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Abstract 

Given a point p and d + 1 sets (i.e., colours) of points in dimension d, 

the Colourful Feasibility Problem is to decide whether there are d + 1 points 

of different colours containing p in their convex hull; and if yes, find such a 

point set. The monochrome version of this problem, expressing p as a linear 

combination of d + 1 points in a set S, can be solved using traditional linear 

optimization algorithms. The Colourful Feasibility Problem was presented by 

Barany and Onn in 1997, and it is still not known if a polynomial-time algorithm 

exists. The case where we have d colours in dimension d and no restriction on 

the size of the sets has been shown to be strongly NP-complete through a 

reduction of 3-SAT. We define the core of a configuration to be the intersection 

of the convex hulls of each colour. We start from the important sub case that 

we call Colourful Core Feasibility Problem where we have d + 1 points of each 

colour, and pin the core. By Barany's 1982 Colourful Caratheodory Theorem, 

a solution is guaranteed to exist, and the problem is to exhibit one. This 

problem is described by Barany and Onn as "an outstanding problem on the 

border line between tractable and intractable problems". Besides applications 

to combinatorics, The Colourful Feasibility Problem models a situation where 

we want to select a set of points that is both diverse and representative. 

While we have not found out whether the Colourful Core Feasibility Prob

lem can be solved in polynomial time, our contributions are on both the theoret

ical and practical performance of algorithms to solve the Colourful Feasibility 

Problem. The algorithms proposed by Barany and Onn are essentially geomet-
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ric, and the complexity guarantees depend crucially on having p inside the core. 

We consider modifications of these algorithms which update multiple colours at 

each stage, as well a greedy heuristic where we choose the adjacent simplex of 

maximum volume in each iteration and a random sampling approach. Our test 

suite includes unstructured random problems, ill-conditioned problems, prob

lems with a restricted number of solutions and infeasible problems. We con

clude that the most robust and nearly fastest algorithm for the Colourful Core 

Feasibility Problem is the multi-update variant which yields substantial gains 

over the original ones. Alternative approaches based on nondefinite quadratic 

optimization problem and positive semidefinite relaxation, and a combinatorial 

algorithm not depending on having p in the core are also introduced. Finally, 

we give the first upper bound for the minimal number of colourful simplices 

containing a core point and the first improvement of the lower bound since 

Barany's result in 1982. 
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Chapter 1 

Preliminaries 

In this chapter we introduce some fundamental concepts and notations in ge

ometry and optimization used throughout the thesis. 

1.1 Vectors and Points 

We use the same symbol to denote a point in the d-dimensional Euclidean space 

and the column vector representing that point, i.e., a point tin JRd can also be 

interpreted as the column vector representing t. We use bold font and lower 

case characters to denote points and vectors. We use 0 to denote both the 

origin of the Euclidean space and the zero-vector. The ith coordinate of the 

vector t is denoted by ti. 

1.2 Norms and Distances 

Fork EN and t E JRd, the k-norm oft is lltllk = ~lt1 1k + · · · + itdlk· We often 

use the Euclidean 2-norm and simply call it norm, and denote it by lltll- The 

distance between two points t 1 and t 2 is the norm of their difference, namely, 

11t1 - t 2 11- The distance between two sets S1 and S2 of points is the minimum 
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value of llt1 - t2ll such that t1 E S1 and t2 E S2, and we denote it 

(1.2.1) 

1.3 Balls and Spheres 

The d-dimensional ball of radius r 2:: 0 centered at p E JRd is the set { x E JRd : 

llx- PII ~ r }, and is denoted by JE(r, p ). The d-dimensional sphere of radius 

r 2:: 0 centered at p E JRd is the set { x E JRd : llx- Pll = r }, and is denoted 

by §(r, p ). The unit sphere §d and the unit ball JEd correspond to §d = §(1, 0) 

and JEd = JE(1, 0). 

1.4 Projections 

As in this thesis we only consider projections on polytopes or affine hyperplanes, 

the projection of a point is unique. More precisely, the projection proj(t) of a 
p 

point t on a point set P is the point p E P that minimizes its distance to t, 

i.e., proj(t) = argmin lit- Pll· The projection of a set A onto another set B is 
P pEP 

{ proj(a) : a E A}. FortE P, we obviously have proj(t) = t. 
B p 

1.5 Convex Hulls, Affine Hulls, Affine Subspaces 
and Subspaces 

For a set T = {t1, ... , tk} C JRd, the convex hull conv(T) = conv(t1, ... , tk) is 

the set of their linear combinations with non-negative coefficients whose sum 

is 1; that is, 

2 
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For a set T = { t 1 , ... , tk}, the affine hull aff(T) = aff(t 1 , ... , tk) is the set of 

their linear combinations with coefficients whose sum is 1; that is, 

In this thesis we only consider the convex hulls and affine hulls of a finite 

number of points. A finite set T of points generates its convex hull and affine 

hull, or we can say those points are the generators of their convex hull and 

affine hull. 

A set P ~ JRd is an affine subspace if there exist a finite set T C JRd such 

that P = aff(T). If T is a minimum set generating P and ITI = k + 1, for 

0 :::; k :::; d, then P is a k-dimensional affine subspace of JRd. A subspace is an 

affine subspace that contains the origin. 

1.6 Line Segments 

A line segment is a continuous subset of a line. We can use two end points to 

represent a line segment. An end point of a line segment can be either open or 

closed. For two points u and v, the closed line segment represented by them 

is [u, v] = conv(u, v), where both u and v are closed end points; the open line 

segment represented by them is ( u, v) = conv( u, v) \ { u, v}, where both u and 

v are open end points. A line segment can also be open at one end but closed 

at the other end: (u, v] = conv(u, v) \ { u} and [u, v) = conv(u, v) \ { v }. 

1.7 Cones 

A cone K is a set of points satisfying: ifT = {t1 , ... , tn} ~ K and .\1 , ... , An 2:: 

0, then L.::~=l A.iti E K. The polyhedral cone generated by Tis 

3 
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In JRd, we call a polyhedral cone generated by d points a simplicial cone. 

1.8 Dimension of a Point Set 

Let P be a set of points. The dimension dim(P) of Pis kif: 

• P is in a k-dimensional affine subspace; and 

• P is not in a ( k - 1 )-dimensional affine subspace, or k = 0 such that a 
( k - 1 )-dimensional subspace is undefined. 

1.9 Affine Hyperplanes, Hyperplanes and Half 
Spaces 

An affine hyperplane in JRd is a ( d - 1 )-dimensional affine subspace of JRd; a 

hyperplane is an affine hyperplane that contains 0. For each affine hyperplane 

H in !Rd, we can find n E JRd and c E IR such that H = {x : nTx = c}; for 

each hyperplane H we can find n E JRd such that H = { x : n T x = 0}. In both 

cases, n is called a normal vector of H. 

An affine hyperplane H = { x : nT x = c} in JRd separates JRd into two 

half spaces { x : nT x 2: c} and { x : nT x ::; c} (or equivalently, { x : -nT x 2: 

-c} ), which are usually denoted by H+ and H- respectively. We can say that 

H is the affine hyperplane defining H+ and H-. 

1.10 General Position and Degeneracy 

A finite set T c JRd is in general position if for any k < d there is no k

dimensional affine subspace that contains k + 2 points from T. A finite set T 

4 
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not in general position is degenerate. 

1.11 Convex Polytopes, Faces, Facets and Ver
tice 

A convex polytope is the convex hull of a finite set of points. In this thesis 

we omit the word convex and simply use the word polytope. A polytope is 

bounded. A polytope PC JRd is full dimensional if dim(P) =d. 

Let P be a polytope and H* be a half space (where "*" is either "+" or 

"-"). If P c H*, then we can say H* is valid for P, or the affine hyperplane 

H defining H* is valid for P. A face F of a polytope Pis any non-empty set 

of the form F = P n H =f. 0, where His valid for P. A (d- 1)-dimensional 

face of a polytope in JRd is called a facet, and a 0-dimensional face is called a 

vetex. If P is full dimensional, then the union of its facets form its boundary. 

Otherwise P does not have any facet. 

A vertex of a polytope is a point. The minimum set of points that gener

ates a polytope P is its set of vertices, so we can use the vertices to represent 

a polytope. On the other hand, for each polytope P, there exist a set of half 

spaces such that their intersection is P, so we can also use half spaces to rep

resent a polytope. 

1.12 Simplex and Regular Simplex 

A simplex in JRd is the convex hull of d + 1 points in JRd. A full dimensional 

simplex is a regular simplex if and only if all the pairwise distances of its vertices 

are equal. 

5 
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1.13 Set Partitioning 

If a set sis the union of the sets sl, ... ' sk and sin sj = 0 for 1 ::; i =I= j ::; k, 

then sl, ... ' sk is a partition of s, and this relationship can be denoted by 

(1.13.2) 

using the !:!:) sign. 

1.14 Optimization 

An optimization problem is to find an assignment for a set of variables mini

mizing a given objective function, while satisfying the given constraints. 

Definition 1.14.1 ( Optimization Problem Formulation) 

min f(x) 
such that : h(x) ~ 0, 

(1.14.3) 

where X= [xi X2 ... Xn]T is the vector of variables, f : JRn -> fR is the objective 

function, and h : IRn -> IRm gives the constraints. Further, n and m are 

assumed to be the number of scalar variables and the number of constraints, 

respectively. 

0 

If there exist any x satisfying h(x) ~ 0, then the optimization problem is 

feasible, otherwise the optimization problem is infeasible. The set { x : h(x) ~ 

0 } is called the feasible region. An alternative formulation for the optimization 

problem is: 

min{ f(x) : h(x) ~ 0 }. (1.14.4) 
X 

6 
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In this thesis we consider Linear Optimization Problem which corresponds 

to linear objective functions and constraints, as well as Quadratic Optimiza

tion Problem and Semidefinite Optimization Problem, which involves quadratic 

functions and positive semidefinite matrices, see Chapter 7, respectively. 

If Dis the feasible region of an optimization problem, then argmin (f(x)) 
xED 

denotes the value of x that minimizes f(x), namely, the optimal x. In case of 

non-unique optimal x, argmin (f(x)) denotes an arbitrary optimal value. The 
xED 

statement 

x* f- argmin (f(x)) (1.14.5) 
xED 

denotes the operation assigning an arbitrary optimal x value to x*. 

1.15 Real Number Arithmetic 

Baniny and Onn [7] analyzed algorithms for CCFP with both real arithmetic 

computation and rational data computation. However, we assume that real 

numbers are stored and computed exactly in the algorithm description and 

analysis presented in this thesis. Namely, we assume real number arithmetic 

instead of handling rational numbers. For example, from Section 3.1 to Sec

tion 3.3 we do not discuss rational number or floating number handling, except 

clarifying the relationship with the paper of Barany and Onn [7]. We discuss 

the efficiency of algorithms in term of arithmetic operations. Each arithmetic 

operation is one elementary operation on a scalar or a pair of scalars, such 

as a negation, addition, substraction, multiplication, division, comparison, or 

square root operation. 

On the other hand, as we use floating arithmetic to implement the algo

rithms, we discuss the handling of floating point numbers in the implementation 
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sections such as in Section 3.5. 
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Chapter 2 

Introduction 

This chapter introduces the Colourful Feasibility Problem (CFP) and the Colour

ful Caratheodory Theorem. These notions were proposed as generalizations of 

the Linear Feasibility Problem and the Caratheodory Theorem by Baniny and 

Onn [7] in 1997 and Barany [3] in 1982, respectively. 

2.1 Caratheodory Theorem and the Linear Fea
sibility Problem 

Theorem 2.1.1 (Caratheodory Theorem) Given a finite set of points S C 

JRd and a point p E conv(S), then p E conv(T) for some subset T ~ S and 

ITI ::; d + 1. 

Definition 2.1.1 (Linear Feasibility Problem) Given a finite set of points 

S = {s1 , ... , sn} c IRd and a point p, decide whether there is a subset T ~ S 

of size at most d + 1, such that p E conv(T), and find T if it exists. 

While the Linear Feasibility Problem is called "Linear Programming Prob

lem" in [7], we use a different name to avoid conflict with the definition of Linear 
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Programming in the optimization field, see [24]. We introduce and use some 

optimization models, mainly in Chapter 7. The Caratheodory Theorem states 

that, if p E conv(S), then the corresponding Linear Feasibility Problem is fea

sible, i.e., has a solution T. The Linear Feasibility Problem can be formulated 

as a special case of the Linear Optimization Problem: 

min{ cT xI Ax= b; x 2:: 0} (2.1.1) 
X 

where x is the vector variable, c is the vector representing the linear objective 

function, and A is a matrix representing the linear equality constraints. To 

solve a Linear Feasibility Problem, we can formulate a Linear Optimization 

Problem with: 

(2.1.2) 

and c set to any proper length vector. Pivoting algorithms, see [30], find a 

solution x with at most d + 1 positive elements. With c not perpendicular 

to any edge of the feasible region, interior point methods also find a feasible 

solution x. The positive elements of x correspond to the selected points from 

s. 
Linear Optimization is a well studied area with a wide range of applica

tions, and goes back at least till Danzig's paper in 1948, see [9]. The Linear 

Feasibility Problem is a special case of the Linear Optimization Problem, see 

[8] and [12] for results dedicated to this specific instance. 

10 
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2.2 Colourful Feasibility and Colourful Core 
Feasibility Problems 

For the Linear Feasibility Problem, the elements of S have no attribute to 

distinguish one from the other besides the coordinates. 

With, for each point except p, an additional attribute, called the colour 

and indexed by 1 ... k, the points can be partitioned into k + 1 sets 8 1 , ... , Sk. 

The Colourful Feasibility Problem (CFP) was introduced by Baniny and Onn 

[7] in 1997 in the following form: Given k sets 8 1 , ... , Sk of points in JRd and a 

point p E JRd, decide if there is a set T = { t 1, ... , tk} such that p E conv(T), 

and ti E Si for all i; and, if such aT exists, find one. 

The CFP is clearly a generalization of the Linear Feasibility Problem as 

a Linear Feasibility Problem in JRd can be formulated as a CFP by setting 

k = d + 1 and sl = 82 = ... = sk. 
We define the core of a CFP as n7=1 conv(Si), and a CFP is a Colourful 

Core Feasibility Problem (CCFP) ifp is in the core. Baniny and Onn [7] proved 

that a CCFP is NP-Complete fork= d. For CCFP with k = d + 1, Baniny 

and Onn [7] commented that it is "an outstanding problem on the border line 

between tractable and intractable computational problems" as they proposed 

efficient algorithms (reviewed in Chapter 3) contrasting the complexity result 

for the case of k = d. Note that if CCFP with k = d + 1 is polynomially 

solvable, then CCFP with any k > d + 1 is polynomially solvable. Assume 

that CCFP with k = d + 1 is polynomially solvable and we are given a CCFP 

problem with k = d + 2. We can obtain an artificial CCFP problem with 

k = d + 1 by removing a colour from the original problem, find a solution for 

artificial problem in polynomial time, then obtain a solution for the original 

11 
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problem by adding an arbitrary point from the removed colour to the found 

solution. Since Baniny and Onn [3] proved that a CCFP with k = d + 1 is 

always feasible, the above method will not yield an infeasible artificial problem. 

Without loss of generality, we make the following assumptions for CFP: 

• p = 0 (up to translation); 

• p ¢:. si for all i (otherwise we have a trivial solution); 

• Vi#j(Si n Sj = 0) (up to removing duplicates); 

• VNsESi(llsll = 1) (with p = 0, the membership of p to a convex hull is 
independent from scaling with positive coefficients). 

In addition, we assume that the CFP satisfies: 

• k = d + 1; 

• Vl:'Si:'Sk(ISil = d + 1). 

Note that fork= d+ 1, a solution T represents the simplex conv(T). Assuming 

that lSi I = d + 1, we investigate the effect of the dimension don the running 

time of the algorithms. Barany [3] proved that a CCFP is always feasible if it 

satisfies the above two conditions. As Linear Feasibility Problem solvers could 

be used to reduce the size of lSi I to at most d + 1, we can assume without loss 

of generality that lSi I = d + 1 for a CCFP with d + 1 colours. We also assume 

that lSi I = d + 1 for general CFP in order to be able to benchmark different 

algorithms. 

Definition 2.2.1 (Colourful Feasibility Problem) Given d+1 sets 8 1, ... , 

sd+l c §d such that ISil = d + 1 for all i, decide if there is a set T = 

{t1 , ... , td+1 } such that 0 E conv(T) and tiE Si for each i. 

12 
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Definition 2.2.2 (Colourful Core Feasibility Problem) Colourful Feasi

bility Problem with 0 E n1~f conv(Si)· 

Let S denote l:J1~f Si and call it a colourful configuration. It is still not 

known whether a polynomial-time algorithm to solve CCFP exists and, while 

not providing an answer to this question, we: 

• discuss algorithms to solve CFP in Chapter 3 to Chapter 7; 

• describe the random case generators used to test the algorithms in Chap
ter 8; 

• provide the test results in Chapter 9; 

• show a parity property and a lower bound for the number of solution of 
CCFP in Chapter 10. 

13 
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Chapter 3 

Barany-Onn Algorithms 

This chapter reviews two geometric algorithms for the Colourful Core Feasi

bility Problem (CCFP) proposed by Baniny and Onn [7], our implementation 

techniques and the corresponding complexity results. The convergency and ef

ficiency proofs (Propositions 3.1.1, 3.1.2 and 3.1.3) originate from Barany and 

Onn [7], and the following parts are our contributions: 

• the geometric and algorithmic features, see Propositions 3.2.4 and 3.2.5, 

• the complexity result for the general position, see Proposition 3.2.6, 

• the discovery of an oscillation phenomenon, see Section 3.3. 

Chapter 4 introduces a variant of the algorithms reviewed in this chapter which 

achieves a robust time performance as shown in Chapter 9. 
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3.1 First Barany-Onn algorithm 

Algorithm 1: Solver-Baniny-Onn-1 
Input: S 
Output: T 

1 begin 
2 initialize T = { t 1, ... , td+I} such that ti E Si fori= 1, ... , d + 1 
3 while 0 ~ conv(T) do 

p +--- argmin (lltll) 
4 tEconv(T) 

5 Find an i such that p E conv (T \ { ti}) 
ti +--- argmin (tT p) 

6 tES; 

1 end 

The following proposition warranties that line 5 can always be executed, 

i.e., the algorithm keeps on replacing one point from T until 0 E conv(T). 

Proposition 3.1.1 For 0 ~ conv(T) and p on the boundary of conv(T), 

Solver-Baniny-Onn-1 can always find an index i E {1, ... , d + 1} such that 

p E conv(T \ { ti}). If conv(T) is degenerate, all the points are considered to 

be on the boundary. 

Proof: For 0 ~ conv(T), pis the point of minimum norm on the boundary of 

conv(T). We have two subcases depending on conv(T) being full dimensional 

or degenerate. If conv(T) is full dimensional, the system of equations 

[ 
t1 ·· · td+l ] X = [ 0 ] 
1 ... 1 1 

(3.1.1) 

has a unique solution x with at least one zero coordinate Xi since p is on the 

boundary of conv(T). Then an index i corresponding to a zero element of x 

satisfies p E conv (T \ {ti} ). If conv(T) is degenerate, TU{p} can be embedded 
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into a lower dimensional space, and a Linear Feasibility Problem solver can find 

the proper i, see Section 2.1. 0 

Note that the algorithm convergence rate depends on the maximum radius 

0 :::; p :::; 1 of a ball inside the core. 

