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Abstract 

This thesis focuses on issues related to implementing theoretical Discrete-Event Sys
tems (DES) supervisors, and the concurrency and timing delay issues involved. 

Sampled-data (SD) supervisory control deals with timed DES (TDES) systems 
where the supervisors will be implemented as SD controllers. An SD controller is 
driven by a periodic clock and sees the system as a series of inputs and outputs. On 
each clock edge (tick event), it samples its inputs, changes states, and updates its 
outputs. 

In this thesis, we identify a set of existing TDES properties that will be useful 
to our work, but not sufficient. We extend the TDES controllability definition to 
a new definition, SD controllability, which captures several new properties that will 
be useful in dealing with concurrency issues, as well as make it easier to translate a 
TDES supervisor into an SD controller. 

We then establish a formal representation of an SD controller as a Moore Finite 
State Machine (FSM), and describe how to translate a TDES supervisor to a FSM, as 
well as necessary properties to be able to do so. We discuss how to construct a single 
centralized controller, as well as a set of modular controllers and show that they will 
produce equivalent output. 

Next, we capture the enablement and forcing action of a translated controller in 
the form of a TDES supervisory control map, and show that the closed-loop behavior 
of this map and the plant is the same as that of the plant and the original TDES 
supervisor. We also show that our method is robust with respect to nonblocking and 
certain variations in the actual behavior of our physical system. 

We also introduce a set of predicate-based algorithms to verify the SD controlla
bility property, as well as certain other conditions that we require. We have created 
a software tool for verifying these conditions and provide the source code in the 
appendix. We have implemented these algorithms using binary decision diagrams 
(BDD). 

For illustrative purpose, we have produced a set of examples which fail the key 
conditions discussed in this thesis, as well as a successful application example based 
on a Flexible Manufacturing System. We also presented the corresponding FSM, 

iii 



iv 

translated from the example's supervisors. 
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Chapter 1 

Introduction 

In the area of Discrete-Event Systems (DES) [23], [29], [30], a lot of effort has been 

devoted to studying standard properties such as nonblocking (a form of deadlock de

tection) and controllability (a check on whether we can actually realize our desired 

control law) in a theoretical setting. However, limited effort has been made in inves

tigating what an implementation of a DES supervisor would be like, how to do the 

conversion automatically, whether we can guarantee that it will retain the control

lability and nonblocking properties of the theoretical supervisor, and how to handle 

timing delay and concurrency issues inherent in an implementation. This thesis will 

be attacking these problems, although issues with respect to timing delay will only 

be partially dealt with due to time limitations. 

A logical implementation method for DES supervisors would be sampled-data (SD) 

controllers. An SD controller is driven by a periodic clock and sees the system as a 

series of inputs and outputs. On each clock edge, it samples its inputs, changes state, 

and updates its outputs. An example of an SD controller might be a programmable 

logic controller (PLC) [4] or a Moore synchronous finite state machine (FSM) [7]. In 

this thesis, we will focus on FSM SD controllers as they are a complete specification 

of an SD controller, yet still quite generic allowing an FSM to be implemented in 

digital logic, or as a computer program. For simplicity, we will assume inputs and 

outputs of an FSM can take the value of true or false. 

When we are using an SD controller to manage a given system, we associate an 

input with each event, and output with each controllable event. We consider an 
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2 1. Introduction 

event to have occurred when its corresponding input has gone true during a given 

clock period. We consider a controllable event to be enabled when its corresponding 

output has been set true by the controller, disabled otherwise. 

As mentioned above, an SD controller samples the value of its inputs on each clock 

edge, and uses this value to decide what its next internal state will be. This means 

the SD controller knows nothing about its inputs until the clock edge, and then all it 

learns is whether a given input is true or false, signifying that the corresponding event 

has occurred sometime in the clock period that just ended. This means that for the 

given clock period, all information about event ordering (which event occurred first 

etc) is lost, as well as how often a given event occurred if it has occurred more than 

once. The only ordering information that remains is which sampling period (clock 

period) a given event occurred in. 

As an example, consider Figure 1.1. Here we have inputs Event 1 and 2, as well 

as our sampling clock. The diagram on the left shows when the inputs changed their 

value, in particular that Event 1 occurred first iri the second sampling period. When 

Event 1 

I I • • 

Clock ______n_n___n 
Data ' I I 

Sampled 0 1 2 3 
_lL____lL Event 1 _,.... 

Event 2 
Event 2 

II • 

' ' I 

0 1 2 3 

Figure 1.1: The Occurrences of Two Events 

the SD controller samples its inputs, it simply gets a true or false value, based on 

the value of the input at the clock edge.1 As we can see in the diagram on the right, 

1 In our example, we are sampling our inputs when the clock signal rises from low to high (the 
rising edge of the clock). 
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the controller simply knows that both Event 1 and 2 occurred in the last sampling 

period, nothing more. 

Another important aspect of an SD controller is that it only changes state on a 

clock edge, and the value of its outputs are a function of its current state. That means 

its outputs can only change at a clock edge, and then must stay constant for the rest 

of the clock period. 

For DES supervisors, we generally assume that a supervisor knows immediately 

when an event occurs, that it can change enablement information right away, and 

that events occur in an interleaving fashion so the supervisor can always determine 

the order events occurred in. Based on the above discussion, it is clear that an SD 

controller implementation violates these assumptions. First, the controller must wait 

until the next sampling instance (clock edge) before it will know if a given event has 

occurred. If the control law said something like "once event a occurs, controllable 

event {3 must not occur." However if {3 can occur in the same sampling period as a, 

{3 may have already occurred before we even know that a has occurred. Of course, 

even if we did know right away that alpha had occurred, we would not be able to 

update the enablement information for {3 until the next clock edge anyway, which 

could be too late. If we wanted to make sure {3 did not occur in this clock period, 

we would have to disable it at the start of the sampling period. This means that we 

cannot enforce a policy where an event is initially enabled (disabled) at the start of a 

clock period, and we then disable (enable) the event somewhere in the middle. Our 

supervisor must have a policy that is correct and constant for the entire sampling 

period. 

Another important issue is event ordering. If we could get either string 'a{3' or 

'{3a' in the same clock period, our SD controller would only know that at least one 

a and at least one {3 had occurred. It would not know which of the two had actually 

occurred. If our DES supervisor enabled event 'Y when string 'a{3' occurs, but disables 

'Y when string '{3a' occurs, we could not implement this using an SD controller as it 

would not be able to determine which of the two strings had occurred. This means 

that a supervisor must always do the same thing for two concurrent strings containing 

the same individual events, both immediately after the strings have occurred and in 

the future. Of course, this raises the question of how to determine if two strings are 

concurrent. 
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1.1 Objective 

Clearly, untimed DES does not provide a rich enough modeling method to allow us 

to work with an SD controller, and its inherent timing information. Therefore, we 

will base our work on the timed DES (TDES) theory developed by Brandin et al. [5] 

[6]. TDES extends untimed DES theory by adding a new tick event, corresponding to 

the tick of a global clock. The event set of a TDES contains the tick event as well as 

other non-tick events called activity events. The occurrence of a tick event provides 

us with a concept of time passing, allowing us to model upper and lower time bounds 

for the occurrence of activity events. It also allows us to introduce a new type of 

events called forcible events, which we can guarantee to occur and preempt the next 

clock tick. This means that now we cannot only prevent some events (referred to as 

prohibitable events in TDES terminology) from occurring by disabling them, but we 

can also choose to have certain events occur before the next clock tick. 

To make the TDES theory work with SD controllers, we identify a tick event 

occurring with the clock edge that the SD controller uses for sampling and state 

change. That means that once a tick event occurs, any two strings that are now 

possible in the system and only contain a single tick at the end of the string, are 

considered concurrent. We will refer to such strings as concurrent strings. If one 

of these strings contains at least one different event from the other string, we can 

distinguish between them. Otherwise, we must treat them the same. 

Now that we can force an event to occur in a specific clock period, we have a new 

concern with respect to nonblocking. The plant model might say that we can do either 

an 'aj]T' concurrent string, or a 'j]aT' string, where T = tick. Both might be safe 

to do, but depending on our implementation, only one of the two might ever occur. 

Some reasons this could occur are due to time delay, or our implementation might be 

a sequential program that must choose one version or the other to perform. It might 

be the case that for some implementations, when two or more concurrent strings are 

possible and they contain the same events but in a different order or numbers, not all 

variations might ever actually occur. The problem is that one of the variations that 

does not occur might have been the only path in the TDES back to a marked state. 

Basically, if an SD controller cannot tell the difference between concurrent strings, 

they should have the same marked future. This also means that marked strings can 
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only be the empty string (represents the initial state of the system which is always 

observable), or strings ending in a tick as these are the points in the system's behavior 

that are observable to an SD controller. We refer to such strings as sampled strings. 

The next problem we intend to address is the issue of when a forced event should 

occur. As noted by Balemi in [2] for untimed systems, controllable events tend to 

be events fully under the control of our controller implementation. 2 They may be 

a software function we call, an output we set to true, or a message we send. That 

means that we can make these events occur whenever we want. It is not unusual 

that a plant might be modeled such that these events are suppose to only occur 

under certain situations. This might be for flexibility (some implementations have 

these restrictions, for example) or to make the system easier to model or understand. 

However, the reality for some controller implementations is that these events could 

occur even when the plant said they cannot. This also applies to forcible events. When 

we are forcing an event to occur in a given clock period, we have no information on 

when it will actually occur. Depending on our implementation, it could occur right 

away, or in the middle or end of the clock period. We need to make sure that when it 

finally does occur, it does not contradict the plant model so that our implementation 

will correspond to the theoretical model in this respect. 

The last issue we intend to address is the issue of when a forcible event should 

actually occur. We want our supervisor specified in such a way that it is straightfor

ward to convert it into an SD controller. Normally for DES systems, we are interested 

in maximally permissive behavior. We enable all controllable events except for when 

they must be disabled to enforce our control law, and to ensure the system is non

blocking. However, controller implementations are usually much more procedural. 

We would disable all controllable events until we want them to occur, and then dis

able the event again once it has occurred. In our setup, we will be assuming that 

the set of prohibitable events and forcible events are the same3 and that we disable 

the event until we wish to force it, and then disable it once it has occurred. This 

2This is generally a matter of how a system is modeled. We can always model the sending of 
our enable/disable signal as the controllable event, and the occurrence of the actual action as the 
uncontrollable event. Of course, the occurrence of the enablement event would toggle the eligibility 
of the uncontrollable event. 

3 Again, this is a matter of modeling. We can always model our forcing signal as the controllable 
event, and then model the event corresponding to the actual action as an uncontrollable event that 
must occur before the next clock tick, once the forcing event has occurred. 
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requires our supervisor to specify exactly which clock period the event should occur 

in and this makes it very straight forward to translate to a controller. Currently, 

a supervisor could say something like controllable event a is now enabled, and will 

stay enabled for the next three clock cycles, but must occur before the fourth. You 

could potentially force it sooner, but that might cause blocking. Such an ambiguous 

supervisor will be a lot harder to translate to an SD controller. 

In this thesis, we will develop a new property for TDES systems that will address 

the above issues, as well as make our TDES supervisor more consistent with SD 

controllers, making them easy to translate. First, we will provide the preliminaries of 

untimed and timed DES in Chapter 2, which is required to understand the following 

chapters. 

Then in Chapter 3 we will introduce the sampled-data setting based on timed 

DES. The sampled-data setting will be formally defined, and we will develop a new 

property called SD controllability to address the issues we identified above. 

In Chapter 4, we will provide the definition of Moore FSM [17] and a method to 

translate a CS deterministic supervisor (defined in Chapter 3) into a Moore FSM con

troller. We will present both a centralized translation method and a modular method. 

We will then show that they will both produce equivalent output information. 

Then in Chapter 5 we capture the enablement and forcing action of a translated 

controller in the form of a TDES supervisory control map, and show that the closed 

loop behavior of this map and the plant is the same as that of the plant and the 

original TDES supervisor. We also show that our method is robust with respect to 

nonblocking and certain variations in the actual behavior of our physical system. 

In Chapter 6 we will introduce logic predicates and predicate transformers, as well 

as symbolic representation and computation based on [26]. Then we will introduce a 

set of algorithms to verify SD controllability and other properties of interest to us. 

Then in Chapter 7 we will present examples which fail the key conditions in 

this thesis, to help understand the definitions. We will then present a successful 

application example inspired by the untimed Flexible Manufacturing System from 

[11], including the Moore FSM controllers translated from the supervisors developed 

in the example. 

We will close the thesis with our conclusions and a brief discussion of future work. 

Also, in the appendix we will present the input files used for the FSM example 
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given in Chapter 7, as well as the source code for our software tool that we have 

developed that implements the algorithms presented in Chapter 6. The software tool 

makes use of binary decision diagrams (BDD) [8]. 

1.2 Related Work 

Supervisory control of DES with timing information, known as timed DES (TDES), 

was firstly introduced in [5], [6], based on the timed transition model from [19], [20], 

and [21]. The theory added timing information to supervisory control allowing one 

to specify lower and upper time bounds for events. It also introduced a forcing 

technology to ensure certain events occur when we desired. We will use this as the 

basis of our SD supervisory control theory. 

Balemi [2] pointed out that typically, controllable events are part of the supervisor 

implementation, and often can occur whenever we want them to. For simplicity, the 

plant may be modeled such that these events are assumed to only occur at certain 

times. Balemi's plant completeness condition helps ensures that the implementation 

of the supervisor will be consistent with the plant model so that controllable events 

do not occur when the plant model says that they cannot. 

In the sampled-data setting, if the same event occurs once or multiple times in 

the same sampling period, an SD controller will not be able to detect a difference. 

In [3], the authors require that the system has the property that an event cannot be 

generated more than once during a sampling period. The paper also discussed the loss 

of ordering information when events occur in the same sampling period. To handle 

these timing related issues, the author adds a dispatcher to the existing supervisor 

to solve the problems that could occur when event ordering cannot be ignored. The 

model is implemented based on Petri Nets [16, 33] and an algorithm to translate the 

Petri Net implementation into computer language is provided. 

Translating abstract model into a computer understandable form is an interest

ing topic for researchers. In [12], Leduc discusses the modeling and implementation 

of real-life DES problems as well. Theorems for model reduction were created and 

applied to the DES designed for a programmable logic controller (PLC) based man

ufacturing testbed. The author investigated implementing DES as Moore finite state 

machines (FSM) and created an implementation by hand for the testbed. As men-
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tioned earlier, FSM can be converted to other forms of state based logic sequences, 

such as a relay ladder logic program for the testbed. The idea of implementing SD 

controllers as FSM is motivated by this thesis. 

Similarly, [18] also discusses translating DES into PLC programs. The difference 

is that they first convert automata into the Grafcet language, which describes the 

specification of logic controllers. They then translate the Grafcet language into a PLC 

program. Both [12] and [18] uses automated manufacturing testbeds as examples. 

In [9], DES theory is used as a tool to assist programming in the system con

trol area. The authors describe an approach to generate Java code for concurrency 

control automatically. The approach formalizes each individual code portion without 

concurrency control into specifications, builds the DES model, and then generates 

the code with verifications. 

A real world application of DES supervisory control is given in [10], where Petri 

Nets are used to model railway networks and ensure controllability and liveness. 

An important tool to allow supervisory control methods to be applied to larger 

systems, is the use of binary decision diagrams (BDD) [8]. BDD methods have been 

applied to standard DES [32], [27], state tree structures [14], Hierarchical Interface

based Supervisory Control [26], and state based control of TDES [24]. 

When synthesizing controllers there is often a need to consider other components 

in the system, which lower the flexibility and increase the cost of synthesis in changing 

environments. With the I/0 based hierarchical structure from [22], each controller 

can be designed independently, and controllability and nonblocking is retained when 

the controllers are combined. 

However, even if the DES supervisor is nonblocking for the DES plant does not 

mean that the controller implementation is nonblocking as well. To ensure a controller 

is nonblocking, [15] studied several different systems for implementing controllers. 

The author suggested conditions to be satisfied for the implemented controllers to be 

nonblocking. 

Another practical issue in implementing controllers based on DES is communica

tion. In [25], the authors study the communication between modular and decentral

ized supervisors on switch networks. A communication model is then introduced for 

a large distributed controller network where communication delay and collisions are 

a concern. In [31], the authors resolve communication issues by introducing an asyn-
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chronous implementation. The work formalizes the delay between the controller and 

the plant, and defines bounded-delay implementability, in addition to the standard 

controllability and nonblocking properties. 
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Chapter 2 

Discrete-Event Systems 

Preliminaries 

Supervisory control theory provides a framework for the control of discrete-event 

systems (DES), systems that are discrete in space and time. For a detailed exposition 

of DES, see [29]. Below, we present a summary of the terminology that we use in this 

thesis. 

2.1 Algebraic Preliminaries 

2.1.1 Strings 

An alphabet ~ is defined to be a finite set of distinct symbols. A string over ~ is a 

finite sequence of symbols a1a2 .. ak, where ai E ~ for i = 1, 2, .. , k. Given a string 

s = a1a2 .. ak, lsi = k is the length of the string. The string € is called the empty string 

with lEI = 0. Let~* be the set of all finite symbol sequences and define~+ be 

Definition 2.1.1. Let s1, s2 E ~*, where s1 = a1a2··am and s2 = TIT2··Tn· The 
catenation of s1 and s2 is define to be cat : ~* x ~* -+ ~* such that 

cat(sb E) = cat(€, s1) = St = O't0'2··0'm 

cat(s1, s2) = s1s2 = O'I0'2··0'mTIT2··Tn 

11 
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As ls1l = m and ls2l = n, the length of concatenated string is ls1s21 = ls11 + ls2l = 
m+n. 

Definition 2.1.2. Lets, t E :E*. We says is a prefix oft, denoted ass~ t, if 

(:3u E :E*)su = t 

By definition, we can see that a string s E :E* is a prefix of itself, as s ~ s. Also, 

E is a prefix of all strings, as (Vs E :E*)E ~ s. 

2.1.2 Languages 

Definition 2.1.3. Let L ~ :E*. The prefix closure of L, denoted as L, is defined as 

L = {s E :E*I(:Jt E L)s ~ t} 

By definition, we can see that a language L is a subset of the prefix closure of 

itself, i.e. L ~ L. We say a language L ~ :E* is prefix closed if L = L. Let K ~ L. 

We say K is £-closed if K = K n L. 

Definition 2.1.4. Let L ~ :E*. The eligibility operator, Elig£ : :E* --+ Pwr(:E), is 

defined for s E :E* as, 

2.1.3 N erode Equivalence Relation 

Definition 2.1.5. Let X be a nonempty set. Let E ~X x X be a binary relation 

on X. The relation E is an equivalence relation on X if 

1. (Vx E X)xEx (reflexivity) 

2. (Vx, x' E X)xEx' ===? x' Ex (symmetry) 

3. (Vx, x', x" E X)xEx' & x' Ex" ===? xEx" (transitivity) 1 

1We use'&' to stand for logical AND here to avoid confusion with later definitions in this section. 
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Here we are using standard infix notation, where we use xEx' to represent the 

ordered pair (x, x') E E. For xEx', we may also write x = x'(modE). 

For x EX, let [x]E ~X represent the subset of elements that are equivalent mod 

E to x. That is 

[x]E := { x' E Xlx' Ex} 

If relation E is understood by the context, we will just write [x]. We will also refer 

to [x] as the coset or the equivalence class of x with respect to E. 

Let s, t E 1.':*, and L ~ 1.':*. We say s and t are Nerode equivalent with respect to 

language L, if and only if they can be extended by any string u E 1.':* such that the 

two extended strings are either both in Lor neither in L. In this case, we writes= t 
(mod L) or s =L t. The formal definition is given below. 

Definition 2.1.6. Let L ~ E*. Lets, tEE*. 

s =L tors= t(modL) 

iff 

(Vu E E*)su E L ¢::::} tu E L 

Essentially, if strings sand tare equivalent mod L, then they can both be extended 

in the same way by right concatenation. 

Example 2.1. Let E = {a,,B,')'}, L = {E,a,,B,a')'*,,B'I'*}, then a =L ,B. 

2.2 Discrete Event Systems 

2.2.1 Generator 

We model DES formally as a generator G, which is a five tuple 

G = (Q, 1.':, 8, qo, Qm) 

where 

Q is the state set. 
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~ is the finite set of distinct symbols representing event labels. We par

tition ~ into two parts 

where 

~c is the set of controllable events, which can be enabled or 

disabled by an external agent. A controllable event can only 

occur when it is enabled. 

~u is the set of uncontrollable events, which cannot be disabled 

by any external agent. Once the DES has reached a state 

where an uncontrollable event can occur, the event cannot 

be prevented. 

8: Q x ~-+- Q is the (partial) transition function where each transition is 

a tuple (q, CJ, q'), where 8(q, CJ) = q'. We refer to q as the exit (source) 

state, and q' as the entrance (destination) state. We write 8 ( q, CJ)! if 

8 ( q, CJ) is defined. 

We can extend the transition function to 8 : Q x ~* -+- Q as 

8 ( q, E) = q for q E Q. 
8(q,sCJ) = 8(8(q,s),CJ) for s E ~*, CJ E ~'and q E Q. 

as long as q' = 8(q, s)! and 8(q', CJ)!. 

q0 E Q is the initial state. 

Qm ~ Q is the subset of marked states. 

We can extend the transition function to 8 : Q x ~* -+- Q as 

8 ( q, E) = q for q E Q. 

8(q,sCJ) = 8(8(q,s),CJ) for s E ~*, CJ E ~'and q E Q. 

as long as q' = 8 ( q, s)! and 8 ( q', CJ)!. 

Example 2.2. Let G = (Q, ~' 8, q0 , Qm) be the DES shown in Figure 2.1. By con

vention, a controllable event is graphically represented by a slash across its transition 
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arrow. Marked states are represented by a black dot. The state pointed at by an arrow 

with no exit state, is the initial state. For the DES shown we have: 

Q ={I, W,D}; 

'E = 'Ec U 'Eu, where 'Ec = {a, J.L} and 'Eu = {,8, ..\}; 

8 ={(I, a, W), (W, ,8, I), (W, ..\,D), (D, J.L, I)}; 

Qo =I; Qm ={I} 

mach 

~ I 
Event 

a = start 
f3 = finish 
A. = break 
],.1 = repa1r 

w D 

Figure 2.1: An Example DES 

Given DES G = (Q, 'E, 8, q0 , Qm), we have the following definitions. 

Definition 2.2.1. A state q E Q is reachable if 

(::Js E 'E*)8(qo, s)! and q = 8(qo, s) 

Definition 2.2.2. A state q E Q is coreachable if 

(:3s E 'E*)8(q, s)! and 8(q, s) E Qm 

To simplify the following discussions, we will always assume a given DES is reach

able unless explicitly stated otherwise. 

Definition 2.2.3. The closed behavior of DES G is 

L(G) = {s E 'E*j8(qo, s)!} 
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Definition 2.2.4. The marked behavior of DES G is 

Clearly, Lm(G) ~ L(G). 

Definition 2.2.5. The control action for some q E Q for DES G is defined to be 

a mapping ( : Q --+- Pwr(:Ec) that takes q and returns a set of controllable events 

enabled at q. 

Definition 2.2.6. DES G is said to be nonblocking if every reachable state is also 

coreachable. This can be expressed as 

L(G) = Lm(G) 

Definition 2.2.7. Let G = (Q, :E, 8, q0 , Qm) and let>. be an equivalence relation on 

Q such that for q, q' E Q, q q' mod >. if and only if 

1. (Vs E :E*)8(q, s)! ~ 8(q', s)! 

2. (Vs E :E*)[8(q, s)! & 8(q, s) E Qm] ~ [8(q', s)! & 8(q', s) E Qm] 

Basically, for states q and q' such that q = q' mod >., they have the same future with 

respect to L(G) and Lm(G). Based on this, for strings E L(G), a state q = 8(q0 , s) 

represents all strings in :E* that are equivalent to s mod L( G) and mod Lm (G). 

Definition 2.2.8. DES G is said to be minimal, if 

(Vq, q' E Q)q = q' (mod>.) ~ q = q' 

It says that for all states q, q' E Q, if q is equivalent to q' mod>., then q and q' are 

the same state. DES G is minimal if it does not have two distinct states in Q that 

are >. equivalent. 
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2.2.2 Synchronization and Product DES 

In real world, it is often easier to model a system as several smaller components. For 

a DES plant, we use the synchronous product operator to combine the individual DES 

components instead of modeling the whole system at once. We first need to define 

the natural projection operator and its inverse. 

Let G = (Q, ~' 8, q0 , Qm) be a DES. Take ~o ~ ~ to be the set of observable 

events through some filtering channel of the events generated by G. 

Definition 2.2.9. The natural projection P : ~* ---+ ~~ is defined as follows. For 

s E ~*,a E ~' 

P(E) = € 

P(u) = {; 
if a tt ~o 
if a E ~o 

P(sa) = P(s)P(a) 

Example 2.3. For~= {o:,,B,/}, ~o = {o:,,B} and s = a,Ba,,Ba, 

P(s) = P(a)P(,B)P(a)P(T)P(,B)P(a) = a,Ba,Ba 

Let L ~ ~*. We define P(L) ~~~as an extension of the natural projection as 

P(L) := {P(s)is E £} 

We also define its inverse image p-l : Pwr(~~) ---+ Pwr(~*) such that, for H ~ ~~ 

p-1(H) := {s E ~*IP(s) E H} 

Example 2.4. For~ = {o:,,B,/,JL}, ~o = {o:,,B} and s0 = a,Ba,Ba, the inverse 

projection is 
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Definition 2.2.10. For i = 1, 2, let Li ~ r;;, r; = r;1 U r;2 and Pt : r;* ~ r;; be 

natural projections. The synchronous product of L 1 and L2 is defined to be 

L1iiL2 = p1-1(L1) n p2-1(L2) 

= {s E r;*ig(s) E L1&P2(s) E L2} 

Definition 2.2.11. Let G1 = (Qb r;, 81, Qo,b Qm,l) and G2 = (Q2, r;, 82, Qo,2, Qm,2) 

be two DES defined over the same event set r;. The product of two DES is defined as 

By Definition 2.2.11, we have L(G1 x G 2) = L(G1) n L(G2) and Lm(Gl x G2) = 

Lm(GI) n Lm(G2) 

Definition 2.2.12. The meet of G 1 and G2, or meet(G1, G2), is defined to be the 

reachable subautomaton of the product DES G 1 x G 2 . 

Definition 2.2.13. The synchronous product of DES Gi = (Qi, r;i, 8i, Qoi' QmJ (i = 

1, 2), denoted G 1IIG2, is defined to be a reachable DES G with event set r; = r;1 ur;2 
and properties: 

Definition 2.2.14. Let G be a DES defined over r; and r;' be another set of events 

such that r; n r;' = 0. The selfioop operation on G is defined as 

selfloop(G, r;') = (Q, r; U r;', 8', q0 , Qm) 

where 8' : Q x (r; U r;') ~ Q is a partial function defined as 

{ 

8(q, a-) a- E r;, 8(q, a-)! 

8'(q, a-) := q a- E r;' 

undefined otherwise 
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For DES G~ (i = 1, 2) defined over event set L:i, we will always assume that the 

synchronous product operator is implemented by first extending each DES to be over 

L: by adding selfloops, and then using the meet operator. More formally, we take 

L: = L:1 UL:2, and Gi = selfloop(G~, L:- L:i)· We then have G~IIG~ = meet(Gt, G2). 

In the algorithms we develop in this thesis, we will always assume all DES are 

combined with the product DES operator. If a portion of the system is actually 

combined together using the synchronous product operator as is commonly done for 

plant components, we will first add selfloops as above, and then use these new DES 

from then on in our algorithms. 

2.2.3 Controllability and Supervision 

We will take language K to represent the desired safe behavior of our plant represented 

by DES G = (Q, I:, 8, q0 , Qm)· We want to make sure that the closed loop behavior 

of the system - that is the behavior of plant G under control of K - is a subset of K. 

As we mentioned earlier, our system's event set L: is partitioned into controllable 

and uncontrollable events. If an undesirable controllable event is possible in G that 

will cause the system to leave the behavior represented by K, we disable it and prevent 

it from occurring. We cannot do this with an uncontrollable event, so we need to make 

sure the plant never reaches a state where it can leave the desired behavior by an 

uncontrollable event. We now express this formally below. 

Definition 2.2.15. K is said to be controllable with respect to G if 

(Vs E K)(Va E L:u)sa E L(G) ~ sa E K 

We typically give this definition in the form of KL:u n L( G) ~ K where KL:u 

denotes the string sa for s E K and a E L:u. In other words, if the plant reaches a 

state where uncontrollable event a is possible, then a must also be accepted by K. 

By definition, 0, L(G) and L:* are all controllable with respect to G. 

Another way to express this definition is 

which is used in Point i of Definition 3.2.1 in Section 3.2. 
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As we prefer to work with finite state automata than typically infinite languages, 

we want to be able to express K as a DES supervisor. 

Definition 2.2.16. Let G = (Q, ~' 8, q0 , Qm) be a DES. Let K ~ ~*. We say G 

represents K if 

K = Lm(G) and K = L(G) 

Definition 2.2.17. Let S - (X,~'~' X 0 , Xm) be a DES. Let K C ~*, we say S 

implements K, if 

K = Lm(S) n Lm(G) and K = L(S) n L(G) 

Recall that ~ = ~c U ~u, where ~c is a set of controllable events which can be 

enabled or disabled by external agents; and ~u is a set of uncontrollable events which 

cannot be disabled. We refer to such an external agent as a supervisor, which will 

formally define shortly. 

Definition 2.2.18. Let L(S) be the language represented by DES S. We sayS is a 

supervisor for G, if 

1. L(S) is controllable with respect to G, and 

2. Lm(S) n Lm(G) = L(S) n L(G) 

For convenience, we sayS is controllable for G if L(S) is controllable with respect 

to G. 

We can think of a supervisorS= (X,~'~' X 0 , Xm) as a state machine that tracks 

all the events generated by plant G. Together with current state x E X as source 

state, it takes each event as an input to its transition function~' then moves to the 

destination state x' E X. Events in G are only allowed to occur when the event is 

not disabled inS. We refer to the closed loop behavior of the system as the behavior 

of our plant G under the control of supervisor S. This is typically represented as 

the meet of G and S. If we modeled the system only using the synchronous product, 

then this would be represented as G II S. 
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As noted by Balemi in [2], controllable events tend to be events fully under the 

control of our supervisor's implementation. They may be a software function we call, 

an output we set to true, or a message we send. That means that we can make these 

events occur whenever we want. It is not unusual that a plant might be modeled 

such that these events are suppose to only occur under certain situations. This 

might be for flexibility (some implementations have these restrictions, for example) 

or to make the system easier to model or understand. However, the reality for some 

supervisor implementations is that these events could occur even when the plant said 

they cannot. We refer to such situations as illegal transitions. The requirement is 

formally defined in [2] as follows. 

Definition 2.2.19. A plant G is complete for its supervisorS if 

(Vs E L(G) n L(S))(Vu E ~c)su E L(S) ~ so- E L(G) 

The definition states that, at each state in plant G, every controllable event 

enabled by supervisor S must be accepted by G as well. This condition can be seen 

as a dual to the definition of a supervisor S being controllable for plant G. This 

definition will be very useful for implementing DES supervisors, as it says that they 

do not require additional supplementary information from the plant to decide when 

a controllable event can occur and not violate the plant model. 

2.3 Timed Discrete Event Systems 

So far we have only discussed untimed DES. As we wish to use a richer modeling 

framework that includes timing requirements of our system, we will now discuss Timed 

DES (TDES) introduced by Brandin et al [5] [6]. 

TDES extends untimed DES theory by adding a new tick event, corresponding to 

the tick of a global clock. The event set of a TDES contains the tick event as well 

as other non-tick events called activity events (~act)· The occurrence of a tick event 

provides us with a concept of time passing, allowing us to model upper and lower 

time bounds for the occurrence of activity events. A lower time bound for a given 

activity event can be modeled as requiring a certain number of tick events to first 

occur before the activity event is eligible. Once an activity event is eligible to occur 
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in the TDES and the desired number of tick events have occurred, we can model an 

upper bound for the event by not allowing a tick event to occur until either the event 

has occurred, or another activity event has occur such that the first event is no longer 

eligible. 

The addition of a tick event also allows us to introduce a new type of events called 

forcible events (:E for), which we guarantee to occur and preempt the next clock tick. 

This means that now we cannot only prevent some events (referred to as prohibitable 

events (:Ehib) in TDES terminology) from occurring by disabling them, but we can 

also choose to have certain events occur before the next clock tick. As a convention, 

we sometimes refer to tick as T for brevity. 

2.3.1 Basic Structure 

We formally define a TDES as the tuple 

where, 

Q is the state set 

:E = :Eact (J { T} is the set of all events, including activity events and the 

tick event. 

8 : Q x :E -+ Q is the (partial) transition function. 

q0 E Q is the initial state. 

Qm ~· Q is the set of marked states. 

For convenience, we extend 8 to function 8 : Q x :E* --+ Q in the same way as we 

did in the untimed DES definition. 

2.3.2 Controllability and Supervision 

Control action for timed DES is achieved in an analogous fashion as that of untimed 

DES, by disabling controllable events. As for untimed DES, we also partition our 

event set :E into controllable and uncontrollable events. The set of controllable events 

is defined to be 
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where ~hib ~ ~act the set of activity events that can disabled by an external agents. 

These event are referred to as prohibitable events to distinguish them from control

lable events that include the tick event. As we will see when we define controllability 

in the TDES setting, we will use disabling the tick event by the supervisor to model 

forcing an event. A forcible event is an event in the system that we can make occur 

before the next clock tick, assuming it is not first preempted by another event. The 

set of uncontrollable events for G is then defined to be 

In Section 2.2.3, we introduced Balemi's concept of completeness of a plant for 

a given supervisor. Unfortunately, that definition was given in terms of controllable 

events, which includes the tick event in TDES. As we are only concerned about the 

occurrence of activity events, we need to define a version of this definition for TDES. 

When discussing this concept, we will not specify whether or not we mean the timed 

or untimed version, as this will be clear by the context. 

Definition 2.3.1. Let TDES G be a plant and TDES S be a supervisor. G is TDES 

complete for S if 

(Vs E L(G) n L(S))(Vu E ~hib)su E L(S) ==? suE L(G) 

We now need to add a technical condition that we most enforce to ensure that our 

TDES does not allow the physically unrealistic situation where a tick event could be 

preempted indefinitely by the continued execution of an activity event loop within a 

given fixed unit time. Formally, a TDES is said to have an activity loop if it satisfies 

the following definition. 

Definition 2.3.2. TDES G = (Q, ~' t5, q0 , Qm) has an activity loop if 

(3q E Q)(3s E ~~ct)t5(q, s) = q 

We thus require that a TDES be activity loop free (ALF). We can formalize the 

ALF concept as defined below. 
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Definition 2.3.3. TDES G = (Q, ~' 8, q0 , Qm) is activity loop free if 

(Vq E Qreach)(Vs E ~~ct)8(q, s) =/= q 

We only look at states that are reachable (i.e. in Qreach), because we do not 

care about unreachable states as they do not contribute to the automaton's closed 

and marked behavior. These unreachable activity loops can be safely ignored. An 

example that fails the ALF property is shown in Figure 2.2 where the af3 loop could 

indefinitely preempt the tick event from occurring. 

Figure 2.2: An Example Failing ALF Property 

We will not require that supervisors be ALF, as they may contain self-loops that 

are not possible in the plant. We will instead require that the system's closed loop 

behavior (typically the meet of plant G and supervisorS) be ALF. 

For the FSM translation of individual supervisors in Section 4.2, we need a more 

specific definition as follows. 

Definition 2.3.4. Let G = (Q, ~' 8, q0 , Qm) be a TDES, and let G' be G with all 

activity event selfioops removed. G is non-selfioop activity loop free if G' is ALF. 

Essentially, if we remove the selfioops of any activity events in the TDES, the rest .. ,. ""'-

of the TDES must be ALF. This will be a key definition that will allow us to translate 

the TDES to a Moore finite state machine. 

The proposition below states that if individual DES are all ALF, it implies that 

the synchronous product of these DES is also ALF. This means that we can simply 

check the individual DES. 

Proposition 2.1. For TDES G 1 = (QI, ~1, 81, Qo,b Qm,1 ) and G2 = (Q2, ~2, 82, Qo,2, Qm,2), 
if G 1 and G2 are each ALF, then their synchronous product G = G1 IIG2, is ALF. 
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Proof Let G1 = (Q11 ~11811 Qo,b Qm,d and G2 = (Q2, ~2, 82, Qo,2, Qm,2) be two TDES 
and let H : ~*--+ ~i and P2 : ~*--+ ~2 be natural projections. 

Define ~act,i =~act n ~i, i = 1, 2. 

By ALF Definition 2.3.3, fori= 1, 2 

where Qreach,i is the set of reachable states for Gi 

Let G = G1IIG2 = (Q, ~' 8, Qo, Qm) 
Must show 

(Vq E Qreach)(Vs E ~~ct)8(q, s) =f q 

We will use proof by contradiction. Assume 

(3q E Qreach)(3s' E ~;1d)8(q, s') = q 

Let q = (qb Q2) E Qreach be this state and let s' E ~;1ct such that 8(q, s') = q. 

We know that q is a reachable state if and only if q1 E Q1 and q2 E Q2 are 

reachable states in G 1 and G 2 , respectively, by Definition of the II operator. We thus 

have 

8(q, s') = q ==:} 8((qll Q2), s') = (q11 Q2) 

==:} 8((qb q2), s') = (8I(Qb H(s')), 82(q2, P2(s'))) 

This implies 

81(qb P1(s')) = Q1 

82(Q2, P2(s')) = Q2 

by Definition of II-

Ass' E ~!:t we thus haves' =f E. As~= ~1 U ~2 , it follows that either P1(s') =f E or 

P2(s') =f E This implies that either G 1 or G 2 is not ALF, which contradicts(*). 

Therefore it must be that 

(Vq E Qreach)(Vs E ~;1d)8(q, s) =f q 

0 

\ 
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The above proposition can be applied to two TDES combined using the meet 

operator as meet is a special case of the synchronous product. 

We next present a proposition that says that to ensure the synchronous product 

is ALF, it is sufficient that only one of the two TDES is ALF, as long as the event 

set of the ALF TDES contains all of the events in the event set of the second TDES. 

It means that if plant is over ~ and the supervisor introduces no new events, then we 

can just check if the plant is ALF. As indicated by Proposition 2.1, we can check that 

the plant is ALF by checking if each individual plant component is ALF. Therefore 

an ALF algorithm does not have to check that the closed loop system is ALF, but 

can check that the event set of the plant is a superset of the supervisor's event set, 

then do an ALF check on each individual TDES that makes up the plant. If the check 

passes, then we are done. Otherwise, we do an ALF check on the entire system. 

Proposition 2.2~ Let G1 = (Qr, ~r, 8r, Qo,r, Qm,1) and G2 = (Q2, ~2, 82, Qo,2, Qm,2) 

be two TDES. If G1 is ALF and ~1 :2 ~2 , then G1IIG2 is also ALF. 

Proof. Assume G 1 is ALF and ~1 :2 ~2 . (1) 

Let G = G1IIG2 = (Q, ~' 8, Q0 , Qm) with ~ = ~1 U ~2 and Pi ~* --+ ~; for 

i = 1, 2. Must show G is ALF. 

We will do so by proof of contradiction. 

Assume G is not ALF, then 

(3q E Qreach)(3s' E ~+act)8(q, s') = q 

Let q = (q1, Q2) E Qreach, and s' E ~;tct such that 8(q, s') = q. (2) 
We first note that q is reachable in G, which implies q1 is reachable in G 1 and q2 

is reachable in G2. 

We next note that as ~1 :2 ~2 , we have ~ = ~1 U ~2 = ~1 . This implies that 

P1-
1 L(G1) = L(G1). (3) 
From (2), we have 

8(q, s') = q ==} 8((q1, Q2), s') = (qr, Q2) 

==} 81(qr, P1(s')) = Q1 

This contradicts (1) as it implies G 1 is not ALF. 

We thus conclude that G must be ALF. 

by (3) 

D 
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We are also want to make sure that the plant is not modeled in such a way that 

our closed loop system could reach a state where no more tick events are possible, as 

this "stopping the clock" would be physically unrealistic. To help prevent this, we 

will require that our plant TDES have proper time behavior, as defined by 'Kai Wong 1 

et al. (28]. 

Definition 2.3.5. TDES G has a proper time behavior if 

(\f s E L( G) )EligL(G) ( s) n ~u = 0 ==} T E EligL(G) ( s) 

This definition can be rewritten as 

(\fq E Qreach)(3a E ~u U {T})o(q,a)! 

In other words, this TDES must guarantee that at all of its reachable states, either 

a tick event or an uncontrollable event must be possible. This serves two purposes. 

Combined with TDES G being ALF and having a finite state space, this ensures that 

we call always reach a state where a tick is possible after at most a finite number 

of activity events. We prove this shortly in Proposition 2.3. This condition will 

also ensure we do not stop the clock when we combine our plant with a controllable 

supervisor. An example that fails the proper time behavior property is shown in 

Figure 2.3 where after the first tick event, neither an uncontrollable event or a tick 

are possible, only the prohibitable event {3. 

__:_.0 

Figure 2.3: An Example Failing the Proper Time Behavior Property 

Consider the case where we have a reachable state where tick was ineligible, but 

only controllable events were possible. If the supervisor disabled these controllable 

events, there would now be no events possible at all. Proper time behavior ensures 

that if tick was not possible at this state in the plant, there would be an uncontrollable 

event possible, even if all the controllable events were disabled. The restriction of 

proper time behavior applies only to plant TDES. It does not apply to supervisor 

TDES or the meet of the plant and supervisor (i.e. the closed loop behavior of the 

system). 
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If a TDES G has a finite state space, is activity loop free and has proper time 

behavior, then we expect that at any reachable state, we can always do a tick event 

after at most a finite number of activity events. In other words, we will never "stop 

the clock." The following proposition shows that this is indeed the case. 

Proposition 2.3. If a TDES G = (Q, :E, 8, q0 , Qm) has a finite statespace, is activity 

loop free and has proper time behavior, then 

(\fq E Qreach)(3s E :E*)8(q, sr)! 

where Qreach is the set of reachable states. 

Proof Assume that G has a finite statespace, is activity loop free, and has proper 

time behavior 

Let q E Qreach· 
Must show implies (:3s E :E*)8(q, sr)! 

We first note that as G has a finite statespace and is non-empty, there exists 

n E {1, 2, ... } such that n = IQI. 
As G is ALF and has n states, it follows that 

(:3s E :E~ct)lsl :::; n- 1 

(:3q' E Qreach)8(q, s) = q' 

(\fa E :Eact)8(q', a) J 

and 

and 

(1) 

The above follows from the fact that starting at q, we can do at most n- 1 activity 

event transitions before we have visited all n states. At this point, there must be no 

activity event transition or we would have to visit a state twice, creating an activity 

loop and failing the ALF definition. 

As :Eu ~ :Eact, (1) asserts that there are no uncontrollable events at state q'. It 

thus follows that 8 ( q', T)!) as G has proper time behavior. 

We thus have: 

8(q, sr)! 

as required. 0 
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We now present the controllability definition for timed DES. Normally, we drop 

the "TDES" and just say "controllable" as the meaning is clear from the context. 

Definition 2.3.6. We define the arbitrary language K ~ L(G) to be TDES control

lable with respect to G if, 

if EligK(s) n L-tor = 0 
if EligK(s) n L,for =1- 0 

Definition 2.3.6 says that a K must accept an uncontrollable event if the event 

is possible in the plant, and it must accept a tick event if it is possible in the plant, 

unless there exists an eligible forcible event that can preempt the tick. 

Note that the closed and marked behavior of a TDES is defined in the same way as 

for an untimed DES. A TDES is said to be nonblocking if Definition 2.2.6 is satisfied. 

Proposition 2.4. If TDES plant G and TDES supervisor S both have finite states

paces, G has proper time behavior, Gel = meet(G, S) = (Q, L., ~' q0 , Qm) is ALF, 

and S is controllable for G, then 

(Vq E Qreach)(3s E L-*)~(q, ST)! 

Proof Assume: 

• G and S have finite statespaces 

• G has proper time behavior 

• Gel is ALF 

• S is controllable for G 

Let q E Qreach· Must show (3s E L-*)~(q, ST)! 

As G and S have finite statespaces, it follows from Definition 2.2.12 of the meet 

operator, that Gel has a finite statespace. Let n = IQI. 
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As Gel is ALF and has n states, it follows that 

(3s E ~~ct)lsl :S n- 1 

(3q' E Qreach)b(q,s) = q' 

(Vo- E ~act)b( q', 0") J 

and 

and 

(1) 

The above follows from the fact that starting at q, we can do at most n- 1 activity 

event transitions before we have visited all n states. At this point, there must be no 

more activity event transitions or we would have to visit a state twice, creating an 

activity loop and failing the ALF definition. 

We now need to show tick is defined at q'. From (1), we know that there are no 

untimed events possible in Gel at q' as ~u ~ ~act· As S is controllable for G, this 

implies there are no untimed events possible at the corresponding state in G. As G 

has proper time behavior, this implies that T is possible at this state in G. As (1) 

asserts there are no activity event at q' and thus no forcible events, S must accept 

that tick event as S is controllable for G. 

==} b(q', T)! 

==? b(q, ST)! 

0 



Chapter 3 

Sampled-Data Systems 

In this thesis, we will focus on implementing our TDES supervisors as sample-data 

(SD) controllers. An SD controller is driven by a periodic clock and sees the system 

as a series of inputs and outputs. On each clock edge, it samples its inputs, changes 

states, and updates its outputs. For simplicity, we will assume inputs and outputs of 

an FSM can only take the value of true or false. 

When we are using an SD controller to manage a given system, we associate an 

input with each event, and an output with each controllable event. We consider an 

event has occurred when its corresponding input has gone true during a given clock 

period. We consider a controllable event to be enabled when its corresponding output 

has been set true by the controller, disabled otherwise. 

As mentioned above, an SD controller samples the value of its inputs on each clock 

edge, and uses this value to decide what its next internal state will be. This means 

the SD controller knows nothing about its inputs until the clock edge, and then all it 

learns is whether a given input is true or false, signifying that the corresponding event 

has occurred sometime in the clock period that just ended. This means that for the 

given clock period, all information about event ordering (which event occurred first 

etc) is lost, as well as how often a given event occurred if it has occurred more than 

once. The only ordering information that remains is which sampling period (clock 

period) a given event occurred in. 

Another important aspect of an SD controller is that it only changes state on a 

clock edge, and the value of its outputs are a function of its current state. That means 

31 
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its outputs can only change at a clock edge, and then must stay constant for the rest 

of the clock period. 

In this chapter, we will define the sampled-data setting formally, and develop a 

new condition to address the issues we identified in Section 1.1. 

We will be making a few assumptions about the systems we work with. They are: 

• The set of prohibitable events is exactly equal to the set of forcible events for 

our system. This is a reasonable assumption that will greatly simplify things. 

As discussed in the introduction, this is basically a matter of how the system is 

modeled. 

• Our SD controllers will be implemented centrally with a common clock, such 

that they all sample inputs, and update outputs at the same time. Furthermore, 

their source of inputs and outputs is common such that their outputs exit to the 

system at the same place, and their inputs enter from the system at the same 

place. For their inputs, this means they will always all receive the same results 

from the sampling inputs. We will never have the case that one controller sees 

input a go true in a given sampling period, while another does not. 

• When a prohibitable event is enabled, we will interpret this to mean we should 

force the event once in the current clock period. Even if we could cause it to 

occur twice in one clock period, we will not do that. 

• To partially address timing issues, we will assume an event has occurred when 

its input to the controllers goes true. One exception is if the input goes true 

so close to a clock edge that it is missed and shows up in the next sampling 

period. In this case, the event is considered to have occurred at the start of the 

next sampling period. This should be taken into account in the modeling of the 

system. 

• We are also assuming that when we decide to force an event in a given sampling 

period, not only will the event physically occur in that sampling period, but 

it will reach our controller's inputs in time to be detected as occurring in that 

sampling period, and never in the following one. It is up to the designer and 
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user of this theory to make sure that the system they apply it to satisfies these 

assumptions. 

• The input signal should be of an appropriate length so that it will not be missed 

by the SD controllers (i.e. if its pulse width is shorter than the clock period), nor 

should it be so long that it is seen at multiple clock edges, unless it is suppose 

to represent that number of sequential occurrences. For example, if the input is 

true for two clock edges in a row, it will be considered to have occurred twice, 

once per clock period. It is the designers responsibility to make sure that the 

inputs are properly conditioned to ensure this. 

3.1 Sampling Inputs 

To make the TDES theory work with SD controllers, we identify a tick event occurring 

with the clock edge that the SD controller uses for sampling and state change. This 

means for a TDES Gover event set~' the strings an SD controller can observe from 

the closed behavior of G are strings ending with a tick and the empty string, €. We 

will refer to such strings as sampled strings. The reason the empty string is included 

is that it represents the initial state of the system, which is usually known. Note also 

that a non-empty sampled string may contain one or more tick events in addition to 

the tick event at the end of the string. 

Definition 3.1.1. Given a event set~' the set of sampled strings is denoted by Lsamp 

and is define as 

Lsamp = ~*.T U {€} 

As an SD controller will change from state at each clock edge (tick occurring), the 

next state of the SD controller will thus be determined by the strings containing a 

single tick at the end that are possible in the system immediately after the last tick 

event that brought us to our current state. We will refer to such strings as concurrent 

strings, defined as below. Essentially, an SD controller starts at its initial, or reset 

state (corresponding to the empty string), and then transitions from state to state as 

concurrent strings occur in the corresponding TDES. 
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Definition 3.1.2. Given an event set L:, we denote the set of concurrent strings as 

Leone, defined as 

Leone = L::et· tick C Lsamp 

Obviously, Leone is a strict subset of Lsamp since the empty string is not found in 

Leone· 

Next, we want to capture the idea that an SD controller cannot tell the difference 

between two nonidentical concurrent strings if they contain exactly the same activity 

events but in a different order, and/ or one or more event have a different number of 

occurrences. For example, strings af3r, f3ar and af3ar would all appear the same 

to an SD controller. We now give the definition of the occurrence operator. It 

takes a string and returns the set of events (the occurrence image) that make up the 

string. Essentially, if two concurrent strings have the same occurrence image, they 

are indistinguishable to an SD controller. 

Definition 3.1.3. For s E L:*, the occurrence operator is a function Occu : L:* ----+ 

Pwr(L:) defined as below 

Occu(s) := {o- E L: Is E L:*.o-.L:*} 

As an SD controller only gets information about the system it is controlling at 

sampling instances (ticks), sampled strings represent observable points in the system. 

Considering a TDES S = (X, L:, ~' X 0 , Xm), states reached by sampling strings rep

resents states in S that are at least partially observable. We refer to such states as 

sampling states, and define them formally below. 

Definition 3.1.4. A state x E X from TDES S = (X, L:, ~' X 0 , Xm), is a sampling 

state for S if 

(3s E L(S) n Lsamp) x = ~(x0 , s) 

We refer to Xsamp s;;; X as the set of sampling states for S. Note that since 

t E Lsamp' X 0 E Xsamp by definition. In other words, the initial state is always 

observable at least once. It is worth noting that their could exist strings in L(S) that 

take us to a sampled state x, but the strings are not sampled strings. These do not 
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represent observable points, and means that a given sampled state may not always 

be observable relative to L(S). As far as an SD controller is concerned, the system it 

is observing starts in its initial state, and then goes from sampled state to sampled 

state via concurrent strings. 

If we wished to convert a TDES S into an SD controller, we make the initial state 

of S the start state of the SD controller. We would then determine which concurrent 

strings are possible from this state. The sampled states of S reached by these strings 

will become states of the controller, and the occurrence image of the concurrent strings 

would define our next state conditions. 

Our translation has a problem if we have two concurrent strings with the same 

occurrence image, but that take us to different states of S. This would mean our 

SD controller would be nondeterministic. To prevent this, we introduce the concept 

of CS deterministic, stated formally below. In essence, it requires that if the two 

concurrent strings possible at a sampled state in S have the same occurrence image, 

they take us to the same next state inS. It's possible that the two strings could take 

us to two different states, but the states are A-equivalent. If we determine that the 

strings satisfy the nerode equivalence portion of the requirement, but do not take us 

to the same state, we can simply merge these states inS as they are equivalent. Note 

that we do not require that S be minimal, just minimal with respect to the states 

we care about which is a cheaper condition to check. The CS deterministic definition 

will also be useful in making sure a given TDES has the correct structure such that 

we can represent its sampled-data behavior. 

Definition 3.1.5. A TDES S = (X,~'~' X 0 , Xm) is concurrent string deterministic 

or CS deterministic, if 

('is E L(S) n Lsamp)('is', s" E Leone) 

[ss', ss" E L(S) 1\ Occu(s') = Occu(s")] ===* 

[ss' =L(S) ss" 1\ ss' =Lm(S) ss" 1\ ~(x0 , ss') = ~(xo, ss")] 

It is worth noting that SD controllers are concerned with enabling and forcing 

prohibitable events, and not with marking strings. All an SD controller cares about 

is that two strings have the same future with respect to the system's closed behavior. 
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Following Definition 3.1.5 will ensure our controller is deterministic, but we may end 

up with some redundant states that we can later minimize using standard digital logic 

techniques [7] for synchronous finite state machines. 

For CS deterministic TDES, we now wish to define some of the tools we will need 

to express the sampled-data behavior of a TDES. This will be useful when we want to 

talk about the behavior of a plant under the control of an SD controller, and compare 

it to the TDES behavior of the plant under the control of its TDES supervisor. The 

first thing we need to do is define for a given TDES, a next sampling state function. 

This will represent how a TDES will move from sampling state to sampling state via 

concurrent strings. 

Definition 3.1.6. For the CS deterministic TI:)ES--8 = (X,~'~' X 0 , Xm), we define 

the partial function, next sampling state function 

~ : Xsamp X Pwr(~act) ---+ Xsamp 

as follows. For x E Xsamp and~' s;;; ~act, 

~(x, ~') := { ~(x, s) 
undefined 

if (::Is E Lcanc)~(x, s)! & Occu(s) n ~act=~' 
otherwise 

For the special case~' = 0, ~(x, ~') can still be defined according to the definition. 

It just returns a sampling state x' = ~(x, T), which means that no event except a tick 

has occurred during the last sampling period. In analogy to the DES transition 

function, we write ~(x, ~')! if ~(x, ~') is defined. 

As a precondition for the definition of ~' we require that the TDES be CS de

terministic. This means that two concurrent strings with the same occurrence image 

will take us to exactly the same state in S. For CS deterministic TDES, this means 

that ~ is well defined. 

To see how a non CS deterministic TDES would cause problems, consider Figure 

3.1. For this example, let a, f3 E ~act and Xn, x', x" E Xsamp for some TDES S = 

(X,~'~' X 0 , Xm)· In Figure 3.1, part (a) shows the only portion of S that is not 

minimized, such that s' = a(3T and s" = (3aT end up at two different states, x' and 

x" respectively. But (b) shows the minimized version where x' and x" have been 
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equivalent states 

merged state 

(a) on-minimized supervisor (b) minimized supervisor 

Figure 3.1: Nonminimal Example 

merge into a single state X. Clearly in (a), Occu(s') n ~act = Occu(s") n ~act but 

~(xn, s') i= ~(xn, s"), which would mean that 8 is not well-defined. However in (b), 

everything is fine. Another problem would be if x' and x" were not ..\-equivalent. 

This would mean that we cannot merge the two states, and again 8 would not be well 

defined. 

3.2 SD Controllable Languages 

So far, we have required that our TDES system have a finite statespace, be ALF 

and nonblocking, that our plant have proper time behavior and be complete for our 

supervisor. and that our supervisor be controllable for our plant. However, these 

conditions are not sufficient to address the concerns that we raised in Section 1.1. In 

particular, we saw that even though the above conditions are met, our actual system 

behavior under the control of the corresponding SD controller could block, violate 

our control law, or even exhibit behavior not contained in our plant model. 

To address these issues, we now introduce a new concept called SD controllable 

languages, defined below. Let G = (Q, ~' 8, q0 , Qm) be a TDES where~= ~c U ~u for 

controllable and uncontrollable events. Of course, for a TDES system, ~c = ~hibU{ T }. 

As we will see, this new condition implies TDES controllability, thus we do not have 

to test for this condition separately. 
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It should be noted that the condition we are presenting is a bit conservative. If 

a system fails it, there may be some situations where things are still fine. Our goal 

here is to provide a set of conditions that should ensure correct behavior when we 

implement our TDES supervisors, and be general and flexible enough to apply to a 

wide range of systems, yet be reasonable conditions to evaluate. 

Definition 3.2.1. A language K ~ ~* is SD Controllable with respect to G -

(Q, ~' 8, q0 , Qm) if, Vs E K n L(G), the following statements are satisfied: 

i) EligL(G)(s) n ~u ~ EligK(s) 

ii) If r E EligL(G)(s) then 

T E EligK(s) {:::} EligKnL(G)(s) n ~hib = 0 

iii) If S E Lsamp then 

1. (Vs' E ~~ct)[ss' E K n L(G)] ::::? 

[EligKnL(G)(ss') u Occu(s')] n ~hib = EligKnL(G)(s) n ~hib 

2. (Vs', s" E Leone) [ss', ss" E K n L(G) 1\ Occu(s') = Occu(s")] ::::? 

ss' =KnL(G) ss" 1\ ss' -KnLrn(G) ss" 

iv) K n Lm(G) ~ Lsamp 

Point i This is the standard untimed controllability definition and is part of TDES 

controllability. Intuitively, any uncontrollable events eligible in G may not be 

disabled. 

Point ii If both a prohibitable event and tick event are enabled and eligible, it will be 

ambiguous in which clock period the event should occur in. Also, a supervisor 

must not disable a tick unless there exists a prohibitable (forcible) 1 event to 

preempt the tick. The if and only if part only applies if the tick event is eligible 

in the plant. 

The ::::? part states that a tick event must be disabled by K if there is an eligible 

prohibitable event. This is done to ensure that prohibitable events are disabled 

1 Remember, we have required that the set of prohibitable events be equal to the set of forcible 
events. 
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until they should occur and then they are immediately forced. In other words, it 

means forcing and enabling are essentially one and the same. This is to make it 

clear which clock period a prohibitable event should occur in. This in turn will 

make translating to an SD controller much simpler and straightforward. Part 

of the goal of this definition is to make the behavior specified by the TDES as 

close as possible to that which is possible with the actual SD controller. In this 

case, the SD controller needs to know exactly when to force an event. A range 

of possible clock periods is no good to it. 

The -¢:= part states that a tick event cannot be disabled unless there exists an 

eligible prohibitable event to preempt the tick. Together with Point i, this is 

equivalent to TDES controllability (Definition 2.3.6). 

Point iii The following two points are needed when s is a sampled string. 

1) This condition says that the set of prohibitable events eligible in K and 

L(G) after sampled strings (i.e. immediately after a tick occurs (clock edge)) 

must stay equal to the union of the prohibitable events still eligible, and the 

prohibitable events that have already occurred since the last tick. In other 

words, the prohibitable events eligible after the tick must stay eligible until 

they occur, and no new prohibitable events may become eligible until after the 

next tick. 

This condition is meant to capture two concepts. The first is that since an 

SD controller only can observe the system at a clock edge (tick event), its en

ablement and forcing decisions are determined by its current state, and must 

be constant until the next tick occurs. These cannot change during the cur

rent clock cycle in response to events occurring, as it will not know they have 

occurred until after the next tick, which would be too late. 

The second concept is that an SD controller decides to force an event immedi

ately after a tick, based on the information it has at that point (i.e. whether 

the event is currently enabled and eligible in the plant). Once it decides to force 

the event, it will occur at some point during the current clock period. So as 

to not violate the control law or the plant model, this event must stay eligible 
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and enabled until it occurs. This is important as we do not know exactly when 

this event will actually occur, due to the fact that different implementations 

of our controller could have different timing characteristics. We thus have to 

ensure that when it does occur, it does not violate our control law, nor exceed 

the behavior of our plant model. 

A side effect of this condition is that it means that we only have to look at the 

eligibility and enabling information for prohibitable events at the state reached 

by a tick, and this determines the information for the clock cycle. This makes 

the conversion to an SD controller easier. 

2) This condition says that if sampled string s can be extended by concurrent 

strings s' and s" which have the same occurrence image (and thus indistinguish

able to an SD controller), then string ss' will be Nerode equivalent to string 

ss" with respect to the system's closed and marked behavior. In other words 

strings ss' and ss" will have the same closed and marked future. From a TDES 

perspective, this means that strings ss' and ss" will go to states that are >..
equivalent. If the TDES is minimal, this will mean the same state. Otherwise, 

we may need to check that the two states are >..-equivalent. 

This condition is intended to address two issues. The first is the fact that since 

the SD controller cannot tell the difference between strings s' and s", it must 

take the same control action following either string, both now and in the future. · 

We can capture this by requiring them to have the same future with respect to 

the system's closed behavior. 

The second issue has to do with nonblocking. Depending on the implementation 

of our SD controller, it maybe the case that we may either always get the string 

s' and never s", or vice-versa. If s" never actually occurs in the physical system 

and it is part of the only path back to a marked state, the physical system 

would block despite the fact the TDES system is nonblocking. By requiring the 

two strings to have the same marked future, it will not matter which one we 

actually get, as long as all of the marked strings in the system are also sampled 

strings (see Point iv for more info on this). In a way, we are ensuring that our 

system will still be nonblocking for a set of possible closed loop behaviors, that 
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differ by which of these concurrent strings can actually happen in the physical 

system. 

Point iv This point says that all marked strings in the closed loop system must be 

sampled strings. The primary reason is that sampled strings represent observ

able points in the system. This makes sure that we do not mark a non empty 

strict substring of a concurrent string accepted by the system. We saw in Point 

iii.2 that two concurrent strings with the same occurrence image have the same 

marked future, but the condition says nothing about ~~ct substrings of these 

concurrent strings. Point iii.2 basically says that even if we only get one of 

the two concurrent strings, we can still get to a new sampled state with an 

equivalent marked future. i.e. we might lose one of the paths to this sampled 

state, but we can still get there. However, if we allow marking along the path 

between sampled states and that is the path we lose, we may no longer be able 

to reach a marked state. Hence, we require all marked strings to take us to 

sam pled states. 

So far, we have only discussed controllable languages. To extend this concept to 

a TDES supervisor S = (X,~' e, X 0 , Xm), we identify K = Lm(S) and K = L(S) 
in Definition 3.2.1.2 This gives us the definition below. Note that the definition is 

implicitly assuming that G and S are combined using the meet operator. If instead 

we had a plant G' and supervisor S' combined using the synchronous product operator 

resulting in system event set ~'we would first construct plant G from G' by adding 

selfloops of any events missing from ~' anq supervisor S from S' by again adding 

needed selfloops. We can then apply the definition below to the these new TDES. 

Definition 3.2.2. A supervisor s = (X,~' e, Xo, Xm) is said to be SD controllable 

with respect toG= (Q, ~' 8, q0 , Qm) if, \::Is E L(S) n L(G), the following statements 

are satisfied: 

i) EligL(G) ( s) n ~u ~ EligL(S) ( s) 

ii) If T E EligL(G)(s) then 

T E EligL(S)(s) <=> EligL(S)nL(G)(s) n ~hib = 0 
2By ''identify," we mean make the indicated replacements in the original definition to get the 

new definition. We do not mean to imply that we require that S be nonblocking. 
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iii) If S E Lsamp then 

1. (Vs' E E;ct)[ss' E L(S) n L(G)] ==} 

[EligL(S)nL(G)(ss') u Occu(s')] n Ehib = EligL(S)nL(G)(s) n Ehib 

2. (Vs', s" E Leone) [ss', ss" E L(S) n L(G) 1\ Occu(s') = Occu(s")] ==? 

