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Abstract 
It is believed that Sr2Ru04 is a triplet superconductor that breaks time reversal symmetry, and 

it is expected to have spontaneous magnetization both at the sample edge, as well as at domain 

walls. Recent magnetic microscopy results place upper limits on the magnetic fields differing from 

previous theoretical calculations by 2 orders of magnitude. Using a Ginzburg-Landau formalism we 

investigate the effects of a rough surface as well as parameter choices which differ from the typical 

weak coupling parameters on the magnitudes of the spontaneous supercurrents and magnetic fields. 

The dependance on surface roughness is found to be small resulting in only a 20% reduction for 

the weak coupling parameters. Changing the parameters from weak coupling in addition to pair 

breaking surface effects is also found to affect the magnitudes of the spontaneous fields weakly, except 

in certain unphysical parameter regimes. The effects of the surface stabilizing another non-magnetic 

order parameter are considered, and give rise to field distributions with similar features to those 

present at domain walls. 
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CHAPTER!--------------------------------~ 

~~----------------------------------------------Introduction 

The phenomenon of superconductivity is a phase transition to a state characterized by both perfect 

conductivity and perfect diamagnetism. This state is well investigated, and has been understood 

as an instability of the Fermi-liquid state in the presence of an attractive interaction. In the pres­

ence of such an interaction the electrons tend to form Cooper pairs, leading to the formation of 

a condensate of the paired electrons. Along with the phase transition comes the formation of an 

energy gap, ~. an energy cost for exciting quasi-particles from the ground state. In conventional 

superconductors, the attraction is mediated by the electron-phonon interaction, and occurs in the 

lowest angular momentum state (s-wave). In 1965 a paper by Kohn and Luttinger showed that a 

weak attractive interaction between electrons could be generated through the Coulomb repulsion 

through higher angular momentum channels [1]. Although the unconventional superfluid He-3 was 

discovered in 1972, its electronic analogues went undiscovered for many years. We presently know 

of many such systems. Among the unconventional superconductors are heavy fermion materials, 

organic compounds, high Tc cuprates, and strontium ruthenate, Sr2Ru04, which is the material 

that is the focus of this thesis. 

1.1 Notation 

A useful model that describes the superconducting phase transition was developed by Ginzburg and 

Landau (GL) in 1950 [2]. According to the GL theory of phase transitions, we express the free energy 

of a system undergoing a phase transition as a power series in an order parameter [3]. Although 

originally phenomenological in its design, the GL model was shown to be a limiting case of the 

microscopic theory in 1959, by Gor'kov [4], with the superconducting order parameter proportional 

to the complex energy gap. Physically we can think of the order parameter as the wavefunction for 

1 



2 P. E. C. Ashby - MSc. Thesis 

the center of mass coordinate of the Cooper pairs which form the superconducting state, with the 

magnitude squared of the order parameter as the density of superconducting electrons. 

Since the order parameter is what characterizes the phase transition, it is useful to introduce 

some notation which is common in describing it. Writing the pair wavefunction, '1/J, as an orbital 

part times a spin part, we have 'lj; = f(k)Xab· Since electrons obey Fermi statistics, by considering 

the exchange of electrons in a pair we have 

f(k)Xab =-J( -k)Xba· (1.1) 

The Cooper pairs are formed from two spin ~ particles and we can construct the total spin wave­

function starting from the eigenstates of the single particle operators: 

m=(~) and 11) = ( ~ ) . (1.2) 

The resultant total spin states will have total spin eigenvalue 0 or 1, conventionally denoted by spin 

singlet and spin triplet states respectively. The spin singlet wavefunction is given by 

'lj; = f(k) (lj 1) - 11 i)) (1.3) 

and the spin triplet state is in general a superposition of the three states with total spin 1, namely 

'1/J = 91 (k) Iii) + 92(k)(li 1) + 11 i)) + g3(k) Ill). (1.4) 

We see that the spin part of the singlet state is odd under the exchange of the two particles, while 

that of the triplet state is even under exchange. The Fermi principle, Eq. 1.1, gives that orbital 

part of the spin singlet states must have even parity, while triplet states have orbital wavefunctions 

with odd parity. Since we are explicitly considering the spin of the wavefunction, it is convenient to 

represent it as a martix in spin space: 

v&(k) = ( '1/J(k)n 'l/;(k)r 1 ) 

'l/;(k)n 'l/;(k)u 

In this notation, a spin singlet state is given by 

A ( 0 f(k) ) 'lj;(k) = = f(k)iO'y, 
- f(k) 0 

(1.5) 

(1.6) 
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Figure 1.1: A portion of the crystal structure of Sr2Ru04 . The RuO octahedra define a series of 
stacked two dimensional planes in which the electronic action takes place. 

where f(k) is even ink, and CTy is the usual Pauli matrix. For a spin triplet we have 

~(k) = ( 9l(k) 92(k) ) ' 
92(k) 93(k) 

(1. 7) 

where the g(k) are odd in k. It is common in the literature to use a slightly different notation, 

introducing a vector, d(k), defined by 

~(k) = (d(k) . u) iCTy = ( -dx(k) + idy(k) dz(k) ) . 
dz(k) dx(k) + idy(k) 

(1.8) 

Here u is the vector of Pauli matrices 

(1.9) 

Thus, we have that the function f(k) specifies the superconducting state for singlet systems, while 

the vector function d(k) defines the superconducting state for triplet systems. 
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Figure 1.2: Pictorial representation of the energy gap of a chiral p-wave superconductor showing 
that it has constant magnitude but with a winding phase as you move around the Fermi surface. 

1.2 Strontium Ruthenate 

Strontium ruthenate was discovered to be a superconductor in 1994 [5], and has since attracted 

considerable experimental and theoretical study. It has a layered two dimensional structure as 

shown in Fig. 1.1, with the Ru-0 planes separated by Sr. These two dimensional planes are weakly 

coupled to each other, and the electronic behaviour is essentially 2 dimensional. This structure is 

the same as that of the high-Tc cuprates, although Sr2Ru04 has a transition temperature which is 

actually low, coming in at Tc ~ 1.5K for high quality samples. 

