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Abstract

Many seismic protection techniques have been proposed over the years to mitigate the

damaging effects of earthquake shaking. Seismic isolation is an earthquake-resistant

design approach where a horizontally flexible layer is introduced at the base of a

structure to decouple the structure from the motion of the ground. The concept of

using isolation as a practical method has evolved into reality with the development

of multilayer elastomeric bearings.

Elastomeric bearings usually feature thick steel end plates and are connected to

the superstructure and substructure by mechanical means; that is referred to herein

as a bonded application. In buildings, traditional practice places the isolation system

at the foundation level and calls for the construction of rigid diaphragms above and

below. The flexural rigidity of these diaphragms prevents the isolators from experi-

encing rotations. However, in some application such as bridge applications, isolation

of high–rise buildings and mid–height isolation, it is possible for elastomeric bearings

to experience rotation. In another application, the bearings do not have steel end

plates, and shear forces are transferred from the bearing to the superstructure and

substructure by the frictional force that develops along the rubber–to–concrete or

rubber–to–steel interface; this referred to herein as unbonded application.

The main objective of this study is to investigate the effect of support conditions
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on the behavior of elastomeric bearings; more specifically the effect of support ro-

tation on the horizontal behavior and stability of bonded elastomeric bearings and

the effect of slip on the vertical behavior of unbonded bearings. To provide a bet-

ter understanding and quantitative characterization of the behavior of elastomeric

bearings under combined loading, an extensive nonlinear 3D Finite Element Analysis

(FEA) study was undertaken. Moreover, three mechanical models available in the

literature were modified to capture the effect of rotation on the lateral behavior of

elastomeric bearings. In addition, a new macro model to predict the lateral stability

limit was proposed and the results based on the mechanical models were compared

against FEA. In order to study the axial–shear–rotation interaction in elastomeric

bearings, an experimental investigation was carried out on a 1/4-scale circular bear-

ing. It was shown that, in general, support rotation has a minimal effect on the

critical displacement, but it does affect the critical shear force. This observation was

confirmed by experimental tests and modeled by the proposed mechanical models.

Finally, to study the effect of slip on the vertical behavior of unbonded bearings, a

closed–form solution including the effects of the elastomer's bulk compressibility was

provided and compared against FEA results.
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1.1 Background

Seismic isolation is an earthquake-protection strategy aimed to uncouple a structure

from the ground motion so as to reduce the damaging effects of earthquake shaking

on the structure and its contents (see Fig. 1.1). The basic concept of using seismic

isolation is not new, and many devices have been proposed over the years (Buckle and

Mayes, 1990). The first known use of seismic isolation goes back to 6th century BC in

Persia, where the foundation layers of a mausoleum could slide on each other during

earthquake (Saiful Islam et al., 2011). Seismic isolation research in the middle and

late 1970s grew out of the observation that the spectral accelerations of most recorded

strong earthquake motions were very low in the long-period range (Jangid and Kelly,

2001). This observation played a key role in the development of isolation systems.

In fact, isolation shifts the fundamental natural period of the system to the long

period range through installation of horizontally flexible elements called isolators, or

bearings at the base of a structure (Kelly, 1997) (see Fig. 1.2).

Rubber bearings are also used in other applications beside isolation. They are

currently used widely to accommodate deformations associated with thermal expan-

sion/contraction, traffic loads and construction misalignment in bridges (Stanton and

Roeder, 1982; Constantinou et al., 2011), to isolate equipment and structures from

vibration and shock (Snowdon, 1979).

1.2 Elastomeric Bearings

Elastomeric bearings which consist of rubber layers interleaved with steel reinforc-

ing plates, are one of the most popular seismic isolation system (Fig. 1.3). They
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are made by bonding rubber sheets to steel reinforcing-plates (shims). The shims

are surrounded all-around by rubber to prevent corrosion. The shims restrict the

bulging of the rubber and provide vertical and rotational stiffness. The thickness

of an individual rubber layer is the most important factor that affects the vertical

and bending stiffness of the isolator. Under horizontal loads, e.g. seismic loading,

the high horizontal flexibility of the bearings isolates the structure from earthquake

ground motion, while under vertical loads, i.e. gravity loading, the high vertical stiff-

ness resulting from the restraint of the shims adequately supports the weight of the

structure. The ratio of vertical to horizontal stiffness must be large so as to prevent

rocking of the building during earthquake shaking. These bearings usually feature

thick steel end plates and are connected to the superstructure and substructure by

mechanical means; this is referred to as a bonded application (Fig. 1.4a). Sometimes

elastomeric bearings do not have end plates, and shear forces are transferred from the

bearing to the superstructure and substructure by frictional force; this is referred to

as an unbonded application (Fig. 1.4b).

The idea of multilayer rubber bearings reinforced by thin steel plates was intro-

duced by the famous French engineer Eugene Freyssinet to provide a flexible connec-

tion between relatively rigid parts of a structure (Kelly and Konstantinidis, 2011).

Rubber bearings will inevitably experience such displacement during an earthquake.

A comprehensive experimental study on their behavior under seismic loading condi-

tions showed that these bearings can accommodate shear strains up to 200 percent

(or more, depending on their height-to-width ratio) without damage (Konstantinidis

et al., 2008).
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1.3 Motivation

Past studies have shown that elastomeric bearings under combined axial and hori-

zontal loading behave nonlinearly, and an individual bearing undergoing large lateral

displacements may experience a decrease in its axial load capacity. Therefore, one

of the important aspects of bearing design is stability of the individual bearing. Al-

though many investigators have suggested nonlinear mechanical models (Koh and

Kelly, 1987; Koo et al., 1999; Nagarajaiah and Ferrell, 1999; Iizuka, 2000; Yamamoto

et al., 2009; Kikuchi et al., 2010; Forcellini and Kelly, 2014; Han and Warn, 2014;

Vemuru et al., 2014, 2016; Maureira et al., 2017) for elastomeric bearings in previous

theoretical studies, the effects of rotation at the top or the bottom of the bearing

have been overlooked. In reality, however, it is possible for an isolator to experience

rotation. There are many cases in which bearing’s supports can rotate during an

earthquake. For example in tall buildings, the center of mass is not close to the

ground level (base) and during an earthquake large overturning moments can develop

and makes the bearing rotates as well. Oshaki et al. (2015), who investigated the

dynamic response of a base-isolated 10-story RC frame building using 3D finite el-

ement analysis (FEA), noted that the elastomeric isolators experienced rotation at

their supports. In applications such as isolation of high-rise buildings or mid-height

isolation, the effect of rotation may be significant. Recently, Japanese researchers

(Kawamura et al., 2000; Murakami et al., 2000) proposed using bearings at the mid-

storey instead of at the base level in a building. Use of mid-storey isolation systems

may eliminate the construction cost associated with the stiff elements above and be-

low the isolation system, when that is located at the base of the building. In this
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approach, the columns under the bearings can deform during the earthquake, con-

sequently the bearing rotates (Crowder and Becker , 2016). The effect of rotation

may also be important in bridge applications, where the seismic isolators are placed

between the bridge deck and the piers or abutments and can experience rotation due

to flexure of the deck above the isolator or the piers below(Constantinou et al., 2011).

As mentioned earlier, unbonded bearings do not feature thick steel end plates, and

they are not bonded to the supports. Shear forces are transferred from the bearing

to the superstructure and substructure by the frictional force that develops along the

rubber–to–concrete or rubber–to–steel interface. Although the frictional resistance of

rubber is relatively high, it is possible that it may be reduced by the introduction of

lubrication, either intentional or accidental. As a result, the frictional resistance that

develops between the rubber layers is reduced significantly. In unbonded bearings

with only a few rubber layers, this reduction may result in a notable reduction in

vertical stiffness.

1.4 Literature Review

In this introductory chapter, a general overview of the pertinent literature is pre-

sented. Subsequent chapters of this sandwich thesis offer a more focused and detailed

literature review. The stability of elastomeric bearings was studied by Haringx (1948)

assuming the bearing to be a homogenous isotropic column that behaves as a rubber

rod, following Euler buckling load theory. Stanton et al. (1990) extended the theory

to account for the effect of axial shortening and provided experimental verification.

Experimental tests on the stability of modern elastomeric bearings by Buckle and

Kelly (1986) and Buckle and Liu (1993), have led to the development of a simple
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formula, namely, the Overlapping Area Method, for estimating the critical load. Fur-

ther experimental studies showed that this formula is overly conservative, especially

at lateral displacements equal to the bearing diameter or width (Buckle et al., 2002;

Cardone and Perrone, 2012; Sanchez et al., 2013). Recently Sanchez et al. (2013)

carried out a comprehensive experimental program to examine the stability of bear-

ings under quasi-static and dynamic loading. The advantage of dynamic testing is

realistic simulation of seismic loadings conditions and quantification of the response

of elastomeric bearings beyond their stability limit.

To decrease the construction cost of bearings, the use of fiber instead of steel in

traditional elastomeric bearings has been suggested in recent years. De Raaf et al.

(2011) investigated the stability of fiber reinforced elastomeric isolators (FREIs) using

dynamic and monotonic lateral testing. The behavior of unbonded FREIs that fea-

ture geometric modifications was experimentally investigated under pure compression

in (Van Engelen et al., 2014) and combined compression and shear in (Osgooei et al.,

2015). An extensive experimental tests on fiber reinforced elastomeric bridge bearings

were conducted by Konstantinidis et al. (2008) and Al-Anany and Tait (2017). More-

over, to improve the lateral behavior of bearings, Han et al. (2016) proposed a new

unbonded elastomeric bearings reinforced by high-strength steel mesh. It was shown

that friction introduced in the steel mesh can enhance the damping energy dissipa-

tion. As an alternative to FREIs, Van Engelen et al. (2015) proposed partially-bonded

FREIs, which aim to take advantage of the benefits of both bonded and unbonded

isolators; most notably resistance against slipping while still reducing tensile stresses

that would develop if the bearing was fully bonded.

9



Ph.D. Thesis - S. Rastgoo Moghadam McMaster University - Civil Engineering

In order to model the lateral behavior of elastomeric bearings, several mechan-

ical models have been proposed. The first model proposed was by Koh and Kelly

(1987), to study the stability of elastomeric isolators. They showed that the model

provides an acceptable error in comparison with experimental tests. Koo et al. (1999)

modified the Koh-Kelly model by using an instantaneous apparent shear modulus ob-

tained from test results instead of a constant shear modulus value. In this model the

shear modulus is a function of the shear strain and can be presented by a polyno-

mial equation obtained by least-squares fitting of test results. The advantage of this

modification is elimination of imprecision associated with in the constant shear mod-

ulus. Nagarajaiah and Ferrell (1999) extended the Koh-Kelly model to include large

displacements. The model was capable of modeling the critical point in elastomeric

bearings. However, Han et al. (2013) experimentally showed that the model pro-

posed by Nagarajaiah and Ferrell (1999) does not provide accurate results for three

different bearings. Iizuka (2000) developed a model by introducing finite deformation

and nonlinear springs into the Koh-Kelly model. From experimental and analytical

results, this model accurately captures various characteristics of elastomeric bearings,

including hardening, load deterioration, and buckling phenomena. The nonlinear pa-

rameters of the rotational and shear springs in the model are determined through

experimental testing. The advantage of this model is that it can easily handle a

variable axial force.

Han and Warn (2014) conducted sensitivity analysis on previous models using

FEA and proposed an alternative model which does not rely on experimentally cali-

brated parameters. This model includes a series of vertical springs with simple bilinear

constitutive relationship. These vertical springs replace the rotational spring which
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was used in the Koh-Kelly model. Vemuru et al. (2014) modified the Nagarajaiah-

Ferrell model by incorporating higher order displacement terms in the rotational

spring in an effort to characterize the dynamic behavior of bearings more accurately

than previous models, particularly beyond the instability point.

A three dimensional model which includes multiple shear springs at the mid-height

and a series of axial springs at the top and bottom of an isolator was proposed by

Yamamoto et al. (2009) and Kikuchi et al. (2010) for circular and rectangular isolators,

respectively. Ishii et al. (2016) extended the previous model by Yamamoto et al.

(2009) to account for the effect of rotation on the horizontal behavior of elastomeric

bearings. It was shown that end rotations do not affect the critical displacement.

The use of FEA is a common approach to understand the behavior of rubber

isolators. Recently, studies using this approach have evaluated the behavior of iso-

lation bearings under compression and shear, as well as their stability. Mordini and

Strauss (2008) presented an isolation system consisting of high damping rubber bear-

ings reinforced with glass fiber fabric. This parametric study using FEA examined

the vertical and horizontal behavior of bearings with Neo-Hookean and Ogden rubber

material models. Toopchi-Nezhad et al. (2011) compared the behavior of FREIs in

unbonded and bonded applications. Osgooei et al. (2014a) used 3D FEA to study the

behavior of circular fiber-reinforced elastomeric bearings under compression. Osgooei

et al. (2014b) investigated the lateral response of unbonded FREIs when loaded in

different directions.

Warn and Weisman (2011) conducted a parametric study to investigate the effect

of geometry on the critical load of rubber bearings using 2D FEA. Their results showed

that the critical load is more sensitive to the bearing width and the individual rubber
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layer thickness than it is to the number of rubber layers. Weisman and Warn (2012)

used experimental testing and FEA to investigate the critical load capacities of an

elastomeric bearing and a lead-rubber bearing with shape factor values of 10 and 12,

respectively. The results of this investigation showed that the lead core does not have

a significant effect on the critical load over a range 150–280 percent shear strain in

comparison with elastomeric bearings without a lead core. Another FEA study by

Kalfas et al. (2017) showed that when a bearing is subjected to axial and horizontal

load and the endplate is allowed to rotate, the development of local tensile stresses

changes the stiffness and damping ratio.

1.5 Objectives

The main objectives of this study were to

� Investigate the effects of rotation on the horizontal behavior and stability of

bonded elastomeric bearings using FEA and experimental testing,

� Compare available hyperelastic material models and their effects on the stresses,

strains and lateral behavior of bearings,

� Modify the mechanical models available in the literature and propose a new

simple mechanical model to account for the effect of rotation on the lateral

behavior of bearings,

� Provide a closed-form solution for the behavior of an unbonded rubber layer,

including the effects of the elastomer's bulk compressibility and the contact slip

at the supports, and verified by FEA.

12



Ph.D. Thesis - S. Rastgoo Moghadam McMaster University - Civil Engineering

1.6 Organization of the Thesis

This thesis was prepared in accordance with the regulations of a “sandwich” the-

sis format. Therefore, each chapter contains its own introduction, conclusion and

references.

In the second chapter of this thesis (Paper #1), to investigate the effect of rotation

on the lateral behavior of bearings, 3D FEA was carried out using ABAQUS (2010) on

bearing similar to the one studied by Weisman and Warn (2012). The FEA model was

first validated using an available analytical solution presented by Karbakhsh Ravari

et al. (2012). To investigate the effect of rubber description on the FEA results, three

material models (Neo-Hookean, Mooney-Rivlin and Yeoh) were considered and the

bearing was analyzed under different rotation angles and axial loads. Furthermore,

the effect of rotation on the stress and strain distribution was studied. The effect of

rotation on the critical point of the bearing was investigated. In order to examine

the instability in elastomeric bearings used in practice, five bearings with large shape

factor and second shape factor were analyzed using ABAQUS (2010) under different

conditions.

In the third chapter of this thesis (Paper #2), the performance of simple mechan-

ical models was evaluated in capturing the effect of rotation on the lateral behavior

of bearings. Three existing models were considered: the Nagarajiah-Ferrell (Nagara-

jaiah and Ferrell, 1999), the Iizuka (Iizuka, 2000), and the Han-Warn models (Han

and Warn, 2014). First, these three models were examined by comparing their pre-

dictions with results of FEA, assuming no rotation at the supports. Subsequently,

the models were modified to account for the effect of rotation. The modified models
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were evaluated using results from FEA under prescribed rotation values for the elas-

tomeric bearing. In order to investigate the effect of geometry on the results, bearings

with different second shape factors (2, 4 and 6) were considered. Finally, the study

proposed a new model that includes the effect of rotation. This model was used to

predict the lateral stability limit, and the results were compared against those from

FEA.

In Chapter 4 of this thesis (Paper #3), experimental tests of a 1/4–scale circular

bearing with the shape factor of 20 and second shape factor of 4 were conducted at

the Applied Dynamic Laboratory (ADL) at McMaster University. The results of the

tests were compared against FEA results. Furthermore, the experimental results were

used to evaluate the ability of the mechanical model proposed in the previous chapter.

Two experimental procedures were employed. The first investigated the behavior of

the bearing under lateral quasi-static cyclic displacement tests, constant axial and

constant rotation. The second investigated the lateral behavior of the bearing through

monotonic lateral displacement tests under constant axial load and rotation angle.

The experimental setup used in the study was explained in this chapter.

Chapter 5 of this thesis (Paper #4) investigates a closed-form solution using the-

oretical analysis for the behavior of an unbonded rubber layer, including the effects of

the elastomer's bulk compressibility and contact slip at the supports. The theoretical

solution was compared against a FEA solution using MSC Marc (2011).

1.7 References

Al-Anany Y.M., Tait M.J. (2017). Experimental assessment of utilizing fiber rein-

forced elastomeric isolators as bearings for bridge applications. Composites Part

14



Ph.D. Thesis - S. Rastgoo Moghadam McMaster University - Civil Engineering

B: Engineering. 114: 373–385.

Bridgestone. (1999). Base isolation manual. Bridgestone Engineered Products Com-

pany, Inc., Nashville.

Buckle I.G., Kelly J.M. (1986). Properties of slender elastomeric isolation bearings

during shake table studies of a large-scale model bridge deck. ACI Special Publica-

tion. 94: 247–270.

Buckle I.G., Liu H. (1993). Stability of elastomeric seismic isolation systems. Seminar

on Seismic Isolation, Passive Energy Dissipation and Control. Applied Technology

Council (ATC), Redwood City, CA.

Buckle, I.G., Mayes, R.L. (1990). Seismic isolation: history, application, and

performance–a world view. Earthquake Spectra. 6(2): 161–201.

Buckle I.G., Nagarajaiah S, Ferrell K. (2002). Stability of elastomeric isolation bear-

ings: experimental Study. Journal of Structural Engineering. 128(1): 3–11.

Cardone D., Perrone G. (2012). Critical load of slender elastomeric seismic isolators:

an experimental perspective. Engineering Structures. 40: 198–204.

Constantinou, M.C., Kalpakidis, I., Filiatrault, A., Ecker Lay, R.A. (2011). LRFD-

based analysis and design procedures for bridge bearings and seismic isolators.

Technical Report MCEER-11-0004. Multidisciplinary Center for Earthquake Engi-

neering Research. University at Buffalo, State University of New York.

Crowder A.P., Becker T.C. (2016) Effects of non-traditional isolator placement for

seismic retrofit. Canadian Society of Civil Engineering. Resilient Infrastructure.

London, ON, June 1–4.

15



Ph.D. Thesis - S. Rastgoo Moghadam McMaster University - Civil Engineering
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Figure 1.1: Deformation of a structure with seismic isolation system.
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Figure 1.3: A typical elastomeric bearing (Bridgestone, 1999).
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(b)(a)

Figure 1.4: Elastomeric bearing (a) Bonded application (b) Unbonded application
(Konstantinidis et al., 2008).
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Finite Element Study of the Effect
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Horizontal Behavior of Elastomeric

Bearings
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2.1 Abstract

Laminated elastomeric bearings are used widely in both seismic and non-seismic struc-

tural engineering applications. The behavior of these bearings under pure loading

(compression, shear, or bending) and under combined compression–shear loading has

been studied at various levels in previous studies. However, very few studies have

considered the behavior of elastomeric bearings under combined loading that includes

rotation, and, to the best of the authors’ knowledge, there has been no previous study

on the effect of rotation on the lateral stability of elastomeric bearings. In bridge ap-

plications and some novel seismic isolation applications, e.g., isolation of high-rise

buildings and mid-height isolation, it is possible for elastomeric bearings to expe-

rience rotation, the effect of which is not well understood. This paper studies the

effect of rotation on the horizontal behavior of elastomeric bearings using 3D Finite

Element Analysis (FEA). It is observed that constitutive modeling assumptions can

have a notable influence on the results, especially at low vertical pressure where the

critical shear strain is large. Support rotation does not affect the critical displace-

ment appreciably, but it significantly affects the critical shear force. It is observed

that support rotation becomes important for bearings with low second shape factor,

even if their first shape factor is large.

2.2 Introduction

Multilayer elastomeric bearings are used extensively in bridge applications [1-4] to ac-

commodate deformations associated with thermal expansion/contraction, traffic loads

and construction misalignment, and to reduce the effects of earthquake loads on the
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bridge. This type of bearing is also the most commonly used seismic isolation device

in building applications [5-8, among others and references reported herein]. Isola-

tion involves the introduction of a horizontally flexible layer that in effect decouples

the superstructure from the horizontal seismic excitation. Conventional elastomeric

bearings are made of layers of natural or synthetic rubber (often filled with various ad-

ditives to enhanced their damping properties) interleaved with steel reinforcing plates

(shims). Thick steel end plates are used to bolt the bearing to to the superstructure

and substructure. The horizontal shims restrict the lateral bulging of the rubber and

provide vertical and rotational stiffness but do not affect the bearing’s large horizon-

tal flexibility. Early studies [9,10] showed that elastomeric bearings under combined

axial and horizontal loads behave nonlinearly and, when they undergo large lateral

displacements, they may experience a significant decrease in critical axial-load capac-

ity. The behaviour of elastomeric bearings of various geometries subjected to pure

bending was studied by Stanton and Roeder [1], Chalhoub and Kelly [11], Stanton et

al. [12], and Kelly and Konstantinidis [7], among others, who developed expressions

for the bending rigidity, a property that plays an important role in the estimate of the

buckling load of a bearing. However, nearly all previous experimental and analytical

studies investigating the behavior of elastomeric bearings under combined shear and

compression were conducted under the assumption of zero top and bottom support

rotation. This assumption is in many cases reasonable because the presence of rigid

structural elements above and below the bearing prevent it from experiencing rota-

tion at the supports. There are, however, several scenarios where it is possible for an

elastomeric bearing to experience rotation at its supports, together with compression
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and shear. Ohsaki et al. [13], who investigated the dynamic response of a base-

isolated 10-story reinforced-concrete frame building using 3D FEA, noted that the

elastomeric bearings experienced rotation at their supports. In applications such as

isolation of high-rise buildings or mid-height isolation [14], the effect of rotation may

be significant. The effect of rotation may also be important in bridge applications,

where the bearings can experience rotation due to flexure of the bridge deck above

the bearing or the piers below. Because of its geometric nonlinearity, the problem

of an elastomeric bearing under combined shear, axial and bending actions is not

amenable to superposition of existing solutions for simple shear, pure axial and pure

bending—even under the assumption of linear elasticity. This study aims to fill in

the knowledge gap that currently exists by better understanding and quantifying the

response of elastomeric bearings under combined loading that includes rotation.

The determination of the lateral stability limit of elastomeric bearings is based

on an extension of Euler buckling load theory proposed by Haringx [15]. This linear

theory assumes a bearing to be a homogenous, isotropic column that behaves as a

rubber rod. Gent [16] investigated the decrease in the horizontal stiffness of rubber

bearings with increasing axial load. Stanton et al. [17] extended the theory to account

for the effect of axial shortening and provided experimental verification. Experimen-

tal tests on the stability of seismic isolation elastomeric bearings under quasi-static

loading were conducted by Buckle and Kelly [9]. Buckle and Liu [18] carried out

an experimental investigation to determine the critical buckling load of elastomeric

bearings and proposed a formula based on the so-called overlapping area method to

estimate the critical load, which is used in practice nowadays; although further ex-

perimental investigation showed this formula to be overly conservative, especially at
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lateral displacements equal to the bearing diameter, or width [19-21]. Sanchez et al.

[21] carried out an experimental study on the stability of elastomeric bearings under

quasi-static and dynamic loading. Two quasi-static and one dynamic methods were

used. The first method followed the conventional method, where a bearing is held at

a fixed horizontal displacement while the axial load is increased until the critical load

is obtained. In the second method, the bearing was loaded under a constant axial

load, while the horizontal displacement was increased until the instability point was

observed. It was noted that the second method proved to be accurate and more direct

in obtaining the critical load. The third method evaluated the dynamic stability of a

group of elastomeric bearings supporting a rigid frame using shake table testing.

Besides experimental investigations, there have been several analytical studies on

the stability of elastomeric bearings. Koh and Kelly [22] proposed a simple mechan-

ical model including both shear and flexural deformations to study the stability of

elastomeric bearings. They compared the results of the model to experimental re-

sults for natural rubber bearings and showed that the model captured the behavior

with good accuracy. Koo et al. [23] modified the Koh-Kelly model by using an in-

stantaneous apparent shear modulus obtained from test results instead of a constant

shear modulus value. Nagarajaiah and Ferrell [24] extended the Koh-Kelly model to

include large displacements. They showed that the critical load and horizontal stiff-

ness decreases with increasing lateral displacement. Iizuka [25] developed a model by

introducing finite deformation and nonlinear springs into the Koh-Kelly model. The

model is shown to accurately capture the characteristics of elastomeric bearings, such

as hardening, load deterioration, and buckling phenomena, by comparison to experi-

mental results. Three-dimensional models using multiple shear springs at mid-height
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and a series of axial springs at the top and bottom were proposed by Yamamoto et al.

[26] for circular bearings and Kikuchi et al. [27] for rectangular bearings. Han and

Warn [28] conducted sensitivity analysis on prior models using FEA and proposed

an alternative model which does not rely on experimentally calibrated parameters.