Ss' - " 1\ ' - s " =L(S)nL(G) SS SS =Lm(S)nLm(G) S 

iv) Lm(S) n Lm(G) s;;; Lsamp 

We now discuss a few examples to illustrate the above definition, starting with 

Point ii. We do not give an example for Point i or Point iii.2 since the first is 

essentially untimed controllability, and the second is similar to the CS Deterministic 

property discussed in Section 3.1. 

Figure 3.2 shows an example where prohibitable event a and a tick are both 

possible at the same state in the plant. When our supervisor decided to enable a 

here, Point ii required that tick must be disabled. Also, Point ii only allowed us to 

disable tick here as forcible event a was possible in both the plant and supervisor to 

preempt the tick. 

0 

,,,;/ 
~ 

0 
Plant G Supervisor S 

Figure 3.2: An Example for Point ii 

Figure 3.3 shows an example for Point iii.l. In the diagram, we see that the only 

prohibitable event possible after the tick is (3. We see that (3 stays possible until it 

occurs on both paths, and no new prohibitable events become eligible before the next 

tick. 

Figure 3.4 shows an example that fails Point iv. Here we see that the state 

reached by the first tick is marked which is allowed, but then the state reached by a 

is also marked, which is not. 
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0~ • 
IT,.Y~ ~7 y~ ,r. • 

~a/r ~/a 
0 •O 0 

meet(G, S) meet(G, S) 

Figure 3.3: An Example for Point iii.l Figure 3.4: An Example Failing Point 
iv 

Note that Definition 3.2.2 is not closed under arbitrary union. An example is 

shown in Figure 3.5, where (a) and (b) are two TDES supervisors that enable and 

force only one event respectively. In (a), a is forced and f3 is disabled. In (b), f3 is 

forced and a is disabled. It can be shown that both (a) and (b) are SD controllable 

for our plant shown in (d), but the union of these two languages, shown in (c), is 

not. The supervisor in (c) fails Point iii.l as both a and f3 are possible at the initial 

state, but once one occurs, the other is disabled before the next tick has occurred. 

This example suggests that in general, there may not exist a suprema! SD control

lable sublanguage. For this example, there appears to be two maximal sublanguages 

but no suprema! sublanguage. This likely follows from the fact that in normal TDES 

controllability, the maximally permissive supervisor might allow several choices as 

they are each safe, and leave it up to an unmodeled agent to decide which option 

occurs. As they are all possible, eventually we should get all choices. However for 

SD controllers, we make the choice with respect to which clock cycle an event gets 

forced in, meaning that some of these choices might vanish. If two choices are mutual 

disjoint yet equal in terms of size of behavior we would get, we end up with two or 

more maximal solutions, and no suprema! solution. 

We now add another tool that we will need to express the sampled-data behavior of 

a TDES. We will now define the control action that will take place at a sampling state 

for our TDES. This is the action the SD controller will take during the corresponding 

sampling period. 

Definition 3.2.3. Let TDES supervisor S - (X,~'~' X 0 , Xm) be SD controllable 
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with respect to plant G = (Q, :E, 0, Qo, Qm)· The control action (: Xsamp---+ Pwr(:Ehib) 

is defined for x E Xsamp ~ X as follows: 

((x) :={a E :Ehibl~(x,a)!} 

Proposition 3.1. For TDES supervisor S = (X, :E, ~' X 0 , Xm) which is SD control

lable with respect to plant G = (Q, :E, o, q0 , Qm), we have 

(Vs E L(S) n Lsamp)((x) = EligL(s)(s) n :Ehib 

where x = ~(x0 , s). 

Proof. This follows immediately from the definition of L(S) and the Elig operator. 0 

•• 13 . 
< 

(a) (b) 

(c) (d) 

Figure 3.5: SD Controllability and Arbitrary Union. 

We close this chapter with a proposition pointing out the connection of our CS 

deterministic definition and Point iii.2 of the SD controllability definition. 

Proposition 3.2. If TDES supervisor S = (X, :E, ~' X 0 , Xm) is SD controllable for 

plant G = (Q, :E, o, q0 , Qm), then meet(S, G) is CS deterministic if it is minimal. 

Proof. Follows automatically from Point iii.2 in Definition 3.2.2. 0 

However, an SD controllable supervisor S with respect to plant G does not imply 

that S is CS deterministic by itself, because of the dependency of plant G in the 

definition of SD controllability. We use the CS deterministic property when we wish 

to only discuss the supervisor, instead of the closed loop behavior of the system. 
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3.3 Future Work 

In this thesis, we have presented some new conditions and methods that are intended 

to address the concurrency and implementation issues raised in Section 1.1. However, 

we only partly dealt with time delay issues which we have left as future work due to 

time considerations. 

We have tried to mitigate potential time delay problems by the assumptions we 

have made at the beginning of Chapter 3. Here, we have required that our controllers 

be implemented on a single machine, that they use a common clock, that they all see 

the result of a common sampling of the inputs, and that their outputs change at about 

the same time. These restrictions should protect against time delay issues caused by a 

distributed implementation of controllers, where they could sample inputs at different 

times, update enablement information at different times, and this information could 

reach the plant at different times. 

Another potential time delay problem is the difference between when an event 

physically occurs (say a part arrives at a machine), and when a controller sees that 

the event has occurred. For instance, the event might physically occur in sampling 

period k, but due to transmission delay, it does not reach the input of the controller 

until the next clock cycle, so the controller "sees" it one clock cycle late. It is even 

possible that the signal could reach the input right at the clock edge, and thus is not 

noticed till the next clock edge. All of these issues could cause the system that the 

controller "sees" to have slightly different timing information from the formal model. 

We have tried to compensate for this by assuming that an event has occurred 

when its corresponding input goes true at the controller, with one exception. The 

exception is when the input goes true so close to the clock edge, it does not show up 

till the next sampling period. In this case, the event is assumed to happen just after 

the clock edge. We then model the system with this interpretation of what it means 

for an event to occur, in particular with respect to the timing of the events. 

Whereas the steps we have taken to compensate for timing delay are not ideal, 

they should handle the more pressing issues. However, research needs to be done to 

identify the existing timing delay issues, and address them directly in a more flexible 

manner. 
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Chapter 4 

Moore Synchronous Finite State 

Machines 

A Moore state machine is a type of finite state machines introduced by Edward F. 

Moore in [17]. It chooses its next states based on its current state and inputs. Its 

outputs are determined by its current state only. We will use Moore state machines 

with clocked systems whose states change only on a rising or falling edge of the clock. 

Its current output remains the same until the state is changed again. A Moore state 

machine used in this way is called a Moore Synchronous Finite State Machine. In the 

following discussion, we simply use Moore machine or FSM for convenience. 

By the properties defined in Chapter 3, an SD Controller can be modeled as a 

Moore machine. In the following pages, we will first define a formal model for our 

SD controller in Section 4.1. Then, in Section 4.2 we will introduce translations 

methods for a centralized controller and for modular controllers. The translation 

methods require that the given supervisors be CS deterministic and non-selfioop ALF, 

as defined in Section 3.1 and Section 2.3. Note that we can translate a supervisor 

as long as its CS deterministic, but it would likely be very hard to evaluate the CS 

deterministic condition if the TDES is not ALF or non-selfioop ALF, as we would 

essentially have an infinite number of concurrent strings to evaluate. It is also quite 

likely such a system would fail the CS deterministic condition. Requiring that the 

TDES also be ALF or the weaker non-selfioop ALF makes everything easier, and still 

gives us a general solution as a non ALF system is not physically realistic. 

47 
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4.1 Formal Model 

In this chapter, we will often be discussing vectors of information that will change 

periodically with respect to some clock. Let k E {0, 1, 2, .. }. We will say "at time k" 

to indicate the point of time at which k clock ticks have gone by since our starting 

reference point, which we represent as k = 0. For any vector v = [vt, v2 , ... , vn] E V 

or any of its element vi , we write "v(k)" and "vi(k)" to denote the value of v and 

Vj at time k. Note that v(k) is not a function of k, but a notation to differentiate 

the value of v at different points in time. For k = 0, v(O) represents the initial or 

starting value of v. When we are discussing an SD controller, we can think of k = 0 

as representing the time when the controller has just been turned on. 

We can think of when k is incremented as the occurrence of a tick from our clock. 

With respect to a TDES system, this would correspond to the occurrence of the tick 

event. As such, k induces a sequence for vector v with respect to these clock ticks, 

which we define to be {v(k)lk = 0, 1, ... },and is denoted as {v(k)} as a shorthand. 

Assumption 4.1. For convenience, we assume every controller is operating based on 

the same global clock, so that they change state at the same time. 

Given a TDES supervisorS= (X, :E, ~' X 0 , Xm), we will refer to the implementa

tion of S as its corresponding SD controller. We now give a formal definition of SD 

controllers. 

Definition 4.1.1. An SD controller Cis represented by a Moore machine defined as 

follows. 

C = (I, Z, Q, 0, <I>, qres) 

where, 

I is the set of possible Boolean vectors that the inputs to our controller 

can take on. Each vector i E I has v input variables, such that 

i = [io,il, .. ,iv-1]; ij E {0, 1}; j = 0, 1, .. ,v -1 
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Each input vector i( k') E {i( k)} is sampled at the occurrence of a tick 

event, except for k = 0 which occurs when the controller is turned 

on. 

Each element of I corresponds to a unique activity event in our sys

tem. If that element equals "1" at time k, then that means the event 

has occurred at least once since that last clock tick. If it equals zero, 

then it means the corresponding event has not occurred at all since 

the last clock tick. 

Z is the set of possible Boolean vectors that the controller outputs can 

take on. Each vector z E Z has r output variables, such that 

Z = [zo, ZI, .. , Zr-I]; Zj E {0, 1}; j = 0, 1, .. , r- 1 

Each input vector z(k') E {z(k)} is generated at the occurrence of 

the tick event, except for k = 0 which occurs when the controller is 

turned on. Note that we do not provide separate outputs for forcing, 

because the forcing of an event is already implied by enabling the 

event. 

The values of vector Z represent enablement information for our 

prohibitable events. A value of '1' means the event is enabled, while 

'0' means the event is disabled. 

Q is the set of possible Boolean vectors that the state of our controller 

can take on. Each vector q E Q has l state variables for state iden

tification, such that 

q = [qo,QI, .. ,Ql-I]; Qj E {0, 1}; j = 0, 1, .. ,l-1 

Each state q(k') E { q(k)} changes to next state q(k' + 1) E { q(k)} 
at the occurrence of the tick event, starting at k = 1. 

Qres is the default state when the machine is reset or initialized. We take 

q(O) = Qres· 
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0 : Q x I -+ Q is a next state function which takes the current state 

q(k) E Q and an input vector i(k + 1) E I, and returns the next 

state q(k + 1) E Q. 

q(k + 1) = O(q(k), i(k + 1)) 

<I> : Q -+ Z is the state to output map. For state q E Q, the output z E Z 

at this state is: 

A few comments are worthwhile here to clarify our notation. We will discuss the 

notation used for states, but the same applies for input and output variables. If we 

use q by itself (i.e. q E Q), then it represents a single instance of Q (i.e. some specific 

vector of zeros and ones with j elements). When we use q(k'), then this is the k'-th 

element of the sequence {q(k)} where each element of the sequence is some member 

of Q. Obviously, we can construct many different possible {q(k)} sequences. If we 

wish to label different sequences, we will use different labels for q, such as { q ( k)} and 

{q'(k)}. 

With respect to our input, a specific sequence {i(k)} would represent a specific 

pattern of inputs we received for a specific run of the system. If we ran the system 

again, we could get a completely different sequence. From our definition of C, we see 

that our state sequence is completely determined by qres, 0, and {i(k)}. If we get a 

different input sequence, we could get a different state sequence, depending on how 

our next state function responds to the input values. As our output is a function of 

our current state, this means we could also get a different output sequence as well. In 

other words, input sequence { i( k)} might induce state and output sequences { q( k)} 
and {z(k)}, while input sequence {i'(k)} might induce state and output sequences 

{q'(k)} and {z'(k)} which may or may not be the same as the other sequences of the 

same type .. 

Example 4.1. Inspired by the DES shown in Figure 2.1, we take Figure 4.1 as an 

example to see how to apply our formal SD controller model. 

Figure 4.1(a) shows an example of a TDES and Figure 4-1(b) shows the Moore ma-

chine representing this TDES. Our ordering for the input variables is I= [at, a 2 , f-tll J-t2 , /3t, .\1] 
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1' 

(a) Original TDES 

D 

Reset 

(c) Abbreviated FSM 

eset 

(b) FSM Translation 

[ru_l]. [mu_2] 

Figure 4.1: FSM Thanslation Example 
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and for our outputs is Z = [all a 2, Jlb JL2]. We have also added a DEF or default 

transition to cover input combinations that we have not explicitly specified. The rea

son is that the transition function for a TDES is a partial function, but that of a FSM 

must be a complete function. The actual translation from the TDES in (a) to the con

troller in {b) will be presented after the translation method for centralized controllers 

is introduced in the next section. 

In (b), we showed the SD controller for our example in the format of the formal 
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SD controller model we just defined. Typically when we give a diagram of an FSM, 

we use the more compact and readable notation shown in Figure 4.1 (c). Here we have 

given states meaningful names, and we only list at a state those prohibitable events 

whose outputs are true (1} at that state. Also, rather than listing input vectors on 

transitions, we use boolean equations that are true for the required input vector. We 

use '!'as NOT, '+'as OR, and '·'as AND1 • We also only use in the equations those 

events that could occur at a given state, to simplify the equations. 

4.2 Translation Method 

To translate a supervisor to Moore FSM, we require that the supervisor be CS deter

ministic. CS deterministic is necessary because, for SD systems, we lose the ordering 

information for the events that occur during a given sampling period. Event sequences 

that have the same occurrence image must all go to the same next state in the state 

machine implementation or our controller will be nondeterministic. We can ensure 

this if we require the supervisors to be CS deterministic before being translated. 

We also require that the supervisor be non-selfl.oop ALF. The reason is to make 

sure we have a manageable set of next state conditions. If we have activity loops 

that are not selfl.oops, then our supervisor does not have enough information for us 

to determine a reasonable set of concurrent strings to use to define our next state 

condition. We would thus potentially have a large choice of strings, most of which 

are not possible in the closed loop system. By requiring that the supervisor be non

selfl.oop ALF, we should have a reasonable set of possible concurrent strings at a 

given state. As we discussed earlier, technically the CS deterministic condition is 

strong enough, however, this condition is hard to evaluate if the system is not ALF 

or non-selfl.oop ALF. So, what we would do in practice is first check that our TDES 

is ALF or non-selfloop ALF, and if so, we will then check if it is CS deterministic. 

We note that we require that a supervisor S be CS deterministic before we can 

translate it to a controller, but we do not need the supervisor be SD controllable for 

our plant G for the conversion process itself. We also note that if we are translating 

S to a controller, the fact that S is SD controllable for G is not sufficient to be able to 

1In the following FSM graphs, this operator is represented by '.(period)' instead of'·' due to a 
technical difficulty. 
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do the conversion, as it implies that SIIG is CS deterministic if SIIG is minimal, not 

S itself. If G is not complete for S, we may wish to instead convert SIIG instead of S, 

but typically we prefer to construct modular controllers for the component supervisors 

that make upS, as they usually are far more compact. 

In the following sections, we introduce event mapping functions, and how to trans

late a CS deterministic TDES supervisor into a centralized controller. We then discuss 

the translation of modularized CS deterministic supervisors. 

4.2.1 Event Mapping Functions 

As we will often be discussing vectors of boolean values whose elements refer to 

specific events in Eact' we will need a way to map events to a vector's elements and 

vice versa. Let G = (Y, E, 8, Yo, Ym) be the TDES plant to be controlled and let 

S =(X, E8 , e, x0 , Xm) be an arbitrary CS deterministic TDES supervisor for G. We 

define Eact C E to be the set of all the activity events and Ehib ~ Eact to be the set 

of all prohibitable events. We consider E, Eact and Ehib to be global event sets that 

can always be referred to in the following discussion. 

We first define a bijective map between an activity event set and an index set we 

will use for labeling the events. 

Definition 4.2.1. Let bijective map "(g : Eact ---+ {0, .. , IEactl - 1} be the canonical 

event mapping function such that 

For the controller implementation C = (I, Z, Q, n, q>, qres) of S, we include its 

event mapping information in our translation methods in the following sections, which 

are the two event mapping functions defined below. The reason we impose the or

dering requirement is so that essentially the function "fg will induce a single way to 

define the mapping functions. 

Definition 4.2.2. The input event mapping function for Cis defined to be a bijective 

map 'Y: Es n Eact---+ {0, 1, .. , v- 1} where v = IEs n Eactl· It is defined such that 
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Definition 4.2.3. The output event mapping function for Cis defined to be a bijective 

map 'f/: ~s n ~hib---+ {0, 1, .. , r- 1} where r = l~s n ~hibi· It is defined such that 

Since rg is globally available, two input event mapping functions for different 

controllers will always have the same mapping pairs for the same event domain. In 

other words, because of the ordering requirement, there is only one way to define the 

input mapping. Similar logic applies to the output mapping for same event domain. 

An example is shown below. 

Example 4.2. For different controllers C 1 and C 2 whose supervisors S1 and S2 are 

defined over~= ~act U { T} = {a, {3, >., T }. If r9 (a) < r9 (/3) < r9 (>.), then we always 

have the input event mapping function rl = 12 = {(a, 0), ({3, 1), (>., 2)} for C 1 and 

Cz. 

Sometimes we want to find out which event an index in an input or output vector 

corresponds to. This can be easily done by applying the inverse event mapping 

function, since the event mapping functions we have defined are all bijective. i.e. to 

find the index of event a in the input event index used by the controller, use ,-1 (a). 
For event a E ~s n ~act, we can use the inverse event mapping functions to locate 

the element in a vector that corresponds to a. For example, the corresponding element 

for a in the input vector would be il'-l(u). For convenience, we may write iu instead 

of iri(u) and Zu instead of z11-I(u)· 

4.2.2 Output Equivalence 

If we have two or more controllers for system G, we may wish to determine if they will 

produce equivalent output (i.e. enablement information) for the same input sequence. 

The problem is that each controller may care about a slightly different event set, thus 

we likely cannot use a single {i(k)} input sequence for them. As defined in our formal 

model, for n controllers C 1 , C 2 , ... , Cn, each controller Ci for 1 ~ j ~ n has its 

own input vector ij E Ii and will generate its own output vector based on the input 

sequence {ij(k)} it receives. 
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Before we check that their output sequences are equivalent, we need each input 

sequence {ii ( k)} to contain equivalent input information. However, their input vectors 

might be incompatible with each other, because their event mapping for the inputs 

can be different. Therefore, we will provide a single input vector i9 globally available 

to every controller, and let each controller extract its own input vector ii from i9 • 

Essentially, i9 represents the inputs the system sees, where each ij represents the 

inputs that each controller sees (which may be a strict subset of the system inputs) 

and is formatted for the input index that controller is using. 

Definition 4.2.4. Let ~act C ~ be the set of global activity events, we require 

i9 = [i9 ,o, i9 ,t, .. , i9 ,v
9
-1] to be defined over ~act where v9 = l~actl· That is, for any 

event a E ~act. there is an element in i9 corresponds to a and only a. We call {i9 (k)} 

a canonical input sequence and i9 E { i9 ( k)} a canonical input vector2 • 

To extract input vector ij = [ij,O, ij,I, .. , ij,Vj-1] from iy for controller cj, for 0 ~ 

l < Vj we have ij,l = iy,l' where l' = ')'g(('yi-1(1))). 

Definition 4.2.5. For j = 1, 2, let Ci = (Ii, Zi, Qi, ni, <Pi, Qres,i) be a controller. We 

say C1 and C2 are output equivalent if for any canonical input sequence {i9 (k)} and 

induced output Zj(k') = [zj, 1(k'), Zj,2 (k'), .. , Zj,r3 (k')] E Zi at time k' = {0, 1, 2, ... }, 
the follow conditions are satisfied. 

3. (Vk' E {0, 1, .. })z1(k') = z2(k') 

In the above definition, by Point 1, 2 we are essentially requiring the outputs of the 

two controllers be of the same size, and represent the same events in the same order. 

We could have been more general and only required that they represent the same 

events but in possibly different order, but this does not gain much and complicates 

our notation. In Point 3, we are requiring that one controller enables a prohibitable 

event if and only if the other does, for any value of k'. In other words, they agree at 

the reset state, and will continue to agree in the future. 

2Note that our use of "canonical" here refers to the size and ordering of the inputs, not to the 
actual values of the input sequence or a given vector. 
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A common situation is that controllers C1 and C2 have been defined relative to 

a cs deterministic supervisors= (X, 2:s, e, Xo, Xm), and we are only interested that 

they generate the same output with respect to input sequences that represent valid 

input strings to the supervisor (i.e. s E L(S) n Lsamp). We first provide a definition 

for valid input sequences relative to TDES S, and then a form of output equivalence 

definition for these sequences. 

Definition 4.2.6. For system event set 2:, with canonical event mapping function "(g, 

activity event set 2:aet, and cs deterministic TDES supervisors= (X, 2:s, e, Xo, Xm), 
we say a canonical input sequence {ig(k)} is input valid for S, if 

(Vk E {1, 2, ... } )(:3sl, s2, ... 'Sk E Leone) 

[s1s2 .. sk E L(S)] 1\ [(Vn E {1, 2, ... , k} )(VCJ E 2:aet) ig,-y
9
(u)(n) = 1 iff CJ E Occu(sn)] 

Essentially in the above definition, we are requiring the sequence {ig(k)} to cor

respond to a sequence of concurrent strings that supervisor S will accept. We are 

specifically excluding input sequences that our supervisor says will never occur. As 

we will see in the next section, when we translate a CS deterministic supervisor into 

a controller we will define next state information in an arbitrary manner for invalid 

input sequences. We will thus not be interested in whether two controllers generate 

the same output sequences for invalid input sequences. 

We now provide a new output equivalence definition that is only concerned about 

input sequences that are valid for our supervisor. 

Definition 4.2.7. For system event set 2:, with canonical event mapping function "(g, 

activity event set 2:aet, and cs deterministic TDES supervisors= (X, 2:s, e, Xo, Xm), 

let Ci = (Ii, Zi, Qi, Oi, <I>i, qres,j), j = 1, 2 , be a controller. We say C 1 and C2 are 

output equivalent with respect to S if for any canonical input sequence {ig(k)} that 

is input valid for S, and induced output Zj(k') = [zj,l(k'), Zj,2(k'), .. , Zj,ri(k')j E Zj at 

time k' = {0, 1, 2, ... }, the follow conditions are satisfied. 

3. (Vk' E {0, 1, .. })z1(k') = z2(k') 
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4.2.3 Centralized Controller 

We will now discuss how to translate a TDES supervisor into a centralized controller. 

Let TDES supervisor S = (X,~' e, X 0 , Xm) be CS deterministic and non-selfloop 

ALF. To translateS into a controller C = (I, Z, Q, n, <P, qres), we need to introduce 

a few definitions. 

We start by defining how many state variables are needed for Q. Let Xsamp ~X 

be the set of sampling states for S. To map each sampling state to a state in the 

controller, we define the state size of Q, l, to satisfy 2z-t < IXsampl ::::; 2z. There are l 

state variables in vector q E Q. A state in S which is not found in Xsamp, does not 

correspond to any state variable assignment in Q. 
We now define a function to map the sampling states of our TDES supervisor, 

onto states of the controller. 

Definition 4.2.8. Let s = (X,~' e, Xo, Xm) be a cs deterministic supervisor. Let 

A: Xsamp ---t Q be an arbitrary injective map where Xsamp ~X. We say A is a state 

mapping function for controller C if, for all x E Xsamp, A(x) returns a vector of state 

variables q = [q0 , Qt, .. , Qz-t] such that, 

Recall that the initial state is also a sampling state, and it is mapped to be 

A(xo) = qres = q(O). 

We now define a function that will map subsets of ~act to a particular assignment 

of the variables for I (called a valuation of I) that will represent the events present 

in the subset, according to the mapping defined by /, the controller's input event 

mapping function. This will be useful for taking the occurrence image of a concurrent 

string and identifying the corresponding valuation that represents that subset in I. 

Definition 4.2.9. Let C = (I, Z, Q, n, <P, qres) be the corresponding controller for 

cs deterministic supervisors= (X,~' e, Xo, Xm)· The size of each input vector i E I 
is defined to be v = I ~act 1-

Let 1 be the input event mapping function for controller C. Then we have a 

bijective map 



58 4. Moore Synchronous Finite State Machines 

defined as follows. For arbitrary "E1 ~ "Eact, we have ri("EI) = [i0 , i 1 , .. , iv_1] such that 

for j = 0, 1, .. , v- 1, 

. {1 
'tj := 0 

if (::Ia E "E1)1'(a) =j 

otherwise 

We call f 1 the input set mapping function for controller C. 

The motivation for the above mapping is that at each sampling state, it will 

be observed which activity events have occurred, and which have not. Since the 

order of event occurrences is not stored, activity events are observed as if they are 

concurrent. Thus the occurrence of each event can be represented as a binary value 

in the corresponding position of the input vector i. 

We now define a function that will map subsets of "Ehib to a particular assignment 

of the variables for Z that will represent the events present in the subset, according to 

the mapping defined by TJ, the controller's output event mapping function. This will 

be useful for taking the set of prohibitable events eligible at a sampling state of the 

supervisor, and identifying the corresponding valuation that represents that subset 

in Z. 

Definition 4.2.10. Let C = (I, Z, Q, 0, <P, Qres) be the corresponding controller for 

CS deterministic supervisor S = (X, "E, ~' X 0 , Xm)· The size of each vector in z E Z 

is defined to be r = I"Ehibl· Let TJ be the output event mapping function for controller 

C. Then we have a bijective map 

defined as follows. For arbitrary "Ez ~ "Ehib, we have fz("Ez) = [z0 , Z1, .. , Zr-1] such 

that for j = 0, 1, .. ,r -1, 

if (::Ia E "Ez )TJ( a) = j 

otherwise 

We call fz the output set mapping function for controller C. 



4. Moore Synchronous Finite State Machines 59 

We now discuss how to define the next state function n for our controller, using 

our CS deterministic supervisor as our starting point. Note that the~ function was 

defined in Section 3 .1. 

Definition 4.2.11. Let C = (I, Z, Q, n, tP, Qres) be the corresponding controller for 

CS deterministic supervisorS= (X,E,e,xo,Xm)· Let Xsamp ~X. For state q E Q 

and arbitrary input i E I, the next state function n is defined to be 

fl(q, i) = A(~(x, f[1(i))) if (3x E Xsamp)q = A(x) & ~(x, f[ 1(i))! 

All remaining values of n are assigned arbitrarily. 

Essentially, we define n in terms of e, the next state function of TDES S. For 

the given state q of our controller and input i which are some valuations of sets Q 
and I, we define the next state of the controller to match that of the supervisor. We 

define n( q, i) arbitrarily unless our state q corresponds to a sampled state x in S, 

there exists a concurrent strings whose occurrence image matches the set of activity 

events represented by i, and e(x, s)! in our supervisor. In that case, our new state is 

q' = A(e(x, s)) as per the definition of~. If there does not exist such an x and s, 
that means q and i do not correspond to possible behavior of our system, so we can 

define the next state as we like (note e is a partial function, but n must be a total 

function). 

In practice, we would not assign the next state randomly. Most likely, we would 

choose q' to either make our controller simpler, or we would choose q' in a failsafe 

manner. By failsafe, we mean that we do not believe the combination q and i should 

ever be seen in the physical system, but we will choose our next state in a way to 

maximize safety should it actually ever occur. 

We now discuss how to define the output map tP for our controller, using our CS 

deterministic supervisor as our starting point. Note that the (function was defined 

in Section 3.2. 

Definition 4.2.12. Let C = (I, Z, Q, n, tP, Qres) be the corresponding controller for 

cs deterministic supervisor s = (X, E, e, Xo, Xm)· Let ((x) be the control action for 

any sampling state x E Xsamp ~ X as defined in Definition 3.2.3. For any q E Q, the 

output map tP is defined to be 
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<P( ) := {rz(((x)) 
q rz(0) 

if (3x E Xsamp)q = A(x) 
otherwise 

The definition states that if state q in controller C has a corresponding state 

x E Xsamp inS, then <P(q) specifies an output vector based on the control action ((x). 
((x) is equal to the set of prohibitable events enabled at state x in S. Otherwise, 

<P( q) leaves all prohibitable events disabled at state q. 

Let TDES S =(X,~'~' X 0 , Xm) be a CS deterministic supervisor. Then Figure 4.2 

shows the control equivalence diagram for Sand its controller C =(I, Z, Q, 0, <P, qres), 

as defined in this section. If, for arbitrary~' ~ ~act and state x E Xsamp of S, ~(x, ~') 

is defined, it is easy to see that this diagram commutes. 

Xsamp X Pwr(Lact) Xsamp 

A r A [z 

Q X I Q z 
Figure 4.2: Centralized Control Equivalence Diagram 

Essentially, the diagram says that as long as ~(x, ~')!, then rz(((~(x, ~'))) = 

<P(O(A(x), r1 (~')) meaning that we can just use the next state function and output 

map of the controller, and we will produce the correct enablement. Note that the 

~' represent the occurrence image (minus tick) of the concurrent strings defined at 

the given sampled state. The figure also says that if ~(x, ~')!,then A((~(x, ~'))) = 

O(A(x), ri(~'), meaning that we can simply use the controller's next state function 

to determine the correct next state. 
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Example 4.3. Let C = (I, Z, Q, n, <I>, Qres) be represented by the Moore machine 

shown in Figure 4.1{b). We see from Figure 4.1{a), that our set of activity events is 

{ a 1, a 2, f3, f.LI, J.L2, ..\}, and our set of prohibitable events are { a 1, a2, J.L1, J.L2}. We can 

also see that the TDES is ALF, and CS deterministic. 

We have each i E I in the form of 

For j = 0, 1, .. , 5, ii corresponds to the occurrence of events [all a 2, J.L1, J.L2, /3, ..\] re

spectively, when ii = 1. 

We have each z E Z in the form of 

For j = 0, 1, .. , 3, Zj corresponds to the enablement of prohibitable events [a1, a2, f.Lb J.L2], 

when zi = 1. 

We see from Figure 4.1{a) that our TDES has three sampled states. Our state 

size, l, must thus satisfy 2l-I < 3 ~ 2l. As only l = 2 satisfies this equation, our state 

set must have two binary elements. We thus have each q E Q in form of 

q = [qo, q1] 

We will let state (q0 , q1) E {(0, 0), (0, 1), (1, 0)} represent states {I, W, D} respectively. 

The fourth state (1, 1) is unused and will be unreachable, so we can define transition 

leaving this state arbitrarily. 

Examining Figure 4.1 (a), we can determine which concurrent strings are defined 

at each sampled state. For instance, at state I we could only get strings a 1 a 2r or 

a 2a 1r. Both have occurrence image {a1,a2,r} and take us to sampled state W. As 

this subset corresponds to i = [1, 1, 0, 0, 0, OJ, we can see where the transition at state 

( 0, 0) in Figure 4.1 {b) comes from. Continuing this logic, we can derive the remaining 

transitions for the SD controller shown in Figure 4.1(b). Note, that we have added 

the DEF default transitions as we discussed in Section 4.1. 

Next, 

Qres = q(O) = [0, OJ 
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Using the information we have derived for Figure 4.1(b), we can define the next 

state function, 0, as below: 

q(k + 1) =O(q(k), i(k + 1)) = O([q0 (k), q1(k)], [i0 (k + 1), i 1(k + 1), .. , i 5(k + 1)]) 

such that 

o([o, o], [1, 1, o, o, o, o]) = (o, 1] 

0([0, 0], i) = [0, 0] for all other i E I 

o([o, 1], (o, o, o, o, 1, o]) = (o, o] 
0([0, 1], [0, 0, 0, 0, 0, 1]) = [1, 0] 

0([0, 1], i) = [0, 1] for all other i E I 

0([1, o], (o, o, 1, 1, o, o]) = (o, o] 
0([1, 0], i) = [1, 0] for all other i E I 

and 0([1, 1], i), for any i E I, can be defined arbitrarily as state [1, 1] is unreachable. 

Lastly, we define the output function to be 

such that 

z = <I>(q) 

<I>([O, 0]) = [1, 1, 0, 0] 

<I>([O, 1]) = (0, 0, 0, OJ 

<I>([1, 0]) = [0, 0, 1, 1] 

We can define <I>([1, 1]) arbitrarily, say <I>([1, 1]) = [0,0,0,0]. 

The execution of a centralized controller C is as follows. 

1. Initialize the controller by setting q(O) = qres, z = <I>(qres)· We have k = 0. 

2. At the next clock pulse 

i) sample inputs and set i(k + 1) equal to these values. 

ii) calculate our new state and output as follows: 

i.e. q(k + 1) = O(q(k), i(k + 1)) and z(k + 1) = <I>(q(k + 1)) 
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3. Set k = k + 1. Go to step 2. 

We say C acts on G when controller C enables or disables events from plant G. 

Also, since an SD controller forces a prohibitable event as soon as its enabled, the 

controller is also forcing these events to occur in that clock period. To be consistent, if 

any controller C is discussed from now on, we will assume that it has been converted 

from some CS deterministic supervisor S, using the translation method defined in 

this section. 

Before we close this section, we would like to briefly discuss the case that our TDES 

supervisor S is defined over a subset :Es of the system event set, :E. This would mean 

that some activity events would not affect the next state of the controller and could 

be ignored, thus simplifying the next state logic of the controller. The output for the 

controller would still cover all events in :Ehib· The difference would be that for all 

u E :Ehib - :Es, their corresponding output would always be set to 1. 

4.2.4 Modular Controllers 

For large systems, the centralized supervisor for the system is quite likely large and 

complex. This would mean that its corresponding controller would also be large and 

complex, making implementing it directly undesirable. Just as we design modular 

TDES supervisors for systems to make the design more manageable, we can also 

implement our controllers by directly translating these modular supervisors into their 

own controllers. We can then combine the outputs of these controllers together, 

to create the overall output that would be equivalent to the output provided by a 

centralized controller. 

To implement the composition of modular controllers, we need the following two 

operations on vectors. 

Definition 4.2.13. Let V be the set of Boolean vectors with each vector of size n. 

For u = [u1, u2, .. , un], v = [v1, v2, .. , Vn] E V, the logical AND operator 1\ : V x V---+ V 

is 
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Definition 4.2.14. Let u be a Boolean vector of i variables, and v be another 

Boolean vector of j variables. The concatenation operator . : V x V ----+ V is defined 

as follows. 

For convenience, we will often just write uv instead. 

Let the TDES S = S1 IIS2 II .. IISn be a supervisor where each modular supervisor 

si, for 1 :S i :S n, is cs deterministic. 

To avoid implementing the likely large S directly, we wish to implement each 

supervisor Si as controller Ci, then combine the controllers C1, C2 , .. , Cn (referred to 

as the composite controller) to generate the actual final output. We call each Ci the 

modular controller for supervisor Si. To be able to reuse the implementation technique 

discussed in the previous section, we assume each supervisor Si is CS deterministic. 

When comparing a centralized controller implementation to a modular controller 

implementation, all we care about is the output equivalence of the centralized con

troller and the composite controller created from Cll C 2 , ... , Cn. If we take S and 

implement it directly as a controller C, we want the composition of the outputs from 

Cll C2 , .. , Cn to be equivalent to the output from C. 

We will now discuss how to implement the modular supervisors as individual 

controllers, and then combine them into a composite controller to handle the system. 

It is key to note that the modular supervisors may be defined over strict subsets of the 

system event set, ~. Essentially, supervisor Si will have activity event set ~act,j ~ ~act 

and prohibitable event set ~hib,j ~ ~hib· To translate the CS deterministic supervisor 

Si to a controller, we will use the method defined in Section 4.2.3, but the key 

difference is that we replace every ~act in the definitions with ~act,j, and each ~hib 

with ~hib,j· This means that the input and the output sets for the controller may 

only represent a subset of ~act and ~hib, respectively. 

Definition 4.2.15. Let G be the plant to be controlled, '"'fg be the canonical event 

mapping function, ~ be the system event set, ~act the system activity event set, and 

~hib the prohibitable event set. For j = 1, 2, .. , n, let sj = (Xj, ~j, ~j, Xo,j, Xm,j) be the 

j-th CS deterministic supervisor, where ~i = ~act,jU{ r} ~ ~. Here we have ~act,j ~ 
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.Eact the activity event set for supervisor Si, .Ehib,i ~ .Ehib the prohibitable event set 

for Si. We also require that .E = U .Ei. Then we define the composition of 
jE{1,2, .. ,n} 

modular controllers as follows. 

Let Ci = (Ii, Zi, Qi, ni, <Pi, Qres,i) be the controller for Si with the following con

figuration: 

• li is the number of state variables for each Q.j = [qj,o,Qj,1 , .. ,qi,lj-1] E Qi 

• vi= I.Eact,il is number of input variables for each ii = [ij,o, ij,b .. , ii,vr1] E Ii 

• ri = I.Ehib,il is number of output variables for each Zj = [zj,o, Zj,l, .. , Zj,ri-1] E Zi 

The composition oJC1, C2, .. , Cn, 

C =(I, Z, Q, n, <P, Qres) = comp(C1, C2, .. , Cn) 

is defined as follows. 

1. .Eact = U .Eact,j and .Ehib = U .Ehib,j, thus .Ehib ~ .Eact C .E is guaran-
i=1,2, .. ,n j=1,2, .. ,n 

teed. 

2. The number of state variables for vectors q E Q is defined to be l = E;=1 li. 

The state vector q is defined to be 

Q = Q1Q2··Qn 

= [q1,0, Q1,b .. , Q1,h -1HQ2,0, Q2,1' .. , Q2h-1] ·· [qn,o, Qn,b .. , Qn,ln-1] 

= [q1,0,Q1,b .. ,Q1,h-b Q2,o,Q2,b .. ,q2,l2-b .. , Qn,o,Qn,b .. ,Qn,ln-1] 

3. The size of each input vector i E I is defined to be v = I.Eactl· 
Then we define "'( : .Eact --+- { 0, 1, .. , v -1} to be the input event mapping function 

for C such that 

4. The size of each output vector z E Z is defined to be r = I.Ehibl· 

Then we define 'fJ : .Ehib --+- {0, 1, .. , r- 1} to be the output event mapping 

function for C such that 
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5. The next state function 0 : Q x I --+ Q is defined such that, for q(k) = 

ql(k)q2(k) .. qn(k) E Q and i(k + 1) E I, 

q(k + 1) = O(q(k), i(k + 1)) 

= 01(q1(k), i1(k + 1)) 02(q2(k), i2(k + 1)) .. On(qn(k), in(k + 1)) 

For above, the input vector i(k + 1) is in canonical form with respect to rg· 
To use it as an input to each controller Cj, we need to map it to input vector 

ii(k + 1) using rj, the input event mapping function for Controller Ci. To do 

this, we need to map input vector 

i(k + 1) = [io(k + 1), i1 (k + 1), .. , iv-I(k + 1)] 

onto input vectors ii(k + 1) = [ij,o(k + 1), ii,l (k + 1), .. , ij,v1- 1 (k + 1)] for modular 

controller cj' as follows 

6. The output map <T? : Q --+ Z is defined as follows. 

Given q = q1q2 .. qn E Q, let 

For each Zj we expand it to 

such that, 

(
w ~ )' {~~M ilaE~~~ va E .whib z · ( ) = 

NJ u 1 otherwise 

In above, rJi is the output event mapping for controller Ci. Essentially, what 

we are doing is mapping the output value for Ci to the corresponding position 

in zj if a E ~hib,j, else we always set the value equal to 1. 
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With expanded output vectors z~, z~, .. , z~ E Z defined, the next state function 

is then defined to be 

<I>( q) = 1\ z~ 
jE{1,2, .. ,n} 

We simply logically AND each zj together to obtain the output vector. 

In Definition 4.2.15, we assumed that when the supervisors are combined together, 

they are defined over L:, the systems event set (i.e. U L:j)· As for the centralized 
j=1,2, .. ,n 

supervisor, it may be the case that the supervisors only care about a subset of L:. This 

would mean that some activity events would not affect the next state of the controller 

and could be ignored, thus simplifying the next state logic of the controller. The 

output for the composite controller would still cover all events in L:hib· The difference 

would be that for all a E L:hib but not covered by any modular supervisor, their 

corresponding output would always be set to 1. 

We now present a theorem that shows that we can either implement our supervisor 

centrally or modularly, and we will get the same enablement information for valid 

input sequences. 

Theorem 4.1. Let G be the plant to be controlled, 'Yu be the canonical event mapping 

function, L: be the system event set, L:act the system activity event set, and L:hib the 

prohibitable event set. Also, let CS deterministic supervisorS= (X, L:, ~' X 0 , Xm) be 

composed of n component cs deterministic supervisor sj = ( Xj' L:j' ~j' Xo,j' Xm,j) for 

j = 1, 2, .. , n, such that S = S1ll S211 .. 11 Sn. Let L:act,j ~ L:act and L:hib,j ~ L:hib be the 
activity event set and prohibitable event set for Sj. 

For j = 1, 2, .. , n, let Ci = (Ii, Zi, Qi, ni, <I>i, Qres,i) be the controller translated 
from Si using translation method defined in Section 4.2.3 but replacing every L:act in 

the definitions with L:act,h and each L:hib with L:hib,i· Let C' = comp(C1, C2, .. , Cn) 

be the composed controller of C1, C2, .. , Cn. Let C = (I, Z, Q, n, <I>, Qres) be the 

controller translated from S using the translation method defined in Section 4.2.3. 

Then C and C' are output equivalent with respect to S. 

Proof. Assume the required initial conditions for the proof. 
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Next, we need to define the following items for our proof, to ensure clarity. 

Let Xsamp ~ X and Xsamp,i ~ Xi be the sets of sampling states for S and Si, 

respectively. 

Let ~ : Xsamp X Pwr(:Eact) ---+ Xsamp and ~j : Xsamp,j X Pwr(Eact,j) ---+ Xsamp,j be 

the next sampling state functions for S and Sj, respectively. 

Let A: Xsamp ---+ Q and Aj : Xsamp,j ---+ Qj be the state mapping functions for C 

and cj' respectively. 

Let f 1 : Pwr(.Eact) ---+ I and ri,j : Pwr(.Eact,j) ---+ Ij be the input set mapping 

functions for c and cj, respectively. 

Let fz : Pwr(.Ehib) ---+ Z and fz,j : Pwr(.Ehib,j) ---+ Zi be the output set mapping 

functions for c and cj, respectively. 

Let I : .Eact ---+ {0, 1, .. , v-1 }, 1 1 
: .Eact ---+ {0, 1, .. , v' -1 }, lj : .Eact,j ---+ {0, 1, .. Vj-1} 

be the input event mapping functions for C, C', and Cj, respectively. We note that 

since 1 and 1' have domain .Eact, they must both equal19 due to how they are defined 

i.e. given a specific 19 , there is only one way to define the other two functions and it 

must be the same as 19 , if Definition 4.2.2 is to be satisfied. (1) 

Let f/ : .Ehib ---+ {0, 1, .. , r -1 }, f/1 
: .Ehib ---+ {0, 1, .. r' -1 }, 'r/j : .Ehib,j ---+ {0, 1, .. ri -1} 

be the output event mapping functions for C, C', and Ci, respectively. We note that 

since f1 and ry' have domain .Ehib, they must be equal due to how they are defined (see 

Definition 4.2.3). This means that Z and Z' represent the same prohibitable events, 

in the same order, and can be directly compared. (2) 

Given the above setting, we will now show that C and C' are output equivalent 

with respect to S. 

Let {i(k")} be a canonical input sequence with respect to 19 , the canonical event 

mapping function for the system, and let the sequence be input valid with respect to 

S. From (1), we have 1 = 1' = lg· This means that {i(k")} can be used as an input 

for both C and C' directly, without any mapping required. 

Let z'(k) = [z~(k), z~(k), .. , z~,(k)] E Z' be the induced output vector inC' at time 

k, from input sequence {i(k")}. 

Let z(k) = [z1 (k), z2(k), .. , Zr(k)] E Z be the induced output vector inC at time 

k, from input sequence {i(k")}. 
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We now need to show the following three points from Definition 4.2.7. 

1. Show r' = r 

As both C and C' are defined relative to~' their outputs are both defined rela

tive to ~hib· It follows immediately from the definition of r' and r in Definition 

4.1.1 that r' = r. 

2. Show (VO ~ i < r) TJ(i) = TJ'(i) 

Let i E {0, 1, .. , r- 1}, show TJ(i) = TJ'(i). 

This follows immediately from (2). 

3. Show (Vk E {0, 1, .. } ) z(k) = z'(k) 

(A) First we will show that if C is in state q = A(x) for some x E Xsamp' 

and each Ci is in state ~ = Ai(xi) for some Xj E Xsamp such that x = 

(x1, x 2 , •• , Xn), then C at state q and C' at state q1~ .. qn will have the 

same output. 

(B) Then we will show for all k E {0, 1, .. } that after inputs i(1), i(2), .. , i(k) 

from our input sequence {i(k")}, C will be in state q(k) = A(x(k)) for 

some x(k) E Xsamp, and Cj will be in state ~(k) = Ai(xi(k)) for some 

Xj(k) E Xsamp,j such that x(k) = (x1(k),x2(k), .. ,xn(k)). 

Combining the two points will give the desired result. 

Claim A: We will now prove point (A). 

Let C be in state q = A( x) for some x E Xsamp· 

Let each cj be in state~= Aj(Xj) for some Xj E Xsamp,j· 

We thus have C' at state q' = qlq2··qn. 

Let z = ci>(q) and z' = ci>'(q'). Must show z' = z. 

By Definition 4.2.12 of the output map, we have for C that ci>(q) = fz(((x)) 
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The set of prohibitable events enabled at q can be represented as 

~z =((x) 

={ O" E ~hibl~(x, O")!} by definition of ((x) 

- n {0" E ~hibi(O" fj_ ~j) V (~j(Xj, O")!)} 
jE{l,2, .. ,n} 

by definition of synchronous product 

We next note that by point (1) and (2), C and C' represent exact the same 

events in ~hib in exactly the same order. It is sufficient to show that C' enables 

the same event as C. 

By Definition 4.2.15, we have 

z' = <I>'(q') = 1\ 
iE{1,2, .. ,n} 

' z. 
J 

where zj is the expanded output from controller cj. 
As defined, an event is enabled in zj if the event is enabled in Zj = <I> i ( ~), or 

the event is not in ~hib,j and thus not in ~i. Otherwise, the event is disabled. 

Therefore, the set of events enabled by zj can be represented as 

~~,j =(j(Xj) U {~hib- ~hib,j} 

={O" E ~hibi(O" ¢ ~i) V (~;(xj,O")!)} 

The set of events enabled by z' and thus C' can be represented as 

~~ = n ~~.j 
jE{1,2, .. ,n} n {0" E ~hibi(O" fj_ ~j) V (~j(Xj, O")!)} 
jE{l,2, .. ,n} 

=~z 

Claim A proven. 

Claim B: We will now prove point (B). 
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We first consider k = 0 

By definition, q(O) = Qres = A(xo) and for each Ci, Q,j(O) = Qres,j = Ai(xo,i) 

We next note that initial states are always sampled states, so we have x(O) = X 0 

and Xj(O) = Xo,j· Also, X0 = (xo,b X 0 ,2, .. , Xo,n) by definition of the synchronous 

product. We note that input i(O) is ignored as the controller always starts at 

its reset state. 

We now consider k E {1, 2, .. } 

As {i(k")} is input valid for S, we know by definition that: 

(Vk E {1, 2, ... } )(::ls1, s2, ... , sk E Leone) (s1s2 .. sk E L(S)]/\ 
[(Vt E {1, 2, ... , k} )(Va E ~act)i9,-y9 (u) (t) = 1 ¢?a E Occu(st)] (3) 

This implies that fortE {1, 2, .. , k }, Occu(st) = r:[1(i(t)) 

We thus have ~(x(O), fj1(i(l))) = x(1) E Xsamp· 

We note that asS is CS deterministic, x(1) = ~(x0 , s1) as any concurrent string 

with same occurrence image would come to the same state. We thus have 

x(2) = ~(x(1), fj1(i(2))) with x(2) = ~(x0 , s1s2) E Xsamp and so on, until we 

have x(k) = ~(x(k- 1), fj1(i(k))) with x(k) = ~(X0 , s1s2 .. sk) E Xsamp· 

Let Pi : ~* ---+ ~j, where j = 1, 2, .. , n, be a natural projection. 

By (3) and definition of the synchronous product, it follows that fortE {1, 2, .. , k }, 

Occu(.Fj(st)) = fJ,j(ii(t)) and Pi(s1)Pi(s2) .. Pi(st) E L(Si) 

By a similar logic as above, we have 

until we get 

~i(x(O), fJ,}(ii(1))) 

=xi(1) 

=~j(X0,j, .Fj(sl)) E Xsamp,j 

xi(k) =~i(x(k- 1), fJ,}(ii(k))) 

with Xj(k) = ~j(Xo,j, Pj(sl)Fj(s2) .. Pj(Bk)) E Xsamp,j 

By Definition 4.2.11 for n, it is easy to see that (Vt E {1, 2, .. , k} )q(t) = A(x(t)) 

and Q,j(t) = Ai(xi(t)). 
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By definition of the synchronous product 

x(k) =~(xo, s1s2 .. sk) 

=(6(xo,l, g(sl)g(s2) .. g(sk)), 

6(xo,2, P2(s1)P2(s2) .. P2(sk)), .. , 

~n(Xo,n' Pn(sl)Pn(s2) .. Pn(sk))) 

=(xl (k), x2(k), .. , Xn(k)) 

Claim B proven. 

Let k E {0, 1, .. } 

We are now ready to show that z(k) = z'(k) 

as required. 

We next note that by Claim B, that after inputs i(O), i(1), ... i(k) from {i(k") }, 

controller Cis in state q(k) = A(x(k)) for some x(k) E Xsamp and each Cj is in 

state QJ(k) = Aj(Xj(k)) for some Xj(k) E Xsamp,j and x(k) = (x1 (k), X2 (k), .. , Xn(k) ). 

We can now apply Claim A with q = q(k) and each Q.j = QJ(k) for j = 1, 2, .. , n, 

and conclude that for Cat state q(k) and C' at state q 1(k)q2(k) .. qn(k), they 

will produce the same output. In other words, z(k) = z'(k), as required. 

By steps 1., 2., and 3., we can thus conclude that C and C' are output equivalent 

with respect to S. 

0 



Chapter 5 

Control and Non blocking 

Verification 

A controller is more constrained than a supervisor. Every time an event occurs, the 

supervisor changes its state, but a controller reacts only on sampling instances (tick 

event). This means it is possible that the enablement information from the controller 

may not always be exactly the same as that of the supervisor's, as a supervisor can 

be more expressive in this regard. We want to make sure that the corresponding en

ablement information that the controller applies to the plant is such that the system's 

closed loop behavior (the actual behavior of the plant reacting to the controller's en

ablement information and the event forcing initiated by the controller) stays a subset 

of the desired behavior specified by the supervisor. 

5.1 Supervisory Control Construction 

First we have the following definition from [6]. 

Definition 5.1.1. A TDES supervisory control for G = (Y, ~' 8, y0 , Ym) is any map 

V: L(G) ---? Pwr(~), such that, 

(!Is E L(G))V(s) ::2 { E, U ( { r} ~~ligL(G)(s)) if V(s) n EligL(a)(s) n ~hib = 0 
if V(s) n EligL(a)(s) n ~hib =I= 0 

From now on, we will just use the term supervisory control when it is clear by our 

context that we are referring to TDES. 

73 
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We will be requiring that prohibitable events can only occur at most once per 

sampling period. This is to simplify things a bit, but is primarily as we only decide 

to force an event once per clock cycle, it makes sense that the event only occurs once 

per clock cycle. If the controller has full control over when the event occurs, this is 

what will happen so the TDES behavior should reflect this. It makes it easier to keep 

track of things. Also, Point iii.l of the SD controllability definition does not say 

anything about eligibility of ~hib events after they have occurred once. As we will see 

in the proofs in this section, this assumption will be a key part in making the proofs 

work. 

Definition 5.1.2. For TDES G = (Y, ~' 8, Yo, Ym), we say that G has singular pro

hibitable behavior if, 

('is E L(G) n Lsamp)('is' E Lcanc)ss' E L(G) 

==::;. (\fa E Occu(s') n ~hib)(:3sl, S2 E (~act- {a} )*)s' = slas2r 

In other words, the above condition says that for TDES G, a prohibitable event 

is allowed to occur at most once per sampling period. 

If TDES G is our plant and TDES Sis our supervisor, we likely only care about 

checking this condition for strings in L(S) n L(G). We thus introduce the definition 

below. An example that fails the S-singular prohibitable behavior property is shown 

in Figure 5.1. Here we see the prohibitable event a occurring twice in a sampling 

period. 

Definition 5.1.3. For TDES G = (Y, ~' 8, Yo, Ym) and TDES S = (X,~'~' x 0 , Xm), 
we say that G has S-singular prohibitable behavior if 

('is E L(S) n L(G) n Lsamp)('is' E ~:ct)ss' E L(S) n L(G) 

==::;. (\fa E Occu(s') n ~hib) a (j_ EligL(G)(ss') 

Figure 5.1: An Example FailingS-singular Prohibitable Behavior Property 

Let G = (Y, ~' 8, y0 , Ym) be a TDES plant. For the rest of this chapter, we will 

require plant G to be complete for our supervisor S, have proper time behavior and 
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S-singular prohibitable behavior, and that meet(G, S) be ALF. This will ensure that 

for any strings E L(G) (or L(V/G) if G is not ALF on its own), we will always be 

able to reach a state where tick is possible after at most a finite number of activity 

events. In other words, we will not "stop the clock." This is important as it ensures 

that after every sampled string in our system has occurred, all new behavior can be 

represented as a series of concurrent strings. 

Definition 5.1.4. We write V /G to represent G = (Y, ~' 8, Yo, Ym) under the su

pervision of V. The closed behavior of V/G is defined to be L(V/G) ~ L(G) such 

that 

1. E E L(V/G); 

2. if s E L(V/G), o- E V(s) and so- E L(G), then so- E L(V/G); 

3. no other strings are in L(V/G). 

It follows from the above definition, that L(V /G) is prefix closed. 

Let supervisor S = (X,~'~' X 0 , Xm) be CS deterministic and SD controllable 

with respect to our plant G. Let C = (I, Z, Q, n, <I>, Qres) be a centralized controller 

translated from S using the method described in Section 4.2.3, with input and output 

event mapping functions 'Y (see Definition 4.2.2) and 'f/ (see Definition 4.2.3), and input 

and output set mapping functions r1 (see Definition 4.2.9) and rz (see Definition 

4.2.10). 

To verify that our controller C will generate the correct enablement information 

for our plant, we construct the corresponding supervisory control V for G. The idea is 

to express the enablement information that the controller would provide to the plant 

as a supervisory control. In particular, we wish to capture the idea that enablement 

information only changes after a tick, and then stays constant till the next tick. We 

also want to express the forcing information the controller provides to the plant, in 

particular the fact that as soon as a prohibitable event is enabled, the controller will 

force the event to occur within the current sampling period. 

The construction of our supervisory control V will be presented as an algorithm. 

We will use the logic in the algorithm to do the verification. First, we need to have the 

following definition. An important aspect of sampled strings is that they delineate 
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the concurrent behavior of G, which interprets how G moves from one sampling state 

to another. 

Definition 5.1.5. For TDES G = (Y, ~' 8, Yo, Ym), the concurrent behavior of G is 

defined to be a map CBa : L(G) n Lsamp--+ Leone, such that for s E L(G) n Lsamp, 

CBa(s) := {s' E Leonelss' E L(G)} 

It states that the possible concurrent behavior for a TDES G after sampled string 

s E L(G) n Lsamp' is the set of concurrent strings that can extends to a string in the 

closed behavior of G. 

We now discuss our conversion algorithm, labeled Algorithm 5.1. Given G and the 

controller C acting on G, our algorithm constructs our supervisory control map V, 

by keeping track of how our controller changes state in response to strings generated 

by our plant. In our next section, we will show the map V is well defined. We first 

describe some variables that we will use in our algorithm. 

Pend ~ Lsamp x Q is the set of pending (s, q) pairs to be analyzed, where 

s is a sampled string in L(G), and q is the corresponding state 

in the controller that the sequence of inputs that would match the 

concurrent strings that make up s, unless of course s = E. If s = E, 

then q would be our reset state. 

~v is the set of prohibitable events enabled by V ( s), for current sampled 

string s that we are processing. 

~temp is a copy of ~v that we make when we are processing a concurrent 

string that extends the sampled string, s, that we are currently pro

cessing. This will be used to keep track of which prohibitable events 

in ~v have not yet occurred in substrings of the concurrent strings 

that extends in L(G). 

Next, we will explain the statements in Algorithm 5.1 in detail. Note that Algo

rithm 5.1 may never terminate as the language L(G) may not be finite, thus giving us 

a non-finite number of string-state pairs to evaluate. The algorithm merely describes 

abstractly how map V is related to controller C. We will then use this to compare 

the control behavior of V to that of our supervisor, S, that C was translated from. 
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Algorithm 5.1 Obtaining V from controller C, acting plant G 
1: for all s E L(G) do 

2: V ( S) f- Eu U { 7} 
3: end for 

4: Pend f- {(t:, qres)} 

5: while Pend =I 0 do 

6: (s, q) f-a member from Pend 

7: Pend f- Pend- {(s, q)} 
8: Zf-q,(q) 

9: Ev f- r:z1(z) 

10: if Ev =I 0 then 

11: V(s) f- (V(s) U Ev)- {7} 
12: end if 

13: for all s' f- u1u2 .. ui E CBa(s) do I I ui = 7 by definition 

14: if (Occu(s') n Ehib ~ Ev) 1\ (ss' E L(S)) then 

15: Etemp f- Ev 

16: if- rJ(Occu(s') - { 7}) 

17: q'f-O(q,i) 

18: Pend f- Pend U {(ss', q')} 
19: if j > 1 then 

20: for i f- 1 to j - 1 do 

21: Etemp f- Etemp - Ui 

22: if Etemp =I 0 then 

23: V(su1u2 .. ui) f- (V(su1u2 .. ui) U Ev)- {7} 
24: else 

25: V(su1u2 .. ui) f- (V(su1u2 .. ui) U Ev) 

26: end if 

27: end for 

28: end if 

29: end if 

30: end for 

31: end while 

32: return V 

77 
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Initially, the for-loop from line 1 to line 3 includes all events a E :Eu U { T} in 

V ( s) for all s E L( G), to ensure all uncontrollable events are eligible in V ( s). This 

is needed to satisfy the controllability definition. This is the default setting for each 

possible strings. The tick event will be removed later, if we are suppose to be forcing 

an event. 

A controller always starts operating at its reset state, so this will be the first state 

we will examine. As this corresponds to the empty string, our starting place is thus 

the tuple (t:, q). On line 4, we thus initialize our set of pending tuples to (t:, q). 

The set Pend contains all the state-string pairs that have not been analyzed, and 

its members will be extracted one by one in the while-loop running from line 5 to 

line 31. There are two parts in the while-loop, where we process V(s) and then 

V(sa1a2 .. ai) fori< ls'l, s' E CBa(s). 

At line 6 in the while-loop, a member (s, q) is extracted from the set Pend. 

This is the next tuple to be analyzed. 

At line 8 output vector z is obtained from the current controller state q by 

applying output function q>. Vector z represents all the prohibitable events that the 

controller enables while it is at state Q. Then at line 9, all the prohibitable events 

enabled by the controller at current state q are included in :Ev. This is done by using 

the inverse of the output set mapping function r:z1(q) from Definition 4.2.10. 

At line 11 the enablement information :Ev is included in V(s) for current sampled 

strings. As mentioned, the tick event included at line 2 is removed here in accordance 

to Point ii of the SD controllability definition (Definition 3.2.2). Basically, it says 

if we have eligible prohibitable events enabled, we must disable a tick and force the 

event. Of course, when we later show that the map V we have defined is indeed a 

TDES supervisor control, we will have to show that these prohibitable events were 

eligible in L(G) at this point. 

The for-loop from line 13 to line 30 loops through all possible concurrent strings 

s' = a1a 2 .. ai E CBa(s) (i.e. those that can extends in L(G)). First, it calculates 

the input vector, i, that would correspond to s' occurring. This is done by using the 

controller's input event mapping function, r 1 . We then use the controller's next state 

function, n, to calculate q', the state reached from q by input vector i. Recall that 

CBa(s) from Definition 5.1.5 is the concurrent behavior at state 8(y0 , s) in G. 

At line 14, we ignore concurrent strings whose occurrence images contain pro-
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hibitable events that are not in Ev. The reason is that these events have been disabled 

by the controller, so this represents behavior that will not occur in the closed loop 

system, so we just leave it at the default enablement information specified at line 2. 

We also ignore concurrent strings that do not represent behavior in L(S), thus 

restricting the strings we can change from their line 2 defaults, to strings in L(S) n 
L( G). The reason is that we later need to prove that our V satisfies Definition 5.1.1. 

We will do this later by first showing that L(V/G) = L(S) n L(G), and then use the 

fact that S is SD controllable for G. 

At line 15, all prohibitable events in Ev are copied to Etemp, which stores pro

hibitable events in Ev that have not yet occurred in this sampling period. At line 

18, the new string-state pair ( ss', q') is added to set Pend. 

At line 19, the if statement checks if s' contains events other than tick. Since 

the only tick event in a concurrent string is the ending event, it only checks if j > 1 

for j = Is'!. If so, we execute lines 20 to 27. 

In the inner most loop from line 20 to line 27, we analyze each substring u1u2 .. ui, 

i < j. 
For lines 22 to line 26, if there are still prohibitable events in Etemp that have 

not yet occurred, the map V(su1u2 •• ui) has to remove the tick event since in our 

setting, enabling a prohibitable event also means we want to force it. Otherwise we 

leave the tick event in V(suw2 •• ui)· In either case, we add Ev to V(suw2 .• ui) since 

the enablement information of a controller is constant until the next tick event. 

In the rest of the chapter, when we are discussing a system with plant G, and CS 

deterministic TDES supervisorS that is SD controllable for G, we will be concerned 

about the SD controller C that is constructed from S using the translation method 

described in Section 4.2, and TDES supervisory control V 1 that is constructed from 

C using Algorithm 5.1. 

Definition 5.1.6. For plant G, and CS determ~nistic supervisorS that is SD control

lable for G, let C be the SD controller that is constructed from S using the translation 

method described in Section 4.~, and V be the map that is constructed from C using 

1 We still need to prove that our map V is indeed a TDES supervisory control, and that the map 
is well defined. We will prove this in the following sections. 
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Algorithm 5.1. The marked behavior of V/G is defined to be 

Lm(V/G) := L(V/G) n Lm(S) n Lm(G) 

We say V is nonblocking for G if 

Lm(V/G) = L(V/G) 

That is, a nonblocking supervisory control V for G can always reach a marked 

state in both G and S by extending the current strings E L(V /G). 

5.2 Map VIs Well Defined 

We want to show that the map V constructed using Algorithm 5.1 is well defined for 

any possible string s E £(G) so that it can be considered as a possible supervisory 

control. 

