038 errmsg = pSub->GetErrMsg();

231

232

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

}

}

iRet = pSub->GetErrCode();

if (pSub->GetErrCode() < 0)

{

}

delete pSub;

pSub = NULL;

return iRet;

I**
* DESCR: clear the HISC enviorment

* PARA: none

* RETURN: 0

* */
int close_hisc ()

{
if (pSub ! = NULL)
{

delete pSub;

pSub = NULL;

}
return 0;

}

/**

A. SD Software Program

065 * DESCR:

verifying

Save the project in the memory to a text file, just for

066 *
067 * PARA:

068 *
069 * RETURN:

070 * */

the loaded project.

filename: where to save the text file (input)

errmsg: returned errmsg (output)

0: sucess < 0: fail

071 int print_prj(string filename, string & errmsg)

072 {

A. SD Software Program

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106 }
107

int iRet = 0;

assert(!filename.empty());

assert(!errmsg.empty());

ofstream fout;

try

{

}

fout.open(filename.data());

if (!fout)

throw -1;

if (pSub->PrintSubAll(fout) < 0)

throw -1;

fout. close();

catch(. ..)

{

}

if (fout.is_open())

fout. close();

pSub->SetErr(filename + ":Unable to create the print file.",

HISC_BAD_PRINT_FILE);

return -1;

return 0;

errmsg = pSub->GetErrMsg();

iRet = pSub->GetErrCode();

pSub->ClearErr();

return iRet;

233

234 A. SD Software Program

108 /**
109 * DESCR:

110 * PARA:

(input)

verify low level

showtrace: show a trace to the bad state (not implemented)

111 *
(input)

112 *
113 *
114 *
mainly

115 *
116 *
117 *

subname: low level name ("all" means all the low levels)

errmsg: returned errmsg (output)

pinfo: returned system infomation (output)

pnextlow: next low level sub index(initially,it must be 0,

used for "all") (input)

saveproduct: whether to save syn-product (input)

savepath: where to save syn-product (input)

118 * RETURN: 0: successsful < 0: error happened (See errmsg.h)

119 * */
120 int verify_low(

121 HISC_TRACETYPE showtrace,

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

{

string & errmsg,

HISC_SUPERINFO *pinfo)

assert(pinfo !=NULL);

int iRet 0;

time_t tstart;

time(&tstart);

if (pSub->VeriSub(showtrace, *Pinfo) < 0)

{

}

errmsg = pSub->GetErrMsg();

iRet = pSub->GetErrCode();

pSub->ClearErr();

time_t tend;

A. SD Software Program 235

140 time(&tend);

141 pinfa->time = tend - tstart;

142

143 return iRet;

144 }

145

146

A.2.3 DES Class

DES.h

001 virtual -coES();

002

003 public:

004 int LaadDES();

005 int PrintDES(afstream & faut);

006

007 public:

008 string GetDESName() canst {return m_sDESName;};

009 int * GetEventsArr() {return m_piEventsArr;};

010 int GetNumafEvents() canst {return m_DESEventsMap.size();};

011 int GetNumafMarkingStates() canst {return m_MarkingList.size();};

012 MARKINGLIST & GetMarkingList() {return m_MarkingList;};

013 int GetNumafStates() canst { return m_iNumafStates;};

014 int GetinitState() canst {return m_iinitState;};

015 map<int, int> *GetTrans() canst {return m_pTransArr;};

016 DESTYPE GetDESType() canst {return m_DESType;};

017 CSub* GetSub() {return m_pSub;};

018 string GetStateName(int iState) {return m_InvStatesMap[iState];};

019

020 EVENTS m_DESEventsMap; //A STL Map tor events (event name (key),

021

DES

022

023

//local event index). Used only for current

//(speed reason)

236

024 private: //data memeber

025 string m_sDESFile;

026 string m_sDESName;

027 DESTYPE m_DESType;

028

A. SD Software Program

/IDES tile name with path

/IDES name without path and tile extension

/IDES type

029 int m_iNumofStates; //Number of States

030 int m_iinitState; //Initial state

031

032 MARKINGLIST m_MarkingList; //Link list containing all marking

states

033

034 STATES m_StatesMap; //A STL Map tor states (state name (key), state

index)

035 INVSTATES m_InvStatesMap; //A STL Map tor states (state index

(key),

036 //state name)(tor printing)

037

038 INVEVENTS m_InvDESEventsMap; //A STL Map tor events (localindex

(key),

039 //event name). Used only tor current

DES

040 //(tor printing)

041 EVENTS m_UnusedEvents; //A STL Map tor blocked events(name: key,

index)

042

043 int *m_piEventsArr; //Save all the event indices ascendingly.

044

DESes.

045

//used tor find shared events between two

046 TRANS *m_pTransArr; 1/Transiton Map array, indexed by event

indices.

047 1/TRANSMAP: first int: source state index

048 // second int: target state index

049 CSub *m_pSub; //which subsystem this DES belongs to

050 private: //internal function members

A. SD Software Program

051 int AddEvent(const string & vsEventName,

052 canst char cControllable);

053 int AddTrans(const string & vsLine,

054 canst string & vsExitState,

055 canst int viExitState);

056 };

057

058 #endif //_DES_H_

059

060

DES.cpp

001 * vsDESFile:

002 * vDESType:

003 * RETURN: none

004 * ACCESS: public

004 */

DES file name with path (input)

DES Type (inpute)

005 CDES::CDES(CSub *vpSub, canst string &vsDESFile, canst DESTYPE

vDESType)

006 {

007 m_pSub = vpSub;

008 m_sDESFile = vsDESFile;

009 m_sDESName.clear();

010 m_DESType = vDESType;

011 m_iNumofStates = 0;

012 m_iinitState = -1;

013

014 m_MarkingList.clear();

015 m_StatesMap.clear();

016 m_InvStatesMap.clear();

017 m_DESEventsMap.clear();

018 m_UnusedEvents.clear();

019 m_InvDESEventsMap.clear();

020

237

238 A. SD Software Program

021 m_piEventsArr = NULL;

022 m_pTransArr = NULL;

023 }

024

025 I**
* DESCR: Destructor

026 * PARA: None

027 * RETURN: None

028 * ACCESS: public

029 *I
030 CDES::-CDES()

031 {
032 delete[] m_pTransArr;

033 m_pTransArr = NULL;

034

035 delete[] m_piEventsArr;

036 m_piEventsArr = NULL;

037 }
038

039 I**
* DESCR: Loading DES file

040 * PARA: None

041 * RETURN: 0: sucess -1:

042 * ACCESS: public

043 *I
044 int CDES: : LoadDES ()

045 {

046 ifstream fin;

047 int iRet = 0;

048 string sErr;

049

050 int i = 0;

051

tail

052 string sSubName = m_pSub->GetSubName();

053

A. SD Software Program

054 try

054 {

055 m_sDESFile = str_trim(m_sDESFile);

056

057 if (m_sDESFile.length() <= 4)

058 {

059 pSub->SetErr(sSubName + 11
: Invalid DES file name 11 +

m_sDESFile,

060

061

062

063

064

065

066

m_sDESFile,

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

HISC_BAD_DES_FILE);

throw -1;

}

if (m_sDESFile. substr (m_sDESFile .length() - 4) ! = 11 .hsc11
)

{
pSub->SetErr(sSubName + 11

: Invalid DES file name 11 +

HISC_BAD_DES_FILE);

throw -1;

}

fin.open(m_sDESFile.data(), ios::in);

//unable to find DES file

if (!fin)

{
pSub->SetErr(sSubName + 11

: Unable to open the DES file 11 +

m_sDESFile, HISC_BAD_DES_FILE);

throw -1;

}

m_sDESName = GetNameFromFile(m_sDESFile);

string sDESLoc = sSubName + 11
:

11 + m_sDESName +

char scBuf[MAX_LINE_LENGTH];

string sLine;

II • II. . '

239

240 A. SD Software Program

086 int iField = -1; //0: States 1: InitState 2: MarkingStates

087 //3: Events 4: Transitions

088 char *scFieldArr[] = {"STATES", "INITSTATE",

"MARKINGSTATES",

089 "EVENTS", "TRANSITIONS"};

090 int iStatesFieldFlag = 0; //1: just finised reading the

[States] line,

091 // so next line should be the num

of states

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

int iTmpState!ndex = 0;

int iTmpEvent!ndex = 0;

char cEventSub = '\0';

char cControllable = '\0';

string sExitState;

int iExitState = -1;

//0: otherwise

while (fin.getline(scBuf, MAX_LINE_LENGTH))

{
sLine str_nocomment(scBuf);

sLine str_trim(sLine);

if (sLine.empty())

continue;

//Field line

if (sLine[O] == '[' && sLine[sLine.length()- 1]

{
sLine sLine.substr(1, sLine.length() - 1);

sLine = sLine.substr(O, sLine.length() - 1);

sLine = str_upper(str_trim(sLine));

iField++;

'] ')

A. SD Software Program 241

118 if (iField <= 4)

119 {
120 if (sLine != scFieldArr[iField])

121 {
122 pSub->SetErr(sDESLoc +

123 "Field name or order is incorrect!",

124 HISC_BAD_DES_FORMAT);

125 throw -1;

126 }
127 if (iField == 0)

128 {
129 iStatesFieldFlag = 1;

130 }
131 }
132 else

132 {
133 pSub->SetErr(sDESLoc + "Two many fields.",

134 HISC_BAD_DES_FORMAT);

135 throw -1;

136 }
137 }
138 else //Data line

139 {
140 switch (iField)

141 {
142 case 0: //States

143 if (iStatesFieldFlag == 1) 1/nUJil of states

144 {
145 if (atoi(sLine.data()) <= 0 I I
146 atoi(sLine.data()) >

MAX_STATES_IN_ONE_COMPONENT_DES)

147

148

states",

149

{
pSub->SetErr(sDESLoc + "Too few or too many

HISC_BAD_DES_FORMAT);

242

150

151

152

153

154

155

156

157

158

159

160

161

161

162

m_StatesMap.end())

163

164

names--" +

165

HISC_BAD_DES_FORMAT);

166

167

168

169

170

171

172

173

174

175

175

176

1;

177

sLine;

}
else

{

A. SD Software Program

throw -1;

}

//initialize the number of states

m_iNumofStates = atoi(sLine.data());

//initialize the transition arrary

m_pTransArr =new TRANS[m_iNumofStates];

iStatesFieldFlag = 0;

if (m_StatesMap.find(sLine) !=

{
pSub->SetErr (sDESLoc + "Duplicate state

sLine,

throw -1;

}
else if (sLine[O] == '(')

{

}
else

{

pSub->SetErr(sDESLoc +

"The first letter of state names can not be (" ,

HISC_BAD_DES_FORMAT);

throw -1;

m_StatesMap[sLine] = m_StatesMap.size() -

m_InvStatesMap[m_StatesMap.size() - 1] =

A. SD Software Program 243

178

179

180

181

182

183

184

}
}

break;

case 1: //InitState

1/--
185

186

187

188

absent.",

189

190

191

192

193

state

194

195

196

197

198

199

200

201

202

203

204

must be

205

206

m_StatesMap.size())

207

//Must specify the number of states

if (m_iNumofStates == 0)

{
pSub->SetErr(sDESLoc + "Number of states is

HISC_BAD_DES_FORMAT);

throw -1;

}

//It there is no state names specified, generate

//names automatically.

if (m_StatesMap.size() == 0)

{

}

for (i = 0; i < m_iNumofStates; i++)

{

}

m_StatesMap[str_itos(i)] = i;
m_InvStatesMap[i] = str_itos(i);

//if specify state names, the number of state names

//equal to m_iNumofStates.

if (((unsigned int)m_iNumofStates) !=

{

244

208

209

210

211

212

213

}

A. SD Software Program

pSub->SetErr(sDESLoc + "States are incomplete.",

HISC_BAD_DES_FORMAT);

throw -1;

//--
214

215

216

217

218

defined.",

219

220

221

222

223

224

225

226

states.",

227

228

229

230

231

232

233

234

235

236

237

238

exist.",

//Initial state name must be valid

if (m_StatesMap.find(sLine) == m_StatesMap.end())

{
pSub->SetErr (sDESLoc + "Initial state is not

HISC_BAD_DES_FORMAT);

throw -1;

}

//only one initial state allowed

if (m_iinitState != -1)

{
pSub->SetErr (sDESLoc + "More than one initial

HISC_BAD_DES_FORMAT);

throw -1;

}

m_iinitState = m_StatesMap[sLine];

break;

case 2: 1/MarkingStates

if (m_StatesMap.find(sLine) == m_StatesMap.end())

{
pSub->SetErr (sDESLoc + "Marking states do not

A. SD Software Program 245

239 HISC_BAD_DES_FORMAT);

240 throw -1;

241

242

243

244

}

iTmpStateindex = m_StatesMap[sLine];

245 for (MARKINGLIST::const_iterator ci =
m_MarkingList.begin();

246 ci != m_MarkingList.end(); ci++)

247

248

249

250

states.",

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

1));

270

{
if (*ci == iTmpStateindex)

{
pSub->SetErr (sDESLoc + "Duplicate marking

HISC_BAD_DES_FORMAT);

throw -1;

}
}

m_MarkingList.push_back(iTmpStateindex);

break;

case 3: //Events

//Get event type H/R/A/L

if (sLine.length() < 5)

{

}

pSub->SetErr(sDESLoc + "Incorrect event definition.",

HISC_BAD_DES_FORMAT);

throw -1;

cEventSub = sLine[sLine.length()- 1];

sLine = str_trim(sLine.substr(O, sLine.length() -

246

271

272

273

274

275

276

277

278

279

1));

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

//Get controllable or not

if (sLine.length() < 3)

{

A. SD Software Program

pSub->SetErr(sDESLoc + "Incorrect event definition.",

HISC_BAD_DES_FORMAT);

thro-w -1;

}
cControllable = sLine[sLine.length()- 1];

sLine = str_trim(sLine.substr(O, sLine.length() -

//Get event name

if (sLine.empty())

{

}

pSub->SetErr (sDESLoc + "Incorrect event definition.",

HISC_BAD_DES_FORMAT);

thro-w -1;

if (cEventSub >= 'a')

cEventSub -= 32;

if (cControllable >= 'a')

cControllable -= 32;

iTmpEventindex = AddEvent(sLine, cControllable);

if (iTmpEventindex < 0)

thro-w -1; 1/Errmsg generated by AddEvent

m_DESEventsMap[sLine] = iTmpEventindex;

m_UnusedEvents[sLine] = iTmpEventindex;

m_InvDESEventsMap[iTmpEventindex] = sLine;

break;

case 4: //Transitions

//check exiting state

A. SD Software Program

305

306

307

m_StatesMap.end())

308

309

sLine +

if (sLine[O] != '(')

{

}

if (m_StatesMap.find(sLine) --

{

}

pSub->SetErr(sDESLoc + "Exiting state:" +

" in transitions does not exist" ,

HISC_BAD_DES_FORMAT);

throw -1;

iExitState = m_StatesMap[sLine];

sExitState = sLine;

else //Transitions

{

247

310

311

312

313

314

315

316

317

318

319

0)

320

321

322

323

324

325

326

327

328

329

330

331

332

333

if (AddTrans(sLine, sExitState, iExitState) <

}
}

throw -1;

}
break;

default:

}

pSub->SetErr(sDESLoc + "Bad DES file format!",

HISC_BAD_DES_FORMAT);

throw -1;

//No initial state defined

if (m_iinitState == -1)

{
334 pSub->SetErr(sDESLoc + "No initial state.",

HISC_BAD_DES_FORMAT);

335 throw -1;

248 A. SD Software Program

336 }

337 //No marking states defined

338 if (m_MarkingList.size() == 0)

339 {

340 pSub->SetErr(sDESLoc + 11 No marking states 11
,

HISC_BAD_DES_FORMAT);

341 throw -1;

342

343

344

345

}
//must have all the fields

if (iField != 4)

{
346 pSub->SetErr(sDESLoc + 111ncomplete DES file. 11

,

HISC_BAD_DES_FORMAT);

347

348

349

350

351

352

353

354

355

356

357

358

359

Compare!nt);

360

361

362

363

364

365

366

throw -1;

}

//Add event indices into m_piEventsArr;

m_piEventsArr =new int[m_DESEventsMap.size()];

i = 0;

for (EVENTS::const_iterator ci = m_DESEventsMap.begin();

ci != m_DESEventsMap.end(); ++ci)

{

}

m_piEventsArr[i] = ci->second;

++i;

qsort(m_piEventsArr, m_DESEventsMap.size(), sizeof(int),

//unused events

if (m_UnusedEvents.size() > 0)

{
string sWarn;

sWarn = 11 \nWarning: 11
;

sWarn += 11 Unused events are disabled at every state of DES 11 +

sDESLoc + 11 \n 11
;

A. SD Software Program

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385 }
386

387 /*

}

}

for (EVENTS::const_iterator ci = m_UnusedEvents.begin();

ci != m_UnusedEvents.end(); ++ci)

{

}

sWarn += ci->first;

sWarn += "\n";

pSub->SetErr(sWarn, HISC_WARN_BLOCKEVENTS);

fin. close();

catch (int iError)

{

}

if (fin.is_open())

fin. close();

iRet = iError;

return iRet;

388 * DESCR:

389 *
Add an event to CSub event map and CProject event map

For CSub event map: It exists, return local index;

Otherwise create a new one. 390 *
391 * For CProject event map: If exists, must have same global

index;

392 *
disjoint

Otherwise the event sets are not

393 * PARA: vsEventName: Event name(input)

394 * cEventSub: Event type ('H", 'L', 'R', 'A')(input)

395 * cControllable: Controllable? ('Y', 'N')(input)

396 * RETURN: >0 global event index

397 * <0 the event sets are not disjoint.

398 * ACCESS: Private

399 */

249

250 A. SD Software Program

400 int CDES::AddEvent(const string & vsEventName, canst char

cControllable)

401 {
402 string sErr;

403

404 int iTmpEventindex = 0;

405 int iTmpLocalEventindex = 0;

406

407 string sDESLoc = m_pSub->GetSubName() + II. II + m_sDESName +

408

409 //Controllable or uncontrollable

410 if (cControllable != 'Y' && cControllable != 'N')

411 {
412 pSub->SetErr(sDESLoc + "Unknown event controllable type--"

+vsEventName,

413 HISC_BAD_DES_FORMAT);

414 return -1;

415 }

416

417 //already defined in current DES

II. II • . .

418 if (m_DESEventsMap.find(vsEventName) != m_DESEventsMap.end())

419 {

420 pSub->SetErr (sDESLoc + "Duplicate events definition--" + vsEventName,

421 HISC_BAD_DES_FORMAT);

422 return -1;

423 }

424

425 //Compute local event index

426 iTmpLocalEventindex = m_pSub->AddSubEvent(vsEventName,

427 (cControllable == 'Y')? CON_EVENT:UNCON_EVENT);

428

429 if ((cCon~rollable == 'Y' && iTmpLocalEventindex % 2 == 0) I I
430 (cControllable == 'N' && iTmpLocalEventindex % 2 == 1))

431 {

432 pSub->SetErr(sDESLoc + "Event " + vsEventName +

A. SD Software Program

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451 }
452

453 /*

}

" has inconsistent controllability definitions." ,

HISC_BAD_DES_FORMAT);

return -1;

//Compute global event index

iTmpEventindex = pSub->GenEventindex(iTmpLacalEventindex);

//Add Event to pSub->m_AllEventsMap

if (pSub->AddPrjEvent(vsEventName, iTmpEvent!ndex) < 0)

{

}

sErr = "Event conflict--" + m_pSub->GetSubNameO + ":" +

this->GetDESName() + ":" +

vsEventName + " is also defined in sub " + " event" ;

pSub->SetErr(sErr, HISC_BAD_DES_FORMAT);

iTmpEventindex = -1;

return iTmpEventindex;

454 * DESCR:

455 * PARA:

456 *

Add a transition to the m_pTransArr of the current DES.

vsLine: a text line in [Transition] tield(input)

vsExitState: source state name of the transition(input)

457 *
458 * RETURN:

459 * ACCESS:

460 */

viExitState: source state index of the transition(input)

0: success -1: fail

private

461 int CDES::AddTrans(canst string & vsLine,

462 canst string & vsExitState,

463 canst int viExitState)

464 {

465 string sTrans = vsLine;

466

467 string sEnterState;

251

252 A. SD Software Program

468 int iEnterState!ndex;

469

470 string sTransEvent;

471 int iTransEventindex;

472

473 unsigned long iSepLoc string::npos;

474 string sErrMsg;

475

476

477

string sDESLoc = m_pSub->GetSubName() + II. II + m_sDESName + II. II,
0 '

478

479 try

479 {

480 if (viExitState == -1)

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

{

}

pSub->SetErr(sDESLoc + "No existing state for transitions",

HISC_BAD_DES_FORMAT);

throw -1;

//remove '('and ')'

sTrans = sTrans.substr(1);

sTrans = sTrans.substr(O, sTrans.length() - 1);

sTrans = str_trim(sTrans);

//find sepration character '\t' or ' '

iSepLoc = sTrans.find_last_of('\t');

if (iSepLoc == string::npos)

iSepLoc sTrans.find_last_of(' ');

if (iSepLoc == string::npos)

{
pSub->SetErr(sDESLoc +

"No event or entering state for transition. (" +

sTrans + ")", HISC_BAD_DES_FORMAT);

A. SD Software Program 253

502

503

504

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

throw -1;

}
else

{
sEnterState

sTransEvent

}

=
=

str_trim(sTrans.substr(iSepLoc + 1));

str_trim(sTrans.substr(O, iSepLoc));

//Check event in transitions

if (m_DESEventsMap.find(sTransEvent) == m_DESEventsMap.end())

{

}

pSub->SetErr(sDESLoc + "Event " + sTransEvent +

" in transitions does not exist.",

HISC_BAD_DES_FORMAT);

throw -1;

iTransEventindex = m_DESEventsMap[sTransEvent];

m_UnusedEvents.erase(sTransEvent);

//Check entering state

if (m_StatesMap.find(sEnterState) == m_StatesMap.end())

{

}

pSub->SetErr(sDESLoc + "State " + sEnterState +

" in transitions does not exist." ,

HISC_BAD_DES_FORMAT);

throw -1;

iEnterState!ndex = m_StatesMap[sEnterState];

//Check determinacy

if (m_pTransArr[viExitState] .find(iTransEventindex) !=

m_pTransArr[viExitState].end())

{
pSub->SetErr(sDESLoc + "ExitState:" + vsExitState +

" has nondeterministic transitions on event " +

254

sTransEvent,

536

537

}

HISC_BAD_DES_FORMAT);

throw -1;

A. SD Software Program

538

539 m_pTransArr[viExitState] [iTransEventlndex] = iEnterStatelndex;

540 }

541 catch(int)

542 {

543 return -1;

544 }

545

546 return 0;

547 }

548

549 /*

550 * DESCR: Print this DES in memory to a file (for checking)

tout: file stream(input) 551 * PARA:

552 * RETURN:

553 * ACCESS:

554 *I

0: success -1: fail

public

555 int CDES::PrintDES(ofstream & fout)

556 {
557 try

557 {
558

559

560

endl;

561

562

563

564

565

566

567

int i = 0;

fout << endl << "#--DES: " << m_sDESName << " ---------" <<

fout « "[States]" « endl;

fout << m_iNumofStates << endl;

for (INVSTATES::const_iterator ci = m_InvStatesMap.begin();

ci != m_InvStatesMap.end(); ++ci)

{
fout << ci->second << endl;

A. SD Software Program

}

fout « endl;

fout « "[InitState]" « endl;

fout << m_InvStatesMap[m_iinitState] << endl;

fout « endl;

fout « "[MarkingStates]" « endl;

for (MARKINGLIST::const_iterator ci = m_MarkingList.begin();

ci != m_MarkingList.end(); ++ci)

{
fout << m_InvStatesMap[*ci] << endl;

}

fout « endl;

fout « "[Events]" << endl;

255

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

589

590

591

592

593

594

595

596

597

598

599

600

for (INVEVENTS::const_iterator ci = m_InvDESEventsMap.begin();

ci != m_InvDESEventsMap.end(); ++ci)

{
if (ci->first Y. 2 == 0) //uncontrollable

fout << ci->second << "\t" << "N" << "\tL'' << endl;

else

fout << ci->second << "\t" << "Y" << "\tL'' << endl;

}

fout « endl;

fout « "[Transitions]" « endl;

if (m_pTransArr != NULL)

{
for (i = 0; i < m_iNumofStates; i++)

{
fout << m_InvStatesMap[i] << endl;

for (TRANS::const_iterator ci =
(m_pTransArr[i]).begin();

256

601

602

603

604

605

606

607 }

608

}

609 fout <<

{

}

A. SD Software Program

ci != (m_pTransArr[i]).end(); ++ci)

fout << 11 (11 << m_InvDESEventsMap [ci->first] << 11 11

<< m_InvStatesMap[ci->second] << 11)11 << endl;

11##11
<< endl;

610 }
611 catch(...)

