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Abstract 

Bergman showed that systems of projections of algebras in a variety will 
satisfy a certain property if the variety has a near-unanimity term. The 
converse of this theorem was left open. This paper investigates this open 
question, and shows that in a locally finite variety, Bergman's Condition 
implies congruence modularity. 
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1 Introduction 

The motivation behind this thesis is an open question posed by George 
Bergman in a 1977 paper (see [3]). In this paper, he took the celebrated 
theorem of Baker and Pixley on the existence of near-unanimity terms, and 
considered a related condition in terms of systems of projections. He showed 
that if a variety satisfies the equivalent conditions of the Baker-Pixley theo­
rem, any system of projections of algebras in the variety will satisfy a certain 
condition. His speculation as to whether the converse was true lead to the 
work in this thesis. 

While investigating possible counterexamples to the converse of Bergman's 
Theorem, we found that Bergman's condition concerning systems of pro­
jections ties into the property of congruence modularity. We present one 
construction that shows that if a variety satisfies Bergman's condition for 
systems of 2-fold projections over 4 coordinates, the variety will be congru­
ence modular. Then, if we further suppose that our variety is locally finite, 
we are able to present a different construction that shows the same result 
for systems of k-fold projections. This gives partial verification of Bergman's 
original problem, because the existence of a near-unanimity term implies con­
gruence modularity. For both of these results, we assume that our variety 
is idempotent. In fact, Bergman's condition is a feature of the idempotent 
reduct of a variety, and so this restriction is not essential. 

The necessary background material in universal algebra can be found in 
[5] or [14], but we will include several basic definitions here. 

Definition 1. A type of algebras is a set § of function symbols such that 
each f E § is assigned a nonnegative integer n. We call n the arity of f. 

Definition 2. An algebra A of type § is an ordered pair (A, F) where 
A is a nonempty set and F is a family of finitary operations on A (called 
the basic operations of A) indexed by § such that corresponding to each 
n-ary function symbol f E §, there is an n-ary operation fA on A. The 
term operations of A are those operations on A that can be obtained via 
composition from the basic operations of A and the projection operations 
on A. A nonempty class of algebras of the same type that is closed under 
subalgebras, homomorphic images, and direct products is called a variety. 

Definition 3. Let () be an equivalence relation on an algebra A. We call 
() a congruence if, for each n-ary function f E F, ai, bi E A, the following 
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holds: If aiObi for all 1 :::; i :::; n, then f(a 1 , . •• , an)e f(bl, . .. , bn)· The set of 
congruences of an algebra forms a lattice under inclusion and is called the 
congruence lattice of the algebra. 

The relational product of two congruences 01 and 02 is the relation 

el 0 e2 = {(x, y) I ::lz( (x, z) E el and (z, y) E 02)}. 

Definition 4. An algebra A is congruence modular if the congruence lattice 
of A is modular, i.e., for any congruences 01 , 02, and 03 of A, 

Definition 5. An identity of type .fP over X, for X a set of variables, is an 
expression of the form 

p';:::jq 

for terms p, q over X. An algebra A of type .fP satisfies an identity 

for Xi E X if for any a1, ... , an E A we have 

Definition 6. (This was first described in [15], along with other intersection 
properties.) Let r > 0 and Ai be algebras of the same type for 1 :::; i :::; r. 
For k > 0 and B, C :::; f};=1 Ai, we say that B and C are k-equal, and write 
B =k C, if for every I ~ {1, 2, ... , r }, III :::; k, the projections of B and C 
onto the coordinates I are equal. If B =k TI~=l Ai, then we say that B is 
k-complete with respect to TI~=l Ai· 

We will write proj1 B to indicate the projection of B onto the coordinates 
I. 

Definition 7. An operation t on a set A is idempotent if, for all x E A, we 
have t(x, x, ... , x) = x. An algebra is idempotent if all of its operations are. 
The idempotent reduct of an algebra A is the algebra with universe A whose 
basic operations consist of all of the idempotent term operations of A. We 
define the idempotent reduct of a variety V to be the variety generated by 
the idempotent reduct of the V-free algebra on countably many generators. 
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2 The Baker-Pixley Theorem and Bergman's 
Condition 

The work in this thesis was motivated by a result of Bergman, which, in 
turn, was motivated by the Baker-Pixley theorem mentioned earlier. This 
result, Theorem 2.1 in [1], is as follows: 

Baker-Pixley Theorem. For a variety V and integer k ~ 2, the following 
conditions are equivalent: 

(i) V has a {k+l)-variable term operation m(x0 , ... ,xk) satisfying the 
"near-unanimity" identities; i.e. m(x, ... , x, y, x, ... , x) = x for all 
positions of y. 

(ii) In V, if A is a subalgebra of a direct product A1 x · · · x Ar, k ::; r < oo, 
then A is uniquely determined by its images under the projections of 
A1 X · · · X Ar on all products IT1 Ai with I~ {1, ... , r }, III = k. 

(iii) In any algebra A E V, if r congruences x = ai mod ei, 1 ::; i ::; r(k::; r), 
are solvable k at a time, then they are solvable simultaneously. 

(iv) For any algebra A E V, integer n ~ 1, and finite partial function 
f : An ---+ A, if the restriction off to each subset of its domain with k 
or fewer elements has an interpolating term operation, then so does f 
itself. 

(v) f, as given in (iv), has an interpolating term operation if and only if all 
subalgebras of Ak are closed under f (where defined). 