Early evidence which pointed towards strontium ruthenate as an unconventional superconductor 

was the sensitivity of the superconducting transition temperature to sample quality. For conventional 

superconductors Anderson proved a theorem that they should have a T c which is robust against 

disorder [6]. Many experiments were done to attempt to classify the superconducting order in 

strontium ruthenate: NMR experiments [7, 8], neutron scattering [9] as well as phase sensitive 

Josephson measurements [10] have all been interpreted as evidence for spin triplet pairing. There 

have also been a number of experiments, including muon spin resonance and more recently the Kerr 

effect, demonstrating that the superconducting phase shows weak magnetic signatures [11, 12, 13, 14]. 

The superconducting state was proposed early on by Rice and Sigrist [15] to be an analogue of 

the A phase of superfluid He-3 [16]. This state is known as a chiral p-wave, d = (Px ± ipy)z,1 and 

is considered the simplest state consistent with most experiments [17]. Depicted in Fig. 1.2, this 

state has a constant magnitude I~ I = VP'; + p~, but with a continuously winding phase to satisfy 

the odd parity requirements demanded by Fermi statistics. There are two directions in which the 

phase can wind, and these correspond to two distinct chiralities associated with the energetically 

equivalent states Px + ipy and Px - iPy· The chirality of these states is physically related to the 

1we will omit the spin space vector and simply refer to this state as Px ± ipy 
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Figure 1.3: The predicted current and field distributions at the edge of a chiral p-wave supercon­
ductor. Taken from Matumoto and Sigrist [20]. 

angular momentum and is given by ±n per Cooper pair. 

A result of this chirality is the expectation that there should be spontaneous supercurrents 

flowing around the sample edge [18, 19, 20, 21]. To understand this it is useful to think of each 

electron pair as a small current loop: while neighbouring loops cause the contribution to the total 

current to cancel in the bulk, at the edge of the sample these currents will add to create a current 

which flows around the sample with its direction given by the chirality of the superconducting state. 

This current is then screened by the Meissner effect so that the magnetic field is zero inside the 

superconductor. The result of a calculation done by Matsumoto and Sigrist [20] is given in Fig. 1.3 

showing the spontaneous current which is predicted at the sample edge as well as the magnetic field. 

The net result is a magnetic field confined near the edge of the sample. 

As mentioned above, the two chiralities are energetically degenerate and we may expect domain 

walls to form between Px + ipy and Px - ipy domains. Spontaneous currents and fields will also 

occur within the sample at such domain walls and have been studied by Matsumoto and Sigrist as 

well as others[22, 21, 20, 23, 19] and should be observable by scanning probe measurements [24]. As 

well, muon spin resonance experiments have been interpreted as evidence for internal fields present 

at domain walls[ll, 12]. 

Recent scanning Hall bar and superconducting quantum interference device (SQUID) microscopy 

measurements did not see the expected signatures of spontaneous currents at the sample edges and 

surfaces. [25, 26] These null measurements set upper limits on the spontaneous currents and are 

approximately two orders of magnitude smaller than the values predicted from simple chiral p-wave 

order.[26] Fig. 1.4 shows the predicted magnetic signal as well as the one measured by Kirtley et al. 

[26]. 

Given the considerable body of experimental results taken as evidence for chiral p-wave order, 
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Figure 1.4: Comparison of the experimental results for spontaneous edge currents and the predictions 
based on the self-consistent calculations of Matsumoto and Sigrist. Taken from Kirtley et al. [26]. 

it is important to understand whether the absence of observable magnetization at the edges can 

be explained within a theory of bulk chiral p-wave superconductivity. One possibility discussed by 

Kirtley et al. [26] is domains at the surface smaller than 1 or 2 microns on average. Given the size 

of the experimental probes, this could account for the null results.[26] Indeed, Josephson tunneling 

measurements were interpreted as evidence of chiral p-wave order with small dynamic domains,[13] 

although other results would be incompatible with such small domains at the surface[10, 14] or 

in the bulk[10]. The formation of domain walls is energetically unfavorable and the samples are 

considered clean (otherwise Tc is noticeably reduced as expected for unconventional pairing[27]), so 

such small domains are unlikely. Additional experiments are required to either rule out or confirm 

this possibility. 

Previous work [20, 23] on the spontaneous currents have only considered ideal surfaces (specular 

scattering). One might expect surface roughness or other surface effects to reduce the spontaneous 

currents. Previous studies on neutral superfluids which included the effect of rough surfaces had 

been modeled in the Bogoliubov-de Gennes (BdG) formalism or the closely related Greens function 

formalism.[28] 

The goal of this thesis is to investigate surface effects in a chiral p-wave superconductor, where 

there are screening currents present. We use a Ginzburg-Landau (GL) formalism allowing us to 

study the effect of a variety of surfaces as the parameters in the theory are varied. These correspond 
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to studying different microscopic Hamiltonians in the BdG formalism, which each stabilize a Px ± ipy 

superconductor. The BdG formalism is more accurate at low temperatures, although for specular 

surfaces it was found that the GL calculations gave qualitatively similar results for the spontaneous 

currents and fields.[20, 23] Lastly we consider the effect of surfaces which nucleate a non-chiral order 

parameter, while maintaining Px ± ipy in the bulk, as a possible mechanism for suppressing the 

predicted edge currents. 
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CHAPTER2--------------------------------~ 

IL...-_______________ Constructing the Free Energy 

To construct the free energy according to the GL recipe, we require that it be invariant under the 

symmetries of the problem at hand. For a given symmetry group g, we can express any property of 

the system as a sum of coefficients times scalars formed from the basis functions of the irreducible 

representations (irreps) of g. As the temperature of the system is lowered, the system undergoes a 

phase transition and the coefficients for one of the irreps becomes non-zero. In general, the transition 

temperatures are different for different irreps, and the one with the largest transition temperature 

describes the phase transition. The free energy is then constructed as a sum of invariants of this 

irrep, which are tabulated in books on group theory [29] or review articles [21]. The reader interested 

in more group theory can consult either of the standard texts of Tinkham [30] or Landau and Lifshitz 

chapter 14 [3]. 