612 {
613 return -1;

614 }
615 return 0;

616 }
617

618

A.2.4 Sub Class

Sub.h

001 virtual -csub();

002 virtual unsigned short AddSubEvent(const string & vsEventName,

003 const EVENTTYPE vEventType);

004 virtual int PrintSub(ofstream & fout) = 0;

005 virtual int PrintSubAll(ofstream& fout) = 0;

006 virtual string SearchEventName(unsigned short usiLocal!ndex) = 0;

007

008 virtual int LoadSub() = 0;

009 virtual int VeriSub(const HISC_TRACETYPE showtrace,

010 HISC_SUPERINFO & superinfo) = 0;

011

A. SD Software Program 257

012 void SetErr(const string & vsErrMsg, canst int viErrCode);

013

014 int GenEventindex(const unsigned short vusiLocalEvent!ndex);

015 int SearchPrjEvent(const string & vsEventName);

016 int SearchSubEvent(const string & vsEventName);

017 INVEVENTS & Get!nvAllEventsMap() {return m_InvAllEventsMap;};

018

019 string GetErrMsg() canst {return m_sErrMsg;};

020 int GetErrCode() canst {return m_iErrCode;};

021 void ClearErr();

022

023 int AddPrjEvent(const string & vsEventName, canst int

viEventindex);

024

025 private:

026 string m_sErrMsg; //Error msg during processing this project

027 int m_iErrCode; //Error code during processing this project

028

029 public: //access methods

030 virtual string GetSubName() const {return m_sSubName;};

031

032 virtual int GetNumofDES() canst

032 {return m_iNumofPlants + m_iNumofSpecs;};

033 virtual unsigned short GetMaxUnCon()

034 {return m_usiMaxUnCon;};

035 virtual unsigned short GetMaxCon()

036 {return m_usiMaxCon;};

037

038 private: /IDES reorder related memebers

039 int ** m_piCrossMatrix;

040 int DESReorder_Sift();

041 double TotalCross_Sift(double dOldCross, double dSwapCross,

042 int iCur, int iFlag);

043 double cross(int i, int j);

044 int DESReorder_Force();

258 A. SD Software Program

045 void UpdatePos();

046 void InsertDES(int iCur, int iPos);

047 double TotalCross_Force();

048 double Force(int i);

049 int InitialDESOrder();

050

051 protected: //protected methods

052 virtual string GetDESFileFromSubFile(const string & vsSubFile,

053 const string &vsDES);

054 virtual int MakeBdd() = 0;

055 virtual int InitBddFields();

056 virtual int ClearBddFields();

057

058 int DESReorder();

059

060 int PrintStateSet(const bdd & bddStateSet, int viSetFlag);

061 void PrintStateSet2(const bdd & bddStateSet);

062 bdd GetOneState(const bdd & bddStates);

063 int CountStates(const bdd & bddStateSet);

064

065 int PrintEvents(ofstream & fout);

066 int PrintTextTrans(ofstream & fout, bdd & bddController,

067

068

069

unsigned short usiLocalindex,

const bdd & bddReach, string sEventName,

STATES & statesMap);

070 bdd SimplifyController(const bdd & bddController, const unsigned

short usilndex);

071

072 protected: //fields

073 string m_sSubFile; //this subsytem file name(".sub") with path.

074 string m_sSubName; //This subsystem name

075

076 int m_iNumofPlants; I /Number of Plant DES

077 int m_iNumofSpecs; //Number of Specification DES

078 //(High: all interface DES; Low: 1)

A. SD Software Program 259

079

080

levels.

081

CDES **m_pDESArr; I IDES Array tor all the DES in high or low

082

subsystem)

083

//(High: including all interface DES,

//Low: only including 1 DES tor this

084 EVENTSET m_SubPlantEvents;

085 EVENTSET m_SubSupervisorEvents;

086

087 LOCALEVENTS m_SubEventsMap; //save all the events map in this

subsytems

088 I /(name(key), local index(16 bits))

089 //just tor compute local event index.

090 LOCALINVEVENTS m_InvSubEventsMap;

091

092 EVENTS m_AllEventsMap; //The map containing all the events in this

project

093 //(Event Name (key), Event global index)

094 INVEVENTS m_InvAllEventsMap; //The map containing all the events in

this

095 I /project (Event global index (key),

Event Name)

096

097 unsigned short m_usiMaxCon; //Max index of controllable events

(1,3, ...)

098 unsigned short m_usiMaxUnCon;//Max index of uncontrollable

events(2,4, ..)

099

100 /*BDD needed fields*/

101 int m_iNumofBddNormVar; 1/Num of BDD normal variables in the sub.

102 int *m_piDESOrderArr; /IDES indices organized as clusters.

103 int *m_piDESPosArr; /IDES positions in the m_piDESOrderArr

104

105 bdd m_bddinit; //Initial state predicate

260 A. SD Software Program

106 bdd m_bddMarking; //Marking states predicate

107 bdd m_bddSuper; //The generated supervisor

108

109 /ll/l////l//////l///////////l/l/ll/l/l/ll//////l/l//l/l////l/1//l/

110 //Transition predicates and its variable sets, variable pairs.

111 //0: High level events

112 //1: Request events

113 //2: Answer events

114 //3: Low level events

115 //

116 //Transition predicates

117 bdd *m_pbdd_ConTrans;

118 bdd *m_pbdd_ConPlantTrans;

119 bdd *m_pbdd_ConSupTrans;

120 bdd *m_pbdd_UnConTrans;

121 bdd *m_pbdd_UnConPlantTrans;

122 bdd *m_pbdd_UnConSupTrans;

123

124 //variable(DES index) set for transition predicates

125 bdd *m_pbdd_ConVar;

126 bdd *m_pbdd_ConVarPrim;

127 bdd *m_pbdd_UnConVar;

128 bdd *m_pbdd_UnConVarPrim;

129 //plant part variables

130 bdd *m_pbdd_UnConPlantVar;

131 bdd *m_pbdd_UnConPlantVarPrim;

132 bdd *m_pbdd_ConPhysicVar; //for simplifying controller (note:

physical)

133 bdd *m_pbdd_ConPhysicVarPrim;//for simplifying controller

(note:physical)

134 //supervisor part variables

135 bdd *m_pbdd_UnConSupVar;

136 bdd *m_pbdd_UnConSupVarPrim;

137 bdd *m_pbdd_ConSupVar; //for simplifying controller (note:

physical)

A. SD Software Program

138 bdd *m_pbdd_ConSupVarPrim;//for simplifying controller

(note:pbysical)

139 //variable pairs(normal-prime)

140 bddPair **m_pPair_Con;

141 bddPair **m_pPair_UnCon;

142 bddPair **m_pPair_ConPrim;

143 bddPair **m_pPair_UnConPrim;

144 };

145 #endif //_SUB_H_

146

147

Sub.cpp

001 */

002 CSub::CSub(const string & vsSubFile)

003 {

004 m_AllEventsMap.clear();

005 m_InvAllEventsMap.clear();

006

007 m_iErrCode = 0;

008 m_sErrMsg.clear();

009

010 m_sSubFile = vsSubFile;

011 m_sSubName.clear();

012

013 m_iNumofPlants = -1;

014 m_iNumofSpecs = -1;

015

016 m_pDESArr = NULL;

017

018 m_SubEventsMap.clear();

019

020 m_usiMaxCon = OxFFFF;

021 m_usiMaxUnCon = OxO;

261

262

022

023 m_piDESOrderArr = NULL;

024 m_piDESPosArr = NULL;

025

026 InitBddFields();

027 }

028

029 /**
* DESCR: Destructor

030 * PARA: None

031 * RETURN: None

032 * ACCESS: public

033 *I
034 CSub::-cSub()

035 {
036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

if (m_pDESArr != NULL)

{

}

int iNumofDES = this->GetNumofDES();

for (int i = 0; i < iNumofDES; i++)

{

}

if (m_pDESArr[i] != NULL)

{

}

delete m_pDESArr[i];

m_pDESArr[i] = NULL;

delete[] m_pDESArr;

m_pDESArr = NULL;

delete[] m_piDESOrderArr;

m_piDESOrderArr = NULL;

delete[] m_piDESPosArr;

A. SD Software Program

A. SD Software Program

056 m_piDESPosArr = NULL;

057

058 ClearBddFields();

059 }

060

061 h
062 * DESCR: Initialize BDD related data members

063 * PARA: None

064 * RETURN: 0

065 * ACCESS: protected

066 */
067 int CSub::InitBddFields()

068 {

069 m_iNumofBddNormVar = 0;

070 m_bdd!nit = bddtrue;

071 m_bddMarking = bddtrue;

072 m_bddSuper = bddfalse;

073

074 m_pbdd_ConTrans = NULL;

075 m_pbdd_ConPlantTrans = NULL;

076 m_pbdd_ConSupTrans = NULL;

077

078

079

080

081

082

083

084

085

086

087

088

089

090

m_pbdd_UnConTrans = NULL;

m_pbdd_UnConPlantTrans = NULL;

m_pbdd_UnConSupTrans = NULL;

m_pbdd_ConVar = NULL;

m_pbdd_ConVarPrim = NULL;

m_pbdd_UnConVar = NULL;

m_pbdd_UnConVarPrim = NULL;

m_pbdd_UnConPlantVar = NULL;

m_pbdd_UnConPlantVarPrim = NULL;

263

264

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106 }
107

108 /*

m_pbdd_UnConSupVar = NULL;

m_pbdd_UnConSupVarPrim = NULL;

m_pbdd_ConPhysicVar = NULL;

m_pbdd_ConPhysicVarPrim = NULL;

m_pbdd_ConSupVar = NULL;

m_pbdd_ConSupVarPrim = NULL;

m_pPair_Con = NULL;

m_pPair_UnCon = NULL;

m_pPair_ConPrim = NULL;

m_pPair_UnConPrim = NULL;

return 0;

A. SD Software Program

109 * DESCR:

110 * PARA:

Release memory for BDD related data members

None

111 * RETURN: 0

112 * ACCESS: protected

113 */
114 int CSub: :ClearBddFields()

115 {

116

117

118

119

120

121

122

123

124

125

delete[] m_pbdd_ConTrans;

m_pbdd_ConTrans = NULL;

delete[] m_pbdd_ConPlantTrans;

m_pbdd_ConPlantTrans = NULL;

delete[] m_pbdd_ConSupTrans;

m_pbdd_ConSupTrans = NULL;

delete[] m_pbdd_UnConTrans;

A. SD Software Program 265

126 m_pbdd_UnConTrans = NULL;

127

128 delete[] m_pbdd_UnConPlantTrans;

129 m_pbdd_UnConPlantTrans = NULL;

130

131 delete[] m_pbdd_UnConSupTrans;

132 m_pbdd_UnConSupTrans = NULL;

133

134 delete[] m_pbdd_ConVar;

135 m_pbdd_ConVar = NULL;

136 delete[] m_pbdd_UnConVar;

137 m_pbdd_UnConVar = NULL;

138

139 delete[] m_pbdd_ConVarPrim;

140 m_pbdd_ConVarPrim = NULL;

141 delete[] m_pbdd_UnConVarPrim;

142 m_pbdd_UnConVarPrim = NULL;

143

144 delete[] m_pbdd_UnConPlantVar;

145 m_pbdd_UnConPlantVar = NULL;

146 delete[] m_pbdd_UnConPlantVarPrim;

147 m_pbdd_UnConPlantVarPrim = NULL;

148

149 delete[] m_pbdd_UnConSupVar;

150 m_pbdd_UnConSupVar = NULL;

151 delete[] m_pbdd_UnConSupVarPrim;

152 m_pbdd_UnConSupVarPrim = NULL;

153

154 delete[] m_pbdd_ConPhysicVar;

155 m_pbdd_ConPhysicVar = NULL;

156 delete[] m_pbdd_ConPhysicVarPrim;

157 m_pbdd_ConPhysicVarPrim = NULL;

158

159 delete[] m_pbdd_ConSupVar;

160 m_pbdd_ConSupVar = NULL;

266 A. SD Software Program

161 delete[] m_pbdd_ConSupVarPrim;

162 m_pbdd_ConSupVarPrim = NULL;

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180
2)

181

182

183

184

185

186

187

188

189

190

191

192

if (m_pPair_UnCon != NULL)

{

}

for (int i = 0; i < m_usiMaxUnCon; i += 2)

{

}

if (m_pPair_UnCon[i/2] != NULL)

{

}

bdd_freepair(m_pPair_UnCon[i/2]);

m_pPair_UnCon[i/2] = NULL;

delete[] m_pPair_UnCon;

m_pPair_UnCon = NULL;

if (m_pPair_Con != NULL)

{

}

for (int i = 1; i < (unsigned short)(m_usiMaxCon + 1); i +=

{

}

if (m_pPair_Con[(i - 1)/2] != NULL)

{

}

bdd_freepair(m_pPair_Con[(i- 1)/2]);

m_pPair_Con[(i - 1)/2] = NULL;

delete[] m_pPair_Con;

m_pPair_Con = NULL;

if (m_pPair_UnConPrim != NULL)

193 {

194 for (int i = 0; i < m_usiMaxUnCon; i += 2)

A. SD Software Program

195

196

197

198

199

200

201

202

203

204

205

206

207

}

{

}

if (m_pPair_UnConPrim[i/2] != NULL)

{

}

bdd_freepair(m_pPair_UnConPrim[i/2]);

m_pPair_UnConPrim[i/2] = NULL;

delete[] m_pPair_UnConPrim;

m_pPair_UnConPrim = NULL;

if (m_pPair_ConPrim != NULL)

{

267

208 for (int i = 1; i < (unsigned short)(m_usiMaxCon + 1); i +=

2)

209

210

211

212

213

214

215

216

217

218 }
219

{

}

if (m_pPair_ConPrim[(i - 1)/2] != NULL)

{

}

bdd_freepair(m_pPair_ConPrim[(i- 1)/2]);

m_pPair_ConPrim[(i - 1)/2] = NULL;

delete[] m_pPair_ConPrim;

m_pPair_ConPrim = NULL;

220 return 0;

221 }
222

223 /*
224 * DESCR: Generate a DES file name with path (*.hsc) from a sub file

name

225 *
226 *
"AttchCase.hsc".

with path (.sub) and a DES file name without path.

ex: vsSubFile = "/home/roger/high.sub". vsDES =

268 A. SD Software Program

227 *
228 * PARA:

229 *

will return "/home/roger/AttchCase.hsc"

vsSubFile: sub file name with path

vsDES: DES file name without path

230 * RETURN: Generated DES file name with path

231 * ACCESS: protected

232 */
233 string CSub::GetDESFileFromSubFile(const string & vsSubFile,

234 const string &vsDES)

235 {

236 assert(vsSubFile.length() > 4);

237 assert (vsSubFile. substr (vsSubFile .length 0 - 4) -- ".sub 11
) ;

238 assert(vsDES.length() > 0);

239 string sDES = vsDES;

240

241 if (sDES.length() > 4)

242 {

243 if (sDES.substr(sDES.lengthO - 4) == ".hsc")

244 {

245 sDES = sDES.substr(O, sDES.length() - 4);

246 }

247 }

248 sDES += ".hsc";

249

250 unsigned int iPos = vsSubFile.find_last_of('/');

251

252 if (iPos == string::npos)

253 return sDES;

254 else

254 return vsSubFile.substr(O, iPos + 1) + sDES;

255 }

256

257 /**
* DESCR: Add events to the event Map of this sub. If the event already

exits,

258 * return its index; Otherwise generate a new 16 bit unsigned

A. SD Software Program

index

259 *
260 * PARA:

261 *

and return the index.

vsEventName: Event name

vEventType: Controllable? (CON_EVENT, UNCON_EVENT)

269

262 * RETURN: >0: event index (odd: controllable even: uncontrollable)

263 * 0: error

264 * ACCESS: public

265 */
266 unsigned short CSub::AddSubEvent(const string & vsEventName,

267 canst EVENTTYPE vEventType)

268 {
269

270

271

272

273

274

275

276

index

277

278

279

280

281

282

283

284

285

canst char * DEBUG = 11 CSub::AddSubEvent(): 11
;

PRINT_DEBUG << 11vsEventName = 11 << vsEventName << endl;

LOCALEVENTS::const_iterator citer;

citer = m_SubEventsMap.find(vsEventName);

if (citer != m_SubEventsMap.end()) //the event exists, return its

return citer->second;

else //the event does not exist, generate a new index.

{
if (vEventType == CON_EVENT)

{
m_usiMaxCon += 2;

m_SubEventsMap[vsEventName] = m_usiMaxCon;

m_InvSubEventsMap[m_usiMaxCon] = vsEventName;

#ifdef DEBUG_TIME

286 PRINT_DEBUG « 11 vEventType = CON_EVENT, m_usiMaxCon = 11

<< m_usiMaxCon << endl;

287

288

289

290 }

#end if

return m_usiMaxCon;

270 A. SD Software Program

else

{
m_usiMaxUnCon += 2;

291

291

292

293

294

295

296

297

m_SubEventsMap[vsEventName] = m_usiMaxUnCon;

m_InvSubEventsMap[m_usiMaxUnCon] = vsEventName;

#ifdef DEBUG_TIME

-II

PRINT_DEBUG « "vEventType = UNCON_EVENT, m_usiMaxUnCon

<< m_usiMaxUnCon << endl;

298

299

#end if

300 return m_usiMaxUnCon;

301 }

302 }

303 return 0;

304 }

305

306 /**
307 * DESCR: Set error msg and err code in this project

308 * PARA: vsvsErrMsg: Error message

309 * viErrCode: Error Code

310 * RETURN: None

311 * ACCESS: public

312 */

313 void CSub::SetErr(const string & vsErrMsg, canst int viErrCode)

314 {
315 m_iErrCode = viErrCode;

316 m_sErrMsg = vsErrMsg;

317 return;

318 }
319

320 /**
321 * DESCR:

322 * PARA:

323 *

Generate global event index from the event info in para

viSubindex(Sub index, highsub = 0, low sub start from 1.

Next 12 bits), (input)

A. SD Software Program 271

324 *
325 *
(input)

vusiLocalEventindex(local event index, odd: controllable,

even:uncontrollab. The rest 16 bits)

326 * RETURN:

327 * ACCESS:

328 */

Generated global event index

public

329 int CSub::GenEventindex(const unsigned short vusiLocalEventindex)

330 {

331 int iEventindex = L_EVENT;

332 iEventindex = iEventindex << 28;

333

334 int iSubindex = 1;

335 iSubindex = iSubindex << 16;

336 iEventindex += iSubindex;

337

338 iEventindex += vusiLocalEventindex;

339

340

341 }

return iEventindex;

342

343 /*

344 * DESCR:

345 * PARA:

346 * RETURN:

347 *
348 * ACCESS:

349 */

Search an event by its name

vsEventName: Event name(input)

>0: Gloable event index

<0: not found

public

350 int CSub::SearchPrjEvent(const string & vsEventName)

351 {

352 EVENTS::const_iterator citer;

353

354 citer = m_AllEventsMap.find(vsEventName);

355

356 if (citer != m_AllEventsMap.end()) //the event exists

357 return citer->second;

272

358 else //the event does not exist

359 return -1;

360 }

361

362 /*

363 * DESCR:

364 * PARA:

365 * RETURN:

366 *
367 * ACCESS:

368 */

Search an event by its name

vsEventName: Event name(input)

>0: Sub event index

<0: not found

public

A. SD Software Program

369 int CSub::SearchSubEvent(const string & vsEventName)

370 {

371 LOCALEVENTS::const_iterator citer;

372

373 citer = m_SubEventsMap.find(vsEventName);

374

375 if (citer != m_SubEventsMap.end()) //the event exists

376 return citer->second;

377 else //the event does not exist

378 return -1;

379 }

380

381 /**
382 * DESCR: Clear error msg and err code in this project

383 * PARA: None

384 * RETURN: None

385 * ACCESS: public

386 */
387 void CSub::ClearErr()

388 {
389 m_iErrCode = 0;

390 m_sErrMsg.empty();

391 return;

392 }

A. SD Software Program 273

393

394 /*
395 * DESCR:

396 *
should have

397 *
disjoint

398 * PARA:

399 *
400 *
401 *
402 *
new events)

Add an event to CProject event map

If the event exists already exists in the map, the it

same global index; Otherwise the event sets are not

vsEventName: Event name(input)

viEventindex: global event index (input)

cEventSub: Event type ('H", 'L', 'R', 'A')

(output, only for new events)

cControllable: Controllable? ('Y', 'N')(output)(only for

403 * RETURN: 0: success

404 *
405 * ACCESS:

406 */

<0 the event sets are not disjoint.

public

407 int CSub::AddPrjEvent(const string & vsEventName, const int

viEventindex)

408 {

409 EVENTS::const_iterator citer;

410

411 citer = m_AllEventsMap.find(vsEventName);

412

413 if (citer != m_AllEventsMap.end{)) //the event exists, check if

the global

414 //event index is same.

