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Abstract 

We formulate a variational method to obtain the binding energies of a charged 

particle in presence of an electric dipole and a magnetic field aligned along 

the dipole. First, we test the method by obtaining the critical dipole moment 

for a point dipole, as well as a finite dipole in the absence of a magnetic field. 

A few larger dipole moments supporting a zero energy bound state are also 

obtained. Adding a magnetic field of"' 20 - 100 T, we show that for a 

rigid and stationary dipole of moment 2.54 D, the electron binding energy 

increases by 15% - 66%. Our approach also shows the absence of a critical 

dipole moment in presence of an aligned magnetic field. 
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1 Introduction 

The binding of a charged particle by an electric dipole has attracted a lot 

of attention in the past [1]. The critical dipole moment for a point dipole 

required to bind an electron was first calculated by Fermi and Teller [2, 3]. 

For a stationary finite dipole the same problem was addressed in references 

[4, 5]. In reference [6] the eigenenergies of an electron in the potential of a 

finite dipole have been calculated. The critical moment is affected strongly 

by consideration of rotation of the molecule. The minimum dipole moment 

necessary to support at least one bound state increases by 10% to 30% com­

pared to that of the stationary dipole [7, 8]. Also in such a situation the 

critical moment depends on the effective dipole length, the rotational state 

and the moment of inertia [7, 8]. In this thesis, a stationary dipole is consid­

ered, without taking dynamical effects into account. For several molecules, 

dipole bound anionic states exist. Reference [9] discusses the dipole bound 

anionic states of CH3CN, C3 H2 , and (HF)2. Excitons also possess per­

manent dipole moments. For example, in the InAs quantum dots in GaAs 

the electron hole separation is about 0.4 nm [10, 11]. In reference [8] the 

mobility of excess electrons in polar hydrogen cyanide gas ( dipole moment 

2.985D) was measured. The process involved short-lived dipole-bound elec­

tron ground states. It may be interesting to study the effect of a magnetic 

field on such systems and also to investigate if there is any critical value 

for the electric dipole in such a situation. However, unlike the case of a 

pure dipole potential, the Schrodinger equation can no longer be solved an­

alytically using the variable separation method. We, in the present work, 

1 



MSc Thesis - A. Chatterjee McMaster - Physics and Astronomy 

have therefore devised a variational method to obtain the energy levels of a 

charged particle in such a situation. Both the point and the finite dipole are 

considered. Considering a polar molecule as a dipole and an electron as the 

charged particle to be bound, it is not unreasonable to assume the dipole to 

be stationary. We also assume the dipole to be rigid. To test our method, in 

chapter 2, we consider the problem of a charged particle experiencing only 

the electric dipole potential. We reproduce the critical dipole moments re­

quired to bind a charged particle and compare our results with previously 

obtained values [12]. In chapter 3 we discuss the variational method in pres­

ence of the electric dipole and a magnetic field along the dipole moment. 

Using our variational method, we obtain the ground state energy for the az­

imuthal quantum number m1 = 0 of an electron in such a situation. Also, we 

investigate the critical dipole moment, if any, required to bind the electron in 

such a situation. In references [13, 14] a similar problem has been addressed 

considering a very strong magnetic field ( 106T). Such strong magnetic fields 

may be found in astronomical objects like neutron stars. However, in a labo­

ratory set up, usually the highest uniform magnetic fields are of the order of 

10-100 T. Our method, as will be discussed in chapter 3, is expected to work 

better than the method formulated in [13] in this regime. In the following 

chapters several results related to the inverse square potential will be used. 

Before proceeding to the second chapter, we, therefore, briefly discuss the 

inverse square potential from references [15, 16] in the following subsection. 

2 



MSc Thesis - A. Chatterjee 

1.1 The ~ Potential 
r 

McMaster - Physics and Astronomy 

It is well-known that the inverse square potential is anomalous in quantum 

mechanics [15, 16, 17]. The physical system of our interest, the point electric 

dipole, gives rise to an inverse square potential. Even for the finite dipole, 

the potential experienced by a charged particle at large distances compared 

to the dipole length is of inverse square nature. In this section, we discuss 

some of the previously established results related to such a potential which 

we have used in the subsequent chapters. The radial part of the Schrodinger 

equation for a particle (mass m) in an inverse square potential Vis given by 

(1.1) 

Here u(r) is related to the radial wavefunction <I>(r) as u(r) = r<I>(r) and the 

ffi · f 1 · h ifu al n?l(l + 1) · · 1 d d · N coe c1ent o r2 m t e centr g term, 
2
m , IS me u e m a. ote 

that the Hamiltonian is scale invariant. The existence of any bound state 

implies instability for such a system. We show this following the argument 

in [15]. Consider equation (1.1) withE< 0. In terms of r = br, where b > 0, 

this equation implies 

Thus a bound state (u(r)) with energy E implies a bound state (u(br)) with 

energy b2 E. Taking b to be any positive number, as b ---t oo the system 

becomes unstable. However, denoting ~'";a by a, it may be shown [15, 16] 

that the Hamiltonian in equation (1.1) does not support a negative energy 

3 
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state for a > - ~. For a > 0 the potential is evidently repulsive and hence 

1 
does not support any bound state. For - 4 <a< 0 we sketch the proof as 

given in reference [15]. Let a= v(v- 1), where v is any real number. Note 
1 1 

that the minimum of a is - 4 and the corresponding vis 2. For an arbitrary 

function g(r) we have, 

82 
a (82 

v(1-v) ) 
- 8r2g(r) + r2g(r) = - 8r2g(r) + r2 g(r) 

=- (~ + !:) (~- !:) g(r). (1.2) 
ar r ar r 

Let u(r) and v(r) be any two functions defined over r E {0, oo} which go to 

0 as r --t 0 and r --t oo. In the domain of such functions (~ + !:) and 
ar r 

(- :r + ~) are Hermitian conjugates of each other, 

(1.3) 

Therefore, 

( 

A ) 1i21oo I du v 1

2 

<I>JHJ<I> = - - - -u dr 
2m 0 dr r 

~ 0. (1.4) 

4 
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This shows that equation (1.1) does not have negative energy solutions for 

-~ <a< 0. For a< -~, however, negative energy solutions exist but the 

quantum system is anomalous. The negative energy normalizable solution 

<I>K(r) corresponding to the energy _!!!._"'2 is given by [15], 
2m 

<I>K(r) ="' 2sinh(7r( -a-~)) Ki(-a-i)("'r) 

7r( -a-~) y'r 
(1.5) 

where Ki(-a-i) denotes the modified Bessel function of order i( -a-~). The 

allowed values of "'' as usual, are to be determined by the boundary condition 

that the wavefunction vanishes at the origin. As r -7 0, for a real g [16, 15], 

Evidently, as r -7 0, the wavefunction goes through infinitely many nodes 

hinting the existence of infinitely many bound states of even lower energies. 

As we have already discussed the system is, therefore, unstable. However, 

renormalizing the potential by modifying its short range part, it is possible 

to show that it supports infinitely many negative energy states as a -7 -~ 
from the left, that is E -7 0 from the negative side [15]. The successive 

energies are related by, 
E -2~ 

n+1 = e<-a-!) 
En . (1.7) 

For a < -~, even the positive energy (scattering) states show unusual fea-

tures. The general solution of equation (1.1) is given by, 

(1.8) 

5 
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where H(l) and H(2) are Hankel functions, k = ffe [15]. The boundary 

condition uk(O) = 0 does not determine the ratio~· As discussed in [15], as 

a consequence there is no formula for the phase shift of the scattered wave 

( 8 ( k)) and the probability conservation is not implied. 

6 
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2 Critical Electric Dipole Moment 

As pointed out in chapter 1, an electric dipole moment must have a minimum 

value in order to bind a charged particle. The critical dipole moment (Pc) is 

the minimum dipole moment required to bind a particle. It may be found 

analytically. In this chapter, to test our variational method in absence of the 

magnetic field, we calculate the critical dipole moment of both the point and 

the finite electric dipole. A few higher dipole moments, which also allow for 

zero-energy bound states, are also obtained. For a finite dipole (Figure 1), 

the dipole moment is defined asp= 2d Qz, where Q denotes the magnitude 

of charge at each pole and 2d is the separation between them. For a point 

dipole, d ---t 0 and Q ---t oo, keeping the dipole moment p finite (Figure 

2). Such a situation is an idealization. The critical value Pc depends on the 

charge q and the mass m of the particle, but only in the combination Pcmq 

[12, 18]. We therefore use the dimensionless quantity, 

(2.1) 

throughout this chapter. We obtain the critical value of .X, denoted by Ac· 

Our method reproduces the known result [12] that the critical dipole moment 

does not depend on the short range regularization methods of the inverse 

square potential [15, 16]. It therefore is the same for both, the point dipole 

and the finite dipole [12, 18]. In passing we also show that in two dimensions 

any value of the electric dipole moment binds the charged particle [18]. 

7 
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q 

Q 

N 

-Q 

X 

Figure 1: The charge qat (r, 0) in the presence of a finite dipole centered at 
the origin. 
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q 

N 

X 

Figure 2: The charge q at (r, B) in the presence of a point dipole pat the 
origin. 
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2.1 The Point Dipole 

2.1.1 The Critical Dipole Moment 

First we consider a point electric dipole. As shown in Figure 2, we assume 

that the dipole moment p = pz and p > 0. A point charge ( q) at position 

r, in the presence of a stationary point dipole (Figure 2), experiences a 

potential Vp (the subscript p stands for the point dipole) given by, 

v; ( ()) = pq cos() 
P r, 4 2 • 

7fEo r 
(2.2) 

In spherical polar coordinates the Hamiltonian of the charged particle has 

azimuthal symmetry, and is given by 

(2.3) 

The sign of q may be arbitrarily chosen. We note that changing the sign of q 

changes the sign of the potential energy term in the Hamiltonian. Reversing 

the orientation of the dipole moment p, that is assuming iJ = -pz, the new 

potential v; ( r, 0) becomes, 

V.' (r, O) = pq cos(1r- 0) = _ _!!!!__cos() = _ V. (r, ()). 
P 47fEo r 2 47fEo r 2 P 

Thus changing the sign of q or reversing the orientation of the dipole moment 

both have the same effect on the Hamiltonian. It follows that changing the 

sign of q and reversing the orientation of the dipole moment simultaneously 

leave the Hamiltonian unaltered. From physical considerations it is clear 

10 
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that each of these should not affect the energy eigenvalue and hence also 

the critical dipole moment. As will be discussed, a similar situation occurs 

in the case of a finite dipole. We comment (comment b) on this issue in 

detail at the end of this section. We consider >. to be positive throughout 

the section unless otherwise mentioned. Because of the azimuthal symmetry 

mz is a good quantum number, although 1-values get mixed. Since we are 

interested in the ground state supported by the critical dipole moment, we 

may take the azimuthal quantum number mz = 0. We consider the following 

trial wave function with m1 = 0, 

1 
\ll (r, e)= rn-=<I> (r) e (0). 

y27r 
(2.4) 

We expand 8 (0) in terms of Legendre polynomials, truncating the series 

after the first three terms for simplicity. In this approximation, 

The normalization constant N2 is given by, 

15 
(2.6) 

2 (15 + 5a~ + 3a~) · 

The ground state wavefunction, given by equation (2.4), is real. Without 

loss of generality, we assume that the variational parameters a1 and a 2 are 

real. We perform a variation with respect to the radial wavefunction <I>(r), 

11 
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without specifying its form : 

(2.7) 

where E0 is the ground state energy eigenvalue of fi. This gives the following 

equation. 

(2.8) 

where I is given by 

I=.!!!.._ ((8ci>)
2 

+ lOa~+ 18o:~ cl>
2
) + .J!!L.. 4o:lo:2 + 10 cl>

2 
_ Eoci>2 

2m 8r 15 + 5o:~ + 3o:~ r2 47rEo 15 + 5o:~ + 3o:~ r2 • 

(2.9) 

Using the Euler-Lagrange equation, 

(2.10) 

I del> • 
where ci> = dr , we obtam, 

_.!!!.._.!!._ (r2w') + (.!!!.._ lOa~+ 18o:~ + pq 4o:lo:2 + 10 ) ci> = Eor2 ci>. 
2m dr 2m 15 + 5o:~ + 3o:~ 47rEo 15 + 5o:~ + 3o:~ 

(2.11) 

With u (r) =rei> (r) the above equation simplifies to the following, 

(2.12) 

12 
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The effective potential ~(r) (where the subscript p stands for the point 

dipole) is given by, 

V; r = (.!!!.__ lOa~+ 18a~ + pq 4a1a 2 + 10 ) ~ 
p( ) 2m 15 + 5a~ + 3a~ 47rEo 15 + 5a~ + 3a~ r2 • 

(2.13) 

As we have discussed in the previous chapter, for a zero energy bound state 

the coefficient of 
1
2 

in ~(r) must be-~ [15, 16]. This leads to the following 
r 4 

equation. 

lOa~ + 18a~ + A 4a1 a2 + 10 1 
15 + 5a~ + 3a~ 15 + 5a~ + 3a~ -4, (2.14) 

where A = 
2~~ 

4
pq as defined before. Simplifying, 

n 7r€o 

45a~ + 75a~ + l6Aa1 a2 + 40Aa1 + 15 = 0, (2.15) 

or, 

a1 = 
9

1

0 
( -40A- 16Aa2 ± V256A2a~- 13500a~ + 1280A2a 2 + 1600A2 - 27oo) . 