For example, Let TDES G be a plant defined over .E = {a, ,8, J', w, T} where 

T = tick. Let .Ehib = {a, ,8, I'}. Let C be the controller acting on G. Imagine a part 

of G as shown in Figure 5.2. 

a 

Figure 5.2: Part of a TDES plant 

In the figure, let s E £(G) be the string taking us to the left most sampling state. 

We see there are two concurrent strings s~ = a,B')'WT and s~ = a,BWJ'T extending s in 

different paths so that ss~, ss~ E L(G). Lets= a,B to be the prefix of both s~ and 

s~. Since Algorithm 5.1 will evaluate V(ss) twice (lines 22 to 26), we want to make 

sure each time V(ss) is assigned the same control action for both paths in the figure. 

We also need to make sure that every string s E Lsamp n L(G) is either evaluated 

once, or is always associated with the same state q of the controller. We then have 

the following proposition to be proven. 
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Proposition 5.1. For plant G = (Y, ~' t5, Yo, Ym), and CS deterministic supervisor 

s = (X,~' e, Xo, Xm) that is SD controllable for G, let c be the SD controller that is 

constructed from S using the translation method described in Section 4.2.3, and V be 

map that is constructed from C using Algorithm 5.1. Then, map V is well defined. 

Proof. Assume initial conditions for proposition. 

To show that V is well defined, we need to show that for every 8 E L( G), our 

algorithm will define V(8) in only one way. 

From the definition of Algorithm 5.1, it is clear that for all s ¢ L(S) n L(G) n Lsamp' 

the algorithm only defines V(s) exactly once on line 2. 
~~--~~------

This means we only have to examine strings s E L(S) n L(G) n Lsamp· 

Let 8 E L(S) n L(G) n Lsamp· 

Further examination of Algorithm 5.1 shows that V(8) is only updated on line 

11, line 23 and line 25, if at all. 

Examining these cases, we see that if s E Lsamp' it will only be updated at line 

11. Otherwise, it could be updated once or more at line 23 or line 25. 

Case A) S E Lsamp 

We first note that we only care about sampled strings that are added to Pend. If 

s is never added to Pend, it is only defined at line 2 and is never updated, thus is 

uniquely defined. We can thus assume that s is added at some point to Pend, without 

loss of generality. 

To show that there is only one way to define V ( s), it is sufficient to show that 

whenever line 11 was executed for s, ~v was always the same. Clearly, as long as 

~v is the same, then executing line 11 again will produce the same result as the 

first time. As ~v is uniquely defined by state q of controller C, it is thus sufficient 

to show that strings will always be paired with state q. 

If s = €, then by definition this is always paired with state Qres· Studying the 

algorithm, it is easy to see this is the case. We thus need only consider the case of 

s E ~*.r. 

Examining Algorithm 5.1, we can see that every such string in Pend, is constructed 

by concatenating one or more concurrent strings together. 
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For s, we thus have: 

(:ln E {1, 2, .. } )(:lsb s2, .. , Sn E Leone)sls2··Sn = S 

As Leone= ~;ct.T, there is only way to define strings s1 to Sn· 

Examining line 16 and line 17 of the algorithm, we see how starting with Qres, 

each new state would be calculated using the next concurrent string in the list. Ex

amining the definition of r 1 and n from Section 4.2.3, and~ from Section 3.1, we can 

see that since supervisorS is CS deterministic and s E L(S) n Lsamp, this sequence of 

states is unique, meaning the final state q associated with s is unique for controller 

c. 
We thus conclude that we will always associate the same state q with s, thus the 

same set ~v. 

Case B) S fi Lsamp 
This implies (:lt E Lsamp)(:Ji E Leone)t < s < ti 
We note that this implies (:lj > 1)(:3ab a2, .. , ai E ~)i = a1a2 .. ai 

We thus have (:Ji E {1, 2, .. , j- 1} )ta1, a2, .. , ai = s 

Note that in above, we have j > 1 since as t < s < ti, j = 0, 1 would cause a 

contradiction. Basically, j = 0 would mean i = c, thus ti = t and we could not have 

t < s < t. If we had j = 1, we would have i = T as i E Leone· As we require t < s, s 
must contain at least one event more than t, but that would not also allows< ti as 

i only contains one event. We thus must have j > 1. 

We note if for all such i they fail the condition on line 14, or if twas never added 

to Pend, then V ( s) will never be updated again, and will retain the value it was 

assigned on line 2. Thus, with no loss of generality, we can assume that twas added 

to Pend and our i passes the condition on line 14. We thus have t, tiE L(S) nL(G). 
Given the definition of Leone and sampled strings, it is easy to see that there is 

only one way to define all a2 , •• , ai, and thus sampled string t. 
From Part A, we saw that for a given sampled string, there is only one way to 

define the corresponding ~v set. Of course, it is possible that there are multiple ways 

to define ai+l··ai. 

Examining Algorithm 5.1, we see that the portion that we are concerned with 

corresponds to line 19 to line 28. Examining these lines, we see that the definition 

of V(s) is determined only by ~v and ta1, a2, .. , ai, which are unique for s. 
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It thus follows that V(s) is unique defined for ours. 

By Case A and Case B, we have shown that Vis well defined. D 

5.3 Supervisory Control and SD Supervisors 

Given the map V constructed from C by Algorithm 5.1, we want show that the closed 

loop behavior L(V/G) equals the behavior of meet(G, S), i.e. 

L(V/G) = L(S) n L(G) 

By Definition 5.1.4 for L(V/G), we find that {E} ~ L(V/G) ~ L(G). We thus 

need to make sure that L(G) =f:. 0. This is automatic as long as G has an initial state. 

Theorem 5.1. For plant G = (Y, 'E, 8, Yo, Ym), and CS deterministic supervisorS= 

(X, 'E, 8, X 0 , Xm) that is SD controllable for G, let both TDES have finite statespaces, 

let G be complete for S, have proper time and S-singular prohibitable behavior, 

let meet(G, S) be ALF, let C = (I, Z, Q, n, <I>, Qres) be the SD controller that is 

constructed from S using the translation method described in Section 4.2.3, and let 

V be the map that is constructed from C using Algorithm 5.1. Then, 

L(V/G) = L(S) n L(G) 

Proof. A~sume assumptions in proposition setup. 

To show L(V/G) = L(S) n L(G), we must 

1. show L(V/G) ~ L(S) n L(G) 

2. show L(V/G) 2 L(S) n L(G) 

To show 1, must show 1.1 and 1.2 as follows. 

1.1 show L(V/G) ~ L(G) 

This is automatic by Definition of L(V/G) and the fact G contains an initial 

state. 
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1.2 show L(V/G) ~ L(S) 

To show this, we must show 

(Vs E L(V/G))s E L(S) (1) 

Lets E L(V/G). We can show it by induction as follows. 

base case s =c. 

As S contains an initial state, it follows that c E L(S). 

inductive step We assume that s = u 1 .. uk E L(V/G) n L(S) and suk+l E 

L(V/G) for some k :2: 0. We will now show this implies that 

suk+l E L(S) 

Since :E = :Eu U :Ec = :Eu U :Ehib U { T} by definition of TDES, we have 3 

cases for uk+l E :E 

(i) fJk+l E :Eu 

As SC7k+l E L(V/G), it follows that (Jk+l E EligL(G)(s) n :Eu As s is 

SD controllable for G, it follows that uk+1 E EligL(S) ( s), thus suk+l E 

L(S) 

(ii) fJk+l = T 

To show T E EligL(s)(s), by Point ii in Definition 3.2.2 of SD control

lability (since S is SD controllable for G) we need to show 

( T E EligL(G) ( s)) 1\ (EligL(S)nL(G) ( s) n :Ehib = 0) 

Since L(V/G) ~ L(G) as shown in 1.1, we have 

Now we need to show 

T E EligL(V/G)(s) 

~ T E EligL(G)(s) 

EligL(S)nL(G) ( s) n :Ehib = 0 
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By default, the tick event is included in V(8) at line 2. In the algo

rithm, tick is only removed if Ev =J 0 at line 11 or Etemp =J 0 at line 

23. 

We thus have four possibilities: a) 8 E Lsamp' Ev = 0 and 8 was 

added to Pend, b) 8 ¢ Lsamp, Etemp = 0, and V(8) is re-evaluated c) 

8 E Lsamp and 8 was not added to Pend, or d) 8 ¢ Lsamp and V(8) is 

not re-evaluated. We now examine these cases. 

(ii.a) 8 E Lsamp, Ev = 0, and 8 was added to Pend. 

As 8 E Lsamp' either it is the empty string, or 8 E E* .T. For the 

case 8 = E, we have A(xo) = Qres (see Definition 4.2.8), which 

matches the state-string association that Algorithm 5.1 makes. 

Otherwise, 8 is composed of one or more concurrent strings. We 

thus have 

As Leone= E;!ct.r, there is only way to define strings 81 to 8n· 

Based on the definitions from Section 4.2.3, we can determine the 

state in C that will correspond to string 8, by starting with Qres, 

and evaluating 

As s is cs deterministic, it follows from the definitions of r I and 

n that Ql = A( xi), where XI = e(xo, 81). Note that we have 

8 1 E L(S) as the language is closed. 

By the same logic we have 
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Extending this logic to the end, we have 

and Qn = A(xn), where Xn = e(xo, sls2··sn)· To simplify the nota

tion, we will take q = Qn and x = Xn. 

We thus have q the state the controller C will be in after string 

s, and x E Xsamp the state that Swill be in, while q = A(x). It 

is easy to see by the logic of Algorithm 5.1, that string s will be 

paired with state q. See proof of Proposition 5.1 for more details. 

We next note that the outputs at state q are z = <I>(q). We thus 

have by Definition 4.2.12 that z = fz(((x)). 

By the definition of control action given in Definition 3.2.3, it 

follows that ((x) = {a E ~hibJe(x, a)!}. As ~v = f:Z 1(z) as per 

line 9 of Algorithm 5.1, we thus have ~v ={a E ~hible(x, a)!}. 
As we have ~v = 0 by assumption, we thus have 

{a E ~hible(x, a)!} = 0 

which implies 

EligL(s) ( s) n ~hib = 0 
==::;. EligL(S)nL(G)(s) n ~hib = 0 

as required. 

Part (ii.a) complete. 

(ii.b) sf/ Lsamp, ~temp= 0 and V(s) is re-evaluated. 

As V(s) is re-evaluated and s tJ. Lsamp, then it follows from the 

logic of Algorithm 5.1 that 

(:Jt E Lsamp n L(S) n L(G))(:J£ E Leone) 

(t < s < tf) 1\ (tt E L(S) n L(G)) (1) 
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It also follows that: 

(::Jl E {1, 2, .. } )(::Ja1, 0"2, .. , 0"! E ~act C ~) ta1a2 .. al = S 

Now, from the logic of part (ii.a), we know that string t will 

be paired in Pend with a state q, such that q = A( x), where 

x = ~(x0 , t). We thus have 

~v = EligL(s)(t) n ~hib 
==} EligL(S)nL(G)(t) n ~hib ~ ~v 

We now note that asS is SD controllable for G, we have by Point 
iii.l of Definition 3.2.2, 

(EligL(S)nL(G)(s) u Occu(ai0"2 .. 0"!)] n ~hib 

= EligL(S)nL(G)(t) n ~hib ~ ~v 

::::} (EligL(S)nL(G)(s) u Occu(ai0"2 .. 0"!)) n ~hib ~ ~v 
::::} EligL(S)nL(G)(s) n ~hib ~ ~v (2) 

It follows from the logic of Algorithm 5.1 and fact that ~temp= 0, 
that 

In other words, every prohibitable event in ~v has occurred at 

least once since t (i.e. this sampling period). 

As t E L(S) n L(G) by (1), and G has S-singular prohibitable 

behavior by our initial assumptions, it follows that the prohibitable 

events in ~v cannot occur again in i (i.e. not until after next tick). 

This implies 

EligL(G)(s) n ~v = 0 

Since EligL(S)nL(G)(s) n ~hib ~ ~v by (2), it follows that 

EligL(S)nL(G)(s) n ~hib = 0 

as required. 

Part (ii.b) complete. 
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(ii.c) s E Lsamp and s not added to Pend 

We will show that s E Lsamp causes a contradiction and thus s 

must be added to Pend. This means that case (ii.a) represents 

the only valid possibility, if s E Lsamp 

We note that Lsamp =~*.tick U {c}. If s = E, then we know E is 

always added to Pend (line 4 of Algorithm 5.1), so this section 

does not apply. We can thus assumes =I= E, and thus s E ~* .T 

Our goal is to show that s will always be added to Pend, thus 

(ii.c) never applies. 

Ass E ~* .T, if follows 

To show that s must be added to Pend, we need to show: 

(\fl E {1, 2, ... , n}) 
(s1s2 .. sz E L(S) n L(G)) 1\ (Occu(sz) n ~hib ~ ~v(sls2 .. sz-I)) 

where ~v(s1 s2 .. sz_1) is the value of ~vat line 14 in the algorithm 

when sampled string s1s2 .. s1_ 1 is being evaluated. 

Let l E { 1, 2, ... , n}. 

Ass E L(S) nL(G) by assumption, and L(S) and L(G) are closed 

languages, s1s2 .. sz E L(S) n L(G) is automatic. 

All that remains is showing 

We know from part (ii.a) that sampled string s1s2 .. s1_ 1 will always 

be paired with state q of the controller, with q = A(x), where x = 

~(x0 , s1s2 .. sz_1). This state q is the state the controller will be in 

after this string, thus ~v(s1 s2 .. sz_1) will be the enablement output 

(as per definition of Algorithm 5.1) of the controller until after the 
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next tick occurs. That means for all a E Ehib- Ev(sls2 .. sl-1), a 
will be disabled until after concurrent string sl has occurred. As 

s E L(V/G) by assumption, we also have s1s2 .. sl E L(V/G) as 

L(V/G) is closed and s1s2 .. sl :::; s. This means sl cannot contain 

any events in Ehib- Ev(sls2··sl-1), thus 

We have thus shown that for s =for s E E* .T, it must have been 

added to Pend. This means that (ii.c) does not apply to sat all, 

so strings must be covered by case (ii.a). 

Part (ii.c) complete. 

(ii.d) s ~ Lsamp and V(s) is not re-evaluated. 

We now examine case of s ~ Lsamp and show that it must have 

been re-evaluated at line 23 or line 25, thus case (ii.b) is the 

only valid possibility for s ~ Lsamp· 

As S ~ Lsamp' it follows that: (::Jt E Lsamp)(3t E Lconc)t < S < ti 

It also follows that 

(3l E {1,2, .. })(::Ja1,a2, .. ,alE Eact C E)ta1a2 .. al = s (3) 

To show that V(s) must have been re-evaluated at line 23 or line 

25, it is sufficient to show that t must be added to Pend, and that 

there exist a i that will pass the condition on line 14. 

We first note that ass E L(S) n L(G), it follows that t E L(S) n 
L(G) as L(G) and L(S) are closed languages. Similarly, as s E 

L(VfG), we also have t E L(V/G). 

We can thus apply the logic from (ii.c), and conclude that t must 

be added to Pend, and it will be paired with state q of the con

troller with q = A(x) where x = ~(x0 , t). State q is the state the 
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controller will be in after string t, thus L:v will be the enablement 

output of the controller, where 

(4) 

We now need to show: 

(3£ E Leane) 
(s < ti) 1\ (tin L(S) n L(G)) 1\ Occu(i) n L:hib ~ L:v 

We start by constructing a string f E Leone that satisfies the first 

two conditions. 

We note that by assumption, G and S have finite statespaces, 

G has proper time behavior, meet ( G, S) is ALF, and that S is 

controllable for G (this is implied by fact S is SD controllable for 

G). We can thus apply Proposition 2.4 and conclude 

(3s' E L:*)ss'T E L(S) n L(G) 

We can thus take f = 0'10'2 .. 0'1s'T and we haves < ti (by (3)) and 

tiE L(S) n L(G). 

All that remains is to show 

From (4), we have 

L:v = EligL(S)(t) n L:hib 

===? EligL(S)nL(G)(t) ~ L:v 

We now note that asS is SD controllable for G, we have by Point 
iii.l of Definition 3.2.2 

(Vt' E I::et) ( t' < i) ===? 

[EligL(S)nL(G)(tt')UOccu(t')]ni:hib = EligL(S)nL(G)(t)nL:hib ~ L:v 
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If we take t' = (JI(J2 .. (Jls' < t we have 

[EligL(S)nL(G)(tt') u Occu(t')] n ~hib ~ ~v 
=:::::} Occu(t') n ~hib ~ ~v 

As t' T = i, we thus have Occu( i) n ~hib ~ ~v 
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We have now shown, that for s fl. Lsamp' we must have re-evaluated 

V(s) at line 23 or line 25, so (ii.d) does not apply. This means 

that strings must be covered under (ii.b). 

Part (ii.d) complete. 

We thus have shown by (ii.a-d), that 

EligL(S)nL(G)(s) n ~hib = 0 1\ T E EligL(G)(s) 

=:::::} T E EligL(s)(s) by Point ii of Definition 3.2.2 

=:::::} S(Jk+I E L(S) 

ForsE L(S) nL(G) and s E L(V/G), we know there exists t E Lsamv 
and t' E ~~ct such that s = tt'. 

From (ii.a), we know that Algorithm 5.1 will pair sampled string t 

with state q in the controller, with q = A(x), where x = ~(x0 , t). 

Also, we have 

~v = EligL(s) ( t) n ~hib 

:::} EligL(S)nL(G) ( t) n ~hib ~ ~v 

We now will show that (Jk+I E ~v. 

We note that as S(Jk+I E L(V/G), we have (Jk+I E V(s). 

From line 2, we see V(s) is initially set to ~u U { T }. This means that 

(Jk+I must have been added at line 11 if t' = € and t = s, or at line 
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23 or line 25. In either case it implies our prohibitable event is in 

~V· 

We thus have 

O"k+l E ~v ==} O"k+l E EligL(S) ( t) 

==} O"k+l E EligL(G)(t) as G is complete for S. (5) 

AsS is SD controllable for G, we have from Point iii.l of Definition 

3.2.2 that 

[EligL(S)nL(G)(tt') u Occu(t')] n ~hib = EligL(S)nL(G)(t) n ~hib (6) 

We note that as sak+l E L(V/G), we have sak+l E L(G). As G has S

singular prohibitable behavior, this implies O"k+l has not yet occurred 

in this sampling period. Thus 

ak+l ¢:. Occu( t') 

From (5), we have O"k+l E EligL(S)nL(G)(t). 

From (6), we thus have 

O"k+l E [EligL(S)nL(G)(tt') U Occu(t')] 

As O"k+l ¢:. Occu(t') from (7), it follows that 

O"k+l E EligL(S)nL(G) ( s) 

==} SO"k+l E L(S) 

(7) 

(as tt' = s) 

as required 

By (i), (ii) and (iii), we have shown sak+l E L(S) for any ak+l E ~' thus 

our inductive step is complete. 

Thus by our base case and our inductive step, we have s E L(S) for arbitrary 

s E L(V/G). Therefore, 1.2 is complete. 

By step 1.1 and 1.2, we have shown L(V/G) ~ L(S) n L(G). 
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2. Show L(V/G) 2 L(S) n L(G) 

Let s E L(S) n L(G). We need to show this implies 

s E L(V/G) 

We will show this using proof by induction. 

base case s = E 

Automatic that s E L(V/G), by Definition 5.1.4 for L(V/G). 

inductive step We assume that s = u1u2 .. uk E L(V/G) nL(S) nL(G) and suk+I E 

L(S) n L(G) for some k ~ 0. 

We will now show this implies suk+l E L(V/G). 

Sufficient to show uk+l E V(s) by Definition of L(V/G), and fact we already 

have suk+l E~ 
Again, since 'E = 'Eu U 'Ehib U { T} by definition of TDES, we have 3 cases for 

Uk+l E 'E. 

(i) Uk+l E 'Eu 

This is automatic by line 2 in Algorithm 5.1, where all uncontrollable 

events are included in V(s) for each possible strings by default. Examining 

the algorithm, it is clear that uncontrollable events are never later removed. 

(ii) Uk+l = T 

~ we have ST E L( G) and S is SD controllable for G by assumption, we 

'can conclude by Point ii in Definition 3.2.2 that 

T E EligL(S)(s) {::::::::} EligL(S)nL(G)(s) n 'Ehib = 0 

'fe we have ST E L(S) by assumption, we thus have 

(8) EligL(S)nL(G)(s) n 'Ehib = 0 
===? EligL(s) ( s) n 'Ehib = 0 as G is complete for S ( 9) 
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Essentially, G complete for S means that if a prohibitable event was ac

cepted by S, it must also be accepted by G, thus in L(S) n L(G). Thus, 

the only way there could be no eligible prohibitable events in both, is if 

there are none in L(S), otherwise we would have a contradiction. 

We next note that Tis initially added to V(S) at line 2 of Algorithm 5.1, 

thus we would have T E V(s) unless it is removed at line 11 or line 23. 

Now, it is possible that s will never be added to Pend if s is a sampled 

string, or that it will never be processed in the for-loop from line 20 to 

line 27 if s is not a sampled string. If that was the case, V ( s) would have 

the default value and we have T E V(s) as required. We can thus, without 

any loss of generality, assume that sis added to Pend if s E Lsamp, or sis 

processed by the for-loop from line 20 to line 27 if s rt Lsamp· 

It is thus sufficient to show that the tick event is not removed at line 11 

when s E Lsamp or at line 23 when s ~ Lsamp· The two situations are 

discussed individually below. 

(ii.a) S E Lsamp 

If s E Lsamp, T could only be removed at line 11. To show that it is 

not, it is sufficient to show that :Ev = 0. 

As we know from (ii.a) in the proof of part 1, Algorithm 5.1 will always 

associate with sin Pend, the state q in the controller with q = A(x) 

where X= ~(xo, s) E Xsamp· Also, we will have :Ev = EligL(S)(s) n:Ehib 

From (9) we know EligL(s)(s) n :Ehib = 0, thus :Ev = 0, as required. 

(ii.b) S ~ Lsamp 

Ass ~ Lsamp, we know: (::Jt E Lsamp)(::Ji E Lconc)t < s < ti. 

As s is being processed by the for-loop from line 20 to line 27, by 

assumption we have t£ E L(S) n L(G). 
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Examining from line 22 to line 26 of Algorithm 5.1, we see that to 

show T is not removed, it is sufficient to show that when s is processed, 

~temp= 0 

From the logic of Algorithm 5.1, we see that initially ~temp= ~v, and 

~temp= :Ev- {at, a2, .. , ai} by the times is evaluated. 

s we know from the logic of (ii.a) in part 1, Algorithm 5.1 will pair 

rom the contro er, where q = A( x) an 

:Ev = EligL(S) ( t) n ~hib 
==} EligL(S)nL(G)(t) n ~hib ~ :Ev 

.t a ~£7= EligL(s)(t) n ~hib 

As a is prohibitable, we immediately know a E EligL(G)(t) as G is 

complete for S, which implies a E EligL(S)nL(G)(t) n :Ehib· 

::::} ~v = EligL(S)nL(G)(t) n ~hib (10) 

As t < 8 < ti, and EligL(S)nL(G)(8)n~hib = 0 by (8), it thus follows that 

all prohibitable events that were possible at t, are no longer possible 

at 8 in meet(G, S). 

AsS is SD controllable for G, we can apply Point iii.l of Definition 

3.2.2, and conclude 

(EligL(S)nL(G)(8) u Occu(ala2··ai)) n ~hib = EligL(S)nL(G)(t) n ~hib 

::::} (EligL(S)nL(G)(8) u Occu(ala2··ai)) n ~hib = ~v by (10). 

As EligL(S)nL(G)(8) = 0, by (8) we have 



96 5. Control and Nonblocking Verification 

This means, after string ta1a 2 .• ai has occurred, every event in Ev has 

occurred at least once in a1a 2 .• ai· Thus, by the time s is evaluated, 

Etemp = Ev- {a1, a2, .. , ai} = 0 

This means that for s, line 25 is executed in Algorithm 5.1, not line 

23, so tick is not removed from V(s). Thus T E V(s), as required. 

Part ( ii. b) complete. 

By (ii.a) and (ii.b) we have shown sak+l E V(s) and thus 

sak+l E L(V/G) 

(iii) ak+l E Ehib 

We thus have by assumption 

(jk+l E EligL(S)nL(G)(s) n Ehib 

Examining Algorithm 5.1, we see no prohibitable event is added to V(s) 

at line 2. This means, ak+l could only be added at line 11 if s E Lsamp, 

or at line 23 or line 25, if s (j. Lsamp· We thus have two cases to examine. 

(iii.a) S E Lsamp 
First, we have to show that s will be added to Pend, or it will never 

get to line 11. 

As we haves E L(S) n L(G) n L(V/G) by assu~ption, we can apply 

the same logic that we used in (ii.c) in part 1, to show that s will 

always be added to Pend. 

We next note that from the logic of (ii.a) in part 1, Algorithm 5.1 

will always associate with s in Pend the state q in the controller with 

q = A(x), where x = ~(x0 , s) E Xsamp· Also we will have 

Ev = EligL(s) ( s) n Ehib 

As ak+l E EligL(S)nL(G)(s)nEhib, we thus have ak+l E Ev. This means 

that the condition at line 10 of Algorithm 5.1 is satisfied, and thus 

V(s) +- (V(s) U Ev)- {r}. 

Therefore, ak+l E V ( s) as required. 
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{iii.b) S ~ Lsamp 

First, we need to show that we will reach line 23 or line 25 for s, or 

s could only be assigned the default value at line 2. 

As we haves E L(S) n L(G) n L(V/G) by assumption, we can apply 

the logic of (ii.d) in part 1, and conclude 

~mp)W=)t < S < ti 

such that twill be added to Pend and associated with state q in the 

controller with q = A(x), where X= e(xa, t). Also, Ev = EligL(s)(t) n 
@ (11) 

Also, i is such that the condition at line 14 will be satisfied, and thus 

line 23 or line 25 will be reached. 

We also note 

Now, since either line 23 or line 25 will be executed, Ev will be 

added to V ( s). It is thus sufficient to show O"k+l E Ev. 

Since by assumption O"k+l E Ehib, and O"k+l E EligL(S)nL(G)(s), it fol

lows that 

O"k+l E EligL(S)nL(G) ( s) n Ehib (12) 

AsS is SD controllable for G, we can apply Point iii.l of Definition 

3.2.2, and conclude 

(EligL(S)nL(G)(s) u Occu(u10"2 .. 0"i)) n Ehib = EligL(S)nL(G)(t) n Ehib 

=} O"k+l E (EligL(S)nL(G)(s) u Occu(O"I0"2 .. 0"i)) n Ehib, by (12). 

Thus O"k+l E V(s), as required. 
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By part {iii.a) and (iii.b), we have O"k+l E V(s), as required. 

Part iii complete. 

By cases i-iii, we have O"k+l E V(s). We thus have sak+l E L(V/G), thus our 

inductive step is complete. 

Thus by our base case and our inductive step, we have shown s E L(V/G) 
for arbitrary s E L(S) n L(G). 

Part 2 is complete. 

We have shown 1 and 2, thus we have shown L(V/G) = L(S) n L(G). D 

We are now ready to show that the V we constructed in Algorithm 5.1 with the 

given system requirements, is indeed a TDES supervisory control. 

Proposition 5.2. For plant G = (Y, ~' 8, Yo, Ym), and CS deterministic supervi

sor S = (X,~' 8, X 0 , Xm) that is SD controllable for G, let both TDES have finite 

statespaces, let G be complete for S, have proper time and S-singular prohibitable 

behavior, let meet(G, S) be ALF, let C = (I, Z, Q, 0, <I>, qres) be the SD controller 

that is constructed from S using the translation method described in Section 4.2.3, 

and let V be the map that is constructed from C using Algorithm 5.1. Then map V 

is a TDES supervisory control for G. 

Proof. Lets E L(G). 

To show that V satisfies Definition 5.1.1, we need to show 1) V(s) 2 ~u and 2) 

[(T E EligL(G)(s)) 1\ (V(s) n EligL(G)(s) n ~hib = 0)] ===?- T E V(s). 

1) Show V(s) 2 ~u 

This is automatic as V ( s) = ~u U { T} is set at line 2 of Algorithm 5.1, and as 

T ¢: ~u, no a E ~u is ever removed from V ( s). 

2) Show [(T E EligL(G)(s)) 1\ (V(s) n EligL(G)(s) n ~hib = 0)] ===?- T E V(s) 

Assume T E EligL(G)(s) and V(s) n EligL(G)(s) n ~hib = 0 
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We will now show this implies T E V ( s) 

We first note that as the assumptions of Theorem 5.1 are satisfied, we can 

conclude L(V/G) = L(S) n L(G) 

We next note that Tis initially added to V(s) at line 2 of Algorithm 5.1. If s 

is not processed again at line 11, line 23 and line 25, we have T E V(s) 

As we initializes Pend to (E, qres), and we see that only strings in L(S) n L(G) 
will ever be added to Pend or processed at line 23 or line 25 (this can be seen 

by line 13 and line 14). This means if s tJ. L(S) n L(G), we get the default 

value from line 2 and thus have T E V ( s). 

We only need to still considers E L(S) n L(G). 

We will now show that EligL(G)(s) n ~hib = 0. 

(1) 

By definition of L(V/G) (Definition 5.1.4), for a E ~hib, we would only have 

sa E L(V/G) if s E L(V/G), a E V(s) and sa E L(G). 

We haves E L(V/G) = L(S) n L(G) from (1), so for sa E L(V/G), we would 

need a E V(s) n EligL(G)(s). However, we have V(s) n EligL(G)(s) n ~hib = 0 by 

assumption, thus 

(Va E ~hib)sa tj. L(V/G) = L(S) n L(G) 

==> EligL(S)nL(G)(s) n ~hib = 0 

As S is SD controllable for G, we can conclude by Point ii of Definition 3.2.2 

that, T E EligL(s)(s). Since by assumption, we have T E EligL(G)(s), we have 

T E EligL(S)nL(G)(s) = EligL(V/G)(s) 

==> ST E L(V/G) 

Ass E L(V/G), sT E L(G) and ST E L(V/G), it follows from Definition 5.1.4 

that T E V(s), as required. 

From points 1) and 2), we thus conclude that Vis a TDES supervisory control. D 
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We have now captured the enablement and forcing behavior of our controller as 

a map V, and shown that if G and S have the appropriate properties, V is indeed a 

TDES supervisory control. We have also shown that the closed behavior of Gunder 

the control of V, L(V/G), is exactly that of the closed behavior of the meet(G, S), 

namely L( S) n L( G). This means that the behavior we get when our controller acts on 

our plant is what we expect, at least with respect to enablement and forcing behavior. 

Of course, this is assuming that none of the time delay issues we discussed in Section 

3.3 occur. 

We will now show that V is nonblocking for G if and only if the meet of G and 

S are nonblocking. 

Proposition 5.3. For plant G = (Y, ~' 8, y0 , Ym), and CS deterministic supervi

sor S = (X,~' 8, X 0 , Xm) that is SD controllable for G, let both TDES have finite 

statespaces, let G be complete for S, have proper time and S-singular prohibitable 

behavior, let meet(G, S) be ALF, let C = (I, Z, Q, n, <I>, Qres) be the SD controller 

that is constructed from S using the translation method described in Section 4.2.3, 

and let V be the map that is constructed from C using Algorithm 5.1. Then V is 

non-blocking for G if and only if meet(G, S) is non-blocking. 

Proof. To show this, it is sufficient to show that L(V/G) = L(S) n L(G), and 

Lm(V/G) = Lm(S) n Lm(G). 

As the assumptions of Theorem 5.1 are satisfied, we can conclude L(V/G) -
L(S) n L(G). 

We next note that by Definition 5.1.6, we have 

Lm(V/G) =L(V/G) n Lm(S) n Lm(G) 

=L(S) n L(G) n Lm(S) n Lm(G) after substitution for L(V/G) 

=Lm(S) n Lm(G) as Lm(G) ~ L(G) and Lm(S) ~ L(S) 

as required. D 

5.4 Concurrent Supervisory Control Equivalent 

In general, the order that events occur in the physical plant during a given sampling 

period, are that dictated by the plant model, and are allowed by the enablement 
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and forcing behavior of the plant's SD controller. However, in practice time delay 

restrictions and the particular implementation of our controller might mean that all 

concurrent strings that should be possible in a given sampling period according to 

our plant model, may not actually be possible in practice. 

For instance, we may be expecting that we could either get string a{3T or {3et.T 

(a, {3 E ~hib), yet it may be that only string a{3T will ever occur due to time delay or 

the specific implementation of our controller. With respect to time delay, it could be 

possible, for example, that a always reaches our controller's inputs first. With respect 

to implementation, our controller might have to execute the events sequentially and 

always chooses to first do an a then a {3 as it must choose an execution order (people 

typically would not design a controller that randomly chooses an execution order each 

time). Another possibility is that the controller could start a and {3 tasks at about 

the same time, but {3 always takes longer (in this particular implementation of our 

controller) to occur. 

This could be a problem if, for example, only string {3et.T lead back to a marked 

state. In such a case, our TDES system would be nonblocking and controllable, but 

our implementation would block. We want to ensure that if our TDES system is 

nonblocking, and in our actual controlled system where we have a set of possible 

concurrent strings with the same occurrence image that could occur (according to 

our TDES model) in a given sampling period, if at least one of these strings can 

actually occur, our implementation would still be nonblocking. In other words, we 

wish our system to be robust with respect to nonblocking and this uncertainty. 

We will now show that the conditions that we have developed will in fact guarantee 

this. We will frame our argument in terms of supervisory controls. Given a TDES 

G = (Q, ~' c5, q0 , Qm) and supervisor control V for G, we want to be able define a 

supervisor control V' such that if V allows a set of concurrent strings with the same 

occurrence image to occur in G in a given sampling instance, V' will always allow at 

least one of them to occur, but not necessarily all of them. We want to make sure 

that as long as our actual controlled system exhibits the behavior of at least one of 

these V', it will still be nonblocking. Note that we are only modeling variations in 

which prohibitable events are enabled and possibly forced. We capture this notation 

in the following definition. 

Definition 5.4.1. Let G = ( Q, ~' c5, q0 , Qm) be a TDES plant and let V and V' be 
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supervisory controls for G. We say V' is concurrent supervisory control equivalent to 

v if 

1. (Vs E L(G))V'(s) ~ V(s) 

2. (Vs E L(V' /G) n Lsamp)(Vs' E Lcanc)ss' E L(V/G) 
==} (::Js" E Lcanc)ss" E L(V' /G) n Occu(s') = Occu(s") 

By point 1 in the definition above, we require each event that V' ( s) allows is also 

allowed by V(s), so that L(V'/G) does not include unwanted behavior. 

By point 2, we require that if V' /G accepts sampled strings, and V/G accepts 

concurrent string s' after it accepts string s, then V' /G must accept a concurrent 

strings" that has the same occurrence image as s'. We use the the term concurrent 

equivalent because strings s' and s" in the definition could both occur in the same 

sampling period and would be indistinguishable to an SD controller. 

Figure 5.3 shows an example for the concurrent supervisory control equivalence 

definition. Here we see that for V/G, we have two paths with the same occurrence 

image. For V' /G, only one of the two paths are still possible, but that is enough to 

satisfy the definition. 

~ 

~0~ 
V'/G 

Figure 5.3: An Example for Concurrent Supervisory Control Equivalence 
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Proposition 5.4. For TDES plant G = (Q, E, 8, Q0 , Qm), let V and V' be supervisory 

controls for G. If V' is concurrent supervisory control equivalent to V, then 

L(V' /G) ~ L(V/G) 

Proof Let V and V' be supervisory controls for G. 

Assume V' is concurrent supervisory control equivalent to V. 

Must show 

(Vs E L(V' /G))s E L(V/G) 

We will show this using proof by induction. 

base case Let s = E 

This automatically implies E E L(V/G) by definition of L(V/G). 

inductive step Let s E L(V' /G) n L(V/G). Let u E E such that suE L(V' /G). 

Need to show implies suE L(V/G). 

As we already haves E L(V/G) by assumption, it is sufficient to show 

1. u E V(s) 

As suE L(V' JG), we have by definition of L(V' /G) that u E V'(s) and 

s E L(G). This implies u E V(s) by point 1 of Definition 5.4.1. 

2. suE L(G) 

By assumption, we have su E L(V'/G), which implies su E L(G) by 

definition of L(V'/G). 

Thus by definition 5.1.4 of supervisory control, we have suE L(V/G). 

Thus by our base case and inductive step, we conclude 

(Vs E L(V'/G))s E L(V/G) 

which implies 

L(V' /G) ~ L(V/G) 

0 
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We will now show that if V is the TDES supervisor control we constructed with 

Algorithm 5.1 and V' is a TDES supervisor control that is concurrent control equiv

alent to V, then V nonblocking for G implies that V' is also nonblocking for G (per 

Definition 5.1.6). 

Theorem 5.2. For plant G = (Q, L:, 8, q0 , Qm), and CS deterministic supervisor 

S = (X, L:, ~' X 0 , Xm) that is SD controllable for G, let both TDES have finite state 

spaces, let G be complete for S, and have proper time and S-singular prohibitable 

behavior, let meet(G, S) be ALF, let C be the SD controller that is constructed from 

S using the translation method described in Section 4.2.3, and let V be the map that 

is constructed from C using Algorithm 5.1. Let V' be a supervisor control for G. 
If V is nonblocking for G and V' is concurrent supervisory control equivalent to V, 

then V' is also nonblocking for G. 

Proof Assume the initial conditions for the proposition, including that V is non

blocking and V' is concurrent supervisory control equivalent to V. 

We must show this implies 

L(V' /G) = L(V' /G) n Lm(S) n Lm(G) 

It is sufficient to show points 1 and 2 as follows. 

1. L(V' /G) 2 L(V' /G) n Lm(S) n Lm(G) 

Let s E L(V' /G) n Lm(S) n Lm(G). 

Must show implies s E L(V' /G). 

Since s E L(V'jG) n Lm(S) n Lm(G), there exists s" E L:* such that 

ss" E L(V' /G) n Lm(S) n Lm(G) 

~ ss" E L(V' /G) 

~ s E L(V'jG) 

~ s E L(V'/G) as L(V' /G) is prefix closed, by Definition 5.1.4 

2. L(V' /G) ~ L(V' /G) n Lm(S) n Lm(G) 
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Let s E L(V' /G). (1) 

Must shows E L(V'/G) n Lm(S) n Lm(G). 

Sufficient to show 

(3s" E E*)ss" E L(V' /G) n Lm(S) n Lm(G) 

For the case that 

We have ss" E L(V' /G) n Lm(S) n Lm(G), with s" =E. 

We now examine the case 

(2) 

We first note that the assumptions of Theorem 5.1 have been met, so we can 

conclude that 

L(V/G) = L(S) n L(G) (3) 

Also, as Lm(G) ~ L(G) and Lm(S) ~ L(S), it follows that 

Lm(G) n Lm(S) ~ L(V/G) (4) 

We have two sub-cases for s: 1) s E Lsamp and 2) s ~ Lsamp· 

2.1 S E Lsamp (5) 

By Proposition 5.4 we have L(V'/G) ~ L(V/G), we thus have 

s E L(V/G) by (1) 

Since V is non blocking for G, we have 

s E L(V/G) ~ (3s' E E*) ss' E L(V/G) n Lm(S) n Lm(G) 

~ (3s' E E*) (ss' E L(V/G)) 1\ (ss' E Lm(S) n Lm(G)) 
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Let s1 E :E* such that 

(ss1 
E L(V/G)) 1\ (ss1 E Lm(S) n Lm(G)) (6) 

AsS is SD controllable for G, we have by point iv in Definition 3.2.2 that 

We can thus divide 8
1 into consecutive strings s~, s~, .. , s~ E Leone such that 

(7) 

We note that n 2:: 1 ass (j. Lm(S) n Lm(G), by (2). We thus have 

ss~s~ .. s~ E L(V/G) (8) 

UT .11 I I I t t t II II II E L h th t vvew1 nowuses1,s2 , .. ,sn oconsruc s1,s2 , .. ,sn eoneSUC a 

ssrs~ .. s~ E L(V1/G) n Lm(S) n Lm(G) 

We will use a proof by induction to show that, for all k E {2, 3, .. , n} 

[ss~s~ .. s%_1 s~ .. s~ E Lm(S) n Lm(G)] 1\ [ss~s~ .. s%_1 E L(V1/G)] 

=::} 

(:Js% E Leone) 

[ss~ s~ .. s%s~+1 .. s~ E Lm(S) n Lm(G)] 1\ [ss~ s~ .. s% E L(V1 /G)] (9) 

base case Show: (:Js~ E Leone) 
[ssr s~ .. s~ E Lm(S) n Lm(G)] 1\ [ssr E L(V1 /G)] 

From (6), (7) and (8) we haves~, s~, .. , s~ E Leone and 

ss~s~ .. s~ E L(V/G) n Lm(S) n Lm(G) 

=::} ss~ E L(V/G) as L(V/G) is prefix closed 

By (1) and (5), we haves E L(V1 /G) n Lsamp 

Putting this together we see we have 

(s E L(V1/G) n Lsamp) 1\ (s~ E Leone) 1\ (ss~ E L(V/G)) 
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As V' is concurrent supervisory control equivalent to V, we can apply 

Definition 5.4.1 and conclude 

(:Js~ E Lconc)(ss~ E L(V'/G)) 1\ (Occu(s;) = Occu(s~)) (10) 

As L(V'/G) ~ L(V/G) by Proposition 5.4, we have ss~ E L(V/G) 

Ass, ss~, ss~ E L(V/G), we have 

s, ss;, ss~ E L(S) n L(G) ' by (3) 

Ass E Lsamp and Sis SD controllable for G, we can apply Point iii.2 

and conclude: ss~ =Lm(S)nLm(G) ss~. 

As ss~s~ .. s~ E Lm(S) n Lm(G) from (6) and (7), we have ss~s~ .. s~ E 

Lm(S) n Lm(G) as ss~ and ss~ are Nerode equivalent mod Lm(S) n 
Lm(G). 

We have thus shown 

(:Js~ E Lconc)[ss~ s~ .. s~ E Lm(S) n Lm(G)]A (ss~ E L(V' /G)] 

Ba.Se case complete. 

inductive step Let k E {2, 3, .. , n }. 

Assume: 

( ::J II II II E L ) :::JS1, S2, .. , Sk-1 cone 
[ss~s~ .. s%_1 s~ .. s~ E Lm(S) n Lm(G)]A [ss~s~ .. s%_1 E L(V'/G)] 

We will show this implies condition (9) is satisfied for this k. 

"llT fi t t th t II II II E L II II II E L vve rs no e a as s1,s2, .. ,sk-1 cone, ss1s2 .. sk-1 samp· 

As Lm(S) n Lm(G) ~ L(V/G) by (4), we have ss~s~ .. s%_1 s~ .. s~ E 

L(V/G). 

As L(V/G) is prefix closed, we have ss~ .. s%_1 s~ E L(V/G). Also, 

s~ E Leone by (7). 
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We thus have: 

(ss~s~ .. s%_1 E L(V1/G) n Lsamp) 

t\(s~ E Leone) 

t\(ss~s~ .. s%_1 s~ E L(V/G)) 

As V 1 is concurrent supervisory control equivalent to V, we can thus 

apply point 2 of Definition 5.4.1 and conclude 

(:Js% E Leone)ss~ s~ .. s% E L(V1 /G) and Occu(s~) = Occu(s%) 

As L(V1/G) ~ L(V/G), we have ss~s~ .. s% E L(V/G) 

We thus have 

ss~ s~ .. s%_1 E L(V/G) n Lsamp 

=::} ss~ s~ .. s%_1 E L(S) n L(G) n Lsamp by (3) 

and 

ss~s~ .. s%_1 s~, ss~s~ .. s% E L(V/G) = L(S) n L(G) 

As Sis SD controllable for G, we can apply Point iii.2 of Definition 

3.2.2 and conclude 

As ss~s~ .. s%_1 s~ .. s~ E Lm(S) n Lm(G) by assumption, we thus have 
11 11 11 1 1 E L (S) n L (G) 11 11 11 1 d 11 11 11 ss1s2 .• sksk+1 .. sn m m as ss1s2 •• sk_1sk an ss1s2 •• sk are 

Nerode equivalent mod Lm(S) n Lm(G). 

We have thus shown 

(:Js% E Leone) 

[ss~ s~ .. s%s~+1 .. s~ E Lm(S) n Lm(G)] and [ss~ s~ .. s% E L(V1 /G)] 

Inductive step complete. 
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Combining our base case and inductive step, we can take k - n, and 

conclude 

(::Js~, s~, .. , s~ E Lccmc) ss~ s~ .. s~ E Lm(S) n Lm(G) n L(V' /G) 

We thus take s" = s~ s~ .. s~ and Case 2.1 is complete. 

2.2 S fj. Lsamp 

As we want to reuse the result from 2.1 for this part, we first need to 

extends to a string in L(V' /G) n Lsamp· 

As G and Shave finite statespaces, and meet(G, S) is activity loop free, 

it follows that meet(G, S) will accept at most a finite number of non

tick events, before no more non-tick events can occur. Note L(V/G) = 

L(S) n L(G) by (3). 

This means that at the state reached by sin meet(G, S), either there are 

no activity events possible, or after at most a finite number of activity 

events occur, we will be in a state where no activity events are possible. 

The reason is that we have a finite number of states in meet(G, S), thus 

after at most a finite number of non-tick transitions, we will have either 

reached a state where no activity events are possible, or we will have visited 

each state once as meet(G, S) is ALF. If we have visited each state once, 

we can't have another activity event possible, or it would create a loop, 

violating the assumption that meet(G, S) is ALF. 

As L(V'/G) ~ L(V/G) by Proposition 5.4, it thus follows 

(:3t E ~:ct) (st E L(V'/G)) A (EligL(V'/G)(si) n ~act= 0) 

We will now show that: siT E L(V' /G) n Lsamp· 

We first note that by definition of L(V' /G), 

EligL(V'/G)(si) = V'(si) n EligL(G)(si) 
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As V' is a TDES supervisory control, we have V'(si) ~ :Eu. Thus 

V' ( si) n EligL(G) ( si) n :Eact = 0 

====> EligL(G)(si) n :Eu = 0 
====> r E EligL(G) ( si) as G has proper time behavior 

We next note 

V' ( si) n EligL(G) ( si) n :Eact = 0 
====> V'(si) n EligL(a)(si) n :Ehib = 0 
====> r E V'(si) as V' is a TDES supervisory control 

Combining the two results, we have sir E L(V' fG). 

Taking t = sir, we first note that if t E Lm ( S) n Lm (G) we can take s" = ir 
and we have 

ss" E L(V' /G) n Lm(S) n Lm(G) 

and we are done. 

We then consider the case t ~ Lm(S) n Lm(G). 

As t =sir, we thus have t E Lsamp n L(V' /G) 

We can now apply the logic of part 2.1, but use t instead of s as our starting 

place. 

We can thus conclude 

(3s~, s~, .. , s~ E Lconc)ts~ s~ .. s~ E Lm(S) n Lm(G) n L(V' /G) 

We thus takes"= irs~s~ .. s~ and part 2.2 is complete. 

By both part 2.1 and 2.2, we have constructed a string s" E :E*, where 

as required. 

Part 2 is complete. 

ss" E Lm(S) n Lm(G) n L(V' /G) 

====> s E Lm(S) n Lm(G) n L(V' /G) 
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By part 1 and 2, we thus have 

L(V' /G) = L(V' /G) n Lm(S) n Lm(G) 

i.e. V' is non-blocking for G. D 
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Chapter 6 

Symbolic Verification for SD 

System 

In this section, we will present algorithms to verify nonblocking, untimed controllabil

ity, ALF, proper time behavior, plant completeness, S-singular prohibitable behavior, 

and SD controllability. To ensure scalability, we will develop predicate based algo

rithms that are built upon the work of Song [26]. We will first introduce predicates, 

and then discuss how we can use them to verify properties of interest. We then present 

our new algorithms, as well as a few that we will re-use from [26]. 

All the data representations, computations and verifications are based on ordered 

binary decision diagram [8]. For simplicity, we will just use the term BDD. In the 

appendix, you will find the source code for the software tool we developed to imple

ment our algorithms. The code is based on the software developed by Song [26], and 

uses his BDD variable ordering algorithm. The code also uses the BuDDy library [13] 

which is a C++ library that implements standard BDD structures and operations. 

6.1 Predicates and Predicate Transformers 

6.1.1 State Predicates 

From now on, we will use '_' to mean logical equivalence between state predicates. 

We will also use 'T' and 'F' for logical true and false. 

113 
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Let G = (Q, I:, 8, Qo, Qm) be a TDES. 

Definition 6.1.1. A predicate P defined on state set Q is a function 

P : Q --t {T, F} 

identified by the corresponding state subset 

Q p := { q E Q IP( q) = T} ~ Q 

We identify state predicate true by Q, state predicate false by 0, and state pred

icate P m by Qm. 

We write q I= P if q E Qp and say "q satisfies P" or "P includes q". Thus we 

have 

q I= P {::=::? P(q) = T 

We write Pred( Q) for the set of all predicates defined on Q; thus Pred( Q) is 

identified by Pwr(Q). For P E Pred(Q), we write st(P) for the corresponding state 

subset Qp ~ Q which identifies P. We write pr(Q) to represent the predicate that is 

identified by Q. 

Definition 6.1.2. For P, g, P2 E Pred(Q) and q E Q, we can build boolean expres

sions by using the following predicate operations. 

( -.P)(q) = T {::=::? P(q) = F 

(g 1\ P2)(q) = T {::=::? g(q) = T and P2(q) = T 

(g V P2)(q) = T {::=::? g ( q) = T or g ( q) = T 

(g- P2)(q) = T {::=::? g(q) = T and P2(q) = F 

Definition 6.1.3. The partial order relation ~ over Pred( Q) is defined as 

('VPb P2 E Pred(Q))g ~ P2 {::=::? (P1/\ g)= P1 

It is obvious that Q p1 ~ Q p 2 {::=::? P1 ~ P2 • In this case, 

('Vq E Q)q F g ===? q F P2 

Definition 6.1.4. Let g, g E Pred(Q) for some state set Q. g is a subpredicate 

of P2 if g ~ P2. We say P1 is stronger than P2 and P2 is weaker than P1. 

We write Sub(P) to be the set of all the subpredicates of P E Pred(Q) such that 

Sub(P) is identified by Pwr(Qp). 
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6.1.2 Predicate Transformers 

Let G = (Q, ~' <5, q0 , Qm) be a TDES and P E Pred(Q). A predicate transformer 
is a function f : Pred(Q) ---+ Pred(Q). Here we introduce several basic predicate 

transformers from [26] which are required by the following sections. 

• R(G, P) 

The reachability predicate R( G, P) is true for exactly the states in G that can 

be reached from q0 by states satisfying P. It is inductively defined as follows. 

1. Qo I= P ===;. Qo I= R(G, P) 

2. q I= R(G, P) & u E ~ & <5(q, u)! & <5(q, u) I= P ===;. <5(q, u) I= R(G, P) 

3. No other states satisfy R(G, P). 

It says that a state q I= R(G, P) if and only if there exists a path from Q0 to q in 

G and each state in that path satisfies P. To represent the set of all reachable 

states in Q, we use R( G, true). 

• CR(G,P) 

The coreachability predicate CR(G, P) is true for exactly the states in G that 

can reach a marked state by states satisfying P. It is inductively defined as 

follows. 

1. Pm 1\ P =false ===;. CR(G, P) =false 

2. q I= Pm 1\ P ===;. q I= CR(G, P) 

3. q I= CR(G, P) & q I= P & u E ~ & <5(q', u)! & <5(q', u) = q ===;. q' I= 
CR(G,P) 

4. No other states satisfy CR(G, P). 

It says that a state q I= CR(G, P) if and only if there exists a path from q to 

some marked state in G and each state in that path satisfies P. To represent 

the set of all coreachable states in Q, we use C R( G, true). 
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• CR(G, P', :E', P) 

Let P' E Pred(Q) and :E' ~:E. Once we fix G, P' and :E', CR(G, P', 'L/, P) is 

then a predicate transformer. The predicate CR( G, P', :E', P) is true for exactly 

the states in G that can reach a state in G satisfying P', by states that satisfy 

P and by transition with events in :E'. It is inductively defined as follows. 

1. P' I\ P- false ==? CR(G, P', :E', P) =false 

2. q I= P' I\ P ==? q I= CR(G, P', :E', P) 

3. q I= CR(G, P', :E', P) & q' I= P & u E :E' & 8(q', u)! & 8(q', u) = q 

==? q' I= CR(G, P', :E', P) 

4. No other states satisfy CR(G, P', :E', P). 

By comparing with definition of coreachablity predicate C R, we have 

CR(G, Pm, :E, P) = CR(G, P) 

6.2 Symbolic Representation 

For symbolic verification of SD systems, we need to have a representation for states 

and transitions. We will use the symbolic representation from Song [26], who in turn 

based his work on Ma [14]. In this section, we only introduce the necessary definitions 

from this representation that are needed for the computation and verification in the 

following sections. 

6.2.1 State Subsets 

Let G = (Q, :E, 8, q0 , Qm) = G 1 x G 2 x .. x Gn be the product TDES of component 

TDES Gi where Gi = (Qi, :Ei, 8i, Qo,i, Qm,i) fori= 1, 2, .. , n. For any state q E Q, we 

have q = (q1, Q2, .. , Qn) where Qi E Qi. 

In later sections we will be evaluating the meet of component TDES for some of the 

verifications. The only difference between the meet and the product of these TDES is 

that, the product might contain unreachable states but the meet does not. However, 

the checking of unreachable states is expensive and therefore the reachability check is 
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performed over the entire system at the end. In addition, since including unreachable 

states does not effect the closed loop behavior, using the product TDES will not 

introduce any error. 

Definition 6.2.1. For G = G1 x G2 x .. x Gn, let i = 1, 2, .. , n and Qi E Qi. The 

state variable vi for the i-th component TDES Gi is a variable of domain Qi. If vi 

has assigned value Qi, then vi= Qi returns T; otherwise it returns F. 

Here we use '='to if vi has been assigned value Qi, because'=' has been used for 

logical equivalence between state predicates. 

Definition 6.2.2. For G = G1 x G2 x .. x Gn, the state variable vector vis a vector 

[vt, v2 , .. , vn] of state variables Vi from each component TDES Gi. For state subset 

A ~ Q, we write predicate 

or PA if vis understood. 

6.2.2 Transitions 

Let G = (Q, E, 8, Q0 , Qm) = G1 X G2 x .. x Gn be the product TDES of component 

TDES Gi = (Qi, Ei, 8i, Qo,i, Qm,i) fori= 1, 2, .. , n as defined in previous section. 

Definition 6.2.3. For G = G1 x G2 x .. x Gn, let a E E. A transition predicate 

Nu : Q x Q _. {T, F} identifies all the transitions for a in G and is defined as follows. 

(
w , Q)N ( ') ·= {T, if 8(q, a)! & 8(q, a) = q' vq,q E u q,q · . 

F, otherwise. 

To distinguish between source states and destination states, we need to have two 

different vectors of state variables, as defined below. 

Definition 6.2.4. For G = G1 x G2 x .. x Gn, let i = 1, 2, .. , n. For each Gi, 

we have the normal state variable vi (source state) and the prime state variable v~ 

(destination state), both with domain Qi. For G, we have the normal state variable 

vector v = [vt, v2 , .. , vn] and the prime state variable vector v' = [v~, ~' .. , ~]. 
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For each a E :E, we can write the transition predicate for a, Na, as below. Essen

tially, if we set v = q and v' = q' such that 8(q, a) = q', then Na(v, v') will return 

T. 

However, when designing a system with multiple component TDES defined over 

different event set, such as when we use the synchronous product operator, each 

component TDES must be selfiooped at each state with events that are not in its 

own event set. This of course makes the transition predicate much more complicated. 

A new representation to avoid this issue is defined as below. Note that the size of Va 

and v: will always be the same. 

Definition 6.2.5. We use the transition tuple (va, v:, Na) to represent the transition 

on a, where Va ={viE viaE :Ei}, v: = {v: E v'la E :Ei} and 

Although selfiooped transitions are not specified in the definition, the selfioop 

information is still expressed. For those state variables that are not in v a, we know 

that the corresponding component TDES must be selfiooped with event a on each 

state, so we do not need to express this explicitly. Definition 6.2.5 will work fine with 

systems where these self-loops have already been added. 

Since BDD [8] does not support first order logic by itself, to compute state transi

tions we will need the following definition taken from the existential quantifier elimi

nation method for finite domain [1]. 

Definition 6.2.6. For G = G1 X G2 X .. X Gn, let a E :E and (va, v:, Na) be the 

transition tuple for a in G. Fori= 1, 2, .. , n, if vi EVa and v: E v~, then define 

3viNa := V Na[qi/vi] 3v~Na := V Na[qi/v:J 
QiEQi QiEQi 

where Na[qi/vi] is the predicate Na with each term vi substituted by qi, and Na[qi/v~] 

is defined analogously. 
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We use the above method to eliminate either the normal or prime variable, so 

that we can express the statement using propositional logic that we can represent as 

aBDD. 

Let Vu = { v1 , v2 , .. , vm} form> 0. For convenience, we write 3vuNu to represent 

3v1 (3v2 .. (3vmNu) .. ) and the resulting predicate should contain only prime variables 

in v~. For any computation of state predicates, we need all input variables to be 

consistent. That is, either all predicates in the computation have to be expressed 

as normal variables or prime variables. We thus need to substitute all the prime 

variables by normal variables, denoted as 3v uNu [v~ -+ v u ]. The substitution should 

return the predicate for the set of target states for u transitions in G. This means 

that each state in this set has a u transition entering it. 

Let v~ = { v~, v~, .. , v:n}. For convenience, we also write 3v~Nu to represent 

3v~(3v~ .. (3v:nNu) .. ) and the resulting predicate should contain only normal variables 

in Vu, which represents the set of source states for u transitions in G. This means 

that each state in this set has au transition leaving it. 

6.3 Symbolic Computation 

We will now discuss symbolic computation based on the symbolic representation we 

just introduced. This work is based on the work of Song (26] who in turn based his 

work on Ma [14]. 

6.3.1 Transitions and Inverse Transitions 

Let G = (Q, 'E, 8, Q0 , Qm) = G 1 x G 2 x .. x Gn be a TDES plant. For a state q E Q 

and a event u E 'E, we want to compute the transition 8(q, u) using the symbolic 

representation introduced previously. To do this, for Qp ~ Q, where P E Pred(Q), 

we can compute 

Q'p = U {8(q,u)} 
qEQp 

and then find P' := pr(Q'p). However, computing q' one by one is time consuming 

for systems with large statespaces. Instead, we can directly compute the predicate of 

the set of next states from the predicate of the set of current states. 
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The computation is based on a function J : Pred( Q) x ~ - Pred( Q) defined to 

be 

(VP E Pred(Q))(Va E ~)J(P,a) :=pr({q' E Ql(:3q f= P)8(q,a) = q'}) 

As discussed in previous section, the formula :3v.,.N.,.[v~ - v.,.] returns a predicate 

representing the set of target states {q' E Ql(:3q E Q)8(q, a)= q'}. We thus have the 

following definition. 

Definition 6.3.1. Let a E ~and (v.,., v~, N.,.) be the transition tuple for a in G. For 

P E Pred(Q), 

By first computing N.,. A P in the above definition, we are restricting the source 

states to those satisfying P. 

We also need an inverse function J-1 : Pred(Q) x ~- Pred(Q) to compute the 

predicate of the set of source states from the predicate representing the set of target 

states, where J-1 is defined to be 

(VP E Pred(Q))(Va E ~)J-1 (P, a) := pr( {q E Ql8(q, a) f= P}) 

Since the formula :3v~N.,. returns a predicate representing the set of source states 

{q E Ql8(q, a)!}, we have the following definition. 

Definition 6.3.2. Let a E ~and (v.,., v~, N.,.) be the transition tuple for a in G. For 

P E Pred(Q), 

In the definition, P[v.,.- v~] returns predicate P with its normal variables sub

stituted by prime variables. As prime variables represent target states, this has the 

effect of restricting the target states to those satisfying P. 
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6.3.2 Computation of Predicate Transformers 

Let G = (Q, E, 8, q0 , Qm) = G 1 x G 2 x .. x Gn be the cross product TDES of 

component TDES Gi fori= 1, 2, .. , n. Let P E Pred(Q). To compute the predicate 

transformers R and C R introduced in Section 6.1.2, we have the following algorithms 

which are taken from [26]. 

Reachability Check 

Algorithm 6.1 R(G, P) 
1: P1 ~ P Apr({%}) 

2: repeat 

3: p2 ~ g 
4: for i ~ 1 to n do 

5: repeat 

6: p3 ~ pl 

7: pl ~ g v C.xi (J(g, u) A P)) 
8: until P1 = P3 
9: end for 

10: until P1 = P2 
11: return g 

In Algorithm 6.1, procedure R(G, P) takes a TDES G and a predicate P, then 

returns a predicate which holds a set of states in G that can be reached from q0 by 

states satisfying P. 
At line 1, P1 is initialized to be the predicate which represents the initial state 

Qo or 0 if Qo ~ p. 
From line 2 to line 10, fori E 1, .. , n, we loop over u E Ei and determine states 

that satisfy P, and are reachable from a state that satisfies P1 by au transition. 

Due to the intermediate logic formula expansion problem described in [26], that 

intermediate logic formula can become large and complicated even though the final 

predicate :rllight be relatively small, the for loop on line 4 to line 9 repeatedly 

modifies g on a component TDES basis. We start with a specific TDES, Gi, and 



122 6. Symbolic Verification for SD System 

determine next states using only events from ~i until no more changes. Then move 

onto next TDES. For each component TDES Gi, g is modified until it is logical 

equivalent to its previous value, P3 . We cycle through all the TDES until no further 

changes. 

Coreachability Check 

Algorithm 6.2 CR(G, P', ~', P) 
1: P1 ~ P' 1\ P 

2: repeat 

3: p2 ~ g 
4: for i ~ 1 to n do 

5: repeat 
6: p3 ~ g 

7: P1 ~ P1 V ( V (J-I(g, l1) 1\ P)) 
uEI:'ni:i 

8: until P1 P3 
9: end for 

10: until P1 = P2 

11: return g 

In Algorithm 6.2, procedure CR(G, P', ~', P) takes a TDES G, a predicate P', 

an event set~' and a predicate P, then returns a predicate which represents a set of 

states in G that can reach a state in G satisfying P' by states that satisfy P and by 

transition with events in~'. We do not present an algorithm for CR(Q, P) as it is a 

special case which is equivalent to CR(G, Pm, ~' P). 

At line 1, P1 is initialized to be the predicate which represents the set of states 

in Q P' which satisfies predicate P as well. 

Like in Algorithm 6.1, line 4 to line 9 focus on one TDES event set at a time to 

reduce the complexity of intermediate logic formulas. In line 7, we are adding to g 
the states in P that can be reached by a state in g via an event in ~' n ~i. 

We iterate until there are no more changes. 
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6.4 Symbolic Verification 

The TDES systems we are interested in are composed of a plant G and a supervisor 

S, with system event set :E. 

Given G~ = (Yi,:Ei,8i,Yo,i,Ym,i) and G' = G~JIG~JJ .. JJG~, fori= 1,2, .. ,n, let 

Gi = selfloop(G~, :E- :Ei)· The plant is defined as: 

Given si =(Xi, :E, ~i, Xo,i, Xm,i), the supervisor is defined as 

Therefore both G and S are defined over the global event set :E. If our com

ponent supervisors were defined over subsets of :E and combined together using the 

synchronous product, we would add selfloops of the missing events as we did for the 

plant components, and then use these new DES from then on. 