Let V be a variety, k ::; r positive integers, and A 1 , ... , Ar be algebras 
in V. For each I ~ {1, ... , r} with III = k, suppose we are given a k-fold 
projection sf ::; IT! Ai. For every J with Ill ~ k, let SJ ::; ITJ Aj be the 
intersection, over all I ~ J, III = k, of the inverse image of sf under the 
natural map ITJ Aj ---+ IT1 Ai. 

Definition 8. We call the given system of subalgebras (SI )III=k consistent 
on J if for every k-element subset I ~ J, the projection of SJ in IT1 Ai is all 
of S1. This means that for every I~ J, each k-tuple in S1 can be extended 
to a I Jl-tuple in ITJ Aj, each sub-k-tuple of which belongs to the appropriate 
subalgebra SI', I'~ J. 

3 



M.Sc. Thesis - C. McGarry McMaster - Mathematics and Statistics 

We write C(e, f) if (SJ )!JI=e is consistent on all K of cardinality f, i.e., 
if each e-tuple can be extended to a consistent f-tuple. 

Note that consistency in this sense is transitive: if C(d, e) and C(e, f) 
hold, then C( d, f) holds. 

Bergman's Theorem (Theorem 1 in [3]). Let V be a variety, and k a 
positive integer, satisfying the equivalent conditions of the Baker-Pixley Theo­
rem. Forr ~ k, let A 1 , ... , Ar E V, and for every subset I~ {1, ... , r }, III = 
k, let SI be a subalgebra of nl si. Then there exists a subalgebra s ~ 
Al X ... X Ar whose projection in each nl si, III = k is SI (i.e., the given 
system is consistent on {1, ... , r}) if and only if the given system (SI )III=k is 
consistent on every J with I Jl = k + 1. 

Bergman's Condition. In other words, this theorem states that if a variety 
V satisfies the equivalent conditions of the Baker-Pixley Theorem, then for 
any rand any system of k-fold projections over r members of V, the system 
will satisfy C(k, r) for all r ~kif and only if it satisfies C(k, k + 1), i.e., 

C(k, r) {:} C(k, k + 1). 

Now, if C(k, r) holds, then certainly C(k, k+ 1) will hold as well. To prove 
the other direction, that C(k, k + 1) ::::} C(k, r), Bergman showed that in a 
variety satisfying the right conditions, C(e-1,e)::::} C(e,e+ 1) for all e > k. 
Using the transitivity property from above, this gives C(k, k + 1)::::} C(k, r). 
Accordingly, we will call 

C(k, k + 1)::::} C(k, r) for all r > k 

Bergman's Condition for k. Now Bergman's Theorem above states that 
any variety satisfying the equivalent conditions of the Baker-Pixley Theo­
rem will also satisfy Bergman's Condition fork. Bergman poses the question 
of whether the converse of the theorem above is true, i.e., whether Bergman's 
Condition for k implies the existence of a (k + 1)-ary near-unanimity term. 

3 Congruence Modular Varieties 

Our key result relates Bergman's Condition to congruence modularity. 
In order to prove it, we will need several known results about congruence 
modular varieties. First, we need the following theorem, 2.2 in [9]. This result 
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first appeared in Day's McMaster Masters thesis and was also published in 
[7]. 

Theorem 1. A variety V is congruence modular if and only if for some n 
there are terms m 0 (x, y, z, u), ... , mn(x, y, z, u) such that V satisfies 

(i) mo(x, y, z, u);:::::: x, mn(x, y, z, u);:::::: u 

(ii) mi(x, y, y, x) ;:::::: x, i ~ n 

(iii) mi(x, x, y, y);:::::: mi+1(x, x, y, y), for all even i < n 

(iv) mi(x, y, y, z) ;::j mi+1(x, y, y, z), for all odd i < n. 

Terms satisfying these requirements are called Day terms. 

These equations imply that Day terms are idempotent. Hence, congru­
ence modularity is a feature of the idempotent reduct of a variety. 

Consider the following condition on an algebra A with a, (3, /' E Con( A): 

implies 

( *) Let a, b, c, d E A, (a, b), ( c, d) E /3, 
(a, c), (b, d) E ')', and/' 1\ f3 ~a. 

Then (a, b) E a=? (c, d) Ea. , i.e., 

I a--c 

~I )a I 
b-d 

I a--c 

~I )a I) 
b-d 

(where parallel lines are assumed to have the same label). 

The Shifting Lemma (2.4 in [9]). For a variety, condition (*) is equiva­
lent to congruence modularity. 
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Proof Sufficiency. Suppose A is congruence modular. Then 

(3 1\ ( 'Y V ((3 1\ a)) = ((3 1\ 'Y) V ((3 1\ a). 

Since qa((3 1\ a)b"fd and (3 1\ a~ a, 

(c, d) E (3 1\ ('Y V ((3 1\ a)) 

=? (c, d) E ((3 1\ 'Y) V ((3 1\ a) ~a. 

Necessity. Suppose (*) holds in a variety V. Let Fv(x, y, z, u) be the free 
V-algebra generated by {x,y,z,u} and let 

(3' Cg(x, u) V Cg(y, z), 

1' Cg(x, y) V Cg(z, u), 

a' = Cg(y, z). 

By (*), (x, u) E a', so (x, u) E a' V ((3' 1\ 1'). Now we show that our variety 
has Day terms m 0 (x, y, z, u), ... , mn(x, y, z, u). 