This model includes a series of vertical springs with a simple bilinear constitutive

relationship. These vertical springs replace the rotational spring that was used in

the Koh-Kelly model. Vemuru et al. [29] showed that the Nagarajaiah-Ferrell model,

which was based on quasi-static tests, over-predicts the stiffness degradation beyond

the stability point. They modified the Nagarajaiah-Ferrell model by incorporating

higher order displacement terms in the rotational spring. The resulting model was

shown to be able to characterize the dynamic behavior of bearings more accurately

than previous models, particularly beyond the instability point. In another study by

Vemuru et al. [30], a 3-DOF variant of the Nagarajaiah-Ferrell model was introduced,

capable of capturing the vertical behavior more accurately.

FEA has become a common approach for understanding various aspects of the

behavior of rubber bearings. The first study on the stability of elastomeric bearings

using FEA was conducted by Simo and Kelly [31]. Recently, Warn and Weisman

[32] conducted a parametric study to investigate the effect of geometry on the critical

load of rubber bearings using 2D FEA. Their results showed that the critical load is

more sensitive to the bearing width and the individual rubber layer thickness than it

is to the number of rubber layers. Weisman and Warn [33] used experimental testing

and FEA to investigate the critical load capacity of an elastomeric bearing and a

lead-rubber bearing with shape factor values of 10 and 12, respectively. The results

of this investigation showed that the lead core does not have a significant effect on
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the critical load over the 150–280 percent range of shear strain in comparison with

elastomeric bearings without a lead core. Montuori et al. [34] studied the effect of

the second shape factor on the stability of elastomeric bearings, confirming that the

second shape factor significantly affects the stability of the bearing. Nguyen and Tas-

soulas [35] modeled a square and a rectangular unbonded steel-reinforced elastomeric

bridge bearing in 3D under compression and shear in various lateral directions. A

constitutive model based on the Yeoh strain energy density function was used to rep-

resent the behavior of the rubber. Their results showed that there was no significant

effect of the shear direction on the stiffness at 50 percent shear displacement.

Mordini and Strauss [36] carried out FEA to study the vertical and horizontal

behavior of fiber-reinforced high-damping rubber bearings, with the rubber modeled

using Neo-Hookean and Ogden hyperelastic material models. Toopchi-Nezhad et

al. [37] compared the behaviour of fiber-reinforced elastomeric isolators (FREIs)

in unbonded and bonded applications. Osgooei et al. [38] used 3D FEA to study

the behavior of circular fiber-reinforced elastomeric bearings under compression. In

another study, Osgooei et al. [39] investigated the lateral response of unbonded

rectangular FREIs when loaded in different directions. The behavior of unbonded

FREIs that feature geometric modifications was investigated under pure compression

[40] and combined compression and shear in [41]. Al-Anany and Tait [42] modeled

bonded and unbonded FREI to study the effect of rotation on the vertical behavior

of FREIs. Their results showed that Unbonded FREIs in comparison with Bonded

FREIs experience lower normal stresses and shear strains in the elastomer. Osgooei

et al. [43] investigated the variation in vertical stiffness of strip FREIs under lateral

loading. Their results revealed that for bonded FREIs, the vertical stiffness decreases
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monotonically with increase of lateral displacement; while, for unbonded FREIs, the

vertical stiffness decreases up to particular shear deformation and then it increases.

A FEA investigation on the compression of unbonded rubber pads including contact

slip at the supports can be found in [44].

This paper presents the results of a study investigating the effect of rotation on

the horizontal behavior of steel-reinforced elastomeric bearings. For these bearings,

depending on the structural application, the rotation may be constant or vary while

the bearing is sheared. This is the first systematic FEA study on the behavior of

bearings under combined compression, lateral displacement and support rotation.

As such, the discussion is limited to the simpler case of constant rotation. First, a

3D finite element model of a circular elastomeric bearing is developed in ABAQUS

[45] and validated by comparing the results of the FEA with an analytical solution

presented by Karbakhsh Ravari et al. [46], which is applicable for studying the

behavior of elastomeric bearings before the instability point. Subsequently, in order to

examine the effect of material modeling assumptions, the rubber is characterized using

three different hyperelastic material models. To the best of the authors’ knowledge,

this study is the first of its kind to provide an in-depth comparison of local and

global behaviour predictions using different hyperelastic material models in finite

element modeling of steel-reinforced elastomeric bearings under combined loading.

Subsequently, the paper investigates the effects of support rotation on the stress and

strain distributions, and lateral response and stability of elastomeric bearings with

various geometric characteristics, subject to different levels of average vertical stress.
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2.3 Analytical Solution

The theory for the buckling of multilayer elastomeric bearings is an outgrowth of

the work of Haringx on the stability of solid elastomeric rods [15]. This theory was

later applied by Gent [16] to the stability of multilayer rubber compression springs.

Haringx’s theory is basically an extension of elastomeric column buckling theory to

take into account shear deformation. This theory predicts the reduction of apparent

lateral stiffness due to the presence of an axial load; however, for a fixed axial load,

the theory is unable to capture the reduction in lateral stiffness that occurs as lateral

displacement increases [31]. Consequently, while Haringx’s theory achieves relatively

good predictions at low to moderate levels of shear, as observed by Gent [16] by

comparison to experimental results, it is not capable of capturing the lateral stiffness

reduction and the critical lateral displacement (i.e., the value of lateral displacement

at which the tangent lateral stiffness becomes zero), which is known to decrease as

axial load increases [31].

The theory treats an individual bearing as a homogenous isotropic column with

its properties geometrically modified to account for the presence of the steel, which

is assumed to be rigid. Nearly all works on the subject have focused on the case with

zero rotation boundary conditions at the top and bottom supports of the bearing.

Chang [47] and Karbakhsh Ravari et al. [46] applied the theory to the case where

the supports experience rotation to study its effect on the behavior of the elastomeric

bearings under vertical and lateral forces. In this section, we review the analytical

formulation from Karbakhsh Ravari et al. [46], the results of which will be used in

the following section to validate the results of FEA.
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Fig. 4.1(a) shows a deformed bearing where the upper and lower supports expe-

rience a rotation angle of θh and θ0, respectively. The deformation pattern is defined

by two quantities: u(y) is the horizontal displacement of the midline of the bearing,

and θ(y) is the rotation of a plane originally normal to the y axis. Plane sections

normal to the undeformed midline are assumed to remain plane but not necessarily

normal to the deformed midline. The overall shear deformation, γ, is the difference

between the slope of the midline, u′(y), and θ(y). The shear force, H0, and the axial

force, P , are shown parallel and perpendicular, respectively, to the rotated surface.

The bending moment, M(y), and the shear force, H(y), at a cross section at height

y, as shown in Fig. 4.1(b), can be expressed as

M(y) = EIsθ
′ (y) (2.1)

H(y) = GAsγ = GAs (u′ (y)− θ (y)) (2.2)

where E is the Young’s modulus, G is the shear modulus of the rubber material,

As = A (h/tr) is the shear area of the elastomeric bearing, in which h is the total

height of the multilayer elastomeric bearing (including the steel), tr is the total height

of rubber material, and A is the cross sectional area. EIs is the bending rigidity of

the rubber-steel composite system computed from EIs = EIeff (h/tr), where EIeff

is the effective bending stiffness of an individual rubber layer, expressions for which

can be found in [7] for bearings with various geometric shapes, both with and without

compressibility included in the analysis. The bending stiffness of a circular elastomeric
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bearing (incompressible rubber material) is obtained from

EIs = 2GS2 h

tr

(
πR4

4

)
(2.3)

where S = R/2t is the shape factor of the circular bearing with radius R and rubber

layers each of thickness t.

The equations of equilibrium for the shear force and bending moment in the

deformed state, shown in Fig. 4.1(b), using Eqs. (2.1) and (2.2), are

P sin (θ0)−H0 cos (θ0) +GAs (u′ − θ) cos (θ)− P sin (θ) = 0 (2.4)

EIsθ
′ +M0 + [P cos (θ0) +H0 sin (θ0)]u+ [H0 cos (θ0)− P sin (θ0)] y = 0 (2.5)

where the argument (y) of the variables has been dropped for brevity. When θ, θ0

and θh are small, Eqs. (2.4) and (2.5) are [46]

GAs (u′ − θ)− Pθ = H0 − Pθ0 (2.6)

EIsθ
′ + (P +H0θ0)u = (Pθ0 −H0) y −M0 (2.7)

The derivative of Eq. (2.7) gives [46]

EIsθ
′′ + (P +H0θ0)u

′ = Pθ0 −H0 (2.8)

Differentiating Eq. (2.6) and rearranging gives

θ′ = βu′′ (2.9)
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where

β =
GAs

GAs + P
(2.10)

Also, rearranging Eq. (2.6) gives

u′ =
1

β
θ − P

GAs

(
θ0 −

H0

P

)
(2.11)

Substituting Eq. (2.9) into Eq. (2.7) and Eq. (2.11) into Eq. (2.8) and rearranging

gives the following two differential equations

u′′ + α2u =
α2

1 + H0

P
θ0

[(
θ0 −

H0

P

)
y − M0

P

]
(2.12)

θ′′ + α2θ =
α2β

1 + H0

P
θ0

(
θ0 −

H0

P

)[
1 +

P

GAs

(
1 +

H0

P
θ0

)]
(2.13)

where α is defined by

α2 =
1

β

P

EIs

(
1 +

H0

P
θ0

)
(2.14)

The solutions of Eqs. (2.12) and (2.13) are, respectively,

u = C1 cos (αy) + C2 sin (αy) +
θ0 − H0

P

1 + H0

P
θ0
y − M0

P

1

1 + H0

P
θ0

(2.15)

θ = αβC2 cos (αy)− αβC1 sin (αy) +
β

1 + H0

P
θ0

(
θ0 −

H0

P

)[
1 +

P

GAs

(
1 +

H0

P
θ0

)]
(2.16)

where Eq. (2.11) has been used to obtain the constants multiplying the eigenfunctions

in Eq. (2.16). The constants C1 and C2 can be determined from the boundary

conditions. The general boundary conditions are: θ (0) = θ0, θ (h) = θh, u (0) = 0,
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u (h) = uh. uh is the lateral displacement at the top of the bearing. From Eq. (2.16),

θ (0) = θ0 ⇒ C2 =
1

α

[
1

β
θ0 −

θ0 − H0

P

1 + H0

P
θ0

[
1 +

P

GAs

(
1 +

H0

P
θ0

)]]
(2.17)

θ (h) = θh ⇒ C1 = C2 cot (αh)− csc (αh)

α

[
1

β
θh −

θ0 − H0

P

1 + H0

P
θ0

[
1 +

P

GAs

(
1 +

H0

P
θ0

)]]
(2.18)

and from Eq. (2.15),

u (0) = 0⇒M0 = P

(
1 +

H0

P
θ0

)
C1 (2.19)

u (h) = uh ⇒ uh = C1 (cos (αh)− 1) + C2 sin (αh) +
θ0 − H0

P

1 + H0

P
θ0
h (2.20)

The lateral displacement at the top of the bearing due to the lateral load, Ho, axial

load, P , and rotation angles, θ0 and θh, is calculated from Eq. (2.20). This value is

used to validate the FE model, which will be discussed in the next section.

2.4 Validation of Finite Element Analysis

In order to validate the FEA approach, the circular elastomeric bearing shown in

Fig. 4.2 (which is similar to the bearing studied in [46]) was modeled in 3D using

ABAQUS [45], and the results of the analysis were compared against the results of

the analytical solution presented in the previous section. The bearing had a radius

of R = 140 mm and consisted of 20 rubber layers (nr = 20). The thickness of each

layer was t = 10 mm, amounting to a total thickness of rubber of tr = 200 mm. The

thickness of the steel shims was ts = 2 mm, and the top and bottom end plates were
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21 mm thick with a radius of 160 mm.

Fig. 4.3 shows the 3D mesh of the circular bearing. The rubber layers were

discretized with a combination of 8-node linear brick, hybrid, constant pressure ele-

ments (C3D8H), used nearly throughout, and 6-node linear triangular prism, hybrid,

constant pressure elements (C3D6H), used around the central axis of the bearing.

To avoid volumetric locking issues associated with nearly incompressible rubber-like

materials, ABAQUS [45] uses a hybrid formulation, where the pressure and displace-

ment fields are treated independently. The steel shims and end-plates were discretized

with 8-node linear brick elements with incompatible modes (C3D8I). Elements with

incompatible modes were used to deal with potential shear locking issues, which could

result in spurious shear stresses.

As the rubber layers experience large deformations and displacements during the

analysis, a hyperelastic material model was used for the rubber. The stresses in such

a model are derived from a stored strain energy density function. In this model,

the compressible Neo-Hookean material [48] was used for the rubber material. This

material model is defined by two material constants: the shear modulus, G, and the

bulk modulus, K. For the compressible Neo-Hookean model used in this study, the

strain energy density function is

W = C10

(
Ī1 − 3

)
+

1

D1

(J − 1)2 (2.21)

where C10 = G/2, D1 = 2/K, Ī1 is the the first modified invariant of the deviatoric

part of the Cauchy-Green deformation tensor, and J is the elastic volume ratio. In

the model developed for this study, C10 = 0.31 MPa and D1 = 2 × 10−6 MPa−1,

which corresponds to nearly incompressible material. The steel shims and end plates
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were modeled using a linear elastic material with Young’s modulus of 200 GPa and

Poisson’s ratio of 0.3.

In the model, all nodes at the top end plate were constrained to a point located

at the centroid of the end plate, and the displacement and force boundary conditions

were assigned to this point. The control node was free to move vertically and lat-

erally in one direction, and, in the case of support rotation, this node could rotate

in the specified direction. Similar to the top end plate, all nodes at the bottom end

plate were constrained to a control node. This point was restrained in all degrees of

freedom except for rotation. The analysis was performed in two stages: in the first

stage, the axial load and rotation were simultaneously applied to the top control node

gradually until the desired values are achieved; in the second stage, the lateral force

was applied gradually to the top control node until the desired value was achieved,

while the axial load and rotation at the end of the first stage were kept constant.

The applied axial and lateral load followed the nodal rotation (at the control node),

i.e, the lateral load was parallel to the top rotated surface of the bearing, and the

axial load was perpendicular to the surface. The analysis included nonlinear geom-

etry, large displacements, and large strains. The incremental nonlinear analysis was

conducted using an updated Lagrangian formulation and Newton-Raphson iteration

method.

Four boundary condition cases were considered to compare the FEA with the

analytical solution,

(1) No rotation of the end plates,

(2) Rotation of the top end plate only (control node at the top end plate),

(3) Rotation of the top and bottom end plates (control node at the top and bottom
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end plates), and,

(4) Rotation of the bottom end plate only (control node at the bottom end plate).

The rotation angle in this analysis was 0.02 rad (1.15◦), and the horizontal force

was 5 kN. A series of analyses with different values of average vertical stress (p̄ = P/A)

was performed. Fig. 4.4(a) shows the deformed shape of the bearing at the end of

the first stage of the analysis, at which the axial force is 200 kN and the rotation

angle is 0.02 rad at the top of the bearing, while Fig. 4.4(b) shows the bearing at the

end of the second stage of the analysis, where the horizontal force is 5 kN. Fig. 4.5

shows a comparison between the FEA and the analytical solution results for the four

aforementioned cases under a constant average vertical stress in the range of 0 to 5

MPa. The figure shows that there is good agreement between the results for all cases,

thus providing confidence that the finite element model developed in ABAQUS can be

used for further analysis. The figure also shows that for the different rotation cases,

the maximum value of the shear strain (umax/tr) varies, and this variation becomes

more pronounced under larger values of average vertical stress. As can be seen, the

case of rotation at the top of the bearing causes the largest apparent shear strain,

uh/tr.

2.5 Method for Determining the Critical Point

The critical point is defined as the point where the shear force reaches a maximum

value in the lateral force–lateral displacement curve; the tangent lateral stiffness be-

yond this point becomes negative. For a given bearing, three quantities are associated

with the critical point: the axial load, P , the lateral displacement, u, and the lateral

(shear) force, F . To obtain this point by FEA, the constant-axial force method [32]
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was used. Sanchez et al. [21] conducted experimental tests based on this method

and showed that it is reliable for capturing the critical point. In this method, the u

and F associated with the critical point are determined from the shear force–lateral

displacement curve for a given constant P . In the loading part, the axial load is

applied first, and then the horizontal displacement is applied incrementally, while the

axial load is kept constant, until the horizontal tangent stiffness becomes zero, and

the shear force attains its maximum value.

The loading history for the FEA in this study follows a similar approach, differing

only by the application of rotation. During the first stage, the axial load and the

rotation are applied together gradually until the desired values are reached. In the

second stage of the analysis, the horizontal displacement is gradually increased while

maintaining the axial load and rotation value from the first stage constant. In contrast

to the analysis described in the previous section for validation purposes, the applied

axial load and horizontal displacement do not follow the nodal rotation.

2.6 Effect of Rubber Description on the FEA Re-

sults

As mentioned earlier, rubber-like materials are typically described by hyperelastic

material models. The Neo-Hookean solid is the simplest hyperelastic material model.

It assumes that the shear modulus is constant during the analysis. Past experimental

tests, however, have shown that the shear modulus is not constant, particularly at

large shear strain values [48]. Other hyperelastic models, using more coefficients,

provide more accurate description, but they require experimental data from material
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tests, such as uniaxial tension and/or shear tests, to determine the coefficients. The

main objective of this section is to study the effect of the material model on the

critical point. In addition to Neo-Hookean material, two other constitutive models

are considered for the rubber material: the Mooney-Rivlin [48] and the Yeoh [49]

models. The strain energy density function for the Mooney-Rivlin constitutive model

is defined by [48]

W = C10

(
Ī1 − 3

)
+ C20

(
Ī2 − 3

)
+

1

D1

(J − 1)2 (2.22)

where Ī2 is the second modified invariant of the Cauchy-Green deformation tensor.

The Neo-Hookean model can be obtained from the Mooney-Rivlin model by setting

C20 = 0 in Eq. (2.22), resulting in the strain energy function given by Eq. (2.21).

The Yeoh strain-energy density function for compressible material is written in

terms of the first modified invariant, Ī1, only [45],

W = C10

(
Ī1 − 3

)
+ C20

(
Ī1 − 3

)2
+ C30

(
Ī1 − 3

)3
+

3∑
i=1

1

Di

(J − 1)2i (2.23)

where Di are material parameters that introduce compressibility.

As mentioned above, standard material tests are needed to determine the model

parameters of the strain energy density function for the Neo-Hookean, Mooney-Rivlin

and Yeoh models. Uniaxial tension test and pure-shear test results from Forni et al.

[50] are used herein for this purpose. Fig. 4.7 shows the results of a uniaxial tension

and a pure-shear test [50]. Values for the model parameters are obtained using the

‘material evaluation’ curve-fitting tool available in ABAQUS [45]. Table 2.1 shows

the resulting values. A value of 2000 MPa was assumed for the bulk modulus, K, for
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all constitutive models.

To study the effect of rotation, a circular bearing with geometry similar to that

in Weisman and Warn [33] was modeled in 3D. The bearing had a radius R = 76

mm, with 20 rubber layers, each 3 mm thick, providing a total rubber thickness of

60 mm. The bearing included 19 steel shims, each 3 mm thick. The steel material

was modeled using a bilinear isotropic material model with Young’s modulus of 200

GPa and a Poisson's ratio of 0.3. A post–yield modulus of 2 percent of the initial

modulus was specified. In order to study the effect of the material model choice, two

cases were considered: (1) No rotation at the end plates, and (2) Rotation at the

top end plate only, θh = 0.02 rad. To provide confidence in the predictions of the

FEA model using different material models, the bearing was first analyzed by the

procedure discussed in Section 2.4, and the results of the FEA were examined against

the analytical solution. Fig. 4.8 shows a comparison between the FEA predictions

using different hyperelastic material models and the analytical solution results for the

case of rotation at the top support only (θh = 0.02 rad) under a constant average

vertical stress, p̄, in the range of 0 to 16 MPa. As can be seen, there is good agreement

between the results of the three FEA and the analytical solution for p̄ up to 13 MPa.

At large values of p̄, there is a notable difference between the analytical solution and

the three FEA solutions. This difference may be attributed to the fact that the FEA

model considers full nonlinearity effects in both geometry and material behavior, while

the theoretical model considers only partial nonlinear geometric effects (e.g., it does

not consider axial shortening). Furthermore, it is observed that all three material

models provide similar results at low to medium p̄ values, while for large p̄ values, the

difference between the results of the three material models become more pronounced.
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The increased discrepancy among the predictions of the three material models as p̄

increases is due to the assumptions each model makes on the behavior of the rubber

at large deformations. The results presented in Fig. 4.8 provide confirmation that

the FEA model can be used with reasonable confidence to study the behavior of the

bearing in the range of p̄ used in this study.

This concludes the model validation, which utilized the analysis procedure pre-

sented in Section 2.4. The results presented in this paper from this point forward are

from FEA that follows the analysis procedure presented in Section 2.5.

Fig. 4.9 shows the stress contours (in MPa) for the S33 component of Cauchy

stress, which is oriented along the vertical direction. Note that in the FEA the bearing

was sheared along direction 1. The contours are plotted for the middle rubber layer

(tenth rubber layer from the bottom of the bearing) at u/tr = 1 and the critical point,

ucr/tr. The three material models discussed above were used to describe the behavior

of the rubber. The average vertical stress (p̄) was equal to 11.02 MPa, and the rotation

at the top end plate (θh) was 0.02 rad counterclockwise. Despite the fact that these

three models use different descriptions of the material, at the same displacement level,

u/tr = 1 (left column), all models provide similar prediction for the stress, while at

the critical point (right column), the stress distribution varies slightly between the

different hyperelastic material models. There is an area that experiences tension,

and this area is larger for the Yeoh material in comparison with the Neo-Hookean

and Mooney-Rivlin materials; the reason being that the Yeoh material predicts larger

critical displacement. The differences between the stress distribution predicted by the

different constitutive models at the critical point can be attributed on the assumptions

the models place on the shear modulus. The Neo-Hookean model assumes that the
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shear modulus is constant during the analysis, while for the other two models, the

shear modulus decreases with increasing shear strain [45]. The differences can be

more pronounced at large values of shear strain.

Fig. 4.11 shows a vertical cross section through the center of the bearing, together

with the axes indicating the orthogonal directions 1–2–3. Line segment AA runs along

the top of the uppermost rubber layer (where the rubber meets the steel end plate),

while BB runs along the top of the middle (tenth) rubber layer (where the rubber

meets the steel shim above it); both segments are parallel to direction 1. These

segments will be referred to hereinafter in discussing stresses along those paths.

Fig. 4.12 shows the variation of normalized normal stress S33/p̄ and normal strain

ε33 along segment BB (i.e., from x = 0 to x = 2R) under a displacement of u/tr = 0

(left) and u/tr = 1.5 (right), for the different material models. The average vertical

stress is p̄ = 11.02 MPa, and the support rotations are zero in all cases. As can be

seen, the normal stress distributions predicted by different material models are nearly

identical to one another under pure compression (u/tr = 0), while the Mooney-

Rivlin model predicts different S33/p̄ in comparison with the other two models at

larger lateral displacement (u/tr = 1.5). For example, S33/p̄ at x = R is −2.58 for

the Mooney-Rivlin model, while it is approximately −2.43 and −2.45 for the Yeoh

and Neo-Hookean models, respectively. The figure shows that at u/tr = 1.5, the

rubber layer experiences tensile stress close to the edges. These tensile stresses in

the triangular regions outside the overlapping area develop in order to equilibrate

the unbalanced moment that is generated by shear displacement of the bearing. The

maximum tensile stress S33 is 2.32, 1.59 and 1.27 MPa for the Mooney-Rivlin, Neo-

Hookean and Yeoh models, respectively. When the bearing was sheared, the difference
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between the results for ε33 is more pronounced than for S33/p̄. For example, the

largest value of |ε33| is 0.85, 0.82 and 0.79 for the Mooney-Rivlin, Neo-Hookean and

Yeoh material models, respectively. Fig. 4.13 shows normalized shear stress S13/G

and shear strain γ13 distributions along segment BB. Under the pure compression

case (u/tr = 0), both the shear stress S13 and shear strain γ13 distributions are

insensitive to the material model choice. S13/G is slightly different at the large

lateral displacement (u/tr = 1.5) for different material models, while the shear strain

distributions predicted by different material models are close to each other. The same

results were observed when the support rotations were not zero (not shown here). In

general, it can be concluded that the material model choice does not affect the stress

and strain distributions at low lateral displacements, but it can begin to have a

noticeable effect at larger horizontal displacements. This conclusion is in agreement

with the earlier observation that the differences between the predictions of the various

material models become more pronounced when the bearing undergoes a large shear

displacement.

Fig. 4.14 shows the effect of rotation at the top of the bearing on (a) the normal-

ized critical displacement, ucr/tr, and (b) the normalized critical shear force, Fcr/GA,

for the three constitutive models. The vertical axis plots the average vertical stress,

which remains constant, for a given analysis. In the legend, ‘R’ denotes the case

with 0.02 rad counterclockwise rotation at the top, and ‘NR’ denotes the case with

no rotation. As can been seen, the choice of constitutive model affects the results,

especially for the low values of critical pressure where the critical displacement is

high. Following the earlier discussion, differences between the prediction of differ-

ent constitutive models should be expected to be more pronounced at larger lateral
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displacement, where the assumption of constant shear modulus (Neo-Hookean) loses

its validity. This difference is more noticeable on the p̄cr versus Fcr/GA graph. It

is interesting to note that the 0.02 rad counterclockwise rotation results in only a

very small decrease in the critical displacement; however, it significantly increases the

critical shear force.

2.7 Effect of Rotation on Stress and Strain Distri-

butions

In order to study the effect of rotation on stress and strain distributions, the afore-

mentioned bearing model with the Mooney-Rivlin material description for the rubber

was analyzed under a constant vertical load (corresponding to p̄ = 11.02 MPa). Fig.

2.13 shows the deformation of the rubber layers at the cross section shown in Fig.

