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Abstract 

Algebraic simplification is the task of reducing an algebraic expression to a simpler 
form without changing the meaning of the expression. Simplification is generally a 
difficult task and may have different meanings according to what the subject considers 
as "simple" . This thesis starts off by reverse-engineering the concept of algebraic 
processors in the IMPS interactive mathematical proof system - which is responsible 
for handling all the algebraic simplification tasks - and discusses its algorithm and 
usage in detail. Then it explores the idea of algebraic processors as generic programs 
that can be configured for any type of algebraic structure to simplify expressions of 
that type by first formalizing the theory of algebraic processors of IMPS and then 
extending it to provide solutions for related topics. Algebraic processors can be 
defined for any user-defined algebra, as long as it conforms to the structure defined in 
this paper. The processors are defined as external units that can communicate with 
other mechanized mathematics systems in a trustable fashion and provide a program 
and a proof of correctness for any requests of simplification. Finally, some related 
processors such as one for simplification in partial orders and equivalence classes are 
outlined with some discussion of possible future expansions. 
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Chapter 1 

Introduction 

1.1 Algebraic Simplification 

Algebraic simplification [4, 17) is an important part of every mechanized mathematics 

system responsible for manipulating algebraic expressions in order to put them in a 

reduced simpler form (if possible). 

There are other kinds of simplifiers that can be embedded inside mechanized math­

ematics systems (such as one for simplifying logical formulas), but the focus of this 

thesis is only on simplifying algebraic expressions. An expression is a syntactic entity 

that can be constructed using the language of the current theory, and is sometimes 

called a "term" 1 in this paper. 

An expression E is said to be simplified into an expressionS if E = S, i.e. E is 

semantically equivalent to S, and the length of Sis shorter than the length of E [4]. 

The "length" of an expression here is simply defined as the textual length of the 

description of the expression; though it is important to mention that in some cases a 

"simpler" form of an expression is chosen in this paper that appears to be amongst 

expressions of equal size, but is chosen as the simplified form in order to choose a 

unique canonical form for equivalent terms. This will be demonstrated later on ·in 

Chapter 4. 

Traditionally, algebraic simplification refers to the process of first expanding poly­

nomials, followed by collecting like terms, and factoring. A computer algebra system 

that worked only with constants, polynomials, vectors and matrices over the field of 

some built-in number system would have implemented a simplifier as a program spe­

cialized for manipulating expressions of the given algebras and producing simplified 

expressions semantically equivalent to the original expressions. 

1This is not always the case, as in some parts of the literature a term is an expression that is not 
of boolean type. See (1]. 
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1. Introduction 2 

For example, consider a naive system working on the algebra of polynomials over 

the integers, Z[x, y]. Given the expression (x + y)2 - 2xy, the system could first start 

with a re-write rule2 saying that (a+ b)2 = a2 + b2 + 2ab (expanding the polynomial 

where a matches with x and b matches withy), followed by another re-write rule for 

a- a = 0 (matching a with 2xy), and finally one for a+ 0 = a (matching a with 

x2 + y2) to finally simplify the expression above to x2 + y2• 

With more sophisticated algebraic systems (such as [8, 14, 18, 22]) where users 
are able to define their own number systems and algebras, the.,problem of algebraic 

simplification becomes substantially more difficult since the program may not have 

any special routines for simplifying the custom user-defined objects. In such systems, 
the user is required to derive their own rules for simplifying algebraic expressions 

and either applying them manually every time they are required or extending the 

simplifier so that it can take advantage of these new theorems. 
Visiting another example, assume the user has now defined a new field Z3 , the 

field of integers mod 3, and now is working over the polynomials Z3 [x, y) to simplify 

the expression (x+y)2 +xy, which simplifies to x2 +y2+3xy by the above process. In 
this new field, the user realizes that there is an additional rule that can improve the 

simplification greatly- the fact that 3a = 0 for any a- but the system's simplifier 
either has to completely ignore this new information, or to allow the user to install 
additional simplification rules. 

As it turns out, modifying the simplifier t_o consider this will significantly reduce 
its power by making it restricted only to the field of integers mod 3 (in other cases, 
the simplified answer is most likely wrong [25]). The best solution at this point would 

be to carry the simplification rules with the theory, and have the simplifier consider 

the additional simplification rules specified with the current theory. This way the 
simplifier will be able to simplify expressions from any theory without having the 
need to be modified before each simplification request. 

In this example, the theory of Z3 should carry the extra simplification re-write 
rule for 3a = 0. In fact, the theory will need something more powerful, to reduce the 
numeric terms outside of the range 0, 1, 2 to the equivalent number mod 3. 

2In this paper, the term "re-write rule" has the traditional meaning where it is a simple syntax 
manipulator without any special logic and program extensions. A complete description of re-write 
rules and their extensions can be found in [1, Ch. 3] 
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1.2 Objectives of the Thesis 

This thesis will explore the concept of an algebraic processor (8] as a unit inside a 

mechanized mathematics system that can perform the task of algebraic simplification 

of expressions over any algebra. The goal is to have a clear definition of how such a 

processor can be created that can accept any algebraic structure and perform alge­

braic simplification tasks on it according to the options and the configuration of the 

structure. The algebraic processor must also be able to provide a proof of correctness 

for the simplified expression. 

1.3 Organization 

In this thesis, a method of defining and using custom algebraic simplifiers will be 

introduced and analyzed. First, a general survey of applications of such processors 

is given in Section 1.4, followed by some background information and sources for the 

material used in the definition in Chapter 2. The algebraic processor unit of the IMPS 

interactive theorem proving system (8, 11] is introduced and analyzed in Chapter 3 and 

compared with some other well-known mechanized mathematics systems. Chapter 4 

contains the full description, structure, and algorithm of the algebraic processor -

which will expand on the idea of algebraic processors of IMPS and formalize its theory. 

Some further topics are briefly introduced in the final chapter that are directly related 

to algebraic processing. 

1.4 Applications 

Due to the nature of algebraic simplification, the applications of such systems are 

mostly limited to computer algebra (CA) and automated theorem proving (ATP)3 

systems. 

The user of a computer algebra system will want to see his or her result in a 

simplified form after running a calculation through the system, since running a com­

plex algebraic algorithm on data can produce a final result of many small fragments 

that are put together by its program. For example, if the result of a computation is 

(1 + 1 + 1) * (x + x) * x, the user will have an easier time interpreting the answer 
if it was presented as 6x2 instead. Of course, that example assumed the calculation 

3For the purposes of this paper, "automated" theorem proving includes computer-assisted proof 
development, where user guidance is usually a necessary part of proof discovery. These systems 
are also called mechanized theorem proving systems where it is implied that the system does not do 
much proof exploration on its own. 
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was performed over the field of integers (or the reals or other similar fields); if the 

calculation was done over Z3 (like the past example), then the result of 0 would be 

much more welcomed by the user. 

Automated theorem provers can also benefit from this processor to prove certain 

identities. For example, equality or order checking can be performed by simplifying 

the two sides of an equality or inequality and comparing the simplified forms. 



Chapter 2 

Background 

2.1 IMPS Algebraic Processor 

IMPS [8, 11] is a mathematical proof system developed in the early 1990s at The 
MITRE Corporation. The idea of an algebraic processor was first introduced in IMPS 

for its expression simplification system. This paper builds upon the notion of algebraic 

processor in IMPS and formalizes its theory and structure. 
The implementation present in IMPS is discussed in detail in Chapter 3. 

2.2 Transformers 

In order to perform algebraic manipulation, it is first required to establish a notion 
of symbolic computation on the expressions with enough machinery and information 
to be able to assign a meaning to each one of the transformations. In this paper, 

transformers [12] are used as the means of symbolic computation, and together with 

the appropriate semantics (as discussed in Chapter 4) they will define the basis for 
algebraic computation. 

A tmnsformer is a type of function that is an alternative to a re-write rule in 
symbolic computation. Transformers map expressions to expressions in such a way 
that the transformation is specified by either an algorithm or a formula. Axiomatic 

transformers are specified by an axiom or theorem, and are used for supplying proofs 
of transformations. Algorithmic tmnsformers are simply programs that manipulate 
an expression without necessarily any notion of semantics. 

Definition: LetT be an axiomatic theory. A proper{algorithm) tmnsformeris an 

algorithmic transformer in T linked by a meaning formula to one or more axiomatic 
transformers in T. 

5 
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The notion of an algebraic processor in this paper will be built on the idea of proper 

transformers since they can carry both an axiomatic proof of their correctness and 

an algorithm for performing the transformation. 

Transformers are more powerful than standard re-write rules, as they are able to 

represent any symbolic manipulation. For the example given in the introduction chap­

ter, it was mentioned that implementing the simplifier to replace numbers with their 

equivalent number modulo 3 was a rather difficult task to accomplish through basic 
re-write rules. For a transformer, this is a very basic task that can be accomplished 

using the following transformer: 

Axiomatic: A(a) =a' if 0 ~a'< 3 A a= a' (mod 3) 
Algorithmic (in English): "Given number a, let b be the representation of a in 

base 3. Let a' be the least significant digit of b, then replace a with a' in this context." 

The axiomatic aspect of the transformer is vital for automated theorem provers 

in order to provide proper proof for the transformation; the algorithmic aspect of 

the transformer is similar to the way computer algebra systems generally perform 
algebraic simplification. 

By combining the deduction and computation powers of transformers, a powerful 

framework for algebraic processing can be designed that can handle many algebraic 

structures with ease, as well as provide satisfactory results for both types of mecha­
nized mathematics systems. 

2.2.1 Algorithmic Transformers 

LetT be an axiomatic theory T = (L, r), where Lis a formal language defined over 
a logic K, and r is a set of formulas of L. 

An algorithmic transformer r is a function that maps expressions of L to expres­
sions of L. r preserves semantics if, for every expression A ofT, T t= A = r(A), 
i.e. r preserves the meaning of A in every model ofT. 

Algorithmic transformers can be automatically generated from oriented equations. 

When the input of the transformer matches the left side of an equation, the trans­

former can replace it with the right side, which means that an automatically generated 
algorithmic transformer can be just a usual re-write rule. A detailed description of 
a matching algorithm can be found in [1, Ch. 4]. This shows so far that utilizing 

algorithmic transformers is at least as powerful as the method of using re-write rules. 
The advantage to using algorithmic transformers here is that they are allowed to 
have any kind of algorithm - not just the ones generated from equations - thus 

making it possible to program more complex machinery for the transformation task. 
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An example is given later in this section. 