The fact that (x, u) is in a' V ((3' 1\ 1') implies that, for some n, there are 
elements 

W0 = x,w1, ... ,wn = u E Fv(x,y,z,u) 

such that wi(f3' 1\ 'Y')wi+l if i is even and wi(a')wi+l if i is odd. Let x = 
m 0 (x, y, z, u), m 1(x, y, z, u), ... , mn(x, y, z, u) = u be the terms representing 
Wo, WI, ... ' Wn, i.e. Wi = mnx, y, z, u). Clearly, condition (i) above is satis­
fied. Now, since a' ~ (3', all the wi's are in the same (3' class. So we have 
x(3'mnx, y, z, u)(3'mnx, y, y, x), and since (3' restricted to the subalgebra 
generated by X andy is trivial, X= mnx, y, y, x). Hence, X~ mi(x, y, y, x) 
holds in V, and so (ii) is satisfied. Similarly, (iii) and (iv) hold in V. D 

4 Bergman's Condition and The Idempotent 
Reduct of a Variety 

We will establish that Bergman's Condition for k is a feature of the 
idempotent reduct of a variety. The following theorem is an extension of 
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Bergman's observation in the final section of [3], which involved the case 
where k = 2. 

Theorem 2. Let V be the idempotent reduct of a variety V. Then V satisfies 
Bergman's Condition fork (i.e. C(k, k + 1) =? C(k, r) for all r > k) if and 
only if V does. 

Proof. One direction is immediate: if V satisfies Bergman's Condition for k, 
then V will as wel~, because any system of k-fold projections in V can be 
realized by one in V. 

Suppose V satisfies Bergman's Condition for k and let .. t E V for i E 

{1, ... , r }. Let S1, I C {1, ... , r }, III = k be a system of projections over the 
A/s that satisfies C(k, k + 1). We will show that it satisfies C(k, r). 

Let Fi = Fv(Ai), the free algebra in V generated by Ai, and let 81 = 
SgniEIF;(SI), the subalgebra of rriEJFi generated by SJ. 

First, we will show that 81 satisfies C(k, k + 1): 
Let iJ E S 1 for I = { 1, ... , k}. Then there exist a term t and vectors 

.51, .52, ... ' Sm E SI such that iJ = t(s1, ... 'sm)· Since SI satisfies C(k, k + 1), 
each of these ~ 's can be extended consistently to any other coordinate, in 
particular, to k + 1. For each j, let ~ 1 E S{l, ... ,k+1} be an extension of~ that 
is consistent with our system and let iJ 1 = t( 81 

1
, ••• , S'm 1). Then iJ 1 extends iJ 

appropriately, i.e., v1 E SJ, for J = {1, 2, ... , k + 1 }. By symmetry, for any 
I C J C {1, ... , r }, III = k, IJI = k + 1, we can extend iJ E 81 to a v1 E SJ. 
Hence, 81 satisfies C(k, k + 1). By assumption, 81 also satisfies C(k, r). 

Let X E SJ, I= {1, ... 'k}, and let X 1 E S{l, ... ,r} extend X to an r-tuple. 
For all J c {1, ... 'r }, IJI = k, let x/ be the projection of X1 onto the coordi­
nates J. For each such J, there exists, for some m = mJ, SJ 1 , •.. ,;Jm E SJ 
and a term tJ such that 

- I t (- 1 - m) XJ = J SJ , ... , SJ . 

Note that for J =I, x/ = x, and we can take tJ to be the term x. 
For all J,K c {1, ... ,r}, IJI, IKI = k, if j E Jn K, we have 

tJ(sJ 1
, ... ,8Jm)(j) x1(j) 

- tK(SK 1 , ... , SK n)(j), 

7 
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where m = mJ and n = mK. We will call this condition *j,J,K· 

If tJ and tK are idempotent, then this condition will also hold in V, the 
idempotent reduct of V. Then, we can use these terms to extend any k­
tuple in S1 to a consistent r-tuple, and we'll be done. Now, if j E J and 
j E {1, ... , k }, then *j,J,{l, ... ,k} gives 

Since the s/(j)'s are free variables, this gives that 

tJ(x,x, ... ,x)=x 

in V, and so tJ is idempotent. Now, for an arbitrary J, we can find a K with 
K n {1, 2, ... , k} nonempty and some j E J n K. Since tK is idempotent and 
*j,J,K gives 

tJ(sJl, ... ,sJm)(j) - tK(sKl, ... ,sKn)(j) 

=?tJ(x, ... ,x) - tK(x, ... ,x) 

- X 

then tJ is idempotent as well. 

5 Results 

D 

We will first describe a result concerning Bergman's Condition for the 
case k = 2, and then use a different construction to obtain a more general 
result. 

Lemma 1. In any idempotent variety V that is not congruence modular, 
there is an algebra A = B x C, where B is generated by elements 0 and 
1 E B, and C is generated by elements 0 and 1 E C, with congruences a, {3, 
and 'Y satisfying 

(i} f3 and"( are the projection kernels of A onto B and C, respectively 

(ii} a = CgA((a, b)), f3 = CgA((a, b), (c, d)), and"( = CgA((a, c), (b, d)), 
where a= (0, 0), b = (0, 1), c = (1, 0), and d = (1, 1) 

8 
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(iii) "( 0 (3 = lA 

(iv) ((1,0), (1, 1)) rJ_ a and ((O,i), (O,j)) E a for all i,j E C. 