It is useful to first consider the superconductor in the absence of the crystal field and spin-orbit 

coupling. In this case the problem is spherically symmetric and as we know the spherical harmonics 

are the basis function of the group of rotations. Expanding the f(k) and d(k) we have: 

l 

f(k) = L azmYim(k), l = 0,2,· .. ' (2.1) 
m=-l 

l 

d(k) = L almYim(k), l = 1,3,· .. ' (2.2) 
m=-l 

where the restriction on l follows from the fact that the f are even and the d are odd. In each of Eqs. 

2.1 and 2.2 the coefficients azm play the role of the superconducting order parameter. For a simple 

s-wave (l = 0) we see that there is only one component a00 which specifies the superconducting 

state. The simplest spin triplet state (l = 1) has 9 functions which specify the system, and is usually 

9 
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Table 2.1: Irreps for D4h with odd basis functions 
Representation Basis Function(s) Dimension 

rl kxx+ kyy 1 
r-2 kyx- kxY 1 
r-3 kxx- kyy 1 
r-4 kyx+ kxY 1 
r-5 kxz,kyz 2 

represented as a 3 x 3 matrix in the He--3 literature where there is indeed spherical symmetry. 

In the presence of the crystal field and spin orbit coupling, angular momentum and spin are 

no longer good quantum numbers. For spin orbit coupling we imagine turning the interaction on 

adiabatically. This causes the spin states to evolve continuously into two new states labeled instead 

by "pseudo-spin"; we identify these new states using our old notation li) and 11). Since the crystal 

breaks the continuous group of rotations into a finite point group, there are now a finite number of 

irreps (commonly denoted by r) which describe the symmetry of the system. The basis functions of 

the irreps for all of the point groups are tabulated and can be found in reference [29]. The expressions 

for the spatial wave function for a representation r, of dimension d, now take the form 

for spin singlet pairing, and 

d 

""' r A f(k) = L..t biTJi (k) 
m=l 

d 

""' r A d(k) = L..t biTJi (k) 
m=l 

(2.3) 

(2.4) 

for spin triplet pairing. Here, the basis functions TJ = TJx(k)X. + T/y(k)y + TJz(z)z are vectors in spin 

space. In Eq. 's 2.3 and 2.4 the coefficients bi play the role of the order parameters. 

For strontium ruthenate the point group is given by D4h, there is spin orbit coupling, and the 

experimental evidence points towards triplet pairing. There are only 5 irreducible representations 

who's basis functions are odd, and these are listed in Table 2.1. All of these irreps have a much 

lower dimension than the higher symmetry case, and we will have at most a 2 component order 

parameter. 



CHAPTER3--------------------------------~ 

I ... __________ The Free Energy and Equations of Motion 

Since strontium ruthenate has the point group D4h, there is only one irrep which is compatible 

with producing magnetic signatures. This is the tw~dimensional representation of D4h as no one 

component order parameter can describe a magnetic superconducting state [31]. We require the free 

energy to be invariant under the U(1) gauge symmetry as well as time reversal symmetry (T). The 

most general free energy transforming under D4h x U(1) x T: 

F = J d3r' [A(T) (11/Jxl 2 + I1/Jyl 2
) + !31 (11/Jxl 2 + I1/Jyl 2

)
2 + !32 (1/1;1/Jy -1/Jx1/J;)

2 + !33 (11/Jxi 2 11/Jyl 2
) 

+ K1 (1Dx1/Jxl 2 + 1Dy1/lyl 2
) + K2 (1Dy1/lxl 2 + 1Dx1/lyl 2

) + K3 ((Dx1/lx)*(Dy1/ly) + c.c.) 

(3.1) 

where Di = gx; - ~' Ai are the usual gauge covariant derivatives. Note here that we use the 

convention e = -I e I, the charge on the electron. In the bulk, the gradient terms vanish as well as 

the magnetic field. Parameterizing the order parameters by 1/Jx = 11/JxleiiJ and 1/ly = 11/lylei(IJ+¢) gives 

the following equations of motion: 

0 =A(T)I1/Jxl + 2f3111/Jxl3 + (2{31- 4{32 sin2 (</>) + !33) l1/!yi2 11/Jxl, 

0 =A(T)I1/lyl + 2f3111/Jyl3 + (2!31- 4{32 sin2 (</>) + !33) I1/Jxl 2 11/lyl, 

0 =11/Jxl 2 11/lyl 2 sin(</>) cos(¢). 

(3.2) 

(3.3) 

(3.4) 

The last equation imposes the constraint that </> = ~'lr • Examination of the free energy gives that 

for {32 > 0, </> = (2n~1 )1r minimizes the free energy, whereas for {32 < 0, the choice</>= mr minimizes 

11 
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the free energy. We focus on the case {32 > 0, which stabilizes the chiral p-wave state. 