415 {

416 if (citer->second != viEventindex)

417 {

418 return -1;

419 }

420 }

421 else //the event does not exist

422 {

27 4 A. SD Software Program

423 m_AllEventsMap[vsEventName] = viEventindex;

424 m_InvAllEventsMap[viEventindex] = vsEventName;

425 }

426

427 return 0;

428 }

429

430

Subl.cpp

001 //compute the marix storing number of shared events between every

two DES

002 m_piCrossMatrix =new int *[iNumofDES];

003 for (int i = 0; i < iNumofDES; i++)

004 m_piCrossMatrix[i] =new int[iNumofDES];

005 for (int i = 0; i < iNumofDES; i++)

006 for (int j = 0; j < iNumofDES; j++)

007 {

008 m_piCrossMatrix[i][j] =

009 NumofSharedEvents(m_pDESArr[i]->GetEventsArr(),

010

m_pDESArr[i]->GetNumofEvents(),

011

m_pDESArr[j]->GetEventsArr(),

012

m_pDESArr[j]->GetNumofEvents());

013 }

014 //Generate an initial order

015 InitialDESOrder();

016 UpdatePos();

017

018 //Algorithm with force

019 DESReorder_Force();

020 UpdatePos();

A. SD Software Program

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050 }
051

052 /*

//sifting algorithm

DESReorder_Sift();

UpdatePos 0 ;

//clear memory

for (int i = 0; i < iNumofDES; i++)

{

}

delete[] m_piCrossMatrix[i];

m_piCrossMatrix[i] = NULL;

delete[] m_piCrossMatrix;

m_piCrossMatrix = NULL;

//Order m_pDESArr according to the order of m_piDESOrderArr.

CDES **PDESTmp = NULL;

pDESTmp =new CDES *[this->GetNumofDES()];

for (inti= 0; i < this->GetNumofDES(); i++)

{
pDESTmp[i] = m_pDESArr[m_piDESOrderArr[i]];

}
for (inti= 0; i < this->GetNumofDES(); i++)

{
m_pDESArr[i] = pDESTmp[i];

}
delete[] pDESTmp;

pDESTmp = NULL;

return 0;

053 * DESCR: Using sifting algorithm to reorder DES

054 * PARA: None

055 * RETURN: 0

275

276 A. SD Software Program

056 * ACCESS: private

057 */
058 int CSub::DESReorder_Sift()

059 {

060 int iNumofDES = this->GetNumofDES();

061 bool bChanged = false;

062 double dMinCross 0.0;

063 double dCurCross = 0.0;

064 int *piCurOpt =new int[iNumofDES];

065 int *Pilnit =new int[iNumofDES];

066

067

068

069

070

071

072

int iTemp = 0;

int iCur = 0;

int iCount = 0;

double dOldCross

double dinitCross

double dSwapCross

= 0.0;

0.0;

= 0.0;

073 //initialize optimal des order and loop initial order;

074 for (int j = 0; j < iNumofDES; j++)

075 {

076 piCurOpt[j] = m_piDESOrderArr[j];

077 pi!nit[j] = m_piDESOrderArr[j];

078 }

079

080 //initialize cross over value

081 dMinCross = TotalCross_Sift(O, 0, 0, 0);

082 dOldCross dMinCross;

083 dinitCross = dMinCross;

084

085 //Initialize m_piDESPosArr

086 UpdatePos();

087

088 //Optimize the DES order

089 do

089 {

A. SD Software Program

090 iCount++;

091 bChanged = false;

092 for (int iDES = 0; iDES < iNumofDES; iDES++)

093 {

094 iCur = m_piDESPosArr[iDES];

095

//move backward

for (int i = iCur; i < iNumofDES - 1; i++)

{
//compute dSwapCross

dSwapCross = TotalCross_Sift(O, 0, i, 1);

I /swap i, i+1

iTemp = m_piDESOrderArr[i + 1];

m_piDESOrderArr[i + 1] = m_piDESOrderArr[i];

m_piDESOrderArr[i] = iTemp;

//test if current order is better

277

096

097

098

099

100

101

102

103

104

105

106

107

108

2) j

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

dCurCross = TotalCross_Sift(dOldCross, dSwapCross, i,

}

dOldCross = dCurCross;

if (dCurCross - dMinCross < 0)

{

}

bChanged = true;

dMinCross = dCurCross;

for (int j = 0; j < iNumofDES; j++)

piCurOpt[j] = m_piDESOrderArr[j];

I /move forward

for (int j = 0; j < iNumofDES; j++)

m_piDESOrderArr[j] = piinit[j];

dOldCross = dinitCross;

for (int i = iCur; i > 0; i--)

278

124

125

126

127

128

129

130

131

132

133

134

1, 2);

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

155

156

{

}

A. SD Software Program

//compute dSwapCross

dSwapCross = TotalCross_Sift(O, 0, i- 1, 1);

//swap i - 1, i

iTemp = m_piDESOrderArr[i- 1];

m_piDESOrderArr[i- 1] = m_piDESOrderArr[i];

m_piDESOrderArr[i] = iTemp;

//test if current order is better

dCurCross = TotalCross_Sift(dOldCross, dSwapCross, i -

dOldCross = dCurCross;

if (dCurCross - dMinCross < 0)

{

}

bChanged = true;

dMinCross = dCurCross;

for (int j = 0; j < iNumofDES; j++)

piCurOpt[j] = m_piDESOrderArr[j];

dlnitCross = dMinCross;

dOldCross = dMinCross;

if (bChanged)

{

}
else

{

for (int j = 0; j < iNumofDES; j++)

{

}

m_piDESOrderArr[j] = piCurOpt(j];

pilnit[j] = m_piDESOrderArr[j];

UpdatePos 0 ;

for (int j = 0; j < iNumofDES; j++)

A. SD Software Program 279

157 m_piDESOrderArr[j] = pi!nit[j];

158 }
159 }

160 }while(bChanged ==true);

161

162

163

164

165

166

167

168

169 }
170

171 /*

delete[] piCurOpt;

piCurOpt = NULL;

delete[] pi!nit;

pi!nit = NULL;

return 0;

172 * DESCR: Compute total cross for sifting algorithm

173 * PARA: dDldCross: old cross value

174 * dSwapCross: cross changed due to swapping

175 * iCur: current position

176 * iFlag: 0: completey compute total cross value

177 * 1: compute total cross based on the old cross and

swapped DES

178 * (much faster)

179 * RETURN: new cross value

180 * ACCESS: private

181 */
182 double CSub::TotalCross_Sift(double dOldCross, double dSwapCross,

183 int iCur, int iFlag)

184 {

185 double dCross = 0;

186

187 if (iFlag == 0) //completely compute the cross

188 {

189 for (inti= 0; i < this->GetNumofDES(); i++)

190 {

280 A. SD Software Program

191

192

193

for (int j = i + 2; j < this->GetNumofDES(); j++)

dCross += cross(i, j);

}
194 }

195 else if (iFlag == 1) //only compute iCur, iCur + 1

196 {

197 1/iCur

198 for (int i = 0; i < iCur - 1; i++)

199 dCross += cross(i, iCur);

200 for (inti= iCur + 2; i < this->GetNumofDES(); i++)

201 dCross += cross(iCur, i);

202 //iCur + 1

203 for (int i = 0; i < (iCur + 1) - 1; i++)

204 dCross += cross(i, iCur + 1);

205 for (inti= (iCur + 1) + 2; i < this->GetNumofDES(); i++)

206 dCross += cross(iCur + 1, i);

207 }

208 else //update

209 {

210 //iCur

211 for (int i = 0; i < iCur - 1; i++)

212 dCross += cross(i, iCur);

213 for (inti= iCur + 2; i < this->GetNumofDES(); i++)

214 dCross += cross(iCur, i);

215 //iCur + 1

216 for (int i = 0; i < (iCur + 1) - 1; i++)

217 dCross += cross(i, iCur + 1);

218 for (inti= (iCur + 1) + 2; i < this->GetNumofDES(); i++)

219 dCross += cross(iCur + 1, i);

220

221 dCross = dOldCross - dSwapCross + dCross;

222 }

223 return dCross;

224 }

225

A. SD Software Program 281

226 /*
227 * DESCR:

228 * PARA:

229 * RETURN:

230 * ACCESS:

231 *I

Compute the cross for DES i and DES j

i,j: DES position index,

the cross for DES i and DES j

private

232 double CSub::cross(int i, int j)

233 {

234

235

return sqrt((double)(m_piCrossMatrix[m_piDESOrderArr[i]]

[m_piDESOrderArr[j]]) * (j - i

- 1));

236 }

237

238 /*
239 * DESCR:

240 *
241 * PARA:

242 * RETURN:

243 * ACCESS:

244 *I

Initialize a DES order for the sifting reorder algorithm

(some ideas are from Zhonghua Zhong's STCT)

None

0

private

245 int CSub::DESReorder_Force()

246 {

247 int iNumofDES = this->GetNumofDES();

248 int iCount = 0;

249

250 //Optimize the DES order

251 bool bChanged = false;

252 double dMinCross = TotalCross_Force();

253 double dCurCross = 0.0;

254 do

254 {

255 iCount++;

256 bChanged = false;

257 int iOptPos = 0;

258 int iDES = 0;

282 A. SD Software Program

259 for (iDES = 0; iDES < iNumofDES; iDES++)

260 {

261 int iPrePos = 0;

262 int iNextPos = iNumofDES - 1;

263 int iPos = m_piDESPosArr[iDES];

264 iOptPos = iPos;

265 int iNewPos = 0;

266 while (true)

267 {

268 double dForce = Force(iPos);

269 if (dForce < -0.05)

270 {

271 iNextPos = iPos;

272 iNewPos = iPos - (((iPos - iPrePos) % 2 == 0)?

273 ((iPos- iPrePos) I 2):((iPos- iPrePos) I 2 +

1));

274 if (iNewPos <= iPrePos)

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

}

break;

InsertDES(iPos, iNewPos);

UpdatePos () ;

iPos = iNewPos;

dCurCross = TotalCross_Force();

if (dCurCross < dMinCross - 0.05)

{

}

iOptPos = iPos;

dMinCross = dCurCross;

bChanged = true;

else if (dForce > 0.05)

{
iPrePos = iPos;

iNewPos = iPos + (((iNextPos - iPos) % 2 == 0)?

((iNextPos- iPos) I 2):((iNextPos- iPos) I 2

A. SD Software Program

+ 1));

293

294

295

296

297

298

299

300

301

302

303

304

305

306 }
307 else

307

308 }

if (iNextPos <= iNewPos)

break;

InsertDES(iPos, iNewPos);

UpdatePos 0 ;

iPos = iNewPos;

dCurCross = TotalCross_Force();

if (dCurCross < dMinCross - 0.05)

{

}

iOptPos = iPos;

dMinCross = dCurCross;

bChanged = true;

break;

309

310

InsertDES(m_piDESPosArr[iDES], iOptPos);

UpdatePos 0 ;
311 }
312 }while(bChanged ==true);

313

314 return 0;

315 }
316

317 /*
318 * DESCR: Update DES position in array m_piDESPosArr according the

new order

319 * PARA: None

320 * RETURN: None

321 * ACCESS: private

322 */
323 void CSub::UpdatePos()

324 {

283

284 A. SD Software Program

325 for (inti= 0 ; i < this->GetNumofDES(); i++)

326 m_piDESPosArr[m_piDESOrderArr[i]] = i;

327 return;

328 }

329

330 /*
331 * DESCR: Swap variables in m_piDESDrderArr for DESReorder_Force()

332 * PARA:

333 *
334 * RETURN:

335 * ACCESS:

336 */

iCur: current variable position

iPos: destinate variable position

None

private

337 void CSub::InsertDES(int iCur, int iPos)

338 {

339 int iDES= m_piDESOrderArr[iCur];

340 if (iCur < iPos)

341 {

342 for (int i = iCur + 1; i <= iPos; i++)

343 m_piDESOrderArr[i- 1] = m_piDESOrderArr[i];

344 m_piDESOrderArr[iPos] iDES;

345 }

346 else if (iCur > iPos)

347 {

348 for (int i = iCur - 1; i >= iPos; i--)

349 m_piDESOrderArr[i + 1] = m_piDESOrderArr[i];

350 m_piDESOrderArr[iPos] = iDES;

351 }

352 return;

353 }

354

355 /*
356 * DESCR: Compute total cross for DESReorder_Force()

357 * PARA: None

358 * RETURN: total cross

359 * ACCESS: private

A. SD Software Program

360 */
361 double CSub::TotalCross_Force()

362 {

363

364

365

366

367

368

369

370 }
371

double dCross =

for (int i = 0;

{
for (int j

dCross

}
return dCross;

0;

i < this->GetNumofDES(); i++)

= i + 2; j < this->GetNumofDES(); j++)

+= cross(i, j);

372 /*~
373 ~ Decide to move DES_i left or right. (< 0 move left; >0

move right)

374 * for DESReorder_Force()

375 * PARA: i: position in m_piDESOrderArr

376 * ~: returned force

377 * ACCESS: private

378 */
379 double CSub::Force(int i)

380 {
381 double dForce = 0;

382 for (int j = 0; j < i - 1; j++)

285

383

384

dForce += sqrt((double)m_piCrossMatrix[m_piDESOrderArr[i]]

[m_piDESOrderArr[j]] * (j -

i + 1));

385

386

387
i- 1));

for (int j = i + 2; j < this->GetNumofDES(); j++)

dForce += sqrt((double)m_piCrossMatrix[m_piDESOrderArr[i]]

[m_piDESOrderArr[j]] * (j -

388 return dForce;

389 }

390

391 /*

286

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

* DESCR: Initialize a DES order

* PARA: None

* RETURN: 0

* ACCESS: private

*I
int CSub::InitialDESOrder()

{
int i = 0;

int j = 0;

int k = 0;

int iNumofDES = this->GetNumofDES();

I /There is no DES at all

if (iNumofDES <= 0)

return 0;

//Only one DES

m_piDESOrderArr[O] 0;

if (iNumofDES <= 1)

return 0;

int iPos = 0;

double dLeftCross = 0;

double dRightCross = 0;

double dNewCross = 0;

double dOldCross = 0;

vector<int> vecDESOrder;

vector<int> vecShared;

//two or more DES

vecDESOrder.push_back(O);

vecDESOrder.push_back(1);

for (i = 2; i < iNumofDES; i++)

{

A. SD Software Program

A. SD Software Program

427 vecShared.clear();

428 for (j = 0; j < i; j++)

429 vecShared.push_back(m_piCrossMatrix[i][vecDESOrder[j]]);

430

431 iPos = i;

432 dOldCross = MAX_DOUBLE;

433 for (j = i; j >= 0; j--)

434 {

435 dLeftCross = 0;

436 dRightCross = 0;

437

438 for (k = 0; k < j; k++)

439 {

440 dLeftCross += vecShared[k] * (j - k- 1);

441 }

442 for (k = j ; k < i; k++)

443 {

444 dRightCross += vecShared[k] * (k- j);

445 }

446 crnewCross = dLeftCross + dRightCross;

447

448

449

450

451

452

453

453

454

455

456

457

458

459

460 }

:.f (dNewCross == 0)

~~lse

{

iPos = j;

break;

if (dNewCross < dOldCross - 0.05)

{

}

dOldCross = dNewCross;

iPos = j;

287

288

461

462

463

464

465

466

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480 }
481

482

}

A. SD Software Program

if (iPos == 0)

vecDESOrder.insert(vecDESOrder.begin(), i);

else if (iPos == i)

else

{

}

vecDESOrder.push_back(i);

vector<int>::iterator itr = vecDESOrder.begin();

itr += iPos;

vecDESOrder.insert(itr, i);

assert((int)vecDESOrder.size() == this->GetNumofDES());

for (i = 0; i < (int)vecDESOrder.size(); i++)

{
m_piDESOrderArr[i] = vecDESOrder[i];

}
return 0;

Sub2.cpp

001 bdd bddStates = bddStateSet;

002 int *PiStateSet = fdd_scanallvar(bddStates);

003

004 int count = 0;

005

006 while (piStateSet != NULL && count < 3)

007 {

008 bdd bddVisitedState = bddtrue;

009

A. SD Software Program

010

011

012

013

014

cout << 11 j 11
;

for (inti= 0; i < this->GetNumofDES(); i++)

{
int iState = piStateSet[m_piDESPosArr[i] * 2];

cout << m_pDESArr[m_piDESPosArr[i]]->GetDESName()

289

+ 11.11 • . '
015

016

cout << m_pDESArr[m_piDESPosArr[i]]->GetStateName(iState);

if (i < this->GetNumofDES() -1)

017

018

019

020

iState);

021

022

023

024

025

026

027

028

029 }
030

{
cout << 11

,
11

;

}
bddVisitedState &= fdd_ithvar(m_piDESPosArr[i] * 2,

}

cout << 11 i, 11
;

free(piStateSet);

bddStates = bddStates - bddVisitedState;

piStateSet = fdd_scanallvar(bddStates);

count++;

031 if (count == 3)

032 {

033 cout << n n.
••• J

034 }
035 }
036

037 bdd CSub::GetOneState(const bdd & bddStates)

038 {

039 int *PiStateSet = fdd_scanallvar(bddStates);

040 bdd bddState = bddtrue;

041

042 if (piStateSet != NULL)

043 {

290

044

045

046

047

048

049

050

051

052

053 }
054

}

A. SD Software Program

for (inti= 0; i < this->GetNumofDES(); i++)

{

}

int iState = piStateSet[m_piDESPosArr[i] * 2];

bddState &= fdd_ithvar(m_piDESPosArr[i] * 2, iState);

free(piStateSet);

return bddState;

return bddfalse;

055 int CSub::CountStates(const bdd & bddStateSet)

056 {
057

058

059

060

061

062

063

064

065

066

067

068

069

070

iState);

071

072

073

074

075

076

077

int count = 0;

bdd bddStates = bddStateSet;

int *PiStateSet = fdd_scanallvar(bddStates);

while (piStateSet != NULL)

{

}

count++;

bdd bddVisitedState = bddtrue;

for (inti= 0; i < this->GetNumofDES(); i++)

{

}

int iState = piStateSet[m_piDESPosArr[i] * 2];

bddVisitedState &= fdd_ithvar(m_piDESPosArr[i] * 2,

free(piStateSet);

bddStates = bddStates - bddVisitedState;

piStateSet = fdd_scanallvar(bddStates);

return count;

A. SD Software Program

078 }

079

080 /*
081 * DESCR: Print all the state vectors using state names

291

082 * PARA: bddStateSet: BDD respresentation of the state set (input)

083 * viSetFlat: 0: Initial state 1: All states 2: Marking

States (input)

084 * RETURN: 0: sucess -1: fail

085 * ACCESS: protected

086 */
087 int CSub::PrintStateSet(const bdd t bddStateSet, int viSetFlag)

088 {

089 int *Statevec = NULL;

090 int iStateindex = 0;

091

092 STATES statesMap;

093

094 try

094 {

095 string sLine;

096 bdd bddTemp = bddfalse;

097 bdd bddNormStateSet = bddtrue;

098 string sinitState;

099 bool binitState = false;

100

101

102

103

104

105

106

107

108

109

110

//restrict the prime variable to 0

for (inti= 0; i < this->GetNumofDES(); i++)

bddNormStateSet t= fdd_ithvar(i * 2 + 1, 0);

bddNormStateSet t= bddStateSet;

//save number of states

if (viSetFlag != 0)

cout << bdd_satcount(bddNormStateSet) << endl;

//Initial state

292

111

112

113

114

114

115

116

117

118

119

120

121

122

123

124
II II.

' '
125

126

127

128

129

130

131

132

133

134

135

136

136

137

state index

138

139

140

141

A. SD Software Program

STATES::const_iterator csmi = statesMap.begin();

if (csmi != statesMap.end())

sinitState = csmi->first;

else

sinitState.clear();

//print all the vectors

statevec = fdd_scanallvar(bddNormStateSet);

while (statevec!= NULL)

{
sLine. clear() ;

sLine = "i";

for (inti= 0; i < this->GetNumofDES(); i++)

{

}

sLine += m_pDESArr[m_piDESPosArr[i]]->GetStateName(

statevec[m_piDESPosArr[i] * 2]) +

sLine = sLine.substr(O, sLine.length() - 1);

sLine += ";_,";

iStateindex++;

//state index for initial state should be 0

if (viSetFlag == 0)

{

}
else

{

iStateindex = 0;

statesMap[sLine] = iStateindex;

//for marking states, should show the corresponding

if (viSetFlag == 2)

cout « statesMap [sLine] « " #" ii sLine ii endl;

else I I all the states

{

A. SD Software Program

142
143
144
145
146

147

147

148

149

150

if (blnitState) //initial state alredy been printed

{
statesMap[sLine] = iStatelndex;

cout jj iStatelndex jj 11 # 11 « sLine << endl;

}
else

{
if (sLine != sinitState)

{
statesMap[sLine] = iStateindex;

293

151 cout « iStateindex « " #" jj sLine jj endl;

152
153
154
155
156
157
158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173 }

}

}

}
else

{

}

iStatelndex--;

blnitState = true;

cout ii "0 11 ii 11 # 11 << sLine << endl;

}
}

//remove the outputed state

bddTemp = bddtrue;

for (int i = 0; i < this->GetNumofDES(); i++)

bddTemp &= fdd_ithvar(i * 2, statevec[i * 2]);

bddNormStateSet = bddNormStateSet - bddTemp;

free(statevec);

statevec = NULL;

statevec = fdd_scanallvar(bddNormStateSet);

174 catch(...)