Proof. Suppose that V is not congruence modular. By the Shifting Lemma, 
for some A E V we can find a, b, c, d E A and a, (3, "( E Con( A) such that 
(a, b), (c, d) E (3, (a, c), (b, d) E "(, "( 1\ (3 ~ a, (a, b) E a and (c, d) rJ_ a. Since 
(a, b) E a 1\ (3 and (c, d) rJ_ a 1\ (3, we can assume a C (3. Furthermore, we can 
assume that 'Y 1\ (3 = OA by taking a suitable quotient of A. So we have: 

We may replace A by SgA( {a, b, c, d} ), and a, (3, and 'Y by CgA((a, b)), 
CgA((a, b), (c, d)), and CgA((a, c), (b, d)), respectively, since we will have the 
same configuration. Because (c, d) E 'Y V a, we must have (3 ~ 'Y V a. Hence, 
'Y V (3 = 'Y V a. Now, since aj('Y V (3) contains {a, b, c, d} (and, in fact, a, b, c, 
and dare all 'Yo {3-related to each other), aj('Y V (3) = A (since A is idem­
potent). Therefore, (3 V 'Y = lA. So in an idempotent variety, we have an 
algebra A generated by a, b, c, d with congruences a, (3, and 'Y as pictured in 
Figure 1. 

Figure 1: a, (3, and 'Y 
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Claim 1. 'Yo {3 = lA. 

Proof. Let x, y E A. Then x = t1 (a, b, c, d) and y = t2 (a, b, c, d) for some 
terms h, t 2 of A. It was noted that a, b, c, and d are all ('Yo {3)-related to 
a, and so, x = t 1(a, b, c, d)("' o {3)t1(a, a, a, a) = a. By symmetry, x is also 
('Yo {3)-related to b, c, and d. Hence, x = t 2 (x, x, x, x)('Y o {3)t2 (a, b, c, d) = y. 

Hence, 'Yo {3 = lA. 0 

It follows that f3o'Y = lA, and so {3 and 'Yare a pair of factor congruences. 
Hence, by Theorem 7.5 in [5], A~ B x C, forB= A/ {3, C =A/ "f. We can 
assume that A = B x C. 

If we consider the projection of B x C onto B or C, then, viewing {3 and 
'Y as kernels of the corresponding projection maps, we obtain 

{3 {(a, b) E A2 l1r1(a) = 1r1(b)} 
- { ( ( q, r), ( s, t)) E ( B x C) 2 I q = s} 
- {((u,v), (u,w)) I u E Band v,w E C}. 

Similarly, 'Y = {((u,v), (x,v)) I u,x E Band v E C}. We have assumed that 
A = B x C for sets B and C, and so we can represent a, b, c, and d as ordered 
pairs. 

Taking B = 11 and C = 11 for (possibly infinite) cardinals J-l, v, we may 
assume that a = (0, 0), b = (0, 1), c = (1, 0), and d = (1, 1). Since A is 
generated by a, b, c, d, if we consider its projection onto its first or second 
coordinates, we must have that B is generated by {0, 1} and Cis generated by 
{0, 1 }. It follows that, since (a, b) = ( (0, 0), (0, 1)) E a, (0, 0)/a = (0, 0)/ {3 = 
{(O,j) I j E C}. 

We also have that 'Yo a o 'Y = lA: For any (x~, x2), (y1, Y2) E A, 

(x1, x2)'Y(O, x2)a(O, Y2)'Y(y1, Y2)· 

Also note that ( ( 1, 0), ( 1, 1)) 1. a o 'Y o a: If ( ( 1, 0), ( 1, 1)) E a o 'Y o a, then 
there exist (x, y), (z, u) E A such that 

(1, O)a(x, y)'Y(z, u)a(1, 1). 

This gives y = u and x = z = 1. Hence, we have 

(1, O)a(1, u)'Y(1, u)a(1, 1), 

10 



M.Sc. Thesis - C. McGarry McMaster - Mathematics and Statistics 

which implies (1, 1) and (1, 0) are in the same a-class as (1, u), and, thus, 
a-related to each other. This is a contradiction. 0 

To obtain the following result, we used java programs developed by Barry 
Dewitt during his summer research term with Dr. Matthew Valeriote at Mc­
Master University. His software enabled us to find various counterexamples 
for Bergman's Condition for k in specific algebras that are not congruence 
modular, which we were then able to extend to a more general setting. 

Theorem 3. LeV be a variety. If Bergman's Condition holds fork= 2 (in 
particular, if C(2, 3) ::::} C(2, 4)}, then V is congruence modular. 

Proof We will prove the contrapositive. Suppose V is not congruence mod­
ular. By Theorems 1 and 2, we may assume that V is idempotent. Then, we 
have the situation presented in the previous lemma. Since sets defined by 
primitive positive formulas using a, (3, and '"Yare subalgebras of subpowers of 
A, we can use them to build a system of projections (S1 )III=2 over A 4 that 
is consistent on every 3-element subset of {1, 2, 3, 4 }, but not consistent over 
all four elements. 

Let s{1,2} = s{3,4} = (3, s{1,3} = a 0 '"'(, S{1,4} = '"'( 0 a, s{2,3} = lA, and 
S{2,4} = '"'!· 

First we will show that if ((a1, b1), (a2, b2)) E S{1,2} = (3, then there exist 
(a3, b3) and (a4, b4) such that all of the 2-fold projections of ((a1, b1), (a2, b2), 
(a3 , b3 )) and ((a1, b1), (a2, b2), (a4 , b4 )) belong to the appropriate subsystem. 
Because elements that are (3-related must have the same first coordinate, 
al = a2. 