4.11 at different displacements (u/tr = uo/tr, 1, ucr/tr) for different rotation angles

at the top of the bearing (θh = 0,+0.02,−0.02 rad, where the convention for posi-

tive rotation is counterclockwise). The leftmost column shows the deformed shapes

at the end of the first state of the analysis. These deformed shapes indicate that

the simultaneous application of rotation and vertical load in the first analysis stage

causes the top surface of the bearing, which is not constrained laterally, to sway side-

ways. The horizontal displacement value at the end of the first stage of the analysis

is herein referred to as Initial Displacement and denoted by uo. uo can be positive

or negative depending on the direction of the rotation. Positive (counterclockwise)

rotation results in a negative initial displacement, and negative rotation in positive

initial displacement. The effect of the rotation is obvious from the onset of the second
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stage of the analysis (uo/tr) where, depending on the direction of the rotation, one

end of the bearing moves down, while the other moves up, with respect to the position

of the center of the rubber layer (i.e., x = R). The effect of rotation on various stress

and strain distributions as the lateral displacement is increased is discussed next.

Fig. 2.14 shows the variation of normalized normal stress S33/p̄ (where p̄ = 11.02

MPa) in the rubber along line segments AA and BB (see Fig. 4.11) for u/tr = uo/tr,

0, 1, and ucr/tr and θh = 0,+0.02,+0.04 rad. At the initial lateral displacement

(uo/tr), the effect of rotation is more pronounced in the middle rubber layer (line

segment BB). For example, the maximum compressive value of S33/p̄ in the top

rubber layer is 1.50, 1.58 and 1.70 for θh = 0,+0.02,+0.04 rad, respectively, whereas

the corresponding values in the middle rubber layer are 1.50, 1.72 and 2.05. Moreover,

the rotation changes the location where S33/p̄ attains its maximum value. The shift

in the location of the maximum value caused by rotation is more pronounced in the

middle rubber layer.

Especially important in this figure is the effect of rotation on the maximum tensile

stresses, which are important in elastomeric bearings due to concerns for cavitation in

the rubber and for debonding at the rubber–steel interface. The counterclockwise ro-

tation of the top plate causes an increase in compression at the left side of the bearing

and a decrease at the right side. Even at low lateral displacements, if the rotation is

very large, it is possible for the stretching at the right side of the bearing to overcome

the compression induced by the axial load and causes S33 to be tensile. This, however,

was not observed under the realistic values of average compressive stress and rotation

angles used in this study. As the lateral displacement increases (see plots for u/tr = 1

and ucr/tr in Fig. 2.14), however, tensile stresses develop on the right side of bearing.
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These tensile stresses are larger closer to the top of the bearing (segment AA) than

the middle (segment BB), and they are appreciably exacerbated by the application

of rotation. At u/tr = 1, the maximum tensile value of S33 at the top rubber layer is

2.46, 3.41 and 4.61 MPa for θh = 0,+0.02,+0.04 rad, respectively, and it increases to

6.17, 6.91 and 7.72 MPa (for the same rotation values) at the critical displacement.

These tensile stresses are large and in fact exceed the 3G negative pressure limit

proposed by Gent [51] for the onset of cavitation. Previous studies report conflict-

ing conclusions regarding how lateral displacement affects the cavitation strength of

elastomeric bearings. For example, Kelly [52] cites experimental tests where bearings

experienced tension that far exceeded the 3G cavitation limit, while Kumar et al.

[53] concluded from their experimental tests that cavitation strength decreases with

increasing lateral displacement. It is noted here that the hyperelastic models used in

the present study do not include damage characterization, such as cavitation. The

description of cavitation damage within hyperelastic constitutive models used in FEA

is very complex and goes beyond the scope of this study. Nonetheless, the notable

increase in maximum tensile stress S33 caused by rotation as the bearing is sheared is

a cause of concern. This observation, in conjunction with the conflicting observations

of previous studies [52,53], calls for further studies to elucidate how the cavitation

phenomenon manifests itself in elastomeric bearings under combined loading that

includes rotation.

In the middle rubber layer (bottom row in Fig. 2.14), as expected, the compres-

sive stress in the central portion of the bearing (i.e., the so-called overlapping area)

increase with increasing lateral displacement. At larger displacement levels, as was

the case for the top layer, tensile stresses develop. The relative increase in maximum
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tensile stress S33 due to rotation is larger in the middle layer than in the top layer;

however, the numerical value of the maximum tensile stress in the middle layer is

smaller than that in the top layer.

Fig. 2.15 shows the contours of shear strain γ13 at the cross section shown in

Fig. 4.11 for θh = 0, +0.02 and +0.04 rad and different lateral displacement levels.

The strain contour plots are plotted in the undistorted shape of the bearing. As

can be seen, regardless of the rotation angle, for u/tr = uo/tr and 0, the peak shear

strain occurs at the top and bottom outer edges of the rubber layers. Rotation at

the top of the bearing results in a significant increase in the peak value of γ13. For

example, 0.02 and 0.04 rad rotation result in a 34 and 58 percent increase, respectively.

Similarly, rotation increases the peak value of γ13 at larger lateral displacement levels,

although the percentage increase relative to the case of no rotation is smaller because

the lateral displacement of bearing causes an additional shear strain that is fairly

uniform throughout the rubber layer. At ucr/tr, the peak value of γ13 is 2.29, 2.71

and 2.98 for θh = 0, +0.02 and +0.04 rad, respectively.

Finally, it is interesting to examine how average vertical stress, p̄, affects the

stress distribution. Fig. 2.16 shows the variation of normal stress S33 along line

segment AA, shown in Fig. 4.11, at uo/tr (top row) and ucr/tr (bottom row) under

p̄ = 8.26 and 11.02 MPa for various levels of rotation. Similar overall observations

to those made above for p̄ = 11.02 MPa can be made about the shape of the stress

distribution under p̄ = 8.26 MPa. At uo/tr the larger p̄ value of the two causes a larger

peak compressive stress S33. At ucr/tr, the larger p̄ value results in a smaller peak

tensile stress. For example, under zero support rotation, the peak tensile stress at the

critical displacement is 7.85 and 6.17 MPa for p̄ = 8.26 and 11.02 MPa, respectively.
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On the other hand, for a given support rotation angle, an increase in p̄ seems to have

a negligible effect on the peak compressive stress at the critical displacement.

2.8 Effect of Rotation on the Critical Point

In order to study the effect of rotation on the critical point, the aforementioned bear-

ing model with the Mooney-Rivlin material description for the rubber was analyzed

under a constant vertical load (corresponding to p̄ = 8.26 MPa). Fig. 2.17 presents

normalized shear force–displacement curves (from the second stage of loading) for

different values of rotation (−0.04 to +0.04 rad) at the top of the bearing. The fig-

ure shows the initial displacement, uo, that corresponds to F/GA = 0, which was

discussed earlier. uo increases in magnitude with larger rotation, and it can be pos-

itive or negative depending on the rotation direction. The load–displacement curves

show that the tangent stiffness is nearly constant for most of the displacement range

except near the critical point, where it drops to zero, and beyond which it becomes

negative. At displacements less than the critical point, the amount of the rotation

does not seem to affect the tangent stiffness of the bearing. These observations on

the tangent stiffness, together with the fact that a positive rotation causes a negative

initial displacement, explain why at any given lateral displacement u/tr (below the

critical point), the force is larger under positive rotation than under zero rotation.

Similarly, under negative rotation the force is lower than under zero rotation at a

given u/tr. The figure also shows that rotation has a minimal effect on the lateral

displacement at the critical point but can affect the critical shear force. For instance,

rotation of +0.04 rad increases the critical shear force by 13 percent, as compared

to the zero rotation case, while rotation of −0.04 rad decreases it by approximately
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15 percent. The critical displacement, on the other hand, is decreased by only 3.4

percent for +0.04 rad rotation, and increased by 1.2 percent for −0.04 rad rotation.

Fig. 2.18 shows the effect of rotation on the horizontal behavior of the bearing

under different values of average vertical stress (p̄ = 5.5, 8.26 and 11.02 MPa). Two

support rotation cases were considered: rotation at the top, and rotation at the top

and bottom of the bearing. The value of the rotation varies from 0 to 0.04 rad.

The figure shows that increasing the pressure can increase the initial displacement

uo (for the same rotation value). The reason for this increased initial displacement

is because, under rotation, a component of the vertical load acts as a shear force in

the bearing, resulting in a horizontal displacement; the larger axial load (or average

vertical stress), the larger that lateral displacement. Under large pressure, this initial

displacement can be appreciable. For example, under a pressure of p̄ = 11.02 MPa,

a 0.02 rad rotation at the top of the bearing results in an initial displacement of

u/tr = 0.19. As expected, the critical shear force decreases with increasing p̄. The

increased separation between load–displacement curves with larger p̄, suggests that

the relative effect of rotation is more pronounced. The case of rotation at the top

and bottom (both counterclockwise) is more significant in the sense that it causes

larger value of initial displacement than the first case with rotation at the top only.

Also, the shear force at the critical point is larger for the case with rotation at both

supports.

Fig. 2.19 shows the effect of rotation on the critical point of the bearing under

different values of p̄ (5.5, 8.26, 9.64, 11.02 and 12.40 MPa) for the same two support

rotation cases. As can be seen, the rotation does not significantly affect the critical

displacement for either case. Only a very slight decrease is observed with increasing
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counterclockwise rotation. However, the rotation increases the critical shear force,

particularly for the case of rotation at the top and bottom. To summarize, the case

of rotation at both the top and bottom support can be more important than the other

case.

2.9 Elastomeric Seismic Isolation Bearings: Case

Studies

Up to this point, this paper has focused on elastomeric bearing configurations with

low values of first and second shape factor, S and S2, respectively, the latter of which is

defined for circular bearings as the ratio of the bearing diameter to the total thickness

of rubber layers. Previous studies on stability of elastomeric bearings also focused

on bearing designs with S and S2 values that were in the order of what was used in

this study, e.g. [21,24,29,32,33]. Emphasis was given to such bearing designs because

stability considerations become especially important for slender bearings with low

shape factor layers. In most modern base-isolation applications, it is common to use

bearings with fairly large values of S and S2. Elastomeric bearing manufacturers

market such bearing designs in an effort to avoid stability concerns up to a practical

lateral displacement design limit (e.g., 3tr). While bearing designs with large S and

S2 values are the norm in modern seismic isolation applications, bearings with low

to intermediate S and S2 are still widely available and offer certain advantages in

specific applications, such as the potential to provide isolation in both the horizontal

and vertical directions [54,55]; consequently, the instability potential of these bearing

designs requires investigation.
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In Sections 5 through 7, a bearing with S = 12.66 and S2 = 2.53 was considered.

Both shape factor values for that bearing can be considered to be on the low end

for a modern seismic isolation bearing. This section examines the stability limits

of five bearing designs with S and S2 values varying from 15 to 30 and 2.50 to

4.375, respectively. These five designs can be considered to fall within the low to

intermediate S and S2 range. Table 2.2 lists details of the five bearings. All five

bearings are annular in shape with inner diameter of 100 mm, 32 rubber layers (with

G = 0.9 MPa and K = 2000 MPa), each 5 mm thick. Bearing 3 is a Bridgestone

Corp. design [56].

The last three columns of Table 2.2 list the critical displacement, ucr/tr, cor-

responding to θh = 0, +0.02 and +0.04 rad, when the bearings are subjected to

p̄ = 7.95 MPa. Table 2.3 presents the results for the same five bearings but subjected

to p̄ = 10.61 MPa. The values of critical displacement listed in Tables 2.2 and 2.3

demonstrate that rotation has a negligible effect in all cases. With regard to shape

factor values, Montuori et al. [34] concluded that bearings with S = 20 and S2 greater

than 3.6, under the pressure used in practical design (8 MPa), do not experience any

instability for u/tr < 3. The ucr/tr results for Bearing 5 shown in Tables 2.2 and 2.3

confirm this observation. The results from Tables 2.2 and 2.3 show that for bearings

with lower values of S2 than in [34] (i.e., S2 < 3.6), the critical displacement is in

fact less than 3tr, regardless of the value of S or θh. For example, Bearing 3 with

S = 20 and S2 = 3.12 reaches its critical lateral displacement at u/tr = 2.28, 2.25

and 2.23 under rotation of 0, +0.02 and +0.04 rad, respectively. These values are

lower than what is typically targeted in a base isolation design. Therefore, although

rubber bearings with low to intermediate S and S2 values may be well used in seismic
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isolation applications, their stability cannot be taken for granted, and care must be

taken to ensure that the total maximum displacement of the isolator considered in

design falls below the critical lateral displacement limit.

2.10 Conclusions

This study followed a 3D finite element approach to investigate the behavior of elas-

tomeric bearings under combined applied loading, which included vertical load, hor-

izontal displacement and rotation. First, the finite element model was validated

against the results of an analytical solution under relatively low lateral displacement.

Various rotation cases at the top and bottom supports of the bearing were con-

sidered. Subsequently, the paper studied the effect of the constitutive model choice

(Neo-Hookean, Mooney-Rivlin and Yeoh hyperelastic material models) for the rubber.

The paper then investigated the effect of rotation on stress and strain distributions,

the load–displacement behavior, and the critical point of elastomeric bearings. The

main observations of the study (based on a bearing with S = 12.66 and S2 = 2.53)

are as follows:

� The material model selection influences the critical point, particularly when

the critical pressure is low, where the critical shear strain is large. It was

shown that using different material models does not affect the stress and strain

distributions at zero lateral displacement but can have a noticeable effect at

large lateral displacement.

� Rotation has a more pronounced effect on the stress and strain distributions at

smaller lateral displacement levels than larger ones. The simultaneous action
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of rotation and axial load was observed to cause an initial lateral displacement

that can change the lateral behavior of the bearing.

� For a given average vertical stress, and at displacements less than the critical

point, the amount of the rotation does not seem to affect the tangent stiffness.

Because the tangent stiffness is fairly constant and positive rotation causes

negative initial displacement, at a given displacement, the shear force is larger

under positive rotation than under no rotation—and smaller under negative

rotation than under no rotation. At large displacements, near the critical value,

the tangent stiffness decreases at a different rate depending on the support

rotation angle.

� In general, support rotation has a minimal effect on the critical displacement,

but it affects the critical shear force.

� A larger average vertical stress p̄, for a given rotation value, results in a larger

initial lateral displacement. As expected, the tangent stiffness and the critical

shear force decrease with increasing p̄. The increased separation between load–

displacement curves with increased p̄ suggests that the relative effect of rotation

becomes more pronounced.

The last section of the paper concluded that for bearings with first and second

shape factor in the 15 to 22.5 and 2.5 to 3.44 range, respectively, the instability

point occurs at displacement less than 3tr, but again rotation has negligible effect

on the critical displacement. In contrast, the bearing with S = 30 and S2 = 4.375

experiences instability at displacement larger than 3tr.
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As the first systematic FEA study of its kind on the behavior of rubber bearings

under combined compression, lateral displacement and support rotation, the support

rotation value was kept constant during the shearing of the bearing. Future studies

need to investigate the effect of the more complex case where rotation varies as the

lateral displacement increases.
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Table 2.1: Model parameters for the constitutive models.

C10 C20 C30 D1

Material Model (MPa) (MPa) (MPa) (MPa−1)

Neo-Hookean 0.4500 - - 0.001

Mooney-Rivlin 0.3904 0.0600 - 0.001

Yeoh 0.4682 −0.0188 0.0018 0.001

Table 2.2: Critical displacement, ucr/tr, for five bearing designs under an average
vertical stress of p̄ = 7.95 MPa.

ucr/tr

θh = 0 θh = +0.02 θh = +0.04

Bearing S S2 (rad) (rad) (rad)

1 15.0 2.50 1.55 1.53 1.50

2 17.5 2.81 1.80 1.76 1.77

3 20.0 3.12 2.28 2.25 2.23

4 22.5 3.44 2.58 2.56 2.52

5 30.0 4.375 3.68 3.63 3.60
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Table 2.3: Critical displacement, ucr/tr, for five bearing designs under an average
vertical stress of p̄ = 10.61 MPa.

ucr/tr

θh = 0 θh = +0.02 θh = +0.04

Bearing S S2 (rad) (rad) (rad)

1 15.0 2.50 1.35 1.31 1.29

2 17.5 2.81 1.60 1.56 1.54

3 20.0 3.12 2.03 2.02 2.00

4 22.5 3.44 2.31 2.29 2.27

5 30.0 4.375 3.36 3.32 3.29
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Figure 2.1: Deformed elastomeric bearing including rotation boundary conditions (a)
Full bearing, (b) portion of the bearing below cut at elevation y.
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Figure 2.2: Geometry of the circular elastomeric bearing.

Figure 2.3: Finite Element mesh of the circular bearing.
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Figure 2.4: Deformed shape of the bearing (P = 200 kN, H0 = 5 kN, θh = 0.02 rad
and θ0 = 0 rad) at the (a) First stage, (b) Second stage of the analysis.
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Figure 2.5: Comparison between FEA and analytical solution results (H0 = 5 kN): (a)
No rotation at the top or bottom of the bearing, (b) Rotation at the top of the bearing
only (θh = 0.02 rad), (c) Rotation at the bottom of the bearing only (θ0 = 0.02 rad),
(d) Rotation at the top and bottom of the bearing (θh = θ0 = 0.02 rad).
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Figure 2.6: Material test results: (a) Uniaxial tension test, (b) Pure-shear test [50].
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Figure 2.8: Stress contours (in MPa) for the tenth rubber layer of the bearing at
u/tr = 1 (left) and critical point (right), (p̄ = 11.02 MPa, θh = 0.02 rad) (a) Yeoh
(b) Neo-Hookean (c) Mooney-Rivlin.
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Figure 2.9: Definition of segments AA and BB in the bearing.
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Figure 2.12: Effect of rotation at the top of the bearing on the critical point for
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NR: no rotation).
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Figure 2.13: Deformation of the rubber layers at the cross section shown in Fig.
4.9 at different horizontal displacement levels (u/tr = uo/tr, 1, ucr/tr), for different
rotation angles at the top: (a) θh = 0 (for which, uo/tr = 0 and ucr/tr = 1.74), (b)
θh = +0.02, (uo/tr = −0.19 and ucr/tr = 1.72), and (c) θh = −0.02 rad (uo/tr = 0.19,
ucr/tr = 1.76). p̄ = 11.02 MPa for all cases.
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Figure 2.14: Variation of normalized normal stress S33/p̄ in the rubber layers along
line segments AA (top row) and BB (bootom row) for u/tr = uo/tr, 0, 1, ucr/tr,
and θh = 0 (for which, uo/tr = 0 and ucr/tr = 1.74), 0.02 rad (uo/tr = −0.19 and
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all cases.
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Figure 2.15: Contours of shear γ33 at the cross section shown in Fig. 4.9 in the
undistorted configuration of the rubber layers for (a) u/tr = uo/tr, (b) u/tr = 0 (c)
u/tr = 1, (d) u/tr = ucr/tr, and θh = 0 (for which, uo/tr = 0 and ucr/tr = 1.74), 0.02
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1.70). p̄ = 11.02 MPa for all cases.
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Figure 2.16: Variation of normal stress S33 along line segment AA at uo/tr (top
row) and ucr/tr (bottom row) under p̄ = 8.26 MPa for θh = 0 (uo/tr = 0, ucr/tr =
2.16), θh = 0.02 (uo/tr = −0.13, ucr/tr = 2.12) and θh = 0.04 rad (uo/tr = −0.28,
ucr/tr = 2.08), and p̄ = 11.02 MPa for θh = 0 (uo/tr = 0, ucr/tr = 1.74), θh = 0.02
(uo/tr = −0.19, ucr/tr = 1.72) and θh = 0.04 rad (uo/tr = −0.39, ucr/tr = 1.70).
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Figure 2.17: Normalized shear force–lateral displacement for different values of rota-
tion at the top of the bearing (−0.04 to +0.04 rad, where the positive convention for
rotation is counterclockwise) under an average vertical stress of p̄ = 8.26 MPa.
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Figure 2.18: Effect of rotation (0 to 0.04 rad) on the lateral behavior of the bearing
under different average vertical stress values for two cases: rotation at the top (top
row), and rotation at the top and bottom (bottom row) of the bearing.
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Figure 2.19: Effect of rotation on the critical point of the bearing under different
average vertical stress values (5.5, 8.26, 9.64, 11.02 and 12.40 MPa) for two cases:
rotation at the top and rotation at the top and bottom.
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Chapter 3

Study of the Horizontal Behavior

of Elastomeric Bearings by Simple

Mechanical Models Including the

Effect of Support Rotation

Rastgoo Moghadam S, Konstantinidis D. Study of the horizontal behavior of

elastomeric bearings by simple mechanical models including the effect of support

rotation. Submitted to Engineering Structures.
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3.1 Abstract

Past studies have shown that the lateral behavior of a laminated elastomeric bearing

is affected by axial load. Various mechanical models have been proposed to capture

the lateral behavior of elastomeric bearings including the effect of horizontal–vertical

coupling. These studies have characterized the effect of vertical load on the lateral

stiffness and the lateral stability limit under the assumption that the bearing displaces

horizontally and vertically only while the supports do not rotate. In this study,

three existing models are considered: the Nagarajaiah–Ferrell, Iizuka, and Han–Warn

models. First, these three models are evaluated by comparing their predictions with

results of Finite Element Analysis (FEA), assuming no rotation at the supports. The

models are subsequently modified to incorporate support rotation. The modified

models are evaluated using results from FEA under prescribed rotation values. In

order to investigate the effect of bearing aspect ratio on the results, bearings with

different second shape factors (2, 4 and 6) are considered. The results show that these

models cannot accurately predict the lateral force at the instability (critical) point;

defined as the displacement at which the tangent stiffness becomes zero. Depending on

the axial load and rotation value, the models underestimate or overestimate the lateral

force at the critical point. Nevertheless they predict the displacement at the critical

point with an acceptable accuracy. In general, it was found that the Han–Warn and

Iizuka models provide more accurate predictions than the Nagarajaiah–Ferrell model.

To improve the existing models, this paper proposes a new model, referred herein as

Proposed Model (PM), that includes the effect of rotation on the lateral response.

This model is used to find the lateral stability limit and the results are compared

against those from FEA. It is shown that the PM can predict the lateral behavior of
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elastomeric bearings more accurately than existing models.

3.2 Introduction

Seismic isolation using elastomeric bearings is one of the most effective and popular

earthquake protection techniques, especially in the U.S. and Japan. In buildings,

traditional practice places the isolation system at the foundation level and calls for

the construction of rigid diaphragms above and below. The flexural rigidity of these

diaphragms prevents the isolators from experiencing rotations. Recently, creative

isolation designs have been introduced that reduce or eliminate these costly rigid di-

aphragms and in some cases move the isolation level higher up the structure. Another

growing application of isolation is high-rise buildings, especially in Japan. In these

innovative designs, aside from vertical and relative lateral displacements, the isolators

can also experience rotations at their supports, as shown in a recent study by Oshaki

et al. [1].

When an elastomeric bearing is subjected to a large lateral displacement, the full

axial load is carried through by the overlapping region between the top and bottom

surfaces [2]. As the overlapping area decreases with increasing lateral displacement,

there is a concern with the stability of the bearing. The combination of axial load and

horizontal displacement affects the bearing’s stability limit. Previous studies intro-

duced mechanical models [3-13] to examine the stability of elastomeric bearings under

the assumption that the bearing only sheared horizontally and only displaced verti-

cally, while the supports did not rotate. The increasing use of elastomeric bearings

in high-rise buildings, mid-story or column-top isolation applications, as well as in

bridge applications where bearings are expected to experience rotations, calls for an
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improved understanding and characterization of the behavior of elastomeric bearings

under combined loading that includes rotation.

Recent studies aimed to investigate the effect of rotation on the lateral behavior

of bearings experimentally or numerically. Crowder and Becker [14] experimentally

studied column-top isolation in a retrofit application and showed that, in the case of

flexible columns, the endplate rotation due to the columns flexibility causes appre-

ciable reduction in the lateral stiffness of the bearing. Ishii et al. [15] extended the

previous model by Yamamoto et al. [8] to account for the effect of rotation on the

horizontal behavior of elastomeric bearings. It was shown that end rotations do not

affect the critical displacement. Using 3D FEA, Rastgoo Moghadam and Konstantini-

dis [16] confirmed that rotation does not significantly affect the critical displacement

but noted that rotation can decrease or increase the critical shear force, depending

on the rotation direction. It was concluded that imposing rotation at the supports,

depending on the rotation value and axial force, can appreciably influence the lateral

behavior of a rubber bearing. Another FEA study by Kalfas et al. [17] showed that

when a bearing is subjected to axial and horizontal load and the endplate is allowed

to rotate, the development of local tensile stresses changes the stiffness and damping

ratio.

Various studies on the stability of laminated elastomeric bearings, assuming no

rotation of the top/bottom supports, involved quasi-static and dynamic tests of bear-

ings with different shape factors (defined for a single rubber layer as the ratio of

loaded area to force-free area), second shape factors (defined for a bearing as the

ratio of diameter/width to total thickness of rubber), geometric shapes, and rubber

materials [10,18-25]. Some of the salient conclusions of these experimental studies
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are:

1. The axial load capacity decreases when the bearing is displaced laterally [10,19-

25].

2. The lateral stiffness of the bearing decreases with increasing axial load [10,19-

25].

3. In lead-core bearings, the lead core does not have a significant effect on the

critical capacity when the bearing is laterally deformed [24].

4. The method recommended by code (known as the overlapping area method) to

estimate critical capacity is overly conservative [22-25], especially for slender bearings

when the horizontal displacement is equal to the bearing diameter/width [22,24].

5. Quasi-static and dynamic test results agree, confirming that quasi-static tests

can reliably determine the instability of elastomeric bearings [25].

6. Dynamic tests revealed that bearing can still sustain loads beyond the static

critical load without observing any problem in the superstructure [10,25], but this

conclusion is based on a limited number of tests [10]. It should be noted that most of

design codes for elastomeric bearings do not allow the bearing to experience lateral

displacements beyond the critical load capacity.