175 {

294 A. SD Software Program

176 delete[] statevec;

177 statevec = NULL;

178 return -1;

179 }

180 return 0;

181 }

182

183 /*
184 * DESCR:

185 * PARA:

186 * RETURN:

Print all events from the pPrj->m_InvAllEventsMap

187 * ACCESS:

188 *I

tout: file stream (input)

0: sucess -1: fail

protected

189 int CSub::PrintEvents(ofstream & fout)

190 {

191 char cSub = '\0';

192 char cCon = '\0';

193 string sLine;

194

195 try

195 {

196 INVEVENTS::const_iterator ci =

pSub->GetinvAllEventsMap().begin();

197 for(; ci != pSub->GetlnvAllEventsMap().end(); ++ci)

198 {

199 if ((ci->first & OxOFFFOOOO) >> 16 == 1)

200 {
201 cCon = ci->first % 2 == 0 ? 'N': 'Y';

202 sLine = ci->second + "\t\t";
203 sLine += cCon;

204 sLine += "\t\t";
205 sLine += cSub;

206 fout << sLine << endl;

207 }
208 }

A. SD Software Program

209 }
210 catch (...)
211 {
212 return -1;

213 }
214 return

215 }
216

217 /*

218 * DESCR:

219 * PARA:

220 *
sEventName

221 *

0;

Print all the transitions one by one

tout: file stream (input)

bddController: not simplified bdd control predicate for

EventSub: 'H'/'R'/'A'/L'

222 * usiLocalindex: local index (in this sub)

223 * bddReach: BDD respresentation of reachable states in

224 * synthesized automata-based supervisor or

syn-product of

225 * the verified system.

226 * sEventName: Event Name

227 * statesMap: state name and index map (index is for the

output file)

228 * RETURN: 0: sucess -1: fail

229 * ACCESS: protected

230 */
231 int CSub::PrintTextTrans(ofstream & fout, bdd & bddController,

232

233

234

235 {

unsigned short usiLocalindex,

canst bdd & bddReach, string sEventName,

STATES & statesMap)

236 int *Statevec1 = NULL;

237 int *Statevec2 = NULL;

238 try

238 {

239 string sExit;

295

296 A. SD Software Program

240 string sEnt;

241 bdd bddTemp = bddfalse;

242 bdd bddNext = bddfalse;

243

244 //extract each state from bddController

245 statevec1 = fdd_scanallvar(bddController);

246 while (statevec1!= NULL)

247 {

248 sExit.clear();

249 sExit = "i";

250 for (inti= 0; i < this->GetNumofDES(); i++)

251 sExit += m_pDESArr[m_piDESPosArr[i]]->GetStateName(

252 statevec1[m_piDESPosArr[i] * 2]) +
II II.

' '
253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

sExit = sExit.substr(O, sExit.length() - 1);

sExit += "i.,";

bddTemp = bddtrue;

for (inti= 0; i < this->GetNumofDES(); i++)

bddTemp &= fdd_ithvar(i * 2, statevec1[i * 2]);

bddController = bddController - bddTemp;

free(statevec1);

statevec1 = NULL;

statevec1 fdd_scanallvar(bddController);

//Get the target state

if (usiLocalindex % 2 -- 0)

bddNext =

bdd_replace(

bdd_relprod(

m_pbdd_UnConTrans[(usiLocalindex- 2) I 2],

bddTemp,

m_pbdd_UnConVar[(usiLocalindex- 2) I 2]),

m_pPair_UnConPrim[(usiLocalindex- 2) I 2]) &

bdd.Reach;

A. SD Software Program

274

274

275

else

bddNext =

bdd_replace(

297

276

277

278

bdd_relprod(

m_pbdd_ConTrans[(usiLocalindex- 1) I 2],

bddTemp,

279

280

281

282

283

284

285

286

287

288

289

2]) + II II.

' '
290

291

292

293

294

m_pbdd_ConVar[(usiLocalindex- 1) I 2]),

m_pPair_ConPrim[(usiLocalindex- 1) I 2]) &
bddReach;

statevec2 = fdd_scanallvar(bddNext);

if (statevec2 == NULL)

throw -1;

sEnt = uiu;

for (inti= 0; i < this->GetNumofDES(); i++)

sEnt += m_pDESArr[m_piDESPosArr[i]]->GetStateName(

statevec2[m_piDESPosArr[i] *

sEnt= sEnt.substr(O, sEnt.length() - 1);
sEnt += uLn;

free(statevec2);

statevec2 = NULL;

295 //print the transition

296 fout << statesMap[sExit] << 11 j 11 << sEventName << 11 L 11 <<
297 statesMap[sEnt] << endl;

298 }

299 }

300 catch (...)

301 {

302 free(statevec1);

303 statevec1 = NULL;

304 free(statevec2);

305 statevec2 = NULL;

306 return -1;

298 A. SD Software Program

307 }

308 return 0;

309 }
310

311 /*
312 * DESCR: Compute triple-prime simplified BDD control predicate for

an event

313 * PARA: tout: file stream (input)

314 * bddController: BDD control predicate for event usiindex

315 * EventSub: 'H'/'R'/'A'/L'

316 * usiindex: local index (in this sub)

317 * RETURN: triple-prime simplified BDD control predicate

318 * ACCESS: protected

319 */

320 bdd CSub::SimplifyController(const bdd & bddController,

321 const unsigned short usi!ndex)

322 {

323 //event should be controllable

324 assert(usi!ndex% 2 == 1);

325

326 bdd bddElig = bddfalse;

327 bdd bddSpecElig = bddfalse;

328

329 I 1\dHs'
330 bddElig = bdd_exist(m_pbdd_ConTrans[(usi!ndex- 1) I 2],

331 m_pbdd_ConVarPrim[(usiindex- 1) I 2]);

332 I /spec part

333 bddSpecElig = bdd_exist(bddElig,

334 m_pbdd_ConPhysicVar[(usi!ndex- 1) I 2]);

335

336 return bddSpecElig & bdd_simplify(bddController, m_bddSuper &
bddElig);

337 }

338

339

A. SD Software Program 299

A.2.5 LowSub Class

LowSub.h

001 virtual -cLowSub();

002

003 virtual int PrintSub(ofstream& fout);

004 virtual int PrintSubAll(ofstream & fout);

005 virtual string SearchEventName(unsigned short usiLocalindex);

006

007 virtual int LoadSub();

008 virtual int VeriSub(const HISC_TRACETYPE showtrace,

009 HISC_SUPERINFO & superinfo);

010

011 private:

012 virtual int MakeBdd();

013 virtual int InitBddFields();

014 virtual int ClearBddFields();

015 int Checkintf();

016 int SynPartSuper(const HISC_COMPUTEMETHOD computemethod,

017 bdd & bddReach, bdd & bddBad);

018 int GenConBad(bdd &bddConBad);

019 int VeriConBad(bdd &bddConBad, const bdd &bddReach, string &

vsErr);

020

021 int GenBalemiBad(bdd &bddBalemiBad);

022 int VeriBalemiBad(bdd &bddBalemiBad, const bdd &bddReach, string &

vsErr);

023

024 int VeriALF(bdd &bddALFBad, bdd bddReach, string & vsErr);

025 int VeriProperTimedBehavior(bdd &bddPTBBad, bdd bddReach, string &

vsErr);

026

027 int CheckSDControllability(bdd & bddSDBad, const bdd & bddreach,

string & vsErr);

028 int AnalyseSampledState(bdd & bddSSBad, const bdd & bddreach, const

300 A. SD Software Program

bdd & bddSS,

029 list< list<bdd> > & list_NerFail, bdd & bddSF, stack<bdd> &

stack_bddSP, string & vsErr);

030

031 int CheckTimedControllability(const EVENTSET & eventsDis, const

EVENTSET & eventsPoss);

032 int CheckTimedControllability(bdd & bddTCBad, const bdd &

bddreach);

033

034 bool RecheckNerodeCells(bdd & bddNCBad, const bdd & bddreach, list<

list<bdd> > & list_NerFail);

035 bool RecheckNerodeCell(bdd & bddNCBad, const bdd & bddreach, const

list<bdd> & Zeqv, list< pair<bdd, bdd> > & listVisited);

036

037 int DetermineNextState(bdd & bddLBBad, const EVENTSET & eventsPoss,

const bdd & bddZ, const bdd & bddreach,

038 const int & intB, int & intNextFreeLabel, map<int, bdd> &

B_map, stack<int> & B_p,

039 bdd & bddSF, stack<bdd> & stack_bddSP,

040 map<int, EVENTSET> & B_occu, map<int, bdd> & B_conc, string &

vsErr);

041

042 void CheckNerodeCells(map<int, bdd> & B_conc, map<int, EVENTSET> &

B_occu,

043

044

list< list<bdd> > & list_NerFail);

045 int CheckSDiv(bdd & bddSDivBad, const bdd & bddReach);

046

047 EVENTSET GetTransitionEvents(const bdd & bddleave, const bdd &

bddenter);

048

049 int GenP4Bad(bdd &bddP4Bad);

050 int VeriP4Bad(bdd &bddP4Bad, const bdd &bddReach, string &vsErr);

051 int supcp(bdd & bddP);

052 bdd cr(const bdd & bddPStart, const bdd & bddP, int & iErr);

A. SD Software Program 301

053 bdd r(const bdd &bddP, int &iErr);

054 bdd p5(const bdd& bddP, int &iErr);

055 bdd p6(const bdd& bddP, int &iErr);

056 void BadState!nfo(const bdd& bddBad, canst int viErrCode,

057 canst HISC_TRACETYPE showtrace, canst string &vsExtrainfo =
II");

058 };

059

060 #endif //_LSUB_H_

061

062

LowSub.cpp

001 * PARA: vsLowFile: subsystem file name with path (.sub)(input)

002 * viSubindex: subsystem index (high: 0, low: 1,2, ...)(input)

003 * RETURN: None

004 * ACCESS: public

004 */
005 CLowSub::CLowSub(const string & vsLowFile):

006 CSub(vsLowFile)

007 {

008 InitBddFields();

009 }

010

011 h*
* DESCR: Destructor

012 * PARA: None

013 * RETURN: None

014 * ACCESS: public

015 */
016 CLowSub::-CLowSub()

017 {

018 //do nothing for now.

019 }

302

020

021 /*

A. SD Software Program

022 * DESCR: Initialize BDD related data members (only those in

LowSub.h)

023 * PARA: None

024 * RETURN: 0

025 * ACCESS: private

026 *I
027 int CLowSub::InitBddFields()

028 {

029 return 0;

030 }

031

032 /*
033 * DESCR: Release memory for BDD related data members(only those in

Lowsub.h)

034 * PARA: None

035 * RETURN: 0

036 * ACCESS: private

037 */
038 int CLowSub::ClearBddFields()

039 {

040 return 0;

041 }

042

043 /**
* DESCR: Load a low-level

044 * PARA: None

045 * RETURN:

046 * ACCESS:

047 */

0 sucess <0 fail;

public

048 int CLowSub::LoadSub()

049 {

050 ifstream fin;

051 int iRet = 0;

A. SD Software Program 303

052 CDES *pDES = NULL;

053

054 try

054 {

055 m_sSubFile = str_trim(m_sSubFile);

056

057 if (m_sSubFile.length() <= 4)

058 {

059 pSub->SetErr("lnvalid file name: " + m_sSubFile,

HISC_BAD_LOW_FILE);

060 throw -1;

061 }

062

063 if (m_sSubFile. substr (m_sSubFile .length() - 4) ! = ".sub")

064 {

065 pSub->SetErr("lnvalid file name: " + m_sSubFile,

HISC_BAD_LOW_FILE);

066 throw -1;

067 }

068

069 fin.open(m_sSubFile.data(), ifstream::in);

070

071 if (!fin) //unable to find low sub file

072 {

073 pSub->SetErr("Unable to open file: " + m_sSubFile,

074 HISC_BAD_LOW_FILE);

075 throw -1;

076 }

077

078 m_sSubName = GetNameFromFile(m_sSubFile);

079

080 char scBuf[MAX_LINE_LENGTH];

081 string sLine;

082 int iField = -1; //0: SYSTEM 1:PLANT 2:SPEC

083 char *scFieldArr[] = {"SYSTEM", "PLANT", "SPEC"};

304 A. SD Software Program

084 string sDESFile;

085

086 int iTmp = 0;

087

088

089

090

int iNumofPlants = 0;

int iNumofSpecs = 0;

091 while (fin.getline(scBuf, MAX_LINE_LENGTH))

092 {

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

sLine = str_nocomment(scBuf);

sLine = str_trim(sLine);

if (sLine.empty())

continue;

if (sLine[O] == '[' && sLine[sLine.length()- 1] -- ']')

{
sLine = sLine.substr(1, sLine.length()- 1);

sLine = sLine.substr(O, sLine.length()- 1);

sLine str_upper(str_trim(sLine));

iField++;

if (iField < 3)

{
if (sLine != scFieldArr[iField])

{

}

pSub->SetErr(m_sSubName +

throw -1;

11
: Field name or order is wrong! 11

,

HISC_BAD_LOW_FORMAT);

if (iField == 1)

{
//Check number of Plants and apply for memory

A. SD Software Program

space

119

120

121

122

123

124

125

126

127

128

129

DES.",

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

}
else

}

if (m_iNumofPlants + m_iNumofSpecs <= 0)

{

}

pSub->SetErr(m_sSubName +

":Must have at least one DES.",

HISC_BAD_LOW_FORMAT);
throw -1;

if (m_iNumofPlants < 0 II m_iNumofSpecs < 0)

{

}

pSub->SetErr(m_sSubName +

":Must specify the number of plant DES and spec

HISC_BAD_LOW_FORMAT);
throw -1;

m_pDESArr =new CDES *[this->GetNumofDES()];

if(m_pDESArr == NULL) throw -1;

305

for (inti= 0; i < this->GetNumofDES(); i++)

m_pDESArr[i] = NULL;

//Initialize m_piDESOrderArr

m_piDESOrderArr =new int[this->GetNumofDES()];

for (inti= 0; i < this->GetNumofDES(); i++)

m_piDESOrderArr[i] = i;

//Initialize m_piDESPosArr

m_piDESPosArr =new int[this->GetNumofDES()];

for (inti= 0; i < this->GetNumofDES(); i++)

m_piDESPosArr[i] = i;

306

151

152

153

154

155

156

157

157

158

159

160

161

162

163

absent!",

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

179

180

181

182

}
else

{

{

}

A. SD Software Program

pSub->SetErr (m_sSubName + ": Too many fields!" ,

HISC_BAD_LOW_FORMAT);

throw -1;

switch (iField)

{
case 0: I I [SYSTEM]

if (!Isinteger(sLine))

{
pSub->SetErr(m_sSubName + ":Number of DES is

HISC_BAD_LOW_FORMAT);

throw -1;

}
iTmp = atoi(sLine.data());

if (iTmp < 1)

{

}

pSub->SetErr(m_sSubName +

throw -1;

":Number of DES is less than 1!",

HISC_BAD_LOW_FORMAT);

if (m_iNumofPlants < 0)

m_iNumofPlants = iTmp;

else if (m_iNumofSpecs < 0)

m_iNumofSpecs = iTmp;

else

{
pSub->SetErr(m_sSubName +

": Too many lines in SYSTEM field" ,

HISC_BAD_LOW_FORMAT);

A. SD Software Program

183

184

185

186

187

throw -1;

}
break;

case 1: I I [PLANT]

sDESFile = GetDESFileFromSubFile(m_sSubFile,

pDES =new CDES(this, sDESFile, PLANT_DES);

if (pDES == NULL I I pDES->LoadDES() < 0)

307

sLine);

188

189

190 throw -1; //here LoadDES() will generate the

err msg.

191

191

192

193

194

195

DESs",

196

197

198

199

200

else

{
iNumofPlants++;

if (iNumofPlants > m_iNumofPlants)

{
pSub->SetErr(m_sSubName + ":Too many Plant

HISC_BAD_LOW_FORMAT);

throw -1;

}
m_pDESArr[iNumofPlants - 1] = pDES;

201 for (EVENTS::const_iterator ci =

pDES->m_DESEventsMap.begin(); ci != pDES->m_DESEventsMap.end(); ++ci)

202 {

203

204

205

206

207

208

209

210

sLine);

211

m_SubPlantEvents.insert(ci->second);

}

pDES = NULL;

}
break;

case 2: I I [SPEC]

sDESFile = GetDESFileFromSubFile(m_sSubFile,

pDES =new CDES(this, sDESFile, SPEC_DES);

308

212

213

err msg.

214

214

215

216

217

218

DESs",

219

220

221

222

pDES;

223

A. SD Software Program

if (pDES == NULL I I pDES->LoadDES() < 0)

throw -1; //here LoadDES() will generate the

else

{
iNumofSpecs++;

if (iNumofSpecs > m_iNumofSpecs)

{
pSub->SetErr(m_sSubName + ": Too many spec

HISC_BAD_LOW_FORMAT);

throw -1;

}
m_pDESArr[m_iNumofPlants + iNumofSpecs - 1] =

224 for (EVENTS::const_iterator ci =
pDES->m_DESEventsMap.begin(); ci != pDES->m_DESEventsMap.end(); ++ci)

225 {

226 m_SubSupervisorEvents.insert(ci->second);

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

}

}

pDES = NULL;

}
break;

default:

}

pSub->SetErr(m_sSubName + ": Unknown error.",

HISC_BAD_LOW_FORMAT);

throw -1;

break;

} //while

if (iNumofPlants < m_iNumofPlants)

{

A. SD Software Program

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268 }

269

}

}

pSub->SetErr(m_sSubName + ":Too few plant DESs",

HISC_BAD_LOW_FORMAT);
throw -1;

if (iNumofSpecs < m_iNumofSpecs)

{

}

pSub->SetErr(m_sSubName + ":Too few spec DESs",

HISC_BAD_LOW_FORMAT);
throw -1;

fin. close();

this->DESReorder();

catch (int iError)

{

}

if (pDES != NULL)

{

}

delete pDES;

pDES = NULL;

if (fin.is_open())

fin. close() ;

iRet = iError;

return iRet;

270 /*
271 * DESCR: Initialize BDD data memebers

272 * PARA: None

273 * RETURN: 0: sucess -1: fail

274 * ACCESS: private

275 *I
276 int CLowSub::MakeBdd()

309

310

277 {
278

279

280

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

296

297

298

299

300

301

302

303

304

305

306

307

A. SD Software Program

canst char * DEBUG = "CLowSub::MakeBdd():";

try

{
//Initialize the bdd node table and cache size.

long long lNumofStates = 1;

for (inti= 0; i < this->GetNumofDES(); i++)

{

}

lNumofStates *= m_pDESArr[i]->GetNumofStates();

if (lNumofStates >= MAX_INT)

break;

if (lNumofStates <= 10000)

bdd_init(1000, 100);

else if (lNumofStates <= 1000000)

bdd_init(10000, 1000);

else if (lNumofStates <= 10000000)

bdd_init(100000, 10000);

else

{

}

bdd_init(2000000, 1000000);

bdd_setmaxincrease(1000000);

giNumofBddNodes = 0;

bdd_gbc_hook(my_bdd_gbchandler);

//define domain variables

int *PiDomainArr =new int[2];

for (inti= 0; i < 2 * this->GetNumofDES(); i += 2)

{
308 VERBOSE(!) { PRINT_DEBUG « "Name of DES " « i « "· " «
m_pDESArr[i/2]->GetDESName() << endl; }

A. SD Software Program

309

310

311

312

piDomainArr[O] = m_pDESArr[i/2]->GetNumofStates();

piDomainArr[1] = piDomainArr[O];

313 VERBOSE(1) { PRINT_DEBUG « 11 piDomainArr[O] (#of states): 11

piDomainArr[O] « endl; }

314 VERBOSE(1) { PRINT_DEBUG « 11 piDomainArr[l] (#of states): 11

piDomainArr [1] « endl; }

315

316 fdd_extdomain(piDomainArr, 2);

317

318

319

320

321

variables)

322

323

324

325

326

327

328

329

330

}
delete[] piDomainArr;

piDomainArr = NULL;

//compute the number of bdd variables (only for normal

m_iNumofBddNormVar = 0;

for (inti= 0; i < 2 * (this->GetNumofDES()); i = i + 2)

{
m_iNumofBddNormVar += fdd_varnum(i);

}

//compute initial state predicate

for (inti= 0; i < this->GetNumofDES(); i++)

{
331 m_bdd!nit &= fdd_ithvar(i * 2,

m_pDESArr[i]->GetinitState());

332 }

333

334 //set the first level block

335 int iNumofBddVar = 0;

336 int iVarNum = 0;

337 bdd bddBlock = bddtrue;

338 for (inti= 0; i < 2 * (this->GetNumofDES()); i += 2)

339 {

311

<<

<<

312

340

341

342

343

344

345

iVarNum = fdd_varnum(i);

bddBlock = bddtrue;

A. SD Software Program

for (int j = 0; j < 2 * iVarNum; j++)

{
bddBlock &= bdd_ithvar(iNumofBddVar + j);

346 }

347 bdd_addvarblock(bddBlock, BDD_REORDER_FREE);

348 iNumofBddVar += 2 * iVarNum;

349 }

350

351 //compute marking states predicate

352 bdd bddTmp = bddfalse;

353 for (inti= 0; i < this->GetNumofDES(); i++)

354

355

356

357

358

359

j++)

360

361

362

363

364

365

366

367

368

369

370

371

372

373

{

}

bddTmp = bddfalse;

MARKINGLIST::const_iterator ci =
(m_pDESArr[i]->GetMarkingList()).begin();

for (int j = 0; j < m_pDESArr[i]->GetNumofMarkingStates();

{
bddTmp I= fdd_ithvar(i * 2, *ci);

++ci;

}
m_bddMarking &= bddTmp;

//Compute transitions predicate

if (m_usiMaxCon != OxFFFF)

{
m_pbdd_ConTrans =new bdd[(m_usiMaxCon + 1) I 2];

m_pbdd_ConVar = new bdd[(m_usiMaxCon + 1) I 2];

m_pbdd_ConPlantTrans = new bdd[(m_usiMaxCon + 1) I 2];

m_pbdd_ConSupTrans = new bdd[(m_usiMaxCon + 1) I 2];

A. SD Software Program 313

374

375

376

377

378

379

380

381

382

383

384

385

386

387

iPair++)

388

389

390

391

392

393

iPair++)

394

395

396

397

398

399

400

401

402

403

404

405

406

}

m_pbdd_ConVarPrim =

new bdd[(m_usiMaxCon + 1) I 2];

m_pbdd_ConPhysicVar =

new bdd[(m_usiMaxCon + 1) I 2];

m_pbdd_ConSupVar =

new bdd[(m_usiMaxCon + 1) I 2];

m_pbdd_ConPhysicVarPrim =

new bdd[(m_usiMaxCon + 1) I 2];

m_pbdd_ConSupVarPrim =

new bdd[(m_usiMaxCon + 1) I 2];

m_pPair_Con =new bddPair *[(m_usiMaxCon + 1) I 2];

for (int iPair = 0; iPair < (m_usiMaxCon + 1) I 2;

{
m_pPair_Con[iPair] = NULL;

}

m_pPair_ConPrim =new bddPair *[(m_usiMaxCon + 1) I 2];

for (int iPair = 0; iPair < (m_usiMaxCon + 1) I 2;

{
m_pPair_ConPrim[iPair] = NULL;

}

if (m_usiMaxUnCon != 0)

{
m_pbdd_UnConTrans =new bdd[m_usiMaxUnConl2];

m_pbdd_UnConVar =new bdd[m_usiMaxUnConl2];

m_pbdd_UnConPlantTrans =

new bdd[m_usiMaxUnConl2];

m_pbdd_UnConSupTrans =

new bdd[m_usiMaxUnConl2];

314

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

it.