We can take (a3, b3) = (a1, b1) and (a4, b4) = (0, b2). Then ((a1, b1),(a1, bl)) 
E S{1,3} =a o '"'!and ((a2, b2), (a1, b1)) E S{2,3} = lA. (a1, bl)'"f(O, b1)a(O, b2), 
so ((a1, b1), (0, b2)) E '"'! o a= S{1,4}· 

Also, ((a2, b2), (a4, b4)) = ((a1, b2), (0, b2)) E '"'( = S{2,4} because elements 
with the same second coordinate are '"(-related. 

Next, if we are given ((a2, b2), (a3 , b3 )) E S{2,3} = lA, we can extend to 
elements (a1, b1) and (a4, b4). Take (a1, b1) = (a2, b3) and (a4, b4) = (a3, b2). 
Then 

((a2,b3), (a2,b2)) E f3 = 8{1,2}, 

( ( a2 , b3) , ( a3 , b3)) E '"'~ ~ a o '"'~ = s{1,3}, 

((a2,b2), (a3,b2)) E '"'~ = s{2,4}, and 

((a3,b3), (a3,b2)) E f3 = s{3,4}· 

11 



M.Sc. Thesis - C. McGarry McMaster - Mathematics and Statistics 

Continuing in this fashion, given 

• ((a1,b1),(a3,b3)) E 8{1,3}1 take (a2,b2) = (a1,b1) and (a4,b4) = (a3,b1); 

• ((a1,b1),(a4,b4)) E 8{1,4}, take (a2,b2) = (a1,b4) and (a3,b3) = (a4,bt); 

• ((a2,b2), (a4,b4)) E 8{2,4}, take (a1,b1) = (a2,b4) and (a3,b3) = (a4,b4); 

• ((a3,b3), (a4,b4)) E 8{3,4}, take (a1,bt) = (O,b4) and (a2,b2) = (a4,b4). 

Next, we show that (81 )1I1=2 is not consistent on {1,2,3,4}. Consider 
the element ((1, 0), (1, 1)) E 8{2,3} = lA. We'll show that there aren't ele­
ments (x1, x2), (y1, y2) E A such that ((x1, x2), (1, 0), (1, 1), (y1, Y2)) projects 
correctly. If such elements exist, then 

((x1,x2),(1,0)) E 8{1,2} = (3 

::::} x1 = 1 and 

((1,x2), (1, 1)) E 8{1,3} =a o 1 

::::} (1, x2)a(1, z2)1(1, 1) for some z2 E C 

::::} (1, x2)a(1, 1). 

Next, 

( ( 1, 0), (Y1, Y2)) E 8{2,4} =I 
::::} Y2 = 0 and 

((1, 1), (y1, 0)) E 8{3,4} = (3 

::::} Y1 = 1. 
So we must have 

((1, x2), (1, 0)) E 8{1,4} = 1 o a, where x2 =/= 0 
::::} (1, x2)t(z1, x2)a(1, 0) for some z1 E B 

::::} z1 = 1, so (1, x2)a(1, 0) 

::::} (1, 1)a(1, 0), 

a contradiction. Hence, (81 )III=2 satisfies C(2, 3) but not C(2, 4). 0 

Using a different construction, we are able to generalize this result for 
any natural number k > 1, but only under a stronger hypothesis. In an 

12 
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idempotent variety, we know we can find an algebra A and congruences a, {3, 
and 1 satisfying the properties listed in Lemma 1. For V locally finite, we 
can take this one step further and assume that the a-classes are "uniform," 
in the following sense. Recalling that A = B x C, we can partition B into 
sets P and Q such that for all p E P, (p, c)a(p, d) for all c, d E C, and for 
all q E Q, there are c and din C with ((q, c), (q, d)) ¢:.a. By the properties 
listed in Lemma 1, we know that both P and Q are nonempty (since 0 E P 
and 1 E Q). 

Lemma 2. Assume V is locally finite. Then we may assume that for all 
q1, qz E Q, and c1, c2 E C, 

(1) 

Pictorially, we have a situation as in Figure 2. 

f3 

(\ (\ {\ (\ 1\ 1\ (\ ................ 

1' 

o o oV a-classes 

Cl v v v v o o10 
Pl • • • Ql • • • 

Figure 2: (P U Q) x C 

Here, each box represents a different pair in B x C, where B = P U Q, 
and Pi E P, qi E Q, and ci E C for all i. The vertical partitions are {3-classes, 
the horizontal partitions are 1-classes, and the a-classes are subsets of the 
{3-classes. 

Proof. Now, we obviously have at least one element, 0 E B, in our set P. 
We need to show that we can reduce to a situation in which Q satisfies (1), 
such that B = P U Q. 

Suppose we have elements q1, q2 E Q and c1, c2 E C such that (q1, ci)a(q1, c2 ) 

and ((q2 , c1), (q2 , c2 )) ¢:.a. Consider A'= {(a, b) I (a, b)(a o !)(ql, c1)}. 

13 
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000000 
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Ql Q2 

Figure 3: Reducing to a uniform a 

Since A is idempotent, A' is a subuniverse of A, and the restrictions of 
a, {3, and "' to A' satisfy the same properties that were assumed to hold in 
A. 