2.2.2 Axiomatic Transformers and Proof Generation 

Although axiomatic transformers are not directly used by the algebraic processor, 

their existence is crucial in generating a proof of correctness for the final outcome. 

Let T be the same axiomatic theory as above, an axiomatic transformer r is a 

function on the formulas of L. An axiomatic transformer is sound if, for every formula 

F ofT, T 1- (F -¢=:::} r(F)),1 i.e. there exists a proof in T that F -¢=:::} r(F). Let 

this proof be called 71"; it will be used later on in conjunction with the algorithmic 

transformer automatically generated from this theorem. 

2.2.3 Other Types of Transformers 

Deductive and computational transformers (called axiomatic and algorithmic here, 

respectively) are not the only types of transformers. This paper, however, uses only 

the concepts of these two transformers. For information on other transformer types, 

refer to [12]. 

2.2.4 Re-write Rules vs. Transformers: An example 

Revisiting the example in the introduction section again, a re-write rule for 2a+a = 3a 

was used to perform term collection. In the case of a general simplification algorithm 

for collecting like terms, re-write rules can not provide enough flexibility to implement 

this with a convenient number of rules, since one needs to define a system of rules for 

every combination of coefficients and operations (as it was demonstrated in Section 

1.1). A re-write rule specifying xa + ya = (x + y)a is able to collect such terms in 

a finite number of iterations, but it will return (2 + 1)a as the result instead of the 
more simplified form 3a. 

A transformer, being a program that manipulates expressions, can achieve this 

result quite easily. In fact, the task for collecting like terms can be generalized further 

into creating tally charts that are able to do so for any binary operation. A tally chart 

simply stores the results of all the simplifications of direct sub-terms in one map, and 

finally groups all the terms together according to their operations2 before sending the 

1 Although the symbols F= (models), = (preserves meaning) from the last definition, and 1- (proves) 
in this definition are all in the meta.-theory, the symbol ~ (if and only if) here must be defined 
in the logic K and present in language L of the theory T. 

2Indeed, commutativity and associativity of the objects is a major consideration when doing so; 
this is discussed in detail in the next chapter. 
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groups to the simplifier for possible term collection and contraction. 

For the example above, the transformer responsible for collecting + terms will 

create a tally chart for all the occurrences of the term a, and in the end make a 
simplified expression with a summation of all the factors for a. For example, the 

term 2a + 3a + ba is transformed to {2 + 3 + b )a by this transformer - which can 

then be transformed to {5 + b)a by another transformer responsible for simplifying 
numeric expressions. 

The same tally chart can be used in another transformer for collecting * terms, 
or any other operation of similar nature. 



Chapter 3 

The IMPS Algebraic Processor 

The IMPS interactive mathematical proof system (8, 11] contains a component named 

the Algebraic Processor which is responsible for a significant portion of the simplifica­

tion performed by the system on algebraic expressions. The IMPS algebraic processor 

handles the installation and execution of the instances of algebraic processor, which 

are user-defined additions to the simplifier that describe the structure of an algebra 

and the possible simplifications that can be performed on the teriilS belonging to it. 

Every algebra used in the theory library (i.e. reals, vector spaces, matrices, etc.) re­

quires an instance of the algebraic processor for proper simplification, as the system's 

simplifier relies on the available algebraic processor for each type to define how an 

expression is simplified. 

This chapter first introduces some historic notes on the design and implementation 

of the IMPS algebraic processors, followed by explanation of how they function within 

the system. Then the syntax for defining an algebraic processor in IMPS is explained, 

as well some sample processors for most common algebras. At the end, a short 

comparison between the IMPS algebraic processor and the methods of simplification 

in other computerized mathematics systeiilS is given. 

3.1 History 

The IMPS algebraic processor unit was implemented in the early 1990s by F. Javier 

Thayer at The MITRE Corporation [8]. The design and implementation of the al­

gebraic processor was completed a decade before the work on this thesis started and 

little technical documentation had been available prior to this. The limited documen­

tation that is available is found in [9, Chapter 13.4], (8, Section 4.4.1], and [10, Section 

3]. The first task in this research was to reverse engineer the IMPS algebraic processor 

9 



3. The IMPS Algebraic Processor 10 

in order to be able to explain how it works, and then compare how it performs in 

contrast with the simplification routines available in other mechanized mathematics 

systems to demonstrate its usefulness and versatility. Later in the next chapter this 
theory will be formalized mathematically, and other improvements and expansions 

will be discussed. 

The implementation of the IMPS system is written in the T programming language 

[20, 21] which is a Scheme-based Lisp dialect. Although the T language is not in use 

anymore, the T code is still present in IMPS and runs in a modified Common Lisp 

environment. This environment is a partial emulator for the T programming language 

written in Common Lisp- it is not a complete implementation ofT, but it emulates 
enough of T to execute the IMPS code. 

The original idea behind the development of the IMPS algebraic processor was 

to design a simplifier that can simplify expressions from any kind of user-defined 

algebra in the theory library of the automated theorem prover. The simplifier must be 

configurable enough to adjust its operations according to the structure of the defined 

type. It must also ensure that the applied simplifications are correct in the context of 

the expression and are provable in the current theory. Although the implementation 
of the algebraic processors in IMPS is able to simplify any algebraic structure from 
a monoid to a field, most of the optimization and simplification techniques are ring 
theory oriented and in general do not apply to simpler structures. 

3.2 How It Works 

As mentioned earlier, the IMPS simplifier requests a separate algebraic processor to 

be created for each user-defined algebra. If a certain type does not have an algebraic 
processor associated with it, then the simplifier will be very limited in its operations 
and will essentially not be able to perform proper simplification. 

The algebraic processor contains a mapping between each user-defined algebra 

and an internal abstract algebraic theory. The structures that the processor can 
simplify range from a general monoid structure up to specialized fields. The complete 
structure of these objects is described in the next chapter. 
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3.2.1 Sorts and Operators 

In general, there are three sorts1 associated with each algebraic processor, but only 

one of them is mandatory to define. The base sort is the sort of the current algebra 

being processed. The coefficient sort is the sort for the coefficients (scalars) that 

may be scaling the objects of the base sort. In order to have coefficients for the 

processor, the base algebraic structure must be at least a module2 (in the hierarchy 

described in Section 4.2), while the ring structure has the same sort for both the 

coefficients and the base. The exponent sort is the sort for exponents of the base 
object. These exponents generally denote repeated multiplication presented by a 
semi-ring. Although the requirements for the presence of an exponent sort are very 

limited, the algebraic processor can perform some very useful simplifications when 
the requirements are met - for example, the algebra of real numbers can benefit 
from simplification of exponents. 

In the term ex"; xis of the base sort, cis of the coefficient sort, and n is of the 

exponent sort. 
The operations supported by the algebraic processor are listed as follow. It is 

important to note that not all of these operations may be present in a given processor. 

• +for the addition operation (monoid operator) of type base x base--+ base 

• * for the (scalar) multiplication operation (scalar multiplication for modules, 
and ring multiplication for rings) of type coefficient x base--+ base 

• - for the group additive inverse operation of type base --+ base 

• - for the exponentiation operation of type base x exponent --+ base 

• / for the ring division operation of type base x base --+ base 

• sub for the group subtraction operation (composition of addition and additive 

inverse) of type base x base --+ base 

In addition to the operations defined above, there are certain constants that are 
required to exist in the three sorts defined for the algebraic processor, depending on 
which operations above were defined: 

• An additive identity for the monoid (the zero element of the base sort). 

1There has been much discussion on what is called a sort and what is a type. In this thesis the 
two terms are equivalent. 

2Since "module" can be an ambiguous term, the term itself will always mean module in the 
mathematical sense, and when the other meaning of module as a programming unit is needed, the 
term "unit" is used in this paper in order to avoid the confusion. 
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• Additive and multiplicative identities of the ring of scalars, if there is a scalar 

type defined (the zero and one elements of the coefficient sort). 

• The multiplicative identity in case of the presence of a division operation (the 

one element of the base sort, which is now a division ring). 

• The zero and one elements of the exponents sort, if an exponentiation operation 

is defined. 

3.3 Syntax and Definition 

IMPS algebraic processors are defined by special "clef-forms" (to be explained shortly) 
for each theory; the processors have a language including certain sorts assigned to 

them, and are installed directly into the simplifier as explained earlier. This, of course, 

is installed inside the current working theory only and is not considered in simplifi­
cation when working in a different theory. In addition to the language and base sort, 

the user must provide the symbols corresponding to each operation inside the proces­
sor, and a set of options to configure the processor for the algebraic structure that is 

being described, such as commutativity, existence of division, and exponents. These 
optional configurations provide the processor the necessary information to refine its 

internal program for this structure. 

A def-form [9, Ch. 4.2] in IMPS is a special construct which creates or modifies 
an IMPS object when evaluated. There are many different def-forms in IMPS, and 

each one deals with a different type of object. The specification for DEF-ALGEBRAIC­

PROCESSOR is discussed here. For more details on clef-forms and their specification, 

refer to [9). 

3.3.1 Syntax of def-algebraic-processor 

This is the general form for defining an algebraic processor in IMPS, with all the 
required and optional arguments (See [9, Ch. 17.1]): 

(def-algebraic-processor 
*processor-name* 
cancellative 
(language *language-name*) 
(base ( 

(scalars *numerical-type*) 
(operations *operations-pairs*) 

required 
optional 
required 
required 
optional 
required 
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) 

)) 

use-numerals-for-ground-terms 

commutes 

optional 

optional 

(coefficient *coefficient-processor*) 

(exponent *exponent-processor*) 

optional 

optional 

• *processor-name* is the name of the algebraic processor being currently de­

fined. The name of the processor must be unique in the theory, and algebraic 

processors are paired up with their language and base sort in order for the sim­

plifier to find the proper algebraic processor when running the simplification. 

• cancellati ve is a modifier flag that tells the processor the laws of cancellation 

(Section 3.2.4) hold true for this processor. 

• language *language-name* is a mandatory argument that tells the algebraic 

processor the language (in the current theory) for this processor. The language 

must define all the sorts for base, coefficients, and exponents, in addition to all 

the operations that are being used by this processor. 

• base is a special form inside the definition that contains the structure and 

instructions for simplification of the base sort in the processor. Every algebraic 

processor contains at least a base sort, so this argument is mandatory. 

- scalars *numerical-type* is the internal numerical type for represent­

ing the numerals in this sort. The name "scalars" should not be confused 
with the coefficients type of the processor, as this is the object type in­

side Common Lisp that is used for simplifying arithmetic expressions as 

explained earlier. This argument is only needed when the user wants the 

processor to perform such simplification for numerals. 