Proposition 3.1.2 Consider one iteration of Solver-Baniny-Onn-1, and let 

• T and T be the values ofT before and after the iteration, and 

• p = argmin (iit\1), 
tEconv(T) 

then a point v E conv(T) can be found, such that: 

\lv\1 2
:::; (1- p2)\lp\1 2 if p > 0, 
1 

> 1 + 1 
zf p = 0. 

llvll 2 
- IIPII 2 

(3.1.2) 

(3.1.3) 

Proof: As the case d = 1 is trivial, we assume that d ~ 2. Let ti be the 

point found at line 6 of the iteration, and v = proj(O), then v satisfies the 
[p,ti] 

proposition. Since 0 E conv(Si) and ti is obtained from Si by minimizing the 

dot product with p, we have tf p :::; 0 which implies that the angle between ti 

and p is at least 90 degrees. Therefore v lies in the line segment [p, ti], and 

therefore v E conv(T) since both p and ti are in conv(T). Let w be the point 

in the opposite direction of p such that conv(p, w, ti) is a right triangle. We 

have llwll ~ p and the points ti, p, w, v and 0 are in the same 2-dimensional 

plane, see Figure 3.1. 

The two triangles conv(p, v, 0) and conv(p, w, ti) have identical angle 

sizes and proportional edge lengths. Therefore we have: 

llv\1 Jlltill 2
- llwll 2 

IIPII V(IIPII + llwll) 2 + (11till 2
- llwll 2 ) 

(3.1.4) 
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Figure 3.1: The points ti, p, w, v and 0 in a 2D subspace 

that is, since lltill = 1, 

(3.1.5) 

that is, since llwll ~ p, 

llvll2 1- p2 
IIPII 2 ::; IIPII 2 + 2pllpll + 1. (

3
.1.

6
) 

For p > 0, it yields inequality (3.1.2) and, for p = 0, inequality (3.1.3). D 

that: 

Under the conditions of Proposition 3.1.2, Barany and Onn [7] proved 

(3.1.7) 

(3.1.8) 

The differences with the inequalities (3.1.2) and (3.1.3) result from Barany 

and Onn's assumption that 1 ::; lltill ::; 2 (for compatibility with rational 

number computation) instead of lltill = 1. Despite the differences, both [7] and 

Proposition 3.1.2 imply the same upper bound on the number of iterations to 

get conv(T) E-close to 0. 
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Proposition 3.1.3 Solver-Baniny-Onn-1 needs at most 0 (;2 log~) (if p > 

0) or 0 c;) (if p = 0) iterations to get conv(T) E-close to 0. 

Proof: We prove this proposition assuming inequalities (3.1.2) and (3.1.3). 

The method to prove this proposition assuming inequalities (3.1.7) and (3.1.8) 

is similar and is left to the readers. Let p0 be the point of minimum norm in 

conv(T) right before the first iteration and Pi be point of minimum norm in 

conv(T) right after the ith iteration. From inequalities (3.1.2) and (3.1.3) we 

obviously have 

(3.1.9) 

(3.1.10) 

The case p = 1 is trivial. If 0 < p < 1, as obviously IIPoll ~ 1, from 

inequality (3.1.9) we obtain 

(3.1.11) 

To make IIPill ~ E, we only need 

-2log l 
i ~ log1_p2 ( E

2
) = l ( E2 ) og 1- p 

(3.1.12) 

Then we can expand log (1 - p2 ) and obtain 

- 2log 1 2log 1 ( 1 1 ) 
i > E < E = 0 - log - . 

- oo ( p2k ) - p2 p2 E 

-2:: k 
k=l 

(3.1.13) 

If p = 0, by summing up inequality (3.1.10) from i = 1 to k, we obtain 

1 1 

11Pkll 2 ~ k + IIPoll 2 ~ k. 
(3.1.14) 
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If k = ~ then from inequality (3.1.14) we have //Pk// :::; E, so the proposition is 

proved. 0 

Figure 3.2 illustrates Solver-Baniny-Onn-1 convergence. 

c c 

\, 

\bd 

9 
b 

/ 
/ 

(a) (b) 

Figure 3.2: A sample iteration of Solver-Barany-Onn-1 
The shapes 0, D and 6 stand for different colours. (a) and (b) show two states of the 
algorithm in the same iteration. The triangles connecting three colourful points represent 
the selection of T in those states. Pi denotes the point of minimum norm at the end of the 
ith iteration. One can reasonability assume i = 1 as no other initial T that leads to the state 
in (a) using Solver-Baniny-Onn-1 was found. 

(a) at the beginning of the ith iteration, T = {a, b, c} and a is to be replaced because 
Pi-1 E conv(b,c); 

(b) a has been replaced and T = {b, c, d}; v is the projection of 0 on the line segment 
[Pi-b d]; II vii < liPi-d because of triangularity (see the proof of Proposition 3.1.2 for 
details) and IIPill :-=::: llvll because v E conv(b, c, d), so II Pill < liPi-d guarantees the 
convergence. 

For the rate of convergence, see Propositions 3.1.2 and 3.1.3. 

Each iteration of Solver-Barany-Onn-1 takes a number of arithmetic op

erations polynomial to d and log:, where c: is the precision of p. We can finish 

all steps of an iteration in O(d3 ) arithmetic operations except for line 4, which 

computes p, the point of minimum norm in a simplex. Therefore we can con-
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sider this step as the time complexity bottleneck. The task of line 4 can be 

formulated as a continuous Convex Quadratic Optimization Problem (see Sub

section 3.5.4), which is in turn solvable to .s-precision in a number of arithmetic 

operations polynomial to d and log~' see, for example, Anstreicher et al. [2] 

for an interior point algorithm that takes 0 ( n 3·5 log ~) arithmetic operations, 

where n is the number of variables of the Quadratic Optimization Problem. The 

Quadratic Optimization Problem to find p (formulation (3.5.21)) has n = d+1, 

and therefore each iteration takes 0 ( ( d + 1 )3·5 log ~) = 0 ( d3·5 log ~) arithmetic 

operations. 

By Proposition 3.1.3 and the above complexity result for each itera

tion, Solver-Baniny-Onn-1 needs at most 0 ( d;;5 log~ log~) (if p > 0) or 

0 ( d:~5 log~) (if p = 0) arithmetic operations to get conv(T) E-close to 0. 

Note that the question whether the Colourful Core Feasibility Problem 

can be solved in a number of arithmetic operations polynomial to the prob

lem size is still open, primarily because this bound depends on the value of 

p, which is a geometric property of the input coordinates. In this thesis we 

consider problem size as the number of real number necessary to represent the 

problem, which is O(d3 ). In Turing machine model handling rational numbers, 

the problem size can be considered as the number of bits encoding the problem, 

which is O(d3 N), where N is the number of bits to represent a rational num

ber. We discuss the complexity only on real arithmetic model as introduced in 

Section 1.15. In case p > 0, the complexity is polynomial to the logarithmic 

of ~ and ~, which is not considered a large factor because of the logarithmic. 

However, -\ can be very large asp can get arbitrarily close to 0. In case p > 0, 
p 

the complexity depends polynomially on E~ , which can also be very large. 

21 



M.Sc. Thesis- Sui Huang McMaster-Computing and Software 

Although the complexity upper bound is polynomial to the large factors 

such as P\ and ~' we have not found any input to make Solver-Baniny-Onn-1 

achieve that upper bound. We notice that Solver-Baniny-Onn-1 does not visit 

the same T twice as after each iteration conv(T) is warranted to be closer to 

0. An alternative algorithm, Solver-Barany-Onn-2, which does not hold this 

property but has lower complexity bound on each iteration is introduced in the 

next section. 

3.2 Second Barany-Onn algorithm 

Solver-Barany-Onn-1 computes the point of minimum norm in conv(T) for 

each iteration, and this step is time-expensive. Barany and Onn [7] proposed 

Solver-Barany-Onn-2 to reduce the cost per iteration. 

Algorithm 2: Solver-Barany-Onn-2 
Input: S 
Output: T 

1 begin 
2 initialize T = {t1, ... , td+I} such that tiE Si fori= 1, ... , d + 1 
3 p- tl 
4 while 0 ~ conv(T) do 
5 Find ani such that p E conv(T \ { ti}) 

ti +--- argmin(tT p) 
6 tESi 

p +--- proj(O) 
7 [p,ti] 

s a +--- min { ,8 ,Bp E conv(T)} 
9 p+---ap 

10 end 

Solver-Barany-Onn-2 is similar to Solver-Barany-Onn-1 except that p is 
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updated according to its previous value. The following three propositions are 

the analogue of Propositions 3.1.1, 3.1.2 and 3.1.3. 

Proposition 3.2.1 For 0 tfi conv(T) and p on the boundary of conv(T), 

Solver-Baniny-Onn-2 can always find an index i E {1, ... , d + 1} such that 

p E conv(T \ { ti}). If conv(T) is degenerate, all the points are considered to 

be on the boundary. 

Proof: Identical to Proposition 3.1.1. 0 

Proposition 3.2.2 Consider one (except the last) iteration of Solver-Barany

Onn-2, and let p and E. be the values of p before and after the iteration. We 

have: 

IIE.II 2
::; (1- P

2 )II"PII 2 
if P > o, 

1 1 l"f 
IIE.II 2 ~ 1 + II"PII 2 P = o. 

Proof: Similar to the proof of Proposition 3.1.2. 

(3.2.15) 

(3.2.16) 

0 

Proposition 3.2.3 Solver-Barany-Onn-2 needs at most 0 (;2 log~) (if p > 

0) or 0 C~) (if p = 0) iterations to get conv(T) E-close to 0. 

Proof: Similar to the proof of Proposition 3.1.3. 0 

Figure 3.3 illustrates Solver-Baniny-Onn-2 convergence. 

Besides line 8, each step of a Solver-Baniny-Onn-2 iteration can clearly be 

performed in O(d3 ) arithmetic operations. Line 8 computes a scalar a pushing 

p to the boundary of conv(T) if 0 tfi conv(T), and to 0 otherwise. Barany 

and Onn [7] used the following method taking O(d4 ) arithmetic operations: 
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Figure 3.3: A sample iteration of Solver-Baniny-Onn-2 
The shapes Q, 0 and 6 stand for different colours. (a) and (b) show two states of the 
algorithm in the same iteration. The triangles connecting three colourful points represent 
the selection of T in those states. Pi denotes the point of minimum norm at the end of the 
ith iteration. One can reasonability assume i = 1 for this figure as no other initial T that 
leads to the state in (a) using Solver-Baniny-Onn-2 was found. 

(a) at the beginning of the ith iteration, T = {a, b, c} and a is to be replaced because 
Pi-1 E conv(b,c); 

(b) a has been replaced and T = {b, c, d}; v is the projection of 0 on the line segment 
[Pi-ll d]; llvll < II Pi-Ill because of triangularity and II Pill ::; llvll because Pi is obtained 
by scaling v down to the boundary of conv(b, c, d), so II Pill < IIPi-1ll guarantees the 
convergence. 

For the rate of convergence, see Propositions 3.2.2 and 3.2.3. 

Intersect the line segment [0, p] with each facet of conv(T) and find a facet 

containing ap with 0 :S a :S 1. 

For T in general position, we found a technique to compute a in O(d3 ) 

arithmetic operations. We first need the following Propositions 3.2.4 and 3.2.5. 

Proposition 3.2.4 With the following assumptions: 

1. d ~ 1; 

2. T = {t1 , ... , td+1} C JRd is in general position; 
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3. p E conv(T) and 0 tJ. conv(T); 

4. a= min{,B E (0, 1] : ,Bp E conv(T)}; 

5. for 1 :S i :S d + 1, Yi E JRd and bi E IR satisfies: 

(a) yfti = 1- bi, 

{b) y?tj = -bi if1::; j =I= i::; d + 1; 

6. for 1 :S i :S d + 1: 

{a) Hi = { x : yf x = - bi}, 

{b) Hi+= {x : yfx;::: -bi}, 

{c) Hi-= {x : yfx :S -bi}; 

7. I 0 = { i : bi = 0}, I+ = { i : bi > 0} and I- = { i : bi < 0}; 

8. T = { i : apE Hi} and I= {1, ... , d + 1} = I 0 U I+ U I-. 

we have the following properties: 

1. aff(T\ {ti}) =Hi for all1 :S i :S d+ 1; 

d+l d+l 

2. conv(T) = n Hj = n{x : yf X;::: -bi}; 
i=l i=l 

3. yf p > 0 for i E I-; 

4. T=/= 0; 

5. I- =/= 0; 

6. Tni- =1= 0. 

Proof: Property 1 holds as t1 E Hi for all1 :S j =/= i ::; d + 1 by Assumptions 

5{b) and 6{a). Property 1 states that the simplex conv(T) is bounded by 

the H/s. For each 1 :S i :S d + 1, either conv(T) E Hj or conv(T) E Hi-. 

Assumption 5{a) means that ti is in Hi+ but not in Hi-, yielding conv(T) E Hj 
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and Property 2. Property 2 and Assumption 3 imply Property 3. If I= 0, 

there is an 0 < E < min( ll~ll, a) such that the ball IBl(c, ap) is inside conv(T). 

We have (a- c) E (0, 1] and (a- c)p E IBl(c, ap) C conv(T), which contradict 

Assumption 4. Hence, Property 4 holds. If I- = 0, we have bi 2: 0 for 

1 :::; i :::; d + 1 and, by Property 2, we have 0 E conv(T) which contradict 

Assumption 3. Hence, Property 5 holds. 

There exist 0 < E <min( 11~11' a) such that IBl(c, ap) E niEI\I Hi+ and then 

(a - E )p E niEI\I Ht. For i E In I 0
' the fact that both 0 and etp are in Hi 

implies (a- c)p E Ht, ForiE In I+, (a- c)y[ p = -(a- c)bi > -bi implies 

( ) H + H ( ) nirf_InJD H+ a - E p E i . ence, a - E p E iEI i 

If we assume I n I- = 0, then (a - E )p E niEI- Ht because of the 

definition of I- in Assumption 7. This in turn implies (a - E )p E conv(T) 

contradicting the definition of a. Hence, Property 6 is true. D 

Proposition 3.2.5 With the following assumptions: 

1. d2:1; 

2. the set T = { t 1, ... , td+l} C JRd is in general position; 

[ 
yf b1 ] [ ] -1 

3 t1 .. . td+l h JRd d b 1R 
· ;.,· .. · = 1 .. . 1 , w ere Yi E an i E . 

Yd+I bd+l 

for 1 :::; i :::; d + 1, Yi and bi satisfy the following properties: 

Proof: According to Assumption 3, we have: 
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1 0 

0 

0 

0 

0 
0 1 

(3.2.17) 

By inspecting the row-column multiplication that yield the 0-1 elements on 

right hand side, one can easily check that the properties are true. 0 

Following is a method to find the minimum scalar factor that shrinks 

p to the boundary of conv(T), given that 0 (j. conv(T), p E conv(T) and 

dim(T) = d + 1. 

Algorithm 3: Shrink-Simplex-Point 
Input: T = {t1, ... , td+I}, p 
Output: a 

1 begin 

2 

3 

4 

5 

6 

[ 
yf bl l 

yr+l bd+l 

af---0 

f- [ tl ... td1+1 ] -l 
1 .. . 

for i such that bi < 0 do 

l obtain f3i by solving the equation yf(f3iP) = -bi 
if /3i ~ a then a f- /3i 

1 end 

Proposition 3.2.6 If T = { t 1, ... , td+I} C JRd is in general position, p E 

conv(T) and 0 (j. conv(T), the algorithm Shrink-Simplex-Point gives a = {/3 

f3p E conv(T)} in O(d3
) arithmetic operations. 

Proof: By Proposition 3.2.5, the y/s and b/s computed in Line 2, together 

with T and p fit the assumptions of Proposition 3.2.4. Hence, the minimum f3 
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satisfying ,Bp E conv(T) is on one of the affine hyperplanes { x yf x = -bi} 

such that bi < 0, by Property 6 of Proposition 3.2.4. 

By Property 5 of Proposition 3.2.4, the algorithm gets into the for-loop 

of lines 4-6 and find some ,Bi 's grater than 0, and the only maximum ,Bi found 

satisfies ,Bp E conv(T). Hence, the algorithm obtains 

a= min{,B : ,Bp E conv(T)}. (3.2.18) 

The complexity of Shrink-Simplex-Point is dominated by line 2, which in

verts a (d+l) x (d+1) matrix to find the defining affine hyperplanes of conv(T). 

It can be done in O(d3 ) arithmetic operations. Therefore the algorithm takes 

O(d3 ) arithmetic operations. 

T must be in general position for the algorithm Shrink-Simplex-Point, 

h . [ tl ... td+l ] . . t"bl 0 ot erwlSe 1 . . . 1 1s not mver 1 e. 

3.3 Oscillations for the Second Barany-Onn Al
gorithm 

Solver-Barany-Onn-1 does not visit the same colourful simplex represented by 

T twice. This nice property is guaranteed by its definition of p. However, 

Solver-Barany-Onn-2 does not guarantee the same property for its p. During 

the numerical experiments we found CCFP cases that let Solver-Barany-Onn-

2 visit the same sequence of T for many times with IIPII decreasing slowly, 

especially when p, the maximum radius of a ball inscribed in the core, is small. 

We call this phenomenon oscillation. When p is small, the large upper bound of 

number of iterations indicated by Proposition 3.2.3 allows Solver-Barany-Onn-2 

to oscillate for many iterations. 
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Different CCFP cases can oscillate in different ways. For example, the 

length of the sequence of oscillating T that might be different. Following is the 

description of a three-dimensional construction - which can be generalized to 

higher dimension - that causes Solver-Baniny-Onn-2 to oscillate between two 

T. We use sj to denote the jth point of the ith colour. 

1. select a small enough E > 0; 

2. t 1 , t 2 and t 3 are on an affine hyperplane that is E-close to 0; in other 
words, 0 is E-''below" aff(t1, t 2 , t 3 ); 

3. the area of conv(t1, t 2 , t 3) is large enough, and proj 0 is close to the 
aff(t1,t2,t3) 

center of conv(t1, t 2 , t3); 

4. sf and si are separated by aff(t1, t 2 , t 3 ) from 0, and they are E2-close 
to aff(t1, t 2 , t 3 ) and almost at opposite directions of each other; in other 
words, si and sf are E2 "above" aff(t1, t 2 , t 3 ) and (sf)Ts~ is close to -1; 

5. sj is a normal vector of aff(t1, t 2 , t 3 ) and "below" 0; 

6. t 4 equals to si; 

7. p E conv(t1, t2, t 3 ), IIPII » E, also the angle between p and t 2 is signifi
cantly greater than ~ and less than 1r. 

Once the execution of Solver-Barany-Onn-2 reach the above state, T os

cillates between {t1, t2, t3, t4 = si} and {t1, t2, t3, t4 = sH until liP II is as small 

as a value comparable to E. The smaller E is, the longer the oscillation. 

Example 3.3.1 (A 3D oscillation CCFP pattern) 

Constrnct the CCFP snch that it reaches the following state dnring the execu

tion of Solver-Baniny-Onn-2: 

• t, ~ [ Jl ~ ,, ] , t, ~ [ !),--::~:·.], ta ~ [ =~~ ::,::~:~ ] ; 
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[ 

o:Vl=f2 cos i l 
• p=po= o:vl-fc:2 sini wherec:«o:<l,t4=sf. 

Once the execution of Solver-Baniny-Onn-2 reaches the above state, see Fig

ure 3.4, T oscillates between t4 = sf and t 4 = s~ without replacing t 1 , t 2 and 

t 3 . It then sets t 4 = sj and quits the oscillation only when IIPII is small enough. 

If we start with t4 = p = s! and let t 1 to t 3 be the same as the above state, 

then the above state is reached at the next iteration. 

~X 
y 

0 
0----- + 

·~ ------ --- -- ------~~~~~ -i ---- --

-----0 
s1 

··· .. lJ ... 

b 
(a) (b) 

Figure 3.4: The 3D pattern of an oscillating CCFP case 
(a) is the orthographic view from [0 0 l]T. p = p 0 . p; is the value of p after another i 
iterations. Because c:2 « c:, we can approximate Pi+l as the projection of 0 on [s~, p;] if i is 
even, and on [sf, p;] if i is odd. s~ and s~ are not in this figure. (b) is a magnification of the 
central part of (a) showing the slow convergence of p. 