The use of FEA to study the stability of rubber isolators has become increasingly

popular over the past few years. The first study on the stability of elastomeric bearings

using FEA was conducted by Simo and Kelly [26]. The study used two-dimensional

constitutive equations together with two-dimensional finite elasticity, extended to

large displacements of the constitutive equations for an isotropic solid. A parametric

study by Warn and Weisman [27] on the effect of geometry on the critical load of

rubber bearings using 2D FEA showed that the bearing width and the individual
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rubber layer thickness are more important parameters than the number of rubber

layers. Weisman and Warn [24] showed that the axial load capacity of an elastomeric

bearing does not improve by using a lead core in the bearing. Montuori et al. [28]

studied the effect of the second shape factor on the stability of elastomeric bearings.

It was shown that for bearings with second shape factors ranging from 1.5 to 6.2 the

lateral behavior and stability of the bearings are related to the value of second shape

factor.

While finite element models are indispensable for developing a good understand-

ing of the behavior of elastomeric bearings, both at the global and local level, they

are computationally much costlier and less practical than simple mechanical models.

For this purpose, this study focuses on mechanical models capable of describing the

lateral-vertical coupling and predicting instability in elastomeric bearings. The first

two-spring simple mechanical model was proposed by Koh and Kelly [3], who used

experimental results for natural rubber bearings to confirm that the model’s accuracy.

This model was improved by Koo et al. [4] by using an instantaneous apparent shear

modulus instead of a constant shear modulus value. In this model, the shear modu-

lus is a function of the shear strain and can be presented by a polynomial equation

obtained by least-squares fitting of test results. The advantage of this modification

is the elimination of imprecision associated with the constant shear modulus. Na-

garajaiah and Ferrell [5] developed a nonlinear analytical model by extending the

Koh–Kelly model to include large displacements. It was shown that this model is

capable of predicting the instability point and that the critical load decreases with

increasing lateral displacement. Iizuka [6] used the configuration of the Koh–Kelly

83



Ph.D. Thesis - S. Rastgoo Moghadam McMaster University - Civil Engineering

model, but the formulation was expanded by introducing finite deformation and non-

linear springs. The parameters of the nonlinear rotational and shear springs in the

model are determined through experimental testing. Unlike previous models, the ad-

vantage of this model is that it can easily handle a variable axial force. The use of 2D

series of vertical springs with a simple bilinear constitutive relationship along with a

shear spring is the model proposed by Han and Warn [7]. The solution process to

find the critical point based in the Han–Warn model is similar to the Iizuka model.

In recent years, three-dimensional mechanical models have been proposed [8,9,15].

Although, based on comparison with experimental tests, these models are capable of

predicting the lateral behavior of elastomeric bearings accurately, their complexity

makes them difficult to use in practical applications.

Dynamic tests conducted by Vemuru et al. [10] showed that the stiffness of the

bearings beyond the stability limit is larger than that predicted by quasi-static tests.

As the Nagarajaiah-Ferrell model is based on quasi-static tests, the model cannot

accurately predict the stiffness degradation beyond the stability point. Based on this

observation, Vemuru et al. [10] proposed a new model by including higher order

displacement terms in the stiffness of the rotational spring. The model is capable

of characterizing the dynamic behavior of bearings more accurately than previous

models, particularly beyond the instability point. In another study conducted by

Vemuru et al. [11], vertical springs are introduced in the Nagarajaiah–Ferrell model

to capture the vertical behavior of the bearings more accurately than in previous

models. This model represents the coupled behavior of the bearing as a combination

of reduction in vertical stiffness beyond the instability point and an increase in vertical

displacement.
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Forcellini and Kelly [12] modified the Koh–Kelly model to capture the tension

buckling behavior of bearings. It was shown that the behavior of elastomeric bearings

in tension is the ‘mirror image’ of those in compression. However, numerical and

experimental investigations by Maureira et al. [13] showed that the the critical loads

are higher in tension than in compression, particularly for bearings with low shape

factor.

All aforementioned models assess the effect of vertical load on the stability of the

elastomeric bearings under the assumption that the bearing experiences zero rotation

at its supports. The first objective of this paper is evaluation of the existing models in

the literature to capture the effect of rotation on the stability of elastomeric bearings.

Three models are considered: Nagarajaiah–Ferrell [5], Iizuka [6], and Han–Warn [7].

The paper first summarizes each model and evaluates their performance by comparing

their predictions to results of FEA assuming no rotation at the supports. To account

for the effect of rotation, the models are extended, and their predictions are compared

against FEA under prescribed rotation values. To study the effect of geometry on

the performance of each model, bearings with different second shape factors were

considered. In the last part of the study, a new macro model, referred to herein as

the Proposed Model (PM), is introduced, and its performance in describing lateral

behavior and predicting instability of rubber bearings is evaluated based on FEA

results.
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3.3 Existing Analytical Models

3.3.1 The Nagarajaiah–Ferrell Model

At least two mechanisms of deformation are needed in a simple mechanical model

to represent the horizontal-vertical interaction and predict instability [29]. These

mechanisms of deformation can be accommodated by shear and rotation springs as

proposed first by Koh and Kelly [3] using linear springs. Nagarajaiah and Ferrell [5]

later extended the formulation to include nonlinear springs. In the model shown in

Fig. 3.1a, the model consists of two rigid tee-shaped elements, with total height of

h which are connected via frictionless rollers, a shear spring of nonlinear stiffness Ks

and two rotational springs of nonlinear stiffness Kθ connected to the top and bottom

end plates. The top plate is free to move in the vertical and horizontal direction

but is constrained from rotating. Under axial load P and shear force F the model

includes the global horizontal displacement u and vertical displacement v. These

produce the local shear deformation s that will be developed in the shear spring and

the rotation θ concentrated in the two rotational springs which are identical. These

local deformations (s,θ) are associated with shear spring force Qs and rotational

spring moment M . The compatibility and equilibrium equations of the model with

nonlinear springs and nonlinear geometry are given by [5]

u = s cos θ + h sin θ (3.1a)

v = s sin θ + h(1− cos θ) (3.1b)

M = Kθθ = Pu+ F (h− v) (3.1c)

Qs = Kss = P sin θ + F cos θ (3.1d)

86



Ph.D. Thesis - S. Rastgoo Moghadam McMaster University - Civil Engineering

where, in Eq. (4.1d) [5],

Ks =
GAs
h

[1− Cs tanh (s)] (3.2)

where G is the shear modulus of the rubber material, As = A (h/tr), where A is the

area in plan, h is the total height of the bearing (rubber plus steel), and tr is the

total height of rubber. Cs is a dimensionless constant which can be estimated from

experimental results if they are available, otherwise it [5] is suggested to assume a

value of 0.325.

Additionally, in Eq. (4.1d) [5],

Kθ =
π2EIs
h

(
1− tu − t

D
s

)
(3.3)

where D is the bearing diameter, t is the thickness of single rubber layer, and tu is

the rubber layer of unit inch thickness (= 1). It is noted that in addition to tu, the

other variables inside the square brackets in Eqs. (4.2) and (4.3), i.e., s, t, and D,

must be in inches. Also, EIs = EIeff (h/tr), where EIeff is the effective bending

rigidity of a single rubber layer. For a circular bearing, assuming incompressible

rubber, EIeff = EcI/3, where Ec = 6GS2 is the compression modulus, S = D/4t is

the shape factor, and I = πD4/64 is the area moment of inertia of a single rubber

layer [29].

Vemuru et al. [10] showed that this model cannot predict stiffness degradation

beyond the instability point and the experimental test revealed that bearings have

further capacity beyond the critical point over that estimated by the model. In order

to improve the model to address the drawback, Eq. (4.3) was modified by adding
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higher order terms of s [10]:

Kθ =
π2EIs
h

[
1− tu − t

D
s− Cθ1

(
s

tr

)2

− Cθ2
(
s

tr

)3
]

(3.4)

where Cθ1 and Cθ2 are dimensionless parameters. The parameters are obtained based

off of the response of the bearings to an earthquake excitation. Eqs. (4.1a)–(4.1d) for

a given bearing subjected to axial force P can be solved simultaneously using ‘fsolve’

in Matlab, which outputs the F − u curve representing the lateral behavior of the

bearing.

3.3.2 The Iizuka Model

The configuration of the Iizuka model [6] is similar to the Nagarajaiah–Ferrell model

but the two rigid tee elements are replaced by a rigid column and two identical ro-

tational springs are replaced by a single spring, as shown in Fig. 3.1b. The model

assumes that the bending moment of the rotational spring, M , and the shear resis-

tance of the shear spring, Qs, are functions of axial load P , and rotational angle θ,

and shear deformation s; respectively M = M (P, θ), Qs = Qs (s). Then Eq. (4.1)

can be rewritten in the incremental form as follows [6]

∆u = h cos θ∆θ + cos θ∆s− s sin θ∆θ (3.5a)

∆v = h sin θ∆θ + sin θ∆s+ s cos θ∆θ (3.5b)

∆M = u∆P + P∆u+ (h−∆v) ∆F − F∆v (3.5c)

∆Qs = sin θ∆P + P cos θ∆θ + cos θ∆F − F sin θ∆θ (3.5d)
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where

∆M =
∂M

∂P
∆P +

∂M

∂θ
∆θ (3.6)

∆Qs =
dQs

ds
∆s (3.7)

Substituting Eqs. (4.6) and (4.7) into Eq. (4.5) and rearranging the equations as

suggested in Han et al. [30], the incremental equilibrium and compatibility equations

in a stepwise procedure for step i can be obtained as


i(∆θ)

i(∆s)

i(∆v)

i(∆F )


=



h sin iθ + is cos iθ sin iθ −1 0

h cos iθ − is sin iθ cos iθ 0 0

i(dM/dθ) 0 iF iv − h

P cos iθ − iF sin iθ −i(dQs/dθ) 0 cos iθ



−1 

0

1

P

0


∆u (3.8)

The incremental response quantities (∆θ, ∆s, ∆v and ∆F ) for a given bearing under

the axial force, P , and incremental lateral displacement, ∆u, at the step i are added

to the current step to find the response values at the next step (i+1). This procedure

can be continued until the critical point at which dF/du in the F − u curve becomes

zero; however the procedure can be pursued beyond the critical point to find the

post-critical behavior of the bearing. In order to avoid an ill-conditioned matrix for

solving Eq. (4.8) in the first step (s = 0), the solution derived by the Nagarajaiah–

Ferrell model can be used [6], or linear spring properties can be assumed [30] for the

first step. Then 1θ and 1F in terms of 1s can be obtained as

1θ =
GAs + P

PEtr
1s (3.9)
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1F =
GAsPE − P 2

PEh
1s (3.10)

where PE = π2EIs/h
2. 1v and ∆u in terms of 1s and 1θ are

1v = 1s sin 1θ + h(1− cos 1θ) (3.11)

∆u = 1s cos 1θ + h sin 1θ (3.12)

To find the relation for the rotational spring, an individual rubber layer assuming

bilinear elastic behavior with zero post-cavitation stiffening as shown in Fig. 3.2a

is considered. This layer is assumed bonded to the rigid plates, and it is subjected

to axial force and bending moment. Stress on the cross section varies linearly in

compression and in tension until the cavitation limit, σc, is reached, beyond which,

the stress is constant. The cavitation bending moment Mc can be obtained from [6]

Mc = 2Z (σc + p̄) (3.13)

where Z is elastic section modulus of bonded rubber area (= πD3/32 for a circular

bearing), p̄ is average vertical stress (= P/A) and σc is the cavitation stress, set at a

value of 3G [31]. The cavitation rotational angle can be calculated from [6]

θc =
Mc

π2EIs/h
=

2hZ (σc + p̄)

π2EIs
(3.14)
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The tangential rotational stiffness, dM/dθ, can be computed from

dM

dθ
=


π2EIs
h

(θ ≤ θc)

π2EIs/h

[1+ r
3( θ

θc
−1)](

1+r
r )

(θ > θc)
(3.15)

where r is a dimensionless parameter which controls the resisting moment after the

cavitation bending moment is achieved. Iizuka [6] recommended a value between 1.2

and 3.5. Finally, the tangential shear stiffness, dQs/ds, is [6]

dQs

dθ
=
GAs
h

[
1 + s1 (1 + s2)

(
s

tr

)s2]
(3.16)

where s1 and s2 are dimensionless parameters which control the starting point and

intensity of hardening in the rubber material. s1 can be varied between 0.0068 and

0.01, and s2 is equal to 3. In this study, s1 = 0.01, s2 = 3 and r = 2. Han et al.

[30] showed that the instability point based on the Iizuka model is insensitive to s1

and s2; therefore they suggested that the dQs/ds can be assumed constant (equal to

GAs/h) over the shearing deformation.

3.3.3 The Han–Warn Model

Han and Warn [7] replaced the rotational spring with a series of parallel vertical

springs, as shown in Fig. 3.1c. The behavior of these springs is similar to the rota-

tional spring in the Iizuka model (see Fig. 3.2a). The cross section is discretized into

individual springs, similar to the fiber-element model. This means that each verti-

cal spring (numbering of the springs begins from the left side of the cross section)

represents a portion of the cross section and is located in the center of that portion.
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The number of springs, n, should be large enough to obtain a converged solution for

all axial loads for a given bearing (at least 12 [7]). In the present study, n = 30 is

used for all bearings. A stepwise incremental analysis similar to the Iizuka approach

is used (using Eqs. (4.9)–(4.12) for the first step and Eq. (4.8) for the ith step). The

differential quantity dM/dθ can be obtained at step i by

i

(
dM

dθ

)
=

iM − i−1M

iθ − i−1θ
(3.17)

The vertical spring should satisfy the equilibrium equations [7]:

P =
∑
j

σsjAj (3.18)

iM =
∑
j

σsjAj
(
dsj + x

)
(3.19)

and compatibility equation [7]:

εs1ls
ds1 + x

=
εs2ls
ds2 + x

= ... =
εsj ls

dsj + x
= ... =

εsnls
dsn + x

= θ (3.20)

where εsj is strain of the jth vertical spring element, σsj is the stress in the jth vertical

spring element which follows the loading path in Fig. 3.2a, or

σsj =

Ecεsj (εsj ≤ εc)

σc
(
εsj > εc

) (3.21)

where εc = σc/Ec, Aj is the area of the jth vertical spring element, dsj is the distance

between the centre of the jth vertical spring and the center of the bearing cross
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section, x is the distance between the neutral axis and the center of the bearing cross

section, and ls is the initial length of the vertical spring element which is calculated

by [7]

Ec
ls

∑
j

Ajd
2
sj

=
π2EIeff

tr
(3.22)

The tangential shear stiffness dQs/ds is given by

dQs

dθ
=
GA

tr

[
1− Cs tanh

(
u

tr

)]
(3.23)

Kumar et al. [32] investigated the effect of cavitation on the behavior of rubber

bearings and found experimentally that the post-cavitation stiffness is not zero, but

can be represented by [32]

σ = σc

[
ekctr(εsj−εc) +

1

kctr

(
ekctr(εsj−εc) − 1

)]
(3.24)

where kc is a cavitation parameter which describes the post-cavitation variation of

tensile stiffness. This parameter for a given bearing can be obtained by calibration

with experimental data. Eq. (3.24) is plotted in Fig. 3.2b. The effect of post-

cavitation stiffness on the results using the Han–Warn model will be discussed later.

3.4 Modifying Existing Analytical Models to Ac-

count for Support Rotation

As discussed earlier, the aforementioned models are not capable of predicting the lat-

eral behavior of an individual bearing when it is subjected to the support rotations.
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Rastgoo Moghadam and Konstantinidis [16] have shown that the simultaneous appli-

cation of vertical load and rotation at one of the bearing’s supports causes the bearing

to shear even in the absence of an applied horizontal load. In that analysis, it was

assumed that the surface which is subjected to rotation is not constrained laterally.

In reality, however, the superstructure and/or substructure restrict the supports of

the bearing from freely displacing laterally relative to each other; therefore rotation

induces a horizontal force to the bearing. This force is added to the shear force which

is produced by external horizontal displacement. Moreover, the authors have shown

that the critical displacement is not sensitive to the rotation angle, but the shear

force corresponding to the critical point is affected appreciably [16].

Han et al. [30] have shown that the Nagarajaiah–Ferrell and Iizuka models are

more sensitive to the nonlinear behavior of the rotational spring than the properties

of the shear spring. Based on this finding, it is assumed that the support rotation

affects the rotation angle θ only. Thus, θ should be modified to account for the

support rotation. Letting θt and θb represent the applied rotation at the top and

bottom supports, respectively, with counterclockwise being the positive convention,

the compatibility and equilibrium equations (Eq. (4.1)) are modified as follows,

u = s cos (θ − θt − θb) + h sin (θ − θt − θb) (3.25a)

v = s sin (θ − θt − θb) + h (1− cos (θ − θt − θb)) (3.25b)

M =
Kθ

2
(θ − θt) +

Kθ

2
(θ − θb) = Pu+ F (h− v) (3.25c)

Qs = Kss = P sin (θ − θt − θb) + F cos (θ − θt − θb) (3.25d)

In order to use the Nagarajaiah–Ferrell model, Eqs. (3.25a) to (3.25d) can be solved
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simultaneously. The Nagarajaiah–Ferrell model includes two rotational springs, one

on each support of the bearing (see fig Fig. 3.1a); consequently, it is easy to apply

different rotation cases: top only, bottom only, and the top and bottom simultane-

ously.

The finite-difference format of Eq. (3.25) is similar to Eq. (4.5). In order to

modify the Iizuka and Han–Warn models and add the initial lateral force (due to

rotation), the force in the first step, 1F , which is obtained by Eq. (4.10), should be

modified. It should be noted that the modification discussed here, is only valid for

the case of rotation at the top or bottom only. These two cases are similar to each

other due to the inherent symmetry in geometry. Assuming linear spring in the first

step, as discussed in Section 2.2 and replacing θ with θ − θt, 1F is obtained from,

1F =
1s (GAsPE − P 2)− (PPEhθt)

PEh− PEθt 1s
(3.26)

In order to use the Iizuka and Han–Warn models, Eqs. (3.26) and (4.8) can be

used for the first step and subsequent, respectively. The results based off of these

modifications will be discussed in Section 5.

3.5 Finite Element Analysis

One of the objectives of this study is to evaluate the performance of the simple me-

chanical models. This is done by comparing their predictions to results of FEA. This

section provides a summary of the finite element approach followed. A comprehensive

discussion of the approach, including validation using an available analytical solution
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presented by Karbakhsh Ravari et al. [33] is presented in [16] to facilitate the evalu-

ation of the mechanical models. Three-dimensional circular bearing models were de-

veloped in ABAQUS [34]. In the 3D finite element model, the rubber was discretized

with a combination of 8-node linear brick, hybrid, constant pressure (C3D8H) and 6-

node linear triangular prism, hybrid, constant pressure elements (C3D6H). The steel

materials including shims and end plates were discretized with 8-node linear brick,

incompatible modes elements (C3D8I).

The Neo-Hookean hyperelastic material was used to model the rubber. This ma-

terial model is defined by two parameters, C10 and D1, which for consistency with a

linear elastic material are related to the shear modulus, G, and the bulk modulus,

K, through C10 = G/2, D1 = 2/K. For the compressible Neo-Hookean model used

in this study, the strain energy function is [35]:

W = C10

(
Ī1 − 3

)
+

1

D1

(J − 1)2 (3.27)

where Ī1 is the the first modified invariant of the deviatoric part of the Cauchy-Green

deformation tensor, and J is the elastic volume ratio. The steel material was modeled

using a bilinear isotropic material model with a Young's modulus of 200 GPa and a

Poisson's ratio of 0.3. A post-yield modulus of 2 percent of the initial modulus was

specified.

In the model, all nodes at the top end plate were constrained to a point located

at the centroid of the end plate and the boundary conditions were assigned to this

point. The control node was free to move vertically and laterally in one direction,

and in the case of rotation this node can rotate in the specified direction. Similar to

the top end plate, all nodes at the bottom end plate were constrained to a control
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node. This point was restrained in all degrees of freedom except for rotation. The

analysis was performed in two stages: during the first stage, both axial load and

rotations were imposed gradually until the desired values were reached. In the second

stage of the analysis, the horizontal displacement was gradually increased while main-

taining the axial load and rotation value from the first stage constant. The analysis

included nonlinear geometry, large displacements, and large strains. The incremen-

tal nonlinear analysis was conducted using an updated Lagrangian formulation and

Newton-Raphson iteration method.

In the analysis results, the critical point is defined as the point where the shear

force reaches a maximum value in the shear force–lateral displacement curve. Beyond

this point, the tangential lateral stiffness becomes negative. To obtain this point the

Constant Axial Force Method [24] is used. In this method, the accuracy of which was

experimentally confirmed by Sanchez et al. [25], the lateral displacement and shear

force associated with the critical point are determined from the shear force–lateral

displacement curve for a given constant axial load, P . The loading history in the FEA

involves applying the axial load first, and then applying the horizontal displacement

incrementally until the horizontal tangential stiffness becomes zero.

3.6 Evaluation of Existing Models

In this study different bearings were considered to compare the predictions of the

aforementioned analytical models against FEA results. Table 3.1 shows details of the

bearings used in this study. Bearing 1 is similar to the bearing tested by Weisman

and Warn [24]; Bearing 2 is similar to the one studied by Vemuru et al. [10]; and

Bearings 3 to 5 are similar to bearings in Montuori et al. [28].
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Fig. 3.3 shows the lateral behavior of Bearing 1 obtained using the mechanical

models and FEA under different average pressure (p̄ = P/A = 5.5, 8.26 and 11.02

MPa). The Han–Warn model results are in good agreement with the FEA results,

particularly for the intermediate pressure, which is in the order used in practical de-

sign. In all three cases, the Nagarajaiah–Ferrell model predicts a lower shear force,

F , while the Iizuka model predicts larger values. As can be seen, the initial horizontal

stiffness predicted by the Han–Warn and Iizuka models are close to the FEA results,

while the Nagarajaiah–Ferrell model underestimates the horizontal stiffness, espe-

cially under the large pressure (p̄ =11.02 MPa). For example, the initial horizontal

stiffness is 224, 246, 238 and 171 N/mm for Bearing 1 under p̄ =8.26 MPa predicted by

FEA, the Iizuka, the Han–Warn, and the Nagarajaiah–Ferrell models, respectively. If

the critical points are extracted from a multitude of lateral load–displacement curves

like the ones shown in Fig. 3.3, under different values of constant p̄, graphs showing

(a) Pcr versus ucr, and (b) Pcr versus Fcr, can be generated, as shown in Fig. 3.4.

The figure shows that the analytical model results are in fair to good agreement with

the FEA results in terms of the critical displacement, ucr, while there are significant

differences among the predictions of the models in estimating the critical shear force

Fcr. For example, the critical displacement is 130, 123, 122 and 121 mm for Bearing

1 under p̄ =8.26 MPa (corresponding to Pcr = 150 kN in Fig. 3.4) predicted by the

Finite Element Model (FEM), the Iizuka, the Han–Warn and the Nagarajaiah–Ferrell

models, respectively. The values for Fcr, however, exhibit significant scatter; specifi-

cally, they are 21, 26, 21 and 14 kN, respectively. Moreover, Fig. 3.4 shows that the

Iizuka model predicts the largest critical force.

Coefficient Cs in Eq. (4.2) in the Nagarajaiah–Ferrell model is based on the
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average of many tests. This value can be determined accurately for a specific bearing

by calibration with experimental data. Vemuru et al. [10] conducted experimental

tests on two identical bearing specimens (Bearing 2), and they determined Cs to

be 0.282 and 0.332 for the first and second bearing, respectively. Fig. 3.5 shows

the lateral force-displacement curve for the Nagarajaiah–Ferrell model using different

values of Cs in Eq. (4.2). Also shown are the results using Eq. (4.4) proposed by

Vemuru et al. [10] for the rotational stiffness and Cs = 0.282. Cθ1 and Cθ2 are−0.1045

and 0.0158, respectively [10]. These values are the average values of the four bearings.

The figure shows that the effect of Cs on the critical displacement is negligible, which

means that the shear spring as represented by Eq. (4.2) does not have a significant

influence on the critical displacement. This finding is in agreement with observations

in Han et al. [30]. However, the value of Cs does affect the critical shear force.

Unlike the shear spring, the rotational spring has a major effect on the critical point

[30]. Fig. 3.5 shows that using Eq. (4.4), proposed by Vemuru et al. [10], increases

the value of critical shear force significantly. For instance, in terms of critical shear

force the modification proposed by Vemuru et al. [10] with Cs = 0.282 provides

81 %, 73 % and 14.7 % error with reference to the experimental results presented

in [10] for Bearing 2 under pressure of 4.30, 6.54 and 8.56 MPa, respectively. By

comparison, the errors are 9 %, 20 % and 18 % for the Nagarajaiah–Ferrell model

using Cs = 0.282. Nevertheless, the error decreases with increasing pressure using

the Eq. (4.4). In terms of critical displacement, the error is 17 %, 12.5 % and −32

% using Eq. (4.4), while it is 29 %, −25 % and −37 % using the Nagarajaiah–Ferrell

model for Bearing 2 under the same pressures. The modification factor proposed

by Vemuru et al. [10] aimed to improve the agreement between the dynamic tests
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and the Nagarajaiah–Ferrell model beyond the critical point. In comparison with the

monotonic test, however, this modification does not necessarily enhance the results.

The simple bilinear elastic model with zero post-cavitation stiffness in the Han–

Warn model can be replaced by Eq. (3.24) [32] to account for the effect of post-

cavitation hardening in the rubber material. Fig. 3.6 shows the behavior of the

rubber using equation Eq. (3.24) for different values of kctr for Bearings 1 and 3. In

this study, kctr was selected so that the slope of the post-cavitation σ–ε behavior is

similar to the experimental tests shown in [32]. Fig. 3.7 shows the results using the

bilinear behavior shown in Fig. 3.6 in the Han–Warn model for Bearings 1 and 3. As

can be seen, varying the post-cavitation behavior does not have a noticeable influence

on the lateral behavior up to the instability point but has a noticeable effect on the

post-critical behavior. In fact, kc controls how the lateral stiffness degrades beyond the

critical point. This can improve a drawback of previous models noted experimentally

by Vemuru et al. [10]: namely that the degradation beyond the critical point is less

than predicted by previous models, particularly in dynamic tests.