The closed-loop system, Gel, is the product of the plant and supervisor 

where Q = y X X= Yi X Y2 X .. X Yn X xl X x2 X .. X Xm, :E = :EcLJ:Eu, TJ = 8 X~' 

Qo =(Yo, Xo) and Qm = Ym X Xm. See Definition 2.2.11 for more details. 

Note that we cannot use Gel= meet(G, S) as meet by definition only contains 

reachable states, which is too restrictive. The product DES is the same as meet, but 

it can include unreachable states. 

Definition 6.4.1. Let Gel= GxS := (Q, :E, TJ, Q0 , Qm) where G = G 1 xG2x .. xGn = 

(Y, :E, 8, Yo, Ym) and s = sl X s2 X .. X Sm = (X, :E, ~' Xo, Xm)· For a given event cr E :E, 

the cr plant transition predicate Nc,u : Q x Q--+ {T, F} can be written as 

and the cr supervisor transition predicate Ns,u : Q x Q--+ {T, F} can be written as 
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Na,u and Ns,u are state predicates defined on Q x Q and use the v and v' variables 

like Nu. We use Na,u when we wish to determine if there is a f7 defined at the plant 

portion of the indicated states, say for when we are checking controllability. Similarly, 

we use Ns,u when we wish to determine if there is a f7 defined at the supervisor portion 

of the indicated states. They must be defined over Q x Q so the results of each can 

be compared and combined with other state predicates on Q. 

Definition 6.4.2. Let f7 E ~ and Na,u be the f7 transition predicate for plant G = 

(Y, ~' 8, y0 , Ym)· We define 8a : Pred( Q) x ~ -+ Pred( Q), for P E Pred( Q), to be 

8a(P,r7) := (3v(Na,u !\ P))[v'-+ v] 

and we also define 8(;1 
: Pred(Q) x ~-+ Pred(Q) to be 

J(;1 (P, r7) := 3v'(Na,u !\ (P[v-+ v'])) 

Definition 6.4.3. Let f7 E ~ and Ns,u be the f7 transition predicate for supervisor 

S = (X,~'~' X 0 , Xm)· We define €: Pred(Q) x ~-+ Pred(Q), for P E Pred(Q), to 

be 

€( P, f7) := (3v( Ns,u !\ P)) [v' -+ v] 

and we also define €-1 : Pred( Q) x ~ -+ Pred( Q) to be 

€-1(P,r7) := 3v'(Ns,u !\ (P[v-+ v'])) 

6.4.1 Untimed Controllability 

To verify that a supervisorS= (X,~'~' X 0 , Xm) is controllable with respect to plant 

G = (Y, ~' 8, Yo, Ym), we need the closed loop system Gel= (Q, ~' rJ, Q0 , Qm) as defined 

in Section 6.4. For q E Q, there must exist a state x E X and y E Y such that 

q = (y, x). 

According to Definition 2.2.15 for untimed controllability, we can express the states 

that could causeS to be uncontrollable for G (if they are reachable), as follows: 

Definition 6.4.4. LetS= (X,~'~' X 0 , Xm) be a supervisor. Let G = (Y, ~' 8, Yo, Ym) 
be a plant, then 

Qbad = {q = (y, x) E Ql(3r7u E ~u)8(y, f7u)! & ~(x, f7u) !} 
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By this definition, the state set Qbad includes all states q E Q in system Gel that an 

uncontrollable event is eligible at the corresponding state in plant G but not eligible 

in the corresponding state in supervisor S. We consider such states bad. Of course, 

not all states in Qbad are necessarily reachable. Therefore S is controllable with to 

respect toG if Qbad n Qreach = 0 where Qreach is the set of reachable states. 

The corresponding predicate Pbad := pr( Qbad) is defined to be 

pbad = be (true, cru) 1\ ·~- (true, cru) V (A 1 A 1 ) 

UuEEu 

where tSe1 and ~-1 are the inverse transition predicate functions for G and S respec

tively. We thus have S is controllable with respect to G if Pbad 1\ Preach = false 

where Preach := pr( Qreach) holds the set of reachable states. Otherwise, Pbad 1\ Preach 

represents the set of bad states where supervisor S has disabled an uncontrollable 

event. 

Algorithm 6.3, from [26], checks untimed controllability. For each uncontrollable 

event cru, it looks for the reachable composite state at which cru is eligible in G but 

not eligible inS. If such a state exists, then S is not controllable with respect to G. 

The algorithm returns True1 if the supervisor S is controllable with respect to G and 

False otherwise. 

Algorithm 6.3 CheckUntimedControllability(G, S) 
1: Pbad +- false 

2: for all cr u E "Eu do 
A 1 A 1 

3: pbad +- pbad v (be (tr:ue, cru) 1\ ·~- (true, cru)) 

4: end for 

5: Pbad +- Pbad 1\ R(G x S, true) 

6: if ( Pbad i= false) then 
7: return False 

8: end if 

9: return True 

1 We use True and False here because it is a boolean returned by the algorithm, instead of a 
state predicate. 
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6.4.2 Plant Completeness 

Similar to checking untimed controllability, we have the following definition for plant 

completeness. 

Definition 6.4.5. LetS= (X,~'~' X 0 , Xm) be a DES supervisor. Let G = (Y, ~' 8, Yo, Ym) 
be a DES plant, then 

Qincomplete = {q = (y,x) E QI(:3£T E ~hib)~(x,£T)! & 8(y,(J) )'} 

By this definition, the state set Qincomplete includes all states q in system Gel that 

a prohibitable event is eligible at the corresponding state in supervisor S but not 

eligible in the corresponding state in plant G. Plant G is complete for its supervisor 

S only if Qincomplete n Qreach = 0. We only care about states in Qincomplete that are 

reachable. 

The corresponding predicate Pincomplete := pr( Qincomplete) is defined to be 

~ncomplete = V ( t-1(true, (J) 1\ ...,JG1(true, lT)) 
uEr:hib 

where JG1 and t-1 are the inverse transition predicate functions for G and S respec

tively. Therefore the plant G is complete for its supervisor S only if ~ncomplete 1\ 

Preach = false. Otherwise, Pincomplete 1\ Preach represents the set of states which fail 

the condition. 

Algorithm 6.4 CheckPlantCompleteness(G, S) 
1: ~ncomplete -false 

2: for all £T E ~hib do 
A-1 A-1 

3: ~ncomplete - ~ncomplete V ( ~ (true, 0") 1\ •ba (true, 0")) 
4: end for 

5: ~ncomplete- Pincomplete 1\ R(G X S, true) 
6: if ( Pincomplete i= false) then 
7: return False 

8: end if 

9: return True 

Algorithm 6.4 checks for plant completeness. For each prohibitable event O", it 

looks for reachable composite states at which £T is eligible in S but not eligible in 
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G. If such a state exists, then plant G fails to be complete for supervisorS and the 

algorithm returns False. Otherwise it returns True. 

6.4.3 Non-blocking 

Algorithm 6.5 checks for non-blocking as defined in Definition 2.2.6. It compares the 

set of reachable states with the set of coreachable states, then returns True if there 

is no reachable state that is not coreachable and False otherwise. 

Algorithm 6.5 Nonblocking(G) 
1: Preach f- R(G, true) 

2: Pcoreach f- C'R(G, Preach) 

3: if (Preach 1\ •Pcoreach i= false) then 
4: return False 

5: end if 

6: return True 

6.4.4 Activity Loop Free 

By Definition 2.3.3 of Activity Loop Free (ALF), we require that for each reachable 

state in a TDES there will not be a non-empty string of activity events leaving from 

that state and back to itself. This is to prevent the TDES from "stopping the clock". 

Algorithm 6.6 checks the given TDES G and returns True if it is ALF and False 

otherwise. 

At line 1, Algorithm 6.6 first calculates all the reachable states. Then for each 

state q in Pchk, it starts from any states Pvisit reached via activity events from q at 

line 4. From there, in the following loop from line 7 to line 17 it traverses to next 

states Pnext until no more state can be reached by activity events. 

At each iteration of the loop, the algorithm first checks if there is an overlap 

between Pvisit and Pnext· Then it checks if state q has been reached again. If state q 

has been reached again, then the system is not ALF. Otherwise, the loop continues. 

Once the check is done for state q, this state is removed from Pchk. If there is no 

overlap found in the loop, all the visited states are removed from Pchk· After that, 
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Algorithm 6.6 ALF(G) 

1: Pchk +-- R(G, true) 

2: Ptmp +-- false 

3: for (q I= Pchk) do 

4: Pvisit +-- ( V J(pr( { q} ), u)) t\Pchk 
uE:Eact 

5: overlap+-- False 

6: Pnext f- Pvisit 

7: repeat 

8: Pnext f- ( V J(Pnext,O"))t\Pchk 
uE:Eact 

9: Ptmp f- Pvisit 

10: if (Pvisit t\ Pnext ¢.false) then 
11: overlap +-- True 

12: end if 

13: Pvisit f- Pvisit V Pnext 

14: if (q I= Pvisit) then 
15: return False 

16: end if 

17: until ( Pvisit = Ptmp) 

18: Pchk +-- Pchk- pr({q}) 

19: if ( •overlap) then 

20: Pchk f- Pchk - Pvisit 

21: end if 

22: end for 

23: return True 

the algorithm moves to next state in Pchk· If there was no False returned during the 

loop, the algorithm will consider it to be ALF and returns True. 

6.4.5 Proper Time Behavior 

By Definition 2.3.5 for Proper Time Behavior, we require that at each reachable state 

in a TDES plant, either an uncontrollable event or a tick event is eligible. Algorithm 
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6. 7 checks the given TDES plant G and returns True if it has a proper time behavior 

and False otherwise. 

Algorithm 6. 7 ProperTimeBehavior( G) 
1: P1 +--- V 8-1(true, a) 

uEEuU{r} 

2: P2 +--- R( G, true) 

3: if P2 - g ¢. false then 

4: return False 

5: end if 

6: return True 

Algorithm 6.7 first calculates P1, the set of all states that have a I:uU{ T} transition 

leaving it. It then compares g to the set P2 of reachable states. When there is a 

state in P2 but not in g, it implies that the state is reachable and neither a tick or 

an uncontrollable event is eligible at this state. 

6.4.6 SD Controllability and S-Singular Prohibitable Behav

ior 

Algorithm 6.8 evaluates SD controllability for supervisor S = (X, 2:, ~' X 0 , Xm) with 

respect to plant G = (Y, 2:, 8, Yo, Ym), where G, S, and the closed loop system, Gel= 

G x S are as defined in Section 6.4. In addition, the algorithm's subroutine, Algorithm 

6.11, also checks that G has S-singular prohibitable behavior. As checking Point i 

of the SD controllability definition is the same as checking untimed controllability 

(Algorithm 6.3), we will not mention it explicitly here. 

I: is defined to be I: = I:hib(JI:uU{ T }, where I:hib is the set of prohibitable events 

in G and I:u is the set of uncontrollable events in G. The set of controllable events 

is I:c = I:hib U { T}, and the set of activity events is I: act = I:hibUI:u. 

The algorithm makes the following assumptions: 

• The set I:hib of prohibitable events equals the set I: for of forcible events 

• The plant has proper time behavior (checked by Algorithm 6. 7) 

• All TDES are finite and deterministic 



130 6. Symbolic Verification for SD System 

• The closed loop system, Gel, is activity loop free (ALF) (checked by Algorithm 

6.6) 

The algorithm uses certain variables as it executes. 

Preach: The predicate of the set of reachable states of Gel. 

PsF: The predicate of the set that contains sampling states of Gel found 

by the algorithm. 

Zsp: This set contains the predicates of sampling states in Gel found and 

not yet analyzed by the algorithm. 

NG,u, Ns,u: Transition predicates for C7 for G and S as in Definition 6.4.1. 

N17 : Transition predicate for C7 for Gel as in Definition 6.2.5. 

8: Transition function for state predicates for Gel as in Definition 6.3.1. 

JG: Transition function for state predicates for G only as in Definition 

6.4.2. 

~: Transition function for state predicates for S only as in Definition 

6.4.3. 

pNerFail: This set pNerFail ~ Pwr(Pred(Q)) is a set of sets of predicates 

that stores information where Point iii.2 in Definition 3.2.2 of SD 

controllability may have failed. 

SDControllable: This flag asserts if S is SD controllable with respect to G. 

Algorithm 6.8 starts at the initial state, which is always a sampling state. Then it 

analyzes the concurrent behavior of this state by creating a reachability tree with the 

initial state as a node. It expands the tree until all paths terminate at a tick event. 

Since we first check that the closed loop system is activity loop free, the system 

has a finite state space and that the plant has proper time behavior, we are either 

guaranteed that we will reach a tick after a finite number of events, or the system 

will fail Point ii of the SD controllability definition. Any new sampling states found 

are then analyzed as above, until all reachable sampling states have been analyzed. 

As the reachability tree for a given sampling period is created, conformance to 

Definition 3.2.2 of SD controllability is tested. We also test here that G has S-singular 
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Algorithm 6.8 CheckSDControllability(G, S) 
1: Gel f- G X s 
2: Preach f- R(G X S, true) 

3: if (CheckSDContii(G, S, Preach)= False) then 
4: return False 

5: end if 
6: SDControllable f- True 

7: Psp f- pr{zo} 

8: Zsp f- {pr{zo}} 
9: pNerFail f- 0 

10: while (Zsp =1- 0) do 
11: Pss f--Pop(Zsp) 
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12: SDControllable f- AnalyseSarnpledState(G, S, Psp, Zsp, Preach, P88 ,pNerFail) 

13: if (•SDControllable) then 
14: return False 

15: end if 
16: end while 
17: if (pNerFail =1- 0) then 
18: SDControllable f- RecheckNerodeCells(pNerFail) 

19: if (•SDControllable) then 
20: return False 

21: end if 
22: end if 

23: if ( • CheckSarnplingMarkingStates( Preach)) then 
24: return False 

25: end if 
26: return True 

prohibitable behavior. With the exception of Point iii.2, evaluation stops if the test 

for any of the other points fail. If the test for Point iii.2 fails, the problem area 

is noted and the algorithm continues until all reachable sampling states have been 

analyzed. Nerode cells will be rechecked and then Point iii.2 is tested again. 
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In the algorithm, pN er Fail represents states reached by concurrent strings with 

the same occurrence image, thus should belong to the same equivalence classes for 

=L(S)nL(G) and =Lm(S)nLm(G)· It contains the states these strings ended up in, and 

we will now check to see if these states actually represent the same equivalence cells. 

i.e. they are equivalent mod A (Definition 2.2.7). 

Finally, the algorithm checks Point iv in Definition 3.2.2 of SD controllability by 

comparing the set of marked states, implied by Pm, with the set of states reached by 

a tick event. If not all states implied by P m are reached by a tick and if that state 

not reached by a tick is not the initial state Z0 , then it returns False. 

If all tests pass, the algorithm returns True at the end. 

See following sections for subroutines in Algorithm 6.8. The subroutine CheckS

DContii is defined in Algorithm 6.9. The subroutine AnalyseSampledState is defined 

in Algorithm 6.10. The subroutine RecheckNerodeCells is defined in Algorithm 6.13. 

The subroutine CheckSamplingMarkingStates is defined in Algorithm 6.15. 

Point ii of SD Controllability 

Algorithm 6.9 checks Point ii of the SD Controllability definition. The algorithm 

takes the following three parameters: a plant G, a supervisor S and a predicate Preach 

of all reachable states in Gc~. 

Algorithm 6.9 CheckSDContii(G, S, Preach) 
1: Pq-hib +--- V :3v' Na 

aEEhib 

2: Pbad +--- :3v' Ntick I\ Pq-hib 

3: if Pbad I\ Preach ;f=. false then 
4: return False 

5: end if 

6: Pbad +--- :3v' Na,tick I\ •(::lv' Ns,tick) I\ •Pq-hib 

7: if Pbad I\ Preach ;f=. false then 
8: return False 

9: end if 
10: return True 

From line 1 to line 5 the algorithm checks the "::}" part of Point ii. It checks 
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for any reachable states in Gel that has both a prohibitable event and tick event 

enabled. If such a state exists, then it returns False. 

Then from line 6 to line 9, the algorithm checks "-¢::" part of Point ii. It checks 

to see if a reachable state exists in Gel where no prohibitable events are eligible, but 

a tick is eligible in G but not inS. If such a state exists, then it returns False. 

AnalyzeSampledState 

Algorithm 6.10 analyzes the concurrent behavior for sampling state Q88 , represented 

by predicate Pss· The algorithm takes seven parameters. See Algorithm 6.8 for their 

definitions. 

During the execution, the algorithm uses the following variables: 

'EEtig: The set of prohibitable events eligible in both G and S at Q88 , the sampling 

state in Gel that we are processing. 

Pq: The predicate of current state in Gel. 

'Eposs: The set of events eligible in both G and S at predicate Pq of current state in 

Gel. 

'Eaposs: The set of prohibitable events eligible in G at predicate Pq of current state in 

Gel. 

nextLabel: This number represents the next unused node in Bmap· It is used to name newly 

discovered nodes of the reachability tree. 

Bmap: This partial function Bmap: N -~o Pred(Q) maps the nodes of the reachability 

tree to the predicates of the states of Gel which the nodes represent. This 

function will sometimes be treated like the set Bmap ~ N x Pred(Q). Note, 

N = {0, 1, 2, ... } is the set of natural numbers. 

Bv: This is the set of nodes pending to be expanded in the reachability tree. 

Beane: The set Beane ~ N x Pred( Q) contains nodes that represent concurrent strings 

and the sampled states the strings lead to. For (b, q) E Beane, the node b is a 

node at which tick is eligible in G and S, and q is the sampling state of Gel 

that the tick leads to. 
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Algorithm 6.10 AnalyseSampledState(G, S, Psp, Zsp, Preach, P88 ,pNerFail) 
1: Bmap +-- {(0, Pss)} 

2: Beane+-- 0 
3: Bp +-- {0} 
4: nextLabel +-- 1 

5: OccuB +-- {(0, 0)} 

6: while BP =f 0 do 
7: b +-Pop(Bp) 

8: Pq +-- Bmap(b) 

9: ~poss +-- 0 
10: ~Gposs +-- 0 
11: for all a E ~ do 

12: if (J(Pq, a) "¢false) then 

13: ~poss +-- ~poss u {a} 
14: end if 
15: if (3a(Pq, a) "¢false) then 

16: ~Gposs +-- ~Gposs U ( {a} n ~hib) 
17: end if 
18: end for 

19: if (Pq = Pss) then 

20: ~Elig +-- ~poss n ~hib 
21: end if 

22: if ((~poss u OccuB(b)) n ~hib =f ~Elig) then 
23: return False 

24: end if 

25: if ( •NextState(b, ~poss, ~Gposs, Pq, nextLabel, Bmap, Bp, Beane, Psp, Zsp, OccuB(b))) 

then 
26: return False 

27: end if 
28: end while 
29: CheckNerodeCells(Bconc, OccuB, pN er Fail) 

30: return True 
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Occus: The partial function Occus : N-+ Pwr(E) maps the nodes of the reachability 

tree to the occurrence image of the string that they represent. This function 

will sometimes be treated like the set Occus ~ N x Pwr(E). 

The algorithm builds the reachability tree, starting at Q88 , until all nodes termi

nates at a tick event or one of our checks fail. As we need to evaluate the strings 

taking us from the sampled state, we need to know how we got to a given state. So we 

introduce nodes for the states we reach, and associate with the node the occurrence 

image of the string that brought us to that node. We use map Occus to do this. The 

function Bmap maps the nodes back to the states in Gel that they represent. The 

information is stored per node, not per state of Gel. It means there could be two or 

more nodes that corresponds to the same state, but have possibly different occurrence 

images, as they were reached by different strings. 

When the algorithm starts, we store the set of prohibitable events that are eligible 

at our starting sampling state. Point iii.l in Definition 3.2.2 for SD controllability is 

analyzed as the tree is built. In the algorithm, a concurrent string is represented by 

the label b of the node it is associated with, and a sampled string is represented by 

the sampling state Q88 • From line 22 to line 24, the algorithm checks this condition. 

If the test fails, the algorithm returns False. 

After the reachability tree is complete, Beane will represent the concurrent strings 

leaving the sampling state implied by predicate P88 , and the sampling state each 

string leads to. We then call CheckNerodeCells which will indicate via pNerFail 

what further checks are needed. This is how Point iii.2 is checked. 

In next section we will discuss subroutine NextState (Algorithm 6.11) and sub

routine CheckNerodeCells (Algorithm 6.12), as both algorithms are called from Anal

yseSampledState. 

NextState 

Algorithm 6.11 determines the next states to be processed for Algorithm 6.10. Subrou

tine NextStatetakes parameters b, Epo88 , Ecposs, Pq, nextLabel, Bmap, Bp, Beane, Psp, Zsp, 

and Occus(b). See Algorithms 6.8 and 6.10 for their definitions. 

The algorithm returns if the set of eligible events, Eposs, at state q (implied by 

Pq) of Gel, is empty. If tick is possible at state q, we determine the new sampling 
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Algorithm 6.11 NextState( ... ) 

1: if (~pass = 0) then 
2: return True 
3: end if 

4: if ( T E ~pass) then 

5: Pq' ~ J(Pq, tick) 

6: Push( Beane, (b, Pq')) 

7: if (Pq' 1\ PsF =false) then 

8: PsF ~ PsF V Pq' 
9: Push(Zsp, Pq') 

10: end if 

11: end if 

12: for all (J E ~Gpass do 
13: if (Occu8 (b) n {(J} # 0) then 
14: return False 

15: end if 

16: end for 

17: for all (J E (~pass- { T}) do 

18: Pq' ~ J(Pq, (J) 

19: b' ~ nextLabel 

20: nextLabel ~ nextLabel + 1 

21: Push(Bmap,(b',Pq')) 

22: Push(Bp, b') 

6. Symbolic Verification for SD System 

23: Push(Occu8 , (b', Occu8 (b) U {(J} )) 
24: end for 

25: return True 

state that tick takes us to, and then add b and the state to Beane· If we have not yet 

encountered this state, it is added to PsF and Zsp. 

In lines 12 to 16, we check that no prohibitable event is currently eligible in G 
if it has already occurred this sampling period. This is part of checking if G has 

S-singular prohibitable behavior. 

Then for each non-tick event (J, it finds the next state implied by Pq', assigns a 
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new node b' to it and pushes (b', q) onto Bmap, and b' onto the set of pending nodes, 

Bp. It also associates the occurrence image of the strings that took us to b' with node 

b', via Occus. 

CheckNerodeCells 

Algorithm 6.12 is used to determine if we have possible violations of Point iii.2 of the 

SD controllability definition. Subroutine CheckNerodeCells is passed a set of sampled 

states reached in the recent search, plus information on the occurrence images of the 

concurrent strings that took us to that state. For more details on these parameters, 

see Algorithm 6.10. 

Point iii.2 of the SD Controllability definition requires that if two concurrent 

strings have the same occurrence image, they must take us to states representing the 

same equivalence cell of =L(S)nL(G) and =Lm(S)nLm(G)· In other words, to states that 

are A-equivalent (see Definition 2.2. 7). If Gd is minimal, they must go to the same 

state . If they do not, we add each set of non-equal states, represented by variable 

Zeqv ~ Pred(Q), to pNerFail, and we will later check to see if they are indeed 

A-equivalent. Note that every state predicate in Zeqv represents a single state. 

RecheckNerodeCells 

Algorithm 6.13 checks state subsets of Gd stored in pNerFail to see if the states 

in a given subset actually are equivalent mod A (see Definition 2.2. 7) to each other. 

Subroutine RecheckNerodeCells is passed parameter pNerFail. See Algorithm 6.8 for 

the definition of pN er Fail. 

At a given sampling state, if we found two or more concurrent strings that had the 

same occurrence image but terminated in different states, we stored the predicates 

that identified the states these strings led us to, in pNerFail. Variable pNerFail 

contains all such sets found by Algorithm 6.8 as it processed all the reachable sampling 

states of Gd. For the system to pass Point iii.2 of Definition 3.2.2, the states in a 

given state predicate in pNerFail must all be A-equivalent to each other. If a single 

set fails this test, the system fails Point iii.2 of Definition 3.2.2. 

From line 1 to line 3, the algorithm first sees if there is actually any state sets 

in pNerFail to be checked. If it is empty, it returns True. 
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Algorithm 6.12 CheckNerodeCells(Bconc, Occus,pNerFail) 

1: while (Bconc =/=- 0) do 
2: (b, Pq) -Pop(Bconc) 

3: Zeqv- 0 
4: Push(Zeqv, Pq) 

5: sa meG ell - True 

6: for all (b',Pq') E Bconc do 
7: if (Occus(b) = Occus(b')) then 
8: Push(Zeqv, Pq') 

9: Bconc- Bconc- { (b', Pq')} 

10: if ( Pq ¢. Pq') then 
11: sameCell- False 

12: end if 
13: end if 

14: end for 

15: if ( •sameCell) then 

16: Push(pNerFail, Zeqv) 

17: end if 
18: end while 
19: return 

At line 4, variable Visited~ Pred(Q) x Pred(Q) is initialized to the empty set. 

After each call to RecheckNerodeCell (Algorithm 6.14) that returns True, Visited 

will contain tuples of state predicates, where each predicate in the tuple represents 

a single state in Q. Essentially, a tuple belonging to Visited means that Recheck

NerodeCell has determined that those two states are .A-equivalent. We pass it back 

into RecheckNerodeCell so that this information can be reused in future checks. 

During the while loop from lines 5 to line 10, we call RecheckNerodeCell for 

each element Zeqv ~ Pred( Q) in pN er Fail. If RecheckNerodeCell returns False, then 

the system fails Point iii.2 of Definition 3.2.2. 
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Algorithm 6.13 RecheckN erodeCells(pN er Fail) 

1: if (pNerFail = 0) then 

2: return True 

3: end if 

4: Visited +-- 0 
5: while pN er Fail # 0 do 

6: Zeqv +-Pop(pNerFail) 

7: if -, RecheckNerodeCell(Zeqv, Visited) then 

8: return False 

9: end if 

10: end while 

11: return True 

RecheckNerodeCell 
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For each set of state predicates Zeqv ~ Pred(Q) that Algorithm 6.14 is called with, 

we will check that these states identified by the predicates are ..\-equivalent to each 

other, and return False if they are not. When Subroutine RecheckNerodeCell is 

called, parameter Visited ~ Pred(Q) x Pred(Q) represents tuples of states that 

are known to be ..\-equivalent. See Algorithm 6.13 for further details about these 

parameters. 

At line 1, a state predicate is popped out of Zeqv and labeled as Pq1 • 

From line 2 to line 6, the algorithm populates the Pending set with all pairs of 

Pq1 and Pq2 , where Pq2 is also popped from Zeqv· Note that state predicates Pq1 and 

P~ each represent a single state in Q. Set Pending represents all the state pairs that 

we wish to show to be ..\-equivalent. Of course, we will likely finding new state pairs 

that we will also need to test, as our algorithm progresses. 

Two states q1 , q2 E Q are ..\-equivalent if they have the same future with respect 

to the marked and closed behavior of Gc~. That means that both states are either 

marked, or neither is marked (lines 10-12). It also means that for each u E 'E (lines 

13-28), there is au transition at one state if and only if there is au transition at the 

other (line 17-18). Also, if there is a u transition leaving each state, the two new 

states reached must be ..\-equivalent. Obviously if q1 = q2 (line 19), then the two 
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Algorithm 6.14 RecheckNerodeCell(Zeqv, Visited) 

1: Pq1 +---- Pop(Zeqv) 

2: Pending +---- 0 
3: while Zeqv =/:- 0 do 
4: Pq2 +---- Pop(Zeqv) 

5: Push( Pending, ( Pq1 , Pq2 )) 

6: end while 

7: while Pending =/:- 0 do 
8: (Pqu Pq2 ) +---- Pop(Pending) 

9: P +---- Pq1 V Pq2 

10: if (P 1\ Pm "¥=false) & (P 1\ Pm "¥= P) then 
11: return False 

12: end if 
13: for all a E I: do 
14: P' +---- J(P, a) 
15: P~1 +---- J ( Pq1 , a) 

16: P~2 +---- 8(Pq2 , a) 
17: if (P' "¥=false) then 
18: if (P~1 1\ P' "¥=false) & (P~2 1\ P' "¥=false) then 

19: if (P~1 "¥= P~2 ) & ((P~1 , P~2 ) ~ Visited) then 
20: Push(V isited, ( P~1 , P~2 )) 
21: Push(V isited, ( P~2 , P~1 )) 
22: Push(Pending, (P~1 , P~2 )) 
23: end if 
24: else 
25: return False 

26: end if 
27: end if 
28: end for 
29: end while 
30: return True 
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states are A-equivalent. 

Our approach to prove that q1, q2 E Q are A-equivalent will be to attempt to prove 

they are not. We will check the per state conditions (lines 10-12 and lines 17-27), 

and then if the states take us to two different states for a common u transition (line 

19), we check to see if the new states already have a tuple in Visited (line 19). If 

they do, either they are known to be equivalent or we have already processed the pair 

and added their requirements to Pending. If they do not, we add the pair to Pending 

and Visited (lines 20-22). This ensures that a state pair is added to pending at 

most once, so we will terminate after a finite number of iterations as Get has a finite 

statespace. There is no sense in adding the pair to Pending twice as processing the 

pair twice would not provide new information to check. 

The idea is that if the state pair are not equivalent, then we must eventually 

reach a state pair that we need to be equivalent, but the states do not have the 

same marking information and/ or the same possible outgoing event transitions. If we 

never reach such a pair (and we have a finite number of possible state pairs to check), 

then the original state pairs must be equivalent. Not only that, then every state pair 

that we encountered to check, must also be equivalent to each other, or they would 

have caused the test to fail. This is why all state pairs in Visited are known to be 

equivalent if the algorithm returns true. 

As we expect that our plant and supervisor TDES components are typically min

imal or close to it, we also expect that Get is likely minimal or close to it. As such, 

we believe that when we start to check that a state pair is equivalent, we expect to 

either quickly find out it is not, or have the test terminate successfully as the new 

state pairs we encounter to test are actually the same state. 

We now make a few additional comments to clarify a few steps of the algorithm. 

For lines 14-16, predicate P' represents states reached via u from either state q1 or 

state q2 , while P:
1 

and P:
1 

represents states reached via u only from the indicated 

state. The condition on line 17 will be satisfied if either state q1 or state q2 has a u 

transition leaving that state. The condition on line 18 will fail if only one of the two 

states has a u transition leaving that state. 
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Checking Point iv of SD Controllability 

Point iv in Definition 3.2.2 for SD Controllability is checked by Algorithm 6.15. 

Subroutine CheckSamplingMarkingStates is passed the state predicate Preach, which 

represents the set of reachable states of Gel, when it is called by Algorithm 6.8. 

Point iv of SD Controllability states that only sampled strings can be marked 

strings. This implies that every reachable marked state of Gel can only have at most 

incoming tick transitions from other reachable states. 

Algorithm 6.15 CheckSamplingMarkingStates( Preach) 

1: P ~ V 8(Preach, u) 
uEI::-{r} 

2: if P 1\ Pm :/:.false then 
3: return False 

4: end if 
5: return True 

At line 1, we first identify all states with an incoming non-tick transition from a 

reachable state. This implies that all of these states are also reachable. At line 2, 
we check to see if any of these states are also marked. If one of them is marked, then 

Gel fails this condition and we return False. 



Chapter 7 

Examples 

In this chapter we provide illustrative examples for key required conditions we have 

defined for an SD system (see Section 7.1), as well as a successful example based 

on Hill's Flexible Manufacturing System (FMS) from [11] (see Section 7.2). Then in 

Section 7.3, we translate the FMS example into Moore FSM, using the approach we 

discussed in Chapter 4. 

All the DES examples have been verified to be either passing or failing using 

the software tool we implemented, based on the algorithms from Chapter 6. The 

examples are illustrated as per the legend shown in Figure 7.1. 

Figure 7.1: Legend Used to Display DES 

As shown in Figure 7.1, 

• An initial state is a box shape with its border single lined. 

• A marked state is a ellipse shape with its border doubled lined. 

• By default, a regular state is a ellipse shape with its border single lined. 

• A controllable event transition is shown as a bold arrow. 

143 
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• An uncontrollable event transition is shown as a thin arrow. 

7.1 Examples 

In this section we provide some examples which fail key conditions that we require, in 

order to provide a better understanding of these conditions. The conditions we cover 

include plant completeness, activity loop free, proper time behavior, and SD control

lability. We have not included examples for untimed controllability and nonblocking 

conditions since these two conditions are already well studied. 

7.1.1 Plant Completeness 

Figures 7.2 and 7.3 show a plant and a supervisor such that the plant fails to be 

complete for the supervisor, as per Definition 2.3.1. This is because event repair.2 

is not eligible at state down in the plant, while this event is eligible at state down 

in the supervisor. This could be a problem if event repair.2 is being generated by 

the controller, and can occur whenever it is enabled. This would mean that the event 

could potentially occur when the plant model says it can't, resulting in unmodeled 

behavior. 

Checking proper timed behavior Condition ... 

CLowSub::VeriBalemiBad() :306: iTick • 3 

VERI_BALEHI: Oseconds. 

Listing 7.1: Output 

(-206) State size of the synchronous product: 7 
Number of bdd nodes to store the synchronous product: 20 

Computing time: 0 seconds. 

failed: proper timed behavior Condition checking failed at following state(s): 

<mach:dovn, sup:dovn> 

Causing controllable avent:repair.2 
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Figure 7.2: Plant Completeness Example: Figure 7.3: Plant Completeness Example: 
Plant Supervisor 
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7.1.2 Activity Loop Free 

Figure 7.4 shows a TDES which is not activity loop free, as per Definition 2.3.3. This 

is because at state (b) the event down.l is able to preempt the tick event and proceed 

to state (c) and after that to state (a). This creates a tick-less cycle. This cycle of 

'start.l-down.l-repair.l' can occur an unlimited number of times. This implies the 

physically unrealistic situation that we can have an infinite number of these events 

occur in a finite time period, and thus must not be allowed. 

Figure 7.4: Activity Loop Example 
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7.1.3 Proper Time Behavior 

Figure 7.5 shows a plant which fails to satisfy proper time behavior as per Definition 

2.3.5. At state down, neither a tick event nor an uncontrollable event is eligible, just 

the controllable event repair.l. This causes two problems: First, it implies that the 

controllable event must occur in a particular time frame, yet the event can be disabled 

forever by a supervisor, and thus never occur. Second, because its controllable, it can 

be disabled by a supervisor. Since no other events are possible, if this event is disabled, 

we effectively "stop the clock", which is physically unrealistic. Note that supervisor 

could disable repair.l here and still be TDES controllable. i.e. this problem is not 

caught by the TDES controllability definition. 

Figure 7.5: Proper Time Behavior Example 
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7 .1.4 SD Controllability 

We now examine the the various points of the SD controllability condition from 

Definition 3.2.2. 

Point i and Point ii 

As Point i and the '~' part of Point ii are essentially equivalent to the standard 

TDES controllability condition, we will not provide an example here for them. We 

will instead focus on the '::::}' part of Point ii as this is a new condition introduced 

bu SD Controllability. 

Figure 7.6 and Figure 7.7 show a plant and a supervisor such that Supervisor fails 

to satisfy the '::::}' part of Definition 3.2.2, with respect to Plant. The prohibitable 

event is job and the uncontrollable events are v~rified and done. We first note that a 

tick event is eligible at state 3 in the Plant. Since the prohibitable event job is eligible 

at state (Plant:3, Supervisor:3) in the synchronous product, the supervisor should 

disable tick at its state 3 since a prohibitable event should only be enabled when it 

is to be forced. Alternately, if we do not yet wish event job to occur, it should be 

disabled until we are ready for it. 

Checking SD Controllability 
VERI_SD: Oseconds. 

Listing 7.2: Output 

(-209) State size of the synchronous product: 12 

Number of bdd nodes to store the synchronous product: 38 
Computing time: 0 seconds. 

failedl: Failed SD Controllability condition II at state: 
<failed1_mach1:3, failedl_sup1:3> 

Point iii.l 

Figure 7.8 and Figure 7.9 show a plant and a supervisor such that Supervisor fail to 

satisfy Point iii.l of Definition 3.2.2 with respect to Plant. The only prohibitable 

event is job. The uncontrollable events are { verifiedl, verified2, done}. 

In the system, prohibitable event job is eligible at sampling state 1 in the Plant, 
so the eligible prohibitable event set for this sampling period is {job}. However when 

we reach state 3, event job has not yet occurred, but is no longer eligible, violating 

Point iii.l. 
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Figure 7.6: SD Controllability i, ii Example: Plant 

This is a problem as often when a prohibitable event occurs is completely under 

the control of the implementation (as discussed before, this is a modeling issue). Also, 

this event may occur at different times during a sampling period, depending on the 

implementation used. As an SD controller makes its forcing decisions immediately 

after a tick, it will cause event job to occur at state 1 in the physical system. If the 
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Figure 7. 7: SD Controllability Point i, ii Example: Supervisor 

implementation is such that event job is delayed and event verifiedl occurs first, we 

could get event job after event verifiedl in the physical system, which does not match 

our plant model. 

In this example, it was the plant model that made event job become ineligible. A 

related issue would have been if event job was possible at state 3 in the plant, but not 
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in the supervisor. This would imply that the SD controller must detect that event 

verifiedl has occurred in the current sampling period, and disable event job in time 

to prevent it from occurring. This of course cannot be done as the event has already 

been initiated after the tick occurred and even if could be stopped, the SD controller 

will not even see that event verifiedl has occurred until after the next tick, at which 

point it would be too late. If the implementation is such that event verifiedl occurs 

before event job, we would still get a job transition in the current sampling period in 

the physical system, violating our control law. For example, if event job was ''walk 

through doorway" , and event verifiedl was "door closes", this would mean we would 

walk into a closed door. 

A second related problem this condition can catch is when a prohibitable event 

is not eligible at state 1, but becomes eligible at state 3. The supervisor is trying to 

express that the event should occur this sampling period, but not until after event 

verifiedl has occurred. This cannot be implemented as the SD controller would not 

know event verifiedl had occurred until after the next tick, thus too late to force 

a new event. If we tried to simply force the prohibitable event at state one in the 

controller, we might get the situation that the event occurs before event verifiedl 

(depending on our implementation). Again, this would violate our control law. 

Point iii.2 

Figure 7.10 and Figure 7.11 show a plant and a supervisor such that Supervisor fails 

to satisfy Point iii.2 of Definition 3.2.2, with respect to Plant. The prohibitable 

events are {job1,job2}. The uncontrollable events are {done1, done2}. 

In the system, states 6 and 7 are reached from sampled state 1 by concurrent 

strings job1- job2- tick and job2- job1- r, respectively. As these strings have the 

same occurrence image, Point iii.2 requires that states 6 and 7 represent the same 

Nerode equivalence cells of the closed loop system's closed and marked language's. 

However, as strings reaching state 6 can be extended by a donel event, while strings 

reaching state 7 can be extended by a done2 event, the states clearly do not represent 

the same Nerode equivalence cell of the system's closed behavior. Similarly, as strings 

reaching state 6 can be extended by a donel event to a marked string while strings 

reaching state 7 can be extended by a done2 event to a marked string, they do not 

represent the same Nerode equivalence cell of the system's marked language either. 
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Figure 7.8: SD Controllability Point iii.l Figure 7.9: SD Controllability Point iii.l 
Example: Plant Example: Supervisor 
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one2 

Figure 7.10: SD Controllability Point iii.2 Figure 7.11: SD Controllability Point iii.2 
Example: Plant Example: Supervisor 

This condition is important for controllability and nonblocking. The reason is 

that an SD controller cannot tell the difference between the two concurrent strings, 

so it does not know whether it should be in state 6 or state 7. If events donel and 

done2 were controllable, it would not know if it should be enabling event donel or 

event done2. Clearly, we could not enforce such a control law. 

The reason this is important for nonblocking is also that we cannot tell the dif

ference between the two strings. If we had a sequence of possible concurrent strings 

such that each pair had the same occurrence image and only one path of the pair ever 

reached a marked state, we would never be able to determine if our system reached 

a marked state. 

A related issue is how our controller is implemented. The control law says that 

either sequence jobl - job2 or sequence job2 - jobl is fine, but not which one will 

actually occur. It might be that we will get a bit of both, but we might always get 

only one due to timing issues; or perhaps we have a sequential implementation that 

knows that jobl and job2 must occur, so its designers choose the order jobl- job2, 

and the implementation always executes these events in this order. If the sequence 

job2- jobl was the only path back to a marked state, the implementation would block 

despite the fact the TDES system was nonblocking. This condition, in conjunction 
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with Point iv of the SD controllability definition, helps make sure nonblocking does 

not depend on the order of the events and allows things to function if we only get one 

of the variations of the possible concurrent strings with the same occurrence image. 

One can image that we have a family of possible physical systems that we could get 

based on how we implement our controllers, each differing based on which of the 

possible variations of the concurrent strings can actually occur. We are assuming we 

will see at least one variation, possibly more. These conditions are intended to ensure 

that whichever system we get, it will still be nonblocking if the TDES system was 

nonblocking. 

Listing 7.3: Output 

(-211) State size of the synchronous product: 8 

Computing time: 0 seconds. 

failed!: Failed SD Controllability condition III.2 at state: 
<failed1_mach:6, failed1_sup:6> 

<failedl_mach:7, failedl_sup:7> 

list_NerFail is not empty and RecheckNerodeCells() Failed. 

Point iv 

Figure 7.12 and Figure 7.13 show a plant and a supervisor such that Supervisor 

fails to satisfy Point iv in Definition 3.2.2 with respect to Plant. Since state 0 is a 

marked state and is reached from state 6 by activity event done, the system does not 

satisfy the condition as clearly its marked language is not a subset of the sampled 

strings (empty string and strings ending in a tick). 

If a marked state is reachable by a non-tick event, it means the system can reach 

a marked state in a way that is invisible to the SD controller as it can only observe 

sampled strings. This by itself is undesirable, as we could have a system that can only 

reach marked states by non-tick events and we would never be able to tell if we had 

actually reached a marked state. Also, if we have multiple concurrent strings with 

the same concurrence image, we could have the situation that only some of them pass 

through a marked state in that sampling period. Worse, our implementation might 

be such that we only get the variations that do not pass through a marked state! Note 

also, that Point iii.2 of the SD controllability definition only says that concurrent 

strings with same occurrence image must have same marked future. it does not say 
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-Figure 7.12: SD Controllability Point iv Figure 7.13: SD Controllability Point iv 
Example: Plant Example: Supervisor 

much about the prefixes of these concurrent strings. That is where Point iv comes 

in, making sure the :E!:t prefixes are not marked. 

Listing 7.4: Output 
VERI_SD: lseconds, 

(-212) State size of the synchronous product: 7 

Number of bdd nodes to store the synchronous product: 20 

Coaputing time: 1 seconds. 

failedl: Failed SD Controllability condition IV at state: 

<failedl_aach:O, failedl_sup:O> 

There is a reachable aarking state reached by a non-tick event. 
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7.2 SD Controlled Flexible Manufacturing System 

In this section we present a working example based on the untimed Flexible Manufac

turing System (FMS) from [11). The system, shown in Figure 7.14, is composed of six 

plant components and five one slot buffers. We will treat the buffers as specifications, 

requiring that they do not overflow or underflow. Table 7.1 below shows a mapping 

from the event labels used in the diagrams to their meaning. The events labeled as 

numbers are directly from the Hill untimed example. We kept the same labeling to 

make it easy to see the correspondence. 
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Figure 7.14: Flexible Manufacturing System Overview 

7.2.1 FMS Plants 

The plant components consist of two conveyors (Con2 and Con3), a handling robot 

(Robot), a lathe that can produce two different parts, a painting machine (PM), 
and a finishing machine (AM). The flow of material is illustrated in Figure 7.14. See 

Figures 7.15- 7.20 for the TDES models of the components. 
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Table 7.1: Explanation of Event Labels 
I Label I Meaning II Label I Meaning II Label I Meaning 

921 Part enters system 922 Part enters B2 933 Robot takes from B2 

934 Robot to B4 937 B4 to Robot for B6 939 B4 to Robot for B7 

938 Robot to B6 930 Robot to B7 951 B4 to Lathe (A) 

953 B4 to Lathe (B) 952 Lathe to B4 (A) 954 Lathe to B4 (B) 

971 B7 to Con3 974 Con3 to B7 972 Con3 to B8 

973 B8 to Con3 981 B8 to PM 982 PM to B8 

961 Initialize AM 963 B6 to AM 965 B7 to AM 

966 Finished from B7 964 Finished from B6 

Figure 7.15: Conveyor- Con2 
Figure 7.16: Robot 

7.2.2 Buffer Supervisors 

We now discuss the TDES supervisors, shown in Figures 7.21- 7.25, that control the 

flow of parts in and out of the buffers. Their goal is to make sure the buffers do not 

overflow or underflow. They are based on the original untimed buffer specification of 

[11], but extended to the SD controllable setting. In some of the supervisors in this 

section such as B4 in Figure 7.22, we have activity events selflooped (i.e. event 933 

at state 0 of B4). This will not cause the system to have an activity. loop, as it will 

be combined with the plant TDES which only allow these events to occur once per 

clock cycle. 
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Figure 7.17: Lathe Figure 7.18: Finishing Machine - AM 

Figure 7.19: Conveyor- Con3 Figure 7.20: Painting Machine -
PM 

Supervisor B2 not only prevents overflow and underflow of buffer B2, it also 

decides when event 921 should occur. As soon as the system is turned on, it imme

diately enables and forces 921, causing Con2 to accept a new piece into the system. 

It then waits for the piece to enter B2, before it enables event 933, allowing the 
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Figure 7.21: Supervisor B2 

Robot to remove the part. It does not cause another 921 to occur until 933 does, 

ensuring that the buffer is empty. A few things are worth noting. First, B2 enables 

prohibitable event 933, but does not disable the tick at state 4. This tells us that it 

wants to prevent the event from occurring too soon, but does not decide when the 

event will actually occur. This is controlled by another supervisor. Second, B2 makes 

sure there is a tick between 933 occurring, and enabling and forcing event 921. This 

is to satisfy Point iii.l of the SD controllability definition. Third, Supervisor B2 

contains a special event, no921, which we will discuss in a later section. This is a 

"virtual event" that was not part of the original plant, but that we added to aid in 

communication between supervisors. 

Supervisors B4, B6, and B7 manage their respective buffers. They strictly disable 

and enable events to prevent buffer overflow and underflow. They do not force any 

events, telling us that other supervisors make these decisions. This is because the 

decision of when these events should occur requires more than just a local view of 

whether a buffer is empty or not. We will discuss these other supervisors in later 

sections. 
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Figure 7.22: Supervisor B4 

Figure 7.23: Supervisor B6 

Figure 7.24: Supervisor B7 

Figure 7.25: Supervisor B8 
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Supervisor B8 not only prevents overflow and underflow of buffer B8, it also 

controls the flow of pieces once a part enters buffer B7 (event 930), flows to TDES 

PM, and then back to buffer B7; It does this by watching the parts progress, and 

then forcing events 971, 981, and 973 as needed. As B8 determines when these events 

occur, it disables tick as soon as it enables these events to comply with Point ii of 

the SD controllability definition. In other words, once the event is enabled by all the 

supervisors and possible in the plant, the event is also forced. 

The fact that the supervisor must not only decide when to enable an event, but 

also when to force the event, makes things more complicated. It must not only decide 

when to enable the event, but also must know that the event is not disabled by 

another supervisor and that it is eligible in the plant. Otherwise, it could disable a 

tick when the desired event cannot occur, either forcing the wrong event or becoming 

uncontrollable. 

7.2.3 B4 to Lathe Path 

In addition to the buffer supervisors we represented in Section 7.2.2, we need to add 

the following supervisors to resolve some nonblocking and concurrency issues on the 

B4 to lathe part path of Figure 7 .14. 

We first need to address a nonblocking issue with respect to buffer B4 and B2. 

We see from Figure 7.14 and Figure 7.16, that Robot takes a piece from buffer B2 
(event 933), and places it in B4. The piece then goes to the Lathe, and then back 

to buffer B4. The robot will then take the piece from B4, and put it in either buffer 

B7 (event 930), or buffer B6 (event 938). 

There are two issues here. The first issue is how to decide which action the 

Robot should take if both buffer B2 and buffer B4 have a part waiting. In normal 

supervisory control theory, we can just enable the safe choices, and allow the plant to 

somehow make the decision. However, we want to be able to convert from a TDES 

supervisor to an SD controller in an easy, deterministic fashion. This means we must 

dictate which prohibitable events occur, and in which sampling period they occur in. 

We thus have to choose to service either buffer B2 or B4, as we cannot do both at 

the same time. 

This issue is handled by supervisor TakeB2, shown in Figure 7.26. It forces 
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Robot to first service buffer B2, then buffer B4, then back to buffer B2. It waits 

until there is a piece in B2 (event 922), then it immediately enables and forces event 

933 to move the piece to buffer B4. It then waits until the piece goes to the Lathe, 
returns to B4, and then moved to either B6 or B7, before it allows the Robot to 

service B2 again. 

Figure 7.26: TakeB2 Figure 7.27: B4Path 

The second issue is to prevent a conflict with respect to buffer B4. Once the 

Robot puts a piece in B4 and the piece is taken by the Lathe, the Robot could 

put a second piece in B4. This would mean the Lathe has no place to return its 

part, and the system blocks. TakeB2 prevents this by disabling event 933 until the 

current part has returned to B4, and then removed to either B6 or B7. 

We now discuss supervisor B4Path. It works with buffer supervisor B4 to ensure 

the proper behavior of the B4 to lathe part path. Supervisor B4 .primarily ensures 

that buffer B4 does not overflow or underflow. It serves an additional role in making 
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sure that once a piece is put in B4, the correct action is taken when it is taken out. 

When the robot initially puts a piece in B4 (event 934), it makes sure that only 

events 951 and 953 can be used to take the piece out. This ensures the part goes to 

the Lathe for processing. The Lathe can process the piece as type A (event 951) 

or type B (event 953), producing different results. The Lathe then returns the part 

to B4 using events 952 (part is type A) or event 954 (part is type B). Since type 

A parts go to buffer B6 (events 937 then 938), and type B parts (event 939 then 

930) must go to buffer B7, supervisor B4 ensures only the correct follow up event 

is possible. B4Path contributes to the proper behavior of the B4 to lathe path, by 

disabling event 933 once a part is put into B4 from B2, and disabling events 937 

and 939 until a part is placed into B4 from B2. 

Figure 7.28: LathePick 



164 7. Examples 

Supervisor LathePick, shown in Figure 7.28, also contributes to control of the 

B4 to lathe part path. To satisfy Point ii of SD controllability, we cannot just enable 

both event 951 and 953 and let the system "decide." We have to dictate when these 

events are to occur. That means we have to make a choice. In LathePick, we have 

required that the Lathe first produce a type A part, then a type B part, and then 

alternate. Note that the supervisor has enough information to know when the events 

are possible in the plant, so it does not try to force them at the wrong time, possibly 

"stopping the clock." 

7.2.4 Moving Parts from B4 to B6/B7 

We now discuss some concurrency and blocking issues involved with moving pieces 

from buffer B4, to either buffer B6 or B7. To move a part from buffer B4 to B6, 

we use event 937. To satisfy Point ii of SD controllability, we need to decide when 

to enable and force this event. This is handled by supervisor TakeB4PutB6, shown 

in Figure 7.29. It waits for event 952 to occur, which signifies a piece of type A is 

ready to be transferred to buffer B6. It forces event 937 and then waits for event 

963 to occur, signifying that the piece has been taken by AM and that B6 is ready 

for a new part. 

We now consider moving a part from B4 to B7. We do this using event 939. We 

have to decide when to force 939 in order to satisfy Point ii of SD controllability, 

but we also have to deal with a potential blocking situation. Because a ·part placed in 

B7 first goes to PM for processing, it is possible that the robot could put a part in 

the now empty buffer B 7, leaving no place for the first part to return to. Supervisor 

TakeB4PutB7, shown in Figure 7.30, handles both issues. It watches for event 954 

to occur, signaling that a part of type B has been placed in B4, and is ready to be 

transferred to buffer B7. TakeB4PutB7 forces event 939 to make the transfer. It 

then waits for event 965 to occur signaling that AM has removed the part from B7, 
before allowing another 939 to occur, thus preventing blocking. 

7.2.5 AM to Exit Path 

We now discuss the paths from B6 and B7, leading through machine AM and then to 

where the parts exit the system. We have several concurrency issues to deal with here. 
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Figure 7.29: TakeB4PutB6 Figure 7.30: TakeB4PutB7 

First, we have to specify when prohibitable events 961, 963, and 965 are suppose to 

occur in order to satisfy Point ii of SD controllability. This is complicated by the 

fact that a piece could be waiting for AM in both B6 and B7, so we need to specify 

how to choose which buffer to service first. 

The problem is that these three events are linked and we have to keep track of 

several issues in order to decide when to force which event. We could create a single 

supervisor to do this, but it would be quite large and complicated, thus difficult to 

design correctly. It would be nice to be able to design several modular supervisors. 

If we were only enabling and disabling events, this would not be that hard. However, 

since we must decide when to force the events, we have to make sure we do not try to 

force an event when it is not possible in the plant, or disabled by another supervisor. 

It was very non-obvious how to do this modularly, without significant reuse of logic 

from other supervisors. 

We then came up with the solution of using prohibitable "virtual events" no963a, 

no963b, no965a, and no965b. We introduced these new events to the system by adding 

plants AddNo963 and AddNo965, shown in Figures 7.31 and 7.32. Note that we 
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made sure the plants specify that these events can only occur once per sampling 

period, so that we do not have to specify this in our supervisors. 

Figure 7.31: Plant AddNo963 Figure 7.32: Plant AddNo965 

Let's first discuss how to handle event 963. The idea is that when we want to 

disable the tick to force event 963 in one supervisor, events no963a/b can be used 

as an alternate event to force if event 963 is disabled by another supervisor, or not 

possible yet in the plant. The other supervisors will only enable event no963a or 

no963b when they know 963 is not possible, and they will make sure only one of the 

three events are possible at a given time. The reason there is an 'a' and 'b' event 

is that there are three supervisors with which we need to coordinate enablement 

information. This will become clear later. 

The primary supervisor for event 963 is Force963, shown in Figure 7.33. It 

watches for event 938 to occur, signifying that there is a part in B6 waiting to go 

to AM. The supervisor then disables the tick to force 963. Note, that it is the 

only supervisor that tries to force this event. However, event 963 could be ineligible 

in plant component AM, or disabled by supervisors Force961 or AMChooser, 

the latter two TDES shown in Figures 7.34 and 7.35. Force963 has no way of 

knowing this. It handles this by adding the no963a/b-tick loop at state 2. Supervisors 

Force961 and AMChooser will ensure that out of events 963, no963a, and no963b, 

one and only event will be eligible and enabled immediately after a tick. If 963 is 

ineligible or disabled, then no963a or no963b gets forced instead, and then we try 

again after the tick. This way we signal we want 963 to occur as soon as it can, but 

do not stop the clock. We also do not need to repeat information from the plant and 

other supervisors about when these events are eligible/enabled. 

The reason that only one ofthe three events are ever allowed to be eligible/enabled 

at the start of a tick, is to avoid violating Point iii.l of the SD controllability 

definition. Examining state 2 of Force963, we see that once one of the three events 
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occurs, the others are disabled. If more than one was enabled and eligible at state 

2, this would cause one of them to change eligibility status between ticks, violating 

Point iii.l of the SD controllability definition. 

For event 965, we have similar behavior represented by supervisor Force965, 

shown in Figure 7.36. It interacts in a similar way with plant component AM, and 

supervisors Force961 and AMChooser. 

Figure 7.33: Force963 
Figure 7.34: Force961 

We now discuss supervisor Force961, shown in Figure 7.34. Its primary task is 

to determine when to force event 961 which readies AM to process parts. Force961 

forces 961 right away, and then waits for events 964 or 966 (signifies AM has finished 

processing the part) to occur, before forcing event 961 again. 

The secondary task of Force961 is to only enable events no963a and no965a 

when events 963 and 965 are not possible in the plant component AM. When they 

are possible in the plant, Force961 enables no963b and no965b instead. This insures 

that events no963a and no965a will always be possible after a tick when events 963 

and 965 are ineligible in the plant. It also ensures that the 'a' and 'b' events are never 
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Figure 7.36: Force965 
Figure 7.35: AMChooser 

eligible at the same time. Also, as supervisor AMChooser ignores the 'a' events, 

they will never be disabled when Force961 needs them. As Force961 never disables 
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the 'b' events when 963 and 965 are possible in the plant, this ensures that they will 

not be disabled when AMChooser needs them. This means the two supervisors do 

not interfere with each other with respect to these events. 

Finally, please note that when we switch from the 'a' to the 'b' events in Force961, 

we only do so immediately after a tick (consider states 1 to state 4 as an example). 

This is to not violate Point iii.l of the SD controllability definition. 

We now consider our last supervisor for this section, AMChooser, shown in 

Figure 7.35. The role of this supervisor is to choose between taking a piece from 

buffer B7 (event 965) or buffer B6 (event 963), when both have a waiting part. If 

both receive a part in the same sampling period, we take the piece from buffer B7 
first as there are other machines to keep busy along the B7 to PM path. We then 

take a piece from B6. If there is already a new piece from B7 waiting, we continue in 

an alternating fashion. If there is only one piece waiting in a given sampling period, 

then we handle that piece. Because AMChooser sometimes disables event 963 or 

965 in order to enforce this order, it enables the appropriate no963b or no965b event 

as a forcing substitute. It also ensures that event 963 and no963b are never enabled 

at the same time. It behaves similarly for events 965 and no965b. 

7.2.6 System Shutdown 

When we tested the previous supervisors (excepting supervisor B2 originally did not 

have its state 6, plant component AM was not marked at its state 3, and supervisor 

Force961 was not marked at its state 2) we found that the system was blocking. It 

was not that the system was deadlocking or not completing its tasks, it was simply 

the fact that, due to forcing events as soon as they were ready, the entire system was 

never in a marked state at the same time. We could have delayed some events to 

achieve this, but that would have been less efficient. 

The real cause was the fact that the system did not have a shutdown mechanism. 

Once started, it just kept running. A shutdown mechanism would cause the system 

to empty out, allowing a non-deadlocked/livelocked system to return to its idle state. 

The easiest way to cause the system to go idle, is to prevent plant component Con2 
from taking new parts (event 921). Once new parts stopped coming in, the system 

would process the existing ones, allow them to leave, and then the TDES should 
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return to their idle states which are marked. 

To achieve this, we added a new plant component SystDownNup, shown in 

Figure 7.37. It contains an event shutdown to empty the system, and an event restart 

to bring the system back up. This could correspond to a physical switch an operator 

could throw to control this behavior. 

Figure 7.37: Plant SystDownNup Figure 7.38: Supervisor handleSystDown 

Our next task was to stop new pieces from entering the system. The problem 

was that supervisor B2 forced event 921, causing Con2 to take a new part, as soon 

as buffer B2 was empty. As we wanted to keep supervisor B2 simple, we added 

a new prohibitable "virtual event," no921. This was introduced by adding plant 

AddNo921, shown in Figure 7.39. We then added the no921-tick loop at state 0 of 

supervisor B2. We would use event no921 as an alternate event to force, when we 

disabled event 921. 

Figure 7.39: Plant AddNo921 

Finally, we added supervisor handleSystDown, shown in Figure 7 .38. Its job 

was to enable event 921 and disable no921 initially, and then disable 921 and enable 
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no921 once the shutdown event occurs. When the restart event occurs, the process 

is reversed. We also make sure events 921 and no921 are never enabled at the same 

time, and that one of the two are always eligible and enabled immediately after a 

tick. 

However, after the above, we were still ~locking. The culprit was supervisor 

Force961. As soon as event 961 was eligible, it was forced so that AM was ready 

to process a part. We could have created a no961 event like we did for B2, but this 

would have been trickier as we needed to allow enough 961 events to occur to allow 

the existing pieces to leave. Rather than do this, we decided that for AM, state 3 

was a rest state, and it was fine to leave it there. So, we marked state 3 of AM, 

and state 2 of Force961, and the system was nonblocking. Note that we could have 

marked state 2 of TDES AM, and state 1 of TDES Force961, but that would have 

caused Point iv of the SD controllability definition to fail. 

7 .2. 7 Algorithm Runtime Statistics 

To test the performance of the algorithm on this example, the following machine 

configuration was used: 

• 1.8GHz Dual core AMD processor 

• 4GB of Dual channel DDR2 RAM 

• Cygwin 1.5.25-15 with gee version 4.3.2 

For testing purpose, the source code is compiled with -03 optimization 1 . 

As we can see from the log output for the FMS example, shown in Listing 7.5, our 

supervisor S is SD controllable for our plant. We also see that our plant has proper 

time behavior, is complete for our supervisor, and has S-singular prohibitable behav

ior. Finally, we see that our closed loop system is ALF and nonblocking. From the 

log, the total number of states of the synchronous product is 82,608. The verifications 

take about 2 minutes and 51 seconds. The memory usage is around 183 megabytes 

at the highest point, as shown in Figure 7.40. For the input files of all the DES in 

this example, please see the appendix. 

1 More information can be found by running man gee. 
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Listing 7.5: Output 
************************************************* 

Bdd-based TDES Verification Tool 

************************************************* 
L - Low Level verification 

F - File the current project 

C - Close the current project 

Q - Quit 

************************************************* 
Current Project: FMS_1.sub 

Procedure desired: 

Show the blocking type(may take long time)(YIN)? 

Verbose level (0- disable, 1- brief, 2- full)? 

Computing reachable subpredicate ... 

R: Iteration_! nodes: 120 time: 0 s 

R: Iteration_2 nodes: 586 time: 0 s 

R: Iteration_3 nodes: 1754 time: 0.031 s 

R: Iteration_4 nodes: 2801 time: 0.093 s 

R: Iteration_S nodes: 3265 time: 0.172 s 

R: Iteration_& nodes: 3310 time: 0.109 s 

R: Iteration_7 nodes: 2281 time: 0.094 s 

R: Iterat ion_S nodes: 2387 time: 0.062 s 

R: Iteration_9 nodes: 2132 time: 0.047 8 

R: Iteration_ tO nodes: 1983 time: 0.047 s 

R: Iteration_11 nodes: 1546 time: 0.015 s 

R: Iteration_12 nodes: 1330 time: 0.016 s 

R: Iteration_13 nodes: 1330 time: 0 s 

R: Oseconds. 

bddReach states:82608 

bddReach Nodes: 1330 

Verifying controllablity ... 

VERI_ CON: Oseconds. 

Verifying Nonblocking ... 

CR: Iteration_! nodes: 191 time: 0 s 

CR: Iteration_2 nodes: 357 time: 0.016 s 

CR: Iteration_3 nodes: 488 time: 0.015 s 

CR: Iteration_4 nodes: 540 time: 0.016 s 

CR: Iteration_S nodes: 785 time: 0.031 • 
CR: Iteration_6 nodes: 1143 time: 0.047 s 

CR: Iteration_7 nodes: 1757 time: 0.093 • 
CR: Iteration_S nodes: 2805 time: 0.281 s 

CR: Iteration_9 nodes: 2080 time: 0.203 s 

CR: Iteration_ tO nodes: 2048 time: 0.172 • 
CR: Iteration_11 nodes: 1552 time: 0.109 s 

CR: Iterat ion_12 nodes: 1330 time: 0.031 s 

CR: Iteration_13 nodes: 1330 time: 0.047 s 

VERI_NONBLOCKING: 2seconds. 