(2.16) 

Since there is only one zero energy bound state, the variational parameters 

a 1 and a2 must be unique. For a unique value of a 1 the discriminant must 

vanish, which yields a quadratic equation in a2 • This implies that 

Therefore, 
(5( -32A2 ± gJ -1125 + 688A2)) 

a2 = ( -3375 + 64A2 ) • 
(2.18) 

13 
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688A2
- 1125 = 0. (2.19) 

We also note that equations (2.16) and (2.17) together imply that a 1 changes 

sign with the sign of A. However, from (2.18), (2.19) and (2.16), a 2 remains 

the same even if A undergoes a sign change. Denoting the critical value of A 

by Ac, therefore, 

{ll25 15 {5 
Ac = y 688 = 4V 43 ~ 1.27874, (2.20) 

(considering the positive sign only) or, 

- .!!!_ 47rEo ' - 1 27874.!!!._ 47rEo 
Pc - 2m q "c - · 2m q . (2.21) 

The corresponding values of the variational parameters are given by 

a1 = - {43 ~ -0.5865 V125 
2 

a2 = 
25 

= 0.0800. (2.22) 

From equation 2.21, in atomic unit the critical dipole moment (Pc = ~c) 
required to bind an electron is 0.63937 which is about 1.625 D. As should 

be evident from the analytical solution [12, 18], the critical dipole moment is 

determined by the angular part of the wavefunction assuming that the coef­

ficient of 'li
2 

2 
in the radial equation is --

4
1 

. In our method the variational 
2mr 

parameters in the angular part of the wavefunction determine the critical 

dipole moment. Considering more terms in the angular part of the trial 

14 
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n Ac 
1 1.2990381057 
2 1.2787393865 
3 1.2786299390 
4 1.2786297545 
5 1.2786297544 

Table 1: The highest order of the Legendre polynomial (n) in the trial wave­
function and the corresponding Ac 

wavefunction yields lower values of >-c. Table 1 lists the highest order of the 

Legendre polynomial (n) in the angular part of the trial wavefunction and 

the corresponding Ac obtained by our method. For given n the corresponding 

8(0) is given by, 

(2.23) 

Nn is the corresponding normalization constant. It is not surprising that our 

Ac is very close to the very accurate value (1.2786297544 up to ten decimal 

places) obtained in reference [18]. This is because the angular part of the 

trial wave function closely resembles the actual wavefunction for the zero 

energy state [12, 18]. For the critical value >-c, the minimum of the strength 

of 
21i~~(r) in equation (2.12), 

lOa~+ 18a~ + >. 4a1a2 + 10 
15 + 5a~ + 3a~ 15 + 5a~ + 3ar 

1 
goes to - 4. With>.= 1.27874, we numerically minimized this and obtained 

exactly -~. The corresponding values of the variational parameters, up to 

four decimal places, are given by, a 1 = -.5865 and a 2 = .0800. This is shown 

in figures 3 and 4. In figures 3 and 4, we plot the strength of the effective 

15 
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potential with the critical dipole moment against the variational parameters 

a 1 and a 2 respectively. 

As shown in Figure 5, the minimum value of the coefficient of the 
1
2 r 

in the effective potential, when minimized with respect to a 1 and a 2 for a 

given >., decreases with increasing >.. However, since for a point dipole the 

effective potential is purely inverse square, no negative energy state exists 

for >. > >-c [12, 15]. For specific dipole moments, which are higher than the 

critical value, zero energy bound states do exist. We proceed to obtain a few 

of these using our method in the next subsection. 
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4.8 

3.8 

2.8 

1.8 

0.8 

- 0 . 2 l.r=;::::::;:::;i=i=;::;:::;:::;:~:::::;:::;i=i=;::;:::::r:=r:::;:::;=rJ 

-5.0 -2.5 0.0 2.5 5.0 

~, 

2m - -
Figure 3: !rr2Vp with A = Ac vs. a 1 . The effective potential VP is defined 

in equation (2.13) with A replaced by Ac· The graph shows the projection of 
2m 2 -

the 3D plot !rr VP vs. a1 and a2. 
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4.8 
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2.8 
r~}vp 
·11'>-

1.8 

0.8 
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-4 -2 0 2 4 

a'.-z. 

. . 2m 2 - . _ 
F1gure 4. lifr Vp w1th >. - Ac vs. o:2 • The graph shows the projection of 

2m -
the 3D plot lifr2VP vs. o:1 and o:2 . 
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-0.20 

-0.25 

1.2 1.3 1.5 

2m -
Figure 5: The minimum of 7rr2VP with respect to the variational parameters 

a 1 and a 2 vs. the corresponding .A. 
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2.1.2 Larger Dipole Moments Supporting Zero Energy Bound 

States 

Now we obtain a few of the dipole moments which are greater than the critical 

dipole moment but which also support a zero energy bound state. We then 

compare the values we obtain with the values obtained in references [12, 19]. 

First we consider the bound states with azimuthal quantum number m1 = 0. 

From the analytical solution it may be evident that we need to consider more 

Legendre polynomials in the angular part of the trial wavefunction to get a 

few higher values of A. To keep calculations simple we assume that n = 5 in 

equation (2.25). As before, assume that the wavefunction is given by, 

W (r, B) 

e (B) 

~<I>(r)e (B), 
y27r 

Nn (1 + r:f=1 aiPi (cos B)) , 

(2.24) 

(2.25) 

with Nn being the corresponding normalization constant. For n = 2 we had 

obtained only one value of A supporting a zero energy bound state. As before, 

we perform a variation of ('ll\H- E0 \W) with respect to the radial part of 

the wavefunction, <I>(r), 

8('ll\H- E0 \'ll) = o. 

With u(r) = r<I>(r), the Euler-Lagrange equation now gives, 

d:2 2m- 2m 
- dr2u(r) + WVp(r)u(r) = wEou(r), (2.26) 
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(for a detailed calculation see appendix A). The modified effective potential 

"C';(r) is given by, 

V. (r) = !!_ (2310a~ + 4158a~ + 5940a~ + 7700a~ + 9450a~) 1 
P 2m 1155a~ + 693a~ + 5 (693 + 99a~ + 77a~ + 63a~) r 2 

n2 (462a1 (5 + 2a2) + 594a2aa + 440aaa4 + 350a4a5)A 1 
+2m 1155a~ + 693a~ + 5 (693 + 99a~ + 77a~ + 63a~) r2 · 

(2.27) 

For a zero energy bound state E0 = 0 , we demand that the coefficient of 
1
2 r 

in equation (2.26) to be equal to -~. Therefore, 

(2310a~ + 4158a~ + 5940a~ + 7700a~ + 9450a~) 
1155a~ + 693a~ + 5 (693 + 99a~ + 77a~ + 63a~) 

( 462al (5 + 2a2) + 594a2aa + 440aaa4 + 350a4a5)A 1 
+ 1155a~ + 693a~ + 5 (693 + 99a~ + 77a~ + 63a~) = -4. (2·

28
) 

Now we claim that for a non-degenerate zero energy bound state the varia­

tional parameters must be unique. Solving for the variational parameter a 1 

from the above equation and demanding the discriminant to be zero, we get 

(2.29) 

Following similar arguments, as discussed in the previous subsection (2.1.1), 

for the other variational parameters ai, i E 2, 3, 4, 5, we obtain, 

35640a3A-24640A2 

a 2 = 2 ( -259875 + 4928A2)' (2·30) 

8316000a4A + 532224A3 - 157696a4A3 

aa = 2 ( -114604875 + 2558160A2) (2·31) 
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9( -23152500a5>. + 516800a5>.3 + 67584>.4 ) 

a4 = -'-11~(:-:-84-3-90 __ 8 __ 6--25=---19-:-7-0--13_6 __ 0>.:-::2-+-1-:-6-38-4:-:->."";74 )-'-' 

-450560).5 

a 5 = 21 (17829244125- 423580320>.2 + 510208>.4 ) • 

(2.32) 

(2.33) 

We note that equations (2.29), (2.31) and (2.33) imply that a~, a 3 and a5 

change signs with>.. However equations (2.30), (2.32) imply that a 2 and a4 

remain the same even if >. changes sign. Obviously it is required that the 

denominators in the expressions obtained for the variational parameters are 

non-zero. For unique a 5, we obtain the following solutions for>., 

>. = {±57.167, ±34.0293, ±15.1034, ±6.66936, ±1.27863}. (2.34) 

However, among these values ±34.0293, ±6.66936 are the roots of the follow-

ing equation which appears in the denominator of a4 , 

843908625- 19701360>.2 + 16384>.4 = 0. (2.35) 

Thus these correspond to the singularities of the coefficient a4• Eliminating 

these values from the list we obtain the first three values of >. which support 

zero-energy bound states, 

>. = {±57.167, ±15.1034, ±1.27863}. (2.36) 

As may be evident, these values of>. may also be obtained by substituting 

the expressions for a~,a2 ,a3 ,a4 ,a5 obtained above in equation (2.28). The 

detailed calculation is shown in appendix A. The corresponding values of the 

22 



MSc Thesis - A. Chatterjee McMaster - Physics and Astronomy 

X 

0.0 

- 0.5 

- 1.0 

-0.5 0.0 0.5 

y 

Figure 6: A 3D plot of 8(B) given by equation (2.25) corresponding to A = 
1.27863. 

variational parameters , rounded up to the fourth decimal place, are tabulated 

in Table 2. 8(B) corresponding to A = 1.27863 and A= 15.1034 are plotted 

in figures 6 and 7 respectively. 
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-1.0 

-1.0 

Figure 7: A 3D plot of 8(B) given by equation (2.25) corresponding to .X = 

15.1034. 
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A a1 a2 a3 a4 a5 
1.27863 -0.5867 0.0804 -0.0050 0.0002 -0.0000 
15.1034 -0.0497 -2.4815 2.4733 -1.16353 0.3227 
57.167 -0.0131 -2.4987 0.6578 3.0561 -3.2086 

Table 2: The lowest three values of A which support zero-energy bound states 
for mt = 0 and the corresponding variational parameters. 

n A 
1 -
2 -
3 17.5306 
4 15.2899 
5 15.1034 

Table 3: The highest order of the Legendre polynomial in 8(0) and the 
corresponding A

1 

Comparing the values of A with the accurate values (rounded off to ap­

propriate significant figures) 1.27863, 15.0939, 42.6018 respectively [12], we 

find that while the critical value 1.27863 is very accurate and the next higher 

value 15.1034 is close, but the highest value 57.167 is poor. The increasing 

values of la2il for i E {1, 2} and la2j+ll for j E {0, 1, 2} corresponding to 

A= 57.167 indicate this as well. Also, even higher values of A's start appear-

ing as we consider more Legendre polynomials in the trial wavefunction. As 

an example, in Table 3, we tabulate the highest order of the Legendre poly­

nomial (n) in the trial wavefunction and the corresponding values obtained 

for the second lowest value of A, denoted by A
1

, which supports a zero-energy 

bound state. For a higher value of A supporting a zero-energy bound state, 

the contribution from the kinetic term (the first term in the R.H.S of equation 

2.27) in the coefficient of n? 
2 

in equation ( 2.27) increases. However, this 
2mr 

is compensated by a decreasing contribution from the potential term (the 
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second term in the R.H.S of equation (2.27)), satisfying equation ( 2.28). In 

Table 4 we tabulate the contributions from the kinetic term (say (Vk)) and 

that from the potential term (say (VA)) in the coefficient of 
2 
n

2 

2 
for different 

mr 

values of A we have obtained above. Evidently (VA) is the coefficient of n
2 

2 2mr 
in the expectation value of Vp with respect to the angular part 8(0) and (Vk) 

is the coefficient of 
2 
n

2 

2 
in the expectation value of 'P with respect to the 

mr 
angular part 8(0). 

A (Vk) (VA) (Vk) + (VA) 
1.27863 0.212531 -0.462531 -0.25 
15.1034 6.48167 -6.73167 -0.25 
57.167 13.3201 -13.5701 -0.25 

Table 4: The contribution of the kinetic term and the potential term in the 

coefficient of 
2 
n

2 

2 
in the equation (2.27) and the corresponding A. 

mr 

We also obtain the lowest two values of A, for mz = 1 and mz = 2, which 

support a zero-energy bound state, using our method demonstrated above. 

We denote these by Am1 and A~1 respectively. We assume the trial wave 

functions for each mz as, 

where, 

w(r, 0, ¢) = ~<I>(r)8(0)eimt</>, 
y27r 

(2.37) 

Pr~;.'m,1 is the associated Legendre polynomial, Nn is the normalization con­

stant. As before, we also assume the variational parameters to be real. Again 

we taken= 5. In Table 5 we display our result. The accurate values ob-
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tained in [12] approximated to the fourth decimal place are mentioned in 

parentheses for comparison. The details of the calculations for m1 = 1 and 

mt Amz ).m 

1 7.5839(7.5839) 28.3094(28.2242) 
2 19.0581(19.0581) 47.2378( 46.7971) 

Table 5: The lowest two values of >. which support zero-energy bound states 
for mt = 1 and mt = 2. 

m1 = 2 are given in appendices B and C respectively. 

2.1.3 Absence of the Critical Dipole Moment in Two Dimensions 

We apply our method to show the absence of any critical dipole moment for 

a point electric dipole in two dimensions [18]. Using only one parameter a 1, 

the radial equation for a zero-energy bound state is given by, 

(2.39) 

For a zero energy bound state the coefficient of r~ has to be -l [15, 16]. 

Therefore, 

or, 

(
ai + 2a1..\ _ ~) = -~ 

2+ai 4 4 

:::::? a~ + 2a1..\ = 0, 

27 
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For the critical dipole moment, we claim that there will be a unique ground 

state. Hence the discriminant of the above equation must vanish. Therefore, 

Ac = 0. It is known that in two dimensions any attractive potential has a 

bound state. So this result is expected [18]. 