0 
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3.4 Oscillation Detection 

Solver-Barany-Onn-2 can oscillate, while Solver-Barany-Onn-1 will not, see 

Section 3.1. However, an iteration of Solver-Barany-Onn-2 is faster than an 

iteration of Solver-Barany-Onn-1 (at least in the currently found implementa

tion technique) so Solver-Barany-Onn-2 iterations are better in this sense. A 

way to improve the time performance is to use a hybrid algorithm: perform 

Solver-Barany-Onn-2 steps in each iteration with some detection of oscillation, 

and use a computationally heavier Solver-Barany-Onn-1 step to break possible 

oscillation. We implemented a version of the hybrid algorithm which yields 

improvement in practical performance. The test results are provided in [11]. 

However, we do not discuss this algorithm further in this thesis because 

1. Solver-Barany-Onn-1 and Solver-Barany-Onn-2 algorithms already intro

duced the geometric idea of the convergence rate of the steps; 

2. we have not investigated an efficient and reliable ways of detecting oscil

lation, except using a fixed length, say 10, buffer to keep a certain length 

of history ofT, and compare the value ofT with those in buffer at each 

iteration; 

3. according to the current stage of algorithm development for CCFP, we 

want to achieve theoretical improvements (such as getting algorithms with 

lower big-0 complexity), but the hybrid algorithm does not seems to yield 

one; 

4. the geometric structure is exploited in Chapter 4 and an algorithm is 

designed on top of Solver-Barany-Onn-1, such that both the number of 
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iterations and the running time are significantly improved, and without 

oscillation; 

As the practical performance becomes important, the oscillation detection can 

become important. In particular two problems need to considered: 

• how to detect oscillation efficiently and reliability; 

• how to distinguish long oscillations from short oscillations (i.e., oscilla

tions less than 10 rounds), so the algorithm can ignore short oscillations. 

3.5 Implementation 

This section describes some implementation details of algorithms Solver-Baniny

Onn-1 and Solver-Barainy-Onn-2, including the data structures and the sub

routines used to achieve the best-effort efficiency. Since the algorithms are 

implemented in MATLAB language, knowledge of MATLAB is assumed fo 

this section. The source code of the algorithms in this thesis is available at 

[14]. 

3.5.1 Input Data 

We use a pair of matrix variables named Pts and ColorParti tion together 

to represent a configuration S. Each column of Pts holds the coordinates of a 

point from S, and the columns arrange in the way that the points with smaller 

colour indices have smaller column indices than those with larger colour indices. 

ColorParti tion is a vector matrix of length d + 1, and its ith element tells 

the number of points in Si. 
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Example 3.5.1 (Input Data Representation in 2D) 

The data 

• S1 = { [ ~:~ J , [ ~ J , [ =~:~ J } , and 

{ [ 
-1 ] [ -0.3 ] [ 0.3 ] } • s2 = 0 ' 1 ' 1 ' and 

• 83 = { [ 0~1 ] ' [ ~~ ] ' [ o\ ] } 
can be represented in MATLAB by running the following code: 

Pts = [0.5 1 

0.5 0 

-0.5 -1 

-0.4 0 

ColorPartition = [3 3 3]; 

-0.3 0.3 5 -6 1; ... 

1 1 0.1 0.2 0.5]; 

3.5.2 Numerical Tolerance 

D 

Our implementations of algorithms use double precision floating point num

bers to approximately represent numbers in IR, and the arithmetic operations 

introduce round off errors, which need some way tolerate. We define a vari

able named TOLERANCE holding a small positive value in our program, then any 

number with magnitude less than can be considered zero. Typically we set 

TOLERANCE to 10-8 or 10-12 . 

An example of using TOLERANCE at each iteration is when selecting a ver

tex from T to be replaced. Mathematically, if Ai = 0 then ti can be replaced 

(see Subsection 3.5.5). However, because of the numerical error, the computed 
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floating point representation of Ai will usually not exactly be 0 even if, math

ematically, it should be. Therefore, our implementation treats Ai as 0 if the 

magnitude of its computed floating representation is less than TOLERANCE. 

3.5.3 Testing whether a Simplex Covers a Point 

In our algorithms we need to check whether 0 E conv(T) in each iteration. Our 

implementation works as follows: 

First invoke linsolve function in MATLAB to solve the linear system 

[ 
t1 ··· td+l l X = [ 0 l 
1 ... 1 1 

(3.5.19) 

and linsolve returns a solution x and detect whether the linear system is 

well-conditioned at the same time. If the linear system is well-conditioned then 

we use the returned x to decide whether 0 E conv(T). If the linear system is ill

conditioned then use the linprog function in MATLAB Optimization Toolbox 

to solve the following Linear Optimization Problem with variable x: 

mm 

s.t. (3.5.20) 

X 2:: 0. 

If 0 E conv(T), then the above problem is feasible and linprog returns a solu

tion, otherwise linprog will indicate infeasibility, which means 0 ~ conv(T). 

When T is in general position, it takes O(d3 ) arithmetic operations to 

check whether 0 E conv(T); when Tis degenerate, linprog is invoked to find 

a feasible solution with acceptable performance. 

34 



M.Sc. Thesis- S'ui Huang McMaster-Computing and Software 

3.5.4 Finding the Minimum Norm Point in a Simplex 

In the implementation of Solver-Baniny-1, we use the quadprog function in 

MATLAB Optimization Toolbox to solve the following Convex Quadratic Op

timization Problem with variables ..\1, ... , >.d+l: 

mm L >.i>.jtftj 
l:Si,j :Sd+l 

s.t. L >.i = 1 
l:Si:Sd+l 

>.i 2:: 0 for 1 ::; i ::; d + 1. 

(3.5.21) 

Let >.i, ... , >.d+l be the optimal solution, then the point in conv(T) with mini-

mum norm is, 

(3.5.22) 

3.5.5 Selecting a Vertex to be Replaced 

The algorithms introduced in this chapter need to select a colour index i such 

that p E conv(T \ {ti}) for a point p on the boundary of conv(T). Then the 

point ti E T is replaced. 

For Solver-Barany-Onn-1, p is the point of minimum norm in conv(T). 

When we obtain an optimal solution >.i, ... , >.d+l offormulation (3.5.21) to find 

p, any i such that >.; = 0 can be selected. If conv(T) is degenerate, we may 

have >.; > 0 for all i's. In that case we use the linprog function to test the 

colour indices, with a method similar to Subsection 3.5.4, and find an i such 

that p E conv(T\ {ti}). 

In the implementation of Solver-Barany-Onn-2, i is also selected when 

computing p if Tis in general solution: while Shrink-Simplex-Point is used to 

compute a, the index i such that a = f3i can be selected. If T is degenerate, 
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the colour indices are tested in the same way as Solver-Barany-Onn-1. 
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Chapter 4 

Multi-Update Algorithm for 
Colourful Core Feasibility 
Problem 

In the algorithms Solver-Ba.niny-Onn-1 and Solver-Baniny-Onn-2 (from Chap

ter 3) solving the Colourful Core Feasibility Problem (CCFP), the point p is 

updated until 0 E c:onv(T). The fact that IIPII is reduced after each update 

proves that the algorithms convergence and we can consider p as the conver

gence indicator of Solver-Barany-Onn-1 and Solver-Barany-2. To improve the 

time performance of an algorithm, one can consider whether the convergence 

indicator can be reduced faster. In this chapter we introduce such an algo

rithm, which is based on Solver-Barany-Onn-1 and Solver-Barany-Onn-2, but 

attempts to reduce p more frequently. 

4.1 Multi-Update Algorithm 

Each iteration of Solver-Barany-Onn-1 and Solver-Barany-Onn-2 selects a colour 

i such that ti can be replaced, and we can consider ti to be a replaceable point 
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of the iteration. These two algorithms replace one replaceable point at each 

iteration, and with each replacement IIPII is reduced by a bounded factor, see 

Propositions 3.1.2 and 3.2.2. 

When p is in a k-dimensional face of conv(T), the number of replaceable 

points in this iteration is d - k, therefore, for some iteration, we may find 

multiple replaceable points corresponding to a k < d - 1 dimensional face. To 

speed up the convergence of algorithm, we studied whether there is a method to 

replace all replaceable points at each iteration, while having each replacement 

reducing IIPII by a bounded factor. The answer is yes, and such an algorithm 

follows: 

Algorithm 4: Solver-Multi-Update 
Input: S 
Output: T 

1 begin 
2 initialize T = {tl, ... , td+I} such that tiE si fori= 1, ... , d + 1 
3 p +-- tl 
4 while 0 rf. conv(T) do 
5 if dim(T) = d then 
6 L I generate +-- { i : p E conv(T \ { ti})} 

7 

8 

9 

10 

11 

12 

13 end 

else 
L let I generate = { i} such that p E conv(T \ { ti}) 

for i E !generate do 

l ti +-- argmin(prt) 
tES; 

p +-- proj(O) 
[p,t;] 

p +-- argmin (lit II) 
tEconv(T) 

Solver-Multi-Update diffs from Solver-Baniny-Onn-1 and Solver-Baniny-
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Onn-2 as it might replace multiple points in T between two consecutive com

putations of minimum norm point in conv(T). 

Similar to the algorithms from Chapter 3, we have the following proposi

tions to guarantee that a colourful simplex E-close to 0 can be obtained in at 

most 0 (:2 log~) (if p > 0) or 0 c~) (if p = 0) inner-iterations, where pis the 

maximum radius of a ball inside the core. 

Proposition 4.1.1 If 0 ~ conv(T) and p is on the boundary of conv(T) (in 

case conv(T) is degenerate, all points on it are considered to be on the bound

ary), then !generate =/= 0 and there exist a method to find it. 

Proof: The proof of !generate=/= 0 is identical to the proof of Proposition 3.1.1. 

The proof of existing method to find !generate is also the same as for Proposi

tion 3.1.1, except putting all possible i into !generate if Tis in general position. 

0 

Proposition 4.1.2 For an arbitrary, except the last, inner-iteration of Solver

Multi- Update, let p and p be the values of p at the beginning and the end, 

respectively. We have: 

Proof: Similar to the proof of Proposition 3.1.2. 

(4.1.1) 

(4.1.2) 

0 

Proposition 4.1.3 Solver-Multi-Update needs at most 0 (;2 log~) (if p > 0) 

or 0 c~) (if p = 0) inner-iterations to get conv(T) E-close to 0. 
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Proof: Similar to the proof of Proposition 3.1.3. 0 

Proposition 4.1.2 states that each replacement of a point in T reduces 

IIPII, and the reduction rate has the same lower bound as an iteration of Solver

Baniny-Onn-1 and Solver-Barany-Onn-2. It is remarkable that Solver-Multi

Update does not have two outer-iterations ending up with the same T, as for 

to Solver-Barany-Onn-1. 

Figure 4.1 illustrates Solver-Multi-Update convergence. 

4.2 Implementation 

As the Solver-Multi-Update is based on the algorithms from Barany and Onn 

[7], its implementation is also similar. All the implementation methods from 

Section 3.5 also apply to the implementation of Solver-Multi-Update. In addi

tion, a sorting method is used to reduce the numerical error. 

4.2.1 Accumulation of Numerical Errors 

We use double precision floating point arithmetic to represent real numbers in 

the implementation of the algorithms. Almost all the arithmetic operations, 

such as addition and multiplication, bring in either truncation or round-off 

errors. 

The coordinates of the colourful points are the inputs to the algorithm 

implementations and we can consider them to be exact and have no numerical 

error. Any data computed directly or indirectly from the coordinates by arith

metic operations can have error. Assume x is the piece of data that we start 

with, and we want to apply the real arithmetic functions f1, f2 , ... , fn on it 

to obtain fn(fn_ 1 ( ... (f1 (x)) ... )). Assume fi is the actual implementation of fi for 
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each i, and Ei is the corresponding upper bound of relative error. Therefore, as 

a worst case, the computed result can become, 

n 

fn(fn-l( ... (fl (x)) ... )) = fn(fn-l( ... (fi(x)) ... )) ·II (1 + Ei)· (4.2.3) 
i=l 

The numerical error may accumulate as the error caused by f1 , f2 , ... , t may 

propagate to fi+I· 

In Solver-Multi-Update, the update of point p in each inner-iteration is 

based on its previous value, so the variable representing it in our implementation 

has accumulating numerical error during the executions. The implementations 

of Solver-Baniny-Onn-1 and Solver-Barany-Onn-2 also accumulate numerical 

error on p, but the effect is not as significant as Solver-Multi-Update. 

4.2.2 Improving Numerical Sum by Sorting 

Let a and b be the floating representation of two real numbers, and a is much 

larger than b in magnitude, let's say lal > 106 lbl. Let c be the result of 

applying floating point addition on a and b. Then the bnumerical error is 

caused by discarding the end significant digits of b during the addition. Without 

considering whether floating point addition is commutative, from the following 

example we can notice that summing up a list of floating numbers in different 

orders makes difference. 

Example 4.2.1 (Improving Numerical Sum by Changing Order) 

ao, a1, ... ,a100 are double precision floating point numbers. a0 represents 1, and 

a1 to a10o all represent 10-16
. If we sum them up in the order of a0, a1, ... ,a10o, 

then the result has no difference with 1. However, if we sum up a 1 to a100 
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before adding a0 to the final sum, we have a result larger than 1, which is more 

accurate. 

Following is the test result with MATLAB: 

>>A= ones(1,101); 

>> A(1,2:101) = 10-(-16); 

>> disp(sum(A)-1); 

0 

>> disp(sum(A(1,2:101))+A(1,1)-1); 

9.9920e-015 

0 

The heuristic we applied to improve the numerical sum for a list L of 

floating numbers is: partition L into L + and L-, such that L + contains all 

non-negative numbers from L, and L- contains the rest. Then we sort the lists 

£+and L-. Next, a+ and a- are obtained by summing up the numbers in£+ 

and L- in increasing order of magnitudes, respectively. The last step is to sum 

up a+ and a- to obtain the numerical sum of numbers in L. 

There are some drawbacks to this heuristic. First of all, we do not have a 

warranty telling how good this method is. Especially we do not know whether 

there this heuristic may yield a worse result for some configuration. Secondly, 

this heuristic increases the time cost of summing up n numbers from O(n) to 

0( n log n) arithmetic operations because of the sorting. Therefore it is used 

only in the implementation of Solver-Multi-Update so it does not increase the 

overall big-0 complexity, i.e., used only for non-bottleneck steps. 
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There are sophisticated algorithms to sum up n floating numbers in O(n) 

time with proven accuracy, see [28] and [29]. Though accurate summation is 

not the most essential part of our project (we are currently only using the 

simple heuristic), we should mention these sophisticated algorithms. 
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Figure 4.1: A sample iteration for Solver-Multi-Update 
The shapes Q, D, 6 and 0 stand for different colours. (a), (b) and (c) show different states 
of the algorithm in the same iteration, and the simplex in each of them represents t he initial 
selection ofT. Only t he points involved in this iteration, i.e., the points in Tor to be inserted 
to T, are displayed. p 0 denotes the convergence indicator p at the beginning of the iteration. 
p 1 and p 2 are the values of p after incrementally replacing points in T. One can reasonability 
assume t his figure illustrates t he first iteration as no other initial T t hat leads to the state 
(a) using Solver-Multi-Update was found. 

(a) the algorithm starts with T = {a, b, c , d} where b and c are to be replaced because 
Po E conv(a, d) ; 

(b) b has been replaced with e and T becomes {a, c , d , e }; p 1 is the projection of 0 on 
the line segment [Po , e] ; 

(c) c has been replaced with f and T becomes {a, d , e, f} ; p 2 is the projection of 0 on 
t he line segment [Pl , f]; because IIP2II < II P1 II < IIPoll (triangular inequalities) and 
p 1 , p 2 E conv (a, d , e , f) , conv(a, d, e, f) is closer to 0 than conv (a, b , c, d ). 
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Chapter 5 

Two Alternative Algorithms 

In this chapter we introduce alternative algorithms for the Colourful Feasibil

ity Problem (CFP). Solver-Max-Volume using effective but simple geometric 

heuristic is implemented to compare the performance with other algorithms, 

and Solver-Random-Pick is primarily used to check the density of feasible so

lutions, i.e., the number of colourful simplices containing 0. 

5.1 Volume of a Simplex 

The volume is the amount of space an object occupies and is applied to 3-

dimensional space. The generalization of volume to higher dimensions is called 

content or hyper volume but we simply use the term volume. If T = { t 1, ... , td+l}, 

the volume of the d-dimensional simplex conv(T) can be computed by the clas

sic, see O'Rourke [20], formula: 

(5.1.1) 
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5.2 Max-Volume Algorithm 

The algorithms in the previous chapters are based on the following general idea: 

Keep updating the vertices of a colourful simplex until it covers 0. They use a 

point p inside the colourful simplex to help finding new vertices. How about 

other rule to find new vertices? 

A simple idea to start with: A subset B of Iffid has a larger probability 

to cover 0 if its volume is larger, without considering the other factors such as 

the shape and continuity of B. Consider two subsets B 1 and B 2 of Iffid, and we 

are told that vol(B1 ) > vol(B2 ) but nothing else, then we are asked to chose 

the subset that is more likely to cover 0. We chose B 1 because its probability 

to cover 0 is :~~i:~j, which is larger than that of B 2 . Based on this simple 

idea, we made a rule to select a vertex that generates a simplex of largest 

volume in each iteration, compared to other possible vertices. The algorithm 

Solver-Max-Volume is using this rule. 

For simplices with all the vertices on §d, we can easily find small volume 

ones covering 0, as well as relatively larger ones that not covering 0. This 

means the rule can be misleading in some cases. However, we implemented 

Solver-Max-Volume using this rule and tested it in Chapter 9 with different 

input to evaluate its average performance. 
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Algorithm 5: Solver-Max-Volume 
Input: S 
Output: T 

1 begin 

McMaster-Computing and Software 

2 initialize T := {t1 , ... , td+I} such that tiE Si fori= 1, ... , d + 1 
3 while 0 rt conv(T) do 
4 if dim(T) = d then 
5 L !candidate +-- { i : 0 is separated from ti by aff(T \ { ti})} 

6 else 
7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 end 

L Let !candidate contain a random element in {1, ... , d + 1} 

v* +-- 0 
for i E !candidate do 

s +-- argmin dist (t, aff (T \ { ti})) 
tES; 

Ti,s +-- (T U { S}) \ { ti} 
v +-- vol ( conv (Ti,s)) 
if v 2 v* then 

l i* f- i 
sx f- s 

v* +-- v 

Proposition 5.2.1 When 0 rt conv(T) and dim(T) = d, Solver-Max- Volume 

can always obtain I candidate =/= 0 if the input is a CCFP. 

Proof: results 2 and 5 of Proposition 3.2.4 shows that !candidate =/= 0, and 

Proposition 3.2.5 shows that !candidate can be computed. 0 

The time cost of each outer-iteration in Solver-Max-Volume is up to O(d4 ), 

because !candidate can contain no more than d+ 1 colours and computing the vol

ume for each colour (line 12 of the Solver-Max-Volume pseudocode) costs O(d3 ) 

time. One advantage of Solver-Max-Volume: no accumulation of numerical er-
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ror (see Subsection 4.2.1) between each outer-iterations as for each iteration 

it computes the simplex volumes base on point coordinates but not computed 

results from the previous outer-iterations. Solver-Max-Volume can solve most 

of the CCFP cases during the test. However, it has some drawbacks: 

• the idea of using simplex volume is not relevant for degenerate configu
rations (zero volumes); 

• there is no convergence proof even for general position CCFP. 