Fig. 3.8 shows the effect of rotation (θt = 0.02 and 0.04 rad) on the lateral

behavior of Bearing 1 under different pressures values (5.5, 8.26 and 11.02 MPa)

using the modified analytical models (to account for the effect of rotation) and the

FEM. As can be seen, the results of the modified Han–Warn model are in fairly good

agreement with the FEA results at both rotation values (0.02 and 0.04 rad), especially

for low and medium pressure values (5.5 and 8.26 MPa). As discussed in Section 3,

under non-zero support rotation, the lateral force is not zero at zero displacement;

i.e. the initial force. In terms of initial force, all modified analytical models predict

a larger value than predicted by the FEM. This difference is more pronounced when
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the axial load is increased. For example, the initial force is 1.8, 3.0, 3.0 and 3.67 kN

for Bearing 1 under p̄ = 8.26 MPa and θt =0.02 rad using the FEM, the Han–Warn,

the Iizuka, and the Nagarajaiah–Ferrell model, respectively, while these values are

2.3, 4.0, 4.0 and 4.6 kN for the bearing under the same rotation angle but p̄ = 11.02

MPa.

Fig. 3.9 compares the critical points predicted by the modified analytical models

and FEM for Bearing 1 under different rotation values. The critical shear force values

vary significantly depending on the rotation value and pressure, with larger values

of pressure and rotation resulting in larger deviation between the predictions of the

modified analytical models and the FEA results. Unlike the critical force, there is

relatively good agreement between the results for critical displacement, especially for

lower value of pressure and rotation. For example, Fcr is 23, 31, 27 and 18 kN for

Bearing 1 under p̄ = 8.26 MPa (corresponding to Pcr = 150 kN) and θt =0.03 rad as

predicted by FEA, the Iizuka, the Han–Warn, and the Nagarajaiah–Ferrell models,

respectively; while the corresponding values for ucr are 127, 126, 125 and 121 mm.

In order to evaluate the mechanical models for bearings with different second

shape factors, Bearings 3–5 were considered. As shown in Table 3.1, these three

bearings have different second shape factor (S2 = 2, 3, and 4), achieved by a different

number of layers, but otherwise share identical properties. Figs. 3.10 and 3.11 show

the lateral behavior of the bearings under different pressures for top-support rotations

of 0.02 and 0.04 rad, respectively. Figs. 3.12 and 3.13 show the corresponding critical

points for the bearings under rotation of 0.02 and 0.04 rad, respectively, (p̄cr varying

from 5 to 10 MPa). It should be noted that the Iizuka model could not converge for

Bearing 5 (S2 = 4). Since the Iizuka model is sensitive to the parameter r, changing
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r could result in convergence. To investigate this, the parameter r was increased,

and the Iizuka model converged but provided grossly inconsistent results. Therefore,

these results are not presented in Figs. 3.10 to 3.13. It seems that the Iizuka model

cannot appropriately capture the lateral behavior of the bearing with a large second

shape factor, and parameter r should be adjusted accordingly to improve the results.

It is interesting to note that regardless of the rotation angle, the predictions obtained

by the modified Nagarajaiah–Ferrell and Han–Warn models are getting close to each

other with increasing S2, especially for the critical shear force (See Figs. 3.12 and

3.13 for Bearing 5). Regardless of the rotation angle, in general, the Iizuka model

predicts larger lateral force (see Figs. 3.10 and 3.11 for Bearings 3 and 4), especially

for the larger bearing (Bearing 4). However, all models provide similar values for the

initial force.

3.7 Proposed Model

In the previous section, the three modified analytical models were evaluated, and the

benefits and drawbacks of each model were discussed. In this section a new macro

model referred to here as the Proposed Model (PM), based on the observations made

through the evaluation of the selected models, is presented. Similar to the Han–Warn

model, the PM includes a shear spring with behavior described by Eq. (3.23). The

model consists of one series of vertical springs at the top support and another at the

bottom (see Fig. 3.14). These two series of vertical springs make it feasible to apply

rotation at the top only, and at the top and bottom simultaneously. The procedure

is similar to the Han–Warn model using stepwise incremental analysis (Eq. (4.8)).

The differential quantity dM/dθ can be calculated at step i by Eq. (4.17). At step i,
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the following equilibrium (Eqs. 3.28 to 3.30) and compatibility equations (Eqs. 3.31

and 3.32) must be satisfied,

P =
∑
j

σsjAjt =
∑
j

σsjAjb (3.28)

iMt =
∑
j

σsjAjtdsj (3.29)

iMb =
∑
j

σsjAjbdsj (3.30)

εs1tls
ds1t + xt

=
εs2tls

ds2t + xt
= ... =

εsjtls

dsjt + xt
= ... =

εsntls
dsnt + xt

= θ − δθt (3.31)

εs1bls
ds1b + xb

=
εs2bls

ds2b + xb
= ... =

εsjbls

dsjb + xb
= ... =

εsnbls
dsnb + xb

= θ − δθb (3.32)

where subscripts t and b in the equations indicate the case of rotation at the top and

bottom, respectively. The total moment in the vertical top and bottom springs iM is

equal to iM = iMt+ iMb. δθt and δθb are rotation increment values applied gradually

at each step:

δθt =
i θt

(umax/∆u)m2

(3.33)

δθb =
i θb

(umax/∆u)m2

(3.34)

where umax is the target horizontal displacement that the bearing is displaced in the

horizontal direction. m2 is a modification factor to adjust the maximum force at the

critical displacement. This value is preferably obtained by visual calibration with

experimental data or FEA results. m2 is selected based on the level of axial load. If

FEA or experimental results are not available, it is recommended that m2 is selected

between −2.5 and +2.5 (but m2 cannot be between 1 and -1), and for a bearing
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under average pressure load used in practice, let’s say 8 to 10 MPa, m2 can be +2.

Negative values of m2 are used to increase the lateral force to adjust with the FEA

or experimental results, while positive values decrease the lateral force. For example,

Fcr for Bearing 1 under pressure 8.26 MPa and θt = 0.04 rad, using m2 = 4, 2,−2,−4

in the PM, is 24.3, 23.7, 25.5, and 25.1 kN, respectively, while the FEM predicts 23.6

kN. To get the two curves obtained by the PM and the experimental or FEA results

as close to each other as possible, it is recommended that m2 is selected +2 in the

first try. Then, comparison between Fcr obtained by the PM and the experimental

test or FEA helps the user to adjust the value for m2.

To enhance the prediction beyond the critical point, σsj follows the behavior shown

in Fig. 3.2b (Eq. (3.24)), which incorporates post-cavitation stiffness. Similar to the

Han–Warn or Iizuka model, the first-step values for 1θ, 1v, and ∆u are obtained by

Eqs. (4.9), (4.11) and (4.12), while the first step lateral force is calculated by

1F =
1s (GAsPE − P 2)−

(
PPEh

θt+θb
m1

)
PEh− PE θt+θb

m1
1s

(3.35)

where m1 is a modification factor to adjust the initial force at zero lateral displace-

ment; m1 = 2 for rotation at the top only, and m1 = 1 for rotation at the top and

bottom. It is assumed that the initial force for the case of rotation at the top and

bottom is twice as much as the initial force for the the case of rotation at the top

only.

The FEA in this study is considered the criterion for evaluating the accuracy of

new mechanical model; however, cavitation in the rubber is not considered in the

FEM. Therefore, it may be argued that the results of the PM model, which considers
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the post-cavitation behavior, and those of FEM should not be directly compared.

However, Fig. 3.7 showed that the effect of cavitation is observed only beyond the

critical point. Therefore, the authors believe that the evaluation of the PM based on

a comparison with FEM results up to the critical point is fair. As such, to evaluate

the PM model, the comparison is limited up to the critical point, although results in

subsequent figures include the post-stability response.

Fig. 3.15 shows the comparison of shear force–lateral displacement results between

the PM and the FEM for Bearing 1 under the pressure of 5.5, 8.26, and 11.02 MPa for

rotations of 0.02 and 0.04 rad at the top only. The results show that there is a very

good agreement between the PM and the FEM, especially for the low and moderate

pressure values (5.5 and 8.26 MPa). Comparison between the results obtained by

the three modified analytical models for Bearing 1, as shown in Fig. 3.8, with the

PM results (Fig. 3.15) shows that the new formulation with introduced modification

factors (m1 and m2) increased the accuracy in the prediction of the critical shear

force. In order to quantify this benefit, Table 3.2 shows a comparison of the error of

the Nagarajaiah–Ferrell, Iizuka, and Han–Warn models and the PM in predicting Fcr

using for Bearing 1 under the different pressure values (p̄ = 4.13 to 12.40 MPa) and

rotation at the top (θt =0.01 to 0.04 rad). The percentage error is computed using

errorFcr =
FFEM
cr − FMechanical

cr

FFEM
cr

× 100 (3.36)

where FMechanical
cr and FFEM

cr are the critical shear force predicted by the mechanical

models being evaluated and the FEM, respectively. Table 3.2 shows that PM provides

lower value of error in most cases, especially under common service pressures (around

8–10 MPa [29]).
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Fig. 3.16 compares the critical points obtained by PM and FEM for Bearing

1 under different axial loads and θt = 0.02 rad, θb = 0. It can be seen that the

PM predicts both critical shear force and displacement with an acceptable error. The

figure confirms the observation made in Fig. 3.15; namely that the agreement between

the results decreases with increasing axial load.

The PM is also capable of describing the behavior of the bearing under the rotation

at the top and bottom. Fig. 3.17 shows the comparison of the shear force–lateral

displacement results between PM and FEM for Bearing 1 under p̄ = 5.5, 8.26, and

11.02 MPa for θt = θb = 0.01 and θt = θb = 0.02 rad. The PM and FEM are in good

agreement with each other for the case of rotation both at top and bottom, albeit

not as good as in the case of rotation only at the top support. Again, there is better

agreement for the bearing under the low and moderate pressure values (5.5 and 8.26

MPa).

It was shown that with available experimental or FEA data (as was the case in this

study), the PM using a calibrated value of m2 can predict the lateral behavior of the

bearings more accurately than the modified versions of the three available mechanical

models. However, in the absence of experimental or FEA data, the recommended

value for m2 is based on averaging over different bearings, and therefore in some

cases the PM may not necessarily provide improved results compared to one of the

modified mechanical models.

Finally, although the performance of the PM compared to the three modified

analytical models beyond the critical point was not evaluated, it is postulated that a

finite post-cavitation hardening behavior in the PM would likely improve the results

beyond the critical point. This assertion is based on the effect of post-cavitation
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hardening on the results of the modified Han-Warn model, presented in Section 5.

However, experimental results or FEA considering cavitation is needed to confirm

this.

3.8 Conclusions

This paper investigated the use of simple mechanical models to account for the effect

of support rotation on the lateral behavior of elastomeric bearings. First, three exist-

ing models (the Nagarajiah–Ferrel, Iizuak, and Han–Warn models) were modified to

include support rotation in their formulations. Their performance was evaluated by

comparing the predictions of these mechanical models for different bearings against

the result of FEA. In summary, the following results were observed:

1) The Nagarajiah–Ferrel model predicts lower values of critical shear force than

FEA regardless of rotation value. The difference is more significant for bearings under

higher pressures.

2) In many cases, the Iizuka model overpredicts of shear force at the critical point;

especially for bearings with a large second shape factor. Consequently, for the bearing

with large second shape factor considered in this study, this model is not accurate.

3) In general, the Han–Warn model provides relatively good agreement with FEA.

This model can be improved beyond the critical point using a bilinear elastic model

with post-cavitation hardening for the rubber material.

4) While the critical shear force values predicted by the different analytical models

exhibit significant dispersion, the predicted critical displacement values are close to

the FEA results.

5) All modified mechanical models provide larger initial lateral force than the one
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obtained by the FEM, especially for large pressures.

This study was the first attempt of its kind to modify currently available me-

chanical models to predict the lateral response and instability of elastomeric bearings

subjected to simultaneous axial, shear, and rotation. A new mechanical model was

proposed, aiming to more accurately account for the effect of rotation on the lat-

eral behavior. It was shown that the proposed model (PM) is more accurate than the

modified models in predicting the critical shear force. The improvement was achieved

through the introduction of two modifications factors, which were calibrated to de-

crease the error between the PM and FEA results. Furthermore, post-cavitation

hardening was considered in describing the rubber material in the PM. The results

of future experimental tests or FEA studies that include cavitation in the rubber can

be used to improve the post-critical behavior of the PM.
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Table 3.1: Properties of the bearings used in this study.

Bearing

Property Symbol Unit 1 2 3 4 5

Outside diameter D mm 152 165 400 400 400

Inside diameter Di mm – 30 – – –

Thickness of individual rubber layer t mm 3 3.2 5 5 5

Thickness of individual steel shim ts mm 3 3.5 2 2 2

Number of rubber layers nr - 20 25 40 27 20

Shape factor S - 12.7 10.6 20 20 20

Second shape factor S2 - 2.5 2.1 2 3 4

Shear modulus G MPa 0.9 0.46 0.7 0.7 0.7
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Table 3.2: Percentage error of the various mechanical models in predicting Fcr (as
computed by Eq. (3.36)) for Bearing 1 under different pressure values (p̄ = 4.13 to
12.40 MPa) and rotation at the top (θt = 0.01 to 0.04 rad, θb = 0.00 rad).

p̄ (MPa)

4.13 5.51 6.89 8.26 9.64 11.02 12.40

errorFcr θt = 0.01 rad

Nagarajaiah–Ferrell +37 +33 +31 +28 +26 +24 +22

Iizuka −9 −13 −19 −26 −34 −44 −56

Han-Warn +18 +12 +4 −5 −16 −29 −44

Proposed Model (PM) +18 +8 +6 −1 −10 −20 −32

θt = 0.02 rad

Nagarajaiah–Ferrell +36 +31 +27 +24 +20 1 + 7 +14

Iizuka −11 −15 −21 −29 −38 −45 −60

Han–Warn +16 +10 +1 −8 −20 −33 −49

Proposed Model (PM) +18 +7 +7 0 −7 −17 −26

θt = 0.03 rad

Nagarajaiah–Ferrell +33 +29 +24 +20 +15 +10 +4

Iizuka −12 −17 −24 −32 −41 −52 −64

Han–Warn +15 +8 −1 −12 −24 −38 −54

Proposed Model (PM) +17 +6 +6 0 −4 −16 −20

θt = 0.04 rad

Nagarajaiah–Ferrell +32 +27 +21 +15 +10 +3 −4

Iizuka −14 −19 −27 −35 −45 −55 −68

Han–Warn +13 +5 −4 −15 −28 −42 −58

Proposed Model (PM) +16 +6 +6 +1 −5 −11 −14
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Figure 3.1: Illustration of the mechanical models in the laterally undeformed and
deformed shape: (a) Nagarajaiah–Ferrell, (b) Iizuka, (c) Han–Warn.
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Figure 3.2: Bilinear elastic model for the rubber material used in the analytical model
(a) with zero post-cavitation stiffness (Eq. (3.21)), (b) with non-zero post-cavitation
stiffness (Eq. (3.24)).
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Figure 3.3: Shear force–lateral displacement results for the finite element model
(FEM) of Bearing 1 and the three analytical models (Nagarajaiah–Ferrell, Iizuka,
and Han–Warn) under p̄ = 5.5, 8.26 and 11.02 MPa.

117



Ph.D. Thesis - S. Rastgoo Moghadam McMaster University - Civil Engineering

80 100 120 140 160 180
60

90

120

150

180

210

240

ucr (mm)

P
c
r
(k
N
)

(a)

0 5 10 15 20 25 30 35 40
60

90

120

150

180

210

240

Fcr (kN)

(b)

 

 
FEM
Nagarajaiah−Ferrell
Iizuka
Han−Warn

Figure 3.4: Critical points as predicted by the FEM and the three analytical models
for Bearing 1: (a) Pcr vs ucr, (b) Pcr vs Fcr.
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Figure 3.8: Comparison of shear force–lateral displacement curves obtained using
the FEM and the three modified analytical models for Bearing 1 under top-support
rotation of θt = 0.02 rad (left) and θt = 0.04 rad (right), and pressure of (a) 5.5, (b)
8.26, and (c) 11.02 MPa.
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Figure 3.9: Comparison of critical points obtained by the FEM and the three modified
analytical models for Bearing 1 (θt = 0.01, 0.02, 0.03 and 0.04 rad, θb = 0.00 rad).
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Figure 3.10: Comparison of shear force–lateral displacement curves obtained using
the FEM and the three modified analytical models for θt = 0.02 rad for Bearing 3
(S2 = 2), Bearing 4 (S2 = 3) and Bearing 5 (S2 = 4) under pressure of (a) 5.5, (b)
8.26, and (c) 11.02 MPa.

123



Ph.D. Thesis - S. Rastgoo Moghadam McMaster University - Civil Engineering

0

100

200

300

F
(k
N
)

S2 = 2

 

 
S2 = 3 S2 = 4

0

100

200

300

F
(k
N
)

 

 

0 75 150 225 300 375 450
0

100

200

300

u (mm)

F
(k
N
)

0 75 150 225 300 375 450

u (mm)
0 75 150 225 300 375 450

u (mm)

 

 

Nagarajaiah−Ferrell
Iizuka
Han−Warn

(a)

(b)

(c)

Figure 3.11: Comparison of shear force–lateral displacement curves obtained using
the FEM and the three modified analytical models for θt = 0.04 rad for Bearing 3
(S2 = 2), Bearing 4 (S2 = 3) and Bearing 5 (S2 = 4) under pressure of (a) 5.5, (b)
8.26, and (c) 11.02 MPa.
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Figure 3.13: Critical points obtained using the FEM and the three modified analytical
models for θt = 0.04 rad for Bearing 3 (S2 = 2), Bearing 4 (S2 = 3) and Bearing 5
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Figure 3.15: Comparison of shear force–lateral displacement curves obtained using
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Experimental and Analytical

Studies on the Horizontal Behavior

of Elastomeric Bearings Under

Support Rotation

Rastgoo Moghadam S, Konstantinidis D. Experimental and analytical studies

on the horizontal behavior of elastomeric bearings under support rotation. Will be

Submitted to Journal of Structural Engineering.
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4.1 Abstract

Elastomeric seismic isolation bearings are among the most common earthquake pro-

tective devices in use. In traditional practice, due to the flexural rigidity of the super-

structure and substructure above and below the isolation layer, the support surfaces

at the top and bottom of elastomeric bearings experience negligible rotations. There-

fore, past studies have focused on the behavior of bearing under the assumption of

zero top and bottom support rotation. However, in bridge applications, isolation of

high-rise buildings and mid-height isolation, it is possible for elastomeric bearings to

experience rotation. The main objective of this study is to experimentally investigate

the effect of support rotation on the lateral behavior of elastomeric bearings. For this

purpose, experimental tests of a 1/4-scale circular isolator with a shape factor of 20

and second shape factor of 4 were conducted. Two experimental procedures were em-

ployed. The first investigated the behavior of the bearing under lateral quasi–static

cyclic displacement, constant axial load and constant rotation. The cyclic test results

showed that the rotation causes the hysteresis loops to shift up, and consequently the

loops were not symmetric with respect to the zero point in the shear force–lateral

displacement curve. The second procedure investigated the lateral behavior of the

bearing through monotonic lateral displacement under constant axial load and ro-

tation angle. The results of the tests are used to compare against Finite Element

Analysis (FEA) results. There is a good agreement between the experimental result

and the FEA results. Furthermore, the experimental results were used to evaluate

a mechanical model proposed by the authors in another study. The experimental

results showed that the mechanical model is able to simulate the effect of rotation on

the lateral behavior of the bearing.
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4.2 Introduction

Past studies [1-5] have shown that the combination of axial load and large horizontal

displacement can decrease the axial load capacity of an individual bearing. These

studies assumed that the isolator deformed vertically and horizontally without ex-

periencing any rotation at the supports. A summary of experimental studies on

elastomeric seismic isolation bearings in the literature is presented here. The reader

interested in extensive review of numerical, and analytical studies on the subject is

referred to [6-8]. Aiken et al. [2] carried out dynamic tests on low shape factor elas-

tomeric seismic isolation bearings. The bearings varied in the elastomer (i.e., high

damping, natural rubber), end plate connections (i.e., doweled, bolted). The tests

included cyclic vertical loading, buckling tests and shear and tension failure tests.

Stanton et al. [9] investigated the instability of elastomeric bearings theoretically

and experimentally to account for the effect of axial shortening. To examine the ef-

fect of horizontal displacement on critical load, Buckle et al. [4] carried out a series

of experimental tests on different bearings with low shape factor.

Cardone and Perrone [10] experimentally evaluated the critical behavior of a slen-

der elastomeric bearing at different strain amplitudes, ranging from approximately

50 to 150 %. They showed that the critical load capacity is approximately 1.5 to

3.5 times more than the capacity predicted by current design procedures. Weisman

and Warn [11] experimentally and numerically showed that the use of lead core in

elastomeric bearings does not have a significant effect on the critical load of the tested

bearings over the 150–280 percent range of shear strain. A Comprehensive experi-

mental study on the stability of elastomeric bearings under quasi-static and dynamic

loading test method was carried out by Sanchez et al. [12]. They confirmed the
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observation made by Weisman and Warn [11] about the effect of lead core on the

critical load capacity of elastomeric bearings. Moreover, They showed that the result

from quasi-static and dynamic tests are in a relatively good agreement.

Koh and Kelly [13] studied the dynamic behavior of elastomeric bearings taking

into account the effect of axial load. They proposed a mechanical model capable of

accounting for the reduction of the dynamic shear stiffness and the height reduction

of bearings due to the P − ∆ effect and they verified the accuracy of the model by

conducting cyclic shear and static axial loadings tests on four bearings. Nagarajaiah

and Ferrell [14] extended the model proposed by Koh and Kelly [13] to include large

displacements. To improve the prediction of the stiffness degradation beyond the

stability point, Vemuru et al. [15] modified the model proposed by Nagarajaiah

and Ferrell [14]. In another study conducted by Vemuru et al. [16], the coupled

horizontal–vertical behavior of elastomeric bearings subjected to dynamic loading

was investigated and compared against a proposed analytical model. Iizuka [17]

developed a model by introducing finite deformation and nonlinear springs into the

model proposed by Koh and Kelly [13]. Recently, Hongping et al. [18] experimentally

investigated the horizontal behavior of elastomeric bearings when the axial load is

applied with an eccentricity and compared against a modified Iizuka model [17].

Use of elastomeric bearings in bridges is very common and was studied in different

projects. Warn et al. [19] investigated the influence of lateral displacement on the

vertical stiffness of elastomeric and lead–rubber bearings. Their results showed that

the vertical stiffness decreased with increasing horizontal displacement. An extensive

experimental study on the seismic response of unbonded elastomeric bridge bearings

can be found in [20]. Warn and Whittaker [21] experimentally studied the effect of
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vertical earthquake excitation on the response of an isolated bridge with rubber and

lead–rubber bearings.

Burtscher and Dorfmann [22] investigated the effect of inclined steel shims on

high damping rubber bearings by series of compression and shear tests. Their results

showed that vertical stiffness reduces with increasing slope of the steel shims. The

horizontal stiffness increased up to shear strains 100 percent, while for large shear

strains, increasing the angle of the steel shims did not have a significant effect on the

lateral stiffness of the bearings.

The studies discussed above did not consider rotation at the supports, which in

many cases is a reasonable assumption. Conventional practice places the isolation

system at the foundation level and calls for the construction of rigid diaphragms

above and below the isolation layer. Consequently, these rigid diaphragms prevent

the isolators from experiencing rotation. However, there are several scenarios where

isolators do experience rotations, including in tall buildings [23], in mid-story isolation

applications [24,25], in bridges [26,27], etc.

This study builds upon previous analytical studies by the authors [6,7] aimed at

characterizing the effect of support rotation on the horizontal behavior and instability

(i.e., the point at which the tangential lateral stiffness becomes zero) of elastomeric

bearings. An investigation using 3D FEA [6] showed that the effect of rotation in the

stress and strain distributions is most pronounced at low lateral displacements. More-

over, it was shown that, in general, support rotation does not significantly affect the

critical displacement at the instability point, but it can decrease or increase the criti-

cal shear force. In another study, the authors [7] modified existing mechanical models

that do not account for support rotation so as to include rotation. The mechanical
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models were evaluated using 3D FEA, and were shown to model the behavior with

accuracy varying from fairly good to poor. Furthermore, a new mechanical model

was proposed to capture the rotation effects and estimate the force at the critical

point (instability) with improved accuracy than the previous models.

This study investigates the effect of rotation on the horizontal behavior of elas-

tomeric isolation bearings through a series of experimental tests. For this purpose, a

bearing-testing machine was built at the Applied Dynamic Laboratory at McMaster

University. The machine was able to shear the bearing monotonically and cyclically

while the axial load and support rotation angle was maintained constant. A 1/4-scale

circular isolator constructed by Bridgestone Inc. [28] was considered. Various quasi–

static cyclic and monotonic tests up to 300 % shear strain under different values of

the pressure and rotation angle were conducted. This paper presents the results of

this experimental test program. The experimental results are compared to result of

FEA on a 3D finite element model (FEM) of the bearing developed in ABAQUS [29].

Furthermore, the experimental test results are used to validate the mechanical model

(MM) proposed by the authors in [7].

4.3 Experimental tests

4.3.1 Elastomeric Bearing Test Specimen

A 1/4-scale circular elastomeric bearing with diameter of 158 mm was used for all

tests in the experimental program. It consisted of 20 rubber layers of 2 mm thickness,

making the shape factor, S, equal to 20 and the second shape factor, S2, (defined as

the ratio of diameter to total rubber thickness) equal to 4. Table 4.1 lists additional
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details of the bearing and properties of the low-damping natural rubber compound

used. Montuori et al. [30] have shown that elastomeric bearings with a second

shape factor larger than 4 do not experience any instability under 300 % shear strain.