- operations *operations-pairs* is a list of operation definitions, each 

one being a pair of a symbol of an operation type (such as the symbols 

"+" and "*") defined in the algebraic processor's structure, and an actual 

operator defined in the processor's theory. This is where the algebraic pro­

cessor maps an actual operation to the symbol that it knows internally. Of 

course, this matched constant must be of the correct type for the operation 

(as per Section 3.2.1), and it is verified during the soundness check. The 

soundness check is explained in Section 3.3.2. 
3 Although in most mathematical literature the two terms are equivalent, they have different 

meanings here in the IMPS algebraic processors due to a naming accident. 
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- use-numerals-for-ground-terms is an optional modifier only to be used 

in conjunction with the scalars argument, and tells the algebraic proces­

sor that it is allowed to use the numerals returned from the Lisp computa­

tion engine in the returned expression to the user. The numerals from the 
arithmetic library are of the type defined in the scalars numerical-type 

section above. The actual process of this replacement and the advantages 

of doing so is explained later in Section 3.4.2. 

- commutes is another optional modifier for the processor, specifying that 

the ring multiplication operation is commutative (as per Section 4.2.6). 

The commutativity of this operator is verified during the soundness check 
if this flag is set. 

• coefficient, similar to the base form, contains the instructions for the co­
efficients sort of the processor. Note that this definition is optional, but its 

inclusion in the processor guarantees at least a module structure on the pro­

cessor (which needs to be verified as well). The coefficient processor can be 
defined with only reference to name of another algebraic processor, in order to 

avoid repetition of definitions. By default, if a coefficient sort is expected but 

none is supplied with the processor definition, it is assumed that the coefficient 
processor is same as the base processor. 

• exponent, similar to the coefficient form, defines the structure of the expo­
nents in the current processor. Again, it is implicitly assumed that the expo­
nent processor is same as the base processor in case that one is expected but 

not defined (if it is not expected, meaning that no exponentiation operation 

was defined, then this assumption can be safely ignored since this processor is 
never referenced). The exponent processor can simply be a reference to another 
processor. 

3.3.2 Verification and Installation 

The structure of the algebra is determined through the defined sorts and operations 

supplied to the algebraic processor. A complete list of the axioms required for each 

structure is listed in the next chapter, but it is important to mention that the orig­
inal implementation of algebraic processors in IMPS did not contain the verification 
routines for a few of the axioms which are necessary for completing the structure of 
some of these algebras. 

The first step of the verification process for installing a new algebraic processor 
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is to confirm that the sorts and constants as listed in Section 3.2.1 are defined in 

the theory, and that the provided operations are indeed of the correct function type. 
Additionally, the system must verify that the coefficients and the base are the same 

sort if the structure is considered to be a ring {i.e. the coefficient sort is same as the 

base sort, and scalar multiplication is the ring multiplication). 

The final step in the verification is to ensure that the current theory has a proof 

for every theorem that is used in the construction of simplification transformers. 

The transformers are determined through the structure of the current algebra - for 

example, if the specification implies that the current algebra is a ring, all the axioms 
of ring theory are verified by the installation process. In order for the system to verify 

these, each axiom of the structure must be present as a theorem in the current theory 
and contain a proof of correctness. 

When the algebraic processor has been successfully verified, it is installed into 
the simplifier in a mapping between the set of base types to the algebraic processor 

instances responsible for simplifying expressions of the types, and the processor is 

called when simplification of each type is needed. 

3.4 Simplification Algorithm 

The simplification algorithm of the IMPS algebraic processor can be broken down into 

three separate sections: Term re-writing, arithmetic simplification, and finally term 
collection and ordering. 

3.4.1 Term re-writing 

When an expression is supplied to the algebraic processor for simplification, the first 

task is to consider which transformations are applicable on the expression. These 
transformations are re-write rules (sometimes conditional re-write rules [1, 2]) that 
are automatically generated from the axioms governing the structure of the current 
algebra. These axioms are listed in Section 4.2. It is important to mention that there 
is a selection process in the code for which rules are allowed for automatic application, 
since some of these rules may not lead to termination (23]. An example of such a rule 
is the commutativity axiom for addition. 

In essence, this mechanism is similar to the method of simplification through term 
re-writing that is done in a basic computer algebra system. The difference is that in 
this method, the re-write rules are created from the structure of the algebra that the 

user has defined, thus making it a flexible simplifier that can be configured to only 
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c(;msider the appropriate re-write rules for the user-defined algebra. For example, 

when a + operator is defined, the processor creates the appropriate rules for the 

additive identity and associativity as defined in Section 4.2.1 -this is because the 

smallest structure that the algebraic processor knows about which has a + operator 

is a monoid. Refer to Section 4.2 for the list of known algebraic structures in the 
algebraic processor. 

One important aspect of the term re-writing component is that some of the rules 

are conditional [1, Ch. 11.3]. These rules carry a condition with them that must be 

true in the local context of the term before the re-writing can occur; For example, 

while working on the field of real numbers, consider the following rule of exponenti­
ation: xm * xn = xm+n when xm, xn, and xm+n are defined. If the user does not 

pay attention to the conditions of this rule, one can easily arrive at false conclusions 
such as: {-1)(1

/
2

) * {-1)(-1
/
2

) = {-1)0 and further on simplify {-1)0 = 1 through a 

different rule. The definedness constraints on this re-write rule guard against making 
sucll a wrong simplification since the sub-terms (-1)(1

/
2

) and {-1)(-1
/

2
) are unde­

fined. The exponentiation operator for real numbers (or integers, or even complex 

numbers) is only defined when the exponent is an integer4 ; furthermore, it is defined 

for negative exponents only if a ring division operation exists (which does indeed exist 

for the case of real numbers). 

3.4.2 Arithmetic Simplification 

Another simplification that happens internally with the IMPS algebraic processor is the 

task of simplifying integer arithmetic. This task is closely tied with some of the options 

on the algebraic processor that were defined in Section 3.3. One of these options is to 

replace IMPS numerals with Lisp numerals during internal calculations, and another 

one of the options is to use the numerals in the ground terms. A numeral is a numeric 
constant such as the number 3, and a ground term is a closed term {meaning there are 
no variables) consisting of constants and operations of the algebra, sucll as 1 + 1 + 1 
in this case. 

This process of utilizing numerals in ground terms involves using the Common 
Lisp implementation of the bignum arithmetic library to perform the calculations on 

numerals. For example, a calculation such as {1 + 1 + 1) + (1 + 1) {where 1 is the 
ring unit for base sort) whicll consists of an addition between two ground terms, is 

4The reader might have noticed at this point that the exponentiation operator is only for repeated 
multiplication, and must not be confused with the exp function. The re-write rule defined here is 
certainly not true for the case of exp function, and the soundness check would have failed prior to 
installation of the algebraic processor since such a theorem could not be proved. 
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replaced internally by the expression "3+2" and sent to the Lisp engine which returns 

a numeral5. The definition of the algebraic processor would have needed to describe 

to the system that this operation is permitted, and define the object type (in Lisp) 

for the numerals to be replaced internally, as well as telling the simplifier that the 

+ for this processor is indeed the same operator that is used in the internal numeric 

library. 

Additionally, the algebraic processor needs to know if it is allowed to return the 

number 5 to the user, or if it needs to translate this back into a term (1 + 1 + 1 + 1 + 1) 

before returning the final result. This option is set by the 

use-numerals-for-ground-terms flag in the definition of the algebraic processor. 

Although the theorem prover itself is unable to supply an explicit proof of this 

operation to the algebraic processor, one must trust that their computer is able to 

perform basic integer arithmetic correctly. ., 

3.4.3 Term Collection and Ordering 

Collection of similar terms is another important simplification task that the IMPS 

algebraic processor performs. As mentioned earlier in this section, some of the ax­

ioms of the algebras are not automatically instantiated as re-write rules; however, 

these axioms are essential to the process of some more complicated transformations. 

There are two more transformations that the IMPS algebraic processor performs when 

simplifying a term that are not directly obtained through the re-write rules: Term 

collection, and term ordering. 

As discussed in Section 2.2.4, a tally chart is responsible for collecting the terms 

that utilize the same kind of operation and simplifying them. Collection of like­

terms requires some theorems to be defined and proved in the theory, namely the 

commutativity, associativity, and distributivity theorems for the involved operations. 

When simplifying a term such as 2x + y + 3x, the processor has to ensure that the 

+ operation is commutative and associative before collecting the two terms involving 

x in them. Once the term is transformed into 2x + 3x + y through this, then the 

distributivity theorem is required (to be applied in reverse) to give the result of 

(2 + 3)x + y by the term collector (which can then be further simplified into 5x + y 

by the numerical calculator explained above). The tally chart mechanism of the IMPS 

algebraic processor provides an elegant method for term collection that can be proved 

directly using the axioms of the current theory. 

Term ordering is another simple transformation performed through applications of 

associativity and commutativity of the + and * operations of the algebra. If one of the 
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operators exists, and the two relevant theorems for associativity and commutativity 

of that operation have been proved, then the terms involving that operation can be 

ordered. Ordering of the terms provides a unique syntax for representing equivalent 

terms that are made of the same element but represented in different orders. For 

example, the terms x + z + y andy+ z + x can both be ordered [1] (provided that 

the two necessary axioms hold) to x + y + z. 
Although this is not "simplification" in the manner discussed earlier (i.e. the 

length of the term is not shortened), it is still considered an important step in the 

simplification task as it will lead to construction of canonical forms. These canoni­

cal forms can later be used for simplifying equalities since the equivalent terms are 
syntactically equal after the simplification. 

3.5 Sample Processors 

IMPS' implementation of algebraic processors requires the user to map every operator 
defined in the structure to a user-defined one. The syntax makes it mandatory to 
provide a name and options for the processor first, followed by definitions for the 

language, base type, coe:ffjcient type, and the exponent type. If either the coefficient 

or exponent types are not defined, but the related operators for them are defined in 
the base type definition, it is assumed that they are the same type as the base objects. 

3.5.1 Real Numbers Algebraic Processor 

This is the algebraic processor for the IMPS representation of real numbers; where 

the base type, coefficient type, and exponent type are all the same type of reals5• 

The operations for this processor all have their usual meaning in the language of 

numerical-structures, meaning that the + constant in this language is exactly what 
we need for adding real numbers, and same case with the other operations. 

This processor also takes advantage of the fact that any numerals present in a 

calculation with real numbers will have to be rational numbers. Any irrational number 

has to be expressed through either the result of a function application (for example, 
v'2), or a constant symbol (such as 1r). Knowing this, the processor is safe to replace 
numerals with the built-in rationals type of the system, and perform simplification 

using the bignum library as a quotient of two integers. 