The Symbolic Math Toolbox under MATLAB was used to verify, using 

exact computation, that Solver-Max-Volume cycles for the input shown in Ex

ample 5.2.1 from Deza, et al. [11]. 

Example 5.2.1 (A 4D cycling example for Solver-Max-Volume) 

points in 81: 

[ 

17/15~6 l [ 
4/29 

- v' 4238906046 
66352 

[ 
~j~i~ l 
-1/75 

- 7v'25600756871 
1123950 

points in 82 : 

[ 
3/85 

-1/67 
1/173 

;/29008089867051134 
170445655 

[ 
-1/114 

l -24/185 
7/85 

v'125498719055 
358530 

points in 83 : 

-8/65 1/89 l [ 
1/961 

v=3o"'4""""34""5=52=8o=5=95""""1 
5559385 

-;~~~0 l [ ~%~8 l 
-8/191 1/40 

v'""'11'""'3"""'6o=29i-;6""5o=2=73""'7"'43""9 _ v'69789743 
107254140 31640 

][ -5/71 ][ 
8/45 

][ 
3/88 

l 1/10 -38/155 -2/131 
-2/101 1/95 3/53 

- v'5063381959 2v'159502559 5v'14863381455 
71710 26505 610984 

48 



M.Sc. Thesis- Sui Huang McMaster-Computing and Software 

l -3/77 ] l 4/141 Jl 3/22 Jl 16/111 

l -3/20 -4/63 -3/17 5/29 
-2/71 -3/173 -5/79 -1/210 

- v'470161115387 8v'122080034994545 - y826050579 -y48208184671 
694309 88619769 29546 225330 

l 
-3/46 

l 3/47 
1/33 

v'5043188147 
71346 

points in S4 : l 1/59 Jl 6/151 

Jl 
8/45 Jl -3/29 Jl 11/76 

1/29 -1/122 -7/32 4/43 -1/8 
3/56 1/536 8/97 -1/14 9/59 

25v'14625287 v'554855708771634695 y17827555751 - v'297327743 v'75612155 
95816 745501496 139680 17458 8968 

points in s5: 

l ~~~~~ ll -~)~~4 ] l !:g~4 ll -;~~~~
5 l 1/53 2/9 13/142 1/4386 

- 5v'~12""0::;cll;n2"'10~6""86"'45""0""21,..,4"'62"'8=91 - v'8432767415 - v'57852799351 - v'74312211919 
173320847963 94428 247364 285090 

[ JHJ: ] 
v'50998516979 

226300 

l 

The initial simplex is taken to be ( 1, 1, 1, 1, 1), z. e., the first point of each 

colour. The algorithm proceeds to visit simplices (1, 1, 4, 1, 1), (3, 1, 4, 1, 1), 

(3, 1, 4, 3, 1), (3, 1, 1, 3, 1) and (1, 1, 1, 3, 1) before returning to the original sim

plex and repeating. At steps one, three and five, there are two candidate colours 

for pivoting, the candidates that are not chosen for pivoting are 1, 3 and 4 

respectively. For the even numbered steps there is a single candidate colour for 

pivoting. 

0 
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5.3 Random-Picking Algorithm 

We implemented a simple guess-and-check algorithm where we sample colourful 

simplices randomly until we find one that covers 0. This algorithm can be used 

for general CFP. 

Algorithm 6: Solver-Random-Pick 
Input: S 
Output: T 

1 begin 
2 initialize T = { t 1 , ... , ta+1} such that ti E Si fori= 1, ... , d + 1 
3 while 0 ¢:. conv(T) do 
4 l for i E { 1, ... , d + 1} do 
5 L ti rv si 

6 end 

We would not expect Solver-Random-Pick to find the solution efficiently 

in general cases. However, as discussed in [10], feasible solutions to a given 

CFP (or its special class, CCFP) case may not be all that rare, and in some 

cases can be quite frequent. Since guessing and checking are relatively fast 

operations, it is worth considering the possibility that this naive algorithm 

may perform well in special cases or low dimension. 

Solver-Random-Pick has another special usage: to detect the average den

sity of feasible solution of a class of cases. We implement random case gen

erators, both for CCFP and general CFP cases. The output from some of 

these generators should have restricted numbers of feasible solutions. Solver

Random-Pick can be used to test these generators, see Chapter 8. 

50 



Chapter 6 

Enumeration with geometric 
Heuristic for General Cases 

The algorithms we discussed in the previous chapters, except Solver-Random

Pick, are all designed for the Colourful Core Feasibility Problem (CCFP). 

However, CCFP is only a special class of the Colourful Feasibility Problem 

( CFP). In this chapter we propose an algorithm to solve the general CFP. 

6.1 Enumeration Framework 

For the CFP cases with d + 1 colours and d + 1 points in each colour, a simple 

generic enumeration algorithm is to enumerate and test each T = { t 1, ... , ta+I}, 

until we find aT such that 0 E conv(T), or all possible Tare tested. Note that 

ti E Si for each i = 1, ... , d + 1. 

For an infeasible CFP case, all the (d + l)d+1 combinations have to be 

tested. We currently need 0 ((d + l)d+ld3 ) arithmetic operations to do that. 

For a feasible CFP case, the number of colourful simplices covering 0 can 

also be as low as 1 and that many arithmetic operations are still expected. 

For a CCFP case, Barany and Matousek [5] and Stephen and Thomas [25] 
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independently proved that there are at least O(d2
) feasible solutions. In Deza, 

et al. [11], a kind of CCFP cases only having d2 + 1 feasible solutions was 

proposed, see Chapter 10. Therefore, we expect 

(6.1.1) 

arithmetic operations to get a solution if the colourful simplices are tested in 

arbitrary order. Hence, the performance of enumeration algorithm without 

well-selected enumeration order are not acceptable. 

On the other hand, some geometric heuristic can help. For example, if 

a simplex has its vertices spread away from each other, then intuitively it has 

higher chance to cover the 0. However, this kind of heuristic does not seem to 

guarantee convergence. 

We combine the enumeration and geometric heuristic together to obtain 

the following generic algorithm. 

For a CFP case represented by S, we call each set T = {t1 , ... , td+I} with 

ti E Si a transverse. This definition of transverse is not exactly the same as 

Barany and Matousek [5], but has a similar flavor. Let V be a set of colourful 

points, we use T(V) to denote the set of transverses generated by V, which 

means, the set of transverses with all points from V. For example, T(S) is a 

set of (d + 1)d+1 transverses. We use Vi to notate V n Si. If Vi = 0 for any i, 

then T(V) = 0. 
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Algorithm 7: Solver-Enum 
Input: S, r 
Output: T 

1 begin 
2 w +-- 0 
3 u +-- s 
4 while U =f. 0 do 
s {V, U} +-- f(U) 
6 forTE r(V) do 
7 L if 0 E conv(T) then return 

s forTE r(W U V) \ (r(W) U r(V)) do 
9 L if 0 E conv(T) then return 

10 W+-WUV 

n end 

We can consider r as a subroutine using some algorithm to select points 

that are "likely" to generate a transverse T such that 0 E conv(T). Let its 

input/output interface be 

(V, uout) +-- r(U). (6.1.2) 

For the convergence and effectiveness of Solver-Enum, we require r to satisfy 

the following conditions: 

• v =f. 0 if u =f. 0; 

• uout = U \ V; 

• always terminates. 

At lines 7 and 9, Solver-Enum tests whether 0 E conv(T). Solver-Enum 

is an algorithm not missing any transverse T and Proposition 6.1.1 gives a 

loop-invariant to support this claim. 
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Proposition 6.1.1 For the execution of any outer-iteration of Solver-Enum, 

if a transverse T satisfying 0 E conv(T) is not found, then right before and 

right after the execution, it holds that all transverses in r(W) are tested. 

Proof: We can be prove this proposition by induction. Right before the first 

outer-iteration, W = 0 and r(W) = 0 , so the proposition holds. 

For an arbitrary outer-iteration. Let Wand W be the values of Wright 

before and right after execution, respectively. Assume that all transverses in 

T (W) are tested right before the execution. During the execution all trans

verses in r(V) and T (W U V) \ ( r(W) U r(V)) are tested in two different 

inner-loops, respectively. Merging these three sets together we find that all 

transverses in r(W) = r(W U V) are tested. 0 

Since we assume that the output V of r is nonempty if the input U is 

not, W will become the same as S if there is no T satisfying 0 E conv(T) is 

found. Proposition 6.1.1 states that no transverse of W will be missed. Hence, 

we can obtain the convergence of Solver-Enum. 

Another loop-invariant of the outer-loop of Solver-Enum: U U W = S 

and U n W = 0. Solver-Enum works using Vas an intermediate set and keeps 

moving points from U to W, until a valid transverse T is found, or U = 0. 

Each transverse Tis tested at most once. 

Proposition 6.1.2 If a for-loop runs one and only one execution for each 

element of its given iterator set, then Solver-Enum tests each transverse T at 

most once. 

Proof: Assume there is a transverse T tested twice in the jth and the kth 

outer-iterations, respectively. We can set j ::; k without loss of generality. We 
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will contradict both cases j = k and j < k. 

For j = k, there are two subcases. The first is that two tests happen in the 

same inner-loop, which is contradicted by the assumption of this proposition. 

The second is that two tests happen in the two different inner-loops, and this 

is contradicted by the fact that T(V) n (T(W U V) \ (T(W) U T(V))) = 0. 

For the j < k, let W i be the value of Wright after the jth outer-iteration, 

W k the value of W right before the kth outer-iteration, and V k the value of 

V found in the kth outer-iteration. The set of transverses tested in the kth 

outer-iteration is T (W k U V k) \ T (W k) which is impossible to have any overlap 

0 

6.2 Selecting Colourful Points by Stretching 

Solver-Enum can be considered as a framework for enumeration algorithm be

cause its subroutine r provides flexibility. In this section we propose a routine 

that can be used as r in Solver-Enum. 

If a set of colourful points scatter far away from each other, then the 

total volume of colourful simplices generated by them is expected to be large, 

and have better chance to cover 0 than randomly picked points. Based on this 

intuitive idea we design the routine Gamma-Stretch to select V ~ U, such 

that: 

• T(V) is likely to contain T such that 0 E conv(T); 

• IT(V) I is reasonably small such that the complexity of testing all the 
transverses in T(V) is upper bounded by 0(2dd3 ) arithmetic operations, 
where 0(2d) is the number of transverses and O(d3 ) is the cost of testing 
each transverse. 
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Algorithm 8: Gamma-Stretch 
Input: U 
Output: V, uout 

1 begin 
2 Iempty +-- { i : lUi I = 0} 
3 I singular +-- { i : I ui I = 1} 
4 !multiple+-- { i : lUi I ;:::: 2} 
5 uout +-- U; V +-- 0 
6 k +-- 0; p +-- 0 
7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

for i E !singular do 

l
let s be the point in urt 
ti +-- s 
move s from urt to Vi 
P +-- kp+s · k +-- k + 1 

k+l ' 
for i E I multiple do 

s +-- argmin(tTp) 
tEU; 

ti +-- s 
move s from U?ut to Vi 
P +-- kp+s · k +-- k + 1 

k+l ' 
if Iempty ::/=- 0 then return 
T +-- { t1, ... , td+l} 
if dim(T) ::/=- d then return 

McMaster-Computing and Software 

17 

18 

19 

20 

21 

22 

Iseperate +-- { i E !multiple : 0 and ti are separated by aff(T \ {ti})} 
for i E fseperate do 

23 

24 

25 

26 end 

~ +-- { t E U?ut : t is on the same side of aff(T \ { ti}) as 0} 
s +-- argmin ( dist( aff(T \ { ti}), t)) 

tEil; 

if dist(aff(T\ {ti}),s) > dist(aff(T\ {ti}),O) then 
L move s from urt to Vi 

At line 2-4, Gamma-Stretch partitions the colour indices into three sets. 

Iempty holds the colours that do not have any point in U to select; !singular holds 

the colours that only have one point in U; !multiple holds the colours that have 
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multiple points in U to select. 

Line 5 initializes the outputs uout and V. 

Lines 6-16 select one point from each colours in !single U I multiple and move 

these points into V one by one. p is a reference point kept inside the convex 

hull of the points that have been selected. At line 13, p is used to help choosing 

points from the colours in Imultiple· The idea behind line 13 is that the point 

with smaller dot product with p is expected to stay further away from the 

points that have already been moved into V. The integer k is a counter used 

to update p. 

In case there is a colour that has no point in U, Gamma-Stretch termi

nates at line 17. Otherwise, Gamma-Stretch will attempt to select more points 

from the colours that have extra points. 

Line 19 terminates Gamma-Stretch if conv(T) is degenerate, because in 

that case Iseperate will be empty at line 20 even if the algorithm continues to 

execute. 

Lines 20-25 attempt to select more points. They find all the facets of 

conv(T) contained in an affine hyperplane separating 0 from conv(T), and 

attempt to select one point for each of their corresponding colours. Each index 

i in Iseperate also indices the affine hyper plane aff(T \ { ti} ). Any point s which 

is on the same side of aff(T\ { ti}) as 0 can satisfy the condition that the volume 

of conv(T) n conv( (T \ { ti}) U { s}) is 0. Selecting such an s is the heuristic to 

enlarge the total volume covered by the colourful simplices generated by V. 

It may be interesting to see for a d-dimensional case how many points, 

at most, could Gamma-Stretch select. Following is a tight bound obtained by 

normalizing all points in S to §d. 
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Proposition 6.2.1 When T zs in general position, Gamma-Stretch satisfies 

I fseperate I :S d - 1. 

Proof: We can denote Hi= aff(T\ { ti}) for convenience. To prove IIseperatel :S 

d - 1, it is sufficient to prove there are at least two i such that ti and 0 are at 

the same side of Hi. 

Now let's find the first i. Let 

= [ tl ... td+l ] -l 
1 ... 1 ' 

(6.2.3) 

where each Yi is a d-dimensional vector. As for Proposition 3.2.5, for 1 :::; i :::; 

d+ 1 we have: 

2. y[tj = -bi for 1:::; j # i:::; d+ 1. 

Then according to result 2 of Proposition 3.2.4, Yi is the normal vector of Hi 

andy[ x = -bi is the equation of Hi. When bi 2: 0, both 0 and ti are at the 

same side of Hi, because both 1- bi and 0 are greater than or equal to -bi. An 

index 1 :::; i' :::; d+ 1 satisfying bi' 2: 0 can always be found because L,~~{ bi = 1. 

Assuming that Hi' does not separate 0 and ti', we can always find an 

index i* # i' such that Hi* does not separate 0 and ti*. Let 

• H+ = {x · yTx > -b·} and H-:- = {x · yTx < -b·}· 2 . 2- 2) 2 • 2- 2) 

C+ ni=/oi' H+ d c- ni=/oi' H-
• i' = l:'S:i:'S:d+l i ' an i' = l:'S:i:'S:d+l i · 

Then conv(T) = n~~11 Ht. CJ and Ci-; are the translated polyhedral cones such 

that: 

• conv(T) c CJ; 
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Because 0 t/:. (-:, the projection of 0 on Cj is not on Hi* for some 1 ::; i* =/:- i' ::; 

d + 1; that is, Hi* does not separate 0 from conv(T). 0 

6.3 Implementation 

Zhang [33] implemented most of the algorithm Solver-Enum. This section de

scribes some of the proposed techniques. 

6.3.1 Colourful Sets Represented by Indexing 

A real number is represented by a fixed size floating point arithmetic in our 

implementation, so the size of memory needed to store the input S is O(d3 ). 

To speed up the set manipulations (such as r in Section 6.1), and reduce the 

memory overhead of using subroutines that input or output colourful sets of 

points, our implementation shares the original coordinate data representing S in 

the scope of Solve-Enum, and uses an indexing method to represent colourful 

sets of points. The shared coordinate data is stored in a MATLAB matrix 

variable Pts, which is introduced in Subsection 3.5.1. A colourful set of points 

in JRd is represented by an array of length d + 1. Each element of the array 

contains a list of column indices of Pts. 

Example 6.3.1 (Representing a Colourful Set of Points) 

Following is MATLAB struct array U representing a colourful set of points. The 

represented colourful set has two points from the first colour, and the coordinates 
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of these two points can be found in the first and the third columns of Pts. The 

interpretations for the second and the third colours are similar. 

U(1) .list= [1 3] 

U (2) .list= [ 4] 

U(3) .list= [8 9] 

6.3.2 Enumerating Transverses of a Given Set 

D 

For a colourful set V of points in d-dimensional space, we use a sequence of 

d + 1 integers to enumerated all the transverses. The enumeration starts with 

( 1' ... ' 1) taking the first point of each Vi' and ends with (I Vll ' ... ' I vd+ll) taking 

the last point of each "{;i. 

Example 6.3.2 (Enumerate the Transverses) 

The colourful set of points in Example 6. 3.1 is enumerated in the following way. 

order enumerated sequence 
represented column numbers 

1st colour 2nd colour 3rd colour 
1 (1, 1, 1) 1 4 8 
2 (2, 1, 1) 3 4 8 
3 (1, 1, 2) 1 4 9 
4 (2, 1, 2) 3 4 9 

D 

Our implementation takes O(d) arithmetic operations to obtain the next 

enumerated sequence of integer from the previous one, while testing the colour

ful simplex corresponding to an enumerated sequence takes O(d3
) arithmetic 

operations. Therefore the enumeration is not part of the time bottleneck. 

60 



M.Sc. Thesis- Sni Hnang McMaster-Computing and Software 

6.3.3 Enumerating Transverses in T (W U V)\(T(W) U T(V)) 

In Solver-Enum, we need a method to do this task: given two disjoint colourful 

sets of points W and V, enumerate all the transverses in 

T(W u V) \ (T(W) u T(V)). (6.3.4) 

Our method to do this is: 

1. enumerate all the colourful subsets of W U V in the format of M 
U~~; Mi, where either Mi = Wi or Mi = Vi for each i, excluding the 
subsets Wand V themselves; 

2. for each enumerated M, enumerate the transverses in T(M). 

We use a binary sequence to enumerate all theM. We enumerate from (1, 0, ... , 0) 

to (0, 1, ... , 1). Each sequence corresponds to a M, and the ith sequence ele

ment indicates whether Mi = Wi or Mi = 1;i. Our implementation takes O(d) 

arithmetic operation to obtain the next binary sequence from the previous one, 

and this computation is not part of the time bottleneck. 

61 



M.Sc. Thesis- Sui Huang McMaster-Computing and Software 

62 



Chapter 7 

Optimization Approach 

The Colourful Feasibility Problem (CFP) can be formulated as a Nonconvex 

Quadratic Optimization Problem. We believe the formulations and algorithms 

based on the optimization approach could be promising. 

Combinatorial-geometric algorithms and optimization approaches are ac

tually blended. For example, the semidefinite relaxation presented Section 7.2 

needs to be tested by infeasible cases, and the generator of infeasible cases ( Gen

lnfeasible from Subsection 8.3.2) can use a combinatorial-geometric algorithm 

(Solver-Enum from Chapter 6) as a subroutine. 

7.1 Nonconvex Quadratic Optimization Formu
lation 

We can use the following formulation suggested by Polik [21] to solve a CFP. 
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Definition 7 .1.1 (Quadratic Formulation of CFP) 

min 
such that: 

i=l 

=0 

=1 

X ~ 0, 

(7.1.1) 

where x = [x1 x2 ... x1s1JT is the vector of variables. Q E JRISixiSI is a symmet

ric matrix. Let Q k1 ,k2 denote the element at the k1 th row and the k2 th column 

of Q and Qk1 ,k2 = 1 if the k1 th and the k2 th points are in the same colour group, 

and Qk
1
,k

2 
= 0 otherwise. The matrix P E JRdxiSI is formed by the coordinates 

of the point from S. 