Consequently, it was expected that the bearing tested in this study will likely not

experience instability. The low value of bulk modulus provides compressible rubber

material, then in the FEA and mechanical model, the compressibility of rubber should

be considered. The bearing included 2 mm of cover to protect the bearing from

environmental factors. It was assumed that this cover does not affect the behavior of

the bearing and it was not considered in the numerical studies.

4.3.2 Bearing-Testing Apparatus

A bearing-testing machine designed and constructed at the Applied Dynamic Labo-

ratory, McMaster University [25], was modified for the purposes of the current study.

Fig. 4.1 shows the the setup with the elastomeric bearing installed. Fig. 4.2 illus-

trates each part of the setup in detail. Table 4.2 lists all instruments and equipment

used in the setup. As shown in Fig. 4.2, the setup included two vertical actuators

(labeled actuator1 in Fig. 4.2) pin-connected to the two reaction columns on the left

and right side of the setup. In order to apply vertical loads, these actuators were

connected to the loading beam through a pin connection to the load cells. In addi-

tion, a plate was welded to each end of the beam and, four threaded rods (in front

and behind of the reaction columns) which bolted to each plate, went through both

sides of the reaction columns. In a similar way, the other end of the rods were also

bolted to plates on the opposite side of the reaction columns. On each side of the

reaction columns, there was a machined plate bolted to the reaction columns and
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a thin polyoxymethylene layer was placed between this plate and the welded plate

section. This synthetic polymer layer provided high stiffness in the lateral direction,

low friction, and acted as a sliding surface between the columns and the beam. This

mechanism minimized the friction force to allow the loading beam to move vertically

while preventing the beam from swaying in the lateral direction.

The loading beam was controlled by two separate controlling systems. The first

that worked in displacement-mode was used to maintain the beam horizontal. Two

linear potentiometers (LPs), on the left and right sides of the setup were used to

control the vertical actuators. The difference between the LPs was used as feedback.

The controller was designed in such a way that this difference maintained zero during

the test. For example, if one of the actuators pushed the loading beam and tried

to tilt the beam, the other one followed the first actuator to maintain the beam

horizontal position. The second controller which worked in force-control was used to

maintain a constant axial load applied on the bearing. The summation of the loads

from each vertical actuator (received from each load cell) was used as feedback for the

second controller. During the test, the second controller attempted to maintain the

summation with the prescribed axial load. The aforementioned controllers worked

separately but the performance of each controller affected the other one, possibly

caused cyclic teetering of the loading beam. To avoid this, in the design of the

system, the displacement controller was given higher priority than the other one.

It means the response of the system to difference between two LPs was faster than

the response to the second controller, ensuring any cyclic responses between the two

controllers were decreased.

The beam was connected to the elastomeric bearing by the designed mechanism
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shown in Fig. 4.3. The mechanism included a roller in the middle and and an

actuator (labeled Actuator2 in Fig. 4.2) on the right side. The roller was between

two steel pieces which were shaped and polished to hold the roller properly. The two

pieces prevented the roller from moving in the lateral direction, but, the roller was

allowed to revolve. The top piece was welded to a plate, which was bolted to the

loading beam, and the bottom piece was also welded to a plate which was bolted

to the top end plate of the elastomeric bearing (see Fig. 4.2). As the stroke in the

Actuator2 comes out, it pushes the loading beam upward and tries to tilt it, but the

displacement controller explained in the previous paragraph prevents any rotation.

Below Actuator2, the transfer of the load caused the top end plate of the elastomeric

bearing to rotate. Actuator2 was controlled by a hand pomp, and the applied load

was increased until the rotation angle on the top of the bearing reached the desired

value. To measure the rotation, an inclinometer was attached at the rear of the top

plate of the bearing. Once the desired rotation angle was obtained, the position of the

top plate of the bearing was maintained by tightening four bolts and turnbuckles at

the front and back. The bolts worked as compression elements, while the turnbuckles

worked as tension elements. The combination of turnbuckles and bolts prevented the

top of the bearing from experiencing larger or smaller rotation than the prescribed

angle, thus providing constant rotation on the top of the bearing during the test.

The bottom end plate of the elastomeric bearing was connected to a thick platen

supported by four load cells, similar to those used to monitor the load in the vertical

actuators. These load cells were used to monitor the total axial load. The load cells

were connected to a plate, which acted as a table bolted to three linear sliders. The

table constructed on a steel section built by four steel channel sections and stiffened
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by steel plates. The table could move in one direction by a horizontal actuator

(labeled Actuator3 in Fig. 4.2) pin-connected to the left reaction column. A string

Potentiometer was attached to the actuator to monitor the displacement of the table.

In addition, this string Potentiometer was used to control the movement of the table

in displacement control mode. The actuator was able to reach a stroke of ± 120 mm

corresponding to 300 % shear strain in the elastomeric bearing. Each linear slider

included two sliding blocks connected to the aforementioned steel section. The rails

of the sliders were installed with very high precision to ensure that the table moved

with very low friction force. Furthermore, the rails and blocks were lubricated before

each test.

The data acquisition and controlling system worked separately. As it was dis-

cussed earlier, some of the instrumention was used for both the control system and

measurements, consequently the signals from these instruments were divided into two

signals by isolation circuits. The data acquisition was designed for a maximum sam-

pling rate of 10 Hz, but this number could be changed based on the number of the

channels used during a test. In this study the sampling rate was 1.75 Hz.

4.3.3 Test Protocol

Two experimental procedures were used in this study. The quasi–static cyclic dis-

placement history shown in Fig. 4.4, was applied horizontally to the bottom of the

bearing at a constant velocity of 1 mm/s. In the loading protocol, the bearing was

first subjected to the full axial load desired and then the rotation was applied. This

procedure was followed to ensure that the whole bearing was under compressive stress

when it experienced the rotation. As result of this, tensile stresses produced by the
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rotation could be subtracted from the compressive stress due to the axial load. There-

fore, the bearing was still under compressive stress, however this stress was not even

on the surface of the bearing. On the other hand, a very large rotation could pro-

duce large tensile stresses and possibly damage the bearing. In this study, to avoid

subjecting the bearing to such possible damage (before applying the lateral displace-

ment) the applied rotation angle values were very small, in conjunction with high

axial loads. The following presents the step by step procedure for the cyclic test:

� Apply the desired axial load and maintain the load.

� Use the hand pump to apply the desired rotation angle. The rotation in all

tests were clockwise and applied on the top of the bearing.

� Tighten the turnbuckles and bolts to maintain the rotation angle during the

lateral displacement. To ensure that the rotation angle was kept constant during

the test, the rotation angle was measured by an inclinometer attached to the

top end plate of the bearing, noting that a margin of ± 5 % deviation was

accepted.

� Apply the lateral displacement history as shown in Fig. 4.4.

� Loosen the turnbuckles, bolts, and hand pomp to release the rotation.

� Release the axial load.

The second procedure followed involved monotonic lateral displacement tests.

These tests were conducted in a fashion similar to the cyclic test procedure except

for the horizontal displacement history. In these tests, the lateral displacement was

increased monotonically until the horizontal displacement reached 100 mm.

141



Ph.D. Thesis - S. Rastgoo Moghadam McMaster University - Civil Engineering

4.4 Review of Mechanical Model

This section reviews the formulation of the mechanical model used to attempt to

characterize the experimentally observed behavior. Comparison between predictions

of the model and experimental results will be presented later in the paper. The

mechanical model is based on the model proposed by Han and Warn [31] but includes

modifications to take into account support rotation and post-cavitation hardening,

as proposed and discussed in detail by Rastgoo Moghadam and Konstantinidis in

another study [7]. The discussion here gives an overview of the models; the interested

reader is referred to [7] for more details.

The model consists of two series of vertical springs at the top and bottom as shown

in Fig. 4.5. The cross section of the top and bottom of the bearing are discretized

into vertical springs, each of which represents a strip of the cross section running in

the direction normal to the page. In this study, the number of springs, n, was equal

to 30. The procedure attempts simultaneously to solve four equations at each lateral

displacement and rotation increment. The stepwise incremental analysis proposed by

Iizuka [17] was used. The stepwise equation for step i can be obtained as,


i(∆θ)

i(∆s)

i(∆v)

i(∆F )


=



h sin iθ + is cos iθ sin iθ −1 0

h cos iθ − is sin iθ cos iθ 0 0

i(dM/dθ) 0 iF iv − h

P cos iθ − iF sin iθ −i(dQs/dθ) 0 cos iθ



−1 

0

1

P

0


∆u (4.1)

where θ and s are local deformations, u and v are global deformations, F is the

horizontal force and P is the vertical force applied on the bearing, as shown in Fig.

4.5. h is the height of the bearing including the rubber and steel shims. ∆ represents
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the increment at each step. dQs/dθ and dM/dθ are the tangential shear stiffness and

tangential moment stiffness, respectively. They can be obtained by [14]

dQs

dθ
=
GA

tr

[
1− 0.325 tanh

(
u

tr

)]
(4.2)

and [31]

i

(
dM

dθ

)
=

iM − i−1M

iθ − i−1θ
(4.3)

where tr is the total thickness of the rubber layers, A is the cross sectional area of the

bearing, M is the total moment in the vertical top and bottom springs. At the first

step, 1s is assumed arbitrarily, yet small enough for convergence, but the stepwise

equation can be ill-conditioned. Therefore, the following equations are used for 1θ,

1F , 1v, and ∆u [7]

1θ =
GAs + P

PEtr
1s (4.4)

1F =
1s (GAsPE − P 2)−

(
PPEh

θt+θb
m1

)
PEh− PE θt+θb

m1
1s

(4.5)

1v = 1s sin 1θ + h(1− cos 1θ) (4.6)

∆u = 1s cos 1θ + h sin 1θ (4.7)

where subscripts t and b indicate the case of the top and bottom of the bearing,

respectively; m1 is a modification factor to adjust the initial force at zero lateral

displacement; equal to 2 for rotation at the top only and equal to 1 for rotation at

the top and bottom; As = A(h/tr) is the shear area of the elastomeric bearing, PE is
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the Euler load for the standard column [5],

PE =
π2EIs
h2

(4.8)

EIs is the bending rigidity of the rubber–steel composite system computed from

EIs = EIeff (h/tr), where EIeff is the effective bending rigidity of an individual

rubber layer. The effective bending rigidity of a circular elastomeric bearing with

compressible rubber is obtained from [5]

EIeff = KI

1− 4√
48G
K
S

I2

(√
48G
K
S
)

I1

(√
48G
K
S
)
 (4.9)

where I = πD4/64, I1 is moment of inertia of the rubber layer, and I1 and I2 are the

first and second order modified Bessel function of the kind, respectively.

Each series of vertical springs should satisfy the equilibrium and compatibility

equations as follows [7]

P =
∑
j

σsjAjt =
∑
j

σsjAjb (4.10)

iMt =
∑
j

σsjAjtdsj (4.11)

iMb =
∑
j

σsjAjbdsj (4.12)

εs1tls
ds1t + xt

=
εs2tls

ds2t + xt
= ... =

εsjtls

dsjt + xt
= ... =

εsntls
dsnt + xt

= θ − δθt (4.13)

εs1bls
ds1b + xb

=
εs2bls

ds2b + xb
= ... =

εsjbls

dsjb + xb
= ... =

εsnbls
dsnb + xb

= θ − δθb (4.14)

iM can be obtained by summation of iMt and iMb, Aj is the area corresponding to the
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jth vertical spring element, dsj is the distance between the center of the jth vertical

spring and the center of the bearing cross section, and x is the distance between the

neutral axis and the center of the bearing cross section. σsj and εsj are the stress

and strain in the jth vertical spring element, the relationship between which is as

proposed by Kumar et al. [32],

σsj =

 Ecεsj (εsj ≤ εc)

σc

[
ekctr(εsj−εc) + 1

kctr

(
ekctr(εsj−εc) − 1

)] (
εsj > εc

) (4.15)

where εc = σc/Ec, and σc is the cavitation stress which is assumed to be 3G [33], kc

is the cavitation parameter which can be obtained by calibration with experimental

data. This parameter controls the lateral force at large displacements. Since the

experimental data on the behavior of rubber in tension was not available, in this

study, kctr = 0.04, assuming the slope of the post-cavitation σ–ε behavior is similar

to the experimental tests shown in [32]. Ec is the compression modulus, which can

be obtained by Eq. (4.16) for the compressible rubber material [34],

Ec = K

1− 2√
48G
K
S

I1

(√
48G
K
S
)

I0

(√
48G
K
S
)
 (4.16)

In Eqs. (13) and (14), ls is the initial length of vertical springs element (top and

bottom) which is calculated by [31],

Ec
ls

∑
j

Ajd
2
sj

=
π2EIeff

tr
(4.17)

δθt and δθb are rotation increment values which are applied gradually. They are
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obtained by

δθt =
i θt

(umax/∆u)m2

(4.18)

δθb =
i θb

(umax/∆u)m2

(4.19)

where umax is the target lateral displacement of the bearing. m2 is a modification

factor to adjust the critical force. Since the bearing in this study did not experience

instability, this value was assumed to be equal 1. Moreover, for the purposes of this

study θb = 0 and θt was a prescribed value.

As comparison of the experimental results and predictions of the mechanical model

is presented later in the paper. Before that, the FEM used in this study is presented

next.

4.5 3D FEA Model

A three-dimensional FEM of the bearing was developed in ABAQUS [29]. Rastgoo

Moghadam and Konstantinids [6] showed that the result of a 3D FEM in which

nonlinearities in materials and geometry were considered were in good agreement

with an analytical solution proposed by Karbakhsh Ravari et al. [35]. The rubber

layers were discretized with a combination of 8–node linear brick, hybrid, constant

pressure elements (C3D8H) and 6–node linear triangular prism, hybrid, constant

pressure elements (C3D6H) [29]. The steel shims and end plates were discretized

with 8-node linear brick, incompatible modes elements (C3D8I) [29].

In this model, the compressible Neo-Hookean material was used for the rubber.

This material model is defined by two parameters, C10 and D1, which for consistency

with a linear elastic material are related to the shear modulus, G, and the bulk
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modulus, K, through C10 = G/2, D1 = 2/K. For the compressible Neo-Hookean

model used in this study, the strain energy function is [36]:

W = C10

(
Ī1 − 3

)
+

1

D1

(J − 1)2 (4.20)

where Ī1 is the the first modified invariant of the deviatoric part of the Cauchy-Green

deformation tensor, and J is the elastic volume ratio. The steel material was modeled

using a bilinear isotropic material model with a Young's modulus of 200 GPa and a

Poisson's ratio of 0.3. A post-yield modulus of 2 percent of the initial modulus was

specified.

In the FEA model, all nodes of the top end plate were constrained to a point

(control node) located at the centroid of the end plate. The boundary conditions

were assigned to this node. To simulate the support conditions of the experimental

setup, the control node was free to move vertically and, in the case of rotation,

this node could rotate in the specified direction. Similar to the top end plate, all

nodes at the bottom end plate were constrained to a control node. This point could

move laterally in one direction but was restrained in all other degrees of freedom.

The analysis was performed in two stages: during the first stage, the axial load but

also rotations were imposed gradually until the desired values were reached; and in

the second stage of the analysis, the horizontal displacement of bottom support was

gradually increased while maintaining the axial load and rotation value from the first

stage constant. The analysis included nonlinear geometry, large displacements, and

large strains. The incremental nonlinear analysis was conducted using an updated

Lagrangian formulation and the Newton-Raphson iteration method. Fig. 4.6 shows

the deformed shape of the bearing using FEA and the procedure that was explained.
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4.6 Results and Discussion

4.6.1 Summary of Experimental Results

To check how well axial load remained constant during testing, the summation of

loads applied by actuators (Actuator1) was monitored. Fig. 4.7a shows the variation

of the average vertical stress, p̄ = P/A, versus the shear strain, u/tr. It is an example

to show how the axial load remained constant during testing. As can be seen, p̄

remained the same during the test, and equals to 6 MPa. The applied rotation

was also constant during the test. The mechanism that was designed to keep the

rotation angle constant during the test was discussed in Section 2.2. θt was monitored

during the test by an inclinometer and shown in Fig. 4.7b. θt was supposed to be

0.02 rad during the shown cyclic test. Fig. 4.7b shows that the rotation angle was

approximately constant during the test, noting that the maximum error was less than

5 % which was deemed acceptable.

Table 4.3 shows the experimental tests conducted on the bearing and presented in

this paper. The leftmost column shows the name of each test, where ‘c’ and ‘m’ in-

dicate the cyclic and monotonic testing, respectively. Fig. 4.8 shows the deformation

of the bearing during testing under p̄ = 8 MPa at different horizontal displacements

(u/tr = 0, 1.5, 2.5) for different rotation angles (θt = 0, 0.03 rad, where the rotation

is clockwise). As can be seen, the deformed shape of the bearing at u/tr = 0 and

zero rotation shows the bulging effect on the left and right side of the bearing equally,

while at θt = 0.03 rad the bulging on the right side is more pronounced than the

left side of the bearing; i.e. the right side of the bearing experiences larger pressure.

As the bearing is subjected to lateral displacement, the difference in bulging is less
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noticeable.

Fig. 4.9 shows the results of cyclic tests on the bearing under p̄ = 6, 7 and 8 MPa

for θt = 0.00 and 0.03 rad. As can be seen, the hysteresis loops are symmetric for

the case of zero rotation; i.e. the absolute values of maximum and minimum shear

force are equal. When the bearing is subjected to rotation, however, the behavior

is not symmetric. The loops shift up, and the difference between the maximum and

minimum force is obvious in comparison with the zero rotation case. Moreover, this

difference becomes more pronounced when the axial load was increased. For example,

the rotation (0.03 rad) increased the maximum shear force by 9.46, 10.49, and 16.75

percent for the bearing under p̄ = 6, 7 and 8 MPa, respectively. Similar behavior was

observed for tests under different values of rotation. Since the top plate of the bearing

was fixed in the lateral direction when the axial load and rotation were applied, the

rotation causes a horizontal force. Consequently the bearing experienced lateral force

even before applying any horizontal displacement on the bottom plate. This explains

the reason for the shift in the hysteresis. This force referred to herein as the Initial

Force can be noticed easily in the monotonic testing, which will be discussed later.

To ensure that the bearing was not damaged during each test, the monotonic test

under zero rotation and p̄ = 6 MPa was selected as a benchmark (mp6r0 test in Table

4.3). This test was conducted periodically between tests, and the load–displacement

curve was compared with that from the very first test to ensure that the two tests

provided similar results. During the cyclic test in which the bearing was sheared up

to u/tr = 3, p̄ = 9 MPa, and θt = 0 rad, as it is shown in Fig. 4.10, it was noticed

that the second cycle, in the negative direction, was slightly different than the first

one. It was suspected that the bearing was damaged during this test with excessive
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lateral displacement. Therefore, the test was stopped and the bearing was removed

from the setup to conduct visual inspection. Fig. 4.11 shows the bearing after the

test. The surface of the bearing showed very large bulging near the top and bottom

of the bearing. This bulging was permanent and visible even under zero vertical load.

It should be noted that it was not clear where/what the damage was because of the

presence of the cover, intended to protect the bearing from environmental factors.

In order to check whether that bearing was still usable after this test, the bench-

mark monotonic test under zero rotation and p̄ = 6 MPa was conducted. Fig. 4.12

shows the behavior of the bearing before and after the likely occurrence of damage. As

can be seen, the curve corresponding to the latest test deviates from the benchmark

curve, indicating a different initial stiffness. The authors believe that the combination

of large axial load and excessive lateral displacement caused internal damage to the

the bearing. However, the bearing was used to continue other tests under larger axial

load. Following each test, the bearing was tested based on the new benchmark test

and the results were compared with the ‘After Damage’ curve shown in Fig. 4.12.

Comparison with the ‘After Damage’ curve showed no notable difference in the re-

sponse. This suggests that the damage did not propagated further during additional

experimental tests. It should be noted that the results presented in this paper are

based on the experimental tests before the bearing was damaged.

4.6.2 Comparison with Analytical Results

Fig. 4.13 shows the comparison of the FEA results with the cyclic testing results under

p̄ = 6, 7 and 8 MPa for θt = 0.00, 0.01, and 0.02 rad. To obtain the FEA results in

both positive and negative displacement, the bearing was sheared in both directions
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separately. As can be seen, the FEA results predicted the initial lateral stiffness of

the bearing with good accuracy. The FEA curve passes through approximately the

middle of the loops, but as the rotation increases, the FEA curve touches the upper

portion of the experimental loops. Moreover, in all the cases shown in Fig. 4.13, the

FEA curves begin to deviate from the loops in large lateral displacements (u/tr > 2).

In addition, in this range of displacement, the stiffness predicted by FEA decreased

(particularly for p̄ = 8 MPa). This could be a consequence of the modeling with

Neo-Hookean material in which the shear modulus is constant. Past experimental

tests [36], however, have shown that the shear modulus is not constant, especially

at large shear displacement. Moreover, the stiffening in the actual rubber at large

lateral displacement, as a consequence of the phenomenon known as strain-induced

crystallization, could be another reason. As in the case of the experimental results,

the FEA curve shifted up as the rotation value increased.

Fig. 4.14 compares the FEM and MM results with the monotonic testing results

under p̄ = 6, 7 and 8 MPa for θt = 0.00, 0.01 and 0.03 rad. As can be seen, the

results in estimating the initial lateral stiffness are in a relatively good agreement.

Moreover, the figure shows that there is a good agreement between the results in

predicting the initial force due to the rotation. For example, the initial force for the

bearing under p̄ = 6 MPa and θt = 0.01 rad is 1.00, 0.82, and 0.68 kN predicted by

the experimental test, FEA, and MM, respectively and it increases to 2.36, 1.90, and

1.86 kN for θt = 0.03 rad. Following the previous discussion about the strain-induced

crystallization, as the bearing experiences larger shear displacement, the experimental

curve shows stiffening while the FEM and MM did not show this stiffening up to

u/tr = 2.5. Fig. 4.14 also shows that there is a good agreement between the results
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in predicting the initial lateral stiffness. For example, the initial stiffness for the

bearing under p̄ = 6 MPa and zero rotation is 203, 163, and 182 N/mm predicted

by the experimental test, FEA, and MM, respectively and it decreases to 182, 140,

and 177 N/mm for p̄ = 8 MPa. These values for the bearing under p̄ = 8 MPa and

θt = 0.03 rad are 162, 128, and 168 N/mm, respectively. It can be concluded that

the rotation has a negligible effect on the initial stiffness, which is in agreement with

the finding by Rastgoo Moghadam and Konstantinidis [6].

4.7 Conclusions

This study followed on experimental and analytical approach, including 3D FEA and

analysis using a simple mechanical model, to investigate the behavior of elastomeric

bearings under combined applied loading, which included vertical load, horizontal dis-

placement and rotation. The paper described the experimental setup and controlling

system used in this study. Two kinds of tests, quasi–static cyclic and monotonic tests

were conducted on a 1/4-Scale bearing with the shape factor of 20 and second shape

factor of 4. The experimental results using cyclic testing revealed that rotation causes

the hysteresis loops to shift up. Increasing rotation angle and axial load accentuated

this shifting. Finally, the bearing was tested under a large axial force and horizontal

force and some evidence was provided that indicated the bearing might be damaged

due the large axial force and/or horizontal displacement. A comparison between FEA

and the cyclic test results showed that the FEA passes through approximately the

middle of the hysteresis; however for the larger rotation and axial load, the FEA

curve passes along the upper edge of the hysteresis loops. The results predicted by

the mechanical model which was proposed by the authors in another study [7] and
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summarized here were compared against the monotonic tests. The monotonic tests

showed stiffening behavior in the rubber while the results from FEA and MM did not

show the stiffening up to u/tr = 2.5. However, both the FEM and Mechanical model

predicted well the initial force due to the rotation.
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Table 4.1: Properties of the bearing used in this study.

Property Symbol Unit Value

Diameter D mm 158

Thickness of individual rubber layer t mm 2.0

Thickness of individual steel shim ts mm 1.0

Number of rubber layers nr - 20.0

Shape factor S - 20

Second shape factor S2 - 4.0

Shear modulus G MPa 0.4

Bulk modulus K MPa 1200

Table 4.2: Instrumention and equipment used in the experimental setup.

Instrument Company Model

Load cell Interface 1020

Actuator1 Shur–Lift 4x18 Utility

Actuator2 Enerpac RSM-500

Actuator3 Shur–Lift 2.5x12 Implement

Inclinometer Measurement Specialties NS-5/DMG2-U

Data Acquisition Agilent 34970A

Control System MTS FlexTest GT
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Table 4.3: Experimental tests conducted on the rubber bearing.

Test p̄ (MPa) umax/tr θt (rad)

cp6r0 6 2.5 0.00

cp6r1 6 2.5 0.01

cp6r2 6 2.5 0.02

cp6r3 6 2.5 0.03

mp6r0 6 2.5 0.00

mp6r1 6 2.5 0.01

mp6r2 6 2.5 0.02

mp6r3 6 2.5 0.03

cp7r0 7 2.5 0.00

cp7r1 7 2.5 0.01

cp7r2 7 2.5 0.02

cp7r3 7 2.5 0.03

mp7r0 7 2.5 0.00

mp7r1 7 2.5 0.01

mp7r2 7 2.5 0.02

mp7r3 7 2.5 0.03

cp8r0 8 2.5 0.00

cp8r1 8 2.5 0.01

cp8r2 8 2.5 0.02

cp8r3 8 2.5 0.03

mp8r0 8 2.5 0.00

mp8r1 8 2.5 0.01

mp8r2 8 2.5 0.02

mp8r3 8 2.5 0.03

mp9r0 9 3 0.00
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Figure 4.1: Completed setup with the elastomeric bearing installed.
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Figure 4.2: Schematic of the experimental setup.
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Roller Actuator2Shaped steel pieces

turnbuckles (4) Bolts (4)

Figure 4.3: Designed mechanism to apply the rotation on the top of the elastomeric
bearing.
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Figure 4.4: Lateral displacement history used for cyclic test.
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Figure 4.5: Illustration of the Mechanical Model (MM) in the laterally undeformed
and deformed shape.