(def-algebraic-processor rr-algebraic-processor 

5The operations are partial functions, since for some cases - specially in exponentiation - the 
result is undefined in the current language. 
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cancellative 
(language numerical-structures) 
(base ((scalars *rational-type*) 

(operations 
(+ +) 

(* *) 

(- -) 

(A A) 

(/ /) 

(sub sub)) 
use-numerals-for-ground-terms 
commutes))) 

3.5.2 Vector Spaces Algebraic Processor 

19 

This sample is an algebraic processor for the general theory of vector spaces. Vec­

tor spaces are different than the example defined earlier because the base type and 

coefficients are not the same object (and thus it is not a ring processor like the al­

gebraic processor for the reals), and only a few operations make sense in the case of 

vectors. These include vector addition, scalar vector multiplication, and (additive) 

vector inverses. 
The type of the coefficients, however, is handled by the processor for real numbers 

as defined above. This sample shows how more complex processors can be built upon 

other ones for special object types. 

Notice that this processor is not cancellative or commutative anymore, since such 

options are not true for vectors, and replacing numerals with ground terms does not 

make any sense in this situation. 

(def-algebraic-processor vector-space-algebraic-processor 
(language vector-spaces-over-rr) 
(base ((operations 

(+ ++) 

(* **) 

(sub sub_vv) 
(zero vO)))) 

(coefficient rr-algebraic-processor)) 
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3.6 Comparison with Other Systems 

This section provides a short description of how some of the other theorem proving 

systems and computer algebra systems handle algebraic simplification in contrast to 
IMPS algebraic processors. 

3.6.1 Isabelle 

The Isabelle [18, 19] generic theorem prover implements a machinery named simpli­

fication sets [19, Ch. 10.2]. Parts of the simplification sets in Isabelle are similar to 

the IMPS method. 

A simplification set is made of five components. The first two components, rewrite 

rules and congruence rules, are analogous to the axioms of the mathematical structure 

in the IMPS algebraic processor; however, the user is required to list the axioms as 

re-write rules, as opposed to the IMPS method of automatically instantiating them 
according to the operations defined for the algebra. The Isabelle method allows more 

flexibility as the user is able to define simplifiers with any re-write rules, but also 
brings the inconvenience of having to enter them all for each algebra, as well as not 

being able to take advantage of specialized routines such as term collection. An 

example of implementing term ordering for a simplifier is given in [19, Ch. 10.5]. 

The other extended components of the IMPS algebraic processor - tally charting 

and arithmetic simplifier - are not easily done with the tactics in Isabelle. The three 

remaining components of the Isabelle simplification sets are the subgoaler, the solver, 
and the looper. These components are responsible for simplifying and solving the 

sub-goals during the simplification process. Although the IMPS simplifier has internal 
routines for defining the methods of processing the sub-goals and solving the side 
conditions, the interface for overriding the default behavior of them is not present for 

the end users. 

3.6.2 PVS 

The PVS [22] theorem prover incorporates a more traditional attitude towards ex­

pression simplification. The core simplification strategies [22, Ch. 14.2] use re-write 
rules for simplification of terms, but there are multiple rules for simplification to use 

different decision procedures. The PVS command simplify [22, Ch. 4.12.10] pro­
vides most of the machinery that the IMPS simplifier contains; it breaks down the 

simplification into the following steps: beta reduction, arithmetic, conditional, data 
type, boolean, and quantifier simplifications, and finally rewriting. The arithmetic 
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simplification section of the PVS simplify command is the closest component to the 

IMPS algebraic processors; however, the PVS method is mostly limited to simplifying 

the algebra of real numbers and no machinery is provided for configuring user-defined 

algebras. 

In order to be more flexible, PVS allows the users to modify the set of automatic 

re-write rules (22, Ch. 4.13] that are applied during simplification, thus giving it the 

possibility for the user to define his or her own axioms for an algebraic data type. This 

is similar to the method used in the first two components of the Isabelle simplification 

sets, but it does not allow the user to take advantage of the permutative re-write rules 

the way that IMPS or Isabelle do - such as the example of the term ordering rules 

created in Isabelle. 

3.6.3 Maple 

The Maple [15] computer algebra system has a very different method of dealing with 

algebraic simplification. In Maple, the simplification of polynomials and rational 

functions is handled by a separate system that basically manipulates the symbols of 

the expression [15, Ch. 7] through a set of pr<7defined actions, such as expansion, 

factorization, normalization, collection, and sorting of the terms. Unlike IMPS, Is­

abelle, and PVS, the computer algebra system pays no attention to the semantics of 

the manipulation, and can even lead to incorrect results due to its assumptions about 

the mathematical structure (25]; instead, it performs most of the simplification using 

arithmetic [15, Ch. 14]. This method is more efficient than the techniques that the 

previous theorem provers use (and also the methods explained in (13]). It is also more 

convenient for the users to perform simplification since the system does not require 

its users to define the means of simplification by r<7write rules or defining theorems, 

but as discussed in [25] it can give incorrect simplifications for special cases. 



Chapter 4 

Algebraic Processor 

This chapter formalizes the theory of algebraic processors that IMPS uses and proves 

some properties of it. Furthermore, some solutions to the shortcomings of the IMPS 

model are given. The chapter starts by giving a definition of what an algebraic 
processor is, followed by a description of the mathematical structures that can be 

simplified using algebraic processors. The algorithms for generating the program and 
the proof for a simplifier is given in the final section. 

4.1 Definition 

The problem outlined in the introduction chapter stated that the task of algebraic 
simplification becomes difficult in the "traditional" model when the users are allowed 

to define custom algebras in their theories. 

The solution proposed here is to allow each algebra to carry a simplification routine 
with it, providing the required machinery to the system's simplifier to allow it to 

simplify any expression from this algebra. This customized simplification program 

is called an algebmic processor. The goal of defining the machinery for an algebraic 
processor is to not only produce a simplifier for every user-defined algebra, but to be 
able to generate a proof of correctness for the simplified expression as well. 

The algebraic processor carries a bundle of theorems for simplifying different com­

binations and aspects of each one of the operations in the underlying algebra, as well 
as a set of configurations for changing the simplification mechanism in special cases. 
For each option that the algebraic processor supports, some related theorems must 
be supplied and proved in order to take advantage of the simplification option. This 

way the algebraic processor will have a proof (or a meta-proof, for certain operations) 

for every step of the simplification, and still have the ability to let the user decide on 

22 
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·which methods they want to use, as well as allowing an optional set of re-write rules 

for custom simplification programs. 
The program breaks down the simplification in several steps. Each step will do 

a small piece of work and provide the required information (namely the proof of 

correctness and the simplification program) back to the system. Every step of the 

simplification is defined as a pair of transformers. The axiomatic transformer is au­

tomatically generated from the defined axiom [12] and the algorithmic transformer 

is defined as either a simple re-write rule (for simple cases, which can also be au­

tomatically generated), or a special routine to perform the transformation (such as 
term collection or integer arithmetic). The sequence of transformers that the alge­
braic processor produces provides both a proof for the end result and an algorithm 

for producing the simplified expression on demand. 
Definition: Given a logic K and axiomatic theory T = (L, r) where the logic K 

is typed {such as extensions of [7]), and given an algebra A over a base type a (ofT), 

the algebraic processor is a program generator of type Options ~ (Simp, ProofGen) 

where Options is a collection of properties of A (much like the options supplied to 
the IMPS algebraic processor). Simp is a function of type a expr ~a expr such that, 

given an expression E of type a, the result of Simp(E) is simpler thanE as defined 
in Section 1.1 and (4]. ProofGen is a program that for a given expression E produces 
a proof that E =Simp( E). The type for ProofGen is a expr ~Proof 

Each algebraic theory defined in the system will include an algebraic processor 

for its types1
, and they can all be plugged into the simplifier on request. This means 

that the simplifier has virtually no built-in simplification routines, but instead uses 
the specialized programs for each algebra to simplify the expressions. Users can also 
create algebraic processors with their custom defined algebras and plug them to the 
simplifier as extensions. User-defined processors require a proof for every theorem 

used in the simplifier (these theorems with their proofs are usually installed in the 
theory), so that the processor can utilize the theorems in its proofs of correctness for 
expression simplifications. 

4.1.1 Categories of Processors 

The algebraic processor works with the theories for different algebraic structures; 
however, it is important to define the interface to the objects used in the simplification 
process. This common interface provides the framework for every custom algebraic 

processor to override the simplification procedure according to its needs. 
1 At this point, the reader can assume that we're only concerned about the types that require 

algebraic simplification. 

• 
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The most basic processor starts with simplifying a monoid operation ( +) between 

the elements of the domain. There is not much simplification that can be performed on 

a monoid other than eliminating unit elements, but given a slightly richer structure of 

a group, more simplification options are available -in this case cancellation of inverses. 

Of course, one additional option on such a structure would be commutativity that 

allows some re-ordering and possible further simplifications. 

More interesting simplifications can be done on richer structures such as mod­

ules or rings, where a link between element addition and multiplication is established 

(distribution) and further simplification can be done by collecting like terms. Expo­

nentiation is another optional operator in the structure, with axioms similar to the 

distribution law in order to simplify repeated multiplication. 

Multiple algebraic processors can be linked to each other, thereby dividing the 
task of simplification to smaller terms of the same type, and when each sub-term has 

been simplified locally, the "outer" algebraic processor will collect the simplified sub­

terms and put them together in the larger context. The process of simplification will 
continue until the entire expression has been traversed and every algebraic processor 

in the context has run its course. The chain of calling between algebraic processors 

will terminate since a different processor is only invoked when a sub-term of a different 
type is encountered, and there can only be a finite number of them inside a term. 

4.2 Structure 

This section defines the mathematical axioms of the processors outlined above, and 

the structure of the objects on which they can act. These mathematical objects 

provide a basis for the structures that the algebraic processor accepts as input. The 

program for simplification is able to process and simplify any objects that define or 
extend any of the outlined mathematical structures. 

The base sort is the sort of the current algebra being processed. The coefficient 

sort is the sort for the coefficients (or scalars) that may be scaling the objects of the 
base sort. Respectively, the exponent sort is the sort for exponents of the base object. 