2.2 The Finite Dipole 

Now we consider a finite electric dipole (Figure 1). We assume that the 

dipole is rigid and stationary. Hence the kinetic energy of the dipole is 

neglected. The dipole moment p = pz. For a charged particle, with mass m 

and charge q, in the finite electric dipole potential Vt (the subscript f stands 

for finite dipole) is given by, 

Vt(r, 0) = Qq ( 1 - 1 ) . ( ) 
47rEo V r 2 + £12 - 2rd COS 0 V r 2 + £12 + 2rd COS 0 

2
.4

2 

In the above 2 d is the separation between the charges ±Q in the dipole. 

The Hamiltonian for the charged particle is 

Here we note that unlike the point dipole potential Vp, at short range V1 is 

well behaved. As r ---+ 0, Vt ---+ 0. Unlike the case of a point dipole, the 

Hamiltonian above is not scale invariant any more and there is no anomaly. 

Hence for p > Pc negative energy bound states exist. The sign of q may 

be arbitrary. We note, however, that a change in the sign of q also changes 
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the sign of the potential. For Q > 0, the dipole moment is aligned along 

the positive z axis (Figure 1). Interchanging the positions of +Q and -Q 

reverses the orientation of the dipole moment. In that case denoting the 

dipole moment by i}, i} = -pz in spherical polar coordinates. The potential 

Vj(r) becomes, 

V' ( r 0) = Qq ( 
1 

-
1 

) 
f ' 47reo J r2 + d:2 - 2rd cos( 1r - 0) J r2 + d2 + 2rd cos( 1r - 0) 

Qq ( 1 1 ) 
= - 47fEo v'r2 + d:2 - 2rd cos 0 - v'r2 + d:2 + 2rd cos 0 

(2.43) 

Thus, similar to the case of the point dipole, changing the sign of q and 

reversing the orientation of the dipole moment both have the same effect on 

the Hamiltonian. This means that changing the sign of q and reversing the 

orientation of the dipole moment simultaneously leaves the Hamiltonian un­

altered. From physical considerations it is clear that each of these operations 

should not have any effect on the energy eigenvalue and hence also on the 

critical dipole moment. In comment (b) we discuss this issue in detail for 

both the point and the finite dipole. Following an argument by Connolly and 

Griffiths [18], we first show that for a finite electric dipole, the occurrence of 

a zero energy bound state of a charged particle depends only on the dipole 
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moment. The Schrodinger equation, at energy E, reads, 

-fi2 "\72\ll(r, 0) + Qq ( 1 - 1 ) w(r, 0) 
2m 47rEo Vr2 + dJ. - 2rd COS 0 Vr2 + dJ. + 2rd COS 0 

Multiplying both sides by 
2
;:; ~we get, 

= E\ll(r,O). 

(2.44) 

- A( 1 1 ) -V2w(f O) +- - w(r o) 
' 2 vf2 + 1- 2fcos0 vr2 + 1 + 2fcos0 ' 

= ~rr: d2 E\ll(f, 0), (2.45) 

where, f = ~· The above equation clearly implies that the presence of a zero 

energy bound state depends only on the product p= 2d Q. We denote the 

critical dipole moment by Pc and the corresponding value of A by Ac as before. 

For p = Pc and hence for A = Ac, the ground state energy becomes zero. The 

above argument thus shows that the critical dipole moment is independent 

of the charge separation of the dipole. Though d is assumed to be non-zero 

in this case, this hints that the critical dipole moment is the same for point 

and finite dipoles. 

We now obtain the critical dipole moment of a finite dipole using our 

method. For the ground state (or for s-wave states in general), with m1 = 0, 

(2.46) 
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We consider the following trial wave function. 

where, 

1 
w(r, 0) = . r.L<I>(r)8(0), 

v27r 
(2.47) 

As we will discuss in comment b, the potential v,(r, 0) (equation (2.42)) only 

includes Legendre polynomials of odd orders. Hence, in ('li!Vtl'll), it couples 

even and odd Legendre polynomials in 8(0). Therefore we keep Legendre 

polynomials of both even and odd orders in the trial wavefunction. This 

issue has been discussed in detail in the next chapter. As before, we assume 

a 1 and a 2 to be real. The normalization constant N2 is given by equation 

(2.6). 

Now we consider, 

<5(\l!IH- EoiW) = 0, 

or, 

(2.49) 

where, 

n2 
(a<I>) 

2 
_ 2 I= 

2
m ar + (V,(r)- E0 )<I> . (2.50) 

The effective potential Vt(r), for r ~dis, 

(2.51) 
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and for r > d it is, 

Note that the effective potential is continuous at r =d. 

Using the Euler-Lagrange equation we get, 

8 8(r2 I) 8(r2 I) _ O 
ar---wr-~- ' 

where <P' (r) = dd <P(r) . With <P(r) = u(r), E0 = 0 we get, 
r r 

(2.52) 

(2.53) 

(2.54) 

Solving the above equation is not straight forward. However, for determining 

the critical value Ac, this may be avoided. Let us consider the long range part 
- - 1 

of Vt. For r » d, in Vt(r) evidently the 2 term dominates. Multiplying the 
r 

b . b 2m a ave equatiOns y !if we get, 

(2.55) 

This equation is the same radial equation obtained in case of the point 

dipole. This is a consequence of the fact that for large r a finite dipole may 

be well-approximated as a point dipole. For a normalizable solution, u(r) 

must vanish as r -t oo. This equation has a normalizable solution only if 
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the coefficient of the 
1
2 is less than-~ [16, 18]. Hence for the critical dipole 

r 4 
moment we obtain the following equation, 

2(5a~ + 9a~) +A (10a1 + 4a1a2) = -~ 
15 + 5a~ + 3a~ 15 + 5a~ + 3a~ 4 · 

(2.56) 

Simplifying we get, 

(2.57) 

or, 

(2.58) 

The critical dipole moment supports only one bound state. So the pa­

rameter a 2 must be unique. This implies that the discriminant of the above 

expression must vanish. Thus we get, 

(2.59) 

or, 

(2.60) 

This is a quadratic equation in a 1 . By the same argument a 1 must also 

be unique. Hence the discriminant must vanish. This gives, 

10320A~ - 16875 = 0, (2.61) 
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or, 
15 [5 

Ac = 4V 43 ~ 1.27874. 

The corresponding values of a 1 and a 2 are given by, 

a1 = -~ ~ .5865, a 2 = .08. 

(2.62) 

This value is close to the value of A obtained in references [12, 18], which is 

1.27863 (rounded up to the fifth decimal place). 

As we have noticed, the long range part of the effective potential in case of 

the finite dipole is the same as the effective potential obtained for the point 

dipole. The critical dipole moment obtained in this case also becomes more 

accurate as we consider more P1's in the trial wavefunction. Also, similar 

to the point dipole case, for the critical A and hence for the critical dipole 

moment, the minimum of the coefficient of 
1
2

, 
r 

lOa~+ 18a~ +A 4a1a 2 + 10 
15 + 5a~ + 3a~ 15 + 5a~ + 3ar 

goes to -~. Figures 2 and 3 illustrate this. We plot the coefficient of : 2 vs. 

a1 and vs. a 2 respectively for A = Ac. With A = 1.2787 4, we numerically 
1 

minimized the coefficient and obtained exactly - 4. As shown in Figure 5 

above, for a given A, the coefficient of 
1
2 

in the effective potential, when 
r 

minimized with respect to the variational parameters a 1 and a 2 , decreases 

with increasing A. As we have already mentioned, unlike the case of a point 

dipole, a finite dipole, with dipole moment p > Pc has a ground state with 

negative energy [6]. Like Vh the contribution of the finite dipole to the ef­

fective potential V1 is also well-behaved near the origin. The coefficient of 
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1 1 
2 in the long range part of the effective potential exceeds -- as the dipole 
r 4 
moment increases beyond the critical value producing ground states with 

negative energies. 

Comments: 

a. For our variational method to be meaningful it is essential that the 

expectation value, < wjH- E0 jw >is well defined. This demands that the 

domain of W is the space of square integrable functions. However, the zero 

energy wavefunction is not normalizable. To determine the critical strength 

(Ac) using our method, for the sake of mathematical consistency one may 

work with Ac + E, E > 0. This holds good in the case of a finite dipole. 

However, such a scheme does not work for the point dipole, since a pure 

inverse square potential has no negative energy bound states [15, 16]. To 

circumvent this shortcoming, there are several regularization methods [15, 

16], as mentioned in the previous chapter. We may regularize the pure inverse 

square potential with a hard sphere of radius R [12] and still obtain the 

same critical value [12]. This happens because the long range part of the 

potential supports a normalizable bound state only if the coefficient of ~ 
1 r 

is more attractive than - 4 [15, 16]. Therefore all our arguments still hold 

good. Moreover, our method reflects the already established result [12] that 

the critical dipole moment is independent of the short range modification 

necessary to regularize the inverse square potential. 

b. We have mentioned that for the point as well as the finite dipole, reversing 

the orientation of the dipole moment, or changing the sign of q, both change 
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the sign of .A, and hence the sign of the potential. We note that, in both 

cases, the potentials V(r, 11) may be expanded in terms of odd Legendre 

polynomials. The expansion is trivial in case of the point dipole. For the 

finite dipole, the following relation holds. 

(2.63) 

for r < d, 

(2.64) 

for r ~ d. As a consequence under the parity transformation (P) both the 

potentials also change signs. This is also evident from the explicit forms of 

the potentials Vp and Vj given by equations (2.2) and (2.42) respectively. 

We now consider the equation, 

f:Jw = Ew. 

Then, 

'Pf:Jw = EPw, 

or, 

Thus Pw is an eigenstate of the parity transformed Hamiltonian P f:Jp-l 

with the same energy E. The parity transformed Hamiltonians for both the 

point and the finite dipole has the same form as the corresponding original 

Hamiltonians fi with the orientations of the dipole moments being reversed 
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or the sign of q being altered. This justifies our claim that the energy eigen­

values should not change if we change the sign of q or reverse the orientation 

of the dipole moment. Evidently the corresponding wavefunction \II changes 

to P\II. This implies that, if we change the sign of p or reverse the orientation 

of the dipole, the variational parameters appearing as the coefficients of odd 

Legendre polynomials will change sign, the variational parameters appearing 

as the coefficients of the even Legendre polynomials will remain unaltered. 

This is why we have observed that the variational parameters appearing as 

the coefficients of odd Legendre polynomials change signs with .>... 
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3 A Charged Particle in the Potential of an 

Electric Dipole in the Presence of a Mag­

netic Field 

In this section, we use our variational method to estimate the energy levels 

of a charged particle (charge q, mass m) in the presence of an electric dipole, 

and a magnetic field aligned along the dipole moment. We first explain 

why our method is expected to work well in determining energy levels of a 

charged particle in such a situation. Both the point and the finite electric 

dipoles are considered. We also investigate whether there is critical dipole 

moment required to bind a charged particle in the presence of a magnetic 

field. As discussed in the previous chapter, the critical dipole moment binds 

a state with the azimuthal quantum number m1 = 0. Therefore we consider 

states with m1 = 0. We determine the ground state energies with mz = 0 

of the charged particle in such systems. The variation in binding energy of 

the charged particle with the charge separation (2 d) of the finite dipole is 

also studied. All physical quantities listed in different tables are expressed 

in atomic unit (See appendix E for a detailed description). 

3.1 Description of The Variational Method 

We consider the potential experienced by the charged particle, in the presence 

of rigid and stationary finite electric dipole and a magnetic field as shown 

in Figure 8. The particle is assumed to be spinless. We discuss the effect of 

spin later in this chapter. Because of the azimuthal symmetry, m1 is a good 
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Figure 8: A charge q in presence of a finite dipole centered at the origin a 
magnetic field iJ. 
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N 

X 

Figure 9: Constant R in x - z plane. In cylindrical coordinate system R is 
defined in equation (3.13). 
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R 

X 

Figure 10: Constant R in x- V/3 z plane. In cylindrical coordinate system 
R is defined in equation (3.13). 
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Figure 11: A charge q in presence of a Hi centered at the origin and a 
magnetic field B. 
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quantum number. We consider the ground state with m 1 = 0. In spherical 

polar co-ordinate system, the potential VjB) (r, e) (the subscript f and the 

superscript B stand for the finite dipole and the magnetic field respectively) 

takes the following form : 

(3.1) 

where V1(r, e) is given by equation (2.42). The contribution from the finite 

dipole to V}B) ( r, e) may be written as, 

V1(r, e)= Qq 
1 

( 
1 

-
1 

) . (3.2) 
47reo v'r2 + rP . {1 - 2rd cos e . /1 + 2rd cos e V ~ V r2+(i2 

Each term on the R.H.S above may be expanded in terms of both even and 

odd powers of cos e. Clearly even powers of cos e get canceled and only the 

terms with odd powers of cos e survive. Hence V1(r, e) may be expanded in 

terms of Legendre polynomials of odd orders (equations (2.63) and (2.64)). 

On the other hand, the contribution from the magnetic field in vjB)(r, e) may 

be expanded in terms of the first two Legendre polynomials of even orders. 