Figure 4.6: Deformed shape of the bearing using FEA.
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Figure 4.7: Variation of (a) the average vertical stress (p̄), and (b) the applied rotation
on the top of the bearing (θt) versus the shear strain (u/tr).
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Figure 4.8: Snapshot photographs of the bearing at different displacement levels taken
during two tests: (a) θt = 0.00 and (b) θt = 0.03 rad (p̄ = 8 MPa in both tests).
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Figure 4.9: Cyclic testing on the bearing under p̄ = 6, 7 and 8 MPa for θt = 0.00 and
0.03 rad.
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Figure 4.10: Cyclic testing on the bearing under p̄ = 9 MPa for θt = 0.00 rad.
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Figure 4.11: Photograph taken after a test with u/tr = 3 and under p̄ = 9 MPa.
Excessive rubber bulging is apparent on the top and bottom of the bearing, indicating
likely damage in the interior.
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Figure 4.12: Comparison of the behavior of the bearing obtained from benchmark
tests (θt = 0 rad, p̄ = 6 MPa) conducted before and after the damage observed under
the test with u/tr = 3, θt = 0 rad, and p̄ = 9 MPa.
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(bottom row).
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Chapter 5

Compression of Unbonded Rubber

Layers Taking into Account Bulk

Compressibility and Contact Slip

at the Supports

Reproduced with permission from Elsevier.

Konstantinidis D, Rastgoo Moghadam S. Compression of unbonded rubber layers

taking into account bulk compressibility and contact slip at the supports. Interna-

tional Journal of Solids and Structures, 2016; 87: 206–221.
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5.1 Abstract

The behavior of rubber layers under pure compression has been investigated to con-

siderable extent in the literature. The most widely used approach is the so-called

pressure solution, which is based on several assumptions, most notably that the stress

state is dominated by the hydrostatic pressure. Other approaches have also been con-

sidered, but for nearly incompressible material and thin layers their predictions are

very similar to those of the pressure solution. Nearly all past studies on the subject

have focused on rubber layers that are bonded to either rigid or flexible supports

(or reinforcement). Unreinforced (i.e., single layer) rubber pads are often installed

as unbonded, i.e., without steel end plates connecting them to their top and bottom

supports. In an unbonded application, rubber pads rely solely on friction to develop

shear resistance along the contact interfaces. This shear resistance is necessary to

provide the pad with an adequately large vertical stiffness. The effect of the frictional

restraint along the top and bottom contact surfaces and the influence of partial slip

have received very little attention. In this paper, we present a theoretical analysis

for the behavior of an unbonded rubber layer, including the effects of the elastomer’s

bulk compressibility and the contact slip at the supports. Results of a finite element

analysis are also presented and shown to be in good agreement with the results of the

theoretical analysis.
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5.2 Introduction

Rubber bearings are used in a broad range of engineering applications, including

buildings, bridges, storage tanks, railways, etc. Early applications date back to mid-

nineteenth century when 50-mm thick rubber mats were installed to reduce railway

vibration on the Britannia and Conwy Bridges in Wales (Ab-Malek and Roberts,

2013). Over time, the use of rubber bearings grew and extended to various new

applications; most notably, they are currently used widely to accommodate deforma-

tions associated with thermal expansion/contraction, traffic loads and construction

misalignment in bridges (Stanton and Roeder, 1982; Constantinou et al., 2011), to

isolate equipment and structures from vibration and shock (Snowdon, 1979), and to

seismically isolate structures (Naeim and Kelly, 1999; Constantinou et al., 2007; Kelly

and Konstantinidis, 2011).

The first attempt to predict the compression stiffness of a rubber layer bonded

to rigid supports was made by Rocard (1937) using an energy approach. Further

developments were made by Gent and Lindley (1959) who derived expressions for the

compressive stiffness of long-strip and circular elastic layers bonded to rigid plates, as-

suming incompressible material. Gent and Meinecke (1970) extended the analysis and

presented an expression for the compression modulus of a square-shape elastic layer.

Lindley (1979) applied the energy method to extend the theory for incompressible

material to compressible elastic layers.

The approach widely used to estimate the compression stiffness of rubber layers

bonded to rigid supports originates from the work of Gent and Lindley (1959) and has

since come to be known as the pressure solution. The pressure solution is based on four

assumptions (two kinematic and two on the state of stress): (i) points on a vertical line
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before deformation lie on a parabola after loading (parabolic bulging); (ii) horizontal

planes remain horizontal; (iii) the stress state is assumed to be dominated by the

internal pressure, p (which gives the solution its name), such that the normal stress

components are all approximately equal to −p; and (iv) the in-plane shear stresses

(in the plane parallel to the end supports) are negligible (Kelly and Konstantinidis,

2011). Although it was first used for incompressible material, it was later extended

to include bulk compressibility effects. Expressions for the compression stiffness of

rubber layers including compressibility have been developed for rubber layers with

various geometries: circular (Chalhoub and Kelly, 1990), annular (Constantinou et

al., 1992), infinite-strip (Chalhoub and Kelly, 1991), square (Koh and Kelly, 1989;

Kelly, 1997), rectangular (Koh and Lim, 2001; Kelly and Konstantinidis, 2011).

Various efforts have been made to remove the assumptions of the pressure solution.

For instance, Koh and Kelly (1989) used only the two kinematic assumptions of the

pressure solution (i.e., removing the normal stress assumption) and a variable trans-

formation method to develop solutions for the compression modulus of a square layer

bonded to rigid supports. The same approach was applied by Koh and Lim (2001) to

a rectangular layer. Tsai and Lee (1998) proposed an approach that eliminated the

normal stress assumption and used mean pressure, instead, to derive expressions for

infinite-strip, circular and square elastic layers bonded to rigid supports. Tsai (2005)

applied this approach to a rectangular layer, developing a single series solution for

the compression modulus.

Papoulia and Kelly (1996) followed an approach using the minimum potential en-

ergy and Hellinger–Reissner variational principles to estimate the compression mod-

ulus of nearly incompressible elastic layers. Pinarbasi et al. (2006) developed an
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analytical solution based on a modified version of the Galerkin method for the analy-

sis of infinite-strip elastic layers bonded to rigid supports. The order of the theory is

based on the number of shape functions considered in the displacement expansions.

The method was applied to circular and annular layers in Pinarbasi et al. (2008). The

formulations in these studies are applicable to elastic material with a broad range of

Poisson's ratio, but they converge to the pressure solution for large values of Poisson's

ratio (or large bulk-to-shear modulus ratio), especially for layers with larger shape

factor, S (defined as the ratio of the loaded area to the load-free area that is free to

bulge) (Papoulia and Kelly, 1996). Therefore, the pressure solution provides accurate

results for rubber layers with, say, S > 5 (Kelly, 1997).

The aforementioned studies developed solutions for the compression modulus of

rubber layers under the assumption that the layers are bonded to rigid supports.

Osgooei et al. (2014) showed that these solutions, developed for single layers, provide

accurate estimates of the compression stiffness of a multilayer rubber bearing rein-

forced with steel shims by treating the layers as springs in series. The development

of fiber-reinforced laminated rubber bearings has prompted various investigations on

the compressive behavior of rubber layers bonded to axially flexible supports, rep-

resenting the fiber reinforcement. To achieve this, Kelly (1999) proposed a pressure

solution approach whereby the assumed displacement field is modified to include the

stretch of the reinforcement. The approach was used, assuming incompressible mate-

rial, to develop solutions for infinite-strip-shaped Kelly (1999), circular-shaped (Tsai

and Kelly, 2001) and rectangular-shaped (Tsai and Kelly, 2001, 2002) layers. The

effect of bulk compressibility was later included to develop solutions for rubber layers

bonded to flexible supports for different geometries: infinite strip (Kelly, 2002; Kelly
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and Takhirov, 2002), rectangular (Angeli et al., 2013; Kelly and Van Engelen, 2015),

annular (Pinarbasi and Okay, 2011), and circular (Kelly and Calabrese, 2013). (Tsai,

2004, 2006) relaxed the normal stress assumption of the pressure solution to develop

solutions for infinite strip and circular elastic layers bonded to flexible reinforcement.

The compression stiffness of a laminated rubber bearing was estimated by taking into

account the fact that layers in the middle portion of the bearing will extend laterally

more than those closer to the top and bottom supports through the introduction of

an assumed parabolic shape. Pinarbasi and Mengi (2008) extended the approach

presented in (Pinarbasi et al., 2006) to infinite-strip-shaped elastic layers bonded to

extensible reinforcement.

In all these studies, aimed at quantifying the compressive characteristics of rubber

layers, it is assumed that the layers are bonded to either rigid or flexible reinforce-

ment. The intent is usually to provide the compression modulus of a layer, which

can then be used to compute the compressive stiffness of a laminated steel- or fiber-

reinforced rubber bearing. The resulting solutions are appropriate for bearings that

are bonded to steel end plates, as is the case almost always for seismic isolators.

However, rubber bearings are very commonly used in unbonded applications. Under

unbonded boundary conditions, the friction between the rubber and the top and bot-

tom supports of the bearing is responsible for the development of shear stresses under

pure compressive load. These surface shear stresses, τs, increase outwardly towards

the edges of layer, while the pressure, p, decreases. If the rubber–support interfaces

are characterized by Coulomb friction with coefficient of friction µ, the surface shears

are limited toτs 6 µp, which means that at some point slip must occur. Although

friction in rubber is relatively high, smooth support surfaces or the introduction of
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some level of lubrication, either intentionally or accidentally, can reduce the frictional

restraint along the support–rubber interfaces, resulting in slip and a reduction in the

compression modulus. Kelly and Konstantinidis (2009) investigated the effect of slip

on the compression properties of a single rubber layer restrained by friction along

its top and bottom supports, as well as on a rubber layer bonded to a rigid support

on one end (representing a steel shim) but restrained by friction on the other. The

study focused on infinite-strip-shaped layers of incompressible rubber and concluded

that slip can significantly reduce the compression modulus of the layer. later that,

this conclusion has been confirmed by Rastgoo Moghadam and Konstantinidis (2014)

using Finite Element method. For unbonded multilayer rubber bearings, especially

with only a few layers, this can in turn result in an appreciable reduction in the overall

vertical stiffness of the bearing.

Various analytical and experimental studies (Gent and Lindley, 1959; Koh and

Kelly, 1989; Kelly and Konstantinidis, 2011) have pointed out that consideration of

the bulk compressibility of the elastomer in the compression analysis of rubber layers

can have a significant effect on the pressure distribution, the maximum shear strain

which is developed by the constraint of the rigid supports on the top and bottom

of the bonded rubber layer, and the compression modulus, especially for bearings

with large shape factor (Kelly and Konstantinidis, 2011; Van Engelen et al., 2016).

This paper presents a theoretical analysis of the compression behavior of strip and

circular rubber layers taking into account bulk compressibility and contact slip at the

supports. Fig. 5.1 shows a photograph of a typical thin rubber pad. The analysis

presented herein is for a single-layer pad restrained by Coulomb friction at the top and

bottom supports, while the compressive behavior of a friction-restrained multilayer
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bearing with compressible material will be investigated in a future study. Although

the description of a rubber–steel or rubber–concrete interface by a simple Coulomb

friction model may not be entirely accurate (Konstantinidis et al., 2008), it makes the

problem amenable to theoretical investigation. Finally, the paper presents results of

a finite element analysis and compares them against the predictions of the theoretical

solution.

5.3 Compression of a Rubber Layer Bonded to

Rigid Supports

In this section, we briefly review the compression of a rubber layer bonded to rigid

supports, as several parts of the theory will be used later in dealing with the un-

bonded layer. The rubber is assumed to behave as a linear elastic material, and bulk

compressibility is included in the analysis. A pressure solution approach is followed,

the kinematic and stress assumptions of which have been stated in the Introduction,

and further details can be found in (Kelly, 1997). We consider an arbitrarily shaped

pad of thickness t and position a Cartesian coordinate system, (x, y, z), with the ori-

gin at mid-height of the layer. Under the assumptions of the pressure solution, the

displacements u = (u, v, w) in the coordinate directions are

u(x, y, z) = u0(x, y)

(
1− 4z2

t2

)
(5.1a)

v(x, y, z) = v0(x, y)

(
1− 4z2

t2

)
(5.1b)

w(x, y, z) = w(z) (5.1c)
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For compressible material, ∇·u = εxx+εyy+εzz = −p/K, where εxx = ∂xu, εyy = ∂yv,

εzz = ∂zw [where the ∂ denotes partial derivative with respect to the subscripted

variable], p is pressure, and K is the bulk modulus. This leads to

∂xu+ ∂yv + ∂zw = (∂xu0 + ∂yv0)

(
1− 4z2

t2

)
+ w′ = −p/K (5.2)

where the prime denotes ordinary derivative. When integrated through the thickness

(−t/2, t/2), this gives

∂xu0 + ∂yv0 =
3

2
(εc − p/K) (5.3)

where ∆ is the change of thickness of the pad (with ∆ > 0 indicating compression),

and εc = ∆/t is the compression strain.

The complete equilibrium equations in Cartesian coordinates are

∂xσxx + ∂yτxy + ∂zτxz = 0 (5.4a)

∂xτyx + ∂yσyy + ∂zτyz = 0 (5.4b)

∂xτzx + ∂yτzy + ∂zσzz = 0 (5.4c)

Under the assumptions of the pressure solution, the stress state is dominated by the

pressure, p. The normal stressed deviate from −p only by terms of order t2/l2, i.e.,

σxx ≈ σyy ≈ σzz ≈ −p(1 + O(t2/l2)), where l is a characteristic length in the x-y

plane. The shear stress components τxz and τyz are of order (t/l)p. The in-plane

shear stress τxy is of order (t2/l2)p and thus negligible in this analysis. Under these
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assumptions, the first two equations reduce to

∂zτxz = ∂xp (5.5a)

∂zτyz = ∂yp (5.5b)

For a linear elastic material, τxz = Gγxz and τyz = Gγyz, where G is the shear

modulus. Since γxz = ∂zu+ ∂xw and γyz = ∂zv + ∂yw,

τxz = −8G

t2
zu0 (5.6a)

τyz = −8G

t2
zv0 (5.6b)

or, from Eq. (5.5),

∂xp = −8G

t2
u0 (5.7a)

∂yp = −8G

t2
v0 (5.7b)

Differentiating the first of these equations with respect to x, the second with respect

to y, and adding the two resulting equations gives

∇2p = ∂xxp+ ∂xyp = −8G

tt
(∂xu+ ∂yv) (5.8)

and substituting Eq. (5.3) into this expression gives the Helmholtz equation with

imaginary wavenumber:

∇2p− λ2p = −λ2Kεc (5.9)

where λ2 = 12G/(Kt2). The Dirichlet boundary condition p = 0 on the edges of the
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pad completes the system for p(x, y).

For an infinitely long strip pad of width 2b, as shown in Fig. 5.2(a), Eq. (5.9)

reduces to p′′ − λ2p = −λ2Kεc, which with p(x = ±b) = 0 gives

p(x) = Kεc

(
1− cosh(λx)

cosh(λb)

)
(5.10)

Integrating p over the area of the pad (considering a unit depth), A = 2b gives the

compressive force P

P = 2Kεcb

(
1− 1

λb
tanh(λb)

)
(5.11)

The compressive modulus of the rubber layer, defined as Ec = P/(Aεc), is

Ec = K

(
1− 1

λb
tanh(λb)

)
(5.12)

In terms of the shape factor, S (= b/t for an infinite strip), we have λb =
√

12G
K
S,

and Eq. (5.12) can be expressed as

Ec = K

1−
tanh

(√
12G
K
S
)

√
12G
K
S

 (5.13)

At this point, it would be useful to investigate the behavior along the upper and

lower surfaces, z = ±t/2. With reference to Fig. 5.3, integration of Eq. (5.5a)

through the thickness of the layer gives

τs = − t
2
p′ =

λt

2
Kεc

sinh(λx)

cosh(λb)
(5.14)

which increases monotonically with x. On the other hand, Eq. (5.10) suggests that
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the p decreases with increasing x. If the constraint were controlled only by friction,

that is by τs 6 µp where µ is friction coefficient, at some point slip would occur. For

incompressible material, the equality of τs and µp would give (Kelly and Konstan-

tinidis, 2009)

x

b
=

√
1 +

1

4µ2S2
− 1

2µS
(5.15)

and for compressible material,

λt

2µ

sinh (λx)

cosh (λb)
= 1− cosh (λx)

cosh (λb)
(5.16)

An important quantity in the design of rubber pads is the maximum shear strain

that results due to by the rigid constraint at the top and bottom of the layer. The

surface shear, given by Eq. (5.14), with the assumption of linear elastic material,

gives the variation of shear strain (neglecting sign) along z = ±t/2

γ = εc

√
3K

G

sinh
(√

12G
K
S x
b

)
cosh

(√
12G
K
S
) (5.17)

from which it can be seen that the peak occurs at x = b and is equal to

γmax = εc

√
3K

G
tanh

(√
12G

K
S

)
(5.18)

The peak strain occurring at x = b is an inconsistency of the pressure solution. In

reality, the peak strain occurs just before the free edge, and γ very rapidly drops to

zero at the free edge.

For a circular pad (as shown in Fig. 5.2(b)) with radius, R, and thickness, t,
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under pure compression, the pressure is a function of the radial distance r only, and

Eq. (5.9) becomes

p′′ +
1

r
p′ − λ2p = −λ2Kεc (5.19)

which, with finite p(r = 0) and p(r = R) = 0, gives

p (r) = Kεc

(
1− I0 (λr)

I0 (λR)

)
(5.20)

where I0 is the zeroth-order modified Bessel function of the first kind. Integrating p

over the area of the pad gives the compression force P :

P = KεcπR
2

(
1− 2

λR

I1 (λR)

I0 (λR)

)
(5.21)

where I1 is the first-order modified Bessel function of the first kind. The compression

modulus in terms of the shape factor S (= R/(2t) for a circular layer) is

Ec = K

1− 2√
48G
K
S

I1

(√
48G
K
S
)

I0

(√
48G
K
S
)
 (5.22)

The shear strain along z = ±t/2, is given by

γ = εc

√
3K

G

I1

(√
48G
K
S r
R

)
I0

(√
48G
K
S
) (5.23)
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from which it can be seen that the peak shear strain occurs at r = R and is equal to

γmax = εc

√
3K

G

I1

(√
48G
K
S
)

I0

(√
48G
K
S
) (5.24)

5.4 Compression of an Infinite-Strip Rubber Layer

with Surface Slip

The analysis follows a pressure solution approach where the originally assumed dis-

placement field, given by Eq. (5.1), is supplemented by an additional term u1 that

is constant through the thickness of the layer and is intended to account for the slip

(see Fig. 5.4). The assumed displacement field is

u (x, z) = u0 (x)

(
1− 4z2

t2

)
+ u1 (x) (5.25a)

w (x, z) = w (z) (5.25b)

where u1(x) = 0 for 0 6 x 6 x1, with x1 being the location where slip starts.

For this displacement field, εxx + εyy + εzz = −p/K leads to

u′0 +
3

2
u′1 =

3

2

(
εc −

p

K

)
(5.26)

From Eq. (5.7),

p′ = −8G

t2
u0 (5.27)

Where there is no slip, i.e., 0 6 x 6 x1, u1(x) = 0. Substitution of Eq. (5.26) into

the derivative of Eq. (5.27) gives an ordinary differential equation for pressure with
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solution

p (x) = Kεc [1−B cosh (λx)] (5.28)

where B is a constant to be determined.

For the region where slip occurs, x1 6 x 6 b, τs = µp and τs = −(t/2)p′ give

p′ +
2µ

t
p = 0 (5.29)

The solution of this equation is p(x) = Ce−
2µ
t
x, where C is a constant of integration

computed from the boundary condition at the edge of the layer: p(b) = E0εc, where

E0 = 9KG
3K+G

. For most thin bonded layers, this is completely negligible since E0

is around two orders of magnitude smaller than Ec (Kelly and Konstantinidis, 2009,

2011), and thus p = 0 is used around the edges of the layer. In this case of a layer with

partial slip, the form of the solution necessitates the use of the non-zero boundary

condition. Letting η = 3
3+G/K

, then p(b) = 3Gηεc, and

p(x) = 3Gηεce
2µ
t
(b−x) (5.30)

At x = x1, p(x) and p′(x) are continuous. From Eq. (5.28), for 0 6 x 6 x1

p′ = −KεcBλ sinh (λx) (5.31)

and from Eq. (5.30), for x1 6 x 6 b

p′ = −3Gηεc
2µ

t
e

2µ
t
(b−x) (5.32)
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At x = x1, p
′(x−1 ) = p′(x+1 ) gives

B = 3
G

K

η

λ

1

sinh (λx1)

2µ

t
e

2µ
t
(b−x1) (5.33)

and p(x−1 ) = p(x+1 ) gives

B =
1

cosh (λx1)

[
1− 3G

K
ηe

2µ
t
(b−x1)

]
(5.34)

Equating Eq. (5.33) and Eq. (5.34), and recognizing that η ≈ 1, gives

2µ√
12G
K

coth


√

12G
K

2µ
2µS

x1
b

+ 1 =
K

3G
e2µS

x1
b e−2µS (5.35)

Letting ϑ ≡ 2µS x1
b

, ρ ≡ 2µ√
12G
K

and ψ ≡ e2µs 3G
K

, then

ρ coth

(
ϑ

ρ

)
+ 1 =

eϑ

ψ
(5.36)

Solution of Eq. (5.36) by numerical means provides the unknown ϑ, from which x1 is

readily determined. In turn, the constant B can be determined from Eq. (5.34), or

in terms of the newly defined parameters:

B =
1

cosh
(
ϑ
ρ

) [1− ψe−ϑ] (5.37)

Fig. 5.5 shows graphs for x1/b for values of µ ranging between 0.1 and 1.0; for

S = 10, 20, 30, and 40; and K/G = 1000, 2000, 5000, and 10,000. It can be seen

that x1/b is highly sensitive to the shape factor, especially for low to intermediate

183



Ph.D. Thesis - S. Rastgoo Moghadam McMaster University - Civil Engineering

values of µ. For example, for a layer with shape factor of 10, about 3/4 of the layer

would be slipping, while for one with a shape factor of 40, only about 1/3. For low

friction coefficient values, most of the layer is slipping. It is interesting to note that

even for a large friction coefficient, say µ = 1.0, an appreciable portion of the layer

is experiencing slip, especially for lower shape factors; e.g., for S = 10 and µ = 1.0,

x1/b is approximately 0.85.

Fig. 5.6 shows the effect of bulk compressibility on x1/b. As expected, it can

be seen that as K/G increases, the curves saturate to the curve representing the

incompressible case investigated by Kelly and Konstantinidis (2009). For layers with

larger shape factor values, the effect of compressibility becomes more pronounced,

manifested by the increased separation between curves.

The pressure distribution in the layer is given by

p(x) = Kεc [1−B cosh (λx)] ; 0 6 x 6 x1 (5.38a)

p(x) = 3Gηεce
2µ
t
(b−x); x1 6 x 6 b (5.38b)

Fig. 5.7 plots the pressure distribution from Eq. (5.38), normalized with respect to

the average pressure in a fully bonded incompressible layer (= 4GS2εc), for rubber

with K/G = 4000 and different values of µ, ranging between 0.1 and 1.0, together

with the pressure distribution for a fully bonded layer, given by Eq. (5.10). The

graphs are plotted for S = 10, 20, 30, and 40. It can be seen that slip results in a

reduction in peak pressure. This reduction becomes more pronounced for lower shape

factor; while for large shape factor, the pressure distribution becomes insensitive to

the friction coefficient for µ > 0.3. The bold curves in Fig. 5.7 show the evolution
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of x1/b: the intersection of the bold curve with the a pressure distribution curve

corresponding to a specific µ value indicates the location where slip initiates. The

figure suggests that even for very large values of µ, a small portion of the layer close

to the edges is slipping.

The shear strain along z = ±t/2 is given by

γ(x) = Kt
2G
εcBλ sinh (λx) ; 0 6 x 6 x1 (5.39a)

γ(x) = 3ηεcµe
2µ
t
(b−x); x1 6 x 6 b (5.39b)

Fig. 5.8 plots the shear strain distribution from Eq. (5.39), normalized with respect

to the maximum shear strain in a fully bonded incompressible layer (= 6Sεc), for

rubber with K/G = 4000; S = 10, 20, 30, and 40, and different values of µ ranging

between 0.1 and 1.0, together with the shear strain distribution of a fully bonded

layer, given by Eq. (5.17)(dashed line). It can be seen that the shear strain in the

unbonded pad attains its maximum at the location where slip initiates, given by

γmax = 3ηεcµe
2µS(1−x1/b) (5.40)

and then decreases in the slip region. The figure illustrates that slip causes a reduc-

tion in the maximum shear strain, which is more pronounced for lower values of S.

Fig. 5.9 shows the effect of bulk compressibility on the normalized maximum shear

strain, γmax/6Sεc. It is evident that compressibility results in a significant reduction

in maximum shear strain, especially for higher shape factors. It is noted that γmax

becomes insensitive for compressible layers with larger values of S and µ. Conse-

quently, for unbonded strip-shaped layers with S > 20, K/G 6 5000, and µ > 0.6,
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Eq. (5.18) can be used to obtain a reasonably accurate estimate of γmax for design

purposes.