Furthermore, our new algebra is the direct product of two algebras B and 
C', and if we consider P and Q defined relative to A', we now have q1 E P, 
and at least one element (namely, q2 ) in Q. We can repeat this process as 
necessary until we have an algebra A with underlying set A= (P U Q) x C 
and with the desired uniformity for a. D 

Note that this is the only point in our argument where we use the local 
finiteness of V. It is likely that in the infinite case, we will still be able 
to establish this sort of uniformity for a. If so, our result would extend to 
non-locally finite varieties, and Theorems 3 and 4 would apply to all varieties. 

Since (q1 , c)a(qt, d) iff (q2 , c)a(q2 , d) for all q1 , q2 E Q, we will say that 
c(aQ)d, or (c, d) E aQ, if (q, c)a(q, d) for any q E Q. 

In obtaining the following result, the Universal Algebra Calculator com­
puter software ( [8]) was used in order to test certain hypotheses for small 
values of k. 

Theorem 4. Let V be a locally finite variety. If Bergman's Condition holds 
for some k > 1, then V is congruence modular. 

14 
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Proof. By Theorems 1 and 2, we may assume that Vis idempotent. Suppose 
that Vis not congruence modular. As established before, we have an algebra 
A, with A= (P U Q) x C, satisfying (1) above. 

Define T ~ A k+l to be the following union: 

{((x1, yt), ... , (xk+l, Yk+d) I Xi E P for some i, 1 < i < k + 1} 

U {((x1, Yt), ... , (xk+l, Yk+t)) I xi E Q for all i, 1 < i < k + 1, 

(Yt, Yk+I) E aQ, 

and xi or Xk+l E P} 

U {((xi, YI), ... , (xk+I, Yk+I)) I Xi E Q for all i 

and (yi, Yj) E aQ for all i,j} 

We will refer to the first set above as X, the second as Y, and the third as 
Z. 

Claim 2. Tis a subuniverse of Ak+l. 

Proof It will suffice to show that T is closed under any operation that 
preserves a, {3, and 1, since a, {3, and 1 are congruences of A. Let f be an 
n-ary operation that preserves a, {3, and I· Since A= B x C, we can consider 
f as a pair (ft, h), where 

for (ai, bi) EA. 
We can translate the preservation of a, {3, and 1 into conditions placed 

on ft and /2. Because (ai, bi)f3(ai, ci) for all ai E B, bi, ci E C, f preserves f3 

{:} f((ai, bi), ... , (an, bn))f3J((al, ci), ... (an, Cn)) 
{:} (ft((al, bt), ... , (an, bn)), h((al, bt), ... , (an, bn))) 

f3(h((at, ct), ... , (an, Cn)), h((ai, Ct), ... , (an, Cn))) 
{:} ft((ai, bt), ... , (an, bn)) = fi((ai, ci), ... , (an, Cn)). 

Hence, h only depends on the first coordinates of a given tuple, so we 
can simply write ft(a 1 , ... , an) for ai E B. Similarly, preserving 1 implies 
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that fz only depends on the second coordinates. We can conclude that 

Next, we see what it means for f to preserve a. Now, if (ai, bi)a(ai, bD, 
then we have 

If fi(a 1 , ... , an) = q for some q E Q, then, if we have (bi, bD E C¥Q for all 
ai E Q, 

fz(bl, ... , bn)(aQ)!z(b~, ... , b~) 

(i.e., if ai E P, bi and b~ can be anything). Hence, if JI(a1 , ... , an) E Q, fz 
does not depend (modulo aQ) on its variables Yi with ai E P. 

For 1 :::; i :::; n, let ti be a member ofT. We would like to show that 
f(t1 , ... , tn) E T. Without loss of generality, we may assume that there are 
l < m :::; n such that ti E X if 1 :::; i :::; l, ti E Y if l < i :::; m and ti E Z if 
m < i. 

For each i, we write ti as ((xi,yl), ... , (xi+u y~+1 )). If fi(xL xr, ... , xf) E 
P for some i with 1 < i < k + 1, then 

Suppose !I ( xL xr' ... ' xf) E Q for all i with 1 < i < k + 1. Since ti E X for 
1 :::; i :::; l, we have that, for each i, there exists a ji, 1 < ji < k + 1 such that 
XJ; E P. So, for some p1,p2, ... ,pz E P, we have 

!I (Pl, XJ1 , xJ1 , ••• , xj1 ) E Q, 
fi(x]

2
,p2 , x]

2
, ••• , xj

2
) E Q, 

fi(x]
3

, x]a,p3 , ••• , xj
3

) E Q, 

Hence, fz does not depend on its first l coordinates, modulo aQ, and so 
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(h(Yi, Yi, · · ·, Yr), f2(y~+l' Yk+u· · ·, Yk+l)) E etQ. 

If h (xi, ... , x~) or h (x~+l, ... , xk+l) E P, then our resulting k + 1-tuple 
is in Y and we are done. If both of these elements are in Q, then we will 
show our resulting k + 1-tuple must be in Z. To do this, we only need to 
show that (h(y{, ... ,yf),J2 (yJ, ... ,yj)) E CtQ for all i,j. 

~From above, we know that, modulo O:Q, h does not depend on its first 
l coordinates. Next, we will show that h also does not depend on any of its 
coordinates, modulo etQ, between l + 1 and m, inclusive: 

Since for each i, l + 1 :::; i :::; m, ti E Y, we have xi or x~+l E P. Also, 
both h (xi, ... , x~) and !1 ( Xk+l, ... , xk+l) E Q. Hence, because f preserves 
a, h does not depend on its first m coordinates, modulo O:Q. 