433

434

435

436

bddfalse;

437

438

439

}

A. SD Software Program

m_pbdd_UnConVarPrim =new bdd[m_usiMaxUnCon/2];

m_pbdd_UnConPlantVar =new bdd[m_usiMaxUnCon/2];

m_pbdd_UnConSupVar =new bdd[m_usiMaxUnCon/2];

m_pbdd_UnConPlantVarPrim =

new bdd[m_usiMaxUnCon/2];

m_pbdd_UnConSupVarPrim

new bdd[m_usiMaxUnCon/2];

m_pPair_UnCon =new bddPair *[m_usiMaxUnCon/2];

for (int iPair = 0; iPair < m_usiMaxUnCon/2; iPair++)

{
m_pPair_UnCon[iPair] = NULL;

}
m_pPair_UnConPrim =new bddPair *[m_usiMaxUnCon/2];

for (int iPair = 0; iPair < m_usiMaxUnCon/2; iPair++)

{
m_pPair_UnConPrim[iPair] = NULL;

}

map<int, bdd> bddTmpTransMap; 1/<event_index, transitions>

for (inti= 0; i < this->GetNumofDES(); i++)

{
//before compute transition predicate for each DES, clear

bddTmpTransMap.clear();

for (int j = 0; j < m_pDESArr[i]->GetNumofEvents(); j++)

{
bddTmpTransMap[(m_pDESArr[i]->GetEventsArr())[j]] =

}

//compute transition predicate for each DES

A. SD Software Program 315

440

441

442

443

j)) . begin 0 ;
444
++ci)

445

446

447

448

449

450

451

452

for (int j = 0; j < m_pDESArr[i]->GetNumofStates(); j++)

{

}

TRANS::const_iterator ci =
(*(m_pDESArr[i]->GetTrans() +

for(; ci != (*(m_pDESArr[i]->GetTrans() + j)).end();

{

}

bddTmpTransMap[ci->first] I= fdd_ithvar(i * 2, j) &
fdd_ithvar(i * 2 + 1, ci->second);

//combine the current DES transition predicate to

//subsystem transition predicate

453 map<int, bdd>::const_iterator ciTmp =
bddTmpTransMap.begin();

454 for (; ciTmp != bddTmpTransMap.end(); ++ciTmp)

455

456

from 2

457

458

459

460

461

462

463

464

465

466

467

468

469
1);

{
if (ciTmp->first % 2 == 0) //uncontrollable, start

{
int iindex = (ciTmp->first & OxOOOOFFFF) I 2 - 1;

if (m_pbdd_UnConVar[iindex] == bddfalse)

{

}

m_pbdd_UnConTrans[iindex] = bddtrue;

m_pbdd_UnConVar[iindex] = bddtrue;

m_pbdd_UnConVarPrim[iindex] = bddtrue;

m_pbdd_UnConTrans[iindex] &= ciTmp->second;

m_pbdd_UnConVar[iindex] &= fdd_ithset(i * 2);

m_pbdd_UnConVarPrim[iindex] &= fdd_ithset(i * 2 +

316

470

471

472

473

474

475

476

477

478

479

480

481

ciTmp->second;

482

2);

483

fdd_ithset(i * 2 + 1);

A. SD Software Program

//compute uncontrollable plant vars and varprimes

if (m_pDESArr[i]->GetDESType() == PLANT_DES)

{
if (m_pbdd_UnConPlantVar[iindex] == bddfalse)

{

}

m_pbdd_UnConPlantTrans[iindex] = bddtrue;

m_pbdd_UnConPlantVar[iindex] = bddtrue;

m_pbdd_UnConPlantVarPrim[iindex] = bddtrue;

m_pbdd_UnConPlantTrans[iindex] &=

m_pbdd_UnConPlantVar[iindex] &= fdd_ithset(i *

m_pbdd_UnConPlantVarPrim[iindex] &=

484 }

485 else if (m_pDESArr[i]->GetDESType() == SPEC_DES)

486

487

488

489

490

491

492

493

494

495

2);

496

* 2 +
497

498

499

1);

{

}
}

if (m_pbdd_UnConSupVar[iindex] == bddfalse)

{

}

m_pbdd_UnConSupTrans[iindex] = bddtrue;

m_pbdd_UnConSupVar[iindex] = bddtrue;

m_pbdd_UnConSupVarPrim[iindex] = bddtrue;

m_pbdd_UnConSupTrans[iindex] &= ciTmp->second;

m_pbdd_UnConSupVar[iindex] &= fdd_ithset(i *

m_pbdd_UnConSupVarPrim[iindex] &= fdd_ithset(i

else //controllable

A. SD Software Program 317

500 {
501

502

503

504

505

506

507

508

509

510

511

512

513

varprimes

514

515

516

517

518

519

520

521

522

523

524

2);

525

* 2 + 1);

526

527

528

529

530

531

int i!ndex = ((ciTmp->first & OxOOOOFFFF) - 1)/ 2;

if (m_pbdd_ConVar[iindex] == bddfalse)

{

}

m_pbdd_ConTrans[iindex] = bddtrue;

m_pbdd_ConVar[iindex] = bddtrue;

m_pbdd_ConVarPrim[iindex] = bddtrue;

m_pbdd_ConTrans[iindex] &= ciTmp->second;

m_pbdd_ConVar[iindex] &= fdd_ithset(i * 2);

m_pbdd_ConVarPrim[iindex] &= fdd_ithset(i * 2 + 1);

//compute controllable physical plant vars and

if (m_pDESArr[i]->GetDESType() == PLANT_DES)

{

}

if (m_pbdd_ConPhysicVar[iindex] == bddfalse)

{

}

m_pbdd_ConPlantTrans[iindex] = bddtrue;

m_pbdd_ConPhysicVar[iindex] = bddtrue;

m_pbdd_ConPhysicVarPrim[iindex]= bddtrue;

m_pbdd_ConPlantTrans[iindex] &= ciTmp->second;

m_pbdd_ConPhysicVar[iindex] &= fdd_ithset(i *

m_pbdd_ConPhysicVarPrim[iindex] &= fdd_ithset(i

else if (m_pDESArr[i]->GetDESType() == SPEC_DES)

{
if (m_pbdd_ConSupVar[iindex] == bddfalse)

{
m_pbdd_ConSupTrans[iindex] = bddtrue;

318

532

533

534

535

536

537

538

2 + 1);

539

540

541

542

543

544

if the event

545

(plants).

546

547

548

549

}
}

}
}

}

A. SD Software Program

m_pbdd_ConSupVar[ilndex] = bddtrue;

m_pbdd_ConSupVarPrim[ilndex]= bddtrue;

m_pbdd_ConSupTrans[ilndex] &= ciTmp->second;

m_pbdd_ConSupVar[ilndex] &= fdd_ithset(i * 2);

m_pbdd_ConSupVarPrim[ilndex] &= fdd_ithset(i *

II Add self loops of any event to plant (sup) trans predicate

II does not exist in the plants (sups), but exists in the sups

int sig = 0;

for (int ilndex = 0; ilndex < (m_usiMaxCon + 1) I 2; ilndex++)

{
sig = (ilndex * 2) + 1;

550 if ((m_SubSupervisorEvents.find(sig) -

m_SubSupervisorEvents.end())

551 && (m_SubPlantEvents.find(sig) !=

m_SubPlantEvents.end()))

552 {

553 m_pbdd_ConSupTrans[ilndex] = bddtrue;

} 554

555 else if ((m_SubSupervisorEvents.find(sig) !=

m_SubSupervisorEvents.end())

556 && (m_SubPlantEvents.find(sig) --

m_SubPlantEvents.end()))

557 {

558

559 }

m_pbdd_ConPlantTrans[ilndex] = bddtrue;

A. SD Software Program

560

561

562

563

564

565

}

for (int i!ndex = 0; i!ndex < (m_usiMaxUnCon I 2); i!ndex++)

{
sig = (i!ndex + 1) * 2;

if ((m_SubSupervisorEvents.find(sig) --

m_SubSupervisorEvents.end())

566 && (m_SubPlantEvents.find(sig) !=

m_SubPlantEvents.end()))

567 {

568

569

570

m_pbdd_UnConSupTrans[iindex] = bddtrue;

}
else if ((m_SubSupervisorEvents.find(sig) !=

m_SubSupervisorEvents.end())

571 && (m_SubPlantEvents.find(sig) --

m_SubPlantEvents.end()))

{
m_pbdd_UnConPlantTrans[iindex] = bddtrue;

}
}

I /compute m_pPair_UnCon, m_pPair_Con

for (int j = 0; j < m_usiMaxUnCon; j += 2)

{

}

m_pPair_UnCon[jl2] = bdd_newpair();

SetBddPairs(m_pPair_UnCon[jl2], m_pbdd_UnConVar[jl2],

m_pbdd_UnConVarPrim[jl2]);

m_pPair_UnConPrim[jl2] = bdd_newpair();

SetBddPairs(m_pPair_UnConPrim[jl2],

m_pbdd_UnConVarPrim[jl2],

m_pbdd_UnConVar[jl2]);

319

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

for (int j = 1; j < (unsigned short)(m_usiMaxCon + 1); j += 2)

{
m_pPair_Con[(j - 1) I 2] = bdd_newpair();

320

591

592

593

594

595

596

597

598

599 }
}

A. SD Software Program

SetBddPairs(m_pPair_Con[(j - 1) I 2],

m_pbdd_ConVar[(j- 1) I 2],

m_pbdd_ConVarPrim[(j - 1) I 2]);

m_pPair_ConPrim[(j - 1) I 2] = bdd_newpair();

SetBddPairs(m_pPair_ConPrim[(j - 1) I 2],

m_pbdd_ConVarPrim[(j- 1) I 2],

m_pbdd_ConVar[(j - 1) I 2]);

600 catch(...)

601 {
602 string sErr;

603

604

sErr = "Error happens when initializing low level ";

sErr += " BDD!";

605

606

pSub->SetErr(sErr, HISC_SYSTEM_INITBDD);

return -1;

607 }
608 return 0;

609 }
610

611

LowSubl.cpp

001 * DESCR:
checking)

002 * PARA:

003 * RETURN:

004 * ACCESS:

004 4

Save DES list of low-levels in memory to a file (for

fout: output file stream

0: sucess -1: fail

public

005 int CLowSub::PrintSub(ofstream& fout)

006 {

007 try

007 {

008 fout « "#Sub system: " « m_sSubName « endl;

A. SD Software Program

009 fout << endl;

010

011 fout « "[SYSTEM]" « endl;

012 fout << m_iNumofPlants << endl;

013 fout << m_iNumofSpecs << endl;

014 fout << endl;

015

016 fout « "[PLANT]" « endl;

017 for (int i = 1; i < m_iNumofPlants; i++)

018 {

019 for (int j = 0; j < this->GetNumofDES(); j++)

020 {

021 if (m_piDESOrderArr[j] == i)

022 {

023 fout << m_pDESArr[j]->GetDESName() << endl;

024 break;

025

026

027 }

028

}
}

029 fout « "[SPEC]" « endl;

030 for (int i = m_iNumofPlants;

031 i < this->GetNumofDES(); i++)

032 {

033 for (int j = 0; j < this->GetNumofDES(); j++)

034 {

035 if (m_piDESOrderArr[j] == i)

036 {

037 fout << m_pDESArr[j]->GetDESName() << endl;

038 break;

039 }
040 }
041 }

042

043 fout <<

321

322 A. SD Software Program

"##"
« endl;

044 }
045 catch(...)

046 {
047 return -1;

048 }
049 return 0;

050 }

051

052 /**
* DESCR: Save all the DES in low-levels to a text tile tor checking

053 * PARA:

054 * RETURN:

055 * ACCESS:

056 */

tout: output tile stream

0: sucess -1: tail

public

057 int CLowSub::PrintSubAll(ofstream & fout)

058 {
059

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074 }

try

{

}

if (PrintSub(fout) < 0)

throw -1;

for (inti= 0; i < this->GetNumofDES(); i++)

{

}

if (m_pDESArr[i]->PrintDES(fout) < 0)

throw -1;

catch(...)

{
return -1;

}
return 0;

A. SD Software Program

075

076 /*
077 * DESCR: Generate Bad state info during vertication

323

078 * Note: showtrace is not implemented, currently it is used tor

showing

079 *
080 * PARA:

081 *

a blocking is a deadlock or livelock (very slow).

bddBad: BDD tor the set of bad states

viErrCode: error code (see errmsg.h)

082 * showtrace: show a trace from the initial state to a bad

state or not

083 * (not implemented)

084 * vsExtrainfo: Extra errmsg.

085 * RETURN: None

086 * ACCESS: private

087 */
088 void CLovSub::BadStateinfo(const bdd& bddBad, const int viErrCode,

089

&vsExtrainfo)

const HISC_TRACETYPE shovtrace, const string

090 {
091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

const char * DEBUG = 11 CLowSub::Bad.Statelnfo{): 11
;

if (bddfalse == bddBad)

{
VERBOSE(!) { PRINT_DEBUG « 11 bddBad = bddfalse 11 « endl; }

return;

}

bdd bddBadTemp = bddBad;

string sErr = GetSubName();

if (viErrCode == HISC_VERI_LOW_UNCON)

sErr += 11
: Untimed controllable checking failed at following state(s): 11

;

else if (viErrCode == HISC_VERI_LOW_CON)

sErr += 11
: Proper timed behavior checking failed at following state(s): 11

;

else if (viErrCode == HISC_VERI_LOW_BLOCKING)

sErr += 11
: Blocking state: 11

;

324 A. SD Software Program

107 else if (viErrCode == HISC_VERI_LOW_P4FAILED)

108 sErr += ": Interface consistent conditions Point 4 checking failed state:";

109 else if (viErrCode == HISC_VERI_LOW_P5FAILED)

110 sErr += ":Interface consistent conditions Point 5 checking failed state:";

111 else if (viErrCode == HISC_VERI_LOW_P6FAILED)

112 sErr += ": Interface consistent conditions Point 6 checking failed state:" ;

113 else if (viErrCode == HISC_VERI_LOW_ALF)

114 sErr += ": ALF checking failed state:" ;

115 else if (viErrCode == HISC_VERI_LOW_PTB)

116 sErr += ":Not proper timed behavior at state:";

117 else if (viErrCode == HISC_VERI_LOW_SD_II)

118 sErr += ": Failed SD Controllability condition II at state:" ;

119 else if (viErrCode == HISC_VERI_LOW_SD_III_1)

120 sErr += ":Failed SD Controllability condition III.l at state:";

121 else if (viErrCode == HISC_VERI_LOW_SD_III_2)

122 sErr += ": Failed SD Controllability condition III.2 at state:" ;

123 else if (viErrCode == HISC_VERI_LOW_SD_IV)

124 sErr += ": Failed SD Controllability condition IV at state:";

125 else if (viErrCode == HISC_VERI_LOW_ZERO_LB)

126 sErr += ": There is some event has a lower bound less than 1 tick:";

127

128 sErr += "\n";

129

130 int count = 0;

131 while (bddfalse != bddBadTemp && count < 10)

132 {
133 bdd bddstate = GetOneState(bddBadTemp);

134 bddBadTemp -= bddstate;

135

136

137

138

139

140

141

int *piBad = fdd_scanallvar(bddstate);

if (NULL == piBad) break;

//for blocking state, try to find the deadlock state

//if there is no deadlock state, only show one of the live lock

A. SD Software Program

states

142 if (showtrace == HISC_SHOW_TRACE)

143 {

144 if (viErrCode == HISC_VERI_LOW_BLOCKING)

145 {

146 bdd bddBlock = bddBad;

147 bdd bddNext = bddtrue;

148 bdd bddTemp = bddtrue;

149 do

149 {

150

151

152

153

154

155

156

bddfalse;

157

158

159

160

bddTemp = bddtrue;

for (inti= 0; i < this->GetNumofDES(); i++)

bddTemp &= fdd_ithvar(i * 2, piBad[i * 2]);

bddNext = bddfalse;

for (unsigned short usi = 2;

{

usi <= m_usiMaxUnCon && bddNext ==

usi += 2)

bddNext I=

bdd_replace(

325

161

162

163

bdd_relprod(

m_pbdd_UnConTrans[(usi- 2) I 2],

bddTemp,

164

165

166

167

168

169

170

171
172

173

bddBad;

}

m_pbdd_UnConVar[(usi- 2) I 2]),

m_pPair_UnConPrim[(usi- 2) I 2]) &

for (unsigned short usi = 1;

{

usi < (unsigned short) (m_usiMaxCon + 1) &&

bddNext == bddfalse; usi += 2)

bddNext I=

bdd_replace(

326

174

175

176

177

178

179

180

181

182

state

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204 }

205

}

A. SD Software Program

}

if

{

}

bdd_relprod(

m_pbdd_ConTrans[(usi

bddTemp,

m_pbdd_ConVar[(usi -

m_pPair_ConPrim[(usi

bddBad;

(bddNext == bddfalse)

sErr += 11 [DeadLock] 11
;

break;

//this is

else //not a deadlock state

{
bddBlock = bddBlock - bddTemp;

free(piBad);

piBad = NULL;

- 1) I 2],

1) I 2]),

- 1) I 2])

a deadlock

piBad = fdd_scanallvar(bddBlock);

}

count++;

} while (piBad !=NULL);

if (piBad == NULL) //live lock

{
sErr += 11 [LiveLock] 11

;

piBad = fdd_scanallvar(bddBad);

}

&

206 sErr += 11 \ti 11
;

207

A. SD Software Program 327

208 for (inti= 0; i < this->GetNumofDES(); i++)

209 {

210 sErr += m_pDESArr[m_piDESPosArr[i]]->GetDESName() + ":" +

211 m_pDESArr[m_piDESPosArr[i]]->GetStateName(

212 piBad[m_piDESPosArr[i] *

2]);

213 if (i < this->GetNumofDES() -1)

214

215

216

sErr += ", ";

}

217 sErr += "l.\n";

218

219 free(piBad);

220 piBad = NULL;

221

222 count++;

223 }

224

225 if (bddfalse != bddBadTemp)

226 {

227 sErr += "\t ... ";
228 }

229

230 sErr += "\n" + vsExtrainfo;

231

232 pSub->SetErr(sErr, viErrCode);

233

234 return;

235 }

236

237 /**
* DESCR: Search event name from this low-level local event index.

238 * PARA: k: R_EVENTIA_EVENTIH_EVENTIL_EVENT

239 * usiLocalindex: this low-level local event index.

240 * RETURN: event name

328

241 * ACCESS: public

242 */

A. SD Software Program

243 string CLowSub::SearchEventName(unsigned short usiLocalindex)

244 {

245

246

247

248 }

249

250

int iEventindex = 0;

iEventindex = pSub->GenEventindex(usiLocal!ndex);

return (pSub->GetinvAllEventsMap())[iEventindex];

LowSub3.cpp

001 int CLowSub::VeriSub(const HISC_TRACETYPE showtrace, HISC_SUPERINFO &
super info)

002 {

003 int iRet = 0;

004 int iErr = 0;

005 //Initialize the BDD data memebers

006 CSub::InitBddFields();

007 InitBddFields();

008 bdd bddReach = bddfalse;

009 string sErr;

010

011 #ifdef DEBUG_TIME

012 timeval tv1, tv2;

013 #endif

014

015 try

015 {

016 //Make transition bdds

017 if (MakeBdd() < 0)

018 throw -1;

019

020 bdd bddConBad = bddfalse;

A. SD Software Program 329

021 bdd bddBalemiBad = bddfalse;

022 bdd bddCoreach = bddfalse;

023 bdd bddNBBad = bddfalse;

024 bdd bddALFBad = bddfalse;

025 bdd bddPTBBad = bddfalse;

026 bdd bddSDBad = bddfalse;

027

028 //compute bddReach

029 #ifdef DEBUG_TIME

030 cout « endl « "Computing reachable subpredicate ... " « endl;

031 gettimeofday(&tvl, NULL);

032 #endif

033

034 bddReach = r(bddtrue, iErr);

035 if (iErr < 0)

036 {

037 throw -1;

038 }

039

040 #ifdef DEBUG_TIME

041 gettimeofday(&tv2, NULL);

042 cout << "R: " << (tv2.tv_sec - tvl.tv_sec) << "seconds." << endl;

043 cout << "bddReach states:"

044 << bdd_satcount(bddReach)/pow((double)2,

double(m_iNumofBddNormVar))

045 << endl;

046 cout « "bddReach Nodes:" « bdd_nodecount(bddReach) « endl «
endl;

047 #endif

048

049 m_bddMarking &= bddReach;

050

051

052 #ifdef DEBUG_TIME

053 cout « "Verifying controllablity ... " << endl;

330 A. SD Software Program

054 gettimeofday(&tv1, NULL);

055 #endif

056

057 bddConBad = bddfalse;

058 if (VeriConBad(bddConBad, bddReach, sErr) < 0)

059 throw -1;

060

061 #ifdef DEBUG_TIME

062 gettimeofday(&tv2, NULL);

063 cout << "VERI_CON:" << (tv2.tv_sec - tvl.tv_sec) << "seconds." <<

endl;

064 #endif

065

066 //check if any reachable states belong to bad states

067 if (bddConBad != bddfalse)

068 {

069 BadStateinfo(bddConBad, HISC_VERI_LOW_UNCON, showtrace, sErr);

070 throw -2;

071 }

072

073 #ifdef DEBUG_TIME

074 cout « "Verifying Nonblocking ... " « endl;

075 gettimeofday(&tv1, NULL);

076 #endif

077

078 bddCoreach = cr(m_bddMarking, bddReach, iErr);

079 if (iErr != 0)

080 throw -1;

081

082 #ifdef DEBUG_TIME

083 gettimeofday(&tv2, NULL);

084 cout « "VERI_NONBLOCKING: " « (tv2. tv_sec - tv1. tv_sec) «
"seconds." << endl;

085 #endif

086

A. SD Software Program

087 bddNBBad = bddReach & !bddCoreach;

088 if (bddfalse != bddNBBad)

089 {

090 BadStateinfo(bddNBBad, HISC_VERI_LOW_BLOCKING, showtrace);

091 throw -4;

092 }

093

094 #ifdef DEBUG_TIME

095 cout « "Checking proper timed behavior ... " << endl;

096 gettimeofday(&tv1, NULL);

097 #endif

098

099 bddBalemiBad = bddfalse;

100 if (VeriBalemiBad(bddBalemiBad, bddReach, sErr) < 0)

101 throw -1;

102

103 #ifdef DEBUG_TIME

104 gettimeofday(&tv2, NULL);

105 cout « "VERI_BALEMI: " « (tv2.tv_sec - tv1.tv_sec) «
"seconds." << endl;

106 #endif

107

108

109

110

111

sErr);

//check if any reachable states belong to Balemi bad states

if (bddBalemiBad != bddfalse)

{
BadStateinfo(bddBalemiBad, HISC_VERI_LOW_CON, showtrace,

112 throw -2;

113 }

114

115 // Checking if the system is ALF

116 #ifdef DEBUG_TIME

117 cout « "Verifying Activity Loop Free ... " « endl;

118 gettimeofday(&tv1, NULL);

119 #endif

331

332 A. SD Software Program

bddALFBad = bddfalse;

120

121

122

123

124

125

126

127

if (VeriALF(bddALFBad, bddReach, sErr) < 0)

throw -1;

« endl;

#ifdef DEBUG_TIME

gettimeofday(&tv2, NULL);

cout << "VERI_ALF:" << (tv2.tv_sec - tvl.tv_sec) << "seconds."