Hence we get 

(B) 2Qq oo r2i+l q2 B2 2 2 
Vf (r,e) = -

4 
-I:i=DJ?.+2P2Hl(cose) + --r -(P0 (cose)- P2(cose)), 

7rEo u-2 8m 3 
(3.3) 
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for r < d and 

for r >d. It has already been discussed that at short range V1(r, 0) is well­

behaved. As a consequence v}B) is also well-behaved at short range. As 

r -t 0, v}B) ~ v, ex r. However, as we mentioned before, when r -too, the 
1 

contribution of the electric dipole (VJ) to the potential V}B) (r, 0) goes as 2. 
r 

Hence the contribution from the magnetic field to v}B) dominates for large 

r. In cylindrical polar coordinates v}B) may be written as, 

v<B) ( z) - Qq ( 1 - 1 ) + q2 B2 2 ( ) 

f p, - 47rEo J p2 + (z - d)2 J p2 + (z + d)2 8m p · 
3

·
5 

The Schrodinger equation for the charged particle is given by 

For the point dipole, on the other hand, the corresponding potential Vp(B) 

(the subscript p stands for the point dipole) is given by, 

T r(B) ( n) - ..J!!L cos 0 e2 B2 2 . 2 II 
v P r, o -

4 2 + 
8 

r sm o 
7rEo r m 

(3.7) 

This also may be expanded in terms of Legendre polynomials as follows : 

(B) pq P1 (cos 0) 2 e2 B2 
2 ~ (r,O) = -

4
- 2 + --

8
-r (Po(cosO)- P2(cosO)). (3.8) 

7rEo r 3 m 

44 



MSc Thesis - A. Chatterjee McMaster - Physics and Astronomy 

The Schrodinger equation for the ground state ( m1 = 0) of the charged 

particle is obtained by replacing V)B) with Vp(B) in equation (3.6) 

where E0 denotes the corresponding ground state energy. The Hamiltonian 

for the finite dipole, unlike the case of the point dipole, is not scale invariant. 

The Schrodinger equations equations (3.6) and (3.9) do not have analytical 

solutions. Hence approximate methods are needed to study such systems. 

In our approach, we assume that the trial wavefunction for the ground state 

( m1 = 0) is a function of the variables R and 'fJ. In spherical polar coordinates, 

these variables are given by, 

R = rJsin2 
() + (3 cos2 () = ry'1- (1- (3) cos2 (), 

(
tan()) -113 cos() 

'fJ = arctan m(3 = arccos . 
v fJ y'1 - (1 - (3) cos2 () 

In cylindrical polar coordinates the variables R and 'fJ are given by, 

R = y' p2 + (3z2 , 

p 
'fJ = arctan -I!Jz, 

'f}E{0,1r}. 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

where (3 is a variational parameter such that 0 < (3 < 1. (3 < 0 is excluded 

since it clearly makes both R and 'fJ imaginary. We exclude (3 > 1 from 

physical considerations which will become clear after we write down the trial 
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wavefunction. 

The trial wavefunction for the ground state of the charged particle is 

taken to be 

w(R) = q>(R)8(1J), 

8(1J) = Nn(1 + E~=lai.Pt(cos7J). 

(3.15) 

(3.16) 

As before, the only requirement is that the trial wave function is normaliz­

able. We do not assume any explicit form for q>(R). In the presence of a 

magnetic field, the charged particle feels an attraction towards the z axis. 

Therefore, with the electric dipole, when a magnetic field is added, we ex­

pect an increment in the probability density at points on the z axis. With 

0 < (3 < 1, q>(R) meets this expectation, and (3 > 0 with a fixed R denotes an 

ellipsoid. Since (3 < 1, the major axis of the ellipsoid is along the z axis. A 

cross section of the ellipsoid in the x- z plane is shown in Figure 9. Apart from 

allowing complex values for R and 1], (3 < 0 also permits non-normalizable 

q>(R). These physical considerations influence the choice of (3 in the range 

between 0 and 1. 

R is invariant under parity transformation and may be expressed in terms 

of even Legendre polynomials. However, cos 1J changes sign under parity 

transformation and may be expressed in terms of the odd Legendre polyno-
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mials. 

R = r"E~0c;fPi(cosO), 
R f~1 (1 - (1 - {3)t2 )P._(t)dt 

C· = 
~ f~1 Pl(t)dt ' 

cos 'fJ = VS"E~0c"f Pi (cos 0), 

t .Jl3 arccos .,f/Jt 
-1 .j1-(1-(3)t2P,(t)dt 

c"! = ---.......,----'-----
~ f~ 1 Pl(t)dt 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

As we mentioned, ~~+1 = 0, ~n = 0, where n is any positive integer. We 

explicitly work out the first two non-zero coefficients in each case below. 

R = ~ ( /Q{3 arccos [ J,B] ) 
co 2 yp+ .)1-{3 ' (3.21) 

~ = 5 ( ( -1 + f3)JlJ(1 + 2{3) + ...rr=?J( -1 + 4{3) arccos [ J7J]) 
16( -1 + ,8)2 ' 

(3.22) 

cl ~ Hl+ -1 ~{J + J- H~fJ)' arcoos [v7J])' (3.23) 

,------

7} _ ~ ( {3(13 + 2{3) ~ ( 1 {3 _ 4 ;_ {3 ) 
C3-2 8(-1+{3)2+8 5v (-1+[3)5 v (-1+[3)3 

arccos [ VS]) . (3.24) 

It is now clear that the trial wavefunction 'I!(R, 'fJ) implicitly contains in­

finitely many of both even and odd powers of cos e. We determine <I>(R) and 

the corresponding ground state energy Eo by performing a variation of the 

quantity ('Y!JH- E 0 J'Y!), with respect to <I>(R). Since we explicitly choose 

8('fJ), the 'fJ integral may be performed analytically. We know that Legendre 
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polynomials satisfy the following relation [21]. 

(3.25) 

Here C denotes the Clebsch- Gordan coefficient. Also we know that, for the 

above integral to be non-zero, the following conditions hold ( [21]). 

~n=3· 2 
L..ln=l~n = m, 

where n E {0, 1, 2, 3, 4, ... }, {j, k, l} E {1, 2, 3}. 

(3.26) 

(3.27) 

As we explained earlier, the potential term in the original Hamiltonian 

contains both even and odd Legendre polynomials. The even polynomials are 

contributed by the magnetic field and the odd ones are contributed by the 

electric dipole. With our choice of coordinates (R, 'f}, ¢), the wavefunction 

contains infinitely many Legendre polynomials. From equation ( 3.25), it is 

evident that the term (WIV\W) couples infinitely many even and odd Legendre 

polynomials coming from w(R, rJ). Thus our method naturally takes into 

account infinitely many couplings of the Legendre polynomials. To keep the 

computation simple, we keep only three variational parameters, ({3, ar, a 2), 

in case of the point dipole and only two, ({3, a 1), in case of the finite dipole. 

Performing the variation of (w!H- E0 \w) with respect to <I>(R) we obtain 

a Schrodinger-like equation for <I>(R). We solve the equation to determine 

<I>(R) and the corresponding ground state energy E0 • 

Note that a similar method was used to determine the ground state and 
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few excited states of a charged particle in the presence of Hi and a mag­

netic field parallel to the axis of the Hi (Figure 11) [20]. In spherical polar 

coordinates, the potential V~B)(r, B) (the subscript His for Hi) experienced 

by the charged particle at r in its ground state is given by 

v}!)(r B)= Qq ( 
1 + 1 

) 
' 47rEo ../r2 + d2 - 2rd cos B ../r2 + d2 + 2rd cos B 

q2B2 
+ --r2 sin2 B. (3.28) 

8m 

Unlike v,, here the first '-' sign in equation (3.1) is replaced by a '+'. This 

leads to the cancellation of the odd powers of cos B. The potential V~B) (r, B) 

has even parity and may be expanded as a linear combination of even Leg­

endre polynomials. As described in the paper ( [20]), a trial wavefunction 

w(r, B) = ci>(R), where R is defined by equation (3.11), was used. The only 

variational parameter is (3. Such a wavefunction contains only the even Leg­

endre polynomials. Hence the term (wiV~B)jw) only considers couplings 

between different even Legendre polynomials coming from the wavefunction. 

Considering a trial wavefunction w(r, ry, ¢) = ci>(R)8(ry), as we did, does not 

improve the results. Though it takes into account the odd-odd Legendre 

couplings as well, such a trial wavefunction is not a parity eigenstate. The 

Hamiltonian, however, is invariant under parity transformation. In the same 

paper, the authors also apply this method to determine the ground state en-

ergy of a hydrogen atom in a magnetic field. In this case, in comparison to a 

few other simple variational methods, this method was found to be superior 

in the presence of a strong magnetic field. We have checked our numerics by 

replicating a few of the results published in reference [20]. 
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3.2 The Point Dipole and Magnetic Field 

In this subsection we will obtain the ground state energy of a particle (charge 

q, mass m) in the presence of a point electric dipole and a magnetic field. 

As shown in Figure 12, the dipole moment p = pz and a uniform magnetic 

field B = Bz are aligned along the z-axis. In cylindrical coordinates the 

Hamiltonian for the charged particle is given by, 

A n? q_, 2 pq 
H = --(p- -B x f) + cosO. 

2m 2 p2 + z2 
(3.29) 

Because of the azimuthal symmetry, the azimuthal quantum number m1 

is a good quantum number. We choose that m 1 = 0. We also assume that 

the ground state wavefunction for m1 = 0 may be expressed in the following 

form. 

where 

1 
\J!(R, rJ) = ;;c<I>(R)8(rJ), 

y27r 
(3.30) 

(3.31) 

(3.32) 

The variational parameters a 1 and a 2 are considered to be real. We have, 

R = J(t? + {3z2), 'f/ =arctan( :a ). 
vf3z 
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..,. 
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X 

Figure 12: A charge q in presence of a point dipole p at the origin and a 
magnetic field iJ. 
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Inverting these we get, 

p = Rsin T}, 

R 
z = Y73 cos TJ· 

(3.33) 

(3.34) 

Assuming {3 > 0 avoids a singularity in the above relation. Using these 

relations, in terms of the coordinates (R, ry, ¢), the potential experienced 

by the charged particle due to the stationary point electric dipole may be 

expressed as 

v; (R ) = pq COST} 
P ,T} R2 (cos2y . 2 )2 · 

!3 + sm TJ 2 

(3.35) 

For the ground state, the contribution from the magnetic field to the potential 

experienced by the charged particle is given by 

(3.36) 

The expectation value (wJH- E 0 Jw) now becomes, 
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where, 

14a~ + 21,8a~ + lOa~+ ll,Ba~ - 28a2 + 28,8a2 + 35,8 + 70 (~.38) 
7(15 + 5a~ + 3a~) 

4(1- ,8)(7a~ + 3a~ + 21a2) 
7(15 + 5a~ + 3a~) 

2(7 a~ + 28,8a~ + 27 a~ + 36,8a~) 
7(15 + 5ar + 3a~) 

15,8a1(8(1- ,8)~- a 2.j,-,-(1---,8=-)(8,8 + 10) 

4(1- ,8)~(15 + 5ar + 3a~) 
In (l+y'(~-.8)) 2 (7,8a2 + 4,8 + 2a2- 4)) 

+ 
4(1- ,8)~(15 + 5ar + 3a~) 

2(7ar + 5a~ - 14a2 + 35) 
7(15 + 5ar + 3a~) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

Performing a variation of (wj.fr- E0 jw) with respect to <I>(R) and using the 

Euler-Lagrange equation, we obtain 

where <I>"(R) = d~2 <I>(R) and <I>'(R) = d~ <I>(R). For the details of the 

calculation see appendix D. With <I>(R) = u~), this reduces to, 

= E0u(R). (3.44) 
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2m 
Multiplying both sides by n

2 11
, we get, 

Note that, 11 and 18 are positive definite; we show this below. 

11 
_ 14a~ + 21,6a~ + 10(a2 - ~)2 + ll,B(a~ + f1)2 + ¥f,B + ~ (~.46) 

7(15 + 5a~ + 3a~) 
2(7a~ + 5(a2 - t) 2 + 1~6 

18 = 7(15 + 5a~ + 3a~) (3.4
7
) 

These relations imply that the coefficient of the R2 term is non-negative. To 

ensure that the energy E0 is real, we claim that the operator 

acting on u(R) is hermitian in the domain of the square integrable functions 

of R. Considering the original Hamiltonian to be hermitian in the domain 

of square integrable functions in three dimensions, this claim is reasonable. 

However, similar to the case of the pure 
1
2 

potential, this implies the follow-
r 
1 

ing constraint on the coefficient of the R
2 

term of the above equation. 

( 

1 Jl+-fl(~pqld+I3-%:)) 
Re -2 + --=--------=-2-----
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or, 

(3.49) 

or, 

- -pq1d+13-- > --. 1 (2m 12 ) 1 
11 n2 2 4 

(3.50) 

We note that ;
1 

( ~": pq1d + 13 - ~) is the coefficient of ~2 in the Schrodinger­

type equation we obtained. This equation is similar to the Schrodinger equa­

tion for a particle in a harmonic potential in three dimensions. The solution 

is given by [22] 

(3.51) 

where N is the normalization constant. 1F1 is the confluent hypergeometric 

function of the first kind. Also, 

T 

The energy of the n-th excited state with m1 = 0 is 

(3.52) 

(3.53) 

(
2mq2B

2 
) ( 1 4 (2m 12)) ---1B11 2n + 1 + - 1 + - -pq1d + 13 - - . n2 8m 2 11 n2 2 

(3.54) 

The ground state energy Eo may be obtained by putting n = 0 in the above 
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expression. 

fi2 
Eo=­

m (
2mq

2
B

2 
) ( 1 4 (2m 12 )) ---1B11 1+- 1+- -pq1d+13-- . 

h2 8m 2 11 h2 2 
(3.55) 

We note that, as expected, the condition for hermiticity of the operator 

in the domain of the normalizable functions in three dimensions, as given by 

the relation ( 3.50), and equation ( 3.47) together assure that the energy E0 

is positive. We note that, E0 , as obtained by our method, is proportional 

to B. This is analogous to the case when the magnetic field alone is present. 

Motivated by physical situations, we consider an electron to be the charged 

particle of our interest. In atomic units, then, q = -1, m = 1. We take 

the dipole moment along the negative z direction to keep A positive. As 

mentioned earlier, atomic units are used throughout. Corresponding to the 

parameter 1 = 1, the magnitude of the magnetic field (B) is 2.35 x 105 Tesla 

(for details see appendix E). E0 is minimized with respect to the variational 

parameters a 1 , a 2 and f3 to obtain the ground state energy. In Table 6, 

we tabulate Eo for different values of A and specify the corresponding values 

of the variational parameters. Taking the spin (say S) of the electron into 

account, the ground state energy of the electron (E0, the superscripts stands 

for spin) is given by, 

Eg = Eo - j1.B, (3.56) 

where the magnetic moment of the electron j1 ~ - § in a. u. Therefore the 
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actual ground state energy of an electron with Bz = ~ is given by (Eo+ .5). 