Now, for m + 1 :::; i :::; n, (yj
1

, YJ
2

) E CtQ for all j1, j 2 . Hence, we have that 
(Jz(y{, ... ,yf),f2(yJ, ... ,yj)) E CtQ for all i,j, and so our element must lie 
in Z. This proves our first claim. 

Claim 3. T is k-complete with respect to A k+l. 

Proof We need to show that T =k Ak+l. Since T :::; Ak+l, for every 
I ~ {1, 2, ... , k + 1} with III :::; k, the projection of any t E T onto the 
coordinates I will belong to niEJ A (i.e. proj[T ~ proj[Ak+l ). Suppose 
I= {1,2, ... ,k}. Then, for any a= ((a 1 ,b1 ), ... ,(ak,bk)) E Ak, consider 
the element t = ((a1 , b1), ... , (ak, bk), (p, b1)), where p is any element in P. 
Then t E T, and so a E prohT. 

If I = { 1, ... , j - 1, j + 1, ... , k + 1} for some j between 1 and k + 1, and 
we're given 

we can consider 

where, again, p E P. Finally, for I = {2, ... , k + 1} and 

we can consider 
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This shows that proj1Ak+l s;;; proj1T, for allIs;;; {1, 2, ... , k + 1} with 
III ~ k and soT =k Ak+l. 

We will now define a system of projections over Tk+2 that satisfies C(k, k+ 
1) but not C(k, k + 2). This construction was first used by Valeriote in [16] 
and is based on Bergman's counterexample for the variety of abelian groups, 
found in section 2 of [3]. 

Let (81) be the system of k-fold projections- of f17~{ Ti, where Ti = T 
for all i, defined as follows: for I s;;; {1, 2, ... , k + 2}, III = k, take 81 to be 
the set of k-tuples (vi I i E I) from niEI Ti such that 

~(j) Vj(i) if i,j < k + 2 and i,j E I and 

vi(i) Vk+2(i) ifi < k+2 and i,k+2 E I. 

For any I, the set SI is a nonempty subuniverse of niEI Ti· 

Claim 4. The system (SI)III=k of k-fold projections is consistent on every 
(k + 1)-element subset J of {1, 2, ... , k + 2}, i.e., it satisfies C(k, k + 1). 

Proof To show this, we need to show that any k-tuple (vi I i E I) E 81 can 
be extended to a (k + 1)-tuple that projects as necessary. 

Suppose J = {1, 2, ... ,k+1} and I= {1,2, ... ,k}. Let (v1, ... ,vk) E 81 . 

We need to find a Vk+l E T such that the projection of (v1 , ... , vk, Vk+l) onto 
any k-element set of coordinates I' C {1, 2, ... , k + 1} belongs to 81'. 

Now, for some a E A, (v1(k + 1), ... , vk(k + 1), a) E T, since T is k­
complete with respect to A k+l. Taking this vector as vk+l gives us what we 
need, as for any I' C {1, 2, ... , k+ 1 }, II' I = k, the projection of (v1, ... , vk, Vk+l) 
onto I' is in 81'. This procedure will work for any I C J C {1, 2, ... , k + 
2}, IJI = k + 1 and III = k, and so the system satisfies C(k, k + 1). 

Claim 5. The system (81 )JII=k of k-fold projections of f17~{ Ti is not con­
sistent on {1, 2, ... , k + 2}, i.e., it fails C(k, k + 2). 

Proof Choose elements c, dE C such that (c, d) fj. O'.Q· Suppose q E Q and 
pEP. For 1 ~ i ~ k, let vi be the (k+ 1)-tuple with vi(i) = (q, d), vi(k+ 1) = 
(q, c) and vi(j) = (p, c) otherwise. So, we have 

v1 - ((q, d), (p, c), (p, c), ... , (p, c), (q, c)), 
v2 - ((p, c), (q, d), (p, c), ... , (p, c), (q, c)), 
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v3 ((p, c), (p, c), (q, d), ... , (p, c), (q, c)), 

vk ( (p, c), (p, c), (p, c), ... , ( q, d), ( q, c)). 

We have vi E T for all i, and (v1, ... , vk) E 81, for I= {1, 2, ... , k }. We will 
show that this k-tuple cannot be extended to a (k + 2)-tuple that projects 
appropriately onto each sub-k-tuple. 

Any extension must have vk+t(i) = (q,c) and vk+2(i) = (q,d) for all 
i, 1 ~ i ~ k. We also must have vk+t(k + 1) = vk+2(k + 1). Hence, for some 
x E B, y E C, we have 

Vk+ 1 ( ( q' c)' ( q' c)' 0 0 0 ' ( q' c)' (X' y))' 

Vk+2 ( ( q' d)' ( q' d)' 0 0 0 ' ( q' d)' (X' y)) 0 

But in order for these vectors to be in T, we must have ( c, y) E etQ and 
(d, y) E etQ, which contradicts (c, d) ¢:: aQ. Hence, this system is not consis­
tent over k + 2 coordinates. 

We can now put all this together to prove the theorem. We have shown 
that in any locally finite, idempotent variety that is not congruence modular, 
we can find a system of k-fold projections that satisfies C(k, k + 1) but not 
C(k, k + 2), for k > 1. Hence, the variety will fail Bergman's Condition for 
any k > 1. Therefore, if a locally finite variety satisfies Bergman's Condition 
for some k > 1, it must be congruence modular. 0 

6 Connections with the Constraint Satisfac­
tion Problem 

Definition 9. An instance of the Constraint Satisfaction Problem (CSP) is 
of the form P = (A, C), where 

• A= (A1 , A2 , ... , An) is a sequence of finite, nonempty sets, called the 
domains of P, and 

• C is a set of constraints { C1, ... , Cq} where each Ci is a pair (Si, ~) 
with 
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- si a nonempty subset of {1, 2, ... 'n} called the scope of n, and 

- Ri an ISil-ary relation over (Aj I j E Si), called the constraint 
relation of ci. 