Solving for the order parameters we find l-rPxl 2 = J-rPyJ 2 = 4c,e~~J~~,e3 = l-rPol 2 as well as the 

requirements for the stability of the free energy and the order parameter: {33 - 4{32 < 0, and 

4({31 - {32) + {33 > 0. Now, we use the following definitions we express the free energy in terms of 

dimensionless quantities. Let r' = ~r, A(r') = J2HcAa(r) and (-rPx,-rPy) = -rPo(u,v) where 

(3.5) 

(3.6) 

(3.7) 

After some algebra we obtain 

~~! [ 2 F = Zr."' d3r -~ (Jul 2 + JvJ 2) + (~ + ~b2) (Jul2 + Jvl 2) + ~b2 (u*v- uv*)
2 

- ~b3 (Jul 2 -lvl2)
2 

+ k1 (ldxul 2 + Jdyvl 2) + k2 (JdyuJ2 + Jdxvl 2) 

+ k3 ((dxu)*(dyv) + c.c.) + k4 ((dxv)*(dyu) + c.c.) + K,2 (\i'xa)2], (3.8) 

where we have introduced the following dimensionless quantities : K, = ~, d = \7 - ia, bi = 

4 c,e
1 
~2)+Pa, and ki = K1~f<2 • It is also sometimes convenient to introduce the variables k± = 

~(k3 ± k4 ). Again, it is convenient to parameterize the order parameters by u = JuJei8 and v = 
JvJei(¢+8). Choosing the gauge with 'V·A = 0 and neglecting derivatives in y by symmetry we obtain 

the following free energy: 

F = H!e j d3 r [- ~ (lul 2 + Jvl 2) + (~ + ~b2) (lul 2 + Jvl 2)
2

- 2b2Jul2lvl 2 sin2(¢)- ~b3 (lul 2 -lvl2)
2 

+ k1 [1ul'
2 

+ JuJ 20'
2 

+ a~lvl 2] + k2 [1vl'
2 

+ Jvl 2(0 + ¢)'
2 

+ a~Jul 2] 

+ 2k+ay [sin(¢) (luJ'Jvl -JvJ'Jul) - cos(¢)JuJJvJ ( 20' + ¢') J 

+2k_ay [cos(¢)Jullvl¢' +sin(¢) (lul'lvl + Jvi'Jul)] +K,2a~
2

]. (3.9) 

We now require the free energy to be stationary with respect to variations of u, v, ¢, e and ay to 

obtain the following equations of motion: 
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0 =- k1lu(- (k+ + k_) (aylvl sin(¢))'- !lui+{:!+ b2- ib3) lul3 

+ {:! + b2 cos(2¢) + ib3) lvl2lul + k1lulfl
2 

+ k2lula~- k+ cos(¢)1vlay ( 20' + ¢') 

-k+sin(¢)aylvl' +k_cos(¢)1vlay¢' +k_sin(¢)aylv(, (3.10) 

0 =- k2lv( + (k+- k_) (aylul sin(¢))'- !lvl + {:! + b2- ib3) lvl3 

+ (i + b2 cos(2¢) + tb3) lul2lvl + k1lvla~ + k2lvi(O + ¢)'
2

- k+ cos(¢)1ulay ( 20' + ¢') 
+k+sin(¢)aylul' +k_cos(¢)1ulay¢' +k-sin(¢)aylul', (3.11) 

0 =- k2 (1vl 2(0 + ¢)'), + (k+ - k_) (lullvlay cos(¢))' - 2lul2lvl2b2 sin(¢) cos(¢) 

+k+lullvlaysin(¢) (20' +¢') +k+aycos(¢) (lvllul' -lullvl') -k-lullvlaysin(¢)¢' 

+k-ay cos(¢) (lvllul' + lullvl'), (3.12) 

0 =- r;,2a~ + ay (k1lvl2 + k2lul2)- k+ cos(¢)1ullvl ( 20' + ¢') + k+ sin(¢) (lvllul' -lullvi') 

+ k_cos(¢)1ullvl¢' + k_ sin(¢) (lvllul' + lullvl'), (3.13) 

(3.14) 

These are the equations to be solved in addition to the Maxwell equation 4
; j = V' x V' x A, which in 

one dimension reduces to 4; jy = - a;ju. Combining this with Eq. 3.13 gives an equation for the 

current: 

r;,
2jy =- ay (k1lvl2 + k2lul 2) + k+ cos(¢)1ullvl ( 20' + ¢') - k+ sin(¢) (lvllul' -lullvl') 

- k_cos(¢)1ullvl¢'- k_ sin(¢) (lvllul' + lullvl') (3.15) 

We integrate Eq. 3.14 to obtain: 

o' = 2k+ cos(¢)1ullvlay- k2lvl2¢'. 
k1lul2 + k2lvl 2 (3.16) 

This equation is then used in Eq.'s 3.10-3.13 to reduce the problem to the solution of 4 coupled 

equations. 

The parameters in free energy 3.8 can be derived from a weak coupling BCS Hamiltonian with 

d-vector aligned along z as in Furusaki et al.[23]. The corresponding parameters are b2 = k, b3 = 0, 

k1 = !, k2 = i, k3 = t and k4 = i· We take A= 190 nm and~= 66 nm as parameters appropriate 

for strontium ruthenate, unless noted otherwise. 
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Figure 3.1: The current from Eq. 3.18 and the self consistent current for weak coupling parameters. 
The currents are scaled by 8~~3 • 

3.1 Analysis of the Ginzburg-Landau Equations 

Some insights can be gained by investigating the Eqs. 3.10-3.13. First, to gain a qualitative under­

standing we can treat the vector potential as a higher order effect and study a simpler form of the 

Ginzburg-Landau Equations. As a first approximation we take v = 1 and ay = 0 and obtain the 

following equation for u: 

kl u 3 -lui +lui-lui = 0 
a 

(3.17) 

with a= (i +b2- iba). With the boundary conditions lu(oo)l' = 0, and iu(O)I = 0 Eq. 3.17 can 

be integrated and we obtain the solution lui =tanh ( xjii;}. This expression can be substituted 

into the equation for the current to obtain 

. -k+ ~( 2( ~) Jy = ---;;;,2y 2k; 1- tanh xy 2k;) . (3.18) 

In Fig. 3.1 the approximate solution for the spontaneous current is plotted alongside the self­

consistent solution from the algorithm described in the next chapter. The qualitative agreement of 

the two curves is excellent, although the one given by Eq. 3.18 underestimates the magnitude of 
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the current at the edge. This agreement gives us confidence that we can use Eq. 3.18 as a good 

description of the current. 