For Bz =-~,the actual ground state energy is (Eo- .5). The corresponding 

binding energy (say Eg) is given by, 

Eg = Eb + Jl.B, (3.57) 

where, 

(3.58) 

To show that even weaker dipoles bind, we consider the values of >.. which are 

smaller than >..c, which is the critical value of>.. in the absence of a magnetic 

field. The corresponding binding energies (Eb) are also tabulated. 

As expected, in presence of the dipole, the ground state energies are 

lower than the minimum energy of an electron (without considering its spin 

for the moment) in presence of only B, which is .5 in atomic units for 1 = 1. 

We plot the ground state energy of the electron as a function of >.. (Figure 

13). The energy Eo decreases as >.. increases. Considering that stronger 

dipole moments offer greater binding, one expects the binding energy of the 

electron to increase as>.. increases. In Figure 14 we plot the binding energy as 

a function of>.. which reveals this. In Figure 15 {3 against>.. has been plotted 

which shows that {3 becomes larger as >.. increases. This implies that the 

curves in the p-z plane, along which q>(R) does not change, tend to become 

fatter ellipses as we increase>... Recall that in presence of only B, the curves 

are straight lines parallel to the z axis. The presence of an electric dipole 

allows binding. 
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A (3 a1 a2 Eo Eb 
0.70 0.1171 -0.4064 0.0367 0.4987 0.0013 
0.72 0.1302 -0.4276 0.0385 0.4978 0.0022 
0.74 0.1429 -0.4465 0.0398 0.4968 0.0032 
0.76 0.1554 -0.4635 0.0408 0.4957 0.0043 
0.78 0.1677 -0.4790 0.0416 0.4945 0.0055 
0.80 0.1801 -0.4933 0.0422 0.4933 0.0067 
0.82 0.1926 -0.5064 0.0426 0.4919 0.0081 
0.84 0.2052 -0.5185 0.0428 0.4904 0.0096 
0.86 0.2179 -0.5297 0.0429 0.4888 0.0112 
0.88 0.2309 -0.5402 0.0429 0.4872 0.0128 
0.90 0.2442 -0.5499 0.0429 0.4854 0.0146 
0.92 0.2578 -0.5589 0.0428 0.4835 0.0165 
0.94 0.2718 -0.5672 0.0426 0.4815 0.0185 
0.96 0.2863 -0.5750 0.0425 0.4793 0.0207 
0.98 0.3012 -0.5822 0.0423 0.4770 0.0230 
1.00 0.3168 -0.5889 0.0422 0.4746 0.0254 
1.02 0.3330 -0.5951 0.0420 0.4720 0.0280 
1.04 0.3500 -0.6007 0.0420 0.4693 0.0307 
1.06 0.3679 -0.6059 0.0419 0.4664 0.0336 
1.08 0.3869 -0.6105 0.0420 0.4632 0.0368 
1.10 0.4000 -0.6150 0.0409 0.4599 0.0401 
1.12 0.4290 -0.6183 0.0424 0.4562 0.0438 
1.14 0.4528 -0.6213 0.0428 0.4523 0.0477 
1.16 0.4790 -0.6237 0.0434 0.4480 0.0520 
1.18 0.5084 -0.6254 0.0443 0.4432 0.0568 
1.20 0.5423 -0.6262 0.0456 0.4378 0.0622 
1.22 0.5829 -0.6258 0.0474 0.4316 0.0684 
1.24 0.6350 -0.6236 0.0502 0.4241 0.0759 
1.26 0.7120 -0.6178 0.0550 0.4141 0.0859 

1.275 0.8338 -0.6050 0.0642 0.4015 0.0985 

Table 6: Various values of A and their corresponding binding energies for 
'Y = 1 along with the variational parameters. 'Y denotes the strength of the 
magnetic field in atomic unit. 
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Figure 13: The ground state energy of an electron in the potential of a 
magnetic field B = 2.35 x 105 T , and the point dipole, vs . .>.. . 
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Figure 14: The binding energy of an electron in the potential of a magnetic 
field B = 2.35 x 105 T , and the point dipole , vs . .X. 

It is already evident that in the presence of the magnetic field B, a point 

electric dipole of any strength binds a charge. There is no critical dipole 

moment. This is not surprising considering the facts that the magnetic field 

supports bound states in the x-y plane and an attractive potential of any 

strength supports bound state in one dimension. The magnetic field prevents 

the wavefunction from diverging at large p and the dipole takes care of that 

as z --> oo. As before, for the critical value of the dipole moment without the 
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Figure 15: The variational parameter f3 vs . .>... 
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), Icon 
1.25 -0.0160 
1.26 -0.0109 
1.27 -0.0055 
1.28 -5.5289 X 10-14 

1.29 -6.1062 X 10-16 

1.30 -1.3877 X 10-16 

Table 7: Icon as defined by equation (3.59) and the corresponding), 

magnetic field (Pc) the minimum of the coefficient of the ~2 term becomes 

-l· We have checked the result numerically. In Figure 16 we plot the 

coefficient of the ~2 and the corresponding >.. 

Figure 16 shows that for dipole moments stronger than the critical dipole 

moment, the minimum of the coefficient of ~2 in equation (3.45) is less than 
1 - 4. However, as we have discussed above, to ensure the hermiticity of the 

Hamiltonian, we need the coefficient of ~2 in equation (3.45), 

1 
to be greater than - 4. This plays the role of a constraint while minimizing 

the energy E0 . In the following table (Table 7), we tabulate the numerical 

values of 

(3.59) 

and the corresponding >.. For ), > Ac, the constraint plays an important role 

in obtaining the ground state energy. 

We also note that, as p --t 0, in presence of the magnetic field B alone, 
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-0.25 

1.2 1.3 1.5 

Figure 16: Minima of the coefficient of i 2 in equation (3.45) with respect to 
the variational parameters /3, a 1 and a 2 vs . .\. 
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the minimum energy of the charged particle is given by, 

EB = fi2 ;(2mq2B2 I I) (1 ~ 
o m v fi2 8m B 1 + 2 (3.60) 

However, in presence of the magnetic field fi alone, as we know, a normal­

izable ground state wavefunction does not exist. So the expectation value, 

(wJ.fl- E0 Jw) is not defined. Hence our method is not expected to work in 

such a situation. However, in presence of a point dipole, as we have men-

tioned, a bound state always exists. Therefore, in the limit p ~ 0, one may 

expect that the minimum of Ef will give the minimum energy (say EB) in 

presence of the magnetic field fi. We numerically minimized Ef to check 

this. We found, 
B 11iqB 

Eo min = 2---;:;:;: (3.61) 

This is the same as obtained by analytical calculations. For an electron, in 

atomic units, we have E B = ~. The corresponding values of the variational 

parameters are given by, a 1 = -1.22 x 10-20 ~ 0, a2 = 2.93 x 10-21 ~ 0, 

{3 ~ 0. This is expected because of the cylindrical symmetry of the potential 

in the presence of fi alone. However, {3 = 0 also makes the relation, z = 

R j; 'fJ, undefined. This hints at the fact that our method is not applicable 

when only the magnetic field is present. Note that, E0 approaches zero as 
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3.3 The Finite Dipole and Magnetic Field 

As mentioned earlier, the point electric dipole is an idealization. Any physical 

electric dipole is a finite dipole. Using our variational method we obtain the 

ground state energy of the charged particle in the presence of a finite electric 

dipole and a magnetic field. For simplicity we assume that the electric dipole 

is rigid, which means that the separation between the poles (2 d) remains 

constant. It is also assumed that the dipole is stationary. In cylindrical 

coordinates the dipole moment is given by p = pz. As shown in Figure 8, 

the magnetic field is given by iJ = Bz. The potential Vt(r, 0), experienced by 

the charged particle in the presence of the finite dipole is given by equation 

(3.5) 

The corresponding Hamiltonian is 

Because of the cylindrical symmetry, the azimuthal quantum number m1 is a 

good quantum number. We consider the ground state for m1 = 0. As before, 

we assume that the trial wavefunction for the ground state is given by, 

1 
'I!(R, ry) = . ;;:c<I>(R)8(ry), 

y27r 
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where 

(3.64) 

(3.65) 

For simplicity we keep only two variational parameters, f3 and a 1 . a 1 is also 

assumed to be real. In terms of the coordinates ( R, 'fJ), Vt may be expressed 

as, 

v: (R ) = Qq ( 1 _ 1 ) . 
f ''fJ 47fEo J R2 sin2 'fJ + ( R2'Jj/!J - d)2 J R2 sin2 'fJ + ( R2:;;n + d)2 

(3.66) 

In terms of the same variables the potential VB ( R, 'fJ), experienced by the 

charged particle in its ground state, due to the magnetic field is given by 

equation ( 3.36). Therefore the total potential experienced by the charged 

particle in its ground state is 

(3.67) 

The expectation value< wj.fl- E0 jw >now becomes, 

~ 21r r)Q 2 ( li
2 

( d ) 
2 

q, d 
(wjH- Eoi'IJ!) = ..(!J Jo R dR 2m {!1 dR q,(R) + !2 R dR q,(R) 

q,(R)2 q,2 q2 B2 ) 
+ !3-----w:--} + Qqf3Jilf + Bm IBR2q,(R)2 - Eoq,(R)2 . 

(3.68) 

!1, 12 , 13 , IB may be obtained from equations (3.39), (3.40), (3.41), (3.42) 
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respectively by putting a 2 = 0. Thus, 

Jl 
1 (10 + 2a~ + 5(3 + 3f3an 

-
3+a~ 5 

(3.69) 

12 ~ ( 2 ((3 -1)) 
5 a 1 3 +a~ ' 

(3.70) 

]g = 
2 (a~(1 + 4(3)) 
5 3+a~ 

(3.71) 

IB 
2 (7a~ + 35) 
7 (5a~ + 15) · 

(3.72) 

If is given by, 

1 ( -6a1 ( d(J ( ( ~ - (1 - (3)) ) ) ) 
I, = R(l - (3)3/2 3 + <>1' 2y' (3(1 - (3) + R log ( 1!' + vr=YJ)' 

(3.73) 

for R < dv'lJ and 

for R > dv'lJ. Performing variation with respect to <I>(R), using the Euler-

Lagrange equation, we obtain, 

~ 2 d 2m -(B) 
dR2 <I>(R) + RdR<I>(R)- n2J

1 
(V1 (R)- Eo)<I>(R) = 0, (3.75) 

where V}B) denotes the effective potential. As before, with <I>(R) = u~), 
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we get, 

The effective potential, 1fCJl ( R), is given by, 

(3.77) 

The contribution from the kinetic term to the effective potential (Vk) is given 

by, 

(3.78) 

The contribution from the magnetic field to the effective potential (VB) is 

given by, 

(3.79) 

The contribution from the finite dipole to the effective potential CVJ) is given 

by, 

(3.80) 

where If is given by equations (3.73) and (3.74). In spite of having different 

forms for R > ..jf3d and R < ..jf3d, V1(R) is continuous at R = d..jf3. V1(d..jf3) 

it is given by, 

vJ(dvfl) = Qq (d..Jf3(11- f3)3/2 (3-:~r ( 2Vf3(1- f3) 

+VIJ!og [ (! + ~2]))) . (3.81) 

Evidently, the effective potential v?l is also continuous at R = d..jf3. 
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Unlike the case of a point dipole, the effective potential is well behaved at 

short range (R ---t 0). As r ---t 0, the contribution of the finite dipole to the 

actual potential VjB) (r, 8) approaches 0. As may be expected, as R ---t 0, 

Vt(R) also approaches 0. To show this, we note that as R ---t 0, RYJJI ~ 1. 

Therefore, ignoring the higher powers of R YfJI, 

log ( ( ~- (
1

- /1)) 
2

) =log ( ( 
1

- R~)) 
( df + y'1- !3) ( 1 + R~) (3.82) 

~-2R~ 
~ dv'lJ . 

Substituting this in equation (3.80), it is straightforward to show that Vt(R) 

vanishes at R = 0. As r ---t oo, in Vt the 
1
2 

term dominates. Corre­
r 

spondingly, as R ---t oo, Vt rv :h· Like the Schrodinger equation with the 

Hamiltonian given by equation (3.62), equation (3.76) is also not solvable 

analytically. However, before we proceed to numerical solutions, we make 

the following observation. As a function of R = ~, the effective potential 

vjB)(R) may be written as, 

-vcB) (R) = !!__ (1 _ 12) _1_ ~ ( 1 ( -6a1 ( 2..; /3(1 _ /3) 
f 2m 3 2 d2R2 + 2d2 R(1- {3)312 3 + ai + 

~ log ( ( -h - (1 - /1)) 2) ) ) ) + q2 B2 ~ (7 a122 + 35) d2 fl2' 
R ( 1 + v'1 _ !3) 8m 7 (5a1 + 15) 

(3.83) 
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for R ~ ...(!3 and 

for R ~ ...(!3. 

In terms of R equation (3.76) may be written as, 

1 c£2 - 2m - (B) - - _ 2m -
- ,p dR2 u(R) + 'fi2 11 

Vf (R)u(R) - 'fi2lt E0u(R). (3.85) 

Multiplying both sides by cP, this equation gives, 

c£2 - 2m 2 - (B) - - _ 2m 12 -
----u(R) + !;

21 
d V1 (R)u(R) - !;

21 
a-E0u(R). 

dR2 n 1 n 1 
(3.86) 

From the above equation it is evident that if we keep the products, mqQd 

and qBc£2, unchanged, then mc£2 Eo also remains unchanged. For a given test 

particle, therefore, fixing >.. and cP B (say cP B = b) implies that E 0 may be 

expressed as f (~ b) . Rewriting the Hamiltonian (equation 3. 62) in terms of 

f, where f =~'also makes this evident. 