128 #endif

129

130 if (bddALFBad != bddfalse)

131 {

132 BadStateinfo(bddALFBad, HISC_VERI_LOW_ALF, showtrace,

sErr);

133 throw -2;

134 }

135

136 // Checking if the system has proper timed behavior

137 #ifdef DEBUG_TIME

138 cout « "Verifying Proper Timed Behavior. .. " « endl;

139 gettimeofday(&tv1, NULL);

140 #endif

141

142 bddPTBBad = bddfalse;

143 if (VeriProperTimedBehavior(bddPTBBad, bddReach, sErr) < 0)

144 throw -1;

145

146

147

148

<< endl;

#ifdef DEBUG_TIME

gettimeofday(&tv2, NULL);

cout << "VERI_PTB:" << (tv2.tv_sec - tvl.tv_sec) << "seconds."

149 #endif

150

151 if (bddPTBBad != bddfalse)

A. SD Software Program

{
BadStateinfo(bddPTBBad, HISC_VERI_LOW_PTB, showtrace,

throw -2;

}

II Checking SD Controllability

#ifdef DEBUG_TIME

cout « "Checking SD Controllability" « endl;

gettimeofday(&tv1, NULL);

#end if

int ret= CheckSDControllability(bddSDBad, bddReach, sErr);

if (-1 == ret)

throw -1;

#ifdef DEBUG_TIME

gettimeofday(&tv2, NULL);

333

152

153

sErr);

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169 cout << "VERI_SD: " << (tv2. tv_sec - tv1. tv_sec) << "seconds."

« endl;

170

171

172

173

174

175

176

177

#end if

if (bddSDBad != bddfalse)

{
BadStateinfo(bddSDBad, ret, showtrace, sErr);

throw -2;

}

178 //final synchronous product;

179 m_bddSuper = bddReach;

180

181 //save supervisor

182 superinfo.statesize = bdd_satcount(m_bddSuper)/pow((double)2,

double(m_iNumofBddNormVar));

183 superinfo.nodesize = bdd_nodecount(m_bddSuper);

334 A. SD Software Program

184 }

185 catch (int iResult)

186 {

187 if (iResult < -1)

188 {

189 superinfo.statesize = bdd_satcount(bddReach)/pow((double)2,

double(m_iNumofBddNormVar));

190 superinfo.nodesize = bdd_nodecount(bddReach);

191 }
192

193 iRet = -1;

194 }
195 ClearBddFields();

196 CSub::ClearBddFields();

197 bdd_done();

198

199 return iRet;

200 }
201

202 /**
* DESCR: Does part of the sythesis work, i.e. controllable, p4,

nonblocking

203 * PARA: computemethod: first compute reachable states or not (See

BddHisc.h)

204 * (input)

205 * bddReach: All the current reachable legal states

206 * bddBad: All the current bad states

207 * RETURN: 0: sucess <0: fail

208 * ACCESS: private

209 */
210 int CLowSub::SynPartSuper(const HISC_COMPUTEMETHOD computemethod,

211 bdd & bddReach, bdd & bddBad)

212 {

213 bool bFirstLoop = true;

214 bdd bddK = bddtrue;

A. SD Software Program

215 int iErr = 0;

216

217 #ifdef DEBUG_TIME

218 int iCount = 0;

219 timeval tv1, tv2;

220 #endif

221

222 try

222 {

223 if (computemethod == HISC_ONREACHABLE)

224 {

225 //compute controllable, p4, nonblocking fixpoint

226 do

226 {

227 bddK = bddBad;

228

229

230

231

//Computing [bddBad]

#ifdef DEBUG_TIME

cout << endl << 11------------internal_loops:" << ++iCount <<
"---------------" < < endl ;

232

endl;

233

234

235

cout « "Computing supremal controllable & P4 subpredicate ... " «

gettimeofday(&tv1, NULL);

#end if

236 if (supcp(bddBad) < 0)

237 throv -1;

238 bddBad &= bddReach;

239

240 #ifdef DEBUG_TIME

241 gettimeofday(&tv2, NULL);

335

242 cout << "supcp:" << (tv2.tv_sec - tv1.tv_sec) << "seconds." <<

endl;

243

244

cout << "bddBad states:"

<< bdd_satcount(bddBad)/pov((double)2,

336 A. SD Software Program

double(m_iNumofBddNormVar))

245 << endl;

246 cout « "bddBad Nodes:" « bdd_nodecount (bddBad) « endl;

247 #endif

248

249

250

251

252

253

254

255

256

257

if (bddK == bddBad && bFirstLoop == false)

break;

//Computing CR(not(bddBad))

bdd bddTemp = bddReach - bddBad;

#ifdef DEBUG_TIME

cout << endl << "bddGood states:"

<< bdd_satcount(bddTemp)/pow((double)2,

double(m_iNumofBddNormVar))

258 << endl;

259 cout « "bddGood Nodes:" « bdd_nodecount (bddTemp) « endl;

260

261

262

263

264

265

266

267

268

269

270

271

272

endl;

273

274

cout << endl << "Computing coreachable subpredicate ... " << endl;

gettimeofday(&tv1, NULL);

#end if

bddBad = bdd_not(cr(m_bddMarking, bddTemp, iErr));

if (iErr != 0)

throw -1;

bddBad &= bddReach;

bFirstLoop = false;

#ifdef DEBUG_TIME

gettimeofday(&tv2, NULL);

cout << "cr: " << (tv2. tv_sec - tvl. tv_sec) << "seconds." <<

cout << "bddBad states:"

<< bdd_satcount(bddBad)/pow((double)2,

double(m_iNumofBddNormVar))

275 << endl;

A. SD Software Program

276

277

278

279

280

280

281

282

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307 }
308

}

}

cout « "bddBad Nodes:" << bdd_nodecount(bddBad) « endl;

#end if

} while (bddBad != bddK);

else

{

}

//compute controllable, p4, nonblocking fixpoint

do

{
bddK = bddBad;

//Computing [bddBad]

if (supcp(bddBad) < 0)

throw -1;

if (bddK == bddBad && bFirstLoop == false)

break;

//Computing CR(not(bddBad))

bddBad = bdd_not(cr(m_bddMarking. bdd_not(bddBad), iErr));

if (iErr != 0)

throw -1;

bFirstLoop = false;

} while (bddBad != bddK);

catch (int)

{
return -1;

}
return 0;

337

338 A. SD Software Program

309 /**
* DESCR: Compute tbe initial bad states(Bad_{L_j})(uncontorlalble event

part)

310

311
* PARA:

* RETURN:

bddConBad: BDD containing all tbe bad states (output)

0: sucess -1: fail

312 * ACCESS: private

313 *I
314 int CLowSub::GenConBad(bdd &bddConBad)

315 {

316 try

316 {

317 bdd bddPlantTrans = bddfalse;

318

319

320

321

for (int i = 0; i < m_usiMaxUnCon/ 2; i++)

{

uncontrollable event

322

323

324

//Compute illegal state predicate for eacb

bddConBad I= bdd_exist(m_pbdd_UnConPlantTrans[i],

m_pbdd_UnConPlantVarPrim[i]) &

bdd_not(bdd_exist(m_pbdd_UnConSupTrans[i],

325

bdd_exist(m_pbdd_UnConVarPrim[i],

326 m_pbdd_UnConPlantVarPrim[i])));

327 }

328 }

329 catch(...)

330 {

331 string sErr = this->GetSubName();

332 sErr += 11
: Error during generating controllable bad states. 11

;

333 pSub->SetErr(sErr, HISC_LOWERR_GENCONBAD);

334 return -1;

335 }

336 return 0;

337 }

338

A. SD Software Program 339

339 /**
* DESCR:

340 *
341 * PARA:

342 *
343 *
344 *

Test if there are any bad states in the reachable states

(Uncontorllable event part of Bad_{L_j})

bddConBad: BDD containing tested bad states(output).

Initially, bddBad should be bddfalse.

bddReach: BDD containing all reachable states

in this low-level(input)

345 * vsErr: returned errmsg(output)

346 * RETURN: 0: sucess -1: fail

347 * ACCESS: private

348 */
349 int CLowSub::VeriConBad(bdd &bddConBad, const bdd &bddReach, string &

vsErr)

350 {

351 try

351 {

352 int iErr = 0;

353

354

355

356

for (int i = 0; i < m_usiMaxUnCon/ 2; i++)

{
//Compute illegal state predicate for each

uncontrollable event

357

358

359

360

361

362

363

364

365

366

367

368

369

bddConBad I= bdd_exist(m_pbdd_UnConPlantTrans[i],

m_pbdd_UnConPlantVarPrim[i]) &

bdd_not(bdd_exist(m_pbdd_UnConSupTrans[i],

bdd_exist(m_pbdd_UnConVarPrim[i],

m_pbdd_UnConPlantVarPrim[i])));

bddConBad &= bddReach;

if (iErr < 0)

{
throw -1;

}

if (bddConBad != bddfalse)

340 A. SD Software Program

370 {
371

372

373

vsErr = "Causing uncontrollable event: ";

vsErr += SearchEventName((i + 1) * 2);

throw -1;

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389 }
390

391

392 /**

}
}

}
catch(int)

{
}
catch(...)

{

}

string sErr = this->GetSubName();

sErr += ": Error during generating controllable bad states." ;

pSub->SetErr(sErr, HISC_LOWERR_GENCONBAD);

return -1;

return 0;

* DESCR: compute PLPC(P)

393 * PARA: bddP : BDD tor predicate P. (input and output(=PHIC(P)))

394 * RETURN: 0: sucess -1: tail

395 * ACCESS: private

396 */

397 int CLowSub::supcp(bdd & bddP)

398 {

399 bdd bddK1 = bddfalse;

400 bdd bddK2 = bddfalse;

401 int iEvent = 0;

402 int iindex = 0;

403

A. SD Software Program 341

404 try

404 {

405 while (bddP != bddK1)

406 {

407 bddK1 = bddP;

408 for (inti= 0; i < this->GetNumofDES(); i++)

409 {

410 bddK2 = bddfalse;

411 while (bddP != bddK2)

412 {

413 bddK2 = bddP;

414 for (int j = 0; j < m_pDESArr[i]->GetNumofEvents();

j++)

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431 }

432 }

433 }

434 catch (...)

435 {

}

{

}

iEvent = (m_pDESArr[i]->GetEventsArr())[j];

i!ndex = iEvent & OxOOOOFFFF;

if (iEvent % 2 == 0)

{

}

i!ndex = (iindex - 2) I 2;

bddP I=

bdd_appex(m_pbdd_UnConTrans[iindex],

bdd_replace(bddK2,

m_pPair_UnCon[iindex]),

bddop_and,

m_pbdd_UnConVarPrim[iindex]);

436 string sErr = this->GetSubName();

342 A. SD Software Program

437

438

439

sErr += ": Error during computing PLPC(P).";

pSub->SetErr(sErr, HISC_LOWERR_SUPCP);

return -1;

440 }
441 return 0;

442 }
443

444 I**
* DESCR: compute CR(G_{L_j}, P', \Sigma', P)

445 * PARA: bddPStart: P' (input)

446 * bddP: P (input)

447 * viEventSub: \Sigma' (input) (0,1,2,3) <-> (H,R,A,L)

ALL_EVENT<->All

448 * iErr: returned Errcode (0: success <0: fail)(output)

449 * RETURN: BDD for CR(G_{L_j}, P', \Sigma', P)

450 * ACCESS: private

451 */
452 bdd CLowSub::cr(const bdd & bddPStart, const bdd & bddP, int & iErr)

453 {

454 try

454 {

455 bdd bddK = bddP & bddPStart;

456 bdd bddK1 = bddfalse;

457 bdd bddK2 = bddfalse;

458 bdd bddKNew = bddfalse;

459 int iEvent = 0;

460 int iindex = 0;

461

462 #ifdef DEBUG_TIME

463 int iLoopCount = 0;

464 time val tv!, tv2;

465 #endif

466

467 while (bddK ! = bddK1)

468 {

A. SD Software Program

469 #ifdef DEBUG_TIME

470 gettimeofday(&tv1, NULL);

471 #endif

472

473 bddK1 = bddK;

474

475 for (inti= 0; i < this->GetNumofDES(); i++)

476 {

477 bddK2 = bddfalse;

478 while (bddK != bddK2)

479 {

480 bddKNew = bddK - bddK2;

481 bddK2 = bddK;

482 for (int j = 0; j < m_pDESArr[i]->GetNumofEvents(); j++)

483 {

484 iEvent = (m_pDESArr[i]->GetEventsArr())[j];

485

486

487

488

489

490

491

492

493

494

495

495

496

497

498

499

500

501

502

iindex = iEvent & OxOOOOFFFF;

if (iEvent % 2 == 0)

{

}

iindex = (iindex - 2) I 2;

bddK I= bdd_appex(m_pbdd_UnConTrans[iindex],

bdd_replace(bddKNew, m_pPair_UnCon[iindex]),

bddop_and, m_pbdd_UnConVarPrim[iindex])

& bddP;

else

{

}

iindex = (iindex - 1) I 2;

bddK I= bdd_appex(m_pbdd_ConTrans[iindex],

bdd_replace(bddKNew, m_pPair_Con[iindex]),

bddop_and, m_pbdd_ConVarPrim[iindex])

& bddP;

343

344 A. SD Software Program

503 }

504 }

505 }

506 #ifdef DEBUG_TIME

507 gettimeofday(&tv2, NULL);

508 cout << "CR: Iteration_" << ++iLoopCount << " nodes: " <<
bdd_nodecount(bddK);

509 cout « "\t time: " « ((tv2. tv_sec - tv!. tv_sec) * 1000000.0 +

(tv2. tv_usec - tv!. tv_usec)) /1000000.0 « " s";

510 cout « "\t states: " « bdd_satcount(bddK)/pow((double)2,

double(m_iNumofBddNormVar)) << endl;

511 #endif

512 }

513 return bddK;

514 }

515 catch (...)

516 {

517 string sErr = this->GetSubName();

518 sErr += ":Error during computing coreachable.";

519 pSub->SetErr(sErr, HISC_LOWERR_COREACH);

520 iErr = -1;

521 return bddfalse;

522 }

523 }

524

525

526 /**
* DESCR: compute R(G_{L_j}, P)

527 * PARA: bddP: P (input)

528 *
529 * RETURN:

530 * ACCESS:

531 */

iErr: returned Errcode (0: success <0: tail)(output)

BDD for R(G_{L_j}, P)

private

532 bdd CLowSub::r(const bdd &bddP, int &iErr)

533 {

A. SD Software Program

534 try

534 {

535 bdd bddK = bddP & m_bddinit;

536 bdd bddK1 = bddfalse;

537 bdd bddK2 = bddfalse;

538 bdd bddKNew = bddfalse;

539 int iEvent = 0;

540 int iindex = 0;

541

542 #ifdef DEBUG_TIME

543 int iLoopCount = 0;

544 timeval tv1, tv2;

545 #endif

546

547 while (bddK != bddK1)

548 {

549 #ifdef DEBUG_TIME

550 gettimeofday(&tv1, NULL);

551 #endif

552

553 bddK1 = bddK;

554

555

556 for (inti= 0; i < this->GetNumofDES(); i++)

557 {

558 bddK2 = bddfalse;

559 while (bddK != bddK2)

560 {

561 bddKNew = bddK - bddK2;

562 bddK2 = bddK;

563

564

565

566

567

for (int j = 0; j < m_pDESArr[i]->GetNumofEvents(); j++)

{
iEvent = (m_pDESArr[i]->GetEventsArr())[j];

345

346

568

569

570

571

572

573

bddop_and,

574

575

576

577

577

578

579

580

581

582

583

584

585

586

587

588

589

}
}

}

A. SD Software Program

iindex = iEvent & OxOOOOFFFF;

if (iEvent % 2 == 0)

{

}

iindex = (iindex - 2) I 2;

bddK I= bdd_replace(

bdd_appex(m_pbdd_UnConTrans[iindex], bddKNew,

m_pbdd_UnConVar[iindex]),

m_pPair_UnConPrim[iindex]) & bddP;

else

{

}

iindex = (iindex - 1) I 2;

bddK I= bdd_replace(

bdd_appex(m_pbdd_ConTrans[iindex], bddKNew, bddop_and,

m_pbdd_ConVar[iindex]),

m_pPair_ConPrim[iindex]) & bddP;

#ifdef DEBUG_TIME

gettimeofday(&tv2, NULL);

cout << "R: Iteration_" << ++iLoopCount << " nodes: " <<
bdd_nodecount(bddK);

590 cout « "\t time:" « ((tv2.tv_sec - tv1.tv_sec) * 1000000.0 +

(tv2.tv_usec- tv1.tv_usec))l1000000.0 << "s";

591 cout « "\t states:" « bdd_satcount(bddK)Ipow((double)2,

double(m_iNumofBddNormVar)) << endl;

592 #endif

593 }
594 return bddK;

595 }
596 catch (...)
597 {

A. SD Software Program

598 string sErr = this->GetSubName();

599 sErr += ": Error during computing coreachable." ;

600 pSub->SetErr(sErr, HISC_LOWERR_REACH);

601 iErr = -1;

602 return bddfalse;

603 }

604 }

605

606

LowSub4.cpp

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

//If tick does not exist

if (iTick < 0)

{

}

string sErr = this->GetSubName();

sErr += ": Tick event is not found." ;

pSub->SetErr(sErr, HISC_TICK_NOT_FOUND);

cout << "Tick not found." << endl;

return 0;

for (int i = 0; i < m_usiMaxUnCon I 2; i++)

{
II Get all the states left by uncontrollable event i.

bddTemp = bdd_exist(m_pbdd_UnConPlantTrans[i],

m_pbdd_UnConPlantVarPrim[i]);

017 bddP1 I= bddTemp;

018 }

019

020 // Get all states left by tick event

021 bddTemp = bdd_exist(m_pbdd_ConPlantTrans[iTick],

m_pbdd_ConPhysicVarPrim[iTick]);

347

348 A. SD Software Program

022

023 bddP1 I= bddTemp;

024

025 VERBOSE(2)

026 {

027 PRINT_DEBUG « "bddReach: " ;

028 PrintStateSet2(bddReach);

029 cout << endl;

030 }

031

032 bddPTBBad = bddReach - bddP1;

033

034 if(bddPTBBad != bddfalse)

035 {

036 VERBOSE(2)

037 {

038 PRINT_DEBUG « "bddPTBBad: ";

039 PrintStateSet2(bddPTBBad);

040 cout << endl;

041 }

042

043 vsErr = "Not proper timed behavior.";

044 throw -1 ;

045 }

046 }

047 catch(int)

048 {

049 }

050 catch (...)