For example, in the term c · xn, x is of the base sort, c is of the coefficient sort, and 

n is of the exponent sort. 
The equations defined in this section are instantiated as re-write rules that replace 

the left side of the equation with the right side (with the exception of the ones 

marked with a (*)). The unification algorithm [1] does not match the left hand 
side of an equation if one of the elements is undefined, for example in the equation 

0 * x = 0 (Section 4.2. 7) the replacement is not performed if x is not defined. In 
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certain cases additional definedness criteria are required to ensure the correctness 

of the replacement, for example the exponentiation operator ~ is a partial operator 

and is not defined for certain values, even when both arguments to the operator are 

well-defined. For such cases the definedness of the whole term is separately enforced 

by imposing extra conditions on the re-write rule. 

In the following definitions, assume x, y, and z are of the base sort; c and dare 

of the coefficient sort; n and m are of the exponent sort. 

4.2.1 Monoid Processor 

In this case, no scalars or exponents are supplied, and only a monoid structure is 

imposed on the objects. The following axioms define the monoid processor, and most 

of the axioms are automatically instantiated as re-write rules (which are a form of an 

algorithmic transformer) by the algebraic processor machinery. Some of the axioms 

are not directly used as re-write rules, but are necessary to maintain the structure of 

the algebra; such axioms are marked with a ( *) in the lists below. 

In the following axioms, + is the monoid operation, and 0 is the identity of it. 

•x+O=x 

•O+x=x 

• (x+y)+z=x+(y+z) (*) 

The additive commutativity axiom can be added as an option for a commutative 

monoid: 

4.2.2 Group Processor 

· The Group processor is an extension of the monoid processor where the additive 

inverse operation- is introduced with the following axioms: 

• x+(-x)=O 

• (-x) +x = 0 

The additive commutativity axiom can also be applied here to form an Abelian group. 
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4.2.3 Module Processor 

A ring of scalars is added to the Abelian Group Processor to impose a module struc­

ture on the objects. The scalar multiplication operator is ·; the operators +c and 

*c are the ring addition and multiplication operations of the coefficient sort, while 

Oc and lc are the additive and multiplicative identities of the coefficient ring. These 

elements are subscripted with c here to emphasis they belong to the coefficient sort 

and not the base sort. 

The following axioms are added for the module structure in addition to the rules 

for scalars being a ring and the base sort being an Abelian group: 

• Oc •X = 0 

• c · y + c · z = c · (y + z) 

e C ·X+ d ·X = (c +c d) ·X 

4.2.4 Cancellative Module Processor 

Cancellation axioms are added to the Module Processor: 

e X + ( -lc) · X = 0 

• c · x = c · y {::=} x = y when c =I Oc 

• C • X = 0 {::=} C = Oc Y X = 0 

4.2.5 Ring Processor 

When the base sort is the same as the coefficients sort on a Module Processor, the· 

and * operations become the same, and a ring structure is imposed by the following 

axioms: 
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4.2.6 Commutative Ring Processor 

This is a Ring Processor with the additional (multiplicative) commutativity law: 

• X*Y=Y*X (*) 

4.2. 7 Division Ring Processor 

The cancellation laws can now be added on a Ring Processor to create a processor 
for a division ring. In addition to the Ring and Cancellative Module Processors, the 

following axioms are added: 

• X*y=O ¢::::} x=OVy=O 

• x * y = x * z ¢::::} y = z when x =f:. 0 

4.2.8 Ring with Exponents Processor 

This is a Ring Processor with added support for exponents. Exponentiation here is 
the task of repeated multiplication, and thus qply certain values for the exponent 
would lead to a value, causing the exponentiation operator to be partial (meaning 

that it may be undefined for some elements of the domain). 

The operations and elements of the exponents sort are subscripted with e to be 
easily distinguishable from base elements. Since exponentiation is a partial operator, 

the following axioms are applied only when all operations .of the equation are defined 

on both sides: 

• on = 0 when n =f:. Oe 

• x0
e = 1 when x =f:. 0 

• (xm) * (ym) = (x * y)m when the ring is commutative 
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4.2.9 Division Ring with Exponents Processor 

Division Ring and Ring with Exponent Processors can be combined to create a new 

structure. The following axiom relates division to the exponentiation, and is only 

applicable when both sides are defined: 

• xjy = x * (y-1
) 

4.2.10 Field Processor 

A Field Processor is essentially a combination of all the structures up until now, it is 

a Commutative Ring Processor which supports division and exponentiation. It can 

be defined by adding the multiplication commutativity axiom to the Division Ring 

with Exponents Processor. 
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4.2.11 Diagram 

Processor 

Monoid Processor 

4.3 Implementation 

Having defined the structure of the algebraic processor and the desired output of it, 

one may rightfully ask if it is possible to implement the algebraic processor as defined 

in this chapter. This section explains a method on how this processor can be imple­

mented and presents solutions to the problems that arise during the implementation 

of the algebraic processor machinery. 

As explained in the background material, the processor will be given in two alter­

native forms: an axiomatic form and an algorithmic form. 
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4.3.1 Overview 

From a high-level point of view, the algebraic processor is broken into two components 
which together form a complete simplifier. 

The first component is recognition and traversal of the expression. The expression 

is broken up into a representation of its sub-terms connected through its operators, 

and the processor traverses through this expression. The expression that is entered 

to the simplifier is very similar to a parse tree, and usually the host system decides 

its internal representation. However, when the algebraic processor is acting as a 

separate external component communicating with a different host environment, it 
is important to describe and establish a unique representation for every expression. 

This is discussed in more detail further in this chapter on the communication section. 
At each stage of the traversal, an algebraic processor for the type of the term is 

instantiated and asked to perform its own simplification. There must be an algebraic 

processor defined for every type of object that the expression contains. For example, 

if the expression is a conditional term where the condition is a comparison between 

two terms of type a, and the result of the expression is of type (3, then there must be 

two algebraic processors defined with the types a and (3 as their base sort respectively. 
The simplifier sub-system is responsible for storing these algebraic processors in an 
internal cache and providing a term's processor (by looking up the term type in the 
cache) for the simplification of the object during the traversal. 

At each step, the current term's processor will first attempt to simplify the term 

by applying the known transformers of this type. When no further transformers are 

applicable, a processor can call the algebraic processor responsible for simplifying 
each sub-term (a breadthOfirst algorithm) and collect all the simplified sub-terms. 
This result is then passed up to the super-term which will in turn collect the rest of 

the simplified terms from the sibling nodes and simplify the parent term. The process 
will continue until the entire expression has gone through the processors responsible 
for each sub-term and the base expression (the largest one, at the top of the tree 

during the traversal) has been simplified. 
The proof that this task terminates needs to be done in two parts: 

First, show that only a finite number of the re-write rules (as defined as the 
axioms in the structure of the algebra) can be applied to each term. This can easily 
be checked by going through all the listed rules that are marked to be installed as 

re-write rules and verifying that the length of their output is shorter than the length 

of the input. In fact, the only rules that are marked with a ( *) are exactly the ones 
that do not provide any simplification directly, and may cause a non-terminating 

sequence of repeated applications of a transformer. This is not to say that these 
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axioms are "useless" in any way, as they are essential for the correctness of some of 

the transformers that will take place on the next component. 

Second, show that there is a finite number of term traversals during a simplifica­

tion process. Since the length of each sub-term is shorter than its parent term, by 

structural induction there are only a finite number of terms to be simplified through 

an algebraic processor. In the first part of the proof it was shown that each one of 

these terms has a terminating sequence of re-write rules applied during the simplifi­

cation, thus concluding that this entire process terminates and returns a simplified 

expression. 

The second component of the processor is called at each step after the simplified 

results of the sub-terms have returned. This component is responsible for applying 

transformations that are not performed by normal re-write rules, such as simplifying 

arithmetic expressions, collecting similar terms, and term ordering (as explained in 

Section 3.4). Of course, not all of these transformers may be applicable for an alge­

braic processor, and their presence depends on the options given to the processor. For 

example, collection of similar terms is only correct when distributivity, commutativ­

ity, and associativity theorems are present and proved, whereas term ordering requires 

commutativity and associativity (of either addition or multiplication, depending on 

whether it is ordering a summation term or a product) in order to be correct. 

4.3.2 Transformers 

There are two groups of transformers [12] that are used in the simplification process. 

The first group are those transformers created from the given axioms of the pro­

cessor (the ones mentioned in the previous section). The axiomatic transformer for 

each one simply corresponds to the theorem itself (generated from the equation), and 

the proof for it must be supplied by the author as an installed theorem. The algo­

rithmic transformer of each is automatically created as a normal re-write rule from 

the theorem (as explained in the background section). 

The second group of transformers are the simplifications performed by the final 

stage of the processor as defined above. These transformers require some processing 

since the proof for each one needs to be customized. What this means is that the 

proof is different for each term that is being simplified. For example, when the term 

ordering transformer is applied to the term y + x to return the result x + y, 2 the proof 

will consist of a single application of the additive commutativity law. In contrast, 

2 Assuming the terms are ordered alphabetically, but in general this depends on the implementa­
tion of the processor 
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when the term z + y + x is being transformed into x + y + z, the proof will consist of 

an application of the additive associativity law as well as the commutativity for it. 

An easier way of dealing with the proofs of these transformers is to have a general 

proof of the meta-theorems defining each one of term order, term collection, and 

arithmetic calculations. This can be greatly beneficial for shortening the length of 

the generated proofs. As an example, the proofs for integer arithmetic are usually 

generated through applications of Peano arithmetic axioms. When multiplying two 

large integers this proof can become overwhelmingly large and tedious, but if the 

algebraic processor has an implementation for using the system's internal numeric 

types for fast calculation of arithmetic expressions (similar to how IMPS utilizes the 

bignum library in Lisp) and has provided a (meta-)proof of correctness for its numeric 

library, then it can present this proof as evidence for the correctness of the calculation 

without the need to go through the long (and rather uninteresting) proof of it. 

4.3.3 Local Contexts of Transformers 

While the algebraic processor is traversing through the structure of an expression 

and applying the transformers from the first group, it is also required to keep track 

on which sub-term the transformation is taking place. This is required in order to 

generate a transformer for the whole expression from the transformer that was applied 

locally on a smaller term. The local context of each sub-term is also important for a 

transformer since some of the axioms defined in the structure were conditional rules 

(and thus making the equivalent transformer a conditional re-write rule). 

Given an expression F with a sub-term f whose position in the expression is p and 

a transformer r, the context CF,p is a conjunction of all the terms in local context [16] 

ofF at position p. The fundamental meta-theorem to bring the transformation to 

global scope is: (CF,v ==? f = r(J)) ==? (F = F[f /r(J)]v) 
i.e. if the transformation is valid locally, then it is valid globally within F at position 

p. 
This meta-theorem allows a local transformer to be lifted into a global transformer. 