The compression modulus is computed from Ec = P/(2b), where

P = 2

{∫ x1

0

Kεc (1−B cosh (λx)) dx+

∫ b

x1

3Gηεce
2µ
t
(b−x)dx

}
(5.41)

leading to

Ec = K

x1b − B√
12G
K
S

sinh

(√
12G

K
S
x1
b

)
+

3Gη

K

1

2µS

[
e2µS(1−x1b ) − 1

] (5.42)

Fig. 5.10 plots the ratio of the compression moduli of the unbonded layer and

bonded layers for values of µ between 0.1 and 1.0 and S = 10, 20, 30, and 40, and

K/G = 1000, 2000, 5000, and 10,000. The compression modulus of bonded layer is

computed using Eq. (5.13). The figure shows that the introduction of a frictional

constraint described by a Coulomb model, rather than assuming that the rubber layer

is rigidly bonded to its supports, can result in a dramatic decrease in the compression

modulus of the layer, regardless of the value of K/G. A substantially larger drop

in compression modulus (compared to the bonded case) is noted for layers with low

shape factor, especially for low to intermediate values of the friction coefficient; e.g.,

for S = 10, µ = 0.4 and K/G = 2000, the compression modulus is 40% that of the

bonded layer. Fig. 5.11 shows the compression modulus ratio for different values of

K/G. Layers with large shape factor are more sensitive to variations in K/G, with

more compressible material resulting is lower reduction of the compression modulus

relative to bonded case. For example, for S = 40 and µ = 0.4, the compression

modulus is reduced only by about 10% for K/G = 1000, while for incompressible
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material it is reduced by about 35%.

To illustrate the error in estimating the compression modulus of a thin rubber

pad by ignoring the possibility of partial slip, we consider a single-layer rubber pad

with G = 1.0 MPa, K = 2000 MPa, S = 20, and the Caltrans-recommended value of

µ = 0.4 for rubber–concrete surfaces (Caltrans, 1994). In this case, the bulk modulus

predicted assuming a fully bonded layer would overestimate Ec by more than 50%.

5.5 Compression of a Circular Rubber Layer with

Surface Slip

The approach used for an unbonded infinite-strip layer is followed for the circular pad

of radius R. In this case the displacement field is

u(r, z) = u0(r)

(
1− 4z2

t2

)
+ u1(r) (5.43a)

w(r, z) = w(z) (5.43b)

where u1(r) = 0 for 0 6 r 6 r1, with r1 indicating the radial distance at which slip

initiates. The three normal strains are then given by

εr = ∂ru = u′0

(
1− 4z2

t2

)
+ u′1 (5.44a)

εθ =
u

r
=
u0
r

(
1− 4z2

t2

)
+
u1
r

(5.44b)

εz = w′ (5.44c)
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Therefore, εr + εθ + εz = − p
K

integrated through the thickness of the layer, gives

1

r
(ru0)

′ +
3

2

1

r
(ru1)

′ =
3

2

(
εc −

p

K

)
(5.45)

The equations of stress equilibrium in polar coordinates are

∂σr
∂r

+
∂τrz
∂z

+
σr − σθ

r
= 0 (5.46a)

∂τrz
∂r

+
∂σz
∂z

+
τrz
r

= 0 (5.46b)

which with the assumption that the normal stresses are all equal to the −p and

τrz = Gγrz = −8G
t2
zu0, give

p′ = −8G

t2
u0 (5.47)

Over 0 6 r 6 r1, u1 = 0, and Eq. (5.45) and Eq. (5.47) give

p(r) = Kεc [1−BI0 (λr)] (5.48)

Equating τs = µp and τs = −(t/2)p′ leads to the same equation as for an infinite strip

pad,

p′ +
2µ

t
p = 0 (5.49)

with solution p(r) = Ce−
2µ
t
r, where C is computed from the boundary condition

p(R) = 3Gηεc, resulting in

p(r) = 3Gηεce
2µ
t
(R−r) (5.50)
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From Eq. (5.48), for 0 6 r 6 r1,

p′(r) = −KεcBλI1(λr) (5.51)

and from Eq. (5.50), for r1 6 r 6 b,

p′(r) = −3Gηεc
2µ

t
e

2µ
t
(R−r) (5.52)

Continuity in p′ at r = r1 gives

B = 3
G

K

η

λ

1

I1(λr1)

2µ

t
e

2µ
t
(R−r1) (5.53)

while continuity in p gives

B =
1

I0(λr1)

[
1− 3G

K
ηe

2µ
t
(R−r1)

]
(5.54)

We proceed in a similar fashion to the infinite strip pad. Eq. (5.53) and Eq. (5.54),

with η = 1, give

2µ√
12G
K

I0

(√
12G
K

2µS
r1
R

µ

)
I1

(√
12G
K

2µS
r1
R

µ

) + 1 =
K

3G
e4µS

r1
R e−4µS (5.55)

With ϑ ≡ 2µS r1
R

, ρ ≡ 2µ√
12G
K

and ψ ≡ e4µs 3G
K

, Eq. (5.55) becomes

ρI0

(
2ϑ
ρ

)
I1

(
2ϑ
ρ

) + 1 =
e2ϑ

ψ
(5.56)

Solution of Eq. (5.56), provides ϑ, and thus r1/R. B can be determined from Eq.
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(5.53), which can expressed as

B = 3
G

K

2µ√
12G
K

e4µS(1− r1R )

I1

(
2
√

12G
K
S r1
R

) (5.57)

Fig. 5.12 plots r1/R for values of µ ranging between 0.1 and 1.0; S = 10, 20, 30,

and 40; and K/G = 1000, 2000, 5000, 10,000. Fig. 5.13 shows the effect of the bulk

modulus (as K/G) on r1/R for different values of S and µ. Similar conclusions as for

the case of an infinite-strip layer are drawn for the circular layer.

The pressure distribution is given by

p(r) = Kεc [1−BI0(λr)] ; 0 6 r 6 r1 (5.58a)

P (r) = 3Gηεce
2µ
t
(R−r); r1 6 r 6 R (5.58b)

Fig. 5.14 shows the pressure distribution of an unbonded circular layer, as de-

scribed by Eq. (5.58), K/G = 4000; S = 10, 20, 30, and 40; and various values

of µ between 0.1 and 1.0. The pressure is normalized by the average pressure in a

fully-bonded, incompressible layer (= 6GS2εc). In addition, the pressure distribution

for a fully bonded layer is shown. A significant reduction in peak pressure is observed

with decreasing µ. It can be seen from the figure that for large S the sensitivity of

the maximum pressure to variations in µ is lower.

The shear strain along z = ±t/2 is given by

γ(r) = Kt
2G
εcBλI1(λr); 0 6 r 6 r1 (5.59a)

γ(r) = 3ηεcµe
2µ
t
(R−r); r1 6 r 6 R (5.59b)
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The shear strain attains its maximum value at r = r1, given by

γmax = 3ηεcµe
4µS(1−r1/R) (5.60)

Fig. 5.15 shows the shear strain distribution given by Eq. (5.59), normalized by

the maximum shear strain in a fully bonded incompressible circular layer (= 6Sεc),

for K/G = 4000; S = 10, 20, 30, and 40; and different values of µ ranging between 0.1

and 1.0. Also shown is the shear strain distribution in a fully bonded circular layer

(dashed line), given by Eq. (5.23). Similar to the observation made for the pressure

distribution, the maximum shear strain becomes less sensitive to µ for larger values

of S. Fig. 5.16 shows the effect of the bulk modulus (as K/G) on the maximum shear

strain for different values of S and µ. It can be seen that γmax decreases significantly,

with this decrease becoming more pronounced for layers with higher S. An interesting

observation is that for layers with large S values, although compressibility should be

included in the analysis to realistically estimate γmax, the value of γmax becomes

insensitive for large µ values. Therefore, to simplify design, if S > 20, K/G 6 5000,

and µ > 0.5, it is reasonably accurate to estimate γmax assuming that the layer is

fully bonded, i.e., using Eq. (5.24).

Ec is calculated by integrating the pressure over 0 6 r 6 R to determine P and

then dividing by Aεc, giving

P = 2π

[∫ r1

0

Kεc (1−BI0(λr)) rdr +

∫ R

r1

3Gηεce
2µ
t
(R−r)rdr

]
(5.61)
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and

Ec = 2K

{
1
2

(
r1
R

)2 −B ( r1
R

)
1

2
√

12G
K
S
I1

(
2
√

12G
K
S r1
R

)
+3G

K
1

(4µS)2

[
−4µS − 1 + e4µS(1− r1R ) (4µS r1

R
+ 1
)]}

(5.62)

Fig. 5.17 shows the compression modulus ratio for values of µ between 0.1 and 1.0;

S = 10, 20, 30, and 40, and K/G = 1000, 2000, 5000, and 10,000. The compression

modulus of fully bonded pad, appearing in the denominator of the ratio, is based on

Eq. (5.22). Fig. 5.18 shows the effect of bulk compressibility on the compression

modulus.

5.6 Finite Element Analysis

The behavior of an unbonded rubber layer under pure compression was also inves-

tigated using the commercially available finite element analysis software MSC Marc

(MSC Software, 2011). A rubber layer was discretized using quadrilateral plane-strain

elements. Two horizontal rigid elements were defined at the top and bottom of the

layer representing the supports. The details of using MSC Marc for modeling rubber

bearings under compression have been discussed in Van Engelen et al. (2014); and

references reported therein. The touching contact model was selected between the

rubber layer and the supports. Based on this option, the nodal points of one surface

are permitted to separate from those of the contacting surface in the normal direction.

In the tangential direction, the contact is prescribed by a Coulomb friction model. To

evaluate the effect of slip at the contact support, the coefficient of friction was varied

from 0.1 to 1.0 with 0.1 increment. The rubber was modeled using the compressible

Neo-Hookean hyperelastic constitutive model (Bathe, 1995; Bonet and Wood, 1997).
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This material was selected for its simplicity and the fact that it behaves most closely

to a linear elastic material for smaller strains. The strain energy density function of

the compressible Neo-Hookean model is given by

W = C10

(
Ī1 − 3

)
+

1

D1

(ln J)2 (5.63)

where C10 = G/2, D1 = 2/K, Ī1 is the first reduced (or modified) invariant of the

Cauchy–Green deformation tensor (deviatoric part only), and J is the elastic volume

ratio. In all analyses, it was assumed that K/G = 5000. Fig. 5.19 shows the finite

element mesh of the rubber layer with t = 10 mm and b = 100, 200, and 300 mm,

corresponding to shape factor S = 10, 20, and 30.

Fig. 5.20 shows the deformed shape of a layer with S = 10 and µ = 0.3 for

0 6 x 6 b under an average compressive stress of 2.0 MPa. It can be seen that

the parabolic bulging of the layer increases from the center of the layer outwards

and becomes maximum at the location where slip initiates (x1/b = 0.445). From

that point towards the edge of the layer, the parabolic bulging decreases, as the

deformation is controlled by the slip.

The location where slip initiates was determined by monitoring the relative mo-

tion of nodes along the contact surfaces. Fig. 5.21 compares the location where slip

initiates as determined by the finite element analysis (FEA) and by theoretical so-

lution for unbonded infinite strip pad with shape factor of 10, 20, and 30. It can

be seen that there is good agreement between the two, although in some cases the

FEA predicts that slipping occurs over a larger portion of the pad, compared to the

theoretical solution. Slight deviation between the results is observed for higher fric-

tion coefficient values. Fig. 5.22 shows the pressure distribution based on theoretical
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and FEA. The difference between the predictions is more pronounced for the pressure

distribution, especially for lower shape factor. However, Fig. 5.23, which shows the

comparison modulus obtained by the two methods, shows good overall agreement,

especially for low shape factor.

5.7 Conclusions

The behavior of rubber layers under pure compression has been the focus of a large

number of studies. In these studies, the layer is assumed to be bonded to rigid or

flexible supports (reinforcement). However, the effect of partial slip in a rubber pad

that is installed in an unbonded applications, and relies solely on the friction between

the rubber and the supports to keep it in place, has received very little attention. The

effect of bulk compressibility in such an application has not been investigated in past

studies. This paper investigated the behaviour of an unbonded rubber pad including

the effect of compressibility and slip at the top and bottom supports. It was shown

that slip can have a significant effect on the pressure distribution and compression

modulus of the pad. It was observed that even for pads with high friction coefficient

(µ = 1), a portion of the pad (up to 15% for pads with shape factor of 10) close to the

edge is experiencing slip. The compression modulus is more sensitive to variations in

bulk modulus for layers with larger shape factor. However, the compression modulus

of layers with high shape factor is closer to the value corresponding to the bonded

case than for layers with low shape factor. The study showed that compressibility and

slip can significantly reduce the maximum shear strain in unbonded layers. However,

for unbonded rubber layers with typical bulk-modulus-to-shear-modulus ratio values

and large values of shape factor and µ, the maximum shear strain becomes insensitive
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to variations in µ. Consequently, the paper presented various conditions under which

the maximum shear strain in an unbonded layer (strip or circular) can be estimated

with reasonable accuracy using the solution that corresponds to a fully bonded layer.

Finally, the paper presented results from a finite element analysis study on the com-

pression behavior of three rubber pads with shape factor 10, 20, and 30. The results

of the finite element investigation are in good overall agreement with the predictions

of the theoretical solution.

This paper focused on the compression of a unreinforced, unbonded rubber pad

(i.e., a single layer experiencing symmetric slip on its top and bottom surface). The

theoretical analysis in this study is not applicable to unbonded layers with different

friction coefficient values on the top and bottom supports or to unbonded multilayer

rubber bearings. In such a bearing, the frictional constrain is only applies to the

surface of the topmost and bottommost layers that are in contact with the supports.

These problem involve unsymmetrical boundary conditions that are substantially

more complex and will be investigated in future publications.
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Figure 5.1: Unbonded rubber pad.
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Figure 5.2: (a) Infinite strip pad of width 2b, and (b) Circular pad of radius R.
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Figure 5.3: Definition of surface shears.
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Figure 5.4: Deformation of a rubber layer with slip on the top and bottom surfaces.
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Figure 5.5: Location where slip initiates for an unbonded infinite-strip pad.
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Figure 5.6: Effect of the bulk modulus on the location where slip initiates in an
unbonded infinite-strip pad.
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Figure 5.8: Shear strain distribution at the top or bottom of an unbonded infinite
strip pad with S = 10, 20, 30, and 40; and K/G = 4000.
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Figure 5.9: Effect of the bulk modulus on the maximum shear strain in an unbonded
infinite-strip pad.
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Figure 5.10: Unbonded–to–bonded compression modulus ratio for an infinite-strip
layer.
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Figure 5.11: Effect of compressibility on the compression modulus of an unbonded
infinite-strip layer.
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Figure 5.12: Location where slip initiates in a circular pad.
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Figure 5.13: Effect of bulk modulus on the location where slip initiates in a circular
pad.
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Figure 5.15: Shear strain distribution at the top or bottom of an unbonded circular
pad with S = 10, 20, 30, and 40; and K/G = 4000.
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Figure 5.16: Effect of the bulk modulus on the maximum shear strain in an unbonded
circular pad.
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Figure 5.17: Normalized compression modulus for unbonded circular pad.
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Figure 5.18: Effect of compressibility on the compression modulus of an unbonded
circular pad.

Figure 5.19: Finite element mesh of a rubber layer with S = 10.
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Figure 5.20: The deformed shape of a rubber layer (S = 10, K/G = 5000, and
µ = 0.3) under an average compressive stress of 2.0 MPa.
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Figure 5.21: Location where slip initiates in unbonded infinite strip pad based on
theoretical and finite element analysis (FEA) [K/G = 5000].
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Figure 5.22: Pressure distribution of an unbonded infinite strip pad based on theo-
retical and finite element analysis (FEA) [K/G = 5000].
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Figure 5.23: Compression modulus of an unbonded infinite strip pad based on theo-
retical and finite element analysis (FEA) [K/G = 5000].
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Chapter 6

Conclusions and Recommendations
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6.1 Summary

Most studies in the available literature aimed to model the behavior of elastomeric

bearings under combined vertical and lateral forces only, without considering rotation

at the supports. The assumption of zero rotation at the supports is often valid due

to the existence of rigid elements above/below the isolation layer. However, recent

applications have shown that this assumption is not accurate for tall buildings (Oshaki

et al., 2015), mid-story isolation systems (Murakami et al., 2000; Crowder, 2016), and

bridges (Constantinou et al., 2011). The first objective of this thesis was to evaluate

the effect of rotation at the supports using three approaches: finite element analysis,

mechanical models, and experimental studies.

Unbonded bearings do not feature thick steel end plates. Shear forces are trans-

ferred from the bearing to the superstructure and substructure by the frictional force

that develops along the rubber–to–concrete or rubber–to–steel interface. The second

objective of this thesis was to investigate the effects of the elastomer's bulk com-

pressibility and the contact slip at the supports on an unbonded rubber layer using

theoretical solution and FEA.

6.2 Finite Element Analysis

In this study, 3D finite element analyses of a laminated rubber bearing were conducted

to validate the model against results of an existing analytical solution (Karbakhsh

Ravari et al., 2012), which is applicable for studying the behavior of elastomeric

bearings before the instability point. To validate the model, four boundary conditions

were considered: (1) no rotation at the top and bottom supports of the bearing, (2)
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rotation only at the top support, (3) rotation only at the bottom support, and (4)

rotation at both the top and bottom supports of the bearing. It was shown that

the finite element model can reliably capture the effect of rotation on the horizontal

behavior of the bearing.

The study evaluated the effect of the constitutive model selection for the rubber.

The Neo-Hookean, Mooney-Rivlin, and Yeoh hyperelastic material models were con-

sidered to describe the rubber layers of a bearing. The results showed that material

model selection influences the critical point, especially when the critical pressure is

low where the critical shear strain is large. Furthermore, it was shown that using

different material models does not affect the stress and strain distributions at zero

lateral displacement, but that it can have a pronounced effect at large horizontal

displacement.

The study then focused on the effect of rotation on stress and strain distributions

and the load–displacement behavior of elastomeric bearings. It was shown that ro-

tation has a more pronounced effect on the stress and strain distributions at smaller

lateral displacement levels than larger ones. For a given average vertical stress, and

at displacements less than the critical point, the amount of the rotation does not

seem to affect the tangent stiffness. Because the tangent stiffness is fairly constant

and positive rotation (counterclockwise) causes negative initial displacement, at a

given displacement, the shear force is larger under positive rotation than under no

rotation—and smaller under negative rotation than under no rotation. At large dis-

placements near the critical value, the tangent stiffness decreases at a different rate

depending on the support rotation angle. It was noted that, in general, support
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rotation has a minimal effect on the critical displacement, but it does affect the crit-

ical shear force. Moreover, as expected, the tangent stiffness and the critical shear

force decrease with increasing pressure. The relative effect of rotation becomes more

pronounced with increased pressure.

6.3 Mechanical Models

finite element modeling is a complicated and time consuming process. In order to sim-

plify the analysis, simple mechanical models (the Nagarajiah-Ferrell (Nagarajaiah and

Ferrell, 1999), the Iizuka (Iizuka, 2000), and the Han-Warn (Han and Warn, 2014))

which are reliable were considered to capture the behavior of elastomeric bearings

under axial–horizontal–rotation loading. First, these three models were evaluated by

comparing their predictions with results of FEA, assuming no rotation at the sup-

ports. Then, the models were modified to account for the effect of rotation. The

modified models were then evaluated using results from FEA under prescribed ro-

tation values for the elastomeric bearing with shape factors of 12.67. In order to

investigate the effect of geometry on the results, bearings with different second shape

factor (2, 4 and 6) were considered. The following results were observed:

� The Nagarajiah-Ferrel model predicts lower values of force at the critical point

than FEA, regardless of rotation value. The difference is more significant for

bearings under higher pressures.

� In many cases, the Iizuka model provides very large values of force at the critical

point, particularly for bearings with a large second shape factor. Consequently,

this model is not accurate for bearings with a large second shape factor; although
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this needs to be investigated with more elastomeric bearings.

� In general, the Han-Warn model provides relatively good agreement with FEA.

This model can be improved beyond the critical point using a bilinear elastic

model with post-cavitation hardening for the rubber material.

� Unlike the dispersion of the results using different models, the mechanical mod-

els predict the displacement at the critical point with a good agreement with

FEA.

� All modified mechanical models provide larger initial lateral force than the one

obtained by the FEM, especially for large pressures.

To eliminate the drawbacks and weaknesses of the existing models, this study

proposed a new model that includes the effect of rotation on the lateral response. This

model was used to predict the lateral stability limit, and the results were compared

against those from FEA. It was shown that the new model can predict the lateral

behavior of elastomeric bearings more accurately than existing models (their modified

versions).

6.4 Experimental Studies

To ensure that the FEA and proposed simple mechanical models were reliable and

accurate, an experimental setup was built at Applied Dynamic Laboratory, McMaster

University. Chapter 4 provided detailed information about the setup and its limita-

tions. A 1/4–scale circular isolator with the shape factor of 20 and second shape

factor of 4 was considered. Two kinds of experimental testing, quasi–static cyclic
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and monotonic tests, were conducted on a given bearing. The experimental results

using cyclic testing revealed that the hysteresis loops shift up due to the rotation.

Furthermore, this shifting, depending on the axial force and rotation angle, can be

different. The FEA results compared with the cyclic testing showed that the FEA

curve passes through approximately the middle of the loops, however, for the larger

rotation, the FEA curve touches the upper portion of the experimental loops. The

proposed mechanical model was compared against the experimental results. The

monotonic tests showed stiffening behavior in the rubber, while the results from FEA

and the mechanical model did not show any stiffening.

6.5 Closed-Form Solution for Unbonded Rubber

Pads

In the last part of the thesis, the effect of friction on unbonded pads under axial loads

was investigated. The study investigated the behavior of an unbonded rubber pad

including the effect of compressibility and slip at the top and bottom supports. It

was shown that slip can have a significant effect on the pressure distribution, com-

pression modulus, and shear strain of the pad. The compression modulus is more

sensitive to variations in bulk modulus for layers with larger shape factor. However,

the compression modulus of layers with high shape factor is closer to the value cor-

responding to the bonded case than for layers with low shape factor. The study

showed that compressibility and slip can significantly decrease the maximum shear

strain in unbonded layers. However, for unbonded rubber layers with typical bulk-

modulus-to-shear-modulus ratio values and large values of shape factor and friction
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coefficient, the maximum shear strain becomes less sensitive to variations in fric-

tion coefficient. Consequently, the study presented various conditions under which

the maximum shear strain in an unbonded layer (strip or circular) can be estimated

with reasonable accuracy using the solution that corresponds to a fully bonded layer.

Moreover, the FEA results were in a relatively good agreement with the predictions

of the theoretical solution.

6.6 Recommendations for Future Study

Though this study tried to evaluate and model the effect of support conditions on

the behavior of elastomeric bearings, there are still areas that call for further inves-

tigations:

� The support rotation value was kept constant during the shearing of the bearing.

Future studies need to investigate the effect of the more complex case where

rotation varies as the lateral displacement increases.

� This study did not consider dynamic effects on the lateral behavior and stability

of the bearings. The damping effects of elastomeric bearings should be added

to the model, and time history analysis can be performed on different structural

systems and compared with the case where the isolators do not experience.

� This study assumes that the top plate of the bearing is fixed or free to move when

it is subjected to the rotation and axial load simultaneously. Consequently, the

bearing experiences initial displacement when the bearing is free to move, or

initial force in the case that the bearing is fixed. In reality, however, due to the

stiffness of the superstructure, the top plate is not either totally fixed or free
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to move. It is recommended that the stiffness of the superstructure is added to

the analytical models.

� This study was focused on an individual bearing. The effect of rotation on the

lateral behavior and stability of a group of bearings in a given building would

be another recommendation.

� The closed-from solution in Chapter 5 is not applicable to unbonded layers

with different friction coefficient values on the top and bottom supports or to

unbonded multilayer rubber bearings. In such a bearing, the frictional constrain

is only applies to the surface of the topmost and bottommost layers that are

in contact with the supports. These problems involve unsymmetrical boundary

conditions that are substantially more complex.
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A.1 Investigation on the effect of rotation using

simplified method

The effect of rotation can be estimated approximately by transformation of coordi-

nates (the coordinate system aligns with the bearing). It means the axial load is

inclined at a slight angle, perpendicular to the bearing. Therefore, the initial force

can be estimated by P sin θt. It is assumed that θt is small, then the initial force is

computed by Pθt. The critical force using for the simplified method (SM) is assumed

to deviate from the FEA value by Pθt. Tables A.1 and A.2 show the initial force

and critical force for Bearing 1 (see Table 3.1) using the FEA and simplified method

(SM) under different p̄ values and θt = 0.02 and 0.04 rad, respectively. The simplified

method overestimates the initial force, especially for the large axial load. Further-

more, the error between the critical force predicted by SM and FEA is increased by

increasing the axial load. This difference is due to the nonlinearity in the FEA which

provides more accurate prediction.
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Table A.1: Comparison between the FEA and simplified method (SM) (θt=0.02 rad).

Initial Force (kN) Critical Force (kN)

p̄ (MPa) FEA SM error(%) FEA SM error (%)

4.13 0.6 1.5 150 35 36 2.8

5.51 1.1 2.0 82 30 31 3.3

6.89 1.3 2.5 92 26 27 3.8

8.26 1.8 3.0 67 22 23 4.5

9.64 2.0 3.5 75 19 21 10.5

11.02 2.3 4.0 74 17 19 11.7

12.40 2.5 4.5 80 14 16 14.3

Table A.2: Comparison between the FEA and simplified method (SM) (θt=0.04 rad).

Initial Force (kN) Critical Force (kN)

p̄ (MPa) FEA SM error(%) FEA SM error (%)

4.13 1.4 3.0 114 36 38 5.5

5.51 2.7 4.0 48 31 33 6.4

6.89 3.0 5.0 67 27 29 7.4

8.26 3.6 6.0 67 24 26 8.3

9.64 4.0 7.5 88 21 24 14.3

11.02 4.5 8.0 78 19 22 15.8

12.40 5.0 9.0 80 17 20 17.6
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