051 {

052 string sErr = this->GetSubName();

053 sErr += ": Error when checking proper timed behavior.";

054 pSub->SetErr(sErr, HISC_LOWERR_PTB);

055 return -1;

056 }

A. SD Software Program

057

058 }
059

060 int

061 {
062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

return 0;

CLovSub::VeriALF(bdd &bddALFBad, bdd bddReach, string & vsErr)

const char * DEBUG = 11 CLowSub::VeriALF(): 11
;

int iTick = (SearchSubEvent(sTick) - 1) I 2;

VERBOSE(!) { PRINT_DEBUG « 11 iTick = 11 « iTick « endl; }

//It tick does not exist

if (iTick < 0)

{

}

string sErr = this->GetSubName();

sErr += ": Tick event is not found. 11
;

pSub->SetErr(sErr, HISC_TICK_NOT_FOUND);

cout << "Tick not found. 11 << endl;

return 0;

bdd bddChk = bddReach;

bdd bddTemp = bddfalse;

try
{

while (bddfalse != bddChk)

{
VERBOSE(2)

{

}

PRINT_DEBUG « "bddChk: II;

PrintStateSet2(bddChk);

cout << endl;

349

350

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

bdd bddQ = GetOneState(bddChk);

VERBOSE(2)

{

}

PRINT_DEBUG « 11 bddQ: II;

PrintStateSet2(bddQ);

cout << endl;

bdd bddVisit = bddfalse;

A. SD Software Program

for (int i = 0; i < (m_usiMaxCon + 1) I 2; i++)

{
if (i == iTick) continue;

bddTemp = bdd_relprod(m_pbdd_ConTrans[i], bddQ,

m_pbdd_ConVar[i]);

108 bddVisit I= bdd_replace(bddTemp, m_pPair_ConPrim[i]);

109

110

111

112

}

for (inti= 0; i < (m_usiMaxUnCon I 2); i++)

{
113 bddTemp = bdd_relprod(m_pbdd_UnConTrans[i], bddQ,

m_pbdd_UnConVar[i]);

114 bddVisit I= bdd_replace(bddTemp, m_pPair_UnConPrim[i]);

115 }
116

117 bddVisit &= bddChk;

118

119 VERBOSE(2)

120 {
121 PRINT_DEBUG « 11 bddVisit: 11

;

122 PrintStateSet2(bddVisit);

123 cout << endl;

124 }

A. SD Software Program

125

126

127

128

129

130

131

132

133

bool overlap = false;

bdd bddNext = bddfalse;

for (int i = 0; i < (m_usiMaxCon + 1) I 2; i++)

{
if (i == iTick) continue;

134 bddTemp = bdd_relprod(m_pbdd_ConTrans[i], bddVisit,

m_pbdd_ConVar[i]);

135 bddNext I= bdd_replace(bddTemp, m_pPair_ConPrim[i]);

136

137

138

139

}

for (inti= 0; i < (m_usiMaxUnCon I 2); i++)

{

351

140 bddTemp = bdd_relprod(m_pbdd_UnConTrans[i], bddVisit,

m_pbdd_UnConVar[i]);

141 bddNext I= bdd_replace(bddTemp, m_pPair_UnConPrim[i]);

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

}

bddNext &= bddChk;

VERBOSE(2)

{

}

PRINT_DEBUG « "bdd.Next: " ;

PrintStateSet2(bddNext);

cout << endl;

bdd bddOldVisit = bddfalse;

do

{
bddOldVisit = bddVisit;

352

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

A. SD Software Program

if (bddfalse != (bddVisit & bddNext))

{
overlap = true;

}

bddVisit I= bddNext;

VERBOSE(2)

{

}

PRINT_DEBUG « 11 bddVisit: 11
;

PrintStateSet2(bddVisit);

cout << endl;

bddALFBad = bddQ & bddVisit;

if (bddfalse != bddALFBad)

{

}

VERBOSE(2)

{

}

PRINT_DEBUG « 11 bddALFBad: 11
;

PrintStateSet2(bddALFBad);

cout << endl;

vsErr = 11 Not ALF. 11
;

throw -1;

bdd bddNewNext = bddfalse;

for (int i = 0; i < (m_usiMaxCon + 1) I 2; i++)

{
if (i == iTick) continue;

bddTemp = bdd_relprod(m_pbdd_ConTrans[i], bddNext,

A. SD Software Program

m_pbdd_ConVar[i]);

193 bddNewNext I= bdd_replace(bddTemp,

m_pPair_ConPrim[i]);

194 }

195

196 for (inti= 0; i < (m_usiMaxUnCon I 2); i++)

197 {

198 bddTemp = bdd_relprod(m_pbdd_UnConTrans[i],

bddNext, m_pbdd_UnConVar[i]);

199

m_pPair_UnConPrim[i]);

200 }

201

bddNewNext I= bdd_replace(bddTemp,

202 bddNext = bddNewNext & bddChk;

}

VERBOSE(2)

{

}

PRINT_DEBUG « "bddNext: ";

PrintStateSet2(bddNext);

cout << endl;

while (bddVisit != bddOldVisit);

353

203

204

205

206

207

208

209

210

211

212

213 VERBOSE(1) { PRINT_DEBUG << "overlap: " « (overlap ? "true"

: "false") « endl; }

214

215 bddChk -= bddQ;

216 if (!overlap)

217 {
218 bddChk -= bddVisit;

219 }
220 }
221 }
222 catch(int)

354

223

224

225

226

227

228

229

230

231

232

233 }
234

{
}
catch(. ..)

{

}

string sErr = this->GetSubName();

sErr += 11
: Error when checking ALF. 11

;

pSub->SetErr(sErr, HISC_LOWERR_ALF);

return -1;

return 0;

A. SD Software Program

235 /**
236 * DESCR:

237 * PARA:

238 * RETURN:

239 * ACCESS:

Compute the Balemi bad states

bddBalemiBad: BDD containing all the bad states (output)

0: sucess -1: tail

private

240 */
241 int CLowSub::GenBalemiBad(bdd &bddBalemiBad)

242 {
243 canst char * DEBUG = 11 CLowSub::VeriBalemiBad(): 11

;

244

245 int iTick = (SearchSubEvent(sTick) - 1) I 2;

246 VERBOSE(1) { PRINT_DEBUG « 11 iTick = 11 << iTick « endl; }

247

248 try

249 {
250 bdd bddPlantTrans = bddfalse;

251

252 for (int i = 0; i < (m_usiMaxCon + 1) I 2; i++)

253 {
254 if (i == iTick) continue;

255

256 //Compute illegal state predicate tor each uncontrollable

event

A. SD Software Program 355

257

258

bddBalemiBad I= bdd_not(bdd_exist(m_pbdd_ConPlantTrans[i],

m_pbdd_ConPhysicVarPrim[i])) &

259

bdd_exist(m_pbdd_ConSupTrans[i],

260 bdd_exist(m_pbdd_ConVarPrim[i],

m_pbdd_ConPhysicVarPrim[i])); 261

262 }
263 }
264 catch(...)

265 {
266

267

268

269

270 }

string sErr = this->GetSubName();

sErr += 11
: Error during generating bad states for proper timed behavior. 11

;

pSub->SetErr(sErr, HISC_LOWERR_GENBALEMIBAD);

return -1;

271 return 0;

272 }
273

274 /**
275 * DESCR:

states

276 * PARA:

277 *
278 *
279 *
280 *
281 * R.ETURN:

282 * ACCESS:

283 */

Test if there are any Balemi bad states in the reachable

bddBalemiBad: BDD containing tested bad states(output).

Initially, bddBad should be bddfalse.

bddReach: BDD containing all reachable states

in this low-level(input)

vsErr: returned errmsg(output)

0: sucess -1: fail

private

284 int CLowSub::VeriBalemiBad(bdd &bddBalemiBad, const bdd &bddReach,

string & vsErr)

285 {

286 const char * DEBUG = 11 CLowSub::VeriBalemiBad{): 11
;

287

288 int iTick = (SearchSubEvent(sTick) - 1) I 2;

356 A. SD Software Program

289 VERBOSE(1) { PRINT_DEBUG « "iTick = " << iTick « endl; }

290

291 //If tick does not exist

292 if (iTick < 0)

293 {

294 string sErr = this->GetSubName();

295 sErr += ": Tick event is not found." ;

296 pSub->SetErr(sErr, HISC_TICK_NOT_FOUND);

297

298 cout << "Tick not found." << endl;

299 return 0;

300 }

301

302 try

303 {

304 int iErr = 0;

305

306

307

308

309

310

for (int i = 0; i < (m_usiMaxCon + 1) I 2; i++)

{
if (i == iTick) continue;

//Compute illegal state predicate for each

uncontrollable event

311 bddBalemiBad I=

bdd_not(bdd_exist(m_pbdd_ConPlantTrans[i],

312 m_pbdd_ConPhysicVarPrim[i])) &

313 bdd_exist(m_pbdd_ConSupTrans[i],

314

315

316

317

318

319

320

321

bdd_exist(m_pbdd_ConVarPrim[i],

m_pbdd_ConPhysicVarPrim[i]));

bddBalemiBad &= bddReach;

//bddBalemiBad = r(bddBalemiBad, iErr);

if (iErr < 0)

{
throw -1;

}

A. SD Software Program

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

}
}
catch(int)

{
}
catch(...)

{

if (bddBalemiBad != bddfalse)

{

}

vsErr = "Causing controllable event:";

vsErr += SearchEventName((i * 2) + 1);

throw -1;

string sErr = this->GetSubName();

357

337

338

sErr += ": Error during generating bad states for proper timed behavior." ;

pSub->SetErr(sErr, HISC_LOWERR_GENBALEMIBAD);

339 return -1;

340 }
341 return 0;

342 }
343

344

LowSub5.cpp

001 {

002 VERBOSE(!) { PRINT_DEBUG « "CheckTimedControllability()\t= "

<< ret << endl; }

003

004 throw HISC_VERI_LOW_SD_II;

005 }

006

007 bdd bddSF = m_bdd!nit;

008

358 A. SD Software Program

009 stack<bdd> stack_bddSP;

010 stack_bddSP.push(m_bddinit);

011

012 list< list<bdd> > list_NerFail;

013

014 int iSubTick = SearchSubEvent(sTick);

015 VERBOSE(!) { PRINT_DEBUG « "iSubTick = " « iSubTick « endl; }

016

017

018

019

020

021

022

023

//If tick does not exist

if (iSubTick < 0)

{
string sErr = this->GetSubName();

sErr += ": Tick event is not found." ;

pSub->SetErr(sErr, HISC_TICK_NOT_FOUND);

024 VERBOSE(!) { PRINT_DEBUG « "Tick not found." « endl; }

025 return 0;

026 }

027

028 int r;

029 while (!stack_bddSP.empty())

030 {

031 bdd bddSS = stack_bddSP.top();

032 stack_bddSP.pop();

033

034 r = AnalyseSampledState(bddSDBad, bddreach, bddSS,

list_NerFail, bddSF, stack_bddSP, vsErr);

035 if (r < 0)

036

037

endl; }

038

039

040

041 }

{

}

VERBOSE(!) { PRINT_DEBUG « "AnalyseSampledState() i 0" «

vsErr = "AnalyseSampledState() Failed: " + vsErr;

throw r;

~ ··~ '

~-"
A. SD Software Program

042

043 if (!list_NerFail.empty())

044 {
045 VERBOSE(!) { PRINT_DEBUG « "list_NerFail is not empty." «
endl; }

359

046 if (!RecheckNerodeCells(bddSDBad, bddreach, list_NerFail))

047

048

endl; }
049

Failed.";

050

051

052

053

054

055

056

057

m_bddlnit"

058

event.";
059

060

061 }

{
VERBOSE(!) { PRINT_DEBUG « "RecheckNerodeCells() i 0" «

vsErr = "list_NerFail is not empty and RecheckNerodeCells()

throw HISC_VERI_LOW_SD_III_2;

}

}

CheckSDiv(bddSDBad, bddreach);

if (bddSDBad != bddfalse)

{
VERBOSE(!) { PRINT_DEBUG « "{m_bddMarking- bddTemp) !=

« endl; }

}

vsErr = "There is a reachable marking state reached by a non-tick

throw HISC~~I_{.OW_SD_IV;
J,-. ~ - .

062 catch(int failureCode)

063 {

064 ret = failureCode;

065 }
066 catch(...)

067 {

068 string sErr = this->GetSubName();

069 sErr += ":·Error when checking SD Controllability.";

070 pSub->SetErr(sErr, HISC_LOWERR_SD);

071 return -1;

~-

360 A. SD Software Program

072 }

073 return ret;

074 }

075

076 II Algorithm 6.12

077 int CLawSub::AnalyseSampledState(bdd & bddSSBad, canst bdd & bddreach,

canst bdd & bddSS,

078 list< list<bdd> > & list_NerFail, bdd & bddSF, stack<bdd> &
stack_bddSP, string & vsErr)

079 {

080 const char * DEBUG = "CLowSub::AnalyseSampledState():";

081

082 VERBOSE(2)

083 {

084 caut << endl;

085 PRINT_DEBUG « "Analysing Sample State: " ;

086 PrintStateSet2(bddSS);

087 caut << endl;

088 }

089

090 map<int, bdd> B_map;

091

092 II Line 1

093 B_map[O] = bddSS;

094

095 II Line 2

096 map<int, bdd> B_canc;

097

098 stack<int> B_p;

099

100 II Line 3

101 B_p.push(O);

102

103 II Line 4

104 int intNextFreeLabel = 1;

A. SD Software Program

105

106 II Line 5

107 map<int, EVENTSET> B_occu;

108

109 II Line 6

110 EVENTSET eventsElig;

111

112 int iSubTick = SearchSubEvent(sTick);

113 int iTick = (iSubTick - 1) I 2;

114 VERBOSE(!) { PRINT_DEBUG « 11 iTick\t= " « iTick « endl; }

115

116 II Line 7

117 while (!B_p.empty())

118 {

119 VERBOSE(!)

120 {

121 cout << endl;

122 PRINT_DEBUG « "B_p.size()\t= 11 « B_p.size() « endl;

123 }

124

125

126

127

128

129

130

131

132

II Line 8

int b = B_p.top();

B_p.pop();

II Line 9

bdd bddZ = B_map[b];

VERBOSE(2) { PRINT_DEBUG « 11 hddZ : 11
; PrintStateSet2(bddZ);

cout « endl; }

133

134

135

136

137

138

bdd bddtemp = bddfalse;

I* *** *I

II Line 10

361

362 A. SD Software Program

139 EVENTSET eventsA;

140

141 VERBOSE(1) { PRINT_DEBUG « "FOR-LOOP START :

m_SubPlantEvents" « endl; }

142

143 //Line 11

144 for (EVENTSET::iterator i = m_SubPlantEvents.begin(); i !=

m_SubPlantEvents.end(); i++)

145 {

146

147

148

149

int ilndex, event = *i;

if (event < 1)

{
VERBOSE(!) { PRINT_DEBUG « "ERROR- Found a Sub-level

event index lower than 1" « endl ; }

150 return HISC_INTERNAL_ERR_SUBEVENT;

} 151

152

153 VERBOSE(!) { PRINT_DEBUG « "event\t= " «
m_InvSubEventsMap[event] << endl; }

154 if (1 == event % 2) //Controllable

155 {

156 ilndex = (event - 1) I 2;

157 bddtemp = bdd_relprod(m_pbdd_ConPlantTrans[ilndex],

bddZ, m_pbdd_ConVar[ilndex]);

158 bddtemp = bdd_replace(bddtemp,

m_pPair_ConPrim[ilndex]);

159 }

160

161

162

163

else //Uncontrollable

{
ilndex = (event I 2) - 1;

bddtemp = bdd_relprod(m_pbdd_UnConPlantTrans[ilndex],

bddZ, m_pbdd_UnConVar[ilndex]);

164 bddtemp = bdd_replace(bddtemp,

m_pPair_UnConPrim[ilndex]);

165 }

A. SD Software Program

166

167

168

bddtemp &= bddreach;

VERBOSE(2) { PRINT_DEBUG « "bddtemp\t= ";

PrintStateSet2(bddtemp); cout << endl; }

169

170

171

172

173

endl; }

174

175

176

177

II Line 12

if (bddtemp != bddfalse)

{
VERBOSE(!) { PRINT_DEBUG « "bddtemp != bddfalse" «

II Line 13

eventsA.insert(event);

VERBOSE(!) { PRINT_DEBUG « "eventsA.size()\t= " «
eventsA.size() << endl; }

178

179 II Line 14

180 }
181

182 II Line 15

183 }

363

184 VERBOSE(!) { PRINT_DEBUG « "FOR-LOOP END : m_SubPlantEvents"
« endl;

185

186

187

188

}

II Line 16

EVENTSET eventsD;

189 VERBOSE(!) { PRINT_DEBUG « "FOR-LOOP START :
m_SubSupervisorEvents" « endl; }

190

191 II Line 17

192 for (EVENTSET::iterator i = m_SubSupervisorEvents.begin(); i !=

m_SubSupervisorEvents.end(); i++)

193 {

194 bdd bddSupervisorTrans = bddfalse;

364

int iindex, event *i;

if (event < 1)

{

A. SD Software Program

195

196

197

198 VERBOSE(!) { PRINT_DEBUG « "ERROR- Found a Sub-level

event index lower than 1" << endl; }

199 return HISC_INTERNAL_ERR_SUBEVENT;

200 }
201

202 if (1 == event % 2) //Controllable

203 {
204 iindex = (event - 1) I 2;

205 //Get supervisor transition predicate

206 bddSupervisorTrans = bdd_exist(m_pbdd_ConTrans[iindex],

m_pbdd_ConPhysicVar[iindex]);

207 bddSupervisorTrans = bdd_exist(bddSupervisorTrans,

m_pbdd_ConPhysicVarPrim[iindex]);

208

209 bddtemp = bdd_relprod(bddSupervisorTrans, bddZ,

m_pbdd_ConVar[iindex]);

210 bddtemp = bdd_replace(bddtemp,

m_pPair_ConPrim[iindex]);

211

212

213

}
else //Uncontrollable

{
214 iindex = (event I 2) - 1;

215 //Get supervisor transition predicate

216 bddSupervisorTrans =
bdd_exist(m_pbdd_UnConTrans[iindex], m_pbdd_UnConPlantVar[iindex]);

217 bddSupervisorTrans = bdd_exist(bddSupervisorTrans,

m_pbdd_UnConPlantVarPrim[iindex]);

218

219 bddtemp = bdd_relprod(bddSupervisorTrans, bddZ,

m_pbdd_UnConVar[iindex]);

220 bddtemp = bdd_replace(bddtemp,

m_pPair_UnConPrim[iindex]);

A. SD Software Program

221

222

223

224

225

226

227

228

endl;

229

230

231

232

}

}

bddtemp &= bddreach;

II Line 18

if (bddtemp != bddfalse)

{
VERBOSE(!) { PRINT_DEBUG « "bddtemp != bddfalse" «

II Line 19

eventsD.insert(event);

VERBOSE(!) { PRINT_DEBUG « "eventsD.size()\t= " «
eventsD.size() << endl; }

233

234

235

236

237

238

239

II Line 20

}

II Line 21

}
VERBOSE(!) { PRINT_DEBUG « "FOR-LOOP END

m_SubSupervisorEvents" « endl; }

240

241

242

243

EVENTSET eventsPoss;

EVENTSET eventsDis = eventsA;

for (EVENTSET::iterator i = eventsA.begin(); i !=

eventsA.end(); i++)

244 {
245 if (eventsD.end() != eventsD.find(*i))

246 {
247 II Line 22

248 eventsPoss.insert(*i);

249 eventsDis.erase(*i);

250 }
251 }

365

366 A. SD Software Program

252

253 /* *** */
254

255

endl; }

256

VERBOSE(!) { PRINT_DEBUG « "FOR-LOOP START: eventsPoss" «

for (EVENTSET::iterator i eventsPoss.begin(); i !=

eventsPoss.end(); i++)

257

258

259

260

{

VERBOSE(!) { PRINT_DEBUG « "ERROR- Found a Sub-level

event index lower than 1" « endl ; }

261 return HISC_INTERNAL_ERR_SUBEVENT;

262 }
263 VERBOSE(!) { PRINT_DEBUG « "eventsPoss : " «
m_InvSubEventsMap[(*i)] << endl; }

264 }
265

endl; }

266

267

endl; }
268

VERBOSE(!) { PRINT_DEBUG « "FOR-LOOP END : eventsPoss" «

VERBOSE(!) { PRINT_DEBUG « "FOR-LOOP START: eventsDis" «

for (EVENTSET::iterator i = eventsDis.begin(); i !=

eventsDis.end(); i++)

269
270

271

272

273

{

VERBOSE(!) { PRINT_DEBUG « "ERROR- Found a Sub-level

event index lower than 1" << endl; }
274 return HISC_INTERNAL_ERR_SUBEVENT;

275

276

}
VERBOSE(!) { PRINT_DEBUG « "eventsDis: 11 «

m_InvSubEventsMap[(*i)] << endl; }

277 }

A. SD Software Program

278

endl; }
279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

VERBOSE(l) { PRINT_DEBUG « "FOR-LOOP END : eventsDis" «

II Line 23

if (bddZ == bddSS)

{

VERBOSE(!) { PRINT_DEBUG « "bddZ == bddSS" « endl; }

eventsElig = eventsPoss;

II Line 24

II Remove uncontrollable events

for (int i = 0; i < m_usiMaxUnCon I 2; i++)

{
eventsElig.erase((i + 1) * 2);

}
II Remove tick event

eventsElig.erase(iSubTick);

II Line 25

}

298 VERBOSE(l) { PRINT_DEBUG « "eventsElig.size() :11 «
eventsElig.size() << endl; }

367

299 VERBOSE(l) { PRINT_DEBUG « "FOR-LOOP START: eventsElig" «
endl; }

300 for (EVENTSET::iterator i = eventsElig.begin(); i !=

eventsElig.end(); i++)

301 {

302

303

304

305 VERBOSE(l) { PRINT_DEBUG « "ERROR- Found a Sub-level

event index lower than 111 « endl; }

306 return HISC_INTERNAL_ERR_SUBEVENT;

307 }

368 A. SD Software Program

308 VERBOSE(!) { PRINT_DEBUG « "eventsElig: " «
m_InvSubEventsMap[(*i)] << endl; }

309 }

310

endl; }
311

312

313

314

315

316

317

318

319

320

321

322

323

endl; }

VERBOSE(!) { PRINT_DEBUG « "FOR-LOOP END : eventsElig" «

EVENTSET eventsTemp = eventsPoss;

eventsTemp.insert(B_occu[b] .begin(), B_occu[b] .end());

II Remove uncontrollable events

for (int i = 0; i < m_usiMaxUnCon I 2; i++)

{
eventsTemp.erase((i + 1) * 2);

}
II Remove tick event

eventsTemp.erase(iSubTick);

VERBOSE(!) { PRINT_DEBUG « "FOR-LOOP START: eventsTemp" «

324 for (EVENTSET::iterator i = eventsTemp.begin(); i !=

eventsTemp.end(); i++)

325 {

326

327

328 VERBOSE(!) { PRINT_DEBUG « "ERROR- Found a Sub-level

event index lower than 1" « endl ; }

329 return HISC_INTERNAL_ERR_SUBEVENT;

330 }

331 VERBOSE(!) { PRINT_DEBUG « "eventsTemp = (eventsPoss V

B_occu[" « b « "])A jP_hibl,:" « m_InvSubEventsMap[(*i)] « endl; }

332 }

333 VERBOSE(!) { PRINT_DEBUG « "FOR-LOOP END : eventsTemp" «
endl; }

334

335 II Line 26

A. SD Software Program

336

337

338

339

endl; }

340

if ((eventsTemp < eventsElig) I I (eventsTemp > eventsElig))

{
bddSSBad = bddZ;

VERBOSE(!) { PRINT_DEBUG « "eventsTemp il. eventsElig" «

341 VERBOSE(!) { PRINT_DEBUG « "eventsTemp.size() :" «
eventsTemp.size() << endl; }

342

343

344

345

346

347

348

349

350

II Line 27

return HISC_VERI_LOW_SD_III_1;

II Line 28

}

II Line 29

if (-1 == DetermineNextState(bddSSBad, eventsPoss, bddZ,

bddreach, b, intNextFreeLabel, B_map, B_p,

351 bddSF, stack_bddSP, B_occu, B_conc, vsErr))

352 {

353 II Line 30

354 return HISC_VERI_LOW_ZERO_LB;

355 II Line 31

356 }

357

358 II Line 32

359 }

360

361 II Line 33

362 CheckNerodeCells(B_conc, B_occu, list_NerFail);

363 return 0;

364 }

365

366 void CLowSub::CheckNerodeCells(map<int, bdd> & B_conc, map<int,

EVENTSET> & B_occu,

369

370 A. SD Software Program

367 list< list<bdd> > & list_NerFail)

368 {

369 const char * DEBUG = 11 CLowSub::CheckNerodeCells(): 11
;

370

371 VERBOSE(!) { PRINT_DEBUG « 11 WHILE-LOOP START : !B_conc.empty() 11

« endl; }

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

endl; }

397

398

II Line 2

while (!B_conc.empty())

{
map<int, bdd>::iterator i = B_conc.begin();

II Line 3

int b = (*i).first;

bdd bddZ = (*i).second;

B_conc.erase(i);

VERBOSE(2)

{

}

PRINT_DEBUG « 11 (b, bddZ) = (11 « b «
PrintStateSet2(bddZ);

cout << 11
)

11 << endl;

II Line 3

list<bdd> Zeqv;

II Line 4

Zeqv.push_back(bddZ);

II II •

' '

VERBOSE(!) { PRINT_DEBUG « 11 FOR-LOOP START : B_conc 11 «

II Work around: C++ doesn't allow a map collection (i.e.