The behaviour of lvl at the surface is less transparent as one must go beyond the constant solution 

discussed above, but a few quick facts can be obtained from the equations of motion. Again, ignoring 

the terms proportional to the vector potential, we have: 

(3.19) 

Evaluating this at x = 0 with our specular boundary condition v'(O) = 0, we have v(O) = .)J;. For 

the weak coupling parameters, this gives v(O) = ji ~ 1.155 in excellent agreement with the self 

consistent solution v(O) = 1.152. This demonstrates that v takes a magnitude different than 1 at the 

surface. In addition, as u tends towards its bulk value, the coupling term(!- a:) lul2 lvl will become 

more important. If (! - a:) > 0 we see that v becomes larger as u -+ 0, whereas (! - a:) < 0 gives 

that v is decreased as u -+ 0. 

Before turning to the GL solutions we first consider the necessary conditions for the current to 

vanish for the hard wall boundary problem. One can see that the equation for¢, Eq. 3.12, is solved 

by the choice ¢(x) = ~· This solution keeps the phase fixed from its bulk value as we move towards 

the edge, and numerical simulations for a range of parameters indicate that unless ¢ is fixed to a 

specific value at the edge by a boundary condition that this choice minimizes the free energy. 

Using this, we set ay = 0 to determine the conditions that the current vanishes and the equations 

of motion simplify greatly. We find that there are two ways to obtain jy = 0. First, we can have 

lui' = I vi' = 0 and substitution of this into the u and v equations of motion immediately leads to the 

condition 4b2- b3 = 0. To find the other conditions for jy = 0, we define J.L = ln lui and v = ln lvl, 
and the equations of motion can be written: 

( 

If I 2) 1 2 ( 1 ) 2 -k1 J.L + J.L - 2 + a:e ,_, + 2 - a: e"' = 0, 

-k2 (v" + v'
2
) - ~ + a:e2"' +(~-a:) e2~-' = 0, 

k3 
k4J.L =V. 

(3.20) 

(3.21) 

(3.22) 

Making use of Eqn. 3.22 we obtain two equations for J.L· What follows will derive the consistency 

conditions on these equations. The equations are: 
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Rearranging these for J..l" and subtracting them gives an equation of constraint: 

(3.23) 

Now, we take the derivative of this equation and use of one of the equations of motion (either 

one will do) to eliminate the J..l
11 

term. Collecting terms we obtain: 

Requiring these equations to be consistent with each other gives two solutions, one solution with 

k1 = k2 and k3 = k4. This solution gives us Jvl = lui everywhere. The other solution is given by 

k1 = k2, k3 = -k4 and a=~- In this solution the parameters conspire to allow lvl = l~l everywhere, 

which we discard as an unphysical solution due to the divergence in v at x = 0. 

The preceding shows that to make the spontaneous currents vanishingly small we must have 

Jvl -+ Jul. Since we have Ju(O)I = 0 by symmetry, we must introduce an effect which suppresses lvl 
near the surface as well. Our first approach is to consider a surface which is rough on a scale much 

smaller than the coherence effect. 

To model such a surface we follow deGennes [32] and replace our boundary condition with 

1 8lvll 1 
j;f OX x=O = [;• (3.25) 

This boundary condition also ensures that the current flowing through the boundary is zero and 

reduces to the specular case forb= oo. Previously, Ambegokar et al. showed that the limit of diffuse 

scattering corresponds to the value b = 0.54 [33]. We can also consider a completely pair-breaking 

effect with b = 0 which will force v to zero at the surface as well. Physically this could be caused by 

magnetic scattering at the surface. 



L-----------------Solutions of the GL equations 

4.1 Algorithm 

To obtain self-consistent solutions to Eqs. 3.10-3.13 we turn to numerical methods of solution. The 

GL equations were solved numerically using a numerical relaxation algorithm similar to the one 

described by Thuneberg [34]. In this algorithm we discretize space and replace derivatives by their 

simplest difference formulae. The equations of motion are of the form f ( x) = 0 where f ( x) represents 

the discretized differential equation for x. If we denote the solution of this equation by x*, and our 

trial solution by x, we can expand about x: 

I 1 II 2 
0 = f(x*) = f(x) + f (x)(x*- x) + 2/ (x)(x*- x) + · · · , (4.1) 

This expression is an exact formula for x*. If we terminate the series at lowest order we have 

* _ f(x) 
x -x- f'(x)" (4.2) 

We use this procedure to adjust our guess, x, and as p(:>) gets small enough, our solution will 

converge to x*. The error between iteration n and n + 1 each is given by considering the difference 

of 

I 1 II 2 
0 = f(xn) + (x*- Xn)f (xn) + 2/ (x)(x*- x) + · · · , 

17 

(4.3) 

(4.4) 
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giving 

x +1- x* = ~ /' (xn) (x*- x )2 + ... 
n 2 J' (xn) n . (4.5) 

The error here is given by the error at the previous step squared, and for a good guess the algorithm 

converges very quickly. We make the further simplification, by following Thuneberg [34], and avoid 

the computation of the inverse matrix of derivatives by letting [ / ( x) J -l = -c, where c E R If 

Jcl is too large, the changes at each step take f away from the solution point, and we do not get 

converence. Bounds on the size of the relaxation parameter c ensuring convergence can be obtained 

for linear equations, but are unknown in general for nonlinear systems. The value of the relaxation 

parameter cis then chosen by hand as large as possible to get the quickest convergence. Using this, 

our procedure for changing the solution is given by 

1 
0 = f(xn)- -(Xn+l- Xn), 

c 

Xn+l = Xn + cf(xn)· 

or (4.6) 

(4.7) 

When the differential equation is satisfied, f(x) = 0 and we have Xn+l = Xn· This leads us to 

choose our convergence criterion to be f(xn) < E for E « 1. Typical values used were c = 10-3 

and E = w- 5 • The value of c was found to depend strongly on the mesh size, with a refinement 

of a factor of 2 in the mesh corresponding to the requirement that c be a factor of 10 smaller for 

convergence to be reached. 