For the special case of non-conditional rules, the context CF,p is empty and thus the 
resulting global transformer is independent of the position of application p. 

Given a conditional re-write rule C ==? f = r(J), the algebraic processor is 

required to prove that C holds in the local context of f before applying the axiomatic 

transformer in the proof of correctness for the simplification. For example, consider 

the expression F : if (x = 0) then 1 else x0 • While simplifying this expression, the 

conditional rule r : x =/; 0 ==? x0 = 1 is applicable. If the position of x0 sub-term 
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is p in F, then CF,p is x =/:. 0. 

To prove that the transformation is valid in global scope, one can construct a new 

transformer that re-writes a larger term (being the parent of the current term, or any 

of its ancestors) as far high in the term construction as needed in order to provide 

the proper context for the transformer. For the example above, consider this new 

transformer: r' : (if (x = 0) then 1 else x0 ) =(if (x = 0) then 1 else 1) 

The proof steps for transforming the base term F is: 

1. C ===? I = r(f) 

2. (CF,p ===? C) ===? (! = r(f) ===? I= r'(f)) 

3. F = F[l /r'(!)Jv 

In the proof sketch above, the first step is the proof of the transformer itself, the 

second step is to prove that the conditional rule can be embedded in a non-conditional 

rule, and finally the last step is to show that the newly obtained transformer can be 

applied globally. For further reading on embedding of conditional re-write rules, refer 

to [2, 16]. 

4.3.4 Generating the Proof and Program 

In the final stage of the processor, the entire sequence of transformers that was col­

lected over the previous stages is then assembled together to provide the full simplifier 

for this term to the system. Assume the expression E was given to the two compo­

nents Simp and ProofGen of the algebraic processor. The sequence T11 T2 , ... , Tn of 

transformers is collected in the order they were applied during the traversal of the 

expression, where the axiomatic transformer is named Tt, and the corresponding al­

gorithmic transformer is named Tf. Furthermore, assume the clause for embedding 

the conditional transformer (step 2 of the description in the last section) is named Ei. 
If the transformer 11 is not conditional, then Ei can simply be truth. Also assume 

that the global transformer (step 3 above) is named Gi. Then: 

{Tf; ... ; Tf:.) is a program that performs the simplification on request; and 

{Tf; E1; G1; ... ; T,:; En; Gn) is the sequence of steps to generate a proof of correct­

ness for the simplification, with each Tf in first sequence is related to the triplet 

(~a; Ei; Gi) for its proof; this triplet is equivalent to step 1-3 in Section 4.3.3. 

The first sequence of transformers is the generated program of the simplifier. This 

is the simplifier program after having optimized the simplification routines according 

to the mathematical types used in the expression. This program specifies the code 
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that should be executed on the input expression E in order to obtain the simplified 

output, whose correctness is proved by the prescriptive proof in the second sequence. 

The second set of transformers is the output of the proof generator component. 

This proof is called a "prescription" as opposed to a descriptive proof since only the 

steps of the proof are outlined, and the proof checker needs to follow the steps one 

by one and apply the mentioned actions in order to obtain a complete proof. 
The client may require that every step of this prescription is checked and validated 

before the simplified expression is accepted. Some systems may prefer the more 

convenient path and present the simplifier as an atomic expression (as if it were a 

black box) and provide the proof of this step separately upon request. 

4.3.5 Communication 

The algebraic processor works as a separate unit from the mechailized mathematics 
system; this way it can be used by both an automated theorem provet and a computer 

algebra system without need of change. In order for the procesSor to communicate 

properly with the host environment, a mutual communication chami~l_ ~n.ust be estab­

lished by both ends such that the host environment can ask the algebraic processor 

to process a certain expression through the channel, and the AP can respond to the 
host in a meaningful manner. 

The communication channel must be meaning preserving [3] in such a way that 
the expressions on the host end of the line and the ones received on the algebraic 
processor side would mean the same thing in the context of their theory. Therefore it 

is important for both sides to agree on the underlying theory and language before per­
forming any operations. Once the request for algebraic simplification is successfully 
sent to the algebraic processor, it may request certain proofs of transformers from the 

host environment. It is responsibility of the user to provide accurate information to 
the processor at its discretion. For example, a computer algebra system may not be 

very interested in the axiomatic proofs of every transformer3 and would respond to 

the algebraic processor that every requested transformer is proved internally. 
The algebraic processor would return the two combined transformers (the proof 

and the program) back to the host environment, and the host can now either insert 
the proof script of the transformation in its own proofs, or apply the simplification 

program to retrieve the simplified expression. It is again required for the response 

messages to preserve the semantics of the transformers when communicating. 

3Some computer algebra systems such as Maple[15] and Mathematica[27] do not have any proofs 
for most of their simplification rules, and some of the transformations applied are not even deduc­
tively sound in certain cases. 
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Conclusion 

Before concluding this paper, a few other types of processor and some topics are 

worth of mentioning. 

5.1 Related Processors 

Algebraic processors are not the only type of processors that can aid with the task of 
algebraic simplification; for the purposes of mechanized mathematics systems, other 
types of processors can be used to handle other tasks of algebraic comparison. 

There are two types of comparison processors: Equality Processors and Order 
Processors. The reason they are not both under the same machinery is that an order 

processor requires at least a partial order defined on the object types, whereas for 

equality a partial order is not a necessity. 
An implementation of both order and equality processors is also present in the 

IMPS interactive mathematical proof system [9). 

5.1.1 Equality Processor 

Equality processors are extensions to the algebraic processors that simplify the pred­

icates of equality over a certain type. Defining an equivalence relation on the base 
type in an algebraic processor allows it to be able to simplify queries of equality after 

performing the algebraic simplification on the two sides of the comparison. This has 
limited use and only simplifies (sub-)terms of boolean type, but the ability to simplify 
such expressions can greatly improve expressions with conditional branching in them. 

The equality processor uses the entire algebraic processor machinery to simplify 
the two sides of equality to a normal form. When both sides of the equality are in 
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the most simplified form, then it is much easier to decide if the two sides are within 

the same equivalence relation or not. 

5.1.2 Order Processor 

Similar to the equality processors, order processor s are also extensions to the AP 

system. Given a partial order on the base type, the system can perform additional 

tasks for simplifying inequalities to improve the task of simplification. 

An order processor can simplify equalities as well, but the difference is that an 

equality processor will always either reduce an expression to a boolean ground term, 

or not simplify it at all; whereas an order processor is able to reduce an inequality to 

a simpler one by pruning the branches of inequality that it can replace. 

5.2 Other Approaches 

Algebraic Processors are not the only method of providing algebraic computation in 

theorem proving systems; currently there is research being performed on implementing 

a certified computer algebra system called HOLCAS on top of HOL LIGHT [14]. For 

information on this system refer to [26] The HOLCAS system also provides a proof 

for every step of the algebraic processing, but is not limited to only simplification 

of expressions. This program provides the full functionality of a computer algebra 

system, and checks the correctness of each step of the work on the proof assistant 

software. 

The methods used for algebraic simplification in other mechanized mathematics 

systems were discussed in Chapter 3.6, but none of the systems discussed are able to 

generate a proof of correctness for their simplification. 

5.3 Conclusion 

Algebraic processors have many uses in mechanized mathematics systems. The range 

of applications includes simplifying expressions, proving equalities, producing normal 

forms, and computing integer/rational arithmetic expressions. This paper also showed 

how a processor with such powers is able to provide a prescriptive proof of correctness 

for its simplification. The study of the IMPS algebraic processor shows the practicality 

of this approach and that it can function efficiently and correctly inside an automated 

theorem proving system. 
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Appendix A - IMPS Code for 
Algebraic Processor 

This appendix briefly demonstrates how the concepts of algebraic processing are im­
plemented in IMPS. All the code fragments presented here can be used within a 
Common Lisp environment augmented with the IMPS Oolong libraries. 

6.1 Soundness Check 

This code checks the soundness of the algebraic processor by first creating a list of 
all the theorems that are required in the type of processor (as outlined in Chapter 
4), and also making sure that all the required operations are present for this type of 
processor and are all of the correct type. Then it checks the list of theorems to verify 
that they are proved and installed in the current theory. 

Defining the structure of an algebraic processor: 

(define-structure-type algebraic-processor language scalars-type 
exponent-processor coefficient-processor numeral-to-term-function 
constant-recognizer-function term-to-numeral-function 
faithful-numeral-representation? -r +r *r ~r sub-r /r reduced-terms 
handled-operators commutes expand cancellation-valid? 
sum-partitioner rewrite-rules 
(((algebraic-sub-processor soi) soi) 
((processor-validity-conditions soi) 
(algebraic-processor-validity-conditions soi)) 

((processor-reduced-terms soi) 
(algebraic-processor-reduced-terms soi)) 

((partition-summation processor expr params) 
(funcall (algebraic-processor-sum-partitioner processor) 

processor expr params)) 
((processor? soi) 'lisp:t))) 

(define (operation-sorts op) 
(if op 

(make-set 
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(cons (higher-sort-range (expression-sorting op)) 
(higher-sort-domains (expression-sorting op)))) 

the-empty-set)) 
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algebraic-processor-validity-conditions extracts all the required conditions 
for an algebraic processor: 

(define (algebraic-processor-validity-conditions processor) 
(if (and (not (ring-processor? processor)) 

(commutative? processor)) 
(imps-error 

"ALGEBRAIC-PROCESSOR-VALIDITY-CONDITIONS: commutativity is an 
invalid declaration for a non-ring algebraic processor")) 

(if (and (not (ring-processor? processor)) 
(or (~r processor) (/r processor))) 

(imps-error 
"ALGEBRAIC-PROCESSOR-VALIDITY-CONDITIONS: algebraic operation -A 
is not allowed for a non-ring algebraic processor" 

(or c-r processor) (/r processor)))) 
(let ((sorts+ (operation-sorts (+r processor))) 

(sorts* (operation-sorts (*r processor))) 
(sorts- (if c-r processor) 

(make-set 
(list (higher-sort-range 

(expression-sorting 
c~r processor))) 

(car 
(higher-sort-domains 
(expression-sorting 
c-r processor)))))) 

the-empty-set)) 
(sorts-sub (operation-sorts (sub-r processor))) 
(sorts-minus (operation-sorts (-r processor))) 
(sorts-/ (operation-sorts (/r processor)))) 

(if (and (ring~processor? processor) 
(< 1 

(cardinality 

(imps-error 

(big-u (list sorts- sorts-sub sorts-minus 
sorts-/ sorts+ sorts•))))) 

"ALGEBRAIC-PROCESSOR-VALIDITY-CONDITIONS: algebraic ring 
operations have improper sortings.")) 