0 

The formulation of Definition 7.1.1 is denoted by QP. For each CFP case 

represented by a colourful set of points S (it can also denote its corresponding 

CFP and the interpretation depends on the context), there exist a case Q of 

QP corresponding to it, such that we can solve S by solving Q. 

QP is a global optimization problem with nonconvex objective function 

over a polytope defined by linear equalities and inequalities. If we solve a case 

Q of QP, then we solve the corresponding case S of CFP in the following way: 

1. in case Q is feasible, assume x 0 is the global optimal solution found, 

(a) if x'{; Qx0 = 0, then the nonzero elements of x 0 indicates the selected 
points from S; 

(b) if x'{; Qx0 > 0, then S is infeasible; 

2. in case Q is infeasible, then S is infeasible. 

However, there is no polynomial time algorithm under deterministic Turing 

Machine model (therefore nor in the real arithmetic model we are using) to 
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solve general Nonconvex Quadratic Optimization Problem unless P=NP, see 

Pardalos and Vavasis [23]. We do not know whether QP is a special class 

of Nonconvex Quadratic Optimization Problem that has a polynomial time 

algorithm to solve. 

Proposition 7 .1.1 Let Q be a case of QP. If x 0 is feasible for Q with objective 

value x'{; Qx0 = 0, then x0 is a global optimal solution of Q. 

Proof: Because all elements of the variable x and the matrix Q are nonnega

tive, xT Qx cannot have negative value. Therefore the proposition is true. 0 

According to Proposition 7.1.1, the criteria xTQx = 0 can be used as the 

certificate of a global optimal solution, which means that any x satisfying this 

criteria is a global optimal solution. A heuristic method to solve QP: Keep 

finding the local optimal solutions until getting a solution with zero objective 

value. Some Interior Point Method can find a local optimal solution in E

precision in a number of arithmetic operations polynomial to d and ~, see 

Ye [32]. Invoking such an Interior Point Method with different initial solutions 

may lead to different local optimal solutions. Hence, we can use Interior Point 

Method to implement such a heuristic method to solve QP and hope that it 

performs well. However, if the case Q is feasible but the corresponding CFP 

case is not, the heuristic does not have a certificate to decide whether a local 

optimal solution is globally optimal since the global optimal objective value is 

greater than zero. This heuristic method is not implemented in this thesis. 
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7.2 Positive Semidefinite Relaxation 

In this section we relax QP to obtain a semidefinite optimization problem, 

which is primarily used to detect infeasible CFP cases. Both Chapter 6 and 

Section 7.1 introduce an algorithm that has the worst performance (long exe

cution time and non-terminating execution, respectively) when the input CFP 

case is infeasible, so a polynomial time method to detect some infeasible input 

seems worthwhile, and the semidefinite relaxation provides one. 

7.2.1 Semidefinite Optimization 

A square matrix A is a positive semidefinite matrix if vT Av ~ 0 for all vectors v 

of proper dimension. We use A :::= 0 to express that A is a positive semidefinite 

matrix. 

A Semidefinite Optimization Problem is an optimization problem that has 

a symmetric positive semidefinite matrix as its variable. 

Definition 7.2.1 (Semidefinite Optimization Problem) 

min { C • X : X >-- 0 and Ai • X = bi for i = 1, ... , m } , X - (7.2.2) 

where the matrix X E mnxn is symmetric and contains the variables. The 

square matrices c, Al, ... ' Am E mnxn and the scalars bl, ... 'bm E lR are 

given. Further, the operator • denotes the inner product, i.e., the sum of all 

the elements of the elementwise product of the operands. 

0 

Semidefinite Optimization Problems are solvable in polynomial number 

of arithmetic operations, see for example Potra and Sheng [22]. 

66 



M.Sc. Thesis- S'ui Huang McMaster-Computing and Software 

7.2.2 Relaxation 

Before obtaining the relaxation, we get the following formulation equivalent to 

QP as a transition step. 

Definition 7.2.2 (Alternative Optimization Formulation of CFP) 

min Q•X 
s.t. Px =0 

lSI 

LXi =1 (7.2.3) 
i=l 

X ~0 
X =XXT 

' 
where x = [x1 x 2 ••. x1s1JT and the symmetric matrix X E JRISixiSI contain the 

variables, the notations Q and P are the same as those in QP. 

0 

The following formulation is obtained by removing X = xxT from formu

lation (7.2.3) and adding some extra constraints. 

Definition 7.2.3 (Semidefinite Relaxation of QP) 

mm Q•X 
s.t. Px =0 

lSI 

:I: xi =1 
i=l 

X ~0 

[~ ~] tO 
(7.2.4) 

2::: xk1,k2 =1 
1::=;kl,k2::o;ISI 

xk1,k2 = xk2,k1 for 1 ::; k1 < k2 ::; lSI 
xk1,k2 ~0 for 1 ::; k1 < k2 ::; Is I . 
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where x = [x1 x2 ... x1s1JT and the symmetric matrix X E JRISixiSI contain the 

variables, the notations Q and P are the same way as in QP. 

0 

The formulation of Definition 7.2.3 is denoted by SDP. SDP is a Semidef

inite Optimization Problem. Converting SDP to the standard format in Sub

section 7.2.1 is not discussed in this thesis. Using the data Q and P from a 

QP case Q, we can obtain the corresponding SDP case. 

Proposition 7.2.1 The optimization problem SDP is a relaxation of the op

timization problem QP. 

Proof: Since formulation (7.2.3) is equivalent to QP, we only need to prove 

that all pairs (x, X) feasible for formulation (7.2.3) are also feasible for SDP. 

Specifically, we only need to prove that all pairs (x, X) satisfying the constraints 

of formulation (7.2.3) also satisfy the two conditions: 

1. [~ ~J~o; 

2. L xk1 ,k2 = 1 . 
I::::;k1,k2::::;1SI 

as the other constraints of SDP are obviously satisfied by (x, X). 

Condition 1 can be proved by the definition of positive semidefinite ma

trix. For arbitrary (1 + ISI)-dimensional vector [ ~ ] , where o: is a scaler and 
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v is a IS !-dimensional vector, we have: 

For condition 2, because L:l~1 Xi = 1 and X = xxT, we have, 

lSI 

L xk1,k2 = L xk,k + L 2xk1,k2 = 
l~k1,k2~ISI k=l l~k1 <k2~ISI 

0 

We return to CFP by solving its corresponding SDP. Let S be a CFP 

case and V be the corresponding SPD case, then we have: 

1. in case V is infeasible, S is infeasible; 

2. in case V is feasible, assume (~,X) is an optimal solution found, 

(a) if Q • X> 0, then Sis infeasible; 

(b) if Q • X = 0 but ~T Q~ > 0, then (~,X) does not tell whether S is 
feasible; 

(c) if ~T Q~ = 0, then the nonzero elements of ~ indicates the selected 
points for a feasible solution of S. 

We obtain the following algorithm that can test the feasibility of CFP cases. 
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Algorithm 9: Solver-SDP-Relax 
Input: S 
Output: feasible, T 

1 begin 

McMaster-Computing and Software 

2 let V be the corresponding SDP case of S) 
3 let Q be the matrix for the objective function of V 
4 solve V for the optimal solution (~,X) 
5 if V is infeasible then 
6 l feasible ~ false 
7 T ~ undefined 

8 else if Q • X > 0 then 
9 l feasible ~ false 

10 T ~ undefined 

11 else if ~T Q~ > 0 then 
12 l feasible ~ undefined 
13 T ~ undefined 

14 else 
15 

16 l feasible ~ true 
pick the points from S indicated by nonzero elements of ~ and 
put them into the set T 

17 return 
18 end 

7.3 Toolboxes Used for Implementation 

The MATLAB implementation of Solver-SDP-Relax uses SeDuMi 1.1R3 [27] 

library interfaced by the YALMIP R20070302 [16] Toolbox to solve the SDP 

problems. 

A typical section of MATLAB code in the implementation of Solver-SDP

Relax utilizing SeDuMi 1.1R3 [27] and YALMIP R20070302 [16] to formulate 

and solve the positive Semidefinite Optimization Problem is at the following. 
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r~i 
I34· - · 
135. ~· 

-''''\~:- .' 

i 36: ..:. 
• f " 

1 '3,7 -:;· 

. i3B'::-: 

% formulai.e and solve the SDP. 
Q=[J; 

for :i.=l:lerigth( ColorP~rt:i. t :i.on) 

Q=blkd:i.ag(Q~-eye(~olor?art:i.~:i.ori(i)))Z 

xvar = sdpvar(NwmPts,ii~ 
.1 ~.~. ·~ · b :i.gXvs.r = sct~v~r (Numhs, rurpPti;~, o s']rOl'ti~tr ;Lc' ) ;, 

< .l~ci; "" F1 s e~; (.f'!;s*xv;ar==loc,, ':-: e~ement:s are . coff:icfe.nis co gee J;:i ') ; 

,P1f:r·· F2 s~t (s urp (xvai ) ==l;,: 1 :-: elerilents i;urt1 up to i 1 ); 

i '42 '.;-: F3 

t;p·''-~ F"l: 

144 ::. 
i )45, '7;' 

1~6 : -,-, . 

FS 

set ( xvar>=d ~ I e'lerQents in x are non-negative' ) ; 

s~t ([l xvar ,. ;, xvai; h:i.gXvaJ;= ] >=0, ' [ 1 :~; x h:tgX] is .P~D ') ; 

~et ( suin (sum (b:i.gXvar )) ==1 ~ o bigX elements sutt1 up: co f' ) ; 

F6 set (bigXvar (:) >'=o, 1 big:X elements are non-neg'a.tives ' ); 

F = F1+F2 +F 3 +F"l:+FS+F6;· 

'147 '"'· sqlveropt:i.on sdpsett.:i.rigs ( o solver' , 1 sedwtli' , 'verbose' , 0, . ... 
··~ •; :;. 

'148 

1:49 
f'S6 •q' 
JS..t>-· 
iii~ 0: 

i2'3 

1 s~dtlll),i. steJ)dif o ' ·2 ' · 'sedurni. sdp' , 1 ' · 

'sedumi.cg.qprec 1 , 1); 

dfagnost::ics = solvesdp (F, surt1 (surt1 (Q . *bigXvar )) f solveropdon); 

x = dtJ\.¢Jle (xvar); 

b,igX = ctoub.).e(b:i.gXvar); 

'• 1nitia1.12ed:. diagriost.ics x 

Figure 7.1: Sample MATLA B code that uses YALMIP to interface SeDuMi 

Figure 7.1 is t he screenshot of the code in the Solver-SDP-Relax imple

mentation to formulate and solve the SDP. We assume that the variables Pts , 

ColorParti tion and NumPts are properly defined before running t his section 

of code. Pts and ColorParti tion are as described in Subsection 3.5.1 , while 

NumPts is a scalar variable telling t he total number of points inS. Lines 134-137 

construct the variable Q to represent t he matrix Q in Definit ion 7.2.3. Lines 138 

and 139 use t he function sdpvar in YALMIP to define two objects xvar and 

bigXvar representing x and X in Definition 7.2.3. Lines 140-145 use the func

t ion set in YALMIP to define the objects F1 to F6 representing the constraints 

of Definition 7.2.3. Line 146 obtains t he object F by combining F1 to F6. Now 
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we have the three variables xvar, bigXvar and F together representing an in

stance of the formulation (7.2.4). Lines 147-149 uses the function sdpsettings 

from Y ALM I P to define the object solveroption representing the options to 

SeDuMi, which is the actual solver of the formulated Semidefinite Optimiza

tion Problem. Line 150 uses the function solvesdp from YALMIP to solve the 

formulated instance of Semidefinite Optimization Problem. xvar and bigXvar 

are atomically assigned values representing the optimal solution for the formu

lated instance of Semidefinite Optimization Problem. Lines 151-153 extract 

the matrix variables x and bigX from xvar and bigXvar using the overloaded 

MATLAB function double. 

From the code in Figure 7.1, we illustrate the data flow in Figure 7.2. 
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overloaded operators and functions 

J, I (b) 

functions: functions: 
'-- sdpsetting sdpvar r-

solvesdp set 

... . 
. . . . . . . . . . . . . 

<'I., ....... .., •••• '"'.·~~-· .................................... ................... .................... ,. ....... ,.,., ...... ,., ....... ,.. 
. . .. 

(d) (c) 

SeDuMi 

Figure 7.2: The data flow diagram of the Solver-SDP-Relax implementation 
The implementation of Solver-SDP-Relax consists of three major components: MATLAB, 
YALMIP toolbox, and SeDuMi. YALMIP includes more utility functions than what we show 
in this figure, but we only illustrate what we used. The overloaded MATLAB operators and 
functions form the first layer of YALMIP communicating with MATLAB, they include==, 
>=, +, *, sum and double. 

(a) the MATLAB variables Pts, NumPts and Q that together sufficiently defining the 
instance of Semidefinite Optimization Problem; 

(b) the objects xvar, bigXvar and F used by YALMIP that defining the Semidefinite 
Optimization Problem; 

(c) the input data to SeDuMi defining the Semidefinite Optimization Problem; 

(d) the output data of SeDumi representing the result of solving the Semidefinite Opti
mization Problem; 

(e) the objects xvar, bigXvar and diagnostics used by YALMIP to represent the result 
of solving the Semidefinite Optimization Problem; 

(f) the variables x and bigX directly used by MATLAB to represent the result of solving 
the Semidefinite Optimization Problem. 
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Chapter 8 

Random Case generation 

To achieve a better understanding of the various algorithms performance, we 

produced a test suite of challenging Colourful Feasibility Problems (CFP cases). 

This chapter introduce the algorithms, called generators, used to generate dif

ferent random CFP cases. 

8.1 Notations 

This section introduces some notations used in this chapter. 

8.1.1 Uniform Random Selection 

We use the operator ""'" to notate the process of selecting an element from a 

set randomly and uniformly. The set can be either finite or infinite, bounded 

or unbounded. In the chapter we will frequently use random selection within 

the generators. 

Example 8.1.1 (Uniform Random Selection) 

i"' {1, 2, 3, 4} denotes the process of randomly selecting the value of variable i 

among 1, 2, 3 and 4. Each value has the chance of 25% to be selected. 
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0 

8.1.2 Universal Set of Colour Indices 

In the random case generators we frequently use the random process of selecting 

one number from the set { 1, ... , d + 1}, where d is the number of dimensions 

of the space. To shorten the notations, we use the symbols I and J instead of 

{ 1, ... , d + 1}. In this chapter, I = J = { 1, ... , d + 1}. 

8.1.3 Notation for Colourful Points 

We use S to denote a CFP case generated by the algorithms, and have the 

following settings: 

1. s = ~:tJ:~ll si, where each si contains the points of an individual colour; 

2. si = {sL ... , s~+ 1 } for 1::; i::; d+ 1. 

8.2 Colourful Core Feasibility Problem Gener
ators 

Several algorithms are specifically designed, in Chapters 3 to 5, for CCFP, 

which is a special class of CFP. To test these algorithms, we need to ran

domly generate CCFP cases. Therefore we designed several CCFP generators 

for unstructured random cases, ill-conditioned cases, and cases with restricted 

number of solutions. 

8.2.1 Unstructured Random Cases 

The first class of problems we consider are the unstructured random CCFP 

cases. We take d + 1 points on §d for each of the d + 1 colours. The only 
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restriction required is that 0 is in the core. This is achieved by taking one of 

the points to a random convex combination of the antipodes of the other d 

points. We call this generator Gen-Core-Random. For generating points uni

formly distributed on §d, we refer to Muller [18]. 

Algorithm 10: Gen-Core-Random 
Input: d 
Output: S 

1 begin 
2 fori+-- 1 to d + 1 do 
3 

4 

5 

6 end 

Statistically, this generator is always generating cases that all points are 

in general position. This is true for other generators introduced in this chapter, 

even though some generators such as Gen-Core-Tube generates ill-conditioned 

cases which can be considered almost degenerate. 

8.2.2 Ill-conditioned Cases 

Next, we consider ill-conditioned problems. We place d points of each colour 

on the spherical cap around the point [0 0 ... 0 1 JT or [0 0 ... 0 - 1 JT (points are 

concentrated towards the cap centers) and the final point of the colour in the 

opposite spherical cap, as a positive combination of the antipodes of the first 

d points. Since the points all lie in the tube around the final coordinate axis, 

we call it tube genemtor ( Gen-Core-Tube) and it has two parameters. The first 
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- 7r 
parameter is the maximum angle 0 ::; () ::; 2 between a chosen vector and the 

final coordinate axis. The second is ,Bbalanced: a true/false parameter deciding 

the distribution of points. Gen-Core-Tube will randomly place either 1 or d 

points of each colour on a side of the tube when ,Bbalanced = true, and force d 

points of each colour on one side when ,Bbalanced = false. 

Algorithm 11: Gen-Core-Tube 

Input: d, e, ,Bbalanced 

Output: S 
1 begin 
2 for i .-- 1 to d + 1 do 
3 j* rv J 
4 

5 

if ,Bbalanced = true then u rv { -1' 1} else u <---- 1 
for j <---- J \ {j*} do 

l : = ~od,-;J 
si . ._ [ sin( B)s ] 

1 cos(B)u 

6 

7 

8 

9 

10 

11 end 

8.2.3 Restricted Number of Solutions 

We consider problems where we control the number of colourful simplices con

taining 0. It turns out that the number of simplices containing 0 in dimension 

d can be as low as quadratic in d, but not lower, see [5, 10, 25], or as high as 

dd+l + 1, see [10], which is more than one third of the total number of colourful 

simplices. 
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We might expect that the difficulty of a CFP increases as the num

ber of solutions, i.e. colourful simplices containing 0, decreases, so we wrote 

three problem generators based on the constructions in [10]. The first, Gen

Core-High-Dense generates perturbed versions of the configuration with many 

solutions. These problems have dd+l + 1 of the (d + 1)d+1 simplices containing 

0, many more than uniform random configurations, and we expect them to be 

quite easy to solve. The second, Gen-Core-Mid-Dense, generates configurations 

where the points of each colour are close to the vertices of a regular simplex on 

§d. There are (d+ 1)! solutions corresponding to picking a different colour from 

each regular simplex vertex. Finally, we have Gen-Core-Low-Dense generating 

perturbed versions of the configuration from [10] which has only d2 + 1 solu

tions. The generators Gen-Core-High-Dense, Gen-Core-Mid-Dense and Gen

Core-Low-Dense randomly permute the order the points appear within each 

colour. 

Cases Having dd+1 + 1 Solutions 

The algorithm Gen-Core-High-Dense uses the vertices of a regular simplex as 

reference. For each colour, it generates d points clustered around a reference 

vertex and generates the last point as a random linear combination of the 

antipodes of the others. This algorithm takes a parameter r to control the 

maximum allowed distance between a generated colourful point and its refer

ence vertex. 
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Algorithm 12: Gen-Core-High-Dense 
Input: d, r 
Output: S 

1 begin 
2 generate p 1, ... , Pd+l E JRd such that conv(p1 , ... , Pd+r) is a regular 

simplex 
3 fori E I do 
4 

5 

6 

7 

8 

9 

10 end 

j* "-' J 
for j E J \ {j*} do 

. t l t "' §(r, Pi) 

sj <-- Tit1l 

Some definitions and facts about regular simplex are utilized by Gen

Core-High-Dense. For ad-dimensional regular simplex: 

1. the center is the elementwise average of its vertices; 

2. the center-vertex distance and the center-facet distance are the distance 
from a vertex and a facet to its center, respectively; 

3. the ratio of center-vertex distance to center-facet distance is d. 

The following proposition supports the claim that if the input r to Gen

Core-High-Dense is not greater than 1/ d, then there will be dd+l + 1 feasible 

solutions for each generated CFP case. 