4.2 Results 

The result of a self-consistent solution of Eqs. 3.10-3.13 for the weak coupling parameters is given 

in Fig. 4.1 for the specular, diffuse and completely pair-breaking boundary condition on v. Notice 

that the x-component of the order parameter remains almost unchanged for the different boundary 

conditions, since the boundary condition was already completely pair-breaking for this order pa­

rameter. As anticiplated in chapter 3 they-component of the order parameter becomes larger than 

it's bulk value as the x-component falls to zero; however, for those boundary conditions which are 

pair breaking it is ultimately suppressed close to the surface. This behaviour can be attributed to 

the different healing lengths for the two order parameters in response to a perturbation in x. The 

magnitude of the spontaneous magnetic fields is reduced, with the integrated magnetic field being 

about 20% smaller for diffuse scattering and about 60% smaller for the completely pair-breaking 

case. 

To motivate which parameters to change we look to Eq. 3.18 for an idea of the dependance of 

spontaneous current on the various parameters in the free energy. We see that the current depends 
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Figure 4.1: Self consistent solution of the Ginzburg-Landau equations for the weak coupling parame­
ters. (a) The x andy components of the order parameters scaled by the bulk order parameter. Here 
the subscripts s,d and pb denote the case of specular and diffuse scattering, and the pair-breaking 
boundary condition respectively. (b) The magnetic field and current distributions scaled by 2;~2 
and 8;~~3 respectively. A comparison of the integral of the magnetic filed over 25 coherence lengths 
shows a 22% reduction for the diffuse case compare to specular scattering. 
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Figure 4.2: Self consistent currents, fields and corresponding order parameters for the parameters 
b2 = /6 , b3 = ~, k 1 = ~, k3 = ~. In this parameter regime the currents and fields are naturally 
suppressed, with the integrated magnetic field 23% less than that of weak coupling parameters. 
Also, the changes in the currents and fields due to surface roughness is minimal here resulting in 
only 10% change in the integrated magnetic field. 
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on yla and so we expect that the currents will reduce in magnitude as a assumes its smallest value. 

Recalling that a = i + b2 - ib3, as well as the stability condition 4b2 - b3 > 0 we see that the 

currents being maximally reduced corresponds to the instability of the chiral p-wave state. In fact, 

as we already saw in chapter 3, the case ]y = 0 implies that 4b2 - b3 = 0 (under certain conditions). 

In Fig. 4.2 we plot the currents and fields from a self-consistent calculation for a smaller value of a 

than for weak coupling. The field magnitudes are indeed smaller than in weak coupling; however, 

since a reduction of the currents by this choice of parameters is linked to the stability of the chiral 

p-wave state, this will reduce all magnetic signatures, and not only those at the edge. 

The last set of parameters which can be changed are the coefficients ki, corresponding to the 

stiffnesses of the order parameters. As is evident from Eq. 3.18 the magnitude of the current scales 

linearly with k+. Furthermore, as we saw in the derivation of the conditions for ]y to vanish, any 

finite k_ will contribute to the spontaneously generated current. As has been previously pointed out 

[31] the term proportional to k_ can be re-written as a spontaneous internal magnetization. Thus, 

it suffices to take k_ = 0 when looking for mechanisms which reduce the current. 

The last parameters which can be changed are k1 and k2. These already satisfy k1 + k2 = 1 and 

so it suffices to consider the spontaneous magnetization as a function of k1 - k2. This dependance is 

plotted in Fig. 4.3 for the different boundary conditions on they-component of the order parameter. 

As expected, the integrated magnetic field is reduced as the two order parameters are forced to vary 

on the same length scale. For the completely pair-breaking boundary condition the spontaneous 

magnetization at the edge vanishes for k1 = k2, as it must. 

For the situation at a domain wall it is not obvious that the magnetization should vanish for k1 = 
k2. At a domain wall the relative phase of the order parameters can either undergo a discontinuous 

change, or continuously kink though zero. Previously, Matsumoto and Sigrist showed that the 

domain wall with the discontinuous phase was energetically favoured.[20] A self consistent solution 

of the GL equations, shows that for this type of domain wall there are still spontaneously generated 

magnetic fields. This scenario gives both no edge currents, but while maintaining magnetic signatures 

attributed to domain walls. However, k1- k2 being non-zero reflects the energetic difference between 

longitudinal and transverse perturbations of the order parameter, which are in general different 

energetically. Since there is no symmetry in our system to force k1 = k2, they will in general 

be different. Another possibility is that as k1 - k2 is tuned closer to zero, the domain wall with a 

continuously varying phase becomes stabilized. This domain wall configuration has no spontaneously 

generated magnetic fields, and will thus not be compatible with the signatures of magnetization in 

the bulk. 