Checking Plant Completeness ... 

VERI_BALEMI: Oseconds. 

Verifying Activity Loop Free ... 

states: 10 

states: 77 
states: 772 

states: 4531 

states: 26540 

states: 48300 

states: 58068 

states: 62420 

states: 68242 

states: 76780 

states: 82128 

states: 82608 

states: 82608 

states: 24 

states: 70 

states: 190 

states: 394 

states: 540 

states: 173 
states: 3545 

states: 28173 

states: 47358 

states: 67045 

states: 81732 

states: 82608 

states: 82608 

Garbage collection #1: 2000003 nodes I 1996580 free I 0.1s I 0.1s total 

VERI_ALF: 7seconds. 

Verifying Proper Timed Behavior ... 

VERI_PTB: Oseconds. 

Checking SD Controllability 

VERI_SD: 162seconds. 

(0) This system has been verified succesfully! 

State size of the synchronous product: 82608 

Number of bdd nodes to store the synchronous product: 1330 

Computing time: 171 seconds. 

Total computing time:171 ~econds. 

7. Examples 
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200,000 ..--· --··· 

~~==================================+ 
160,000 I- -··-----------------------------1-

1~~------------------------------------------------+ 

120.000 .. '-·-·-·······-·-·······--·----·--------·------------··--······ 

~~---------------------------------------+ 

~~--------------------------------+ 

60,000 1- !---··-·-···· ....... ········-··--····-·--··----·--------·-------------·-···---

~ 1- -·····---··· ··-··-···----------·-·---·------·--·----+ 

20,000 .................. ············- ·········-·····-----·-----··-·-·--·-·····-·-----···--···-----·-·-··-·--·-··-·---··-·---···-·-··---··-·-···-··· . 

Figure 7.40: Histogram for Memory Usage (Kbytes vs. seconds) 
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7.3 Translating FSM Supervisors to Moore FSM 

In Section 7.2, we presented an example of a Flexible Manufacturing System with SD 

controllable TDES supervisors. In this section, we apply the method in Section 4.2 

to translate individual FMS supervisors into Moore finite state machines (FSM) (see 

Section 4.1). This is possible because our supervisor is SD controllable, and our plant 

is complete for our supervisor. If the plant was not complete, we would have had to use 

additional information from the plant components to determine when the problematic 

prohibitable events were not possible in the plant. This can be accomplished by 

converting the plant components that contain the needed information into FSM as 

well, and combining them with the FSM for the supervisors as modular controllers. 

7.3.1 Adding More Timing Information 

Before we can translate the individual TDES supervisors into FSM, they must be CS 

deterministic as in Definition 3.1.5 and non-selfloop ALF. A TDES is non-selfloop 

ALF if once any activity selfloops are removed, the resulting TDES is ALF. For 

example, supervisor B4 in Figure 7.22 is neither CS deterministic or non-selfloop 

ALF. This is a problem as the possible next state transitions of the FSM are too 

numerous, and many of them are not actually possible in the plant. For example, 

we could have according to the TDES a 934-tick sequence, a 934-951-tick, or even a 

{934-951}*-tick sequence. We simply have too many choices, and this would result 

in an overly complex FSM. Also, concurrent strings 934-951-tick and 934-951-934-

tick have the same occurrence image but lead to different states, which would result 

in a nondeterministic controller. Examining the plant and other supervisors, we see 

that there will always be a tick between events 934 and 951, so we can add this to 

TDES B4, as we have done in Figure 7.41. 

Making similar observations for the other non-selfloop activity loops, we get the 

supervisor in Figure 7.41 which should provide us with the same over all closed loop 

behavior as the original B4 supervisor. However, we note that prohibitable event 933 

is still selflooped at state 0, so the TDES is not ALF. We could modify the supervisor 

to remove this loop, but we do not need to as the selfloop provides enablement 

information, but does not affect the next state information. As such, it does not 

impede our translation. i.e. our next state information is { 933} *-934- tick to state 
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1 of B4. Essentially, as long as the supervisor is CS deterministic and non-selfloop 

ALF, we can do the translation. As was discussed in Chapter 4, all we require is that 

the TDES be CS deterministic, but typically if the TDES is not non-selfloop ALF 

it will also not be CS deterministic. Also, it is often difficult to even check the CS 

deterministic condition if the TDES is not non-selfloop ALF. 

We then made similar changes to supervisors B6, B7, and B4Path. The new su

pervisors are shown in Figures 7.42- 7.44. All remaining supervisors can be converted 

directly. We reran our software on the FMS system with these new supervisors, and 

all conditions still passed. 

Figure 7.42: New B6 
Figure 7.41: New B4 

Figure 7.43: New B7 Figure 7.44: New B4Path 
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7 .3.2 FSM Controllers for Flexible Manufacturing System 

This section lists all the FSM Controllers for the Flexible Manufacturing System we 

presented in Section 7.2 and 7.3.1, using the method developed in Section 4.2. We 

first briefly discuss some implementation and modeling details, as well as introduce 

some notation that we will use. 

Each FSM samples its inputs on the clock edge when tick occurs, and then changes 

state based on its current state, the value of each relevant input, and the next state 

arcs for that state. The timing info is implicit as it only changes state on a clock edge. 

If an input for an event is true when sampled on the clock edge, then it is considered 

to have occurred during the last clock period. The designer must make sure that the 

input for a given value has a pulse length equal to the period of our clock so that the 

input will not be lost. If an input is seen at two clock edges in a row, it is considered 

to have occurred twice. As such, the designer must make sure an input does not 

have an overly long pulse length. Remember, except for one exception, an event is 

considered to occur when its input goes true at the controller. The exception is when 

the input goes true so close to a sampling edge it is detected in the next sampling 

period, then it is considered to have occurred in the next clock period. This should 

be taken in to account in modeling the system. 

To represent the FSM visually, the following notations are defined. For the given 

FSM, 

• At each state in the FSM, a prohibitable event is listed if its corresponding 

output is true at that state, which means the controller enables this event at 

this state. An event is not listed if its output is false. 

• At each transition, we use logical operators to represent the sampled input. We 

use'!' as NOT,'+' as OR,'·' as AND. 

• To distinguish from a DES event label and the event input being true at the 

clock edge, the event name is surrounded by ' [ ] ' to indicate that the input was 

true at the clock edge. 

If the controller is following a concurrent string, for example a - (3 - r from one 

sampling state to the next, we add a transition arc with '·'(AND) between the non-
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tick events. For example '[a] · [,8]'.2 This would be interpreted as events a and ,B 
occurred in the last sampling period, and no other activity events. Of course, there 

is no implied ordering of the two events, nor do we know how many times each event 

actually occurred during the last clock period. 

Technically, if a supervisor has event set :E =a, ,B, "(,tick, the next state condition 

for a given concurrent string should include a term for each activity event in the event 

set. When the event is missing, it is negated. For string a- ,B- r, this would be 

'[a] · [,B]·!['Y]'. However, we can often simplify these equations using Boolean logic. 

For instance, if none of the possible strings at the current sampled state contain 'Y, 

we can leave it out of the equations. 

If the controller is getting to the same state by different strings which are not 

occurrence equivalent, then we can use '+'(OR) to combine the conditions together. 

For example '[a]+ [,B]'. This would be interpreted as event a or event ,B occurred in 

the last sampling period, but no others. 

If at a given state in the controller we can do concurrent string a-r and a- ,B-r, 

we need to make sure their next state equations do not overlap. Using conditions '[a]' 
and '[a]· [,B]' is not enough as first condition is true as long as a occurred, irrespective 

of ,B. Instead, the condition for a- r should be '[a]·![,B]'. 

For each FSM, the initial state is identified by a Reset signal. This Reset sig

nal represents the "power on" behavior or a restart of the controller. This state is 

equivalent to the initial state of each TDES. It also explains why the initial state of 

a timed DES is a sampling state that does not need to be reached by a tick, since the 

FSM always starts at this state. 

For each FSM state, we typically define a default transition DEF. This is because 

a TDES transition function is a partial function and an FSM next state function is 

a total function. Basically, it is a shorthand for all the next state equations that 

we have not explicitly specified. It is equivalent to taking the logical OR of all 

existing outgoing next state conditions from that state, and then negating the result. 

Sometimes, when we are translating a supervisor, we end up with a specified next 

state equation going to the same place as our DEF transition. That means this 

transition can be removed as it will be covered by the DEF condition. 
2In the following FSM graphs, this operator is represented by '.'(period) instead of'·' due to a 

technical difficulty. 
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Our first FSM is for supervisor B2, and is shown in Figure 7.45. At state 0, we 

have merged selfioop transition '![921]· [no921]' with the DEF transition. It is worth 

noting how much simpler the FSM tends to be than the corresponding supervisor. 

For B2, we went from a 7 state supervisor to a 3 state FSM. 

eset 

Figure 7.45: FSM B2 Figure 7.46: FSM Force963 

We do a similar simplification for supervisors Force963 and Force965. The 

translated FSM are shown in Figures 7.46 and 7.47. For Force963, we should have 

a ![963]· ([no963a] + [no963b]) selfioop at state 1, but we have absorbed this into the 

DEF transition. For Force965, we have absorbed the ![965] · ([no965a] + [no965b]) 

transition at state 1, into the DEF transition. 

EF 

Figure 7.4 7: FSM Force965 
Figure 7.48: FSM B4 

The next translation we examine is for B4, and the FSM are shown in Figure 

7.48. Note at state 0, we have a transition to state 1 with condition '[934]'. Strictly 
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speaking this should be '[934]·![952]·![954]'. However, after examining the plant and 

other supervisors, we know that these three events can never occur in the same clock 

period. We can thus simplify this to '[934]' to keep our diagram simple. Similar for the 

'[952]' and '[954]' transitions. A similar example is at state 1. Here we have transition 

condition '[951] + [953]'. Strictly speaking, this should be '[951]·![953]+![951] · [953]' 

but we know from the plant that these events can't occur in the same clock period, 

so we can simplify things. 

The translation of the remaining FSM are straightforward so we do not need to 

discuss them individually. The translations for supervisors B6, B7, B8, LathePick, 
TakeB2, B4Path, Force961, handleSystDown, TakeB4PutB6, TakeB4PutB7, 
and AMChooser are shown in Figures 7.49 - 7.59. 

eset 

Figure 7.49: FSM B6 Figure 7.50: FSM B7 
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eset 

eset 

Figure 7.51: FSM B8 Figure 7.52: FSM LathePick 

eset 

Figure 7.53: FSM TakeB2 Figure 7.54: FSM B4Path 
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state: I 
%3 
%5 

eset 

state: 0 
961 

no963a 
no965a 

EF 

EF 

Figure 7.55: FSM Force961 

eset 

Figure 7.56: FSM handleSystDown 

eset 

Figure 7.57: FSM TakeB4PutB6 Figure 7.58: FSM TakeB4PutB7 
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! [938]. [965] 

Figure 7.59: FSM AMChooser 



Chapter 8 

Conclusions 

This thesis focuses on issues related to implementing theoretical Discrete-Event Sys

tems (DES) supervisors, and the concurrency and timing delay issues involved. 

Sampled-data (SD) supervisory control deals with timed DES (TDES) systems 

where the supervisors will be implemented as SD controllers. An SD controller is 

driven by a periodic clock and sees the system as a series of inputs and outputs. On 

each clock edge (tick event), it samples its inputs, changes states, and updates its 

outputs. In our introduction, we identified several concurrency issues that are not 

covered by the standard controllability and nonblocking definitions. 

In this thesis, we identify a set of existing TDES properties that will be useful to 

our work, but not sufficient. We require that our plant have proper time behavior, 

and is complete for our supervisor. We also require that our closed loop system is 

activity loop free and nonblocking. To these properties, we add two new conditions. 

First, we require that the plant have S-singular prohibitable behavior, where S is 

our TDES supervisor. This condition restricts plant behavior such that prohibitable 

events can only occur at most once per clock cycle, but is only concerned with strings 

that are also accepted by our supervisor. 

The main new condition we introduce is the SD controllability definition. This 

condition extends the standard TDES controllability definition by adding restrictions 

so that the TDES behavior is consistent with restrictions imposed by SD controllers, 

making it easier to translate a TDES into an SD controller. It includes conditions to 

ensure that the enablement and eligibility information is constant across a sampling 
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period, and that when the controller forces an event, it will not occur when the plant 

model says it can't. It also ensures that when two strings that appear identical to an 

SD controller occur in the same sampling period, the strings have the same closed and 

marked future in the system's closed loop behavior. This means the SD controller 

will take the same control action for both, and either string will be sufficient to get us 

to a marked state. Finally, we require that only the empty string or a string ending 

in a tick can be marked. This ensures that marked strings will be observable to the 

controller. 

We then establish a formal representation of an SD controller as a Moore Finite 

State Machine (FSM), and describe how to translate a TDES supervisor to a FSM. 

To be able to translate a given TDES into an FSM, we require that the TDES be CS 

deterministic. This new condition essentially says that if two concurrent strings can 

occur in the same clock cycle and they contain the same events (possibly in different 

order or number), then they must take us to the same state in the supervisor. This 

ensures our FSM is deterministic. We also discuss how to construct a single centralized 

controller, as well as a set of modular controllers and show that they will produce 

equivalent output. This is an important result, because we prefer a modularized 

design of controllers rather than a large, complex, centralized design. 

Next, we capture the enablement and forcing action of a translated controller in 

the form of a TDES supervisory control map, and show that the closed-loop behavior 

of this map and the plant is the same as that of the plant and the original TDES 

supervisor. This is important as it shows that the behavior we expect from our TDES 

model is what we should actually get in the system, at least as far as enablement and 

forcing goes. As a controller chooses its next state based on which events occurred 

in the last clock period, this means the enablement and forcing actions the controller 

takes is irrespective to event ordering or number, but will have equivalent effect as 

that of our TDES supervisor. As we discuss at the end of Chapter 3, there are 

several time delay issues that we only partially address, leaving the remaining issues 

for future work. 

We also show that our method is robust with respect to nonblocking and certain 

variations in the actual behavior of our physical system. Essentially, if there are 

two or more concurrent strings possible in a given clock cycle and they contain the 

same events (possibly in different order or number), we showed that as long as at 
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least one of these strings is actually possible in the physical system, then the physical 

system and our SD controller will be nonblocking if our TDES closed loop system is 

nonblocking. This result is important as some implementations may be such that we 

actually get a subset of our expect behavior. This result says that as long as we get 

this minimal subset, we will remain nonblocking. 

We also introduce a set of predicate-based algorithms to verify the SD controlla

bility property, as well as the other conditions that we require. The algorithms are 

implemented on the top of the preceding code base of Raoguang Song and use binary 

decision diagrams (BDD). BDD is an efficient structure to store systems with large 

statespaces and to perform state set operations. The implemented software tool is 

able to verify a system whose synchronous product has more than 80,000 states, in 

less than 3 minutes. We expect that it will be able to handle quite large systems, but 

we did not have time to attempt this ourselves. 

Finally to test our algorithms, we have produced a set of illustrative examples 

which fail the key conditions discussed in this thesis, as well as a successful application 

example based on a Flexible Manufacturing System (FMS). For all the supervisors 

in the FMS example, we also translated them into Moore FSM controllers using 

the translation method we created. Ideally, we would like to see an algorithm that 

converts these controllers into program source code in some computer language. This 

is left as future work and is beyond the scope of this thesis. 

The source code of the software tool and the input files for the FSM example are 

included in the appendix. The software is single threaded, which limits its perfor

mance. A few choices for the next step for the software tool, are rewriting the code 

to be multithreaded, and/or implement a mechanism that can distribute the verifica

tion over multiple machines. We believe that our algorithms have good parallelizing 

potential. This is left as future work. 
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Appendix A 

SD Software Program 

A.l FMS Example Input Files 

The input files below are all for the FMS example that we presented in Section 7.2. 

A.l.l FMS Plants 

#generated by pds2hsc 

[States] 

4 t nua of states 
1 

2 
3 

4 

[InitState] 

1 

[MarkingStates] 

1 

[Events] 

tick Y L 

921 Y L 

922 N L 

[Transitions] 

4 
(tick 1) 

1 
(tick 1) 

(921 2) 

2 

(tick 3) 

3 

(tick 3) 

Listing A.1: Con2 
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(922 4) 

#generated by pds2hsc 

[States] 
8 # num of states 

2 

3 

4 

5 

6 

a 

[InitState] 

1 

[MarkingStates] 

1 

[Events] 

tick y L 

930 II L 

933 y L 

934 II L 

937 y L 

93a II L 

939 y L 

[Transitions] 
a 
(tick 1) 

1 

(tick 1) 

(933 2) 

(937 3) 
(939 4) 

(tick 5) 

3 
(tick 6) 

4 
(tick 7) 

5 
(tick 5) 

(934 a) 

6 

(tick 6) 

(93a a) 
7 

(tick 7) 

(930 a) 

#generated by pds2hsc 

[States] 

6 I num of states 

3 
4 

Listing A.2: Robot 

Listing A.3: Lathe 
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6 

[InitStatel 

1 

[KarkingStates] 

1 

[Events] 
tick y L 

951 y L 

952 II L 

953 y L 

954 II L 

[Transitions] 

6 
(tick 1) 

1 
(tick 1) 

(951 2) 
(953 3) 
2 
(tick 4) 
3 
(tick 5) 

4 
(tick 4) 
(952 6) 

(tick 5) 
(954 6) 

#generated by pds2hsc 

[States] 
8 # num of states 

2 

3 

4 

5 

6 

7 

8 

[InitStato] 
1 

[KarkingStates] 

1 

3 

[Events] 

tick y 

961 y 

963 y 

964 II 

965 y 

966 II 

[Transitions] 
8 

(tick 1) 

1 

L 

L 

L 

L 

L 

L 

193 

Listing A.4: AM 
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(tick 1) 

(961 2) 

(tick 3) 
3 
(tick 3) 
(963 4) 
(965 5) 
4 
(tick 6) 
5 
(tick 7) 
6 
(tick 6) 
(964 8) 

7 
(tick 7) 
(966 8) 

#generated by pds2hsc 
[States] 
6 # num of states 

3 
4 

6 

[InitState] 
1 

[MarkingStates] 
1 

[Events] 
tick y L 

971 y L 

972 N L 

973 y L 

974 N L 

[Transitions] 
6 
(tick 1) 

1 

(tick 1) 
(971 2) 
(973 3) 
2 
(tick 4) 
3 
(tick 5) 
4 
(tick 4) 
(972 6) 
5 
(tick 5) 
(974 6) 

I #generated by pds2hsc 

A. SD Software Program 

Listing A.5: Con3 

Listing A.6: PM 
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[States] 
4 # num of states 

2 

3 

4 

[InitState] 
1 

[MarkingStates] 
1 

[Events] 
tick y 

981 y 

982 N 

[Transitions] 
4 
(tick 1) 
1 
(tick 1) 

(981 2) 
2 
(tick 3) 

3 

(tick 3) 

(982 4) 

L 

L 

L 

A.1.2 Helper Plants 

lgenerated by pds2bsc 
[States] 
2 # num of states 

2 

[InitState] 

1 

[MarkingStates] 
1 

[Events] 
tick Y L 
no921 Y L 

[Transitions] 
1 
(tick 1) 
(no921 2) 
2 

(tick 1) 

llgenerated by pds2hsc 
[States] 

195 

Listing A. 7: AddNo921 

Listing A.8: AddNo963 
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2 # num of states 

[InitState] 
1 

[MarkingStates] 

1 

[Events] 
tick Y L 
no963a Y L 

no963b Y L 

[Transitions] 

1 

(tick 1) 

(no963a 2) 

(no963b 2) 

2 

(tick 1) 

#generated by pds2hsc 

[States] 
2 # num of states 

[InitState] 

1 

[MarkingStates] 

1 

[Events] 
tick Y L 

no965a Y L 

no965b Y L 

[Transitions] 

(tick 1) 

(no965a 2) 

(no965b 2) 

2 

(tick 1) 

#generated by pds2hsc 

[States] 
4 I num of states 

2 

3 

4 

[InitState] 
1 

[MarkingStates] 
1 

Listing A.9: AddNo965 

Listing A.lO: SystDownNup 
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[Events] 

shutdown N 

restart N L 
tick Y L 

[Transitions] 

1 

(tick 1) 

(shutdown 2) 

2 
(tick 3) 

3 

(tick 3) 

(restart 4) 

4 
(tick 1) 

L 

A.1.3 Buffer Supervisors 

Listing A.ll: B2 
[States] 

7 lnua of states 
0 llist of state names. If the list is omitted, then this tool vill 

2 

3 
4 

5 

6 

[Ini tState] 

0 

[KarkingStates] 

0 

[Events] 

921 y 

t(event name, controllable, L/R/A) 

L 

no921 Y L 

922 N L 

933 Y L 

tick Y L 

[Transitions] 

0 

(921 1) 

(no921 6) 

1 
(tick 2) 

2 

(tick 2) 

(922 3) 

3 

(tick 4) 

4 

(tick 4) 

(933 5) 
5 
(tick 0) 

6 

(tick 0) 

197 
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################################## 

Listing A.l2: B4 
[States) 

8 lnum of states 
0 #list of state names. If the list is omitted, then this tool will 

1 

3 

6 

7 

8 

[InitState) 

0 

[MarkingStates) 

0 

[Events) t(event 
933 y L 

934 N L 

937 y L 

939 y L 

951 y L 

952 N L 

953 y L 

954 N L 

tick y L 

[Transitions] 

0 

(933 0) 

(952 6) 

(934 5) 
(954 7) 
(tick 0) 

(tick 1) 

(951 8) 

(953 8) 

2 
(tick 2) 
(937 8) 

3 
(tick 3) 
(939 8) 

5 
(tick 1) 

6 

(tick 2) 
7 
(tick 3) 

8 

(tick 0) 

name, controllable , 

################################## 

[States) 
4 #num of states 

L/R/A) 

Listing A.l3: B6 

0 #list of state names. If the list is omitted, then this tool will 

A. SD Software Program 
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3 

4 

(lnitStato] 

0 

(KarkingStatos] 

0 

(Events] l(ovent nllllo, controllable, L/R/A) 

937 Y L 
938 II L 
963 Y L 
tick Y L 

(Transitions] 

0 

(937 0) 
(938 3) 

(tick 0) 

1 
(963 4) 
(tick 1) 

3 
(tick 1) 
4 
(tick 0) 

•••••••••••••••••••••••••••••••••• 

(States] 

7 •num of states 

Listing A.14: B7 

0 •list of state naaes. If the list is omitted, then this tool vill 

2 

5 

6 

7 

8 

(lnitStata] 

0 

(KarkingStatos] 

0 

(Events] t(event 

939 y L 
930 H L 

965 y L 

971 y L 

973 y L 

974 H L 

tick y L 

(Transitions] 

0 
(939 0) 
(930 S) 

(973 0) 
(974 7) 
(tick 0) 
1 
(971 6) 

(tick 1) 

name. controllable • L/R/A) 

199 
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(965 8) 

(tick 2) 

5 

(tick 1) 

6 

(tick 0) 

7 

(tick 2) 

8 

(tick 0) 

########1#############1########### 

Listing A.l5: B8 
[States) 
12 #num of states 

#list of state names. If the list is omitted, then this tool will 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

[InitState) 
0 

[HarkingStates) 

0 

[Events) 
930 

971 y 

972 N 

973 y 

981 y 

982 N 

tick 

N 

y 

#(event name, controllable, L/R/A) 

L 

L 

L 

L 

L 

L 

L 

[Transitions] 

0 

(tick 0) 

(930 1) 

(tick 2) 

2 

(971 3) 

3 
(tick 4) 

4 

(tick 4) 

(972 5) 

(tick 6) 

6 

(981 7) 

7 

(tick 8) 

8 

(tick 8) 

A. SD Software Program 
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(982 9) 

9 

(tick 10) 

10 
(973 11) 

11 
(tick O) 

•••••••••••••••••••••••••••••••••• 

A.1.4 Additional Supervisors 

Listing A.l6: AMChooser 
[States] 

14 •num of states 
0 I list of state names. If the list is omitted. then this tool vill 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
12 
13 

[InitState] 

0 

[MarkingStates] 

0 

[Events] •<event 
938 II L 
963 y L 
965 y L 
974 II L 
tick y L 
no963b y L 
no965b y L 

[Transitions] 

0 
(tick 0) 

(no963b 0) 

(no965b 0) 

(974 1) 

(938 2) 

(no963b 1) 

(no965b 1) 

(tick 6) 

(938 3) 

2 

(no963b 2) 

(no965b 2) 

(tick 5) 

(974 3) 

3 

Da.Jle, controllable, L/R/A) 
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(no963b 3) 
(no965b 3) 
(tick 7) 

4 
(no963b 4) 
(tick 5) 

5 
(no965b 5) 
(tick 5) 
(974 9) 
(963 11) 
6 
(no963b 6) 
(tick 6) 
(965 12) 
(938 13) 
7 
(no963b 7) 
(tick 7) 
(965 8) 
8 
(no963b 8) 
(tick 5) 
9 
(no965b 9) 
(tick 9) 
(963 10) 
10 
(no965b 10) 
(tick 6) 
11 

(no965b 11) 

(974 10) 
(tick 0) 
12 
(no963b 12) 
(938 4) 
(tick 0) 
13 
(no963b 13) 
(tick 13) 
(965 4) 
################################## 

Listing A.l7: B4Path 
[States] 
4 #num of states 

0 #list of state names. If the list is omitted, then this tool vill 

2 

3 

[InitState] 
0 

[MarkingStates] 

0 

[Events] #(event 

933 y L 
934 H L 
937 y L 
939 y L 
tick y L 

name, controllable, L/R/A) 

A. SD Software Program 
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[Transitions] 
0 

(tick 0) 
(933 0) 

(934 2) 

(tick 1) 

(937 3) 
(939 3) 

2 
(tick 1) 

3 
(tick 0) 

•••••••••••••••••••••••••••••••••• 

#generated by pds2hsc 
[States) 
6 t num of states 
0 

1 

2 
3 

4 

5 

[InitState) 
0 

[HarkingStates) 
0 

2 

[Events) 
tick y 

no963a y L 
no963b y L 
no965a y L 

no965b y L 
961 y L 
963 y L 

964 N L 
965 y L 
966 II L 

[Transitions] 
0 

(no965a 0) 
(no963a O) 
(961 1) 

(no965a 1) 

( no963a 1) 

(tick 2) 
2 
(no965b 2) 
(no963b 2) 
(t1ck 2) 
(963 3) 
(965 3) 

3 
(no965b 3) 
(no963b 3) 
(tick 4) 

4 

L 
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(no965a 4) 

(no963a 4) 

(tick 4) 

(964 5) 
(966 5) 

(no965a 5) 

(no963a 5) 
(tick 0) 

#generated by pds2hsc 

[States] 

5 # num of states 

0 

2 

3 
4 

[InitStatel 

0 

[MarkingStates] 

0 

[Events] 
tick y L 

no963a y L 

no963b y L 

938 N L 

963 y L 

[Transitions] 

0 

(tick 0) 

(938 1) 

(tick 2) 

2 

(963 3) 
(no963a 4) 

(no963b 4) 

3 
(tick 0) 

4 

(tick 2) 

#generated by pds2hsc 

[States] 
5 # num of states 

0 

1 

2 

4 

[lnitStatel 
0 

[MarkingStates] 

0 
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Listing A.l9: Force963 

Listing A.20: Force965 
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[Events] 
tick y L 

no966a y L 
no965b y L 

974 II L 

965 y L 

[Transitions] 
0 

(tick 0) 

(974 1) 

(tick 2) 

2 

(no965a 4) 
(no965b 4) 
(965 3) 
3 
(tick 0) 

4 
(tick 2) 

Listing A.21: LathePick 
[States] 
8 tnua of states 

0 llist of state na.es. If the list is omitted, then this tool vill 

2 

3 

4 
5 

6 

7 

[InitState] 
0 

[MarkingStates] 
0 

[Events] 
934 II 
951 y 

l(event name, controllable, L/R/A) 

L 

L 
953 Y L 
tick Y L 

[Transitions] 
0 
(tick 0) 

(934 1) 

(tick 2) 

2 

(951 3) 
3 
(tick 4) 
4 
(tick 4) 
(934 5) 
5 
(tick 6) 
6 
(953 7) 
7 

205 
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(tick 0) 
################################## 

[States] 
8 #num of states 

Listing A.22: TakeB2 

0 #list of state names. If the list is omitted, then this tool will 
1 

3 

4 

5 

6 

7 

[InitState] 

0 

[MarkingStates] 
0 

[Events] 
922 N 

I( event name, controllable, L/R/A) 

L 

930 N L 

933 Y L 

938 

tick 
N 
y 

L 

L 

[Transitions] 

0 

(tick 0) 

(922 1) 

(tick 2) 

2 

(933 3) 

3 

(tick 4) 

4 

(tick 4) 

(922 5) 

(938 6) 

(930 6) 

(tick 6) 

(930 7) 

(938 7) 

(tick 0) 

(922 7) 

7 

(tick 2) 
################################## 

[States] 
6 #num of states 

Listing A.23: TakeB4PutB6 

0 I list of state names. If the list is omitted. then this tool will 

3 

4 

5 
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[InitStato] 
0 

[MarkingStatos] 
0 

[Events] 
937 y 

•<event naae, controllable, L/R/A) 
L 

952 I L 

963 Y L 
tick y L 

[Transitions] 
0 

(tick 0) 

(952 1) 

(tick 2) 

2 

(937 3) 

3 

(tick 4) 

4 

(tick 4) 

(952 5) 

(963 0) 

5 

(tick 5) 

(963 1) 

•••••••••••••••••••••••••••••••••• 

[States] 
6 •num of states 

Listing A.24: TakeB4PutB7 

0 •list of state names. If the list is omitted, then this tool vill 

2 

3 

4 

5 

[InitState] 
0 

[MarkingStatos] 
0 

[Events] •<event name, controllable, L/R/A) 
939 Y L 
954 I L 

965 Y L 

tick Y L 

[Transitions] 
0 

(tick 0) 

(954 1) 

(tick 2) 

2 

(939 3) 

3 

(tick 4) 

4 

207 
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(tick 4) 
(954 5) 
(965 0) 

(tick 5) 
(965 1) 
################################## 

#generated by pds2hsc 
[States) 
4 # num of states 

0 

1 

2 

3 

[lnitState) 

0 

[MarkingStates) 
0 

[Events) 
921 Y L 
no921 Y L 

shutdown N 

restart N L 
tick Y L 

[Transitions) 
0 

(tick 0) 
(921 0) 
(shutdown 1) 

1 

(921 1) 
(tick 2) 

2 
(no921 2) 
(tick 2) 
(restart 3) 

3 

(no921 3) 

(tick 0) 

L 
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Listing A.25: handleSystDown 

A.2 Source code 

The source code files are to be compiled using gee 4. 3. 2 or higher version. Opti

mization -0 is suggested for better performance. 
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A.2.1 Main 

main.cpp 

001 { 
002 

003 

004 

005 

006 

007 

008 

009 

010 

011 

012 

013 

014 

015 

016 

017 

018 

019 

020 

021 

022 

023 

024 

025 

026 

027 

028 

029 

030 

031 

032 

bool bPrjLoaded = false; 

char ch = '\0'; 

char prjfile[MAX_PATH]; 

string errmsg; 

prjfile[O] = '\0'; 

int iret = 0; 

char prjoutputfile[MAX_PATH]; 

char savepath[MAX_PATH]; 

savepath[O] = '\0'; 

HISC_SUPERINFO superinfo; 

HISC_TRACETYPE tracetype; 

int computetime = 0; 

while (ch != 'q' && ch != 'Q') 
{ 

ch = getchoice(bPrjLoaded, prjfile); 

switch (ch) 

{ 
case 'q': 

case 'Q': 

iret = close_prj(errmsg); 

bPrjLoaded = false; 

prjfile[O] = '\0'; 

break; 

//Load a project 

case 'P': 

case 'p': 

cout << "Sub name:"; 

209 
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033 

034 

035 

036 

037 

038 

039 

039 

040 

041 

041 

042 

043 

044 

045 

046 

047 

048 

049 

050 

051 

052 

053 

054 

055 

056 

057 

058 

059 

060 

061 

062 

063 

064 

065 

A. SD Software Program 

cin.getline(prjfile, MAX_PATH); 

iret = load_prj(prjfile, errmsg); 

if (iret < 0) 

{ 
if (iret > -10000) //error 

bPrjLoaded = false; 

else 

bPrjLoaded = true; //waring 

} 
else 

bPrjLoaded = true; 

break; 

//close the current project 

case 'c': 

case 'C': 

iret = close_prj(errmsg); 

bPrjLoaded false; 

prjfile[O] = '\0'; 

break; 

//File the current project 

case 'f': 

case 'F': 

cout << "file name:"; 

cin.getline(prjoutputfile, MAX_PATH); 

iret = print_prj(prjoutputfile, errmsg); 

break; 

//Low Level verification 

case '1': 

case 'L': 

cout « "Show the blocking type(may take long time)(Y /N)?"; 

tracetype = (HISC_TRACETYPE)getchoice_tracetype(); 

char verbosechoices[3] = {'0', '1', '2'}; 

cout « "Verbose level (0 - disable, 1 - brief, 2 - full)?"; 

const char choice[2] = { getkeystroke(verbosechoices, 
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3), '\0' }; 

066 

067 

068 

069 

070 

071 

072 

073 

074 

075 

076 

077 

078 

079 

080 

081 

082 

083 

084 

085 

086 

087 

088 

089 

090 

091 

092 

093 

094 

095 

096 

097 

098 

099 

iVerbLevel = atoi(choice); 

computetime = 0; 

superinfo.statesize = -1; 

superinfo.nodesize = -1; 

superinfo.time = 0; 

iret = verify_low(tracetype, errmsg, &superinfo); 

cout << "("<< iret << ") "; 

if (iret == 0) 

cout << "This system has been verified succesfully!" 

« endl; 

if (superinfo.statesize >= 0) 

cout << "State size of the synchronous product: " << 
superinfo.statesize << endl; 

if (superinfo.nodesize >= 0) 

cout << "Number of bdd nodes to store" << 
" the synchronous product: " << superinfo .nodesize 

<< endl; 

cout << "Computing time: " << superinfo. time << 
"seconds." << endl; 

computetime += superinfo.time; 

if (iret < 0) 

{ 

} 

cout << errmsg << endl; 

cout << "Press any key to continue ... "; 

iret = 0; 

errmsg[O] = '\0'; 

getkeystroke(NULL, 0); 
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100 

seconds." 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 } 
119 

120 int 

121 { 
122 

123 

124 

A. SD Software Program 

cout << "Total computing time:" << computetime << " 

} 

« endl; 

break; 

} 
if (iret < 0) 

{ 

} 

cout << errmsg << endl; 

cout << "Press any key to continue ... "; 

iret = 0; 

errmsg[O] = '\0'; 

getkeystroke(NULL, 0); 

close_hisc 0 ; 

return 0; 

getchoice(bool bPrjLoaded, const char *prjfile) 

char allowed_choice[50]; 

int numofchoice = 0; 

125 cout << endl << endl << endl << endl << endl; 

126 cout << "*************************************************" << endl; 
127 cout « " Bdd-based HISC Synthesis and Verification Tool " « endl; 

128 cout << "*************************************************" << endl; 
129 

130 

131 

132 

133 

if 

{ 

( ! bPr j Loaded) 

allowed_choice[O] 

allowed_choice[1] 

allowed_choice[2] 

= 'p'; 

= 'P'; 

= 'q'; 
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134 

135 

136 

137 

138 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

} 
else 

{ 

} 

allowed_choice[3] = 'Q'; 
numofchoice = 4; 

cout « " P - Load a HISC project 

allowed_choice[O] = 'c'; 

allowed_choice[1] = 'C'; 

allowed_choice[2] = 'q'; 

allowed_choice[3] = 'Q'; 

allowed_choice[4] = 'F' ; 

allowed_choice[5] = 'f' ; 

allowed_choice[6] = '1' ; 
allowed_choice[7] = 'L'; 

numofchoice = 8; 

cout << " L- Low Level verification 

cout « " F - File the current project 

cout « " C - Close the current project 

cout « " Q - Quit 

" << endl; 

" << endl; 

" << endl; 

" << endl; 

" << endl; 

213 

153 cout << "*************************************************" << endl; 
154 if (bPrjLoaded) 

155 { 
156 cout « "Current Project: " « prj file « endl; 

157 } 
158 cout << endl; 

159 cout << "Procedure desired:"; 

160 return getkeystroke(allowed_choice, numofchoice); 

161 } 
162 

163 char getkeystroke(char *allowed_choices, int len) 

164 { 

165 char choice; 

166 struct termios initial_settings, new_settings; 

167 
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168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

191 

192 

193 

194 

195 

196 } 
197 
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tcgetattr(fileno(stdin), &initial_settings); 

new_settings = initial_settings; 

new_settings.c_lflag &= -rcANON; 

new_settings.c_cc[VMIN] = 1; 

new_settings.c_cc[VTIME] = 0; 

new_settings.c_lflag &= -rsiG; 

tcsetattr(fileno(stdin), TCSANOW, &new_settings); 

if (len > 0) 

{ 
do { 

choice fgetc(stdin); 

int i; 

for (i = 0; i < len; i++) 

{ 
if (choice == allowed_choices[i]) 

break; 

} 
if (i -- len) 

choice= '\n'; 

} while (choice== '\n' I I choice-- '\r'); 

} 
else 

choice= fgetc(stdin); 

tcsetattr(fileno(stdin),TCSANOW, &initial_settings); 

cout << endl; 

return choice; 

198 int getchoice_savesup() 

199 { 

200 char allowed_choice[50]; 

201 int numofchoice = 0; 
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202 char choice; 

203 

204 

205 

206 

207 

allowed_choice[O] 

allowed_choice[1] 

allowed_choice[2] 

allowed_choice[3] 

208 numofchoice = 4; 

= '0'; 

= '1' ; 

= '2' ; 

= '3'; 

209 choice= getkeystroke(allowed_choice, numofchoice); 

210 return choice- '0'; 

211 } 

212 

213 int getchoice_tracetype() 

214 { 

215 char allowed_choice[50]; 

216 int numofchoice = 0; 

217 char choice; 

218 

219 allowed_choice[O] = 'Y'; 

220 allowed_choice[1] = 'y'; 

221 allowed_choice[2] = 'N'; 

222 allowed_choice[3] = 'n'; 

223 numofchoice = 4; 

224 choice= getkeystroke(allowed_choice, numofchoice); 

225 

226 if (choice == 'Y' II choice -- 'y') 

227 return 1; 

228 else 

228 return 0; 

229 } 
230 

231 

215 



216 A. SD Software Program 

A.2.2 Global Functions, Typedefs, Variables, Preprocessors 

symbols 

type.h 

001 

002 const string sTick = "tick"; 

003 

004 enum DESTYPE {PLANT_DES = 0, SPEC_DES = 1}; 

005 enum EVENTTYPE {CON_EVENT = 0, UNCON_EVENT = 1}; 

006 

007 #define L_EVENT 3 

008 

009 typedef map<string, int> STATES; //state name, index 

010 typedef map<int, string> INVSTATES; //state index, name 

011 

012 typedef map<string, int> EVENTS; //event name, global index 

013 typedef map<int, string> INVEVENTS; //event global index, name 

014 

015 typedef map<string, unsigned short> LOCALEVENTS; //event name, 

level-wise index 

016 typedef map<unsigned short, string> LOCALINVEVENTS;//event level-wise 

index,name 

017 

018 typedef set<unsigned short> EVENTSET; 

019 

020 typedef list<int> MARKINGLIST; //link list to save all the marker 

states index 

021 typedef map<int, int> TRANS; //source state index (key), target state 

index 

022 #endif //_TYPE_H_ 

023 

024 
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errmsg.h 

001 

002 #define HISC_BAD_INTERFACE -11 

003 #define HISC_TICK_NOT_FOUND -12 

004 

005 #define HISC_LOWERR_GENCONBAD -20 

006 #define HISC_LOWERR_GENP4BAD -21 

007 #define HISC_LOWERR_SUPCP -22 

008 #define HISC_LOWERR_COREACH -23 

009 #define HISC_LOWERR_REACH -24 

010 #define HISC_LOWERR_P5 -25 

011 #define HISC_LOWERR_P6 -26 

012 #define HISC_LOWERR_GENBALEMIBAD -27 

013 #define HISC_LOWERR_ALF -28 

014 #define HISC_LOWERR_PTB -29 
015 #define HISC_LOWERR_SD -30 

016 #define HISC_LOWERR_SDIV -31 

017 
018 #define HISC_VERI_LOW_UNCON -201 

019 #define HISC_VERI_LOW_BLOCKING -202 

020 #define HISC_VERI_LOW_P4FAILED -203 

021 #define HISC_VERI_LOW_P5FAILED -204 

022 #define HISC_VERI_LOW_P6FAILED -205 

023 #define HISC_VERI_LOW_CON -206 

024 #define HISC_VERI_LOW_ALF -207 

025 #define HISC_VERI_LOW_PTB -208 

026 #define HISC_VERI_LOW_SD_II -209 

027 #define HISC_VERI_LOW_SD_III_1 -210 

028 #define HISC_VERI_LOW_SD_III_2 -211 

029 #define HISC_VERI_LOW_SD_IV -212 

030 #define HISC_VERI_LOW_ZERO_LB -213 

031 
032 #define HISC_HIGHERR_GENCONBAD -30 

033 #define HISC_HIGHERR_GENP3BAD -31 

034 #define HISC_HIGHERR_SUPCP -32 

217 
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035 #define HISC_HIGHERR_COREACH -33 

036 #define HISC_HIGHERR_REACH -34 

037 #define HISC_VERI_HIGH_UNCON -101 

038 #define HISC_VERI_HIGH_P3FAILED -102 

039 #define HISC_VERI_HIGH_BLOCKING -103 

040 

041 #define HISC_BAD_SAVESUPER -97 

042 #define HISC_BAD_PRINT_FILE -98 

043 #define HISC_NOT_ENOUGH_MEMORY -99 

044 

045 #define HISC_WARN_BLOCKEVENTS -10000 

046 #define HISC_INTERNAL_ERR_SUBEVENT -10001 

047 
048 #endif I I __ ERRMSG_H __ 

049 

050 

pubfunc.h 

001 extern string str_upper(const string &str); 

002 extern string str_lower(const string &str); 

003 extern string str_itos(int ilnt); 

004 extern string str_ltos(long long lLong); 

005 
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006 extern string str_nocomment(const string & str); 

007 extern int scp_err(const string & sErr, canst int iErrCode); 

008 

009 extern string GetNameFromFile(const string & vsFile); 

010 

011 extern int Islnteger(const string &str); 

012 extern int Comparelnt(const void* pa, canst void* pb); 

013 

014 extern void bddPrintStats(const bddStat &stat); 

015 extern void SetBddPairs(bddPair *pPair, canst bdd & bddOld, canst bdd & 

bddNew); 
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016 extern int NumofSharedEvents(const int * pEventsArr_a, canst int 

viNumofEvents_a, 

017 canst int * pEventsArr_b, canst int viNumofEvents_b); 

018 extern void my_bdd_gbchandler(int pre, bddGbcStat *s); 

019 

020 #endif I I __ PUBFUNC_H __ 

021 

022 

pubfunc.cpp 

001 * PARA: str: a string (input) 

002 * RETURN: trimmed string 

003 * */ 
004 string str_trim(const string tstr) 

005 { 

006 string sTmp(""); 

007 unsigned int i = 0; 

008 

009 //trim off the prefix spaces 

010 for (i = 0; i < str.length(); i++) 

011 { 

012 if (str[i] != 32 tt str[i] != 9) 

013 break; 

014 } 

015 if (i < str.length()) 

016 { 

017 sTmp = str.substr(i); 

018 } 

019 else 

019 { 

020 return sTmp; 

021 } 

022 

023 //trim off the suffix spaces 

219 
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024 int j = 0; 

025 for (j = sTmp.length() - 1; j >= 0; j--) 

026 { 

027 if (sTmp[j] != 32 && sTmp[j] != 9) 

028 break; 

029 } 

030 if (j >= 0) 

031 { 

032 sTmp = sTmp.substr(O, j + 1); 

033 } 

034 else 

034 { 

035 sTmp.clear(); 

036 } 

037 

038 return sTmp; 

039 } 

040 

041 /** 
* DESCR: convert all the letters in a string to uppercase 

042 * PARA: str: a string (input) 

043 * RETURN: converted string 

044 * */ 
045 string str_upper(const string &str) 

046 { 

047 

048 

049 

unsigned int i = 0; 

string sTmp(str); 

050 for (i = 0; i < str.length(); i++) 

051 { 

052 if ((sTmp[i] >= 'a') & (sTmp[i] <= 'z')) 

053 { 

054 sTmp[i] = sTmp[i] - 32; 

055 } 

056 } 
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057 return sTmp; 

058 } 

059 

060 /** 
* DESCR: convert all the letters in a string to lowercase 

061 * PARA: str: a string (input) 

062 * RETURN: converted string 

063 * */ 
064 string str_lower(const string &str) 

065 { 
066 unsigned int i = 0; 

067 string sTmp(str); 

068 

069 for (i = 0; i < str.length(); i++) 

070 { 
071 if ( (sTmp [i] >= 'A') & (sTmp[i] 

072 { 
073 sTmp[i] = sTmp[i] + 32; 

074 } 
075 } 
076 return sTmp; 

077 } 
078 

079 /** 
* DESCR: 

080 * PARA: 

convert an integer to a string 

iint: an integer 

081 * RETURN: converted string 

082 * */ 
083 string str_itos(int i!nt) 

084 { 
085 char scTmp[65]; 

086 string str; 

087 sprintf(scTmp, n%dn, i!nt); 

088 str = scTmp; 

089 

<= 'Z')) 

221 
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090 return str; 

091 } 

092 

093 /** 
* DESCR: convert a long integer to a string 

iint: a long integer 094 * PARA: 

095 * RETURN: converted string 

096 * */ 
097 string str_l tos (long long !Long) 

098 { 

099 char scTmp[65]; 

100 string str; 

101 sprintf(scTmp, "%lld", !Long); 

102 str = scTmp; 

103 

104 return str; 

105 } 
106 

107 /** 
* DESCR: trim off all the characters after a COMMENT_CHAR 

108 * PARA: str : a string 

109 * RETURN: processed string 

110 * */ 
111 string str_nocomment(const string & str) 

112 { 
113 int i; 

114 int iLen = str.lengthO; 

115 

116 for (i = 0; i < iLen; i++) 

117 { 
118 if (str [i] -- COMMENT_CHAR) 

119 break; 

120 } 
121 if (i < iLen) 

122 return str.substr(O, i); 
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123 else 

123 return str; 

124 } 

125 

126 I** 

* DESCR: 

127 * 
128 * 

Get sub name or des name from a full path file name 

129 * PARA: 

130 * RETURN: 

131 * *I 

with extension ".sub"l".hsc" 

ex: vsFile = "lhomelrogerlm1. sub" will return "m1" 

vsFile: file name with path 

sub name or des name 

132 string GetNameFromFile(const string & vsFile) 

133 { 

134 assert(vsFile.length() > 4); 

135 assert(vsFile.substr(vsFile.lengthO - 4) -- ".sub" II 
136 vsFile.substr(vsFile.length() - 4) -- ".hsc"); 

137 

138 unsigned int iPos = vsFile.find_last_of('/'); 

139 

140 if ( iPos == string::npos) 

141 { 

142 return vsFile.substr(O, vsFile.length() - 4); 

143 } 

144 else 

144 { 
145 return vsFile.substr(iPos + 1, vsFile.length() - 4 - (iPos + 

1)); 

146 } 
147 } 
148 

149 I** 
* DESCR: Test if a string could be converted to an integer 

150 * PARA: str: a string 

151 *RETURN: 0: no 1: yes 

152 * *I 
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153 int Isinteger(const string &str) 

154 { 
155 if (str.length() == 0) 

156 return 0; 

157 for (unsigned int i 0; i < str.length(); i++) 

158 { 
159 if (str[i] >= ' 0 ' && str [i] <= '9') 

160 continue; 

161 else 

161 return 0; 

162 } 
163 

164 return 1; 

165 } 
166 

167 /** 

* DESCR: Compare two integers which are provided by two general 

pointers. 

168 * qsort, bsearch will use this function 

169 * PARA: 

170 * RETURN: 

171 * 

pa, pb: general pointers pointing to two integers 

1: a>b 

0: a=b 

172 * -1: a<b 

173 * */ 
174 int Compareint(const void* pa, const void* pb) 

175 { 
176 int a= *((int *) pa); 

177 int b = * ( (int *) pb); 

178 

179 if (a > b) 

180 return 1; 

181 else if (a < b) 

182 return -1; 

183 else 

183 return 0; 
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184 } 

185 

186 

187 /** 
* DESCR: To print the content of a bddStat variable. 

188 * Original BDD package doesn't provide such a function. 

189 * PARA: bddStat: see documents of Buddy package 

190 * RETURN: None 

191 * */ 
192 void bddPrintStats(const bddStat &stat) 

193 { 

194 

195 

196 

197 

198 

cout << endl; 

cout << "--------------bddStat----------------- 11 << endl; 

cout << "Num of new produced nodes: " << stat. produced << endl; 

cout << "Num of allocated nodes: " << stat.nodenum. << endl; 

225 

199 

200 

cout < < "Max num of user defined nodes: " < < stat . maxnodenum. < < endl ; 

cout << "Num of free nodes: " << stat. freenodes << endl; 

201 

202 

203 

204 

endl; 

205 

endl; 

206 

207 } 
208 

209 /** 

cout << "Min num of nodes after garbage collection: " << stat .minfreenodes 

« endl; 

cout << "Num of vars:" << stat. varnum. << endl; 

cout << "Num of entries in the internal caches:" << stat. cachesize << 

cout << "Num of garbage collections done until now:" << stat.gbcnum. << 

return; 

* DESCR: Set bddpairs based on two bdd variable sets. 

210 * The original function bdd_setbddpair( ... ) is not 

211 * as the document said. 

212 * PARA: pPair: where to add bdd variable pairs 

213 * bddOld: variable will be replaced 

214 * bddNew: new variable 
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215 * RETURN: None 

216 * */ 
217 void SetBddPairs(bddPair *pPair, canst bdd & bddOld, canst bdd & 
bddNew) 

218 { 

219 assert(pPair !=NULL); 

220 

221 int *VOld = NULL; 

222 int *VNew = NULL; 

223 int nOld = 0; 

224 int nNew = 0; 

225 

226 bdd_scanset(bddOld, vOld, nOld); 

227 bdd_scanset(bddNew, vNew, nNew); 

228 

229 assert(nOld == nNew); 

230 

231 for (int i = 0; i < nOld; i++) 

232 { 

233 bdd_setpair(pPair, vOld[i], vNew[i]); 

234 } 

235 

236 free(vOld); 

237 free(vNew); 

238 

239 return; 

240 } 
241 

242 /** 

* DESCR: Compute the number of shared events between two DES 

243 * PARA: pEventsArr_a: Event array for DES a (global index, 

sorted) 

244 * 
245 * 
sorted) 

viNumofEvents_a: Number of events in array pEventsArr_a 

pEventsArr_b: Event array for DES b (global index, 
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246 * viNumofEvents_b: Number of events in array pEventsArr_b 

247 * RETURN: Number of shared events 

248 * *I 
249 int NumofSharedEvents(const int * pEventsArr_a, const int 

viNumofEvents_a, 

250 const int * pEventsArr_b, const int viNumofEvents_b) 

251 { 

252 int iNum = 0; 

253 int i = 0; 

254 

255 assert(pEventsArr_a !=NULL); 
256 assert(pEventsArr_b !=NULL); 
257 

258 if (viNumofEvents_a <= viNumofEvents_b) 

259 { 

260 for (i = 0; i < viNumofEvents_a; i++) 

261 

262 

{ 

viNumofEvents_b, 

263 

264 

265 

266 

267 } 
268 } 
269 else 

269 { 
270 for 

271 { 
272 

viNumofEvents_a, 

273 

274 

275 

276 

if (bsearch(&(pEventsArr_a[i]), pEventsArr_b, 

sizeof(int), Compare!nt) !=NULL) 
{ 

iNum++; 

} 

(i = 0; i < viNumofEvents_b; i++) 

if (bsearch(&(pEventsArr_b[i]), pEventsArr_a, 

sizeof(int), Compare!nt) !=NULL) 
{ 

iNum++; 

} 

227 
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277 } 

278 } 

279 

280 return iNum; 

281 } 

282 

283 /** 

* DESCR: Customized Garbage collection handler tor this program 

284 * PARA: see document of Buddy Package 

285 * RETURN: None 

286 * */ 
287 void my_bdd_gbchandler(int pre, bddGbcStat *S) 

288 { 

289 if (!pre) 

290 { 

291 if (s->nodes > giNumofBddNodes) 

292 { 

293 printf ("Garbage collection #294 

s-l,freenodes); 

295 printf(" I %.1fs I %.1fs total\n", 

296 (float )s-l, time I (float) ( CLOCKS_PER_SEC), 

s-l,num, s-l,nodes, 

297 (float)s-l,sumtimel(float)CLOCKS_PER_SEC); 

298 giNumoffiddNodes = s-l,nodes; 

299 } 

300 } 

301 return; 

302} 

303 

304 

305 

BddSd.h 

001 int load_prj(const char *prjfile, std::string & errmsg); 

002 
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003 /** 
004 * DESCR: close opened HISC project 

005 * PARA: errmsg: returned errmsg (output) 

006 * RETURN: 0: sucess < 0: fail 

007 * */ 
008 int close_prj(std::string & errmsg); 

009 

010 /** 
011 * DESCR: Save the project in the memory to a text file, just for 

verifying 

012 * the loaded project. 

013 * PARA: filename: where to save the text file (input) 

014 * errmsg: returned errmsg (output) 

015 * RETURN: 0: sucess < 0: fail 

016 * */ 
017 int print_prj(std::string filename, std::string & errmsg); 

018 

019 /** 
020 * A structure for storing computing result information 

021 * *I 
022 typedef struct Hisc_Superinfo 

023 { 

024 

025 

026 

double statesize; 

int nodesize; 

int time; 

027 }HISC_SUPERINFO; 

028 

029 /** 

/*state size*/ 

/*bdd node size*/ 

/*computing time (seconds)*/ 

030 * To show a path from the initial state to one bad state or not 

229 

031 * Currently HISC_SHOW_TRACE is only for telling if a blocking state is 

032 * deadlock or livelock 

033 * *I 
034 enum HISC_TRACETYPE {HISC_NO_TRACE = 0, HISC_SHOW_TRACE = 1}; 

035 

036 /** 
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037 * To synthesize on reachable statespace or not 

038 * *I 
039 enum HISC_COMPUTEMETHOD{HISC_ONCOREACHABLE = 0, HISC_ONREACHABLE = 1}; 

040 

041 I** 
042 * DESCR: verity low level 

043 * PARA: 

(input) 

044 * 
(input) 

045 * 
046 * 
047 * 
mainly 

048 * 
049 * 
050 * 

showtrace: show a trace to the bad state (not implemented) 

subname: low level name ("all" means all the low levels) 

errmsg: returned errmsg (output) 

pinto: returned system intomation (output) 

pnextlow: next low level sub index(initially,it must be 0, 

used tor "all") (input) 

saveproduct: whether to save syn-product (input) 

savepath: where to save syn-product (input) 

051 * RETURN: 0: successstul < 0: error happened (See errmsg.h) 

052 * *I 
053 int verify_low( 

054 HISC_TRACETYPE showtrace, 

055 

056 

057 

058 #endif 

059 

060 

061 

BddSd.cpp 

std::string & errmsg, 

HISC_SUPERINFO *pinfo); 

001 * errmsg: returned errmsg (output) 

002 * RETURN: 0: sucess < 0: fail 

003 * *I 
004 int load_prj(const char *prjfile, string & errmsg) 
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005 { 

006 int iRet = 0; 

007 

008 assert(prjfile !=NULL); 

009 

010 pSub =new CLowSub(prjfile); 

011 

012 iRet = pSub->LoadSub(); 

013 

014 errmsg = pSub->GetErrMsg(); 

015 if (pSub->GetErrCode() < 0) 

016 { 
017 if (pSub->GetErrCode() > HISC_WARN_BLOCKEVENTS) //error 

happened 

018 

019 

020 

021 

{ 

} 

delete pSub; 

pSub = NULL; 

022 //else only a warning 

023 } 
024 return iRet; 

025 } 
026 

027 /** 
028 * DESCR: 

029 * PARA: 

030 * RETURN: 

031 * */ 

close opened HISC project 

errmsg: returned errmsg (output) 

0: sucess < 0: tail 

032 int close_prj(string & errmsg) 

033 { 

034 int iRet = 0; 

035 

036 if (NULL != pSub) 

037 { 

038 errmsg = pSub->GetErrMsg(); 

231 



232 

039 

040 

041 

042 

043 

044 

045 

046 

047 

048 

049 

050 

051 

052 

053 

054 

055 

056 

057 

058 

059 

060 

061 

062 

063 

064 

} 

} 

iRet = pSub->GetErrCode(); 

if (pSub->GetErrCode() < 0) 

{ 

} 

delete pSub; 

pSub = NULL; 

return iRet; 

I** 
* DESCR: clear the HISC enviorment 

* PARA: none 

* RETURN: 0 

* */ 
int close_hisc () 

{ 
if (pSub ! = NULL) 
{ 

delete pSub; 

pSub = NULL; 

} 
return 0; 

} 

/** 
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065 * DESCR: 

verifying 

Save the project in the memory to a text file, just for 

066 * 
067 * PARA: 

068 * 
069 * RETURN: 

070 * */ 

the loaded project. 

filename: where to save the text file (input) 

errmsg: returned errmsg (output) 

0: sucess < 0: fail 

071 int print_prj(string filename, string & errmsg) 

072 { 
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073 

074 

075 

076 

077 

078 

079 

080 

081 

082 

083 

084 

085 

086 

087 

088 

089 

090 

091 

092 

093 

094 

095 

096 

097 

098 

099 

100 

101 

102 

103 

104 

105 

106 } 
107 

int iRet = 0; 

assert(!filename.empty()); 

assert(!errmsg.empty()); 

ofstream fout; 

try 

{ 

} 

fout.open(filename.data()); 

if ( !fout) 

throw -1; 

if (pSub->PrintSubAll(fout) < 0) 

throw -1; 

fout. close(); 

catch(. .. ) 

{ 

} 

if (fout.is_open()) 

fout. close(); 

pSub->SetErr(filename + ":Unable to create the print file.", 

HISC_BAD_PRINT_FILE); 

return -1; 

return 0; 

errmsg = pSub->GetErrMsg(); 

iRet = pSub->GetErrCode(); 

pSub->ClearErr(); 

return iRet; 

233 
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108 /** 
109 * DESCR: 

110 * PARA: 

(input) 

verify low level 

showtrace: show a trace to the bad state (not implemented) 

111 * 
(input) 

112 * 
113 * 
114 * 
mainly 

115 * 
116 * 
117 * 

subname: low level name ("all" means all the low levels) 

errmsg: returned errmsg (output) 

pinfo: returned system infomation (output) 

pnextlow: next low level sub index(initially,it must be 0, 

used for "all") (input) 

saveproduct: whether to save syn-product (input) 

savepath: where to save syn-product (input) 

118 * RETURN: 0: successsful < 0: error happened (See errmsg.h) 

119 * */ 
120 int verify_low( 

121 HISC_TRACETYPE showtrace, 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

{ 

string & errmsg, 

HISC_SUPERINFO *pinfo) 

assert(pinfo !=NULL); 

int iRet 0; 

time_t tstart; 

time(&tstart); 

if (pSub->VeriSub(showtrace, *Pinfo) < 0) 

{ 

} 

errmsg = pSub->GetErrMsg(); 

iRet = pSub->GetErrCode(); 

pSub->ClearErr(); 

time_t tend; 
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140 time(&tend); 

141 pinfa->time = tend - tstart; 

142 

143 return iRet; 

144 } 

145 

146 

A.2.3 DES Class 

DES.h 

001 virtual -coES(); 

002 

003 public: 

004 int LaadDES(); 

005 int PrintDES(afstream & faut); 

006 

007 public: 

008 string GetDESName() canst {return m_sDESName;}; 

009 int * GetEventsArr() {return m_piEventsArr;}; 

010 int GetNumafEvents() canst {return m_DESEventsMap.size();}; 

011 int GetNumafMarkingStates() canst {return m_MarkingList.size();}; 

012 MARKINGLIST & GetMarkingList() {return m_MarkingList;}; 

013 int GetNumafStates() canst { return m_iNumafStates;}; 

014 int GetinitState() canst {return m_iinitState;}; 

015 map<int, int> *GetTrans() canst {return m_pTransArr;}; 

016 DESTYPE GetDESType() canst {return m_DESType;}; 

017 CSub* GetSub() {return m_pSub;}; 

018 string GetStateName(int iState) {return m_InvStatesMap[iState];}; 

019 

020 EVENTS m_DESEventsMap; //A STL Map tor events (event name (key), 

021 

DES 

022 

023 

//local event index). Used only for current 

//(speed reason) 
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024 private: //data memeber 

025 string m_sDESFile; 

026 string m_sDESName; 

027 DESTYPE m_DESType; 

028 
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/IDES tile name with path 

/IDES name without path and tile extension 

/IDES type 

029 int m_iNumofStates; //Number of States 

030 int m_iinitState; //Initial state 

031 

032 MARKINGLIST m_MarkingList; //Link list containing all marking 

states 

033 

034 STATES m_StatesMap; //A STL Map tor states (state name (key), state 

index) 

035 INVSTATES m_InvStatesMap; //A STL Map tor states (state index 

(key), 

036 //state name)(tor printing) 

037 

038 INVEVENTS m_InvDESEventsMap; //A STL Map tor events (localindex 

(key), 

039 //event name). Used only tor current 

DES 

040 //(tor printing) 

041 EVENTS m_UnusedEvents; //A STL Map tor blocked events(name: key, 

index) 

042 

043 int *m_piEventsArr; //Save all the event indices ascendingly. 

044 

DESes. 

045 

//used tor find shared events between two 

046 TRANS *m_pTransArr; 1/Transiton Map array, indexed by event 

indices. 