Proposition 8.2.1 If the points p 1 , ... , Pd+l E §d generate a regular simplex, 

and si E .llll(1/d, Pi) for 1 :::; i:::; d + 1, then 0 E conv(s1 , ... , sd+r). 

Proof: This proposition can be proved by induction. It is trivial for d = 1, 

and we will prove it ford= k :?: 2 assuming it is true for d = k- 1. Since all Pi 
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are on the unit sphere §d centered at the origin, we have 0 E conv(pi, ... , Pd+I)· 

Without loss of generality, we can assume Pd+I = [0 ... 0 1]T, and PI to Pd all 

have their last coordinates equal to -1 I d, which implies si to sd all have their 

last coordinates non-positive. We use the following setting: 

1. qi E lffi(1ld, pi) for 1 :S i :S d + 1; 

3. H = {X : Xd-t-1 = 0}; 

4. the projections of PI, ... , Pd, qi, ... , qd, lffi(1ld, PI), ... , lffi(1ld, Pd) onto H 
1 I I I 11])1 11])1 t" 1 are Pu ... , pd, qi, ... , <)d, lJJ)I, ... , lJJ)d' respec Ive y. 

H is a (k- 1)-dimensional subspace; conv(p~, ... , p~) is a (k- 1)-dimensional 

regular simplex (embedded in H) with center-vertex distance equals to vk:-I; 

lffi~ is a ( k - 1 )-dimensional ball around p~ with radius 1 I k for each i between 1 

and k. If we scale up the center-vertex distance and the radius proportionally 

such that the center-vertex distance becomes 1, then the radius will become 

1 1 1 
'v~k2=-=:=1 = vf(k + 1)(k- 1) < -k ---1· 

(8.2.1) 

Hence 0 E conv(q~, ... , ~) according to our assumption on (d- 1)-dimensional 

space. Let AI, ... , Ad be the convex combination coefficients such that 0 = 

2:~=I Aiq~, then q = 2:~=I Aiqi is the only point in Hd-t-1 with the first d- 1 co

ordinates equal to 0. Since qi to qd all have their last coordinates non-positive, 

q has its last coordinate non-positive. Then let qi move inside lffi(1ld, Pi) for 

1 :S i :S d; 0 will never go across Hd-t-1· By symmetry, we have same property 

for HI to Hd. If we initialize qi as Pi for 1 :S i :S d + 1 and move each qi to the 

position of si, then during this process 0 E conv(qi, ... , qd-t-1) holds because 0 
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does not go across any facet of conv( q1, ... , Qd+l)· 0 E conv(s1, ... , sd+I) follows 

and the proposition is true for d = k. 0 

By Proposition 8.2.1, as long as the input r is between 0 and 1/d, all the 

dd+l colourful simplices generated by clustered points covers 0. In addition, 

the colourful points not clustered together generate another simplex covering 

the 0. Hence, the number of feasible solutions is dd+1 + 1 for the CFP cases 

randomly generated by Gen-Core-High-Dense. 

Cases Having ( d + 1)! Solutions 

Gen-Mid-Dense generates d + 1 points of different colours clustered near each 

vertex of a regular simplex. Similar to Gen-High-Dense, it also takes a param

eter r to control how close should the points clustered together. By Propo

sition 8.2.1 we can easily notice that it generates CCFP cases with (d + 1)! 

feasible solutions if r ::::; 1/ d. 

Algorithm 13: Gen-Core-Mid-Dense 
Input: d, r 
Output: S 

1 begin 
2 generate p 1, ... , Pd+l E JRd such that conv(p1, ... , Pd+I) is a regular 

simplex 
3 fori E I do 
4 

5 

6 

1 end 
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Cases Having Few Solutions 

Algorithm 14: Gen-Core-Low-Dense 

Input: d, Bequ 1 Bpole 
Output: S 

1 begin 
2 generate p 1 , ... , Pd E §d-l such that conv(p1 , ... , Pd) is a regular 

simplex 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

i* "-' I 
k+--1 

for i E I\ { i*} in random order do 
{ ·D ·U ·*} 1 
],],] f"V 

i [ cos(20equ)Pk ]· i [ - cos(Bequ)Pf ] 
S ·v +-- . ( n ) , S ·u +-- . (n ) 

1 - Sln 2uequ 1 Sln Uequ 
for j E 1\ {jD, ju, j*} do tj "-' §d-l 
tj* "-' conv( { -tj : j =I jD, ju, j*}) 

t '* t·* +-- _J_ 
1 

lltj* II 
for j E 1\ {jn, ju} do i [ sin( Bpole)tj ] 

S· +-
J COS ( Bpole) 

k+-k+1 

d-1 [ ] t L -- cos(20equ)Pk . 
+-- sin(20equ) ' 

k=l 

Ll • -1 ( ltdl) Usafe +-- Sln TitiT 

j* f"V 1 
for j E 1\ {j*} do 

l s~* "-' §d n {X : Xd = sin(Osafe)} 
a"-' [0, 1] 
if a> 1/d then >..i "-' [0, 1] else >..j "-' [0, d] 

if Aj = 0 for all j E 1 \ {j*} then set one of the >..i to 1 
j#j* 

s~: +-- :z:.::: -->..jsr; 
20 jEJ 

21 end 

Consider §d as a high dimensional globe, such that [0 ... 0 1]T is the north 

pole, and {x : xd = 0} n §dis the equator. Gen-Core-Low-Dense generates the 
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points in d of the colours such that each colour has two points near equator 

(called equator points) and the rest around the north pole (called pole points), 

then generates the points of the last colour in areas giveng the CCFP case a 

low density of feasible solutions. The input data d must be at least 3 because 

of the special structures of generated cases; Bequ and Bpole should be very small 

angles (say, 0.05n /d). Bequ is the angle that equator points deviate from the 

equator, and Bpole is the angle that pole points deviate from the north pole. 

Lines 4-12 generate the points in d colours. Following properties for each 

i of these d colours make sure 0 is in the convex hull of its points: 

1. si.D and si.u are the equator points; 
J J 

2 [0 0 sin(Bequ)-sin(2Bequ)JT E [ i i ]· 
• ... 2 sjD'Sju' 

3. the others are pole points, and [0 ... 0 cos(Bpoie)]T is in the convex hull 
of them. 

Lines 13-20 generate the points in the last colour. The following properties of 

this colour make the density of feasible solutions small: 

1. d of the points only each generates one colourful simplex covering 0 with 
equator points; 

2. the last point, sj:, has significant chance to be close to the boundary of 
the cone generated by the antipodes of the other d points (one of these 
antipodes is expected to have relatively large coefficient by using a), and 
this prevents sj: from generating many colourful simplices covering 0. 

Figure 8.1 illustrates an example of CCFP cases that can be generated 

by Gen-Core-Low-Dense. 

The CCFP cases generated by Gen-Core-Low-Dense approximates the 

case having only d2 + 1 solutions introduced in Chapter 10. The testing re

sults of algorithm Solver-Random-Pick show that the number of solutions for 
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Figure 8.1: 3D example of CCFP with 10 solutions 
The shapes Q, 0, 0 and !:::. stand for different colours. The shaded !:::. are the antipodes of 
the colourful points. 

the generated cases is low comparing to the cases from other generators (see 

Chapter 9). 

8.3 General Cases 

In the last section we introduced several algorithms to randomly generate 

CCFP cases. In this section we will introduce algorithms to generate both 

feasible and infeasible general random cases. They are used to test Solver

Enum and Solver-SDP-Relax, respectively. 
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8.3.1 Unstructured Cases 

Gen-Random constructs unstructured random cases. f3reasi is a true/false pa

rameter to decide whether the generated CFP case is forced to be feasible. 

Algorithm 15: Gen-Random 

Input: d, f3reasi 
Output: S 

1 begin 
2 for i <---- 1 to d + 1 do 
3 l for j <---- 1 to d + 1 do 
4 L s; '"'"'§d 

5 if f3reasi = true then 
6 i* '"'"' I 
7 k = 1 
8 fori E I\ { i*} do 
9 lj~J 

10 tk <---- s; 
11 k<-k+1 

12 J"'J 
13 s;* '"'"'conv( -t1, ... , -ta) 

i* .* sj 
14 sj f- llsr II 
15 end 

8.3.2 Infeasible Cases 

Gen-Infeasible keep constructing unstructured cases using Gen-Random until 

an infeasible case is obtained. It uses Solver-Enum to examine whether the 

constructed cases are feasible. The running time of Gen-Infeasible is expected 

to be long. 
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Algorithm 16: Gen-lnfeasible 
Input: d 
Output: S 

1 begin 
2 f3feasi ~ false 
3 while true do 

s T ~ Solver-Enum(S) 

McMaster-Computing and Software 

4 l S ~ Gen-Random(d, f3feasi) 

6 if T =undefined then return 

1 end 
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Chapter 9 

Test Results 

In this chapter, we describe the results of computational experiments in which 

we run the Colourful Feasibility Problem (CFP) solver algorithms to solve 

the problems generated by our random case generators. The running results 

are organized in tables, and the following abbreviations for different solver 

algorithms are used: 

• B01: Solver-Baniny-Onn-1 (Chapter 3), 

• B02: Solver-Barany-Onn-2 (Chapter 3), 

• MU: Solver-Multi-Update (Chapter 4), 

• MV: Solver-Max-Volume (Chapter 5), 

• RP: Solver-Random-Pick (Chapter 5), 

• ES: Solver-Enum with Gamma-Stretch as its r subroutine (Chapter 6), 

• SDPR: Solver-SDP-Relax (Chapter 7). 

Section 9.1 tests B01, B02, MU, MV, RP andES with different Colourful Core 

Feasibility Problem (CCFP) cases; Section 9.2 tests RP, ES and SDPR against 

general CFP cases. Note that we also test MV while a cycling example (see 

89 



M.Sc. Thesis- Sui Huang McMaster-Computing and Software 

Section 5.2) has been found, because cycling does not usually happen. All the 

solver algorithms are tested with the same set of generated cases when they are 

compared with each other in the same table. 

9.1 Colourful Core Feasibility Problems 

For each type of problems we have run tests of solver algorithms in dimensions 

d = 3 x 2n for n = 0, 1, 2, 3 and so on. Dimension 3 is our starting point 

since some algorithms are simple and effective in dimension 2 (i.e., BOl is the 

same as MU when d = 2). We believe this yields a reasonable sample of low, 

intermediate and high dimensional problems. We tested 1000 cases for the 

dimensions d ::; 24, and 50 cases for each dimension after that. The notation 

"N /A" in the tables indicate the part of test that could not be done due to 

long running time or numerical error. 

The server used to perform tests in this section has eight 64-bit CPUs 

(Dual Core AMD Opteron™ Processor 885). The clock frequency of each CPU 

core is 2.6 GHz, and the cache size of each CPU core is 1024 Kb. The server 

totally has 64 Gb random access memory. Despite the number of CPU cores 

in the server, we can safely assume that the tests have been run in sequence 

with a single CPU core, according to our observation on the CPU resource 

distribution. 

The operating system is OpenSUSE 10.2 Linux. All the codes are imple

mented in MATLAB language and tested under MATLAB Version 7.4.0.287 

{R2007a) with Optimization Toolbox Version 3.1.1. 
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9 .1.1 Unstructured Cases 

Table 9.1 presents the results of testing the algorithms with the CCFP cases 

generated by Gen-Core-Random (Subsection 8.2.1). B02 takes more iterations 

than B01 and MU but much less average time. The effect of oscillation phe

nomenon on B02 is not obvious. B02 is also the most numerically stable one 

that can solve all the 384-dimensional cases. The time and average number of 

iterations taken by MV increase rapidly between dimensions 96 and 192. ES 

has better performance than RP in average, but we can notice that in dimen

sion 12 the maximum iteration number of ES is higher than RP. A possible 

CCFP case to make this happen is one that has almost all feasible colourful 

simplices collapsed (i.e., being almost degenerate) while having the infeasible 

colourful simplices relatively well-conditioned (i.e., having larger volumes). 
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c.o 
1'-.:l 

d 
Average (maximum) Number of Simplices 

B01 B02 MU MV RP ES 

3 1.336 ( 4) 2.175 (10) 1.15 (3) 1.324 ( 4) 7.168 (41) 1.359 (6) 
6 2.538 (6) 4.944 (12) 1.664 ( 4) 2.871 (8) 61.39 (430) 2.4 (75) 
12 4.878 (10) 11.15 (20) 2.126 (5) 7.065 (17) 3965 (33567) 99.76 (79671) 
24 8.879 (17) 24.94 (41) 2.578 (5) 18.907 (42) N/A 9382 (1588195) 
48 15.88 (20) 52.32 (61) 3.14 (5) 57.56 (90) N/A N/A 
96 29.28 (36) 107.9 (122) 3.7 (5) 193.4 (301) N/A N/A 
192 53.06 (60) 214.7 (230) 4.4 (6) 741.5 (1237) N/A N/A 
384 N/A 433.6 ( 463) N/A N/A N/A N/A 

d 
Average (maximum) Running Time (seconds) 

B01 B02 MU 

3 5.428x 10 -6 (0.4905) 7.501 X 10 -'! (0.01184) 4.401x10 -6 (0.02021) 
6 0.01071 (0.02614) 1.832 X 10 -6 (3.911 X 10 -6 ) 8.152x 10 -6 (0.01911) 

12 0.03102 (0.06308) 5.789x10 -6 (9.731x10 -6 ) 0.01790 (0.03683) 
24 0.1206 (0.2420) 0.02188 (0.03368) 0.05051 (0.08273) 
48 0.7884 (1.036) 0.09667 (0.1101) 0.2347 (0.3093) 
96 6.548 (8.399) 0.5131 (0.5739) 1.118 (1.508) 

192 74.58 (92.48) 3.465 (3. 762) 6.261 (8.545) 
384 NjA 34.23 (36.38) N/A 

d 
Average (maximum) Running Time (seconds) 

MV RP ES 

3 5.387x 10 -'! (0.01484) 5.360x10 -'! (3.937x10 -6
) 1.821x10 -6 (0.07486) 

6 1.016x10 -6 (1.954x10 -6
) 5.036x10 -6 (0.03441) 3.327x 10 -6 (0.01373) 

12 3.054x10 -6 (6.167x10 -6
) 0.4898 (4.111) 0.01496 (5.224) 

24 0.01520 (0.02955) NjA 0.8926 (144.9) 
48 0.1884 (0.2905) NjA N/A 
96 3.906 (6.136) N/A N/A 
192 188.6 (299.6) NjA N/A 

Table 9.1: Test results on unstructured CCFP cases. 
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9.1.2 Ill-conditioned Cases 

In this subsection we present the test results of the cases generated by Gen

Core-Thbe (Subsection 8.2.2), which places colourful points only on two oppo

site spherical caps. The boundary of such a spherical cap is ~ from its center 

(namely, 7J = ~), because this angle can make obviously different results from 

Gen-Core-Random without making too serious numerical problem. 

Balanced Tube Cases 

Table 9.2 presents the test results of the cases generated with ,8balanced = true. 

Comparing to the results of Gen-Core-Random (Table 9.1), we notice that the 

cases from Gen-Core-Thbe take more iterations and time to solve. 

B02 still has the best average performance and numerical stability, but 

we can find that it takes many iterations for some cases. Especially for one of 

the 3-dimensional cases it takes 788 iterations, while there are only 4 4 = 256 

different colourful simplices. Obviously B02 oscillates for this case. 

Comparing to Gen-Core-Random, the cases generated by Gen-Core-Thbe 

with ,8balanced = true have roughly the same density of feasible solutions, because 

RP takes roughly the same average number of iterations to solve them. On 

another hand, these cases takes many iterations of ES. 
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c.o 
~ 

d 
Average (maximum) Number of Simplices 

B01 B02 MU MV RP ES 

3 1.357 ( 4) 4.146 (788) 1.395 ( 4) 1.359 ( 4) 7.136 (64) 1. 786 (17) 
6 2.885 (8) 12.12 (267) 2.563 (6) 3.612 (12) 69.71 (552) 14.63 (633) 
12 5.828 (11) 29.41 (436) 3.8 (8) 10.36 (28) 4061 (73073) 7792 (1509492) 
24 11.14 (19) 60.15 (323) 4.920 (9) 31.34 (72) N/A N/A 
48 20.96 (30) 121.8 (166) 5.76 (9) 108.8 (198) N/A N/A 
96 36.56 (45) 234.3 (287) 7.02 (9) 407.6 (689) N/A N/A 
192 N/A 463.1 (533) N/A 3150 (7757) N/A N/A 
384 N/A 918.5 (1028) N/A N/A N/A N/A 

d 
Average (maximum) Running Time (seconds) 

B01 B02 MU 

3 5.609 X 10 -3 (0.415) 1.175x10 -3 (0.1625) 5.426x10 -3 (0.02917) 
6 0.01298 (0.03686) 3.906x10 -3 (0.07651) 0.01258 (0.02853) 
12 0.03927 (0.08733) 0.01390 (0.1945) 0.03083 (0.06467) 
24 0.1588 (0.2970) 0.04914 (0.2445) 0.09026 (0.1485) 
48 0.9735 (1.444) 0.2088 (0.2832) 0.3519 (0.4786) 
96 8.298 (11.27) 1.038 (1.259) 1.788 (2.145) 
192 N/A 6.863 (7.850) N/A 
384 N/A 64.10 (74.08) N/A 

d 
Average (maximum) Running Time (seconds) 

MV RP ES 

3 5.586 X 10 -4 (0.01612) 5.336x10 T (3.97x10 -3 ) 2.020x 10 -;j (0.07 435) 
6 1.160x10 -3 (2.453x10 3 ) 5.677x 10 -3 (0.04428) 5.079x10 -;j (0.04455) 
12 4.057x10 -3 (9.166x10 3 ) 0.4979 (8.918) 0.5273 (97.08) 
24 0.02401 (0.05503) N/A N/A 
48 0.3664 (0.6816) N/A N/A 
96 8.849 (15.08) N/A N/A 
192 787.1 (2127) N/A N/A 

Table 9.2: Test results on balanced tube CCFP cases. 
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Unbalanced Tube Cases 

Table 9.3 presents the test results of the cases generated with ,Bbalanced = false. 

While changing the parameter ,Bbalanced to false, the generated cases takes more 

iterations in average to solve, especially for RP and ES. Increasing the average 

number of iterations taken by RP means decreasing the density of feasible 

solutions. 
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CD 
Ol 

d 

3 
6 
12 
24 
48 
96 

192 

B01 

1.462 ( 4) 
3.458 (8) 
7.49 (15) 
16.23 (26) 
32.3 (44) 
59.96 (78) 

N/A 

d 

3 
6 
12 
24 
48 
96 
192 

Average (maximum) Number of Simplices 
B02 MU MV RP ES 

3.695 (159) 1.513 (4) 1.482 (5) 8.742 (61) 1.924 (18) 
11.46 (356) 2.682 (7) 4.181 (13) 152.39 (979) 16.22 (719) 
29.10 (261) 4.048 (8) 13.45 (36) 3.695 X 104 (364162) 1.075 X 104 (1777808) 
69.98 (264) 5.671 (10) 48.22 (121) N/A N/A 
150.2 (246) 6.8 (10) 155.0 (301) N/A N/A 
298.9 (379) 8.52 (11) 577.1 (971) NjA N/A 
625.8 (738) N/A 1.279x104 (84148) N/A N/A 

d 
Average (maximum) Running Time (seconds) 

B01 B02 MU 

3 5.944x 10 -s (0.4078) 1.083x10 -s (0.03311) 5.799x10 -0 (0.01475) 
6 0.01545 (0.03803) 0.003716 (0.09816) 0.01304 (0.03269) 
12 0.05010 (0.1004) 0.01372 (0.1128) 0.03194 (0.05479) 
24 0.2350 (0.4052) 0.05623 (0.2035) 0.1018 (0.1666) 
48 1.516 (2.048) 0.2517 (0.4015) 0.4114 (0.5631) 
96 13.07 (17.43) 1.278 (1.596) 2.144 (2.464) 
192 N/A 9.253 (10.67) N/A 

Average (maximum) Running Time (seconds) 
MV RP ES 

5.683x10 -4 (0.01122) 6.386x10 -4 (3.707x10 -s) 2.021 X 10 -s (0.07287) 
1.247x10 -s (2.559x10 -s) 0.01257 (0.07957) 5.231 X 10 -0 (0.04967) 

4.999x10 -s (0.01248) 4.660 ( 45.85) 0.7219 (114.6) 
0.03626 (0.08234) N/A N/A 
0.5097 (0.9342) N/A N/A 

12.34 (21.41) N/A N/A 
3419 (2.415x104

) N/A N/A 
---- --

Table 9.3: Test results on unbalanced tube CCFP cases. 
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9.1.3 Cases having Restricted Number of Solutions 

This section presents the test result of highly structured random cases generated 

by the algorithms introduced in Subsection 8.2.3. 