We note that, in the presence of B, similar to the case of the point 

dipole, a finite electric dipole of any strength binds a charged particle. This 

is evident from the long range part of the above equation. As R ---+ oo, 

which requires r ---+ oo, in the effective potential, the contribution from the 

magnetic field, VB, dominates. Such a potential, analogous to the harmonic 
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potential, always supports bound states. Using a different method the same 

conclusion was made by Herman and Wallis [14]. However, as we will see, 

for molecular dipoles ("-' 1 a.u.) in presence of laboratory scale uniform 

magnetic fields ("" lOT) the binding energies are very small. For weaker 

magnetic fields, therefore, obtaining the bound states numerically may be 

difficult. The short range part of vjB) includes contributions from the kinetic 

term, 
2~~1~;2 , and also from the finite electric dipole. Therefore, one may 

expect that, for the same magnetic field B, different values of the parameter 

A will support ground states with different energies. Unlike a point dipole, 

sufficiently strong A's are expected to support negative energy bound states. 

As before, we consider an electron as the test particle. With m = 1 and 

q = -1, we tabulate our results below, which clearly reflect this. We assume 

that p < 0. For a given 'Y = 1, B = 2.35"( x 105 T. As before, considering the 

spin (sayS) of the electron, the ground state energy (say E0) of the electron 

is given by, 

Eg = Eo - j1.B, (3.87) 

where the magnetic moment of the electron j1 ~ -Sin a.u. Therefore the 
1 

actual ground state energy of an electron, with Sz = 2, is given by (Eo+ .5). 

For Sz =-~,the actual ground state energy is (Eo- .5). The corresponding 

binding energy (say Eg), as before, is given by, 

Et = Eb + j1.B, 

where, Eb = ~- E0 , as stated before. For very strong magnetic fields, when 
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Tc d {3 a1 Eo Eb 
0.4472 .05 .1 X 10 3 -.005 2.4994 .6 X 10 3 (.1565 X 10 3) 

0.4472 0.5 .22 -.873 2.2023 .2977 (.3744) 

Table 8: Energies Eo and Eb for different values of (2 d) and 'Y and the 
corresponding variational parameters {3 and a 1. 'Y denotes the strength of 
the magnetic field in atomic unit. r c is the corresponding cyclotron radius. 
2 d is the separation between the poles of the finite dipole. The binding 
energies (rounded off to appropriate decimal places) obtained in [13] appear 
in parentheses. 

the cyclotron radius corresponding to B ( /!i) is less than the dipole length 

(2d), the method described in [13] produces better results than ours. In 

such a situation the electron stays close to the z axis and the energy is min­

imum when it is close to the positive pole. In reference [13] the variational 

method was constructed keeping the positive pole at the origin. The wave­

function also explicitly accounts for the strong magnetic field. However, for 

a cyclotron radius greater than the dipole length, when the electron is not 

strongly centered around the positive pole, our method gives higher binding 

energy. Table 8 compares the binding energies obtained by our method with 

those obtained in [13]. In reference [13] energies for magnetic fields less than 

1.175 x 106T are not calculated. Therefore we compare the binding energies 

for 'Y = 5, d = .05 a.u. and d = .5 a.u. The corresponding cyclotron radius 

(rc)is 0.4472 a.u. The binding energies (rounded off to appropriate decimal 

places) obtained in [13] appear in parentheses. 

The strongest uniform magnetic field available in a laboratory is 45 T 

(Source: www.magnet.fsu.edu). The pulsed fields are even higher. For ex­

ample the highest field for a long-pulsed magnet is 60T. The corresponding 'Y 

is 1.915 x 10-4 • The corresponding cyclotron radius is 72.265 a. u. A typical 
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molecular dipole moment is about 1 a. u. Also, recall that the critical value 

Pc ~ .639 a.u. Therefore our method is expected to work well in a labora­

tory set up. In Table 9 we tabulate the binding energies corresponding to 

d = .5 a.u. (dipole moment = 1a.u.), in the presence of magnetic fields of 

the order of 10 T to 1000 T. We use large 1 to avoid numerical errors. Rmax 

denotes R corresponding to the maximum value of <I>(R) and Rapprx denotes 

the approximate range where <I>(R) is appreciable. The Rawrx is noted from 

the plot of the wavefunction by eye estimation. These very roughly indicate 

the size of the system. As expected, with weaker magnetic fields the binding 

becomes weaker. Hence both Rmax and Rapprx increase as B decreases. In 

Figure 17 we plot <I>(R) as a function of R for 1 = .001 and d = 0.5 a.u. The 

corresponding value of Rawrx is approximately 90 a. u. 

'Y rc (3 al Eo Eb Rmax Rapprx 
0 - .77 -.779 -3.501(-4) 3.501(-4) 10.60 120 

1(-4) 100.00 .77 -.779 -3.563(-4) 4.063(-4) 10.60 120 
0.5(-3) 44.72 .77 -.779 -3.319(-4) 5.819(-4) 10.48 110 
1(-3) 31.62 .77 -.779 -2.950(-4) 7.950(-4) 10.40 90 

7.5(-3) 11.55 .70 -.797 8.425(-4) 2.832(-3) 7.50 40 
1(-2) 10.00 .70 -.802 1.517(-3) 3.483(-3) 7.20 35 
2(-2) 7.07 .66 -.802 4.227(-3) 5.773(-3) 6.20 25 

3.5(-2) 5.35 .64 -.802 8.702(-3) 8.798(-3) 5.10 20 
5(-2) 4.47 .60 -.825 1.347(-2) 1.153(-2) 4.36 15 

1 1.00 .36 -.873 3.932(-1) 1.068(-1) 1.29 4 

Table 9: Energies Eo and Eb ford= .5 a.u. in presence of various magnetic 
fields and the corresponding variational parameters (3 and a 1. 1 denotes 
the strength of the magnetic field in atomic unit. rc is the corresponding cy­
clotron radius. 2 dis the separation between the poles of the finite dipole. The 
numbers in parentheses are powers of 10 with which the corresponding entries 
are to be multiplied. 

We also tabulate (Table 10) Eo and the corresponding Eb ford= 1 (dipole 
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cp(R) 

0.15 

0.1 

0.05 

20 40 60 80 100 120 140 
-0.05 

-0.1 

-0.15 

Figure 17: Normalized ~(R) vs. R corresponding to 'Y = .001 for a finite 
dipole with Q = 1 and d = .5 a.u. 'Y denotes the strength of the magnetic 
field in atomic unit. 2 d is the separation between the poles of the finite 
dipole. 

moment p =2 a. u.) with different B's. 

In Figures 18 and 20 we plot Eb and the corresponding B ford= 0.5 a.u. 

and d = 1 a.u. respectively. In Figures 19 and 21 E0 and the corresponding 

B have been plotted for the cases mentioned above. 

Note that a 1 is always negative. Since the positive pole of the electric 

dipole is located at z = -d, therefore, for a fixed p, the probability density 

of the electron is expected to be greater along the negative z axis. In our 

trial wavefunction, ~(R) is independent of the sign of z, but 8('TJ) is not. As 

shown in Figure 22, a negative a 1 makes 8('TJ) larger along the negative z 
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I rc (3 a1 Eo Eb Rmax Rapprx 
.01 10.00 .56 -1.083 -.0466 .0516 1.92 10 

.146 2.62 .53 -1.111 -.0307 .1037 1.76 9 
1 1.00 .36 -1.141 .2287 .2713 1.20 4 

1.46 0.83 .30 -1.171 .4137 .3163 1.08 3 
2 0.70 .26 -1.200 .6291 .3709 0.96 2.5 
3 0.58 .21 -1.202 1.0559 .4441 0.83 2 
4 0.50 .18 -1.233 1.5088 .4912 0.75 1.8 
5 0.45 .16 -1.233 1.9734 .5266 0.67 1.6 

Table 10: Energies E0 and Eb ford= 1 a.u. in presence of various magnetic 
fields and the corresponding variational parameters (3 and a 1. 1 denotes 
the strength of the magnetic field in atomic unit. rc is the corresponding 
cyclotron radius. 2 d is the separation between the poles of the finite dipole. 

d (3 al Eo Eb 
0.5 .68 -0.83 .001 .004 
1.0 .56 -1.08 -.047 .052 
1.5 .44 -1.23 -.100 .105 
2.0 .36 -1.33 -.131 .136 
3.0 .27 -1.44 -.153 .158 

Table 11: Energies Eo and Eb corresponding to 1 = .01 (rc = 10 a.u.) and 
various charge separations (2 d) and the corresponding variational parame­
ters (3 and a 1. 

axis. Thus the asymmetry along the z axis is taken care of. Figure 23, a 

3D plot of 8(17) also reflects the asymmetry along the z axis. The ellipsoid 

shape hints at the absence of any spherical symmetry. 

Stronger magnetic fields evidently give rise to larger values of E0 • In 

Figure 24, (3 and the corresponding B have been plotted. As expected, since 

(3 decreases as 1 increases. Recall that (3 ---t 0 for only B. 

We also tabulate (Table 11) E0 and the corresponding Eb for various 

dipole moments with Q = 1 and 1 = .01. The corresponding cyclotron radius 

is 10 a.u. The separation 2 dis varied to obtain different dipole moments. In 
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Figure 25 we plot Eb and the corresponding d. Evidently the binding becomes 

stronger as d increases. This may be because of the fact that as the negative 

pole moves away, the electron will be strongly bound by the positive pole. In 

reference [13] the authors obtained similar result. For larger dipole moments 

a 1 increases. Considering that a 1 strengthens the coupling between the odd 

and the even Legendre polynomials, such a behavior is expected. Note that (3 

decreases with increasing d, hinting towards the domination of the magnetic 

field over the dipole. This also may be attributed to the fact that for large 

dipole length the electron will be bound mainly by the positive pole. The 

dipole effects may not dominate. 

As is expected, when the cyclotron radius is much smaller than the 

dipole length, a finite dipole may be approximated by a point dipole. In 

Table 12 we compare the binding energies corresponding to 'Y = .001 and 

p E {.8, 1, 1.2}a.u. The corresponding cyclotron radius is 31.623 a.u. The 

numbers in the square braces are the corresponding entries for the point 

dipole. The last three rows of the Table indicate that the approximation, as 

mentioned above, holds good even when the charge separation in the dipole 

(2 d) is increased keeping the dipole moment unaltered. Also the data indi­

cates that, the smaller the separation is, the better the approximation holds. 

To demonstrate this, however, we have assumed fractional charges at the 

poles. The binding energies increase with the dipole moment as expected. 

The binding energies corresponding to the point dipoles are slightly higher 

than the binding energies corresponding to the finite dipoles of the same 

moment. This may be because of the fact that at short range (r --t 0) the 

point dipole potential is stronger than that of the finite dipole. The use of 
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p d {3 a1 Eo Eb 
0.4 0.20 0.17 [.180] -.486 [-.493] 4.957(-4) [4.933(-4)] 4.30(-6) [6.70( -6)] 
0.6 0.30 0.42 [.542] -.647 [-.626] 4.491(-4) [4.378(-4)] 5.09( -5) [6.22( -5)] 
0.5 0.25 0.29 [.317] -.585 [-.589] 4.762(-4) [4.746(-4)] 2.16( -5) [2.54( -5)] 
0.5 0.50 0.27 [.317] -.585 [-.589] 4.767(-4) [4.746(-4)] 2.12( -5) [2.54( -5) J 
0.5 1.00 0.27 [.317] -.585 [-.589] 4.775(-4) [4.746(-4)] 2.04( -5) [2.54( -5)] 

Table 12: Eb corresponding to 1 = .001 (rc = 31.623 a.u.)for point and 
finite dipoles with various dipole moments and the corresponding variational 
parameters {3, a 1. The numbers in square brackets are the corresponding 
values for point dipoles. The numbers in parentheses are powers of 10 with 
which the corresponding entries are to be multiplied. 

one more variational parameter (a2) may also cause the difference. How­

ever, such a comparison is meaningful only for p < Pc, where Pc denotes the 

critical dipole moment in absence of the magnetic field. As we have already 

discussed, for p > Pc the point dipole potential is anomalous. However, for 

p > Pc finite dipoles have negative energy bound states. Therefore, in pres­

ence of a sufficiently weak magnetic field, a finite dipole may have negative 

energy (Eo) bound states. The results in Tables 9, 10 and 11 reflect this. On 

the contrary, for a point dipole with p > Pc, equation (3.55) with the con­

straint imposed by equation (3.50) assures the non-negativity of the ground 

state energy E0 for any magnetic field. This has stopped us from tabulating 

the binding energies for the point dipoles with p > Pc· 
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Eb (in a.u.) 

0.010 

0.008 

0.006 

0.004 

0.002 

y 
0.01 0.02 0.03 0.04 0.05 

Figure 18: Binding energy (Eb) vs. the corresponding 'Y for a finite dipole 
with Q = 1 and d = .5 a.u. 'Y denotes the strength of the magnetic field in 
atomic unit. 2 d is the separation between the poles of the finite dipole. 

E0 (in a.u.) 

0.012 

0.010 

0.008 

0.006 

0.004 

0.002 

y 
0.01 0.02 0.03 0.04 0.05 

Figure 19: Ground state energy E0 vs. the corresponding 'Y for a finite dipole 
with Q = 1 and d = .5 a.u. 
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0.5 
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0.3 
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2 3 4 5 

Figure 20: Binding energy (Eb) vs. the corresponding 'Y for a finite dipole 
with Q = 1 and d = 1 a .u. 