One last feature of Fig. 4.3 which stands out, is the increase of the overall magnetic signal for 

the specular boundary condition as k1 --+ k2 . To understand this we express the screening currents 
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Figure 4.3: Dependence of the integrated magnetic field on the parameter k1- k2 for specular and 
diffuse scattering, and the pair breaking boundary condition, all other parameters are as for weak 
coupling. The weak coupling parameters for k1, k2 correspond to k1 - k2 = ~. 
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(js) in terms of the sum and difference of k1 and k2: 

K-
2 j 8 = -ay(kllul2 + k2lvl2) 

=-a; [(k1 + k2)(lul2 + lvl 2) + (k1- k2)(1vl 2 -lul2)]. (4.8) 

From Eq. 4.8 we see that as k1 - k2 -+ 0 the screening currents are reduced in the region where 

(lvl2 - lul2) > 0, which is only satisfied near the sample edge. The change in k1 - k2 also changes 

the shape of the spontaneous currents. From Eq. 3.18 we see that the current both increases in 

magnitude and is pulled closer to the sample edge as k1 is reduced. This move of the spontaneous 

currents to the region where the screening currents are reduced results in an increased magnetic 

signal. 
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IL...-_______________ Competing Order Parameters 

Another possible surface effect which could cause the spontaneous supercurrents to be suppressed 

is the nucleation of an order parameter which does not support spontaneous currents at the sample 

edge. Until now we have assumed that the transition temperatures of the different irreducible repre­

sentations are well separated so that the superconductor free energy is expressed in terms of a single 

irreducible representation. When two type of order have close enough transition temperatures, the 

free energy becomes the most general expression containing both order parameters which transforms 

under the symmetry group of the problem. To first understand how a sub-dominant order parameter 

changes the behaviour of the dominant order, we will consider the simpler case of two one component 

order parameters. As an example we consider the case of an s-wave order with an order parameter 

of dx2-y2 symmetry. 

5.1 s and d wave competition 

The most general free energy density for an s-wave ('1/Js) and d-wave ('1/Jd) with dx2-y2 symmetry 

that transforms under D4h x U(l) x Tis given by 

F = j d3
x [a1l'I/Jsl2 + b1l'I/Jsl 4 + k1JD'I/Jsl2 + a2J'I/Idl2 + b2J'I/Jdl 4 + k2JD'I/Jdl2 

+ l'li'I/Jsl2l'I/Jdl 2 + h2 ( 'I/J;2'1/Ji + c.c.) 

+ !k3 [(Dx'l/ls)* (Dx'I/Jd)- (Dy'I/Js)* (Dy'I/Jd) + c.c.J] . (5.1) 

We first express the order paramerters as '1/Js = 'I/J1 ei<P1 and '1/Jd = 'I/J2ei<P2 , and reduce the problem 

to a one dimensional one to compare with our previous results. Considering the free energy deep 

25 
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Figure 5.1: Order parameters showing the growth of the subdominant order parameter as the domi­
nant order parameter is forced to zero by a boundary condition. The healing length of the dominant 
order parameter is not enlarged compared to the bare solution, and it is energetically unfavorable 
for the two order parameters to overlap for a lar~e region. The parameters are given by ~ = 1, 
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inside the superconductor where the gradient vanish gives the following equations of motion: 

0 = 2a1'1j;1 + 4b1'ljJ~ + 2"'fl'lj;l'lj;~ + 2"f2'1j;l'lj;~ cos(2(¢I- ¢2)), 

0 = 2a2'1j;2 + 4b2'ljJ~ + 2"fl'lj;l'lj;~ + 2'Y2'1j;2'1j;~ cos(2(¢I- ¢2)), 

0 = 2'Y2'1j;~'lj;~sin(2(¢I- ¢2)). 

(5.2) 

(5.3) 

(5.4) 

This results in the condition ¢1 = ~ +¢2 minimizing the free energy, as well as giving the magnitudes 

of the order parameters in the bulk: 

'lj;2 _ b1 - "12)a2- 2a1b2 
1 - 4blb2 - ('Yl - "12)2 ' 

'ljJ~ = ("11 - 'Y2)a1 - 2a2b1. 
4blb2 - ('Yl - "/2)2 

(5.5) 

(5.6) 

These magnitudes assume that the temperature is low enough that both 'lj;1 and 'lj;2 have con­

densed. Without loss of generality we may assume that 'lj;1 has a higher transition temperature. 
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Figure 5.2: Here, we lower the energy cost for the order parameters to coexist. The dominant 
order parameter assumes a lower value in the bulk compared to it's bare value. The energy cost of 
coexisting with the dominant order parameter is cheaper than the gradient cost for having to increase 
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Then, the temperature at which the subdominant order parameter becomes non-zero is determined 

by the condition (r1 - 12)a1 - 2a2b1 = 0. 

In order study the effect of a subdominant order parameter on the shape and magnitude of the 

dominant order parameter, we scale the free energy by the bulk value of the dominant order in the 

absence of the sub dominant order, and the lengths by the coherence length of the bare dominant 

order parameter. In terms of the parameters in the free energy these are given by '1/Jr = -~ and 

e = lli. The equations of motion were solved by the same Newton's method described in section 
al 

4.1. Some sample solutions are shown in Figs. 5.1, 5.2 and 5.3. In all of these solutions the dominant 

order was forced to zero at x = 0 with a boundary condition. 

Below its transition temperature the subdominant order grows up, but has little effect on the 

dominant order. The dependance on all of the other free energy parameters only effects two things: 

the bulk value of the two order parameters, and the amount the subdominant order increased from 

this value. The only significant changes to the behaviour of the dominant order parameter was as 

the transition temperatures were tuned closer to one another. This is demonstrated for the limiting 

case in Fig. 5.3 where the transition temperatures assume equal values. In this case, the solution in 

the bulk is a superposition of the two states and this scenario will also change the properties of the 

bulk. 

Given these results, we expect that the naive introduction of a competing order as a surface 

effect will likely have little change on the behaviour of the chiral p-wave order near the surface, and 

hence, on the currents. The situation will be somewhat different when the subdominant order is in 

the presence of a two component order parameter, and we turn to this possibility. 

5.2 p-wave competition 

To consider the effect of another order parameter which is favoured by the surface we add the 

following terms to the free energy: 

h = a2lwl2 + b4lwl4 + ks (1Dxwl 2 + 1Dywi2
) + bslwl2 (lul2 + lvl2) + b6 [w*2 (u2 + v2) + c.c.], 

(5.7) 

these terms would be caused by the addition of any one of the other unitary states allowed under 

the crystal symmetry. Here the new order parameter w is scaled by the bulk value of the chiral 

p-wave order. Notice, in particular, the lack of gradient terms coupling the new order parameters 

to the old ones. This lack of gradient terms can be proved by the following symmetry argument. 