Cases Having Few Solutions 

Table 9.4 presents the test results of the cases generated by Gen-Core-Low

Dense with the parameters /3pole = /3equ = 0.057r /d. From the results of RP 

we can notice that a case generated by Gen-Core-Low-Dense nearly has only 

d2 + 1 feasible colourful simplices. If a case has exactly d2 + 1 feasible colourful 

simplices, then in average RP should take as much as (d121~:+1 iterations to 

solve it. For example, the expected number of iterations should be 25.6 and 

2.229 x 104 for the dimensions 3 and 6, respectively. The results for RP in 

Table 9.4 are only slightly lower. We also notice that B01 takes long time to 

solve these cases. 
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c.o 
CXJ 

d 

3 
6 

12 
24 
48 
96 
192 
384 

Average (maximum) Number of Simplices 
B01 B02 MU MV RP ES 

2.221 (5) 2.876 (6) 1.565 (3) 2.271 (6) 23.82 (174) 1.850 (14) 
6.326 (11) 6.812 (13) 2.323 (6) 6.785 (12) 2.118x10" (267549) 20.21 (4974) 
14.84 (24) 14.26 (24) 2.876 (7) 15.93 (23) N/A 9.137x 10.1 (2583443) 
30.60 (50) 28.53 (46) 3.503 (11) 34.58 (48) N/A N/A 
61.44 (83) 59.9 (87) 4.46 (14) 69.22 (93) N/A N/A 
120.8 (149) 111.0 (183) 6.52 (17) 137.7 (179) N/A N/A 
254.3 (383) 221.6 (345) 8.28 (27) N/A N/A N/A 

N/A 459.8 (704) 7.32 (38) N/A N/A N/A 

d 
Average (maximum) Running Time (seconds) 

B01 B02 MU 

3 8.283x 10 -0 (0.4007) 9.090x10 -'1 (0.01148) 5.795x10 -0 (0.01450) 
6 0.02788 (0.04862) 2.404x10 -.j (4.252x10 -0 ) 0.01123 (0.02746) 
12 0.1004 (0.1670) 0.007225 (0.01170) 0.02261 (0.05037) 
24 0.4592 (0.6791) 0.02491 (0.03915) 0.06082 (0.1400) 
48 3.057 (3.871) 0.1058 (0.1545) 0.2444 (0.5681) 
96 28.49 (32.83) 0.5425 (0.8366) 1.291 (2. 734) 

192 398.9 ( 484.6) 3. 711 (5.353) 7.633 (19.42) 
384 N/A 37.01 (53.80) 42.28 (159. 7) 

d 
Average (maximum) Running Time (seconds) 

MV RP ES 

3 6.383 X 10 -4 (0.01403) 1.503 X 10 -0 (0.01016) 1.978x10 -0 (0.06770) 
6 1.684x10 -0 (2.591x10 -0 ) 1.685 (21.16) 4.747x10 -0 (0.2895) 
12 5.936x10 -.j (8.363x10 -0 ) N/A 0.6100 (165.6) 
24 0.02942 (0.04087) N/A N/A 
48 0.2896 (0.376) N/A N/A 
96 4.016 (5.061) N/A N/A 

Table 9.4: Test results on CCFP cases with few solutions. 
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Cases Having (d + 1)! and dd+1 + 1 Solutions 

Table 9.5 and Table 9.6 present the test results of the random cases from Gen

Core-Mid-Dense and Gen-Core-High-Dense, respectively. Both generators use 

the parameter r = 1/ d. These cases are fairly "easy" for most of the algorithms 

to solve. We can notice that, for these cases: 

• RP confirms the density of feasible solutions; 

• ES only takes one iteration to solve; 

• BO 1 and MV perform exactly the same. 
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f-' 
0 
0 

d 
Average (maximum) Number of Simplices 

B01 B02 MU MV RP ES 

3 1.23 (3) 2.235 (4) 0.899 (2) 1.23 (3) 9.751 (63) 1.003 (2) 
6 2.375 (5) 5.262 (6) 0.999 (1) 2.375 (5) 160.3 (1008) 1 (1) 
12 4.663 (8) 11.51 (12) 1 (1) 4.663 (8) 4.814x 104 (358158) 1 (1) 
24 9.01 (14) 23.76 (24) 1 (1) 9.01 (14) N/A 1 (1) 
48 18.06 (25) 47.9 (48) 1 (1) 18.6 (25) N/A 1 (1) 
96 36.4 (43) 95.92 (96) 1 (1) 36.4 (43) N/A 1 (1) 

192 71.28 (83) 191.9 (192) 1 (1) 71.28 (83) N/A 1 (1) 
384 140.6 (157) 384 (384) 1 (1) N/A N/A 1 (1) 

d 
Average (maximum) Running Time (seconds) 

B01 B02 MU 

3 4.915x 10 -0 (0.4091) 7.613x 10 -4 (0.01189) 3.492x 10 ·,j (0.01539) 
6 0.01012 (0.02259) 1.936x10 -0 (3.263x10 ·0 ) 5.499x10 ·0 (6.603x10 -::~) 

12 0.02885 (0.05511) 5.984x10 -0 (6.997x10 ·0 ) 0.01114 (0.01182) 
24 0.1201 (0.2089) 0.02138 (0.02213) 0.03270 (0.03480) 
48 0.7570 (1.146) 0.09240 (0.09444) 0.1289 (0.1300) 
96 6.858 (8.580) 0.4881 (0.5017) 0.5902 (0.6007) 

192 83.33 (102. 7) 3.27 4 (3.317) 3.131 (3.161) 
384 1501 (1715) 30.15 (32.31) 19.96 (20.69) 

d 
Average (maximum) Running Time (seconds) 

MV RP ES 

3 5.286x10 · 4 (0.01471) 6.921x10 -4 (8.902x10 -,j) 1.698 X 10 -,j (0.06983) 
6 9.529x10 ·4 (1.409x10 -,j) 0.01297 (0.08080) 2.946x10 -,j (3.114x10 -,j) 

12 2.400x10 -,j (3.56x10 -,j) 5.887 ( 43.6993) 6.860x10 -,j (7.23x10 -,j) 
24 9.344 X 10 -0 (0.01338) N/A 0.02012 (0.02059) 
48 0.07837 (0.1060) N/A 0.07306 (0.07401) 
96 0.9741 (1.194) N/A 0.2895 (0.2978) 
192 23.13 (26.93) N/A 1.345 (1.362) 
384 N/A_ N/A 6.7438 (7.174) 

-- --- -

Table 9.5: Test results on CCFP cases with (d + 1)! solutions. 
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t-' 
0 
t-' 

d 

3 
6 
12 
24 
48 
96 
192 
384 

d 

3 
6 
12 
24 
48 
96 
192 
384 

d 
Average (maximum) Number of Simplices 

B01 B02 MU MV RP ES 

3 0.947 (2) 1.527 (4) 0.744 (3) 0.947 (2) 2.256 (31) 1.043 (4) 
6 1.006 (3) 1. 731 (5) 0.667 (1) 1.006 (3) 1.853 (16) 1.001 (2) 
12 0.957 (5) 1.614 (11) 0.617(1) 0.957 (5) 1.623 (14) 1 (1) 
24 0.981 (6) 1.65 (11) 0.633 (1) 0.981 (6) 1.739 (13) 1 (1) 
48 0.86 (3) 1.48 (7) 0.6 (1) 0.86 (3) 1.3 (5) 1 (1) 
96 0.88 (4) 1.58 (9) 0.62 (1) 0.88 (4) 1.9 (17) 1 (1) 
192 1.14 (4) 1.8 (5) 0.66 (1) 1.14 (4) 1. 7 (7) 1 (1) 
384 1 (1) 1.64 (6) 0.64 (1) 1 (1) 1.92 (10) 1 (1) 

Average (maximum) Running Time (seconds) 
B01 B02 MU 

3.654x10 -;j (0.3694) 5.735x10 -4 (6.774x10 -;j) 2.773x10 -;j (0.02006) 
4.140x10 -;j (0.01239) 8.450x10 -4 (1.975x10 -;j) 3.688x10 -;j (5.545x10 -;j) 
5.852x 10 ·;j (0.03046) 1.457x10 -;j (5.721x10 -;j) 7.339x 10 -.j (0.01234) 

0.01224 (0.07059) 3.685 X 10 -.j (0.01076) 0.02239 (0.03274) 
0.03761 (0.1009) 0.01589 (0.02347) 0.08758 (0.1284) 
0.1736 (0.5470) 0.08279 (0.1150) 0.4159 (0.5839) 

1.144 (2.758) 0.5597 (0.6009) 2.33 (3.020) 
7.466 (21.19) 4.355 ( 4.649) 14.71 (18.85) 

Average (maximum) Running Time (seconds) 
MV RP ES 

4.560x 10 -4 (0.01057) 2.303x10 -4 (2.563x10 -;j) 1.625 X 10 -;j (0.06566) 
6.527x 10 -4 (1.084x 10 -;j) 2.438x10 -4 (1.396x10 -6

) 2.841 X 10 -.j (3.081 X 10 -6
) 

1.232x10 -.j (2.454x10 ·6 ) 3.060x10 -4 (1.858x10 -;j) 6.740x10 -.j (7.184x10 -.j) 
3.436x10 -.j (6.431x10 -.j) 5.194x10 -4 (2.971x10 -.j) 0.01991 (0.02045) 

0.01728 (0.02132) 8.563x10 -'! (2.62x10 -.j) 0.07224 (0.07290) 
0.09721 (0.1408) 3.197x 10 -.j (0.02115) 0.2831 (0.2894) 

0.7826 (1.151) 0.01108 (0.03403) 1.284 (1.291) 
8.524 (16. 75) 0.07922 (0.3121) 6.848 (6.946) 

Table 9.6: Test results on CCFP cases with dd+l + 1 solutions. 
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9.2 General Cases 

In this section we present test results for both the general feasible and infea

sible CFP cases. RP and ES are tested with the feasible cases generated by 

Gen-Random (Subsection 8.3.1); SDPR is tested against the infeasible cases 

generated by Gen-Infeasible (Subsection 8.3.2). 

The hardware and software environments of the tests on the feasible cases 

are the same as those in Section 9.1. 

The computer to run the tests on infeasible cases has a 32-bit CPU (Intel 

Core™ 2 CPU T5600). The CPU has two cores and the frequency of each 

core is 1.83 GHz. The total cache amount of the CPU is 2Mb. The computer 

has 1 Gb random access memory. The operating system is Windows XP home 

Edition with service pack 2. The testing program runs on MATLAB Version 

7.4.0.287 (R2007a) with SeDuMi 1.1R3 [27] and YALMIP R20070302 [16]. 

We can safely assume that the tests have been run in sequence with a single 

CPU core, according to our observation on the CPU resource distribution. 

9.2.1 Feasible Cases 

Table 9. 7 presents the test results on the general feasible CFP cases. 1000 

cases are tested for each dimension. In average ES is faster than RP, but in 

dimension 13 we find a case such that ES is slower than RP. 

9.2.2 Infeasible Cases 

Table 9.8 presents the results of testing SDPR on the infeasible CFP cases. The 

results show that the semidefinite relaxation SDP (Section 7.2) does not give 

a tight enough lower bound for the optimal objective value of QP (Section 7.1) 
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to detect the infeasibility. Tighter relaxation should be looked for. 
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1-' 
0 

*"'" 

d 

3 
5 
7 
9 

11 
13 
15 
17 
19 
21 

Average (maximum) Number of Simplices Average (maximum) Running Time (seconds) 
RP ES RP ES 

5.06 (93) 1.98 (53) 3.822 (54.00) X 10 _, 1.797 (78.11)x10 -.j 
30.06 (1378) 10.09 (505) 2.284 (lOo.o) x w-J 3.379 (37.13) X 10 ·J 

140.1 (1903) 45.2 (3420) 1.227 (16.51) X 10 ·2 7.169 (207.0)x10 ·J 

527.4 (9617) 145.4 (7788) 5.355 (97.23) X 10 -2 1.576 (50.34) X 10 ·2 

2248 ( 42156) 437.1 (23506) 2.596 ( 48.35) X 10 .1 3.913 (153.6) X 10 .2 

9063 (324993) 3763 (2411461) 1.180 ( 41.87) 2.746 (1586) xlO -1 

3.736x10'" (434088) 4426 (368801) 5.381 (62.64) 3.569 (282.8) X 10 .1 

1.582 X lQI:> (2755684) 1.826x104 (4110061) 25.15 (439.6) 1.490 (307.1) 
5.651 X lOb (5656177) 3.806x104 (6684801) 98.35 (979.3) 3.241 (541.8) 

2. 734x lOt:> (27 421450) 9.828 X 104 (22315968) 448.6 (5192) 8.656 (2024) 

Table 9. 7: Test results on general feasible CFP cases. 

~ 
~ 
~ 
~ 
CJ:, 

""'· CJ:, 

~ 
""'· 
~ 
~ 

~ 

~ 
~ 
CJ:, 
<-!
~ 

7 
~ 
~ 
.::: 
<-!-

~-
~ 
;::3 
~ 

V:l 
~ 
~ 
~ 

~ 



f-' 
0 
Cll 

d 
Number of Infeasible Cases Average (maximum) 

Detected (SDPR Infeasible) Undetected Running Time (seconds) 

2 727 (727) 273 0.1207 (0.2350) 
3 542 (542) 458 0.2826 (0.8750) 
4 372 (372) 628 0.6869 (2. 7340) 
5 257 (257) 743 1.484 (9.375) 

Table 9.8: Test results on general infeasible CFP cases. 
"Detected" means the number of input cases whose infeasibility is detected by SDPR; "SDPR Infeasible" means the number of 

input cases infeasible for SDPR; "Undetected" means the number of input cases whose infeasibility is not detected. For each 

dimension between 2 and 5, 1000 infeasible CFP cases are tested. 
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Chapter 10 

Colourful Simplicial Depth 

Barany [3] proved that a Colourful Core Feasibility Problem (CCFP) always 

has a solution. We are consider the following question: What i sthe minimum 

number of solutions for a CCFP case? We present some results concerning 

this question, and show an induced lower bound for the monochrome (non

colourful) simplicial depth. In addition we show a parity property for the 

number of CCFP solutions. 

10.1 Simplicial Depth and Colourful Simplicial 
Depth 

In statistics there are several measures of the depth of a point p in JRd relative 

to a fixed set S of sample points. Two surveys on data depth are [1] and [13], 

see references therein. The depth measure we are interested in is the simplicial 

depth of p, denoted depthp(S), which is the number of simplices generated 

by points in S that contain p. In dimension d if we consider sample points 

partitioned into at least ( d + 1) colours, then we define the colourful simplicial 

depth of a point p relative to this sample to be the number of colourful simplices 
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(i.e., simplices with all vertices in different colours) that contain p, denoted 

depthp(S), where S is the colourful sample of points. 

The number of solutions of a CFP case represented by S (introduced 

in Chapter 2) is the colourful simplicial depth of 0 relative to S, namely, 

depth0 (S). We are interested in the the minimum colourful simplicial depth 

that a CCFP of dimension d can reach, so hereafter in this chapter we will 

assume that 0 is in the core of S and remind that S satisfies the assumptions 

in Section 2.2. If {0} US is not in general position, then we can perturb S to 

obtainS' such that depth0 (S') ::; depth0 (S), so we can assume {0} US to be 

in general position in this chapter. 

We use the following notation: f.L( d) = min depth0 ( S). 
s 

10.2 Observing Simplicial Depth by Cones 

We can observe the simplicial depth by cones. The following proposition states 

how cones are related to convex hulls. 

Proposition 10.2.1 If T = { t 1, ... , td+1 } C JRd and {0} U T is in general 

position, then 0 E conv(T) if and only if the antipode -ta+1 is in cone(t1, ... , ta). 

Proof: If 0 E conv(T), there exist ..\1, ... , ..\a+l 2': 0 such that L_~;::{ ..\i = 1 

and L_~:::; ..\iti = 0. Because {0} U T is in general position, ..\d+l > 0. Then 

we can let O"i = ..\d ..\a+l for 1 ::; i ::; d + 1, and -td+1 = L~::;1
1 

O"iti indicates 

-ta+l E cone(t1, ... , ta). 

If -ta+1 E cone(t1, ... , ta), then we have CY1, ... , CYa 2': 0 such that -ta+l = 

L~;::{ O"iti· Let ..\i = CYd ( 1 + L-1=1 O"j) for 1 ::; i ::; d and ..\a+1 = 1/ ( 1 + L-1=1 O"j), 

then 0 E conv(T). 0 
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Take a point s from a finite set S E JRd. Call a simplex generated by 

points in S a s-simplex if s is one of the points used to generate the simplex, 

and call a simplex zero-containing if it contains 0 in its interior. Define zs(s) 

to be the number of zero-containing s-simplices for a given S. 

Proposition 10.2.1 states that zs(s) is the number of simplicial cones 

generated by S \ { s} that contain -s. We find it useful to think about what 

happens to zs(s) if we moves while fixing the remaining points of S. This is 

particularly illustrative if we confine -s to the surface of the unit sphere §d 

centered at 0. 

Let U = S \ {s} with lUI = u. Initially z8 (s) will be the number of 

simplicial cones generated by sets of d points from U that contain -s. Now 

consider what happens ass (and hence -s) move. The value of zs(s) will stay 

fixed until -s crosses the boundary of any simplicial cone. These boundaries 

are defined by the hyperplanes generated by 0 and subsets of ( d - 1) points 

from U. Taking all such subsets from U, we can generate all such boundaries 

dividing §d into open cells that are topologically ( d - 1 )-dimensional open sets. 

We can define the depth of a cell of U to be the number of simplicial cones 

generated by points from U containing any given point in the interior of the 

cell. 

For a d-dimensional simplicial cone K which is generated by d points 

(these points can be called generators), a cone facet is the cone generated by 

( d - 1) of K's generators. The boundary of K is the union of its cone facets. 

Consider moving s along the surface of §d to a new point s'. If -s and 

-s' are in the same cell, we will have z8 (s) = z8 (s'). Now suppose -s is in a 

cell C adjacent to the cell containing -s'. Then as we move from -s to -s' 
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we cross a single cone facet F defined by a set U0 of ( d - 1) points from U 

belonging to F. Let us say that -sis on the left of H and -s' is on the right, 

where H is the hyperplane containing F. For the moment we assume that only 

( d - 1) points of U lie on H because of the general positioning. Let u+ be the 

set of k points from U on the left of H, and let u- be the u- k- (d -1) points 

from U on the right. Since -s is in a cell bordered by H, it lies in the cone 

defined by the points from U0 and any point X E u+. On the other hand, -s 

is separated by H from the cones formed by U0 and any y E u-. Hence -s 

is contained in exactly k simplicial cones generated by U0 and a single other 

point from U. Similarly, -s' is contained in exactly u- k- (d -1) such cones. 