E0 (in a.u.) 

2.0 
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1.0 
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2 
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3 4 5 

Figure 21: Ground st at e energy E0 vs. the corresponding 'Y with Q = 1 and 
d = 1 a. u. 
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1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0 (in radian) 
0.5 1.0 1.5 2.0 2.5 3.0 

Figure 22: 8 2 (17) (equation (3.65)) corresponding to .\ = 1 and 'Y = .05 vs . 
e. 
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0.0 

- 0.5 

-1.0 

-0.5 0.0 

Figure 23: A 3D plot of 8 2 (71) (equation (3.65)) corresponding to).= 1 and 
'Y = .05. 
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fJ 

0.5 

0.4 

0.3 

y 

Figure 24: The variational parameter {3 for a finite dipole with Q = 1 and 
d= 1 a.u. vs . r 

Eb (in a.u.) 

0.15 

0.10 

0.05 

d (in a.u.) 
1.0 1.5 2.0 2.5 3.0 

Figure 25: The binding energy Eb for the magnetic field given by 1 = .01 vs. 
d. 
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Comment: 

A sign change in .>.. and the parity transformation evidently transform the 

Hamiltonians in equations (3.29) and (3.62) in the same way. Hence, follow­

ing our argument in comment (b) of the previous section, .>.. ---t - .>.. implies 

a 1 ---t -a1 . However, (3 and Eo will remain the same. Considering the 

spin part, we note that s.ii remains unchanged under parity transforma­

tion. However, the sign of the term p.iJ depends on the sign of the charge q. 

Therefore if q changes sign then the actual ground state energy with m 1 = 0 

will also change accordingly. 
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4 Conclusion 

In conclusion, in the presence of a magnetic field along the dipole moment, 

the binding energy of a rigid and stationary dipole binding a charged parti­

cle increases. We considered (Table 9)a dipole with dipole moment 2.54 D 

(2 d = 1 a.u.) binding an electron. In the absence of a magnetic field the 

binding energy is found to be 9.5 meV. Though we assumed the dipole to 

be stationary and rigid, this still turned out to be in good agreement with 

the binding energy of an electron in presence of a water dimar ("' 2.6 D) 

[8, 23]. In the laboratory, as we mentioned, very high magnetic fields are in 

the range 10-100 T. In the presence of such magnetic fields, the binding en­

ergy is found to increase by 15 %- 66 %. The values of the binding energies 

are listed in Table 9. The thermal energy corresponding to 1 K is 8.62 x 10-5 

eV, at room temperature ( 300 K) this becomes 2.59 x 10-2 eV. Thus, even 

in the presence of very strong magnetic field, the binding energy is still much 

less than the thermal energy at room temperature. However, since the bind­

ing energy increases significantly, so it may be easier to detect such bound 

states. Also the mobility of eletrons in a polar medium will be affected. At 

lower temperatures, of course, the effect of such bound states will be stronger. 

We have also shown that in the presence of a magnetic field along the 

dipole moment, a point dipole of any dipole moment binds a charged parti­

cle. The point dipole potential is anomalous for p > Pc, where Pc denotes the 

critical dipole moment in absence of a magnetic field. Hence the cases with 

p > Pc, are not considered. For weak magnetic fields (the cyclotron radius 
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r c » 2d), the point dipole is a good approximation to the finite dipole. As 

expected, the approximation becomes even better as the charge separation 

in the finite dipole decreases. However, such an approximation is valid only 

for p > Pc· The finite dipoles, with dipole moments less than Pc, also bind a 

charged particle in presence of a magnetic field. 

This variational method may also be applied to obtain the excited 

states with m1 = 0. The excited states with other values of mz's may also be 

obtained by suitably choosing 8('f!). The implicit dependence of our variables 

(R, 'f!) on (r, 8) measured from the center of the dipole, however, restrict the 

validity of our approach to large dipole length and to very strong magnetic 

fields. As we already discussed, our method will still be useful to determine 

the energy levels of the electron when the cyclotron radius of iJ is greater 

than the dipole separation. 
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A Appendix 

The two lowest moments of a point elec-

tric dipole supporting zero energy bound 

states with the azimuthal quantum num-

ber mz = 0. 

We obtain a few of the dipole moments which are greater than the critical 

dipole moment but also support zero energy bound state with azimuthal · 

quantum number m1 = 0. We assume that the wavefunction is given by, 

1 
"W(r, 0, </>) = y'21r<I>(r)8(0), 8(0) = Nn(1 + ~f=1 ~Pi(cos 0)), (A.l) 

where Nn is the corresponding normalization constant. To keep calculations 

simple we assume that n = 5. We consider ("WIH- E0 I"W). We do variation 

with respect to the radial part of the wavefunction, <I>(r), 

8("WIH- Eo I'll)= 0. 

As before, with u(r) = <I>(r), the Euler-Lagrange equation gives, 
r 

d ( ) (2310a~ + 4158a~ + 5940a~ + 7700a~ + 9450a~) u(r) - -u r + -'--~--~---,:---"----::c----.:::__,~-~ 
dr2 1155a~ + 693a~ + 5 (693 + 99a~ + 77a~ + 63a~) r2 

+ (462a1(5 + 2a2) + 594a2ag + 440aga4 + 350a4as)>.. u(r) = 2m E u(r). 
1155a~ + 693a~ + 5 (693 + 99a~ + 77a~ + 63a~) r 2 'fi2 0 

(A.2) 
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For a zero energy bound state E0 = 0 , we demand that the coefficient of 
1 1 
r

2 
to be equal to - 4 [15, 16]. Therefore, 

(2310a~ + 4158a~ + 5940a~ + 7700a~ + 9450a~) 
1155a~ + 693a~ + 5 ( 693 + 99a~ + 77 a~ + 63ag) 

( 462a1 (5 + 2a2) + 594a2a3 + 440a3a4 + 350a4a5)>. 1 
+ 1155a~ + 693a~ + 5 (693 + 99a~ + 77a~ + 63a~) = -4. (A.

3
) 

Now we claim that for non-degenerate zero energy bound states the varia-

tional parameters must be unique. Solving for the variational parameter a1 

from the above equation we get the following, 

(A.4) 

where, 

D1 = (9240>. + 3696a2>.) 2 
- 41580 (3465 + 17325a~ + 24255a~ + 31185a~ 

+38115a~ + 2376a2a 3>. + 1760a3a4>. + 1400a4a5>.). 

(A.5) 

For unique a1 we demand that the discriminant of the above equation D1 

vanishes. Therefore, 

(A.6) 
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Also this gives us the following equation. 

a~ ( -720373500 + 13660416..\2) + a 2 ( -98794080a3..\ + 68302080..\2
) - 144074700 

-1008522900a~ - 1296672300a~ - 1584821700a~ - 73180800a3a 4..\ 

-58212000a4as..\ + 85377600..\2 = 0. 

(A.7) 

Solving for a 2 we get, 

35640a3..\- 24640..\2 ± ..;I5;, 
a - ---:------~-

2 - 2 ( -259875 + 4928..\2) 
(A.8) 

where, 

D2 = ( -35640a3..\ + 24640..\2
)

2
- 4 (-259875 + 4928..\2) (-51975- 363825a~ 

-467775a~ - 571725a~ - 26400a3a 4..\- 21000a4a5 ..\ + 30800..\2 ) • 

(A.9) 

For unique a 2 the discriminant of the above equation, D2 must vanish. There-

fore, 
35640a3..\- 24640..\2 

a 2 = 2 ( -259875 + 4928..\2) 
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Also this leads to the equation, 

a~ (1270209600,\2 + 1455300 ( -259875 + 4928.\2)) 

+a3 ( -1756339200.\3 + 105600a4A ( -259875 + 4928.\2)) 

+607129600.\4 + 207900 ( -259875 + 4928.\2) + 1871100a~ ( -259875 + 4928>.2) 

+2286900ag ( -259875 + 4928.\2) + 84000a4a 5,\ ( -259875 

+4928,\2 - 123200,\2 ( -259875 + 4928.\2) = 0. 

(A.11) 

Solving for a 3 we get, 

8316000a4>. + 532224,\3
- 157696a4,\3 ± ...[J5;, 

a 3 = 2 ( -114604875 + 2558160,\2) (A.12) 

where, 

D3 = ( -8316000a4,\- 532224,\3 + 157696a4>.3)
2

- 4 ( -114604875 + 2558160.\2) 

( -16372125- 147349125a~ -180093375ag- 6615000a4a 5,\ + 10012464,\2 

+2794176a~,\2 + 3415104ag.\2 + 125440a4a5.\
3
). 

(A.13) 

For unique a 3 , claiming that the discriminant of the above equation D3 must 

vanish, we obtain, 

8316000a4,\ + 532224,\3
- 157696a4,\3 

a 3 = 2 ( -114604875 + 2558160.\2) (A.14
) 
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Also, 

a~(69155856000000.A2 - 2622799872000).4 

+24868028416).6 + 589396500 ( -114604875 + 2558160.A2) 

-11176704).2 ( -114604875 + 2558160).2)) 

+a4 (8851949568000).4 - 167859191808).6 

+26460000a5). ( -114604875 + 2558160.A2) 

-501760a5.A3 
( -114604875 + 2558160.A2) = 0. 

Solving for a4 , 

9(-23152500a5). + 516800a5).3 + 67584).4 ± v'l5~) 
a4 = 11 (843908625- 19701360).2 + 16384.A4) · 

(A.15) 

(A.16) 

For unique a4 claiming the discriminant of the above equation to be zero we 

get, 
9( -23152500a5). + 516800a5.A3 + 67584.A4) 

a4 = 11 (843908625- 19701360).2 + 16384).4) · (A·
17

) 

Also, 

a~ (-86686230666853125 + 3994430311746000).2 - 48450969020160).4 

+55371853824).6 ) + a 5 ( -208631808000).5 + 465698) 

-7880566424259375 + 5029846600086000).2 - 128966221359360).4 

+460241408000). 6 = 0. 

(A.18) 
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Solving for a 5 , 

11 ( -40960>.. 5 ± $s) 
a=--,-----....!...-------,--!--------,-,-

5 21 (17829244125- 423580320>..2 + 510208>..4). 
(A.19) 

where, 

D 5 = 5 ( -21064754052045309375 + 13475030035474728000>..2 - 363961674836282880>..4 

+1680656736632832>..6 - 1577154969600>..8 + 335544320>..10
). (A.20) 

Obviously it is required that the denominators in the expressions obtained 

for the variational parameters are non-zero. For unique a 5 as before claiming 

that the discriminant of the above equation, D 5 to be zero we get the following 

solutions for >.., 

>.. = ±57.167, ±34.0293, ±15.1034, ±6.66936, ±1.27863. (A.21) 

However among these values ±34.0293, ±6.66936 are the roots of the follow-

ing equation which appears in the denominator of a 4 , 

843908625- 19701360>..2 + 16384>..4 = 0. (A.22) 

Thus these correspond to the singularities of the coefficient a4 . Eliminating 

these values from the list we obtain the first three values of >.. which support 

a zero energy bound state, 

>.. = ±57.167, ±15.1034, ±1.27863 (A.23) 
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As may be evident, these values of >.. can also be obtained by substituting the 

expressions for a 1,a2,a3,a4 ,a5 in equation(24), assuming the corresponding 

discriminants to be zero. Assuming the denominators to be non zero as 

before, a straight forward simplification gives, 

- (8>..2 (9157093096633453125- 237839965834274496>..2 + 1202365414801920>..4)) 

D 
- (8>..2 

( -1403318190080>..6 + 331939840>..8 )) 1 
D -4, 

(A.24) 

where, 

D = 445034724496385821875 + 8156770500115314000>..2 + 195706209785522688>..4 

-82098239545344>..6 + 317594992640>..8 + 173015040>..10
' 

(A.25) 

or, 

-24960941775 + 15384681648>..2 
- 71635200>..4 + 20480>..6 = 0, (A.26) 

Therefore, 

>.. = ±57.167, ±15.1034, ±1.27863. 
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B Appendix 

The two lowest moments of a point elec-

tric dipole supporting zero energy bound 

states with the azimuthal quantum num-

her mz = 1. 

We obtain the lowest two dipole moments which are greater than the critical 

dipole moment but also support zero energy bound state with the azimuthal 

quantum number (mz) 1. We assume that the wavefunction is given by, 

1 up w(r, B, ¢) = ;;:c<I>(r)8(B)e , 
y27r 

(B.l) 

(B.2) 

where N5 is the corresponding normalization constant. 

We perform variation of (wJH- E0 Jw) with respect to the radial part of 

the wavefunction, <I>(r), 

8(wJH- E0 Jw) = o. 
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As before, with u(r) = <l>(r), the Euler-Lagrange equation gives, 
r 

"( ) 2 (15015 + 81081a~ + 231660a~ + 500500a~ + 921375a~ + 1528065a~) ( ) 
-u r + u r 

( 27027 a~ + 5 ( 7722a~ + 7 ( 429 + 1430a~ + 1755a~ + 2079a~))) r 2 

2(1287a1(7 + 12a2) + 21450a2a 3 + 27300a3a4 + 33075a4a5).A ( ) 2m E ( ) 
+ (27027a~ + 5 (7722a~ + 7 (429 + 1430a~ + 1755a~ + 2079a~))) r2 u r = r;2 ou r ' 

(B.3) 

J2 
where as usual u"(r) = dr2 u(r). For a zero energy bound state Eo= 0 , we 

demand that the coefficient of r
1
2 to be equal to -l [15, 16]. Therefore, 

2 (15015 + 81081a~ + 231660a~ + 500500a~ + 921375a~ + 1528065a~) 
(27027 a~ + 5 (7722a~ + 7 ( 429 + 1430a~ + 1755a~ + 2079a~))) 

2(1287al (7 + 12a2) + 21450a2a3 + 27300a3a4 + 33075a4a5).A 1 
+ (27027a~ + 5 (7722a~ + 7 (429 + 1430a~ + 1755a~ + 2079a~))) = -4. 