B_Conc) to be modified in a loop

A. SD Software Program 371

399 II by collection iterator. Need to first save

B_Conc iterators in a list,

400 II and then read the iterators from the list in

the loop from II Line 5.

401 list<map<int, bdd>::iterator> iteratorList_B_Conc;

402 for (map<int, bdd>::iterator k = B_conc.begin(); B_conc.end()

!= k; k++)

403 {
404 iteratorList_B_Conc.push_back(k);

405 }
406

407 II Line 5

408 bool sameCell = true;

409

410 II Line 6

411 for (list<map<int, bdd>::iterator>::iterator j =
iteratorList_B_Conc.begin(); iteratorList_B_Conc.end() != j; j++)

412 {

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

int bprime = (*(*j)).first;

VERBOSE(!) { PRINT_DEBUG « 11 bprime: 11 « bprime « endl; }

bdd bddZprime = (*(*j)).second;

VERBOSE(2)

{

}

PRINT_DEBUG « 11 bddZprime: 11
;

PrintStateSet2(bddZprime);

cout « endl ;

II Line 7

if (B_occu[b] == B_occu[bprime])

{
VERBOSE(!) { PRINT_DEBUG « 11 B_occu[b: 11 « b « 11

] ==
B_occu[bprime: 11 « bprime « 11

]
11 « endl; }

428

372

429

430

431

432

433

434

435

436

437

438

endl; }
439

440

441

442

443

444

445

446

447

448

449

}
450

451

452

453

454

455

456

457

458

459

460

461

II Line 8

Zeqv.push_back(bddZprime);

II Line 9

B_conc.erase(*j);

II Line 10

if (bddZ != bddZprime)

{

A. SD Software Program

VERBOSE(1) { PRINT_DEBUG « 11 bddZ != bddZprime 11 «

II Line 11

sameCell = false;

II Line 12

}
II Line 13

}
II Line 14

}
VERBOSE(1) { PRINT_DEBUG « 11 FOR-LOOP END : B_conc 11 « endl;

II Line 15

if (! sameCell)

{
VERBOSE(1) { PRINT_DEBUG « 11 sameCell: false 11 « endl; }

II Line 16

list_NerFail.push_back(Zeqv);

II Line 17

}

II Line 18

A. SD Software Program 373

462 }

463 VERBOSE(1) { PRINT_DEBUG « "WHILE-LOOP END : !B_conc.empty()" «
endl; }

464

465 //Line 19

466 return;

467 }

468

469 int CLowSub::DetermineNextState(bdd & bddLBBad, const EVENTSET &
eventsPoss, const bdd & bddZ, const bdd & bddreach,

470 const int & intB, int & intNextFreeLabel, map<int, bdd> & B_map,

stack<int> & B_p,

471 bdd & bddSF, stack<bdd> & stack_bddSP,

472 map<int, EVENTSET> & B_occu, map<int, bdd> & B_conc, string &
vsErr)

473 {
474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

const char * DEBUG = "CLowSub::DetermineNextState():";

II Line 1

if (eventsPoss.empty())

{
VERBOSE(1) { PRINT_DEBUG « "eventsPoss is empty" « endl; }

II Line 2

return 0;

} //Line 3

int iSubTick = SearchSubEvent(sTick);

int iTick = (iSubTick - 1) I 2;

VERBOSE(1) { PRINT_DEBUG « "iSubTick =" « iSubTick « endl; }

VERBOSE(1) { PRINT_DEBUG « "iTick = " « iTick « endl; }

II Line 4

if (eventsPoss.end() != eventsPoss.find(iSubTick))

37 4 A. SD Software Program

493 {

494 VERBOSE(!) { PRINT_DEBUG « "Found tick in eventsPoss." « endl; }

495

496

497

II Line 5

bdd bddZprime = bdd_relprod(m_pbdd_ConTrans[iTick], bddZ,

m_pbdd_ConVar[iTick]);

498 bddZprime = bdd_replace(bddZprime, m_pPair_ConPrim[iTick]);

499 bddZprime &= bddreach;

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

VERBOSE(2)

{

}

PRINT_DEBUG « "bddZprime = ";
PrintStateSet2(bddZprime);

cout << endl;

II Line 7

B_conc.insert(make_pair(intB, bddZprime));

II Line 8

if ((bddZprime & bddSF) == bddfalse)

{
II Line 9

bddSF I= bddZprime;

II Line 10

stack_bddSP.push(bddZprime);

II Line 11

}

523 VERBOSE(!) { PRINT_DEBUG « "eventsPoss.size() = " «
eventsPoss.size() << endl; }

524

525 II If tick is the only event in eventsPoss, then no need to

A. SD Software Program 375

run anything after Line 14.

526 if (1 == eventsPoss.size())

527 {

528 VERBOSE(!) { PRINT_DEBUG « "eventsPoss only has a tick." «
endl; }
529 return 0;

530 }
531

532 II Line 13

533 }
534

535 II Line 14

536 for (EVENTSET::iterator i = eventsPoss.begin(); i !=

eventsPoss.end(); i++)

537 {

538

539

540

541

542

int event, iSubEvent = *i;

if (iSubEvent < 1)

{

VERBOSE(!) { PRINT_DEBUG « "ERROR- Found a Sub-level event
index lower than 1" « endl ; }

543 return HISC_INTERNAL_ERR_SUBEVENT;

544

545

546

}

VERBOSE(!) { PRINT_DEBUG « "iSubEvent = " «
m_InvSubEventsMap[iSubEvent] << endl; }

547

548 if (iSubEvent == iSubTick)

549 {
550 continue;

551 }
552

553 II Line 15

554 bdd bddZprime;

555

376 A. SD Software Program

556 if (1 == iSubEvent % 2) //Controllable

557

558

559

{
event = (iSubEvent - 1) I 2;

VERBOSE(!) { PRINT_DEBUG « "Controllable event= " «
m_InvSubEventsMap[iSubEvent] << endl; }

560 bddZprime = bdd_relprod(m_pbdd_ConTrans[event], bddZ,

m_pbdd_ConVar[event]);

561 bddZprime = bdd_replace(bddZprime, m_pPair_ConPrim[event]);

} 562

563

564

565

566

else //Uncontrollable

{
event = (iSubEvent I 2) - 1;

VERBOSE(!) { PRINT_DEBUG « "Uncontrollable event = " «
m_InvSubEventsMap[iSubEvent] << endl; }

567 bddZprime = bdd_relprod(m_pbdd_UnConTrans[event], bddZ,

m_pbdd_UnConVar[event]);

568 bddZprime = bdd_replace(bddZprime,

m_pPair_UnConPrim[event]);

} 569

570

571

572

573

574

575

bddZprime &= bddreach;

VERBOSE(2)

{

cout << endl;

576 }

577

PRINT_DEBUG « "bddZprime = "; PrintStateSet2(bddZprime);

578 EVENTSET eventsTemp = B_occu[intB];

579

580 II Line 17

581 if ((1 == iSubEvent % 2) && (eventsTemp.end() !=

eventsTemp.find(iSubEvent)))

582 {

583 bddLBBad = B_map[intB];

A. SD Software Program 377

584 vsErr = "Event " + SearchEventName (iSubEvent) + " is found to

occur more than 1 times in this sampling period." ;

585

586

587

588

589

590

591

592

593

594

595

}
596

597

598

599

600

601

602

603

endl; }
604

605

606

607

608

endl; }
609

610

611

II Line 18

return -1;

II Line 19

}

II Line 20

int intBprime = intNextFreeLabel;

VERBOSE(!) { PRINT_DEBUG « "intBprime =" « intBprime « endl;

II Line 21

intNextFreeLabel++;

II Line 22

B_map.insert(make_pair(intBprime, bddZprime));

VERBOSE(!) { PRINT_DEBUG « "B_map.size() =" « B_map.sizeO «

II Line 23

B_p.push(intBprime);

VERBOSE(!) { PRINT_DEBUG « "B_p.size() = " « B_p.sizeO «

eventsTemp.insert(iSubEvent);

612 VERBOSE(!) { PRINT_DEBUG « "eventsTemp.size() = " «
eventsTemp.size() << endl; }

613

378 A. SD Software Program

614 II Line 24

615 B_occu.insert(make_pair(intBprime, eventsTemp));

616

617 VERBOSE(!) { PRINT_DEBUG « 11 B_occu.size() = 11 « B_occu. size() «
endl; }
618

619 for (EVENTSET::iterator i = B_occu[intB].begin(); i !=

B_occu[intB] .end(); i++)

620 {

621 VERBOSE(!) { PRINT_DEBUG « 11 B_occu[intB = 11 « intB « 11
]:

11

<< m_InvSubEventsMap[(*i)] << endl; }

622 }

623

624 for (EVENTSET::iterator i = B_occu[intBprime] .begin(); i !=

B_occu[intBprime] .end(); i++)

625 {

626 VERBOSE(!) { PRINT_DEBUG « 11 B_occu[intBprime = 11 «
intBprime « 11

]:
11 « m_InvSubEventsMap[(*i)] « endl; }

627 }
628 II Line 26

629 }
630

631 II Line 27

632 return 0;

633 }
634

635 int CLowSub: :CheckTimedControllability(bdd & bddTCBad, canst bdd &
bddreach)

636 {

637 bdd bddZhib = bddfalse;

638

639 int iTick = (SearchSubEvent(sTick) - 1) I 2;

640

641 for (int i = 0; i < (m_usiMaxCon + 1) I 2; i++)

642 {

A. SD Software Program

643

644

if (iTick == i) continue;

379

645 bddZhib I= bdd_exist(m_pbdd_ConTrans[i], m_pbdd_ConVarPrim[i]);

646 }

647

648 bddTCBad = bdd_exist(m_pbdd_ConTrans[iTick],

m_pbdd_ConVarPrim[iTick]) & bddZhib & bddreach;

649

650 if (bddfalse != bddTCBad)

651 {

652 return -3;

653 }

654

655 bddTCBad = bdd_exist(m_pbdd_ConPlantTrans[iTick],

m_pbdd_ConPhysicVarPrim[iTick])

656 & (!bdd_exist(m_pbdd_ConSupTrans[iTick],

m_pbdd_ConSupVarPrim[iTick]))

657 & (!bddZhib) & bddreach;

658

659 if (bddfalse != bddTCBad)

660 {

661 return -2;

662 }

663

664 return 0;

665 }

666

667

668 int CLowSub::CheckTimedControllability(const EVENTSET & eventsDis,

const EVENTSET & eventsPoss)

669 {

670 //Uncontrollable events

671 cout « "CLowSub::CheckTimedControllability() : FOR-LOOP START :

eventsDis" < < endl ;

672 for (EVENTSET::iterator i = eventsDis.begin(); i !=

380 A. SD Software Program

eventsDis.end(); i++)

673 {

674 if (0 == (*i) % 2)

{ 675

676 cout << 11 CLowSub::CheckTimedControllability() : Uncontrollable

event found in eventsDis: 11 « m_InvSubEventsMap[(*i)] « endl;

677 return -1;

678 }

679 }

680 cout « 11 CLowSub::CheckTimedControllability() :FOR-LOOP END

eventsDis 11 < < endl ;

681

682 int iSubTick = SearchSubEvent(sTick);

683

684 II Prohibitable events intersect with Poss events

685 bool bool_Poss_and_Hib = false;

686

687 cout « 11 CLowSub::CheckTimedControllability() :FOR-LOOP START:

eventsPoss 11 < < endl ;

688 for (EVENTSET::iterator i = eventsPoss.begin(); i !=

eventsPoss.end(); i++)

689 {

690 if (iSubTick == (*i)) continue;

691 if (1 == (*i) % 2)

692 {

693 cout « 11 CLowSub::CheckTimedControllability() : Prohibitable event

found in eventsPoss: 11 « m_InvSubEventsMap[(*i)] « endl;

694 bool_Poss_and_Hib = true;

695 }

696 }

697 cout « 11 CLowSub::CheckTimedControllability() : FOR-LOOP END

eventsPoss 11 < < endl ;

698

699 if (!bool_Poss_and_Hib && (eventsDis.end() !=

eventsDis.find(iSubTick)))

A. SD Software Program 381

700 {

701 return -2;

702 }

703

704 if (bool_Poss_and_Hib && (eventsPoss.end() !=

eventsPoss.find(iSubTick)))

705 {
706 return -3;

707 }
708

709 return 0;

710 }
711

712 bool CLowSub::RecheckNerodeCells(bdd & bddNCBad, canst bdd & bddreach,

list<bdd> > & list_NerFail) list<

713 {
714 II Line 1

715 if (list_NerFail.empty())

716 {
717 II Line 2

718 return true;

719 II Line 3

720 }
721

722 II Line 4

723 list< pair<bdd, bdd> > listVisited;

724

725 II Line 5

726 for (list< list<bdd> >::iterator i = list_NerFail.begin(); i !=

list_NerFail.end(); i++)

727 {

728

729

730

731

II Line 6

list<bdd> Zeqv = *i;

II Line 7

382 A. SD Software Program

732 if (!RecheckNerodeCell(bddNCBad, bddreach, Zeqv, listVisited))

733 {

734 if (bddfalse == bddNCBad)

735 {

736 for (list<bdd>::iterator j = Zeqv.begin(); j !=

Zeqv.end(); j++)

737 {

738 bddNCBad I= *j;

739 }

740 }

741 II Line 8;

742

743

744

745

746

747

748

749

750 }
751

return false;

II Line 9

}
II Line 10

}

II Line 11

return true;

752 bool CLowSub::RecheckNerodeCell(bdd & bddNCBad, canst bdd & bddreach,

list<bdd> & Zeqv, list< pair<bdd, bdd> > & listVisited) canst

753 {
754 canst char * DEBUG = "CLowSub::RecheckNerodeCell():";

755

756 II Line 1

757 list<bdd>::const_iterator z1 = Zeqv.begin();

758

759 if (Zeqv.end() == z1)

760 {
761 return true;

762 }
763

764 II Line 2

A. SD Software Program

765 list < pair<bdd, bdd> > listPending;

766

767 list<bdd>::const_iterator z2 = Zeqv.begin();

768 z2++;

769

770 II Line 3, 4

771 while(Zeqv.end() != z2)

772 {

773 II Line 5

774 listPending.push_back(make_pair(*z1, *Z2));

775 z2++;

776 II Line 6

777 }

778

779 II Line 7

780 while (!listPending.empty())

781 {

782 II Line 8

783 list< pair<bdd, bdd> >::iterator itr_Pending =

listPending.begin();

784 bdd bddz1 = itr_Pending->first;

785 bdd bddz2 = itr_Pending->second;

786

787

listPending.erase(itr_Pending);

788 II Line 9

789 bdd bddP = bddz1 I bddz2;

790

791 II Line 10

792 if ((bddfalse != (bddP & m_bddMarking)) && (bddP != (bddP &
m_bddMarking)))

793 {

794

795

bddNCBad = bddP;

VERBOSE(1) { PRINT_DEBUG « "Neither all states in Zeqv are

marked nor non of them are marked." << endl; }

796

383

384

797

798

799

800

801

802

803

A. SD Software Program

II Line 11

return false;

II Line 12

}

II Line 13

804 for (EVENTSET::iterator itr_event = m_SubPlantEvents.begin();

itr_event != m_SubPlantEvents.end(); itr_event++)

805

806

807

{
int event, iSubEvent = *itr_event;

VERBOSE(!) { PRINT_DEBUG « "iSubEvent : " «
m_InvSubEventsMap[iSubEvent] << " (index: " << iSubEvent << ")" << endl; }

808

809

810

811

if (iSubEvent < 1)

{
VERBOSE(!) { PRINT_DEBUG « "ERROR- Found a Sub-level

event index lower than 1" « endl ; }

812 return HISC_INTERNAL_ERR_SUBEVENT;

813

814

815

816

817

818

819

820

821

822

823

824

}

bdd bddPprime = bddfalse;

bdd bddz1prime = bddfalse;

bdd bddz2prime = bddfalse;

bdd bddTemp = bddfalse;

if (1 == iSubEvent % 2) //Controllable

{
event = (iSubEvent - 1) I 2;

825 bddTemp = bdd_relprod(m_pbdd_ConTrans[event], bddP,

m_pbdd_ConVar[event]);

826 bddPprime I= bdd_replace(bddTemp,

m_pPair_ConPrim[event]);

A. SD Software Program

827

828 bddTemp = bdd_relprod(m_pbdd_ConTrans[event], bddz1,

m_pbdd_ConVar[event]);

829 bddz1prime I= bdd_replace(bddTemp,

m_pPair_ConPrim[event]);

830

831 bddTemp = bdd_relprod(m_pbdd_ConTrans[event], bddz2,

m_pbdd_ConVar[event]);

832 bddz2prime I= bdd_replace(bddTemp,

m_pPair_ConPrim[event]);

833 }

834

835

836

else //Uncontrollable

{
event = (iSubEvent I 2) - 1;

837

385

838 bddTemp = bdd_relprod(m_pbdd_UnConTrans[event], bddP,

m_pbdd_UnConVar[event]);

839 bddPprime I= bdd_replace(bddTemp,

m_pPair_UnConPrim[event]);

840

841 bddTemp = bdd_relprod(m_pbdd_UnConTrans[event], bddz1,

m_pbdd_UnConVar[event]);

842 bddz1prime I= bdd_replace(bddTemp,

m_pPair_UnConPrim[event]);

843

844 bddTemp = bdd_relprod(m_pbdd_UnConTrans[event], bddz2,

m_pbdd_UnConVar[event]);

845 bddz2prime I= bdd_replace(bddTemp,

m_pPair_UnConPrim[event]);

846 }

847

848

849

850

851

II Line 14

bddPprime &= bddreach;

II Line 15

386

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

bddz1prime &= bddreach;

II Line 16

bddz2prime &= bddreach;

VERBOSE(2)

{

}

PRINT_DEBUG « 11 bddPprime: 11
;

PrintStateSet2(bddPprime);

cout << endl;

PRINT_DEBUG « 11 bddzlprime : 11
;

PrintStateSet2(bddz1prime);

cout << endl;

PRINT_DEBUG « 11 bddz2prime : ";

PrintStateSet2(bddz2prime);

cout << endl;

II Line 17

if (bddfalse != bddPprime)

{
II Line 18

A. SD Software Program

874 if ((bddfalse != (bddz1prime & bddPprime)) && (bddfalse

!= (bddz2prime & bddPprime)))

875 {

876

877

878

879

II Line 19

if (bddz1prime != bddz2prime)

{
II Need to manually search for the pair, since

bdd::operator< returns bdd

880 II instead of bool, which makes all STL

containers with ability to search

881 II malfunctional.

882

883

bool found = false;

for (list< pair<bdd, bdd> >::iterator itr =

A. SD Software Program 387

listVisited.begin();

884 itr != listVisited.end(); itr++)

885 {

886 if ((itr->first == bddz1prime) &&
(itr->second == bddz2prime))

887 {

888 found = true;

889 }

890 }

891

892 if (!found)

893 {

894 //Line 20

895 listVisited.push_back(make_pair(bddz1prime,

bddz2prime));

896 //Line 21

897 listVisited.push_back(make_pair(bddz2prime,

bddz1prime));

898 //Line 22

899 listPending.push_back(make_pair(bddz1prime,

bddz2prime));

900 }

901 //Line 23

902 }

903 }

904 //Line 24

905 else

906 {

907 bddNCBad = bddP;

908 //Line 25

909 return false;

910 //Line 26

911 }

912 //Line 27

913 }

388 A. SD Software Program

914 II Line 28

915 }
916 II Line 29

917 }
918

919 II Line 30

920 return true;

921 }
922

923 int CLowSub::CheckSDiv(bdd & bddSDivBad, canst bdd & bddReach)

924 {

925 int iTick = (SearchSubEvent(sTick) - 1) I 2;

926

927 II Line 1: Get all states entered by non-tick event from a

reachable state.

928 bdd bddTemp = bddfalse;

929

930 for (int i = 0; i < (m_usiMaxCon + 1) I 2; i++)

931 {

932 if (iTick == i) continue;

933

934 bddTemp I= bdd_replace(

935 bdd_exist(m_pbdd_ConTrans[i] & bddReach,

m_pbdd_ConVar[i]),

936 m_pPair_ConPrim[i]);

937 }

938

939 for (int i = 0; i < m_usiMaxUnCon I 2; i++)

940 {

941 bddTemp = bdd_replace(

942 bdd_exist(m_pbdd_UnConTrans[i] & bddReach,

m_pbdd_UnConVar[i]),

943

944 }

945

m_pPair_UnConPrim[i]);

A. SD Software Program 389

946 II Line 2 - 4: Each reachable marking states must not be reached by

a non-tick event from a reachable state.

947 bddSDivBad = (m_bddMarking & bddReach) & bddTemp;

948

949 return 0;

950 }

951

952 EVENTSET CLowSub::GetTransitionEvents(const bdd & bddleave, canst bdd &
bddenter)

953 {

954 EVENTSET events;

955 events.clear();

956

957 if ((bddleave == bddfalse) I I (bddenter == bddfalse))

958 {

959 cout « "CLowSub::GetTransitionEvents() : bddleave is empty or bddfalse

is empty." << endl;

960 return events;

961 }

962

963 //Controllable events

964 for (int i = 0; i < (m_usiMaxCon + 1) I 2; i++)

965 {

966 bdd bddtrans = bddleave & bdd_replace(bddenter,

m_pPair_Con[i]);

967 if ((bddtrans & m_pbdd_ConTrans[i]) != bddfalse)

968 {

969 events.insert((i * 2) + 1);

970 }

971 }

972

973 //Uncontrollable events

974 for (int i = 0; i < m_usiMaxUnCon I 2; i++)

975 {

976 bdd bddtrans = bddleave & bdd_replace(bddenter,

390 A. SD Software Program

m_pPair_UnCon[i]);

977 if ((bddtrans & m_pbdd_UnConTrans[i]) != bddfalse)

978 {

979 events.insert((i + 1) * 2);

980 }

981 }

982

983 return events;

984 }

985

986

' .)