Simplicial cones that do not contain U0 in their generating set will not have F 

as a cone facet, so they will contain-s if and only if they contain-s'. Suppose 

-sis in l such cones, then zs(s) = l + k, while zs(s') = l + u- k- (d- 1). 

We conclude that given the value of zs(s) at some point s, we can in 

principle compute zs(s') for any other point s' by tracing a path from s to s', 

and seeing how each hyperplane generated from points in U = S \ { s} divides 

the points of U. To do this formally, we need a topological lemma that says we 

can always draw a path between two points on §d that crosses only cone facets 

generated by points from U (as opposed to passing through cones generated by 

fewer than (d- 1) points). This reduces to the following fact. 

Proposition 10.2.2 The sphere §d , a (d- I)-dimensional manifold, remains 

path connected after removing finitely many (d- 3)-dimensional manifolds. 

Proof: classic algebraic topology arguments, see for example, [19]. 0 
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To apply the observation method using cones to points partitioned into 

different colours, we define colourful simplicial cones and colourful cone facets 

as simplicial cones and cone facets with all generators in different colours, re

spectively. 

10.3 Parity Property 

Proposition 10.3.1 For any colourful configurationS in general position and 

in odd dimension d. depth0 (S) is even. 

Proof: Suppose we begin with a configuration S0 (with (d + 1) points in each 

of (d + 1) colours) having all points clustered together. Then we can move one 

point at a time from its initial position in S0 to its final position in S generating 

a sequence of configurations S0 , Sl, ... , S(d+1)
2 = S. Clearly, depth0 (S0 ) = 0. 

As we move a given point si of colour j from its initial position in S0 (and Si) to 

its final position inS (and Si+1), we need only to know what happens when the 

antipode -si crosses colourful cone facets defined by a set of ( d - 1) points of 

( d- 1) different colours but not of colour j. The hyperplane H containing such 

a colourful cone facet F will miss only one other colour, denoted j'. There will 

be k points of colour j' on one side of H, and (d+ 1- k) on the other side. As 

-si crosses F the number of colourful simplicial cones containing -si generated 

by points from F and a point of colour j' changes from k to ( d + 1 - k). As 

long as ( d + 1) is even, the parity does not change. 0 

111 



M.Sc. Thesis- Sui Huang McMaster-Computing and Software 

10.4 Colourful Simplicial Depth Lower Bound 

Baniny [3] proved Jl>(d) :::: d + 1 by showing that each point inS participates in 

the generation of at least one colourful simplex covering 0. In [10] we proved 

Jl>( d) :::: 2d (the proof is not provided in this thesis since tighter bounds have 

been proved and the techniques are similar). Soon after that Stephen and 

Thomas [25] and Barany and Matousek [5] proved Jl>(d) :::: l(d + 2) 2 /4J and 

Jl>(d) :::: d(d + 1)/5, respectively. In addition, Barany and Matousek [5] proved 

Jl>(d) :::: 3d for d :::: 3, which it settles J1>(3) = 10 when together with the parity 

argument (in Section 10.3) and Jl>(d) :::; d2 + 1 (in Subsection 10.4.1). 

In Subsection 10.4.2 we introduce an application of fJ>(d): to provide an 

bound on monochrome simplicial depth. 

10.4.1 Low Depth Configurations 

We now describe how to build a colourful configuration s- that contains 0 in 

its core, and only d2 + 1 colourful simplices contain 0. Our strategy is to fix the 

first d sets sl, s2, ... , sd and then consider possible placements of the points 

sf+I, sg+l, ... , s~!~ to form Sd+l· We will place the points from s- = S1 u ... USd 

on the sphere §d in such a way that some regions of §d are sparsely covered 

by colourful cones from them. We begin by fixing E = 1/100d. We will place 

the points from s- in three locations on §d. The first is on the Tropic of 

Capricorn, which we define to be the set of points on §d whose dth coordinates 

are -2E. The second is on the Tropic of Cancer, whose dth coordinate is E. The 

two tropics are topologically copies of §d-l, but unlike their namesakes they 

are not equally spaced from the equator. The final region is the polar region 

of points in §d which are within E of the North Pole Pnorth = [0 0 ... 0 1]T (see 
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Figure 10.1). 

Tropic of Cancer 

Tropic of Capricorn 

Figure 10.1: Points placement in dimension 3 for constructing s-

Now let us fix the positions of the points in 8 1 . Take 

[v1- 4E2 0 ... 0 - 2E]T, 

[ V1 - E2 0 ... 0 E] T 

(10.4.1) 

(10.4.2) 

Note that the line segment between si and s~ passes just below 0 in the sense 

that it contains a point whose first (d- 1) coordinates are O's, and whose dth 

coordinate is negative (and small). We now place the remaining points s~, ... , 

s~+l in the polar region in such a way as to ensure that 0 in the interior of 

conv(S1 ). Ford= 2 we can do this by placing s~ at the North Pole. Ford 2:: 3 

we can place the points on the section of the Arctic Circle (points with distance 

E to the North Pole) with their first coordinates 0. Topologically the section of 

Arctic Circle is a copy of §d-2; we can take s~, ... , s~+l to be the vertices of a 
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regular simplex inscribed on this sphere. 

The points of colours 2 to d are chosen similarly. The first points from 

each of the d colours are arranged in a regular simplex on Capricorn. The 

remaining points in the same relative position to the first point, so that each 

Si is a rotation of 8 1 around the dth coordinate axis. In particular, for each 

i = 1, ... , d, the second point of Si will lie on Cancer and the final ( d - 1) 

points will lie in the polar region. 

We finish our construction by considering possible placements of the 

points in Sd+l· We want to place them in such a way that their antipodes 

(the -sf+ls) are contained in few colourful simplicial cones generated from s-. 
Consider the cell Csouth defined by colours 1 to d of s- on §d which 

contains the South Pole Psouth = [0 ... 0 - 1jT. We claim this is exactly the 

intersection of §d with the single colourful simplicial cone Kcap defined by 

the d colourful points on Capricorn. This follows since any other colourful 

cone is generated by a set of d coloured points chosen from Capricorn, Cancer 

and the northern polar region. Fix such a set and let Gcap, Gcan and GPole 

be the subsets of it from Capricorn, Cancer and the northern polar region, 

respectively. Let Ka = cone(Gcap, Gcan, GPoie)· We assume that we have 

IGcapl < d, otherwise Ka will be identical to Kcap· We need to show that 

int(Kcap) nint(Ka) = 0. To do this, we find a hyperplane separating Kcap and 

int(Ka). If Gcap = 0, the hyperplane through the equator will do. Otherwise, 

take any hyperplane H that goes through 0 and all points in Gcap, such that 

one of the points in Gcap is the steepest direction on H to decrease the last 

coordinate. Then all points from Gcan U GPole will be separated from Kcap as 

long as E is small enough. This completes the proof. We conclude that the cell 
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Csouth is covered only by the colourful cone Kcap and closely approximates the 

spherical cap bounded by Capricorn. 

It is a good strategy to place the antipodes -sf+l in Csouth· If we do 

this for all points of S;J+ 11 however, the resulting configuration will not have 

0 E conv(S;J+l) (S;J+1 would certainly be contained in an open hemisphere). 

Therefore we must have at least one antipode, say -s~+l, outside Csouth· Indeed, 

if we place the remaining -sf+l's inside Csouth, we would need to have -s~+l in 

the cone generated by the antipodes of the points on Capricorn. In particular, 

it is above Cancer. 

Let SA = {sL si ... ' st} be the set of points from SI, s2, ... , sd on 

Capricorn. Similarly, let SB = {s~, s~ ... , sn be the set of points on Cancer. 

Let us count how many colourful simplicial cones from s- must contain -s~+l 

if we place -s~+l in cone( -si, -si ... , -st). To do this, we start with -st+l in 

Csouth and then move it above Cancer noting which cell boundaries it crosses as 

suggested in Section 10.2. This structure of the cell boundaries is a topological 

question, so we find it convenient to remove the Psouth and equate §d with JRd-1 . 

With the exception of the single colourful simplicial cone that contains 

Csouth, the colourful simplicial cones generated by s- correspond to colourful 

simplices in JRd-1 . The polar points on §d will be clustered near the origin 

in JRd-1 . Let A = {a1 , ... ,ad} and B = {b1 , ... , bd} be the projections of 

SA and SB in JRd-I, respectively. Then conv(A) and conv(B) form nested 

simplices which contain the projection of the polar region. The boundaries of 

the colourful simplicial cones on §d map to facets of simplices in JRd-\ both 

are defined by sets of (d- 1) colourful points. Moving -s~+ 1 from Csouth to 

cone( -si, -si ... , -st) corresponds to moving the projection of it, denoted c, 
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from outside conv(A) to inside conv(B). More precisely, c should be moved 

inside the projection of cone( -si, -si ... , -s1), which is in turn inside conv(B). 

Since this can be done while not changing the depth after c is moved inside 

conv(B), we only discuss moving c inside conv(B). 

Let us now see what simplicial facets c must cross to do this. If we keep 

c far away from the ai 's and hi's themselves, we can avoid any facets involving 

the polar points: These facets involve at most (d- 2) generators from A and 

B, and hence have ends that are at most (d- 3)-dimensional manifolds in 

conv(A) \ int(conv(B)). The ends can be avoided by Proposition 10.2.2. 

There are still d2d-l colourful facets defined by choosing ( d - 1) colourful 

points from A and B. We can enumerate them by first choosing an index 

(colour) to omit and then representing the choices of a/s and hi's by a 0-1 

sequence of length ( d - 1). Letting 0 represent the choice of an ai, conv( A) is 

bounded by the facets defined by an index choice and a sequence of O's, while 

conv(B) is bounded by the facets defined by an index choice and a sequence 

of 1 's. In fact there are 2d colourful simplices generated by A and B, and they 

are enumerated by 0-1 sequences of length d. Their facets are enumerated by 

choosing an index to drop from the enumerating sequence. 

Now start with c outside conv(A). To bring c inside conv(B), we must 

start by bringing it into conv(A). This involves crossing some boundary face of 

conv(A), say the one defined by a 1 , ... , ad-l· This is enumerated as (d, 0, 0, ... , 0, 0). 

We can proceed through facets (d- 1, 0, 0, ... , 0, 1), (d- 2, 0, 0, ... , 0, 1, 1) until 

finally we cross (1, 1, 1, ... , 1) into a cell of conv(B). This involves d facet cross

ings, which is minimal since at each crossing we can only add a single 1 to the 

0-1 part of the enumerating sequence. 
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We claim that as c crosses each facet, it makes a net gain of ( d - 1) 

containing simplices. At the first facet, (d, 0, 0, ... , 0, 0), c leaves the single 

exterior simplex defined by the points A projected from Capricorn and enters 

the d simplices defined by a 1 , ... , ad-l and the d points of colour d other than 

ad (we do not count ad because conv(A) corresponds to Csouth). At subsequent 

facet crossings, the same thing happens for the remaining colours: c leaves the 

simplex defined by the crossing facet and ai. As cleaves, it enters the simplices 

defined by this facet and the d remaining points of colour i. Hence the number 

of simplices containing c immediately after crossing into conv(B) is exactly 

1 + d(d- 1). 

We now return our attention to §d and use Cc to denote the cell containing 

-sf+I whose projection on JRd-l lies inside conv(B). From our construction, 

Cc is a cell above Cancer. We want to claim that in fact it contains some point 

above the set of antipodes of Capricorn, that is, a point whose antipode is in 

Csouth· This is a complicated geometric calculation. However, we observe that 

nothing in our topological argument above changes if we change the constant 

2E in our definition of Capricorn to cE for any 1 < c ~ 2. In particular, 

the cell Cc is not degenerate if we move the antipodes of Capricorn towards 

Cancer by decreasing c close to 1. Therefore for some c > 1 (this condition 

maintains 0 E int(conv(Si)) fori= 1, ... , d), Cc includes some point above the 

antipodes of Capricorn. Any such c and point in Cc would be sufficient for our 

construction. We have used c = 2 for concreteness and take it as an article of 

faith that this is a small enough for our choice of E. 

The construction can now be completed. Take -s~+l to be the midpoint 

of the shortest spherical segment between Capricorn and sf+I (which lies below 
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Capricorn). Let z < -2E be the final coordinate of -sg+I and arrange the 

remaining points so that -sg+I, -s~+l, ... , -s~ti form a (d- 1)-dimensional 

regular simplex on §d n { x E JRd : xa = z}. Then 0 is in the convex hull of 

Sa+1 • Finally we can calculate depth0 (S-) from the location of the -st+l's: 

0 lies in 1 + d(d- 1) colourful simplices generated with st+1 and one colourful 

· 1 h · 1 d. d+ 1 d+ 1 d+ 1 H s1mp ex eac me u mg s2 , s3 , ... , sa+1 . ence, 

depth0 (S-) = 1 + d(d- 1) + d = d2 + 1. (10.4.3) 

This construction shows 11( d) :::; d2 + 1. 

10.4.2 Application of Colourful Simplicial Depth 

Even before the notion of simplicial depth was introduced in statistics, the 

question of computing bounds for the number of simplices generated by a set S 

of n points and covering a point p E conv(S) was studied in the combinatorics 

and computational geometry communities. We denote, 

g( S) = max depth ( S). 
p in general position with S p 

(10.4.4) 

The 2-dimensional question dates back at least to Karteszi [15] who showed 

that for n points in the plane, g(S) is at most (n3 - n)/24 for odd n and at 

most ( n3 - 4n) /24 for even n, and showed that these bounds were attained 

when S is the set of vertices of a regular n-gon. In the early 1980s, Boros 

and Fiiredi [4] showed g(S) is at least n 3 /27 + O(n2
), and gave configurations 

achieving this bound. 

Barany [3] gave bounds for the monochrome simplicial depth in dimension 

d as an application of his Colourful Caratheodory Theorem (see Chapter 2). He 

showed that after colouring the points in S, some point p must be contained in 
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many colourful simplices. A key point of Baniny's proof is that a core point p 

of a colourful configuration must lie in at least one colourful simplex. Using this 

fact, for a set S of n points (assume n is sufficiently large) in general position 

in JRd Barany obtains a lower bound of 

1 (n) d g(S) ~ (d + 1)d+l d + O(n ). (10.4.5) 

This result is asymptotically sharp up to a constant factor as a function of n 

(for fixed d). However, as Barany remarks, the constant is probably quite far 

from the truth. Indeed, he gives a sharp upper bound of 

g(S) ::; 2d(d ~ 1)! (~) + O(nd). (10.4.6) 

We speculate that the true lower bound is not much less than the upper bound. 

One way to improve the lower bound is to show that a core point p lies in more 

colourful simplex. In Barany's original paper, he notes that p must in fact lie 

in at least ( d + 1) colourful simplices, thereby improving the lower bound to 

1 (n) d g(S) ~ (d + 1)d d + O(n ). (10.4. 7) 

More generally 

J-t(d) (n) d 
g(S) ~ (d + 1)d+1 d + O(n ). (10.4.8) 

Because J-t(d) ::; d2+1, this construction cannot give cannot give a stronger 

bound than 

d
2 + 1 (n) d 

g(S) ~ (d + 1)d+l d + O(n ). (10.4.9) 

Wagner proved exactly this bound in his thesis [31] as a special case of his 

First Selection Lemma. This is, to our knowledge, the first improvement since 

Barany's original paper [3]. We find the appearance of the constant d2 + 1, 

which for us arrives from colourful combinatorics, quite remarkable. 
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Chapter 11 

Conclusions and Future Work 

11.1 Conclusion 

This thesis deals with the Colourful Feasibility Problem (CFP) and, in partic

ular, with the Colmtrful Core Feasibility Problem (CCFP). 

We presented the two previously known algorithms for CCFP, see [7]: 

Solver-Baniny-Onn-1 and Solver-Baniny-Onn-2. Both these algorithms are es

sentially geometric. Their complexity guarantees depend crucially on having 0 

in the interior of the convex hull of each colour, and therefore the algorithms 

have the same iteration complexity which depends on the dimension number d 

of the maximum radius p of a largest ball around 0 inscribed in the core. Solver

Barany-Onn-1 visits each colourful simplex at most once but each iteration has 

a relatively higher cost. Solver-Barany-Onn-2 may revisit some colourful sim

plex but each iteration has a relatively lower cost: We give a method to reduce 

the order of arithmetic operations per iteration from O(d4) to O(d3 ) under the 

the general position assumption. 

We have first implemented the Solver-Barany-Onn-1 and Solver-Barany

Onn-2 algorithms and two alternative simple algorithms: Solver-Random-Pick 
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and Solver-Max-Volume. We developed a set of random case generators to 

evaluate the performance of these algorithms. We showed that Solver-Baniny

Onn-1 and Solver-Barany-Onn-2 are usually faster, and exhibited a cycling 

example for Solver-Max-Volume. On another hand, we showed that oscillations 

leading to extremely slow convergence could occur for Solver-Barany-Onn-2, in 

particular when the CCFP is ill-conditioned, i.e., when pis small. 

While Solver-Barany-Onn-2 is the most efficient algorithm for CCFP in 

average, in Chapter 4 we designed a Solver-Multi-Update variant which further 

exploits the the geometric structure by performing multiple updates for each 

iteration. The main features of this enhanced algorithm are: 

• same worst case iteration complexity as the previously known algorithms; 

• no oscillation occurs; 

• fast and robust performance on the benchmark tests. 

In Chapter 6 we considered the Colourful Feasibility Problem (CFP) 

and proposed an algorithm: Solver-Enum. This combinatorial approach checks 

colourful simplex likely to contain 0 until a solution is found or, for infeasible 

problems, check each colourful simplex exactly once. The performances for 

Solver-Enum are typically much better than for Solver-Random-Pick as, in 

addition of exploiting the combinatorial structure, it incorporated geometric 

heuristics. 

Following the combinatorial and geometric approaches, we investigated 

the optimization approach in Chapter 7 and formulated CFP as a Nondefinite 

Quadratic Optimization Problem QP. We also considered a positive semidef

inite relaxation SDP of QP which can be solved in polynomial time in order 

to identify infeasible CFP cases. 
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Besides the algorithmic aspects, in Chapter 10 we investigate the lower 

bound f..L( d) for the number of feasible solutions for d-dimensional CCFP. We 

constructed a CCFP case with an unexpected low number of solutions: d2 + 

1, and proved that f..L(d) ~ 2d using topological arguments which triggered 

a new series of results: Baniny and Matousek [5] and Stephen and Thomas 

[25] independently proved, using similar topological techniques, quadratic lower 

bounds for f..L(d). The introduced d2 + 1 upper bound for f..L(d) was the first non

trivial one and the 2d lower bound was the first improvement since Baniny's 

result in 1982. The lower bound for f..L(d) yields a lower bound of maximum 

monochrome simplicial depth of n points. 

11.2 Future Work 

The proposed algorithms for CCFP are quite efficient and therefore the next 

focus could be on the general CFP. It includes refining the QP formulation 

yielding an efficient algorithm and proposing tighter convex relaxation for the 

QP. Another possible approach is to design a branch-and-bound or branch

and-reduce algorithm, which could safely discard the branched nodes that have 

positive objective function value lower bounds. A good convex relaxation may 

also improve the quality of branch-and-bound or branch-and-reduce algorithm. 

Besides the application to monochrome simplicial depth mentioned above, 

the questions studied in this thesis are connected to combinatorial questions 

related to the Colourful Caratheory Theorem. For this kind of questions, see 

Barany and Onn [6]. 

The CFP models a situation where we want to select a set of points that 

is both diverse, in the sense that it includes representatives from predetermined 
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classes (colours), and representative, in the sense that the selected points sur

round a specified point common to all the classes. This viewpoint suggested by 

Lu [17], in the context of data-mining, may provide applications to the CFP. 
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