(B.4) 

For single zero energy bound states the variational parameters must be 

unique. Solving for the variational parameter a 1 from the above equation we 

get the following, 

1 
a1 = 

450450 
(-24024,\- 41184a2.A ± J]J;_). (B.5) 
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where, 

D1 = ((24024.-\ + 41184a2.-\)
2

- 900900(45045 -f-. 630630a~ + 1351350a~ 

+2477475a~ + 4099095a~ + 57200a2a 3 .-\ 

+72800a3a4A + 88200a4a5.-\)). 

(B.6) 

For unique a 1 we demand that the discriminant of the above equation D1 

vanishes. Therefore, 

( -24024.-\- 41184a2.-\) 

a 1 = 450450 · (B.7) 

Solving D1 = 0 for a2 we get, 

10010000a3.-\- 384384.-\2 ± vf]5; 
a2 = 

2 ( -110360250 + 329472.-\2 ) 
(B.8) 

where, 

D2 = ( -4( -7882875 - 236486250a~ - 433558125a~ - 717341625a~ - 127 40000a3a 4.-\ 

-15435000a4a 5.-\ + 112112.-\2)( -110360250 + 329472.-\2 ) 

+( -10010000a3.-\ + 384384.-\2
)

2
). 

(B.9) 

For unique a 2 the discriminant of the above equation, D 2 must vanish. There-

fore, 
10010000a3.-\- 384384.-\2 ± vf]5; 

a2 = 
2 ( -110360250 + 329472.-\2) 

(B.lO) 
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Solving D2 = 0 for a 3 we get, 

a
3 

= 802620000a4.A + 1098240.A3
- 2396160a4.A3 ± v'I5; (B.

11
) 

2 (-14898633750 + 58778720.A2) 

where, 

D3 = ((-802620000a4.A -1098240.A3 + 2396160a4.A3
)

2
- 4( -14898633750 + 58778720.A2

) 

( -496621125- 27314161875a~- 45192522375a~- 972405000a4a 5.A 

+8545680.A2 + 81544320a~.A2 + 134918784a~.A2 + 2903040a4a 5 .A3
)). 

(B.12) 

For unique a 3 , claiming that the discriminant of the above equation D3 

must vanish, we obtain, 

802620000a4.A + 1098240.A3 - 2396160a4.A3 

a3 = 
2 ( -14898633750 + 58778720.A2) 

(B.13) 

11 ( -4375822500a5.A + 17263680a5.A3 + 133120.A4) 
a 4 = (195 (13867189875- 60197424.A2 + 16384.A4)) ' (B.

14
) 
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where, 

D4 = 77v'i5((-1494895202316140625 -136035463410768796875a~ 

+33647790524166000.-\2 + 1153273806221922000a~.-\2 - 140067438600960.-\4 

-2696065598677248a~.-\4 - 1585059840000a5.-\
5 + 120671948800.-\6 

+1039588651008a~.-\6 + 6253445120a5.-\
7
)). 

(B.15) 

For unique a 4 claiming the discriminant of the above equation to be zero 

we get, 

11 ( -4375822500a5,\ + 17263680a5 .-\
3 + 133120.-\4) 

a4 = (195 (13867189875- 60197424.-\2 + 16384.-\4)) (B.
16

) 

13 ( -40960.-\5 ± ..[15;) 
a 5 = (9 (10155405385125- 46029390176.-\2 + 19671296.-\4)). (B.17

) 

where, 

D 5 = J5( -108637921079839961184375 + 2509071041245016001600.-\2 

-11573807277363319296.-\4 + 13981256506884096.-\6 

-4305653268480.-\8 + 335544320.-\10
). 

(B.18) 

Obviously it is assumed that the denominators in the expressions obtained 

for the variational parameters are non-zero. For unique a 5 as before claiming 
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that the discriminant of the above equation, D5 to be zero we get the following 

solutions for .A, 

.A= ±91.0975, ±58.5423, ±28.3094, ±15.715, ±7.58394. (B.19) 

However among these values ±58.5423, ±15.715 are the roots of the fol­

lowing equation which appears in the denominator of a 4 , 

13867189875- 60197424>.2 + 16384>.4 = 0. (B.20) 

Thus these correspond to the singularities of the coefficient a 4 • Among the 

rest, the lowest two values are the first two values of .A which support zero 

energy bound states with m1 = 1, 

.A= {±28.3094, ±7.58394} (B.21) 
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C Appendix 

The two lowest moments of a point elec-

tric dipole supporting zero energy bound 

states with the azimuthal quantum num-

her mz = 2. 

We obtain the lowest two dipole moments which are greater than the critical 

dipole moment but also support zero energy bound state with the azimuthal 

quantum number (mz) 2. We assume that the wavefunction is given by, 

w(r, e, ¢) = vh<I>(r)8(8)ei2
¢, 

8(8) = N5(Pi(cos8) + EJ=3 aiPl(cosO)), 

(C.l) 

(C.2) 

where N5 is the corresponding normalization constant. We perform variation 

of (wJ.fr- E0 Jw) with respect to the radial part of the wavefunction, <I>(r), 

8(wJ.fr- EoJw) = o. 

As before, with u(r) = <I>(r), the Euler-Lagrange equation gives, 
r 

"( ) 2 (9009 + 64350ar + 250250a~ + 716625a~ + 1697850a~ + 3531528a~) u(r) -u r + --'----,-~~--==-:--:----=~~--=--~'----:-:-:--:--:::--=-:--:--:-::-;;-:--~ 
10725ar + 7 (429 + 3575a~ + 6825a~ + 11550a~ + 18018a~) r2 

2(715a1 (3 + 10a2) + 15925a2a3 + 29400a3a4 + 48510a4a5).A u(r) = 2m E u(r) 
+ 10725ar + 7 (429 + 3575a~ + 6825a~ + 11550a~ + 18018a~) r 2 n2 0 

' 

(C.3) 
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d} 
where as usual u"(r) = dr2 u(r). For a zero energy bound state Eo= 0 , we 

demand that the coefficient of : 2 to be equal to -l [15, 16]. Therefore, 

2(9009 + 64350a~ + 250250a~ + 716625a~ + 1697850at + 3531528a~) 
10725a~ + 7(429 + 3575a~ + 6825a~ + 11550a~ + 18018a~) 

+ 2(715a1(3 + 10a2) + 15925a2ag + 29400a3a4 + 48510a4a 5).A = -~ 
10725a~ + 7( 429 + 3575a~ + 6825a~ + 11550a~ + 18018a~) 4 

(C.4) 

Now we claim that for single zero energy bound states the variational 

parameters must be unique. Solving for the variational parameter a 1 from 

the above equation we get the following, 

1 
a 1 = 

210210 
(-3432.A- 11440a2.A ± yf]5;_). (C.5) 

where, 

D1 = ((3432.A + 11440a2.A)2 - 420420(15015 + 405405a~ + 1156155a~ 

(C.6) 

For unique a 1 we demand that the discriminant of the above equation D1 

vanishes. Therefore, 

1 
a1 = 

210210 
(-3432.A- 11440a2.A). (C.7) 
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Solving D 1 = 0 for a 2 we get, 

(C.8) 

where, 

D 2 = ( -18727800a3-\ + 137280-\2)
2

- 4( -1,1036025- 849773925a~ 

-2008556550a~- 4171617450a~- 34574400a3a4,\- 57047760a4a5,\ 

+20592-\2
)( -297972675 + 228800-\2 )). 

(C.9) 

For unique a 2 the discriminant of the above equation, D2 must vanish. There-

fore, 
18727800a3,\ -137280,\2 

a 2 = 2( -297972675 + 228800-\2 ) 
(C.10) 

Solving D2 = 0 for a 3 we get, 

where, 

1466942400a4,\ + 183040-\3 - 1126400a4-\3 ± VJ);, 
a3 = 

2( -36054693675 + 40170000-\2) 
(C.ll) 

D3 = ( ( -1466942400a4,\ - 183040-\3 + 1126400a4-\ 3 
)
2 

-4( -36054693675 + 40170000,\ 2) ( -468242775 - 85220185050a~ 

-176995768950a~- 2420454960a4a 5,\ + 1233232-\2 + 65436800a~,\2 

+135907200a~-\2 + 1858560a4a5-\3
))). 

(C.12) 
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For unique a 3 , claiming that the discriminant of the above equation D3 must 

vanish, we obtain, 

1466942400a4>. + 183040).3 -1126400a4.X3 

a3 = 
2(-36054693675 + 40170000>.2) 

(C.13) 

13( -2662500456a5 >. + 2966400a5 >.3 + 4096).4 ±..;'IX,) 
a 4 = 10(243729729243- 314223888>.2 + 32768>.4) ' 

(C.14) 

where, 

D4 = 18( -10729671217761971475- 4055815720314025217550a~ 

+45807763925146608).2 + 10141460221853312352a~.X2 - 49598119056640>.4 

-7248551127206400a~.X4 - 1211733540864a5 >.5 + 13236736000>.6 

+1096381440000a~.X6 + 1350041600a5>.7 )). 

(C.15) 

For unique a 4 claiming the discriminant of the above equation to be zero we 

get, 
13(-2662500456a5>. + 2966400a5.X3 + 4096>.4) 

a 4 = 10(243729729243- 314223888).2 + 32768).4) · (C.
16

) 

-16384). 5 ± ...;'15;, 
as= 594 (184643734275- 255977696).2 + 44800>.4) (C.

17
) 
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where, 

1J5 =2(-15911834174160559648138125+72262847652904559851200A2 

-91078523630979236352A4 + 36606338229288960A6 

-4274823168000A8 + 134217728A10
). 

(C.18) 

Obviously it is assumed that the denominators in the expressions obtained 

for the variational parameters are non-zero. For unique a5 as before claiming 

that the discriminant of the above equation, 1J5 to be zero we get the following 

solutions for A, 

A = ±140.235, ±93.478, ±47.2378, ±29.1756, ±19.0581. (C.19) 

However among these values ±93.478, ±29.1756 are the roots of the following 

equation which appears in the denominator of a4 , 

(243729729243- 314223888A2 + 32768A4
) = o. (C.20) 

Thus these correspond to the singularities of the coefficient a4 • Among the 

rest, the lowest two values are the first two values of A which supports zero 

energy bound states with mz = 2, 

A = ±47.2378, ±19.0581. (C.21) 
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D Appendix 

Addendum to Section 3.2 

The trail wavefunction for the electron is given by, 

where 

Also, 

1 
w(R, TJ) = J27f<I>(R)8(ry), 

8(77) = N2(1 + a1P1(cos ()) + a2P2(cos())), 

R = .J p2 + {3z2 , 

rJ = arctan ( }-pz) . 

p = Rsinry, 

...{fiz = Rcosry. 

In terms of (R, rJ, ¢), 

p dp dz = )-pR2 sin rJ dR dry. 

We evaluate the quantity (wlrlw). 
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Y:<wi.P2 Iw) 

~21f,j(j f f pdpdz ( (~~)' + (~~)') 

1 ((aRaw arJaw) 2 (aRaw arJaw) 2
) 

= 21r-/fi 8p 8R + 8p 8'fJ + 8z 8R + 8z 8'fJ P dp dz 

~ f [ R'sm11 dR d11 ( ( (sm' 11 +,a cos' 11) ( ~!)' e') 
+ (2(

1 ~iJl sm 11 coo 11 ~ o~!':) + (:. ( sin'H oo;; 11
) ~' (:)')) 

= t)() R2 dR (8~) 2 14a~ + 21,8a~ +lOa~+ ll,Ba~- 28a2 + 28,8a2 + 35{3 + 70 
} 0 8R 7(15 + 5a~ + 3a~) 
(XJ R dR ~ 8~ 4( -1 + {3)(7a~ + 3~ + 21a2) 

+ }0 8R 7(15 + 5a~ + 3a~) 
+ {co dR ~2 2(7a~ + 28,8a~ + 27a~--;- 36{3a~). (D.g) 

} 0 7(15 + 5~ + 3a2 ) 

Maple and Mathematica were used to evaluate the integrals. 
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E Appendix 

Atomic Units 

We have used the atomic units in the thesis. We tabulate (Table 13) the 

values of a few useful physical quantities in the atomic units and the corre­

sponding values in the SI unit. We also note that 1 Hartree energy~ 27.2114 

physical quantity name in atomic unit in SI unit 
mass electron mass 1 9.10938215(45) X 10 -31 kg 

length Bohr radius 1 5.2917720859(36) x 10-11 m 
charge proton charge 1 1.602176487( 40) X 10-19 C 
energy Hartree energy 1 4.3597 4394(22) x w-18 J 

angular momentum n 1 1.054571628(53) X 10-34 Js 

electric constant 
1 

8.854187817 X w-12 F m-1 
Eo 

471' 

Table 13: Relation between atomic unit and SI unit. The numbers 
in parentheses are the corresponding standard uncertainties. Source: 
http:/ jphysics.nist.gov jcuu/Constants 

e V. The square of the ratio (say 'Y) of the Bohr radius ( a0 = 
41l'Eo~

2

) and the 
mqq 

cyclotron radius (rc =~)has been used as a measure of the magnetic 

field strength. This ratio is evidently dimensionless. For electrons, in atomic 
. {f 

umts, we have, a0 = 1 and rc = y Jj· Therefore, 

(E.1) 

In SI units, 'Y = 1 implies lEI = 2.35052 x 105 ~ 2.35 x 105 Tesla. For 

dipole moments, 1 a.u. = 2.541765 D ~ 2.54 D, where D denotes Debye. 1 

D ~ 3.33564 x 10-30 coulomb meter. 
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