047 1/TRANSMAP: first int: source state index 

048 // second int: target state index 

049 CSub *m_pSub; //which subsystem this DES belongs to 

050 private: //internal function members 
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051 int AddEvent(const string & vsEventName, 

052 canst char cControllable); 

053 int AddTrans(const string & vsLine, 

054 canst string & vsExitState, 

055 canst int viExitState); 

056 }; 

057 

058 #endif //_DES_H_ 

059 

060 

DES.cpp 

001 * vsDESFile: 

002 * vDESType: 

003 * RETURN: none 

004 * ACCESS: public 

004 */ 

DES file name with path (input) 

DES Type (inpute) 

005 CDES::CDES(CSub *vpSub, canst string &vsDESFile, canst DESTYPE 

vDESType) 

006 { 

007 m_pSub = vpSub; 

008 m_sDESFile = vsDESFile; 

009 m_sDESName.clear(); 

010 m_DESType = vDESType; 

011 m_iNumofStates = 0; 

012 m_iinitState = -1; 

013 

014 m_MarkingList.clear(); 

015 m_StatesMap.clear(); 

016 m_InvStatesMap.clear(); 

017 m_DESEventsMap.clear(); 

018 m_UnusedEvents.clear(); 

019 m_InvDESEventsMap.clear(); 

020 

237 
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021 m_piEventsArr = NULL; 

022 m_pTransArr = NULL; 

023 } 

024 

025 I** 
* DESCR: Destructor 

026 * PARA: None 

027 * RETURN: None 

028 * ACCESS: public 

029 *I 
030 CDES::-CDES() 

031 { 
032 delete[] m_pTransArr; 

033 m_pTransArr = NULL; 

034 

035 delete[] m_piEventsArr; 

036 m_piEventsArr = NULL; 

037 } 
038 

039 I** 
* DESCR: Loading DES file 

040 * PARA: None 

041 * RETURN: 0: sucess -1: 

042 * ACCESS: public 

043 *I 
044 int CDES: : LoadDES () 

045 { 

046 ifstream fin; 

047 int iRet = 0; 

048 string sErr; 

049 

050 int i = 0; 

051 

tail 

052 string sSubName = m_pSub->GetSubName(); 

053 
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054 try 

054 { 

055 m_sDESFile = str_trim(m_sDESFile); 

056 

057 if (m_sDESFile.length() <= 4) 

058 { 

059 pSub->SetErr(sSubName + 11
: Invalid DES file name 11 + 

m_sDESFile, 

060 

061 

062 

063 

064 

065 

066 

m_sDESFile, 

067 

068 

069 

070 

071 

072 

073 

074 

075 

076 

077 

078 

079 

080 

081 

082 

083 

084 

085 

HISC_BAD_DES_FILE); 

throw -1; 

} 

if (m_sDESFile. substr (m_sDESFile .length() - 4) ! = 11 .hsc11
) 

{ 
pSub->SetErr(sSubName + 11

: Invalid DES file name 11 + 

HISC_BAD_DES_FILE); 

throw -1; 

} 

fin.open(m_sDESFile.data(), ios::in); 

//unable to find DES file 

if (!fin) 

{ 
pSub->SetErr(sSubName + 11

: Unable to open the DES file 11 + 

m_sDESFile, HISC_BAD_DES_FILE); 

throw -1; 

} 

m_sDESName = GetNameFromFile(m_sDESFile); 

string sDESLoc = sSubName + 11
:

11 + m_sDESName + 

char scBuf[MAX_LINE_LENGTH]; 

string sLine; 

II • II. . ' 

239 
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086 int iField = -1; //0: States 1: InitState 2: MarkingStates 

087 //3: Events 4: Transitions 

088 char *scFieldArr[] = {"STATES", "INITSTATE", 

"MARKINGSTATES", 

089 "EVENTS", "TRANSITIONS"}; 

090 int iStatesFieldFlag = 0; //1: just finised reading the 

[States] line, 

091 // so next line should be the num 

of states 

092 

093 

094 

095 

096 

097 

098 

099 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

int iTmpState!ndex = 0; 

int iTmpEvent!ndex = 0; 

char cEventSub = '\0'; 

char cControllable = '\0'; 

string sExitState; 

int iExitState = -1; 

//0: otherwise 

while (fin.getline(scBuf, MAX_LINE_LENGTH)) 

{ 
sLine str_nocomment(scBuf); 

sLine str_trim(sLine); 

if (sLine.empty()) 

continue; 

//Field line 

if (sLine[O] == '[' && sLine[sLine.length()- 1] 

{ 
sLine sLine.substr(1, sLine.length() - 1); 

sLine = sLine.substr(O, sLine.length() - 1); 

sLine = str_upper(str_trim(sLine)); 

iField++; 

'] ') 
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118 if (iField <= 4) 

119 { 
120 if (sLine != scFieldArr[iField]) 

121 { 
122 pSub->SetErr(sDESLoc + 

123 "Field name or order is incorrect!", 

124 HISC_BAD_DES_FORMAT); 

125 throw -1; 

126 } 
127 if (iField == 0) 

128 { 
129 iStatesFieldFlag = 1; 

130 } 
131 } 
132 else 

132 { 
133 pSub->SetErr(sDESLoc + "Two many fields.", 

134 HISC_BAD_DES_FORMAT); 

135 throw -1; 

136 } 
137 } 
138 else //Data line 

139 { 
140 switch (iField) 

141 { 
142 case 0: //States 

143 if (iStatesFieldFlag == 1) 1/nUJil of states 

144 { 
145 if (atoi(sLine.data()) <= 0 I I 
146 atoi(sLine.data()) > 

MAX_STATES_IN_ONE_COMPONENT_DES) 

147 

148 

states", 

149 

{ 
pSub->SetErr(sDESLoc + "Too few or too many 

HISC_BAD_DES_FORMAT); 
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150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

161 

161 

162 

m_StatesMap.end()) 

163 

164 

names--" + 

165 

HISC_BAD_DES_FORMAT); 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

175 

176 

1; 

177 

sLine; 

} 
else 

{ 
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throw -1; 

} 

//initialize the number of states 

m_iNumofStates = atoi(sLine.data()); 

//initialize the transition arrary 

m_pTransArr =new TRANS[m_iNumofStates]; 

iStatesFieldFlag = 0; 

if (m_StatesMap.find(sLine) != 

{ 
pSub->SetErr (sDESLoc + "Duplicate state 

sLine, 

throw -1; 

} 
else if (sLine[O] == '(') 

{ 

} 
else 

{ 

pSub->SetErr(sDESLoc + 

"The first letter of state names can not be (" , 

HISC_BAD_DES_FORMAT); 

throw -1; 

m_StatesMap[sLine] = m_StatesMap.size() -

m_InvStatesMap[m_StatesMap.size() - 1] = 



A. SD Software Program 243 

178 

179 

180 

181 

182 

183 

184 

} 
} 

break; 

case 1: //InitState 

1/--------------------------------------------------
185 

186 

187 

188 

absent.", 

189 

190 

191 

192 

193 

state 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

must be 

205 

206 

m_StatesMap.size()) 

207 

//Must specify the number of states 

if (m_iNumofStates == 0) 

{ 
pSub->SetErr(sDESLoc + "Number of states is 

HISC_BAD_DES_FORMAT); 

throw -1; 

} 

//It there is no state names specified, generate 

//names automatically. 

if (m_StatesMap.size() == 0) 

{ 

} 

for (i = 0; i < m_iNumofStates; i++) 

{ 

} 

m_StatesMap[str_itos(i)] = i; 
m_InvStatesMap[i] = str_itos(i); 

//if specify state names, the number of state names 

//equal to m_iNumofStates. 

if (((unsigned int)m_iNumofStates) != 

{ 
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208 

209 

210 

211 

212 

213 

} 
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pSub->SetErr(sDESLoc + "States are incomplete.", 

HISC_BAD_DES_FORMAT); 

throw -1; 

//--------------------------------------------------------
214 

215 

216 

217 

218 

defined.", 

219 

220 

221 

222 

223 

224 

225 

226 

states.", 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

exist.", 

//Initial state name must be valid 

if (m_StatesMap.find(sLine) == m_StatesMap.end()) 

{ 
pSub->SetErr (sDESLoc + "Initial state is not 

HISC_BAD_DES_FORMAT); 

throw -1; 

} 

//only one initial state allowed 

if (m_iinitState != -1) 

{ 
pSub->SetErr (sDESLoc + "More than one initial 

HISC_BAD_DES_FORMAT); 

throw -1; 

} 

m_iinitState = m_StatesMap[sLine]; 

break; 

case 2: 1/MarkingStates 

if (m_StatesMap.find(sLine) == m_StatesMap.end()) 

{ 
pSub->SetErr (sDESLoc + "Marking states do not 
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239 HISC_BAD_DES_FORMAT); 

240 throw -1; 

241 

242 

243 

244 

} 

iTmpStateindex = m_StatesMap[sLine]; 

245 for (MARKINGLIST::const_iterator ci = 
m_MarkingList.begin(); 

246 ci != m_MarkingList.end(); ci++) 

247 

248 

249 

250 

states.", 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 

269 

1)); 

270 

{ 
if (*ci == iTmpStateindex) 

{ 
pSub->SetErr (sDESLoc + "Duplicate marking 

HISC_BAD_DES_FORMAT); 

throw -1; 

} 
} 

m_MarkingList.push_back(iTmpStateindex); 

break; 

case 3: //Events 

//Get event type H/R/A/L 

if (sLine.length() < 5) 

{ 

} 

pSub->SetErr(sDESLoc + "Incorrect event definition.", 

HISC_BAD_DES_FORMAT); 

throw -1; 

cEventSub = sLine[sLine.length()- 1]; 

sLine = str_trim(sLine.substr(O, sLine.length() -
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271 

272 

273 

274 

275 

276 

277 

278 

279 

1)); 

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

292 

293 

294 

295 

296 

297 

298 

299 

300 

301 

302 

303 

304 

//Get controllable or not 

if (sLine.length() < 3) 

{ 
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pSub->SetErr(sDESLoc + "Incorrect event definition.", 

HISC_BAD_DES_FORMAT); 

thro-w -1; 

} 
cControllable = sLine[sLine.length()- 1]; 

sLine = str_trim(sLine.substr(O, sLine.length() -

//Get event name 

if (sLine.empty()) 

{ 

} 

pSub->SetErr (sDESLoc + "Incorrect event definition.", 

HISC_BAD_DES_FORMAT); 

thro-w -1; 

if (cEventSub >= 'a') 

cEventSub -= 32; 

if (cControllable >= 'a') 

cControllable -= 32; 

iTmpEventindex = AddEvent(sLine, cControllable); 

if (iTmpEventindex < 0) 

thro-w -1; 1/Errmsg generated by AddEvent 

m_DESEventsMap[sLine] = iTmpEventindex; 

m_UnusedEvents[sLine] = iTmpEventindex; 

m_InvDESEventsMap[iTmpEventindex] = sLine; 

break; 

case 4: //Transitions 

//check exiting state 
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305 

306 

307 

m_StatesMap.end()) 

308 

309 

sLine + 

if (sLine[O] != '(') 

{ 

} 

if (m_StatesMap.find(sLine) --

{ 

} 

pSub->SetErr(sDESLoc + "Exiting state:" + 

" in transitions does not exist" , 

HISC_BAD_DES_FORMAT); 

throw -1; 

iExitState = m_StatesMap[sLine]; 

sExitState = sLine; 

else //Transitions 

{ 

247 

310 

311 

312 

313 

314 

315 

316 

317 

318 

319 

0) 

320 

321 

322 

323 

324 

325 

326 

327 

328 

329 

330 

331 

332 

333 

if (AddTrans(sLine, sExitState, iExitState) < 

} 
} 

throw -1; 

} 
break; 

default: 

} 

pSub->SetErr(sDESLoc + "Bad DES file format!", 

HISC_BAD_DES_FORMAT); 

throw -1; 

//No initial state defined 

if (m_iinitState == -1) 

{ 
334 pSub->SetErr(sDESLoc + "No initial state.", 

HISC_BAD_DES_FORMAT); 

335 throw -1; 
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336 } 

337 //No marking states defined 

338 if (m_MarkingList.size() == 0) 

339 { 

340 pSub->SetErr(sDESLoc + 11 No marking states 11
, 

HISC_BAD_DES_FORMAT); 

341 throw -1; 

342 

343 

344 

345 

} 
//must have all the fields 

if (iField != 4) 

{ 
346 pSub->SetErr(sDESLoc + 111ncomplete DES file. 11

, 

HISC_BAD_DES_FORMAT); 

347 

348 

349 

350 

351 

352 

353 

354 

355 

356 

357 

358 

359 

Compare!nt); 

360 

361 

362 

363 

364 

365 

366 

throw -1; 

} 

//Add event indices into m_piEventsArr; 

m_piEventsArr =new int[m_DESEventsMap.size()]; 

i = 0; 

for (EVENTS::const_iterator ci = m_DESEventsMap.begin(); 

ci != m_DESEventsMap.end(); ++ci) 

{ 

} 

m_piEventsArr[i] = ci->second; 

++i; 

qsort(m_piEventsArr, m_DESEventsMap.size(), sizeof(int), 

//unused events 

if (m_UnusedEvents.size() > 0) 

{ 
string sWarn; 

sWarn = 11 \nWarning: 11
; 

sWarn += 11 Unused events are disabled at every state of DES 11 + 

sDESLoc + 11 \n 11
; 
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367 

368 

369 

370 

371 

372 

373 

374 

375 

376 

377 

378 

379 

380 

381 

382 

383 

384 

385 } 
386 

387 /* 

} 

} 

for (EVENTS::const_iterator ci = m_UnusedEvents.begin(); 

ci != m_UnusedEvents.end(); ++ci) 

{ 

} 

sWarn += ci->first; 

sWarn += "\n"; 

pSub->SetErr(sWarn, HISC_WARN_BLOCKEVENTS); 

fin. close(); 

catch (int iError) 

{ 

} 

if (fin.is_open()) 

fin. close(); 

iRet = iError; 

return iRet; 

388 * DESCR: 

389 * 
Add an event to CSub event map and CProject event map 

For CSub event map: It exists, return local index; 

Otherwise create a new one. 390 * 
391 * For CProject event map: If exists, must have same global 

index; 

392 * 
disjoint 

Otherwise the event sets are not 

393 * PARA: vsEventName: Event name(input) 

394 * cEventSub: Event type ('H", 'L', 'R', 'A')(input) 

395 * cControllable: Controllable? ('Y', 'N')(input) 

396 * RETURN: >0 global event index 

397 * <0 the event sets are not disjoint. 

398 * ACCESS: Private 

399 */ 

249 
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400 int CDES::AddEvent(const string & vsEventName, canst char 

cControllable) 

401 { 
402 string sErr; 

403 

404 int iTmpEventindex = 0; 

405 int iTmpLocalEventindex = 0; 

406 

407 string sDESLoc = m_pSub->GetSubName() + II. II + m_sDESName + 

408 

409 //Controllable or uncontrollable 

410 if (cControllable != 'Y' && cControllable != 'N') 

411 { 
412 pSub->SetErr(sDESLoc + "Unknown event controllable type--" 

+vsEventName, 

413 HISC_BAD_DES_FORMAT); 

414 return -1; 

415 } 

416 

417 //already defined in current DES 

II. II • . . 

418 if (m_DESEventsMap.find(vsEventName) != m_DESEventsMap.end()) 

419 { 

420 pSub->SetErr (sDESLoc + "Duplicate events definition--" + vsEventName, 

421 HISC_BAD_DES_FORMAT); 

422 return -1; 

423 } 

424 

425 //Compute local event index 

426 iTmpLocalEventindex = m_pSub->AddSubEvent(vsEventName, 

427 (cControllable == 'Y')? CON_EVENT:UNCON_EVENT); 

428 

429 if ((cCon~rollable == 'Y' && iTmpLocalEventindex % 2 == 0) I I 
430 (cControllable == 'N' && iTmpLocalEventindex % 2 == 1)) 

431 { 

432 pSub->SetErr(sDESLoc + "Event " + vsEventName + 
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433 

434 

435 

436 

437 

438 

439 

440 

441 

442 

443 

444 

445 

446 

447 

448 

449 

450 

451 } 
452 

453 /* 

} 

" has inconsistent controllability definitions." , 

HISC_BAD_DES_FORMAT); 

return -1; 

//Compute global event index 

iTmpEventindex = pSub->GenEventindex(iTmpLacalEventindex); 

//Add Event to pSub->m_AllEventsMap 

if (pSub->AddPrjEvent(vsEventName, iTmpEvent!ndex) < 0) 

{ 

} 

sErr = "Event conflict--" + m_pSub->GetSubNameO + ":" + 

this->GetDESName() + ":" + 

vsEventName + " is also defined in sub " + " event" ; 

pSub->SetErr(sErr, HISC_BAD_DES_FORMAT); 

iTmpEventindex = -1; 

return iTmpEventindex; 

454 * DESCR: 

455 * PARA: 

456 * 

Add a transition to the m_pTransArr of the current DES. 

vsLine: a text line in [Transition] tield(input) 

vsExitState: source state name of the transition(input) 

457 * 
458 * RETURN: 

459 * ACCESS: 

460 */ 

viExitState: source state index of the transition(input) 

0: success -1: fail 

private 

461 int CDES::AddTrans(canst string & vsLine, 

462 canst string & vsExitState, 

463 canst int viExitState) 

464 { 

465 string sTrans = vsLine; 

466 

467 string sEnterState; 

251 
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468 int iEnterState!ndex; 

469 

470 string sTransEvent; 

471 int iTransEventindex; 

472 

473 unsigned long iSepLoc string::npos; 

474 string sErrMsg; 

475 

476 

477 

string sDESLoc = m_pSub->GetSubName() + II. II + m_sDESName + II. II, 
0 ' 

478 

479 try 

479 { 

480 if (viExitState == -1) 

481 

482 

483 

484 

485 

486 

487 

488 

489 

490 

491 

492 

493 

494 

495 

496 

497 

498 

499 

500 

501 

{ 

} 

pSub->SetErr(sDESLoc + "No existing state for transitions", 

HISC_BAD_DES_FORMAT); 

throw -1; 

//remove '('and ')' 

sTrans = sTrans.substr(1); 

sTrans = sTrans.substr(O, sTrans.length() - 1); 

sTrans = str_trim(sTrans); 

//find sepration character '\t' or ' ' 

iSepLoc = sTrans.find_last_of('\t'); 

if (iSepLoc == string::npos) 

iSepLoc sTrans.find_last_of(' '); 

if (iSepLoc == string::npos) 

{ 
pSub->SetErr(sDESLoc + 

"No event or entering state for transition. (" + 

sTrans + ")", HISC_BAD_DES_FORMAT); 
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502 

503 

504 

504 

505 

506 

507 

508 

509 

510 

511 

512 

513 

514 

515 

516 

517 

518 

519 

520 

521 

522 

523 

524 

525 

526 

527 

528 

529 

530 

531 

532 

533 

534 

535 

throw -1; 

} 
else 

{ 
sEnterState 

sTransEvent 

} 

= 
= 

str_trim(sTrans.substr(iSepLoc + 1)); 

str_trim(sTrans.substr(O, iSepLoc)); 

//Check event in transitions 

if (m_DESEventsMap.find(sTransEvent) == m_DESEventsMap.end()) 

{ 

} 

pSub->SetErr(sDESLoc + "Event " + sTransEvent + 

" in transitions does not exist.", 

HISC_BAD_DES_FORMAT); 

throw -1; 

iTransEventindex = m_DESEventsMap[sTransEvent]; 

m_UnusedEvents.erase(sTransEvent); 

//Check entering state 

if (m_StatesMap.find(sEnterState) == m_StatesMap.end()) 

{ 

} 

pSub->SetErr(sDESLoc + "State " + sEnterState + 

" in transitions does not exist." , 

HISC_BAD_DES_FORMAT); 

throw -1; 

iEnterState!ndex = m_StatesMap[sEnterState]; 

//Check determinacy 

if (m_pTransArr[viExitState] .find(iTransEventindex) != 

m_pTransArr[viExitState].end()) 

{ 
pSub->SetErr(sDESLoc + "ExitState:" + vsExitState + 

" has nondeterministic transitions on event " + 
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sTransEvent, 

536 

537 

} 

HISC_BAD_DES_FORMAT); 

throw -1; 
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538 

539 m_pTransArr[viExitState] [iTransEventlndex] = iEnterStatelndex; 

540 } 

541 catch(int) 

542 { 

543 return -1; 

544 } 

545 

546 return 0; 

547 } 

548 

549 /* 

550 * DESCR: Print this DES in memory to a file (for checking) 

tout: file stream(input) 551 * PARA: 

552 * RETURN: 

553 * ACCESS: 

554 *I 

0: success -1: fail 

public 

555 int CDES::PrintDES(ofstream & fout) 

556 { 
557 try 

557 { 
558 

559 

560 

endl; 

561 

562 

563 

564 

565 

566 

567 

int i = 0; 

fout << endl << "#--DES: " << m_sDESName << " ---------" << 

fout « "[States]" « endl; 

fout << m_iNumofStates << endl; 

for (INVSTATES::const_iterator ci = m_InvStatesMap.begin(); 

ci != m_InvStatesMap.end(); ++ci) 

{ 
fout << ci->second << endl; 
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} 

fout « endl; 

fout « "[InitState]" « endl; 

fout << m_InvStatesMap[m_iinitState] << endl; 

fout « endl; 

fout « "[MarkingStates]" « endl; 

for (MARKINGLIST::const_iterator ci = m_MarkingList.begin(); 

ci != m_MarkingList.end(); ++ci) 

{ 
fout << m_InvStatesMap[*ci] << endl; 

} 

fout « endl; 

fout « "[Events]" << endl; 

255 

568 

569 

570 

571 

572 

573 

574 

575 

576 

577 

578 

579 

580 

581 

582 

583 

584 

585 

586 

587 

588 

589 

589 

590 

591 

592 

593 

594 

595 

596 

597 

598 

599 

600 

for (INVEVENTS::const_iterator ci = m_InvDESEventsMap.begin(); 

ci != m_InvDESEventsMap.end(); ++ci) 

{ 
if (ci->first Y. 2 == 0) //uncontrollable 

fout << ci->second << "\t" << "N" << "\tL'' << endl; 

else 

fout << ci->second << "\t" << "Y" << "\tL'' << endl; 

} 

fout « endl; 

fout « "[Transitions]" « endl; 

if (m_pTransArr != NULL) 

{ 
for (i = 0; i < m_iNumofStates; i++) 

{ 
fout << m_InvStatesMap[i] << endl; 

for (TRANS::const_iterator ci = 
(m_pTransArr[i]).begin(); 
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601 

602 

603 

604 

605 

606 

607 } 

608 

} 

609 fout << 

{ 

} 
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ci != (m_pTransArr[i]).end(); ++ci) 

fout << 11 (11 << m_InvDESEventsMap [ci->first] << 11 11 

<< m_InvStatesMap[ci->second] << 11 )11 << endl; 

11################################################11 
<< endl; 

610 } 
611 catch( ... ) 

612 { 
613 return -1; 

614 } 
615 return 0; 

616 } 
617 

618 

A.2.4 Sub Class 

Sub.h 

001 virtual -csub(); 

002 virtual unsigned short AddSubEvent(const string & vsEventName, 

003 const EVENTTYPE vEventType); 

004 virtual int PrintSub(ofstream & fout) = 0; 

005 virtual int PrintSubAll(ofstream& fout) = 0; 

006 virtual string SearchEventName(unsigned short usiLocal!ndex) = 0; 

007 

008 virtual int LoadSub() = 0; 

009 virtual int VeriSub(const HISC_TRACETYPE showtrace, 

010 HISC_SUPERINFO & superinfo) = 0; 

011 
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012 void SetErr(const string & vsErrMsg, canst int viErrCode); 

013 

014 int GenEventindex(const unsigned short vusiLocalEvent!ndex); 

015 int SearchPrjEvent(const string & vsEventName); 

016 int SearchSubEvent(const string & vsEventName); 

017 INVEVENTS & Get!nvAllEventsMap() {return m_InvAllEventsMap;}; 

018 

019 string GetErrMsg() canst {return m_sErrMsg;}; 

020 int GetErrCode() canst {return m_iErrCode;}; 

021 void ClearErr(); 

022 

023 int AddPrjEvent(const string & vsEventName, canst int 

viEventindex); 

024 

025 private: 

026 string m_sErrMsg; //Error msg during processing this project 

027 int m_iErrCode; //Error code during processing this project 

028 

029 public: //access methods 

030 virtual string GetSubName() const {return m_sSubName;}; 

031 

032 virtual int GetNumofDES() canst 

032 {return m_iNumofPlants + m_iNumofSpecs;}; 

033 virtual unsigned short GetMaxUnCon() 

034 {return m_usiMaxUnCon;}; 

035 virtual unsigned short GetMaxCon() 

036 {return m_usiMaxCon;}; 

037 

038 private: /IDES reorder related memebers 

039 int ** m_piCrossMatrix; 

040 int DESReorder_Sift(); 

041 double TotalCross_Sift(double dOldCross, double dSwapCross, 

042 int iCur, int iFlag); 

043 double cross(int i, int j); 

044 int DESReorder_Force(); 
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045 void UpdatePos(); 

046 void InsertDES(int iCur, int iPos); 

047 double TotalCross_Force(); 

048 double Force(int i); 

049 int InitialDESOrder(); 

050 

051 protected: //protected methods 

052 virtual string GetDESFileFromSubFile(const string & vsSubFile, 

053 const string &vsDES); 

054 virtual int MakeBdd() = 0; 

055 virtual int InitBddFields(); 

056 virtual int ClearBddFields(); 

057 

058 int DESReorder(); 

059 

060 int PrintStateSet(const bdd & bddStateSet, int viSetFlag); 

061 void PrintStateSet2(const bdd & bddStateSet); 

062 bdd GetOneState(const bdd & bddStates); 

063 int CountStates(const bdd & bddStateSet); 

064 

065 int PrintEvents(ofstream & fout); 

066 int PrintTextTrans(ofstream & fout, bdd & bddController, 

067 

068 

069 

unsigned short usiLocalindex, 

const bdd & bddReach, string sEventName, 

STATES & statesMap); 

070 bdd SimplifyController(const bdd & bddController, const unsigned 

short usilndex); 

071 

072 protected: //fields 

073 string m_sSubFile; //this subsytem file name(".sub") with path. 

074 string m_sSubName; //This subsystem name 

075 

076 int m_iNumofPlants; I /Number of Plant DES 

077 int m_iNumofSpecs; //Number of Specification DES 

078 //(High: all interface DES; Low: 1) 
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079 

080 

levels. 

081 

CDES **m_pDESArr; I IDES Array tor all the DES in high or low 

082 

subsystem) 

083 

//(High: including all interface DES, 

//Low: only including 1 DES tor this 

084 EVENTSET m_SubPlantEvents; 

085 EVENTSET m_SubSupervisorEvents; 

086 

087 LOCALEVENTS m_SubEventsMap; //save all the events map in this 

subsytems 

088 I /(name(key), local index(16 bits)) 

089 //just tor compute local event index. 

090 LOCALINVEVENTS m_InvSubEventsMap; 

091 

092 EVENTS m_AllEventsMap; //The map containing all the events in this 

project 

093 //(Event Name (key), Event global index) 

094 INVEVENTS m_InvAllEventsMap; //The map containing all the events in 

this 

095 I /project (Event global index (key), 

Event Name) 

096 

097 unsigned short m_usiMaxCon; //Max index of controllable events 

(1,3, ... ) 

098 unsigned short m_usiMaxUnCon;//Max index of uncontrollable 

events(2,4, .. ) 

099 

100 /*BDD needed fields*/ 

101 int m_iNumofBddNormVar; 1/Num of BDD normal variables in the sub. 

102 int *m_piDESOrderArr; /IDES indices organized as clusters. 

103 int *m_piDESPosArr; /IDES positions in the m_piDESOrderArr 

104 

105 bdd m_bddinit; //Initial state predicate 
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106 bdd m_bddMarking; //Marking states predicate 

107 bdd m_bddSuper; //The generated supervisor 

108 

109 /ll/l////l//////l///////////l/l/ll/l/l/ll//////l/l//l/l////l/1//l/ 

110 //Transition predicates and its variable sets, variable pairs. 

111 //0: High level events 

112 //1: Request events 

113 //2: Answer events 

114 //3: Low level events 

115 ////////////////////////////////////////////////////////////////// 

116 //Transition predicates 

117 bdd *m_pbdd_ConTrans; 

118 bdd *m_pbdd_ConPlantTrans; 

119 bdd *m_pbdd_ConSupTrans; 

120 bdd *m_pbdd_UnConTrans; 

121 bdd *m_pbdd_UnConPlantTrans; 

122 bdd *m_pbdd_UnConSupTrans; 

123 

124 //variable(DES index) set for transition predicates 

125 bdd *m_pbdd_ConVar; 

126 bdd *m_pbdd_ConVarPrim; 

127 bdd *m_pbdd_UnConVar; 

128 bdd *m_pbdd_UnConVarPrim; 

129 //plant part variables 

130 bdd *m_pbdd_UnConPlantVar; 

131 bdd *m_pbdd_UnConPlantVarPrim; 

132 bdd *m_pbdd_ConPhysicVar; //for simplifying controller (note: 

physical) 

133 bdd *m_pbdd_ConPhysicVarPrim;//for simplifying controller 

(note:physical) 

134 //supervisor part variables 

135 bdd *m_pbdd_UnConSupVar; 

136 bdd *m_pbdd_UnConSupVarPrim; 

137 bdd *m_pbdd_ConSupVar; //for simplifying controller (note: 

physical) 
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138 bdd *m_pbdd_ConSupVarPrim;//for simplifying controller 

(note:pbysical) 

139 //variable pairs(normal-prime) 

140 bddPair **m_pPair_Con; 

141 bddPair **m_pPair_UnCon; 

142 bddPair **m_pPair_ConPrim; 

143 bddPair **m_pPair_UnConPrim; 

144 }; 

145 #endif //_SUB_H_ 

146 

147 

Sub.cpp 

001 */ 

002 CSub::CSub(const string & vsSubFile) 

003 { 

004 m_AllEventsMap.clear(); 

005 m_InvAllEventsMap.clear(); 

006 

007 m_iErrCode = 0; 

008 m_sErrMsg.clear(); 

009 

010 m_sSubFile = vsSubFile; 

011 m_sSubName.clear(); 

012 

013 m_iNumofPlants = -1; 

014 m_iNumofSpecs = -1; 

015 

016 m_pDESArr = NULL; 

017 

018 m_SubEventsMap.clear(); 

019 

020 m_usiMaxCon = OxFFFF; 

021 m_usiMaxUnCon = OxO; 

261 
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022 

023 m_piDESOrderArr = NULL; 

024 m_piDESPosArr = NULL; 

025 

026 InitBddFields(); 

027 } 

028 

029 /** 
* DESCR: Destructor 

030 * PARA: None 

031 * RETURN: None 

032 * ACCESS: public 

033 *I 
034 CSub::-cSub() 

035 { 
036 

037 

038 

039 

040 

041 

042 

043 

044 

045 

046 

047 

048 

049 

050 

051 

052 

053 

054 

055 

if (m_pDESArr != NULL) 

{ 

} 

int iNumofDES = this->GetNumofDES(); 

for (int i = 0; i < iNumofDES; i++) 

{ 

} 

if (m_pDESArr[i] != NULL) 

{ 

} 

delete m_pDESArr[i]; 

m_pDESArr[i] = NULL; 

delete[] m_pDESArr; 

m_pDESArr = NULL; 

delete[] m_piDESOrderArr; 

m_piDESOrderArr = NULL; 

delete[] m_piDESPosArr; 
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056 m_piDESPosArr = NULL; 

057 

058 ClearBddFields(); 

059 } 

060 

061 h 
062 * DESCR: Initialize BDD related data members 

063 * PARA: None 

064 * RETURN: 0 

065 * ACCESS: protected 

066 */ 
067 int CSub::InitBddFields() 

068 { 

069 m_iNumofBddNormVar = 0; 

070 m_bdd!nit = bddtrue; 

071 m_bddMarking = bddtrue; 

072 m_bddSuper = bddfalse; 

073 

074 m_pbdd_ConTrans = NULL; 

075 m_pbdd_ConPlantTrans = NULL; 

076 m_pbdd_ConSupTrans = NULL; 

077 

078 

079 

080 

081 

082 

083 

084 

085 

086 

087 

088 

089 

090 

m_pbdd_UnConTrans = NULL; 

m_pbdd_UnConPlantTrans = NULL; 

m_pbdd_UnConSupTrans = NULL; 

m_pbdd_ConVar = NULL; 

m_pbdd_ConVarPrim = NULL; 

m_pbdd_UnConVar = NULL; 

m_pbdd_UnConVarPrim = NULL; 

m_pbdd_UnConPlantVar = NULL; 

m_pbdd_UnConPlantVarPrim = NULL; 

263 
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091 

092 

093 

094 

095 

096 

097 

098 

099 

100 

101 

102 

103 

104 

105 

106 } 
107 

108 /* 

m_pbdd_UnConSupVar = NULL; 

m_pbdd_UnConSupVarPrim = NULL; 

m_pbdd_ConPhysicVar = NULL; 

m_pbdd_ConPhysicVarPrim = NULL; 

m_pbdd_ConSupVar = NULL; 

m_pbdd_ConSupVarPrim = NULL; 

m_pPair_Con = NULL; 

m_pPair_UnCon = NULL; 

m_pPair_ConPrim = NULL; 

m_pPair_UnConPrim = NULL; 

return 0; 
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109 * DESCR: 

110 * PARA: 

Release memory for BDD related data members 

None 

111 * RETURN: 0 

112 * ACCESS: protected 

113 */ 
114 int CSub: :ClearBddFields() 

115 { 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

delete[] m_pbdd_ConTrans; 

m_pbdd_ConTrans = NULL; 

delete[] m_pbdd_ConPlantTrans; 

m_pbdd_ConPlantTrans = NULL; 

delete[] m_pbdd_ConSupTrans; 

m_pbdd_ConSupTrans = NULL; 

delete[] m_pbdd_UnConTrans; 
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126 m_pbdd_UnConTrans = NULL; 

127 

128 delete[] m_pbdd_UnConPlantTrans; 

129 m_pbdd_UnConPlantTrans = NULL; 

130 

131 delete[] m_pbdd_UnConSupTrans; 

132 m_pbdd_UnConSupTrans = NULL; 

133 

134 delete[] m_pbdd_ConVar; 

135 m_pbdd_ConVar = NULL; 

136 delete[] m_pbdd_UnConVar; 

137 m_pbdd_UnConVar = NULL; 

138 

139 delete[] m_pbdd_ConVarPrim; 

140 m_pbdd_ConVarPrim = NULL; 

141 delete[] m_pbdd_UnConVarPrim; 

142 m_pbdd_UnConVarPrim = NULL; 

143 

144 delete[] m_pbdd_UnConPlantVar; 

145 m_pbdd_UnConPlantVar = NULL; 

146 delete[] m_pbdd_UnConPlantVarPrim; 

147 m_pbdd_UnConPlantVarPrim = NULL; 

148 

149 delete[] m_pbdd_UnConSupVar; 

150 m_pbdd_UnConSupVar = NULL; 

151 delete[] m_pbdd_UnConSupVarPrim; 

152 m_pbdd_UnConSupVarPrim = NULL; 

153 

154 delete[] m_pbdd_ConPhysicVar; 

155 m_pbdd_ConPhysicVar = NULL; 

156 delete[] m_pbdd_ConPhysicVarPrim; 

157 m_pbdd_ConPhysicVarPrim = NULL; 

158 

159 delete[] m_pbdd_ConSupVar; 

160 m_pbdd_ConSupVar = NULL; 
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161 delete[] m_pbdd_ConSupVarPrim; 

162 m_pbdd_ConSupVarPrim = NULL; 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 
2) 

181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

if (m_pPair_UnCon != NULL) 

{ 

} 

for (int i = 0; i < m_usiMaxUnCon; i += 2) 

{ 

} 

if (m_pPair_UnCon[i/2] != NULL) 

{ 

} 

bdd_freepair(m_pPair_UnCon[i/2]); 

m_pPair_UnCon[i/2] = NULL; 

delete[] m_pPair_UnCon; 

m_pPair_UnCon = NULL; 

if (m_pPair_Con != NULL) 

{ 

} 

for (int i = 1; i < (unsigned short)(m_usiMaxCon + 1); i += 

{ 

} 

if (m_pPair_Con[(i - 1)/2] != NULL) 

{ 

} 

bdd_freepair(m_pPair_Con[(i- 1)/2]); 

m_pPair_Con[(i - 1)/2] = NULL; 

delete[] m_pPair_Con; 

m_pPair_Con = NULL; 

if (m_pPair_UnConPrim != NULL) 

193 { 

194 for (int i = 0; i < m_usiMaxUnCon; i += 2) 
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195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

} 

{ 

} 

if (m_pPair_UnConPrim[i/2] != NULL) 

{ 

} 

bdd_freepair(m_pPair_UnConPrim[i/2]); 

m_pPair_UnConPrim[i/2] = NULL; 

delete[] m_pPair_UnConPrim; 

m_pPair_UnConPrim = NULL; 

if (m_pPair_ConPrim != NULL) 

{ 

267 

208 for (int i = 1; i < (unsigned short)(m_usiMaxCon + 1); i += 

2) 

209 

210 

211 

212 

213 

214 

215 

216 

217 

218 } 
219 

{ 

} 

if (m_pPair_ConPrim[(i - 1)/2] != NULL) 

{ 

} 

bdd_freepair(m_pPair_ConPrim[(i- 1)/2]); 

m_pPair_ConPrim[(i - 1)/2] = NULL; 

delete[] m_pPair_ConPrim; 

m_pPair_ConPrim = NULL; 

220 return 0; 

221 } 
222 

223 /* 
224 * DESCR: Generate a DES file name with path (*.hsc) from a sub file 

name 

225 * 
226 * 
"AttchCase.hsc". 

with path (.sub) and a DES file name without path. 

ex: vsSubFile = "/home/roger/high.sub". vsDES = 
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227 * 
228 * PARA: 

229 * 

will return "/home/roger/AttchCase.hsc" 

vsSubFile: sub file name with path 

vsDES: DES file name without path 

230 * RETURN: Generated DES file name with path 

231 * ACCESS: protected 

232 */ 
233 string CSub::GetDESFileFromSubFile(const string & vsSubFile, 

234 const string &vsDES) 

235 { 

236 assert(vsSubFile.length() > 4); 

237 assert ( vsSubFile. substr ( vsSubFile .length 0 - 4) -- ".sub 11
) ; 

238 assert(vsDES.length() > 0); 

239 string sDES = vsDES; 

240 

241 if (sDES.length() > 4) 

242 { 

243 if (sDES.substr(sDES.lengthO - 4) == ".hsc") 

244 { 

245 sDES = sDES.substr(O, sDES.length() - 4); 

246 } 

247 } 

248 sDES += ".hsc"; 

249 

250 unsigned int iPos = vsSubFile.find_last_of('/'); 

251 

252 if ( iPos == string::npos) 

253 return sDES; 

254 else 

254 return vsSubFile.substr(O, iPos + 1) + sDES; 

255 } 

256 

257 /** 
* DESCR: Add events to the event Map of this sub. If the event already 

exits, 

258 * return its index; Otherwise generate a new 16 bit unsigned 
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index 

259 * 
260 * PARA: 

261 * 

and return the index. 

vsEventName: Event name 

vEventType: Controllable? (CON_EVENT, UNCON_EVENT) 

269 

262 * RETURN: >0: event index (odd: controllable even: uncontrollable) 

263 * 0: error 

264 * ACCESS: public 

265 */ 
266 unsigned short CSub::AddSubEvent(const string & vsEventName, 

267 canst EVENTTYPE vEventType) 

268 { 
269 

270 

271 

272 

273 

274 

275 

276 

index 

277 

278 

279 

280 

281 

282 

283 

284 

285 

canst char * DEBUG = 11 CSub::AddSubEvent(): 11
; 

PRINT_DEBUG << 11vsEventName = 11 << vsEventName << endl; 

LOCALEVENTS::const_iterator citer; 

citer = m_SubEventsMap.find(vsEventName); 

if (citer != m_SubEventsMap.end()) //the event exists, return its 

return citer->second; 

else //the event does not exist, generate a new index. 

{ 
if (vEventType == CON_EVENT) 

{ 
m_usiMaxCon += 2; 

m_SubEventsMap[vsEventName] = m_usiMaxCon; 

m_InvSubEventsMap[m_usiMaxCon] = vsEventName; 

#ifdef DEBUG_TIME 

286 PRINT_DEBUG « 11 vEventType = CON_EVENT, m_usiMaxCon = 11 

<< m_usiMaxCon << endl; 

287 

288 

289 

290 } 

#end if 

return m_usiMaxCon; 
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else 

{ 
m_usiMaxUnCon += 2; 

291 

291 

292 

293 

294 

295 

296 

297 

m_SubEventsMap[vsEventName] = m_usiMaxUnCon; 

m_InvSubEventsMap[m_usiMaxUnCon] = vsEventName; 

#ifdef DEBUG_TIME 

-II 

PRINT_DEBUG « "vEventType = UNCON_EVENT, m_usiMaxUnCon 

<< m_usiMaxUnCon << endl; 

298 

299 

#end if 

300 return m_usiMaxUnCon; 

301 } 

302 } 

303 return 0; 

304 } 

305 

306 /** 
307 * DESCR: Set error msg and err code in this project 

308 * PARA: vsvsErrMsg: Error message 

309 * viErrCode: Error Code 

310 * RETURN: None 

311 * ACCESS: public 

312 */ 

313 void CSub::SetErr(const string & vsErrMsg, canst int viErrCode) 

314 { 
315 m_iErrCode = viErrCode; 

316 m_sErrMsg = vsErrMsg; 

317 return; 

318 } 
319 

320 /** 
321 * DESCR: 

322 * PARA: 

323 * 

Generate global event index from the event info in para 

viSubindex(Sub index, highsub = 0, low sub start from 1. 

Next 12 bits), (input) 
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324 * 
325 * 
(input) 

vusiLocalEventindex(local event index, odd: controllable, 

even:uncontrollab. The rest 16 bits) 

326 * RETURN: 

327 * ACCESS: 

328 */ 

Generated global event index 

public 

329 int CSub::GenEventindex(const unsigned short vusiLocalEventindex) 

330 { 

331 int iEventindex = L_EVENT; 

332 iEventindex = iEventindex << 28; 

333 

334 int iSubindex = 1; 

335 iSubindex = iSubindex << 16; 

336 iEventindex += iSubindex; 

337 

338 iEventindex += vusiLocalEventindex; 

339 

340 

341 } 

return iEventindex; 

342 

343 /* 

344 * DESCR: 

345 * PARA: 

346 * RETURN: 

347 * 
348 * ACCESS: 

349 */ 

Search an event by its name 

vsEventName: Event name(input) 

>0: Gloable event index 

<0: not found 

public 

350 int CSub::SearchPrjEvent(const string & vsEventName) 

351 { 

352 EVENTS::const_iterator citer; 

353 

354 citer = m_AllEventsMap.find(vsEventName); 

355 

356 if (citer != m_AllEventsMap.end()) //the event exists 

357 return citer->second; 
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358 else //the event does not exist 

359 return -1; 

360 } 

361 

362 /* 

363 * DESCR: 

364 * PARA: 

365 * RETURN: 

366 * 
367 * ACCESS: 

368 */ 

Search an event by its name 

vsEventName: Event name(input) 

>0: Sub event index 

<0: not found 

public 

A. SD Software Program 

369 int CSub::SearchSubEvent(const string & vsEventName) 

370 { 

371 LOCALEVENTS::const_iterator citer; 

372 

373 citer = m_SubEventsMap.find(vsEventName); 

374 

375 if (citer != m_SubEventsMap.end()) //the event exists 

376 return citer->second; 

377 else //the event does not exist 

378 return -1; 

379 } 

380 

381 /** 
382 * DESCR: Clear error msg and err code in this project 

383 * PARA: None 

384 * RETURN: None 

385 * ACCESS: public 

386 */ 
387 void CSub::ClearErr() 

388 { 
389 m_iErrCode = 0; 

390 m_sErrMsg.empty(); 

391 return; 

392 } 
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393 

394 /* 
395 * DESCR: 

396 * 
should have 

397 * 
disjoint 

398 * PARA: 

399 * 
400 * 
401 * 
402 * 
new events) 

Add an event to CProject event map 

If the event exists already exists in the map, the it 

same global index; Otherwise the event sets are not 

vsEventName: Event name(input) 

viEventindex: global event index (input) 

cEventSub: Event type ('H", 'L', 'R', 'A') 

(output, only for new events) 

cControllable: Controllable? ('Y', 'N')(output)(only for 

403 * RETURN: 0: success 

404 * 
405 * ACCESS: 

406 */ 

<0 the event sets are not disjoint. 

public 

407 int CSub::AddPrjEvent(const string & vsEventName, const int 

viEventindex) 

408 { 

409 EVENTS::const_iterator citer; 

410 

411 citer = m_AllEventsMap.find(vsEventName); 

412 

413 if (citer != m_AllEventsMap.end{)) //the event exists, check if 

the global 

414 //event index is same. 

415 { 

416 if (citer->second != viEventindex) 

417 { 

418 return -1; 

419 } 

420 } 

421 else //the event does not exist 

422 { 
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423 m_AllEventsMap[vsEventName] = viEventindex; 

424 m_InvAllEventsMap[viEventindex] = vsEventName; 

425 } 

426 

427 return 0; 

428 } 

429 

430 

Subl.cpp 

001 //compute the marix storing number of shared events between every 

two DES 

002 m_piCrossMatrix =new int *[iNumofDES]; 

003 for (int i = 0; i < iNumofDES; i++) 

004 m_piCrossMatrix[i] =new int[iNumofDES]; 

005 for (int i = 0; i < iNumofDES; i++) 

006 for (int j = 0; j < iNumofDES; j++) 

007 { 

008 m_piCrossMatrix[i][j] = 

009 NumofSharedEvents(m_pDESArr[i]->GetEventsArr(), 

010 

m_pDESArr[i]->GetNumofEvents(), 

011 

m_pDESArr[j]->GetEventsArr(), 

012 

m_pDESArr[j]->GetNumofEvents()); 

013 } 

014 //Generate an initial order 

015 InitialDESOrder(); 

016 UpdatePos(); 

017 

018 //Algorithm with force 

019 DESReorder_Force(); 

020 UpdatePos(); 
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021 

022 

023 

024 

025 

026 

027 

028 

029 

030 

031 

032 

033 

034 

035 

036 

037 

038 

039 

040 

041 

042 

043 

044 

045 

046 

047 

048 

049 

050 } 
051 

052 /* 

//sifting algorithm 

DESReorder_Sift(); 

UpdatePos 0 ; 

//clear memory 

for (int i = 0; i < iNumofDES; i++) 

{ 

} 

delete[] m_piCrossMatrix[i]; 

m_piCrossMatrix[i] = NULL; 

delete[] m_piCrossMatrix; 

m_piCrossMatrix = NULL; 

//Order m_pDESArr according to the order of m_piDESOrderArr. 

CDES **PDESTmp = NULL; 

pDESTmp =new CDES *[this->GetNumofDES()]; 

for (inti= 0; i < this->GetNumofDES(); i++) 

{ 
pDESTmp[i] = m_pDESArr[m_piDESOrderArr[i]]; 

} 
for (inti= 0; i < this->GetNumofDES(); i++) 

{ 
m_pDESArr[i] = pDESTmp[i]; 

} 
delete[] pDESTmp; 

pDESTmp = NULL; 

return 0; 

053 * DESCR: Using sifting algorithm to reorder DES 

054 * PARA: None 

055 * RETURN: 0 

275 
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056 * ACCESS: private 

057 */ 
058 int CSub::DESReorder_Sift() 

059 { 

060 int iNumofDES = this->GetNumofDES(); 

061 bool bChanged = false; 

062 double dMinCross 0.0; 

063 double dCurCross = 0.0; 

064 int *piCurOpt =new int[iNumofDES]; 

065 int *Pilnit =new int[iNumofDES]; 

066 

067 

068 

069 

070 

071 

072 

int iTemp = 0; 

int iCur = 0; 

int iCount = 0; 

double dOldCross 

double dinitCross 

double dSwapCross 

= 0.0; 

0.0; 

= 0.0; 

073 //initialize optimal des order and loop initial order; 

074 for (int j = 0; j < iNumofDES; j++) 

075 { 

076 piCurOpt[j] = m_piDESOrderArr[j]; 

077 pi!nit[j] = m_piDESOrderArr[j]; 

078 } 

079 

080 //initialize cross over value 

081 dMinCross = TotalCross_Sift(O, 0, 0, 0); 

082 dOldCross dMinCross; 

083 dinitCross = dMinCross; 

084 

085 //Initialize m_piDESPosArr 

086 UpdatePos(); 

087 

088 //Optimize the DES order 

089 do 

089 { 
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090 iCount++; 

091 bChanged = false; 

092 for (int iDES = 0; iDES < iNumofDES; iDES++) 

093 { 

094 iCur = m_piDESPosArr[iDES]; 

095 

//move backward 

for (int i = iCur; i < iNumofDES - 1; i++) 

{ 
//compute dSwapCross 

dSwapCross = TotalCross_Sift(O, 0, i, 1); 

I /swap i, i+1 

iTemp = m_piDESOrderArr[i + 1]; 

m_piDESOrderArr[i + 1] = m_piDESOrderArr[i]; 

m_piDESOrderArr[i] = iTemp; 

//test if current order is better 

277 

096 

097 

098 

099 

100 

101 

102 

103 

104 

105 

106 

107 

108 

2) j 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

dCurCross = TotalCross_Sift(dOldCross, dSwapCross, i, 

} 

dOldCross = dCurCross; 

if (dCurCross - dMinCross < 0) 

{ 

} 

bChanged = true; 

dMinCross = dCurCross; 

for (int j = 0; j < iNumofDES; j++) 

piCurOpt[j] = m_piDESOrderArr[j]; 

I /move forward 

for (int j = 0; j < iNumofDES; j++) 

m_piDESOrderArr[j] = piinit[j]; 

dOldCross = dinitCross; 

for (int i = iCur; i > 0; i--) 
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124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

1, 2); 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

155 

156 

{ 

} 
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//compute dSwapCross 

dSwapCross = TotalCross_Sift(O, 0, i- 1, 1); 

//swap i - 1, i 

iTemp = m_piDESOrderArr[i- 1]; 

m_piDESOrderArr[i- 1] = m_piDESOrderArr[i]; 

m_piDESOrderArr[i] = iTemp; 

//test if current order is better 

dCurCross = TotalCross_Sift(dOldCross, dSwapCross, i -

dOldCross = dCurCross; 

if (dCurCross - dMinCross < 0) 

{ 

} 

bChanged = true; 

dMinCross = dCurCross; 

for (int j = 0; j < iNumofDES; j++) 

piCurOpt[j] = m_piDESOrderArr[j]; 

dlnitCross = dMinCross; 

dOldCross = dMinCross; 

if (bChanged) 

{ 

} 
else 

{ 

for (int j = 0; j < iNumofDES; j++) 

{ 

} 

m_piDESOrderArr[j] = piCurOpt(j]; 

pilnit[j] = m_piDESOrderArr[j]; 

UpdatePos 0 ; 

for (int j = 0; j < iNumofDES; j++) 
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157 m_piDESOrderArr[j] = pi!nit[j]; 

158 } 
159 } 

160 }while(bChanged ==true); 

161 

162 

163 

164 

165 

166 

167 

168 

169 } 
170 

171 /* 

delete[] piCurOpt; 

piCurOpt = NULL; 

delete[] pi!nit; 

pi!nit = NULL; 

return 0; 

172 * DESCR: Compute total cross for sifting algorithm 

173 * PARA: dDldCross: old cross value 

174 * dSwapCross: cross changed due to swapping 

175 * iCur: current position 

176 * iFlag: 0: completey compute total cross value 

177 * 1: compute total cross based on the old cross and 

swapped DES 

178 * (much faster) 

179 * RETURN: new cross value 

180 * ACCESS: private 

181 */ 
182 double CSub::TotalCross_Sift(double dOldCross, double dSwapCross, 

183 int iCur, int iFlag) 

184 { 

185 double dCross = 0; 

186 

187 if (iFlag == 0) //completely compute the cross 

188 { 

189 for (inti= 0; i < this->GetNumofDES(); i++) 

190 { 



280 A. SD Software Program 

191 

192 

193 

for (int j = i + 2; j < this->GetNumofDES(); j++) 

dCross += cross(i, j); 

} 
194 } 

195 else if (iFlag == 1) //only compute iCur, iCur + 1 

196 { 

197 1/iCur 

198 for (int i = 0; i < iCur - 1; i++) 

199 dCross += cross(i, iCur); 

200 for (inti= iCur + 2; i < this->GetNumofDES(); i++) 

201 dCross += cross(iCur, i); 

202 //iCur + 1 

203 for (int i = 0; i < (iCur + 1) - 1; i++) 

204 dCross += cross(i, iCur + 1); 

205 for (inti= (iCur + 1) + 2; i < this->GetNumofDES(); i++) 

206 dCross += cross(iCur + 1, i); 

207 } 

208 else //update 

209 { 

210 //iCur 

211 for (int i = 0; i < iCur - 1; i++) 

212 dCross += cross(i, iCur); 

213 for (inti= iCur + 2; i < this->GetNumofDES(); i++) 

214 dCross += cross(iCur, i); 

215 //iCur + 1 

216 for (int i = 0; i < (iCur + 1) - 1; i++) 

217 dCross += cross(i, iCur + 1); 

218 for (inti= (iCur + 1) + 2; i < this->GetNumofDES(); i++) 

219 dCross += cross(iCur + 1, i); 

220 

221 dCross = dOldCross - dSwapCross + dCross; 

222 } 

223 return dCross; 

224 } 

225 
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226 /* 
227 * DESCR: 

228 * PARA: 

229 * RETURN: 

230 * ACCESS: 

231 *I 

Compute the cross for DES i and DES j 

i,j: DES position index, 

the cross for DES i and DES j 

private 

232 double CSub::cross(int i, int j) 

233 { 

234 

235 

return sqrt((double)(m_piCrossMatrix[m_piDESOrderArr[i]] 

[m_piDESOrderArr[j]]) * (j - i 

- 1)); 

236 } 

237 

238 /* 
239 * DESCR: 

240 * 
241 * PARA: 

242 * RETURN: 

243 * ACCESS: 

244 *I 

Initialize a DES order for the sifting reorder algorithm 

(some ideas are from Zhonghua Zhong's STCT) 

None 

0 

private 

245 int CSub::DESReorder_Force() 

246 { 

247 int iNumofDES = this->GetNumofDES(); 

248 int iCount = 0; 

249 

250 //Optimize the DES order 

251 bool bChanged = false; 

252 double dMinCross = TotalCross_Force(); 

253 double dCurCross = 0.0; 

254 do 

254 { 

255 iCount++; 

256 bChanged = false; 

257 int iOptPos = 0; 

258 int iDES = 0; 
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259 for (iDES = 0; iDES < iNumofDES; iDES++) 

260 { 

261 int iPrePos = 0; 

262 int iNextPos = iNumofDES - 1; 

263 int iPos = m_piDESPosArr[iDES]; 

264 iOptPos = iPos; 

265 int iNewPos = 0; 

266 while (true) 

267 { 

268 double dForce = Force(iPos); 

269 if (dForce < -0.05) 

270 { 

271 iNextPos = iPos; 

272 iNewPos = iPos - (((iPos - iPrePos) % 2 == 0)? 

273 ((iPos- iPrePos) I 2):((iPos- iPrePos) I 2 + 

1)); 

274 if (iNewPos <= iPrePos) 

275 

276 

277 

278 

279 

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

292 

} 

break; 

InsertDES(iPos, iNewPos); 

UpdatePos () ; 

iPos = iNewPos; 

dCurCross = TotalCross_Force(); 

if (dCurCross < dMinCross - 0.05) 

{ 

} 

iOptPos = iPos; 

dMinCross = dCurCross; 

bChanged = true; 

else if (dForce > 0.05) 

{ 
iPrePos = iPos; 

iNewPos = iPos + (((iNextPos - iPos) % 2 == 0)? 

((iNextPos- iPos) I 2):((iNextPos- iPos) I 2 
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+ 1)); 

293 

294 

295 

296 

297 

298 

299 

300 

301 

302 

303 

304 

305 

306 } 
307 else 

307 

308 } 

if (iNextPos <= iNewPos) 

break; 

InsertDES(iPos, iNewPos); 

UpdatePos 0 ; 

iPos = iNewPos; 

dCurCross = TotalCross_Force(); 

if (dCurCross < dMinCross - 0.05) 

{ 

} 

iOptPos = iPos; 

dMinCross = dCurCross; 

bChanged = true; 

break; 

309 

310 

InsertDES(m_piDESPosArr[iDES], iOptPos); 

UpdatePos 0 ; 
311 } 
312 }while(bChanged ==true); 

313 

314 return 0; 

315 } 
316 

317 /* 
318 * DESCR: Update DES position in array m_piDESPosArr according the 

new order 

319 * PARA: None 

320 * RETURN: None 

321 * ACCESS: private 

322 */ 
323 void CSub::UpdatePos() 

324 { 

283 
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325 for (inti= 0 ; i < this->GetNumofDES(); i++) 

326 m_piDESPosArr[m_piDESOrderArr[i]] = i; 

327 return; 

328 } 

329 

330 /* 
331 * DESCR: Swap variables in m_piDESDrderArr for DESReorder_Force() 

332 * PARA: 

333 * 
334 * RETURN: 

335 * ACCESS: 

336 */ 

iCur: current variable position 

iPos: destinate variable position 

None 

private 

337 void CSub::InsertDES(int iCur, int iPos) 

338 { 

339 int iDES= m_piDESOrderArr[iCur]; 

340 if (iCur < iPos) 

341 { 

342 for (int i = iCur + 1; i <= iPos; i++) 

343 m_piDESOrderArr[i- 1] = m_piDESOrderArr[i]; 

344 m_piDESOrderArr[iPos] iDES; 

345 } 

346 else if (iCur > iPos) 

347 { 

348 for (int i = iCur - 1; i >= iPos; i--) 

349 m_piDESOrderArr[i + 1] = m_piDESOrderArr[i]; 

350 m_piDESOrderArr[iPos] = iDES; 

351 } 

352 return; 

353 } 

354 

355 /* 
356 * DESCR: Compute total cross for DESReorder_Force() 

357 * PARA: None 

358 * RETURN: total cross 

359 * ACCESS: private 
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360 */ 
361 double CSub::TotalCross_Force() 

362 { 

363 

364 

365 

366 

367 

368 

369 

370 } 
371 

double dCross = 

for (int i = 0; 

{ 
for (int j 

dCross 

} 
return dCross; 

0; 

i < this->GetNumofDES(); i++) 

= i + 2; j < this->GetNumofDES(); j++) 

+= cross(i, j); 

372 /*~ 
373 ~ Decide to move DES_i left or right. (< 0 move left; >0 

move right) 

374 * for DESReorder_Force() 

375 * PARA: i: position in m_piDESOrderArr 

376 * ~: returned force 

377 * ACCESS: private 

378 */ 
379 double CSub::Force(int i) 

380 { 
381 double dForce = 0; 

382 for (int j = 0; j < i - 1; j++) 

285 

383 

384 

dForce += sqrt((double)m_piCrossMatrix[m_piDESOrderArr[i]] 

[m_piDESOrderArr[j]] * (j -

i + 1)); 

385 

386 

387 
i- 1)); 

for (int j = i + 2; j < this->GetNumofDES(); j++) 

dForce += sqrt((double)m_piCrossMatrix[m_piDESOrderArr[i]] 

[m_piDESOrderArr[j]] * (j -

388 return dForce; 

389 } 

390 

391 /* 
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392 

393 

394 

395 

396 

397 

398 

399 

400 

401 

402 

403 

404 

405 

406 

407 

408 

409 

410 

411 

412 

413 

414 

415 

416 

417 

418 

419 

420 

421 

422 

423 

424 

425 

426 

* DESCR: Initialize a DES order 

* PARA: None 

* RETURN: 0 

* ACCESS: private 

*I 
int CSub::InitialDESOrder() 

{ 
int i = 0; 

int j = 0; 

int k = 0; 

int iNumofDES = this->GetNumofDES(); 

I /There is no DES at all 

if (iNumofDES <= 0) 

return 0; 

//Only one DES 

m_piDESOrderArr[O] 0; 

if (iNumofDES <= 1) 

return 0; 

int iPos = 0; 

double dLeftCross = 0; 

double dRightCross = 0; 

double dNewCross = 0; 

double dOldCross = 0; 

vector<int> vecDESOrder; 

vector<int> vecShared; 

//two or more DES 

vecDESOrder.push_back(O); 

vecDESOrder.push_back(1); 

for (i = 2; i < iNumofDES; i++) 

{ 

A. SD Software Program 
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427 vecShared.clear(); 

428 for (j = 0; j < i; j++) 

429 vecShared.push_back(m_piCrossMatrix[i][vecDESOrder[j]]); 

430 

431 iPos = i; 

432 dOldCross = MAX_DOUBLE; 

433 for (j = i; j >= 0; j--) 

434 { 

435 dLeftCross = 0; 

436 dRightCross = 0; 

437 

438 for (k = 0; k < j; k++) 

439 { 

440 dLeftCross += vecShared[k] * (j - k- 1); 

441 } 

442 for (k = j ; k < i; k++) 

443 { 

444 dRightCross += vecShared[k] * (k- j); 

445 } 

446 crnewCross = dLeftCross + dRightCross; 

447 

448 

449 

450 

451 

452 

453 

453 

454 

455 

456 

457 

458 

459 

460 } 

:.f (dNewCross == 0) 

~~lse 

{ 

iPos = j; 

break; 

if (dNewCross < dOldCross - 0.05) 

{ 

} 

dOldCross = dNewCross; 

iPos = j; 

287 
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461 

462 

463 

464 

465 

466 

466 

467 

468 

469 

470 

471 

472 

473 

474 

475 

476 

477 

478 

479 

480 } 
481 

482 

} 
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if (iPos == 0) 

vecDESOrder.insert(vecDESOrder.begin(), i); 

else if (iPos == i) 

else 

{ 

} 

vecDESOrder.push_back(i); 

vector<int>::iterator itr = vecDESOrder.begin(); 

itr += iPos; 

vecDESOrder.insert(itr, i); 

assert((int)vecDESOrder.size() == this->GetNumofDES()); 

for (i = 0; i < (int)vecDESOrder.size(); i++) 

{ 
m_piDESOrderArr[i] = vecDESOrder[i]; 

} 
return 0; 

Sub2.cpp 

001 bdd bddStates = bddStateSet; 

002 int *PiStateSet = fdd_scanallvar(bddStates); 

003 

004 int count = 0; 

005 

006 while (piStateSet != NULL && count < 3) 

007 { 

008 bdd bddVisitedState = bddtrue; 

009 
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010 

011 

012 

013 

014 

cout << 11 j 11
; 

for (inti= 0; i < this->GetNumofDES(); i++) 

{ 
int iState = piStateSet[m_piDESPosArr[i] * 2]; 

cout << m_pDESArr[m_piDESPosArr[i]]->GetDESName() 

289 

+ 11.11 • . ' 
015 

016 

cout << m_pDESArr[m_piDESPosArr[i]]->GetStateName(iState); 

if (i < this->GetNumofDES() -1) 

017 

018 

019 

020 

iState); 

021 

022 

023 

024 

025 

026 

027 

028 

029 } 
030 

{ 
cout << 11

, 
11

; 

} 
bddVisitedState &= fdd_ithvar(m_piDESPosArr[i] * 2, 

} 

cout << 11 i, 11
; 

free(piStateSet); 

bddStates = bddStates - bddVisitedState; 

piStateSet = fdd_scanallvar(bddStates); 

count++; 

031 if (count == 3) 

032 { 

033 cout << n n. 
••• J 

034 } 
035 } 
036 

037 bdd CSub::GetOneState(const bdd & bddStates) 

038 { 

039 int *PiStateSet = fdd_scanallvar(bddStates); 

040 bdd bddState = bddtrue; 

041 

042 if (piStateSet != NULL) 

043 { 
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044 

045 

046 

047 

048 

049 

050 

051 

052 

053 } 
054 

} 
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for (inti= 0; i < this->GetNumofDES(); i++) 

{ 

} 

int iState = piStateSet[m_piDESPosArr[i] * 2]; 

bddState &= fdd_ithvar(m_piDESPosArr[i] * 2, iState); 

free(piStateSet); 

return bddState; 

return bddfalse; 

055 int CSub::CountStates(const bdd & bddStateSet) 

056 { 
057 

058 

059 

060 

061 

062 

063 

064 

065 

066 

067 

068 

069 

070 

iState); 

071 

072 

073 

074 

075 

076 

077 

int count = 0; 

bdd bddStates = bddStateSet; 

int *PiStateSet = fdd_scanallvar(bddStates); 

while (piStateSet != NULL) 

{ 

} 

count++; 

bdd bddVisitedState = bddtrue; 

for (inti= 0; i < this->GetNumofDES(); i++) 

{ 

} 

int iState = piStateSet[m_piDESPosArr[i] * 2]; 

bddVisitedState &= fdd_ithvar(m_piDESPosArr[i] * 2, 

free(piStateSet); 

bddStates = bddStates - bddVisitedState; 

piStateSet = fdd_scanallvar(bddStates); 

return count; 
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078 } 

079 

080 /* 
081 * DESCR: Print all the state vectors using state names 

291 

082 * PARA: bddStateSet: BDD respresentation of the state set (input) 

083 * viSetFlat: 0: Initial state 1: All states 2: Marking 

States (input) 

084 * RETURN: 0: sucess -1: fail 

085 * ACCESS: protected 

086 */ 
087 int CSub::PrintStateSet(const bdd t bddStateSet, int viSetFlag) 

088 { 

089 int *Statevec = NULL; 

090 int iStateindex = 0; 

091 

092 STATES statesMap; 

093 

094 try 

094 { 

095 string sLine; 

096 bdd bddTemp = bddfalse; 

097 bdd bddNormStateSet = bddtrue; 

098 string sinitState; 

099 bool binitState = false; 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

//restrict the prime variable to 0 

for (inti= 0; i < this->GetNumofDES(); i++) 

bddNormStateSet t= fdd_ithvar(i * 2 + 1, 0); 

bddNormStateSet t= bddStateSet; 

//save number of states 

if (viSetFlag != 0) 

cout << bdd_satcount(bddNormStateSet) << endl; 

//Initial state 
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111 

112 

113 

114 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 
II II. 