A solution toP is ann-tuple x over the sequence (A 11 :::; i:::; n) such that 
projsi (x) E Rj for each 1 :::; j :::; q. 

If V is a variety and the Ai 's are universes of algebras from V such that 
each of the constraint relations ~ is the universe of a subalgebra of the 
corresponding product of the Ai 's, then we say that P is an instance of the 
CSP from V. 

Note that this is a generalization of the typical one-sorted definition of 
the Constraint Satisfaction Problem (see, for example, definition 2.2 in [4]) . 
Each standard instance of the CSP can equivalently be expressed in the way 
we've defined it here. The entire collection of Constraint Satisfaction Prob­
lems forms an NP-complete class of problems, but there are many tractable 
subclasses. Finding such subclasses is an area of active research. For exam­
ples of this, see [4, 11, 12, 13]. 

Definition 10. For I C {1, ... , n }, a partial solution of P over I is a tuple 
a= (ai I i E I, ai E Ai) such that for all ci = (Si, ~) E C,projlnsi(a) E 

projins; (Ri)· 

Definition 11. An instance P satisfies the k-extendability property if: every 
partial solution of P over k variables can be extended to a solution of P if 
and only if every partial solution of P over k variables can be extended to a 
partial solution over every other variable of P. 

We can consider CSPs in algebraic terms, and translate Bergman's Condi­
tion accordingly. Given a variety V and A1, ... , An E V, all finite, and given 
a system S of k-fold projections over the A/s, S determines the following 
instance of the CSP from V: 

Ps = ((A1, ... ,An), {CI I I~ {1, ... ,n}, III= k}), 

where C1 = (I, S1 ). If V satisfies Bergman's Condition for k, then, for the 
above set-up, if for every I~ {1, ... ,n},III = k,j rt I, and a a partial 
solution of Ps over I, a can be extended to a partial solution of Ps over 
I U {j}, then every partial solution of Ps over a k-element set of coordinates 
can be extended to a solution of P8 . (Note that solutions of Ps are exactly 
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those n-tuples that are consistent with S, and partial solutions of Ps over 
some subset J correspond to members of SJ.) So, if V satisfies Bergman's 
Condition for k, then an instance P of the CSP from V will satisfy the 
k-extendability property. 

In fact, if we consider constraint relations with some bound k, there is no 
loss of generality by considering instances of the form P8 . Given P = (A, C) 
such that the size of the scopes of the constraints in C are bounded by k, 
for each I with III = k, let 5 1 be the set of partial solutions of P over I. 
For fixed k, finding 51 is a polynomial-time problem, and so the instance Ps 
can be constructed from Pin polynomial time. Note that if Pis an instance 
from a variety V, then Ps will be as well. 

Claim 6. P and Ps have the same set of solutions. 

Proof. Let x be a solution of P. Then, since proj1x E 51, xis consistent 
over S, and is a solution of P8 . Next, suppose x is a solution of P8 . Then, 
proj1x is a partial solution of P over I, for all I, III = k, and sox will satisfy 
all of the constraints of P, since each constraint has scope contained in some 
I with III = k. Hence, xis a solution of P. D 

So now, our earlier result becomes: 

Theorem 5. Let V be a locally finite variety and let k > 1. If all instances 
of the CSP from V whose constraint scopes all have size at most k satisfy the 
k-extendability property, then V is congruence modular. 

7 Conclusion 

The converse of Bergman's Theorem was left open in [3]. Bergman's 
question was, essentially, whether Bergman's Condition for k implies the 
existence of a (k + 1)-ary near-unanimity term in a variety V. This work 
does not settle that question, but it does show that Bergman's Condition for 
k implies congruence modularity. This would be consistent with a positive 
answer to Bergman's question. 

In fact, our result has some further implications. In terms of tame con­
gruence theory (see [6] for an overview), Valeriote ([17]) showed that if a 
locally finite variety satisfies Bergman's Condition, it omits types 1,2, and 
5. Combined with the result of this thesis, it then follows that if V is locally 
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finite, then Bergman's Condition fork implies congruence distributivity (see 
[10]). 

In work related to the Constraint Satisfaction Problem, Barto and Kozik 
([2]) have claimed that in a locally finite variety with a 4-ary near-unanimity 
term, C(2, 3) ==> C(2, r) always holds for r > 2. If correct, this would give a 
negative answer to Bergman's question, as it implies that the two examples 
posed in the final section of [3] by Bergman are, indeed, counterexamples to 
the converse of Bergman's Theorem. 

It is not known whether the congruence distributivity of a variety V im­
plies that Bergman's Condition holds in V for some k, which would indicate 
that Bergman's Condition characterizes congruence distributivity. It may be 
possible to find examples of congruence distributive varieties with no near­
unanimity terms in which Bergman's Condition for k is satisfied. 

In terms of the Constraint Satisfaction Problem, and the extendability of 
partial solutions, we can pose the following open question: in a congruence 
distributive variety, is there some k for which this extendability property 
holds? 
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