(if (< 1 
(cardinality 

(big-u (list sorts+ sorts-sub sorts-minus)))) 
(imps-error 

"ALGEBRAIC-PROCESSOR-VALIDITY-CONDITIONS: algebraic operations 
do not have identical domains and ranges"))) 

(let* ((0-sort (number->scalar-constant processor 0)) 
(1-sort (number->scalar-constant processor 1)) 
(0-coefficient-sort 

(number->scalar-constant 
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(coefficient-processor processor) 0)) 
(1-coefficient-sort 

(number->scalar-constant 
(coefficient-processor processor) 1)) 

(0-exp-sort (number->exponent-constant processor 0)) 
(1-exp-sort (number->exponent-constant processor 1)) 
(-1-exp-sort 

(or (number->exponent-constant processor -1) 
(apply-operator 

(-r (exponent-processor processor)) 
1-exp-sort))) 

(formulas nil) 
(sort (car (higher-sort-domains 

(expression-sorting (+r processor))))) 
(exp-sort 

(if c-r processor) 
(cadr (higher-sort-domains 

(expression-sorting c-r processor)))) 
sort)) 

(coefficient-sort 
(car (higher-sort-domains 

(expression-sorting (*r processor))))) 
(x (find-variable 'x sort)) (y (find-variable 'y sort)) 
(z (find-variable 'z sort)) 
(m (find-variable 'm exp-sort)) 
(n (find-variable •n exp-sort)) 
(c (find-variable 'c coefficient-sort)) 
(d (find-variable 'd coefficient-sort)) 
( +exp (lambda (a b) 

(apply-operator 
(+r (exponent-processor processor)) a b))) 

(•exp (lambda (a b) 
(apply-operator 

(*r (exponent-processor processor)) a b))) 
(•op (lambda (a b) (apply-operator (*r processor) a b))) 
(•ext-op (lambda (a b) 

(apply-operator (•ext-r processor) a b))) 
(+ext-op (lambda (a b) 

(apply-operator 
(+r (coefficient-processor processor)) a 
b))) 

(+op (lambda (a b) (apply-operator (+r processor) a b))) 
(/op (lambda (a b) (apply-operator (/r processor) a b))) 
(subop (lambda (a b) 

(apply~operator (sub-r processor) a b))) 
c-op (lambda (a b) (apply-operator c-r processor) a b))) 
(-op (lambda (a) (apply-operator (-r processor) a)))) 

(or 0-sort 
(imps-error 

"ALGEBRAIC-PROCESSOR-VALIDITY-CONDITIONS: processor has no 
zero element.")) 

(push formulas 
(equality (funcall +op x y) (funcall +op y x))) 

(push formulas (equality (funcall +op x 0-sort) x)) 
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(push formulas 
(equality (funcall +op (funcall +op x y) z) 

(funcall +op x (funcall +op y z)))) 
(if (•r processor) 

(block (or 1-coefficient-sort 
(imps-error 
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"ALGEBRAIC-PROCESSOR-VALIDITY-CONDITIONS: processor 
has no multiplicative unit.")) 

(if (commutative? processor) 
(push formulas 

(equality (funcall •op x y) 
(funcall •op y x)))) 

(if (processor-cancellation-valid? processor) 
(if (or (-r processor) (sub-r processor)) 

(push formulas 
(biconditional 

(equality (funcall •op x y) 0-sort) 
(disjunction (equality x 0-sort) 

(equality y 0-sort)))) 
(push formulas 

(implication 
(equality (funcall •op x y) 

(funcall •op x z)) 
(equality y z))))) 

(if (not (-r processor)) 
(push formulas 

(equality (funcall •op 0-coefficient-sort x) 
0-sort))) 

(push formulas 
(equality (funcall *op 1-coefficient-sort x) x)) 

(push formulas 
(equality (funcall •op c (funcall +op y z)) 

(funcall +op (funcall •op c y) 
(funcall •op c z)))) 

(if (ring-processor? processor) 
(if (not (commutative? processor)) 

(push formulas 
(equality 

(funcall •op (funcall +op y z) x) 
(funcall +op (funcall •op y x) 

(funcall •op z x)))) 
(push formulas 

(equality 
(funcall •op (funcall •op x y) z) 
(funcall •op x (funcall •op y z))))) 

(if (•ext-r processor) 
(block (push formulas 

(equality 
(funcall •op 
(funcall +ext-op c d) x) 

(funcall +op (funcall •op c x) 
(funcall •op d x)))) 

(push formulas 
(equality 
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(if c-r processor) 

(funcall •op (funcall •ext-op c d) 
z) 

(funcall •op c (funcall *op d z))))))))) 

(block (push formulas 
(implication 

(defined-in 
(funcall *OP (funcall ·op x m) 
(funcall -op x n)) 

sort) 
(equality 

(funcall ·op x (funcall +exp m n)) 
(funcall •op (funcall ·op x m) 
(funcall ·op x n))))) 

(push formulas 
(implication 

(disjunction 
(defined-in 

(funcall •op (funcall ·op x m) 
(funcall ·op y m)) 

sort) 
(defined-in 

(funcall ·op (funcall *op x y) m) 
sort)) 

(equality 
(funcall •op (funcall ·op x m) 

(funcall ·op y m)) 
(funcall ·op (funcall *op x y) m)))) 

(push formulas (equality (funcall ·op x 1-exp-sort) x)) 
(push formulas 

(implication 
(defined-in (funcall -op x 0-exp-sort) sort) 
(equality (funcall ·op x 0-exp-sort) 1-sort))) 

(push formulas 
(implication 

(defined-in (funcall ·op 1-sort n) sort) 
(equality (funcall -op 1-sort n) 1-sort))) 

(push formulas 
(implication 

(defined-in (funcall ·op 0-sort m) sort) 
(equality (funcall -op 0-sort m) 0-sort))) 

(push formulas 
(implication 

(defined-in (funcall ·op (funcall ·op x m) n) 
sort) 

(equality (funcall ·op (funcall ·op x m) n) 
(funcall ·op x (funcall *exp m n))))) 

(push formulas 
(biconditional 

(conjunction 
(defined-in (funcall ·op x m) sort) 
(defined-in (funcall ·op x n) sort)) 

(defined-in (funcall ·op (funcall ·op x m) n) 
sort))))) 
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(if (and (/r processor) c~r processor)) 
(push formulas 

(implication 
(disjunction (is-defined (funcall /op x y)) 

(is-defined 
(funcall *Op X 

(funcall ~op y -1-exp-sort)))) 
(equality (funcall /op x y) 

(funcall *op x (funcall ~op y -1-exp-sort)))))) 
(if (sub-r processor) 

(if (-r processor) 
(push formulas 

(equality (funcall subop x y) 
(funcall +op x (funcall -op y)))) 

(block (push formulas 
(equality (funcall subop x y) 

(funcall +op x 
(funcall subop 0-sort y)))) 

(push formulas 
(equality 

(if (-r processor) 
(push formulas 

(funcall +op x (funcall subop 0-sort x)) 
0-sort))))) 

(equality (funcall +op x (funcall -op x)) 0-sort))) 
(if (not (eq? processor (exponent-processor processor))) 

(set formulas 
(append formulas 

(processor-validity-conditions 
(exponent-processor processor))))) 

(if (not (eq? processor (coefficient-processor processor))) 
(set formulas 

(append formulas 
(processor-validity-conditions 

(coefficient-processor processor))))) 
(union (map rewrite-rule-formula 

(algebraic-processor-rewrite-rules processor)) 
formulas))) 
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processor-sound-in-theory? checks if all the theorems {validity conditions of the 
algebraic processor) are provable in the given theory: 

(define (processor-sound-in-theory? processor theory) 
(or (memq? processor (theory-valid-processors theory)) 

(let ((valid? (every? (lambda (x) 
(let 
((thm? (theory-theorem? theory x))) 
(if (not thm?) 
(format 'lisp:t 
"NA fails to be a theorem. -y,n 
x)) 

thm?)) 
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(if valid? 

(processor-validity-conditions 
processor)))) 

(set (theory-valid-processors theory) 
(add-set-element processor 

(theory-valid-processors theory)))) 
valid?))) 

6.2 Structure Traversal and Simplification 
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This is the code for traversing through an expression and checking for applicable 
transformers at each stage. 

algebraic-processor-apply-rewrite-rules traverses through an expression and 
applies all the (conditional) re-write rules to the local context of each sub-term: 

(define (algebraic-processor-apply-rewrite-rules processor expr params) 
(iterate loop 

((rules (algebraic-processor-rewrite-rules processor)) 
(expr expr)) 

(if (null? rules) expr 
(receive (new-expr reqs ()) 

(funcall (car rules) 
(processor-parameters-context 
params) 

expr 
(processor-parameters-persistence 
params)) 

(set (processor-parameters-requirements 
params) 

(set-union 
(processor-parameters-requirements 
params) 

reqs)) 
(loop (cdr rules) new-expr))))) 

algebraic-processor-simplify-with-requirements checks the local context of 
the given expression and applies all the simplification rules available for that con­
text: 

(define (algebraic-processor-simplify-with-requirements processor 
context expr persist) 

(if (and (application? expr) 
(memq (operator expr) 

(algebraic-processor-handled-operators 
processor))) 
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(let ((params (make-processor-parameters))) 
(set (processor-parameters-persistence params) persist) 
(set (processor-parameters-context params) context) 
(let ((simplified 

(return 

(algebraic-processor-simplify processor expr 
params))) 

simplified 
(processor-parameters-requirements params) 
'lisp:t))) 

(return expr nil lisp:nil))) 
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algebraic-processor-simplify is the main simplification function that applies an 
algebraic processor to an expression as per Section 3.4.1: 

(define (algebraic-processor-simplify processor expr params) 
(if (processor-reduced? processor expr params) expr 

(let ((expr (algebraic-processor-insistently-apply-rewrite-rules 
processor expr params))) 

(if (application? expr) 
(select (operator expr) 

(((+r processor)) 
(annotate-expression-as-reduced processor 

(simp+ processor expr params) params)) 
(((-r processor)) 
(annotate-expression-as-reduced processor 

(if (and 
(algebraic-processor-expand processor) 
(commutative? processor)) 

(expand- processor expr params) 
(simp- processor expr params)) 

params)) 
(((*r processor)) 
(annotate-expression-as-reduced processor 

(if (eq? processor 
(coefficient-processor processor)) 

(if 
(algebraic-processor-expand processor) 
(expand• processor expr params) 
(simp* processor expr params)) 

(simp•-1 processor expr params)) 
params)) 

(((-r processor)) 
(annotate-expression-as-reduced processor 

(simp- processor expr params) params)) 
(((sub-r processor)) 
(annotate-expression-as-reduced processor 

(simp-sub processor expr params) params)) 
(((/r processor)) 
(annotate-expression-as-reduced processor 

(simp/ processor expr params) params)) 
(else (simplify-by-transforms 
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(processor-parameters-context params) 
expr 
(processor-parameters-persistence params)))) 

(simplify-by-transforms 
(processor-parameters-context params) expr 
(processor-parameters-persistence params)))))) 

6.3 Special Optimizations 
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The special optimizations that take place are the aforementioned transformers for 
replacing numerals with ground terms and collecting similar terms. Tally charts are 
used for collecting like terms in both additive and multiplicative operations. 