' ' 
125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

136 

137 

state index 

138 

139 

140 

141 

A. SD Software Program 

STATES::const_iterator csmi = statesMap.begin(); 

if (csmi != statesMap.end()) 

sinitState = csmi->first; 

else 

sinitState.clear(); 

//print all the vectors 

statevec = fdd_scanallvar(bddNormStateSet); 

while ( statevec!= NULL) 

{ 
sLine. clear() ; 

sLine = "i"; 

for (inti= 0; i < this->GetNumofDES(); i++) 

{ 

} 

sLine += m_pDESArr[m_piDESPosArr[i]]->GetStateName( 

statevec[m_piDESPosArr[i] * 2]) + 

sLine = sLine.substr(O, sLine.length() - 1); 

sLine += ";_,"; 

iStateindex++; 

//state index for initial state should be 0 

if (viSetFlag == 0) 

{ 

} 
else 

{ 

iStateindex = 0; 

statesMap[sLine] = iStateindex; 

//for marking states, should show the corresponding 

if (viSetFlag == 2) 

cout « statesMap [sLine] « " #" ii sLine ii endl; 

else I I all the states 

{ 
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142 
143 
144 
145 
146 

147 

147 

148 

149 

150 

if (blnitState) //initial state alredy been printed 

{ 
statesMap[sLine] = iStatelndex; 

cout jj iStatelndex jj 11 # 11 « sLine << endl; 

} 
else 

{ 
if (sLine != sinitState) 

{ 
statesMap[sLine] = iStateindex; 
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151 cout « iStateindex « " #" jj sLine jj endl; 

152 
153 
154 
155 
156 
157 
158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 } 

} 

} 

} 
else 

{ 

} 

iStatelndex--; 

blnitState = true; 

cout ii "0 11 ii 11 # 11 << sLine << endl; 

} 
} 

//remove the outputed state 

bddTemp = bddtrue; 

for (int i = 0; i < this->GetNumofDES(); i++) 

bddTemp &= fdd_ithvar(i * 2, statevec[i * 2]); 

bddNormStateSet = bddNormStateSet - bddTemp; 

free(statevec); 

statevec = NULL; 

statevec = fdd_scanallvar(bddNormStateSet); 

174 catch( ... ) 

175 { 
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176 delete[] statevec; 

177 statevec = NULL; 

178 return -1; 

179 } 

180 return 0; 

181 } 

182 

183 /* 
184 * DESCR: 

185 * PARA: 

186 * RETURN: 

Print all events from the pPrj->m_InvAllEventsMap 

187 * ACCESS: 

188 *I 

tout: file stream (input) 

0: sucess -1: fail 

protected 

189 int CSub::PrintEvents(ofstream & fout) 

190 { 

191 char cSub = '\0'; 

192 char cCon = '\0'; 

193 string sLine; 

194 

195 try 

195 { 

196 INVEVENTS::const_iterator ci = 

pSub->GetinvAllEventsMap().begin(); 

197 for(; ci != pSub->GetlnvAllEventsMap().end(); ++ci) 

198 { 

199 if ((ci->first & OxOFFFOOOO) >> 16 == 1) 

200 { 
201 cCon = ci->first % 2 == 0 ? 'N': 'Y'; 

202 sLine = ci->second + "\t\t"; 
203 sLine += cCon; 

204 sLine += "\t\t"; 
205 sLine += cSub; 

206 fout << sLine << endl; 

207 } 
208 } 
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209 } 
210 catch ( ... ) 
211 { 
212 return -1; 

213 } 
214 return 

215 } 
216 

217 /* 

218 * DESCR: 

219 * PARA: 

220 * 
sEventName 

221 * 

0; 

Print all the transitions one by one 

tout: file stream (input) 

bddController: not simplified bdd control predicate for 

EventSub: 'H'/'R'/'A'/L' 

222 * usiLocalindex: local index (in this sub) 

223 * bddReach: BDD respresentation of reachable states in 

224 * synthesized automata-based supervisor or 

syn-product of 

225 * the verified system. 

226 * sEventName: Event Name 

227 * statesMap: state name and index map (index is for the 

output file) 

228 * RETURN: 0: sucess -1: fail 

229 * ACCESS: protected 

230 */ 
231 int CSub::PrintTextTrans(ofstream & fout, bdd & bddController, 

232 

233 

234 

235 { 

unsigned short usiLocalindex, 

canst bdd & bddReach, string sEventName, 

STATES & statesMap) 

236 int *Statevec1 = NULL; 

237 int *Statevec2 = NULL; 

238 try 

238 { 

239 string sExit; 

295 
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240 string sEnt; 

241 bdd bddTemp = bddfalse; 

242 bdd bddNext = bddfalse; 

243 

244 //extract each state from bddController 

245 statevec1 = fdd_scanallvar(bddController); 

246 while ( statevec1!= NULL) 

247 { 

248 sExit.clear(); 

249 sExit = "i"; 

250 for (inti= 0; i < this->GetNumofDES(); i++) 

251 sExit += m_pDESArr[m_piDESPosArr[i]]->GetStateName( 

252 statevec1[m_piDESPosArr[i] * 2]) + 
II II. 

' ' 
253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 

269 

270 

271 

272 

273 

sExit = sExit.substr(O, sExit.length() - 1); 

sExit += "i.,"; 

bddTemp = bddtrue; 

for (inti= 0; i < this->GetNumofDES(); i++) 

bddTemp &= fdd_ithvar(i * 2, statevec1[i * 2]); 

bddController = bddController - bddTemp; 

free(statevec1); 

statevec1 = NULL; 

statevec1 fdd_scanallvar(bddController); 

//Get the target state 

if (usiLocalindex % 2 -- 0) 

bddNext = 

bdd_replace( 

bdd_relprod( 

m_pbdd_UnConTrans[(usiLocalindex- 2) I 2], 

bddTemp, 

m_pbdd_UnConVar[(usiLocalindex- 2) I 2]), 

m_pPair_UnConPrim[(usiLocalindex- 2) I 2]) & 

bdd.Reach; 
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274 

274 

275 

else 

bddNext = 

bdd_replace( 

297 

276 

277 

278 

bdd_relprod( 

m_pbdd_ConTrans[(usiLocalindex- 1) I 2], 

bddTemp, 

279 

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

2]) + II II. 

' ' 
290 

291 

292 

293 

294 

m_pbdd_ConVar[(usiLocalindex- 1) I 2]), 

m_pPair_ConPrim[(usiLocalindex- 1) I 2]) & 
bddReach; 

statevec2 = fdd_scanallvar(bddNext); 

if (statevec2 == NULL) 

throw -1; 

sEnt = uiu; 

for (inti= 0; i < this->GetNumofDES(); i++) 

sEnt += m_pDESArr[m_piDESPosArr[i]]->GetStateName( 

statevec2[m_piDESPosArr[i] * 

sEnt= sEnt.substr(O, sEnt.length() - 1); 
sEnt += uLn; 

free(statevec2); 

statevec2 = NULL; 

295 //print the transition 

296 fout << statesMap[sExit] << 11 j 11 << sEventName << 11 L 11 << 
297 statesMap[sEnt] << endl; 

298 } 

299 } 

300 catch ( ... ) 

301 { 

302 free(statevec1); 

303 statevec1 = NULL; 

304 free(statevec2); 

305 statevec2 = NULL; 

306 return -1; 
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307 } 

308 return 0; 

309 } 
310 

311 /* 
312 * DESCR: Compute triple-prime simplified BDD control predicate for 

an event 

313 * PARA: tout: file stream (input) 

314 * bddController: BDD control predicate for event usiindex 

315 * EventSub: 'H'/'R'/'A'/L' 

316 * usiindex: local index (in this sub) 

317 * RETURN: triple-prime simplified BDD control predicate 

318 * ACCESS: protected 

319 */ 

320 bdd CSub::SimplifyController(const bdd & bddController, 

321 const unsigned short usi!ndex) 

322 { 

323 //event should be controllable 

324 assert(usi!ndex% 2 == 1); 

325 

326 bdd bddElig = bddfalse; 

327 bdd bddSpecElig = bddfalse; 

328 

329 I 1\dHs' 
330 bddElig = bdd_exist(m_pbdd_ConTrans[(usi!ndex- 1) I 2], 

331 m_pbdd_ConVarPrim[(usiindex- 1) I 2]); 

332 I /spec part 

333 bddSpecElig = bdd_exist(bddElig, 

334 m_pbdd_ConPhysicVar[(usi!ndex- 1) I 2]); 

335 

336 return bddSpecElig & bdd_simplify(bddController, m_bddSuper & 
bddElig); 

337 } 

338 

339 



A. SD Software Program 299 

A.2.5 LowSub Class 

LowSub.h 

001 virtual -cLowSub(); 

002 

003 virtual int PrintSub(ofstream& fout); 

004 virtual int PrintSubAll(ofstream & fout); 

005 virtual string SearchEventName(unsigned short usiLocalindex); 

006 

007 virtual int LoadSub(); 

008 virtual int VeriSub(const HISC_TRACETYPE showtrace, 

009 HISC_SUPERINFO & superinfo); 

010 

011 private: 

012 virtual int MakeBdd(); 

013 virtual int InitBddFields(); 

014 virtual int ClearBddFields(); 

015 int Checkintf(); 

016 int SynPartSuper(const HISC_COMPUTEMETHOD computemethod, 

017 bdd & bddReach, bdd & bddBad); 

018 int GenConBad(bdd &bddConBad); 

019 int VeriConBad(bdd &bddConBad, const bdd &bddReach, string & 

vsErr); 

020 

021 int GenBalemiBad(bdd &bddBalemiBad); 

022 int VeriBalemiBad(bdd &bddBalemiBad, const bdd &bddReach, string & 

vsErr); 

023 

024 int VeriALF(bdd &bddALFBad, bdd bddReach, string & vsErr); 

025 int VeriProperTimedBehavior(bdd &bddPTBBad, bdd bddReach, string & 

vsErr); 

026 

027 int CheckSDControllability(bdd & bddSDBad, const bdd & bddreach, 

string & vsErr); 

028 int AnalyseSampledState(bdd & bddSSBad, const bdd & bddreach, const 
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bdd & bddSS, 

029 list< list<bdd> > & list_NerFail, bdd & bddSF, stack<bdd> & 

stack_bddSP, string & vsErr); 

030 

031 int CheckTimedControllability(const EVENTSET & eventsDis, const 

EVENTSET & eventsPoss); 

032 int CheckTimedControllability(bdd & bddTCBad, const bdd & 

bddreach); 

033 

034 bool RecheckNerodeCells(bdd & bddNCBad, const bdd & bddreach, list< 

list<bdd> > & list_NerFail); 

035 bool RecheckNerodeCell(bdd & bddNCBad, const bdd & bddreach, const 

list<bdd> & Zeqv, list< pair<bdd, bdd> > & listVisited); 

036 

037 int DetermineNextState(bdd & bddLBBad, const EVENTSET & eventsPoss, 

const bdd & bddZ, const bdd & bddreach, 

038 const int & intB, int & intNextFreeLabel, map<int, bdd> & 

B_map, stack<int> & B_p, 

039 bdd & bddSF, stack<bdd> & stack_bddSP, 

040 map<int, EVENTSET> & B_occu, map<int, bdd> & B_conc, string & 

vsErr); 

041 

042 void CheckNerodeCells(map<int, bdd> & B_conc, map<int, EVENTSET> & 

B_occu, 

043 

044 

list< list<bdd> > & list_NerFail); 

045 int CheckSDiv(bdd & bddSDivBad, const bdd & bddReach); 

046 

047 EVENTSET GetTransitionEvents(const bdd & bddleave, const bdd & 

bddenter); 

048 

049 int GenP4Bad(bdd &bddP4Bad); 

050 int VeriP4Bad(bdd &bddP4Bad, const bdd &bddReach, string &vsErr); 

051 int supcp(bdd & bddP); 

052 bdd cr(const bdd & bddPStart, const bdd & bddP, int & iErr); 
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053 bdd r(const bdd &bddP, int &iErr); 

054 bdd p5(const bdd& bddP, int &iErr); 

055 bdd p6(const bdd& bddP, int &iErr); 

056 void BadState!nfo(const bdd& bddBad, canst int viErrCode, 

057 canst HISC_TRACETYPE showtrace, canst string &vsExtrainfo = 
II"); 

058 }; 

059 

060 #endif //_LSUB_H_ 

061 

062 

LowSub.cpp 

001 * PARA: vsLowFile: subsystem file name with path (.sub)(input) 

002 * viSubindex: subsystem index (high: 0, low: 1,2, ... )(input) 

003 * RETURN: None 

004 * ACCESS: public 

004 */ 
005 CLowSub::CLowSub(const string & vsLowFile): 

006 CSub(vsLowFile) 

007 { 

008 InitBddFields(); 

009 } 

010 

011 h* 
* DESCR: Destructor 

012 * PARA: None 

013 * RETURN: None 

014 * ACCESS: public 

015 */ 
016 CLowSub::-CLowSub() 

017 { 

018 //do nothing for now. 

019 } 
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020 

021 /* 
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022 * DESCR: Initialize BDD related data members (only those in 

LowSub.h) 

023 * PARA: None 

024 * RETURN: 0 

025 * ACCESS: private 

026 *I 
027 int CLowSub::InitBddFields() 

028 { 

029 return 0; 

030 } 

031 

032 /* 
033 * DESCR: Release memory for BDD related data members(only those in 

Lowsub.h) 

034 * PARA: None 

035 * RETURN: 0 

036 * ACCESS: private 

037 */ 
038 int CLowSub::ClearBddFields() 

039 { 

040 return 0; 

041 } 

042 

043 /** 
* DESCR: Load a low-level 

044 * PARA: None 

045 * RETURN: 

046 * ACCESS: 

047 */ 

0 sucess <0 fail; 

public 

048 int CLowSub::LoadSub() 

049 { 

050 ifstream fin; 

051 int iRet = 0; 
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052 CDES *pDES = NULL; 

053 

054 try 

054 { 

055 m_sSubFile = str_trim(m_sSubFile); 

056 

057 if (m_sSubFile.length() <= 4) 

058 { 

059 pSub->SetErr("lnvalid file name: " + m_sSubFile, 

HISC_BAD_LOW_FILE); 

060 throw -1; 

061 } 

062 

063 if (m_sSubFile. substr (m_sSubFile .length() - 4) ! = ".sub") 

064 { 

065 pSub->SetErr("lnvalid file name: " + m_sSubFile, 

HISC_BAD_LOW_FILE); 

066 throw -1; 

067 } 

068 

069 fin.open(m_sSubFile.data(), ifstream::in); 

070 

071 if (!fin) //unable to find low sub file 

072 { 

073 pSub->SetErr("Unable to open file: " + m_sSubFile, 

074 HISC_BAD_LOW_FILE); 

075 throw -1; 

076 } 

077 

078 m_sSubName = GetNameFromFile(m_sSubFile); 

079 

080 char scBuf[MAX_LINE_LENGTH]; 

081 string sLine; 

082 int iField = -1; //0: SYSTEM 1:PLANT 2:SPEC 

083 char *scFieldArr[] = {"SYSTEM", "PLANT", "SPEC"}; 
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084 string sDESFile; 

085 

086 int iTmp = 0; 

087 

088 

089 

090 

int iNumofPlants = 0; 

int iNumofSpecs = 0; 

091 while (fin.getline(scBuf, MAX_LINE_LENGTH)) 

092 { 

093 

094 

095 

096 

097 

098 

099 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

sLine = str_nocomment(scBuf); 

sLine = str_trim(sLine); 

if (sLine.empty()) 

continue; 

if (sLine[O] == '[' && sLine[sLine.length()- 1] -- ']') 

{ 
sLine = sLine.substr(1, sLine.length()- 1); 

sLine = sLine.substr(O, sLine.length()- 1); 

sLine str_upper(str_trim(sLine)); 

iField++; 

if (iField < 3) 

{ 
if (sLine != scFieldArr[iField]) 

{ 

} 

pSub->SetErr(m_sSubName + 

throw -1; 

11
: Field name or order is wrong! 11 

, 

HISC_BAD_LOW_FORMAT); 

if (iField == 1) 

{ 
//Check number of Plants and apply for memory 
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space 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

DES.", 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

} 
else 

} 

if (m_iNumofPlants + m_iNumofSpecs <= 0) 

{ 

} 

pSub->SetErr(m_sSubName + 

":Must have at least one DES.", 

HISC_BAD_LOW_FORMAT); 
throw -1; 

if (m_iNumofPlants < 0 II m_iNumofSpecs < 0) 

{ 

} 

pSub->SetErr(m_sSubName + 

":Must specify the number of plant DES and spec 

HISC_BAD_LOW_FORMAT); 
throw -1; 

m_pDESArr =new CDES *[this->GetNumofDES()]; 

if(m_pDESArr == NULL) throw -1; 

305 

for (inti= 0; i < this->GetNumofDES(); i++) 

m_pDESArr[i] = NULL; 

//Initialize m_piDESOrderArr 

m_piDESOrderArr =new int[this->GetNumofDES()]; 

for (inti= 0; i < this->GetNumofDES(); i++) 

m_piDESOrderArr[i] = i; 

//Initialize m_piDESPosArr 

m_piDESPosArr =new int[this->GetNumofDES()]; 

for (inti= 0; i < this->GetNumofDES(); i++) 

m_piDESPosArr[i] = i; 
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151 

152 

153 

154 

155 

156 

157 

157 

158 

159 

160 

161 

162 

163 

absent!", 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

179 

180 

181 

182 

} 
else 

{ 

{ 

} 

A. SD Software Program 

pSub->SetErr (m_sSubName + ": Too many fields!" , 

HISC_BAD_LOW_FORMAT); 

throw -1; 

switch (iField) 

{ 
case 0: I I [SYSTEM] 

if (!Isinteger(sLine)) 

{ 
pSub->SetErr(m_sSubName + ":Number of DES is 

HISC_BAD_LOW_FORMAT); 

throw -1; 

} 
iTmp = atoi(sLine.data()); 

if (iTmp < 1) 

{ 

} 

pSub->SetErr(m_sSubName + 

throw -1; 

":Number of DES is less than 1!", 

HISC_BAD_LOW_FORMAT); 

if (m_iNumofPlants < 0) 

m_iNumofPlants = iTmp; 

else if (m_iNumofSpecs < 0) 

m_iNumofSpecs = iTmp; 

else 

{ 
pSub->SetErr(m_sSubName + 

": Too many lines in SYSTEM field" , 

HISC_BAD_LOW_FORMAT); 
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183 

184 

185 

186 

187 

throw -1; 

} 
break; 

case 1: I I [PLANT] 

sDESFile = GetDESFileFromSubFile(m_sSubFile, 

pDES =new CDES(this, sDESFile, PLANT_DES); 

if (pDES == NULL I I pDES->LoadDES() < 0) 

307 

sLine); 

188 

189 

190 throw -1; //here LoadDES() will generate the 

err msg. 

191 

191 

192 

193 

194 

195 

DESs", 

196 

197 

198 

199 

200 

else 

{ 
iNumofPlants++; 

if (iNumofPlants > m_iNumofPlants) 

{ 
pSub->SetErr(m_sSubName + ":Too many Plant 

HISC_BAD_LOW_FORMAT); 

throw -1; 

} 
m_pDESArr[iNumofPlants - 1] = pDES; 

201 for (EVENTS::const_iterator ci = 

pDES->m_DESEventsMap.begin(); ci != pDES->m_DESEventsMap.end(); ++ci) 

202 { 

203 

204 

205 

206 

207 

208 

209 

210 

sLine); 

211 

m_SubPlantEvents.insert(ci->second); 

} 

pDES = NULL; 

} 
break; 

case 2: I I [SPEC] 

sDESFile = GetDESFileFromSubFile(m_sSubFile, 

pDES =new CDES(this, sDESFile, SPEC_DES); 
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212 

213 

err msg. 

214 

214 

215 

216 

217 

218 

DESs", 

219 

220 

221 

222 

pDES; 

223 
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if (pDES == NULL I I pDES->LoadDES() < 0) 

throw -1; //here LoadDES() will generate the 

else 

{ 
iNumofSpecs++; 

if (iNumofSpecs > m_iNumofSpecs) 

{ 
pSub->SetErr(m_sSubName + ": Too many spec 

HISC_BAD_LOW_FORMAT); 

throw -1; 

} 
m_pDESArr[m_iNumofPlants + iNumofSpecs - 1] = 

224 for (EVENTS::const_iterator ci = 
pDES->m_DESEventsMap.begin(); ci != pDES->m_DESEventsMap.end(); ++ci) 

225 { 

226 m_SubSupervisorEvents.insert(ci->second); 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

} 

} 

pDES = NULL; 

} 
break; 

default: 

} 

pSub->SetErr(m_sSubName + ": Unknown error.", 

HISC_BAD_LOW_FORMAT); 

throw -1; 

break; 

} //while 

if (iNumofPlants < m_iNumofPlants) 

{ 
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242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 } 

269 

} 

} 

pSub->SetErr(m_sSubName + ":Too few plant DESs", 

HISC_BAD_LOW_FORMAT); 
throw -1; 

if (iNumofSpecs < m_iNumofSpecs) 

{ 

} 

pSub->SetErr(m_sSubName + ":Too few spec DESs", 

HISC_BAD_LOW_FORMAT); 
throw -1; 

fin. close(); 

this->DESReorder(); 

catch (int iError) 

{ 

} 

if (pDES != NULL) 

{ 

} 

delete pDES; 

pDES = NULL; 

if (fin.is_open()) 

fin. close() ; 

iRet = iError; 

return iRet; 

270 /* 
271 * DESCR: Initialize BDD data memebers 

272 * PARA: None 

273 * RETURN: 0: sucess -1: fail 

274 * ACCESS: private 

275 *I 
276 int CLowSub::MakeBdd() 

309 
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277 { 
278 

279 

280 

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

292 

293 

294 

295 

296 

296 

297 

298 

299 

300 

301 

302 

303 

304 

305 

306 

307 
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canst char * DEBUG = "CLowSub::MakeBdd():"; 

try 

{ 
//Initialize the bdd node table and cache size. 

long long lNumofStates = 1; 

for (inti= 0; i < this->GetNumofDES(); i++) 

{ 

} 

lNumofStates *= m_pDESArr[i]->GetNumofStates(); 

if (lNumofStates >= MAX_INT) 

break; 

if (lNumofStates <= 10000) 

bdd_init(1000, 100); 

else if (lNumofStates <= 1000000) 

bdd_init(10000, 1000); 

else if (lNumofStates <= 10000000) 

bdd_init(100000, 10000); 

else 

{ 

} 

bdd_init(2000000, 1000000); 

bdd_setmaxincrease(1000000); 

giNumofBddNodes = 0; 

bdd_gbc_hook(my_bdd_gbchandler); 

//define domain variables 

int *PiDomainArr =new int[2]; 

for (inti= 0; i < 2 * this->GetNumofDES(); i += 2) 

{ 
308 VERBOSE(!) { PRINT_DEBUG « "Name of DES " « i « "· " « 
m_pDESArr[i/2]->GetDESName() << endl; } 
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309 

310 

311 

312 

piDomainArr[O] = m_pDESArr[i/2]->GetNumofStates(); 

piDomainArr[1] = piDomainArr[O]; 

313 VERBOSE(1) { PRINT_DEBUG « 11 piDomainArr[O] (#of states): 11 

piDomainArr[O] « endl; } 

314 VERBOSE(1) { PRINT_DEBUG « 11 piDomainArr[l] (#of states): 11 

piDomainArr [1] « endl; } 

315 

316 fdd_extdomain(piDomainArr, 2); 

317 

318 

319 

320 

321 

variables) 

322 

323 

324 

325 

326 

327 

328 

329 

330 

} 
delete[] piDomainArr; 

piDomainArr = NULL; 

//compute the number of bdd variables (only for normal 

m_iNumofBddNormVar = 0; 

for (inti= 0; i < 2 * (this->GetNumofDES()); i = i + 2) 

{ 
m_iNumofBddNormVar += fdd_varnum(i); 

} 

//compute initial state predicate 

for (inti= 0; i < this->GetNumofDES(); i++) 

{ 
331 m_bdd!nit &= fdd_ithvar(i * 2, 

m_pDESArr[i]->GetinitState()); 

332 } 

333 

334 //set the first level block 

335 int iNumofBddVar = 0; 

336 int iVarNum = 0; 

337 bdd bddBlock = bddtrue; 

338 for (inti= 0; i < 2 * (this->GetNumofDES()); i += 2) 

339 { 

311 

<< 

<< 



312 

340 

341 

342 

343 

344 

345 

iVarNum = fdd_varnum(i); 

bddBlock = bddtrue; 

A. SD Software Program 

for (int j = 0; j < 2 * iVarNum; j++) 

{ 
bddBlock &= bdd_ithvar(iNumofBddVar + j); 

346 } 

347 bdd_addvarblock(bddBlock, BDD_REORDER_FREE); 

348 iNumofBddVar += 2 * iVarNum; 

349 } 

350 

351 //compute marking states predicate 

352 bdd bddTmp = bddfalse; 

353 for (inti= 0; i < this->GetNumofDES(); i++) 

354 

355 

356 

357 

358 

359 

j++) 

360 

361 

362 

363 

364 

365 

366 

367 

368 

369 

370 

371 

372 

373 

{ 

} 

bddTmp = bddfalse; 

MARKINGLIST::const_iterator ci = 
(m_pDESArr[i]->GetMarkingList()).begin(); 

for (int j = 0; j < m_pDESArr[i]->GetNumofMarkingStates(); 

{ 
bddTmp I= fdd_ithvar(i * 2, *ci); 

++ci; 

} 
m_bddMarking &= bddTmp; 

//Compute transitions predicate 

if (m_usiMaxCon != OxFFFF) 

{ 
m_pbdd_ConTrans =new bdd[(m_usiMaxCon + 1) I 2]; 

m_pbdd_ConVar = new bdd[(m_usiMaxCon + 1) I 2]; 

m_pbdd_ConPlantTrans = new bdd[(m_usiMaxCon + 1) I 2]; 

m_pbdd_ConSupTrans = new bdd[(m_usiMaxCon + 1) I 2]; 
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374 

375 

376 

377 

378 

379 

380 

381 

382 

383 

384 

385 

386 

387 

iPair++) 

388 

389 

390 

391 

392 

393 

iPair++) 

394 

395 

396 

397 

398 

399 

400 

401 

402 

403 

404 

405 

406 

} 

m_pbdd_ConVarPrim = 

new bdd[(m_usiMaxCon + 1) I 2]; 

m_pbdd_ConPhysicVar = 

new bdd[(m_usiMaxCon + 1) I 2]; 

m_pbdd_ConSupVar = 

new bdd[(m_usiMaxCon + 1) I 2]; 

m_pbdd_ConPhysicVarPrim = 

new bdd[(m_usiMaxCon + 1) I 2]; 

m_pbdd_ConSupVarPrim = 

new bdd[(m_usiMaxCon + 1) I 2]; 

m_pPair_Con =new bddPair *[(m_usiMaxCon + 1) I 2]; 

for (int iPair = 0; iPair < (m_usiMaxCon + 1) I 2; 

{ 
m_pPair_Con[iPair] = NULL; 

} 

m_pPair_ConPrim =new bddPair *[(m_usiMaxCon + 1) I 2]; 

for (int iPair = 0; iPair < (m_usiMaxCon + 1) I 2; 

{ 
m_pPair_ConPrim[iPair] = NULL; 

} 

if (m_usiMaxUnCon != 0) 

{ 
m_pbdd_UnConTrans =new bdd[m_usiMaxUnConl2]; 

m_pbdd_UnConVar =new bdd[m_usiMaxUnConl2]; 

m_pbdd_UnConPlantTrans = 

new bdd[m_usiMaxUnConl2]; 

m_pbdd_UnConSupTrans = 

new bdd[m_usiMaxUnConl2]; 
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407 

408 

409 

410 

411 

412 

413 

414 

415 

416 

417 

418 

419 

420 

421 

422 

423 

424 

425 

426 

427 

428 

429 

430 

431 

432 

it. 

433 

434 

435 

436 

bddfalse; 

437 

438 

439 

} 
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m_pbdd_UnConVarPrim =new bdd[m_usiMaxUnCon/2]; 

m_pbdd_UnConPlantVar =new bdd[m_usiMaxUnCon/2]; 

m_pbdd_UnConSupVar =new bdd[m_usiMaxUnCon/2]; 

m_pbdd_UnConPlantVarPrim = 

new bdd[m_usiMaxUnCon/2]; 

m_pbdd_UnConSupVarPrim 

new bdd[m_usiMaxUnCon/2]; 

m_pPair_UnCon =new bddPair *[m_usiMaxUnCon/2]; 

for (int iPair = 0; iPair < m_usiMaxUnCon/2; iPair++) 

{ 
m_pPair_UnCon[iPair] = NULL; 

} 
m_pPair_UnConPrim =new bddPair *[m_usiMaxUnCon/2]; 

for (int iPair = 0; iPair < m_usiMaxUnCon/2; iPair++) 

{ 
m_pPair_UnConPrim[iPair] = NULL; 

} 

map<int, bdd> bddTmpTransMap; 1/<event_index, transitions> 

for (inti= 0; i < this->GetNumofDES(); i++) 

{ 
//before compute transition predicate for each DES, clear 

bddTmpTransMap.clear(); 

for (int j = 0; j < m_pDESArr[i]->GetNumofEvents(); j++) 

{ 
bddTmpTransMap[(m_pDESArr[i]->GetEventsArr())[j]] = 

} 

//compute transition predicate for each DES 
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440 

441 

442 

443 

j ) ) . begin 0 ; 
444 
++ci) 

445 

446 

447 

448 

449 

450 

451 

452 

for (int j = 0; j < m_pDESArr[i]->GetNumofStates(); j++) 

{ 

} 

TRANS::const_iterator ci = 
(*(m_pDESArr[i]->GetTrans() + 

for(; ci != (*(m_pDESArr[i]->GetTrans() + j)).end(); 

{ 

} 

bddTmpTransMap[ci->first] I= fdd_ithvar(i * 2, j) & 
fdd_ithvar(i * 2 + 1, ci->second); 

//combine the current DES transition predicate to 

//subsystem transition predicate 

453 map<int, bdd>::const_iterator ciTmp = 
bddTmpTransMap.begin(); 

454 for (; ciTmp != bddTmpTransMap.end(); ++ciTmp) 

455 

456 

from 2 

457 

458 

459 

460 

461 

462 

463 

464 

465 

466 

467 

468 

469 
1); 

{ 
if (ciTmp->first % 2 == 0) //uncontrollable, start 

{ 
int iindex = (ciTmp->first & OxOOOOFFFF) I 2 - 1; 

if (m_pbdd_UnConVar[iindex] == bddfalse) 

{ 

} 

m_pbdd_UnConTrans[iindex] = bddtrue; 

m_pbdd_UnConVar[iindex] = bddtrue; 

m_pbdd_UnConVarPrim[iindex] = bddtrue; 

m_pbdd_UnConTrans[iindex] &= ciTmp->second; 

m_pbdd_UnConVar[iindex] &= fdd_ithset(i * 2); 

m_pbdd_UnConVarPrim[iindex] &= fdd_ithset(i * 2 + 
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470 

471 

472 

473 

474 

475 

476 

477 

478 

479 

480 

481 

ciTmp->second; 

482 

2); 

483 

fdd_ithset(i * 2 + 1); 
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//compute uncontrollable plant vars and varprimes 

if (m_pDESArr[i]->GetDESType() == PLANT_DES) 

{ 
if (m_pbdd_UnConPlantVar[iindex] == bddfalse) 

{ 

} 

m_pbdd_UnConPlantTrans[iindex] = bddtrue; 

m_pbdd_UnConPlantVar[iindex] = bddtrue; 

m_pbdd_UnConPlantVarPrim[iindex] = bddtrue; 

m_pbdd_UnConPlantTrans[iindex] &= 

m_pbdd_UnConPlantVar[iindex] &= fdd_ithset(i * 

m_pbdd_UnConPlantVarPrim[iindex] &= 

484 } 

485 else if (m_pDESArr[i]->GetDESType() == SPEC_DES) 

486 

487 

488 

489 

490 

491 

492 

493 

494 

495 

2); 

496 

* 2 + 
497 

498 

499 

1); 

{ 

} 
} 

if (m_pbdd_UnConSupVar[iindex] == bddfalse) 

{ 

} 

m_pbdd_UnConSupTrans[iindex] = bddtrue; 

m_pbdd_UnConSupVar[iindex] = bddtrue; 

m_pbdd_UnConSupVarPrim[iindex] = bddtrue; 

m_pbdd_UnConSupTrans[iindex] &= ciTmp->second; 

m_pbdd_UnConSupVar[iindex] &= fdd_ithset(i * 

m_pbdd_UnConSupVarPrim[iindex] &= fdd_ithset(i 

else //controllable 
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500 { 
501 

502 

503 

504 

505 

506 

507 

508 

509 

510 

511 

512 

513 

varprimes 

514 

515 

516 

517 

518 

519 

520 

521 

522 

523 

524 

2); 

525 

* 2 + 1); 

526 

527 

528 

529 

530 

531 

int i!ndex = ((ciTmp->first & OxOOOOFFFF) - 1)/ 2; 

if (m_pbdd_ConVar[iindex] == bddfalse) 

{ 

} 

m_pbdd_ConTrans[iindex] = bddtrue; 

m_pbdd_ConVar[iindex] = bddtrue; 

m_pbdd_ConVarPrim[iindex] = bddtrue; 

m_pbdd_ConTrans[iindex] &= ciTmp->second; 

m_pbdd_ConVar[iindex] &= fdd_ithset(i * 2); 

m_pbdd_ConVarPrim[iindex] &= fdd_ithset(i * 2 + 1); 

//compute controllable physical plant vars and 

if (m_pDESArr[i]->GetDESType() == PLANT_DES) 

{ 

} 

if (m_pbdd_ConPhysicVar[iindex] == bddfalse) 

{ 

} 

m_pbdd_ConPlantTrans[iindex] = bddtrue; 

m_pbdd_ConPhysicVar[iindex] = bddtrue; 

m_pbdd_ConPhysicVarPrim[iindex]= bddtrue; 

m_pbdd_ConPlantTrans[iindex] &= ciTmp->second; 

m_pbdd_ConPhysicVar[iindex] &= fdd_ithset(i * 

m_pbdd_ConPhysicVarPrim[iindex] &= fdd_ithset(i 

else if (m_pDESArr[i]->GetDESType() == SPEC_DES) 

{ 
if (m_pbdd_ConSupVar[iindex] == bddfalse) 

{ 
m_pbdd_ConSupTrans[iindex] = bddtrue; 
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532 

533 

534 

535 

536 

537 

538 

2 + 1); 

539 

540 

541 

542 

543 

544 

if the event 

545 

(plants). 

546 

547 

548 

549 

} 
} 

} 
} 

} 
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m_pbdd_ConSupVar[ilndex] = bddtrue; 

m_pbdd_ConSupVarPrim[ilndex]= bddtrue; 

m_pbdd_ConSupTrans[ilndex] &= ciTmp->second; 

m_pbdd_ConSupVar[ilndex] &= fdd_ithset(i * 2); 

m_pbdd_ConSupVarPrim[ilndex] &= fdd_ithset(i * 

II Add self loops of any event to plant (sup) trans predicate 

II does not exist in the plants (sups), but exists in the sups 

int sig = 0; 

for (int ilndex = 0; ilndex < (m_usiMaxCon + 1) I 2; ilndex++) 

{ 
sig = (ilndex * 2) + 1; 

550 if ((m_SubSupervisorEvents.find(sig) -

m_SubSupervisorEvents.end()) 

551 && (m_SubPlantEvents.find(sig) != 

m_SubPlantEvents.end())) 

552 { 

553 m_pbdd_ConSupTrans[ilndex] = bddtrue; 

} 554 

555 else if ((m_SubSupervisorEvents.find(sig) != 

m_SubSupervisorEvents.end()) 

556 && (m_SubPlantEvents.find(sig) --

m_SubPlantEvents.end())) 

557 { 

558 

559 } 

m_pbdd_ConPlantTrans[ilndex] = bddtrue; 
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560 

561 

562 

563 

564 

565 

} 

for (int i!ndex = 0; i!ndex < (m_usiMaxUnCon I 2); i!ndex++) 

{ 
sig = (i!ndex + 1) * 2; 

if ((m_SubSupervisorEvents.find(sig) --

m_SubSupervisorEvents.end()) 

566 && (m_SubPlantEvents.find(sig) != 

m_SubPlantEvents.end())) 

567 { 

568 

569 

570 

m_pbdd_UnConSupTrans[iindex] = bddtrue; 

} 
else if ((m_SubSupervisorEvents.find(sig) != 

m_SubSupervisorEvents.end()) 

571 && (m_SubPlantEvents.find(sig) --

m_SubPlantEvents.end())) 

{ 
m_pbdd_UnConPlantTrans[iindex] = bddtrue; 

} 
} 

I /compute m_pPair_UnCon, m_pPair_Con 

for (int j = 0; j < m_usiMaxUnCon; j += 2) 

{ 

} 

m_pPair_UnCon[jl2] = bdd_newpair(); 

SetBddPairs(m_pPair_UnCon[jl2], m_pbdd_UnConVar[jl2], 

m_pbdd_UnConVarPrim[jl2]); 

m_pPair_UnConPrim[jl2] = bdd_newpair(); 

SetBddPairs(m_pPair_UnConPrim[jl2], 

m_pbdd_UnConVarPrim[jl2], 

m_pbdd_UnConVar[jl2]); 

319 

572 

573 

574 

575 

576 

577 

578 

579 

580 

581 

582 

583 

584 

585 

586 

587 

588 

589 

590 

for (int j = 1; j < (unsigned short)(m_usiMaxCon + 1); j += 2) 

{ 
m_pPair_Con[(j - 1) I 2] = bdd_newpair(); 
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591 

592 

593 

594 

595 

596 

597 

598 

599 } 
} 
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SetBddPairs(m_pPair_Con[(j - 1) I 2], 

m_pbdd_ConVar[(j- 1) I 2], 

m_pbdd_ConVarPrim[(j - 1) I 2]); 

m_pPair_ConPrim[(j - 1) I 2] = bdd_newpair(); 

SetBddPairs(m_pPair_ConPrim[(j - 1) I 2], 

m_pbdd_ConVarPrim[(j- 1) I 2], 

m_pbdd_ConVar[(j - 1) I 2]); 

600 catch( ... ) 

601 { 
602 string sErr; 

603 

604 

sErr = "Error happens when initializing low level "; 

sErr += " BDD!"; 

605 

606 

pSub->SetErr(sErr, HISC_SYSTEM_INITBDD); 

return -1; 

607 } 
608 return 0; 

609 } 
610 

611 

LowSubl.cpp 

001 * DESCR: 
checking) 

002 * PARA: 

003 * RETURN: 

004 * ACCESS: 

004 4 

Save DES list of low-levels in memory to a file (for 

fout: output file stream 

0: sucess -1: fail 

public 

005 int CLowSub::PrintSub(ofstream& fout) 

006 { 

007 try 

007 { 

008 fout « "#Sub system: " « m_sSubName « endl; 
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009 fout << endl; 

010 

011 fout « "[SYSTEM]" « endl; 

012 fout << m_iNumofPlants << endl; 

013 fout << m_iNumofSpecs << endl; 

014 fout << endl; 

015 

016 fout « "[PLANT]" « endl; 

017 for (int i = 1; i < m_iNumofPlants; i++) 

018 { 

019 for (int j = 0; j < this->GetNumofDES(); j++) 

020 { 

021 if (m_piDESOrderArr[j] == i) 

022 { 

023 fout << m_pDESArr[j]->GetDESName() << endl; 

024 break; 

025 

026 

027 } 

028 

} 
} 

029 fout « "[SPEC]" « endl; 

030 for (int i = m_iNumofPlants; 

031 i < this->GetNumofDES(); i++) 

032 { 

033 for (int j = 0; j < this->GetNumofDES(); j++) 

034 { 

035 if (m_piDESOrderArr[j] == i) 

036 { 

037 fout << m_pDESArr[j]->GetDESName() << endl; 

038 break; 

039 } 
040 } 
041 } 

042 

043 fout << 

321 
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"################################################" 
« endl; 

044 } 
045 catch( ... ) 

046 { 
047 return -1; 

048 } 
049 return 0; 

050 } 

051 

052 /** 
* DESCR: Save all the DES in low-levels to a text tile tor checking 

053 * PARA: 

054 * RETURN: 

055 * ACCESS: 

056 */ 

tout: output tile stream 

0: sucess -1: tail 

public 

057 int CLowSub::PrintSubAll(ofstream & fout) 

058 { 
059 

059 

060 

061 

062 

063 

064 

065 

066 

067 

068 

069 

070 

071 

072 

073 

074 } 

try 

{ 

} 

if (PrintSub(fout) < 0) 

throw -1; 

for (inti= 0; i < this->GetNumofDES(); i++) 

{ 

} 

if (m_pDESArr[i]->PrintDES(fout) < 0) 

throw -1; 

catch( ... ) 

{ 
return -1; 

} 
return 0; 
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075 

076 /* 
077 * DESCR: Generate Bad state info during vertication 

323 

078 * Note: showtrace is not implemented, currently it is used tor 

showing 

079 * 
080 * PARA: 

081 * 

a blocking is a deadlock or livelock (very slow). 

bddBad: BDD tor the set of bad states 

viErrCode: error code (see errmsg.h) 

082 * showtrace: show a trace from the initial state to a bad 

state or not 

083 * (not implemented) 

084 * vsExtrainfo: Extra errmsg. 

085 * RETURN: None 

086 * ACCESS: private 

087 */ 
088 void CLovSub::BadStateinfo(const bdd& bddBad, const int viErrCode, 

089 

&vsExtrainfo) 

const HISC_TRACETYPE shovtrace, const string 

090 { 
091 

092 

093 

094 

095 

096 

097 

098 

099 

100 

101 

102 

103 

104 

105 

106 

const char * DEBUG = 11 CLowSub::Bad.Statelnfo{): 11
; 

if (bddfalse == bddBad) 

{ 
VERBOSE(!) { PRINT_DEBUG « 11 bddBad = bddfalse 11 « endl; } 

return; 

} 

bdd bddBadTemp = bddBad; 

string sErr = GetSubName(); 

if (viErrCode == HISC_VERI_LOW_UNCON) 

sErr += 11
: Untimed controllable checking failed at following state(s): 11

; 

else if (viErrCode == HISC_VERI_LOW_CON) 

sErr += 11
: Proper timed behavior checking failed at following state(s): 11

; 

else if (viErrCode == HISC_VERI_LOW_BLOCKING) 

sErr += 11
: Blocking state: 11 

; 
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107 else if (viErrCode == HISC_VERI_LOW_P4FAILED) 

108 sErr += ": Interface consistent conditions Point 4 checking failed state:"; 

109 else if (viErrCode == HISC_VERI_LOW_P5FAILED) 

110 sErr += ":Interface consistent conditions Point 5 checking failed state:"; 

111 else if (viErrCode == HISC_VERI_LOW_P6FAILED) 

112 sErr += ": Interface consistent conditions Point 6 checking failed state:" ; 

113 else if (viErrCode == HISC_VERI_LOW_ALF) 

114 sErr += ": ALF checking failed state:" ; 

115 else if (viErrCode == HISC_VERI_LOW_PTB) 

116 sErr += ":Not proper timed behavior at state:"; 

117 else if (viErrCode == HISC_VERI_LOW_SD_II) 

118 sErr += ": Failed SD Controllability condition II at state:" ; 

119 else if (viErrCode == HISC_VERI_LOW_SD_III_1) 

120 sErr += ":Failed SD Controllability condition III.l at state:"; 

121 else if (viErrCode == HISC_VERI_LOW_SD_III_2) 

122 sErr += ": Failed SD Controllability condition III.2 at state:" ; 

123 else if (viErrCode == HISC_VERI_LOW_SD_IV) 

124 sErr += ": Failed SD Controllability condition IV at state:"; 

125 else if (viErrCode == HISC_VERI_LOW_ZERO_LB) 

126 sErr += ": There is some event has a lower bound less than 1 tick:"; 

127 

128 sErr += "\n"; 

129 

130 int count = 0; 

131 while (bddfalse != bddBadTemp && count < 10) 

132 { 
133 bdd bddstate = GetOneState(bddBadTemp); 

134 bddBadTemp -= bddstate; 

135 

136 

137 

138 

139 

140 

141 

int *piBad = fdd_scanallvar(bddstate); 

if (NULL == piBad) break; 

//for blocking state, try to find the deadlock state 

//if there is no deadlock state, only show one of the live lock 
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states 

142 if (showtrace == HISC_SHOW_TRACE) 

143 { 

144 if (viErrCode == HISC_VERI_LOW_BLOCKING) 

145 { 

146 bdd bddBlock = bddBad; 

147 bdd bddNext = bddtrue; 

148 bdd bddTemp = bddtrue; 

149 do 

149 { 

150 

151 

152 

153 

154 

155 

156 

bddfalse; 

157 

158 

159 

160 

bddTemp = bddtrue; 

for (inti= 0; i < this->GetNumofDES(); i++) 

bddTemp &= fdd_ithvar(i * 2, piBad[i * 2]); 

bddNext = bddfalse; 

for (unsigned short usi = 2; 

{ 

usi <= m_usiMaxUnCon && bddNext == 

usi += 2) 

bddNext I= 

bdd_replace( 

325 

161 

162 

163 

bdd_relprod( 

m_pbdd_UnConTrans[(usi- 2) I 2], 

bddTemp, 

164 

165 

166 

167 

168 

169 

170 

171 
172 

173 

bddBad; 

} 

m_pbdd_UnConVar[(usi- 2) I 2]), 

m_pPair_UnConPrim[(usi- 2) I 2]) & 

for (unsigned short usi = 1; 

{ 

usi < (unsigned short) (m_usiMaxCon + 1) && 

bddNext == bddfalse; usi += 2) 

bddNext I= 

bdd_replace( 
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174 

175 

176 

177 

178 

179 

180 

181 

182 

state 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 } 

205 

} 
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} 

if 

{ 

} 

bdd_relprod( 

m_pbdd_ConTrans[(usi 

bddTemp, 

m_pbdd_ConVar[(usi -

m_pPair_ConPrim[(usi 

bddBad; 

(bddNext == bddfalse) 

sErr += 11 [DeadLock] 11 
; 

break; 

//this is 

else //not a deadlock state 

{ 
bddBlock = bddBlock - bddTemp; 

free(piBad); 

piBad = NULL; 

- 1) I 2], 

1) I 2]), 

- 1) I 2]) 

a deadlock 

piBad = fdd_scanallvar(bddBlock); 

} 

count++; 

} while (piBad !=NULL); 

if (piBad == NULL) //live lock 

{ 
sErr += 11 [LiveLock] 11

; 

piBad = fdd_scanallvar(bddBad); 

} 

& 

206 sErr += 11 \ti 11
; 

207 
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208 for (inti= 0; i < this->GetNumofDES(); i++) 

209 { 

210 sErr += m_pDESArr[m_piDESPosArr[i]]->GetDESName() + ":" + 

211 m_pDESArr[m_piDESPosArr[i]]->GetStateName( 

212 piBad[m_piDESPosArr[i] * 

2]); 

213 if (i < this->GetNumofDES() -1) 

214 

215 

216 

sErr += ", "; 

} 

217 sErr += "l.\n"; 

218 

219 free(piBad); 

220 piBad = NULL; 

221 

222 count++; 

223 } 

224 

225 if (bddfalse != bddBadTemp) 

226 { 

227 sErr += "\t ... "; 
228 } 

229 

230 sErr += "\n" + vsExtrainfo; 

231 

232 pSub->SetErr(sErr, viErrCode); 

233 

234 return; 

235 } 

236 

237 /** 
* DESCR: Search event name from this low-level local event index. 

238 * PARA: k: R_EVENTIA_EVENTIH_EVENTIL_EVENT 

239 * usiLocalindex: this low-level local event index. 

240 * RETURN: event name 
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241 * ACCESS: public 

242 */ 
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243 string CLowSub::SearchEventName(unsigned short usiLocalindex) 

244 { 

245 

246 

247 

248 } 

249 

250 

int iEventindex = 0; 

iEventindex = pSub->GenEventindex(usiLocal!ndex); 

return (pSub->GetinvAllEventsMap())[iEventindex]; 

LowSub3.cpp 

001 int CLowSub::VeriSub(const HISC_TRACETYPE showtrace, HISC_SUPERINFO & 
super info) 

002 { 

003 int iRet = 0; 

004 int iErr = 0; 

005 //Initialize the BDD data memebers 

006 CSub::InitBddFields(); 

007 InitBddFields(); 

008 bdd bddReach = bddfalse; 

009 string sErr; 

010 

011 #ifdef DEBUG_TIME 

012 timeval tv1, tv2; 

013 #endif 

014 

015 try 

015 { 

016 //Make transition bdds 

017 if (MakeBdd() < 0) 

018 throw -1; 

019 

020 bdd bddConBad = bddfalse; 
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021 bdd bddBalemiBad = bddfalse; 

022 bdd bddCoreach = bddfalse; 

023 bdd bddNBBad = bddfalse; 

024 bdd bddALFBad = bddfalse; 

025 bdd bddPTBBad = bddfalse; 

026 bdd bddSDBad = bddfalse; 

027 

028 //compute bddReach 

029 #ifdef DEBUG_TIME 

030 cout « endl « "Computing reachable subpredicate ... " « endl; 

031 gettimeofday(&tvl, NULL); 

032 #endif 

033 

034 bddReach = r(bddtrue, iErr); 

035 if (iErr < 0) 

036 { 

037 throw -1; 

038 } 

039 

040 #ifdef DEBUG_TIME 

041 gettimeofday(&tv2, NULL); 

042 cout << "R: " << (tv2.tv_sec - tvl.tv_sec) << "seconds." << endl; 

043 cout << "bddReach states:" 

044 << bdd_satcount(bddReach)/pow((double)2, 

double(m_iNumofBddNormVar)) 

045 << endl; 

046 cout « "bddReach Nodes:" « bdd_nodecount(bddReach) « endl « 
endl; 

047 #endif 

048 

049 m_bddMarking &= bddReach; 

050 

051 

052 #ifdef DEBUG_TIME 

053 cout « "Verifying controllablity ... " << endl; 
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054 gettimeofday(&tv1, NULL); 

055 #endif 

056 

057 bddConBad = bddfalse; 

058 if (VeriConBad(bddConBad, bddReach, sErr) < 0) 

059 throw -1; 

060 

061 #ifdef DEBUG_TIME 

062 gettimeofday(&tv2, NULL); 

063 cout << "VERI_CON:" << (tv2.tv_sec - tvl.tv_sec) << "seconds." << 

endl; 

064 #endif 

065 

066 //check if any reachable states belong to bad states 

067 if (bddConBad != bddfalse) 

068 { 

069 BadStateinfo(bddConBad, HISC_VERI_LOW_UNCON, showtrace, sErr); 

070 throw -2; 

071 } 

072 

073 #ifdef DEBUG_TIME 

074 cout « "Verifying Nonblocking ... " « endl; 

075 gettimeofday(&tv1, NULL); 

076 #endif 

077 

078 bddCoreach = cr(m_bddMarking, bddReach, iErr); 

079 if (iErr != 0) 

080 throw -1; 

081 

082 #ifdef DEBUG_TIME 

083 gettimeofday(&tv2, NULL); 

084 cout « "VERI_NONBLOCKING: " « (tv2. tv_sec - tv1. tv_sec) « 
"seconds." << endl; 

085 #endif 

086 
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087 bddNBBad = bddReach & !bddCoreach; 

088 if (bddfalse != bddNBBad) 

089 { 

090 BadStateinfo(bddNBBad, HISC_VERI_LOW_BLOCKING, showtrace); 

091 throw -4; 

092 } 

093 

094 #ifdef DEBUG_TIME 

095 cout « "Checking proper timed behavior ... " << endl; 

096 gettimeofday(&tv1, NULL); 

097 #endif 

098 

099 bddBalemiBad = bddfalse; 

100 if (VeriBalemiBad(bddBalemiBad, bddReach, sErr) < 0) 

101 throw -1; 

102 

103 #ifdef DEBUG_TIME 

104 gettimeofday(&tv2, NULL); 

105 cout « "VERI_BALEMI: " « (tv2.tv_sec - tv1.tv_sec) « 
"seconds." << endl; 

106 #endif 

107 

108 

109 

110 

111 

sErr); 

//check if any reachable states belong to Balemi bad states 

if (bddBalemiBad != bddfalse) 

{ 
BadStateinfo(bddBalemiBad, HISC_VERI_LOW_CON, showtrace, 

112 throw -2; 

113 } 

114 

115 // Checking if the system is ALF 

116 #ifdef DEBUG_TIME 

117 cout « "Verifying Activity Loop Free ... " « endl; 

118 gettimeofday(&tv1, NULL); 

119 #endif 

331 
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bddALFBad = bddfalse; 

120 

121 

122 

123 

124 

125 

126 

127 

if (VeriALF(bddALFBad, bddReach, sErr) < 0) 

throw -1; 

« endl; 

#ifdef DEBUG_TIME 

gettimeofday(&tv2, NULL); 

cout << "VERI_ALF:" << (tv2.tv_sec - tvl.tv_sec) << "seconds." 

128 #endif 

129 

130 if (bddALFBad != bddfalse) 

131 { 

132 BadStateinfo(bddALFBad, HISC_VERI_LOW_ALF, showtrace, 

sErr); 

133 throw -2; 

134 } 

135 

136 // Checking if the system has proper timed behavior 

137 #ifdef DEBUG_TIME 

138 cout « "Verifying Proper Timed Behavior. .. " « endl; 

139 gettimeofday(&tv1, NULL); 

140 #endif 

141 

142 bddPTBBad = bddfalse; 

143 if (VeriProperTimedBehavior(bddPTBBad, bddReach, sErr) < 0) 

144 throw -1; 

145 

146 

147 

148 

<< endl; 

#ifdef DEBUG_TIME 

gettimeofday(&tv2, NULL); 

cout << "VERI_PTB:" << (tv2.tv_sec - tvl.tv_sec) << "seconds." 

149 #endif 

150 

151 if (bddPTBBad != bddfalse) 
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{ 
BadStateinfo(bddPTBBad, HISC_VERI_LOW_PTB, showtrace, 

throw -2; 

} 

II Checking SD Controllability 

#ifdef DEBUG_TIME 

cout « "Checking SD Controllability" « endl; 

gettimeofday(&tv1, NULL); 

#end if 

int ret= CheckSDControllability(bddSDBad, bddReach, sErr); 

if (-1 == ret) 

throw -1; 

#ifdef DEBUG_TIME 

gettimeofday(&tv2, NULL); 

333 

152 

153 

sErr); 

154 

155 

156 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 cout << "VERI_SD: " << (tv2. tv_sec - tv1. tv_sec) << "seconds." 

« endl; 

170 

171 

172 

173 

174 

175 

176 

177 

#end if 

if (bddSDBad != bddfalse) 

{ 
BadStateinfo(bddSDBad, ret, showtrace, sErr); 

throw -2; 

} 

178 //final synchronous product; 

179 m_bddSuper = bddReach; 

180 

181 //save supervisor 

182 superinfo.statesize = bdd_satcount(m_bddSuper)/pow((double)2, 

double(m_iNumofBddNormVar)); 

183 superinfo.nodesize = bdd_nodecount(m_bddSuper); 
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184 } 

185 catch (int iResult) 

186 { 

187 if (iResult < -1) 

188 { 

189 superinfo.statesize = bdd_satcount(bddReach)/pow((double)2, 

double(m_iNumofBddNormVar)); 

190 superinfo.nodesize = bdd_nodecount(bddReach); 

191 } 
192 

193 iRet = -1; 

194 } 
195 ClearBddFields(); 

196 CSub::ClearBddFields(); 

197 bdd_done(); 

198 

199 return iRet; 

200 } 
201 

202 /** 
* DESCR: Does part of the sythesis work, i.e. controllable, p4, 

nonblocking 

203 * PARA: computemethod: first compute reachable states or not (See 

BddHisc.h) 

204 * (input) 

205 * bddReach: All the current reachable legal states 

206 * bddBad: All the current bad states 

207 * RETURN: 0: sucess <0: fail 

208 * ACCESS: private 

209 */ 
210 int CLowSub::SynPartSuper(const HISC_COMPUTEMETHOD computemethod, 

211 bdd & bddReach, bdd & bddBad) 

212 { 

213 bool bFirstLoop = true; 

214 bdd bddK = bddtrue; 
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215 int iErr = 0; 

216 

217 #ifdef DEBUG_TIME 

218 int iCount = 0; 

219 timeval tv1, tv2; 

220 #endif 

221 

222 try 

222 { 

223 if (computemethod == HISC_ONREACHABLE) 

224 { 

225 //compute controllable, p4, nonblocking fixpoint 

226 do 

226 { 

227 bddK = bddBad; 

228 

229 

230 

231 

//Computing [bddBad] 

#ifdef DEBUG_TIME 

cout << endl << 11------------internal_loops:" << ++iCount << 
"---------------" < < endl ; 

232 

endl; 

233 

234 

235 

cout « "Computing supremal controllable & P4 subpredicate ... " « 

gettimeofday(&tv1, NULL); 

#end if 

236 if (supcp(bddBad) < 0) 

237 throv -1; 

238 bddBad &= bddReach; 

239 

240 #ifdef DEBUG_TIME 

241 gettimeofday(&tv2, NULL); 

335 

242 cout << "supcp:" << (tv2.tv_sec - tv1.tv_sec) << "seconds." << 

endl; 

243 

244 

cout << "bddBad states:" 

<< bdd_satcount(bddBad)/pov((double)2, 
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double(m_iNumofBddNormVar)) 

245 << endl; 

246 cout « "bddBad Nodes:" « bdd_nodecount (bddBad) « endl; 

247 #endif 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

if (bddK == bddBad && bFirstLoop == false) 

break; 

//Computing CR(not(bddBad)) 

bdd bddTemp = bddReach - bddBad; 

#ifdef DEBUG_TIME 

cout << endl << "bddGood states:" 

<< bdd_satcount(bddTemp)/pow((double)2, 

double(m_iNumofBddNormVar)) 

258 << endl; 

259 cout « "bddGood Nodes:" « bdd_nodecount (bddTemp) « endl; 

260 

261 

262 

263 

264 

265 

266 

267 

268 

269 

270 

271 

272 

endl; 

273 

274 

cout << endl << "Computing coreachable subpredicate ... " << endl; 

gettimeofday(&tv1, NULL); 

#end if 

bddBad = bdd_not(cr(m_bddMarking, bddTemp, iErr)); 

if (iErr != 0) 

throw -1; 

bddBad &= bddReach; 

bFirstLoop = false; 

#ifdef DEBUG_TIME 

gettimeofday(&tv2, NULL); 

cout << "cr: " << (tv2. tv_sec - tvl. tv_sec) << "seconds." << 

cout << "bddBad states:" 

<< bdd_satcount(bddBad)/pow((double)2, 

double(m_iNumofBddNormVar)) 

275 << endl; 
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276 

277 

278 

279 

280 

280 

281 

282 

282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

292 

293 

294 

295 

296 

297 

298 

299 

300 

301 

302 

303 

304 

305 

306 

307 } 
308 

} 

} 

cout « "bddBad Nodes:" << bdd_nodecount(bddBad) « endl; 

#end if 

} while (bddBad != bddK); 

else 

{ 

} 

//compute controllable, p4, nonblocking fixpoint 

do 

{ 
bddK = bddBad; 

//Computing [bddBad] 

if (supcp(bddBad) < 0) 

throw -1; 

if (bddK == bddBad && bFirstLoop == false) 

break; 

//Computing CR(not(bddBad)) 

bddBad = bdd_not(cr(m_bddMarking. bdd_not(bddBad), iErr)); 

if (iErr != 0) 

throw -1; 

bFirstLoop = false; 

} while (bddBad != bddK); 

catch (int) 

{ 
return -1; 

} 
return 0; 

337 
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309 /** 
* DESCR: Compute tbe initial bad states(Bad_{L_j})(uncontorlalble event 

part) 

310 

311 
* PARA: 

* RETURN: 

bddConBad: BDD containing all tbe bad states (output) 

0: sucess -1: fail 

312 * ACCESS: private 

313 *I 
314 int CLowSub::GenConBad(bdd &bddConBad) 

315 { 

316 try 

316 { 

317 bdd bddPlantTrans = bddfalse; 

318 

319 

320 

321 

for (int i = 0; i < m_usiMaxUnCon/ 2; i++) 

{ 

uncontrollable event 

322 

323 

324 

//Compute illegal state predicate for eacb 

bddConBad I= bdd_exist(m_pbdd_UnConPlantTrans[i], 

m_pbdd_UnConPlantVarPrim[i]) & 

bdd_not(bdd_exist(m_pbdd_UnConSupTrans[i], 

325 

bdd_exist(m_pbdd_UnConVarPrim[i], 

326 m_pbdd_UnConPlantVarPrim[i]))); 

327 } 

328 } 

329 catch( ... ) 

330 { 

331 string sErr = this->GetSubName(); 

332 sErr += 11
: Error during generating controllable bad states. 11 

; 

333 pSub->SetErr(sErr, HISC_LOWERR_GENCONBAD); 

334 return -1; 

335 } 

336 return 0; 

337 } 

338 
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339 /** 
* DESCR: 

340 * 
341 * PARA: 

342 * 
343 * 
344 * 

Test if there are any bad states in the reachable states 

(Uncontorllable event part of Bad_{L_j}) 

bddConBad: BDD containing tested bad states(output). 