Let '1/Jx and '1/Jy be the x andy components of the chiral p-wave order parameter, and let ¢ be 

the new order parameter which is competing with them. The question is if there exist terms in the 
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free energy of the form: 

Where the Dx are the usual gauge covariant derivatives needed to maintain gauge invaiance. With 

terms like this in the free energy (with a large enough coupling constant) the '1/Jx and '1/Jy order 

parameters will be forced to heal on the same length scale as the cjJ order parameter. This could 

potentially reduce the surface currents, since these are caused by the different behaviour of '1/Jx and 

'1/Jy near the surface. 

The equivalence of the x and y directions requires that these terms become: 

Now, using the symmetry x -4 -x, the first (and fourth) term requires that cjJ be an odd function 

of x, whereas the second (and third) term requires that it is even. This leaves: 

Next, consider rotation by ~ which takes x -4 y andy -4 -x. This transformation, combined with 

the constraint from the previous symmetry operation that cP was odd in x, gives that these terms 

both map into their negative and hence cannot be included either. 

Lastly, can any terms of the following form can be added? 

A term like this could suppress the magnitude of Ay in the presence of spatial variations of the new 

order parameter, c/J. By applying x -4 -x it is immediately evident that the first term requires cjJ be 

odd while the second requires that it be even. Thus no such terms are allowed. 

The lack of mixed gradient terms means that even when the parameters are such that this new 

order parameter can grow up near the surface, it has little effect on the shape of the old order 

parameters and hence, insignificant changes to the currents and fields. 

To have a more significant impact on the field distribution we take the parameters that stabilize 

the chiral p-wave state to have spatial dependance. Instead of the introduction of a second order 

parameter we make a region close to the surface favour the Px + Py state instead of the Px + ipy state. 

In particular we change the sign of the b2 term in the free energy in a region near the surface so 

that the phase changes as you move away from the surface into the bulk. The Px + Py state does not 

have any spontaneously generated supercurrents and it being stabilized near the edge could reduce 

magnetic signatures. An advantage of this scenario, is that it ensures that the bulk maintains chiral 

p-wave order. The resulting currents and fields from a self-consistent calculation are shown in Fig. 
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Figure 5.4: Computed currents and fields for a solution with varying phase. The parameters used 
are those for weak coupling, with b2 negative for x :::; 5 but positive elsewhere. 

5.4. Notice that both the overall magnitude of the fields is suppressed, as well as undergoing a change 

in sign. This alternating magnetic field is much like at a domain wall. The spatially alternating 

magnetic fields could reduce the measured signals since the magnetic probes are finite in size, but 

the overall change in field sign from the edge towards the bulk should still be measurable. 

We lastly consider the effect of making the T c of w in Eq. 5. 7larger than that of the chiral p-wave 

state in a region close to the edge. Self consistent solutions of the GL equations show that the new 

order parameter grows up at the surface, suppressing the chiral p-wave state which is recovered in 

the bulk. This configuration also gives rise to an alternating magnetic field, of similar magnitude to 

that shown in Fig. 5.4. 
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In this thesis, we examined the discrepancy between the edge currents predicted as part of a chiral 

p-wave superconductor and the Hall bar (25] and scanning SQUID (26] measurements. The measure­

ments indicating magnetism in the bulk [11, 12, 13] require that our description should produce bulk 

magnetic fields consistent with those taken to be attributed to domain walls. The effect of disorder 

alone at the surface was found to change the magnitude of the spontaneous magnetic signatures at 

the edge, but by far less than the upper bounds placed on the currents by Kirtley et al. [26] re­

quire. By examining the parameter space of the GL equations, we found that the parameter regimes 

which did not give rise to spontaneous currents were either devoid of any magnetic signatures, or 

corresponded to physically unlikely scenarios. 

The effect of competing order near the surface was also investigated, and was found not to change 

the current significantly by changing the parameters in the GL equations alone. The largest effects 

were caused by the local T c of the competing order parameter being higher than the bulk chiral 

p-wave Tc close to the edge, or by having the parameters which stabilize the chiral p-wave change 

in space so that it is not stable near the edge. The latter seems unlikely since these coefficients 

are usually functions of temperature, pressure, and other thermodynamic variables, although these 

parameters could change in the last few layers of the sample they will be unchanged over the relevant 

length scales (.X, .;). In both cases, the field distribution is similar in nature to those produced at 

domain walls, and should be observable as the magnetic probes are moved from the edge towards 

the bulk. 

These results provide evidence that the order in Sr2Ru04 may not be simply described by a chiral 

p-wave as was once suspected. Other measurements such as the Kerr effect, a sign of magnetism 

which was originally taken as evidence for chiral p-wave order is incompatible with a clean chiral 

p-wave superconductor (35, 36]. However, it was shown that impurities can generate a Kerr rotation 

33 
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angle compatible with that observed [37]. Our calculation shows that disorder is insufficient to 

reduce the edge currents and it would be useful to have one model which captures all the physics of 

strontium ruthenate. 

Recently, Leggett has proposed an alternative wavefunction that reduces to the BCS one for the 

case of spin singlet pairing [38]. While the BCS wavefunction predicts the angular momentum of 

the condensate of Cooper pairs to be given by [39, 19] ~li, the Leggett wavefunction instead gives 

that the angular momentum of the condensate is ~li (e) 2 . This large suppression of the angular 

momentum would indeed reduce spontaneous currents produced, but again, it is difficult to reconcile 

with the experimental signatures of broken time-reversal symmetry since one would naively expect 

the domain wall currents to be reduced as well. However, this requires a more careful examination 

of both the electromagnetic response and internal currents before this formulation can be ruled out. 

Nevertheless one may need to seek alternative explanations for the J.tSR and Josephson measurements 

which have been taken as evidence for domain walls in strontium ruthenate. 
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