Definition and operations on tally charts: 

(define-structure-type tally-chart scalar scalar-accumulator 
label-accumulator label-equivalence comparator object-list) 

(define (init-tally-chart scalar-init scalar-accumulator 
label-accumulator label-equivalence comparator) 

(let ((ate (make-tally-chart))) 
(set (tally-chart-scalar ate) scalar-init) 
(set (tally-chart-scalar-accumulator ate) scalar-accumulator) 
(set (tally-chart-label-accumulator ate) label-accumulator) 
(set (tally-chart-label-equivalence ate) label-equivalence) 
(set (tally-chart-comparator ate) comparator) 
(set (tally-chart-object-list ate) nil) 
ate)) 

(define (accumulate-scalar ate increase) 
(set (tally-chart-scalar ate) 

(funcall (tally-chart-scalar-accumulator ate) 
(tally-chart-scalar ate) increase))) 

(define (accumulate-label ate label increase) 
(cond 

((tally-chart-comparator ate) 
(iterate loop ((rest (tally-chart-object-list ate))) 

(cond 

(else (cond 

((null? rest) 
(push (tally-chart-object-list ate) 

(init-tally-object label increase))) 
((funcall (tally-chart-label-equivalence ate) 

label (tally-object-label (car rest))) 
(tally (car rest) increase 

(tally-chart-label-accumulator ate))) 
(else (loop (cdr rest)))))) 
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((and (tally-chart-object-list ate) 
(funcall (tally-chart-label-equivalence ate) 

label 
(tally-object-label 

(car 
(tally-chart-object-list ate))))) 

(tally (car (tally-chart-object-list ate)) increase 
(tally-chart-label-accumulator ate))) 

(el~e (push (tally-chart-object-list ate) 
(init-tally-object label increase))))))) 

(define (label-tallies ate) 
(cond 

((tally-chart-comparator ate) 
(sort (tally-chart-object-list ate) 

(lambda (a b) 
(funcall (tally-chart-comparator ate) 

(tally-object-label a) 
(tally-object-label b))))) 

(else (tally-chart-object-list ate)))) 
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sum-expression-list uses tally charts above to collect all the similar terms in a 
summation as per Section 3.4.3: 

(define (sum-expression-list processor expr-list params) 
(let ((chart (make-weighted-sum-tally-chart processor))) 

(walk (lambda (x) 
(weighted-sum-accumulate-expression processor chart 

x)) 

expr-list) 
(weighted-sum-tally-chart->expression processor chart params))) 

(define (weighted-sum-accumulate-expression processor pte x) 
(let ((1num (coerce-type 

(cond 

(scalars-type 
(coefficient-processor processor)) 

1))) 

((scalar-constant? processor x) 
(accumulate-scalar pte 

(scalar-constant->numeric~-object processor x))) 
((formal-symbol? x) (accumulate-label pte (list x) lnum)) 
((addition? processor x) 

(walk (lambda (z) 
(weighted-sum-accumulate-expression processor pte 

z)) 
(arguments x))) 

((multiplication? processor x) 
(let ((arguments 

(cond 

(multiplicative-associative-arguments processor 
x))) 



6. Appendix A - IMPS Code for Algebraic Processor 

((scalar-constant? (coefficient-processor processor) 
(car arguments)) 

(accumulate-label pte (cdr arguments) 
(scalar-constant->numerical-object 

(coefficient-processor processor) 
(car arguments)))) 

(else (accumulate-label pte arguments lnum))))) 
(else (accumulate-label pte (list x) lnum))))) 

(define (weighted-sum-tally-chart->expression processor pte params) 
(iterate loop ((accum nil) (fc-tally-list (label-tallies pte))) 

(cond 
((null? fc-tally-list) 
(+scalar processor (tally-chart-scalar pte) 

(reverse accum) params)) 
((numerical-•0? 

(tally-object-weight (car fc-tally-list))) 
(require-convergence-every-factor processor params 

(tally-object-label (car fc-tally-list))) 
(loop accum (cdr fc-tally-list))) 

(else (let ((weighted-product 

(loop 

(•scalar processor 
(tally-object-weight 
(car fc-tally-list)) 

(tally-object-label 
(car fc-tally-list)) 

params))) 

(cons weighted-product accum) 
(cdr fc-tally-list))))))) 
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multiply-expression-list uses tally charts above to collect all the similar terms 
in a multiplication as per Section 3.4.3: 

(define (multiply-expression-list processor expr-list params) 
(let ((chart (make-weighted-product-tally-chart processor))) 

(walk (lambda (x) 
(weighted-product-accumulate-expression processor 

chart x)) 
expr-list) 

(weighted-product-tally-chart->expression processor chart 
params))) 

(define (make-weighted-product-tally-chart processor) 
(init-tally-chart (coerce-type (scalars-type processor) 1) 

numerical-• append! alpha-equivalent? 
(if (commutative? processor) quick-compare nil))) 

(define (weighted-product-accumulate-expression processor mtc x) 
(let ((1exp (if (inhibit-exponentiation? processor) 1 

(number->exponent-constant processor 1)))) 
(cond 
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((scalar-constant? processor x) 
(accumulate-scalar mtc 

(scalar-constant->numerical-object processor x))) 
((formal-symbol? x) (accumulate-label mtc x (list 1exp))) 
((multiplication? processor x) 
(walk (lambda (z) 

(weighted-product-accumulate-expression processor 
mtc z)) 

(arguments x))) 
((exponentiation? processor x) 
(accumulate-label mtc (1starg x) (list (2ndarg x)))) 

(else (accumulate-label mtc x (list lexp)))))) 

(define (weighted-product-tally-chart->expression processor mtc params) 
(let ((sub (exponent-processor processor))) 

(i terata loop 
((accum nil) (be-tally-list (label-tallies mtc))) 
(cond 

((null? be-tally-list) 
(•scalar processor (tally-chart-scalar mtc) accum 

params)) 
(else (let ((exponent-list 

(tally-object-weight 
(car be-tally-list))) 

(base (tally-object-label 
(car be-tally-list)))) 

(if (and (~r processor) 
(> (length exponent-list) 1)) 

(walk (lambda (x) 
(require-convergence processor 
params 
(apply-operator 
(~r processor) base x))) 

exponent-list)) 
(let ((factor 

(if 

(cond 

(inhibit-exponentiation? 
processor) 
(~formal-inhibiting-exponentiation 

processor base 
(apply + exponent-list) params) 
(~formal processor base 
(sum-expression-list sub 
exponent-list params) 

params)))) 

((scalar-constant-•1? processor 
factor) 

(loop accum (cdr be-tally-list))) 
((scalar-constant-=0? processor 

factor) 
(require-convergence-every processor 

params accum) 
(map (lambda (x) 
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(require-convergence processor 
params 
(tally-object-label x)) 

(require-convergence-every 
processor params 
(tally-object-weight x))) 

(cdr be-tally-list)) 
factor) 

((scalar-constant? processor factor) 
(accumulate-scalar mtc 

(scalar-constant->numerical-object 
processor factor)) ' 

(loop accum (cdr be-tally-list))) 
(else (loop 

(cons factor accum) 
(cdr be-tally-list))))))))))) 
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repeated-sum-of-ones->numeral is a part of the transformation for arithmetic sim­
plification in Section 3.4.2, it replaces the IMPS numerals with Lisp numerals: 

(define (repeated-sum-of-ones->numeral processor zero unit expr) 
(iterate loop ((top 'lisp:t) (expr expr)) 

(cond 
((eq? expr zero) 
(coerce-type (scalars-type processor) 0)) 

((eq? expr unit) 
(coerce-type (scalars-type processor) 1)) 

((and top (sign-negation? processor expr)) 
(let ((n (loop lisp:nil (1starg expr)))) 

(if n (numerical-minus n) lisp:nil))) 
((and (addition? processor expr) 

(eq? (2ndarg expr) unit)) 
(let ((n (loop lisp:nil (1starg expr)))) 

(if n (numerical-+ 1 n) lisp:nil))) 
(else lisp:nil)))) 

numeral->repeated-sum-of-ones replaces the Lisp numerals back to IMPS numerals. 
This is the case when the algebraic processor has not allowed the option to use 
numerals in ground terms: 

(define (numeral->repeated-sum-of-ones processor zero unit n) 
(or (funcall (numerical-type-recognizer 

(scalars-type processor)) 
n) 

(imps-error "~A is not of numerical type ~A." n 
(scalars-type processor))) 

(cond 
((numerical-~0? n) zero) 
((numerical-•1? n) unit) 
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((numerical-< n (coerce-type (scalars-type processor) 0)) 
(if (-r processor) 

(apply-operator (-r processor) 
(numeral->repeated-sum-of-ones processor zero unit 

(numerical-minus n))) 
lisp:nil)) 

(else (apply-operator (+r processor) 
(numeral->repeated-sum-of-ones processor zero unit 

(numerical-+ n 

unit)))) 

(numerical-minus 
(coerce-type (scalars-type processor) 

1)))) 
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use-numerals-for-ground-term is the transformation required for displaying nu­
merals to the user as a part of the ground terms defined in section 3.4.2: 

(define (use-numerals-for-ground-terms processor) 
(let ((language (processor-language processor))) 

(set (algebraic-processor-faithful-numeral-representation? 
processor) 

'lisp:t) 
(set (algebraic-processor-numeral-to-term-function processor) 

(lambda (x) (find-constant language x))) 
(set (algebraic-processor-term-to-numeral-function processor) 

(lambda (x) (name x))) 
(set (algebraic-processor-constant-recognizer-function 

processor) 
(lambda (expr) 

(funcall (numerical-type-recognizer 
(scalars-type processor)) 

(name expr)))) 
processor)) 
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