Initially, bddBad should be bddfalse. 

bddReach: BDD containing all reachable states 

in this low-level(input) 

345 * vsErr: returned errmsg(output) 

346 * RETURN: 0: sucess -1: fail 

347 * ACCESS: private 

348 */ 
349 int CLowSub::VeriConBad(bdd &bddConBad, const bdd &bddReach, string & 

vsErr) 

350 { 

351 try 

351 { 

352 int iErr = 0; 

353 

354 

355 

356 

for (int i = 0; i < m_usiMaxUnCon/ 2; i++) 

{ 
//Compute illegal state predicate for each 

uncontrollable event 

357 

358 

359 

360 

361 

362 

363 

364 

365 

366 

367 

368 

369 

bddConBad I= bdd_exist(m_pbdd_UnConPlantTrans[i], 

m_pbdd_UnConPlantVarPrim[i]) & 

bdd_not(bdd_exist(m_pbdd_UnConSupTrans[i], 

bdd_exist(m_pbdd_UnConVarPrim[i], 

m_pbdd_UnConPlantVarPrim[i]))); 

bddConBad &= bddReach; 

if (iErr < 0) 

{ 
throw -1; 

} 

if (bddConBad != bddfalse) 
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370 { 
371 

372 

373 

vsErr = "Causing uncontrollable event: "; 

vsErr += SearchEventName((i + 1) * 2); 

throw -1; 

374 

375 

376 

377 

378 

379 

380 

381 

382 

383 

384 

385 

386 

387 

388 

389 } 
390 

391 

392 /** 

} 
} 

} 
catch(int) 

{ 
} 
catch( ... ) 

{ 

} 

string sErr = this->GetSubName(); 

sErr += ": Error during generating controllable bad states." ; 

pSub->SetErr(sErr, HISC_LOWERR_GENCONBAD); 

return -1; 

return 0; 

* DESCR: compute PLPC(P) 

393 * PARA: bddP : BDD tor predicate P. (input and output(=PHIC(P))) 

394 * RETURN: 0: sucess -1: tail 

395 * ACCESS: private 

396 */ 

397 int CLowSub::supcp(bdd & bddP) 

398 { 

399 bdd bddK1 = bddfalse; 

400 bdd bddK2 = bddfalse; 

401 int iEvent = 0; 

402 int iindex = 0; 

403 
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404 try 

404 { 

405 while (bddP != bddK1) 

406 { 

407 bddK1 = bddP; 

408 for (inti= 0; i < this->GetNumofDES(); i++) 

409 { 

410 bddK2 = bddfalse; 

411 while (bddP != bddK2) 

412 { 

413 bddK2 = bddP; 

414 for (int j = 0; j < m_pDESArr[i]->GetNumofEvents(); 

j++) 

415 

416 

417 

418 

419 

420 

421 

422 

423 

424 

425 

426 

427 

428 

429 

430 

431 } 

432 } 

433 } 

434 catch ( ... ) 

435 { 

} 

{ 

} 

iEvent = (m_pDESArr[i]->GetEventsArr())[j]; 

i!ndex = iEvent & OxOOOOFFFF; 

if ( iEvent % 2 == 0) 

{ 

} 

i!ndex = (iindex - 2) I 2; 

bddP I= 

bdd_appex(m_pbdd_UnConTrans[iindex], 

bdd_replace(bddK2, 

m_pPair_UnCon[iindex]), 

bddop_and, 

m_pbdd_UnConVarPrim[iindex]); 

436 string sErr = this->GetSubName(); 
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437 

438 

439 

sErr += ": Error during computing PLPC(P)."; 

pSub->SetErr(sErr, HISC_LOWERR_SUPCP); 

return -1; 

440 } 
441 return 0; 

442 } 
443 

444 I** 
* DESCR: compute CR(G_{L_j}, P', \Sigma', P) 

445 * PARA: bddPStart: P' (input) 

446 * bddP: P (input) 

447 * viEventSub: \Sigma' (input) (0,1,2,3) <-> (H,R,A,L) 

ALL_EVENT<->All 

448 * iErr: returned Errcode (0: success <0: fail)(output) 

449 * RETURN: BDD for CR(G_{L_j}, P', \Sigma', P) 

450 * ACCESS: private 

451 */ 
452 bdd CLowSub::cr(const bdd & bddPStart, const bdd & bddP, int & iErr) 

453 { 

454 try 

454 { 

455 bdd bddK = bddP & bddPStart; 

456 bdd bddK1 = bddfalse; 

457 bdd bddK2 = bddfalse; 

458 bdd bddKNew = bddfalse; 

459 int iEvent = 0; 

460 int iindex = 0; 

461 

462 #ifdef DEBUG_TIME 

463 int iLoopCount = 0; 

464 time val tv!, tv2; 

465 #endif 

466 

467 while (bddK ! = bddK1) 

468 { 
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469 #ifdef DEBUG_TIME 

470 gettimeofday(&tv1, NULL); 

471 #endif 

472 

473 bddK1 = bddK; 

474 

475 for (inti= 0; i < this->GetNumofDES(); i++) 

476 { 

477 bddK2 = bddfalse; 

478 while (bddK != bddK2) 

479 { 

480 bddKNew = bddK - bddK2; 

481 bddK2 = bddK; 

482 for (int j = 0; j < m_pDESArr[i]->GetNumofEvents(); j++) 

483 { 

484 iEvent = (m_pDESArr[i]->GetEventsArr())[j]; 

485 

486 

487 

488 

489 

490 

491 

492 

493 

494 

495 

495 

496 

497 

498 

499 

500 

501 

502 

iindex = iEvent & OxOOOOFFFF; 

if (iEvent % 2 == 0) 

{ 

} 

iindex = (iindex - 2) I 2; 

bddK I= bdd_appex(m_pbdd_UnConTrans[iindex], 

bdd_replace(bddKNew, m_pPair_UnCon[iindex]), 

bddop_and, m_pbdd_UnConVarPrim[iindex]) 

& bddP; 

else 

{ 

} 

iindex = (iindex - 1) I 2; 

bddK I= bdd_appex(m_pbdd_ConTrans[iindex], 

bdd_replace(bddKNew, m_pPair_Con[iindex]), 

bddop_and, m_pbdd_ConVarPrim[iindex]) 

& bddP; 

343 
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503 } 

504 } 

505 } 

506 #ifdef DEBUG_TIME 

507 gettimeofday(&tv2, NULL); 

508 cout << "CR: Iteration_" << ++iLoopCount << " nodes: " << 
bdd_nodecount(bddK); 

509 cout « "\t time: " « ( (tv2. tv_sec - tv!. tv_sec) * 1000000.0 + 

(tv2. tv_usec - tv!. tv_usec)) /1000000.0 « " s"; 

510 cout « "\t states: " « bdd_satcount(bddK)/pow((double)2, 

double(m_iNumofBddNormVar)) << endl; 

511 #endif 

512 } 

513 return bddK; 

514 } 

515 catch ( ... ) 

516 { 

517 string sErr = this->GetSubName(); 

518 sErr += ":Error during computing coreachable."; 

519 pSub->SetErr(sErr, HISC_LOWERR_COREACH); 

520 iErr = -1; 

521 return bddfalse; 

522 } 

523 } 

524 

525 

526 /** 
* DESCR: compute R(G_{L_j}, P) 

527 * PARA: bddP: P (input) 

528 * 
529 * RETURN: 

530 * ACCESS: 

531 */ 

iErr: returned Errcode (0: success <0: tail)(output) 

BDD for R(G_{L_j}, P) 

private 

532 bdd CLowSub::r(const bdd &bddP, int &iErr) 

533 { 
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534 try 

534 { 

535 bdd bddK = bddP & m_bddinit; 

536 bdd bddK1 = bddfalse; 

537 bdd bddK2 = bddfalse; 

538 bdd bddKNew = bddfalse; 

539 int iEvent = 0; 

540 int iindex = 0; 

541 

542 #ifdef DEBUG_TIME 

543 int iLoopCount = 0; 

544 timeval tv1, tv2; 

545 #endif 

546 

547 while (bddK != bddK1) 

548 { 

549 #ifdef DEBUG_TIME 

550 gettimeofday(&tv1, NULL); 

551 #endif 

552 

553 bddK1 = bddK; 

554 

555 

556 for (inti= 0; i < this->GetNumofDES(); i++) 

557 { 

558 bddK2 = bddfalse; 

559 while (bddK != bddK2) 

560 { 

561 bddKNew = bddK - bddK2; 

562 bddK2 = bddK; 

563 

564 

565 

566 

567 

for (int j = 0; j < m_pDESArr[i]->GetNumofEvents(); j++) 

{ 
iEvent = (m_pDESArr[i]->GetEventsArr())[j]; 

345 
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568 

569 

570 

571 

572 

573 

bddop_and, 

574 

575 

576 

577 

577 

578 

579 

580 

581 

582 

583 

584 

585 

586 

587 

588 

589 

} 
} 

} 
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iindex = iEvent & OxOOOOFFFF; 

if (iEvent % 2 == 0) 

{ 

} 

iindex = (iindex - 2) I 2; 

bddK I= bdd_replace( 

bdd_appex(m_pbdd_UnConTrans[iindex], bddKNew, 

m_pbdd_UnConVar[iindex]), 

m_pPair_UnConPrim[iindex]) & bddP; 

else 

{ 

} 

iindex = (iindex - 1) I 2; 

bddK I= bdd_replace( 

bdd_appex(m_pbdd_ConTrans[iindex], bddKNew, bddop_and, 

m_pbdd_ConVar[iindex]), 

m_pPair_ConPrim[iindex]) & bddP; 

#ifdef DEBUG_TIME 

gettimeofday(&tv2, NULL); 

cout << "R: Iteration_" << ++iLoopCount << " nodes: " << 
bdd_nodecount(bddK); 

590 cout « "\t time:" « ((tv2.tv_sec - tv1.tv_sec) * 1000000.0 + 

(tv2.tv_usec- tv1.tv_usec))l1000000.0 << "s"; 

591 cout « "\t states:" « bdd_satcount(bddK)Ipow((double)2, 

double(m_iNumofBddNormVar)) << endl; 

592 #endif 

593 } 
594 return bddK; 

595 } 
596 catch ( ... ) 
597 { 
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598 string sErr = this->GetSubName(); 

599 sErr += ": Error during computing coreachable." ; 

600 pSub->SetErr(sErr, HISC_LOWERR_REACH); 

601 iErr = -1; 

602 return bddfalse; 

603 } 

604 } 

605 

606 

LowSub4.cpp 

001 

002 

003 

004 

005 

006 

007 

008 

009 

010 

011 

012 

013 

014 

015 

016 

//If tick does not exist 

if (iTick < 0) 

{ 

} 

string sErr = this->GetSubName(); 

sErr += ": Tick event is not found." ; 

pSub->SetErr(sErr, HISC_TICK_NOT_FOUND); 

cout << "Tick not found." << endl; 

return 0; 

for (int i = 0; i < m_usiMaxUnCon I 2; i++) 

{ 
II Get all the states left by uncontrollable event i. 

bddTemp = bdd_exist(m_pbdd_UnConPlantTrans[i], 

m_pbdd_UnConPlantVarPrim[i]); 

017 bddP1 I= bddTemp; 

018 } 

019 

020 // Get all states left by tick event 

021 bddTemp = bdd_exist(m_pbdd_ConPlantTrans[iTick], 

m_pbdd_ConPhysicVarPrim[iTick]); 

347 



348 A. SD Software Program 

022 

023 bddP1 I= bddTemp; 

024 

025 VERBOSE(2) 

026 { 

027 PRINT_DEBUG « "bddReach: " ; 

028 PrintStateSet2(bddReach); 

029 cout << endl; 

030 } 

031 

032 bddPTBBad = bddReach - bddP1; 

033 

034 if(bddPTBBad != bddfalse) 

035 { 

036 VERBOSE(2) 

037 { 

038 PRINT_DEBUG « "bddPTBBad: "; 

039 PrintStateSet2(bddPTBBad); 

040 cout << endl; 

041 } 

042 

043 vsErr = "Not proper timed behavior."; 

044 throw -1 ; 

045 } 

046 } 

047 catch(int) 

048 { 

049 } 

050 catch ( ... ) 

051 { 

052 string sErr = this->GetSubName(); 

053 sErr += ": Error when checking proper timed behavior."; 

054 pSub->SetErr(sErr, HISC_LOWERR_PTB); 

055 return -1; 

056 } 
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057 

058 } 
059 

060 int 

061 { 
062 

063 

064 

065 

066 

067 

068 

069 

070 

071 

072 

073 

074 

075 

076 

077 

078 

079 

080 

081 

082 

083 

084 

085 

086 

087 

088 

089 

090 

091 

return 0; 

CLovSub::VeriALF(bdd &bddALFBad, bdd bddReach, string & vsErr) 

const char * DEBUG = 11 CLowSub::VeriALF(): 11
; 

int iTick = (SearchSubEvent(sTick) - 1) I 2; 

VERBOSE(!) { PRINT_DEBUG « 11 iTick = 11 « iTick « endl; } 

//It tick does not exist 

if (iTick < 0) 

{ 

} 

string sErr = this->GetSubName(); 

sErr += ": Tick event is not found. 11 
; 

pSub->SetErr(sErr, HISC_TICK_NOT_FOUND); 

cout << "Tick not found. 11 << endl; 

return 0; 

bdd bddChk = bddReach; 

bdd bddTemp = bddfalse; 

try 
{ 

while (bddfalse != bddChk) 

{ 
VERBOSE(2) 

{ 

} 

PRINT_DEBUG « "bddChk: II; 

PrintStateSet2(bddChk); 

cout << endl; 

349 
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092 

093 

094 

095 

096 

097 

098 

099 

100 

101 

102 

103 

104 

105 

106 

107 

bdd bddQ = GetOneState(bddChk); 

VERBOSE(2) 

{ 

} 

PRINT_DEBUG « 11 bddQ: II; 

PrintStateSet2(bddQ); 

cout << endl; 

bdd bddVisit = bddfalse; 
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for (int i = 0; i < (m_usiMaxCon + 1) I 2; i++) 

{ 
if (i == iTick) continue; 

bddTemp = bdd_relprod(m_pbdd_ConTrans[i], bddQ, 

m_pbdd_ConVar[i]); 

108 bddVisit I= bdd_replace(bddTemp, m_pPair_ConPrim[i]); 

109 

110 

111 

112 

} 

for (inti= 0; i < (m_usiMaxUnCon I 2); i++) 

{ 
113 bddTemp = bdd_relprod(m_pbdd_UnConTrans[i], bddQ, 

m_pbdd_UnConVar[i]); 

114 bddVisit I= bdd_replace(bddTemp, m_pPair_UnConPrim[i]); 

115 } 
116 

117 bddVisit &= bddChk; 

118 

119 VERBOSE(2) 

120 { 
121 PRINT_DEBUG « 11 bddVisit: 11

; 

122 PrintStateSet2(bddVisit); 

123 cout << endl; 

124 } 
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125 

126 

127 

128 

129 

130 

131 

132 

133 

bool overlap = false; 

bdd bddNext = bddfalse; 

for (int i = 0; i < (m_usiMaxCon + 1) I 2; i++) 

{ 
if (i == iTick) continue; 

134 bddTemp = bdd_relprod(m_pbdd_ConTrans[i], bddVisit, 

m_pbdd_ConVar[i]); 

135 bddNext I= bdd_replace(bddTemp, m_pPair_ConPrim[i]); 

136 

137 

138 

139 

} 

for (inti= 0; i < (m_usiMaxUnCon I 2); i++) 

{ 
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140 bddTemp = bdd_relprod(m_pbdd_UnConTrans[i], bddVisit, 

m_pbdd_UnConVar[i]); 

141 bddNext I= bdd_replace(bddTemp, m_pPair_UnConPrim[i]); 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

} 

bddNext &= bddChk; 

VERBOSE(2) 

{ 

} 

PRINT_DEBUG « "bdd.Next: " ; 

PrintStateSet2(bddNext); 

cout << endl; 

bdd bddOldVisit = bddfalse; 

do 

{ 
bddOldVisit = bddVisit; 
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158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 
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if (bddfalse != (bddVisit & bddNext)) 

{ 
overlap = true; 

} 

bddVisit I= bddNext; 

VERBOSE(2) 

{ 

} 

PRINT_DEBUG « 11 bddVisit: 11
; 

PrintStateSet2(bddVisit); 

cout << endl; 

bddALFBad = bddQ & bddVisit; 

if (bddfalse != bddALFBad) 

{ 

} 

VERBOSE(2) 

{ 

} 

PRINT_DEBUG « 11 bddALFBad: 11 
; 

PrintStateSet2(bddALFBad); 

cout << endl; 

vsErr = 11 Not ALF. 11
; 

throw -1; 

bdd bddNewNext = bddfalse; 

for (int i = 0; i < (m_usiMaxCon + 1) I 2; i++) 

{ 
if (i == iTick) continue; 

bddTemp = bdd_relprod(m_pbdd_ConTrans[i], bddNext, 
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m_pbdd_ConVar[i]); 

193 bddNewNext I= bdd_replace(bddTemp, 

m_pPair_ConPrim[i]); 

194 } 

195 

196 for (inti= 0; i < (m_usiMaxUnCon I 2); i++) 

197 { 

198 bddTemp = bdd_relprod(m_pbdd_UnConTrans[i], 

bddNext, m_pbdd_UnConVar[i]); 

199 

m_pPair_UnConPrim[i]); 

200 } 

201 

bddNewNext I= bdd_replace(bddTemp, 

202 bddNext = bddNewNext & bddChk; 

} 

VERBOSE(2) 

{ 

} 

PRINT_DEBUG « "bddNext: "; 

PrintStateSet2(bddNext); 

cout << endl; 

while (bddVisit != bddOldVisit); 

353 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 VERBOSE(1) { PRINT_DEBUG << "overlap: " « (overlap ? "true" 

: "false") « endl; } 

214 

215 bddChk -= bddQ; 

216 if (!overlap) 

217 { 
218 bddChk -= bddVisit; 

219 } 
220 } 
221 } 
222 catch(int) 



354 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 } 
234 

{ 
} 
catch(. .. ) 

{ 

} 

string sErr = this->GetSubName(); 

sErr += 11
: Error when checking ALF. 11

; 

pSub->SetErr(sErr, HISC_LOWERR_ALF); 

return -1; 

return 0; 
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235 /** 
236 * DESCR: 

237 * PARA: 

238 * RETURN: 

239 * ACCESS: 

Compute the Balemi bad states 

bddBalemiBad: BDD containing all the bad states (output) 

0: sucess -1: tail 

private 

240 */ 
241 int CLowSub::GenBalemiBad(bdd &bddBalemiBad) 

242 { 
243 canst char * DEBUG = 11 CLowSub::VeriBalemiBad(): 11

; 

244 

245 int iTick = (SearchSubEvent(sTick) - 1) I 2; 

246 VERBOSE(1) { PRINT_DEBUG « 11 iTick = 11 << iTick « endl; } 

247 

248 try 

249 { 
250 bdd bddPlantTrans = bddfalse; 

251 

252 for (int i = 0; i < (m_usiMaxCon + 1) I 2; i++) 

253 { 
254 if (i == iTick) continue; 

255 

256 //Compute illegal state predicate tor each uncontrollable 

event 
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257 

258 

bddBalemiBad I= bdd_not(bdd_exist(m_pbdd_ConPlantTrans[i], 

m_pbdd_ConPhysicVarPrim[i])) & 

259 

bdd_exist(m_pbdd_ConSupTrans[i], 

260 bdd_exist(m_pbdd_ConVarPrim[i], 

m_pbdd_ConPhysicVarPrim[i])); 261 

262 } 
263 } 
264 catch( ... ) 

265 { 
266 

267 

268 

269 

270 } 

string sErr = this->GetSubName(); 

sErr += 11
: Error during generating bad states for proper timed behavior. 11 

; 

pSub->SetErr(sErr, HISC_LOWERR_GENBALEMIBAD); 

return -1; 

271 return 0; 

272 } 
273 

274 /** 
275 * DESCR: 

states 

276 * PARA: 

277 * 
278 * 
279 * 
280 * 
281 * R.ETURN: 

282 * ACCESS: 

283 */ 

Test if there are any Balemi bad states in the reachable 

bddBalemiBad: BDD containing tested bad states(output). 

Initially, bddBad should be bddfalse. 

bddReach: BDD containing all reachable states 

in this low-level(input) 

vsErr: returned errmsg(output) 

0: sucess -1: fail 

private 

284 int CLowSub::VeriBalemiBad(bdd &bddBalemiBad, const bdd &bddReach, 

string & vsErr) 

285 { 

286 const char * DEBUG = 11 CLowSub::VeriBalemiBad{): 11
; 

287 

288 int iTick = (SearchSubEvent(sTick) - 1) I 2; 
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289 VERBOSE(1) { PRINT_DEBUG « "iTick = " << iTick « endl; } 

290 

291 //If tick does not exist 

292 if (iTick < 0) 

293 { 

294 string sErr = this->GetSubName(); 

295 sErr += ": Tick event is not found." ; 

296 pSub->SetErr(sErr, HISC_TICK_NOT_FOUND); 

297 

298 cout << "Tick not found." << endl; 

299 return 0; 

300 } 

301 

302 try 

303 { 

304 int iErr = 0; 

305 

306 

307 

308 

309 

310 

for (int i = 0; i < (m_usiMaxCon + 1) I 2; i++) 

{ 
if (i == iTick) continue; 

//Compute illegal state predicate for each 

uncontrollable event 

311 bddBalemiBad I= 

bdd_not(bdd_exist(m_pbdd_ConPlantTrans[i], 

312 m_pbdd_ConPhysicVarPrim[i])) & 

313 bdd_exist(m_pbdd_ConSupTrans[i], 

314 

315 

316 

317 

318 

319 

320 

321 

bdd_exist(m_pbdd_ConVarPrim[i], 

m_pbdd_ConPhysicVarPrim[i])); 

bddBalemiBad &= bddReach; 

//bddBalemiBad = r(bddBalemiBad, iErr); 

if (iErr < 0) 

{ 
throw -1; 

} 
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322 

323 

324 

325 

326 

327 

328 

329 

330 

331 

332 

333 

334 

335 

336 

} 
} 
catch(int) 

{ 
} 
catch( ... ) 

{ 

if (bddBalemiBad != bddfalse) 

{ 

} 

vsErr = "Causing controllable event:"; 

vsErr += SearchEventName((i * 2) + 1); 

throw -1; 

string sErr = this->GetSubName(); 
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337 

338 

sErr += ": Error during generating bad states for proper timed behavior." ; 

pSub->SetErr(sErr, HISC_LOWERR_GENBALEMIBAD); 

339 return -1; 

340 } 
341 return 0; 

342 } 
343 

344 

LowSub5.cpp 

001 { 

002 VERBOSE(!) { PRINT_DEBUG « "CheckTimedControllability()\t= " 

<< ret << endl; } 

003 

004 throw HISC_VERI_LOW_SD_II; 

005 } 

006 

007 bdd bddSF = m_bdd!nit; 

008 
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009 stack<bdd> stack_bddSP; 

010 stack_bddSP.push(m_bddinit); 

011 

012 list< list<bdd> > list_NerFail; 

013 

014 int iSubTick = SearchSubEvent(sTick); 

015 VERBOSE(!) { PRINT_DEBUG « "iSubTick = " « iSubTick « endl; } 

016 

017 

018 

019 

020 

021 

022 

023 

//If tick does not exist 

if (iSubTick < 0) 

{ 
string sErr = this->GetSubName(); 

sErr += ": Tick event is not found." ; 

pSub->SetErr(sErr, HISC_TICK_NOT_FOUND); 

024 VERBOSE(!) { PRINT_DEBUG « "Tick not found." « endl; } 

025 return 0; 

026 } 

027 

028 int r; 

029 while (!stack_bddSP.empty()) 

030 { 

031 bdd bddSS = stack_bddSP.top(); 

032 stack_bddSP.pop(); 

033 

034 r = AnalyseSampledState(bddSDBad, bddreach, bddSS, 

list_NerFail, bddSF, stack_bddSP, vsErr); 

035 if (r < 0) 

036 

037 

endl; } 

038 

039 

040 

041 } 

{ 

} 

VERBOSE(!) { PRINT_DEBUG « "AnalyseSampledState() i 0" « 

vsErr = "AnalyseSampledState() Failed: " + vsErr; 

throw r; 
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042 

043 if (!list_NerFail.empty()) 

044 { 
045 VERBOSE(!) { PRINT_DEBUG « "list_NerFail is not empty." « 
endl; } 
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046 if (!RecheckNerodeCells(bddSDBad, bddreach, list_NerFail)) 

047 

048 

endl; } 
049 

Failed."; 

050 

051 

052 

053 

054 

055 

056 

057 

m_bddlnit" 

058 

event."; 
059 

060 

061 } 

{ 
VERBOSE(!) { PRINT_DEBUG « "RecheckNerodeCells() i 0" « 

vsErr = "list_NerFail is not empty and RecheckNerodeCells() 

throw HISC_VERI_LOW_SD_III_2; 

} 

} 

CheckSDiv(bddSDBad, bddreach); 

if (bddSDBad != bddfalse) 

{ 
VERBOSE(!) { PRINT_DEBUG « "{m_bddMarking- bddTemp) != 

« endl; } 

} 

vsErr = "There is a reachable marking state reached by a non-tick 

throw HISC~~I_{.OW_SD_IV; 
J,-. ~ - . 

062 catch(int failureCode) 

063 { 

064 ret = failureCode; 

065 } 
066 catch( ... ) 

067 { 

068 string sErr = this->GetSubName(); 

069 sErr += ":·Error when checking SD Controllability."; 

070 pSub->SetErr(sErr, HISC_LOWERR_SD); 

071 return -1; 

~-
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072 } 

073 return ret; 

074 } 

075 

076 II Algorithm 6.12 

077 int CLawSub::AnalyseSampledState(bdd & bddSSBad, canst bdd & bddreach, 

canst bdd & bddSS, 

078 list< list<bdd> > & list_NerFail, bdd & bddSF, stack<bdd> & 
stack_bddSP, string & vsErr) 

079 { 

080 const char * DEBUG = "CLowSub::AnalyseSampledState():"; 

081 

082 VERBOSE(2) 

083 { 

084 caut << endl; 

085 PRINT_DEBUG « "Analysing Sample State: " ; 

086 PrintStateSet2(bddSS); 

087 caut << endl; 

088 } 

089 

090 map<int, bdd> B_map; 

091 

092 II Line 1 

093 B_map[O] = bddSS; 

094 

095 II Line 2 

096 map<int, bdd> B_canc; 

097 

098 stack<int> B_p; 

099 

100 II Line 3 

101 B_p.push(O); 

102 

103 II Line 4 

104 int intNextFreeLabel = 1; 
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105 

106 II Line 5 

107 map<int, EVENTSET> B_occu; 

108 

109 II Line 6 

110 EVENTSET eventsElig; 

111 

112 int iSubTick = SearchSubEvent(sTick); 

113 int iTick = (iSubTick - 1) I 2; 

114 VERBOSE(!) { PRINT_DEBUG « 11 iTick\t= " « iTick « endl; } 

115 

116 II Line 7 

117 while (!B_p.empty()) 

118 { 

119 VERBOSE(!) 

120 { 

121 cout << endl; 

122 PRINT_DEBUG « "B_p.size()\t= 11 « B_p.size() « endl; 

123 } 

124 

125 

126 

127 

128 

129 

130 

131 

132 

II Line 8 

int b = B_p.top(); 

B_p.pop(); 

II Line 9 

bdd bddZ = B_map[b]; 

VERBOSE(2) { PRINT_DEBUG « 11 hddZ : 11
; PrintStateSet2(bddZ); 

cout « endl; } 

133 

134 

135 

136 

137 

138 

bdd bddtemp = bddfalse; 

I* ***************************************** *I 

II Line 10 

361 
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139 EVENTSET eventsA; 

140 

141 VERBOSE(1) { PRINT_DEBUG « "FOR-LOOP START : 

m_SubPlantEvents" « endl; } 

142 

143 //Line 11 

144 for (EVENTSET::iterator i = m_SubPlantEvents.begin(); i != 

m_SubPlantEvents.end(); i++) 

145 { 

146 

147 

148 

149 

int ilndex, event = *i; 

if (event < 1) 

{ 
VERBOSE(!) { PRINT_DEBUG « "ERROR- Found a Sub-level 

event index lower than 1" « endl ; } 

150 return HISC_INTERNAL_ERR_SUBEVENT; 

} 151 

152 

153 VERBOSE(!) { PRINT_DEBUG « "event\t= " « 
m_InvSubEventsMap[event] << endl; } 

154 if (1 == event % 2) //Controllable 

155 { 

156 ilndex = (event - 1) I 2; 

157 bddtemp = bdd_relprod(m_pbdd_ConPlantTrans[ilndex], 

bddZ, m_pbdd_ConVar[ilndex]); 

158 bddtemp = bdd_replace(bddtemp, 

m_pPair_ConPrim[ilndex]); 

159 } 

160 

161 

162 

163 

else //Uncontrollable 

{ 
ilndex = (event I 2) - 1; 

bddtemp = bdd_relprod(m_pbdd_UnConPlantTrans[ilndex], 

bddZ, m_pbdd_UnConVar[ilndex]); 

164 bddtemp = bdd_replace(bddtemp, 

m_pPair_UnConPrim[ilndex]); 

165 } 
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166 

167 

168 

bddtemp &= bddreach; 

VERBOSE(2) { PRINT_DEBUG « "bddtemp\t= "; 

PrintStateSet2(bddtemp); cout << endl; } 

169 

170 

171 

172 

173 

endl; } 

174 

175 

176 

177 

II Line 12 

if (bddtemp != bddfalse) 

{ 
VERBOSE(!) { PRINT_DEBUG « "bddtemp != bddfalse" « 

II Line 13 

eventsA.insert(event); 

VERBOSE(!) { PRINT_DEBUG « "eventsA.size()\t= " « 
eventsA.size() << endl; } 

178 

179 II Line 14 

180 } 
181 

182 II Line 15 

183 } 

363 

184 VERBOSE(!) { PRINT_DEBUG « "FOR-LOOP END : m_SubPlantEvents" 
« endl; 

185 

186 

187 

188 

} 

II Line 16 

EVENTSET eventsD; 

189 VERBOSE(!) { PRINT_DEBUG « "FOR-LOOP START : 
m_SubSupervisorEvents" « endl; } 

190 

191 II Line 17 

192 for (EVENTSET::iterator i = m_SubSupervisorEvents.begin(); i != 

m_SubSupervisorEvents.end(); i++) 

193 { 

194 bdd bddSupervisorTrans = bddfalse; 
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int iindex, event *i; 

if (event < 1) 

{ 
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195 

196 

197 

198 VERBOSE(!) { PRINT_DEBUG « "ERROR- Found a Sub-level 

event index lower than 1" << endl; } 

199 return HISC_INTERNAL_ERR_SUBEVENT; 

200 } 
201 

202 if (1 == event % 2) //Controllable 

203 { 
204 iindex = (event - 1) I 2; 

205 //Get supervisor transition predicate 

206 bddSupervisorTrans = bdd_exist(m_pbdd_ConTrans[iindex], 

m_pbdd_ConPhysicVar[iindex]); 

207 bddSupervisorTrans = bdd_exist(bddSupervisorTrans, 

m_pbdd_ConPhysicVarPrim[iindex]); 

208 

209 bddtemp = bdd_relprod(bddSupervisorTrans, bddZ, 

m_pbdd_ConVar[iindex]); 

210 bddtemp = bdd_replace(bddtemp, 

m_pPair_ConPrim[iindex]); 

211 

212 

213 

} 
else //Uncontrollable 

{ 
214 iindex = (event I 2) - 1; 

215 //Get supervisor transition predicate 

216 bddSupervisorTrans = 
bdd_exist(m_pbdd_UnConTrans[iindex], m_pbdd_UnConPlantVar[iindex]); 

217 bddSupervisorTrans = bdd_exist(bddSupervisorTrans, 

m_pbdd_UnConPlantVarPrim[iindex]); 

218 

219 bddtemp = bdd_relprod(bddSupervisorTrans, bddZ, 

m_pbdd_UnConVar[iindex]); 

220 bddtemp = bdd_replace(bddtemp, 

m_pPair_UnConPrim[iindex]); 
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221 

222 

223 

224 

225 

226 

227 

228 

endl; 

229 

230 

231 

232 

} 

} 

bddtemp &= bddreach; 

II Line 18 

if (bddtemp != bddfalse) 

{ 
VERBOSE(!) { PRINT_DEBUG « "bddtemp != bddfalse" « 

II Line 19 

eventsD.insert(event); 

VERBOSE(!) { PRINT_DEBUG « "eventsD.size()\t= " « 
eventsD.size() << endl; } 

233 

234 

235 

236 

237 

238 

239 

II Line 20 

} 

II Line 21 

} 
VERBOSE(!) { PRINT_DEBUG « "FOR-LOOP END 

m_SubSupervisorEvents" « endl; } 

240 

241 

242 

243 

EVENTSET eventsPoss; 

EVENTSET eventsDis = eventsA; 

for (EVENTSET::iterator i = eventsA.begin(); i != 

eventsA.end(); i++) 

244 { 
245 if (eventsD.end() != eventsD.find(*i)) 

246 { 
247 II Line 22 

248 eventsPoss.insert(*i); 

249 eventsDis.erase(*i); 

250 } 
251 } 

365 
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252 

253 /* ***************************************** */ 
254 

255 

endl; } 

256 

VERBOSE(!) { PRINT_DEBUG « "FOR-LOOP START: eventsPoss" « 

for (EVENTSET::iterator i eventsPoss.begin(); i != 

eventsPoss.end(); i++) 

257 

258 

259 

260 

{ 

VERBOSE(!) { PRINT_DEBUG « "ERROR- Found a Sub-level 

event index lower than 1" « endl ; } 

261 return HISC_INTERNAL_ERR_SUBEVENT; 

262 } 
263 VERBOSE(!) { PRINT_DEBUG « "eventsPoss : " « 
m_InvSubEventsMap[(*i)] << endl; } 

264 } 
265 

endl; } 

266 

267 

endl; } 
268 

VERBOSE(!) { PRINT_DEBUG « "FOR-LOOP END : eventsPoss" « 

VERBOSE(!) { PRINT_DEBUG « "FOR-LOOP START: eventsDis" « 

for (EVENTSET::iterator i = eventsDis.begin(); i != 

eventsDis.end(); i++) 

269 
270 

271 

272 

273 

{ 

VERBOSE(!) { PRINT_DEBUG « "ERROR- Found a Sub-level 

event index lower than 1" << endl; } 
274 return HISC_INTERNAL_ERR_SUBEVENT; 

275 

276 

} 
VERBOSE(!) { PRINT_DEBUG « "eventsDis: 11 « 

m_InvSubEventsMap[(*i)] << endl; } 

277 } 
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278 

endl; } 
279 

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

292 

293 

294 

295 

296 

297 

VERBOSE(l) { PRINT_DEBUG « "FOR-LOOP END : eventsDis" « 

II Line 23 

if (bddZ == bddSS) 

{ 

VERBOSE(!) { PRINT_DEBUG « "bddZ == bddSS" « endl; } 

eventsElig = eventsPoss; 

II Line 24 

II Remove uncontrollable events 

for (int i = 0; i < m_usiMaxUnCon I 2; i++) 

{ 
eventsElig.erase((i + 1) * 2); 

} 
II Remove tick event 

eventsElig.erase(iSubTick); 

II Line 25 

} 

298 VERBOSE(l) { PRINT_DEBUG « "eventsElig.size() :11 « 
eventsElig.size() << endl; } 

367 

299 VERBOSE(l) { PRINT_DEBUG « "FOR-LOOP START: eventsElig" « 
endl; } 

300 for (EVENTSET::iterator i = eventsElig.begin(); i != 

eventsElig.end(); i++) 

301 { 

302 

303 

304 

305 VERBOSE(l) { PRINT_DEBUG « "ERROR- Found a Sub-level 

event index lower than 111 « endl; } 

306 return HISC_INTERNAL_ERR_SUBEVENT; 

307 } 
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308 VERBOSE(!) { PRINT_DEBUG « "eventsElig: " « 
m_InvSubEventsMap[(*i)] << endl; } 

309 } 

310 

endl; } 
311 

312 

313 

314 

315 

316 

317 

318 

319 

320 

321 

322 

323 

endl; } 

VERBOSE(!) { PRINT_DEBUG « "FOR-LOOP END : eventsElig" « 

EVENTSET eventsTemp = eventsPoss; 

eventsTemp.insert(B_occu[b] .begin(), B_occu[b] .end()); 

II Remove uncontrollable events 

for (int i = 0; i < m_usiMaxUnCon I 2; i++) 

{ 
eventsTemp.erase((i + 1) * 2); 

} 
II Remove tick event 

eventsTemp.erase(iSubTick); 

VERBOSE(!) { PRINT_DEBUG « "FOR-LOOP START: eventsTemp" « 

324 for (EVENTSET::iterator i = eventsTemp.begin(); i != 

eventsTemp.end(); i++) 

325 { 

326 

327 

328 VERBOSE(!) { PRINT_DEBUG « "ERROR- Found a Sub-level 

event index lower than 1" « endl ; } 

329 return HISC_INTERNAL_ERR_SUBEVENT; 

330 } 

331 VERBOSE(!) { PRINT_DEBUG « "eventsTemp = (eventsPoss V 

B_occu[" « b « "])A jP_hibl,:" « m_InvSubEventsMap[(*i)] « endl; } 

332 } 

333 VERBOSE(!) { PRINT_DEBUG « "FOR-LOOP END : eventsTemp" « 
endl; } 

334 

335 II Line 26 
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336 

337 

338 

339 

endl; } 

340 

if ((eventsTemp < eventsElig) I I (eventsTemp > eventsElig) ) 

{ 
bddSSBad = bddZ; 

VERBOSE(!) { PRINT_DEBUG « "eventsTemp il. eventsElig" « 

341 VERBOSE(!) { PRINT_DEBUG « "eventsTemp.size() :" « 
eventsTemp.size() << endl; } 

342 

343 

344 

345 

346 

347 

348 

349 

350 

II Line 27 

return HISC_VERI_LOW_SD_III_1; 

II Line 28 

} 

II Line 29 

if (-1 == DetermineNextState(bddSSBad, eventsPoss, bddZ, 

bddreach, b, intNextFreeLabel, B_map, B_p, 

351 bddSF, stack_bddSP, B_occu, B_conc, vsErr)) 

352 { 

353 II Line 30 

354 return HISC_VERI_LOW_ZERO_LB; 

355 II Line 31 

356 } 

357 

358 II Line 32 

359 } 

360 

361 II Line 33 

362 CheckNerodeCells(B_conc, B_occu, list_NerFail); 

363 return 0; 

364 } 

365 

366 void CLowSub::CheckNerodeCells(map<int, bdd> & B_conc, map<int, 

EVENTSET> & B_occu, 

369 
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367 list< list<bdd> > & list_NerFail) 

368 { 

369 const char * DEBUG = 11 CLowSub::CheckNerodeCells(): 11
; 

370 

371 VERBOSE(!) { PRINT_DEBUG « 11 WHILE-LOOP START : !B_conc.empty() 11 

« endl; } 

372 

373 

374 

375 

376 

377 

378 

379 

380 

381 

382 

383 

384 

385 

386 

387 

388 

389 

390 

391 

392 

393 

394 

395 

396 

endl; } 

397 

398 

II Line 2 

while (!B_conc.empty()) 

{ 
map<int, bdd>::iterator i = B_conc.begin(); 

II Line 3 

int b = (*i).first; 

bdd bddZ = (*i).second; 

B_conc.erase(i); 

VERBOSE(2) 

{ 

} 

PRINT_DEBUG « 11 (b, bddZ) = (11 « b « 
PrintStateSet2(bddZ); 

cout << 11
)

11 << endl; 

II Line 3 

list<bdd> Zeqv; 

II Line 4 

Zeqv.push_back(bddZ); 

II II • 

' ' 

VERBOSE(!) { PRINT_DEBUG « 11 FOR-LOOP START : B_conc 11 « 

II Work around: C++ doesn't allow a map collection (i.e. 

B_Conc) to be modified in a loop 
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399 II by collection iterator. Need to first save 

B_Conc iterators in a list, 

400 II and then read the iterators from the list in 

the loop from II Line 5. 

401 list<map<int, bdd>::iterator> iteratorList_B_Conc; 

402 for (map<int, bdd>::iterator k = B_conc.begin(); B_conc.end() 

!= k; k++) 

403 { 
404 iteratorList_B_Conc.push_back(k); 

405 } 
406 

407 II Line 5 

408 bool sameCell = true; 

409 

410 II Line 6 

411 for (list<map<int, bdd>::iterator>::iterator j = 
iteratorList_B_Conc.begin(); iteratorList_B_Conc.end() != j; j++) 

412 { 

413 

414 

415 

416 

417 

418 

419 

420 

421 

422 

423 

424 

425 

426 

427 

int bprime = (*(*j)).first; 

VERBOSE(!) { PRINT_DEBUG « 11 bprime: 11 « bprime « endl; } 

bdd bddZprime = (*(*j)).second; 

VERBOSE(2) 

{ 

} 

PRINT_DEBUG « 11 bddZprime: 11
; 

PrintStateSet2(bddZprime); 

cout « endl ; 

II Line 7 

if (B_occu[b] == B_occu[bprime]) 

{ 
VERBOSE(!) { PRINT_DEBUG « 11 B_occu[b: 11 « b « 11

] == 
B_occu[bprime: 11 « bprime « 11

]
11 « endl; } 

428 
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429 

430 

431 

432 

433 

434 

435 

436 

437 

438 

endl; } 
439 

440 

441 

442 

443 

444 

445 

446 

447 

448 

449 

} 
450 

451 

452 

453 

454 

455 

456 

457 

458 

459 

460 

461 

II Line 8 

Zeqv.push_back(bddZprime); 

II Line 9 

B_conc.erase(*j); 

II Line 10 

if (bddZ != bddZprime) 

{ 
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VERBOSE(1) { PRINT_DEBUG « 11 bddZ != bddZprime 11 « 

II Line 11 

sameCell = false; 

II Line 12 

} 
II Line 13 

} 
II Line 14 

} 
VERBOSE(1) { PRINT_DEBUG « 11 FOR-LOOP END : B_conc 11 « endl; 

II Line 15 

if (! sameCell) 

{ 
VERBOSE(1) { PRINT_DEBUG « 11 sameCell: false 11 « endl; } 

II Line 16 

list_NerFail.push_back(Zeqv); 

II Line 17 

} 

II Line 18 
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462 } 

463 VERBOSE(1) { PRINT_DEBUG « "WHILE-LOOP END : !B_conc.empty()" « 
endl; } 

464 

465 //Line 19 

466 return; 

467 } 

468 

469 int CLowSub::DetermineNextState(bdd & bddLBBad, const EVENTSET & 
eventsPoss, const bdd & bddZ, const bdd & bddreach, 

470 const int & intB, int & intNextFreeLabel, map<int, bdd> & B_map, 

stack<int> & B_p, 

471 bdd & bddSF, stack<bdd> & stack_bddSP, 

472 map<int, EVENTSET> & B_occu, map<int, bdd> & B_conc, string & 
vsErr) 

473 { 
474 

475 

476 

477 

478 

479 

480 

481 

482 

483 

484 

485 

486 

487 

488 

489 

490 

491 

492 

const char * DEBUG = "CLowSub::DetermineNextState():"; 

II Line 1 

if (eventsPoss.empty()) 

{ 
VERBOSE(1) { PRINT_DEBUG « "eventsPoss is empty" « endl; } 

II Line 2 

return 0; 

} //Line 3 

int iSubTick = SearchSubEvent(sTick); 

int iTick = (iSubTick - 1) I 2; 

VERBOSE(1) { PRINT_DEBUG « "iSubTick =" « iSubTick « endl; } 

VERBOSE(1) { PRINT_DEBUG « "iTick = " « iTick « endl; } 

II Line 4 

if (eventsPoss.end() != eventsPoss.find(iSubTick)) 
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493 { 

494 VERBOSE(!) { PRINT_DEBUG « "Found tick in eventsPoss." « endl; } 

495 

496 

497 

II Line 5 

bdd bddZprime = bdd_relprod(m_pbdd_ConTrans[iTick], bddZ, 

m_pbdd_ConVar[iTick]); 

498 bddZprime = bdd_replace(bddZprime, m_pPair_ConPrim[iTick]); 

499 bddZprime &= bddreach; 

500 

501 

502 

503 

504 

505 

506 

507 

508 

509 

510 

511 

512 

513 

514 

515 

516 

517 

518 

519 

520 

521 

522 

VERBOSE(2) 

{ 

} 

PRINT_DEBUG « "bddZprime = "; 
PrintStateSet2(bddZprime); 

cout << endl; 

II Line 7 

B_conc.insert(make_pair(intB, bddZprime)); 

II Line 8 

if ((bddZprime & bddSF) == bddfalse) 

{ 
II Line 9 

bddSF I= bddZprime; 

II Line 10 

stack_bddSP.push(bddZprime); 

II Line 11 

} 

523 VERBOSE(!) { PRINT_DEBUG « "eventsPoss.size() = " « 
eventsPoss.size() << endl; } 

524 

525 II If tick is the only event in eventsPoss, then no need to 
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run anything after Line 14. 

526 if (1 == eventsPoss.size()) 

527 { 

528 VERBOSE(!) { PRINT_DEBUG « "eventsPoss only has a tick." « 
endl; } 
529 return 0; 

530 } 
531 

532 II Line 13 

533 } 
534 

535 II Line 14 

536 for (EVENTSET::iterator i = eventsPoss.begin(); i != 

eventsPoss.end(); i++) 

537 { 

538 

539 

540 

541 

542 

int event, iSubEvent = *i; 

if (iSubEvent < 1) 

{ 

VERBOSE(!) { PRINT_DEBUG « "ERROR- Found a Sub-level event 
index lower than 1" « endl ; } 

543 return HISC_INTERNAL_ERR_SUBEVENT; 

544 

545 

546 

} 

VERBOSE(!) { PRINT_DEBUG « "iSubEvent = " « 
m_InvSubEventsMap[iSubEvent] << endl; } 

547 

548 if (iSubEvent == iSubTick) 

549 { 
550 continue; 

551 } 
552 

553 II Line 15 

554 bdd bddZprime; 

555 
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556 if (1 == iSubEvent % 2) //Controllable 

557 

558 

559 

{ 
event = (iSubEvent - 1) I 2; 

VERBOSE(!) { PRINT_DEBUG « "Controllable event= " « 
m_InvSubEventsMap[iSubEvent] << endl; } 

560 bddZprime = bdd_relprod(m_pbdd_ConTrans[event], bddZ, 

m_pbdd_ConVar[event]); 

561 bddZprime = bdd_replace(bddZprime, m_pPair_ConPrim[event]); 

} 562 

563 

564 

565 

566 

else //Uncontrollable 

{ 
event = (iSubEvent I 2) - 1; 

VERBOSE(!) { PRINT_DEBUG « "Uncontrollable event = " « 
m_InvSubEventsMap[iSubEvent] << endl; } 

567 bddZprime = bdd_relprod(m_pbdd_UnConTrans[event], bddZ, 

m_pbdd_UnConVar[event]); 

568 bddZprime = bdd_replace(bddZprime, 

m_pPair_UnConPrim[event]); 

} 569 

570 

571 

572 

573 

574 

575 

bddZprime &= bddreach; 

VERBOSE(2) 

{ 

cout << endl; 

576 } 

577 

PRINT_DEBUG « "bddZprime = "; PrintStateSet2(bddZprime); 

578 EVENTSET eventsTemp = B_occu[intB]; 

579 

580 II Line 17 

581 if ((1 == iSubEvent % 2) && (eventsTemp.end() != 

eventsTemp.find(iSubEvent))) 

582 { 

583 bddLBBad = B_map[intB]; 
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584 vsErr = "Event " + SearchEventName (iSubEvent) + " is found to 

occur more than 1 times in this sampling period." ; 

585 

586 

587 

588 

589 

590 

591 

592 

593 

594 

595 

} 
596 

597 

598 

599 

600 

601 

602 

603 

endl; } 
604 

605 

606 

607 

608 

endl; } 
609 

610 

611 

II Line 18 

return -1; 

II Line 19 

} 

II Line 20 

int intBprime = intNextFreeLabel; 

VERBOSE(!) { PRINT_DEBUG « "intBprime =" « intBprime « endl; 

II Line 21 

intNextFreeLabel++; 

II Line 22 

B_map.insert(make_pair(intBprime, bddZprime)); 

VERBOSE(!) { PRINT_DEBUG « "B_map.size() =" « B_map.sizeO « 

II Line 23 

B_p.push(intBprime); 

VERBOSE(!) { PRINT_DEBUG « "B_p.size() = " « B_p.sizeO « 

eventsTemp.insert(iSubEvent); 

612 VERBOSE(!) { PRINT_DEBUG « "eventsTemp.size() = " « 
eventsTemp.size() << endl; } 

613 
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614 II Line 24 

615 B_occu.insert(make_pair(intBprime, eventsTemp)); 

616 

617 VERBOSE(!) { PRINT_DEBUG « 11 B_occu.size() = 11 « B_occu. size() « 
endl; } 
618 

619 for (EVENTSET::iterator i = B_occu[intB].begin(); i != 

B_occu[intB] .end(); i++) 

620 { 

621 VERBOSE(!) { PRINT_DEBUG « 11 B_occu[intB = 11 « intB « 11
]: 

11 

<< m_InvSubEventsMap[(*i)] << endl; } 

622 } 

623 

624 for (EVENTSET::iterator i = B_occu[intBprime] .begin(); i != 

B_occu[intBprime] .end(); i++) 

625 { 

626 VERBOSE(!) { PRINT_DEBUG « 11 B_occu[intBprime = 11 « 
intBprime « 11

]: 
11 « m_InvSubEventsMap[(*i)] « endl; } 

627 } 
628 II Line 26 

629 } 
630 

631 II Line 27 

632 return 0; 

633 } 
634 

635 int CLowSub: :CheckTimedControllability(bdd & bddTCBad, canst bdd & 
bddreach) 

636 { 

637 bdd bddZhib = bddfalse; 

638 

639 int iTick = (SearchSubEvent(sTick) - 1) I 2; 

640 

641 for (int i = 0; i < (m_usiMaxCon + 1) I 2; i++) 

642 { 
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643 

644 

if (iTick == i) continue; 

379 

645 bddZhib I= bdd_exist(m_pbdd_ConTrans[i], m_pbdd_ConVarPrim[i]); 

646 } 

647 

648 bddTCBad = bdd_exist(m_pbdd_ConTrans[iTick], 

m_pbdd_ConVarPrim[iTick]) & bddZhib & bddreach; 

649 

650 if (bddfalse != bddTCBad) 

651 { 

652 return -3; 

653 } 

654 

655 bddTCBad = bdd_exist(m_pbdd_ConPlantTrans[iTick], 

m_pbdd_ConPhysicVarPrim[iTick]) 

656 & (!bdd_exist(m_pbdd_ConSupTrans[iTick], 

m_pbdd_ConSupVarPrim[iTick])) 

657 & (!bddZhib) & bddreach; 

658 

659 if (bddfalse != bddTCBad) 

660 { 

661 return -2; 

662 } 

663 

664 return 0; 

665 } 

666 

667 

668 int CLowSub::CheckTimedControllability(const EVENTSET & eventsDis, 

const EVENTSET & eventsPoss) 

669 { 

670 //Uncontrollable events 

671 cout « "CLowSub::CheckTimedControllability() : FOR-LOOP START : 

eventsDis" < < endl ; 

672 for (EVENTSET::iterator i = eventsDis.begin(); i != 
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eventsDis.end(); i++) 

673 { 

674 if (0 == (*i) % 2) 

{ 675 

676 cout << 11 CLowSub::CheckTimedControllability() : Uncontrollable 

event found in eventsDis: 11 « m_InvSubEventsMap[(*i)] « endl; 

677 return -1; 

678 } 

679 } 

680 cout « 11 CLowSub::CheckTimedControllability() :FOR-LOOP END 

eventsDis 11 < < endl ; 

681 

682 int iSubTick = SearchSubEvent(sTick); 

683 

684 II Prohibitable events intersect with Poss events 

685 bool bool_Poss_and_Hib = false; 

686 

687 cout « 11 CLowSub::CheckTimedControllability() :FOR-LOOP START: 

eventsPoss 11 < < endl ; 

688 for (EVENTSET::iterator i = eventsPoss.begin(); i != 

eventsPoss.end(); i++) 

689 { 

690 if (iSubTick == (*i)) continue; 

691 if (1 == (*i) % 2) 

692 { 

693 cout « 11 CLowSub::CheckTimedControllability() : Prohibitable event 

found in eventsPoss: 11 « m_InvSubEventsMap[(*i)] « endl; 

694 bool_Poss_and_Hib = true; 

695 } 

696 } 

697 cout « 11 CLowSub::CheckTimedControllability() : FOR-LOOP END 

eventsPoss 11 < < endl ; 

698 

699 if (!bool_Poss_and_Hib && (eventsDis.end() != 

eventsDis.find(iSubTick))) 
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700 { 

701 return -2; 

702 } 

703 

704 if (bool_Poss_and_Hib && (eventsPoss.end() != 

eventsPoss.find(iSubTick))) 

705 { 
706 return -3; 

707 } 
708 

709 return 0; 

710 } 
711 

712 bool CLowSub::RecheckNerodeCells(bdd & bddNCBad, canst bdd & bddreach, 

list<bdd> > & list_NerFail) list< 

713 { 
714 II Line 1 

715 if (list_NerFail.empty()) 

716 { 
717 II Line 2 

718 return true; 

719 II Line 3 

720 } 
721 

722 II Line 4 

723 list< pair<bdd, bdd> > listVisited; 

724 

725 II Line 5 

726 for (list< list<bdd> >::iterator i = list_NerFail.begin(); i != 

list_NerFail.end(); i++) 

727 { 

728 

729 

730 

731 

II Line 6 

list<bdd> Zeqv = *i; 

II Line 7 
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732 if (!RecheckNerodeCell(bddNCBad, bddreach, Zeqv, listVisited)) 

733 { 

734 if (bddfalse == bddNCBad) 

735 { 

736 for (list<bdd>::iterator j = Zeqv.begin(); j != 

Zeqv.end(); j++) 

737 { 

738 bddNCBad I= *j; 

739 } 

740 } 

741 II Line 8; 

742 

743 

744 

745 

746 

747 

748 

749 

750 } 
751 

return false; 

II Line 9 

} 
II Line 10 

} 

II Line 11 

return true; 

752 bool CLowSub::RecheckNerodeCell(bdd & bddNCBad, canst bdd & bddreach, 

list<bdd> & Zeqv, list< pair<bdd, bdd> > & listVisited) canst 

753 { 
754 canst char * DEBUG = "CLowSub::RecheckNerodeCell():"; 

755 

756 II Line 1 

757 list<bdd>::const_iterator z1 = Zeqv.begin(); 

758 

759 if (Zeqv.end() == z1) 

760 { 
761 return true; 

762 } 
763 

764 II Line 2 
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765 list < pair<bdd, bdd> > listPending; 

766 

767 list<bdd>::const_iterator z2 = Zeqv.begin(); 

768 z2++; 

769 

770 II Line 3, 4 

771 while(Zeqv.end() != z2) 

772 { 

773 II Line 5 

774 listPending.push_back(make_pair(*z1, *Z2)); 

775 z2++; 

776 II Line 6 

777 } 

778 

779 II Line 7 

780 while (!listPending.empty()) 

781 { 

782 II Line 8 

783 list< pair<bdd, bdd> >::iterator itr_Pending = 

listPending.begin(); 

784 bdd bddz1 = itr_Pending->first; 

785 bdd bddz2 = itr_Pending->second; 

786 

787 

listPending.erase(itr_Pending); 

788 II Line 9 

789 bdd bddP = bddz1 I bddz2; 

790 

791 II Line 10 

792 if ((bddfalse != (bddP & m_bddMarking)) && (bddP != (bddP & 
m_bddMarking))) 

793 { 

794 

795 

bddNCBad = bddP; 

VERBOSE(1) { PRINT_DEBUG « "Neither all states in Zeqv are 

marked nor non of them are marked." << endl; } 

796 

383 



384 

797 

798 

799 

800 

801 

802 

803 
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II Line 11 

return false; 

II Line 12 

} 

II Line 13 

804 for (EVENTSET::iterator itr_event = m_SubPlantEvents.begin(); 

itr_event != m_SubPlantEvents.end(); itr_event++) 

805 

806 

807 

{ 
int event, iSubEvent = *itr_event; 

VERBOSE(!) { PRINT_DEBUG « "iSubEvent : " « 
m_InvSubEventsMap[iSubEvent] << " (index: " << iSubEvent << ")" << endl; } 

808 

809 

810 

811 

if (iSubEvent < 1) 

{ 
VERBOSE(!) { PRINT_DEBUG « "ERROR- Found a Sub-level 

event index lower than 1" « endl ; } 

812 return HISC_INTERNAL_ERR_SUBEVENT; 

813 

814 

815 

816 

817 

818 

819 

820 

821 

822 

823 

824 

} 

bdd bddPprime = bddfalse; 

bdd bddz1prime = bddfalse; 

bdd bddz2prime = bddfalse; 

bdd bddTemp = bddfalse; 

if (1 == iSubEvent % 2) //Controllable 

{ 
event = (iSubEvent - 1) I 2; 

825 bddTemp = bdd_relprod(m_pbdd_ConTrans[event], bddP, 

m_pbdd_ConVar[event]); 

826 bddPprime I= bdd_replace(bddTemp, 

m_pPair_ConPrim[event]); 
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827 

828 bddTemp = bdd_relprod(m_pbdd_ConTrans[event], bddz1, 

m_pbdd_ConVar[event]); 

829 bddz1prime I= bdd_replace(bddTemp, 

m_pPair_ConPrim[event]); 

830 

831 bddTemp = bdd_relprod(m_pbdd_ConTrans[event], bddz2, 

m_pbdd_ConVar[event]); 

832 bddz2prime I= bdd_replace(bddTemp, 

m_pPair_ConPrim[event]); 

833 } 

834 

835 

836 

else //Uncontrollable 

{ 
event = (iSubEvent I 2) - 1; 

837 

385 

838 bddTemp = bdd_relprod(m_pbdd_UnConTrans[event], bddP, 

m_pbdd_UnConVar[event]); 

839 bddPprime I= bdd_replace(bddTemp, 

m_pPair_UnConPrim[event]); 

840 

841 bddTemp = bdd_relprod(m_pbdd_UnConTrans[event], bddz1, 

m_pbdd_UnConVar[event]); 

842 bddz1prime I= bdd_replace(bddTemp, 

m_pPair_UnConPrim[event]); 

843 

844 bddTemp = bdd_relprod(m_pbdd_UnConTrans[event], bddz2, 

m_pbdd_UnConVar[event]); 

845 bddz2prime I= bdd_replace(bddTemp, 

m_pPair_UnConPrim[event]); 

846 } 

847 

848 

849 

850 

851 

II Line 14 

bddPprime &= bddreach; 

II Line 15 
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852 

853 

854 

855 

856 

857 

858 

859 

860 

861 

862 

863 

864 

865 

866 

867 

868 

869 

870 

871 

872 

873 

bddz1prime &= bddreach; 

II Line 16 

bddz2prime &= bddreach; 

VERBOSE(2) 

{ 

} 

PRINT_DEBUG « 11 bddPprime: 11
; 

PrintStateSet2(bddPprime); 

cout << endl; 

PRINT_DEBUG « 11 bddzlprime : 11
; 

PrintStateSet2(bddz1prime); 

cout << endl; 

PRINT_DEBUG « 11 bddz2prime : "; 

PrintStateSet2(bddz2prime); 

cout << endl; 

II Line 17 

if (bddfalse != bddPprime) 

{ 
II Line 18 

A. SD Software Program 

874 if ((bddfalse != (bddz1prime & bddPprime)) && (bddfalse 

!= (bddz2prime & bddPprime))) 

875 { 

876 

877 

878 

879 

II Line 19 

if (bddz1prime != bddz2prime) 

{ 
II Need to manually search for the pair, since 

bdd::operator< returns bdd 

880 II instead of bool, which makes all STL 

containers with ability to search 

881 II malfunctional. 

882 

883 

bool found = false; 

for (list< pair<bdd, bdd> >::iterator itr = 
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listVisited.begin(); 

884 itr != listVisited.end(); itr++) 

885 { 

886 if ((itr->first == bddz1prime) && 
(itr->second == bddz2prime)) 

887 { 

888 found = true; 

889 } 

890 } 

891 

892 if (!found) 

893 { 

894 //Line 20 

895 listVisited.push_back(make_pair(bddz1prime, 

bddz2prime)); 

896 //Line 21 

897 listVisited.push_back(make_pair(bddz2prime, 

bddz1prime)); 

898 //Line 22 

899 listPending.push_back(make_pair(bddz1prime, 

bddz2prime)); 

900 } 

901 //Line 23 

902 } 

903 } 

904 //Line 24 

905 else 

906 { 

907 bddNCBad = bddP; 

908 //Line 25 

909 return false; 

910 //Line 26 

911 } 

912 //Line 27 

913 } 
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914 II Line 28 

915 } 
916 II Line 29 

917 } 
918 

919 II Line 30 

920 return true; 

921 } 
922 

923 int CLowSub::CheckSDiv(bdd & bddSDivBad, canst bdd & bddReach) 

924 { 

925 int iTick = (SearchSubEvent(sTick) - 1) I 2; 

926 

927 II Line 1: Get all states entered by non-tick event from a 

reachable state. 

928 bdd bddTemp = bddfalse; 

929 

930 for (int i = 0; i < (m_usiMaxCon + 1) I 2; i++) 

931 { 

932 if (iTick == i) continue; 

933 

934 bddTemp I= bdd_replace( 

935 bdd_exist(m_pbdd_ConTrans[i] & bddReach, 

m_pbdd_ConVar[i]), 

936 m_pPair_ConPrim[i]); 

937 } 

938 

939 for (int i = 0; i < m_usiMaxUnCon I 2; i++) 

940 { 

941 bddTemp = bdd_replace( 

942 bdd_exist(m_pbdd_UnConTrans[i] & bddReach, 

m_pbdd_UnConVar[i]), 

943 

944 } 

945 

m_pPair_UnConPrim[i]); 
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946 II Line 2 - 4: Each reachable marking states must not be reached by 

a non-tick event from a reachable state. 

947 bddSDivBad = (m_bddMarking & bddReach) & bddTemp; 

948 

949 return 0; 

950 } 

951 

952 EVENTSET CLowSub::GetTransitionEvents(const bdd & bddleave, canst bdd & 
bddenter) 

953 { 

954 EVENTSET events; 

955 events.clear(); 

956 

957 if ((bddleave == bddfalse) I I (bddenter == bddfalse)) 

958 { 

959 cout « "CLowSub::GetTransitionEvents() : bddleave is empty or bddfalse 

is empty." << endl; 

960 return events; 

961 } 

962 

963 //Controllable events 

964 for (int i = 0; i < (m_usiMaxCon + 1) I 2; i++) 

965 { 

966 bdd bddtrans = bddleave & bdd_replace(bddenter, 

m_pPair_Con[i]); 

967 if ((bddtrans & m_pbdd_ConTrans[i]) != bddfalse) 

968 { 

969 events.insert((i * 2) + 1); 

970 } 

971 } 

972 

973 //Uncontrollable events 

974 for (int i = 0; i < m_usiMaxUnCon I 2; i++) 

975 { 

976 bdd bddtrans = bddleave & bdd_replace(bddenter, 
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m_pPair_UnCon[i]); 

977 if ((bddtrans & m_pbdd_UnConTrans[i]) != bddfalse) 

978 { 

979 events.insert((i + 1) * 2); 

980 } 

981 } 

982 

983 return events; 

984 } 

985 

986 

' .) 




